ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA. MÉTODO DE LA BARRA DE MORTERO

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL MENCIÓN ESTRUCTURAS

EDWIN ALEJANDRO MORA AGUIRRE

edwin.mora@epn.edu.ec

LENIN MIGUEL POGO CHAFLA

lenin.pogo@epn.edu.ec

DIRECTOR: ING. EUGENIA DE LAS MERCEDES VILLACIS TRONCOSO, MSc.

mercedes.villacis@epn.edu.ec

Quito, 2021

DECLARACIÓN

Nosotros, Edwin Alejandro Mora Aguirre y Lenin Miguel Pogo Chafla, declaramos que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

EDWIN A. MORA AGUIRRE

LENIN M. POGO CHAFLA

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Edwin Alejandro Mora Aguirre y Lenin Miguel Pogo Chafla, bajo mi supervisión.

ING. MERCEDES VILLACIS, MSc.

DIRECTOR DEL PROYECTO

AGRADECIMIENTOS

A mis padres, Edwin y María, por su incansable lucha para que pueda alcanzar mis sueños, quienes con su apoyo y amor me han ayudado y motivado a alcanzar este logro.

A la facultad de Ingeniería Civil y Ambiental de la Escuela Politécnica Nacional por permitirme seguir esta maravillosa carrera, de la mano de excelentes profesionales quienes con su conocimiento y experiencias han ayudado en mi formación como profesional y como persona.

Al Laboratorio de Ensayo de Materiales, Mecánica de Suelos y Rocas (LEMSUR), en especial a nuestra directora de tesis MSc. Ing. Mercedes Villacis y al Ing. Gabriel Merino quienes prestaron su ayuda y conocimientos para que podamos llevar a cabo esta investigación.

A mis amigos Carol, Steven, Raúl, Carlos quienes fueron un gran soporte durante mi paso por la Universidad y fuente de gratos recuerdos.

A Andrea, por su total apoyo durante estos años, y la confianza que siempre depositó en mi para alcanzar mis objetivos.

A mi compañero de tesis Miguel por su esfuerzo y dedicación durante la elaboración de este proyecto.

Edwin Mora

AGRADECIMIENTOS

A Dios y a la virgen, por todas las bendiciones que han derramado sobre mí, por su protección y la voluntad que me dieron para lograr culminar esta meta.

A mis padres, Carmen y Miguel, a mis hermanos, en especial a Adrián y Steven y a mi sobrina Nicol por su apoyo incondicional, por su amor, por haberme permitido soñar cada vez más grande, por haberme retado a tener metas y sobre todo por las lecciones que me hicieron aprender para poder ser un mejor ser humano y a mi abuela Pastora, mis tíos Enrique y Angelita y mis primos Tania, Fercho, Alejo y Josy, que siempre me hicieron sentir parte de su familia.

A la Escuela Politécnica Nacional, y a la Facultad de Ingeniería Civil por haberme permitido estudiar en la mejor universidad del país, por haberme retado a esforzarme el doble, a ser disciplinado, a presionarme y brindarme educación de calidad y momentos que me permitieron crecer como persona y ser humano.

A mi directora de tesis, MSc. Ing. Mercedes Villacis y a los laboratorios del LEMSUR y CICAM, en especial a el Ing. Gabriel Merino, Ing. Pedro Reyes e Ing. Jairo Jimpikit por su ayuda, apoyo y guía a lo largo de este proyecto.

A mis amigos Caro, Raúl, Carlos, Carlita, Steven por su apoyo, amistad, ayuda, consejos, y sobre todo paciencia, no hubiese podido soportar la carrera sin ellos y a Edwin, mi amigo y compañero de tesis, gracias por las lecciones, la ayuda y la inteligencia prestada durante todo este proceso, desde principio a fin.

A Kathy, Liss, Monse y Vero, por su apoyo, amor, amistad y la fe que me tuvieron, por creer en mí, por las risas, los enojos y los mejores momentos de la U.

A la Familia Nath-Lynch por su apoyo y ayuda durante toda mi educación básica, secundaria y universitaria, por los consejos dados y las grandes metas.

Miguel Pogo

DEDICATORIA

A mis padres y mi hermana quienes a lo largo de mi vida han velado por mi éxito, siendo mi apoyo en todo momento, brindándome todo su amor, comprensión, sacrifico y valores.

A toda mi familia, que depositaron su confianza y me apoyaron para alcanzar esta meta.

Edwin Mora

Este logro se lo dedico a mi familia, a mis padres, hermanos y sobrinas, que fueron, son y serán siempre la razón de mi esfuerzo, mis ganas de luchar y seguir adelante, gracias por su amor.

Miguel Pogo

CONTENIDO

DECLARAC	ión II
CERTIFICA	CIÓN III
AGRADECI	MIENTOSIV
AGRADECI	MIENTOSV
DEDICATO	RIAVI
ÍNDICE DE	TABLASXII
ÍNDICE DE	FIGURAS XV
RESUMEN	
ABSTRACT	XIX
CAPÍTULO	1 1
INTRODUC	CIÓN 1
1.1. OB	JETIVOS2
1.1.1.	OBJETIVO GENERAL
1.1.2.	OBJETIVOS ESPECÍFICOS
1.2. HIF	PÓTESIS
1.3. AL	CANCE
1.4. JU	STIFICACIÓN4
1.4.1.	JUSTIFICACIÓN TEÓRICA 4
1.4.2.	JUSTIFICACIÓN METODOLÓGICA5
1.4.3.	JUSTIFICACIÓN PRÁCTICA7
CAPÍTULO	2 8
MARCO TE	ÓRICO 8
2.1. RE	ACCIÓN ÁLCALI-AGREGADO8

2.1	.1.	TIPOS DE REACCIÓN ÁLCALI-AGREGADO	9
2.1	.2.	ASPECTOS GENERALES DE LA RAS	11
2.1	.3.	GEL EXPANSIVO	15
2.1	.4.	MECANISMOS DE EXPANSIÓN	17
2.1	.5.	FACTORES QUE INFLUYEN EN LA REACCIÓN	20
2.1 EN	.6. I EL F	EFECTOS FÍSICOS Y MECÁNICOS DE LA REACCIÓN IORMIGÓN	22
2.2.	MÉ	TODOS PARA EVALUAR LA REACCIÓN ÁLCALI-SÍLICE	24
2.2	2.1.	EXAMEN PETROGRÁFICO	24
2.2	2.2.	MÉTODO QUÍMICO	26
2.2	2.3.	MÉTODOS EXPANSIVOS	27
2.3.	ÁRI	DOS REACTIVOS	29
2.3	3.1.	FORMA DE SÍLICE	29
2.3	8.2.	ORIGEN Y COMPONENTES DEL ÁRIDO	30
2.3	8.3.	ÁRIDOS DE REACCIÓN RÁPIDA	32
2.3	8.4.	ÁRIDOS DE REACCIÓN LENTA	33
2.3	8.5.	TAMAÑO DE AGREGADOS	33
2.4.	PUZ	ZOLANAS	34
2.4	l.1.	DEFINICIÓN GENERALIDADES Y ORIGEN	34
2.4	l.2.	TIPOS DE PUZOLANAS	34
2.4	I.3.	PROPIEDADES	36
2.4	4.4.	REACCIÓN DE LA PUZOLANA EN EL HORMIGÓN	38
2.4	l.5.	USO DE PUZOLANAS EN LA INGENIERÍA CIVIL	39
2.4	ŀ.6.	PUZOLANAS EN EL ECUADOR	39
2.4	ŀ.7.	CENIZAS DEL TUNGURAHUA	40

2.5. MÉ 41	TODOS PARA INHIBIR DE LA REACCIÓN ÁLCALI-SÍLICE	
2.5.1.	AGREGADO REACTIVO	42
2.5.2.	ÁLCALIS	42
2.5.3.	AGUA	43
CAPÍTULO	3	44
METODOLO	DGÍA	44
3.1. AG	REGADO	44
3.1.1.	UBICACIÓN DEL MATERIAL REACTIVO	44
3.1.2.	RECOLECCIÓN DE MUESTRAS	45
3.1.3. OLIÍMIC	REACTIVIDAD POTENCIAL ÁLCALI-SÍLICE, MÉTODO	47
3.1.4.	ENSAYO PETROGRÁFICO EN MUESTRAS	49
3.1.5.	PROPIEDADES FÍSICAS Y MECÁNICAS DE LOS	
AGREG	GADOS	50
3.2. CE	MENTO	57
3.2.1.	TIPO DE CEMENTO USADO	57
3.2.2.	PROPIEDADES FÍSICAS	57
3.3. PU	ZOLANA	63
3.3.1.	ORIGEN	63
3.3.2.	ENSAYOS DE DIFRACCIÓN POR RAYOS X	64
3.3.3.	ENSAYOS FÍSICOS DE LA CENIZA	64
3.3.4.	PREPARACIÓN DE PUZOLANA	66
CAPÍTULO	4	67
ENSAYOS I	DE LABORATORIO	67

4.1.	DEF	FINICIÓN GENERAL DEL ENSAYO	. 67
4.2.	DET	FERMINACIÓN DE CANTIDADES Y VOLÚMENES DE LOS	
MAT	FERIAL	ES A USAR	. 67
4.	2.1.	AGREGADOS	. 67
4.	2.2.	MATERIAL CEMENTANTE	. 70
4.	2.3.	AGUA	. 71
4.3.	REA	ACTIVOS E INSTRUMENTOS	. 71
4.	3.1.	REACTIVOS	. 71
4.	3.2.	INSTRUMENTOS Y MOLDES	. 73
4.4.	FAE	BRICACIÓN, CURADO E INMERSIÓN DE BARRAS DE	
MOI	RTERC	D	. 74
4.	4.1.	FABRICACIÓN	. 74
4.	4.2.	ENSAYO DE FLUJO	. 76
4.	4.3.	MOLDEO Y CURADO	. 77
4.	4.4.	DESMOLDE E INMERSIÓN	. 77
CAPÍT	ULO 5	j	. 82
CÁLC	ULOS	Y RESULTADOS	. 82
5.1.	ME	DICIONES	. 82
5.2.	CÁL	CULOS	. 83
5.	2.1.	CAMBIOS DE LONGITUD DE BARRAS DE MORTERO	. 83
5.	2.2.	ANÁLISIS ESTADÍSTICO CON PRUEBA T-STUDENT	. 83
5.3.	RES	SULTADOS	. 86
5.	3.1.	BARRAS SIN REMPLAZO DE CENIZA	. 87
5.	3.2.	BARRAS CON 5% DE REMPLAZO DE CENIZA	. 89
5.	3.3.	BARRAS CON 10% DE REMPLAZO DE CENIZA	. 91

	5.3.4.	BARRAS CON 15% DE REMPLAZO DE CENIZA	93
	5.3.5.	BARRAS CON 20% DE REMPLAZO DE CENIZA	95
	5.3.6.	BARRAS CON 25% DE REMPLAZO DE CENIZA	97
	5.3.7.	PROMEDIO DE EXPANSIÓN DE BARRAS	99
CAF	PÍTULO E	51	01
CON	NCLUSIC	ONES Y RECOMENDACIONES 1	01
6.	1. COI	NCLUSIONES 1	01
6.	2. RE0	COMENDACIONES 1	04
BIBI	lograf	FÍA 1	07
ANE	XO 2		22
ANE	XO 3		27
ANE	XO 4	1	31

ÍNDICE DE TABLAS

Tabla 1.1 Composición química de la ceniza volcánica proveniente del	
volcán Tungurahua	6
Tabla 2.1 Composición química de geles álcali-sílice (% peso)	16
Tabla 2.2 Minerales de sílice de acuerdo con la distribución de sus	
partículas	30
Tabla 2.3 Tipos de rocas ígneas y componentes reactivos	31
Tabla 2.4 Propiedades físicas de ceniza puzolánica del volcán	
Tungurahua	37
Tabla 3.1 Ubicación de las fuentes donde se recolectó las muestras	45
Tabla 3.2 Resultados de método químico ASTM C-289	47
Tabla 3.3 Componentes y tipo de roca de la muestra 3	49
Tabla 3.4 Normas usadas para ensayos de los agregados	50
Tabla 3.5 Granulometría del agregado	51
Tabla 3.6 Datos primarios peso específico y absorción de agregados	52
Tabla 3.7 Peso específico y absorción de agregados	53
Tabla 3.8 Densidad aparente suelta del agregado	54
Tabla 3.9 Densidad aparente compactada del agregado	55
Tabla 3.10 Contenido de humedad del agregado	56
Tabla 3.11 Resistencia a la abrasión del agregado	56
Tabla 3.12 Normas usadas para ensayos del cemento	57
Tabla 3.13 Densidad real del cemento	58
Tabla 3.14 Densidad aparente suelta del cemento.	59
Tabla 3.15 Densidad aparente compacta del cemento	59
Tabla 3.16 Consistencia normal del cemento	60
Tabla 3.17 Tiempos de fraguado del cemento	61
Tabla 3.18 Endurecimiento prematuro del cemento	63
Tabla 3.19 Resultado de análisis de difracción por rayos X	64
Tabla 3.20 Densidad real de la ceniza	64

Tabla 3.21 Densidad aparente suelta de la ceniza	65
Tabla 3.22 Densidad aparente compactada de la ceniza	65
Tabla 4.1 Granulometría agregado	68
Tabla 4.2 Cantidad de agregado para 3 barras	69
Tabla 4.3 Cantidad de agregado para 4 barras	69
Tabla 4.4 Cantidad de materiales cementantes a usar para 3 barras de	
mortero	70
Tabla 4.5 Cantidad de materiales cementantes a usar para 4 barras de	
mortero	70
Tabla 4.6 Cantidad de agua necesaria para las barras de mortero	71
Tabla 4.7 Cantidades de reactivos usados	72
Tabla 4.8 Proceso y tiempo de mezclado de mortero	75
Tabla 5.1 Porcentaje de expansión barras sin ceniza	87
Tabla 5.2 Cálculo de la desviación estándar, en los resultados sin ceniza	88
Tabla 5.3 Prueba T resultados sin ceniza	88
Tabla 5.4 Porcentaje de expansión con 5% de ceniza	89
Tabla 5.5 Cálculo de la desviación estándar, en los resultados con 5% de	
ceniza	90
Tabla 5.6 Prueba T resultados con 5% de ceniza	90
Tabla 5.7 Porcentaje de expansión con 10% de ceniza	91
Tabla 5.8 Cálculo de la desviación estándar, en los resultados con 10%	
de ceniza	92
Tabla 5.9 Prueba T resultados con 10% de ceniza	92
Tabla 5.10 Porcentaje de expansión con 15% de ceniza	93
Tabla 5.11 Cálculo de la desviación estándar, en los resultados con 15%	
de ceniza	94
Tabla 5.12 Prueba T resultados con 15% de ceniza	94
Tabla 5.13 Porcentaje de expansión con 20% de ceniza	95
Tabla 5.14 Cálculo de la desviación estándar, en los resultados con 20%	
de ceniza	96

Tabla 5.15 Prueba T resultados con 20% de ceniza	96
Tabla 5.16 Porcentaje de expansión con 25% de ceniza	97
Tabla 5.17 Cálculo de la desviación estándar, en los resultados con 25%	
de ceniza	98
Tabla 5.18 Prueba T resultados con 25% de ceniza	98
Tabla 5.19 Porcentaje de expansión promedio de barras	99
Tabla 6.1 Tabla de flujos para diferentes porcentajes de ceniza	103
Tabla 6.2 Tablas de expansión de las barras de mortero, día 14	104

ÍNDICE DE FIGURAS

Figura	2.1 Manifestaciones de reacción álcali-sílice. a) Cimentación b)	
Pila de	puente	10
Figura	2.2 Relación de la humedad relativa y expansión del hormigón	
usando	a norma ASTM 1293	11
Figura	2.3 Reacción álcali-sílice presente en cimentación de puentes,	
Califorr	nia, EE. UU	12
Figura	2.4 Impacto del pH sobre la disolución de la sílice amorfa	13
Figura	2.5 Esquema de los procesos químicos en la reacción álcali-sílice	14
Figura	2.6 Partícula de sílice reactiva atacada por iones alcalinos	16
Figura	2.7 Curva reacción expansión	18
Figura	2.8 Modelo idealizado de la formación de fisuras debido a geles	
expans	ivos	19
Figura	2.9 Absorción de agua por el álcali-sílice	21
Figura	2.10 Efecto de la expansión del hormigón sobre la resistencia a	
compre	esión, resistencia a la tracción y módulo de Young2	22
Figura	2.11 Fisuras en forma de mapas, frutos de la reacción álcali-sílice2	23
Figura	2.12 Exudación del gel álcali-sílice a través de las grietas	
mapea	das2	23
Figura	2.13 Conteo de puntos por cuadro en ensayo petrográfico2	25
Figura	2.14 Calificación de agregados reactivos e inocuos	26
Figura	2.15 Esquema de las medidas de los moldes2	28
Figura	2.16 Ataques de álcalis: caso (A) sílice cristalizada; caso (B) sílice	
amorfa		29
Figura	2.17 Efecto del tamaño de partícula en la expansión de la barra de	
mortero	D	33
Figura	2.18 Obras del Imperio Romano en las cuales se usaron	
puzolar	nas y cal	34
Figura	2.19 Puzolana natural de origen mineral pumítico	35

Figura	2.20 Micrografía (SEM) de puzolana artificial, ceniza volante	36
Figura	2.21 Distribución de volcanes en el Ecuador continental	40
Figura	2.22 Volcán Tungurahua, captado en emisión continua	41
Figura	2.23 Factores necesarios para que ocurra la reacción álcali-sílice	42
Figura	3.1 Ubicación en Google Earth de fuentes donde se recolectó la	
muestra	a	44
Figura	3.2 Rio Apuela, de origen de las muestras 1 y 2	45
Figura	3.3 Muestra 1 (izquierda), Muestra 2 (centro)	46
Figura	3.4 Mina de Quiroga, lugar de origen de la muestra 3	46
Figura	3.5 Cascada de La Piragua, lugar de origen de la muestra 4	46
Figura	3.6 Rio Alambi, Nanegal, lugar de origen de la muestra 5	47
Figura	3.7 Rio Blanco, Los Bancos, lugar de origen de las muestras 6 y 7	47
Figura	3.8 Resultados del análisis químico de las muestras	48
Figura	3.9 Curva granulométrica del agregado.	51
Figura	3.10 Proceso de tamizado del agregado	52
Figura	3.11 Ensayos de peso específico y absorción de agregados	53
Figura	3.12 Ensayo de densidad aparente del agregado	55
Figura	3.13 Ensayo de densidad real del cemento	58
Figura	3.14 Ensayo de consistencia normal del cemento	61
Figura	3.15 Ensayo de tiempo de fraguado. Curva penetración vs tiempo	62
Figura	3.16 Ensayo de tiempos de fraguado del cemento	62
Figura	3.17 Fuentes de extracción de ceniza volcánica Fuente	63
Figura	3.18 Proceso de trituración de puzolana volcánica para ensayo	66
Figura	4.1 Hidróxido de sodio (NaOH) usado	72
Figura	4.2 Moldes usados en el ensayo	73
Figura	4.3 Aparato Medidor de barras	74
Figura	4.4 Mezcladora electrónica facilitada por el LEMSUR que se usó	
para la	mezcla del mortero	75
Figura	4.5 Proceso de mezclado en la batidora electrónica	76
Figura	4.6 Ensayo de mesa de flujo	76

Figura	4.7 Moldeado y alisado de barras de mortero	77
Figura	4.8 Barras de mortero por desencofrar	78
Figura	4.9 Barras desmoldeadas	78
Figura	4.10 Barras sumergidas en agua en un horno a 80°C	79
Figura	4.11 Distribución de las barras	80
Figura	4.12 Inmersión de las barras en la solución de NaOH	80
Figura	4.13 Medición de la barra de control	81
Figura	4.14 Medición de barras	81
Figura	5.1 Expansión vs Tiempo Barras Con 10% de Ceniza	92
Figura	5.2 Expansión vs Tiempo Barras Con 15% de Ceniza	95
Figura	5.3 Expansión vs Tiempo Barras Con 20% de Ceniza	96
Figura	5.4 Expansión vs Tiempo Barras Con 25% de Ceniza	99
Figura	5.5 Expansiones Promedio vs Tiempo	100
Figura	5.6 Expansión promedio de barras, con distintos porcentajes de	
ceniza.		100
Figura	6.1 Resultados del análisis químico de la muestra obtenida en	
Quirog	a	101

RESUMEN

En esta investigación se abordó el tema del uso de puzolana natural proveniente del volcán Tungurahua, como un medio para Inhibir la reacción álcali-sílice en agregados que, por su composición mineralógica, se ven afectados por este tipo de problemas que provocan expansiones en el hormigón, llegando a presentar fisuras y en casos extremos planos de falla, afectando gravemente la vida útil de las estructuras.

El objetivo principal de la investigación fue obtener el porcentaje de remplazo en peso de cemento por ceniza del volcán Tungurahua, con el cual se logró controlar la reacción álcali-sílice, para esto se elaboraron barras de mortero con porcentajes de ceniza del 0%, 5%, 10%, 15% y 25% del peso de cemento, y siguiendo la metodología establecida en la norma ASTM C1567-2013 se determinó la potencial reactividad para cada porcentaje de ceniza en combinación con el agregado usado.

De acuerdo con el análisis realizado, se obtuvo que el porcentaje de ceniza con el cual se logró tener un comportamiento inocuo de la combinación agregado/material cementante, fue desde el 10%, controlando así la reacción álcali-sílice y evitando afectar de manera significativa la resistencia mecánica del hormigón por la inclusión de puzolana.

Palabras claves: Reacción álcali-sílice, puzolana natural, barras de mortero, comportamiento inocuo, reactividad potencial.

ABSTRACT

In this investigation the issue of the use of natural pozzolana from the Tungurahua volcano was addressed, to inhibit the alkali-silica reaction in aggregates that, due to their mineralogical composition, are affected by these types of problems that cause expansions in the concrete, leading to cracks and, in extreme cases, failure planes, seriously affecting life useful of the structures.

The main objective of the research was to obtain the percentage of replacement by weight of cement by ash from the Tungurahua volcano, with which it was possible to control the alkali-silica reaction, for this, mortar bars with ash percentages of 0%, 5%, 10%, 15% and 25% of the cement weight, and following the methodology established in the ASTM C1567-2013 standard, the potential reactivity was determined for each percentage of ash in combination with the aggregate used.

According to the analysis carried out, it was obtained that the percentage of ash with which it was possible to have a harmless behavior of the aggregate / cementing material combination was from 10%, thus controlling the alkali-silica reaction and avoiding significantly affecting the mechanical resistance of concrete due to the inclusion of pozzolana.

Keywords: Alkali-silica reaction, natural pozzolana, mortar bars, harmless behavior, potential reactivity.

CAPÍTULO 1

INTRODUCCIÓN

Este proyecto busca desarrollar una dosificación óptima mediante el empleo de puzolana natural del Volcán Tungurahua para inhibir la reacción álcali-sílice que se presenta en el hormigón con agregados reactivos, mediante una variación de los porcentajes de puzolana sobre el peso del cemento. Se determina la potencial reactividad álcali-sílice con el "Método Acelerado de la Barra de Mortero" expuesto en la norma ASTM C1260-2014 y la inhibición de la reacción álcali-sílice guiados en la norma ASTM C1567-2013 (Hermosillo et al., 2008).

Dentro del diseño de estructuras de hormigón armado, una de las propiedades fundamentales es su durabilidad, la cual puede llegar a ser afectada tanto por agentes externos como internos, como consecuencia se presentan fisuras en el plano transversal del elemento. La fisuración del hormigón debido a reacciones químicas (agentes internos), se debe a las interacciones entre los materiales que lo conforman, una de las reacciones más comunes que se genera entre sus componentes es la reactividad álcali-agregado, la cual se produce entre los álcalis procedentes del cemento y el uso de áridos que presenten componentes reactivos (Barreto et al., 2009). Según Fournier & Bérubé. Estas reacciones pueden ser de tres tipos dependiendo de la mineralogía del agregado reactivo: reacción álcali-silicato, álcali-carbonato y álcali-sílice, siendo este último tipo de reacción el que se presenta con mayor frecuencia.

La reacción álcali-sílice es determinada por los elementos que conforman los agregados, ya que su composición y granulometría pueden ayudar a la generación de esta. Agregados que posean un alto contenido de minerales silíceos, podrían reaccionar con los álcalis generando la reacción álcali-sílice. Los áridos que comúnmente presentan estos elementos son los granitos, granodioritas, andesitas, basaltos, ópalos, etc., estos tipos de rocas se encuentran de manera habitual a lo largo del territorio ecuatoriano. La reacción dependerá del tipo de minerales en el

árido, su historia tectónica, así mismo del tamaño de los agregados, su porosidad y permeabilidad.(Segarra Foradada, 2005).

Se ha visto necesaria la investigación de métodos que inhiban la reacción álcali-sílice, uno de los más investigados es la introducción de puzolanas naturales (origen volcánico) o artificiales (cascarilla de arroz calcinada), las puzolanas tienen sílice reactiva, la cual, dividida finamente, reacciona de forma rápida con los álcalis de la solución de poros, disminuyendo el efecto destructivo del gel álcali-sílice dentro de la matriz cementante, la efectividad de este proceso está en función de las características microestructurales de la puzolana (Hermosillo et al., 2008).

Según Delgado & Negrete, 2012 la puzolana posee nulo o poco valor cementante, pero finamente dividida y en presencia de humedad reaccionan químicamente con el hidróxido de calcio (Ca (OH)₂), fruto de la reacción entre el cemento y el agua, como consecuencia forman compuestos cementantes. Se ha comprobado que el uso de puzolanas reduce la expansión en sistemas reactivos.

Por lo tanto, es primordial que se desarrolle en mayor medida las investigaciones enfocadas en la inhibición de este tipo de reacción álcali-sílice ya que compromete las propiedades físicas y mecánicas del hormigón afectando significativamente su resistencia, durabilidad y vida útil (Hermosillo et al., 2008).

1.1. OBJETIVOS

1.1.1. OBJETIVO GENERAL

Determinar el porcentaje óptimo en peso de cemento de puzolana natural proveniente del volcán Tungurahua con el cual se inhibe la reacción álcali-sílice, utilizando el método de la barra de mortero.

