ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DESARROLLO DE UNA APLICACIÓN COMPUTACIONAL PARA DISEÑO DE TRANSFORMADORES DE POTENCIA

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELÉCTRICO

SANDOVAL CAIZATOA JUAN LUIS

juansandoval759@gmail.com

DIRECTOR: Dr. Ing.- Hugo Neptalí Arcos Martínez

hugo.arcos@epn.edu.ec

Quito, agosto 2018

AVAL

Certifico que el presente trabajo fue desarrollado por Sandoval Caizatoa Juan Luis, bajo mi supervisión.

Dr. Ing.- Hugo Neptalí Arcos Martínez DIRECTOR DEL TRABAJO DE TITULACIÓN

DECLARACIÓN DE AUTORÍA

Yo, Sandoval Caizatoa Juan Luis, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Sandoval Caizatoa Juan Luis

DEDICATORIA

A mis padres Patricio y Ligia, quienes me brindaron todo su apoyo en este duro camino, también a mis hermanos, toda mi familia y en especial a mis amigos quienes siempre me ayudaron y me brindaron su apoyo.

AGRADECIMIENTO

Agradezco a Dios que siempre está conmigo cuidándome y brindándome salud, al ingeniero Fausto Valencia que sin su apoyo no se habría realizado este trabajo de titulación y al Dr. Ing.- Hugo Arcos que brindo sus conocimientos para la culminación de este proyecto de titulación.

ÍNDICE DE CONTENIDO

AVAL.		I
DECLA	ARACIÓN DE AUTORÍA	II
DEDIC	ATORIA	III
AGRAI	DECIMIENTO	IV
ÍNDICE	E DE CONTENIDO	V
RESU	MEN	VII
ABSTR	RACT	VIII
1. IN	TRODUCCIÓN	1
1.1	Objetivos	2
1.2	Alcance	2
2. MA	ARCO TEÓRICO	3
2.1	El Transformador	3
2.2	Diseño del Núcleo Magnético	19
2.3	Corriente sin carga	33
2.4	Diseño del devanado de bajo voltaje	
2.5	Diseño del devanado del alto voltaje	49
2.6	Cálculos de operación	60
2.7	Diseño de tanque y determinación de pesos del transformador	66
3. EJ	EMPLO DE CÁLCULO DE DISEÑO DE UN TRANSFORMADOR E)E
POTEN		
3.1	Datos iniciales	
3.2	Ejemplo Diseño del núcleo magnético	73
3.3	Ejemplo Corriente sin carga	
3.4	Ejemplo Diseño del devanado de bajo voltaje	
3.5	Ejemplo Diseño del devanado del alto voltaje	
3.6	Ejemplo Cálculos de operación	91
3.7	Ejemplo Diseño del tanque y determinación de pesos del transfor	mador93
4. RE	SULTADOS Y DISCUSIÓN	
4.1	Resultados y comparación de la aplicación computacional	
4.2	Comparación del diseño preliminar con los diseños con criterios.	100
5. CC	DNCLUSIONES Y RECOMENDACIONES	108
6. RE	FERENCIAS BIBLIOGRÁFICAS	110

7. ANEXOS	112
ANEXO I	112
ANEXO II	131
ANEXO III	135
ANEXO IV	137
ORDEN DE EMPASTADO	151

RESUMEN

PALABRAS CLAVE: Densidad de corriente, diseño de transformadores de potencia, densidad de flujo, materiales magnéticos, núcleos del transformador, transformador de potencia

Se presenta la implementación de una aplicación desarrollada en Python, que permite obtener un diseño preliminar de transformadores de potencia que se lo llama "sin criterio", a este se lo mejora mediante la variación automatizada de varios parámetros. Posteriormente se escoge el caso donde encuentre la mayor eficiencia, mínimo kg/kVA, mínima proporción Io/I_2 (corriente en vacío respecto a la corriente del secundario) y mínimo volumen del tanque a estos casos se los denominan "criterios". El usuario podrá escoger el criterio más adecuado para su diseño específico.

Se indican los criterios considerados en los cálculos y las constantes usadas, las cuales son adquiridas de tablas existentes en la bibliografía revisada. Este procedimiento permite obtener las características físicas del transformador de potencia que servirán tanto para su construcción como para el modelamiento.

Al ejecutar la aplicación se logra observar los parámetros constructivos del transformador de potencia tanto sin criterios como con criterios de diseño para la obtención del caso más conveniente. Los resultados del software desarrollado se comparan con otros diseños encontrados en la literatura observándose mejoras en los diseños finales obtenidos en el presente trabajo.

El diseño del transformador de potencia se realiza en base a la densidad de corriente y de flujo. Por ejemplo, la densidad de campo magnético se encuentra entre 1.5 [T] hasta 1.6 [T] [1], para que de tal manera no existan problemas de sobreexcitación. Si se aumenta este parámetro, directamente se afecta la corriente magnetizante.

El núcleo del transformador en este estudio está formado por chapas laminadas en frio de grano orientado (CRGO). Una de las principales propiedades de este material magnético es su zona de histéresis reducida lo que permite obtener pérdidas bajas y alta permeabilidad magnética.

ABSTRACT

KEYWORDS: current density, power transformer design, magnetic induction, magnetic materials, transformer cores

The implementation of an application developed in Python is presented, which allows obtaining a preliminary design of power transformers that is called without criteria; this is improved by the automated variation of several parameters. Then choose the case where you find the highest efficiency, minimum kg / kVA, minimum ratio Io/I_2 (current in vacuum with respect to the secondary current) and minimum tank volume in these cases are called criteria. The user can choose the most appropriate criteria for their specific design.

The criteria considered in the calculations and the constants used are indicated, which are acquired from existing tables in the revised bibliography. This procedure allows obtaining the physical characteristics of the power transformer that will serve both for its construction and for modeling.

When executing the application, it is possible to observe the constructive parameters of the power transformer both without criteria and with design criteria to obtain the most convenient case. The results of the software developed are compared with other designs found in the literature, with improvements in the final designs obtained in the present work.

The design of the power transformer is made based on the current density and magnetic induction. For example, the magnetic induction is between 1.5 [T] up to 1.6 [T] [1], so that there are no over excitation problems. If the magnetic induction is increased, the magnetizing current is directly affected.

The core of the transformer in this study is formed by cold-rolled plates with oriented grain (CRGO). One of the main properties of this magnetic material is its reduced hysteresis zone, which allows for low losses and high magnetic permeability

1. INTRODUCCIÓN

Este estudio está enfocado en automatizar el proceso de diseño de un transformador mediante la implementación en Python de un software de fácil aplicación. Esto permite tener a la mano una herramienta computacional que suministre los parámetros requeridos para la construcción o modelamiento del mismo. La aplicación admite ajustar el diseño en función de análisis comparativos, disminuyendo los errores que son cometidos cuando el proceso es desarrollado manualmente.

El diseño de un transformador de potencia generalmente se lo realiza en base a diseños anteriores, en experiencias adquiridas y mediante una serie de coeficientes e hipótesis obtenidas en tablas experimentales. Por lo tanto, cada vez que se realice el diseño manualmente se tiene que seguir el mismo procedimiento, desde su etapa inicial. Por este motivo es conveniente tener una herramienta computacional que permita automatizar el proceso de diseño de un transformador de potencia, con el fin de reducir los tiempos de diseño.

De persistir las problemáticas de errores cometidos manualmente, al momento de realizar todos los cálculos necesarios para el diseño del transformador y el sobredimensionamiento de elementos constructivos, se tendrán diseños con mayor corriente de vacío, mayor peso en los devanados tanto primario como secundario, mayor peso en el núcleo, una baja eficiencia y un proceso más lento de ejecución.

Por tal razón en este trabajo de titulación se presenta un programa computacional que permite obtener un diseño preliminar, el cual será mejorado mediante la variación automatizada de varios de los parámetros fundamentales, con el fin de obtener el criterio de mayor eficiencia, mínimo kg/kVA, mínima proporción Io/I_2 (corriente en vacío respecto a la corriente del secundario) y mínimo volumen del tanque.

Los resultados emitidos por el programa computacional sirven tanto para la construcción de un transformador de potencia como para en el análisis del mismo dentro de un Sistema Eléctrico de Potencia.

En resumen, la finalidad del presente trabajo de titulación es la implementación de un software computacional que permita obtener el diseño más conveniente de un transformador de potencia para la construcción o el modelamiento, confiando que en un futuro se automaticen los cálculos mediante su uso y así poder conseguir un dimensionamiento adecuado de los elementos de construcción.

1.1 Objetivos

Desarrollar una aplicación computacional para el diseño de un transformador de potencia, con la finalidad de obtener las características constructivas del equipo y comparar diferentes resultados.

Los objetivos específicos de este Trabajo de titulación son:

- Describir el proceso de diseño de transformadores de potencia, es decir con una capacidad mayor a 500 kVA.
- Desarrollar el código fuente para implementar la aplicación computacional de diseño de transformadores de potencia.
- Aplicar el software desarrollado al diseño de diferentes tipos de transformadores de potencia.
- Comparar los resultados obtenidos en los diseños de un transformador cuando se aplican análisis para reducción de pérdidas, peso, eficiencia, etc., con aquellos en los que no se aplican dichos criterios de análisis.

1.2 Alcance

El alcance de este trabajo de titulación es implementar una aplicación en lenguaje de programación PYTHON, la cual permitirá obtener el diseño más conveniente de un transformador de potencia, tomando en cuenta criterios de diseño como, máxima eficiencia, mínimo kg/kVA, proporción mínima de Io/I_2 (lo es la corriente en vacío e I_2 es la corriente de fase del devanado secundario) y mínimo volumen requerido.

2. MARCO TEÓRICO

En este capítulo se establecen los fundamentos del diseño de transformadores, identificando los fenómenos y los parámetros fundamentales, necesarios para obtener los datos constructivos del equipo, que sirven como guía para el desarrollo de la rutina de programación [1].

2.1 El Transformador

PRINCIPIO DE FUNCIONAMIENTO

El transformador es una máquina estática eléctrica que está formada por dos o más devanados acoplados, son fabricados con o sin núcleo magnético para transferir energía mediante inducción electromagnética entre circuitos a la misma frecuencia, es común que los devanados tengan diferentes valores de corriente y voltaje [2].

Los devanados están interrelacionados por un flujo magnético mutuo, si a cualquiera de estos arrollamientos se le aplica voltaje alterno esto producirá un flujo alterno y su amplitud dependerá tanto de la frecuencia como del valor de la tención aplicada y del número de espiras. Mediante el flujo mutuo se vinculará el otro devanado es decir el secundario y se induce un voltaje cuya magnitud dependerá del número de las espiras secundarias, de la frecuencia y por último de la magnitud que tendrá el flujo mutuo [3].

A continuación, se explicará el funcionamiento de un transformador ideal, en el cual el devanado primario y secundario tiene resistencia despreciable. Esto significa que no existen pérdidas por efecto Joule, en un sistema real las resistencias son de un valor muy pequeño [2].

Lo mismo ocurre con los flujos de dispersión que se consideran despreciables, es decir todo el flujo magnético está encerrado en el núcleo y enlazado con los devanados, mientras que en un transformador real existen flujos de dispersión que cierran su circuito con el aire [2].

Al suministrar el voltaje alterno *V*1 al devanado primario, en este circulará una corriente alterna *I*1, la misma que producirá un flujo alterno que circula por la longitud media del núcleo y su sentido está fijado por la ley de Ampere. La f.e.m (Fuerza Electromotriz) inducidas en los arrollamientos, es creada debido a la variación periódica del flujo en el tiempo, f.e.m es determinada por la ley de Faraday [2].

En la Figura 2.1 se puede observar el circuito equivalente de un transformador ideal, donde se puede observar los parámetros fundamentales.

Figura 2.1. Transformador ideal [3]

$$e1 = N1 \cdot \frac{d\phi}{dt}$$

Ecuación 2.1. f.e.m. inducida en el arrollamiento primario

Donde:

- e1: F.e.m. inducida en el arrollamiento primario
- N1: Número de espiras del devanado primario
- ϕ : Flujo magnético

$$e2 = N2 \cdot \frac{d\phi}{dt}$$

Ecuación 2.2. f.e.m. inducida en el arrollamiento secundario

Donde:

- e2: F.e.m. inducida en el arrollamiento secundario
- N2: Número de espiras del devanado secundario
- ϕ : Flujo magnético

Aplicando la ley de voltajes de Kirchhoff al circuito primario y secundario se tiene las siguientes expresiones:

$$e1 = V1 = N1 \cdot \frac{d\phi}{dt}$$

Ecuación 2.3. Ley de voltajes de Kirchhoff aplicado al circuito primario

Donde:

e1: F.e.m. inducida en el arrollamiento primario

V1: Voltaje del devanado primario

N1: Número de espiras del devanado primario

$$e2 = V2 = N2 \cdot \frac{d\phi}{dt}$$

Ecuación 2.4. Ley de voltajes de Kirchhoff aplicado al circuito secundario

Donde:

e2: F.e.m. inducida en el arrollamiento secundario

V2: Voltaje del devanado secundario

N2: Número de espiras del devanado secundario

 ϕ : Flujo magnético

En sistema de potencia de corriente alterna, las ondas de flujo y de voltaje se aproximan a funciones senoidales, por lo tanto:

 $\phi(t) = \phi_{MAX} \cdot sen(w \cdot t) = \phi_{MAX} \cdot cos(w \cdot t - 90^{\circ})$

Ecuación 2.5. Flujo magnético aproximado a una función senoidal

Donde:

 $\phi(t)$: Flujo en el núcleo

 ϕ_{MAX} : Amplitud del flujo

w: Frecuencia angular

t: Tiempo

 $w = 2 \cdot \pi \cdot f$

Ecuación 2.6. Frecuencia angular

Donde:

w: Frecuencia angular

f: Frecuencia

Al reemplazar la ecuación 2.5 y 2.6 en la Ecuación 2.3 se tiene:

$$e1 = V1 = N1 \cdot \frac{d(\phi_{MAX} \cdot sen(2 \cdot \pi \cdot f \cdot t))}{dt}$$
$$e1 = V1 = 2 \cdot \pi \cdot f \cdot N1 \cdot \phi_{MAX} \cdot cos(2 \cdot \pi \cdot f \cdot t)$$

Ecuación 2.7. f.e.m. inducida en el arrollamiento secundario

Donde:

e1: f.e.m. inducida en el arrollamiento primario

V1: Voltaje del devanado primario

N1: Número de espiras del devanado primario

 ϕ_{MAX} : Amplitud del flujo

f: Frecuencia

t: Tiempo

Mediante la Ecuación 2.7 se puede determinar que e1 y V1 van adelantados 90° respecto al flujo, los cuales tienen una magnitud o valor eficaz de:

$$E1 = V1 = \frac{2 \cdot \pi \cdot f \cdot N1 \cdot \phi_{MAX}}{\sqrt{2}}$$

$$E1 = V1 = 4.44 \cdot f \cdot N1 \cdot \phi_{MAX}$$

Ecuación 2.8. Voltaje RMS inducido en el devanado primario

$$E2 = V2 = 4.44 \cdot f \cdot N2 \cdot \phi_{MAX}$$

Ecuación 2.9. Voltaje RMS inducido en el devanado secundario

Donde:

E1: Voltaje RMS inducido en el devanado primario

E2: Voltaje RMS inducido en el devanado secundario

Sabiendo que:

 $\phi_{MAX} = B \cdot A$

Ecuación 2.10. Flujo magnético

Donde:

B: Inducción magnética

A: Área transversal del núcleo

 ϕ_{MAX} : Amplitud del flujo

El área transversal del núcleo se la puede observar de mejor manera en la Figura 2.2, la cual corresponde a una parte del núcleo.

Figura 2.2. Sección del núcleo [2]

Reemplazando la Ecuación 2.10 en la Ecuación 2.8 y 2.9 se tiene las siguientes expresiones que son de suma importancia para diseño de un transformador:

$$E1 = V1 = 4.44 \cdot f \cdot N1 \cdot B \cdot A$$

Ecuación 2.11. Voltaje RMS inducido en el devanado primario

$$E2 = V2 = 4.44 \cdot f \cdot N2 \cdot B \cdot A$$

Ecuación 2.12. Voltaje RMS inducido en el devanado secundario

Donde:

E1: Voltaje RMS inducido en el devanado primario

E2: Voltaje RMS inducido en el devanado secundario

f: Frecuencia

N2: Número de espiras del devanado secundario

N1: Número de espiras del devanado primario

B: Inducción magnética o densidad de flujo

A: Área transversal del núcleo

La potencia de entrada es igual a la potencia de salida debido que se está trabajando en un sistema ideal sin pérdidas por lo tanto se tiene que

Dividiendo la Ecuación 2.11 y 2.12 se tiene:

$$\frac{E1}{E2} = \frac{V1}{V2} = \frac{N1}{N2} = \frac{I2}{I1} = n$$

Ecuación 2.13. Relación de transformación

Donde:

n: relación de transformación

E1: Voltaje RMS inducido en el devanado primario

E2: Voltaje RMS inducido en el devanado secundario

11: Corriente del devanado primario

12: Corriente del devanado secundario

ELEMENTOS CONSTITUTIVOS

Núcleo del transformador

El núcleo del transformador es un circuito magnético, que está formado por chapas de acero de silicio, laminadas en frío de grano orientado sometidas a un tratamiento químico denominado Carlite que las recubre con una capa aislante muy fina de aproximadamente 1 [mm]. Este proceso se lo realiza para reducir las pérdidas en el hierro [2].

El núcleo está formado por columnas, en las cuales se enrolla el conductor para formar los devanados, y por los yugos que son los elementos que unen las columnas. El espacio que resulta entre las columnas y los yugos se denomina ventana, que es por donde pasan los devanados, ver Figura 2.3.

Figura 2.3. Núcleo, yugo y columnas [autoría propia]

Los transformadores pueden ser de dos tipos: acorazado y núcleo.

En el tipo acorazado, el núcleo magnético abraza a los devanados, reduce el flujo de dispersión y disminuye con ello las pérdidas, como se muestra en la Figura 2.4. Son usados para potencias altas, en planta generadoras, en subestaciones como elevadores o reductores, en hornos de arco eléctrico, en autotransformadores, etc [4].

Figura 2.4. Núcleo acorazado [autoría propia]

En el transformador tipo núcleo, los devanados cubren casi por completo al núcleo magnético como se puede observar en la Figura 2.5. Pueden ser de 3 o 5 columnas, ver

Figura 2.6, tienen mayor facilidad para ensamble y desmontaje de bobinados, son utilizados como elevadores de voltaje, transformador auxiliar, reductores tipo subestación, etc [3].

Figura 2.5. Tipo núcleo [autoría propia]

En este estudio se diseña el transformador tipo núcleo, el cual se observa en la Figura 2.4.

Figura 2.6. Tipo núcleo, con 5 núcleos [autoría propia]

Tipos de Devanados

Los devanados son elaborados con conductores y pletinas de cobre según la potencia del transformador. Se utiliza este tipo de material porque presenta, después del oro y la plata, la mejor conductividad y su costo es más económico. En transformadores pequeños los

conductores están recubiertos por una capa aislante que suele ser barniz. Cuando se requiere del uso de pletinas, el aislamiento está formado por una o varias capas de cinta de papel o algodón [2].

Los devanados pueden estar construidos de dos formas: concéntricos y alternados.

En el tipo devanado concéntrico, los bobinados tienen forma de sándwich y se colocan más cerca a la columna. El arrollamiento de bajo voltaje está aislado del núcleo. Después se ubica un cilindro aislante de papel o cartón y al final se sitúa el arrollamiento de alto voltaje. Esto se muestra en la Figura 2.7 [2].

Figura 2.7. Devanado concéntrico [autoría propia]

En el caso de devanados alternados, los arrollamientos se ubican en forma de galleta para reducir el flujo de dispersión, separados por un cilindro aislante, como se observa en la Figura 2.8 [2].

Figura 2.8. Devanados alternados [autoría propia]

Tipos de conductores

Para él diseño de máquinas eléctricas se usan dos tipos de conductores:

 Magnetic wire o flat wire (alambre plano o alambre magnético): Este tipo de conductor es un único hilo rodeado por una cubierta de papel. Es usado para soportar esfuerzos de repulsión entre arrollamientos. Se considera cada hilo independiente de los demás. Se lo puede observar en la Figura 2.9 [5].

Figura 2.9. Alambre magnético visto desde la parte superior del transformador []

2. Cable transpuesto: La transposición se realiza para que el grupo de hilos tenga mayor rigidez. También se usa para que todos los discos ocupen la misma posición en el devanado, teniendo la misma impedancia, por lo tanto, se distribuirá la corriente uniformemente. Generalmente está compuesto por hilos de cobre recubiertos por esmalte colocados en forma rectangular. Esto se puede visualizar en la Figura 2.10 [5].

Figura 2.10. Cable transpuesto [5]

Aislamiento

Los materiales ocupados para el recubrimiento en los conductores que forman los devanados se clasifican según el nivel de temperatura esto se muestra en la Tabla 2.1, la máquina debe operar a una temperatura límite para que no sufra daños.

Clase	Límite de temperatura máxima [C]	Material
A	105	Algodón, seda y papel impregnados en líquido dieléctrico como el aceite
E	120	Algodón, seda y papel impregnados en líquido dieléctrico para operar hasta 120 ° C.
В	130	Mica, fibra de vidrio, asbesto con materiales de impregnación adecuados para operar hasta 130 ° C.
F	155	Mica, fibra de vidrio, asbestos con sustancias de unión adecuados capaces de hasta 155 ° C.
Н	180	Elastómeros de silicona con mica, fibra de vidrio, asbestos. con resinas de silicona
С	225	Elastómeros de silicona con mica, fibra de vidrio, amianto con resinas de silicona.

Tabla 2.1. Clasificación de materiales aislantes [2]

Tanque y tubos de enfriamiento

El tanque se debe construir para cumplir la función de resistir la presión interna del transformador sin sufrir daño alguno es decir sin deformaciones. Las placas del tanque están constituidas por acero.

Los tubos de enfriamiento son también llamados "radiadores", los cuales cumplen la función de enfriar al transformador. Son empleados cuando el tanque no puede disipar por si solo las pérdidas por calor del transformador. El número de radiadores depende de la cantidad de calor a disipar y vienen soldados en la superficie del tanque [6].

TIPOS DE TRANSFORMADORES

Los transformadores se clasifican de la siguiente manera [6]:

Por la operación: Se diferencian por la potencia que manejan las máquinas dentro del Sistema Eléctrico de Potencia, los cuales pueden ser de dos tipos:

- Transformadores de distribución: Son monofásicos y trifásico, tienen una potencia de entre 5 hasta 500 [kVA].
- Transformadores de potencia. Son los que tienen una capacidad de potencia mayor a 5 [MVA].

Por el número de fases: Estos dependen del sistema en el que se va a usar el transformador.

- Monofásico: Son transformadores que están conectados a una fase y al neutro pueden ser de potencia y distribución, se encuentran conformados por un devanado de alto voltaje y uno de bajo voltaje.
- Trifásicos: Son conectados a tres fases y pueden o no tener neutro, están conformados por tres devanados de alto voltaje y tres de bajo voltaje.

Por su utilización: Son clasificados por la función que cumplan dentro del Sistema Eléctrico de Potencia.

- Transformadores para generar: Se encuentra conectado a la salida de la generación y son empleados para elevar el voltaje con el fin de ser trasferido.
- Transformadores para subestación: Se encuentra ubicado al final de la línea de transmisión y se encarga de reducir el voltaje a nivel de subtransmisión.
- Transformadores de distribución: Son empleados para reducir el voltaje de subtransmisión a la tensión de suministro.
- Transformadores especiales: Son usados para reguladores de tensión, transformadores para rectificadores, etc.
- Transformadores de instrumentos: Son usados para medición, en control y potencia.

CIRCUITOS EQUIVALENTES DEL TRANSFORMADOR

Circuito equivalente del transformador ideal

Como ya se indico anteriormente, cuando se trata del transformador ideal no se consideran pérdidas y el voltaje se transfiere en función a la relación de espiras. La potencia de entrada es igual a la potencia de salida [8].

El circuito equivalente del transformador ideal se lo puede observar en la Figura 2.11.

Figura 2.11. Circuito equivalente del transformador ideal [8]

Circuito equivalente del trasformador real

Las partes constitutivas del circuito equivalente del transformador real se pueden visualizar en la Figura 2.12. En el esquema se toman en cuenta las pérdidas en el cobre, en el núcleo (pérdidas en el hierro por histéresis y por corrientes parásitas), corriente de excitación y flujos de dispersión.

Las resistencias *R*1 y *R*2, que corresponden tanto al devanado primario como el secundario, representan las pérdidas en el cobre. Esto ocurre debido a que circula una corriente por el conductor y éste se calienta de acuerdo al efecto Joule [3].

Las reactancias *XL*1 y *XL*2, corresponden al devanado primario y secundario respectivamente y son producidas por los flujos de dispersión que cierran su circuito en el aire [3].

Rc Representa las pérdidas en el hierro del núcleo y *Xm* es originada por el campo magnetizante [2].

Figura 2.12. Circuito transformador real [autoría propia]

En la Figura 2.13 y Figura 2.14 se puede encontrar los circuitos reducidos del transformador real, en los cuales se encuentran los elementos referidos tanto al lado primario como al lado secundario, este se realiza para poder encontrar el valor de los parámetros con mayor facilidad, donde la contante n es la relación de transformación que ya se mencionó con anterioridad.

Figura 2.13. Circuito transformador real referido al primario

FORMAS DE CONEXIÓN

Conexión Y-Y: Este tipo de conexión no tiene desplazamiento angular entre el devanado primario y el secundario, en este caso las conexiones más comunes son YY6 y YY0, ver figura 2.15. En este tipo de conexión se tiene el neutro tanto en el primario como en el secundario. Su desventaja es que no se puede tener cargas desequilibradas debido a que se induce voltajes desbalanceados al primario [2].

Figura 2.15. Conexión Y-Y [2]

Donde:

- Vf: Voltaje de línea [A]
- *Vf*: Voltaje de fase [V]
- IL: Corriente de línea [A]
- If: Corriente de fase [A]

Conexión D-d: Este tipo de conexión es usada para transformadores de baja tensión. Frente a cargas desequilibradas tiene un buen comportamiento. Se puede trabajar como delta abierto teniendo como resultado el 58% de la potencia, ver Figura 2.16.

Figura 2.16. Conexión D-d [2]

Conexión D-y: Esta conexión tiene un desplazamiento angular de 30 grados entre el primario y el secundario. Es usada en transformadores elevadores de alto voltaje y distribución, ver Figura 2.17.

Conexión Y-d: Esta se comporta bien bajo cargas desequilibradas. Es usado en alta voltaje, ver Figura 2.18.

Figura 2.18. Conexión Y-d [2]

Conexión Y-z: Frente a cargas desequilibradas se comporta bien, debido a que en el lado de baja tensión siempre va a ir la conexión zig-zag. Es usado en redes de distribución por que en el lado secundario se permite el uso del neutro.

2.2 Diseño del Núcleo Magnético

En esta sección se procede a identificar las partes y pasos a seguir para poder obtener las dimensiones del núcleo magnético, el cual está formado por las columnas, la ventana y el yugo. Se efectúa el cálculo de la densidad de flujo de cada una de las partes antes mencionadas. Para esto, en la Figura 2.19 se observa el núcleo magnético y sus partes.

Figura 2.19. Núcleos magnéticos y devanados [autoría propia]

Selección del voltaje por espira

Para encontrar el valor del voltaje por espira se emplea la Ecuación 2.14 [1], que está en función de la potencia aparente de la máquina, del número de fases y de la constante *K* que representa el factor de relación entre el cobre y el núcleo, cuyo valor depende del tipo de construcción del transformador. Los valores admisibles se muestran en la Tabla 2.2.

$$Et = K \cdot \sqrt{\frac{KVA}{ph}}$$

Ecuación 2.14. Voltios por espira

Donde:

Et: Voltios por espira

K: Factor de relación entre el cobre y el núcleo

KVA: Potencia aparente del transformador [kVA]

ph: Número de fases

K	Valor
Tipo núcleo	0.6 – 0.9
Tipo acorazado	0.9 – 1.3

 Tabla 2.2. Factor de relación entre el cobre y el núcleo [9]

Selección de la densidad de flujo máxima en la columna del núcleo

La selección de la densidad de flujo es un factor muy importante, ya que ésta afecta al tamaño del transformador, al rendimiento de la máquina y el costo de los materiales. Hoy en día existen chapas magnéticas como Hi-B de alta eficiencia, las cuales son tratadas con láser. La densidad del campo magnético con este material ha llegado a 2.1 [T] [5].

Para el diseño, se asume una densidad de flujo de entre 1.5 [T] hasta 1.6 [T] [1], de tal manera que no existan problemas de sobreexcitación. Si se aumenta este parámetro, directamente se afecta la corriente magnetizante. Este caso se aplica en las chapas de CRGO (chapa magnética laminada en frio de grano orientado); en la cual a partir de 1.9 [T] la corriente magnetizante se incrementa ampliamente [5].

Las sobreexcitaciones frecuentemente se deben a las fluctuaciones de voltaje. Cuando ocurre esta condición el núcleo tiene suficiente flujo para saturarse, produciendo pérdidas elevadas en las chapas magnéticas. Si la fluctuación es de larga duración y magnitud elevada provoca daños perjudiciales sobre las chapas y se eleva la temperatura sobre los devanados y partes estructurales del transformador. Las chapas magnéticas pueden soportar altas temperaturas, pero los tornillos de sujeción se podrían afectar [5].

