ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

APLICACIÓN DEL DDBD (DIRECT DISPLACEMENT BASED DESIGN) Y COMPARACIÓN CON EL FBD (FORCE BASED DESIGN) EN ESTRUCTURAS REGULARES. (ENFOCADO A EVALUAR GEOMETRÍA ESTRUCTURAL)

PÓRTICOS DE HORMIGÓN ARMADO RESISTENTES A MOMENTO (DE 5 A 20 PISOS)

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

ESTEBAN DANIEL LÓPEZ VÁSQUEZ

esteban.lopez02@epn.edu.ec

DIRECTOR: PhD. ING. DIEGO ANDRÉS SOSA CAIZA

diego.sosac@epn.edu.ec

DMQ, marzo 2023

CERTIFICACIONES

Yo, ESTEBAN DANIEL LÓPEZ VÁSQUEZ declaro que el trabajo de integración curricular aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

Stepa Seper V

ESTEBAN DANIEL LÓPEZ VÁSQUEZ

Certifico que el presente trabajo de integración curricular fue desarrollado por ESTEBAN DANIEL LÓPEZ VÁSQUEZ, bajo mi supervisión.

PhD. ING. DIEGO ANDRÉS SOSA CAIZA

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

ESTEBAN DANIEL LÓPEZ VÁSQUEZ

DIEGO ANDRÉS SOSA CAIZA

DEDICATORIA

A Dios y a la Virgen Dolorosa, por ser el faro que guía mi vida.

A mis padres, que con su esfuerzo diario me han dado su mejor herencia "la educación".

A mis hermanos, por su apoyo y acompañamiento incondicional.

AGRADECIMIENTO

A Dios y a la Virgen Dolorosa, pilares sobre los cuales apoyo mi vida, con la certeza de que todo lo puedo en ellos que me fortalecen.

A mis padres: Xavier y Mariana, por inculcarme desde pequeño el valor del esfuerzo, la dedicación y el estudio, herramientas que hoy me han permitido alcanzar tan anhelado logro.

A mis hermanos: Christian, Andrés y Emily, por ser mi ejemplo y motivación para ser mejor cada día, gracias por apoyarme siempre en cada nuevo reto de mi vida.

A mi novia: Sofía Pineda, con quien coincidí en esta maravillosa etapa, gracias por la ayuda, paciencia, motivación, amor y cariño brindado, sin lugar a duda su presencia ha hecho que este camino sea único.

A todas las amistades que logré forjar en estos años de estudio, en especial a Gandy, Jonathan, Jorge, Paola y Vanesa, compañeros y amigos con quienes compartí gratos momentos de estudio y distracción.

Al Dr. Diego Sosa, por su acertada guía y desmedido compromiso en la elaboración de este proyecto de titulación. Un gran profesional y ser humano.

A todos quienes forman parte de la Facultad de Ingeniería Civil y Ambiental de la Escuela Politécnica Nacional, en especial a aquellos profesores que compartieron ampliamente sus conocimientos inculcando en sus estudiantes la honradez, responsabilidad y ética profesional.

ÍNDICE DE CONTENIDO

CE	RT	IFICACIONES	. I
DE	CL	ARACIÓN DE AUTORÍA	. 11
DE	DIC	CATORIA	
AG	RA	ADECIMIENTO	IV
RE	SU	JMEN	КП
AB	ST	RACTX	
1	D	ESCRIPCIÓN DEL COMPONENTE DESARROLLADO	. 1
1	.1	Objetivo general	. 2
1	.2	Objetivos específicos	. 2
1	.3	Alcance	. 2
1	.4	Marco teórico	. 3
	М	étodo de Diseño Basado en Fuerzas (DBF)	. 3
	In	geniería Sísmica Basada en Desempeño (PBSE)	. 5
	Di	seño Sísmico Basado en Desplazamientos	. 6
	Μ	étodo de Diseño Directo Basado en Desplazamientos (DDBD)	. 8
	Di	agrama de Momento – Curvatura	10
	Es	pectro Elástico de Diseño en Desplazamientos (Sd)	13
2	Μ	ETODOLOGÍA	15
2	.1	Descripción del proyecto	15
2	.2	Ubicación	15
2	.3	Definición de geometrías estructurales	15
2	.4	Propiedades de los materiales	15
	Но	ormigón	15
	Ac	cero de refuerzo	16
2	.5	Cargas gravitacionales sobre la estructura	16
	Ca	arga Viva	16
	Ca	arga Muerta	17
2	.6	Predimensionamiento de elementos estructurales	17
	Vi	gas	17
	Сс	blumnas	19
2	.7	Aplicación del método de Diseño Basado en Fuerzas (DBF)	23
	De	eterminación del espectro de respuesta elástico de aceleraciones (Sa)	23
	De	eterminación del cortante basal de la estructura (V)	25

	Mo	delación estructural	26
	Aná	lisis Estático Lineal	30
	Dise	eño estructural de elementos	30
	2.8	Aplicación del método de Diseño Directo Basado en Desplazamientos	
	(DDB	3D)	38
	Espe	ectro elástico de diseño en desplazamientos	38
	Etap	pa 1: Determinación del sistema equivalente de un grado de libertad	39
	Etap	pa 2: Determinación del perfil de desplazamientos	47
	Etap	pa 3: Determinación de acciones (momentos y cortantes)	54
	Etap	pa 4: Diseño estructural de elementos	65
3	RE	SULTADOS, CONCLUSIONES Y RECOMENDACIONES	71
	3.1	Resultados	71
	Cort	tante basal	71
	Der	ivas	72
	Dise	eños	77
	3.2	Conclusiones	86
	3.3	Recomendaciones	88
4	RE	FERENCIAS BIBLIOGRÁFICAS	90
5	AN	EXOS	92
	ANE	XO I. Definición de geometrías estructurales	92
	ANE	XO II. Comprobación de sistema de vigas descolgadas	93
	ANE	XO III. Predimensionamiento de columnas	94
	ANE	XO IV. Configuración en 3D para las 3 geometrías propuestas	96
	ANEX	XO V. Diseño de vigas (DBF)	97
	ANEX	XO VI. Diseño de columnas (DBF) 1	03
	ANE	XO VII. Diseño de conexión viga-columna (DBF) 1	80
	ANE	XO VIII. Determinación de masa por piso1	13
	ANE) (DDB	XO IX. Determinación del sistema equivalente de un grado de libertad	14
	ANE)	XO X. Determinación de inercia agrietada de elementos (DDBD)	17
	ANE	XO XI. Perfil de desplazamientos y derivas inelásticas de piso (DDBD). 1	21
	ANF)	XO XII. Determinación de acciones de diseño en elementos (DDBD) 1	22
	ANE	XO XIII. Diseño de vigas (DDBD)	29
		XO XIV Diseño de columnas (DDBD)	34
			- r

ÍNDICE DE TABLAS

Tabla 2.6.1. Altura mínima de vigas no preesforzadas	. 17
Tabla 2.6.2. Secciones predimensionadas de vigas.	. 18
Tabla 2.6.3. Espesor mínimo de losas en dos direcciones.	. 18
Tabla 2.6.4. Espesor determinado de losa maciza	. 19
Tabla 2.6.5. Factor de sobrecarga para columnas.	. 20
Tabla 2.6.6. Factor de reducción de carga viva para columnas	. 20
Tabla 2.6.7. Secciones predimensionadas de columnas para Geometría 1	. 21
Tabla 2.6.8. Secciones predimensionadas de columnas para Geometría 2	. 21
Tabla 2.6.9. Secciones predimensionadas de columnas para Geometría 3	. 22
Tabla 2.7.1. Coeficientes de perfil de suelo	. 23
Tabla 2.7.2. Periodos de vibración para las 3 geometrías propuestas	. 24
Tabla 2.7.3. Espectros de respuesta elástico de aceleraciones para las 3 geometrías propuestas.	. 24
Tabla 2.7.4. Coeficiente de cortante basal de diseño para las 3 geometrías propuestas	. 25
Tabla 2.7.5. Secciones definitivas de elementos estructurales para las 3 geometrías propuestas.	26
Tabla 2.7.6. Derivas máximas, expresadas como fracción de la altura de piso	. 30
Tabla 2.7.7. Factor γ en función del tipo de conexión viga-columna	. 37
Tabla 2.8.1. Espectro elástico de diseño en desplazamientos para las 3 geometrías propuestas.	. 38
Tabla 2.8.2. Masa por piso (Geometría 2)	. 40
Tabla 2.8.3. Parámetros necesarios para el cálculo del desplazamiento de diseño del sistema	
equivalente (Geometría 2).	. 41
Tabla 2.8.4. Parámetros del sistema equivalente de un grado de libertad (Geometría 2)	. 47
Tabla 2.8.5. Distribución del cortante basal de diseño a los niveles de piso (Geometría 2)	. 48
Tabla 2.8.6. Inercia agrietada mínima C85x85	. 50
Tabla 2.8.7. Inercia agrietada mínima V50x60	. 50
Tabla 2.8.8. Momentos en vigas y columnas obtenidos del análisis (Geometría 2)	. 51
Tabla 2.8.9. Inercia efectiva de análisis e inercia efectiva mínima (Geometría 2)	. 52
Tabla 2.8.10. Inercia efectiva asumida (Geometría 2)	. 52
Tabla 2.8.11. Desplazamientos y derivas inelásticas de piso (Geometría 2)	. 53
Tabla 2.8.12. Momentos y cortantes sísmicos en extremos de vigas (Geometría 2)	. 55
Tabla 2.8.13. Momentos aproximados para vigas continuas no preesforzadas y losas en una	
dirección	. 56
Tabla 2.8.14. Carga total uniforme por m2	. 57
Tabla 2.8.15. Cortantes de diseño en vigas (Geometría 2)	. 59
Tabla 2.8.16. Cortantes de diseño en columnas (Geometría 2)	. 60
Tabla 2.8.17. Momentos de diseño en columnas (Geometría 2)	. 62
Tabla 2.8.18. Factor de reducción de carga axial	. 63
Tabla 2.8.19. Cargas axiales de columna interior (Geometría 2)	. 64
Tabla 2.8.20. Cargas axiales de columna exterior (Geometría 2)	. 64
Tabla 2.8.21. Acero de refuerzo longitudinal en extremos vigas (Geometría 2)	. 66
Tabla 2.8.22. Acero de refuerzo longitudinal en centro de vigas (Geometría 2)	. 67
Tabla 2.8.23. Corte hiperestático y corte por carga vertical en vigas (Geometría 2)	. 67
Tabla 2.8.24. Acero de refuerzo transversal en vigas (Geometría 2)	. 68
Tabla 2.8.25. Acero de refuerzo transversal en columnas (Geometría 2)	. 69
Tabla 2.8.26. Acero de refuerzo longitudinal y transversal en columnas interiores (Geometría 2)	70
Tabla 2.8.27. Acero de refuerzo longitudinal y transversal en columnas exteriores (Geometría 2))70

