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RESUMEN 

 

El Reconocimiento de gestos de la mano (HGR, por sus siglas en inglés) es uno de los 

campos de investigación que ha desarrollado con éxito aplicaciones de interacción hombre-

máquina en los últimos años. Los sistemas HGR consisten en identificar el momento en el 

que se realizó un determinado gesto con la mano, así como el tipo de gesto realizado. En 

este trabajo, proponemos la creación de un modelo HGR basado en una Convolutional Neural 

Network (CNN). Luego, adaptamos una capa de memoria Long Short-Term Memory (LSTM) 

a la arquitectura del modelo para observar su efecto en la precisión de clasificación, precisión 

de reconocimiento y el tiempo de procesamiento. La entrada del modelo son espectrogramas 

creados mediante señales electromiográficas (EMG) del antebrazo obtenidas a través del 

sensor comercial Myo Armband. Para las pruebas, realizamos experimentos utilizando un 

conjunto público de datos de 612 usuarios, y luego medimos y comparamos la precisión de 

clasificación y la precisión de reconocimiento entre 5 gestos diferentes y el no gesto. Los 

resultados fueron evaluados para el modelo propuesto (modelo basado en CNN) y su 

adaptación para usar la capa LSTM (modelo basado en CNN-LSTM). Los resultados 

mostraron una precisión de clasificación de 90,49% ± 9,70% y de reconocimiento del 86,83% 

± 11,30% para el modelo basado en CNN; y una precisión de clasificación del 92,93% ± 8,23% 

y de reconocimiento del 91,60% ± 8,81% para el modelo basado en CNN-LSTM. Finalmente, 

concluimos que el uso de una capa LSTM ayuda al modelo a incrementar la precisión de 

clasificación y de reconocimiento, por lo cual definimos el modelo basado en CNN-LSTM 

como el modelo final del presente trabajo. 

 

PALABRAS CLAVE: Reconocimiento de Gestos de la Mano, Deep Learning, Convolutional 

Neural Networks, Long Short-Term Memory, EMG, Espectrograma.
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ABSTRACT 

 

Abstract—Hand gesture recognition (HGR) is one of the fields of research that has 

successfully developed human-machine interaction applications in the last years. HGR 

systems consist of identifying the moment in which a certain hand gesture was made, as well 

as the type of gesture performed. In this work, we propose the creation of a HGR model based 

on a Convolutional Neural Network (CNN). Then, we adapt a Long Short-Term Memory 

(LSTM) layer to the architecture of the model to observe its effect on the classification 

accuracy, recognition accuracy and processing time. The input of the model are the 

spectrograms created using Surface electromyography (sEMG) on the forearm through the 

commercial sensor Myo Armband. For testing, we performed experiments using a public 

EMGs dataset of 612 users, and we measured and compared the classification and 

recognition accuracy between 5 different gestures and the no gesture. The results were 

evaluated for the proposed model (CNN-based model) and its adaptation to use the LSTM 

layer (CNN-LSTM-based model). The results showed that the classification accuracy reaches 

up to 90.49% ± 9.70% and the recognition up to 86.83% ± 11.30% for the CNN-based model, 

and classification accuracy up to 92.93% ± 8.23% and recognition up to 91.60% ± 8.81% for 

the CNN-LSTM-based model. Finally, we conclude that the use of an LSTM layer helps the 

model to increase the classification and recognition accuracy, for which we define CNN-LSTM-

based model as the final model of the present work. 

 
KEYWORDS: Hand Gesture Recognition, Deep Learning, Convolutional Neural Networks, 
Long Short-Term Memory, EMG, Spectrogram. 
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1. INTRODUCTION 

 

Hand Gesture Recognition (HGR) consists of identifying to which class a hand gesture 

belongs from a set of defined movements, and determining the instant of time in which the 

gesture occurs [1]. The HGR has different human-machine interaction application domains 

that include bionics, video games, sign language recognition, medicine, among others [2]–[6]. 

One of the techniques applied for HGR is the processing of electromyography signals (EMGs), 

which are biomedical signals that measure electrical currents generated in muscles during 

their contraction that represent neuromuscular activities [7]–[9]. 