Área neta transversal de la columna

El área neta transversal de la columna se la determina con la Ecuación 2.15, la cual representa la expresión general del transformador. En la Figura 2.20 se visualiza este parámetro.

$$Ai = \frac{Et}{4.44 \cdot f \cdot Bm}$$

Ecuación 2.15. Área neta transversal de la columna

Donde:

Ai: Área neta transversal de la columna $[m^2]$

f: Frecuencia [Hz]

Bm: Densidad de flujo asumida [T]

Et: Voltios por espira

Al suministrar el voltaje alterno al devanado primario, en este circulará una corriente alterna, la cual producirá un flujo alterno que circula por el núcleo, su sentido está fijado por la ley de Ampere. La f.e.m (Fuerza Electromotriz) inducida en los arrollamientos es producida debido a variación periódica del flujo en el tiempo [2].

Figura 2.20. Área neta transversal de la columna [autoría propia]

Diámetro de la columna del núcleo

El diámetro de la columna se lo calcula mediante la Ecuación 2.16. Es importante mencionar que el valor del diámetro de la columna, se lo aproxima su milésima a la siguiente unidad para calcular nuevamente el valor de área. Por ejemplo, si se obtiene una magnitud de 0.2214 [mm], se escogería el valor de 0.23 [mm].

La constante k representa el factor de área de la columna del núcleo, depende de cuantos pasos de apilación de láminas se use. En la Figura 2.21 se observan los diferentes tipos de columnas que se indican en la Tabla 2.3.

$$d = \sqrt{\frac{Ai}{k}}$$

Ecuación 2.16. Diámetro de la columna

Donde:

d: Diámetro de la columna [m]

k: Factor de área de la columna del núcleo

Ai: Área neta transversal de la columna $[m^2]$

Tabla 2.3. Factor de área de la columna del Núcleo [10]

Proporción	Columna	Columna	Columna	Columna
	Cuadrado	circular	de 3 pasos	de 4 pasos
k	0.45	0.56	0.6	0.62

Figura 2.21. Tipos de columnas del transformador [autoría propia]

Cálculo de la correcta área neta transversal de la columna

Una vez determinado el diámetro aproximado (d) se obtiene el valor correcto del área neta de la columna. Este proceso se lo realiza despejando de la Ecuación 2.16 el área (Ai). Con esto se obtiene la Ecuación 2.17.

 $Ai = k \cdot d^2$

Donde:

- Ai: Área neta transversal correcta de la columna $[m^2]$
- k: Factor de área de la columna del núcleo
- d: Diámetro de la columna [m]

Cálculo del voltaje por espira correcto

Mediante el uso de la Ecuación 2.18 se calcula el valor correcto del voltaje por espira.

$$Et = 4.44 \cdot f \cdot Bm \cdot Ai$$

Ecuación 2.18. Voltaje por espira correcto

Donde:

Et: Voltios por espira

f: Frecuencia [Hz]

Bm: Densidad de flujo asumida [T]

Ai: Área neta transversal de la columna $[m^2]$

Factor de aprovechamiento de la ventana

Este factor es menor a 1. En este estudio se aplica la fórmula de la referencia [1], la cual corresponde a la Ecuación 2.19.

$$Kw = \frac{10}{30 + \frac{HV}{10^3}} \cdot 1.15$$

Ecuación 2.19. Factor de aprovechamiento de la ventana

Donde:

Kw: Factor de aprovechamiento de la ventana

HV: Voltaje de fase del devanado de alto voltaje [V]

Selección de la densidad de corriente para las columnas del núcleo

La densidad de corriente se selecciona en base al tipo de refrigeración que se usa en el transformador. Puede ser de tipo seco para potencias bajas y de tipo en aceite que es empleado para potencias altas. En la Tabla 2.4 se observan los valores permitidos de la densidad de corriente.

Tabla 2.4. Densidad de	e corriente según	el tipo de transfe	ormador [5]
------------------------	-------------------	--------------------	-------------

Tipo de refrigeración	Densidad de corriente [<i>A/mm</i> ²]
Seco	1.5 – 2.5
En aceite	2.5 - 3.5

Área de la ventana

Una vez seleccionada la densidad de corriente se procede a calcular el área de la ventana con la Ecuación 2.20 [1], ver Figura 2.7.

$$Aw = \frac{KVA \cdot 1000}{3.33 \cdot f \cdot Bm \cdot Kw \cdot J \cdot 10^{6} \cdot Ai}$$

Ecuación 2.20. Área de la ventana [1]

Donde:

- Aw: Área de la ventana $[m^2]$
- KVA: Potencia aparente del transformador [kVA]
- f: Frecuencia [Hz]
- Bm: Densidad de flujo asumida [T]
- *Kw*: Factor de aprovechamiento de la ventana
- *J*: Densidad de corriente $\left[\frac{A}{mm^2}\right]$
- Ai: Área neta transversal correcta de la columna $[m^2]$

Figura 2.22. Área de la ventana y área de la columna [autoría propia]

Longitud de la columna o altura de la ventana

La longitud de la columna se calcula mediante la Ecuación 2.21. Ésta depende de la relación de la altura de la ventana con respecto a su longitud que es generalmente de 2 a 4, ver Figura 2.23. Esta proporción es tomada para dimensionar la longitud de la columna del núcleo [11]. Según [1] se asume un valor de proporción de 2.5 hasta 4 y después se la calcula correctamente mediante la Ecuación 2.23.

$$L = \sqrt{LbyD \cdot Aw}$$

Ecuación 2.21. Longitud de la columna

Donde:

L: Longitud de la columna [m]

LbyD: Proporción de la altura de la ventana respecto a su longitud

Aw: Área de la ventana $[m^2]$

Longitud de la ventana

Distancia entre los centros de las columnas

Mediante el uso de la Ecuación 2.22 se determina el valor de la distancia entre los centros de las columnas.

$$D = \frac{Aw}{L} + d$$

Ecuación 2.22. Distancia entre los centros de las columnas

Donde:

D: Distancia entre los centros de las columnas [m]

L: Longitud de la columna [m]

Aw: Área de la ventana $[m^2]$

d: Diámetro de la columna [m]

La primera restricción del diseño del transformador se plantea en la Ecuación 2.23. Esta proporción tiene que estar entre un valor de 2.5 a 4.

$$LbyD = \frac{L}{D-d}$$

Ecuación 2.23. Proporción del alto de la ventana respecto a la longitud de la misma Donde:

- *LbyD*: Proporción del alto de la ventana respecto a la longitud de la misma
- L: Longitud de la columna [m]
- D: Distancia entre los centros de las columnas [m]
- d: Diámetro de la columna [m]

Longitud del yugo

La longitud del yugo se calcula mediante la Ecuación 2.24. En la Figura 2.24 se visualiza este parámetro.

$$W = 2 \cdot D + 0.9 \cdot d$$

Ecuación 2.24. Longitud del yugo

Donde:

- W: Longitud del yugo [m]
- D: Distancia entre los centros de las columnas [m]
- d: Diámetro de la columna [m]

Área transversal real de la columna

El área transversal real se determina mediante la Ecuación 2.25, la cual está relacionada con una constante del hierro o también llamada factor de espacio. Según [1] se considera con un valor de 0.92.

$$Ac = \frac{Ai}{ki}$$

Ecuación 2.25. Área real de la columna

Donde:

Ac: Área real de la columna $[m^2]$

Ai: Área neta transversal correcta de la columna $[m^2]$

ki: Factor del hierro

Área del yugo

Se asume un área del 15% más del área de la columna. Esto se realiza en la Ecuación 2.26, su representación se la observa en la Figura 2.25 [1].

$$Ay = 1.15 \cdot Ac$$

Ecuación 2.26. Área del yugo

Donde:

Ay: Área del yugo $[m^2]$

Ac: Área real de la columna $[m^2]$

Ancho y altura del yugo

La altura y ancho del yugo se calcula mediante las Ecuaciones 2.27 y 2.28. Se observan estos parámetros en la Figura 2.26.

$$by = 0.9 \cdot d$$

Ecuación 2.27. Ancho del yugo

Donde:

by: Ancho del yugo [m]

d: Diámetro de la columna [m]

$$hy = \frac{Ay}{by}$$

Ecuación 2.28. Altura del yugo

Donde:

hy: Altura del yugo [m]

Ay: Área del yugo $[m^2]$

by: Ancho del yugo [m]

Pérdidas en la columna en [W/kg]

Esta magnitud se determina mediante la curva que se encuentra en la Figura 2.27, la cual representa las pérdidas del núcleo de acero laminado en frio. En el eje de las abscisas se

tiene la densidad de flujo y en el eje de las ordenadas se encuentra [W/kg]. Mediante la densidad de flujo ya antes asumida se obtiene el valor de las pérdidas para la columna. Este parámetro se lo representa mediante las siglas WpKgC [1].

Figura 2.27. Pérdidas del núcleo de acero laminado en frio [1]

Peso de las columnas del núcleo

Según [1], el peso de las columnas, en kilogramos, se lo puede determinar mediante la Ecuación 2.29.

$$KgC = Ph \cdot Ac \cdot L \cdot \delta fe \cdot 1000$$

Ecuación 2.29. Peso de las columnas del núcleo

Donde:

- KgC: Peso de las columnas en [kg]
- ph: Número de fases
- Ac: Área real de la columna $[m^2]$
- L: Longitud de la columna [m]
- δfe : Densidad del hierro 7.55 $\left[\frac{Kg}{m^6}\right]$

Pérdidas en el hierro

Este tipo de pérdidas son fijas, se producen cuando el transformador está trabajando con carga o en vacío. Parte de la energía almacenada en el núcleo ferromagnético se transforma en calor y se debe a: pérdidas por histéresis y pérdidas por corrientes parásitas o corrientes de Foucault [2].

Para poder entender el fenómeno de histéresis es necesario utilizar la curva característica B(H) que se muestra en la Figura 2.28, la cual resulta al momento de alimentar una bobina enrollada en un núcleo ferromagnético con una fuente de voltaje sinusoidal [2].

Al variar la densidad del campo magnético desde -Br (punto A) hasta +Bm (punto C), se seguirá la trayectoria (ABC), esto significa que existe energía absorbida por el campo magnético, la cual es almacenada en esa parte del ciclo. Al hacer lo contrario es decir variar la densidad de flujo desde +Bm (punto C) hasta -Br (punto E), siguiendo la trayectoria (CE), esto provoca que la energía sea devuelta a la red [2].

Al variar la densidad de flujo entre -Br y +Bm y después entre +Bm y -Br, se seguirá el camino (ABCEA). La, cual tiene una superficie que representa la densidad de energía que es absorbida por el núcleo y que no es devuelta a la red. Esta es disipada en forma de calor a través del núcleo [2].

Figura 2.28. Curva B(H) [2]

Al alimentar con corriente alterna una bobina enrollada en un núcleo, se produce un campo magnético alterno. También aparecerán f.e.m.s inducidas de acuerdo a la ley de Faraday, las cuales producirán corrientes que circularán en el material. Si el núcleo está laminado las corrientes en cada lámina son pequeñas y la suma total es menor a la corriente que aparecerá en un núcleo macizo (sin láminas). Estas corrientes originarán pérdidas de potencia y calentamiento en el núcleo que se conocen como pérdidas por corriente de Foucalt [2].

Pérdidas en el hierro de las columnas

El hierro es un material ferromagnético que se usa en el diseño de núcleos de los transformadores. Sus propiedades ferromagnéticas permiten reducir la corriente de excitación requerida para operar la máquina, así como maximizar el acoplamiento entre los devanados [12].

Con el uso de la Ecuación 2.30 se determina el valor de las pérdidas del hierro en las columnas.

 $PiC = WpKgC \cdot KgC$

Ecuación 2.30. Pérdidas del hierro en las columnas

Donde:

PiC: Pérdidas en el hierro en las columnas [W]

WpKgC: Pérdidas en la columna [W/kg]

KgC: Peso de las columnas en [kg]

Peso de los yugos

El peso de los yugos se determina con la Ecuación 2.31, cabe resaltar que se debe multiplicar por dos, debido a que se tienen dos yugos. Uno en la parte superior y el otro en la parte inferior como se puede visualizar en la Figura 2.29.

 $KgY = 2 \cdot Ay \cdot W \cdot \delta fe \cdot 1000$

Ecuación 2.31. Peso de los yugos en kilogramos

Donde:

KgY: Peso de los yugos en [kg]

Ay: Área del yugo
$$[m^2]$$

W: Longitud del yugo [m]

 δfe : Densidad del hierro 7.55 $\left[\frac{Kg}{m^6}\right]$

Densidad de flujo en el yugo

La densidad de flujo en el yugo se la calcula mediante el uso de la Ecuación 2.32 [1].

$$By = \frac{Ac}{Ay} \cdot Bm$$

Ecuación 2.32. Densidad de flujo en el yugo

Donde:

- By: Densidad de flujo en el yugo [T]
- Ac: Área real de la columna $[m^2]$

Ay: Área del yugo $[m^2]$

Figura 2.29. Yugos del transformador [autoría propia]

Pérdidas en el yugo

Se hace uso de la curva mostrada en la Figura 2.27. Se obtiene a partir de la densidad de flujo del yugo y se lo representa con las siglas WpKgY.

Pérdidas en el hierro de los yugos

Esto se obtiene de la misma manera que las pérdidas en el hierro en las columnas. Esto se realiza con la Ecuación 2.33.

$$PiY = WpKgY \cdot KgY$$

Ecuación 2.33. Pérdidas del hierro en los yugos

Donde:

PiY: Pérdidas del hierro en los yugos [W]

WpKgY: Pérdidas en el yugo [W/kg]

KgY: Peso de los yugos en [kg]

Pérdidas totales del hierro

Las pérdidas totales del hierro son la suma de las pérdidas en las columnas y de las del yugo multiplicado por porcentaje extra de 5%, tal como se muestra en la Ecuación 2.34.

$$Pi = 1.05 \cdot \frac{PiC + PiY}{1000}$$

Ecuación 2.34. Pérdidas totales del hierro

Donde:

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

PiC: Pérdidas en el hierro en las columnas [W]

PiY: Pérdidas del hierro en los yugos [W]

2.3 Corriente sin carga

La corriente en vacío cumple la misión de producir el flujo en el núcleo magnético para poder vencer las pérdidas en el hierro por medio de sus componentes activa y reactiva [2].

En este subcapítulo se procede a determinar la relación entre Io/I_2 . Ésta es la segunda restricción del diseño ya que su valor debe ser menor a 1 [1].

Amperios vuelta por metro (AT/m) para la columna y el yugo

Teniendo como datos iniciales las densidades de flujo tanto del yugo y de la columna se procede a ir a la curva que se encuentra en Figura 2.30 y según el valor de la densidad del campo magnético se obtendrá la magnitud de AT/m (amperios vuelta sobre metro) para cada parte correspondientemente.

Figura 2.30. Curva de magnetización del acero laminado en frio [1]

Amperios vuelta (AT) para la columna y el yugo

Una vez adquirido el parámetro anterior. Se encuentra el valor de AT para la columna como para el yugo. Mediante el uso de las Ecuaciones 2.35 y 2.36.

$$ATC = Ph \cdot atC \cdot L$$

Ecuación 2.35. AT para la columna

Donde:

ATC: AT para la columna

atC: AT/m para la columna

ph: Número de fases

L: Longitud de la columna [m]

 $ATY = 2 \cdot atY \cdot W$

Ecuación 2.36. AT para el Yugo

Donde:

ATY: AT para el yugo

atY: AT/m para el yugo

W: Longitud del yugo [m]

El total de AT por fase del núcleo magnético se lo determina sumando los AT tanto del yugo como de la columna. Esto se muestra en la Ecuación 2.37.

$$ATpPh = \frac{ATC + ATY}{Ph}$$

Ecuación 2.37. AT totales por fase del núcleo magnético

Donde:

ATpPh: AT totales por fase del núcleo magnético

ATC: AT para la columna

ATY: AT para el yugo

ph: Número de fases

Corriente de fase en el devanado de bajo voltaje

Para el cálculo de la corriente en el devanado de bajo voltaje es necesario saber la conexión del transformador. Esta puede ser delta-estrella o viceversa para este trabajo de titulación. En la Figura 2.31 y 2.32 se observan los dos tipos de conexiones. En éstas se detallan los voltajes y corrientes que se deben considerar para el diseño.

Figura 2.31. Conexión delta [autoría propia]

Para el caso en que el transformador se encuentre en conexión delta, el voltaje de línea es igual al voltaje de fase. La corriente de línea es diferente a la corriente de fase, como se muestra a continuación.

$$S = \sqrt{3} \cdot VL \cdot IL$$

Ecuación 2.38. Potencia aparente del transformador

Donde:

S: Potencia aparente [kVA]

VL: Voltaje de línea [V]

IL: Corriente de línea [A]

$$IL = \sqrt{3} \cdot If$$

Ecuación 2.39. Corriente de línea conexión delta

Donde:

IL: Corriente de línea [A]

If: Corriente de fase [A] es igual a I_2 en el caso en que el devanado este en delta

En este tipo de conexión se usa el voltaje de línea y la corriente de fase. Reemplazando la Ecuación 2.38 en la Ecuación 2.39 se obtiene la corriente de fase. Ver Ecuación 2.40.

$$If = \frac{S}{3 \cdot VF}$$

Ecuación 2.40. Corriente de fase en conexión delta

If: Corriente de fase [A] es igual a I_2 en el caso en que el devanado este en delta

S: Potencia aparente [kVA]

Vf: Voltaje de fase [V]

Para el caso en que el transformador se encuentre en conexión estrella, el voltaje de línea es mayor al voltaje de fase. La corriente de línea es igual a la corriente de fase, como visualiza en la Figura 2.32.

$$VL = \sqrt{3} \cdot Vf$$

En esta conexión se usa el voltaje de fase y la corriente de fase. Reemplazando la Ecuación 2.41 en la Ecuación 2.38, se obtiene la corriente de fase, ver Ecuación 2.42

$$If = \frac{S}{\sqrt{3} \cdot Vf}$$

Ecuación 2.42. Corriente de fase conexión estrella

If: Corriente de fase [A] es igual a I_2 en el caso en que el devanado este en estrella

Vf: Voltaje de fase [V]

Figura 2.32. Conexión estrella [autoría propia].

Número de espiras en el devanado de bajo voltaje

Se determina el número de espiras en el devanado de bajo voltaje con la Ecuación 2.43.

$$T_2 = \frac{LV}{X \cdot Et}$$

Ecuación 2.43. Número de espiras en el devanado de bajo voltaje

Donde:

T₂: Número de espiras en el devanado de bajo voltaje

LV: Voltaje de fase del devanado de bajo voltaje [V]

X: Parámetro que depende del tipo de conexión en el que se encuentre el devanado puede ser estrella o delta, en la Tabla 2.5 se pueden observar los valores de esta constante

Et: Voltios por espira

Tabla 2.5. Valores de X

Constante	Conexión delta	Conexión estrella
Х	1	$\sqrt{3}$

Cálculo de la corriente en vacío (Io) y sus componentes

Como ya se mencionó anteriormente la corriente en vacío (Io) tiene dos componentes. La primera representa las pérdidas del hierro en el núcleo (Ic). La segunda es la corriente de magnetización (Im). Con la Ecuación 2.44 se calcula la parte real y con la Ecuación 2.45 se obtiene la parte imaginaria [1].

$$Ic = \frac{Pi \cdot 1000}{X \cdot LV}$$

Ecuación 2.44. Componente activa de la corriente en vacío

Donde:

Ic: Componente activa de la corriente en vacío [A]

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

X: Parámetro que depende del tipo de conexión en el que se encuentre el devanado puede ser estrella o delta, en la Tabla 2.5 se pueden observar los valores de esta constante

LV: Voltaje de fase del devanado de bajo voltaje [V]

$$Im = \frac{1.15 \cdot ATpPh}{\sqrt{3} \cdot T_2}$$

Ecuación 2.45. Componente reactiva de la corriente en vacío [1]

Donde:

Im: Componente reactiva de la corriente en vacío

ATpPh: AT totales por fase del núcleo magnético

*T*₂: Número de espiras en el devanado de bajo voltaje

Una vez determinada la magnitud de las componentes se calcula la corriente en vacío, con la Ecuación 2.46.

$$Io = \sqrt{Ic^2 + Im^2}$$

Ecuación 2.46. Magnitud de la corriente en vacío [1]

Relación de la corriente en vacío Io respecto a la corriente del secundario I_2

Esta proporción se calcula con la Ecuación 2.47. El valor de la relación debe ser menor a 1 para continuar con el diseño.

$$IobyI2 = \frac{Io}{I_2} \cdot 100$$

Ecuación 2.47. Relación de la corriente en vacío respecto a la corriente del secundario

Donde:

IobyI2: Proporción Io/I_2

 I_2 : Corriente de fase del devanado secundario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella

2.4 Diseño del devanado de bajo voltaje

Espacio para las espiras

El espacio disponible para las espiras se asume del 80% de la longitud de la columna. Este parámetro se lo determina mediante el uso de la Ecuación 2.48, ver Figura 2.33 [1].

 $ALW = 0.8 \cdot L * 1000$

Ecuación 2.48. Espacio disponible para las espiras

Donde:

ALW: Espacio disponible para las espiras [mm]

L: Longitud de la columna [m]

Espiras radiales (T_{2r}) y axiales (T_{2a})

Las espiras se distribuirán sobre el núcleo de manera axial y radial, para esto se debe entender dónde está el eje axial y radial, ver Figura 2.34.

En la Figura 2.35 se encuentra un transformador trifásico, en el cual se puede ver por donde pasan los conductores.

Figura 2.34. Eje axial y radial [5]

Figura 2.35. Transformador trifásico [7]

Las espiras radiales o también llamadas capas se recomienda que sean de 2 a 3 en el devanado de bajo voltaje. Se puede dar una idea de lo antes manifestado visualizando la Figura 2.35 [6].

El número de espiras axiales se las determina dividiendo el total de espiras del devanado de bajo voltaje para el número de espiras radiales, tal como se muestra en la Ecuación 2.49. Las espiras axiales se pueden observar en la Figura 2.36.

$$T_{2a} = \frac{T_2}{T_{2r}}$$

Ecuación 2.49. Número de espiras axiales

Donde:

- T_{2a}: Número de espiras axiales
- T₂: Número de espiras en el devanado de bajo voltaje
- T_{2r}: Número de espiras radiales

Figura 2.36. Espiras axiales y radiales [autoría propia]

Espacio para cada espira

Teniendo como premisa los valores calculados con las Ecuaciones 2.48 y 2.49, se determina el espacio de cada espira con la Ecuación 2.50. En la Figura 2.37 se muestra el espacio de cada espira.

$$ALT = \frac{ALW}{T_{2a}}$$

Ecuación 2.50. Espacio de cada espira

Donde:

ALT: Espacio para cada espira [mm]

ALW: Espacio disponible para las espiras [mm]

T_{2a}: Número de espiras axiales

Número de hebras paralelas en cada conductor (stP)

No es recomendable usar un solo conductor porque circula una corriente de fase de amplia magnitud. Por lo tanto, este conductor se forma por la unión de hebras paralelas, las cuales son distribuidas de forma axial y radial, como se muestra en la Figura 2.38.

Figura 2.38. Un solo conductor con 9 hebras axiales [autoría propia]

Número de hebras axiales en un solo conductor (NstA)

En el devanado de bajo voltaje se tiene un amplio espacio para cada espira. Por esto, se seleccionan más de 2 hebras axiales. En la Figura 2.39 se puede observar el caso de un solo conductor dispuesto con 9 hebras paralelas. Estas son redistribuidas con 3 hebras axiales. Al final se tiene un arreglo de 3x3, como se muestra en la Figura 2.26.

Número de hebras radiales

El número de espiras por capa se determina mediante el uso de la Ecuación 2.51, ver Figura 2.40.

$$NstR = \frac{stP}{NstA}$$

Ecuación 2.51. Número de hebras radiales en un solo conductor

Donde:

NstR: Número de hebras radiales en un solo conductor

stP: Número de hebras paralelas en un solo conductor

NstA: Número de hebras axiales en un solo conductor

Figura 2.40. Número de hebras radiales [autoría propia]

Ancho de cada hebra de un conductor

En la Figura 2.41 se visualiza la ubicación de este parámetro. Este se determina mediante la aplicación de la Ecuación 2.52.

$$stW = \frac{ALT}{NstA} - 0.5$$

Ecuación 2.52. Ancho de cada hebra de un conductor

Donde:

- stW: Ancho de cada hebra [mm]
- ALT: Espacio para cada espira [mm]

NstA: Número de hebras axiales en un solo conductor

Espacio axial ocupado y longitud sobrante en el devanado de bajo voltaje.

Para encontrar este parámetro es necesario saber los valores de los aislamientos. Se considera 0.4 [mm] del aislamiento de cada hebra, el cual debe ser sumado al ancho de un hilo (stW). También se asume 2 [mm] de aislamiento entre espiras y 100 [mm] como espacio extra. Mediante la Ecuación 2.53 y la Figura 2.41 se encuentra y se visualiza esté parámetro.

$$ALWx = \left(\left((stW + 0.4) \cdot NstA \right) + 2 \right) \cdot T2a + 100$$

Ecuación 2.53. Espacio axial ocupado en el devanado de bajo voltaje

Donde:

ALWx: Espacio axial ocupado en el devanado de bajo voltaje en [mm]

stW: Ancho de cada hebra [mm]

NstA: Número de hebras axiales en un solo conductor

T_{2a}: Número de espiras axiales

El espacio axial sobrante es otra restricción del diseño. Esta magnitud debe ser siempre mayor a 7 [mm]. Ver Ecuación 2.54 para su cálculo.

 $SlkLVax = L \cdot 1000 - ALWx$

Ecuación 2.54. Espacio axial libre en el devanado de bajo voltaje

Donde:

SlkLVax: Espacio axial libre en el devanado de bajo voltaje [mm]

L: Longitud de la columna [m]

ALWx: Espacio axial ocupado en el devanado de bajo voltaje en [mm]

Figura 2.41. Espacio axial ocupado y sobrante [autoría propia]

Área del conductor de bajo voltaje

El área del conductor se calcula mediante la Ecuación 2.55. Se observa un parámetro 0.98, el cual se incluye debido al redondeo de las hebras, ver Figura 2.42.

$$a_2 = stW \cdot stT \cdot stP \cdot 0.98$$

Ecuación 2.55. Área del conductor de bajo voltaje

Donde:

 a_2 : Área del conductor del devanado de bajo voltaje $[mm^2]$

stW: Ancho de cada hebra [mm]

stT: Espesor de cada hebra de un solo conductor [mm]

stP: Número de hebras paralelas en un solo conductor

Figura 2.42. Redondeo de las hebras [autoría propia]

Densidad de corriente en el conductor de bajo voltaje

La densidad de corriente se la determina mediante la Ecuación 2.56. Este parámetro debe tener un valor de 2.3 a 3.5.

$$cdLV = \frac{I_2}{a_2}$$

Ecuación 2.56. Densidad de corriente del conductor de bajo voltaje

Donde:

cdLV: Densidad de corriente del conductor de bajo voltaje

 I_2 : Corriente de fase del devanado secundario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella

 a_2 : Área del conductor del devanado de bajo voltaje $[mm^2]$

Ancho radial del devanado de bajo voltaje ocupado

En la Figura 2.43 se observa el ancho radial del devanado de bajo voltaje, cuyo valor es determinado mediante la Ecuación 2.57.

$$rwLV = NstR \cdot (stT + 0.4) \cdot T_{2r} + 1.8$$

Ecuación 2.57. Ancho radial del devanado de bajo voltaje

Donde:

rwLV: Ancho radial del devanado de bajo voltaje

- NstR: Número de hebras radiales en un solo conductor
- stT: Espesor de cada hebra de un solo conductor [mm]

T_{2r}: Número de espiras radiales

Aislamiento cilíndrico y ductos entre la columna del núcleo y el devanado de bajo voltaje

Se asume que cada ducto de aceite tiene un diámetro de 5 [mm] y el cilindro de aislamiento 3 [mm]. Estos parámetros se los puede visualizar en la Figura 2.42.