Tabla 3.1.1. Peso estructura, cortante basal y porcentaje de cortante basal por DBF y DDBD de las
3 geometrías propuestas
Tabla 3.1.2. Derivas inelásticas de piso por DBF y DDBD (Geometría 1)
Tabla 3.1.3. Derivas inelásticas de piso por DBF y DDBD (Geometría 2)
Tabla 3.1.4. Derivas inelásticas de piso por DBF y DDBD (Geometría 3)
Tabla 3.1.5. Derivas inelásticas máximas de piso por DBF y DDBD de las 3 geometrías propuestas
Tabla 3.1.6. Acero de refuerzo longitudinal y transversal colocado en vigas por DBF y DDBD de las
3 geometrías propuestas
Tabla 3.1.7. Armado de vigas por DBF y DDBD de las 3 geometrías propuestas
Tabla 3.1.8. Acero de refuerzo longitudinal y transversal colocado en vigas por DBF y DDBD de las
3 geometrías propuestas
Tabla 3.1.9. Armado de columnas por DBF y DDBD de las 3 geometrías propuestas
Tabla 3.1.10. Comparación de las solicitaciones a flexocompresión en columnas por DBF y DDBD
de las 3 geometrías propuestas
Tabla 3.1.11. Comparación de la cantidad de acero a corte en columnas por DBF y DDBD de las 3
geometrías propuestas

ÍNDICE DE FIGURAS

Figura 1.4.1. Secuencia de operaciones para el método DBF	3
Figura 1.4.2. Espectro de respuesta elástico de aceleraciones	4
Figura 1.4.3. Relación entre el nivel de diseño sísmico y nivel de desempeño	6
Figura 1.4.4. Curva de capacidad de un muro esbelto de hormigón armado	7
Figura 1.4.5. Fundamentos del Diseño Directo Basado en Desplazamientos	8
Figura 1.4.6. Análisis de equilibrio de una sección rectangular de hormigón armado	. 11
Figura 1.4.7. Diagrama de Momento-Curvatura de una sección de hormigón armado	. 12
Figura 1.4.8. Espectro elástico de diseño en desplazamientos	. 13
Figura 2.6.1. Área tributaria de columnas tipo a predimensionar	. 19
Figura 2.7.1. Definición de hormigón en ETABS	. 27
Figura 2.7.2. Definición de acero de refuerzo en ETABS	. 27
Figura 2.7.3. Definición de viga 40x60 en ETABS	. 28
Figura 2.7.4. Definición de columna 65x65 en ETABS	. 28
Figura 2.7.5. Definición en ETABS de patrones de carga	. 28
Figura 2.7.6. Definición en ETABS del sismo en X e Y. (Geometría 1)	. 29
Figura 2.7.7. Definición de combinaciones de carga en ETABS	. 29
Figura 2.7.8. Diagrama de interacción P-M en columnas	. 34
Figura 2.8.1. Pórtico a analizar en el método DDBD	. 38
Figura 2.8.2. Determinación del periodo efectivo del sistema equivalente	. 43
Figura 2.8.3. Diagrama momento-curvatura C85x85	. 49
Figura 2.8.4. Diagrama momento-curvatura V50x60	. 50
Figura 2.8.5. Modelación de pórtico tipo ante cargas laterales y momentos en base de columna	S
(Geometría 2)	. 51
Figura 2.8.6. Perfil de desplazamientos y derivas inelásticas de piso (Geometría 2)	. 53
Figura 2.8.7. Vista en planta de entrada de momentos al interior de una columna de pórticos	
bidireccionales	. 61
Figura 2.8.8. Amplificación dinámica de momentos en columnas de pórticos	. 62
Figura 3.1.1. Comparación del cortante basal por DBF y DDBD de las 3 geometrías propuestas	. 72
Figura 3.1.2. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 1)	. 73
Figura 3.1.3. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 2)	. 74
Figura 3.1.4. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 3)	. 76
Figura 3.1.5. Comparación de las derivas inelásticas máximas de piso por DBF y DDBD de las 3	
geometrías propuestas	. 77
Figura 3.1.6. Comparación del acero de refuerzo longitudinal colocado en extremos de vigas po	r
DBF y DDBD de las 3 geometrías propuestas	. 78
Figura 3.1.7. Comparación del acero de refuerzo longitudinal colocado en centro de vigas por D	BF
y DDBD de las 3 geometrías propuestas	. 78
Figura 3.1.8. Comparación del acero de refuerzo transversal colocado en vigas por DBF y DDBD	de
las 3 geometrías propuestas	. 79

ÍNDICE DE ECUACIONES

Ecuación 1.4.1. Equilibrio de fuerzas internas	12
Ecuación 1.4.2. Curvatura de primera fluencia	12
Ecuación 1.4.3. Momento de primera fluencia	12
Ecuación 1.4.4. Curvatura de fluencia equivalente	13
Ecuación 2.6.1. Relación de rigidez entre vigas y losa (ACI 318-14, 2014)	18
Ecuación 2.6.2. Carga viva reducida para columnas (NEC-SE-CG, 2014)	20
Ecuación 2.6.3. Resistencia axial nominal para columnas (ACI 318-19, 2019)	21
Ecuación 2.7.1. Periodo de vibración (NEC-SE-DS, 2014)	23
Ecuación 2.7.2. Cortante basal de diseño (NEC-SE-DS, 2014)	25
Ecuación 2.7.3. Deriva máxima inelástica (NEC-SE-DS, 2014)	30
Ecuación 2.7.4. Momento nominal de la sección de hormigón armado (ACI 318-19, 2019)	31
Ecuación 2.7.5. Cortante hiperestático (ACI 318-19, 2019)	32
Ecuación 2.7.6. Momento probable	32
Ecuación 2.7.7. Resistencia nominal a corte (ACI 318-19, 2019).	33
Ecuación 2.7.8. Resistencia a corte dada por el hormigón (ACI 318-19, 2019)	33
Ecuación 2.7.9. Resistencia a corte dada por el acero de refuerzo (ACI 318-19, 2019)	33
Ecuación 2.7.10. Área de refuerzo a corte (ACI 318-19, 2019)	33
Ecuación 2.7.11. Corte probable en columna procedente de vigas (ACI 318-19, 2019)	35
Ecuación 2.7.12. Corte probable desarrollado en columna	35
Ecuación 2.7.13. Corte probable de diseño en columnas del primer piso	35
Ecuación 2.7.14. Corte probable de diseño en columnas diferentes al primer piso	35
Ecuación 2.7.15. Tensión proporcionada por el acero de refuerzo (ACI 352RS-02, 2002)	37
Ecuación 2.7.16. Cortante efectivo en el nudo viga-columna (ACI 352RS-02, 2002)	37
Ecuación 2.7.17. Cortante de diseño en el nudo viga-columna (ACI 352RS-02, 2002)	37
Ecuación 2.7.18. Longitud de desarrollo de barras en tracción (ACI 318-19, 2019)	37
Ecuación 2.8.1. Desplazamiento de diseño de piso (Priestley et al., 2007)	39
Ecuación 2.8.2. Desplazamiento de diseño del sistema equivalente (Priestley et al., 2007)	40
Ecuación 2.8.3. Masa del sistema equivalente (Priestley et al., 2007)	41
Ecuación 2.8.4. Altura efectiva del sistema equivalente (Priestley et al., 2007)	41
Ecuación 2.8.5. Ductilidad de desplazamiento de diseño del sistema equivalente (Priestley et al	l.,
2007)	41
Ecuación 2.8.6. Desplazamiento de fluencia (Priestley et al., 2007)	42
Ecuación 2.8.7. Deriva de fluencia de piso (Priestley et al., 2007)	42
Ecuación 2.8.8. Deformación de fluencia (Priestley et al., 2007)	42
Ecuación 2.8.9. Amortiguamiento viscoso del sistema equivalente (Priestley et al., 2007)	43
Ecuación 2.8.10. Factor de escala del amortiguamiento (Priestley et al., 2007)	43
Ecuación 2.8.11. Rigidez efectiva del sistema equivalente (Priestley et al., 2007)	44
Ecuación 2.8.12. Cortante basal de diseño (Priestley et al., 2007)	44
Ecuación 2.8.13. Cortante basal de diseño por método a (Priestley et al., 2007)	44
Ecuación 2.8.14. Rigidez elástica (Priestley et al., 2007)	44
Ecuación 2.8.15. Indice de estabilidad (Priestley et al., 2007)	45
Ecuación 2.8.16. Momento de diseño en el base amplificado (Priestley et al., 2007)	46
Ecuación 2.8.17. Distribución del cortante basal de diseño a los niveles de piso (Priestley et al.,	
2007)	48
Ecuación 2.8.18. Inercia efectiva de los elementos.	48