 

1.1. Research question 

 

Using Deep learning techniques and EMG signals, it will be possible to develop an HGR model 

capable of identifying a gesture corresponding to one of the five classes considered: fist, wave 

in, wave out, open, pinch, which works with a recognition accuracy of at least 85% and running 

in real time (300 ms) [10]. 

 

1.2. General objective 

 

Develop an HGR model based on EMG signals and Deep Learning techniques capable of 

recognizing five different hand gestures, with an accuracy of at least 85% and that works in 

real time (300 ms) 

 

1.3. Specific objectives 

 

● Review the state of the art to define Deep Learning architectures that can be used to 

build HGR models using EMG. 

● Design an HGR model, that uses a CNN-based feature extractor and a memoryless 

classifier, that is capable of recognizing 5 different hand gestures. 

● Build an HGR model that uses the same feature extractor as the non-memory model 

and uses an LSTM-based memory classifier that is capable of recognizing 5 different 

hand gestures. 

● Evaluate the results of the generated models in terms of classification accuracy, 

recognition accuracy and response time. 
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1.4. General background 

 

There are two types of methods to obtain muscle information using EMGs, which are invasive 

and non-invasive. Invasive methods allow a better measurement of the EMG signal, but they 

are impractical to be used commercially, since they require controlled environments, 

specialized staff, and cause discomfort to the user. The most common invasive method 

involves inserting needle-shaped electrodes into the muscles (intramuscular EMG) to obtain 

the signals. On the other hand, non-invasive methods are less precise when obtaining EMGs 

and more susceptible to noise. However, non-invasive methods are more practical, and can 

obtain high performance results for several HGR applications that could be used for 

commercial purposes such as bionic active prostheses, tele-operation systems, video games, 

among others [2]–[4], [11], [12]. The most common non-invasive method is called Surface 

electromyography (sEMG), which obtains movement information through the measure of the 

electric potential field produced by active muscle fibers by using electrodes placed on the skin 

[13]. 

 

To date, several HGR works have been developed, based on sEMG obtaining high 

performances. There are two types of HGR model: general models (trained with data from 

multiple users) and user-specific models (trained for each user with only its own data). Among 

the best results of specific user recognition are: reaching 95.32% [14], and 94.20% [15]. On 

the other hand, some examples of general models are: reaching 87.53% [16], 85.08% [17], 

and 80.31% [15]. There are also works that use Convolutional neural networks (CNNs) such 

as [18]. Additionally, the use of spectrograms combined with CNNs is an approach widely 

used in Speech recognition [19], [20], but thanks to the nature of EMGs it can also be applied 

to HGR. 

 

A HGR system can be divided in 5 stages: data acquisition, pre-processing, feature extraction, 

classification, and post-processing [14], [15]. For each stage, several methods have been 

used obtaining different results. For data acquisition, different types of mechanisms have been 

used such as vision sensors [4], Inertial measurement units (IMUs) [21], gloves [22] and EMG 

[3], [10], [14]. In the pre-processing stage, rectification and filtering are widely used [1], [23], 

[24]. For feature extraction, several methods have been used to extract relevant features such 

as mean absolute value (MAV), root mean square (RMS), standard deviation (SD), variance 

(VAR), or automatic feature extraction methods such as CNNs, among others [3], [18], [25], 

[26]. For the classification stage, different Machine Learning techniques have been used such 

as k-nearest neighbors (kNN) [22], Support Vector Machines [27], Random Forests [28], [29], 
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and Feed-forward and Recurrent Neural Networks [30]. Finally, for the post-processing stage, 

among the most used methods we can mention the elimination of consecutive repetitions, the 

gesture mode, threshold method, and velocity ramps [15]. It is worth mentioning that one of 

the most important characteristics of HGR systems is that they must work online, which means 

a computing time of less than 300 ms [10]. Thus, a trade-off between accuracy and processing 

time should be considered to analyze the HGR systems. 

 

1.5. Contribution 

 

Although several works from the current literature have obtained high accuracy performances 

for HGR systems, there are still several problems that must be solved to reach a robust model. 