Figura 2.43. Ductos y ancho radial del devanado [autoría propia]

Diámetro interno y externo del devanado de bajo voltaje

El diámetro interno consta de la suma del espacio de los ductos, cilindros aislantes y la columna del núcleo, como se presenta en la Ecuación 2.58. El diámetro externo es la suma del diámetro interno más la suma de 2 veces el ancho radial [rwLV]. Esto se determina con la Ecuación 2.59, tomando en cuenta que las unidades del diámetro de la columna (d) debe estar en [mm], ver Figura 2.43.

$$di_2 = d + 2 \cdot (5 + 3 + 5)$$

Ecuación 2.58. Diámetro interno del devanado de bajo voltaje

Donde:

di₂: Diámetro interno del devanado de bajo voltaje [mm]

d: Diámetro de la columna [mm]

$$do_2 = di_2 + 2 \cdot rwLV$$

Ecuación 2.59. Diámetro externo del devanado de bajo voltaje

Donde:

do2: Diámetro externo del devanado de bajo voltaje [mm]

di₂: Diámetro interno del devanado de bajo voltaje [mm]

rwLV: Ancho radial del devanado de bajo voltaje

Figura 2.43. Diámetro interno y externo del devanado de bajo voltaje [autoría propia]

Resistencia por fase del devanado de bajo voltaje

Utilizando la Ecuación 2.60 se determina la longitud media del devanado de bajo voltaje, necesaria para el cálculo de la resistencia. Mediante la Ecuación 2. 61 se calcula el valor de la resistencia por fase del devanado de bajo voltaje.

$$Lmt_2 = \frac{(do_1 + do_2) \cdot \pi}{1000 \cdot 2}$$

Ecuación 2.60. Longitud media del devanado de bajo voltaje

Donde:

*Lmt*₂: Longitud media del devanado de bajo voltaje [m]

do2: Diámetro externo del devanado de bajo voltaje [mm]

di2: Diámetro interno del devanado de bajo voltaje [mm]

$$r_2 = 0.02 \cdot Lmt_2 \cdot \frac{T_2}{a_2}$$

Ecuación 2.61. Resistencia del devanado de bajo voltaje

Donde:

- r_2 : Resistencia por fase del devanado de bajo voltaje [m Ω]
- *Lmt*₂: Longitud media del devanado de bajo voltaje [m]
- T₂: Número de espiras en el devanado de bajo voltaje

 a_2 : Área del conductor del devanado de bajo voltaje [mm^2]

Pérdidas de cobre en el devanado de bajo voltaje

Las pérdidas en el cobre se deben a la disipación de calor que se produce en los devanados, es la suma de la potencia consumida en los conductores. Este valor es directamente proporcional al cuadrado de la corriente que circula por el conductor por la resistencia óhmica del mismo, teniendo como resultado la Ecuación 2.62.

$$pcu_2 = Ph \cdot I_2^2 \cdot \frac{r_2}{1000}$$

Ecuación 2.62. Pérdidas en el cobre

Donde:

pcu₂: Pérdidas en el cobre

ph: Número de fases

 I_2 : Corriente de fase del devanado secundario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella

 r_2 : Resistencia por fase del devanado de bajo voltaje [m Ω]

2.5 Diseño del devanado del alto voltaje

Corriente de fase en el devanado de alto voltaje

Para el cálculo de la corriente en el devanado de alto voltaje es necesario saber la conexión en la que se encuentra. Si está en delta se ocupa la Ecuación 2.41 y si está en estrella se utiliza la Ecuación 2.43.

Número de espiras en el devanado de alto voltaje

El cómputo del número de espiras en el devanado de alto voltaje se realiza mediante la relación de transformación del transformador, ver Ecuación 2.63.

$$T_1 = \frac{HV \cdot T_2}{X_1 \cdot \frac{LV}{X}}$$

Ecuación 2.63. Número de espiras en el devanado de alto voltaje

Donde:

T1: Número de espiras en el devanado de alto voltaje

T₂: Número de espiras en el devanado de bajo voltaje

X: Parámetro que depende de la conexión en el que se encuentre el devanado de bajo voltaje, ver Tabla 2.5.

LV: Voltaje de fase del devanado de bajo voltaje [V]

HV: Voltaje de fase del devanado de alto voltaje [V]

 X_1 : Parámetro que depende de la conexión en el que se encuentre el devanado de alto voltaje, ver Tabla 2.6.

Tabla 2.6. Valores de X_1

Constante	Conexión delta	Conexión estrella
<i>X</i> ₁	1	$\sqrt{3}$

Número de espiras de bobinas en el devanado de alto voltaje

Debido a que el valor de la corriente en este devanado no es tan alta como en el secundario, se considera ubicar un solo conductor rectangular, no dos o más en paralelo

como en el caso del devanado de bajo voltaje. Este conductor está formado por hebras radiales y axiales [1].

Se asume que (AxC) es el número total de bobinas axiales en el devanado de alto voltaje. Éstas son la unión de bobinas normales y dos bobinas extras. Dentro de las bobinas normales se tiene un número espiras (X_{11}). En cada una de las bobinas extras se tiene el 65% de espiras de un bobinado normal. Cabe mencionar que las 2 bobinas extras se añaden tanto en la parte superior e inferior de los bobinados normales, como resultado de esto se tiene la Ecuación 2.64, ver Figura 2.44.

$$T_1 = X_{11} \cdot (AxC - 2) + 2 \cdot (0.65 \cdot X_{11})$$

Ecuación 2.64. Número total de espiras en el devanado de alto voltaje

Donde:

T₁: Número de espiras en el devanado de alto voltaje

X₁₁: Número de espiras en cada bobina en el devanado de alto voltaje

AxC: Número total de bobinas axiales en el devanado de alto voltaje

Despejando X_{11} se tiene que:

$$X_{11} = \frac{T_1}{(AxC - 2) + 1.3}$$

Ecuación 2.65. Número total de espiras en cada bobina

T₁: Número de espiras en el devanado de alto voltaje

 X_{11} : Número de espiras en cada bobina en el devanado de alto voltaje

AxC: Número total de bobinas axiales en el devanado de alto voltaje

Espacio para el devanado de alto voltaje

Para este devanado se considera solo el 70% de la longitud total de la columna. Se emplea la Ecuación 2.66 para encontrar este parámetro, ver Figura 2.44.

$$ALW = L \cdot 1000 \cdot 0.7$$

Ecuación 2.66. Longitud para el devanado de alto voltaje

Donde:

ALW: Longitud para el devanado de alto voltaje [mm]

L: Longitud de la columna [m]

Número de espiras radiales en el devanado de alto voltaje

Para determinar este parámetro se procede a asumir el número de hebras axiales, debido a que el ancho para el conductor es amplio. Con la Ecuación 2.67 se determinan las hebras radiales, ver Figura 2.44.

$$cR = \frac{X_{11}}{cA}$$

Ecuación 2.67. Número de hebras radiales en el devanado de alto voltaje

Donde:

cR: Número de espiras radiales en el devanado de alto voltaje

 X_{11} : Número de espiras en cada bobina en el devanado de alto voltaje

cA: Número de espiras axiales en el devanado de alto voltaje

Número de espiras en cada bobina extra del devanado de alto voltaje

Mediante la Ecuación 2.68 se encuentra la magnitud de este parámetro. Su representación se observa en la Figura 2.44.

$$x_3 = \frac{T_1 - \left(cR \cdot cA \cdot (AxC - 2)\right)}{2}$$

Ecuación 2.68. Número de espiras en cada uno de los bobinados extras

Donde:

 x_3 : Número de espiras en el bobinado extra en el devanado de alto voltaje

cR: Número de espiras radiales en el devanado de alto voltaje

cA: Número de espiras axiales en el devanado de alto voltaje

T₁: Número de espiras en el devanado de alto voltaje

AxC: Número total de bobinas axiales en el devanado de alto voltaje

Se tiene que verificar que el número total de espiras calculado con la Ecuación 2.63 sea igual a número de espiras que se distribuyeron en cada uno de los bobinados, ver Ecuación 2.69.

 $T_1 = cA \cdot cR \cdot (AxC - 2) + (2 \cdot x_3)$

Ecuación 2.69. Verificación de espiras totales

 T_1 : Número de espiras en el devanado de alto voltaje

cR: Número de espiras radiales en el devanado de alto voltaje

cA: Número de espiras axiales en el devanado de alto voltaje

AxC: Número total de bobinas axiales en el devanado de alto voltaje

x₃: Número de espiras en el bobinado extra en el devanado de alto volta

Espacio para cada bobina en el devanado de alto voltaje

Para encontrar este parámetro utiliza la Ecuación 2.70. Su representación se observa en la Figura 2.44.

$$ALPC = \frac{ALW}{AxC}$$

Ecuación 2.70. Espacio de cada bobina en el devanado de alto voltaje

Donde:

ALPC: Espacio de cada bobina en el devanado de alto voltaje [mm]

ALW: Longitud para el devanado de alto voltaje [mm]

AxC: Número total de bobinas axiales en el devanado de alto voltaje

Ancho para cada hebra de los bobinados del devanado de alto voltaje

El ancho de una hebra que se encuentra dentro de cada bobinado se lo calcula mediante la Ecuación 2.71. Esto se lo visualiza en la Figura 2.44. Cabe recalcar que este parámetro no incluye el aislamiento, por lo tanto, se resta 0.4 [mm].

$$stW_1 = \frac{ALPC}{cA} - 0.4$$

Ecuación 2.71. Ancho de cada Hebra

Donde:

 stW_1 : Ancho de cada hebra dentro de una bobina en el devanado de alto voltaje [mm]

ALPC: Espacio de cada bobina en el devanado de alto voltaje [mm]

cA: Número de espiras axiales en el devanado de alto voltaje

Área del conductor en una espira en el devanado de alto voltaje

La densidad de corriente inicial en el devanado de alto voltaje es la suma de 0.2 al valor de densidad de corriente que se asumió anteriormente para la columna del núcleo. Este se realiza para encontrar el valor del área, ver Ecuación 2.72 [1].

$$a_1 = \frac{I_1}{I + 0.2}$$

Ecuación 2.72. Área de una hebra en una espira

Donde:

 a_1 : Área de una hebra en una espira $[mm^2]$

 I_1 : Corriente de fase del devanado primario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella [A]

Figura 2.44. Parámetros del devanado de alto voltaje [autoría propia]

Una vez calculada el área se procede a determinar el valor del espesor de cada hebra de un bobinado con la Ecuación 2.73, ver Figura 2.46.

$$stT_1: = \frac{a_1}{stW_1}$$

Ecuación 2.73. Espesor de cada hebra en el bobinado de alto voltaje

Donde:

*stT*₁: Espesor de cada hebra en el bobinado de alto voltaje [mm]

 a_1 : Área de una hebra en una espira $[mm^2]$

 stW_1 : Ancho de cada hebra dentro de una bobina en el devanado de alto voltaje [mm]

A continuación, se obtiene el área y la densidad de corriente real mediante el uso de las Ecuaciones 2.74 y 2.75, ver Figura 2.46.

$$a_1 = stT_1 \cdot stW_1 \cdot 0.98$$

Ecuación 2.74. Área real de conductor de cada hebra en el devanado de alto voltaje Donde:

 a_1 : Área de una hebra en una espira $[mm^2]$

 stT_1 : Espesor de cada hebra en el bobinado de alto voltaje [mm]

 stW_1 : Ancho de cada hebra dentro de una bobina en el devanado de alto voltaje [mm]

En la Ecuación 2.74, el ancho por el espesor se le debe de multiplicar por un factor de redondeo de las hebras que es de 0,98.

$$cdHV = \frac{I_1}{a_1}$$

Ecuación 2.75. Densidad de corriente real en el devanado de alto voltaje

Donde:

cdHV: Densidad de corriente real en el devanado de alto voltaje $\left[\frac{A}{mm^2}\right]$

 I_1 : Corriente de fase del devanado primario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella [A]

 a_1 : Área de una hebra en una espira $[mm^2]$

Longitud axial del devanado de alto voltaje

Primero se procede a sumar los anchos de cada hebra dentro de un bobinado más el valor de su aislamiento que es 0,4 [mm], ver Ecuación 2.76. Después se multiplica por el número de bobinas más el aislamiento entre ellas 6 [mm]. El aislamiento entre bobinas es igual al número total de bobinas menos uno, como se muestra en la Ecuación 2.77.

$$aLc = cA \cdot (stW_1 + 0, 4)$$

Ecuación 2.76. Longitud axial de una bobina en el devanado de alto voltaje

Donde:

aLc: Longitud axial de una bobina en el devanado de alto voltaje [mm]

cA: Número de espiras axiales en el devanado de alto voltaje

 stW_1 : Ancho de cada hebra dentro de una bobina en el devanado de alto voltaje [mm]

$$AxLw = AxC \cdot aLc + (AxC - 1) \cdot 6$$

Ecuación 2.77. Longitud axial de todas bobinas del devanado de alto voltaje

Donde:

AxLw: Longitud axial de todas las bobinas del devanado de alto voltaje [mm]

AxC: Número total de bobinas axiales en el devanado de alto voltaje

aLc: Longitud axial de una bobina en el devanado de alto voltaje [mm]

Finalmente, mediante la Ecuación 2.78 se determina la longitud axial del devanado de alto voltaje. Teniendo como premisa a la longitud axial de todas las bobinas se les añaden 130 [mm] para el aislamiento final.

$$AxL = AxLw + 130$$

Ecuación 2.78. Longitud axial del devanado de alto voltaje

Donde:

AxL: Longitud axial del devanado de alto voltaje [mm]

AxLw: Longitud axial de todas las bobinas del devanado de alto voltaje [mm]

Longitud radial del devanado de alto voltaje

Al espesor de cada hebra se le suman 0.4 [mm] que corresponde al aislamiento entre hebras, ver Ecuación 2.79. En la Figura 2.46 se puede visualizar este parámetro.

$$rwHV = cR \cdot (stT_1 + 0.4)$$

Ecuación 2.79. Longitud radial del devanado de alto voltaje

Donde:

rwHV: Longitud radial del devanado de alto voltaje [mm]

cR: Número de espiras radiales en el devanado de alto voltaje

 stT_1 : Espesor de cada hebra en el bobinado de alto voltaje [mm]

Espacio axial libre de la columna del núcleo respecto al devanado de alto voltaje

El espacio sobrante es la resta de la longitud de la columna menos la longitud ocupada por el devanado de alto voltaje. Esto se realiza mediante la Ecuación 2.80.

$$SIKHVax = L \cdot 1000 - AxL$$

Ecuación 2.80. Espacio axial libre de la columna respecto al devanado de alto voltaje

Donde:

SIKHVax: Espacio axial libre de la columna respecto al devanado de alto voltaje [mm]

L: Longitud de la columna [m]

AxL: Longitud axial del devanado de alto voltaje [mm]

Aislamiento cilíndrico y ductos entre el devanado de bajo voltaje y el devanado de alto voltaje

Se asume que cada ducto de aceite tiene un diámetro de 5 [mm] y el cilindro de aislamiento 6 [mm]. Estos parámetros se los puede ver en la Figura 2.45.

Diámetro interno y externo del devanado de alto voltaje

El diámetro interno consta de la suma tanto de los ductos, cilindros aislantes y del diámetro externo del devanado de bajo voltaje, ver Ecuación 2.81. El diámetro externo se constituye

de la suma del diámetro interno más la suma de 2 veces el ancho radial (rwHV). Esto se observa en la Ecuación 2.82, ver Figura 2.46.

$$di_1 = do_2 + 2 \cdot (5 + 6 + 5)$$

Ecuación 2.81. Diámetro interno del devanado de alto voltaje

Donde:

di₁: Diámetro interno del devanado de alto voltaje [mm]

do2: Diámetro externo del devanado de bajo voltaje [mm]

$$do_1 = di_1 + 2 \cdot rwHV$$

Ecuación 2.82. Diámetro externo del devanado de alto voltaje

Donde:

do₁: Diámetro externo del devanado de alto voltaje [mm]

di₁: Diámetro interno del devanado de alto voltaje [mm]

rwHV: Longitud radial del devanado de alto voltaje [mm]

Figura 2.45. Ductos de aceita y aislamiento cilíndrico [autoría propia]

Figura 2.46. Parámetros del devanado de alto voltaje [autoría propia]

Espacio entre devanados de distintas fases

Este parámetro debe ser siempre mayor a 15 [mm] para que no exista ninguna complicación, ver Ecuación 2.83 [1].

$$EfD = D * 1000 - do_1$$

Ecuación 2.70. Espacio entre devanados de distintas fases

Donde:

EfD: Espacio entre devanados de distintas fases [mm]

- D: Distancia entre los centros de las columnas [m]
- do1: Diámetro externo del devanado de alto voltaje [mm]

Resistencia por fase del devanado de alto voltaje

Primero se determina la longitud media del devanado de alto voltaje. Este se realiza con la Ecuación 2.84. Posteriormente se calcula mediante la Ecuación 2.85 el valor de la resistencia por fase del devanado de alto voltaje.

$$Lmt_1 = \frac{(di_1 + do_1) \cdot \pi}{1000 \cdot 2}$$

Ecuación 2.84. Longitud media del devanado de alto voltaje

Donde:

*Lmt*₁: Longitud media del devanado de alto voltaje [m]

*do*₁: Diámetro externo del devanado de alto voltaje [mm]

di₁: Diámetro interno del devanado de alto voltaje [mm]

$$r_1 = 0.02 \cdot Lmt_1 \cdot \frac{T_1}{a_1}$$

Ecuación 2.85. Resistencia del devanado de alto voltaje

Donde:

 r_1 : Resistencia por fase del devanado de alto voltaje [Ω]

*Lmt*₁: Longitud media del devanado de alto voltaje [m]

 T_1 : Número de espiras en el devanado de alto voltaje

Pérdidas de cobre en el devanado de alto voltaje

Este valor es directamente proporcional a la corriente que circula por el conductor al cuadrado por la resistencia óhmica del mismo. Teniendo como resultado la Ecuación 2.86.

$$pcu_1 = Ph \cdot {I_1}^2 \cdot \frac{r_1}{1000}$$

Ecuación 2.86. Pérdidas en el cobre en el devanado de alto voltaje

Donde:

*pcu*₁: Pérdidas en el cobre en el devanado de alto voltaje [kW]

ph: Número de fases

 I_1 : Corriente de fase del devanado primario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella [A]

 r_1 : Resistencia por fase del devanado de alto voltaje [Ω]

2.6 Cálculos de operación

En este subcapítulo se determina el comportamiento de la máquina estática con el abastecimiento de carga. Se observa que es lo que ocurre con la eficiencia y con varios parámetros fundamentales.

Pérdidas totales en el cobre

Se comienza este subcapítulo asumiendo que las pérdidas por corrientes parásitas son del 5% (stray losses). Las pérdidas totales del cobre en los devanados se las determina mediante la Ecuación 2.87.

 $pcuT = 1.05 \cdot (pcu_1 + pcu_2)$

Ecuación 2.87. Pérdidas totales en el cobre

Donde:

pcuT: Pérdidas totales en el cobre [kW]

pcu1: Pérdidas en el cobre en el devanado de alto voltaje [kW]

pcu₂: Pérdidas en el cobre

Pérdidas totales a plena carga

Las pérdidas totales a plena carga son la suma tanto de las pérdidas en el cobre como las pérdidas en el hierro (columnas + yugos). Se las determina mediante la Ecuación 2.88.

ptFL = pcuT + Pi

Ecuación 2.88. Pérdidas totales a plena carga

Donde:

ptFL: Pérdidas totales a plena carga [kW]

pcuT: Pérdidas totales en el cobre [kW]

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

Pérdidas totales

Las pérdidas totales se la calculan mediante la Ecuación 2.89.

 $TL = (pcuT + Pi) \cdot Ldpu^2$

Ecuación 2.89. Pérdidas totales de una fase

Donde:

TL: Pérdidas totales [kW]

pcuT: Pérdidas totales en el cobre [kW]

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

Ldpu: Carga en por unidad [pu]

Salida de potencia por fase

Este parámetro se lo determina sabiendo que se debe abastecer una carga, ver Figura 2.47. Entonces se tiene Ecuación 2.90.

$$Opt = Ldpu \cdot KVA \cdot pf$$

Ecuación 2.90. Salida de potencia por fase

Donde:

Opt: Salida de potencia por fase [KW]

Ldpu: Carga en por unidad [pu]

KVA: Potencia aparente del transformador [kVA]

pf: Factor de potencia de la carga [pu]

Figura 2.47. Carga a abastecer [autoría propia]

Potencia de entrada

La potencia de entrada es la suma de la potencia de salida más las pérdidas en el transformador, ver Ecuación 2.91.

$$Inp = Opt + TL$$

Ecuación 2.91. Salida de potencia por fase

Donde:

Inp: Potencia de entrada [kW]

Opt: Salida de potencia por fase [KW]

TL: Pérdidas totales [kW]

Eficiencia del transformador

La eficiencia es el coeficiente entre la potencia útil es decir la potencia entregada por el secundario hacia la carga y la potencia total o potencia que entra en el primario. Se tiene la Ecuación 2.92.

$$eff = \frac{Opt}{Opt + TL} = \frac{Opt}{Inp}$$

Ecuación 2.92. Eficiencia o rendimiento del transformador

Donde:

eff: Eficiencia del transformador

Opt: Salida de potencia por fase [KW]

TL: Pérdidas totales [kW]

Inp: Potencia de entrada [kW]

Eficiencia Máxima

Primero se determina la carga que se debe de abastecer para que ocurra esta condición, ver Ecuaciones 2.93 y 2.94.

$$Ldmxef = \sqrt{\frac{Pi}{pcuT}} \cdot KVA$$

Ecuación 2.93. Carga para la máxima eficiencia

Donde:

Ldmxef: Carga para la máxima eficiencia [kVA]

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

pcuT: Pérdidas totales en el cobre [kW]

KVA: Potencia aparente del transformador [kVA]

$$efmx = \frac{Ldmxef \cdot 0.85}{(Ldmxef \cdot 0.85) + (2 \cdot Pi)}$$

Ecuación 2.94. Eficiencia máxima

Donde:

efmx: Eficiencia máxima

Ldmxef: Carga para la máxima eficiencia [kVA]

Pi: Pérdidas totales del hierro en el núcleo magnético [KW]

Longitud media total

Longitud media total es la mitad de la suma de la longitud media del devanado del alto voltaje más la del devanado de bajo voltaje, ver Ecuación 2.95.

$$Lmt = \frac{Lmt_1 + Lmt_2}{2}$$

Ecuación 2.95. Longitud media total

Donde:

Lmt: Longitud media total [mm]

*Lmt*₂: Longitud media del devanado de bajo voltaje [m]

*Lmt*₁: Longitud media del devanado de alto voltaje [m]

Impedancia del transformador

La impedancia del transformador se la denomina voltaje de dispersión o impedancia de dispersión. Se debe tener como indicio que la impedancia se descompone en su parte real, resistencia y su parte imaginaria, reactancia.

Para la reactancia se debe encontrar primero La longitud del bobinado y los AT por fase.

$$Lc = \frac{AxLw}{1000}$$

Ecuación 2.96. Longitud del bobinado

Donde:

Lc: Longitud del bobinado [m]

AxLw: Longitud axial de todas las bobinas del devanado de alto voltaje [mm]
$AT = I_1 \cdot T_1$

Ecuación 2.97. Amperios por fase del devanado de alto voltaje

Donde:

AT: Amperios por fase del devanado de alto voltaje

 I_1 : Corriente de fase del devanado primario es igual a If, este valor depende del tipo de conexión del devanado que puede ser delta o estrella [A]

T₁: Número de espiras en el devanado de alto voltaje

Finalmente se tiene que:

$$Ex = \frac{2 \cdot \pi \cdot f \cdot 4 \cdot \pi \cdot Lmt \cdot AT}{Lc \cdot Et} \cdot \left[AED + \frac{rwHV + rwLV}{3 \cdot 1000}\right]$$

Ecuación 2.98. Reactancia

Donde:

- Ex: Reactancia [pu]
- f: Frecuencia [Hz]

Lmt: Longitud media total [mm]

AT: Amperios por fase del devanado de alto voltaje

- Lc: Longitud del bobinado [m]
- Et: Voltios por espira
- AED: Aislamiento entre devanados [mm]

rwLV: Ancho radial del devanado de bajo voltaje

rwHV: Longitud radial del devanado de alto voltaje [mm]

La resistencia se obtiene mediante la relación entre las pérdidas totales en el cobre del transformador y la potencia del transformador.

$$Er = \frac{pcuT}{KVA}$$

Ecuación 2.99. Resistencia

Donde:

Er: Resistencia [pu]

pcuT: Pérdidas totales en el cobre [kW]

KVA: Potencia aparente del transformador [kVA]

Por lo tanto, se tiene que la impedancia es:

 $Ez = \sqrt{Er^2 + Ex^2}$

Ecuación 2.100. Impedancia

Donde:

Ez: Impedancia [pu]

Er: Resistencia [pu]

Ex: Reactancia [pu]

Regulación de voltaje a plena carga y factor de potencia de 0.85 y 1

Para la regulación con un factor de potencia de 0.85 y plena carga se tiene que hacer uso de la Ecuación 2.101. Mientras que para plena carga con factor de potencia de la unidad se hará uso de la Ecuación 2.102.

 $Reg85 = (Er \cdot 0.85 + Ex \cdot \sqrt{1^2 - 0.85^2}) \cdot 100$

Ecuación 2.101. Regulación de voltaje para un factor de potencia de 0.85 y plena carga Donde:

Reg85: Regulación de voltaje para un factor de potencia de 0.85 y plena carga [%]

Er: Resistencia [pu]

Ex: Reactancia [pu]

$RegUPF = Er \cdot 100$

Ecuación 2.102. Regulación de voltaje para factor de potencia de 1 y plena carga Donde:

RegUPF: Regulación de voltaje para un factor de potencia de 1 y plena carga [%]

Er: Resistencia [pu]

2.7 Diseño de tanque y determinación de pesos del transformador

Medidas del tanque y volumen

Para el diseño del tanque se debe encontrar las dimensiones del ancho, largo y longitud, con estos valores también se calcula el volumen del tanque.

Longitud del tanque: Se asume una separación longitudinal de 140 [mm], entre los bobinados y el tanque. Esto se realiza con la Ecuación 2.103, ver Figura 2.48.

 $Lt = 2 \cdot D \cdot 1000 + (do_1 + dL)$

Ecuación 2.103. Longitud del tanque

Donde:

Lt: Longitud del tanque [mm]

D: Distancia entre los centros de las columnas [m]

do1: Diámetro externo del devanado de alto voltaje [mm]

dL: Separación longitudinal de 140 [mm], entre los bobinados y el tanque

Figura 2.48. Longitud del tanque [autoría propia]

Largo del tanque: En este caso se asume una altura 500 [mm] de separación entre la parte superior del tanque y el yugo, ver Figura 2.49. Este parámetro se determina con la Ecuación 2.104.

 $ht = L \cdot 1000 + 2 \cdot hy \cdot 1000 + dH$ Ecuación 2.104. Altura del tanque Donde:

- ht: Altura del tanque [mm]
- L: Longitud de la columna [m]
- hy: Altura del yugo [m]

dH: Separación de 500 [mm] entre la parte superior de tanque y el yugo

Figura 2.49. Altura del tanque [autoría propia]

Ancho del tanque: En este caso se asume un ancho 180 [mm] de separación entre la parte lateral frontal del tanque y los devanados, ver Figura 2.50. Este parámetro se determina con la Ecuación 2.105.

 $bt = do_1 + dB$

Ecuación 2.105. Ancho del tanque

Donde:

- bt: Ancho del tanque [mm]
- *do*₁: Diámetro externo del devanado de alto voltaje [mm]
- *dB*: Separación de 180 [mm] entre la parte lateral frontal del tanque y los devanados

Figura 2.50. Ancho del tanque [autoría propia]

Volumen del tanque: El volumen del tanque es la multiplicación de las tres medidas anteriores, ver Ecuación 2.106.

$$Vt = \frac{Lt \cdot bt \cdot ht}{10^9}$$

Ecuación 2.106. Volumen del tanque

Donde:

Vt: Volumen del tanque $[m^3]$

Lt: Longitud del tanque [mm]

bt: Ancho del tanque [mm]

ht: Altura del tanque [mm]

Aumento de temperatura del tanque

Primero se debe tener el valor de la superficie de enfriamiento que es un factor decisivo para obtener este parámetro. Este se realiza con el uso de las Ecuaciones 2.107 y 2.108.

$$St = \frac{2 \cdot (bt + Lt) \cdot ht}{10^6}$$

Ecuación 2.107. Superficie de enfriamiento del tanque

Donde:

St: Superficie de enfriamiento del tanque
$$[m^2]$$

- Lt: Longitud del tanque [mm]
- bt: Ancho del tanque [mm]
- ht: Altura del tanque [mm]

Por lo tanto, la temperatura es:

$$Tr = \frac{ptFL \cdot 1000}{12.5 \cdot St}$$

Ecuación 2.108. Aumento de temperatura del tanque

Donde:

ptFL: Pérdidas totales a plena carga [kW]

Tr: Aumento de temperatura del tanque [°C]

St: Superficie de enfriamiento del tanque $[m^2]$

Se tiene como límite 50 [°C] de temperatura en los bobinados de un transformador aislado con algodón, papel, materiales orgánicos, seda, sumergidos o impregnados en aceite. [7]

Tubos de enfriamiento

De acuerdo al límite de temperatura de 50 [°C], se seleccionan los tubos de diámetro de 50 [mm] y una altura del 70 % de la altura del tanque, ver Ecuación 2.109 [6].