Ecuación 2.8.19. Inercia agrieta	da de los elementos	49
Ecuación 2.8.20. Momento tota	al de volteo (Priestley et al., 2007)	54
Ecuación 2.8.21. Capacidad de	momento en la base de columna (Priestley et al., 2007)	54
Ecuación 2.8.22. Fuerza de tens	sión en la base de columna (Priestley et al., 2007)	54
Ecuación 2.8.23. Fuerza cortant	e de piso (Priestley et al., 2007)	55
Ecuación 2.8.24. Cortante sísmi	co en los extremos de vigas (Priestley et al., 2007)	55
Ecuación 2.8.25. Momentos sís	micos en extremos de vigas en eje y cara de columna (Pr	iestley et
al., 2007)		55
Ecuación 2.8.26. Cortante de di	seño a lo largo de viga (Priestley et al., 2007)	58
Ecuación 2.8.27. Momentos de	tramo en viga (Priestley et al., 2007)	58
Ecuación 2.8.28. Fuerza cortant	e de diseño en columnas (Priestley et al., 2007)	59
Ecuación 2.8.29. Demanda de d	luctilidad diagonal (Priestley et al., 2007)	59
Ecuación 2.8.30. Cortante sísmi	co en columnas exteriores (Priestley et al., 2007)	60
Ecuación 2.8.31. Cortante sísmi	co en columnas interiores (Priestley et al., 2007)	60
Ecuación 2.8.32. Suma requerio	la de capacidades de momento diagonal de columnas (P	riestley et
al., 2007)		61
Ecuación 2.8.33. Momento de o	diseño en columnas (Priestley et al., 2007)	62
Ecuación 2.8.34. Carga axial sísi	mica reducida en columnas (Paulay & Priestley, 1992)	63
Ecuación 2.8.35. Carga axial sísi	mica reducida en columnas (Paulay & Priestley, 1992)	65

RESUMEN

Este trabajo de integración curricular busca realizar un estudio comparativo del diseño sismorresistente de 3 geometrías estructurales diferentes, conformadas por pórticos de hormigón armado resistentes a momento, mediante la aplicación de 2 metodologías distintas: método de diseño basado en fuerzas (DBF) y método de diseño directo basado en desplazamientos (DDBD).

Para el método del DBF se lleva a cabo el análisis estático lineal de la estructura, que es de aplicación obligatoria para el cálculo y diseño sismorresistente de cualquier tipo de estructuras del Ecuador, el cual está basado en lo que dicta la NEC-SE-DS (2014), a su vez para este mismo método el diseño de los elementos se efectúa en base a lo establecido en la NEC-SE-HM (2014) y ACI 318-19 (2019).

Por otro lado, para la aplicación del DDBD se ejecuta el análisis estructural y diseño por capacidad de los elementos, mediante los criterios y procedimientos establecidos en Priestley, Calvi y Kowalsky (2007), el cual basa su análisis en el concepto de la estructura sustituta o sistema equivalente de un grado de libertad.

De esta manera, para las 3 geometrías estructurales propuestas, se compara y evalúa los resultados de cortante basal, derivas y armados (cantidad de acero) obtenidos de la aplicación del diseño basado en fuerzas (DBF) y del diseño directo basado en desplazamientos (DDBD), para poder establecer las principales diferencias entre estos dos métodos.

PALABRAS CLAVE: Diseño sismorresistente, Pórticos, Fuerzas, Desplazamientos, Hormigón armado.

ABSTRACT

This curricular integration project aims to perform a comparative assessment of the seismicresistant design of 3 different structural geometries made up of moment-resistant reinforced concrete frames, through the application of 2 different methodologies: force-based design method (FBD) and Direct Displacement-Based design method (DDBD).

For the FBD method, the linear static analysis of the structure was carried out, which is mandatory for the calculation and seismic-resistant design of any structure in Ecuador, based on the criteria established in the NEC-SE-DS (2014). Additionally, for this method, the design of the elements was carried out based on the provisions of the NEC-SE-HM (2014) and ACI 318-19 (2019).

On the other hand, for the application of the DDBD, the structural analysis and design by the elements' capacity was carried out, through the criteria and procedures established in Priestley, Calvi, and Kowalsky (2007), which bases its analysis on the concept of the surrogate structure or equivalent system of one degree of freedom.

In this way, for the 3 proposed structural geometries, the results of basal shear, drift, and reinforcement (amount of steel) obtained from the application of force-based design (FBD) and direct displacement-based design (DDBD) were compared and evaluated, in order to establish the main differences between these two methods.

KEYWORDS: Seismic-resistant design, Frames, Forces, Displacements, Reinforced concrete.

1 DESCRIPCIÓN DEL COMPONENTE DESARROLLADO

A partir del planteamiento de 3 geometrías estructurales (6, 12 y 18 pisos) basadas en pórticos de hormigón armado resistentes a momento, las cuales presentan una configuración regular en planta, conformada por tres vanos de 6m en el sentido "X" y sentido "Y", con una altura constante de entrepiso de 3 m, y junto con las cargas gravitacionales que actúan sobre las estructuras, se establece un pre-dimensionamiento de los elementos estructurales, por medio del cual se analizará las geometrías planteadas mediante 2 metodologías diferentes: método de diseño basado en fuerzas (DBF) y método de diseño directo basado en desplazamientos (DDBD).

El DBF es tradicionalmente el método en el que se ha basado principalmente el diseño estructural sísmico alrededor del mundo. En este trabajo, para poder aplicarlo se realiza el análisis estático lineal de las estructuras, basado en la determinación del espectro de diseño en aceleración Sa(T), el cual es determinado a partir de las características del sitio de implantación de las edificaciones. Posteriormente, se determina el coeficiente de cortante basal y se realiza la modelación de las estructuras en el software ETABS, por medio del cual se chequea su adecuado comportamiento estructural mediante el control de derivas, modos de vibración y periodo, tal como lo establece la NEC-SE-DS (2014). Finalmente, los elementos estructurales son diseñados en base a la NEC-SE-HM (2014) y ACI 318-19 (2019), para las acciones obtenidas del análisis.

Una alternativa al DBF es el DDBD, el cual se deriva del diseño sísmico basado en desempeño, que tiene la finalidad de controlar de una mejor manera el desempeño de estructuras sujetas a grados de intensidad sísmica distintos. Este método basa su análisis en el concepto de la estructura sustituta o sistema equivalente, a través del cual se puede pasar de un sistema de diversos grados de libertad a uno de un solo grado de libertad, mediante la determinación de algunos parámetros necesarios para el cálculo del cortante basal de las estructuras, para luego distribuirlo a los diferentes niveles de piso y poder determinar el perfil de desplazamientos y las derivas inelásticas ante cargas laterales, haciendo uso de las inercias efectivas de los elementos. De igual manera, a partir de la distribución del cortante basal y aplicando los conceptos de diseño por capacidad establecidos en Priestley et al. (2007), se puede determinar las acciones a las cuales están sometidas los elementos (momento y cortante) y de esta forma realizar su respectivo diseño estructural acogiéndose a lo que dicta la NEC-SE-HM (2014) y ACI 318-19 (2019).

Finalmente, se realiza la comparación de los resultados de cortante basal, derivas y diseños obtenidos por el método DBF y DDBD.

1.1 Objetivo general

Realizar el estudio comparativo estructural de 3 edificios con diferentes geometrías (6, 12 y 18 pisos) basados en pórticos de hormigón armado resistentes a momento, analizados mediante el método de diseño basado en fuerzas (DBF) y el diseño directo basado en desplazamientos (DDBD).

1.2 Objetivos específicos

- 1. Definir la configuración en planta y elevación de 3 edificaciones basadas en pórticos de hormigón armado resistentes a momento.
- Estudiar el comportamiento estructural de las 3 edificaciones aplicando el análisis estático lineal propuesto en la NEC-15, haciendo uso del método DBF y empleando un software de modelación estructural.
- Realizar el diseño estructural de los elementos de las 3 edificaciones para el método DBF, conforme la NEC-15 y la ACI 318-19.
- 4. Estudiar el método DDBD y establecer los conocimientos necesarios para su aplicación en pórticos de hormigón armado resistentes a momento.
- 5. Aplicar la metodología del DDBD a las 3 edificaciones propuestas, para realizar su respectivo análisis estructural y diseño de sus elementos.
- Comparar y evaluar los resultados de cortante basal, derivas y diseños (cantidad de acero) obtenidos para las 3 edificaciones, mediante la aplicación del método DBF y DDBD.

1.3 Alcance

Este trabajo de integración curricular busca realizar el análisis de 3 edificaciones (6, 12 y 18 pisos) basadas en pórticos de hormigón armado resistentes a momento, mediante el método DBF y el método DDBD, con la finalidad de poder comparar los resultados de cortante basal, derivas y armados de acero, obtenidos por cada método respectivamente.