For example, several authors are focused only on the development of user-specific models 

that get high accuracy results. However, the problems of inter-personal and intra-personal 

variability in the distribution of the EMG data [8] make it difficult to obtain high performances 

when using a user-general model. For this, the motivation of this work is focused on the search 

for user-general HGR models that obtain state-of-the-art performances. We summarize the 

main contributions of this project below. 

 

● We tested our models in a public large dataset (EMG-EPN-612) composed of 612 

users. We used 306 users for training and validation, and the other 306 users for 

testing two different user-general models. For the training and validation users we used 

50% of each user's data for training, and the other 50% for validation. For the testing 

users, we only used the portion of the data without ground truth. 

● We successfully developed two HGR user-general models. The first is a CNN-based 

model and the second is a CNN-LSTM-based model. The input of the models is the 

spectrogram information that is extracted from the EMGs. We also compare such 

models in terms of classification and recognition accuracy to define the model with best 

performance as the final model. 

● We compare the accuracy results of the proposed models with other HGR systems 

found in the literature that worked with the same dataset. This is key since the dataset 

distribution should be the same to make an unbiased comparison of the models. 
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2. METHODOLOGY 

 

In this section, we propose a base architecture to tackle the HGR problem based on EMG 

recorded signals, which is illustrated in Figure 1. As can be observed, such architecture is 

conformed by data acquisition, pre-processing, feature extraction, classification, and post-

processing. Based on such architecture, we proposed two different user-general models: a 

CNN-based model and a CNN-LSTM-based model. The main difference between them relies 

on the classification stage since the first model uses an Artificial feed-forward neural network 

(ANN), whilst the other adds an LSTM layer before the ANN. Aditionally, the feature extraction 

for both models is based on the same CNN, and the pre-processing is based on spectrograms. 

We explain each stage in detail in the following sections. 

 

 

Figure 1:  Hand gesture recognition proposed base architecture.  

 

2.1. Data acquisition 

 

In this work, we used the EMG-EPN-612 dataset [31]. This dataset consists of measurements 

of the EMG signals (EMGs) of 612 users. The measurements were performed by using the 

commercial Myo Armband bracelet sensor. The dataset is divided into 306 users for training 

and validation, as well as 306 for testing. For each user, 25 repetitions of each hand gesture 

were recorded. The dataset is composed by the following gestures: fist, wave in, wave out, 

open, pinch, and there are also measures for the no gesture or relax gesture. For each EMG 

sample, the ground truth is composed of information about when the gesture started and 

ended, as well as information about the class of each gesture. On the other hand, the ground 

truth of the test data is not accessible to the public since the authors encourage the use of 

their online testing platform to prevent the accuracy results from being manipulated [15]. The 

EMGs were recorded through 8 dry sensors, at a sample rate of 200Hz with 8 bits of resolution 

for each sensor. The sensor was placed on the forearm of the individual at the time of taking 

the samples. Each of the samples has a duration of 5 seconds. An illustration of the Myo 

armband sensor and the five hand gestures is presented in Figure 2. 
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Figure 2: Myo Armband bracelet sensor and hand gestures illustration. a) Myo Armband 

bracelet sensor and sEMG measuring sample, b) the five gestures to be recognized. 

 

2.2. Pre-processing 

 

The Myo Armband sensor returns a normalized and discrete vector 𝑬𝑬(𝑛𝑛,𝜔𝜔) = (𝐸𝐸1(𝑛𝑛,𝜔𝜔), … ,𝐸𝐸8(𝑛𝑛,𝜔𝜔))𝑇𝑇 ∈ [−1,1]8 for a given discrete instant of time 𝑛𝑛 ∈  𝑍𝑍+ and an EMG sample number 𝜔𝜔 ∈  𝑍𝑍+. Each component 𝐸𝐸𝑖𝑖(𝑛𝑛,𝜔𝜔) ∈  𝑬𝑬(𝑛𝑛,𝜔𝜔) contains the measurement obtained by the 

channel 𝑖𝑖 of the Myo Armband sensor. To simplify the notation a fixed EMG sample 𝜔𝜔 is 

assumed, so we can write 𝑬𝑬(𝑛𝑛) = (𝐸𝐸1(𝑛𝑛), … , 𝐸𝐸8(𝑛𝑛))𝑇𝑇 where each component 𝐸𝐸𝑖𝑖(𝑛𝑛) is equal 

to the sum of the discretized and normalized values of the muscle signal 𝑆𝑆𝑖𝑖(𝑛𝑛)  and the noise 𝑁𝑁𝑖𝑖(𝑛𝑛) respectively for 𝑖𝑖 = 1,2, . . .  ,8 [32]. 