 $Hct = 0.7 \cdot ht$

Ecuación 2.109. Altura de cada tubo

Donde:

Hct: Altura de cada tubo [mm]

ht: Altura del tanque [mm]

Área de cada tubo: Esta área se la determina mediante la Ecuación 2.110.

$$At = \frac{\pi \cdot Dct \cdot Hct}{10^6}$$

Ecuación 2.110. Área de cada tubo

Donde:

At: Área de cada tubo $[m^2]$

Dct: Diámetro del tubo que generalmente es de 50 [mm]

Hct: Altura de cada tubo [mm]

Área requerida para enfriamiento con tubos: Este parámetro corresponde al área total que ocupan los tubos, ver Ecuación 2.111.

$$CAt = \frac{ptFL \cdot 1000 - 12.5 \cdot St \cdot TRP}{6.5 \cdot TRP \cdot 1.35}$$

Ecuación 2.111. Área requerida para el enfriamiento con tubos

Donde:

CAt: Área requerida para el enfriamiento con tubos $[m^2]$

ptFL: Pérdidas totales a plena carga [kW]

St: Superficie de enfriamiento del tanque $[m^2]$

TRP: Límite de temperatura en los bobinados de 50°C

Finalmente, se tiene que el número de tubos requeridos es:

$$Nt = \frac{CAt}{At}$$

Ecuación 2.112. Número de tubos de enfriamiento

Donde:

Nt: Número de tubos de enfriamiento

CAt: Área requerida para el enfriamiento con tubos $[m^2]$

At: Área de cada tubo $[m^2]$

Peso del transformador

Peso en el cobre en el devanado de alto voltaje y bajo voltaje: Las magnitudes de estos parámetros se obtienen mediante la Ecuación 2.113 y 2.114.

$$Wcu_1 = \frac{\delta cu \cdot Lmt_1 \cdot T_1 \cdot a_1}{1000}$$

Ecuación 2.113. Peso de cobre en el devanado del alto voltaje

Donde:

*Wcu*₁: Peso de cobre en el devanado del alto voltaje [kg]

 δcu : Densidad del cobre $\delta cu = 8.9 \left[\frac{Kg}{m^6}\right]$

*Lmt*₁: Longitud media del devanado de alto voltaje [m]

T₁: Número de espiras en el devanado de alto voltaje

 a_1 : Área de una hebra en una espira $[mm^2]$

$$Wcu_2 = \frac{\delta cu \cdot Lmt_2 \cdot T_2 \cdot a_2}{1000}$$

Ecuación 2.114. Peso de cobre en el devanado del bajo voltaje

Donde:

Wcu₂: Peso de cobre en el devanado del bajo voltaje [kg]

 δcu : Densidad del cobre $\delta cu = 8.9 \left[\frac{Kg}{m^6}\right]$

Lmt₂: Longitud media del devanado de bajo voltaje [m]

T2: Número de espiras en el devanado de bajo voltaje

 a_2 : Área del conductor del devanado de bajo voltaje $[mm^2]$

Después de calcular los datos anteriores se encuentra el peso total del transformador con la Ecuación 2.116. En ésta se encuentra la suma de todo el material de hierro empleado para la construcción del núcleo y también la suma del peso de cobre de los devanados.

Wiron = KgC + KgY

Ecuación 2.115. Peso total de hierro en el núcleo

Donde:

Wiron: Es el peso total de hierro en el núcleo [kg]

KgC: Peso de las columnas en [kg]

KgY: Peso de los yugos en [kg]

 $Wtot = 1.01 \cdot (Wcu_1 + Wcu_2 + Wiron)$

Ecuación 2.116. Peso de cobre en el devanado del bajo voltaje

Donde:

Wtot: Peso total del transformador [kg]

*Wcu*₁: Peso de cobre en el devanado del alto voltaje [kg]

Wcu2: Peso de cobre en el devanado del bajo voltaje [kg]

Wiron: Es el peso total de hierro en el núcleo [kg]

El valor contante de 1.01 que se multiplica a los pesos del transformador corresponde al aislamiento que se asume del 1% del peso del transformador.

Relación del peso respecto a los kVA de salida del transformador [kg/kVA]

Esta relación permite saber cuántos kVA se pueden entregar respecto al material usado para construir el transformador, ver Ecuación 2.117.

$KgPkva = \frac{Wtot}{KVA}$

Ecuación 2.117. Relación kg/kVA

Donde:

KgPkva: Relación kg/kVA

Wtot: Peso total del transformador [kg]

KVA: Potencia aparente del transformador [kVA]

3. EJEMPLO DE CÁLCULO DE DISEÑO DE UN TRANSFORMADOR DE POTENCIA

En este capítulo se procede a realizar el diseño de un transformador de potencia de 800 [kVA], 6600/440 [V], 50 [Hz], 3 fases, delta-estrella, tipo núcleo, en aceite.

3.1 Datos iniciales

Los datos de entrada para iniciar el diseño del transformador de potencia, se los muestra en la Tabla 3.1.

Tabla 3.1. Datos iniciales para el diseño del transformador de potencia

Potencia Aparente [kVA]	Voltaje primario [kV]	Voltaje secundario [kV]	Frecuencia [Hz]	Grupo de conexión	Fases
800	6.6	0.44	60	DY5	3

3.2 Ejemplo Diseño del núcleo magnético

Selección del voltaje por espira

El factor de relación entre el cobre y el núcleo se tomó de 0,6 de la Tabla 2.2, debido a que se considera un transformador tipo núcleo. La Ecuación 2.14 permitió determinar el voltaje por espira.

$$Et = K \cdot \sqrt{\frac{KVA}{ph}} = 0.6 \cdot \sqrt{\frac{800}{3}} = 9.798 [V/T]$$

Área neta transversal de la columna del núcleo

Se asumió una densidad de flujo de 1,5 [T], porque se está diseñando un transformador de potencia. Se usó la Ecuación 2.15 para encontrar este parámetro.

$$Ai = \frac{Et}{4,44 \cdot f \cdot Bm} = \frac{9.798}{4.44 \cdot 60 \cdot 1,5} = 0,0245 \ [m^2]$$

Diámetro de la columna

Se consideran 3 pasos de laminación, por lo tanto, mediante la Tabla 2.3 se tomó k=0,6. El valor que resultó del diámetro se lo redondeó a centésimas. Este parámetro se calculó mediante la Ecuación 2.16.

$$d = \sqrt{\frac{A}{k}} = \sqrt{\frac{0,0245}{0,6}} = 0,20 \approx 0,21[m]$$

Cálculo de la correcta área neta transversal de la columna

Una vez aproximado el valor del diámetro se actualizo el valor del área mediante la Ecuación 2.17.

$$Ai = k \cdot d^2 = 0.6 \cdot 0.21^2 = 0.0264 [m^2]$$

Cálculo del voltaje por espira correcto

Esta magnitud se determinó mediante la Ecuación 2.18.

$$Et = 4,44 \cdot f \cdot Bm \cdot Ai = 4,44 \cdot 60 \cdot 1.5 \cdot 0,0317 = 10,573 [V/Turn]$$

Factor de aprovechamiento de la ventana

Este parámetro se calculó mediante la Ecuación 2.19.

$$Kw = \frac{10}{30 + \frac{HV}{10^3}} \cdot 1,15 = \frac{10}{30 + \frac{6600}{10^3}} \cdot 1,15 = 0,314$$

Selección de la densidad de corriente

Mediante la Tabla 2.4 se seleccionó una densidad de corriente de 2,6 $\left[\frac{A}{mm^2}\right]$, ya que el transformador tiene refrigeración en aceite.

Área de la ventana

Con la Ecuación 2.20 se calculó el área de la ventana.

$$Aw = \frac{KVA \cdot 1000}{3,33 \cdot f \cdot Bm \cdot Kw \cdot cdav \cdot 10^{6} \cdot Ai}$$
$$Aw = \frac{800 \cdot 1000}{3,33 \cdot 60 \cdot 1,5 \cdot 0,314 \cdot 2,6 \cdot 10^{6} \cdot 0,0264} = 0,123 \ [m^{2}]$$

Longitud de la columna o altura de la ventana

Se seleccionó un valor de LbyD=2,8 para la proporción de la altura de la ventana respecto a la longitud de la misma, se puede verificar que se encuentra entre 2,5 a 4.

La longitud de la columna se la determinó mediante el uso de la Ecuación 2.21.

$$L = \sqrt{LbyD \cdot Aw} = \sqrt{2,8 \cdot 0,123} = 0,588 \approx 0,59 \ [m]$$

Distancia entre los centros de las columnas

Esta distancia se determinó con la Ecuación 2.22.

$$D = \frac{Aw}{L} + d = \frac{0,123}{0,59} + 0,21 = 0,418 \approx 0,42 \ [m]$$

La primera restricción del diseño del transformador se calculó mediante la Ecuación 2.23.

$$LbyD = \frac{L}{D-d} = \frac{0,59}{0,42-0,21} = 2,8095$$

Esta restricción se encuentra dentro de los valores admisibles de entre 2,5 a 4, razón por la cual se puede continuar con el diseño del transformador de potencia.

Longitud del yugo

La longitud del yugo se la determinó mediante el uso de la Ecuación 2.24.

$$W = 2 \cdot D + 0.9 \cdot d = 2 \cdot 0.42 + 0.9 \cdot 0.21 = 1.029 \approx 1.1 [m]$$

Área real de la columna

El área real se determinó mediante la Ecuación 2.25. Ésta se encuentra relacionada con una constante del hierro o factor de apilación conforme se indica en [1], con una magnitud de 0,92.

$$Ac = \frac{Ai}{ki} = \frac{0,0264}{0.92} = 0,0287 \approx 0,029 \ [m^2]$$

Área del yugo

Como se aclaró en el capítulo anterior se asumió el 15% más del área de la columna para el área del yugo. Este se realizó con la Ecuación 2.26 [1].

$$Ay = 1,15 \cdot Ac = 1,15 \cdot 0,02876 = 0,03307 [m^2]$$

Ancho y altura del yugo

Estas magnitudes se determinaron con las Ecuaciones 2.27 y 2.28.

$$by = 0.9 \cdot d = 0.9 \cdot 0.21 = 0.189 [m]$$

$$hy = \frac{Ay}{by} = \frac{0,02876}{0,189} = 0,175 \ [m]$$

En la Figura 3.1, se muestran las magnitudes de los parámetros necesarios para la construcción del núcleo magnético. En esta se visualizan los tres pasos de laminación.

Figura 3.1. Valores de los parámetros del núcleo magnético [autoría propia]

Pérdidas en la columna en [W/kg]

Con la densidad de flujo en la columna que se asumió de 1,5 [T], se procedió a determinar las pérdidas de potencia por kilogramo para la columna, mediante la curva que se muestra en la Figura 3,2 [1].

Figura 3.2. Pérdidas de la columna de acero laminado en frio [1]

Como se observa en la Figura 3.2, para una densidad de flujo de 1,5 [T], las pérdidas por kilogramo en la columna son de WpKgC=1,6 [W/kg].

Peso de las columnas

El peso de las columnas se determinó mediante el uso de la Ecuación 2.29.

$$KgC = Ph \cdot Ac \cdot L \cdot \delta fe \cdot 1000 = 3 \cdot 0,02876 \cdot 0,59 \cdot 7,55 \cdot 1000 = 384,34 [Kg]$$

Pérdidas en el hierro de columnas

Después de calcular el peso de hierro en las columnas se procedió a obtener las pérdidas del hierro en las mismas, mediante la Ecuación 2.30.

$$PiC = WpKgC \cdot KgC = 1,6 \cdot 384,34 = 614,95 [W]$$

Peso de los yugos

El peso del yugo se lo determinó mediante el uso de la Ecuación 2.31.

$$KgY = 2 \cdot Ay \cdot W \cdot \delta fe \cdot 1000 = 2 \cdot 0,03307 \cdot 1,1 \cdot 7,55 \cdot 1000 = 549,375 [Kg]$$

Densidad de flujo en el yugo

La densidad de flujo en el yugo se lo calculó mediante el uso de la Ecuación 2.32.

$$By = \frac{Ac}{Ay} \cdot Bm = = \frac{0,02876}{0,03307} \cdot 1,5 = 1,3043 \ [T]$$

Pérdidas en el yugo [W/kg]

Una vez encontrado el valor de la densidad de flujo del yugo 1,3043 [T], se procedió a determinar las pérdidas de potencia por kilogramo para el yugo, mediante la curva que se muestra en la Figura 3.3 [1].

Figura 3.3. Pérdidas del núcleo de acero laminado en frio [1]

Como se observa en la Figura 3.3, el valor de las pérdidas en el yugo por kilogramo son 1,0087 [W/kg].

Pérdidas en el hierro de los yugos

Este parámetro se lo determinó mediante el uso de la Ecuación 2.33.

$$PiY = WpKgY \cdot KgY = 1,0087 \cdot 549,375 = 554,153[W]$$

Pérdidas totales en el hierro

Esta magnitud se la encontró con la Ecuación 2.34.

$$Pi = 1,05 \cdot \frac{PiC + PiY}{1000} = 1,05 \cdot \frac{614,95 + 554,153}{1000} = 1,2276 \ [kW]$$

3.3 Ejemplo Corriente sin carga

Amperios vuelta por metro (AT/m) para la columna y el yugo

Los amperios vuelta por metro para la columna y el yugo se los determinaron mediante el uso de la curva que se muestra en la Figura 2.15. Para el caso de la columna se observa en la Figura 3.4 y para el caso del yugo en la Figura 3.5.

Figura 3.4. Densidad de flujo vs AT/m, caso de la columna [1]

Teniendo una densidad de flujo de 1,5 [T] para la columna los amperios vuelta por metro son AT/m=150 [AT/m]

Figura 3.5. Densidad de flujo vs AT/m, caso del yugo [1]

Teniendo una densidad de flujo de 1,3043 [T] para el yugo para el yugo los amperios vuelta por metro son AT/m=110,866 [AT/m]

Amperios vuelta (AT) para la columna y el yugo

Estas magnitudes se determinaron mediante el uso de las Ecuaciones 2.35 y 2.36.

$$ATC = Ph \cdot atC \cdot L = 3 \cdot 150 \cdot 0,59 = 265,5 [AT]$$
$$ATY = 2 \cdot atY \cdot W = 2 \cdot 110,86 \cdot 1,1 = 243,89 [AT]$$

El total de AT por fase del núcleo magnético se los determinó sumando los [AT] tanto del yugo como de la columna. Esto se calculó con la Ecuación 2.37.

$$ATpPh = \frac{ATC + ATY}{Ph} = \frac{265,5 + 243,89}{3} = 169,80 \ [AT]$$

Corriente de fase en el devanado de bajo voltaje

El devanado de bajo voltaje se encuentra en conexión estrella, por lo tanto, el voltaje de línea es mayor al voltaje de fase y la corriente de línea es igual a la corriente de fase, como se muestra en la Figura 3.5.

Se determinó la corriente de fase del devanado de bajo voltaje con la Ecuación 2.42. Este devanado se encuentra en conexión estrella.

Número de espiras en el devanado de bajo voltaje

El número de espiras en el devano de bajo voltaje se lo determinó con la Ecuación 2.43. Este devanado se encuentra en estrella, por lo tanto, de la Tabla 2.5 se tomó el valor de $X = \sqrt{3}$.

$$T_2 = \frac{LV}{X \cdot Et} = \frac{440}{\sqrt{3} \cdot 10,57} = 24,03 \approx 24$$

Se redondea a 24 por que el número de espiras debe ser siempre un número entero.

Cálculo de la corriente en vacío y sus componentes

Mediante la Ecuación 2.44 se calculó la parte real de la corriente en vacío y con la Ecuación 2.45 se obtuvo la parte imaginaria.

$$Ic = \frac{Pi \cdot 1000}{X \cdot LV} = \frac{1,228 \cdot 1000}{\sqrt{3} \cdot 440} = 1,61 \ [A]$$
$$Im = \frac{1,15 \cdot ATpPh}{\sqrt{3} \cdot T_2} = \frac{1,15 \cdot 169,80}{\sqrt{3} \cdot 24} = 5,7533 \ [A]$$

En la Figura 3.7 se puede observar el diagrama fasorial de la corriente en vacío. Determinando el valor de las componentes se calculó la magnitud de la corriente en vacío con la Ecuación 2.46.

Figura 3.7. Diagrama fasorial de la corriente en vacío [autoría propia]

$$Io = \sqrt{Ic^2 + Im^2} = \sqrt{1,6108^2 + 5,7533^2} = 5,975$$
 [A]

Relación de la corriente en vacío Io respecto a la corriente del secundario I_2

Esta relación se determinó mediante la Ecuación 2.47.

$$IobyI2 = \frac{Io}{I_2} \cdot 100 = \frac{5,975}{1049,7} \cdot 100 = 0,5692$$

Esta relación es menor a 1 por lo tanto se puede continuar con el diseño.

3.4 Ejemplo Diseño del devanado de bajo voltaje Espacio para las espiras

El espacio para las espiras se calculó con la Ecuación 2.48 y su representación se encuentra en la Figura 3.8 [1].

$$ALW = 0.8 \cdot L = 0.8 \cdot 0.59 = 0.472 [m] = 472 [mm]$$

Figura 3.8. Espacio para las espiras del devanado de bajo voltaje [autoría propia]

Espiras radiales (T_{2r}) y axiales (T_{2a})

Se asumen 2 espiras radiales, por lo cual resultan 12 espiras axiales conforme resulta de la Ecuación 2.49, ver Figura 3.9.

$$T_{2a} = \frac{T_2}{T_{2r}} = \frac{24}{2} = 12$$

Espacio para cada espira

El espacio de cada espira se determinó mediante la Ecuación 2.50.

Número de hebras paralelas en cada conductor (stP)

En el devanado de bajo voltaje se tiene una corriente de 1049,7 [A], la cual es de amplia magnitud para circular en un solo conductor. Este conductor se forma por la unión de 12 hebras paralelas (stP), las cuales son distribuidas de forma axial como radial.

Número de hebras axiales en un solo conductor (NstA)

En el devanado de bajo voltaje al tener un amplio espacio para cada espira de 39,3 [mm], se seleccionó 3 hebras axiales, para esto, ver la Figura 3.10.

Número de hebras radiales (NstR)

El número total de hebras paralelas que forman el conductor son 12, entre ellas 3 axiales. Las hebras radiales se calculan a continuación con la Ecuación 2.51, ver en la Figura 3.10.

$$NstR = \frac{stP}{NstA} = \frac{12}{3} = 4$$
 Hebras radiales

Ancho de cada hebra de un conductor (*stW*)

Esta magnitud se calculó con la Ecuación 2.52.

$$stW = \frac{ALT}{NstA} - 0.5 = \frac{39.3}{3} - 0.5 = 12.6 \approx 12 \ [mm]$$

El resultado del ancho de cada hebra axial fue 12,6 [mm], este valor se lo aproximó a 12 y se asumió un valor de espesor de stT= 3 [mm], ver Figura 3.10.

Espacio axial ocupado y longitud sobrante de la columna.

Se utiliza la Ecuación 2.53. Se consideró 0,4 [mm] del aislamiento de cada hebra, el cual debe ser sumado al ancho de un hilo (stW). También se asumen 2 [mm] de aislamiento entre espiras y 100 [mm] como espacio extra. Ver Figura 3.11.

$$ALWx = \left(\left((stW + 0.4) \cdot NstA \right) + 2 \right) \cdot T_{2a} + 100$$

$$ALWx = \left(\left((12 + 0.4) \cdot 3 \right) + 2 \right) \cdot 12 + 100 = 570.4[mm]$$

El espacio axial sobrante es otra restricción del diseño. Esta magnitud debe ser siempre mayor a 7 [mm], el cálculo se realizó con la Ecuación 2.54.

$$SlkLVax = L \cdot 1000 - ALWx == 0,59 \cdot 1000 - 570,4 = 19,6 [mm]$$

El espacio axial libre es mayor a 7 por lo tanto se puede continuar con el diseño.

Área del conductor de bajo voltaje

Este parámetro se calculó con la Ecuación 2.55.

$$a_2 = stW \cdot stT \cdot stP \cdot 0,98 == 12 \cdot 3 \cdot 12 \cdot 0,98 = 423,36 \ [mm^2]$$

Densidad de corriente en el conductor de bajo voltaje

La densidad de corriente de este devanado se determinó mediante la Ecuación 2.56.

$$cdLV = \frac{l_2}{a_2} = \frac{1049,7}{423,36} = 2,48 \left[\frac{A}{mm^2}\right]$$

Después de calcular la densidad de corriente se puede concluir que el parámetro está dentro del rango de 2.3 a 3.5, por lo tanto, se puede seguir con el diseño.

Aislamiento cilíndrico y ductos entre la columna del núcleo y el devanado de bajo voltaje

Se asume que cada ducto de aceite tiene un diámetro de 5 [mm] y el cilindro de aislamiento 3 [mm]. Estos parámetros se los puede visualizar en la Figura 3.11.

Ancho radial del devanado de bajo voltaje ocupado

El ancho radial se determinó con la Ecuación 2.57.

$$rwLV = NstR \cdot (stT + 0,4) \cdot T_{2r} + 1,8 = 4 \cdot (3 + 0,4) \cdot 2 + 1,8 = 29 [mm]$$

Diámetro interno y externo del devanado de bajo voltaje

Estos parámetros se calcularon con las Ecuaciones 2.58. y 2.59.

$$di_2 = d \cdot 1000 + 2 \cdot (5 + 3 + 5) = 0,21 \cdot 1000 + 2 \cdot (5 + 3 + 5) = 236 [mm]$$

 $do_2 = di_2 + 2 \cdot rwLV = 236 + 2 \cdot 29 = 294[mm]$

Figura 3.11. Espacio ocupado por el devanado de bajo voltaje y área del conductor [autoría propia]

Resistencia por fase del devanado de bajo voltaje

La Longitud media del devanado de bajo voltaje se la determinó mediante la Ecuación 2.60.

$$Lmt_2 = \frac{(di_1 + do_2) \cdot \pi}{1000 \cdot 2} = \frac{(236 + 294) \cdot \pi}{1000 \cdot 2} = 0,8325[m]$$

La resistencia del devanado de bajo voltaje calculó mediante la Ecuación 2.61.

$$r_2 = 0.02 \cdot Lmt_2 \cdot \frac{T_2}{a_2} = 0.02 \cdot 0.8325 \cdot \frac{24}{423.36} = 0.9439[m\Omega]$$

Pérdidas de cobre en el devanado de bajo voltaje

Este parámetro se lo calculó mediante la Ecuación 2.62.

$$pcu_2 = Ph \cdot I_2^2 \cdot \frac{r_2}{1000} = 3 \cdot 1049,7^2 \cdot \frac{1.0151}{1000} = 3,1203 \ [kW]$$

3.5 Ejemplo Diseño del devanado del alto voltaje Corriente de fase en el devanado de alto voltaje

Como el devanado primario está en conexión delta, se usó la Ecuación 2.30, para poder determinar la corriente del primario, ver Figura 3.12.

Figura 3.12. Devanado primario en conexión delta [autoría propia]

$$If = \frac{800 \cdot 1000}{3 \cdot 6600} = 40,404 \ [A]$$

Número de espiras en el devanado de alto voltaje

El número de espiras en el devanado primario se lo determinó mediante la Ecuación 2.63. Se escogió de la Tabla 2.5 el valor de $X=\sqrt{3}$ porque el devanado secundario se encuentra en estrella. De la Tabla 2.6 se seleccionó el valor de $X_1=1$, el cual es dependiente de la conexión del primario que está en delta.

$$T_{1} = \frac{HV \cdot T_{2}}{X_{1} \cdot \frac{LV}{X}} = \frac{6600 \cdot 24}{1 \cdot \frac{440}{\sqrt{3}}} = 623,5 \approx 624 \ espiras$$

Número de espiras en las bobinas

Se asume que AxC=14 que corresponden al número total de bobinas axiales en el devanado de alto voltaje. Éstas son la unión de 12 bobinas normales de igual número que las bobinas del devanado de bajo y 2 bobinas extras. Dentro de las bobinas normales se tiene un número espiras (X_{11}). En cada una de las bobinas extras se tiene el 65% de espiras de un bobinado normal.

El número total de espiras en cada bobina se determinó con la Ecuación 2.65.

$$X_{11} = \frac{T_1}{(AxC - 2) + 1,3} = \frac{624}{(14 - 2) + 1,3} = 46,9 \approx 48$$

Espacio para el devanado de alto voltaje

Con la Ecuación 2.66 se determinó esta magnitud.

$$ALW = L \cdot 1000 \cdot 0.7 = 0.59 \cdot 1000 \cdot 0.7 = 413 [mm]$$

Número de espiras radiales en el devanado de alto voltaje

Se asumió el número de hebras axiales igual a 4, debido a que se tiene un ancho amplio para cada conductor. Con la Ecuación 2.67 se determinó las hebras radiales, ver Figura 3.13.

$$cR = \frac{X_{11}}{cA} = \frac{48}{4} = 12$$

Número de espiras en cada bobina extra

Una de estas bobinas extras se las puede ver en la Figura 3.13. Esta magnitud se determinó mediante la Ecuación 2.68.

$$x_3 = \frac{T_1 - (cR \cdot cA \cdot (AxC - 2))}{2} = \frac{624 - (12 \cdot 4 \cdot (14 - 2))}{2} = 24$$

Se verificó que el número total de espiras calculado con la Ecuación 2.50 es igual a número de espiras que se distribuyeron en cada uno de los bobinados, Ecuación 2.69.

$$T1 = (cA \cdot cR \cdot (AxC - 2)) + (2 \cdot x_3) = (4 \cdot 12 \cdot (14 - 2)) + (2 \cdot 24) = 624$$

Por lo tanto, el número de espiras es correcto se puede continuar con el diseño.

Espacio para cada bobina en el devanado de alto voltaje

Con la Ecuación 2.70 se determinó esta magnitud.

$$ALPC = \frac{ALW}{AxC} = \frac{413}{14} = 29,5 \ [mm]$$

Ecuación 2.70. Espacio de cada bobina

Ancho para cada hebra del bobinado

Cabe recalcar que el ancho de cada hebra que se calculó no incluye el aislamiento, por lo tanto, se resta 0,4 [mm]. Esto se realizó con la Ecuación 2.71, ver Figura 3.13.

$$stW_1 = \frac{ALPC}{cA} - 0.4 = \frac{29.5}{4} - 0.4 = 7,375 \ [mm] \approx 6[mm]$$

Ecuación 2.58. Ancho de cada Hebra

Área del conductor en una espira en el devanado de alto voltaje

Esta magnitud se determinó con la Ecuación 2.72.

$$a_1 = \frac{I_1}{J+0.2} = \frac{40,404}{2,6+0.2} = 14,43 \ [mm^2]$$

Una vez calculada el área se procedió a determinar el valor del espesor de cada hebra de un bobinado con la Ecuación 2.73, ver Figura 3.13.

$$stT_1: = \frac{a_1}{stW_1} = \frac{14,43}{6} = 2,405 \approx 2,5[mm]$$

Con la Ecuación 2.74 se determinó el área real del conductor del devanado de alto voltaje y la densidad de corriente con la Ecuación 2.75.

$$a_{1} = stT_{1} \cdot stW_{1} \cdot 0,98 = 2,5 \cdot 6 \cdot 0,98 = 14,7[mm^{2}]$$
$$cdHV = \frac{l_{1}}{a_{1}} = \frac{40,404}{14,7} = 2,749 \left[\frac{A}{mm^{2}}\right]$$

Se puede continuar con el diseño, porque la densidad de corriente está dentro de los parámetros establecidos de 2,3 a 3,5.

Longitud axial del devanado de alto voltaje

Con la Ecuación 2.76 se determinó la longitud axial de una bobina.

$$aLc = cA \cdot (stW_1 + 0.4) = 4 \cdot (6 + 0.4) = 25.6 \ [mm]$$

La longitud axial de todas las bobinas del devanado de alto voltaje se determinó con la Ecuación 2.77.

$$AxLw = AxC \cdot aLc + (AxC - 1) \cdot 6 = 14 \cdot 25,6 + (14 - 1) \cdot 6 = 436,6[mm]$$

La longitud axial del devanado de alto voltaje se determinó con la Ecuación 2.78.

$$AxL = AxLw + 30 + 100 = 436,6 + 130 = 566,4[mm]$$

Longitud radial del devanado de alto voltaje

Al espesor de cada hebra se le sumaron 0,4 [mm] por motivo de corresponder al aislamiento entre hebras, ver Ecuación 2.79, se lo puede observar en la Figura 3.13.

 $rwHV = cR \cdot (stT_1 + 0.4) = 12 \cdot (2.5 + 0.4) = 34.8 [mm]$

Figura 3.13. Parámetros del devanado de alto voltaje parte 1 [autoría propia]

Espacio axial libre en la columna del núcleo respecto al devanado de alto voltaje

Esta magnitud se calculó con la Ecuación 2.80.

 $SIKHVax = L \cdot 1000 - AxL = 0,59 \cdot 1000 - 566,4 = 23,6[mm]$

El valor de este parámetro es mayor a 7 [mm], por lo tanto, se puede continuar con el diseño.

Aislamiento cilíndrico y ductos entre el devanado de bajo voltaje y el devanado de alto voltaje

Se asumió que cada ducto de aceite tiene un diámetro de 5 [mm] y el cilindro de aislamiento 6 [mm], estos parámetros se los puede visualizar en la Figura 3.14.

Diámetro interno y externo del devanado de alto voltaje

Estas magnitudes se determinaron con las Ecuaciones 2.81 y 2.82. Estos parámetros se los puede visualizar en la Figura 3.14.

 $di_1 = do_2 + 2 \cdot (5 + 6 + 5 = 294 + 2 \cdot (5 + 6 + 5) = 326 \ [mm]$

$$do_1 = di_1 + 2 \cdot rwHV = 366 + 2 \cdot 34,8 = 395,6 \ [mm]$$

Espacio entre devanados de distintas fases

El espacio entre devanados de distintas fases se calculó con la Ecuación 2.83.

$$EfD = D * 1000 - do_1 = 0.42 * 1000 - 395.6 = 24.4 [mm]$$

Este parámetro es mayor a 15 [mm], por lo tanto, cumple con las restricciones.