Las estructuras analizadas se encuentran ubicadas en la ciudad de Quito, sobre un perfil de suelo tipo B, conformado por roca de rigidez media y un PGA = 0.4g. Las propiedades de los materiales a emplear son hormigón (f'c: 280 kg/cm²) y acero de refuerzo grado 60 (fy: 4200 kg/cm²).

1.4 Marco teórico

Método de Diseño Basado en Fuerzas (DBF)

Tradicionalmente, el diseño estructural sísmico se ha basado principalmente en las fuerzas, las razones de esto son en gran medida históricas y están relacionadas con la forma en que se diseña para otras acciones, como la carga muerta, viva y viento.

Por su parte la NEC-SE-DS, dispone que el DBF debe ser aplicado obligatoriamente para el cálculo y diseño sismorresistente de estructuras de cualquier tipo en el Ecuador.

Las estructuras diseñadas bajo este método deben poder resistir fuerzas sísmicas derivadas de cualquier dirección horizontal, para lo cual se considera que dichas fuerzas sísmicas se ejercen de forma no confluente en la dirección de cada eje principal de la estructura.

A continuación, se presenta el procedimiento de aplicación del método DBF, tal cual es propuesto en los códigos de diseño sísmico modernos.

Figura 1.4.1. Secuencia de operaciones para el método DBF

Fuente: Sección 1.2 Figura 1.3 (Priestley et al., 2007). Traducido por: López Esteban.

El DBF presenta diferentes procedimientos de análisis, entre ellos: análisis estático lineal y análisis dinámico espectral.

Análisis Estático Lineal

Este análisis es el mínimo a aplicarse en estructuras de cualquier tipo. Su aplicación se basa en la obtención del espectro de diseño en aceleración Sa(T) **Figura 1.4.2.**, para lo cual es necesario primero definir el PGA (Aceleración máxima en roca) en función del factor de zona sísmica Z.

Dónde:

- η Razón entre la aceleración espectral S_a (T = 0.1 s) y el PGA para el período de retorno seleccionado.
- F_a Coeficiente de amplificación de suelo en la zona de período cortó. Amplifica las ordenadas del espectro elástico de respuesta de aceleraciones para diseño en roca, considerando los efectos de sitio
- F_d Coeficiente de amplificación de suelo. Amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca, considerando los efectos de sitio
- F_s Coeficiente de amplificación de suelo. Considera el comportamiento no lineal de los suelos, la degradación del período del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos
- S_a Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la gravedad g). Depende del período o modo de vibración de la estructura
- T Período fundamental de vibración de la estructura
- T₀ Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- T_C Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- Z Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g

Figura 1.4.2. Espectro de respuesta elástico de aceleraciones.

Fuente: Sección 3.3.1. Figura 3 (NEC-SE-DS, 2014)

Con:

 η = 2.48: para las provincias de la Sierra, Esmeraldas y Galápagos

r = 1: para todo tipo de suelos, salvo el suelo tipo E

Ingeniería Sísmica Basada en Desempeño (PBSE)

El principal objetivo del diseño sísmico basado en desempeño es controlar de mejor manera el desempeño de una estructura sujeta a distintos niveles de intensidad sísmica, esto como una respuesta a las deficiencias presentadas en los procedimientos de diseño tradicionales.

El diseño sísmico de estructuras basado en desempeño se sustenta en la práctica de un procedimiento de cálculo que permite predecir niveles de desempeño como respuesta ante determinados niveles sísmicos, con un alto grado de confiabilidad. Este método involucra una gran cantidad de consideraciones de tipo probabilísticas, las cuales están asociadas al cambio de entrada sísmica, propiedades de los materiales, cargas gravitacionales, dimensiones y consecuencias de carácter económico ligadas al daño o colapso de estructuras luego de un evento sísmico.

La OES (California Office of Emergency Services), en su publicación "Vision 2000" delimita los siguientes cuatro niveles de desempeño y de excitación sísmica:

- **Nivel 1: Totalmente operacional.** En este estado la estructura permanece en funcionamiento y presenta daños insignificantes.
- Nivel 2: Operacional. La estructura presenta daños menores, por lo que sigue en funcionamiento, con una intervención e interrupción menor en elementos no estructurales y servicios prescindibles, respectivamente.
- Nivel 3: Seguridad de vida. En este nivel el daño es de moderado a extenso, tanto en elementos estructurales y no estructurales, sin embargo, se preserva la seguridad de vida, por lo que se tiene un bajo riesgo de pérdida de vidas.
- Nivel 4: Cercano al colapso. En este nivel, los elementos estructurales y no estructurales presentan daños severos, por lo que se pone en riesgo la seguridad de vida, sin embargo, se previene el colapso total de la estructura.

Figura 1.4.3. Relación entre el nivel de diseño sísmico y nivel de desempeño. Fuente: Sección 3.3 Figura 3.4 (Priestley et al., 2007)

A través de la figura anterior se puede establecer que de acuerdo al uso e importancia que tenga la estructura, se puede definir el objetivo de estas, teniendo que el "Objetivo básico" es el nivel de desempeño para estructuras normales, mientras que "Objetivo esencial" y "Objetivo de seguridad crítica" están relacionados con el nivel de desempeño para estructuras de línea de vida y hospitales, consideradas de mayor importancia.

Diseño Sísmico Basado en Desplazamientos

Reseña histórica

El diseño sísmico basado en desplazamientos es el resultado de que a través del tiempo se ha logrado entender de mejor manera el comportamiento de las estructuras ante un evento sísmico, pero que sin embargo no es usado en la mayor parte de normativas y reglamentos, debido a la comodidad y familiaridad que tienen los diseñadores con el método de las fuerzas.

El concepto de ductilidad (capacidad de una estructura para deformarse inelásticamente sin que exista considerable disminución de resistencia y rigidez) fue definido en 1960, y con ello se empieza a definir la respuesta inelástica de la estructura, a su vez con este concepto, basándose en la regla de iguales desplazamientos, se comienza a asociar a la ductilidad con los factores de reducción de fuerzas.

A pesar de que desde 1960 se planteaba la idea de emplear los desplazamientos para el diseño sísmico, los reglamentos continuaron aplicando el enfoque del método de las fuerzas, en donde el concepto de ductilidad permitía estimar el comportamiento sísmico de

la estructura y al final del procedimiento se realizaba un chequeo indirecto de los desplazamientos obtenidos.

Finalmente, en el inicio de la década de 1990 se dio la importancia a los desplazamientos, como la manera de controlar el comportamiento de la estructura, basándose en la filosofía de la ingeniería sísmica basada en desempeño.

Ventajas del método

Este procedimiento es usado ya que asocia los estados límites de daños con los límites de deformación, a los cuales los transforma en desplazamientos equivalentes, permitiendo de esta manera un eficiente control del daño estructural.

La aplicación de este método consiste en obtener la fuerza cortante en la base y distribuirla en la estructura, en donde mediante la resistencia se logra alcanzar el desplazamiento establecido, distinto al método de las fuerzas en donde los desplazamientos conducen a la resistencia.

A continuación, se presenta un ejemplo que permite entender la ventaja de este método:

 En un muro esbelto de comportamiento bilineal, la variabilidad de la fuerza es irrelevante, una vez que ha ocurrido la fluencia, por lo tanto, el daño que este muro sufre puede ser cuantificado de manera apropiada mediante los desplazamientos del sistema.

Figura 1.4.4. Curva de capacidad de un muro esbelto de hormigón armado.

Fuente: (Fib, 2003)

De esta manera, se tiene que la forma más directa para poder determinar el nivel de daño de una estructura es el desplazamiento, razón por la cual diversos métodos de diseño basado en desplazamientos han sido desarrollados, siendo uno de ellos el DDBD que se analizará en la siguiente sección.

Método de Diseño Directo Basado en Desplazamientos (DDBD)

El DDBD permite caracterizar el comportamiento de una estructura, mediante una rigidez secante al desplazamiento inelástico máximo considerado, esto tomando en cuenta el nivel de desempeño que se desee conseguir y mediante un amortiguamiento viscoso equivalente, ligado a la energía histérica absorbida en la respuesta inelástica. Este método basa su análisis en el concepto desarrollado por Shibata y Sozen (1976), con el cual se permite representar una estructura de múltiples grados de libertad, en una estructura sustituta o un sistema equivalente de un solo grado de libertad. (López, 2009)

DDBD para pórticos de hormigón armado resistentes a momento

Para un mejor entendimiento de la aplicación del DDBD para pórticos de hormigón armado resistentes a momento, se ha optado por dividir el método en las siguientes 4 etapas:

• Etapa 1: Determinación del sistema equivalente de un grado de libertad

Esta etapa se basa en el cálculo de los siguientes parámetros:

- 1) Desplazamiento de piso de diseño
- 2) Desplazamiento de diseño del sistema equivalente
- 3) Masa del sistema equivalente
- 4) Altura efectiva del sistema equivalente
- 5) Ductilidad de desplazamiento de diseño del sistema equivalente
- 6) Amortiguamiento viscoso del sistema equivalente
- 7) Periodo efectivo del sistema equivalente
- 8) Rigidez efectiva del sistema equivalente
- 9) Cortante basal de diseño
- Etapa 2: Determinación del perfil de desplazamientos

La determinación del perfil de desplazamientos se lo hace a partir de la distribución del cortante basal de diseño a los niveles de piso:

- 10) Distribución del cortante basal de diseño a los niveles de piso
- 11) Análisis de inercia agrietada de elementos
- 12) Desplazamientos y derivas de piso
- Etapa 3: Determinación de acciones (momentos y cortantes)

La determinación de las acciones desarrolladas en los elementos estructurales, viene dada por el cálculo de:

- 13) Momento total de volteo (OTM)
- 14) Capacidad de momento en la base de columna
- 15) Fuerza de tensión en la base de columna
- 16) Fuerza cortante de piso
- 17) Cortante sísmico de vigas en los extremos
- 18) Momentos sísmicos de vigas en los extremos
- 19) Momentos por cargas gravitacionales en vigas
- 20) Momentos de diseño en vigas

- 21) Fuerza cortante de diseño en vigas
- 22) Fuerza cortante de diseño en columnas
- 23) Momentos de diseño en columnas
- 24) Cargas axiales en columnas
- Etapa 4: Diseño estructural de elementos

El diseño estructural se lo hace en base al diseño por capacidad expuesto en Priestley et al. (2007) y las normativas vigentes: NEC-SE-HM (2014) y ACI 318-19 (2019).