1.1.2. OBJETIVOS ESPECÍFICOS

- Ejecutar los ensayos establecidos en la norma ASTM C289-2007, ASTM C1260-2014 y ASTM C295-2019 para verificar la reactividad potencial álcalisílice de los agregados.
- Analizar la mineralogía de los agregados a utilizar dentro de la investigación para determinar las propiedades físicas y químicas del material.
- Evaluar los niveles de fisuración y deformaciones lineales en las barras de mortero con el método ASTM C1567-2013.
- Comparar la inhibición de las deformaciones lineales de las barras con distintas cantidades de puzolanas que serán 5%, 10%, 15%, 20% y 25% con relación al peso del cemento.

1.2. HIPÓTESIS

Los niveles de expansión lineal debidos a la reacción álcali-sílice obtenidos por el método acelerado de la barra de mortero, se ven disminuidos para porcentajes de puzolanas naturales entre el 5%-25% en peso del cemento usado para la dosificación del hormigón.

1.3. ALCANCE

El proyecto se lo lleva a cabo en los laboratorios de la Escuela Politécnica Nacional, siendo estos: el Centro de Investigación y Control Ambiental (CICAM), Laboratorio de Ensayo de Materiales, Suelos y Rocas (LEMSUR) y el Departamento de Geología.

Para la etapa de ensayos se realizará con el método de la barra de mortero acelerado descrito en la norma ASTM C1567-2013 sumergido en una solución de

hidróxido de sodio Na(OH), en un horno a 80°C de temperatura durante 14 días, midiendo deformaciones unidireccionales en el eje principal.

El estudio se enfoca en la inhibición de la reacción álcali-sílice usando puzolana natural del Volcán Tungurahua, buscando una posible dosificación óptima.

El estudio no hace mención estrictamente a la resistencia a compresión experimental f'c, se enfoca en disminuir significativamente la expansión lineal de las barras de mortero, por consiguiente, menguar la producción del gel sílice y la aparición de fisuras, manteniendo la durabilidad del hormigón.

Se examina la calidad de los agregados, su potencial álcali-sílice y composición mineralógica de igual manera las propiedades de la puzolana volcánica se determinan mediante ensayos de difracción de rayos X y fluorescencia para satisfacer las disposiciones establecidas en la norma ASTM C618-2019 para el uso de puzolanas en el hormigón.

1.4. JUSTIFICACIÓN

1.4.1. JUSTIFICACIÓN TEÓRICA

En esta investigación se tiene como finalidad encontrar una dosificación de puzolana para inhibir el proceso de la reacción álcali-sílice, esta se realizará haciendo uso de la puzolana proveniente del volcán Tungurahua, y agregados provenientes de rocas como la andesita, diorita y granodiorita, de esta forma se tendrá una investigación adaptada a las características químicas propias de los materiales que se encuentran en el país.

Según Hermosillo durante la hidratación del cemento portland se producen algunos minerales como: CSH (silicatos de calcio hidratados), además de

portlandita Ca(OH)₂, la cual corresponde entre un 20% y 30% de la masa del hormigón

Si a la mezcla de hormigón se le agregan puzolanas naturales, que están definidas en el ASTM C618-2019 como materiales sílicos o sílico-aluminosos, al ser finamente divididos reaccionan con la portlandita producida durante la hidratación, dando como resultado un material con propiedades cementantes (Valdez et al., 2004). Estas propiedades del material resultante serán las encargadas de ayudar, a reducir los efectos dañinos producidos por el gel expansivo de la reacción álcali-sílice.

1.4.2. JUSTIFICACIÓN METODOLÓGICA

En esta investigación nos centraremos en la inhibición de la reacción álcalisílice, la cual es un fenómeno químico que puede presentarse años después de su fundición (Melo Jimenez, 2014). Por lo general es un proceso que conlleva mucho tiempo en desarrollarse, pero en presencia de ciertas condiciones como por ejemplo alta humedad, esta reacción puede acelerarse provocando la fisuración del hormigón, exudación del gel álcali-sílice, la presencia de deformaciones excesivas, teniendo como consecuencia una disminución de la vida útil del hormigón.

En la actualidad se ha descubierto diferentes maneras de controlar, disminuir y hasta evitar estos efectos dañinos para el hormigón, en muchos casos el uso de minerales dentro de los agregados que inhiben esta reacción como: la puzolana natural (ceniza volcánica), la artificial (ceniza de la cáscara del arroz) y el uso de sales de litio (Cenzano et al., 2011).

Según estudios previos la ceniza del volcán Tungurahua presenta la siguiente composición:

Ceniza Volcánica		
Óxido	Valor Calculado %	
SiO ₂	56.69	
Al ₂ O ₃	18.12	
Fe ₂ O ₃	6.79	
MgO	3.26	
CaO	6.26	
Na ₂ O	4.38	
K ₂ O	1.96	
TiO ₂	0.93	
P ₂ O ₅	0.29	
Mn2O3	0.17	

Tabla 1.1 Composición química de la ceniza volcánica proveniente del volcánTungurahua

Fuente: Buitrón & Enríquez, 2018

Con lo cual se prevé que esta cumplirá con los requisitos de composición química establecidos en la norma ASTM C618-2019 para su uso en hormigón (SiO₂ + Al₂O₃ + Fe₂O₃ > 50%) (Haro, 2011).

Con la inhibición parcial de la reacción álcali-sílice con el uso de diferentes dosificaciones de ceniza volcánica proveniente del volcán Tungurahua, haciendo uso del método barra mortero descrito en la norma ASTM C1260-2014, se puede medir las expansiones lineales de las barras de mortero fabricadas con cemento Chimborazo HE, y se obtendrá finalmente la dosificación más efectiva para inhibir esta reacción. Con este fin se realizará una selección de agregados los cuales deben ser identificados como potencialmente reactivos siguiendo la norma ASTM C289-2007, este ensayo se lo efectuará sobre 7 muestras, paso siguiente se obtendrá la ceniza del volcán Tungurahua y se verificará que cumpla con la norma ASTM C618-2019 para poder ser usada en hormigón, se triturará el agregado y se elaborarán las barras de mortero con distintas dosificaciones de ceniza (0% 5% 10% 15% 20% 25%), finalmente se determinará la dosificación con la que se logró controlar la reacción álcali-sílice.

El número de probetas a realizarse se encuentra establecido en la norma ASTM C1260-2014 como un mínimo de 3 barras de mortero para cada combinación cemento-agregado, por lo que se realizarán 10 barras para cada dosificación de ceniza, dando un resultado total de 60 barras de mortero de tal manera que se pueda realizar un análisis estadístico, para verificar su confiabilidad.

1.4.3. JUSTIFICACIÓN PRÁCTICA

Las principales estructuras que se ven afectadas por la reacción álcali-sílice son presas, muelles, puentes, y carreteras aunque esto se puede presentar en todo tipo de estructuras que como material predominante sea el hormigón (Barreto et al., 2009).

Con los resultados de dosificación de puzolanas obtenidos de esta investigación, se podrá hacer uso de los agregados provenientes de rocas altamente reactivas como la diorita, granodiorita o andesita. Este tipo de agregados presentan excelentes propiedades mecánicas (resistencia a la compresión y abrasión) con lo que se obtendría un hormigón de buenas características y durable al reprimir la reacción álcali-sílice. De esta manera se evita comprometer una de las principales cualidades físico-mecánicas del hormigón como es la resistencia a compresión (Cenzano et al., 2011).

La reacción álcali-sílice en el hormigón tiene como resultado la producción de gel silicato de sodio, el cual al ser hidratado aumenta su volumen, provocando esfuerzos internos que conllevan a la fisuración, comprometiendo el desempeño del diseño establecido del hormigón, reduciendo su durabilidad y como consecuencia directa disminuyendo su vida útil, provocando que, en cierto tipos de construcciones, el hormigón no se desempeñe correctamente, siendo potencialmente peligroso en presas, puentes, muelles y pavimentos de carreteras (Barreto et al., 2009).

CAPÍTULO 2

MARCO TEÓRICO

2.1. REACCIÓN ÁLCALI-AGREGADO

Entre los años 1920-1930 en California, Estados Unidos, se tiene registro de la primera datación de la reacción álcali-agregado, en varias estructuras de hormigón como edificaciones, carreteras, pero sobre todo elementos ubicados en ambientes con alta humedad como puentes y presas, se evidenció el agrietamiento y micro expansiones hasta ese entonces inexplicables, debido a que estas estructuras tenían pocos años de su construcción y presentaron este tipo de patologías. Thomas Stanton observó deterioro en cilindros de hormigón de un año de edad, estos presentaban manchas blanquecinas posteriormente identificadas como carbonato de sodio (Na₂CO₃), las zonas donde se presentaban estas anomalías tendían a presentar fisuras observables a simple vista (Saoriano Lascano, 1998).

En el año 1940 se descubrió que el detrimento en la masa de hormigón fue ocasionado por la reacción entre los álcalis presentes en el cemento Portland y las rocas silíceas de los áridos utilizados, identificado posteriormente como la reacción álcali-sílice, como consecuencia se limitó como máximo un 0.6% por masa en el contenido de álcali en el cemento usado para ejecutar obras de gran importancia, de esta forma disminuyendo el riesgo de fisuramiento (Saoriano Lascano, 1998).

La reacción álcali-agregado es una reacción química que tiene lugar en el hormigón cuando los álcalis KOH y NaOH (hidróxido de potasio e hidróxido de sodio) presentes en el cemento reaccionan con agregados silíceos, carbonatos o silicatos potencialmente reactivos, dependiendo de igual manera de condiciones específicas: cantidad necesaria de componentes silíceos reactivos (agregados), concentración de álcalis presentes en la disolución de los poros (sustancia que se encuentra en los poros con alto contenido de álcalis, procedente de la hidratación

del cemento) y presencia de agua necesaria para que la reacción química se lleve a cabo (Lanza Fernández, 2012).

2.1.1. TIPOS DE REACCIÓN ÁLCALI-AGREGADO

Existen 3 tipos de reacciones del agregado con el álcali, esto depende de los minerales que conforman el agregado, teniendo las siguientes reacciones: Álcali-Silicato, Álcali-Sílice y Álcali-Carbonato, estas reacciones producen soluciones con propiedades higroscópicas, dichas soluciones en forma de gel tienden a ocupar los poros intersticios del hormigón que al absorber agua expande su volumen provocando grandes presiones internas, teniendo como consecuencia la generación de fisuras superficiales las cuales disminuyen la durabilidad del hormigón (Fournier & Bérubé, 2000).

2.1.1.1. Reacción Álcali-Silicato

La distinción entre la reacción álcali-silicato y álcali-sílice se basa en el nivel de cristalización de la sílice encontrada en el árido, como consecuencia la cinética de la reacción varía, dándose con mayor rapidez cuanto menor es este grado, es así que debido a la lenta velocidad con la que se da la reacción álcali-silicato, esta no representa un deterioro importante en el hormigón (Segarra Foradada, 2005).

2.1.1.2. Reacción Álcali-Carbonato

La reacción álcali-carbonato tiene lugar cuando, dentro de los materiales para formar el hormigón se presentan rocas carbonatadas como áridos, las cuales al reaccionar con los álcalis que se encuentran en los poros del hormigón producen expansiones y esfuerzos internos que resultan ser nocivas para el concreto. (Segarra Foradada, 2005)

Las reacciones álcali-carbonato pueden ser perjudiciales o no, según la composición de las rocas, debido a que rocas no dolomíticas no presentan

reacciones dañinas, las rocas dolomíticas o muy dolomíticas no presentan reacción perjudiciales salvo casos muy puntuales, mientras que las rocas dolomíticas impuras, que cuentan con un alto contenido de alcalinidad, producen reacciones expansivas en el hormigón (Saoriano Lascano, 1998).

2.1.1.3. Reacción Álcali-Sílice

"Se entiende por Reacción Álcali-Sílice (RAS) al conjunto de reacciones químicas que involucran iones alcalinos e hidroxilos presentes en la solución de poros del hormigón y ciertas formas de sílice presentes en las partículas de áridos, que dan origen a productos expansivos (formación de un gel higroscópico conocido generalmente como gel álcali-sílice) que producen la expansión y fisuración del hormigón con su consecuente debilidad e inestabilidad mecánica". (Martínez Estévez, 2014).

La reacción álcali-sílice se lleva a cabo entre los iones álcalis del cemento y áridos compuestos de minerales de sílices tales como el ópalo, calcedonita, tridimita, entre otros (revisar Tabla 2.2) (Velasco Torres, 2014).

Figura 2.1 Manifestaciones de reacción álcali-sílice. a) Cimentación b) Pila de puente.

Fuente: Pecchio et al., 2006.

El resultado de la reacción álcali-sílice es la producción de sustancias con propiedades higroscópicas (absorción de agua) en la y expansivas masas de hormigón, conocido popularmente como gel álcali-sílice (Zoilo et al., 2013).

2.1.2. ASPECTOS GENERALES DE LA REACCIÓN ÁLCALI-SÍLICE

Una de las principales características del hormigón es su durabilidad, la cual se define como la capacidad que tienen la estructura de hormigón de mantener sus propiedades, ya sea ante fenómenos físicos, químicos, mecánicos o biológicos (NTE INEN 1855-2:2015), los fenómenos expansivos internos en la masa de hormigón consiguen disminuir de manera crítica la durabilidad de las estructuras.

Para que se lleve a cabo la reacción álcali-sílice es indispensable la existencia simultánea de 3 factores que son: concentración suficiente de álcalis provenientes de cemento, árido reactivo y disponibilidad de humedad. La velocidad con la que se lleva a cabo la reacción dependerá de factores como la presión de confinamiento, temperatura y la exposición a material alcalino externo (Zoilo et al., 2013).

Figura 2.2 Relación de la humedad relativa y expansión del hormigón usando la norma ASTM 1293.

Figura 2.3 Reacción álcali-sílice presente en cimentación de puentes, California, EE. UU.

Fuente: Folliard et al., 2003

El fenómeno expansivo se da al momento que el gel álcali, ubicado en los microporos del hormigón, se hidrata, aumentando su volumen y ejerciendo fuertes presiones durante el proceso, las cuales, en casos extremos, pueden ser mayores que la resistencia a tracción para la cual fue diseñado el hormigón, llegando a producir planos de falla (Segarra Foradada, 2005).

2.1.2.1. Química de la reacción

La reacción álcali sílice corresponde a una reacción química de modo ácidobase, en el cual la sílice es el ácido reactante y los básicos corresponden a los hidróxidos de sodio (NaOH) y potasio (KOH), teniendo como medio para permitir la reacción el agua. Dentro de los productos de esta reacción química obtenemos: "silicato de calcio-potasio hidratado (CKSH), silicato de calcio-sodio hidratado (CNSH) y silicato de calcio hidratado (CSH)"(Martínez Estévez, 2014).

Según investigaciones (Segarra Foradada, 2005), en general las expansiones debidas a la reacción álcali-sílice se divide en dos procesos:

Proceso 1

La reacción se lleva a cabo cuando la solución alcalina presente en los poros del hormigón entra en contacto con los minerales de sílice presentes en los áridos reactivos reaccionan para formar un gel:

$$SiO_2 + 2NaOH + nH_2O \rightarrow Na_2SiO_3 \cdot (n+1)H_2O$$

$$(2.1)$$

La forma de la sílice reactiva influye en la rapidez de la reacción, entre más deformado se encuentre la sílice más rápida será la reacción, mientras si tiene una forma cristalina, se producirá una reacción lenta, en la Tabla 2.2 se tiene una clasificación según la ordenación del mineral de sílice.

El pH es otro elemento que tiene un efecto directo sobre la solubilidad de la forma amorfa de la sílice, por lo tanto, áridos con sílices poco cristalizadas se disolverán con mayor facilidad en soluciones con un pH de poros significativamente alto, en la Figura 2.4 se muestra el impacto que tiene el pH en la disolución de poros

Figura 2.4 Impacto del pH sobre la disolución de la sílice amorfa.

• Proceso 2

 $gel \, \acute{a}lcali - s\acute{l}lice + agua \rightarrow expansiones internas en el hormigón$ (2.2)

El gel al ser una sustancia higroscópica aumenta su volumen en presencia de agua, la solubilidad del gel en el agua permite su traslado entre las regiones de la pasta de hormigón, este gel tiende a formarse cerca de las fuentes de sílice, por ende, debe existir una cantidad suficiente de sílice reactiva y álcalis disponibles.

En la Figura 2.5 se esquematiza el proceso químico de la reacción.

Figura 2.5 Esquema de los procesos químicos en la reacción álcali-sílice.

Fuente: Martínez Estévez, 2014

Relación de procesos de reacción

 \rightarrow II. El pH de la solución controla la cinética de la disolución de sílice y la expansión.

 \rightarrow I. Los iones de silicato son atacados por los álcalis presentes en el agua.

→III. La composición química de la solución de poros determina la composición y proporción de precipitación/disolución de los silicatos hidratados.

III. \rightarrow I. La composición de la disolución presente en los poros es modificada por el consumo de álcalis, silicatos y cálcicos

IV. \rightarrow I. La composición de la solución de poros se ve alterada por el transporte iónico (Martínez Estévez, 2014).

2.1.3. GEL EXPANSIVO

En el proceso de hidratación del cemento, se produce geles silicato de calcio hidratado (C - S - H), hidróxidos alcalinos (NaOH; KOH) e hidróxido de calcio $(Ca(OH)_2)$, cuya concentración depende principalmente del cemento usado y de a relación agua-cemento en la masa de hormigón. Cuando se modifica el equilibrio químico entre los reactivos tanto el hidróxido de calcio como los hidróxidos alcalinos producen una concentración de iones K^+ , Ca^{2+} ; $Na^+ y OH^-$ hacia la solución presente en los poros del hormigón, al presentarse los iones hidroxilos OH, y en una solución con un alto pH, estos interactúan con la sílice reactiva causando su disolución (Velasco Torres, 2014).

Figura 2.6 Partícula de sílice reactiva atacada por iones alcalinos.

Fuente: Velasco Torres, 2014

En la Tabla 2.1 se detalla los posibles componentes del gel producto de la reacción álcali-sílice mediante análisis químicos hechos por diferentes autores, permitiendo establecer diferentes rangos en porcentaje de peso de los diferentes componentes.

Na2O	K2O	SiO2	CaO	MgO	Difference from 100%	Reference
12.9	-	53.9	2.9	0.6	29.8	Stanton (1942)
12.9	-	53.4	2.6	0.8	30.2	
14.9	5.2	61.7	0.6	-	17.6	ldom (1961)
13.4	5.1	65.5	0.5	0.2	15.3	
12.4	4.9	69.9	0.3	0.5	12.0	
17.9	8.2	73.7	1.1	0.1	0.0	
9.4	4.1	72.8	1.3	0.2	11.2	
14.6	6.2	61.9	-	0.1	17.2	
16.2	5.7	56.8	-	-	21.3	
8.2	4.1	56.1	17.4	0.2	14.0	
8.3	5.0	28.5	22.4	0.2	35.6	
1.2	0.4	51.4	29.9	10.0	17.1	Poole (1975)
7.4	0.7	53.0	22.1	10.0	16.7	
1.5	13.9	38.9	27.3	-	17.4	Gutteridge and Hobbs (1980)
0.4	4.7	51.1	21.5	-	22.3	Regourd (1983)
-	0.6	27.9	35.2	-	36.2	
1.0	6.9	61.5	9.2	-	21.3	Oberholster (1983)
1.0	6.2	53.8	8.2	-	30.7	

Tabla 2.1 Composición química de geles álcali-sílice (% peso).

1.8	5.5	49.9	12.8	-	29.9	
1.0	5.2	50.4	12.0	-	30.7	
1.4	9.0	62.9	12.5	-	13.8	
0.8	7.4	53.2	10.0	-	28.4	
1.2	4.1	66.5	6.5	-	21.7	Baronio (1983)
3.7	12.9	43.3	21.8	0.8	14.0*	Mulink and Stamuel (1986)
3.9	11.7	49.4	15.9	0.5	16.7+	

* Loss on ignation: Al2O3 2.8%, Fe2O3 0.7%

* Loss on ignation: Al2O3 1.8%, Fe2O3 0.5%

Fuente: Martínez Estévez, 2014

2.1.4. MECANISMOS DE EXPANSIÓN

Existen diversas teorías que describen la forma en la que se genera la expansión del mortero a causa de la reacción álcali-sílice, los más aceptados son:

2.1.4.1. Doble capa eléctrica

Según Martínez Estévez, 2014, en la reacción, la presencia de iones sílice (Si^-) con carga negativa e iones sodio (Na^+) encontradas en la disolución de los poros, provoca una dispersión coloidal, lo cual centra una fuerza de atracción entre los cationes y aniones, ocasionando una excedencia de cationes y un déficit de carga de aniones, lo que provoca una fuerza de repulsión entre las partículas de sílice, generando una fuerza electrostática que presiona las paredes de los micro poros, provocando la expansión del material.

2.1.4.2. Expansión del árido

Velasco Torres, 2014 afirma que la expansión se debe a que al momento de la reacción se rompen los enlaces siloxanos (formación Si–O–Si) con esto, el árido tiende a hincharse, generando un aumento significativo del volumen, deformando la pasta de manera elástica, posteriormente los áridos y la pasta llegan a fisurarse hasta al agotamiento de la sílice reactiva en el árido.

Figura 2.7 Curva reacción expansión.

Fuente: Velasco Torres, 2014

En la Figura 2.7 podemos identificar las siguientes etapas:

- Primera etapa: Expansión del árido y la pasta dentro del rango elástico
- Segunda etapa: Fisuración del árido y la pasta, aumentando la expansión debido a que el gel ya es libre de filtrase por las fisuras que existen entre los áridos y la pasta cementante, ayudando a la expansión y deterioro de la masa de hormigón.
- Tercera etapa: Agotamiento de los áridos y fisuración total de la pasta.

2.1.4.3. Presión osmótica

Esta teoría define que el gel álcali-sílice generado de la reacción al momento de absorber agua del medio (poros y humedad) ejercen grandes presiones internas debido al aumento de su volumen, produciendo expansiones de la masa de hormigón, los esfuerzos generados a su vez pueden llegar a ser mayores que la resistencia a tracción del hormigón generando fisuras y debilitamiento del elemento. Esta teoría es la más aceptada dentro del estudio de la reacción álcali-sílice (Segarra Foradada, 2005).

En la Figura 2.8 se aprecia el proceso de fisuración de elementos debido a las tensiones internas provocadas por el gel:

Figura 2.8 Modelo idealizado de la formación de fisuras debido a geles expansivos.

Fuente: Segarra Foradada, 2005

- **Nivel 1:** Aumento de volumen del gel, sin generar agrietamiento.
- Nivel 2: Las tensiones internas son suficientes para generar micro fisuras alrededor de los agregados.
- Nivel 3: Aumento de fuerzas internas, migración del gel hacia las micro fisuras.
- Nivel 4: Micro fisuras llegan a extenderse debido al aumento de volumen del gel que se encuentra entre ellas, generando grandes expansiones (Segarra Foradada, 2005).

2.1.5. FACTORES QUE INFLUYEN EN LA REACCIÓN

Según Zoilo et al., 2013 dentro de los estudios realizados por diversos investigadores se concluye que existen 3 factores que influyen para que la reacción álcali-sílice se lleve a cabo:

- Influencia por parte de los agregados (material reactivo).
- Composición del cemento (álcalis existentes).
- Condiciones ambientales (humedad).

2.1.5.1. Influencia de los agregados

Los agregados influyen directamente en la reacción álcali-sílice puesto que son la fuente de la sílice reactiva, como se explicó anteriormente para que se produzca la reacción, el medio debe tener una cantidad suficiente de sílice reactiva, siendo un limitante de la reacción, ya que una vez se haya consumido la sílice reactiva de los materiales, la reacción terminará, y no se producirá más gel (Velasco Torres, 2014), en el literal 2.3 se explica a detalle la influencia de los agregados dependiendo de su origen y la forma de la sílice.

2.1.5.2. Concentración de álcalis del cemento y áridos

El cemento con mayor uso en la construcción es el cemento Portland, el cual es la principal fuente de álcalis en la reacción. El contenido de álcalis como se explicó anteriormente es uno de los aspectos fundamentales para que exista la reacción álcali-sílice, por ende un gran contenido de alcalinos puede producir una mayor expansión, teniendo como limitante de la reacción a la cantidad de sílice reactiva proveniente del árido, también existen algunos áridos que pueden liberar una gran cantidad de alcalinos al hormigón tales como lo son las arcillas, feldespatos o micas, otra fuente de alcalinos externa al cemento es el agua, sobre

todo la utilización de agua de mar o agua con sales de deshielo (Poole & McLachlan, 1992).

2.1.5.3. Condiciones ambientales

• Humedad

La humedad juega un papel fundamental en la reacción álcali-sílice debido a que es el medio en el cual se desenvuelve esta reacción, se ha estimado que la humedad relativa para que se desenvuelva esta reacción esta entre el 65% y el 80% como se muestra en la Figura 2.9, el agua dentro de la masa de hormigón contribuye a la movilidad de los alcalinos y los iones hidroxilos (OH) actuando como un mecanismo de transporte, ya que estos se dirigen de la parte más húmeda a la parte más seca (Xu, & Hooton, 1994).

Figura 2.9 Absorción de agua por el álcali-sílice

2.1.6. EFECTOS FÍSICOS Y MECÁNICOS DE LA REACCIÓN EN EL HORMIGÓN.

Según Jones & Clark, 1998, uno de los efectos mecánicos que produce la reacción es que tanto el módulo de Young como la resistencia a la compresión se ven disminuidos. En la Figura 2.10 se evidencia el efecto que causa las expansiones a las principales propiedades del hormigón, observando que el módulo Young es el que más varía, disminuyendo casi el 60% de su valor inicial, mientras que la resistencia a la compresión (f'c) resulta disminuida en un 40% del valor inicial, por ende, se debe considerar realizar ensayos sobre esta variación, al menos en proyectos que se encontrasen en ambientes con una gran humedad.

Figura 2.10 Efecto de la expansión del hormigón sobre la resistencia a compresión, resistencia a la tracción y módulo de Young

Fuente: Jones & Clark, 1998

Dentro de los efectos físicos causados por la reacción álcali-sílice están la presencia de manchas blanquecinas, secreción de gel a través de las fisuras fruto de la expansión, las mismas que tienen forma mapeada, en casos donde el elemento sea de gran volumen se puede encontrar desplazamientos fácilmente observables. Aunque estas características son propias de la reacción álcali-sílice no son enteramente concluyentes ya que pueden ser producto de otro tipo de

patología que puede afectar al hormigón, en la Figura 2.11 se puede observar las fisuras mapeadas, propias de la reacción álcali-sílice y en la Figura 2.12 se contempla el proceso de exudación de gel álcali-sílice a través de las fisuras (Sarkar et al., 2004).