Resistencia por fase del devanado de alto voltaje

Con la Ecuación 2.84 se calculó la longitud media del devanado y con la Ecuación 2.85 se encontró la resistencia del devanado de alto voltaje.

$$Lmt_1 = \frac{(di_1 + do_1) \cdot \pi}{1000 \cdot 2} = \frac{(346 + 415, 6) \cdot \pi}{1000 \cdot 2} = 1,133[m]$$

$$r_1 = 0.02 \cdot Lmt_1 \cdot \frac{T_1}{a_1} = 0.02 \cdot 1.133 \cdot \frac{324}{14.7} = 0.9623 \ [\Omega]$$

Pérdidas de cobre en el devanado de alto voltaje

Esta magnitud se determinó con la Ecuación 2.86.

$$pcu_1 = Ph \cdot {I_1}^2 \cdot \frac{r_1}{1000} = 3 \cdot 40,404^2 \cdot \frac{0,9623}{1000} = 4,7129 \ [kW]$$

3.6 Ejemplo Cálculos de operación

Pérdidas totales en el cobre

Las pérdidas por corrientes parásitas se consideraron del 5% (stray losses). Las pérdidas totales de cobre de los devanados se las determinó mediante la Ecuación 2.87.

$$pcuT = 1,05 \cdot (pcu_1 + pcu_2) = 1,05 \cdot (4,7129 + 3,1203) = 8,2248 \ [kW]$$

Pérdidas totales a plena carga

Con la Ecuación 2.88 se calculó esta magnitud.

$$ptFL = pcuT + Pi = 8,2248 + 1,228 = 9,4528 \ [kW]$$

Pérdidas totales

En los siguientes apartados se procedió a realizar el ejemplo de cálculo para un factor de potencia de pf=1,0 y una carga de Ldpu=1,0 [pu]. En la Tabla 3.2 se observa los ejemplos de cálculos para diferentes cargas y factores de potencia.

Las pérdidas totales se calcularon con la Ecuación 2.89.

$$TL = (pcuT + Pi) \cdot Ldpu^2 = (8,2248 + 1,228) \cdot 1^2 = 9,4524 [kW]$$

Salida de potencia por fase

Esta magnitud se calculó con la Ecuación 2.90.

$$Opt = Ldpu \cdot KVA \cdot pf = 1,0 \cdot 800 \cdot 1,0 = 800[kW]$$

Potencia de entrada

Este parámetro se determinó con la Ecuación 2.91.

$$Inp = Opt + TL = Opt + TL = 800 + 9,4524 = 809,4524[kW]$$

Eficiencia del transformador

Con la Ecuación 2.92 se determinó este parámetro.

$$eff = \frac{Opt}{Opt + TL} = \frac{Opt}{Inp} = \frac{800}{809,4524} = 98,83$$
 [%]

Facto de potencia	Carga [pu]	Pérdidas [kW]	Output [kW]	Input [kW]	Eficiencia [%]
10	1,0	9.4524	800	809,4524	98,8322
0,85	10	9,4524	680	689,4524	98,629
0,85	0,75	5,8541	510	515,8541	98,8652
0,85	0,5	3,2838	340	343.2838	99,0434

Tabla 3.2. Operación del transformador [autoría propia]

Eficiencia Máxima

Primero se determinó la carga que se debe de abastecer para que ocurra está condición con la Ecuación 2.93 y después se calculó la eficiencia máxima con la Ecuación 2.94.

$$Ldmxef = \sqrt{\frac{Pi}{pcuT}} \cdot KVA = \sqrt{\frac{1,228}{8,2248}} \cdot 800 = 309,06 \ [kVA]$$
$$efmx = \frac{Ldmxef \cdot 0,85}{(Ldmxef \cdot 0,85) + (2 \cdot Pi)} = \frac{309.06}{(309,06 \cdot 0,85) + (2 \cdot 1,228)} = 99.07 \ [\%]$$

Longitud media total

Con la Ecuación 2.95 se encontró este parámetro.

$$Lmt = \frac{Lmt1 + Lmt2}{2} = \frac{1,1335 + 0,8325}{2} = 0.983 \ [m]$$

Impedancia del transformador [pu]

Para la reactancia primero se encontró la longitud del bobinado de alto voltaje en [m] con la Ecuación 2.96, y los amperios por fase del devanado del alto voltaje con la Ecuación 2.97.

$$Lc = \frac{AxLw}{1000} = \frac{436.6}{1000} = 0,4364 \ [m]$$
$$AT = I_1 \cdot T_1 = 40,406 \cdot 624 = 25212,12 \ [AT]$$

Después de tener estos dos valores se procedió a determinar la reactancia con la Ecuación 2.98.

$$Ex = \frac{2 \cdot \pi \cdot f \cdot 4 \cdot \pi \cdot 10^{-7} \cdot Lmt \cdot AT}{Lc \cdot Et} \cdot \left[AED + \frac{rwHV + rwLV}{3 \cdot 1000}\right]$$

$$Ex = \frac{2 \cdot \pi \cdot 60 \cdot 4 \cdot 10^{-7} \cdot \pi \cdot 0,983 \cdot 25212,12}{0,4364 \cdot 10,57} \cdot \left[0,016 + \frac{34,8+29}{3 \cdot 1000}\right] = 0,0948 \ [pu]$$

La resistencia se calculó mediante la relación entre las pérdidas totales en el cobre y la potencia del transformador. Este se realizó con las Ecuaciones 2.99.

$$Er = \frac{pcuT}{KVA} = \frac{8,2248}{800} = 0,0103 \ [pu]$$

La impedancia se la calculó con la Ecuación 2.100.

$$Ez = \sqrt{Er^2 + Ex^2} = \sqrt{0.0103^2 + 0.0948^2} = 0.954 \ [pu]$$

Regulación de voltaje a plena carga y factor de potencia de 0.85 y 1

Para la regulación con un factor de potencia de 0.85 a plena carga se utilizó la Ecuación 2.101.

$$Reg85 = \left(Er \cdot 0.85 + Ex \cdot \sqrt{1^2 - 0.85^2}\right) \cdot 100$$

Para plena carga con factor de potencia de la unidad se calculó con la Ecuación 2.102.

$$Reg85 = (0.0103 \cdot 0.85 + 0.0948 \cdot \sqrt{1^2 - 0.85^2}) \cdot 100 = 5.87 \ [\%]$$
$$RegUPF = Er \cdot 100 = 0.0103 \cdot 100 = 1.03 \ [\%]$$

3.7 Ejemplo Diseño del tanque y determinación de pesos del transformador

Medidas del tanque y volumen

Longitud del tanque: Se asumió una separación longitudinal de dL=140 [mm], entre los bobinados y el tanque. Esto se realizó con la Ecuación 2.103, ver Figura 3.15.

 $Lt = 2 \cdot D \cdot 1000 + (do_1 + dL) = 2 \cdot 0.42 \cdot 1000 + (395.6 + 140) = 1375.6 [mm]$

Figura 3.15. Longitud del tanque [autoría propia]

Largo del tanque: En este caso se asumió una altura dH=500 [mm] de separación entre la parte superior del tanque y el yugo. Esto se realizó con la Ecuación 2.104, ver Figura 2.16.

$$ht = L \cdot 1000 + 2 \cdot hy \cdot 1000 + dH$$
$$ht = 0.59 \cdot 1000 + 2 \cdot 0,175 \cdot 1000 + 500 = 1440[mm]$$

Figura 3.16. Altura del tanque [autoría propia]

Ancho del tanque: En este caso se asumió un ancho db=180 [mm] de separación entre la parte lateral frontal del tanque y los devanados. Esto se realizó con la Ecuación 2.105, ver Figura 3.17.

$$bt = do_1 + dB = 395,6 + 180 = 575,6 = [mm]$$

Ancho del tanque [bt]=575,6 [mm]

Figura 2.39. Ancho del tanque [autoría propia]

El volumen del tanque se calculó con la Ecuación 2.106.

$$Vt = \frac{Lt \cdot bt \cdot ht}{10^9} = \frac{1375,6 \cdot 575,6 \cdot 1440}{10^9} = 1,14 \ [m^3]$$

Aumento de temperatura del tanque

La superficie de enfriamiento del tanque se calculó con la Ecuación 2.107.

$$St = \frac{2 \cdot (bt + Lt) \cdot ht}{10^6} = \frac{2 \cdot (575,6 + 1375,6) \cdot 1440}{10^6} = 5,61 \ [m^2]$$

Con la Ecuación 2.108 se determinó el aumento de temperatura del tanque.

$$Tr = \frac{ptFL \cdot 1000}{12,5 \cdot St} = \frac{9,4528 \cdot 1000}{12,5 \cdot 5,61} = 134,8 \ [^{\circ}\text{C}]$$

Tubos de enfriamiento

De acuerdo al límite de temperatura de 50 [°C], se asumió los tubos de diámetro [Dct]=50 [mm] y una altura del 70 % de la altura del tanque [6].

Con la Ecuación 2.109 se determinó la altura de cada tubo.

$$Hct = 0.7 \cdot ht = 0.7 \cdot 1440 = 1008 \approx 1000[mm]$$

Área de cada tubo: Esta área se la determino mediante la Ecuación 2.110.

$$At = \frac{\pi \cdot Dct \cdot Hct}{10^6} = \frac{\pi \cdot 50 \cdot 1000}{10^6} = 0.1571[m^2]$$

Área requerida para enfriamiento con tubos: Este parámetro corresponde al área total que ocupan los tubos dentro del tanque, con la Ecuación 2.111 se calculó el área requerida.

$$CAt = \frac{ptFL \cdot 1000 - 12,5 \cdot St \cdot TRP}{6,5 \cdot TRP \cdot 1,35} =$$
$$CAt = \frac{9,4528 \cdot 1000 - 12,5 \cdot 5,61 \cdot 50}{6,5 \cdot 50 \cdot 1,35} = 13,539 \ [m^2]$$

Finalmente, el número de tubos requeridos se calculó con la Ecuación 2.112.

$$Nt = \frac{CAt}{At} = \frac{13,539}{0.1571} = 87 Tubos$$

Peso del transformador

El peso de cobre en el devanado de alto voltaje se determinó con la Ecuación 2.113.

$$Wcu_1 = \frac{\delta cu \cdot Lmt_1 \cdot T_1 \cdot a_1}{1000} = \frac{8,9 \cdot 1,133 \cdot 624 \cdot 14,7}{1000} = 92,53 \ [kg]$$

El peso de cobre en el devanado de bajo voltaje se calculó con la Ecuación 2.114.

$$Wcu_{2} = \frac{\delta cu \cdot Lmt_{2} \cdot T_{2} \cdot a_{2}}{1000} = \frac{8,9 \cdot 0,833 \cdot 24 \cdot 423,36}{1000} = 75,285 \ [kg]$$

Wiron = KgC + KgY = 384,34 + 549,375 = 933,722 \ [kg]

Con la Ecuación 2.115 se determinó el peso total del transformador. El valor constante 1.01 que se multiplicó a los pesos del transformador corresponde al aislamiento que se asumió del 1% del peso del transformador.

$$Wtot = 1.01 \cdot (Wcu_1 + Wcu_2 + Wiron)$$

$$Wtot = 1.01 \cdot (92,536 + 75,285 + 933,722) = 1112,558 [kg]$$

Relación del peso respecto a los kVA de salida del transformador [kg/kVA]

Esta relación se encontró con la Ecuación 2.104.

$$KgPkva = \frac{Wtot}{KVA} = \frac{1112,558}{800} = 1.391$$

4. RESULTADOS Y DISCUSIÓN

Los resultados emitidos mediante la aplicación implementada con los procedimientos detallados en el capítulo 2, se los compara con los resultados de la obtenidos en las referencias [5] y [13]. Se realiza el mismo diseño que en [5] y [13] el cual corresponde a un transformador de 5 [MVA], delta-estrella, 33/11 [kV] a 60 [Hz]. Es importante mencionar que va a diseña el transformador a 60 [Hz] porque es la frecuencia que se maneja en el país.

4.1 Resultados y comparación de la aplicación computacional

En el Anexo I se encuentra el manual de usuario de la aplicación computacional para diseño de transformadores de potencia. Como parámetros de entrada al programa se tienen los datos que se muestran en la Tabla 4.1.

Potencia Aparente [kVA]	Voltaje primario [kV]	Voltaje secundario [kV]	Frecuencia [Hz]	Grupo de conexión	Fases
5000	33	11	60	DYn11	3

Tabla	4.1.	Datos	de	ingreso
-------	------	-------	----	---------

Una vez ingresados los parámetros de la Tabla 4.1 en la aplicación computacional, se muestran los resultados en la Tabla 4.2, en la parte llamada "Aplicación computacional". Cabe recalcar que el primer el diseño emitido por el programa, no está basado en los criterios de diseño que se explican en este capítulo. En el Anexo II se puede observar una tabla donde se encuentran tanto los diseños con criterios y preliminar. Los cuales son emitidos por la aplicación computacional.

Tabla 4.2. Comparación con otros diseños de la bibliografía

Parámetro	Referencia [5]	Referencia [13]	Aplicación computacional
Potencia aparente nominal	5 MVA	5 MVA	5 MVA
Conexión	DYn11	DYn11	DYn11
Voltaje del primario	33 kV	33 kV	33kV
Voltaje del secundario	11 kV	11kV	11 kV
Frecuencia	50 Hz	50 Hz	60 Hz
Voltaje por espira	27.577 [V]	27.577 [V]	34.294 [V]
Densidad de flujo máxima	1.81 [T]	1.6 [T]	1.6 [T]
Área física de la columna	780 [<i>cm</i> ²]	809.88 [<i>cm</i> ²]	850 [<i>cm</i> ²]
Diámetro de la columna	274 [mm]	328 [mm]	360 [mm]

Longitud de la columna	1098 [mm]	1080 [mm]	970 [mm]
Distancias entre los	439 [mm]	620 [mm]	730 [mm]
centros de las columnas			
Peso del hierro del núcleo	3474 [kg]	3765 [kg]	4502 [kg]
Magnetico	1 0 [\ \ ///ca]	1 DA///cal	1 OF [\\////ca]
la densidad de fluio	1.3 [vv/кg]	1 [vv/kg]	1.85 [VV/KG]
máxima			
Pérdidas en el hierro	5871 [W]	4706 [W]	7,1853 [W]
Corriente en vacío	1.759 [A]	2 [A]	1.617 [A]
Número de espiras en el	230	230	185
secundario			
Número de espiras en el	1196	1195	962
primario	2		
Area del conductor LV	87.8 [<i>mm</i> ²]	101.68 [<i>mm</i> ²]	105.84 [<i>mm</i> ²]
Area del conductor HV	17.56 [<i>mm</i> ²]	19.55 [<i>mm</i> ²]	16.17 [<i>mm</i> ²]
Densidad de corriente LV	2.989 [A/mm ²]	2.58 [A/mm ²]	2.48 [A/mm ²]
Densidad de corriente HV	2.576 [A/mm ²]	2.58 [A/mm ²]	3.12 [A/mm ²]
Recubrimiento de los	0.5 [mm]	0.5 [mm]	0.4 [mm]
conductores			
Diámetro interno del	294 [mm]	353 [mm]	386 [mm]
arrollamiento de LV		407 [mm]	
Diametro externo dei	330 [mm]	437 [mm]	471,2 [mm]
Diámetro interno del	350 [mm]	485 [mm]	503.2 [mm]
arrollamiento de HV			000,2 [mm]
Diámetro externo del	399 [mm]	597 [mm]	575,4 [mm]
arrollamiento de HV			
Altura del arrollamiento de	950 [mm]	920 [mm]	848.8 [mm]
LV			
Altura del arrollamiento de	955 [mm]	921 [mm]	846.4 [mm]
Masa de cobre de los	12/18 [ka]	2012 [ka]	524.64 [ka]
arrollamientos		2012 [Kg]	524.04 [Kg]
Resistencia del	0.055 [Ω]	0.059 [Ω]	0.0471 [Ω]
arrollamiento de LV			
Resistencia del	1.732 [Ω]	2.184 [Ω]	2.0159 [Ω]
arrollamiento de HV			
Pérdidas en el cobre	27580 [W]	33900 [W]	2515,19 [W]
Reactancia porcentual	7.027 [%]	7.44 [%]	6.024 [%]
Resistencia porcentual	0.552 [%]	0.678 [%]	0,528 [%]
Impedancia porcentual	7.049 [%]	7.47 [%]	6 [%]
Máxima eficiencia del	99.438 [%]	99.5 [%]	99.35 [%]
transformador			

La primera diferencia que se observó entre los diseños es que la densidad de flujo que se tomó en la referencia [5] es de 1.81 [T]. En este estudio se ha elegido 1.6 [T] igual que la referencia [13]. Esta decisión en [5] hizo que se tengan menores dimensiones de algunas

partes del núcleo magnético como por ejemplo en el diámetro de la columna lo que conlleva a mayor peso del marco. Esto ocurre porque no se calculó en función de la densidad de campo magnético, como si lo hacen en la referencia [5], ni como en la referencia [13] que la obtiene a partir de la altura de los arrollamientos. En este estudio se la encontró mediante la relación entre el área de la ventana y la longitud de la misma.

La segunda diferencia es que el parámetro Voltaje por espira es el más alto que en los dos casos de comparación. Esto se debe a que, en este estudio, se asumió un valor elevado del factor de relación entre el cobre y el núcleo K=0.8. Los diseños de las referencias [5] y [13] se realizaron con un K=0.675. Lo que ocurre cuando se asume ese valor tan alto es que se reduce el número de espiras en los devanados primario y secundario, consecuentemente esto disminuirá las pérdidas en el cobre, la resistencia, la reactancia y la impedancia.

La tercera diferencia es que en este estudio se tuvo mayor magnitud de pérdidas en el hierro o también llamadas pérdidas en vacío que en las referencias [5] y [13]. Esto se debe a dos causas: en primer lugar, la curva que se encuentra en la Figura 2.27, que representa la densidad de flujo versus las pérdidas por kilogramo del acero laminado en frio, no es la misma que se ocupó en las referencias [5] y [13], por lo tanto, existió mayor valor en las pérdidas por kilogramo ascendiendo a 2 W/kg; en segundo lugar, al tener mayor magnitud en las medidas del núcleo magnético aumentaron de manera directa las pérdidas en el hierro.

La cuarta diferencia fue que la corriente en vacío encontrada mediante la aplicación computacional para diseño de transformadores de potencia es menor que en los dos casos de comparación. Esto se debe a que en [5] se usó la curva de VA/kg versus densidad de flujo que representa la histéresis de acero laminado en frio, en este estudio se usó la curva AT/m versus densidad de flujo que representa la curva de magnetización para el acero laminado en frío, ver Figura 2.30. Adicionalmente, al momento que se calculó la parte real de la corriente en vacío que representa las pérdidas en el hierro, al tener altas pérdidas, se requirió de una mayor cantidad de componente real.

Como una quinta diferencia, se identificó que el área del conductor del devanado de bajo voltaje fue mayor que los de las referencias [5] y [13], pero la densidad de corriente es menor. Mientras que en el devanado de alto voltaje ocurre lo contrario, es decir el área del conductor es menor que el de las dos referencias y la densidad de corriente es menor.

La sexta diferencia en este estudio se encontró en los diámetros internos como externos de los devanados tanto de alto y bajo voltaje, debido a que son mayores a los de las

99
referencias [5] y [13]. Esto se debe a que el diámetro de la columna es mayor que en los casos de comparación afectando directamente a los diámetros internos y externos de los devanados.

La Séptima diferencia es que se obtuvo un menor peso de cobre en los arrollamientos en este estudio que en las referencias [5] y [13]. Esto conlleva a menores pérdidas de carga.

4.2 Comparación del diseño preliminar con los diseños con criterios

En esta sección se realiza el diseño de un transformador cuyos parámetros de ingreso a la aplicación computacional se pueden ver en la Tabla 4.3.

Potencia Aparente [kVA]	Voltaje primario [kV]	Voltaje secundario [kV]	Frecuencia [Hz]	Grupo de conexión	Fases
5000	69	13,8	60	DYn11	3

Tabla 4.3. Datos de ingreso

El diseño del transformador antes mencionado se mejora mediante 200 variaciones de los siguientes parámetros fundamentales: K (factor de relación entre el cobre y el núcleo), Bm (densidad de flujo), cdav (densidad de corriente) y la proporción L/D (altura de la ventana sobre la longitud de la misma). Después se escoge el caso donde se encuentre la mayor eficiencia, mínimo kg/kVA, mínima proporción Io/I_2 (corriente en vacío respecto a corriente del devanado secundario) y mínimo volumen del tanque. A estos casos se los denominan criterios de diseño y se los analiza a continuación [1].

Criterio de mayor eficiencia: Este criterio permite obtener la mayor eficiencia de entre todos los casos de análisis. Si se escoge este caso se obtienen menos pérdidas en el transformador, ya que la potencia que entra al primario del transformador se refleja en el secundario con mínimas pérdidas.

Criterio de mínimo kg/kVA: Este criterio permite obtener el costo más bajo. Sin embargo, se debe tomar en cuenta que los costos de un transformador incluyen [1]:

Costo total = Costo del material + Costo adicionales + Costo laboral

Costo de material= Costo de material en los trabajos de fabricación+ impuestos de ventas + derechos de importación

Costo laboral= Pago realizado a los trabajadores

Gastos generales= Cargo de supervisión + Gastos de depreciación de la maquinaria pesada

Como se puede observar, el proceso para llegar al costo total de un transformador es complejo. Para evitar esto, y para tener un criterio inicial, se utiliza la relación kg/kVA, que significa cuanta salida de kVA se puede obtener con una cantidad mínima de materiales [1].

Criterio de mínimo Io/I_2 : Si se selecciona este criterio se obtienen menos pérdidas en el hierro.

Criterio de mínimo volumen del tanque: En este criterio, se disminuye el volumen del tanque, lo que reduce las dimensiones de la ventana y disminuye otros parámetros del núcleo magnético.

Si se culmina un diseño con algún criterio de los antes mencionados, puede no ser conveniente para otros criterios. Por ejemplo, si se finaliza el diseño con el criterio de mayor eficiencia, tal vez la relación kg/kVA sea alta [1].

A continuación, se analiza los resultados emitidos por la aplicación computacional tanto con y sin criterios de diseño para el transformador que se muestra en el subcapítulo 4.1. Cabe mencionar que los resultados que se muestran a continuación son obtenidos con la ayuda del software implementado, el uso de este programa se explica en el Anexo I y en el Anexo III se encuentra el diagrama de flujo del programa.

******NÚCLEO MAGNÉTICO******	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción Io/I ₂	Criterio de Mínimo volumen
Factor del núcleo (K)	0,8	0,65	0,6	0,62	0,78
Factor de área (k)	0,62	0,62	0,62	0,62	0,62
Factor de aprovechamiento (ki)	0,95	0,95	0,95	0,95	0,95
Proporción LbyD	2,6	2,6	3,6	3,2	2,6
Densidad de flujo máxima (Bm) [T]	1,6	1,5	1,6	1,5	1,6
Densidad de corriente (cdav) [A/mm^2]	2,6	2,3	3,2	3,1	3,3
Voltios por espira (Et) [V]	34,249	26,98	25,396	25,37	32,373
Área de la columna (Ac) [m^2]	0,085	0,071	0,063	0,067	0,08

Tabla 4.4. Núcleo magnético con y sin criterios de diseño

Área de la ventana (Aw) [m^2]	0,644	0,925	0,706	0,73	0,537
Diámetro de la columna	0.26	0.00	0.21	0.33	0.25
[M] Longitud do la columna	0,30	0,33	0,31	0,32	0,35
[m]	1,3	1,56	1,6	1,53	1,19
Distancia entre los					
centros de las columnas					
(D) [m]	0,86	0,93	0,76	0,8	0,81
Proporción recalculada					
LbyD entre 2,5 - 4	2,6	2,6	3,556	3,188	2,587
Ancho del yugo [m]	0,324	0,297	0,279	0,288	0,315
Alto del yugo [m]	0,3	0,275	0,259	0,267	0,292
Pérdidas en el hierro [kW]	9,06	7,095	7,207	6,226	7,973

Los voltios por espira (*Et*) dependen de la potencia del transformador y fundamentalmente del factor de relación entre el cobre y el núcleo (*K*). Se encontró una mayor magnitud de *Et* en el caso sin criterios debido a que se tiene un gran valor de *K*=0.8. Es importante mencionar que *K* puede tomar valores de entre 0,6 a 0,9, entonces el valor seleccionado se encuentra dentro de los límites al igual que *k*, *Ki*, *Bm*, *cdav*, *LbyD*.

En la Tabla 4.4 se puede visualizar que cuando se selecciona el criterio de mínimo kg/kVA, mínimo volumen del tanque o mínimo Io/I_2 siempre se reducen las medidas del núcleo magnético. Cuando se elige el caso de mínimo Io/I_2 siempre se busca que las pérdidas del hierro sean menores. Este factor depende ampliamente de las dimensiones del marco.

También se tiene que hacer notar que, en los 5 casos, la proporción de la altura de la ventana respecto al longitud de la misma (LbyD) se encuentra dentro de los valores posibles que son desde 2,5 a 4.

*****CORRIENTE EN VACÍO*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción <i>Io/I</i> 2	Criterio de Mínimo volumen
Amperios por espira por					
fase [AT/ph]	452,565	396,609	489,913	369,935	420,914
Corriente en vacío lo [A]	1,631	1,133	1,308	0,993	1,431
Corriente de l2 [A]	209,185	209,185	209,185	209,185	209,185
Número de espiras en					
LV	232	295	313	314	246
Proporción <i>Io/I</i> ² entre					
0,5 -1	0,78	0,542	0,625	0,475	0,684

Tabla 4.5. Corriente en vacío con y sin criterios de diseño

Se puede visualizar en la Tabla 4.5 que se tiene el menor número de amperios por espira por fase en el caso de sin criterio, debido a que las pérdidas en el hierro son menores. Este es un factor que lo afecta directamente. También depende fundamentalmente de la densidad de flujo seleccionada, ya que por medio de esta se puede encontrar los amperios vuelta por metro con la ayuda de la curva que se encuentra en la Figura 2.14.

El número de espiras en el lado de bajo voltaje depende directamente del parámetro voltaje por espira (Et). En la Tabla 4.5 se visualiza que en el caso de sin criterios se tiene un menor número de espiras, por lo tanto, Et tiene un valor más alto, lo que se puede corroborar en la Tabla 4.4.

****DISEÑO DEVANADO LV*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción <i>Io/I</i> ₂	Criterio de mínimo volumen
Espiras axiales	78	99	105	105	82
Espiras radiales	3	3	3	3	3
Hebras paralelas en un conductor	14	14	14	14	14
Ancho de una hebra [mm]	2	2	2	2	2
Espesor de una hebra [mm]	3	3	3	3	3
Área del conductor [mm^2]	82,32	82,32	82,32	82,32	82,32
Densidad de corriente [A/mm^2] entre 2,3 - 3,5	2,541	2,541	2,541	2,541	2,541
Espacio axial libre en el devanado de LV [mm]>7	295,2	311,6	282	212	138,8
Ancho radial del devanado LV [mm]	37,5	37,5	37,5	37,5	37,5
Espacio axial ocupado del devanado LV [mm]	1004,8	1248,4	1318	1318	1051,2
Diámetro interno [mm]	386	356	336	346	376
Diámetro externo [mm]	461	431	411	421	451
Longitud media [m]	1,33	1,236	1,173	1,205	1,299
Resistencia por fase [mΩ]	0,075	0,0886	0,0892	0,0919	0,0776
Pérdidas de cobre [kW]	9,8446	11,6312	11,7137	12,0657	10,1922

Tabla 4.6. Diseño del devanado de bajo voltaje con y sin criterios de diseño

La primera diferencia que se puede notar al observar la Tabla 4.6, es que las espiras axiales se alteran en todos los casos. Este parámetro depende del número de espiras totales del devanado de bajo voltaje y de las hebras radiales.

La segunda diferencia que se tiene es el espacio axial libre y ocupado por el devanado de bajo voltaje. Esta variación sucede porque se tiene diferente número de espiras axiales. Se puede observar en la Tabla 4.6 que este espacio axial libre es mayor a 7 [mm] que es lo recomendable para todos los casos [1].

Cabe mencionar que la densidad de corriente en el devanado de bajo voltaje se encuentra dentro de los valores permitidos que son de 2,3 a 3,5 en todos los casos.

La tercera diferencia se encuentra en los diámetros y longitud media del devanado de bajo voltaje. Los valores bajos se pueden ver en los criterios de mínimo kg/kVA, mínimo Io/I_2 , mínimo volumen del tanque. Este resultado es lógico porque en estos casos siempre se busca disminuir las pérdidas en el hierro.

Como cuarta diferencia y más importante se observar en la Tabla 4.6, que las pérdidas en el cobre son bajas en el criterio de mayor eficiencia. Este resultado es coherente debido a que en este caso siempre se debe reducir a lo mínimo las pérdidas totales activas (pérdidas en el cobre). Estas son directamente proporcionales a la resistencia por fase del devanado de bajo voltaje.

****DISEÑO DEVANADO HV*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción Io/I ₂	Criterio de Mínimo volumen
Espiras en el devanado de	2010	2555	2711	2720	2121
Corriente de fase en HV [A]	24.155	2355	24.155	2120	24.155
Espiras axiales en los bobinados normales	12	12	12	12	12
Espiras radiales en los bobinados normales	152	196	204	208	164
Espiras radiales en 1 bobinado extra	.02	102	132	112	82
Hebras radiales de 1 conductor	38	49	.01		41
hebras axiales de 1 conductor	4	4	4	4	4
Ancho de una hebra [mm]	15	19	19	18	. 14
Espesor de una hebra [mm]	0,6	0,6	0,4	0,5	0,5
Área del conductor [mm^2]	8,82	11,172	7,448	8,82	6,86
Densidad de corriente [A/mm^2] entre 2,3 - 3,5	2,739	2,162	3,243	2,739	3,521
Espacio axial libre en el devanado de HV [mm] >7	229,6	265,6	305,6	291,6	175,6

Tabla 4.7. Diseño del	devanado de alto volta	je con y sin criterios	de diseño
-----------------------	------------------------	------------------------	-----------

Ancho radial del devanado HV [mm]	38	49	40,8	46,8	36,9
Espacio axial ocupado del devanado HV [mm]	1070,4	1294,4	1294,4	1238,4	1014,4
Espacio radial libre entre					
devanados de distintas					
fases [mm]	291	369	235,4	253,4	253,2
Diámetro interno [mm]	493	463	443	453	483
Diámetro externo [mm]	569	561	524,6	546,6	556,8
Longitud media [m]	1,668	1,608	1,52	1,57	1,633
Resistencia por fase [mΩ]	7,6033	7,3572	11,0646	9,6845	10,1475
Pérdidas de cobre [kW]	13,308				
	3	12,8775	19,3668	16,9511	17,7615

La primera diferencia que se observa en la Tabla 4.7, es que las espiras totales del devanado de alto voltaje se alteran en todos los casos. Este parámetro depende del número de espiras totales del devanado de alto voltaje, como consecuencia de esto también se alteran las espiras axiales y las hebras que forman el conductor.