- 25) Refuerzo longitudinal y transversal en vigas
- 26) Refuerzo longitudinal y transversal en columnas

Las etapas anteriormente expuestas se encuentran desarrolladas detalladamente en la sección 2.8 de este trabajo.

Diagrama de Momento - Curvatura

El análisis de momento-curvatura de secciones de hormigón armado y mampostería, sirve de herramienta para el DDBD, ya que se utiliza para definir las resistencias de la sección, las curvaturas de estado límite y también la rigidez elástica.

Los pasos para el análisis de momento-curvatura establecidos en Priestley et al. (2007) son los siguientes:

- a) Dividir la sección en cortes perpendiculares al eje de carga, para luego determinar el área no confinada de hormigón, núcleo confinado de hormigón y acero de refuerzo en cada capa.
- b) Seleccionar una tensión de compresión de fibra extrema, iniciando con la más baja.
- c) Suponer una ubicación del eje neutro.
- d) Calcular las tensiones del hormigón y del acero en el centro de cada capa.
- e) Comprobar el equilibrio de la fuerza axial.
- f) Modificar la posición del eje neutro para mejorar la igualdad.
- g) Repetir del paso c al f hasta obtener una igualdad satisfactoria entre las fuerzas internas y externas.
- h) Calcular el momento y la curvatura.

- i) Incrementar la tensión extrema de compresión de la fibra y repetir los pasos de c a h.
- j) Continuar incrementando la deformación extrema por compresión de la fibra hasta que se alcance la deformación última por compresión.

Seguidamente, se muestra el estudio del equilibrio de una sección de hormigón armado, mediante el cual se puede determinar algunos parámetros necesarios en la obtención del diagrama momento-curvatura.

Figura 1.4.6. Análisis de equilibrio de una sección rectangular de hormigón armado.

Fuente: López Esteban

Donde:

$$a = c * \beta_1$$
 y $\beta_1 = 0.85$

 ε_{v} : Deformación del acero en la fluencia

c: Altura del eje neutro

- Cs: Compresión del acero = As' * Fs
- *Cc*: Compresión del concreto = 0.85 * f'c * a * b
- Ts = As * Fy
- P: Carga axial
- ϕ_{yy} : Curvatura de primera fluencia
- ε_c : Deformación del hormigón
- ε_s : Deformación del acero
- d: Peralte efectivo
- NA: Eje neutro

A partir de la Figura 1.4.6. es posible plantear la siguiente condición de equilibrio:

Cs + Cc = P + Ts

Ecuación 1.4.1. Equilibrio de fuerzas internas

Mediante esta ecuación se halla la altura del eje neutro (c), con la cual considerando cualquiera de los dos triángulos formados en el análisis de deformaciones se puede determinar la curvatura de primera fluencia:

$$\phi_{y'} = \frac{\varepsilon_y}{d-c}$$

Ecuación 1.4.2. Curvatura de primera fluencia

Posteriormente se realiza la suma de momentos con respecto al centro de gravedad de la sección (cg), y se puede determinar el momento de primera fluencia:

$$M_{y'} = \sum M_{cg}$$
$$M_{y'} = Cc * \left(\frac{h}{2} - \frac{a}{2}\right) + Cs * \left(\frac{h}{2} - d'\right) + Ts * \left(d - \frac{h}{2}\right)$$

Ecuación 1.4.3. Momento de primera fluencia

Finalmente, tras calcular la curvatura y el momento para diferentes estados límites, es posible establecer el diagrama momento-curvatura de la sección, el cual, para propósitos de diseño, generalmente es suficiente realizar la idealización bilineal de la curva momento-curvatura del concreto, que consiste en una rama "elástica" inicial y una rama "plástica" posterior a la fluencia. La rama plástica se define conectando el punto de fluencia nominal (M_n, ϕ_y) a la condición del estado límite escogido M_{LS}, ϕ_{LS} .

Figura 1.4.7. Diagrama de Momento-Curvatura de una sección de hormigón armado.

Fuente: López Esteban

Donde:

 M_{cr} : Momento de fisura

- $M_{\gamma\gamma}$: Momento de primera fluencia
- M_n : Momento nominal
- ϕ_{cr} : Curvatura de fisura
- $\phi_{\gamma\gamma}$: Curvatura de primera fluencia
- Ø_v: Curvatura de fluencia equivalente
- Øs: Curvatura de serviciabilidad
- Ø_{DC}: Curvatura de control de daño

Con un análisis geométrico de la Figura 1.4.7. se puede establecer que:

$$\frac{M_{y'}}{\emptyset_{y'}} = \frac{M_n}{\emptyset_y}$$

Obteniendo la curvatura de fluencia equivalente como:

$$\phi_y = \frac{\phi_{y'} * M_n}{M_{y'}}$$

Ecuación 1.4.4. Curvatura de fluencia equivalente

Espectro Elástico de Diseño en Desplazamientos (Sd)

El valor de Sd es determinado en base a la NEC-SE-DS, en su sección 3.3.2. como:

$$S_{d} = S_{a}(g) * \left(\frac{T}{2\pi}\right)^{2} \quad para \quad 0 \le T \le T_{L}$$
$$S_{d} = S_{a}(g) * \left(\frac{T_{L}}{2\pi}\right)^{2} \quad para \quad T > T_{L}$$

Figura 1.4.8. Espectro elástico de diseño en desplazamientos. Fuente: Sección 3.3.2. Figura 4 (NEC-SE-DS, 2014)

Donde:

g: Aceleración de la gravedad

 S_d : Espectro elástico de diseño en desplazamientos (para un amortiguamiento del 5%)

 F_d : Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca

Sa: Espectro de respuesta elástico de aceleraciones (tomado como fracción de la gravedad)

T: Periodo fundamental de vibración de la estructura

T_L: Periodo límite de vibración de la estructura (periodo de la esquina)

2 METODOLOGÍA

2.1 Descripción del proyecto

En el presente Trabajo de Integración Curricular se plantean 3 geometrías estructurales basadas en pórticos de hormigón armado resistentes a momento, en un rango de 5 a 20 pisos. De estas tres geometrías se llevará a cabo el análisis estructural mediante dos métodos distintos: el uno basado en fuerzas (DBF), para el cual se realizará el análisis estático y el otro basado en desplazamientos (DDBD).

2.2 Ubicación

Se considera para el presente trabajo que el emplazamiento de las estructuras analizadas es sobre un perfil de suelo tipo B según la NEC-SE-DS en su apartado 3.2.1., concerniente a un suelo comprendido por roca de rigidez media y un PGA = 0.4g (aceleración máxima en roca).

2.3 Definición de geometrías estructurales

Se definen 3 geometrías estructurales las cuales presentan una misma configuración en planta, que está conformada por tres vanos de 6m en el sentido X-X y en el sentido Y-Y, mientras que en elevación la variación de la geometría es de la siguiente manera:

<u>Geometría 1:</u> Edificio de 18 m, conformado por 6 pisos con una altura constante de entrepiso de 3 m.

<u>Geometría 2:</u> Edificio de 36 m, conformado por 12 pisos con una altura constante de entrepiso de 3 m.

<u>Geometría 3:</u> Edificio de 54 m, conformado por 18 pisos con una altura constante de entrepiso de 3 m.

En el ANEXO I. se presenta gráficamente la definición de estas 3 geometrías estructurales.

2.4 Propiedades de los materiales

Hormigón

Resistencia del hormigón a la compresión (f'c)

La resistencia a la compresión del hormigón a los 28 días escogida para este trabajo es de 280 kg/cm².

$$f'c = 280 Kg/cm^2$$
15

Peso específico (χ_c)

El peso específico considerando un hormigón de densidad normal es de 2400 kg/m³.

$$\gamma_c = 2400 \ Kg/m^3$$

Módulo de elasticidad (Ec)

Según la NEC-SE-HM en su sección 3.3.3., una mejor estimación del módulo de elasticidad para un hormigón de densidad normal, que considere los materiales del Ecuador y sea adecuado para modelos elásticos de estructuras diseñadas ante acciones sísmicas, es determinada mediante la siguiente expresión:

$$Ec = 4.7 * \sqrt{f'c}$$

Ecuación 2.4.1. Módulo de elasticidad del hormigón (NEC-SE-HM, 2014)

Donde:

f'c: Resistencia a la compresión del hormigón a los 28 días [MPa]

Acero de refuerzo

Esfuerzo de fluencia del acero (fy)

El acero de refuerzo para este trabajo tiene un esfuerzo de fluencia de 4200 kg/cm².

$$fy = 4200 Kg/cm^2$$

Peso específico (χ_s)

El peso específico considerado para el acero de refuerzo es 7849.05 kg/m³.

$$\gamma_{s} = 7849.05 \, Kg/m^{3}$$

Módulo de elasticidad (Es)

El módulo de elasticidad a considerar para el acero de refuerzo es de 2000000 Kg/cm².

$$Es = 2000000 \, Kg/cm^2$$

2.5 Cargas gravitacionales sobre la estructura

Carga Viva

La carga viva es aquella aplicada temporalmente sobre la estructura, sin embargo, se estima que ocurrirá a lo largo de la vida útil de esta, acorde a su ocupación. Esta carga

está conformada por el peso de la gente, equipos, mobiliario, vehículos, etc. El valor de carga viva que ha sido establecido para este trabajo es de 250 Kg/m².