Figura 2.11 Fisuras en forma de mapas, frutos de la reacción álcali-sílice.

Fuente: Sarkar et al., 2004

Figura 2.12 Exudación del gel álcali-sílice a través de las grietas mapeadas.

Fuente: Sarkar et al., 2004

La fisuración puede llegar a tener una anchura de 0.1mm a 10mm, en casos complejos y si la expansión se prolonga durante un gran periodo de tiempo y en un ambiente húmedo pueden llegar hasta valores de 25mm-50mm, mientras que la profundidad se ve generalmente restringida a 50 mm aproximadamente (Segarra Foradada, 2005)

2.2. MÉTODOS PARA EVALUAR LA REACCIÓN ÁLCALI-SÍLICE

Actualmente se han fomentado diversos métodos para la evaluación potencial de reactividad álcali-sílice, todos estos ensayos están sometidos a normas nacionales "Instituto Ecuatoriano de Normalización, INEN" e internacionales "American Society for Testing and Materials, ASTM" sin embargo, aún no existe una metodología definida para evaluar la reacción, por ende, los métodos que se presentaran a continuación son complementarios entre sí y no deterministas.

2.2.1. EXAMEN PETROGRÁFICO

El estudio petrográfico sirve para definir las propiedades físicas y mineralógicas del árido que va a ser empleado en el proceso de elaboración del hormigón, determinando la calidad de material que va a ser utilizado, además de clasificar los componentes de estos materiales al ser un estudio cuantitativo permite saber las cantidades relativas de los materiales que componen el árido, además de la forma de las partículas, su superficie y el tamaño del grano. Si existen dentro de las muestras, materiales que no puedan ser identificados se deberá apoyar en otros tipos de exámenes como la microscopia infrarroja o el uso del microscopio electrónico de barrido (NTE INEN 870:2011).

El ensayo petrográfico puede ser considerado como un ensayo previo a los demás, se lo podría considerar como una prueba rápida, pero hay que tomar en cuenta que este ensayo no proporciona información sobre el potencial de expansión. Existen dos metodologías empleadas para la realización del ensayo

petrográfico, la que se basa en el método de "Conteo por partículas", y la que usa el "Conteo por puntos". (Velasco Torres, 2014).

La norma internacional ASTM C295-2019 utiliza el método de conteo de partículas mediante el uso de un microscopio óptico, se debe analizar el "número mínimo de 150 partículas por cada fracción", se realiza posteriormente una inspección visual identificando los tipos de rocas presentes y sus diferentes características (Velasco Torres, 2014).

En el método de conteo por puntos se toma un espécimen de árido, el cual es triturado y colocado en resina epoxi para la creación de las láminas delgadas, sobre las cuales se realizarán el conteo. Se debe efectuar el conteo de un mínimo de 1000 puntos para cada una de las fracciones en las cuales se dividió la muestra, obteniéndose los resultados como porcentajes de cada componente (Velasco Torres, 2014).

Figura 2.13 Conteo de puntos por cuadro en ensayo petrográfico.

Fuente: Lanza Fernández, 2012

2.2.2. MÉTODO QUÍMICO

El Instituto Ecuatoriano de Normalización mediante la norma NTE INEN 868:2011 describe el proceso para la "Determinación de la potencial reactividad álcali-sílice en agregados" usados para el hormigón, el cual se basa en la magnitud de la reacción de los agregados que pasan el tamiz de 300 μ m (N° 50) y son retenidas en el de 150 μ m (N° 100), las cuales son sumergidas durante 24 horas a 80°C en una solución 1N de NaOH en recipientes resistentes a la corrosión, posteriormente de ser filtrada la solución, se analiza el contenido de sílice disuelta y el pH de la solución, se trazan en el gráfico estándar de reducción de alcalinidad vs sílice disuelta (Figura 2.14) y si los valores están del lado derecho de la línea límite se consideran agregados potencialmente reactivos.

Figura 2.14 Calificación de agregados reactivos e inocuos.

Fuente: ASTM C289-2007

Este ensayo pretende emular una reacción álcali-sílice temprana pues reúne el entorno idóneo para que el proceso se desarrolle, teniendo los principales factores que influyen en la reacción (humedad, iones álcali, temperatura, y pH alto) por lo que está limitada únicamente por la sílice reactiva, una desventaja de esta prueba es que algunos minerales inocuos son identificados como potencialmente reactivos al interferir en la reacción, minerales como el calcio, minerales de arcilla, silicatos y agregados de cuarzo cristalizados, por ende esta prueba no es completamente definitoria para afirmar que un árido es reactivo, ni la magnitud de expansión que puede llegar a desarrollar, debe ser acompañado con más ensayos (NTE INEN 868:2011).

2.2.3. MÉTODOS EXPANSIVOS

Los métodos de medición de expansión son los más empleados para determinar la reactividad álcali-sílice debido a que se los realiza (dependiendo el tipo de ensayo) en periodos de tiempo prolongado, teniendo como referencia para su metodología normas nacionales que detallan minuciosamente el procedimiento a seguir de cada uno de estos métodos.

A continuación, se describirá los métodos expansivos más usados, las normas que los definen y los resultados a considerarse.

2.2.3.1. Método de la Barra de Mortero

Este método describe el ensayo para "determinar la reactividad alcalina potencial de ciertas combinaciones árido-cemento, con tendencia a desarrollar reacciones expansivas" producto de una interacción química entre la sílice reactiva presente en el agregado, y los iones hidroxilos propios de los álcalis presentes en el cemento (Na,⁺ K⁺) por medio de alteraciones en la longitud de los prismas de hormigón, en condiciones controladas de humedad y temperatura, el ensayo tiene una duración de 12 meses, pudiendo prolongarse más tiempo si se requiere (NTE INEN 867:2009).

Estos ensayos a su vez deben complementarse con los estudios petrográficos y químicos antes descritos para dar resultados y conclusiones más acertadas sobre el árido y su conducta ante la reacción, teniendo en consideración que el presente ensayo maneja sustancias corrosivas, este ensayo debe ser efectuado con el uso de equipo de seguridad y personal calificado (NTE INEN 867:2009).

La temperatura del lugar donde se lleve a cabo el moldeo de las muestras debe estar entre 20°C a 27.5°C, así mismo el agua, el cuarto húmedo (curado) no debe variar de 23°C ±2°C, el mismo debe de cumplir con la normativa ASTM C511-2019 teniendo como humedad relativa alrededor de 50% (NTE INEN 867:2009).

Figura 2.15 Esquema de las medidas de los moldes.

Fuente: ASTM C490-2017

2.2.3.2. Método Acelerado de la Barra de Mortero

Este método a diferencia del anterior podrá detectar la potencial reactividad álcali-sílice en las barras de mortero dentro de los 14 días de comenzado el ensayo, los especímenes serán expuestos a una solución de NaOH por ende, el contenido de álcalis del cemento no es un factor a tomar en consideración para la reacción, las expansiones de los especímenes dependerán en mayor medida, de la cantidad de sílice reactiva (reactivo limitante) de los áridos usados para el hormigón, si se detecta expansiones mayores a las esperadas, se deberá realizar pruebas complementarias para determinar si las expansiones son debidas a la reacción álcali-sílice o si existe otro factor que influya en este proceso (ASTM C1260-2014).

2.3. ÁRIDOS REACTIVOS

2.3.1. FORMA DE SÍLICE

Un factor importante al momento de determinar el potencial reactivo de una roca es la forma de su sílice reactiva, si esta es amorfa la velocidad de reacción es rápida, mientras que si tiene una forma más uniforme la velocidad de reacción es más lenta, en la Figura 2.16 se puede apreciar la manera en la que los hidróxidos alcalinos atacan la sílice reactiva, se puede observar además su diferente desempeño dependiendo de la forma de la sílice (Segarra Foradada, 2005).

Figura 2.16 Ataques de álcalis: caso (A) sílice cristalizada; caso (B) sílice amorfa.

Fuente: Segarra Foradada, 2005

En la Tabla 2.2 se clasifica según la forma ordenada de la sílice a algunos minerales potencialmente reactivos, dando a conocer que áridos que contengan ópalo son los que mayor presencia de sílice reactiva poseen.

Ordenamiento	Mineral
Menos ordenado	Ópalo
	Calcedonia
	Cristobalita
	Tridimita
	Cuarzo vitrificado
	Cuarzo de grano grueso
	Sílice volcánica cristalizada
Más ordenado	Cuarzo

Tabla 2.2 Minerales de sílice de acuerdo con la distribución de sus partículas.

Fuente: Segarra Foradada, 2005

2.3.2. ORIGEN Y COMPONENTES DEL ÁRIDO

Como se ha descrito previamente, para que exista la reacción álcali-sílice hace falta contar con áridos que sean potencialmente reactivos, los áridos son los que proveen de la cantidad suficiente de sílice reactiva (Lanza Fernández, 2012).

El dióxido de silicio (SiO₂) se presenta en la naturaleza en forma cristalizada, debido a la forma tetraédrica de la molécula, un átomo de sílice y cuatro de oxígeno, posee un carácter iónico considerable, por ende, a distintas temperaturas y presiones este material puede presentarse como: Cuarzo microcristalino, cuarzo criptocristalino, calcedonia, moganita y ópalo (Lanza Fernández, 2012).

Muchos de los áridos potencialmente reactivos tienen su origen en rocas ígneas, debido a que entre los minerales que usualmente las componen se encuentra el cuarzo, ópalo, entre otros, estas dependiendo de la velocidad de enfriamiento se clasifican en rocas volcánicas (rápido enfriamiento) o rocas plutónicas (lento enfriamiento), siendo estas últimas las más comunes, teniendo como ejemplo la diorita, granodiorita y tonalita (Lanza Fernández, 2012).

En la Tabla 2.3 se detalla los agregados que tienen componentes potencialmente reactivos:

Rocas	Posibles componentes reactivos
Andesita	Cristales desvitrificados, ópalo, calcedonia, tridimita, cristobalita o cuarzo microcristalino.
Basalto	Calcedonita: cristobalita, palagonita, vidrio volcánico básico. Vetas opalinas o calcedonicas o relleno en cavidades.
Charnockites	Cristales desvitrificados. Tridimita.
Cuarzodiorita	Cuarzo reactivo.
Dacita	Calcedonia, cristobalita, palagonita, vidrio volcánico básico, tridimita, calcedonia, ópalo y cuarzo microcristalino en vetas o rellenos.
Diorita	Ópalo o calcedonia en vetas o llenando cavidades. Matriz de cuarzo micro y criptocristalino.
Dolerita	Ópalo o calcedonia en vetas o llenando cavidades.
Gabro	Ópalo o calcedonia en vetas.
Granitos	Cuarzo deformado o microcristalino. Ópalo o calcedonia en vetas o Ilenando cavidades.
Granodiorita	Cristales desvitrificados. Tridimita.
Latita	Calcedonia, cristobalita, palagonita, vidrio volcánico básico, tridimita, calcedonita, y cuarzo microcristalino.
Microdiorita	Ópalo o calcedonia en vetas o llenando cavidades.
Microgranito	Cuarzo deformado. Ópalo o calcedonia en vetas o llenando cavidades
Microsienita	Ópalo o calcedonita rellenando huecos y vetas.
Obsidiana	Calcedonia, cristobalta, palagonita, vidrio volcánico básico.
Perlita	Calcedonia, cristobalta, palagonita, vidrio volcánico básico.
Piedra pómez	Cristales desvitrificados. Tridimita.
Pórfido	Vidrio (menos común cristobalta o tridimita) o cuarzo finamente microcristalino. Además, pueden contener calcedonia, ópalo y cuarzo microcristalino en vetas o rellenos.
Riolita	Cristales desvitrificados. Tridimita, cristobalita calcedonia, ópalo y cuarzo microcriptocristalino en vetas o rellenos.
Sienita	Ópalo o calcedonia rellenando huecos y vetas.
Toba volcánica	Calcedonia, cristobalita, palagonita, vidrio volcánico básico. Cuarzo microcristalino y criptocristalino.
Traquita	Vidrio, ópalo, calcedonia, tridimita, cristobalita o cuarzo microcristalino.
	· · · · · · · · · · · · · · · · · · ·

Tabla 2.3 Tipos de rocas ígneas y componentes reactivos.

Fuente: Lanza Fernández, 2012

Entre los principales tipos de rocas ígneas tenemos:

- Vidrio volcánico y basalto: el basalto contiene un alto contenido de sílice presente en forma de cristobalita, vidrio riolítico y cuarzo amorfo.
- Riolita: Contiene cuarzo criptocristalino.
- Granito: Áridos procedentes de esta roca pueden ser altamente reactivos dependiendo si contienen feldespatos potásicos, ya que contribuyen a generar gran cantidad del gel álcali-sílice.
- Granodiorita: Son rocas no reactivas exceptuando si entre sus componentes se presentan cuarzo micro o criptocristalino.
- Andesita: Rocas potencialmente reactivas que contiene ópalo, calcedonia o cuarzo microcristalino.
- Cuarzo-diorita: Es una roca altamente reactiva debido al cuarzo reactivo en su composición (>5%).
- Diorita: Rocas cuyos minerales son altamente reactivos ya que poseen ópalo, el cual es una de las formas más desordenadas de sílice, permitiendo que se lleve a cabo la reacción álcali-sílice (RILEM TC 191-ARP, 2003).

2.3.3. ÁRIDOS DE REACCIÓN RÁPIDA

Existen formas de sílice determinadas permiten la producción de reacción álcali-sílice de forma rápida, las cuales presentan en sus minerales sílice metaestable, amorfa, vidrio volcánico, ácido criptocristalino y con un tamaño de grano de características reactivas, micro formas de cuarzo, ópalo, etc., cuando los áridos poseen este tipo de minerales la reacción puede manifestarse desde los 5 años de edad del elemento (Velasco Torres, 2014).

2.3.4. ÁRIDOS DE REACCIÓN LENTA

Los agregados de reacción lenta son los que tardan de 10-15 años en presentar reacciones álcali-sílice, el tipo de reactivo por lo general es una forma más estable de sílice como por ejemplo el cuarzo, al ser un mineral común y abundante, puede aparecer en rocas ígneas y metamórficas, la sílice que lo conforma es potencialmente reactiva en presencia de alcalinos, en presencia de cuarzo microcristalino la reactividad puede aumentar (Velasco Torres, 2014).

2.3.5. TAMAÑO DE AGREGADOS

Diversas investigaciones han concluido que el tamaño del árido afecta directamente en la reacción álcali-sílice de especial manera en el tiempo de reacción, ya que si el tamaño de los agregados es menor a 180 µm (Tamiz N°80) en barras de mortero, estas no sufrirán expansiones considerables, debido a que la reacción tiende a suceder antes del endurecimiento del hormigón o la reacción se vea inhibida antes de generar esfuerzos expansivos considerables (Velasco Torres, 2014).

En la Figura 2.17 se puede observar el efecto del tamaño de partícula en la expansión de la barra de mortero (Velasco Torres, 2014).

Figura 2.17 Efecto del tamaño de partícula en la expansión de la barra de mortero

2.4. PUZOLANAS

2.4.1. DEFINICIÓN GENERALIDADES Y ORIGEN

Durante la historia humana se ha usado las cenizas volcánicas, junto con cal, para la realización de los primeros morteros encontrados en antiguas estructuras romanas tales como: panteones, acueductos, puentes, coliseos, entre muchas más, que han llegado hasta nuestros días, por ende, el uso de puzolanas como material cementante ha estado presente desde el inicio de la civilización humana (Salazar, 2018).

Las puzolanas se han considerado como materiales que carecen de propiedades cementantes e hidráulicas, pero al mezclarse con cal y agua a temperaturas ambientales estas tienden a desarrollar compuestos permanentemente insolubles con comportamiento de conglomerantes hidráulicos (Salazar, 2018).

Figura 2.18 Obras del Imperio Romano en las cuales se usaron puzolanas y cal.

Fuente: Avila & Cabrera, 2010

2.4.2. TIPOS DE PUZOLANAS

Según el origen de las puzolanas, estas se clasifican en:

2.4.2.1. Puzolanas Natural

Este tipo de puzolanas a su vez se subdividen en: el tipo orgánico y el tipo mineral. Las puzolanas naturales de tipo orgánico son aquellas que han sido formadas a partir de rocas sedimentarias con un abundante contenido de sílice hidratada debido a yacimientos esqueléticos, caparazones o plantas, encontradas en su mayoría en fuentes submarinas (Salazar, 2018).

En contraste, las puzolanas naturales de origen mineral son en su mayoría de procedencia volcánica, procedente de materiales piroclásticos, con un alto contenido de vidrio. Son capaces de sufrir acciones endógenas o exógenas siendo más favorables para la producción de hormigón las endógenas (zeolitización y cementación) (Salazar, 2018).

Figura 2.19 Puzolana natural de origen mineral pumítico.

Fuente: Salazar, 2018

2.4.2.2. Puzolanas Artificial

Son aquellas que han sido sometidas a un tratamiento térmico controlado para adquirir propiedades puzolánicas, dentro de este grupo podemos obtener dos tipos, los sometidos a procesos térmicos inducidos formado por materiales de origen silíceo de naturaleza arcillosa, y los obtenidos de procesos industriales que al ser tratados obtienen características puzolánicas (Salazar, 2018)

Entre los primeros podemos clasificar a las cenizas provenientes de residuos agrícolas como la quema de cascarilla de arroz, bagazo, caña de azúcar, entre otros, estos al ser incinerados adecuadamente, producen residuos de mineral con abundante sílice y alúmina. Mientras que en los de tipo industrial podemos encontrar los residuos de bauxitas, el polvo de chimenea de altos hornos, cenizas de lignitos, parrillas de cenizas de centrales termoeléctricas (Salazar, 2018).

Figura 2.20 Micrografía (SEM) de puzolana artificial, ceniza volante.

Fuente: Salazar, 2018

2.4.3. PROPIEDADES

Las propiedades de cualquier puzolana están definidas por su estructura interna y composición química, para el uso en obras civiles (morteros, cementos, hormigón) se escoge puzolanas con un contenido de SiO₂, Al₂O₃, Fe₂O₃ mayor al 70% además en cuanto a su estructura se prefiere que sea amorfa, en caso de puzolanas de origen agrícola, estas propiedades se determinan con el proceso térmico temperatura de combustión y tiempo (Avila & Cabrera, 2010).

En la Tabla 1.1 se define las características químicas de la puzolana a ser utilizada en este estudio, de los cuales los porcentajes de los principales óxidos son:

> $SiO_2 = 56.69 \%$ $Al_2O_3 = 18.12\%$ $Fe_2O_3 = 6.79\%$

Esta puzolana tiene materiales silíceos como dióxido de silíceo (SiO₂), óxido de aluminio (Al₂O₃), también contiene óxido férrico (Fe₂O₃), que sumados representan un 81.60%, además óxido de calcio (CaO) y óxido de potasio (K₂O) como óxidos secundarios, siendo un material óptimo para su uso en este proyecto.

En la Tabla 2.4 se detalla las características físicas de las puzolanas, teniendo en cuenta que estas en su mayoría depende del tratamiento térmico a la cual han sido sometidas, en caso de ser puzolanas naturales sus propiedades no varían de una manera considerable.

Ph	7
Punto de Fusión	800-900°C
Punto de Inflamabilidad	No Inflamable
Aspecto Físico	Sólido
Forma	Granulado o en Rocas
Colores	Rojizo-Rosado o Negro
Olor	Inodora
Solubilidad en Agua	Insoluble

Tabla 2.4 Propiedades físicas de ceniza puzolánica del volcán Tungurahua.

Fuente: Avila & Cabrera, 2010

2.4.4. REACCIÓN DE LA PUZOLANA EN EL HORMIGÓN

La reacción de las puzolanas hace referencia a la máxima cantidad de hidróxido de calcio (CaOH) con la que la puzolana se puede fusionar y el tiempo que toma dicha reacción, al ser la sílice y alúmina componentes ácidos de la puzolana, reaccionan con la cal presente en el cemento y los productos de dicha reacción resultan ser inestables, procediendo a transformarse en materiales diferentes que no afectan a la masa de hormigón (Avila & Cabrera, 2010).

Puzolana + Cal + Agua \rightarrow Silicatos y Aluminatos de calcio hidratados (2.3)

La reacción de la puzolana depende de cuatro limitantes: su composición mineralógica, de la reacción cal-puzolana, de su superficie específica (finura de la puzolana) y de la temperatura, los productos de esta reacción son generalmente Aluminatos Cálcicos Hidratados (CAH), Silicatos Cálcicos Hidratados (CSH) y Sílico-Aluminatos Cálcicos Hidratados (CSAH) que a su vez son los mismos productos que resultan de la hidratación del cemento Portland, dentro de los principales beneficios que tiene el uso de puzolanas en morteros de cemento tenemos que:

- Permiten una reacción lenta, como consecuencia alcanzará su resistencia máxima en un periodo más largo de tiempo, además de un proceso de liberación de calor lento.
- Los productos de esta reacción rellenan los vacíos capilares en la matriz cementante producto de la hidratación del cemento, permitiendo así la impermeabilidad del hormigón.
- La reacción de la puzolana consume el hidróxido de calcio de la solución en vez de producirlo, siendo de gran ayuda en medio de ambientes ácidos (Avila & Cabrera, 2010).

2.4.5. USO DE PUZOLANAS EN LA INGENIERÍA CIVIL

Dentro del uso que se da a la puzolana en el ámbito de la ingeniería, el principal rol que cumple es su adición en el cemento, o como reemplazo parcial de este, esta adición se debe a las diversas ventajas que se han estudiado en el uso de este hormigón como lo son:

- Mayor defensa frente a los sulfatos y cloruros (reacción álcali-sílice).
- Mayor resistencia frente al agua de mar.
- Reducción de calor de hidratación.
- Incremento de la resistencia a compresión.
- Aumento de la durabilidad del cemento
- Mejora de la impermeabilidad del hormigón (Avila & Cabrera, 2010).

2.4.6. PUZOLANAS EN EL ECUADOR

Las puzolanas en el Ecuador están mayormente conformadas por aquellas de origen volcánico, ya que en nuestro territorio atraviesa el cinturón de fuego del pacífico, por ende una actividad volcánica constante, en el país se han definido dos zonas volcánicas, la parte austral (volcanismo antiguo) en la que se encuentra parte del sur de la serranía Ecuatoriana, y el volcanismo moderno, la parte centro norte, desde La Unión en Baños (provincia de Cotopaxi), las puzolanas del Austro se encuentran sobre todo en las provincias de Azuay y Cañar, consecuencia de actividad volcánica que ha finalizado hace miles de años, se encuentran en la zona de Llacao, Solano y Déleg, en la cordillera occidental cerca de la población de Sidcay (Avila & Cabrera, 2010).

Figura 2.21 Distribución de volcanes en el Ecuador continental.

Fuente: Simoes, 2013

2.4.7. CENIZAS DEL TUNGURAHUA

Entre los volcanes más activos encontrados en el Ecuador están el Cotopaxi, Tungurahua, Cayambe, Guagua Pichincha y Antisana, como se puede apreciar en la Figura 2.21 Distribución de volcanes en el Ecuador continental. El volcán Tungurahua conocido también como la garganta de fuego, se ubica a una elevación de 5020 metros sobre el nivel del mar, a 33 km de la ciudad de Ambato, la actividad más fuerte de la que se tenga registro fue en Agosto del 2006, el volcán expulsó cerca de 50 millones de toneladas de material piroclásticos, alcanzando una columna de 8 km, cubriendo un radio de 280 km (Hidalgo, 2013).

Figura 2.22 Volcán Tungurahua, captado en emisión continua.

Fuente: Hidalgo, 2013

2.5. MÉTODOS PARA INHIBIR DE LA REACCIÓN ÁLCALI-SÍLICE

Con el fin de prevenir la reacción álcali-sílice es preciso recordar los 3 factores necesarios para que ocurra esta: Agregado reactivo (que contenga suficiente sílice reactiva), alcalinidad (la solución de poros debe tener suficiente contenido de álcalis), humedad (para que el gel absorba el agua y expanda). Teniendo esto en cuenta, si se restringe alguno de estos factores la reacción se verá limitada (Milanesi, 2018).

Teniendo así varios caminos para resolver el problema restringiendo los distintos factores:

Figura 2.23 Factores necesarios para que ocurra la reacción álcali-sílice

Fuente: Milanesi, 2018

2.5.1. AGREGADO REACTIVO

El factor más importante que debe ser controlado es el árido a usarse, este debe ser remplazado en su totalidad por uno con características inocuas, para este fin se deben realizar ensayos previos a su puesta en obra, tales como los descritos en este documento con anterioridad (ensayos expansivos, método químico, análisis petrográfico) (Milanesi, 2018).

2.5.2. ÁLCALIS

En casos en los que por factores técnico-económico sea necesario el uso de materiales potencialmente reactivos, la reacción álcali-sílice puede ser controlada haciendo uso de una o una combinación de las siguientes tácticas:

Utilizando cementos de poco o moderado contenido de álcalis: Si bien el contenido de álcalis en el hormigón puede venir de fuentes como: agua, aditivos y agregados, el cemento es la fuente primordial de contribución, es por esto que las especificaciones han limitado el contenido de álcalis del presente en el cemento a un 0.6% expresado como oxido de sodio equivalente (Na₂Oeq). Este es el método más común para debilitar los efectos nocivos de la reacción (Milanesi, 2018).

Incorporando adiciones de minerales activos: Estas pueden estar presentes en el cemento o pueden ser un elemento más durante la mezcla del hormigón, pueden ser de origen natural o artificial, los tipos de adiciones más comunes son: ceniza volante, escoria de alto horno. El efecto que producen es de reducir el pH de la solución de poros y la movilidad de los iones alcalinos (Milanesi, 2018).

Modificar las características expansivas del gel: Esto se puede conseguir mediante el empleo de aditivos químicos elaborados en base de litio, lo más común es una solución al 30% de Nitrato de Litio (LiNO₃) la función que cumple este es de inhibir la absorción de agua por parte del gel álcali-sílice, lo que a su vez evita que este se expanda (Milanesi, 2018).