In this work, we realized the segmentation procedure –splitting an EMG into multiple windows– 

by using a sliding window 𝑊𝑊 over the EMGs. We selected experimentally a window width of 

|𝑊𝑊| = 300 sample points as a design criterion, since it allows us to obtain high performance 

results. For an instant 𝑛𝑛 the signal obtained from the window 𝑊𝑊 is represented as follows: 𝑺𝑺𝑛𝑛 = �𝑬𝑬(𝑛𝑛 − 299), … ,𝑬𝑬(𝑛𝑛)�  ∈ [−1,1]8×300 since we have 8 channels and 300 points for each 

window 𝑊𝑊. For the distance between each window observation (stride), we use two different 

values –stride of 15 and 30– to compare the accuracy results. An illustration that represents 

the segmentation procedure is shown in Figure 3.a. 
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Figure 3: Pre-processing stage. a) Raw EMG signal information 𝑺𝑺𝑛𝑛 of a single channel, and 

window 𝑊𝑊 with stride representation. b) Rectification and filtering process, c) Internal sliding 

window and overlap specification. d) Short Time Fourier transform (STFT). e) Spectrogram 

calculation. f) Spectrogram calculation for the 8 channels of the Myo armband sensor. g) 

Spectrogram concatenation to create the tensor that is the input of the feature extraction 

stage. 

 

Once we performed the segmentation process, we rectify the 𝑺𝑺𝑛𝑛 signal by applying the 

absolute value 𝑎𝑎𝑎𝑎𝑎𝑎[𝑺𝑺𝑛𝑛]. By using rectification, we avoid that the mean in each channel of 𝑺𝑺𝑛𝑛 

becomes zero [32]. Then, a digital low-pass Butterworth filter Ψ is applied to the signal 𝑎𝑎𝑎𝑎𝑎𝑎[𝑺𝑺𝑛𝑛] 

to soften the signal and reduce noise. The filter Ψ has an order of 5 and a cutoff frequency of 

10Hz selected as a design criterion. By applying the filter, we obtain the signal Ψ[𝑎𝑎𝑎𝑎𝑎𝑎�𝑺𝑺𝑛𝑛�] 
denoted as 𝑺𝑺Ψ. An illustration that represents the rectification and filtering procedure is shown 

in Figure 3.b. 

 

Once obtained 𝑺𝑺Ψ, we use an internal sliding window Φ𝑎𝑎𝑠𝑠 inside the window 𝑊𝑊 with width 

|Φ𝑎𝑎𝑠𝑠| =  24 sample points and an overlapping |Φ𝑠𝑠𝑤𝑤| = 12 sample points as shown in Figure 

3.c. Then, we use the Short-time Fourier transform (STFT) which consists in applying the 

Discrete Fourier Transform (DFT) by using the internal sliding window Φ𝑎𝑎𝑠𝑠 over the signal 𝑺𝑺Ψ 

as illustrated in Figure 3.d. The STFT creates a matrix expressed as 𝑿𝑿(𝑓𝑓) =
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[𝑋𝑋1(𝑓𝑓),𝑋𝑋2(𝑓𝑓), … ,𝑋𝑋|Φ𝑛𝑛𝑛𝑛|(𝑓𝑓)] where 𝑓𝑓 is the frequency analyzed (0 to 12 Hz) and |Φ𝑛𝑛𝑛𝑛| is the 

number of columns of 𝑿𝑿(𝑓𝑓). It is to be noticed that the expression 𝑿𝑿(𝑓𝑓) can also be 

represented as 𝑿𝑿(𝑓𝑓) = [(𝐴𝐴 + 𝐵𝐵𝑖𝑖)(𝑓𝑓)] which includes the real and imaginary part of the STFT. 