 $Carga Viva = 250 Kg/m^2$

Carga Muerta

La carga muerta es aquella que comprende los pesos de los elementos estructurales y no estructurales actuantes permanentemente en la estructura, dichos elementos son: vigas, columnas, losas, mampostería, recubrimientos, instalaciones y acabados.

Sin embargo, cabe recalcar que para el presente trabajo la carga muerta se ha dividido en: peso propio de los elementos estructurales y sobrecarga, en donde el peso de las vigas y columnas que conforman la estructura será contemplado como peso propio y este es estimado directamente por el programa de modelación ETABS. Mientras que el peso de la sobrecarga será aquel que considere el peso propio de la losa, mampostería, recubrimientos, instalaciones y acabados, valor que ha sido establecido en 750 Kg/m².

 $Sobrecarga = 750 \ Kg/m^2$

2.6 Predimensionamiento de elementos estructurales

Los elementos estructurales son predimensionados en base a las normativas vigentes: NEC-SE-HM (2014) y ACI 318-19 (2019).

Vigas

En su tabla 9.3.1.1. el ACI 318-19 establece que los límites mínimos de altura para vigas no preesforzadas son los siguientes:

Condición de apoyo	Altura mínima, h ^[1]
Simplemente apoyada	ℓ/16
Con un extremo continuo	ℓ/18.5
Ambos extremos continuos	ℓ/21
En voladizo	ℓ/8

Tabla 2.6.1. Altura mínima de vigas no preesforzadas.

Fuente: Sección 9.3.1. Tabla 9.3.1.1 (ACI 318-19, 2019)

A su vez esta normativa establece en la sección 18.6.2.1. que para pórticos especiales resistentes a momento, el ancho de vigas debe ser el máximo valor entre 0.3 veces la altura de la viga y 250 mm.

Viga		L [m]	Condición de apoyo	h _{calc} [m]	h _{adop} [m]	b _{mín} [m]	
	V 1-A-B	6	Un extremo continuo	0.32	0.35	0.25	
viga Tipo (⊑io 1)	V 1-B-C	6	Ambos extremos continuos	0.29	0.30	0.25	
	V 1-C-D	6	Un extremo continuo	0.32	0.35	0.25	
Sección de viga					0.35	0.25	

Tabla 2.6.2. Secciones predimensionadas de vigas.

Fuente: López Esteban

A partir de este análisis, se tiene que la sección de viga predimensionada es de 25x35 cm, sección que puede estar sujeta a cambios debido a la comprobación de $\alpha_{fm} > 2$, la cual es necesaria cumplir ya que se ha establecido que la estructura constituye un sistema de vigas descolgadas, con la finalidad de poder trabajar con un factor de reducción de resistencia sísmica R=8.

El valor de α_{fm} es el promedio de α_f asociado a cada viga en el borde de un panel, y se lo obtiene mediante la siguiente expresión propuesta por la ACI 318-14 sección 8.10.2.7.

$$\alpha_f = \frac{E_v I_v}{E_{losa} I_{losa}}$$

Ecuación 2.6.1. Relación de rigidez entre vigas y losa (ACI 318-14, 2014)

Donde:

E: Módulo de elasticidad del hormigón [Kg/cm²]

I: Inercia geométrica [cm⁴]

Para dicha comprobación primero se comienza estimando un espesor mínimo de losa según la tabla 8.3.1.2 del ACI 318-19.

α_{fm} ^[1]	Espes		
$\alpha_{fm} \le 0.2$	S	(a)	
$0.2 < \alpha_{fm} \le 2.0$	Mayor de:	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 5\beta \left(\alpha_{fm} - 0.2 \right)}$	(b) ^{[2], [3]}
		125	(c)
$\alpha_{fm} > 2.0$	Mayor de:	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta}$	(d) ^{[2], [3]}
		90	(e)

Tabla 2.6.3. Espesor mínimo de losas en dos direcciones.

Fuente: Sección 8.3.1. Tabla 8.3.1.2 (ACI 318-19, 2019)

L larga mayor L _l [m]	L corta mayor L _c [m]	LI/Lc	Tipo Losa	Ln _A [m]	Ln _B [m]	β	h _{calculado} [m]	h _{adoptado} [m]
6	6	1.00	2 Dimensiones	5.75	5.75	1.00	0.1406	0.15

 Tabla 2.6.4.
 Espesor determinado de losa maciza.

Fuente: López Esteban

Posteriormente, en el **ANEXO II.** se muestra la comprobación del sistema de vigas descolgadas, donde para cumplir con la condición $\alpha_{fm} > 2$, las vigas de todas las geometrías propuestas deben tener una sección de 40 cm de alto y 35 cm de ancho.

Columnas

El predimensionamiento de columnas se lo hace para cada geometría, considerando 3 tipos: interior, borde y esquinera.

Figura 2.6.1. Área tributaria de columnas tipo a predimensionar Fuente: López Esteban

Según la ACI 318-19 en el apartado 18.7.2.1. las columnas de pórticos especiales resistentes a momento deben cumplir con los siguientes límites dimensionales:

- La menor sección transversal deberá medir al menos 30 cm
- La relación entre la menor y mayor sección transversal debe ser al menos 0.4

Para el predimensionamiento de elementos verticales es necesario hacer una estimación de la carga viva y muerta que actúa sobre el área cooperante de los elementos.

Es posible reducir a carga viva según la NEC-SE-CG en la sección 3.2.2. si se tiene lo siguiente:

$$Si \quad K_{LL} * A_T \ge 35 \ m^2$$

$$L = L_o * \left(0.25 + \frac{4.57}{\sqrt{K_{LL} * A_T}} \right)$$

Ecuación 2.6.2. Carga viva reducida para columnas (NEC-SE-CG, 2014)

Donde:

- L: Sobrecarga distribuida reducida
- L_o: Sobrecarga distribuida sin reducir
- A_T : Área tributaria [m²]

El factor de sobrecarga K_{LL} es determinado según la siguiente tabla:

 Tabla 2.6.5.
 Factor de sobrecarga para columnas.

Elemento	K _{LL} ^a
Columnas	
Columnas interiores	4
Columnas exteriores sin losas en volado	4
Columnas de borde con losas en volado	3
Columnas esquineras con losas en volado	2

Fuente: Sección 3.2.2. Tabla 2 (NEC-SE-CG, 2014)

Considerando que para las 3 geometrías analizadas las columnas corresponden a la categoría de columnas interiores y exteriores sin losas en volado, se obtiene lo siguiente:

Tabla 2.6.6. Factor de reducción de carga viva para columnas.

Columna	A Tributaria [m²]	Longitud vigas [m]	KLL	Reducción de CV
A1 (Esquinera)	9.00	6.00	4	0.63
B1 (Borde)	18.00	9.00	4	0.79
B2 (Interior)	36.00	12.00	4	1.00

Fuente: López Esteban

La resistencia axial nominal para miembros no preesforzados compuestos de acero y concreto, se la determina con lo expuesto en la sección 22.4.2.2. del ACI 318-19:

$$Po = 0.85 * f'c * (A_g - A_{st}) + fy * A_{st}$$

Ecuación 2.6.3. Resistencia axial nominal para columnas (ACI 318-19, 2019) Donde:

 A_q : Área geométrica de la sección.

 A_{st} : Área total del refuerzo longitudinal no preesforzado.

De esta manera, haciendo uso de un proceso iterativo en donde se va variando el parámetro Ag, que está en función de las dimensiones de columna y asumiendo una cuantía del 1%, se logra determinar la sección conveniente que permita cumplir con la resistencia requerida (Po/4).

A continuación, se presenta el resumen de las secciones predimensionadas de columnas para las 3 geometrías propuestas. Cabe recalcar que el cálculo detallado se encuentra en el **ANEXO III.**

N° Piso	Interna	Borde	Esquinera
6			
5	55x55	40x40	30x30
4			
3			
2	65x65	50x50	40x40
1			

Tabla 2.6.7. Secciones predimensionadas de columnas para Geometría 1.

Fuente: López Esteban

 Tabla 2.6.8.
 Secciones predimensionadas de columnas para Geometría 2.

N° Piso	Interna	Borde	Esquinera
12			
11	65x65	40x40	40x40
10			
9			
8	75x75	50x50	45x45
7			

6			
5	85x85	60x60	50x50
4			
3			
2	95x95	70x70	55x55
1			

|--|

 Tabla 2.6.9.
 Secciones predimensionadas de columnas para Geometría 3.