2.5.3. AGUA

Limitar el acceso a la humedad es un factor importante, ya que si no es la suficiente el gel se encontrara imposibilitado de absorber el agua que requiere para expandirse, se ha visto que en ambientes con humedades relativas menores al 80% los efectos de la reacción se ven mitigados (Folliard et al., 2003), otro método usado es la aplicación de pinturas especiales que tienden a mantener la estructura "seca" pero estas son estrategias empleadas como atenuación de los efectos cuando la estructura ya ha sido afectada por la reacción álcali-sílice (Milanesi, 2018).

CAPÍTULO 3

METODOLOGÍA

3.1. AGREGADO.

3.1.1. UBICACIÓN DEL MATERIAL REACTIVO.

Durante la revisión bibliográfica de algunos estudios geológicos realizados en el Ecuador se determinó que en la zona norte del país existen fuentes de áridos potencialmente reactivos, sobre todo en la provincia de Imbabura, por lo cual se recolectaron 7 muestras distintas de rocas para ser sometidas a ensayos químicos para determinar si eran potencialmente reactivas, escogiendo la potencialmente más perjudicial para ser usada en esta investigación (Ordoñez Malla, 2013).

Según Segarra Foradada, 2005 y Lanza Fernández, 2012 las rocas con mayor potencial reactivo son las andesitas, granodioritas y basaltos, el territorio ecuatoriano al encontrarse atravesado por la Cordillera de los Andes presenta una gran cantidad de fuentes de este tipo de rocas ígneas, sobre todo en yacimientos volcánicos.

Figura 3.1 Ubicación en Google Earth de fuentes donde se recolectó la muestra.

Fuente: Mora & Pogo, 2021

3.1.2. RECOLECCIÓN DE MUESTRAS

En la siguiente tabla se especifica los lugares donde se recolectaron las muestras de las rocas para ser analizadas.

N° Muestra	Ubicación cercana	Coordenadas Geográficas
Muestra 1	Puente Apuela	0°21'13.9"N 78°30'57.7"W
Muestra 2	Puente Apuela	0°21'14.8"N 78°30'57.8"W
Muestra 3	Mina de Quiroga	0°17'08.3"N 78°17'43.6"W
Muestra 4	Cascada la Piragua	0°08'15.4"N 78°41'05.4"W
Muestra 5	Nanegal - Río Alambi	0°08'27.6"N 78°40'33.3"W
Muestra 6	Los Bancos - Río Blanco	0°00'24.1"N 78°54'11.9"W
Muestra 7	Los Bancos - Río Blanco	0°00'24.1"N 78°54'11.9"W

Tabla 3.1 Ubicación de las fuentes donde se recolectó las muestras.

Fuente: Mora & Pogo, 2021

Figura 3.2 Río Apuela, de origen de las muestras 1 y 2

Fuente: Mora & Pogo, 2021

Figura 3.3 Muestra 1 (izquierda), Muestra 2 (centro)

Fuente: Mora & Pogo, 2021

Figura 3.4 Mina de Quiroga, lugar de origen de la muestra 3

Fuente: Mora & Pogo, 2021

Figura 3.5 Cascada de La Piragua, lugar de origen de la muestra 4

Fuente: Mora & Pogo, 2021

Figura 3.6 Río Alambi, Nanegal, lugar de origen de la muestra 5

Fuente: Mora & Pogo, 2021

Figura 3.7 Río Blanco, Los Bancos, lugar de origen de las muestras 6 y 7

Fuente: Mora & Pogo, 2021

3.1.3. REACTIVIDAD POTENCIAL ÁLCALI-SÍLICE, MÉTODO QUÍMICO.

Se realizó ensayos de reactividad potencial álcali-sílice en áridos para hormigón, mediante el método químico descrito en la norma ASTM C289-2007 a las siete muestras recolectadas, los informes de los ensayos se encuentran en el ANEXO 1. Los ensayos tienen como resultado los valores de sílice disuelta (Sc) y la reducción de la alcalinidad en milimoles por litro (Rc), en la Tabla 3.2 se presentan los resultados de los ensayos:

N° Muestra	Sc	Rc
Muestra 1	10.7	150.0
Muestra 2	16.1	140.0
Muestra 3	190.5	133.3
Muestra 4	16.6	73.3

Tabla 3.2 Resultados de método químico ASTM C-289

Muestra 5	16.6	90.0
Muestra 6	23.5	36.5
Muestra 7	24.3	36.7

Fuente:	Mora	&	Pogo,	2021
---------	------	---	-------	------

Los resultados mostrados en la Tabla 3.2 han sido ubicados en la gráfica de calificación de agregados reactivos de la normativa ASTM C289-2007, para ser clasificados entre materiales reactivos e inocuos.

Figura 3.8 Resultados del análisis químico de las muestras

N° de Muestra	Color
Muestra 1	
Muestra 2	
Muestra 3	
Muestra 4	
Muestra 5	
Muestra 6	
Muestra 7	

Fuente: ASTM C289-2007

Como se observa en la Figura 3.8 la muestra 3 es clasificada como potencialmente reactiva.

3.1.4. ENSAYO PETROGRÁFICO EN MUESTRAS.

Como se describió en el literal 3.1.3 la muestra 3 es la más reactiva según los ensayos realizados, por esta razón se realizó estudios petrográficos de esta muestra, los resultados se encuentran en el ANEXO 2, en la Tabla 3.3 se describen los principales componentes y el tipo de roca obtenido del análisis petrográfico.

Compo	onentes:				
	Fenocristales:	20%			
13%	Plagioclasa (Plg)	Cristales de forma euhedral y subhedral, presentan relieve bajo, birrefringencia débil, colores de interferencia blanco gris de 1er orden, presentan maclas de tipo albita-carisbad, figura de interferencia biaxial.			
2%	Feldespato alcalino (Fds)	Crista dét	Cristales de forma euhedral y subhedral, presentan relieve bajo, birrefringencia débil, colores de interferencia blanco gris de 1er orden, macla de Carisbad, figura de interferencia biaxial (.). Posiblemente sanidina.		
1%	Clinopiroxeno (Cpx)	Cristales subhedrales, de relieve moderado, birrefringencia fuerte, colores de interferencia de 2do orden.			
4%	Opacos (Op)	Cristales subhedrales y anhedrales, de color negro rojizo, con comportamiento isotrópico.			
Matriz		80%	Formado en su mayor parte por vidrio volcánico y microcristalino (cristales de tamaño <0.1 mm) El vidrio volcánico se observa de coloración gris oscuro con polarización cruzada y sin coloración con polarización normal.		
Minerales de alteración:		1%			
1% Arcilla De coloración negro café. Se forma como producto de alteración de plagioc		oración negro café. Se forma como producto de alteración de plagioclasas.			

Tabla 3.3 Componentes y tipo de roca de la muestra 3.

OBSERVACIONES	La roca es de tipo ígnea volcánica (extrusiva), con texturas porfirítica, hipocristalina, intersertal. Formada por cristales de plagioclasas, feldespato alcalino, clinopiroxeno y minerales opacos. Presenta 1% de minerales de alteración: arcilla, formada por la alteración de muy pocos cristales de plagioclasa
NOMBRE DE LA ROCA	Andesita

Fuente: Mora & Pogo, 2021

3.1.5. PROPIEDADES FÍSICAS Y MECÁNICAS DE LOS AGREGADOS

El agregado seleccionado es propuesto para ser utilizado en obra como agregado grueso, por lo cual para su evaluación se realizaron los ensayos correspondientes para este tipo de agregado.

Los ensayos realizados para la caracterización se realizaron siguiendo las normas NTE INEN numeradas.

Ensayo	NTE INEN
Granulometría	NTE INEN 872:2011
Peso específico y absorción	NTE INEN 857:2010
Densidades aparentes	NTE INEN 858:2010
Contenido de humedad	NTE INEN 862:2011
Resistencia a la abrasión	NTE INEN 860:2011

Tabla 3.4 Normas usadas para ensayos de los agregados.

Fuente: Mora & Pogo, 2021

3.1.5.1. Análisis granulométrico

El ensayo se lo realizo siguiendo la norma NTE INEN 872:2011, y haciendo uso de una tamizadora mecánica, obteniendo los siguientes datos:

Tamiz	Peso Retenido	% Retenido	% Retenido Ac.	% Pasa
1 1/2"	0.00	0.00	0.00	100.00
1"	857.9	8.57	8.57	91.43
3/4"	2990.0	29.87	38.43	61.57
1/2"	2924.9	29.22	67.65	32.35
3/8"	1489.8	14.88	82.53	17.47
No. 4	1748.9	17.47	100.00	0
Bandeja	0	0		
	10011.5		•	•

Tabla 3.5 Granulometría del agregado.

Fuente: Mora & Pogo, 2021

El resultado obtenido del ensayo es la curva granulométrica del agregado, que se muestra en la Figura 3.9.

Figura 3.9 Curva granulométrica del agregado.

Fuente: Mora & Pogo, 2021

Figura 3.10 Proceso de tamizado del agregado.

Fuente: Mora & Pogo, 2021

3.1.5.2. Peso Específico y Absorción

Estos ensayos se realizaron siguiendo la norma NTE INEN 857:2010 de la cual se obtuvieron los siguientes datos primarios:

Tabla 3.6	Datos	primarios	peso	específico	y ab	osorción	de a	gregados.
		1	1	1	•			0 0

Pesos Sumergidos			
P. de la canasta	gr	Pc	1750.0
P. de la canasta + muestra	gr	Pc+m	4133.5

Pesos Secos			
P. del recipiente	gr	Pr	1097.1
P. del recipiente + muestra	gr	Pr+m	4940.3

P. de la muestra en SSS en aire	gr	В	4001.1
P. de la muestra sumergida en agua	gr	С	2383.5
P. de la muestra seca al horno	gr	А	3843.2

Fuente: Mora & Pogo, 2021

Los resultados obtenidos se tabulan en la Tabla 3.7.

Peso específico, (g/cm3) =
$$\frac{A}{B-C}$$
 (3.1)

Peso específico en Superficie Saturada Seca,
$$(g/cm3) = \frac{B}{B-C}$$
 (3.2)

Peso específico aparente, (g/cm3) =
$$\frac{A}{A-C}$$
 (3.3)

Absorción, (%) =
$$\frac{B-A}{A} * 100\%$$
 (3.4)

Tabla 3.7 Peso específico y absorción de agregados.

Peso especifico	gr/cm ³	Y	2.38
Peso específico SSS	gr/cm ³	γ sss	2.47
Peso específico aparente	gr/cm ³	ү ар.	2.63
Absorción de agua	%	Ab	4.11

Fuente: Mora & Pogo, 2021

Figura 3.11 Ensayos de peso específico y absorción de agregados.

Fuente: Mora & Pogo, 2021
3.1.5.3. Densidades Aparentes

Guiándose en la norma NTE INEN 858:2010 se realizaron los ensayos de densidad suelta y compacta del agregado.

$$\rho (kg/m3) = \frac{m}{Vr} * 1000$$
 (3.5)

$$N(\%) = \frac{(\gamma * W) - \rho}{(\gamma * W)} * 100\%$$
(3.6)

ρ: Densidad aparente del agregado (Kg/m³)

m: Masa del agregado (gr)

Vr:Volumen del molde, (cm³)

N:Contenido de vacíos (%)

γ: Peso específico del agregado

W:Densidad del agua, (998 kg /m3)

3.1.5.3.1. Densidad Suelta

	-			
Diámetro molde	cm	d	20.2	20.2
Altura molde	cm	h	29	29
	••••			
Peso molde	n	P1	4900	4900
r eso molde	9		-500	+500
Peso molde + muestra	n	P2	18300	18200
	9		10000	10200
Volumen molde	cm ³	Vr	9293 74	9293 74
		V I	0200.74	0200.74

Tabla 3.8 Densidad aparente suelta del agregado.

Volumen molde	I	Vr	9.29	9.29
Densidad	g/cm ³	ρ	1.44	1.43
Densidad Promedio	kg/m³	ρ _{prom}	1436	
Contenido de vacíos	%	N	39%	

Fuente: Mora & Pogo, 2021

3.1.5.3.2. Densidad Compactada

Diámetro molde	cm	d	20.2	20.2
Altura molde	cm	h	29	29
Peso molde	g	P1	4900	4900
Peso molde + muestra	g	P2	19100	19200
Volumen molde	cm ³	Vr	9293.74	9293.74
Volumen molde	Ι	Vr	9.29	9.29
Densidad	g/cm ³	ρ	1.53	1.54
Densidad Promedio	kg/m ³	ρprom	1533	
Contenido de vacíos	%	Ν	35%	

Tabla 3.9 Densidad aparente compactada del agregado.

Fuente: Mora & Pogo, 2021

Figura 3.12 Ensayo de densidad aparente del agregado.

Fuente: Mora & Pogo, 2021

3.1.5.4. Contenido de humedad

Masa de la muestra original	g	W	4334.7
Masa de la muestra seca	g	D	4301.2
Contenido de humedad	%	Р	0.78

Tabla 3.10 Contenido de humedad del agregado.

Fuente: Mora & Pogo, 2021

$$P(\%) = \frac{W - D}{D} * 100\%$$
(3.7)

3.1.5.5. Resistencia a la abrasión

De acuerdo al procedimiento establecido en la norma NTE INEN 860:2011 se realizó el ensayo de abrasión.

$$D(\%) = \frac{B - C}{B} * 100\%$$
(3.8)

D: valor de degradación, en porcentaje

B: masa inicial de la muestra de ensayo

C: masa de la muestra retenida en el tamiz de 1,70 mm, después del ensayo.

CU: Coeficiente de uniformidad.

$$CU = \frac{B - C_{100/200}}{B - C_{500/1000}} \tag{3.9}$$

Gradación	Unidad		А
Masa inicial de la muestra de ensayo	gr	В	5000.0

Tabla 3.11 R	esistencia a	a la	abrasión	del	agregado
---------------------	--------------	------	----------	-----	----------

Masa retenida en el tamiz N12 100 rev	gr	C100	4807.72
Masa retenida en el tamiz N12 500 rev	gr	C500	3353.98
Degradación 500 vueltas	%	D	32.92
Coeficiente de uniformidad	-	CU	0.12

Fuente: Mora & Pogo, 2021

3.2. CEMENTO

3.2.1. TIPO DE CEMENTO USADO

Para este estudio se utilizó el tipo de cemento HE (alta resistencia inicial), el cual en estudios previos se ha demostrado que presenta mayores expansiones correspondientes a la reacción álcali-sílice, comparado con los cementos tipo GU e IP (Escobar, 2013).Se ha seleccionado el cemento de la marca Cemento Chimborazo, cumpliendo este con la normativa NTE INEN 2380-2:2011.

3.2.2. PROPIEDADES FÍSICAS

Para la caracterización de las propiedades del cemento se usaron las normas NTE INEN correspondientes a cada tipo de ensayo:

Ensayo	NTE INEN
Densidad real	NTE INEN 156-2:2009
Densidades aparentes	NTE INEN 152-5:2012
Consistencia normal	NTE INEN 157-2:2009
Tiempos de fraguado Vicat	NTE INEN 158-2:2009
Falso fraguado	NTE INEN 875-2:2009

Tabla 3.12 Normas usadas para ensayos del cemento.

Fuente: Mora & Pogo, 2021

3.2.2.1. Densidad real

Siguiendo la norma NTE INEN 156-2:2009, la determinación de la densidad real del cemento se lo realiza obteniendo la relación existente entre cierta masa de cemento y el volumen de líquido no reactivo que este desplaza, para este fin se hace uso del Frasco Le Chatelier.

$$\rho, (g/cm^3) = \frac{masa \ del \ cemento, g}{volumen \ del \ recipiente, cm^3}$$
(3.10)

Los ensayos en el cemento se realizaron por duplicado para obtener un valor promedio de los resultados obtenidos.

Lectura Inicial	cm ³	L1	0.6	0.4	
Frasco + Reactivo	gr	P1	321.2	321.6	
Lectura final	cm ³	L2	22.5	21.6	
Frasco + Reactivo + Cemento	gr	P2	384.1	382.2	
Densidad	gr/cm ³	ρ	2.87	2.86	
Densidad Promedio	gr/ cm ³	ρ prom	2.87		

Tabla 3.13 Densidad real del cemento.

Fuente: Mora & Pogo, 2021

Figura 3.13 Ensayo de densidad real del cemento.

Fuente: Mora & Pogo, 2021

3.2.2.2. Densidades Aparentes

Esta característica es importante en los casos de dosificaciones por volumen, se trata de la relación entre la masa de cemento que puede entrar en un molde y el volumen de este.

$$\rho, (g/cm^3) = \frac{masa \ del \ cemento, g}{volumen \ del \ recipiente, cm^3}$$
(3.11)

3.2.2.2.1. Densidad Suelta

	•			
Diámetro molde	cm	d	5.43	5.43
Altura molde	cm	h	14.92	14.92
Peso molde	gr	P1	152.40	152.40
Peso molde + cemento suelto	gr	P2	504.30	488.80
Volumen molde	cm ³	Vr	345.51	345.51
Densidad	gr/cm ³	ρ	1.02	0.97
Densidad Promedio	gr/cm ³	ρprom	1.	00
	~ -			

Tabla 3.14 Densidad aparente suelta del cemento.

Fuente: Mora & Pogo, 2021

3.2.2.2.2. Densidad Compactada

En el caso de la densidad compactada se realizan 25 caídas del molde desde una altura de 2cm.

Diámetro molde	cm	d	5.43	5.43
Altura molde	cm	h	14.92	14.92
Peso molde	gr	P1	152.40	152.40
Peso molde + cemento compactado	gr	P2	570.70	564.80

Tabla 3.15 Densidad aparente compacta del cemento.

Volumen molde	cm ³	Vr	345.51	345.51
Densidad	gr/cm ³	ρ	1.21	1.19
Densidad Promedio	gr/cm ³	pprom	1.20	

Fuente: Mora & Pogo, 2021

3.2.2.3. Consistencia Normal

Esta es definida como el grado de plasticidad apropiado que debe tener una pasta para poder realizar ensayos y mediciones sobre esta. El resultado de este ensayo es la relación existente entre la cantidad de agua necesaria para lograr este estado y la masa de cemento usada, expresado en porcentaje (NTE INEN 157-2:2009).

$$C,(\%) = \frac{ma}{mc} \times 100\% \tag{3.12}$$

Masa de agua	g	ma	115
Masa de cemento	g	mc	500
Consistencia Normal	%	С	23

Tabla 3.16 Consistencia normal del cemento

Fuente: Mora & Pogo, 2021

Figura 3.14 Ensayo de consistencia normal del cemento.

Fuente: Mora & Pogo, 2021

3.2.2.4. Tiempos de fraguado Vicat

El proceso se lo realizó siguiendo la normativa NTE INEN 158-2:2009 para establecer el tiempo inicial y final de fraguado mediante el uso del aparato de Vicat.

T. inicial de fraguado	min.	ti	124
T. final de fraguado	min.	tf	295

Tabla 3.17 Tiempos de fraguado del cemento

Fuente: Mora & Pogo, 2021

Figura 3.15 Ensayo de tiempo de fraguado. Curva penetración vs tiempo.

Fuente: Mora & Pogo, 2021

Figura 3.16 Ensayo de tiempos de fraguado del cemento.

Fuente: Mora & Pogo, 2021

3.2.2.5. Endurecimiento prematuro

Este ensayo se lo realiza para determinar si el cemento es o no de endurecimiento rápido, conforme lo indica la norma NTE INEN 875-2:2009.

$$P_{,}(\%) = \frac{B}{A} \times 100\% \tag{3.13}$$

Tabla 3.18 Endurecimiento prematuro del cemento.

Penetración inicial	mm	А	34
Penetración final	mm	В	27
Porcentaje final de penetración	%	Р	79.41

Fuente: Mora & Pogo, 2021	
---------------------------	--

Se considera que el porcentaje de penetración final de un cemento debe ser mínimo el 50% de la penetración según la norma NTE INEN 152-5:2012.

3.3. PUZOLANA

3.3.1. ORIGEN

La puzolana usada en este proyecto proviene del volcán Tungurahua, en la quebrada Achupashal y un saliente vial cercano como se observa en la Figura 3.17.

Figura 3.17 Fuentes de extracción de ceniza volcánica Fuente

Fuente: Buitrón y Enríquez, 2018

3.3.2. ENSAYOS DE DIFRACCIÓN POR RAYOS X

La puzolana volcánica fue sometida a ensayos de difracción por rayos X y fluorescencia, el cual sirve para determinar los elementos que la componen y el porcentaje respectivo, el informe respectivo se lo encuentra en el ANEXO 3, muestra 6 (ceniza del volcán Tungurahua), a continuación, en la Tabla 3.19 se resume los componentes y porcentajes resultantes del ensayo.

Mineral	Fórmula	Contenido (%)
Grupo Plagioclasas	$(Na_3Ca)Al(Si_2Al)Si_2O_8$	52
(albita, andesina, anortita)		
Enstatita	$Mg_2Si_2O_6$	14
Diópsido	CaMgSi ₂ O ₆	10
Hedenbergita	$Ca(Fe, Mg)Si_2O_6$	7
Pigeonita	$(Mg, Fe, Ca)(Mg, Fe)Si_2O_6$	6
Cuarzo	SiO ₂	4
Forsterita	Mg ₂ SiO ₄	3
Magnetita	<i>Fe</i> ₃ <i>O</i> ₄	3
Akermanita	$Ca_2MgSi_2O_7$	1

Tabla 3.19 Resultado de análisis de difracción por rayos X.

Fuente: Mora & Pogo, 2021

3.3.3. ENSAYOS FÍSICOS DE LA CENIZA

3.3.3.1. Densidad Real

Los ensayos realizados en la ceniza se los realizaron de forma análoga a los ensayos realizados en el cemento.

Tabla 3.20 Densidad real de la ceniza.

Lectura Inicial	cm ³	L1	0.2	0.6
-----------------	-----------------	----	-----	-----

Frasco + Reactivo	g	P1	321.0	321.3
Lectura final	cm ³	L2	18.8	18.7
Frasco + Reactivo + Cemento	g	P2	372.7	370.8
Densidad	g/cm ³	ρ	2.78	2.73
Densidad Promedio	g/cm ³	ρ prom	2.76	

Fuente: Mora & Pogo, 2021

3.3.3.2. Densidad aparente

3.3.3.2.1. Densidad Suelta

Diámetro molde	cm	D	5.48	5.48
Altura molde	cm	Н	14.91	14.91
Peso molde	g	P1	152.5	152.5
Peso molde + cemento suelto	g	P2	539.3	547.2
Volumen molde	cm ³	Vr	351.66	351.66
Densidad	g/cm ³	ρ	1.10	1.12
Densidad Promedio	g/cm ³	pprom	1.11	

Tabla 3.21 Densidad aparente suelta de la ceniza.

Fuente: Mora & Pogo, 2021

3.3.3.2.2. Densidad Compactada

Diámetro molde	cm	D	5.48	5.48
Altura molde	cm	Н	14.91	14.91
Peso molde	g	P1	152.5	152.5
Peso molde + cemento compactado	g	P2	682.3	673.1
Volumen molde	cm ³	Vr	351.66	351.66

Tabla 3.22 Densidad aparente compactada de la ceniza.

Densidad	g/cm ³	ρ	1.51	1.48	
Densidad Promedio	g/cm ³	ρprom	1.	49	

Fuente: Mora & Pogo, 2021

3.3.4. PREPARACIÓN DE PUZOLANA

La puzolana se encontró en forma de escoria, por lo cual debió someterse a un proceso de trituración para cumplir con la norma ASTM C618-2019.

Figura 3.18 Proceso de trituración de puzolana volcánica para ensayo.

Fuente: Mora & Pogo, 2021

CAPÍTULO 4

ENSAYOS DE LABORATORIO

4.1. DEFINICIÓN GENERAL DEL ENSAYO

Para realizar los ensayos respectivos se utilizó la normativa internacionales ASTM C1260-2014 la cual define la reactividad potencial álcali-sílice en combinaciones de cemento y agregado para barras de mortero y la normativa ASTM C1567-2013, que se usa para combinaciones de materiales cementantes y agregados, en esta investigación se evaluó el reemplazo de cemento por puzolana del 5%, 10%, 15%, 20% y 25% en masa.

Los ensayos se basan en métodos acelerados, en los cuales se sumerge las barras en una solución de NaOH con concentración de 0.99N a 1.01N, a una temperatura prolongada de 80°C, la reacción se lleva a cabo en un ambiente altamente alcalino por lo cual el contenido de álcali del cemento no es un factor significativo para afectar las expansiones.

4.2. DETERMINACIÓN DE CANTIDADES Y VOLÚMENES DE LOS MATERIALES A USAR

4.2.1. AGREGADOS

El árido que se recolectó para ser utilizado como agregado para este ensayo fue expuesto a un proceso de trituración, lavado y secado en horno a 110°C durante 24h, para posteriormente ser tamizado para cumplir con la granulometría requerida en las normas anteriormente mencionadas.

Las proporciones para el mortero están definidas por su densidad relativa (DO), calculada en el literal 3.1 la cual es de:

$$D.O. = 2.38$$

Donde D.O.= densidad relativa

Si la *D.O.* es menor a 2.45 se calcula la proporción de agregado (AP) de la siguiente manera

$$AP = 2.25X \frac{D.O.}{2.65} \tag{4.1}$$

Por lo tanto, la proporción de agregado es de:

$$AP = 2.25X \frac{2.38}{2.65} = 2.02 \tag{4.2}$$

El material cementante es de 440g determinando que la cantidad de agregados será de:

$$Agregado = 2.02x440 = 889.13 \ gr. \tag{4.3}$$

La granulometría que debe cumplir el agregado se indica en la Tabla 4.1.