La segunda diferencia se encuentra en el área del conductor del devanado de alto voltaje y se debe a la densidad de corriente calculada en cada caso. Se puede observar por ejemplo que para el criterio de mayor eficiencia el área del conductor es mayor comparándola con los otros casos, esto ocurre porque se tiene una gran magnitud de ancho de conductor y también por una baja densidad de corriente

La tercera diferencia es el espacio axial libre y ocupado por el devanado de alto voltaje y se debe a que se tiene diferente número de espiras axiales. Se puede visualizar en la Tabla 4.7, que este espacio axial libre es mayor a 7 [mm] que es lo recomendable [1].

Es importante mencionar que los espacios entre devanados de distintas fases deben ser mayor a 15 [mm]. Esto se cumple para todos los casos, ya que si el valor de este parámetro es menor a 15 se tiene problemas en el espacio para el aislamiento.

La tercera diferencia se encuentra en los diámetros y longitud media del devanado de alto voltaje. Los valores bajos se encuentran en los criterios de mínimo kg/kVA, mínimo Io/I_2 , mínimo volumen del tanque. Este resultado es lógico porque en estos casos siempre se busca disminuir las pérdidas en el hierro.

Como cuarta diferencia entre los diseños que se observa en la Tabla 4.7, es que las pérdidas en el cobre son bajas en el criterio de mayor eficiencia. Este resultado es coherente debido a que en este caso siempre se debe reducir a lo mínimo las pérdidas

activas (pérdidas en el cobre). Estas son directamente proporcionales a la resistencia por fase del devanado de alto voltaje.

****CÁLCULOS DE RENDIMIENTO*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción <i>Io/I</i> ₂	Criterio de Mínimo volumen
Eficiencia	99,292	99,328	99,204	99,272	99,238
Eficiencia máxima	99,306	99,368	99,283	99,356	99,285
Eficiencia máxima					
ocurre con una carga [pu]	3052,367	2625,299	2349,74	2260,261	2605,949
Longitud media de las espiras	1,499	1,422	1,347	1,387	1,466
Longitud axial del bobinado [m]	0,94	1,164	1,164	1,108	0,884
Amperios por espira por fase AT/ph	48550,725	61714,976	65483,092	65700,483	51473,43
Reactancia [%]	4,408	5,935	5,948	6,773	5,095
Resistencia [%]	0,486	0,515	0,653	0,609	0,587
Impedancia [%]	0,044	0,06	0,06	0,068	0,051
Regulación de voltaje a plena carga y	0 705	0 50 4	0.000	4 000	0.400
fp=0.85 [%]	2,735	3,564	3,688	4,086	3,183
Regulación de voltaje a plena carga y fp=1 [%]	0,486	0,515	0,653	0,609	0,587

Tabla 4.8. Cálculo de rendimiento con y sin criterios de diseño

Es muy importante mencionar que si se desea escoger un diseño donde la eficiencia del transformador sea alta, se debe seleccionar el criterio de eficiencia máxima, ya que en este caso se encuentra la resistencia más baja, por lo tanto, la potencia actica de salida será la más alta.

Se puede observar en la Tabla 4.8 que la longitud media de las espiras y longitud axial, tienen menores magnitudes, en los criterios de mínima Io/I_2 , mínimo kg/kVA y mínimo volumen del tanque. Este resultado es coherente debido a que en estos casos se reduce el tamaño del núcleo magnético y devanados.

En el caso de la resistencia se tiene un valor bajo en el criterio de mayor eficiencia ya que se busca que las pérdidas en el cobre sean las menores. Esto implica que la eficiencia sea alta y como consecuencia de esto la regulación de voltaje sea menor.

Tabla 4.9. Diseño del tanque y pesos con y sin criterios de diseño

DISEÑO DEL TANQUE Y PESO***	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción Io/I ₂	Criterio de Mínimo volumen
Longitud del tanque [mm]	2429	2461	2184,6	2286,6	2316,8
Ancho del tanque [mm]	749	741	704,6	726,6	736,8
Alto del tanque [mm]	2400,421	2610,386	2617,029	2563,708	2273,743
Volumen del tanque [m^3]	4,367	4,76	4,028	4,259	3,881
Superficie del tanque para enfriamiento [mm^2]	15,257	16,717	15,122	15,45	13,886
Aumento de la temperatura [ºC]	174,978	157,104	210,772	190,001	215,03
Área de cada tubo [m^2]	0,157	0,157	0,157	0,157	0,157
Área requerida para los tubos [m^2]	54,325	51,01	69,266	61,624	65,289
Números de tubos de enfriamiento	346	325	441	393	416
Peso del devanado de HV [Kg]	263,209	408,632	273,134	335,255	212,505
Peso del devanado de LV [Kg]	226,145	267,186	269,08	277,167	234,13
Peso del núcleo magnético [Kg]	5574,864	5226,391	4233,27	4520,88	4931,433
Peso total del transformador más					
aislamientos [Kg]	6124,86	5961,231	4823,239	5184,635	5431,849
Proporción Kg/kVA	1,225	1,192	0,965	1,037	1,086

Se puede observar que al seleccionar el criterio de mínimo volumen del tanque se reduce las dimensiones del mismo, largo, ancho y alto del tanque. Estas magnitudes tienen un valor bajo comparándolas con los otros casos de análisis.

Se puede verificar que en el caso de eficiencia máxima se tiene la mayor superficie de enfriamiento, debido a que se tiene el mayor volumen. Esto es inversamente proporcional al aumento de la temperatura. Esta situación es lógica porque se tiene mayor superficie del tanque.

Las menores magnitudes en los pesos tanto en los devanados como del núcleo magnético se observan en el caso de mínimo kg/kVA. Este resultado es lógico porque en ese diseño se desea siempre reducir el peso del transformador al mínimo. El parámetro de kg/kVA no debe sobrepasar un valor de 0,965, porque si esto ocurre este caso sería desechado y se tendría que analizar otros posibles diseños.

El código fuente del software implementado se puede visualizar en el Anexo IV.

5. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- El software desarrollado permite tener un diseño preliminar que es llamado sin "criterios", a este se lo mejora mediante 200 iteraciones en las cuales se variará parámetros fundamentales. De los cuales se seleccionan solo los que satisfacen las necesidades del diseño y de estos casos posibles se escoge los criterios como mayor eficiencia, mínimo kg/kVA, mínimo *Io/I*₂, mínimo volumen del tanque. Estos son seleccionados mediante análisis comparativos de diferentes diseños de transformadores de potencia. El correcto resultado para cada criterio fue comprobado dentro de la investigación.
- La utilización del software computacional brinda dos ventajas. La primera es la automatización el proceso diseño, ya que no se realizarán los cálculos manualmente. La segunda es que se tiene a la mano una herramienta computacional que suministra los parámetros requeridos para la construcción o modelamiento del transformador de potencia. Lo que conlleva a reducir los errores cometidos cuando el proceso es desarrollado manualmente.
- El software está implementado para diseño de transformadores de potencia tipo núcleo, que es la tendencia de fabricación para transformadores de gran potencia, pues permite trabajar con una densidad de flujo de entre 1.5 a 1.6 [T]. A partir de este parámetro se define el diseño de la máquina.
- La aplicación después de obtener el diseño preliminar permite eliminar los casos en donde no se satisfacen las necesidades del diseño. Por ejemplo, cuando la densidad de corriente no se encuentra dentro de sus rangos establecidos, lo que hace el programa es eliminarlo y vuelve a seguir buscando el diseño idóneo que cumpla con las condiciones.
- El software permite almacenar los diseños tanto con y sin criterios, en hojas de cálculo, para poder realizar un análisis de todos los casos y corroborar que se cumplen los objetivos.

5.2 Recomendaciones

• En futuros proyectos se recomienda la inclusión de los cálculos que no se realizaron en este estudio como por ejemplo de pérdidas adicionales por presencia de armónicos de corriente y de esfuerzos en el transformador, ya que en esta investigación solo se sentaron las bases del diseño de transformadores.

- Se podría mejorar el software desarrollado en este estudio si se incluye una tabla con los calibres de los conductores que se usarán en el devanado primario como secundario y según el valor de área del conductor, el usuario seleccionaría el cable que se usará y se continuará con el diseño.
- Una futura aplicación podría ser la inclusión de aluminio además del cobre en el material de los devanados para complementar la comparación entre diseños.

6. REFERENCIAS BIBLIOGRÁFICAS

- K. M. Vishnu, Computer Aided Design of Electrical Machines, First Edition. India: B. S. Publications, 2008.
- [2] J. F. Mora, *Máquinas Eléctricas*, Quinta Edición. España: McGraw-Hill Interamericana, 2003.
- [3] A. E. Fitzgerald, C. Kingsley and S. D. Umans, *Electric Machinery,* Sixth Edition. New York: McGraw-Hill, 2003.
- [4] "Transformadores de Potencia tipo Columna y Acorazado", Sector Eléctrico, 2017.
 [En línea]. Disponible en: http://www.sectorelectricidad.com/10895/transformadoresde-potencia-tipo-columna-y-acorazado/. [Accedido: 27-octubre-2017]
- [5] F. I. Sánchez, Diseño de un Transformador de 5MVA, 33/11 kV Dyn11, Madrid: Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica, Diciembre 2009.
- [6] I. P. Sandoval, *Diseño de Transformador de Distribución Asistido por Computador,* Quito: Escuela Politécnica Nacional, Abril 2000.
- [7] P. A. Pérez, *Transformadores de Distribución teoría, cálculo, construcción y pruebas,* Segunda edición. Mexico: Editorial Reverte, 2001.
- [8] S. Chapman. Máquinas Electricas, Tercera Edision. Santa Fe de Bogota: McGraw-Hill, 2000.
- [9] V. H. Yánez, Elaborar un Manual de Procedimientos para el Diseño y Construcción de Transformadores, Quito: Escuela Politécnica Nacional, Departamento de Ingeniería Eléctrica y Electrónica, Abril 2010.
- [10] "Aditya-Desing-of-Transformers", Scrib, [En línea]. Disponible en https://es.scribd.com/document/367222096/Aditya-design-of-transformers-pdf.
 [Accedido: 4-noviembre-2017]
- [11] J. Kuhlmann. Diseno de Aparatos Electricos, Primera Edision. Mexico: Compania Editorial Continental S. A., 1959.
- [12] Materiales Ferromagnéticos", patricioconcha, [En línea]. Disponible en: http://patricioconcha.ubb.cl/transformadores/materiales_ferromagneticos.htm. [Accedido: 27-marzo-2018]

- [13] I. Dasgupta, Design of Transformers, First Edition. New Delhi: McGraw-Hill, 2002.
- [14] A. C. Oñate, Diseño de un Transformador Trifásico de 300 kVA 13.8/4X480 V Sumergido en Aceite Dieléctrico Mineral Especial Para Variadores de 24 Pulsos, Quito: Escuela Politécnica Nacional, Departamento de Ingeniería Eléctrica y Electrónica, Abril 2016.
- [15] "Diseño de Transformador Monofásico U -Cursos", 2010. [En línea]. Disponible en: https://www.u_cursos.cl/ingenieria/2008/2/EL42C/1/material_docente/bajar?id_mat erial=197566. [Accedido: 30-de-octubre].
- [16] J. J. Winders, Power Transformers Principles and Applications, First Edition. New York: Marcel Dekker, 2002.
- [17] G. V. Rossum, El Tutorial de Python, 1er Edición, febrero 2017.
- [18] R. G. Duque, Python Para Todos, 1er Edición.

7. ANEXOS

ANEXO I

Anexo I: Manual de usuario para el uso de la aplicación

La aplicación para el diseño de transformadores de potencia a partir de 500 [kVA] está implementada en lenguaje de programación PYTHON, el cual es un software libre.

Para poder usar esta aplicación es necesario ir al anexo digital que se encuentra en CD. Se debe dar doble clic sobre la carpeta llamada "Diseño de Transformadores de Potencia" y después se procede a buscar el programa ejecutable el cual tiene como nombre "Programa_Diseño_Transformadores_Potencia.exe".

Primero se obtiene un diseño sin criterios, estos resultados se despliegan en las 6 pantallas que se muestran a continuación, la unión de las 6 pantallas representa el diseño en sí de la máquina.

Después, de entre 200 posibles casos se escoge los que satisfacen las limitaciones del diseño. Entre estos se selecciona los criterios que son, mayor eficiencia, mínimo kg/kVA, mínimo Io/I_2 y mínimo volumen del tanque. Este se realiza después de tener el primer diseño que es sin criterios.

Paso 1: Se debe dar doble clic en la aplicación computacional llamada "Programa_Diseño_Transformadores_Potencia.exe" que se muestra en la Figura 7.1.

Figura 7.1. Aplicación computacional [autoría propia]

Paso 2: Después de realizar el paso 1 aparecerá la primera pantalla que corresponde al ingreso de contraseña, ver Figura 7.2.

YECTO DE TITULA.	–		×
INGRESE CONTRA	SEÑA		

VALIDAR	CANCEL	.AR	
	VECTO DE TITULA. INGRESE CONTRA *******	VECTO DE TITULA — INGRESE CONTRASEÑA *******	VALIDAR

Figura 7.2. Pantalla de ingreso de contraseña [autoría propia]

Contraseña: epn2018

Después de ingresar la contraseña se debe dar clic sobre el botón validar que se muestra en la Figura 7.2. Si la contraseña no es correcta no se puede ingresar al programa para diseñar transformadores de potencia.

Paso 3: Una vez ingresado la contraseña correcta se permite el acceso a la primera ventana del programa, en la cual se puede observar los títulos de presentación y el botón de ingreso llamado DISEÑO DE TRANSFORMADOR TRIFÁSICO DE POTENCIA DE DOS DEVANADOS, el que lleva a la segunda ventana, ver Figura 7.3.

Figura 7.3. Pantalla de ingreso [autoría propia]

Además, esta pantalla presenta un menú llamado ARCHIVO el cual contiene dos opciones, La primera es NUEVO, como su nombre lo dice permite abrir una nueva ventana que lleva a la pantalla de ingreso de datos. La segunda opción es SALIR que permite cerrar todas las pantallas en general que se estén usando.

Paso 4: Una vez echo todos los pasos anteriores se puede entrar a la pantalla de ingreso de parámetros. Estos son potencia aparente, voltaje del devanado primario, voltaje del devanado secundario, frecuencia a la que va a trabajar la máquina, número de fases y tipo de conexión en la que se encuentre el transformador, la cual puede ser de dos tipos, el primero conexión DELTA/ESTRELLA y ESTRELLA/DELTA, ver Figura 7.4.

Figura 7.4. Pantalla de ingreso de parámetros [autoría propia]

Para entender de mejor manera se ingresó los valores del transformador que se ha analizado en el capítulo 4, después se escoge el tipo de conexión que en este caso es DELTA/ESTRELLA. Una vez seleccionado esto se irá directamente a la siguiente pantalla. También se cuenta con un botón EXIT que cumple con la función de salir del programa cerrando todas las pantallas en uso.

Paso 5: Una vez seleccionado el tipo de conexión se abre la pantalla que se puede observar en la Figura 7.5 en la cual se deben escoger los valores de las constantes. Estas se encuentran limitadas por los valores máximos y mínimos, para que no existan errores, pero de ocurrir se despliega un mensaje de error y la acción que debe hacer para corregir el problema.

		Tabla 2.2. Factor de área de la columna del Núcleo				
->>Factor de área de la columna del micleo-	9/62	Proporción	Columna	Columna	Columna de 3 pasos	Columna de 4 pasos
->> Relación del cobre respecto al núcleo =	0.0	k	0.45	0.56	0.6	0.62
>> Factor de laminación =	9.05	Tabla 2.1, Factor	de relación entre	el cobre y el r	iúcleo	
->> Densidad de flujo =	10	-	K	Valor		
Densidad de comjente -	1.1	Tipo co	lumna C	.6-0.9		
	1-	Tipo ac	orazado (9-1.3		
		Tabla 2.3. Densid	ad de coniente s	egún el tipo de Densidad	e transformado	(
CONTINUAR			refrigeración	de corriente		
SXXXXX-EXIT-XXXXX			refrigeración Seco	de corriente [A/mm ²] 1.5 - 2.5		

Figura 7.5. Pantalla de ingreso de constantes [autoría propia]

Paso 6: En la pantalla anterior se dará clic sobre continuar y se abre la pantalla que se muestra en la Figura 7.6. Esta corresponde a la primera parte del diseño, llamada DISEÑO DEL NÙCLEO MAGNÉTICO. En esta pantalla se muestran los resultados del núcleo magnético, las medidas del mismo y las pérdidas que acurren en el hierro.

Paraton poor referencies and officies of a solution of (r) and (r) Paraton of a solution of (r) Paraton of a solution of (r) Paraton of a solution of (r) R. Prevo de la vestage in dows R. Ball Paraton of a trapped degree (r) R. Ball Paraton of a trapped degree (r) R. Ball Avaniando un Dowshid de Plan Minister (Refe) R. Ball [1] Paraton of Refer (r) R. Ball Discuss de la calence del maile (r) R. Ball [1] Paraton of Refer (r) R. Ball Discuss de la calence del maile (r) R. Ball [1] Paraton of Refer (r) R. Ball Discuss de la calence de la calence (r) R. Ball [1] Paraton of Refer (r) R. Ball Discuss de la calence de la calence (r) R. Ball [1] R. Ball [1] Discuss de la calence (r) R. Ball [1] R. Ball [1] Discuss de la calence (r) R. Ball [1] R. Ball [1] Discuss de la calence (r) R. Ball [1] [1] [1] Discuss de la calence (r) R. Ball [1] [1] [1] Discuss de la calence (r) R. Ball [1] [1] [1] Discuss de la calence (r) R. Ball [1] [1] [1] Discuss de la calence (r) R. Ball<	0_
HL Protock für vestere mitholo HBBE Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBBE A vanisch vie Danabel Al Plan Mithain (Belth 16 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBBE Diazene als bischen Alfradelo (DP 16 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBBE Diazene als bischen Alfradelo (DP 65 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBBE Diazene als bischen Alfradelo (DP 84 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBBE Diazene als bischen Alfradelo (DP 84 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HBE Diazene Als bischen Alfradelo (DP 84 Predition end Yung (Weight / WSight Kgrt (Kgi + 7K) - 1 HBBE 2 HB2 + 2 HB2 HB2 HB2 HB2 + 2	
Anniholis de Pair Mitales (Repi Us (T) Perdonisais es el Norm (R) = 4586 Discuss de la cidanas del mitolo (Repi 538 (H) 538 (H) Discuss de la cidanas del mitolo (Repi 538 (H) (H) (H) Discuss de la cidanas del mitolo (Repi 538 (H) (H) (H) Discuss de la cidanas del mitolo (Repi 538 (H) (H) (H) Discuss de la Circles Annah (nder) 538 (H) (H) (H) Discuss de la Circles Annah (nder) 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H) Discuss de la Circles (Repi 538 (H) (H) (H)	(11)
Discuss de la calavas de la status (de) ESB (e) Tal?/verdes (Da) ESB Pol Non-Marcha (Da) Dessite de Carcines: Assains (oday) ESB (al avain ⁴ 2) Assains (Astry) ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2) Dessite de Carcines: Ela ESB (al avain ⁴ 2)	16961
Ith/Production B42882 Production Denoted & Contents Assess (oday) 28 (472) Asses is in Yeamas (Asy) 85882 (472) Denoted & Is observe (Sy) 65882 (472) Denoted area (Sy) 658 (412) Denoted area (Sy) 658 (412)	
Departed & Carciners: Associatio (educy) 2.8 (All and all all all all all all all all all al	
Annu de la Vannaie (Aury) BESSE (ef 2) Annu de la de	
Longstol de la columna (L) 436 (m) Dissionis area las Contras (d) la columna (D) 8.88 (m) Propossile L/(D-D) = (Lig(D)) 2.538 (m) (m)	
Disancia serie la Cantra de la colazione (D) 6.00 (n) Poporcia L/D-D -> (D)(D) 2.000 POMBEREZIE 7.56 et al 2010 de reconstructione	
Poposia 1/0-0-5 (3)(0)) 2100 William William Annu Angelian	
Legital of Yapr (W)-	
Audio per Alt- del Yuge Ter Xity - BIZELE BIBER (IN XIT)	
Dividities on of Colors (Wying C (WWing a Kard (Karl 1965)) 245 22 Million - 4620 Mill (W) And the Article of Section of Printee Section (Section of Printee Section (Sect	
Descript of Page (By) = 43868 (F)	
CONTINUATION AND AND AND AND AND AND AND AND AND AN	

Figura 7.6. Parte 1 diseño del núcleo magnético [autoría propia]

Es importante mencionar que hay una restricción en esta primera parte del diseño, la cual es la proporción LbyD que tiene que estar entre un valor de 2.5 a 4. Si este valor no se encuentra dentro del rango se despliega una pantalla la cual dirá error y la acción que se debe realizar para corregir éste.

Esta pantalla contiene varios botones los cuales se explican a continuación:

- *Grafico del núcleo magnético:* Este botón despliega una sub pantalla que muestra las partes del núcleo magnético que se calcularon, ver Figura 7.7.
- Gráfico de pérdidas de acero laminado en frio: Este botón muestra una sub pantalla que permite ver el grafico de pérdidas [W/kg] versus densidad de flujo para el acero laminado en frio. Este sirve para determinar las pérdidas tanto en el núcleo (WpKgC) como en el yugo (WpKgY), ver Figura 7.8.
- *Regresar:* Este botón permite regresar a la pantalla de ingreso de constantes.

 Continuar: Este botón permite continuar a la siguiente ventana para seguir con el diseño. La pantalla se llama PARTE 2 CORRIENTE SIN CARGA.

• Exit: Este botón cierra todas las ventanas que se están usando.

Mediante esta curva se puede determinar las pérdidas en la columna del núcleo (WpkgC) y las pérdidas en el yugo (WpkgY) con la densidad de flujo de cada parte correspondientemente

Figura 7.8. Curva de magnetización para el acero laminado en frio [autoría propia]

Paso 7: En este paso se abre la ventana de CORRIENTE SIN CARGA. En esta se puede observar una restricción que es la proporción lo/l1. Esta debe ser menor a 1, si esto no ocurre se muestra una pantalla de error y la acción que debe hacer para corregir éste, ver Figura 7.9.

Integeneratives and examined and the second seco	4001	2	E 6 PARTE	5) CORRIENTE SIN CARGA
Atter Pero la colecció (atto- tuni, Att. Pero la colecció (atto- Attri Esse (AttyPero) Attri Esse (AttyPero) Nonces de contas es el cocantario (Carriene de Cosi es el Cocanto So Carriene de Fuei es el Cocanto (10-10) Prisponite (10:12-> (10)(12)-	2963 1923 405196 773= 1949 47024	p Tres of Yape (ATT) = 108,3000 p Tres of Yape (ATT) = 512,4236 (ATT)-512,4236 (ATT)-512,4236 202 202 202 202 202 202 202 20	(ATH) (AT) (Varitan) (A)	<figure></figure>
««REBBESAB««		>>00M	INUARSS	**XXXXX-BAIT-XXXXX

Figura 7.9. Parte 2: corriente sin carga [autoría propia]

En esta ventana también se encuentra la gráfica de AT/m versus la densidad de flujo. Mediante esta curva se determina los AT/m tanto para la columna del núcleo como para el yugo del núcleo magnético.

Esta pantalla contiene varios botones los cuales se explican a continuación

- *Regresar:* Este botón permite regresar a la pantalla que es PARTE 1 DISEÑO DEL NÚCLEO MAGNÉTICO.
- *Continuar:* Este botón permite continuar a la siguiente ventana para seguir con el diseño. La pantalla se llama PARTE 3 DISEÑO DEL DEVANADO SECUNDARIO.
- Exit: Este botón cierra todas las ventanas que se están usando.

Paso 8: En este paso se despliega la pantalla de DISEÑO DEL DEVANADO DE BAJO VOLTAJE, después de dar clic en el botón continuar de la anterior pantalla. En esta se encuentran los parámetros de diseño del devanado de bajo voltaje, ver Figura 7.10. Las restricciones en este paso son la densidad de corriente en devanado de bajo voltaje y la holgura axial. Estos deben estar dentro de sus rangos si esto no ocurre se muestra un mensaje de error y las posibles soluciones para poder seguir diseñando el transformador.

CISEND DE TRANSPORMADOR 2 DEVANADOS					- 0
	-	S DE (6 PARTES) DISEÑO DE	L DEVANADO SECUN	ARIO
Vueltas Radiales X Axiales (T2r x T2a) = 3.0 1 70	Vuetas tota	les - 232	Corriente de fase I2=	209.185	NUMERO DE NEDRAS PARALELAS DECENDAS EN UN CONDUCTOR
Conductor: (stP) = 14.0 Hewbras en Parale	lo de Ancho x Es	pesor (stW a stl') 2888 (mm)×(m	m)	
Hewbras RADIALES X AXIALES (NstR x NstA)	35149				14 3
Área del Conductor (a2) =	82.82	[mm^2]			NUMERO DE ESPIRAS RADIALES RECOMENDADO 2
Densidad de Corriente (odLV) =	2,5411	[A/mm*2]	PERMITHELE: 2.0 a.0.5		3 🛫
Holgura Axial (SkLVax) =	205.2	(mm)	Dessable Mayor a 7 (rm	0).	NUMERO DE HEREAS ANIALES DE UN CONDUCTOR
Anche Radial del secundario Devanado (rwLV) =	37.5	[mm]			
Diametros del Devanado (Interno X Externo)-(di2 x do2) =	386.01 461.0	[mm]x[mm]			P 3
Longitud Media de la Vuelta (Lmt2) =	1,3305	(m)			ESPESOR DE UNA HEBRA DE UNA COMPUCTOR
Resistencia/Fase (r2) =	74.9923	(m.ohm)		Gráfico de Acbras mintes	3 🔮
Pérdidas en el cobre (pcu2) =	9.8446	[kW]		Gráfico de hebras radiales	>>RECALCULAR
				Gráfico de parémetros sujetes	
				Gráfico de parámetros radiales	
				Gráfico do diámstros de LV	
< <regresar<<< td=""><td></td><td>>>CONT</td><td>INUAR>></td><td></td><td>>>XXXXXX-EXIT-XXXXX</td></regresar<<<>		>>CONT	INUAR>>		>>XXXXXX-EXIT-XXXXX

Esta pantalla contiene varios botones los cuales se explican a continuación:

 Gráfico de hebras axiales: Este botón muestra una sub pantalla que identifica las hebras axiales, conductor y hebras paralelas dentro de un conductor, ver Figura 7.11.

 Gráfico de hebras radiales: Este botón despliega una sub pantalla que identifica las hebras radiales o capas, conductor y hebras paralelas dentro de un conductor, ver Figura 7.12.

 Gráfico de parámetros axiales: Este botón muestra una sub pantalla que identifica los parámetros axiales del devanado de bajo voltaje, ver Figura 7.13.

Figura 7.13. Parámetros axiales [autoría propia]

• *Gráfico de parámetros radiales:* Este botón despliega una sub pantalla que identifica los parámetros radiales del devanado de bajo voltaje, ver Figura 7.14.

🕴 ELEMPLO DE PARÂMETROS RADIALES

11

- 24

Figura 7.14. Parámetros radiales [autoría propia]

 Gráfico de diámetros: Este botón muestra una sub pantalla en donde se identifica el diámetro interno y externo del devanado de bajo voltaje, Ver Figura 7.15.

Figura 7.15. Diámetros del devanado de bajo voltaje [autoría propia]

• *Regresar:* Este botón permite regresar a la pantalla que es PARTE 2 CORRIENTE SIN CARGA.

- *Continuar:* Este botón permite continuar a la siguiente ventana para seguir con el diseño. La pantalla se llama PARTE 4 DISEÑO DEL DEVANADO PRIMARIO.
- Exit: Este botón cierra todas las ventanas que se están usando.
- Recalcular: Se puede visualizar en la Figura 7.10, que se puede variar el número de hebras paralelas dentro de un conductor, número de espiras radiales, número de hebras axiales y el espesor de una hebra de un conductor. Después de variar estos parámetros se debe dar clic sobre el botón recalcular. Este vuelve a desplegar esta pantalla con los nuevos valores. Pero si alguna de las restricciones no se encuentra dentro de sus rangos, se muestra una pantalla con error y la posible acción que se debe realizar para corregir el diseño.

Paso 9: En este paso se despliega la pantalla de DISEÑO DEL DEVANADO DE ALTO VOLTAJE, después de dar clic en el botón continuar de la anterior pantalla. En esta se encuentra los parámetros de diseño del devanado de alto voltaje, ver Figura 7.16. Las restricciones en este paso son la densidad de corriente en el devanado de alto voltaje, la holgura axial y la separación entre devanados de distintas fases. Estas limitaciones deben estar dentro de sus rangos si esto no ocurre se muestra un mensaje de error y las posibles soluciones para poder seguir diseñando el transformador.