N° Piso	Interna	Borde	Esquinera
18			
17	70x70	65x65	40x40
16			
15			
14	80x80	70x70	45x45
13			
12			
11	90x90	75x75	50x50
10			
9			
8	100x100	80x80	55x55
7			
6			
5	110x110	85x85	60x60
4			
3			
2	120x120	90x90	65x65
1			

Fuente: López Esteban
2.7 Aplicación del método de Diseño Basado en Fuerzas (DBF)

Determinación del espectro de respuesta elástico de aceleraciones (Sa)

Como se mencionó en la sección 2.2 del presente trabajo, el perfil de suelo a considerar en este trabajo será tipo B y un factor de zona Z=0.4. A partir de estos datos se procede a determinar el espectro de respuesta elástico de aceleraciones Sa.

Coeficientes de perfil de suelo

Estos coeficientes son determinados en base a la tabla 3, 4 y 5, de la sección 3.2.2. de la NEC-SE-DS, para un suelo tipo B y Z=0.4.

Coeficiente	Valor	Descripción
Fa	1.00	Coeficiente de amplificación de suelo en la zona de período corto
F _d	1.00	Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca
Fs	0.75	Comportamiento no lineal de los suelos

Tabla 2	71	Coeficientes	de	nerfil de suelo
		COEIICIEIILES	ue	permi de suelo.

Fuente: López Esteban

Periodo de vibración

La NEC-SE-DS. establece en su sección 6.3.3.a. el método 1 para la determinación del periodo de vibración de la estructura.

$$T_a = C_t h_n^{\ \alpha}$$

Ecuación 2.7.1. Periodo de vibración (NEC-SE-DS, 2014)

Donde:

Ct: Coeficiente en función del tipo de edificio

 h_n : Altura máxima de la estructura, medida desde la base de esta [m]

De esta manera, para una estructura conformada por pórticos especiales de hormigón armado sin muros estructurales ni diagonales rigidizadores C_t =0.055 y α =0.9 respectivamente.

A su vez en la sección 6.3.3.b. de la NEC-SE-DS, se propone el método 2 el cual considera las características de deformación y las propiedades estructurales de los elementos. Además, dispone que el periodo determinado por este método no debe exceder en un 30% al valor del periodo calculado por el método 1.

Debido a que el método 2 coincide con la forma en la que el programa ETABS determina el periodo de la estructura, el periodo de diseño para la determinación de Sa es tomado mediante la siguiente expresión:

$$T_a = 1.3 * T_{a_{m \acute{e}todo 1}}$$

Geometría 1		Geometría 2		Geometría 3	
h _n [m]	18	h _n [m]	36	h _n [m]	54
T _{a_método 1} [S]	0.741	T _{a_método 1} [S]	1.384	Ta_método 1 [S]	1.993
T _{a_1.3*método1} [S]	0.964	T _{a_1.3*método1} [S]	1.799	T _{a_1.3*método1} [S]	2.591
			4 1		

Fuente: López Esteban

Espectro de respuesta elástico de aceleraciones

El espectro de respuesta elástico de aceleraciones (Sa) es determinado en base a la sección 3.3.1. de la NEC-SE-DS, el cual es presentado en la **Figura 1.4.2.** del presente trabajo, y a partir de la cual se obtienen los siguientes valores:

Tabla 2.7.3. Espectros de respuesta elástico de aceleraciones para las 3 geometrías
propuestas.

Geometría 1		Geor	netría 2	Geometría 3		
Z	0.4	Z	0.4	Z	0.4	
Fa	1	Fa	1	Fa	1	
F_{d}	1	F₀	1	Fd	1	
Fs	0.75	F₅	0.75	Fs	0.75	
η	2.48	η	2.48	η	2.48	
r	1	r	1	r	1	
T ₀ [s]	0.0750	T ₀ [s]	0.0750	T ₀ [s]	0.0750	
T _C [s]	0.4125	T _C [s]	0.4125	T _C [s]	0.4125	
Sa	0.425	Sa	0.227	Sa	0.158	

Fuente: López Esteban

Determinación del cortante basal de la estructura (V)

El cortante basal de diseño de la estructura es determinado en base a lo expuesto en la sección 6.3.2. de la NEC-SE-DS.

$$V = \frac{I * S_a(T_a)}{R * \phi_P * \phi_E} * W$$

Ecuación 2.7.2. Cortante basal de diseño (NEC-SE-DS, 2014)

Donde:

- Sa: Espectro de diseño en aceleración
- $\phi_P y \phi_E$: Coeficientes de configuración en planta y elevación
- I: Coeficiente de importancia
- R: Factor de reducción de resistencia sísmica
- W: Carga sísmica reactiva
- V: Cortante basal total de diseño

De esta manera, sabiendo que las 3 geometrías propuestas fueron consideradas como un sistema dúctil compuesto por pórticos resistentes de hormigón armado con vigas descolgadas (R = 8), las edificaciones son no esenciales o de ocupación especial (I = 1) y que además no presentan ningún tipo de irregularidad en planta ni elevación($\phi_P = 1$; $\phi_E = 1$), se obtiene el coeficiente de cortante basal de diseño para cada geometría:

Geometría 1		Ge	eometría 2	Geometría 3		
I	1	I	1	I	1	
Sa	0.425	Sa	0.227	Sa	0.158	
R	8	R	8	R	8	
¢⊧	1	ф⊨	1	φE	1	
фР	1	ф₽	1	ф₽	1	
С	0.053	С	0.028	С	0.020	

 Tabla 2.7.4.
 Coeficiente de cortante basal de diseño para las 3 geometrías propuestas.

Fuente: López Esteban

Cabe recalcar que el valor de C representa el coeficiente de cortante basal, el cual refleja el porcentaje del peso de la edificación que será tomado en cuenta como carga lateral para la edificación.

Modelación estructural

La modelación estructural se realiza en el software ETABS e inicia con las secciones de los elementos estructurales anteriormente predimensionadas.

Posteriormente, tras un cierto número de iteraciones en el software, se presentan las secciones definitivas con las cuales la estructura presenta un comportamiento adecuado.

 Tabla 2.7.5. Secciones definitivas de elementos estructurales para las 3 geometrías propuestas.

(Geometría	1	(Geometría :	2	(Geometría 3	3
	Vigas			Vigas			Vigas	
Viga Tipo	40x6	60 cm	Viga Tipo	50x6	60 cm	Viga Tipo 55x60 cm		0 cm
	Columnas			Columnas			Columnas	
N° Piso	Interna	Borde y Esquinera	N° Piso	Interna	Borde y Esquinera	N° Piso	Interna	Borde y Esquinera
6			12			18		
5			11			17		
4	65v65	60x60	10	75,75	65x65	16	80x80	70x70
3	COXCO		9	/5x/5		15		
2			8			14		
1			7			13		
			6			12		
			5			11		
			4	95v95		10	90x90	80x80
			3	COXCO	75275	9		
			2			8		
			1			7		
						6		
						5		
						4	100v100	00,00
						3	1002100	90790
						2		
						1		

Fuente: López Esteban

En el **ANEXO IV.** se presenta la configuración en 3D realizada en ETABS de las 3 geometrías propuestas

Definición de materiales

Se definen los materiales en base a las propiedades establecidas en la sección 2.4 del presente trabajo.

E Material Property Data		×
General Data Material Name Material Type Directional Symmetry Type Material Display Color Material Notes Material Weight and Mass (a) Specify Weight Density Weight per Unit Volume Mass per Unit Volume	fc=280kg/om2 Concrete Isotropic Change Modify/Show Notes O Specify Mass Density 0.0024 kgf/cm³ 0.00002 kgf-s²/cm³	Material Property Design Data Material Name and Type Material Name and Type Material Name fc=280kg/cm2 Material Type Concrete, Isotropic Grade fc=4000 ps Design Properties for Concrete Materials Specified Concrete Compressive Strength, fc 280 kgf/cm ² Ughtweight Concrete Shear Strength Reduction Factor
Mechanical Property Data Modulus of Elasticity, E Poisson's Ratio, U Coefficient of Thermal Expansion, A Shear Modulus, G	251140.84 kgf/cm² 0.2 0.000099 1/C 104642.02 kgf/cm²	OK Cancel

Figura 2.7.1. Definición de hormigón en ETABS.

aeneral Data			
Material Name	Acero Refuerz	:0	
Material Type	Rebar		\sim
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Modify/Show Notes		
laterial Weight and Mass			
Specify Weight Density	O Spec	ify Mass Density	
Weight per Unit Volume		0.00785	kgf/cm ³
Mass per Unit Volume		0.000008	kgf-s²/cm4
lechanical Property Data			
		2000000	kaf/cm ²
Modulus of Elasticity, E			

Fuente: López Esteban

Figura 2.7.2. Definición de acero de refuerzo en ETABS.

Fuente: López Esteban

Definición de secciones

Según la sección 6.1.6. de la NEC-SE-DS, para el cálculo de la rigidez y derivas máximas en estructuras de hormigón armado, los elementos estructurales deben considerar valores de inercias agrietadas, tal como se indica a continuación:

- 0.5 lg para vigas
- 0.8 lg para columnas

De esta manera, se muestra a continuación la definición de una viga de 40x60 cm y una columna de 65x65 cm en ETABS.

eneral Data			Property/Stiffness Modifiers for Analysis	
Property Name	V40×60]	Cross-section (axial) Area	1
Material	fo=280kg/cm2 \lor		Shear Area in 2 direction	1
Notional Size Data	Modify/Show Notional Size		Shear Area in 3 direction	1
Display Color	Change		Torsional Constant	1
Notes	Modify/Show Notes		Moment of Inertia about 2 axis	0.5
308			Moment of Inertia about 3 axis	0.5
Section Shape	Company Description		Mass	1
Section Shape	Concrete Rectangular V		Weight	1
ection Property Source				
Source: User Defined				
ection Dimensions				
Death	0.6	m		

Figura 2.7.3. Definición de viga 40x60 en ETABS.