Granulometría de agregado							
Pasante	Retenido	Masa retenida	Acumulado				
%	%	%	%				
N° 4 - 4.75 mm	N° 8 - 2.36 mm	10	10				
N° 8 - 2.36 mm	N° 16 – 1.18 mm	25	35				
N° 16 – 1.18 mm	N°30 – 600 μm	25	60				
N°30 – 600 μm	N° 50 - 300 μm	25	85				
N° 50 - 300 μm	N° 100 -150 µm	15	100				

Tabla 4.1 Granulometría agregado

Fuente: ASTM C-1567 y ASTM C-1260

Debido a la capacidad de la mezcladora que se usó para los ensayos y los moldes de las barras, para cada porcentaje de puzolana se decidió preparar dos mezclas de tres barras y una mezcla para cuatro barras, para un total de 10 barras, para lo cual se usó las cantidades de la Tabla 4.2 y Tabla 4.3:

Retenido	Abertura	Masa Retenida	Peso
%	mm	%	gr
N° 8	2.36	10	88.91
Nº 16	1.18	25	222.28
N°30	0.6	25	222.28
N° 50	0.3	25	222.28
N° 100	0.15	15	133.37
		Total	889.13

Tabla 4.2 Cantidad de agregado para 3 barras

Fuente: Mora & Pogo

Retenido	Abertura	Masa Retenida	Peso
%	mm	%	gr
N° 8	2.36	10	118.55
Nº 16	1.18	25	296.38
N°30	0.6	25	296.38
N° 50	0.3	25	296.38
N° 100	0.15	15	177.83
		Total	1185.51

Tabla 4.3 Cantidad de agregado para 4 barras

Fuente: Mora & Pogo

4.2.2. MATERIAL CEMENTANTE

Para esta investigación se usó cemento Chimborazo tipo HE y como adición para inhibir la reacción álcali-sílice se usó ceniza volcánica del volcán Tungurahua en reemplazo de masa del cemento, en las Tabla 4.4 y Tabla 4.5 se detalla la cantidad de cemento y puzolana usada para cada combinación.

Cantidad de materiales cementantes usados para 3 barras					
Barras	Cemento	Puzolana	Material cementante		
%	gr	gr	gr		
0	440	-	440		
5	418	22	440		
10	396	44	440		
15	374	66	440		
20	352	88	440		
25	330	110	440		

Tabla 4.4 Cantidad de materiales cementantes a usar para 3 barras de mortero

Fuente: Mora & Pogo

Tabla 4.5 Cantidad de materiales cementantes a usar para 4 barras de mortero

Cantidad de materiales cementantes usados para 4 barras					
Barras	Cemento	Puzolana	Material cementante		
%	gr	gr	gr		
0	586.67	-	586.67		
5	557.34	29.33	586.67		
10	528.00	58.67	586.67		
15	498.67	88.00	586.67		
20	469.33	117.33	586.67		
25	440	146.67	586.67		

Fuente: Mora & Pogo

4.2.3. AGUA

Se usó agua potable, recomendada para el uso en la construcción, el peso de agua que se necesita para cada una de las combinaciones esta especificada en la Tabla 4.6.

Cantidades de agua necesaria para barras de mortero				
Porcentaje de	Relación a/c	Flujo	Agua para 3	Agua para 4
reemplazo		promedio	barras	barras
%	-	%	gr	gr
0	0.519	113	228.2	304.3
5	0.545	112	227.9	303.9
10	0.563	110	222.9	297.3
15	0.592	110	221.4	295.2
20	0.639	112	224.9	299.9
25	0.677	111	223.4	297.9

Tabla 4.6 Cantidad de agua necesaria para las barras de mortero

Fuente: Mora & Pogo

4.3. REACTIVOS E INSTRUMENTOS

4.3.1. REACTIVOS

Se usó hidróxido de sodio (NaOH) con concentración 1N, la solución se realizó mezclando 40.0gr de NaOH con 900mL de agua destilada, al poseer NaOH en estado sólido (Figura 4.1), la solución se mezcló durante aproximadamente 5 minutos en un vaso de precipitación que soporte el calor, debido a que durante la mezcla se produce una reacción exotérmica, posteriormente la solución deberá ser diluida con agua destilada hasta obtener 1L.

Se solicita un volumen de solución de 4±0.5 veces el volumen de la barra de mortero, el cual se considera de 184mL, con el fin de garantizar la inmersión

completa de la barra, en la Tabla 4.7 se detallan las cantidades de reactivos y agua destilada que se usaron.

Figura 4.1 Hidróxido de sodio (NaOH) usado.

Fuente: Mora & Pogo

	Hidróxido de sodio	Cantidad de barras	
volumen solucion	(NaOH)	sumergidas	
Lts	gr	#	
50	2000	60	

Tabla 4.7 Cantidades de reactivos usados

Fuente: Mora & Pogo

Una vez realizada la solución, esta fue almacenada en un recipiente plástico y en un lugar donde no exista la influencia de los rayos del sol, el recipiente fue sellado con una tapa hermética para evitar evaporación, se debe tomar varias medidas de seguridad como el uso de guantes, mascarillas, y gafas, además de mandiles protectores, debido a que se trata de una sustancia altamente corrosiva, pudiendo provocar quemaduras graves en la piel y afectaciones en las vías respiratorias si los gases generados en la reacción son inhalados.

4.3.2. INSTRUMENTOS Y MOLDES

4.3.2.1. Moldes

Los moldes que usados cumplen con la norma ASTM C490-2017 la cual especifica las dimensiones de los mismos (285x25x25mm), los moldes deben estar limpios y engrasados con una fina capa de aceite, para agilizar su desmontaje, en la Figura 4.2 se observa los moldes que se usaron.

Figura 4.2 Moldes usados en el ensayo

Fuente: Mora & Pogo

4.3.2.2. Aparato medidor de barras

Se uso un aparato con una precisión de 0.0001 pulgadas o 0.002 mm, se debe considerar que para el uso de este aparato es recomendable usarlo en temperaturas similares, y la barra de control deberá ser de una aleación con baja expansión térmica, en la Figura 4.3 se muestra el aparato que se usó en este ensayo.

Figura 4.3 Aparato Medidor de barras.

Fuente: Mora & Pogo

4.4. FABRICACIÓN, CURADO E INMERSIÓN DE BARRAS DE MORTERO

4.4.1. FABRICACIÓN

La mezcla del mortero se basó en la norma ASTM C305-2020 "Practica estándar para la mezcla mecánica de pastas de cemento hidráulico y morteros de consistencia plástica".

En la Tabla 4.8 se detalla el procedimiento y tiempos que se utilizaron para la mezcla de los materiales para el mortero, los cuales se encuentran especificados en la norma ASTM C305- 2020.

Proceso	Tiempo	Unidad
Colocar agua en la mezcladora	0	S
Añadir el cemento al agua y dejarlo reposar	30	S
Prender la mezcladora a velocidad baja	15	s
(140 rpm)		
Añadir la totalidad de la arena	30	S
Detener la mezcladora, cambiar a	30	S
velocidad media (285 rpm)		
Detener la mezcladora y limpiar con	15	s
espátula el mortero pegado a la pared de		
la mezcladora		
Detener la mezcladora y dejar reposar	75	S
Mezclar el mortero con velocidad media	60	S
(285 rpm)		Antioza Wina

Tabla 4.8 Proceso y tiempo de mezclado de mortero

Fuente: NTE INEN 155:2009

Figura 4.4 Mezcladora electrónica facilitada por el LEMSUR que se usó para la mezcla del mortero

Fuente: Mora & Pogo

Figura 4.5 Proceso de mezclado en la batidora electrónica

Fuente: Mora & Pogo

4.4.2. ENSAYO DE FLUJO

Se debe realizar el ensayo de flujo para corroborar una adecuada consistencia de la mezcla, este ensayo se lo realizó en cada mezcla inmediatamente al salir de la mezcladora, este proceso no debe de exceder los 2 minutos tal y como lo indica la norma ASTM C1437-2020.

Fuente: Mora & Pogo

4.4.3. MOLDEO Y CURADO

El moldeo se lo realizó según las normativas ASTM C1260-2014 y ASTM C1567-2013, donde se establece que las barras se deben realizar en un máximo de 2min y 15s después de haber completado la mezcla, se rellenó los moldes con dos capas de igual espesor, apisonando cada una de ellas con un pistón de plástico, se debe poner especial atención en las esquinas y los alrededores del tornillo, posteriormente se debe enrazar y alisar.

Figura 4.7 Moldeado y alisado de barras de mortero

Fuente: Mora & Pogo

A continuación, se cubre los moldes con una franela húmeda para minimizar pérdidas de humedad en el proceso de fraguado y endurecimiento de las barras, luego los moldes son conducidos al cuarto de curado, donde permanecerán por un lapso de 24h.

4.4.4. DESMOLDE E INMERSIÓN

Una vez cumplidas las 24h en el cuarto de curado, las barras son desmoldadas con mucho cuidado, debido a su fragilidad, subsiguientemente se identifican cada una con el porcentaje de ceniza volcánica utilizado en su elaboración y una numeración del 1 al 10, luego se sumergen en agua a temperatura ambiente y se llevan al horno con una temperatura de 80°C durante 24 \pm 2h.

Figura 4.8 Barras de mortero por desencofrar

Fuente: Mora & Pogo

Figura 4.9 Barras desmoldeadas

Fuente: Mora & Pogo

Figura 4.10 Barras sumergidas en agua en un horno a 80°C

Fuente: Mora & Pogo

Después de las 24h de curado en el horno, las barras son retiradas y se procede a realizar la primera lectura de las barras (Lectura 0), luego de esto son sumergidas en la solución de NaOH, asegurándose que estén totalmente sumergidas y que no exista contacto entre ellas, y se llevan nuevamente al horno a una temperatura de 80°C, se debe asegurar el sellado hermético del contenedor. El volumen del recipiente usado para la inmersión de las barras es de 60lts, garantizando los 50lts necesarios para sumergir por completo las 60 barras cumpliendo con un volumen de solución de 4.5 veces el volumen de las barras establecido en las normas ASTM C1260-2014 y ASTM C1567-2013.

Figura 4.11 Distribución de las barras

Fuente: Mora & Pogo

Figura 4.12 Inmersión de las barras en la solución de NaOH

Fuente: Mora & Pogo

Las mediciones subsecuentes se las realizan de manera continua durante un periodo de 14 días, las barras son retiradas del horno, se extraen de la solución de NaOH y se limpian con una franela para a continuación ser medidas y colocadas nuevamente en la solución, todo este proceso deberá realizarse en un máximo de 15s.

Figura 4.13 Medición de la barra de control

Fuente: Mora & Pogo

Figura 4.14 Medición de barras

Fuente: Mora & Pogo

CAPÍTULO 5

CÁLCULOS Y RESULTADOS

5.1. MEDICIONES

Las normas ASTM C1260-14 y ASTM C1567-13 establecen la toma de una primera medición de referencia de las barras luego de pasar 24 horas sumergidas en agua a 80°C, este dato es denominado como medida. Luego de esta medida las barras son colocadas en la solución de NaOH ("hidróxido de sodio") y ubicadas en el horno a 80°C por el periodo de 14 días, intervalo durante el cual se realizan lecturas intermedias, de esta manera se puede obtener una mejor representación de la curva de crecimiento de la deformación de las barras.

Debido a la sensibilidad del instrumento medidor de barras, para obtener medidas más exactas y homogéneas a través de los días se deben tomar ciertas medidas como:

- Antes y después de las medidas de las barras se debe tomar lectura de la barra de referencia para comprobar que no existan cambios de longitud por temperatura.
- Debido a la sensibilidad del aparato medidor de barras se debe colocar siempre en el mismo lugar y posición de la primera medida.
- Las barras deben ser medidas en la misma posición que se registraron lecturas iniciales y asegurándose del correcto contacto de los tornillos con la placa inferior y aparato medidor.
- Antes de ser medida cada barra debe ser secada y colocada cuidadosamente en el aparato medidor, una vez colocada las lecturas se

realizan inmediatamente, este proceso se lo debe realizar dentro de los primeros 15 segundos desde que la barra es retirada, luego es devuelta a la solución de hidróxido de sodio.

5.2. CÁLCULOS

5.2.1. CAMBIOS DE LONGITUD DE BARRAS DE MORTERO

El cambio de las longitudes de las barras en base a la norma ASTM C490-2017 se calcula usando la siguiente expresión:

$$\Delta L (\%) = \left[\frac{(L_x - L_i)}{L_g} \right] x 100\%$$
(5.1)

donde:

 ΔL = "Cambio de longitud a la edad x, en %"

Lx= "Lectura comparador para la barra de mortero a la edad x menos la lectura en el comparador para la barra de referencia a la edad x".

Li= "Lectura inicial en el comparador para la barra de mortero menos la lectura inicial en el comparador para la barra de referencia, en el mismo momento".

Lg= "La distancia nominal sobre la cual se miden los cambios de longitud, la distancia entre los tornillos es de 250±2mm." ASTM C490-2017

5.2.2. ANÁLISIS ESTADÍSTICO CON PRUEBA T-STUDENT

La prueba T-Student es un método de análisis estadístico deductivo que se utiliza para determinar si existe una diferencia significativa entre las medias de un grupo de datos, estableciendo una probabilidad de aceptación de datos o significancia (α).

Para realizar correctamente la prueba T-Student se debe realizar los siguientes pasos:

Paso 1:

Declarar hipótesis: se debe realizar dos tipos de hipótesis, la nula, donde la media poblacional puede ser menor a un valor, y la hipótesis alterna que la media poblacional puede optar por ser igual o mayor del valor de hipótesis nula

$$Hipótesis \begin{cases} Nula \quad H_0 \to \mu < x \\ \\ Alterna \quad H_0 \to \mu >; \neq x \end{cases}$$

Paso 2:

Se opta por un nivel de significancia y grados de libertad, el nivel de significancia lo consideramos como la probabilidad de rechazo, en nuestra investigación lo optamos por un 5%, α =0.05 y los grados de libertad se calcula como:

$$v = n - 1 \tag{5.2}$$

Donde:

v: grados de libertad

n: Tamaño de la muestra

Paso 3:

Conseguir el punto de prueba t

$$t_{calc} = \frac{\bar{x} - \mu}{S/\sqrt{n}} \tag{5.3}$$

Donde:

 \bar{x} : Media muestral de los datos

 μ : Media poblacional

S: Desviación estándar muestral

n: Tamaño de la muestra

La desviación estándar (S) de la muestra, se calcula con la siguiente expresión:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$
(5.4)

Paso 4:

Se encuentra el valor de t crítico con el uso de las tablas T-Student, cuyo valor está en función de α y v

Se compara los valores obtenidos t crítico y t calculado en función de la hipótesis planteada.

Además, se hizo el cálculo del coeficiente de variación, el cual se trata de una medida estadística que nos una idea sobre la dispersión que presenta un conjunto de datos, para que una muestra pueda ser considerada representativa de la población este coeficiente debe ser menor al 30%.

$$CV(\%) = \frac{S}{\bar{x}} x \ 100\%$$
 (5.5)

Donde:

CV: "Coeficiente de variación"

 \bar{x} : "Media muestral de los datos"

S: "Desviación estándar muestral"

5.3. RESULTADOS

De cada combinación de material cementante (cemento + ceniza) y agregado se obtuvo los resultados que se presentan a continuación, donde se especifican las expansiones de cada barra durante los primeros 14 días a partir de su retiro del agua a 80ºC expresadas en porcentaje.

Para interpretar los resultados obtenidos tanto la norma ASTM C1260-14 y ASTM C1567-13 establecen 3 rangos según el porcentaje de expansión alcanzado a los 14 días de sumergidas las barras en NaOH:

- Expansiones menores a 0.10% agregados con comportamiento inocuo en la mayoría de los casos.
- Expansiones entre 010% y 0.20% agregados inocuos o perjudiciales.
- Expansiones mayores a 0.20% agregados con expansión potencialmente perjudicial.

5.3.1. BARRAS SIN REMPLAZO DE CENIZA

	PORCENTAJE DE EXPANSIÓN BARRAS SIN CENIZA										
Dia/ Barra	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.10	PROM.
-	%	%	%	%	%	%	%	%	%	%	%
1	0.059	0.067	0.060	0.082	0.077	0.055	0.074	0.058	0.076	0.061	0.067
2	0.078	0.080	0.079	0.102	0.089	0.082	0.094	0.081	0.093	0.083	0.086
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	0.114	0.110	0.103	0.123	0.104	0.107	0.118	0.108	0.107	0.113	0.111
6	0.117	0.122	0.110	0.126	0.111	0.112	0.130	0.118	0.117	0.120	0.118
7	0.126	0.125	0.110	0.132	0.116	0.119	0.130	0.119	0.117	0.125	0.122
8	0.125	0.126	0.113	0.134	0.114	0.126	0.131	0.119	0.117	0.132	0.124
9	0.131	0.132	0.114	0.138	0.118	0.132	0.138	0.126	0.126	0.138	0.129
10	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-
12	0.138	0.150	0.126	0.138	0.130	0.132	0.144	0.134	0.138	0.153	0.138
13	0.140	0.156	0.129	0.150	0.134	0.133	0.148	0.140	0.140	0.154	0.142
14	0.140	0.156	0.132	0.150	0.138	0.136	0.152	0.149	0.141	0.157	0.145

Tabla 5.1 Porcentaje de expansión barras sin ceniza

Fuente:	Mora	& Pogo,	2021
---------	------	---------	------

Para el análisis estadístico mediante la prueba T-Student se estableció una hipótesis nula (Ho) donde μ 0 <0.10% que corresponde al límite de expansión promedio de las barras permitido para que el agregado pueda ser considerado inocuo, en caso de no cumplirse la hipótesis nula, esta es rechazada y se acepta la hipótesis alternativa (H1) que fue considerada como μ 1 ≥0.10%, este análisis se lo realizo con una probabilidad de aceptación de los resultados del 95%.

Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1

Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.140	-0.005	2.62E-05
0.2	0.156	0.011	1.18E-04
0.3	0.132	-0.013	1.72E-04
0.4	0.150	0.005	2.38E-05
0.5	0.138	-0.007	5.07E-05
0.6	0.136	-0.009	8.32E-05
0.7	0.152	0.007	4.73E-05
0.8	0.149	0.004	1.51E-05
0.9	0.141	-0.004	1.70E-05
0.1	0.157	0.012	1.41E-04
		Sumatoria	6.95E-04
		Varianza	7.72E-05
		Desv. Est.	0.0088

Tabla 5.2 Cálculo de la desviación estándar, en los resultados sin ceniza

Fuente: Mora & Pogo, 2021

Dromodio	=	0/	0 1 4 5
Promedio	X	%	0,145
Desviación Estándar	S	%	0,0088
Varianza	S ²		7,65E-05
Tamaño de la	n		10
muestra	11		10
Coeficiente de			0.000/
variación	0.v.		6,03%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		16,31
P valor	p val		1,00

 Tabla 5.3 Prueba T resultados sin ceniza

Observaciones
Tcal es mayor que Tcri
"Existe evidencia para rechazar la hipótesis nula" – P valor es
mayor que α
Fuente: Mora & Pogo, 2021

Fuente: Mora & Pogo, 2021

5.3.2. BARRAS CON 5% DE REMPLAZO DE CENIZA

	PORCENTAJE DE EXPANSIÓN CON 5% DE CENIZA										
Dia/ Barra	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10	PROMEDIO
-	%	%	%	%	%	%	%	%	%	%	%
1	0.047	0.062	0.049	0.059	0.052	0.047	0.038	0.060	0.060	0.038	0.051
2	0.076	0.066	0.069	0.077	0.064	0.061	0.053	0.073	0.067	0.061	0.067
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	0.090	0.078	0.078	0.086	0.070	0.070	0.065	0.077	0.072	0.066	0.075
6	0.091	0.084	0.078	0.089	0.074	0.073	0.068	0.077	0.070	0.071	0.078
7	0.095	0.087	0.084	0.092	0.079	0.074	0.080	0.080	0.071	0.081	0.082
8	0.099	0.091	0.086	0.095	0.082	0.078	0.085	0.086	0.075	0.084	0.086
9	0.102	0.093	0.088	0.100	0.087	0.082	0.087	0.090	0.078	0.090	0.090
10	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-
12	0.104	0.100	0.098	0.105	0.094	0.087	0.091	0.094	0.082	0.096	0.095
13	0.106	0.103	0.108	0.110	0.098	0.091	0.093	0.098	0.085	0.104	0.100
14	0.110	0.107	0.108	0.114	0.101	0.095	0.096	0.101	0.088	0.106	0.103

Tabla 5.4 Porcentaje de expansión con 5% de ceniza
Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.110	0.007	4.96E-05
0.2	0.107	0.005	2.15E-05
0.3	0.108	0.005	2.96E-05
0.4	0.114	0.012	1.40E-04
0.5	0.101	-0.002	3.10E-06
0.6	0.095	-0.007	5.42E-05
0.7	0.096	-0.007	4.30E-05
0.8	0.101	-0.002	3.10E-06
0.9	0.088	-0.015	2.12E-04
0.1	0.106	0.003	9.24E-06
		Sumatoria	5.66E-04
		Varianza	6.28E-05
		Desv. Est.	0.0079

Tabla 5.5 Cálculo de la desviación estándar, en los resultados con 5% de ceniza

Tabla 5.6 Prueba T	Γı	resultados con	5	%	de	ceniza
--------------------	----	----------------	---	---	----	--------

Promedio	\overline{x}	%	0,103
Desviación Estándar	S	%	0,0079
Varianza	S ²		6,28E-05
Tamaño de la muestra	n		10
Coeficiente de variación	C.V.		7,73%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		1,02
P valor	p val		0,83

Observaciones				
Tcal es mayor que Tcri				
"Existe evidencia para rechazar la hipótesis nula" – P valor es				
mayor que α				
Fuente: Mora & Pogo, 2021				

Fuente: Mora & Pogo, 2021

5.3.3. BARRAS CON 10% DE REMPLAZO DE CENIZA

	PORCENTAJE DE EXPANSIÓN CON 10% DE CENIZA										
Dia/ Barra	10.1	10.2	10.3	10.4	10.5	10.6	10.7	10.8	10.9	10.10	PROMEDIO
-	%	%	%	%	%	%	%	%	%	%	%
1	0.035	0.034	0.044	0.043	0.041	0.029	0.028	0.042	0.035	0.042	0.037
2	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-
4	0.050	0.047	0.057	0.061	0.055	0.050	0.044	0.050	0.051	0.060	0.052
5	0.054	0.054	0.058	0.065	0.062	0.055	0.048	0.053	0.053	0.061	0.056
6	0.057	0.059	0.061	0.067	0.064	0.058	0.056	0.054	0.055	0.067	0.060
7	0.061	0.065	0.064	0.070	0.066	0.060	0.062	0.056	0.059	0.070	0.063
8	0.062	0.067	0.068	0.074	0.067	0.061	0.069	0.058	0.061	0.073	0.066
9	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-
11	0.066	0.073	0.070	0.078	0.073	0.066	0.074	0.062	0.065	0.078	0.070
12	0.069	0.075	0.071	0.082	0.074	0.067	0.077	0.065	0.067	0.082	0.073
13	0.070	0.077	0.073	0.083	0.077	0.068	0.079	0.066	0.070	0.083	0.074
14	0.072	0.078	0.074	0.085	0.078	0.070	0.081	0.068	0.071	0.084	0.076

Tabla 5.7 Porcentaje de expansión con 10% de ceniza

Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.072	-0.004	1.73E-05
0.2	0.078	0.002	5.02E-06
0.3	0.074	-0.002	3.10E-06
0.4	0.085	0.009	7.46E-05
0.5	0.078	0.001	2.07E-06
0.6	0.070	-0.006	3.32E-05
0.7	0.081	0.005	2.15E-05
0.8	0.068	-0.008	6.66E-05
0.9	0.071	-0.005	2.46E-05
0.1	0.084	0.008	6.15E-05
		Sumatoria	3.10E-04
		Varianza	3.44E-05
		Desv. Est.	0.0059

Tabla 5.8 Cálculo de la desviación estándar, en los resultados con 10% de ceniza

Tabla 5.9 Prueba T resultados con 10% de ceniza

Promedio	\overline{x}	%	0,076
Desviación Estándar	S	%	0,0059
Varianza	S ²		3,43E-05
Tamaño de la muestra	n		10
Coeficiente de variación	C.V.		7,70%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		-12,86
P valor	p val		2.14E-07

Observaciones				
Tcal es menor que Tcri				
"No existe evidencia para rechazar hipótesis nula" - P valor es menor				
que a				
Fuente: Mora & Pogo, 2021				

Figura 5.1 Expansión vs Tiempo Barras Con 10% de Ceniza

Fuente: Mora & Pogo, 2021

5.3.4. BARRAS CON 15% DE REMPLAZO DE CENIZA

	PORCENTAJE DE EXPANSIÓN CON 15% DE CENIZA										
Dia/ Barra	15.1	15.2	15.3	15.4	15.5	15.6	15.7	15.8	15.9	15.10	PROMEDIO
-	%	%	%	%	%	%	%	%	%	%	%
1	0.032	0.032	0.030	0.032	0.030	0.030	0.030	0.031	0.032	0.031	0.031
2	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-
4	0.039	0.035	0.037	0.038	0.039	0.034	0.039	0.035	0.038	0.038	0.037
5	0.042	0.037	0.038	0.040	0.040	0.039	0.040	0.036	0.039	0.039	0.039
6	0.044	0.039	0.038	0.041	0.042	0.041	0.043	0.040	0.041	0.041	0.041
7	0.045	0.041	0.040	0.046	0.043	0.042	0.043	0.044	0.042	0.042	0.043
8	0.046	0.043	0.042	0.047	0.046	0.045	0.046	0.046	0.043	0.043	0.045
9	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-
11	0.047	0.044	0.045	0.048	0.046	0.046	0.047	0.048	0.044	0.045	0.046
12	0.048	0.046	0.046	0.050	0.050	0.050	0.047	0.049	0.046	0.046	0.048
13	0.049	0.047	0.047	0.051	0.052	0.053	0.048	0.050	0.046	0.046	0.049
14	0.050	0.047	0.046	0.052	0.053	0.054	0.050	0.050	0.047	0.046	0.0497

Tabla 5.10 Porcentaje de expansión con 15% de ceniza

Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.050	0.001	5.18E-07
0.2	0.047	-0.002	6.15E-06
0.3	0.046	-0.003	1.08E-05
0.4	0.052	0.002	5.38E-06
0.5	0.053	0.003	9.73E-06
0.6	0.054	0.004	1.54E-05
0.7	0.050	0.001	5.18E-07
0.8	0.050	0.001	5.18E-07
0.9	0.047	-0.002	6.15E-06
0.1	0.046	-0.003	1.08E-05
		Sumatoria	6.59E-05
		Varianza	7.32E-06
		Desv. Est.	0.0027

Tabla 5.11 Cálculo de la desviación estándar, en los resultados con 15% de ceniza

Tabla 5.12 Prueba T resultados con 1	15%	de ceniza
--------------------------------------	-----	-----------

Promedio	\overline{x}	%	0,0497
Desviación Estándar	S	%	0,0027
Varianza	S ²		7,31E-06
Tamaño de la muestra	n		10
Coeficiente de variación	C.V.		5,44%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		-58,83
P valor	p val		2.99E-13