Contractions of the state			
	1	+ DE 6 PARTES) DELÉS DEL DEVANADO PRIMAR	00
Number and Aryanaki Printein (11) -	2818		The second diversion of the second seco
Vielas co d decarata Patanta (00 -	21.548	PR .	Second Second Second
Diraulo(Add-2)* II. 2010/ASX(AA		VILING - PRODUCTION ST VILIDAT- 2008	E 1
Conductor: Alacha a Engrave (arW) s with a			Tertemanadades de en constructor (CR) = 📲
September of Densado Adprivatio (D*2001464)		2010 Desceto engler a 15(Dest)	
Avan did. Condustor (pr)=	1332	jame 25	NUMBER OF BREICHT AGALET TERMINGLAUSTER DEA
Described on Communicated Primario (col(197) -	1.00	passes monitorization	The second se
Holgern Axial Oldet Visci) =		inet Gesauer Mager & 7(1001)	De 3
Aurile Rollal de Denaudo ((1989)) -	31.0	jung	
Disector of Dryands (Jerson & Zerrow 143 e (e1) -	-	IN (met) (met) Initia in faith in a sea and initia	>>RECALCULAB
Longined Model do In Vector (Camilly-	1550	14	
Restructurfuer (1)*	LIM	jen)	
Printifies conf. colors: (post) =	14.5588	IMI .	
CONTRACTOR		WERNESS APA	WENERS PRESERVED

Figura 7.16. Parte 4 diseño del devanado de alto voltaje [autoría propia]

Esta pantalla contiene varios botones los cuales se explican a continuación:

• *Gráfico de todos los parámetros del devanado de alto voltaje:* Este botón despliega una sub pantalla que identifica los parámetros.

- Recalcular: Se puede visualizar en la Figura 7.16, que se puede variar, el número de hebras axiales y el número de bobinas axiales. Después de variar estos parámetros se debe dar clic sobre el botón recalcular. Una vez hecho esto se volverá a desplegar esta pantalla con los nuevos valores. Si algunas de las restricciones no se encuentran dentro de sus rangos se muestra una pantalla con error y la posible acción que se debe realizar para corregir el diseño.
- Regresar: Este botón permite regresar a la pantalla que es PARTE 3 DISEÑO DEL DEVANADO SECUNDARIO.
- *Continuar:* Este botón permite continuar a la siguiente ventana para continuar con el diseño. La pantalla se llama PARTE 4 CÁLCULOS DE RENDIMIENTO.
- Exit: Este botón cierra todas las ventanas que se están usando.

Paso 10: En este paso se muestra la pantalla de CÁLCULOS DE RENDIMIENTO, después de dar clic en el botón continuar de la anterior pantalla. En esta se encuentra una Tabla para diferentes cargas y factores de potencia. También existe una limitación la cual se trata de la eficiencia con una carga=0.75 [pu] y factor de potencia=0.8 [pu]. Esta magnitud debe ser mayor a 98.5 [%], si esto no se cumple se despliega un mensaje de error y las posibles soluciones para poder seguir diseñando el transformador, ver Figura 7.18.

p (Factor de Potencia)	CARGA (pu)	Perdidas (NW)	POTENCIA DE SALIDA (KM)	POTENCIA DE ENTRADA (WV)	EFICIENCIA (SALIDA/ENTRADA) (%)	
1	1	33,B243	5000.0	5033.8243	99.3281	
0.85	1	33,8243	4250.0	4283.8243	99.2104	
0.85	0.75	22.7517	3187.5	3210.2517	99.2913	
0.85	0.5	14,8427	2125.0	2139.8427	99.3064	
IMA EFICIENCIA () ud Media de la vuelta	rfms) = (1.mt) =	99.3139 (%) 1.4993 (m)	Ocurre con la Carga de (Le Longitud Axial del Devanad	inxe() = 2900,2905 () io (1.c) = 0.0844 (r	NA)	48559 7296
IMA EFICIENCIA () tud Media de la vuelta ancia (Ex) =	rfmx) = (1.mt) =	99.3139 (%) 1.4993 (m) 0.0469 (ps)	Ocurre con la Carga de (Lo Longitud Axial del Devanad Resistencia (Er) =	hme() = 2900,2905 () lo(Le) = 0.6644 (r 0.0051 (r	KVA] n] AT/Fase (AT) = ni] Impedancia (E2) =	48550.7246 0.8471 [Pu]
IMA EFICIENCIA () tud Media de la vuelta ancia (Ex) = ación: A plena Carga y	rfmx) = (Lmt) = (Fp= 0.85 (pu) (99,3139 [%] 1,4953 [m] 0,0469 [p0] Reg35)= 0,1	Ocurre con la Carga de (Le Longitud Axial del Devanad Resistencia (Er) = 129 [pu] Para plena	hmeel) = 29002905 () lo (1.c) = 0.8844 [r 0.0051 [r + Carga y Fp=1 [pu] (RegUPF)	KVA) n] AT/Fase (AT) = Du] Impedancia (E2) = = 0.0051 [pu]	48556 7246 0.6471 [pu]
IMA EFICIENCIA (tud Media de la vuelta ancia (Ex) = acite: A plena Carga y	rfinx) = (1.mt) = (Fp= 0.85 [pu] (99.3139 (%) 1.4993 (m) 0.0469 (ps) Reg35)= 0.0	Ocurte con la Carga de (Le Longitud Axial del Devanad Resistencia (Er) = 129 [pu] Para plena	hmae() = 2900,2905 () to (1.c.) = 0.8844 () 0.0051 () Carga y Fp= 1 (pu) (RegUPF)	(VA) n] AT/Fase (AT) = ou] Impedancia (E2) = = 0.0051 [pu]	48558.7286 8.8471 [pu]
IMA EFICIENCIA () nd Media de la vueka ancia (EX) = acièn: A plena Carga y	rfinx) = (Lnt) = (Fp= 0.85 (pu) (99.3139 [%] 1.4993 [m] 0.0469 [pu] Reg35)= 0,	Ocurte con la Carga de (Le Longitud Axial del Devanad Resistencia (Er) = 129 [pu] Para plena	hmer() = 2900,2905 () lo (1.c) = 0.8844 () 0.0051 () Carga y Fp=1 (pa) (RegUPF)	(VA) n] AT/Fase (AT) = nu] Impedancia (E2) = = 0.0051 [pu]	48558.7296 9.8471 [pu]
IMA EFICIENCIA (nul Media de la vuelta ancia (Ex) = acièn: A pfena Carga y	clina) = (1.mt) = (Fp= 0.85 [pu] (99.3139 (%) 1.4993 (m) 0.0469 (po) Reg85)= 0.	Ocurre con la Carga de (Le Longitud Axial del Devanad Resistencia (Er) = 1029 [pu] Para plena	hmer() = 2900,2905 () lo (1.c) = 0.8844 [r 0.0051 [r 1. Carga y Fp=1 [pu] (RegUPF)	KVA] n] AT/Fase (AT) = nu] Impedancia (E2) = = 0.0051 [pu]	48556 7246 0.6471 [pu]

Figura 7.18. Parte 5 cálculos de rendimiento [autoría propia]

Esta pantalla contiene varios botones los cuales se explican a continuación

- *Regresar:* Este botón permite regresar a la pantalla que es PARTE 4 DISEÑO DEL DEVANADO PRIMARIO.
- *Continuar:* Este botón permite continuar a la siguiente ventana para seguir con el diseño. La pantalla se llama PARTE 6 DISEÑO DEL TANQUE Y PESOS.
- *Exit:* Este botón cierra todas las ventanas que se están usando.

Paso 11: En este paso se muestra la última pantalla del diseño del transformador de potencia sin criterios. Esta pantalla se llama DISEÑO DE TANQUE Y PESOS, ver Figura 7.19.

CODIE: N	Terristane (Childrenne)()							II
		-	6 DE 6 PARTE	5) pr:	KNO DE TANQUE Y PESOS	-		
				-				
	Longitud (LO =	22001	(rest)		Arns de Kublumiron (91) -	10.000	(me*2)	
	Autho (bt) =	MER	(and		Automate de la Trageratura (21) =	107.01	191	
	Alle (14)	338.62	- inter					
	Valence (VU =		Des. N					
I	inter de la altera e toral activit farmer							
	and there that quarter also I have pure							
-	initia and a second			11111				
	Area del Tole (AG	838	dependent 21		Deravado Princeio (Vicar) =	205.00	(Mel	
	Area repetita (CAO =	8657	() () () () () () () () () () () () () (Devanuele Bossenlarie (Woult) =	224.55	Mail	
	Número de Dales (NO +	- 201						
					(Colorana + Yago) (Wersel) Pota dal history	1208.01	19462	
						EDBOOK	(Hel	
			Presentin ity Office	U				
		5	DESEA REALIZAR ES	te dis	EÑO CON LOS DIFERENTES CRIT	LRIQS>>		
-	ILUPESARS						NYXXXX	CU-EXIT-XXXX

Figura 7.19. Parte 6 diseño de tanque y pesos [autoría propia]

Una vez abierta esta última pantalla se almacenan en un documento de Excel los resultados totales del diseño de transformador de potencia sin criterios, el nombre del documento se puede ver Figura 7.20.

Figura 7.20. Documento de Excel donde se guarda los parámetros del diseño sin criterios [autoría propia]

Esta pantalla contiene varios botones los cuales se explican a continuación:

- *Gráfico de altura y longitud del tanque:* Este botón despliega una sub pantalla que identifica el alto y la longitud del tanque que sirve para calcular el volumen del mismo. Ver Figura 7.21.
- *Gráfico del Ancho del tanque:* Este botón muestra una sub pantalla que identifica el ancho del tanque que sirve para calcular el volumen del mismo, ver figura 7.22.

Elemplo de Altura y Longitud del Tanque

- 0 ×

Figura 7.21. Longitud y altura del tanque [autoría propia]

Figura 7.22. Ancho del tanque [autoría propia]

 Desea realizar este diseño con los diferentes criterios: Este botón despliega una sub pantalla en la cual se encuentran los diferentes criterios de diseño que son tomados de entre 200 casos y seleccionados los que cumplan con los objetivos dispuestos, ver Figura 7.23

Figura 7.23. Selección de criterios [autoría propia]

- Regresar: Este botón permite regresar a la pantalla que es PARTE 5 CÁLCULOS DE RENDIMIENTO.
- Exit: Este botón cierra todas las ventanas que se están usando.

Paso 12: Los criterios requeridos se seleccionan de entre 200 posibles diseños, En estos se varía el factor de relación del cobre respecto al núcleo [K], densidad de flujo [Bm], densidad de corriente [cdav] y proporción entra la altura de la ventana respecto a la longitud [LbyD]. Estos valores son extraídos de una hoja de Excel cuyo nombre se puede ver en la Figura 7.24.

Figura 7.24. Documento de Excel donde se varía los parámetros [autoría propia]

Después se realiza las 200 iteraciones y si alguno caso no cumple con las limitaciones del diseño. Este se elimina y solo se almacenan en una hoja de Excel los casos factibles. El nombre del documentó se puede observar en la Figura 7.25. De los casos que si cumplen con las restricciones del diseño se selecciona los criterios.

Figura 7.25. Documento de Excel donde se guarda los casos factibles [autoría propia]

Si se desea un diseño de un transformador en el cual la eficiencia debe ser la más alta se acoge la primera opción de Figura 7.21. Después se despliega automáticamente la pantalla que se muestra en la Figura 7.26.

1. THE R. P. LEWIS CO., LANSING MICH.	_				
		t de 6 marco na/	GNETICO		
Para les paras enfectionalite el factor de area del anisien en ().)*	r (8	atter de relación entre el index y	diale 61 ER		
TE Partor de la versana es demini-	8.162		Problem on all Yope (Wyley's (Wiley's Key's Problem)	10071205105-220438	M
Assessingly as Developed in This Minima (Dec)-	1	m	Pindalas analas na el lateras (PS =	2.004	[644]
Dianens de la colonsia del milles (d)=	133	(0)			
(MP webs (b))	25.002	[Mittan Works]			
Develop & Content Analisti -Schritt	22	[Alum*2]			
data da la Vandana (AA)*	1.1241	(eP.S. Anadelander	0007 EDDD (0°%		
Compiled de la colorena (C.D.)	184	M			
Dennis mesico Corro de la calmate (D):	8.92	Di			
Reparation L (D-d> (D+D×)+	ш	POWINGELEGE	talas to Bata Repúblic		
Respirat del Yope (Win	22	M			
Andreyet Alle All Tage Openhole 128	11252	(man)			
Medida an d Cales (Wying: [Wing) a Rig: [Kg)-(Kc)= 1888	HILMAZ - 10	maa (M)	And the Anderson Statements of the		
Develop de l'hav en el Yage (Dyl -	1000	m			
KREGRESARK	1	CONTINUARS	++XXXX-EX	IT-XXXXX	
				and the second se	

Figura 7.26. Criterio de eficiencia máxima diseño del núcleo magnético [autoría propia]

No Citrato da Indonesa Catri (h		2 DL	6 PARTES)	CORRIENTE SIN CARGA
and the second se	183	17444/Tap/(47)= 10.000	(ATO)	
ol AT-Pers is coloroos (ATC)-	782.8	· Para el Tago (ATY) - dal son i	(AT)	
Taxe (AT)Pho-	316.5017	IATAang		
çarin de canîtal en al accandaria (l	10=	285	(Notites)	
riccie de Fase en el Devanaia Se	- (TD visition	201.001	IN .	13
riuto de Magneticielle (10-10-	iki+	1000-0200-01000	INI.	
gardin (D/C > 956;Cp	4365	(S) (((((((((((((((((((((((((((((((((((We down with come or determines for AUIn target parts in the set

Después de presionar continuar

Figura 7.27. Criterio de eficiencia máxima corriente sin carga [autoría propia]

Después de presionar continuar

- S DE 6 PARTES) DISEÑO DEL DEVANADO SECUNDARIO Vuelas Radiales X Axiales (C2r x T2r) = 30 1 99 Vuelas to	CRITERIO DE EFICIENCIA MÁRIMA.					
Yuelas Radiales XI Axiales (127 x T2s) = 391 99 Yuelas into a lesse 295 Corriente de fase 12- 291 35 Conductor: (sP) = 14 Hewbras en Paraleles Ancho x Evers (sW x str) 213 3 (mm) x (mm) Hewbras RADIALES X AXIALES (Not K x Not A) 551 4.9 213 3 (mm) x (mm) Area del Conductor (a2) = 62 32 (mm*2) 551 4.9 551 4.9 Densidad de Contiente (dLV) = 52 31 (Amm*2) FERMUTIBLE: 2.3 a 3.5 550 4.9 Ancho Radial del secundario Devanado (m/UV) = 315 6 (mm) Descable Mayor a 7 (mm) Diámetros del Devanado (interno X Externo) (d2 x do2) = 356 81 431 6 (mm) Erálico da balense analatis Diámetros del Devanado (interno X Externo) (d2 x do2) = 356 81 431 6 (mm) Erálico da balense analatis Deámetros del Devanado (interno X Externo) (d2 x do2) = 356 81 431 6 (mm) Erálico da balense analatis Resistencia/Fase (r2) * 153 12 (m/D) Erálico da balense analatis Erálico da balense analatis Pérdidas en el cobrer (pro2) * 153 12 (kW) Erálico da balense analatis Erálico da balense analatis Interno de dianetroe de I Interno da balense analatis Erálico d		-	S DE 6 PART	res) diseño del dev/	ANADO SECUNDARIO	-
Conductor: (st?) = 44.0 Hewbrase mParakele k Anchox x Evers (stW x st?) 2 11.0 (mm) x (mm) Hewbrase RADIALES X AXIALES (NSR X NSR A) 3514.0 Area del Conductor (st?) = 52.32 (mm^2) Densidad de Comiente (cdLV) = 25.611 (Almm ^2) PERMITTELE: 2.3 a.3.5 Folgera Axial (SBLVax) = 311.6 (mm) Beschable Motors a 7 (mm) Ancho Xadial del secondario Devando (rwLV) = 36.61 43.0 (mm) Evertification (mm) Diametros del Devando (rutero X Luce) + 12362 (mm) Evertification (mm) Resistencia/Face (r2) = 48.6077 (m.ohm) Evertifica de heltens autofs Pérdiass en el cobre: (pruz) = 115312 (KW) Evertifica de heltens autofs Pérdiass en el cobre: (pruz) = 115312 (KW) Evertifica de heltens autofs Devines de begrained/rea autofs Evertifica de parisined/rea autofs Evertifica de parisined/rea autofs Evertifica de parisined/rea autofs Evertifica de parisined/rea autofs Evertifica de parisined/rea autofs Diametros del Devando (rearea) + KW) Evertifica de parisined/rea autofs Evertor autofs <t< th=""><th>Vueltas Radiales X Aziales (T2r x T2a) - 3.0199</th><th>Vuetas tota</th><th>des - 295</th><th>Corriente de fase 12~</th><th>209.185</th><th></th></t<>	Vueltas Radiales X Aziales (T2r x T2a) - 3.0199	Vuetas tota	des - 295	Corriente de fase 12~	209.185	
Hewbras RADIALES X AXIALES (NsR x NstA) 3514.0 Àrea del Conductor (x2) - 82.32 (mm^2) Densidad de Comiente (cdLV) - 25411 (Almm^2) PERMITTIBLE: 2.3 a 3.5 Bolgara Axial (SBLVax) - 3116 (mm) Bescable Mayor a 7 (mm) Anche Radial del secundario Devanado (mUV) - 375 (mm) Festionale Mayor a 7 (mm) Dametros del Devanado (memo X Extemo)(d2 x do2) 366.01 431 (mm) Festionale Mayor a 7 (mm) Resistencia/Fase (r2) - 12362 (m) Festionale Interno anialitation Pérdidas en el cobre: (pcx2) - 165.12 (kW) Festionale Interno anialitation Pérdidas en el cobre: (pcx2) - 165.12 (kW) Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Interno anialitation Festionale Inter	Conductor: (stP) = 14,8 Hewbras en Par	delo de Ancho x Es	pesor (stW x stT	2 2 X 3.6 (mm) × (mn	a)	
Area del Conductor (a2) = 82.32 (mm*2) Demaidad de Contiente (cdLV) = 2.5411 (Almm*2) PERMITTIBLE: 2.3 a 3.5 Folgers Axial (SBLVax) = 3116 (mm) Descable Mayor a 7 (mm) Ancho Radial del secundario Devanado (mUV) = 37.5 (mm) Diametros del Devanado (memo X Externo)(d2 x dol) 56.91.431 (mm) Resistencia/Faser (r2) = 86.9017 (m.ohm) foilon da balenes suales Peridias en el cohre (pra2) = 116312 (kW) foilon da balenes suales Feilion de balenes maintes textino de balenes maintes foilon da parimetros autors Feilion de carimetros autors textino de balenes maintes foilon da parimetros autors Feilion de parimetros autors textino de balenes maintes foilon da parimetros autors Feilion de parimetros autors textino de fóinetros du traites foilon da parimetros autors Feilion de parimetros autors textino de fóinetros du traites foilon da parimetros autors Feilion de parimetros autors textino de fóinetros du traites foilon da parimetros autors	Hewbras RADIALES X AXIALES (NstR x NstA)	35140				
Densidad de Carriente (cdLV)= 25411 (Almm^2) PERMITTIBLE: 2.3 a.3.5 Folgura Astàl (SBL/Vax)= 3116 (m) Gescable Mayor a 7 (mm) Ancho Xadial del secundario Devanado (mUV) 325 (mm) Diametros del Devanado (narmo X Externo)(d2 x doc) 3660 1434 (mm)x(mn) Longitud Media de la Vuelta. (Lm12) * 12362 (m.ohm) Extiluo da balano asiaten Peridias en el coine: (pcu2) * 115312 (MV) Extiluo da balano asiaten Péridias en el coine: (pcu2) * 115312 (KW) Extiluo da balano asiaten Extiluo do parimetror asiaten Extiluo do parimetror asiaten Extiluo do parimetror asiaten Extiluo do parimetror asiaten Extiluo do parimetror asiaten Extiluo do parimetror asiaten	Área del Conductor (a2) =	82.32	(mm*2)			
Holgzra Asid (SBL/Va) - 3116 (mm) Descable Mayor a 7 [mm] Ancho Radial del secundario Devunado (mU/V) - 375 (mm) Diàmetros del Devanado (interno X Extemo)(di 2 x do) - 366,914310 (mm)x(mm) Langhod Media de la Vuelta (interno X Extemo)(di 2 x do) - 12362 (m) Resistencia/Fase (r2) - 88,6017 (mo)tam) Defino de Inderes aniales Perdisas en el cobre (pro2) - 115312 (kW) Defino de Inderes aniales Ferdisas en el cobre (pro2) - 115312 (kW) Defino de Inderes aniales Ferdisas en el cobre (pro2) - 115312 (kW) Defino de Inderes aniales Ferdisas en el cobre (pro2) - 115312 (kW) Defino de parimetros aniales Ferdisa de la de terrisenter en el tobre (pro2) - 115312 (kW) Defino de parimetros aniales Ferdisa de de de tobre (pro2) - 115312 (kW) Defino de parimetros aniales Ferdisa de de de tobre (pro2) - 115312 (kW) Defino de finalmentos d	Densidad de Corriente (cdLV) -	2.5411	[Almm*2]	PERMITIBLE: 2.3 à 3.5		
Ancho Radial del secundario Devunado (nel.V) 37.5 (mm) Diámetros del Devunado (Interno X Externo) (d2/ x do2) 366.91 431 a (mm) x Longitud Media de la Vuelta (Lm12) 12362 (m) Resistencia/Faser (r2) 88.60 17 (m.chem) Derition de texterno anial ref Pérdidas en el cobre (por2) 115312 (kW) Entition de bateras radial de la bateras radial	Holgura Asial (Siki.Vax) =	311.6	(mm)	Descable Mayor a 7 (mm		
Dámetros del Devansdo (Interno X Externo)(d2 x do2) 356,91 4310 (mo)x(mm) Lengitud Media de la Vuelta: Cum2) - 12362 (m) Resistencia/Fase (r2) - 88,6017 (mo)tama ferálisia de balarso axialina Periódas en el cobre: (pro2) - 116312 (kW) ferálisia de balarso axialina Incidence (pro2) - 116312 is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - 116312 is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - 116312 is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - 116312 is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - 116312 is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - is en el cobre: (pro2) - is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - is en el cobre: (pro2) - is en el cobre: (pro2) - ferálisia de balarso axialina Incidence (pro2) - is en el cobre: (pro2) - is en el cobre: (pro2) - ferálisia de parimetros axialina Incidence (pro2) - is en el cobre: (pro2) - ferálisia de parimetros axialina ferál	Ancho Radial del secundario Devanado (rwLV) =	37.5	(mm)			
Longitud Media de la Vuelta (Lmt2) ** 12362 (m) Resistencia/Fase (r2) ** 88.6017 (m.ohm) Drática de betras anial ra Pérdilas en el coirre (pcu2) ** 116312 (kW) Intílica de betras anial ra Gráfico de parámetros anial ra Gráfico de parámetros anial ra Gráfico de parámetros anial ra Longitud Media de la Vuelta (Lmt2) ** Longitud Media de la Vuelta (Lmt2) ** Intílica de betras anial ra Pérdilas en el coirre (pcu2) ** 116312 (kW) Intílica de parámetros anial ra Gráfico de parámetros anial ra Gráfico de parámetros anial ra Gráfico de parámetros anial ra	Diámetros del Devanado (Interno X Externo)(di2 x do2)	356.01 431.0	(mm)s(mm)			
Resistencia/Fase (r2) = BB.6017 (m.ohm) Drafting de lettings aniales Pérdidas en el cobre (pro2) = 116312 (kW) Gráfing de lettings aniales Gráfing de parámetros aniales Gráfing de parámetros aniales Gráfing de parámetros aniales Gráfing de parámetros aniales Gráfing de parámetros aniales Gráfing de parámetros aniales	Longitud Media de la Vuelta (Lmt2) -	12362	(m)			
Pérdidas en el cobre (pcu2) - 116312 [kW] Intilles de bebras nultules Gráfico de parámetros suistes Gráfico de parámetros suistes Dráfico de diámetros de IT	Resistencia/Fase (12)=	88.6017	(m.ohm)		Gráfico de beliros axiates	
Gráfico de parámetros realisies Gráfico de parámetros realisies Gráfico de diámetros de 17	Pérdidas en el cobre (pca2) -	11.6312	[kW]			
Gráfico de parámetros subletes Gráfico de parámetros redistes Gráfico de diámetros de 17					term of the local as real local	
Gráfico de parámetros radiales Gráfico de diámetros de 17					Gráfico de parámetros aciales	
Gráfica do diámetros de 17					Gráfico de parámulmo radiales	
					Gréfies de diámetros de 17	
SCONTINUADSS SSEVER	COREDESAD/C		2200	INUADA		******

Figura 7.28. Criterio de eficiencia máxima Diseño del devanado de bajo voltaje [autoría propia]

Después de presionar continuar

🕴 CRITERIO DE L'HOTENCIA MASIMA	_		
		- 4 DE 6 PARTES) DISEÑO DEL DEVANADO PRIMARIO	
Vueltas en el devanado Primario (TI) =	2555		
Vueltas en el devanado Primario (II) =	24.1546	[A]	
Devanado (AxC-2) = 12.0 BOBINAS X (cA x	(R) 196.0	VULETAS + 2 BOBINAS X (x3) 1015 VULETAS = 2555.0	
Conductor: Ancho x Espesor (stW1 x stTl) =	192.8.5		Hebras radiales de un conductor (cR) = 49
Espacio entre devarados de distintas fases (D*1000-do1) =		365.0 Dosnado mayor a 15 (mm)	
Area del. Conductor (a1) =	11.172	[mm*2]	
Densidad de Corriente del Primario (cdHV) =	2.1621	[Almm*2] PERMITIBLE: 2.3 x 3.5	
Holgura Aaial (SlkHVax1) =	265.6	[mm] Desemble Mayor a 7 [mm]	
Ancho Radial del Devanado (rwHV) =	49.8	[enne]	
Diâmetro del Devanado (Interno X Esterno) (di3 x do3) =	462.01.5	to (enm)x(enm) trático de teden los parámetros	
Longhud Media de la Vuelta (Lmt1) =	1.6885	[m]	
Resistencia/Fase (r1)=	1.3572	[otun]	
Pérdidas en el cobre (pcu1) =	12.8775	[kw]	
< <regresar<<< th=""><th></th><th>SECONTINUARSS</th><th>>>XXXXX-EXIT-XXXXX</th></regresar<<<>		SECONTINUARSS	>>XXXXX-EXIT-XXXXX

Figura 7.29. Criterio de eficiencia máxima Diseño del devanado de alto voltaje [autoría propia]

Después de presionar continuar

	districted (but	Perdictes (WV)	POTENCIA DE BALIDA (NW)	POTENCIA DE ENTRADA (KW)	EFICIENCIA (SALIDA/ENTRADA) (94)
-1-		32.8287	5000.0	5032.8287	99.3477	
0.85	1	32.6267	4250.0	4282.8287	99.2335	
D.85	0.75	21.57	3187.5	3209.07	59.3278	
0.85	0.5	13.5281	2125.0	2138.5281	99.3674	N
tancia (Ex)=	Ter= 0.85 [m] /	0.0593 (pu)	Resistencia (Er) =	0.0051 [r	su] Impedancia (Ez) =	0.0596 [pu]

Figura 7.30. Criterio de eficiencia máxima cálculos de rendimiento [autoría propia]

Después de presionar continuar

Figura 7.31. Criterio de eficiencia máxima Diseño del tanque y pesos [autoría propia]

Una vez abierta esta ventana se guarda automáticamente todos los parámetros del diseño en una hoja de Excel la cual se muestra en la Figura 7.32.

Figura 7.32. Nombre del documento de criterio de eficiencia máxima [autoría propia]

Lo mismo ocurre con los demás criterios, todos los resultados de los documentos son unidos en una hoja de Excel llamada resultados acoplados. Si se quiere actualizar esa hoja se debe abrir los documentos de Excel tanto con y sin criterios. En el Anexo III se podar ver la Tabla de los resultados acoplados.

ANEXO II

Anexo II: Tabla de resultados acoplados de los diseños con y sin criterios, para obtener los parámetros del transformador de 5 [MVA], delta-estrella, 33/11 [kV] a 60 [Hz].