This procedure can be visualized in Figure 3.d. 

 

Then the spectrogram is calculated as Φ𝑀𝑀 = [�√𝐴𝐴2 + 𝐵𝐵2�(𝑓𝑓)]2 as can be visualized in Figure 

3.e. Since the EMG signal has 8 different channels, the spectrogram Φ𝑀𝑀 is calculated for each 

of them as illustrated in Figure 3.f. Finally, we concatenate the Φ𝑀𝑀 of each channel in order 

to create the tensor Λ = (Φ𝑀𝑀1,Φ𝑀𝑀2, … ,Φ𝑀𝑀8) which is the input of the feature extraction stage 

and is illustrated in Figure 3.g. 

 

2.3. Feature extraction 

 

Feature extraction methods are useful to extract relevant features from the EMGs, which can 

be defined in time, frequency, or time-frequency domains [32]. In this work, we extract time-

frequency domain features from the spectrograms with a CNN feature extraction method [33]. 

The proposed CNN approach consists of several blocks of parallel convolutions and max-

pooling inspired by the “Inception modules” used by GoogLeNet [34]. Thus, our proposed 

parallel convolution layer is presented in Figure 4. It can be observed that the internal blocks 

of the parallel layer allow the network to extract features with different convolution filters sizes 

(1x1,3x3, and 5x5), which allows extracting a large number of features that allow reaching 

high classification and recognition performances. 
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Figure 4:   The base structure of parallel convolution layer and max-pooling. 

 

We use several blocks of the base structure of parallel convolution layer combined with 

residual blocks to build the proposed feature extraction layer illustrated in Figure 5. The pro-

posed feature extraction method adds residual blocks, which make it possible to avoid the 

problem of vanishing/exploding gradients and also allow faster training [35]. In this layer, we 

used 6 parallel convolution layers and 2 residual blocks. The first residual block takes the 

output of block 1 and adds it to the output of block 3, the second residual block takes the input 

of block 4 and adds it to the output of block 5. We add in the parallel convolution layer 6 a relu 

layer for each internal block before the concatenation layer. It is to be noticed that the input of 

the feature extraction layer has dimension of [13,24, 8], corresponding respectively to the 

output Λ of the pre-processing stage. 
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Figure 5:   The structure of the feature extraction layer. 

 

2.4. Classification 

 

In this work, we propose two different approaches for the classification stage. The first 

approach is the CNN-based model that can be observed in Figure 6.a. This model takes the 

feature maps Λ� resulting from the feature extraction stage, and then such features are 

converted in a column vector to be the input of a fully connected layer of 6 neurons. The output 

of the fully connected layer is processed by the softmax activation function to calculate the 

probability of belonging to each of the classes. Finally, in the classification layer, we obtain the 

resulting class output with the highest probability if a threshold criterion 𝑇𝑇 = 50% is 

accomplished, otherwise, the no gesture is considered as the resulting class. 

 

The second model is the CNN-LSTM-based model, that can be observed in Figure 6.b. This 

model takes the spectrogram tensor Λ resulting from the pre-processing layer, and then such 

tensor becomes the input of a sequence folding layer. The sequence folding layer converts a 

batch of spectrogram tensor sequences to a batch of spectrogram tensors, which is useful to 
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perform convolution operations on time steps of the spectrogram tensor sequences 

independently [36]. The output of the feature extraction layer Λ� then becomes the input of the 

sequence unfolding layer, which restores the sequence structure of the feature map input data. 

Then, a flatten layer is used to transforms the spatial dimensions of the feature maps into the 

LSTM input dimensions (128 hidden units). An LSTM layer is then used to learn long-term 

dependencies between sequence data [37]. The output of the LSTM layer is sent to a fully 

connected layer with 6 neurons, then processed by softmax activation function and a 

classification layer to obtain the resulting class output with the highest probability. Finally, the 

threshold criterion 𝑇𝑇 = 50% is applied to define the resulting class. To facilitate the replication 

of the results of this work, it is important to mention that the architectures presented were 

implemented entirely in MATLAB. 