Observaciones					
Tcal es menor que Tcri					
"No existe evidencia para rechazar hipótesis nula" - P valor es menor					
que a					
Fuente: Mora & Pogo, 2021					

Figura 5.2 Expansión vs Tiempo Barras Con 15% de Ceniza

Fuente: Mora & Pogo, 2021

5.3.5. BARRAS CON 20% DE REMPLAZO DE CENIZA

	PORCENTAJE DE EXPANSIÓN CON 20% DE CENIZA										
Dia/ Barra	20.1	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	20.10	PROMEDIO
-	%	%	%	%	%	%	%	%	%	%	%
1	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-
3	0.0328	0.0304	0.0296	0.0288	0.0264	0.028	0.028	0.032	0.0296	0.028	0.029
4	0.0344	0.0344	0.0352	0.0336	0.0296	0.0304	0.0296	0.0336	0.032	0.0328	0.033
5	0.0352	0.036	0.036	0.0344	0.032	0.032	0.0328	0.0368	0.0352	0.0336	0.034
6	0.036	0.0376	0.0368	0.036	0.0336	0.0352	0.0360	0.0384	0.0352	0.0360	0.036
7	0.0368	0.0384	0.0384	0.0376	0.0336	0.0368	0.0362	0.040	0.0376	0.0344	0.037
8	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-
10	0.0376	0.0392	0.0392	0.0392	0.0344	0.0384	0.036	0.04	0.0384	0.0384	0.038
11	0.0384	0.0408	0.0392	0.0408	0.036	0.0400	0.0376	0.0408	0.0376	0.0408	0.039
12	0.0392	0.0400	0.0416	0.0400	0.0376	0.0408	0.0376	0.0408	0.0376	0.0408	0.040
13	0.04	0.0408	0.0424	0.0408	0.0376	0.0416	0.0384	0.0416	0.0384	0.0392	0.040
14	0.0416	0.0416	0.0416	0.0424	0.0392	0.0424	0.0392	0.0424	0.0401	0.0416	0.0412

Tabla 5.13 Porcentaje de expansión con 20% de ceniza

Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.042	0.000	1.60E-07
0.2	0.042	0.000	1.60E-07
0.3	0.042	0.000	1.60E-07
0.4	0.042	0.001	1.44E-06
0.5	0.039	-0.002	4.00E-06
0.6	0.042	0.001	1.44E-06
0.7	0.039	-0.002	4.00E-06
0.8	0.042	0.001	1.44E-06
0.9	0.040	-0.001	1.44E-06
0.1	0.042	0.000	1.60E-07
		Sumatoria	1.44E-05
		Varianza	1.60E-06
		Desv. Est.	0.0013

Tabla 5.14 Cálculo de la desviación estándar, en los resultados con 20% de ceniza

Tabla 5.15 Prueba T resultados con 20% de ceniza

Promedio	\overline{x}	%	0,0412
Desviación Estándar	S	%	0,0013
Varianza	S ²		1,6E-06
Tamaño de la muestra	n		10
Coeficiente de variación	C.V.		3,07%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		-147,.00
P valor	p val		7.93E-17

Observaciones					
Tcal es menor que Tcri					
"No existe evidencia para rechazar hipótesis nula" – P valor es menor					
que a					
Fuente: Mora & Pogo, 2021					

Figura 5.3 Expansión vs Tiempo Barras Con 20% de Ceniza

Fuente: Mora & Pogo, 2021

5.3.6. BARRAS CON 25% DE REMPLAZO DE CENIZA

		PORCENTAJE DE EXPANSIÓN CON 25% DE CENIZA									
Dia/ Barra	25.1	25.2	25.3	25.4	25.5	25.6	25.7	25.8	25.9	25.10	PROMEDIO
-	%	%	%	%	%	%	%	%	%	%	%
1	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-
3	0.023	0.022	0.022	0.022	0.026	0.026	0.022	0.022	0.024	0.022	0.023
4	0.026	0.027		0.027	0.026	0.026	0.024	0.023	0.023	0.024	0.025
5	0.028	0.028	0.025	0.028	0.027	0.030	0.025	0.024	0.025	0.025	0.026
6	0.030	0.030	0.027	0.028	0.027	0.031	0.026	0.027	0.027	0.027	0.028
7	0.030	0.030	0.028	0.027	0.029	0.032	0.029	0.030	0.029	0.027	0.029
8	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-
10	0.031	0.031	0.028	0.030	0.028	0.033	0.028	0.032	0.027	0.028	0.030
11	0.033	0.033	0.030	0.030	0.030	0.034	0.030	0.033	0.029	0.030	0.031
12	0.034	0.033	0.032	0.031	0.030	0.034	0.030	0.034	0.029	0.030	0.032
13	0.034	0.033	0.034	0.031	0.032	0.034	0.032	0.033	0.032	0.036	0.033
14	0.036	0.034	0.033	0.033	0.034	0.035	0.033	0.034	0.033	0.036	0.034

Tabla 5.16 Porcentaje de expansión con 25% de ceniza

Barra	Expansión Día 14 (%)	x-u	(x-u)^2
0.1	0.036	0.002	3.39E-06
0.2	0.034	0.000	5.76E-08
0.3	0.033	-0.001	1.85E-06
0.4	0.033	-0.001	1.85E-06
0.5	0.034	0.000	5.76E-08
0.6	0.035	0.001	1.08E-06
0.7	0.033	-0.001	1.85E-06
0.8	0.034	0.000	5.76E-08
0.9	0.033	-0.001	1.85E-06
0.1	0.036	0.002	3.39E-06
		Sumatoria	1.54E-05
		Varianza	1.71E-06
		Desv. Est.	0.0013

Tabla 5.17 Cálculo de la desviación estándar, en los resultados con 25% de ceniza

Tabla 5.18 Prueba	Т	resultados	con 25%	de	ceniza
-------------------	---	------------	---------	----	--------

Promedio	\overline{x}	%	0,0342
Desviación Estándar	S	%	0,0013
Varianza	S ²		1,71E-06
Tamaño de la muestra	n		10
Coeficiente de variación	C.V.		3,83%
Grados de libertad	V		9
Probabilidad	(1-α)	%	95%
Significancia	α		0,05
T de tablas	t crit		-1,833
Hipótesis Nula	H0	μ0 <	0,1
Hipótesis Alterna	H1	µ1 ≥	0,1
T calculado	t calc		-159,04
P valor	p val		3.90E-17

Observaciones					
Tcal es menor que Tcri					
"No existe evidencia para rechazar hipótesis nula" – P valor es menor					
que a					
Fuente: Mora & Pogo, 2021					

Figura 5.4 Expansión vs Tiempo Barras Con 25% de Ceniza

Fuente: Mora & Pogo, 2021

5.3.7. PROMEDIO DE EXPANSIÓN DE BARRAS

Se realizó un cuadro comparativo con el promedio de las expansiones de las barras, y se creó una gráfica para observar el efecto que produce cada porcentaje de remplazo de ceniza en el cambio de longitud de las barras de mortero.

	PROMEDIO DE EXPANSIÓN DE BARRAS							
Dia	Sin Ceniza	5%	10%	15%	20%	25%		
1	0.067	0.051	0.033	0.027	-	-		
2	0.086	0.067	-	-	-	-		
3	-	-	-	-	0.029	0.023		
4	-	-	0.048	0.032	0.033	0.025		
5	0.111	0.075	0.052	0.033	0.035	0.026		
6	0.118	0.078	0.056	0.036	0.036	0.028		
7	0.122	0.082	0.059	0.037	0.037	0.029		
8	0.124	0.086	0.062	0.039	-	-		
9	0.129	0.090	-	-	-	-		
10	-	-	-	-	0.038	0.030		
11	-	-	0.066	0.041	0.039	0.031		
12	0.138	0.095	0.069	0.043	0.040	0.032		
13	0.142	0.100	0.070	0.044	0.040	0.033		

Tabla 5.19 Porcentaje de expansión promedio de barras

Fuente: Mora & Pogo, 2021

Figura 5.6 Expansión promedio de barras, con distintos porcentajes de ceniza.

Fuente: Mora & Pogo, 2021

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6.1. CONCLUSIONES

Se aplicó la metodología establecida en las normativas ASTM C1260-2014 y ASTM C1567-2013 de métodos expansivos acelerados para determinar la reactividad potencial álcali-sílice con éxito, al obtener resultados congruentes con los estudios previos realizados: método químico y estudio petrográfico.

De acuerdo con el ensayo por el método químico de reactividad potencial álcalisílice (ASTM C289-2007) realizado en los siete áridos muestreados indican que el agregado de la mina de Quiroga (muestra 3) es potencialmente reactivo.

N° de Muestra	Color
Muestra 1	
Muestra 2	
Muestra 3	
Muestra 4	
Muestra 5	
Muestra 6	
Muestra 7	

Figura 6.1 Resultados del análisis químico de la muestra obtenida en Quiroga

Fuente: ASTM C289-2007

Mediante el análisis petrográfico realizado al agregado de Quiroga, que es el único en demostrar reactividad potencial álcali-sílice, se determinó que se trata de una roca de tipo ígnea volcánica llamada Andesita, presentando una matriz de 80% de vidrio volcánico y microlitos, además de otros minerales como plagioclasa (13%), feldespato alcalino (2%), clinopiroxeno (1%) y minerales opacos (4%). El principal mineral que compone la andesita muestreada es el vidrio volcánico el cual posee una forma de sílice amorfa, que favorece al ataque de álcalis, facilitando las condiciones para la producción del gel álcali-sílice, durante el proceso de hidratación del cemento.

De los resultados obtenidos en el análisis químico y petrográfico, se puede establecer que los resultados de expansiones obtenidos en el ensayo acelerado de las barras de mortero son consecuencia de la reacción álcali-sílice. Es necesaria la ejecución de todos estos ensayos, ya que por separados ninguno de estos estudios es concluyente para determinar la existencia o no, de la reacción álcali-sílice.

En este proyecto de investigación se usó agregado proveniente de la Mina de Quiroga, ubicada en la Parroquia de Quiroga, Cantón Cotacachi, en la Provincia de Imbabura, debido a su localización geográfica cercana a proyectos como la Central Hidroeléctrica Manduriacu, Ciudad del Conocimiento Yachay y varias escuelas del Milenio, es importante el análisis de los áridos obtenidos de este sector debido a que en esta investigación se demostró que este material es potencialmente reactivo.

La ceniza volcánica del Tungurahua fue sometida a ensayos de difracción por rayos X y fluorescencia obteniendo como resultado que el 81.6% de sus componentes corresponden a dióxido de silicio (SiO_2), óxido de aluminio (Al_2O_3) y óxido férrico (Fe_2O_3), analizada en función a la norma ASTM C618-2019 cumpliendo con los requisitos del ítem 6.1 (composición química para materiales puzolánicos naturales en el hormigón) que establece un mínimo del 70%.

Durante los ensayos de flujo realizados durante la elaboración de las barras, se evidenció que, conforme se aumenta del porcentaje de remplazo en peso de cemento por ceniza, se necesita una menor cantidad de agua de mezclado para alcanzar el flujo necesario de 110 \pm 5%.

Tabla de flujos para molde promedio				
Porcentaje de reemplazo	Relación a/c	Flujo promedio	Agua para mezcla	
%	-	%	gr	
0	0.519	113	228.2	
5	0.545	112	227.9	
10	0.563	110	222.9	
15	0.592	110	221.4	
20	0.639	112	224.9	
25	0.677	111	223.4	

Tabla 6.1 Tabla de flujos para diferentes porcentajes de ceniza

Fuente: Mora & Pogo

Al realizar el ensayo de la barra de mortero con el método acelerado, sin remplazo de cemento por ceniza volcánica, se obtuvo una expansión promedio de 0.145% en el día 14 después de la inmersión en el hidróxido de sodio, siendo el límite del 0.10% para materiales inocuos según la norma ASTM C1260-2014, y entrando en el rango de expansiones donde se encuentran tanto materiales reactivos como inocuos (entre 0.10% y 0.20%) por lo que la norma recomienda realizar ensayos petrográficos sobre este tipo de agregados para determinar la presencia de reactivos conocidos.

Con el uso del 5% de ceniza volcánica en reemplazo del cemento se observó que la expansión fue del 0.102%, superando los límites permitidos por la norma ASTM C1567-2013, mientras que con reemplazos mayores o iguales al 10% de ceniza volcánica (10%, 15%, 20% y 25%) la reacción es menor al 0.08% logrando clasificar la expansión de los agregados como no perjudicial.

En la Figura 5.5 se observa que las curvas de expansión del 0%, 5% y 10% de remplazo tienen pendientes más altas de crecimiento obteniendo mayores expansiones en el primer día de ensayo, mientras que en las curvas del 15%, 20% y 25% se observa un comportamiento más estable a lo largo de los 14 días de ensayo.

Remplazo de ceniza	Expansión promedio	Reducción de
	dia 14	Expansion
%	%	%
Sin ceniza	0.1451	-
5%	0.1026	29.29
10%	0.0722	50.24
15%	0.0443	69.47
20%	0.0405	72.09
25%	0.0342	76.43

Tabla 6.2 Tablas de expansión de las barras de mortero, día 14

Fuente: Mora & Pogo

Después de que las barras fueron sumergidas en hidróxido de sodio durante 14 días a 80°C, las expansiones presentadas no fueron de gran magnitud, en consecuencia, no se pudieron evidenciar fisuras apreciables a simple vista.

Conforme al estudio realizado podemos decir que el uso de la ceniza del volcán Tungurahua es una estrategia eficiente para la inhibición de la reactividad álcali sílice, en proyectos donde se deba hacer uso de este tipo de agregados potencialmente reactivos.

6.2. **RECOMENDACIONES**

Debido a la sensibilidad del aparato medidor de barras, es importante realizar las lecturas de las barras a una temperatura similar todos los días, además de posicionar las barras en la misma orientación en cada medida, mantener el instrumento en la misma ubicación y de ser posible la medición deberá ser realizada por el mismo operador para evitar errores.

Al momento de desencofrar las barras de mortero, estas son muy delicadas, por lo tanto, se debe tomar en cuenta que el molde debe tener el suficiente lubricante para garantizar un desencofrado más fácil, sin sobrepasarse en el uso de este ya que comprometeríamos las propiedades mecánicas del hormigón, una forma para facilitar el desencofrado es dar pequeños golpes en el sentido longitudinal de las placas que dividen las barras.

El reactivo de hidróxido de sodio usado durante los ensayos del método acelerado tiene una concentración alta, por esta razón es sumamente peligroso si llega a entrar en contacto con los ojos o la piel, por esto es necesario el uso del equipo de protección adecuado al momento de manipular esta sustancia y durante las mediciones

Realizar como estudios previos los ensayos químicos y estudio petrográfico de la muestra del agregado puede ayudarnos a identificar rápidamente materiales inocuos, sin embargo, si en estos ensayos se presenta una reactividad potencial o si se tiene evidencia de que los minerales en la roca puedan ser reactivos, se deben realizar otros ensayos como lo son los ensayos expansivos, ya sean estos normales o acelerados, para determinar su reactividad.

Tomar en cuenta que se debe realizar el ensayo de flujo por cada dosificación de puzolana, debido a que el agua en la mezcla influye de manera considerable, debido a que como se explicó anteriormente el agua es uno de los tres principales factores que favorecen el desarrollo de la reacción álcali-sílice.

Debido a que la solución de hidróxido de sodio cubre las demandas de álcalis y humedad necesarias, para que se lleve a cabo la reacción, se puede usar cualquier tipo de cemento Portland para llevar a cabo estos ensayos, exceptuando cementos con alto contenido de puzolanas como los tipos IP.

Revisar cuidadosamente la proporción de agregado/cemento establecida en las normas ASTM C1260-2014 y ASTM C1567-2013, ya que esta relación depende

exclusivamente del peso específico de cada agregado, por lo que será diferente de un material a otro.

BIBLIOGRAFÍA

- ASTM C289. (2007). Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method). ASTM International.
- ASTM C295. (2019). *Guide for Petrographic Examination of Aggregates for Concrete*. ASTM International.
- ASTM C305. (2020). Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International.
- ASTM C490. (2017). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM International.
- ASTM C511. (2019). Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes. ASTM International.
- ASTM C618. (2019). Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International.
- ASTM C1260. (2014). Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International.
- ASTM C1437. (2020). *Standard Test Method for Flow of Hydraulic Cement Mortar*. ASTM International.

- ASTM C1567. (2013). Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method). ASTM International.
- Avila, A. E. S., & Cabrera, M. P. U. (2010). Caracterización de la ceniza volcánica del Tungurahua para la fabricación de un aglomerante Cal - puzolana [Universidad de Cuenca].
- Barreto, M., De Brito, J., & Santos, A. (2009). Métodos de evaluación de las reacciones álcali-sílice en hormigones con áridos reciclados. *Revista ingeniería de construcción*, *24*(2), 141-152.
- Buitrón, S., & Enríquez, A. (2018). *Estudio de la estabilización de arcillas expansivas de Manabí con ceniza del volcán Tungurahua* [Escuela Politécnica Nacional].
- Cenzano, M. del C., Ramos, Á., & Ulo, C. R. (2011). Inhibición de la reacción álcali— Agregado utilizando puzolana natural. *Revista Investigación y Desarrollo*, *6*(6), 20-26.
- Delgado, A., & Negrete, C. (2012). Evaluación del uso de arcillas y puzolanas en la etapa de molienda de acabado para la fabricación de cemento Portland Tipo IP [Universidad de Cuenca].
- Escobar García, F. D. (2013). *Reactividad potencial álcali sílice de las combinaciones de materiales cementantes y agregados. Método de la barra mortero* [Escuela Politécnica Nacional].
- Folliard, K., Thomas, M. D. A., & Kurtis, K. (2003). Directrices para el uso de litio para mitigar o prevenir la reacción álcali-sílice (Asr) (Informe Técnico FHWA-RD-03-047). U.S. Departament of Transportation Federal Highway Administratio.

- Fournier, B., & Bérubé, M.-A. (2000). Alkali-aggregate reaction in concrete: A review of basic concepts and engineering implications. *Canadian Journal of Civil Engineering*, 27(2), 167-191.
- Haro, A. N. (2011). Evaluación del impacto ambiental en los pastizales producidos por el proceso eruptivo del volcán Tungurahua en la hacienda Choglontus [Escuela Superior Politécnica Del Chimborazo].
- Hermosillo, R., Valdez, P., Fajardo San Miguel, G., & Flores Vivian, I. (2008). Efectividad de las puzolanas naturales para reducir la expansión álcaliagregado. CIENCIA-UANL, 11(3), 256-263.
- Hidalgo, S. (2013). TUNGURAHUA. Instituto Geofísico EPN. https://www.igepn.edu.ec/tungurahua
- Jones, A. E. K., & Clark, L. A. (1998). The effects of ASR on the properties of concrete and the implications for assessment. *Elsevier Labs*, *20*(9), 785-791.
- Lanza Fernández, V. D. (2012). *Estudio de la Reactividad álcali-sílice originada por componentes reactivos minoritarios*. [Universidad Politécnica de Madrid].
- Martínez Estévez, A. (2014). Estudio experimental de las expansiones por reacción álcali- sílice a nivel de la interfase pasta de cemento-agregado [Universidad de Barcelona].
- Melo Jimenez, L. J. (2014). Reactividad álcali-agregado (RAA): Experiencias en presas colombianas, análisis comparativo de principales variables [Universidad Nacional De Colombia].
- Milanesi, C. (2018). Experiencias sobre la caracterización de algunos basaltos de la provincia de corrientes (Argentina) frente a la reacción álcali-sílice (RAS). 1-10.

- NTE INEN 152-5. (2012). *Cemento Portland. Requisitos*. Instituto Ecuatoriano de Normalización.
- NTE INEN 156-2. (2009). *Cemento Hidráulico. Determinación de la densidad.* Instituto Ecuatoriano de Normalización.
- NTE INEN 157-2. (2009). *Cemento Hidráulico. determinación de la consistencia Normal. Método Vicat.* Instituto Ecuatoriano de Normalización.
- NTE INEN 158-2. (2009). *Cemento Hidráulico. Determinación del tiempo de fraguado. Método de Vicat.* Instituto Ecuatoriano de Normalización.
- NTE INEN 857. (2010). Áridos. Determinación de la densidad relativa (gravedad especifica) y absorción del árido grueso. Instituto Ecuatoriano de Normalización.
- NTE INEN 858. (2010). Áridos. Determinación de la masa unitaria (peso volumétrico) y el porcentaje de vacíos. Instituto Ecuatoriano de Normalización.
- NTE INEN 860. (2011). Áridos. Determinación del valor de la degradación del árido grueso de partículas menores a 37.5mm mediante el uso de la máquina de Los Ángeles. Instituto Ecuatoriano de Normalización.
- NTE INEN 862. (2011). Áridos para hormigón. Determinación del contenido total de humedad. Instituto Ecuatoriano de Normalización.
- NTE INEN 867. (2009). Áridos para hormigón. Determinación de la reactividad alcalina potencial de combinaciones árido-cemento (método de la barra de mortero). Instituto Ecuatoriano de Normalización.

- NTE INEN 868. (2011). Áridos para hormigón. Determinación de la potencial reactividad álcali-sílice de los áridos. Método Químico. Instituto Ecuatoriano de Normalización.
- NTE INEN 870. (2011). Áridos para hormigón. Examen Petrográfico. Instituto Ecuatoriano de Normalización.
- NTE INEN 872. (2011). *Áridos para hormigón. Requisitos*. Instituto Ecuatoriano de Normalización.
- NTE INEN 875-2. (2009). *Cemento Hidráulico. Determinación del endurecimiento prematuro. Método de la pasta*. Instituto Ecuatoriano de Normalización.
- NTE INEN 1855-2. (2015). *Hormigones, Hormigón preparado en obra. Requisitos.* Instituto Ecuatoriano de Normalización.
- NTE INEN 2380-2. (2011). *Cemento Hidráulico. Requisitos de desempeño para cementos hidráulicos.* Instituto Ecuatoriano de Normalización.
- Ordoñez Malla, F. P. (2013). Estudio de geología, mineralización y alteraciones en la concesión minera cascabel provincia de Imbabura. [Escuela Politécnica Nacional].
- Pecchio, M., Yushiro, K., Forti, A., & Andrade, T. (2006). Produtos da reação álcalisilicato em concretos de Edificações da região do grande recife. *II Simposio sobre Reaccáo Álcalis em Estructuras de Concreto*, 10.
- Poole, A. B., & McLachlan, A. (1992). Introduction to alkali-aggregate reaction in concrete. *R.N. Swamy*, 1-29.

- RILEM TC 191-ARP, I. (2003). RILEM recommended test method AAR-1: Detection of potential alkali-reactivity of aggregates—Petrographic method. *Materials and Structures*, *36*(7), 480-496.
- Salazar, A. (2004). Síntesis de la Tecnología del concreto, una manera de entender los materiales (4.ª ed., Vol. 1). Universidad del Valle.
- Saoriano Lascano, J. E. (1998). *Reacción álcali-agregado Método Acelerado* [Escuela Superior Politécnica del Litoral].
- Sarkar, S. L., Zollinger, D. G., & Mukhopadhyay, A. K. (2004). Handbook for identification of alkali-silica reactivity in airfield pavements. U.S. Departament of Transportation Federal Aviation Administration, 150(5380-8), 79.
- Segarra Foradada, J. (2005). *Envejecimiento de presas por reacciones expansivas en el hormigón* [Universidad Politécnica de Cataluña].
- Simoes, C. (2013, junio 1). *Volcanes de Ecuador—Astronoo*. Astronoo. http://www.astronoo.com/es/articulos/volcanes-ecuador.html
- Stanton, T. (1942). Expansion of Concrete through Reaction between Cement and Aggregate. *Transactions of the American Society of Civil Engineers*, 107(1), 54-84
- Valdez, P. L., Roy, T. K. D., & Villarreal, R. R. (2004). Evaluación de la velocidad de hidratación en sistemas puzolanas naturales-portlandita. *CIENCIA-UANL*, 7(2), 190-195.
- Velasco Torres, A. (2014). Estudio experimental sobre la reacción álcali-sílice en el hormigón producida por áridos de reacción lenta [Universidad Politécnica de Madrid].

- Xu, Z., & Hooton, R. D. (1994). Migration of alkali ions in mortar due to several mechanisms. *Elsevier*, *23*, 951-961.
- Zoilo, C., Akasaki, J., Fioriti, C., Bernardes, H., Moreira Salles, F., & Pereira, A. (2013). Estudio cualitativo sobre fisuración debida a la reacción álcali -sílice en el forjado de la represa hidráulica de Jaguari. *Revista ingeniería de construcción*, 28(3), 290-299.

ANEXO 1

ENSAYO DE REACTIVIDAD POTENCIAL ÁLCALI-SÍLICE MÉTODO QUÍMICO

Campus Politécnico "José Rubén Orellana Ricaurte" • Calle Ladrón de Guevara E 11-253 Tel.: (+593-2) 2976300 / 3938780 Ext.: 2151 • Linea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu.ec

L: (*395-2) 29/03007 3938/80 Ext.: 2151 • Linea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu. Quito – Ecuador

INFORME DE RESULTADOS

Quito, 20 de noviembre de 2019

DATOS DE CLIEN	TE			No.IRI19-509 Ref. ST19-193
Solicitado por:	Pogo Chafla Lenin	Miguel		
Atención:	Mora Aguirre Edwi	n Alejandro	Teléfono:	-
Dirección:	-		Lugar de muestreo	: Apuela
Identificación de la muestra:	Muestra 1		Origen de la muestra	Puente Apuela
Fecha de recolección:	2019-10-02		Suelo Plástico	
Responsable del muestreo:	Cliente			
			Llegó refrigerada:	No
LABORATORIO			Se utilizó preservante:	No
lúmero de ingreso al laboratorio:	MI-19- 509			
Fecha de ingreso al Laboratorio:	2019-11-08			
PARÁMETRO	UNIDAD	RESULTADO	FECHA DEL ANÁLISIS	PROCEDIMIENTO
⁹ Determinación de la eactividad potencial de un gregado con álcalis	mmol/L	Sc= 10,7 Rc= 150,0	2019-11-14	Norma ASTM C289
ic = Concetración de Sílice c= Reducción en alcalinidad ACREDITACIONES: ¹ Parámetro no acreditado		J		

NOTA: La incertidumbre de la medición de este ensayo se encuentra disponible para el cliente, cuando lo requiera.