******NÚCLEO MAGNÉTICO******	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción lo/l2	Criterio de Mínimo volumen
Factor del núcleo					
(K)	0,8	0,67	0,66	0,62	0,67
Factor de área (k)	0,62	0,62	0,62	0,62	0,62
Factor de					
aprovecnamiento	0.05	0.05	0.05	0.05	0.05
(NI) Proporción L byD	0,95	0,95	0,95	0,90	0,90
Densidad de fluio	2,0	2,1	2,9	5,5	5
máxima (Rm) [T]	16	15	16	15	16
Densidad de	1,0	1,5	1,0	1,0	1,0
corriente (cdav)					
[A/mm^2]	3	2,3	3.2	3.2	3,3
Voltios por espira		,	,	,	,
(Et) [V]	34,249	28,64	27,061	25,37	28,779
Área de la columna					
(Ac) [m^2]	0,085	0,075	0,067	0,067	0,071
Area de la ventana					
(Aw) [m^2]	0,355	0,554	0,422	0,45	0,385
Diámetro de la	0.00	0.04	0.00		0.00
columna [m]	0,36	0,34	0,32	0,32	0,33
Longitud de la	0.07	1.00	4 4 4	1 00	1 00
Columna [m]	0,97	1,23	1,11	1,22	1,08
contros de las					
columnas (D) [m]	0.73	0.8	0.7	0.69	0.69
Proporción	0,10	0,0	0,1	0,00	0,00
recalculada LbvD					
entre 2,5 - 4	2,622	2,674	2,921	3,297	3
Ancho del yugo [m]	0,324	0,306	0,288	0,288	0,297
Alto del yugo [m]	0,3	0,284	0,267	0,267	0,275
Pérdidas en el					
hierro [kW]	7,185	6,306	5,978	5,192	6,256
*****CORRIENTE EN VACÍO*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Ka/KVA	Criterio mínima proporción	Criterio de Mínimo
Amaguine			J	10/12	volumen
Amperios por					
espira por lase [ΔT/nh]	357 613	332 326	378 462	308 652	372 162
Corriente en vacío	557,015	552,520	570,402	500,052	572,102
	1 617	1 267	1 352	1 04	1 4 1 4
Corriente de l2 [A]	262.432	262.432	262.432	262.432	262.432

Número de espiras	195	221	224	250	220
Proporción Io/I2	100	221	234	250	220
entre 0.5 -1	0.616	0.483	0.515	0.396	0.539
****DISEÑO DEVANADO LV*****	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción Io/I2	Criterio de Mínimo volumen
Espiras axiales	62	74	78	84	74
Espiras radiales	3	3	3	3	3
Hebras paralelas en					
un conductor	14	14	14	14	14
Ancho de una hebra					
[mm]	2	2	2	2	2
Espesor de una	2	2	2	2	2
nepra [mm] Área del conductor	3	3	3	3	3
Imm^21	82.32	82.32	82.32	82.32	82.32
Densidad de	02,02	02,02	02,02	02,02	02,02
corriente [A/mm^2]					
entre 2,3 - 3,5	3,188	3,188	3,188	3,188	3,188
Espacio axial libre					
en el devanado de					
LV [mm]>7	150,8	271,6	105,2	145,6	121,6
Ancho radial del	07 F	07 5	07 F	07 F	07 F
devanado LV [mm]	37,5	37,5	37,5	37,5	37,5
Espacio axiai					
devanado LV [mm]	819.2	958.4	1004.8	1074.4	958.4
Diámetro interno	0.0,2				
[mm]	386	366	346	346	356
Diámetro externo					
[mm]	461	441	421	421	431
Longitud media [m]	1,33	1,268	1,205	1,205	1,236
Resistencia por	0.0508	0.0691	0.0685	0.0732	0.0661
Pérdidas de cobre	0,0590	0,0001	0,0005	0,0732	0,0001
[kW]	12,3554	14.0626	14,1518	15,1194	13.652
	Veleree	Onitonio do	Oritorio do	Criterio	Criterio
DEVANADO HV*****	sin criterio	Eficiencia máxima	mínimo Kg/KVA	mínima proporción Io/I2	de Mínimo volumen
Espiras en el					
devanado de HV	962	1149	1216	1300	1144
Corriente de fase en HV [A]	50,505	50,505	50,505	50,505	50,505
Espiras axiales en					
los bobinados	40	10	10	10	40
normales	12	12	12	12	12
Espiras rauiales en					
normales	76	88	92	100	88

Espiras radiales en 1 bobinado extra	25	47	56	50	44
Hebras radiales de	20	-11	00	00	
1 conductor	19	22	23	25	22
hebras axiales de 1					
conductor	4	4	4	4	4
Ancho de una hebra					
[mm]	11	14	13	14	13
Espesor de una	4 5	4 5	1.0		1.0
hebra [mm]	1,5	1,5	1,2	1,1	1,2
Area del conductor	16 17	20.58	15 288	15 002	15 288
[IIIII 2] Densidad de	10,17	20,30	15,200	15,092	15,200
corriente [A/mm^2]					
entre 2.3 - 3.5	3.123	2,454	3.304	3.346	3.304
Espacio axial libre	-,		-,		-,
en el devanado de					
HV [mm] >7	123,6	215,6	151,6	205,6	121,6
Ancho radial del					
devanado HV [mm]	36,1	41,8	36,8	37,5	35,2
Espacio axial					
ocupado del	0404	10111	050 4	10111	050 4
devanado HV [mm]	846,4	1014,4	958,4	1014,4	958,4
Espacio radial libre					
distintas fasos [mm]	164.9	2424	172 /	162	156.6
Diámetro interno	104,0	243,4	173,4	102	150,0
[mm]	493	473	453	453	463
Diámetro externo					
[mm]	565,2	556,6	526,6	528	533,4
Longitud media [m]	1,662	1,617	1,539	1,541	1,565
Resistencia por					
fase [mΩ]	1,9778	1,8059	2,4478	2,6547	2,3424
Pérdidas de cobre					
[KW]	15,1347	13,8193	18,7315	20,3146	17,9247
	Valores	Criterio de	Criterio de	Criterio	Criterio
	sin	Eficiencia	mínimo	nronorción	ue Mínimo
	criterio	máxima	Kg/KVA		volumen
Eficiencia	99,271	99,291	99,209	99,187	99,225
Eficiencia máxima	99,327	99,365	99,328	99,35	99,327
Eficiencia máxima					
ocurre con una					
carga [pu]	2494,643	2320,589	2080,516	1867,801	2171,94
Longitud media de	4 400	4 4 4 6	4 070	4 070	4 404
las espiras	1,496	1,442	1,372	1,373	1,401
Longitua axial del	0 716		0 020		0 000
Amperios por	0,710	0,004	0,020	0,004	0,020
espira por fase					
AT/ph	48585 85	58030 303	61414 141	65656 566	57777 77
Poactancia [%]		55555,000			
Reaclancia i 701	5.69	6.643	7,258	7.803	6.47

Impedancia [%]	0,057	0,067	0,073	0,078	0,065
Regulación de					
voltaje a plena					
carga y fp=0.85 [%]	3,488	3,997	4,41	4,743	3,972
Regulación de					
voltaje a plena					
carga y fp=1 [%]	0,577	0,586	0,691	0,744	0,663
DISEÑO DEL TANQUE Y PESO***	Valores sin criterio	Criterio de Eficiencia máxima	Criterio de mínimo Kg/KVA	Criterio mínima proporción lo/l2	Criterio de Mínimo volumen
Longitud del tanque					
[mm]	2165,2	2196,6	2066,6	2048	2053,4
Ancho del tanque					
[mm]	745,2	736,6	706,6	708	713,4
Alto del tanque	0070 404	0007.004	0440 700	0050 700	0400 000
	2070,421	2297,064	2143,708	2253,708	2130,386
Volumen del tanque	2 2/1	2 717	2 12	2 260	2 1 2 1
[III~] Suporficio del	3,341	3,717	১, । ১	3,200	3,121
tanguo para					
enfriamiento					
[mm^2]	12 052	13 475	11 89	12 422	11 789
Aumento de la	,002		,00	·_, · 	11,100
temperatura [°C]	239,305	211,241	272,539	273,039	267,454
Área de cada tubo		· · · ·			
[m^2]	0,157	0,157	0,157	0,157	0,157
Área requerida para					
los tubos [m^2]	64,997	61,903	75,383	78,937	73,034
Números de tubos					
de enfriamiento	414	395	480	503	465
Peso del devanado	000 405	040.005	054 500	000 070	040.005
de HV [Kg]	230,125	340,365	254,592	269,073	243,625
Peso del devanado	100 221	205 240	200 551	220 674	100.057
	180,331	205,249	200,551	220,074	199,257
magnótico [Kg]	4502 038	4722 015	3653 033	3810 538	3836 622
Peso total del	+302,030	7122,013	5055,055	5015,550	5050,022
transformador más					
aislamientos [Kɑ]	4961.619	5320.306	4155.317	4352.378	4322.298
Proporción Kg/kVA	0,992	1,064	0,831	0,87	0,864

ANEXO III

Anexo III: Diagrama de flujo para entender cómo funciona la aplicación de diseño de transformadores de potencia.

Diagrama de flujo 7.1. Diseño del transformador de potencia con y sin criterio

ANEXO IV

Anexo IV: En este anexo se encuentra el código fuente principal para el diseño de transformadores de potencia, el cual se muestra a continuación.

#Libreria que me permite realizar operaciones matemáticas

import math

#Libreria que permite realizar la interpolación

import numpy as np

dISEÑO DE UN TRANSFORMADOR DE POTENCIA

Datos de entrada

#Tipo de Conexión D-Y, tipo columna

KVA = 800; HV =6600 ; LV = 440; f = 60; Ph = 3;

k=0.6;#Factor de área del núcleo

ki = 0.92;#factor del hierro

- K = 0.6;#Relación del cobre respecto al núcleo
- Bm = 1.5; #densidad de flujo máxima

cdav = 2.6; #densidad de corriente

LbyD =2.8 ;#proporción del alto de la ventana respecto a la longitud

print('-----1)DISEÑO DEL NÚCLEO MAGNÉTICO PARTE1------')

print(")

#'-----1)DISEÑO DEL NÚCLEO MAGNÉTICO PARTE1------1

Et = K*math.sqrt (KVA/Ph); # Voltaje por espira

Ail = Et/ (4.44 * f * Bm); #Área neta transversal de la columna

dl = math.sqrt(Ail/k);#diámetro 1

d = math.ceil (dl * 100)/100;# Diámetro de la columna del núcleo

Cálculo de la correcta área neta transversal de la columna

Ai = k * d * d;

Et = 4.44 * f * Bm * Ai;# voltaje por espira correcto

kw = (10/(30 + HV/1e3)) * 1.15;#Factor de aprovechamiento de la ventana

Aw = KVA * 1000/(3.33 * f * Bm * kw * cdav * 1e6 * Ai);#Área de la ventana

L1 = math.sqrt(LbyD * Aw);#Longitud de la columna o altura de la ventana 1

L = math.ceil(L1 * 100)/100;#Longitud de la columna o altura de la ventana

D1 = (Aw/L) + d;#Distancia entre los centros de las columnas 1

D = math.ceil(D1 * 100)/100;#Distancia entre los centros de las columnas

LbyD1 = L/(D - d);#Proporción del alto de la ventana respecto a la longitud

if (LbyD1 <= 2.5 or LbyD1 > 4) :

print('Caso eliminado proporción LbyD no esta dentro de 2.5-4')

messagebox.showwarning('ERROR DE DISEÑO',

'Proporción LbyD no esta dentro de 2.5 - 4, este parámetro corresponde'

' a la división de la longitud de la columna, respecto a '

' la longitud de la ventana '

'<1>Si la proporción es menor 2.5 regrese a la pantalla INGRESO '

'DE CONSTANTES PARA EL DISEÑO DE TRANSFORMADOR DE DOS DEVANADOS

' y aumente el valor de la proporción LbyD'

'<2>Si la proporción es mayor 2.5 regrese a la pantalla INGRESO '

'DE CONSTANTES PARA EL DISEÑO DE TRANSFORMADOR DE DOS DEVANADOS

' y disminuya el valor de la proporción LbyD')

W1 = 2 * D + 0.9 * d;#longitud del yugo 1

W = math.ceil(W1 * 10)/10; #Longitud del yugo

Ac = Ai/ki;#Área real de la columna

Ay = 1.15 * Ac;#Área del yugo

by = 0.9 * d;#Ancho del yugo

hy = Ay/by; #altura del yugo

#Interpolación para encontrar Pérdidas en la columna

BB = [0.8,1.0,1.2,1.4,1.6];

WpKg = [0.2,0.4,0.8,1.2,2];

P = [(0.8, 0.2), (1.0, 0.4), (1.2, 0.8), (1.4, 1.2), (1.6, 2.0)]

xi, yi = zip(*P) # puntos de interpolación

WpKgC = np.interp(Bm,xi, yi) # Llamamos a la clase con xi

#fin de interpolación

KgC = Ph * Ac * L * 7.55e3;#Peso de las columnas del núcleo

PiC = WpKgC * KgC; #Pérdidas en el hierro en las columnas

KgY = 2 * Ay * W * 7.55e3;#Peso de los yugos

By = Ac/Ay * Bm; #Densidad de flujo en el yugo

#inicio de interpolación para las Pérdidas en el yugo

WpKgY = np.interp(By,xi, yi)

PiY = WpKgY*KgY; #Pérdidas del hierro en los yugos

#fin de interpolación

Pi = 1.05 * (PiC + PiY)/1000; #Pérdidas del hierro en los yugos

SE IMPRIME LOS RESULTADOS

print('KVA=',KVA,'HV=',HV,'LV=',LV,'f=',f,'Ph=',Ph)

print('Asumiendo: para 3 pasos de laminacíon con un factor de cobre (k)=',k)

print('Asumiendo: factor de relación del cobre respecto al núcleo (K)=',K)

print('EMF/vuelta (Et)=',Et)

print('diámetro del la columna (d) [m]')

print('Longitud de la columna L[m]=',L)

print(' Distancia entrelos centros de las columnas D[m]=',D) print('Asumiendo una densidad de corriente cdav[A/mm^2]=',cdav) print('Proporción del largo de la ventana respecto a la longitud',LbyD

,'permitido entre 2.5 a 4')

print('Longitud del yugo W[m]=',W)

print('Área de la Ventana (Aw) [m^2]=',Aw)

print('Área de la columna (Ac) [m²]=',Ac)

print('Área de yugo (Aw) [m^2]=',Ay)

print('(Ancho del yugo (by) [m]=',by)

print('Altura del yugo (hy) [m]=',hy)

print('Densidad del yugo (By) [T]=',By)

print('Peso de las columnas del núcleo (KgC) [kg]=',KgC)

print('Peso deL YUGO (KgY) [kg]=',KgY)

print('Pérdidas del hierro en las columnas (PiC) [W]=',PiC)

print('Pérdidas del hierro en el yugo (PiY) [W]=',PiY)

print('Pérdidas totales en el hierro Pi=',Pi,'KW',)

#-----DETERMINACIÓN DE LA CORRIENTE EN VACÍO------

print('-----')

print('-----2)NO_LOAD_CURRENT_PART2------')

print(")

#interpolación para encontrar los amperios vuelta por

#metro para el núcleo y el yugo

B1 = [1,1.25,1.5,1.75,2.0];

H1 = [70, 100, 150, 300, 1000];

P = [(1, 70), (1.25, 100), (1.5, 150), (1.75, 300), (2, 1000)]

xi, yi = zip(*P)

atC = np.interp(Bm,xi, yi);

atY = np.interp(By,xi, yi);

#fin de interpolación

ATC = Ph * atC * L;#Amperios vuelta (AT) para la columna

ATY = 2 * atY * W;#Amperios vuelta (AT) para el yugo

ATpPh = (ATC + ATY)/Ph; # TOTAL AT/fase

T2=math.floor(LV/math.sqrt(3)/Et);# N. OF TURNS IN LV winding

I2=KVA*1e3/(math.sqrt(3)*LV); #pashe current in LV winding

Iw=Pi*1000/ (math.sqrt (3) *LV); #WATTFUL CURRENT

Im = 1.15 * ATpPh/math.sqrt (2) /T2; #corriente de magnetización

IO = math.sqrt(Im * Im + Iw * Iw); #corriente en vacío

IObyI2 = IO/I2 * 100; #proporción de I0/I2

if (IObyI2 > 1) :

print('Caso eliminado proporción lo/l2 es mayor a 1')

messagebox.showwarning('ERROR DE DISEÑO',

'<1>Proporción lo/l2 es mayor a 1 cerrando las,'

'pantallas regrese a INGRESO DE CONSTANTES PARA '

'EL DISEÑO DE TRANSFORMADOR DE DOS DEVANADOS y disminuya la densidad '

'de flujo asumida')

#imprimo valores

print('AT/m: para la columna (atC)=',atC,' para el yugo (atY)=',atY,)

print('TOTAL AT: para la columna=',ATC,'para el yugo =',ATY,)

print('TOTAL AT/PHASE para el núcleo (ATpPh)=',ATpPh)

print('Número de espiras para el devanado de bajo voltaje (T2)=',T2) print('Corriente de fase del devanado de bajo voltaje (I2) [A]=',I2) print('Corriente de magnetizacion (Im) [A] =',Im) print('Componente real de lo (corriente en vacio) (Iw) [A]=',Iw)

print('Corriente en vacío (Iw) [A]=',IO)

print('(proporción de lo/l2 =',lObyl2)

print('-----')

print('-----3)Diseño del devanado de bajo voltaje parte 3------')

print(")

- # Datos de entrada
- T2r = 2;#espiras radiales
- stP = 12;#número de hebras paralelas
- NstA = 3;#número de hebras axiales
- stT = 3; #espesor de una hebra [mm]

#comienzo del programa

- T2a = math.ceil(T2/T2r);#Número de espiras axiales
- NstR = stP/NstA;#Número de hebras axiales en un solo conductor

ALW = 0.8 * L * 1000;#espacio disponible para las espiras

ALT = ALW/T2a; #Espacio para cada espira

stW1= ALT/NstA - 0.5;# variable auxiliar de ancho de cada hebra

stW = math.floor(stW1);

ALWx=(((stW + 0.4)*NstA) + 2) * T2a + 100;#Espacio axial ocupado secundario

#Espacio axial libre en el devanado del secundario

SlkLVax2 = L * 1000 - ALWx;

if (SlkLVax2 <= 7) :

print('Caso eliminado Holgura axial de LV es menor a 7 [mm]') messagebox.showwarning('ERROR DE DISEÑO',

'<1>Holgura axial de LV es menor a 7 [mm] REACOMODE'

'LAS ESPIRAS AXIALES Y LAS HEBRAS RADIALES')

#Área del conductor del devanado del secundario

a2 = stW * stT * stP * 0.98;

cdLV = I2/a2; #densida de corriente

#Ancho radial del devanado del secundario

rwLV = NstR * (stT + 0.4) * T2r + 1.8;

di2 = d * 1000 + 2 * (5 + 3 + 5); #Diámetro interno del devanado secundario

do2 = di2 + 2 * rwLV; #Diámetro externo del devanado del secundario

Lmt2 = 3.1416 * (di2 + do2)/2e3;#Longitud media del devanado del secundario

r2 = 0.02 * Lmt2 * T2/a2; #Resistencia por fase del devanado del secundario

pcu2 = Ph * I2 * I2 * r2/1000; #Pérdidas en el cobre del secundario

#IMPRIMO VALORES

print('Número de espiras del devanado del bajo voltaje',T2)

print('Espiras radiales',T2r,' Espiras axiales',T2a)

print('Conductor:',stP,'Hebras paralelas de ancho*espesor [mm] ',stW,'x',stT)

print('Hebras: (radiales X axiales)',NstR,' x ',NstA)

print('Espacio del arrollamiento [mm]',ALWx)

print('Area del conductor [mm^2] =',a2)

print('Densidad de corriente [A//mm^2] ',cdLV,'Permitible entre 2.3 a 3,5',)

print('Holgura axial del devanado de bajo voltaje [mm]=',SlkLVax2,

'deseable mayor a 7 [mm]',)

print('Espacio radial del devanado de bajo voltaje(rwLV) [mm]=',rwLV)

print('Diámetro del devanado de bajo voltaje (Interno x externo) [mm]=',di2,

'X',do2,)

print('Longitud media [m]=',Lmt2)

print('Resistencia por fase [m.ohm]=',r2)

print('Pérdidas en el cobre en LV [KW]=',pcu2)

print('-----')

print('-----4) Design of HV Winding parte 4------')

print(")

Tla=T2*HV/LV*math.sqrt(3); #N. of turn/ph

T1=math.ceil(Tla); #total no. of turns

I1=KVA*1e3/(3*HV); #PHASE CURRENT IN HVwinding

cA=4;# espiras axiales en una bobina

AxC = 14; #total de bobinas

cdHV = cdav + 0.2; #densidad de corriente del primario asumida

xl = T1/(AxC - 2 + 1.3); #Número de vueltas en las bobinas del primario

x2 = math.ceil(xl/cA);# Número de espiras radiales en el primario

#Número de espiras en cada bobina extra

x3 = math.ceil((T1 - (x2 * cA * (AxC - 2)))/2)

T1x = (AxC - 2) * cA * x2 + 2 * x3; #verificacion de espiras totales

cR = math.ceil(x2);#hebras radiales

ALW1 = math.floor(0.7 * L * 1000);#Se asume el 70% de espacio libre

ALPC = ALW1/AxC;#Espacio para cada bobina en el devanado primario

ALPC1 = ALPC/cA;#espacio para cada hebra

stW11 = ALPC1 - 0.4;#variable auxiliar de stW1

stW1 = math.floor(stW11);#Ancho para cada hebra del bobinado

ala = I1/cdHV;# Área del conductor en una espira en el devanado primario stT11 = ala/stW1; # Espesor de cada hebra en el bobinado primario 1 stT1 = math.ceil (stT11 * 10)/10;#Espesor de cada hebra en el primario #Área real de conductor de cada hebra en el primario

a1 = stT1 * stW1 * 0.98;

cdHV = I1/a1; #Densidad de corriente real en el primario

aLc = cA * (stW1 + 0.4);#Longitud axial de una bobina del primario

rwHV = cR * (stT1 + 0.4);#Longitud radial del devanado primario

#longitud acial ocupadapor todas las espiras

AxLw = AxC * aLc + (AxC - 1) * 6;

AxL = AxLw + 130;#Longitud axial del devanado primario

SlkHVax1 = L * 1000 - AxL;#Espacio axial libre de la columna del primario

if (SlkHVax1 <= 7) :

print('Caso eliminado Holgura axial de HV es menor a 7 [mm]')

messagebox.showwarning('ERROR DE DISEÑO',

'Holgura axial de HV es menor a 7 [mm], '

'REACOMODE LAS ESPIRAS AXIALES Y LAS HEBRAS')

di1 = do2 + 10 + 12 + 10; # Diámetro interno del devanado primario

do1 = di1 + 2 * rwHV;

Lmt1 = 3.1416 * (di1 + do1)/2e3;

r1=0.02 * Lmt1 * T1/a1;#Resistencia por fase del devanado primario

pcu1 = 3 * 11 * 11 * r1/1000;#Pérdidas en el cobre en el devanado primario

if ((D * 1000 - do1) <= 15) :

print('Espacio entre devanados de distintas fases menor a 15') messagebox.showwarning('ERROR DE DISEÑO', 'Espacio entre devanados de distintas fases menor a 15, '

'REACOMODE LAS ESPIRAS RADIALES Y LAS HEBRAS')

#IMPRIMO PARÁMETROS

print('Corriente de fase del devanado de alto voltaje [A]=',I1)

print('Espiras totales: Bobinas normales',AxC-2,'X',cA*cR,

'espiras + 2 bobinas extras con',x3,'espiras=',T1x)

print('Conductor (ancho*espesor) [mm] =',stW1,'X',stT1)

print('Área del conductor [mm^2]=',a1)

print('Densidad de corriente en el devanado de alto voltaje (A/sq.mm)',cdHV,

'Permitible entre 2.3 a 3,5')

print('Espacio del arrollamiento ',AxL)

print('Holgura axial en el devanado del alto voltaje =',SlkHVax1,

'deseable mayor 7 [mm]')

print('Espacio radial del devanado de alto voltaje [mm]',rwHV)

print('Diámetro del devanado (Interno X externo) [mm]',di1,'X',do1)

print('Espacio entre devanados de distintas fases (mm)=',D*1000-do1,

'deseable mayor 15 [mm]')

print('Longitud media [mm]=',Lmt1)

print('resistencia de HV [ohm]=',r1)

print('Pérdidas en el cobre HV [KW]=',pcu1)

print('-----')

print('------5) Performance Calculations------')

print(")

#Asumiendo Pérdidas por corrientes parasitas del 5%

pcuT = 1.05 * (pcu1 + pcu2);#Pérdidas totales en el cobre

ptFL = (pcuT + Pi);#Pérdidas totales a plena carga

PF = [1,0.85,0.85,0.85];#vector factor de potencia

LDPU = [1,1,0.75,0.5];#vector carga en por unidad

eff = []#se crea un vector para ingreso de los valores de eficiencia

#se crea un vector para el ingreso de los valores de Pérdidas totales

TLL = []

Optt = []#vector para el ingreso de los valores de la salida de potencia

Inpt = []#vector para el ingreso de los valores de el ingreso de potencia

for j in range(0,4):

pf = PF[j];#factor de potencia

Ldpu = LDPU[j];#carga en por unidad

TL = Pi + pcuT * Ldpu * Ldpu#perdidas totales

Opt = Ldpu * KVA * pf;#salida de potencia

Inp = Opt + TL#ingreso de potencia

ef = Opt/Inp * 100;#eficiencia

#almaceno los valores de las variales en los vectores

eff.append(ef);

TLL.append(TL)

Optt.append(Opt)

Inpt.append(Inp)

if (eff[2] < 98.5):

print('Eficiencia menor a 98.5 %')

messagebox.showwarning('ERROR DE DISEÑO',

'Eficiencia menor a 98.5 %,')

Ldmxef = math.sqrt(Pi/pcuT) * KVA#Carga para la máxima eficiencia

efmx = Ldmxef * 0.85/(Ldmxef * 0.85 + 2 * Pi) * 100#eficiencia máxima

Lmt = (Lmt1 + Lmt2)/2#Longitud media total

Lc = AxLw/1000#Longitud del bobinado

AT= I1 * T1#Amperios por fase del devanado primario

#reactancia

Ex = 2 *3.1416*f* 4* 3.1416* 1e-7 *Lmt*AT/Lc/Et*(0.016 + (rwHV + rwLV)/3e3)

Er = pcuT/KVA#Resistencia

Ez = math.sqrt(Ex * Ex + Er * Er)#Impedancia

#Regulación de voltaje para un factor de potencia de 0.85 y plena carga [%]

Reg85 = Er * 0.85 + Ex * math.sqrt(1 - 0.85 * 0.85)

#Regulación de voltaje para un factor de potencia de 1 y plena carga [%]

RegUPF = Er

#imprimo valores

print('Eficiencia a fp=1 [pu] y una carga= 1[pu] : ',eff[0])

print('Eficiencia a fp=0.85 [pu] y una carga=1[pu] : ',eff[1])

print('Eficiencia a fp=0.85 [pu] y una carga= 0.75[pu]: ',eff[2])

print('Eficiencia a fp=0.85 [pu] y una carga= 0.5[pu] : ',eff[3])

print('Máxima eficiencia',efmx,'ocurre con una carga de ',Ldmxef,'[KVA]')

print('Longitud media total [m]=',Lmt,'Espacio axial del devanado [m]=',Lc,

'AT/ph=',AT)

print('Reactancia=',Ex,'[pu]',',Resistencia=',Er,'[pu],Impedancia=',Ez,'[pu]')

print('regulación : fp=0.85[pu] y carga=1 [pu] ',Reg85,'[pu]')

print('pf= 1 [pu] y carga= 1 [pu]',RegUPF,'[pu]')

print('-----')

print('------6) TANK Design and Weights------')

print(")

- dL = 140;#longitud prudente de holgura
- dB = 180;#ancho prudente de holgura
- dH = 500;#altura prudente de holgura
- Dct = 50;#diametro del tubo
- Hct = 1000;#altura del tubo
- TRP = 50;#Límite de temperatura en los bobinados de 50°C
- Lt = 2 * D * 1e3 + (do1 + dL);#Longitud del tanque
- bt = (do1 + dB);#Ancho del tanque

ht = L * 1e3 + (2 * hy * 1e3 + dH) ;#Altura del tanque

Vt = Lt * bt * ht/1e9;#Volumen del tanque

St = 2 * (bt + Lt) * ht/1e6;#Superficie de enfriamiento del tanque

- Tr = ptFL * 1e3/12.5/ St;#Aumento de temperatura del tanque
- At = 3.1416 * Dct * Hct/1e6;#Área de cada tubo

#Área requerida para el enfriamiento con tubos

CAt = (ptFL * 1e3 - 12.5 * St * TRP)/(6.5 * TRP * 1.35);

Nt = math.ceil(CAt/At);#Número de tubos de enfriamiento

Wcu1 = 8.9 * Lmt1 * T1 * a1/1e3;#Peso de cobre en el devanado del primario

#Peso de cobre en el devanado secuandario

Wcu2 = 8.9 * 1e3 * Lmt2 * T2 * a2/1e6;

Wiron = KgC + KgY;#Es el peso total de hierro en el núcleo

Wtot = 1.01 * (Wcu1 + Wcu2 + Wiron);#Peso total del transformador

KgPkva = Wtot/KVA#Relación kg/kVA

if (KgPkva > 1.67):

print('Kg/kVA mayor a 1.67')

messagebox.showwarning('ERROR DE DISEÑO',

'Kg/kVA mayor a 1.67,')

print('Taque dimensiones: longitud=',Lt,'[mm] ,ancho=',

bt,'[mm] ,alto=',ht,'[mm] volumne=',Vt,'[m^3]')

print('Área de enfriamiento=',St,'[mm^2]')

print('Temperatura máxima del tanque=',Tr,'grados centigrados')

print('Tubos de enfriamiento: Área de cada tubo=',At,'[mm^2]')

print('Área requerida para enfriamiento=',CAt,'[mm^2], número de tubos=',Nt)

print('Pesos: devanado HV=',Wcu1,'+ devanado LV =',Wcu2,

```
'+hierro(columnas+yugo):',Wiron,' TOTAL=',Wtot,'[Kg]',)
```

print('Kg/KVA=',KgPkva)

ORDEN DE EMPASTADO