 

 

Figure 6: Proposed HGR models composed of the structures presented in Figure 4 and 

Figure 5. a) CNN-based model. b) CNN-LSTM-based model. 
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2.5. Post-processing 

 

The post-processing filters the output of the classification stage to improve the accuracy of the 

proposed HGR system. In this work, we calculate the class mode of the whole sequence that 

is different from the no gesture. Then, all the labels in such sequence that are different from 

the mode gesture are replaced with no gesture. Next, we analyze each label in the sequence, 

and if the previous label equals the next label, the middle label is replaced with that value. 

However, for replacement, only the next label and the previous label are considered for the 

start and the end of the sequence, respectively. 

 

 

3. RESULTS AND DISCUSSION 

 

In this section, we present the results of evaluating the HGR user-general proposed models 

on the validation set. For this, we test different stride configurations and evaluate the models 

with and without the post-processing stage. The fixed hyper-parameters for the proposed 

models are presented in Table 1. 

 

Table 1: Hyper-parameters for CNN-based and CNN-LSTM-based models. 

Hyper-parameter name Hyper-parameter configuration 

Epochs 10 

Learning rate 0.001 

Learning rate decay 0.2 

Learning rate drop period 8 

Mini-batch size 

1024 (lambdas) (CNN-based-model) 

 

64 sequences of (lambdas) (CNN-LSTM-

based-model) 

Sequence length 

(Only CNN-LSTM-based model) 

shortest  

(Truncate the sequences in each mini-batch 

to have the same length as the shortest 

sequence) 

LSTM layer output mode 

(Only CNN-LSTM-based model) 
sequence 
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3.1. Results 

 

In Figure 7, we present the classification and recognition results for the proposed user-general 

models evaluated in the validation set. In Figure 7.a, we can observe the results of the CNN-

based model, the stride changes from 15 to 30 and we add or remove the post-processing 

stage. It can be seen that the best results were obtained for stride of 30 with post-processing, 

with which values of 97.39% ± 2.96% for classification and 93.31% ± 6.19% for recognition 

were reached. The effect of using post-processing increases recognition results by up to 

59.67%. However, the classification results were the same with and without post-processing. 

In Figure 7.b, we can observe the results of the CNN-LSTM-based model while the stride 

change from 15 to 30 and we add or remove the post-processing stage. The obtained results 

were similar to the results of Figure 7.a, where we can observe that post-processing is key to 

reach high-performance recognition results. It can be seen that the best result was obtained 

for stride of 30 with post-processing, with which an accuracy of 97.75% ± 2.49% for 

classification and 96.33% ± 3.65% for recognition were reached. Finally, we compare the best 

accuracy results obtained from the CNN-based model and CNN-LSTM-based model in Figure 

7.c. It is to be seen that the CNN-LSTM-based model increased by 0.36% and 3.02% for 

classification and recognition accuracy, respectively. In addition, the standard deviation 

decreased by 0.47% and 2.54% for classification and recognition accuracy, respectively. 

 

Figure 7: Validation results for 306 users, a) CNN-based model results, b) CNN-LSTM-

based model results, c) Comparison between CNN-based and CNN-LSTM-based models. 
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In Figure 8, we present the classification and recognition results for the proposed user-general 

models evaluated in the testing set. In Figure 8.a, we can observe the results for the best-

obtained models from the validation experiments for both, the CNN-based model and the 

CNN-LSTM-based model. A stride of 30 and the post-processing stage were used during this 

experiment. It can be observed that an accuracy of 90.49% ± 9.70% for classification and 

86.83% ± 11.30% of recognition were obtained for the CNN-based model. On the other hand, 

an accuracy of 92.93% ± 8.23% for classification and 91.60% ± 8.81% for recognition were 

obtained for the CNN-LSTM-based model. It is to be noticed that the performance of the CNN-

LSTM-based model outperforms the results obtained with the CNN-based model. Regarding 

the processing time per window, a time of 25.48±16.80 ms and 34.41±39.32 ms were 

obtained, for the CNN-based and CNN-LSTM-based models, respectively. This means that 

both models can work in real time (i.e., ≤300 ms). 