Aprobado por: MSc. Carola Fierro RESPONSABLE DE LABORATORIO

F-PT-08-06 Versión 01

(ilit here

Revisado por Jairo Jimpikit RESPONSABLE TÉCNICO

No.IRI19-510

Ref. ST19-193

Campus Politécnico "José Rubén Orellana Ricaurte" • Calle Ladrón de Guevara E 11-253 Tel.: (+593-2) 2976300 / 3938780 Ext.: 2151 • Linea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu.ec Quito - Ecuador

INFORME DE RESULTADOS

Quito, 20 de noviembre de 2019

DATOS DE CLIENTE

Solicitado por: Pogo Chafla Lenin Miguel Atención: Mora Aguirre Edwin Alejandro Dirección: -Identificación de la muestra: Muestra 2

Fecha de recolección: 2019-10-02 Responsable del muestreo: Cliente

Teléfono: -Lugar de muestreo: Apuela Origen de la muestra: Puente Apuela Tipo de muestra: Suelo Tipo de envase: Plástico Llegó refrigerada: No Se utilizó preservante: No

LABORATORIO

Número de ingreso al laboratorio: MI-19- 510 Fecha de ingreso al Laboratorio: 2019-11-08

PARÁMETRO	UNIDAD	RESULTADO	FECHA DEL ANÁLISIS	PROCEDIMIENTO
^(c) Determinación de la reactividad potencial de un agregado con álcalis	mmol/L	Sc= 16,1 Rc= 140	2019-11-14	Norma ASTM C289
Sc = Concetración de Sílice Rc= Reducción en alcalinidad				

ACREDITACIONES: (c) Parámetro no acreditado

Mayor información respecto a los métodos, incertidumbres de medición y alcance de la acreditación de los parámetros se encuentra disponible en caso de ser solicitado.

NOTA: La incertidumbre de la medición de este ensavo se encuentra disponible para el cliente, cuando lo requiera.

Aprobado por: MSc. Carola Fierro **RESPONSABLE DE LABORATORIO**

F-PT-08-06 Versión 01

Campus Politécnico "José Rubén Orellana Ricaurte" • Calle Ladrón de Guevara E 11-253 Tel.: (+593-2) 2976300 / 3938780 Ext.: 2151 • Línea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu.ec

Quito – Ecuador

INFORME DE RESULTADOS

Quito, 20 de noviembre de 2019

No.IRI19-511 Ref. ST19-193

DATOS DE CLIENTE Solicitado por: Pogo Chafla Lenin Miguel Atención: Mora Aguirre Edwin Alejandro Dirección: -Identificación de la muestra: Muestra 3 Fecha de recolección: 2019-10-02 Responsable del muestreo: Cliente

Teléfono: -Lugar de muestreo: Apuela Origen de la muestra: Puente Apuela Tipo de muestra: Suelo Tipo de envase: Plástico Llegó refrigerada: No Se utilizó preservante: No

LABORATORIO

Número de ingreso al laboratorio: MI-19- 511 Fecha de ingreso al Laboratorio: 2019-11-08

PARÁMETRO	UNIDAD	RESULTADO	FECHA DEL ANÁLISIS	PROCEDIMIENTO
^(c) Determinación de la reactividad potencial de un agregado con álcalis	mmol/L	Sc= 190,5 Rc= 133,3	2019-11-15	Norma ASTM C289
Sc = Concetración de Sílice Rc= Reducción en alcalinidad ACREDITACIONES:				

(c) Parámetro no acreditado

Mayor información respecto a los métodos, incertidumbres de medición y alcance de la acreditación de los parámetros se encuentra disponible en caso de ser solicitado.

NOTA: La incertidumbre de la medición de este ensayo se encuentra disponible para el cliente, cuando lo requiera.

milit his Revisado por: Jairo Jimpikit **RESPONSABLE TÉCNICO**

Aprobado por: MSc. Carola Fierro RESPONSABLE DE LABORATORIO

F-PT-08-06 Versión 01

Campus Politécnico "José Rubén Orellana Ricaurte" • Calle Ladrón de Guevara E 11-253 Tel.: (+593-2) 2976300 / 3938780 Ext.: 2151 • Línea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu.ec

Quito - Ecuador

INFORME DE RESULTADOS

Quito, 20 de noviembre de 2019

No.IRI19-512 Ref. ST19-193

DATOS DE CLIENTE Solicitado por: Pogo Chafla Lenin Miguel Atención: Mora Aguirre Edwin Alejandro Dirección: -Identificación de la muestra: Muestra 4 Fecha de recolección: 2019-10-29 Responsable del muestreo: Cliente

Teléfono: -Lugar de muestreo: Nanegal Origen de la muestra: Cascada la Piragua Tipo de muestra: Suclo Tipo de envase: Plástico Llegó refrigerada: No Se utilizó preservante: No

LABORATORIO

Número de ingreso al laboratorio: MI-19- 512 Fecha de ingreso al Laboratorio: 2019-11-08

(0)				TROCEDIMENTO
reactividad potencial de un agregado con álcalis	mmol/L	Sc= 16,6 Rc= 73,3	2019-11-19	Norma ASTM C289
Sc = Concetración de Sílice Rc= Reducción en alcalinidad				

^(c) Parámetro no acreditado

Mayor información respecto a los métodos, incertidumbres de medición y alcance de la

acreditación de los parámetros se encuentra disponible en caso de ser solicitado.

NOTA: La incertidumbre de la medición de este ensayo se encuentra disponible para el cliente, cuando lo requiera.

F-PT-08-06 Versión 01

CICAM

Teléfono: -Lugar de muestreo: Nanegal Origen de la muestra: Cascada la Piragua Tipo de muestra: Suelo Tipo de envase: Plástico Llegó refrigerada: No Se utilizó preservante: No

No.IRI19-513

Ref. ST19-193

Facha da in

PARAMETRO	UNIDAD	RESULTADO	FECHA DEL ANÁLISIS	PROCEDIMIENTO
^(c) Determinación de la reactividad potencial de un agregado con álcalis	mmol/L	Sc= 16,6 Rc= 90,0	2019-11-19	Norma ASTM C289

ESCUELA POLITECNICA NACIONAL

CENTRO DE INVESTIGACIÓN Y CONTROL AMBIENTAL

ACREDITACIONES: (c) Parámetro no acreditado

150 REPART

Mayor información respecto a los métodos, incertidumbres de medición y alcance de la acreditación de los parámetros se encuentra disponible en caso de ser solicitado.

NOTA: La incertidumbre de la medición de este ensayo se encuentra disponible para el cliente, cuando lo requiera.

Revisado por Jairo Jimpikit RESPONSABLE TÉCNICO	CICA	CONTROL AMBIEN	Aprobac RESPO	lo por: MSc. Carola Fierro NSABLE DE LABORATORIO
F-PT-08-06 Versión 07	1	Página	1 de 1	

Campus Politécnico "José Rubén Orellana Ricaurte" • Calle Ladrón de Guevara E 11-253 Tel.: (+593-2) 2976300 / 3938780 Ext.: 2151 • Línea directa: (+593-2) 3938864 • Apartado 17-01-2759 • E-mail: cicam@epn.edu.ec

	NUMBER OF STREET, STREE	Quito – Ecuador		
	I	NFORME DE RESU	LTADOS	
		Quito, 05 de diciembre de	e 2019	
DATOS DE CLIEN	JTE			No.IRI19-565
Solicitado por:	Pogo Chafla Lenin M	figuel		Ref. S119-202
Atención:	Mora Aguirre Edwin	Alejandro	Teléfono:	
Dirección	-		Lugar de muestreo:	Los Bancos
Identificación de la muestra:	Muestra 7		Origen de la muestra:	Río Blanco
Fecha de recolección:	2019-11-13		Tipo de muestra:	Suelo
Responsable del muestreo:	Cliente		Tipo de envase:	Plástico
			Llegó refrigerada:	No
LABORATORIO			Se utilizó preservante:	No
Número de ingreso al laboratorio: Fecha de ingreso al Laboratorio:	MI-19- 565 2019-11-08			
PARÁMETRO	UNIDAD	RESULTADO	FECHA DEL ANÁLISIS	PROCEDIMIENTO
^(c) Determinación de la reactividad potencial de un agregado con álcalis	mmol/L	Sc= 24,3 Rc= 36,7	2019-12-03	Norma ASTM C289
Sc = Concetración de Sílice Rc= Reducción en alcalinidad				

ACREDITACIONES: (c) Parámetro no acreditado

Mayor información respecto a los métodos, incertidumbres de medición y alcance de la acreditación de los parámetros se encuentra disponible en caso de ser solicitado.

NOTA: La incertidumbre de la medición de este ensayo se encuentra disponible para el cliente, cuando lo requiera. · EPN ·

ANEXO 2

ENSAYOS PETROGRÁFICOS

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE GEOLOGÍA Y PETRÓLEOS DEPARTAMENTO DE GEOLOGÍA ANÁLISIS PETROGRÁFICO

СĆ М	DIGO DE UESTRA	1					
1	DESCRIPCIÓN MA	CROSCOPICA:					
	COLOR:	Gris os	Gris oscuro				
	TEXTURA:	Porfirít	orfirítica con cristales dominantes de plagioclasa en una matriz afanítica				
	MINERALES X20:	Plagioc	lasa y Ferromagnesianos				
2	DESCRIPCIÓN MI	CROSCÓPICA:		2			
	TEXTURAS:	A Sec	Ор				
	-Porfirítica	the second					
	Fenocristales o	2					
	cristales de gran	196.3		Ор			
	tamaño de grano	200					
	relativo, en una m	natriz					
	o mesostasis form	nada Pig	Plg	Pig			
	por cristales de		<u>1 mm.</u>	1mm			
	tamaño más fino	o					
	vidrio.		1) Polarización cruzada x2.5	2) Polarización normal x2.5			
	-Hipocristalina	13.		Ple			
	Coexisten cristale	s y	00				
	vidrio		Arcilla	and the second of			
	-Intersertal		SX - Star St	Op			
	Los intersticios de			a fir string 1 - of the			
	roca se encuentra		1mm	and the second sec			
	volcánico.			<u>250 µm</u>			
			3) Polarización cruzada x2.5	4) Polarización cruzada x10			
		250 dam	Pig Fils Cpx	Arcilla Pig			
			5) Polarización cruzada x10	6) Polarización cruzada x10			

Ing. Yesenia Enríquez

Dr. Pedro Reyes. PhD.

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE GEOLOGÍA Y PETRÓLEOS DEPARTAMENTO DE GEOLOGÍA

ANÁLISIS PETROGRÁFICO

3	COMP	ONENTES:				
	Fenocristales:		20%			
	13%	Plagioclasa (Plg)	Cristale débil, c albita-c	s de forma euhedral y subhedral, presentan relieve bajo, birrefringencia olores de interferencia blanco-gris de 1er orden, presentan maclas de tipo arlsbad, figura de interferencia biaxial.		
	2%	Feldespato alcalino (Fds)	Cristales de forma euhedral y subhedral, presentan relieve bajo, birrefringencia débil, colores de interferencia blanco-gris de 1er orden, macla de Carlsbad, figura de interferencia biaxial (-). Posiblemente sanidina.			
	1%	Clinopiroxeno (Cpx)	 Cristales subhedrales, de relieve moderado, birrefringencia fuerte, colores d interferencia de 2do orden. 			
	4% Opacos (Op) Matriz:		Cristales subhedrales y anhedrales, de color negro rojizo, con comportamiento isotrópico.			
			80%	Formada en su mayor parte por vidrio volcánico y microlitos (cristales de tamaño < 0.1 mm). El vidrio volcánico se observa de coloración gris oscuro con polarización cruzada y sin coloración con polarización normal.		
	Minera alterac	ales de :ión:	1%			
	1%	Arcilla	De colc	ración negro-café. Se forma como producto de alteración de plagioclasas.		
	OBSERVACIONES:		La roca es de tipo ígnea volcánica (extrusiva), con textura porfirítica, hipocristalina, intersertal. Formada por cristales de plagioclasa, feldespato alcalino, clinopiroxeno y minerales opacos. Presenta 1% de minerales de alteración: arcilla, formada por la alteración de muy pocos cristales de plagioclasa.			
4	NOMBRE DE LA ROCA:		Andesit	a		

*Notas:

Los minerales de alteración se contabilizan tomando en cuenta, que porcentaje de minerales principales han sido alterados.

La birrefringencia y colores de interferencia de describen de acuerdo a la tabla de colores de Auguste Michel-Lévy.

Ing. Yesenia Enríquez

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE GEOLOGÍA Y PETRÓLEOS DEPARTAMENTO DE GEOLOGÍA ANÁLISIS PETROGRÁFICO

CÓDIGO DE MUESTRA		2						
1	DESCRIPCIÓN MA	CROSC	Cópica:					
	COLOR:		Gris clar	0				
	TEXTURA:		Fanerítio	ca				
	MINERALES X20:		Biotita y	ta y Plagioclasa				
2	2 DESCRIPCIÓN MICROSCÓPICA:							
	TEXTURAS:				Op			
	-Holocristalina			Pig				
	Todos sus		Constant of the	Qz				
	componentes son		ett 1	Bt				
	cristales.				Bt			
	-Zonación de		Sec.	The second of	Bt			
	plagioclasas			Fds 1 mm	1 mm			
	Caracterizada		100					
	ópticamente por		1) Polarización cruzada x2.5	2) Polarización normal x2.5			
	cambios en el colo	or o	-		Fds			
	el ángulo de extin	ción		A				
	del mineral desde	el	a con					
	nucleo nasta el po	fice.						
			• >		Сры			
			and a	Qz				
			-		Bt			
				<u>250 μm</u>	250 mm /2			
				3) Polarización cruzada x10	4) Polarización cruzada x10			
			A State of the second s					
				- Maria	Fds			
			1	O Bt	20 00			
					A LAND A LAND A LAND			
			in the	WYYY HE	Pig			
			250 μm		<u>250 μm</u>			
				5) Polarización normal x10	6) Polarización cruzada x10			
	1							

Ing. Yesenia Enríquez

Dr. Pedro Reyes. PhD.

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE GEOLOGÍA Y PETRÓLEOS DEPARTAMENTO DE GEOLOGÍA

ANÁLISIS PETROGRÁFICO

3	COMPO	ONENTES:			
	Fenocr	istales:	100%		
	20%	Biotita (Bt)	Color p relieve	ardo-pardo marrón, en forma de ag moderado, birrefringencia fuerte, co	regados laminares, exfoliación perfecta, olor de interferencia de 2do orden.
	40%	Plagioclasa (Plg)	Cristale débil, c albita-c	s de forma euhedral y subhedral, pr olores de interferencia blanco-gris d arlsbad, figura de interferencia biax	resentan relieve bajo, birrefringencia de 1er orden, presentan maclas de tipo ial.
	30%	Feldespato alcalino (Fds)	Cristale débil, c maclas,	s de forma euhedral y subhedral, pr olores de interferencia blanco-gris d figura de interferencia biaxial (-).	resentan relieve bajo, birrefringencia de 1er orden, macla de Carlsbad y sin
	2%	Clinopiroxeno (Cpx)	Cristale interfer	s subhedrales, de relieve moderado encia de 2do orden.), birrefringencia fuerte, colores de
	7%	Cuarzo (Qz)	Cristale colores (+).	s anhedrales, relieve muy bajo, sin e de interferencia blanco-gris de 1er	exfoliación, birrefringencia muy débil, orden, figura de interferencia uniaxial
	<1%	Opacos (Op)	Cristale isotróp	s subhedrales y anhedrales, de colo co.	r negro rojizo, con comportamiento
	Minera alterac	iles de ión:	0%	La roca no presenta minerales de a	lteración.
	OBSER	VACIONES:	La roca Formac clinopir	es de tipo ígnea intrusiva con textu a por cristales de biotita, plagioclas oxeno y minerales opacos.	ra holocristalina. a, feldespato alcalino, cuarzo,
4	NOMB	RE DE LA ROCA:	Granod	iorita	

*Notas:

Los minerales de alteración se contabilizan tomando en cuenta, que porcentaje de minerales principales han sido alterados.

La birrefringencia y colores de interferencia de describen de acuerdo a la tabla de colores de Auguste Michel-Lévy.

Ing. Yesenia Enríquez

ANEXO 3

ENSAYO DE DIFRACCIÓN POR RAYOS X Y FLUORESCENCIA DE LA CENIZA VOLCÁNICA

ESCUELA POLITÉCNICA NACIONAL DEPARTAMENTO DE METALURGIA EXTRACTIVA

Resultados Análisis de Difracción de Rayos X

Solicitante	÷	Ing. Mercedes Villacis
No. Referencia		RM - 9155
Fecha		31 - 11 - 2017
Muestras recibidas	:	Siete muestras sólidas denominadas:
Muestra 1	:	Fracción Fina (Código Registrado)
Muestra 2	:	Fracción Gruesa (Código Registrado)
Muestra 3	:	M#3 (Código Registrado)
Muestra 4	:	M#4 (Código Registrado)
Muestra 5	:	M#5 (Código Registrado)
Muestra 6	:	Ceniza Volcán Tungurahua (Código Registrado)
Muestra 7	:	Ceniza de Cascarilla de Arroz (Código Registrado)

La determinación de los compuestos con cristalización definida presentes en la muestra se realizó empleando el Difractómetro D8 ADVANCE y el programa Diffrac plus (EVA Y TOPAS) para cualificación y semicuantificación. A continuación se detallan los resultados obtenidos del análisis.

Mineral	Fórmula	Muestra 1 Contenido (%)	Muestra 2 Contenido (%)
Grupo Plagioclasas (albita, andesina, anortita)	(Na,Ca)Al(Si,Al)Si₂O8	57	59
Cuarzo	SiO ₂	15	12
Diópsido	$CaMgSi_2O_6$	10	8
Muscovita	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	8	7
Dolomita	CaMg(CO ₃) ₂	3	3
Magnetita	Fe ₃ O ₄	2	2
Cordierita	$Mg_2Al_4Si_5O_{18}$	2	4
Ferropargasita	$NaCa_2Fe^{2+}_4AlSi_6Al_2O_{22}(OH)_2$	1	3
Crossita	Na2(Mg,Fe ²⁺)3(AL,Fe ³⁺)2(OH,F)2Si8O22	1	1
Hematita	Fe ₂ O ₃	1	1

ESCUELA POLITÉCNICA NACIONAL DEPARTAMENTO DE METALURGIA EXTRACTIVA

Mineral	Fórmula	Muestra 3 Contenido (%)	Muestra 4 Contenido (%)	Muestra 5 Contenido (%)
Caolinita	Al ₂ (Si ₂ O ₅)(OH) ₄	30	25	15
Cuarzo	SiO ₂	16	20	25
Grupo Plagioclasas (albita, andesina, anortita)	(Na,Ca)Al(Si,Al)Si ₂ O ₈	13	15	24
Diópsido	$CaMgSi_2O_6$	12	13	11
Mordenita	(Na ₂ ,Ca,K ₂) ₄ (Al ₈ Si ₄₀)O ₉₆ ·28H ₂ O	7	8	9
Muscovita	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	6	5	3
Magnetita	Fe ₃ O ₄	5	3	3
Gypsum	CaSO ₄ ·2H ₂ O	5	2	2
Cordierita	Mg2Al4Si5O18	2	1	1
Montmorillonita	(Na,Ca) _{0,3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂	2	2	5
Hematita	Fe ₂ O ₃	1	1	1
Ferropargasita	$NaCa_2Fe^{2+}_4AlSi_6Al_2O_{22}(OH)_2$	1	4	2
Crossita	Na ₂ (Mg,Fe ²⁺) ₃ (AL,Fe ³⁺) ₂ (OH,F) ₂ Si ₈ O ₂₂	1	1	1

Mineral	Fórmula	Muestra 6 Contenido (%)	
Grupo Plagioclasas (albita, andesina, anortita)	(Na,Ca)Al(Si,Al)Si ₂ O ₈	52	
Enstatita	$Mg_2Si_2O_6$	14	
Diópsido	CaMgSi ₂ O ₆	10	
Hedenbergita	Ca(Fe,Mg)Si ₂ O ₆	7	
Pigeonita	(Mg,Fe,Ca)(Mg,Fe)Si ₂ O ₆	6	-
Cuarzo	SiO ₂	4	
Forsterita	Mg ₂ SiO ₄	3	
Magnetita	Fe ₃ O ₄	3	
Akermanita	Ca2MgSi2O7	1	APOLITECA

COC.

Pasaje Andalucia 134 E12A y Mena Caamaño – Teléfono (593-2) 3 938 780 / 2 976 300 – Casilla 17-0 2759 E-mail: <u>ernesto delatorre@epn edu ec</u> - Quito-Ecuador

ESCUELA POLITÉCNICA NACIONAL DEPARTAMENTO DE METALURGIA EXTRACTIVA

ANEXO N.7: Ceniza Volcán Tungurahua

Pasaje Andalucía 134 E12A y Mena Caamaño – Teléfono (593-2) 3 938 780 / 2 976 300 – Casilla 17-01-2759 E-mail: <u>ernesto.delatorre@epn.edu.ec</u> - Quito-Ecuador **ANEXO 4**

ENSAYOS DE CARACTERIZACIÓN DE LOS MATERIALES

INF. No. 21 - 0061 - 1 Hoja 01 de 01					
noja o i de o i				Quito, 3 de mayo de 202	1
DATOS DEL CLIENTE					
Razón Social:	EDWIN MORA; LENIN	POGO			
Dirección:	LADRÓN DE GUEVAR	RA E11-253 Y ANDALUC	ίA		
Teléfono:	0992767984; 0985423	373			
DATOS DEL PROYEC		DEAGOIÓN ÁLONNA			
Proyecto:	TUNGURAHUA, MÉTO	DO DE LA BARRA DE I	MORTERO	JZOLANA DEL VOLCA	N
Contratante:	***		NORTERO		
Contratista:	***				
Fiscalizador:	***				
TIPO DE MUESTRA	ACRECADO CRUESO				
FECHA DE ENSAYO:	***				
NORMA:	ASTM C566				
	IDENTIFICACIÓN	MASA NATURAL	MASASECA	CONTENIDO DE	٦
No.	MUESTRA	(a)	(mada SECA	HUMEDAD	
	and the second se	(9)	(9)	(%)	
1 OBSERVACIONES:	Agregado grueso : El muestreo e identificación de	e las muestras es total respons:	4301,20	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TRIG: PAUL ZUISJIEGA M. FE DEL LABORATORIO (4301,20 abilidad del cliente.	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: Arterioria INIG: PAUL ZUISILGA M. FE DE LABORATORIO (4301,20 abilidad del cliente. E)	0,78	1
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGĂ M. FE DE LABORATORIO (4301,20 abilidad del cliente. E)	O,78	1
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGĂ M. FE DE LABORATORIO (4301,20 abilidad del cliente. E)	0,78	1
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGĂ M. FE DE LABORATORIO (4301,20 abilidad del cliente. E)	0,78	1
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DELLABORATORIO (4301,20 abilidad del cliente.	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DELLABORATORIO (E)	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DIL LABORATORIO (E)	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DELLABORATORIO (4301,20 abilidad del cliente.	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DIL LABORATORIO (4301,20 abilidad del cliente.	0,78	Ξ
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUÑJIGA M. FE DIE LABORATORIO (4301,20 abilidad del cliente.	0,78	3
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TING: PAUL ZUISIIGA M. FE DIL LABORATORIO (4301,20 abilidad del cliente.	0,78	Ξ
1 OBSERVACIONES:	Agregado grueso El muestreo e identificación de	4334,7 e las muestras es total respons: TING: PAUL ZUISIIGA M. FE DE LABORATORIO (4301,20 abilidad del cliente.	0,78	3
OBSERVACIONES	Agregado grueso : El muestreo e identificación de	4334,7 e las muestras es total respons: Arrende de la construcción de	4301,20 abilidad del cliente.	0,78	3
OBSERVACIONES	Agregado grueso : El muestreo e identificación de	4334,7 e las muestras es total respons:	4301,20 abilidad del cliente.	0,78	3
OBSERVACIONES	Agregado grueso	4334,7 e las muestras es total respons: Arange ING: PAUL ZUÑIGĂ M. FE DE LABORĂTORIO (4301,20 abilidad del cliente.	O,78	3
OBSERVACIONES	Agregado grueso	4334,7 e las muestras es total respons: Arabita TARG: PAUL ZUÑJIGĂ M. FE DE LABORĂTORIO (4301,20 abilidad del cliente.	O,78	3
OBSERVACIONES	Agregado grueso	4334,7 e las muestras es total respons: Arabita IANG: PAUL ZUIÑIRÁ M. FE DE LABORATORIO (4301,20 abilidad del cliente.	O,78	3
OBSERVACIONES	Agregado grueso : El muestreo e identificación de	4334,7 e las muestras es total respons: TARE: PAUL ZUISIRA M. FE DE LABORATORIO (4301,20 abilidad del cliente.	O,78	3

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ed

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

GRAVEDAD ESPECÍFICA Y ABSORCIÓN

INF. No. 21 - 0058 - I Hoja 01 de 01

DATOS DEL CLIENTE Razón Social: Dirección: Teléfono: DATOS DEL PROYECTO Proyecto:

Contratante:

NORMA:

EDWIN MORA; LENIN POGO LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA 0992767984; 0985423373

INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO ***

Contratista:	
Fiscalizador:	
PROCEDENCIA:	
TIPO DE MUESTRA:	
FECHA DE ENSAYO:	

AGREGADO GRUESO ASTM C127-15

	E	ENSAYO PESO ESPEC	ÍFICO Y ABSORCIÓ	N	
IDENTIFICACIÓN	DESCRIPCIÓN	DENSIDAD RELATIVA SECA	DENSIDAD RELATIVA S.S.S	DENSIDAD RELATIVA APARENTE	ABSORCIÓN DE AGUA (%)
20-006-I-1	AGREGADO GRUESO	2,38	2,47	2,63	4,11

OBSERVACIÓN:

La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total

responsabilidad. ING. PAUL ZUÑIGA M. JEFE DE LABORATORIO (E) Telf.: 2976300 Ext.: 1609 Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.

EN

Quito, 24 de abril de 2021

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

ANÁLISIS GRANULOMÉTRICO

INF. No. 21-0057-1 Hoja 01 de 01

DATOS DEL CLIENTE

Razón social: EDW Dirección: Ladró Teléfono: 0992 DATOS DEL PROYECTO

EDWIN MORA; LENIN POGO Ladrón de Guevara E11-253 y Andalucía 0992767984; 0985423373

Proyecto:

Contratante: Contratista: Fiscalizador: MUESTRA: PROCEDENCIA: FECHA DE ENSAYO: NORMA: INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO *** AGREGADO GRUESO ***

ASTM C136/C136M-14

PESO INIC	CIAL (g)	10011,50	Número	de Tamaño	56	
TAMIZ No.	TAMAÑO ABERTURA (mm)	PESO RETENIDO (g)	PORCENTAJE RETENIDO (%)	PORCENTAJE RET. ACUMULADO	PORCENTAJE QUE PASA	
1 1/2"	37,50	0.0	0.0	0.0	(76)	ł
1"	25,00	857.9	8.6	86	01.4	ł
3/4"	19,00	2990.0	29.9	38.4	61.6	ł
1/2"	12,50	2924.9	29.2	67.7	01,0	ł
3/8"	9,50	1489.8	14.9	825	32,3	İ
No. 4	4,75	1748.9	17.5	100.0	17,5	İ
Bandeja	-	0,0	0,0	100,0	0,0	ĺ
	TOTAL	10011.5	M. FINURA	7.21	0,0	ļ

OBSERVACIONES: Los datos de procedencia de la muestra son responsabilidad del cliente.

Quito, 27 de abril de 2021

E

114F. 140. 21-0007-1			Quito, 11 de mayo de 2021	
Hoja U1 de U1				
DATOS DEL CLIENTE				
Razón social:	EDWIN MORA; LENIN POGO)		
Dirección:	LADRÓN DE GUEVARA E 1	-253 Y ANDALUCÍA		
Teléfono:	0992767984; 0985423373			
DATOS DEL PROYECTO				
Proyecto:	INHIBICIÓN DE LA REACCI TUNGURAHUA, MÉTODO D	ÓN ÁLCALI-SÍLICE USANDO	O PUZOLANA DEL VOLCÁN	
Contratante:	48.9			
Contratista:	***			
Fiscalizador:	***			
TIPO:	CEMENTO HE			
PROCEDENCIA:	CEMENTO CHIMBORAZO			
FECHA DE ENSAYO:	2020-12-11			
NORMA:	ASTM C451			
	-			
MUESTDA	PENETRACIÓN INICIAL	PENETRACIÓN FINAL	PORCENTAJE FINAL	
MOESTRA	(mm)	(mm)	DE PENETRACION	
			(70)	
	34.0	27.0	79.4	
			OT DE ENSAU	
	ING. PAUL UEFE DE LAGO	ZÓNIGA M. PRATORIO (E)	DE ENS 400 CONTRACTOR	
	ING. PAUL JEFE DE LAGO	ZONIGA M. DRATORIO (E)	DE ENS ALO COMPANY	
	LING. PAUL JEFE DE LABO	20NIGA M. DRATORIO (E)	THE ENSING OF THE ENSING	
	LING. PAUL JEFE DE LAGO	20NIGA M. DRATORIO (E)	DE ENS 4400 CM ANN EMMIN	
	ING. PAUL UEFE DE LAGO	ZÖÑIGA M. DRATORIO (E)	DE ENS 400 CM. MARCH	
	ING. PAUL JEFE DE LAGO	ZONIGA M. DRATORIO (E)	DE ENS AUGO COM ANN EMAN	
	LING. PAUL JEFE DE LAGO	ZONIGA M. DRATORIO (E)	THE ENS AND CONTRACTOR	
	LING, PAUL JEFE DE LABO	CONIGA M. DRATORIO (E)	THE ENSAGE	
	ING. PAUL JEFE DE LABO	ZONIGA M. PRATORIO (E)	THE ENSAGE	
	ING. PAUL JEFE DE LABO	ZÓNIGA M. PRATORIO (E)	THE ENSAGE AND STREAM	
	ING. PAUL JEFE DE LABO	ZÜNIGA M. PRATORIO (E)	THE ENSAGE AND THE REAL	
	ING. PAUL JEFE DE LABO	ZÜNIGA M. IRATORIO (E)	THE ENSAGE	
	LING. PAUL UEFE DE LAGO	ZÓNIGA M. IRATORIO (E)	THE ENS AND COMMENT	
	LING. PAUL JEFE DE LAGO	CONIGA M. DRATORIO (E)	THE ENSAGE OF THE STREET	
	LEFE DE LABO	20NIGA M. DRATORIO (E)	THE ENSAGE	
	JEFE DE LABO	ZONIGA M. DRATORIO (E)	THE ENSAGE	
	ING. PAUL JEFE DE LABO	ZONIGA M. PRATORIO (E)	THE ENSAGE	
	JEFE DE LABO	ZONIGA M. PRATORIO (E)	THE ENSAGE	
	JEFE DE LABO	20NIGA M. PRATORIO (E)	THE ENSAGE	
	JEFE DE LABO	20NIGA M. PRATORIO (E)	THE ENGINE	Telf: 2076300

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

<section-header></section-header>
DATOS DEL CLIENTE Razón Social: E LADRÓN DE GUEVARA E 11-35 YANDALUCÍA Liferoni: Guesvária STANDALUCÍA II. HIGINON DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN POSOCEDENCIME TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO Contratante: E HIGINON DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN Contratante: E HIGINON DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN Contratante: E HIGINON DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN PROCEDENCIME: TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO PROCEDENCIME: TUNGURAHUA TPO DE CEMENTO: HIGINON DE USANDO PUZOLANA DEL VOLCÁNICA TOD DE CEMENTO: HIGINON DE USANDO PUZOLANA DEL VOLCÁNICA 100 DE CEMENTO: HIGINON DE USANDO PUZOLANA DEL VOLCÁNICA 100 DE CEMENTO: HIGINON DE USANDO PUZOLANA 100 DESCRIPCIÓN DESCRIPCIÓN DENSIDAD SUELTA DENSIDAD COMPACTADA 100 GIGNI [®] 20-006-l-2 CENIZA VOLCÁNICA 1,111 1,493 DESERVACIÓN: La procedecia de los Items de ensayo son proporcionadas por el cliente, lo que HIGI-PAUL ZDINIGA M. EFEL DE LABORATORIO (E) HIGI-PAUL ZDINIGA M. EFEL DE LABORATORIO (E)
Proyecto: INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN Contratante: ** Contratante: ** Fiscalizador: ** PROCEDENCIA: TUNGURAHUA TIPO DE CEMENTO: ** FECHA DE ENSAYO: 08/12/2020 NORMA: ***
IPO DE CEMENTO: *** FECHA DE ENSAYO: 08/12/2020 NORMA: ** DENSIDAD APARENTE CEMENTO DENSIDAD COMPACTADA g/cm³ Qo-006-I-2 CENIZA VOLCÁNICA 1,111 1,493 OBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad.
DENSIDAD APARENTE CEMENTO IDENTIFICACIÓN DESCRIPCIÓN DENSIDAD SUELTA g/cm³ DENSIDAD COMPACTADA g/cm³ 20-006-1-2 CENIZA VOLCÁNICA 1,111 1,493 DBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad. Involucra su total responsabilidad.
IDENTIFICACIÓN DESCRIPCIÓN DENSIDAD SUELTA g/cm³ DENSIDAD COMPACTADA g/cm³ 20-006-I-2 CENIZA VOLCÁNICA 1,111 1,493 OBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad. Internet de compactada de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad.
20-006-1-2 CENIZA VOLCÁNICA 1,111 1,493 OBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad.
OBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que involucra su total responsabilidad.

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

EM.

SUR

	DENSIDAD APA	RENTE DE CEMENTO	,
INF. No. 21 - 0065 - I Hoja 01 de 02			Quito, 10 de mayo de 2021
DATOS DEL CLIENTE Razón Social: Dirección: Teléfono: DATOS DEL PROYECT	EDWIN MORA; LENIN POG LADRÓN DE GUEVARA E1 0992767984; 0985423373 0	O 1-253 Y ANDALUCÍA	
Proyecto: Contratante:	INHIBICIÓN DE LA REACO TUNGURAHUA, MÉTODO D	CIÓN ÁLCALI-SÍLICE USAN DE LA BARRA DE MORTERO	IDO PUZOLANA DEL VOLCÁN
Fiscalizador: PROCEDENCIA: TIPO DE CEMENTO: FECHA DE ENSAYO: NORMA:	CEMENTOS CHIMBORAZO CEMENTO HE 08/12/2020	27	
	DENSIDAD A	ADENTE CEMENTO	
IDENTIFICACIÓN	DESCRIPCIÓN	DENSIDAD SUELTA g/cm ³	DENSIDAD COMPACTADA
20-006-I-1	CHIMBORAZO HE	0.996	1202
	M	ML	COMIN EPA
		5	>

E

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

DENSIDAD APARENTE

INF. No. 21 - 0059 - I Hoja 01 de 01

DATOS DEL CLIENTE
Razón Social:
Dirección:
Teléfono:
DATOS DEL PROYECTO
Provecto:

Contratante: Contratista: Fiscalizador: PROCEDENCIA: TIPO DE MUESTRA:

FECHA DE ENSAYO: NORMA:

EDWIN MORA; LENIN POGO LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA 0992767984; 0985423373 INHIBICION DE LA REACCION ALCALI-SILICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO

Quito, 27 de abril de 2021

AGREGADO GRUESO

ASTM C29

	DENS	IDAD APAREN	TE AGREGADOS	5		
		MUESTF	RA SUELTA	MUESTRA COMPACTADA		
IDENTIFICACIÓN	DESCRIPCIÓN	DENSIDAD SECA (kg/m ³)	CONTENIDO DE VACÍOS (%)	DENSIDAD SECA (ka/m ³)	CONTENIDO DE VACÍOS (%)	
20-006-I-1	AGREGADO GRUESO	1436	40	1533	35	

OBSERVACIÓN: La procedecia de los items de ensayo son proporcionadas por el cliente, lo que

	involucra su total	responsabilidad.				
		A	2	Care of Ensavo		
		JEFE DE LABORATE	RIO (E)		VIERIA.	
		9		THE OWNE EPH		
				2		
						Telf . 2976300
		Be				Ext.: 1609
Dirección: Ladrón d	de Guevara E11-2	53 y Andalucia / E	dif. Ing. Civil / N	/lezanine / Ofic. M1	5 Email: lemsu	r@epn.edu.ec

E

DENSIDAD REAL DEL CEMENTO INF. No. 21 - 0064 - 1 Quito, 6 de mayo de 2021 Hoja 02 de 02 DATOS DEL CLIENTE Razón social: EDWIN MORA; LENIN POGO Dirección: LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA Teléfono: 0992767984; 0985423373 DATOS DEL PROYECTO INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO Proyecto: Contratante: *** Contratista: *** Fiscalizador: FECHA DE ENSAYO: 08/12/2020 NORMA: ASTM C188 CARACTERÍSTICAS DE LA MUESTRA MARCA TIPO DE CEMENTO FECHA DE FABRICACIÓN CENIZA DENSIDAD REAL DEL CEMENTO ∆ Temperatura (°C) Volúmen inicial (cm³) Peso Inicial (g) Volumen final Peso final Densidad Real MUESTRA (cm3) (g) (q/cm^3) 18.8 372.7 0,2 321 0 2,78 2 06 321,3 18,7 370,8 0 2,73 PROMEDIO 2 76 OBSERVACIONES: EI n as de la muestra, eo y ad d ING. PAUL ZUNIGA M. JEFE DE LABORATORIO (E) Telf.: 2976300 Ext.: 1609 Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

ENSAYO DE CAMBIO DE LONGITUD EN BARRAS DE MORTERO

INF. No. 21 - 0062 - I Hoja 03 de 03		Quito, 3 de mayo de 2021
DATOS DEL CLIENTE		
Razón social:	EDWIN MORA; LENIN POGO	
Dirección:	LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA	
Teléfono:	0992767984; 0985423373	
DATOS DEL PROYECTO		
Proyecto:	INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL V MÉTODO DE LA BARRA DE MORTERO	OLCÁN TUNGURAHUA,
Contratante:	***	
Contratista:	***	
Fiscalizador:	***	
NORMA:	ASTM C490/C490M-17	

No.	MUESTRA	TIPO DE MATERIAL	FLUJO (%)	DIMENSIONES (L x B x H) mm	EDAD (DÍAS)	CAMBIO DE LONGITUD (%)	PROMEDIO (%)
1	20% ;1	MORTERO	111	285x25x25	14	0,041	
2	20% ;2	MORTERO	111	285x25x25	14	0,040	
3	20% ;3	MORTERO	111	285x25x25	14	0,042	
4	20% ;4	MORTERO	111	285x25x25	14	0,041	
5	20% ;5	MORTERO	111	285x25x25	14	0,038	0.04
6	20% ;6	MORTERO	111	285x25x25	14	0,042	0,04
7	20% ;7	MORTERO	111	285x25x25	14	0,039	
8	20% ;8	MORTERO	111	285x25x25	14	0,042	
9	20% ;9	MORTERO	111	285x25x25	14	0,040	
10	20% ;10	MORTERO	111	285x25x25	14	0,042	
11	25% ;1	MORTERO	112	285x25x25	14	0,036	
12	25% ;2	MORTERO	112	285x25x25	14	0,034	
13	25% ;3	MORTERO	112	285x25x25	14	0,033	
14	25% ;4	MORTERO	112	285x25x25	14	0,033	
15	25% ;5	MORTERO	112	285x25x25	14	0.034	0.00
16	25% ;6	MORTERO	112	285x25x25	14	0.035	0,03
17	25% ;7	MORTERO	112	285x25x25	14	0.033	
18	25% ;8	MORTERO	112	285x25x25	14	0,034	
19	25% ;9	MORTERO	112	285x25x25	14	0.033	
20	25%;10	MORTERO	112	285x25x25	14	0,036	

ING. PAÚL ZÚÑIGA M. JEFE DE JABORATORIO (E)

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

ENSAYO DE CAMBIO DE LONGITUD EN BARRAS DE MORTERO

INF. No. 21 - 0062 - I		Quito, 3 de mayo de 2021
Hoja 02 de 03		
DATOS DEL CLIENTE		
Razón social:	EDWIN MORA; LENIN POGO	
Dirección:	LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA	
Teléfono:	0992767984; 0985423373	
DATOS DEL PROYECTO		
Proyecto:	INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL MÉTODO DE LA BARRA DE MORTERO	VOLCÁN TUNGURAHUA,
Contratante:	***	
Contratista:	***	
Fiscalizador:	***	
NORMA:	ASTM C490/C490M-17	

No.	MUESTRA	TIPO DE MATERIAL	FLUJO (%)	DIMENSIONES (L x B x H) mm	EDAD (DÍAS)	CAMBIO DE LONGITUD (%)	PROMEDIO (%)
1	10% ;1	MORTERO	110	285x25x25	14	0,068	
2	10% ;2	MORTERO	110	285x25x25	14	0,074	
3	10% ;3	MORTERO	110	285x25x25	14	0.070	
4	10% ;4	MORTERO	110	285x25x25	14	0,081	
5	10% ;5	MORTERO	110	285x25x25	14	0,074	0.07
6	10% ;6	MORTERO	110	285x25x25	14	0,066	0,07
7	10% ;7	MORTERO	110	285x25x25	14	0,077	
8	10% ;8	MORTERO	110	285x25x25	14	0,064	
9	10% ;9	MORTERO	110	285x25x25	14	0,067	
10	10% ;10	MORTERO	110	285x25x25	14	0,080	
11	15% ;1	MORTERO	110	285x25x25	14	0,046	
12	15% ;2	MORTERO	110	285x25x25	14	0,043	
13	15% ;3	MORTERO	110	285x25x25	14	0,042	
14	15% ;4	MORTERO	110	285x25x25	14	0,048	
15	15% ;5	MORTERO	110	285x25x25	14	0,049	0.01
16	15% ;6	MORTERO	110	285x25x25	14	0,050	0,04
17	15% ;7	MORTERO	110	285x25x25	14	0,042	
18	15% ;8	MORTERO	110	285x25x25	14	0,046	
19	15% ;9	MORTERO	110	285x25x25	14	0,038	
20	15% ;10	MORTERO	110	285x25x25	14	0,038	

ING. PAULZUNIGA M. EFE DE LABORATORIO (E)

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ed

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

ENSAYO DE CAMBIO DE LONGITUD EN BARRAS DE MORTERO

INF. No. 21 - 0062 - 1 Hoja 01 de 03 DATOS DEL CLIENTE Razón social: Dirección: Teléfono:

DATOS DEL PROYECTO

Proyecto: Contratante: Contratista: Fiscalizador: NORMA: EDWIN MORA; LENIN POGO LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA 0992767984; 0985423373 INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO

ASTM C490/C490M-17

No.	MUESTRA	TIPO DE MATERIAL	FLUJO (%)	DIMENSIONES (L x B x H) mm	EDAD (DÍAS)	CAMBIO DE LONGITUD (%)	PROMEDIO (%)
1	0%;1	MORTERO	113	285x25x25	14	0,140	
2	0% ;2	MORTERO	113	285x25x25	14	0,156	
3	0%;3	MORTERO	113	285x25x25	14	0,132	
4	0%;4	MORTERO	113	285x25x25	14	0,150	
5	0% ;5	MORTERO	113	285x25x25	14	0,138	0.45
6	0% ;6	MORTERO	113	285x25x25	14	0,136	0,15
7	0% ;7	MORTERO	113	285x25x25	14	0,152	
8	0% ;8	MORTERO	113	285x25x25	14	0,149	
9	0% ;9	MORTERO	113	285x25x25	14	0,141	
10	0% ;10	MORTERO	113	285x25x25	14	0.157	
11	5% ;1	MORTERO	112	285x25x25	14	0,110	
12	5%;2	MORTERO	112	285x25x25	14	0,107	
13	5% ;3	MORTERO	112	285x25x25	14	0,108	
14	5% ;4	MORTERO	112	285x25x25	14	0,114	
15	5%;5	MORTERO	112	285x25x25	14	0.101	
16	5% ;6	MORTERO	112	285x25x25	14	0.095	0,10
17	5%;7	MORTERO	112	285x25x25	14	0.096	
18	5% ;8	MORTERO	112	285x25x25	14	0.101	
19	5%;9	MORTERO	112	285x25x25	14	0.088	
20	5% :10	MORTERO	112	285x25x25	14	0.106	

ING. FAUL ZÚÑIGA M. JEFE DE LABORATORIO (E)

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ed

Quito, 3 de mayo de 2021

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

ENSAYO DE ABRASIÓN INF. No. 21-0060 - I Quito, 27 de abril de 2021 Hoja 01 de 01 DATOS DEL CLIENTE Razón social: EDWIN MORA: LENIN POGO Dirección: LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA Teléfono: 0992767984; 0985423373 DATOS DEL PROYECTO INHIBICIÓN DE LA REACCIÓN ÁLCALI-SÍLICE USANDO PUZOLANA DEL VOLCÁN TUNGURAHUA, MÉTODO DE LA BARRA DE MORTERO Proyecto: *** Contratante: Contratista: *** Fiscalizador: *** TIPO: *** PROCEDENCIA: *** FECHA DE ENSAYO: *** NORMA: ASTM C131 **RESULTADOS DEL ENSAYO** MUESTRA: AGREGADO GRUESO GRADACIÓN A NUMERO DE ESFERAS: 12 PESO INICIAL (g): PESO RETENIDO EN EL TAMIZ #12 5000,0 LUEGO DE 100 REVOLUCIONES (g): 4807,72 PESO RETENIDO EN EL TAMIZ #12 3353,98 LUEGO DE 500 REVOLUCIONES (g): PORCENTAJE DE PÉRDIDA 100 rev.(%) 3,85 PORCENTAJE DE PÉRDIDA 500 rev.(%): 32.92 COEFICIENTE DE UNIFORMIDAD 0,12 ING. PAUL ZUNIGA M. JEFE DE LABORATORIO (E) ABR21-003-I Telf.: 2976300

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

Ext.: 1609

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

CONSISTENCIA NORMAL Y TIEMPOS DE FRAGUADO

			Quito	o, 11 de mayo de 2021	
DATOS DEL CLIENTE					
Parón cosial:		10000			
Dirección:	EDWIN MORA; LENIN	I POGO			
Direccion:	LADRON DE GUEVAF	RA E 11-253	Y ANDALUCIA		
Telefono:	0992767984; 0985423;	373			
DATOS DEL PROYEC	10				
Proyecto:	INHIBICIÓN DE LA VOLCÁN TUNGURAH	REACCIÓN UA, MÉTOE	ÁLCALI-SÍLICE USANE	DO PUZOLANA DEL PRTERO	
Contratante:	***				
Contratista:	***		1		
Fiscalizador:	***		2 5		
TIPO:	CEMENTO HE	10			
PROCEDENCIA	CEMENTO ALIMPOR	170			
EECHA DE ENRAVO	CEMENTO CHIMBOR	AZO			
FECHA DE ENSATU:	2020-12-10	5			
NORMA:	ASTM C187; ASTM C1	91			
		27			
	CONDIC TEMPERATURA (80)	CIONES DEL	ENSAYO		
	18	-	HUMEDAD (%)		
	10		55		
	CONSIS	STENCIA NO	RMAL		
	DEGO OFMENTO	PESO DEL	TEMPERATURA DE		
MUESTRA	PESO CEMENTO	AGUA	AGUA DE MEZCLADO	CONSISTENCIA	
	(9)	(g)	(°C)	(%)	
1	500,0	115,0	20,0	23.0	
		UL.			
	TIEMD	OS DE ERA			
	TIEMP	OS DE FRAG	BUADO **TEEV		
	TIEMP MUESTRA "TI	OS DE FRAG	3UADO		
	TIEMP MUESTRA (m 1 1:	POS DE FRAG IFV nin) 24	3UADO **TFFV (min) 295		
TIFV: TIEMPO INICIAL DE FRAGUADO V TIFV: TIEMPO FINAL DE FRAGUADO VI	TIEMP MUESTRA (m 1 1: 1 VICAT CAT	POS DE FRAG IFV hin) 24	BUADO **TFFV (min) 295		
TIPV: TIEMPO INICIAL DE FRAGUADO V TIPPV: TIEMPO FINAL DE FRAGUADO VA VESERVACIONES: La co	VICAT CAT	POS DE FRAG IFV inin) 24	**TFFV (min) 295 wetración de (10 ± 1) mm.		
TIPV: TIEMPO INICIAL DE FRAGUADO V TIPV: TIEMPO FINAL DE FRAGUADO V SISSERVACIONES: La co	VICAT CAT UNSISTENCIA NORMAL CORRESPON	POS DE FRAG IFV inin) 24 nde a una per	A M.	A SALESTALES	
TIFV: TIEMPO INICIAL DE FRAGUADO V TIFV: TIEMPO FINAL DE FRAGUADO VI VISSERVACIONES: La co	VICAT CAT UNSISTENCIA NORMAL CORRESPON UNCAT CAT UNSISTENCIA NORMAL CORRESPON UNCAT, CAT	POS DE FRAG IFV inin) 24 Adde a una per Add Z ZúRílg VABORATO	A M. RIO (E)	A POLERAL ES	
TIFY: TIEMPO INICIAL DE FRAGUADO V TIFY: TIEMPO FINAL DE FRAGUADO V SBSERVACIONES: La co	VICAT CAT UNSISTENCIA NORMAL CORRESPON UNSISTENCIA NORMAL CORRESPON UNG. P. JEFE DE	OS DE FRAG IFV im) 24 Adde a una per Add Zurrig Add Zurrig Add Zurrig	A M. RIO (E)	S Planes Nov	
NPV: TIEMPO INICIAL DE FRAGUADO V TFFV: TIEMPO FINAL DE FRAGUADO VI DESERVACIONES: La co	MUESTRA (m 1 1 cat unsistencia normal correspon	nde a una per	A M. RIO (E)	average of the second se	
NPY: TIEMPO INICIAL DE FRAGUADO V TRPY: TIEMPO FINAL DE FRAGUADO V BSERVACIONES: La co	MUESTRA TIEMP MUESTRA T 1 1 1 vcat cat unsistencia normal correspon	OS DE FRAG IFV Im) 24 Adde a una per Adde a una per Adde Zúñig Adde Zúñig	A M. RIO (E)	A STEPALE	
TIFV: TIEMPO INICIAL DE FRAGUADO I TIFV: TIEMPO FINAL DE FRAGUADO VA DBSERVACIONES: La co	TIEMP MUESTRA T 1 1 vicat cat msistencia normal correspon	POS DE FRAG IFV Im) 24 Inde a una per AUL ZURIG ABORATO	A M. RIO (E)	A SALESHARE	
TIFV: TIEMPO INICIAL DE FRAGUADO V TIFPV: TIEMPO FINAL DE FRAGUADO V DBSERVACIONES: La co	VICAT CAT UNISSEENCIA NORMAL CORRESPONDENT	POS DE FRAG IFV IIII) 24 Adde a una per Add Zúkig Add Zúkig ABORATO	A M. RIO (E)	A A A A A A A A A A A A A A A A A A A	
TIPV: TIEMPO INICIAL DE FRAGUADO V TIPPV: TIEMPO FINAL DE FRAGUADO V SISSERVACIONES: La co	TIEMP MUESTRA T 1 1 voat cat msistencia normal correspon	OS DE FRAG	A M. RIO (E)	A MAREEN CA	
IIFY: TIEMPO INICIAL DE FRAGUADO V TIFY: TIEMPO FINAL DE FRAGUADO V SBSERVACIONES: La co	MUESTRA (m 1 1 1 car onsistencia normal correspondence JNG. P. JEFE DE	OS DE FRAG IFV im) 24 Adde a una per Adde a una per Adde a una per Adde a una per Adde a una per	A M. RIO (E)	A LEBRAL C	
TIPY: TIEMPO INICIAL DE FRAGUADO V TRPY: TIEMPO FINAL DE FRAGUADO V BSERVACIONES: La co	VCAT CAT UNCAT CAT UNCAT CAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT UNCAT ATCHING	OS DE FRAG IFV Im) 24 Add a una per Add Zukiig VABORATO	A M. RIO (E)	A MARANA CA	
TIFV: TIEMPO INICIAL DE FRAGUADO V TIFV: TIEMPO FINAL DE FRAGUADO V DBSERVACIONES: La co	VICAT CAT UNCAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT CAT UNCAT UNCAT CAT UNCAT CAT UNCA	OS DE FRAG IFV im) 24 ande a una per AUL ZÚRIG ABORATO	A M. RIO (E)	T	olf.: 29763