 

 

Figure 8: Testing results for 306 users. 

 

In Figure 9, we present the comparison of the results of the CNN-based model and the CNN-

LSTM-based model for men and women evaluated with the testing set. There was no 

significant difference between both models for the average of the classification and recognition 

accuracies, but the standard deviation for women is less in both models. For the CNN-based 

model, the standard deviation for women was lower in 2.66% for classification and in 2.58% 

for recognition compared to men. For the CNN-LSTM-based model, the standard deviation for 

women was lower in 1.57% for classification and in 1.77% for recognition compared to men.  
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Figure 9: Testing results for 306 users. Comparison between the CNN-based model with the 

CNN-LSTM-based model for men and women. 

 

Finally, we present the confusion matrix with the classification accuracy results for the best 

obtained user-general CNN-based model in Table 2, and for the best CNN-LSTM user-general 

model in Table 3. It is worth to mention that we used an online public evaluator to test the 

proposed models [38]. The online evaluator can be accessed through the following link: 

https://aplicacionesia.epn.edu.ec/webapps/home/session.html?app=EMG\%20Gesture\%20

Recognition\%20Evaluator. 

 

Table 2: Confusion matrix of classification for CNN-LSTM-based model. 
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Table 3: Confusion matrix of classification for CNN-LSTM-based model. 

 

 

3.2. Discussion 

 

In addition to the results shown, we compare our CNN-LSTM-based model results for the user-

general model tested in the public dataset EPN-EMG-612 with other works in the literature as 

illustrated in Table 4. As can be seen, our model obtains the best recognition results compared 

to other works in the literature. 

 

Table 4: Recognition accuracy comparison with other works from the literature. 

Model Recog.  accuracy Num.  users 

SVM [16] 87.5% ± 4.13% 60 

Autoencoder [17] 85.08% ± 15.21% 60 

SVM - Orientation Correction [15] 80.3% 306 

Prop.  CNN-based model 86.83% ± 11.3% 306 

Prop.  CNN-LSTM-based model 91.6% ± 8.81% 306 

Recog=recognition, Num=number of, Prop=proposed 
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Although the CNN-LSTM-based model obtained higher classification and recognition results 

than CNN-based model for the dataset EPN-EMG-612, there was an increase in the average 

processing time per window of 8.93 ms for the CNN-LSTM-based model. Considering that the 

CNN-based model also obtained high classification and recognition performances, the use of 

one model or another could depend on the kind of application. Using the CNN-based model 

would mean a decrease in the accuracy of classification and recognition respect to the CNN-

LSTM-based model, it would have a shorter response time. On the other hand, using the CNN-

LSTM-based model would mean greater precision of classification and recognition at the cost 

of a longer response time. Additionally, future works can include testing more classification 

configurations, as well as testing this approach on more data-sets. 

 

 

4. CONCLUSIONS 

 

In this work, we proposed and compared two HGR systems that works with CNN-based and 

CNN-LSTM-based models to classify and recognize five hand gestures using EMGs from a 

public dataset (306 for training and 306 for testing). We created spectrograms from the EMGs 

that were processed by the CNN and CNN-LSTM models. The results were evaluated for user-

general HGR models (models trained with data from 306 users). The results obtained were 

encouraging, and they show that the CNN-based model and the CNN-LSTM-based model can 

classify and recognize successfully gestures based on EMGs. We demonstrated that the 

recognition accuracy of the CNN-LSTM-based model (91.60%±8.81%) is higher than the 

CNN-based model (86.83%±11.30%), which might be because the LSTM learns sequential 

information from the EMGs. It is important to highlight the importance of the post processing 

stage, which was able to increase the recognition results of the proposed models by up to 

59.67%. Additionally, we compared the proposed approach with other works that we found in 

the literature that worked with the same public dataset, and we demonstrated that the CNN-

LSTM-based model exceeds the recognition accuracy of the other models. Finally, after 

analyzing all the results we define the CNN-LSTM-based model using stride of 30 and post-

processing as our final model.  
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