Frame Section Property Data		Property/Stiffness Modification Facto	ors
General Data		Property/Stiffness Modifiers for Analysis	
Property Name	C65×65_Int1	Cross-section (axial) Area	1
Material	fc=280kg/cm2 ~	Shear Area in 2 direction	1
Notional Size Data	Modify/Show Notional Size	Shear Area in 3 direction	1
Display Color	Change	Torsional Constant	1
Notes	Modify/Show Notes	Moment of Inertia about 2 axis	0.8
Shane		Moment of Inertia about 3 axis	0.8
Contion Change	Course Dourse have a set	Mass	1
Section Snape	Concrete Rectangular V	Weight	1
Section Property Source			
Source: User Defined			
Section Dimensions			
Depth	0.65 m		
Width	0.65 m	ОК	Cancel

Fuente: López Esteban

Figura 2.7.4. Definición de columna 65x65 en ETABS.

Fuente: López Esteban

Definición de cargas

Las cargas gravitacionales definidas en la sección 2.5 del presente trabajo son asignadas en las losas de cada piso para las 3 geometrías propuestas.

bads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
Sobrecarga	Dead	~ 0	~	Modify Load
Sobrecarga	Dead	0		
Live	Live	0		
PP SX1	Seismic		User Coefficient	
SY1	Seismic	lŏ	User Coefficient	Delete Load
SX2	Seismic	0	User Coefficient	

Figura 2.7.5. Definición en ETABS de patrones de carga.

Fuente: López Esteban 28

Se define también en cada modelo la carga sísmica en función del coeficiente de cortante basal establecido en la **Tabla 2.7.4**.

Direction and Eccentricity		Factors		
X Dir	Y Dir	Base Shear Coefficient, C	0.053	
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1.23	
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range		
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story6	~
Overwrite Eccentricities	Overwrite	Bottom Story	Base	~
Seismic Load Pattern - Use	r Defined			
Seismic Load Pattern - Use	r Defined	Factors		
Direction and Eccentricity	r Defined	Factors Base Shear Coefficient, C	0.053	
Direction and Eccentricity X Dir X Dir X Dir X Dir X Dir + Eccentricity	r Defined □ Y Dir ☑ Y Dir + Eccentricity	Factors Base Shear Coefficient, C Building Height Exp., K	0.053	
Direction and Eccentricity X Dir X Dir X Dir + Eccentricity X Dir - Eccentricity	r Defined Y Dir Y Dir + Eccentrioity Y Dir - Eccentricity	Factors Base Shear Coefficient, C Building Height Exp., K Story Range	0.053	

Figura 2.7.6. Definición en ETABS del sismo en X e Y. (Geometría 1)

Fuente: López Esteban

En base a la sección 3.4.3a. de la NEC-SE-CG, se tiene que las combinaciones de carga a tomar en cuenta para el diseño por última resistencia son las siguientes:

- 1.4 * *D*
- 1.2 * D + 1.6 * L
- $1.2 * D + L \pm E$
- $0.9 * D \pm E$

ombinations	Click to:
0.9*D+Sx 0.9*D+Sv	Add New Combo
0.9°D-Sx 0.9°D-Sx 0.9°D-Sy 1.2°D+1.6°L 1.2°D+L+Sx	Add Copy of Combo
	Modify/Show Combo
1.2*D+L+Sy 1.2*D+L-Sx 1.2*D+L-Sy 1.4*D	Delete Combo
CM	Add Default Design Combos
	Convert Combos to Nonlinear Cases

Figura 2.7.7. Definición de combinaciones de carga en ETABS.

Fuente: López Esteban

Análisis Estático Lineal

Control de derivas de piso

Para cualquier nivel de piso la deriva inelástica máxima (obtenida de la deriva elástica de piso) no debe exceder el valor que se establece en la sección 4.2.2. de la NEC-SE-DS, presentado en la siguiente tabla:

Tabla 2.7.6. Derivas máximas, expresadas como fracción de la altura de piso.

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

Fuente: Sección 4.2.2. Tabla 7 (NEC-SE-DS, 2014)

De esta manera para estructuras de hormigón armado, se establece que el límite de deriva inelástica máxima será de 0.02 (2%), donde la deriva máxima inelástica Δ_M para cada piso es calculada con la siguiente expresión:

$$\Delta_M = 0.75 * R * \Delta_E$$

Ecuación 2.7.3. Deriva máxima inelástica (NEC-SE-DS, 2014)

Donde:

R: Factor de reducción de resistencia sísmica

 Δ_E : Deriva elástica de piso

Periodo de vibración de la estructura

Se realiza el control del periodo de vibración mediante una serie de iteraciones en las que se va variando la sección de los elementos (vigas y columnas), en busca de que el periodo obtenido del software ETABS sea igual al periodo obtenido por el método 2 establecido en la NEC-SE-DS.

Diseño estructural de elementos

El diseño de los elementos estructurales está basado en las normativas vigentes: NEC-SE-HM (2014) y ACI 318-19 (2019).

El recubrimiento adoptado es de 4 cm, para vigas y columnas, en base a lo establecido en la tabla 20.5.1.3.1. del ACI 318-19.

Diseño de Vigas

• Diseño a flexión

La sección 9.5.1.1. del ACI 318-19 dispone que, para todas las combinaciones de carga mayorada, la resistencia de diseño a flexión en cada una de las secciones tiene que cumplir:

$$\phi Mn \ge Mu$$

Donde:

Mn: Resistencia nominal a flexión

Mu: Resistencia requerida a flexión

φ: Factor de reducción de resistencia

Según la sección 21.2.1. del ACI 318-19 se establece que ϕ =0.9, para miembros controlados por momento, fuerza axial o momento y fuerza axial combinados.

A partir del momento nominal a flexión se puede determinar el acero de refuerzo longitudinal en vigas como:

$$Mn = As * fy * \left(d - \frac{As * fy}{1.7 * f'c * b}\right)$$

Ecuación 2.7.4. Momento nominal de la sección de hormigón armado (ACI 318-19, 2019) Donde:

- As: Acero de refuerzo longitudinal
- d: Peralte efectivo de la sección
- b: Ancho de la sección

Adicionalmente, el ACI 318-19 en la sección 18.6.3.1. establece que la cuantía máxima para un acero grado 60 no debe ser mayor a 0.025 ni inferior a lo establecido en su sección 9.6.1.2.

$$\rho_{m \acute{a} x} \leq 0.025$$

$$As_{min} \ge \left(\frac{0.8 * \sqrt{f'c} * bw * d}{fy}; \frac{14 * bw * d}{fy}\right)$$

• Diseño a corte

La sección 9.5.1.1. del ACI 318-19 dispone que, para todas las combinaciones de carga mayorada, la resistencia de diseño a corte en cada una de las secciones tiene que cumplir:

$$\phi Vn \ge Vu$$

Donde:

Vn: Resistencia nominal a corte

Vu: Resistencia requerida a corte

φ: Factor de reducción de resistencia

Según la sección 21.2.1. del ACI 318-19 se establece que ϕ =0.75, para miembros sometidos a fuerza cortante.

La resistencia requerida a corte (V_u) se compone por el cortante de carga vertical (V_{cv}) y el cortante hiperestático (V_{hip}) desarrollado en base a la capacidad a flexión de la viga.

$$V_u = V_{cv} + V_{hip}$$

Teniendo que,

$$V_{hip} = \frac{M_{pri} + M_{prj}}{Ln}$$

Ecuación 2.7.5. Cortante hiperestático (ACI 318-19, 2019)

Donde:

M_{pri}: Momento probable a la izquierda de la viga

 M_{prj} : Momento probable a la derecha de la viga

Ln: Luz libre

$$M_{pr} = \alpha * As * fy * \left(d - \frac{\alpha * As * fy}{1.7 * f'c * b}\right)$$

Ecuación 2.7.6. Momento probable.

Donde:

 α = 1.4 (factor que considera la fluencia del acero)

En este punto, si:

$$V_{hip} \ge \frac{1}{2} V_u \quad \rightarrow \quad Vc = 0$$

A continuación, se establece según la sección 22.5.1.1. del ACI 318-19 la resistencia nominal a corte como:

$$Vn = Vc + Vs$$

Ecuación 2.7.7. Resistencia nominal a corte (ACI 318-19, 2019).

Donde:

Vc: Resistencia a corte dada por el hormigón

Vs: Resistencia a corte dada por el acero de refuerzo transversal

Vc y *Vs* se determinan en base a la sección 22.5.5.1. y 22.5.8.1. del ACI 318-19 respectivamente como:

$$Vc = 0.53 * \lambda * \sqrt{f'c} * bw * d$$

Ecuación 2.7.8. Resistencia a corte dada por el hormigón (ACI 318-19, 2019) Donde, $\lambda = 1$ para hormigón de peso normal.

$$Vs \ge \frac{Vu}{\phi} - Vc$$

Ecuación 2.7.9. Resistencia a corte dada por el acero de refuerzo (ACI 318-19, 2019) Debiéndose cumplir que:

$$Vs \le 4 * Vc$$

Finalmente, el área de refuerzo a corte se obtiene mediante la siguiente expresión establecida en la sección 22.5.8.5.3. del ACI 318-19

$$A_v = \frac{Vs * s}{f_{yt} * d}$$

Ecuación 2.7.10. Área de refuerzo a corte (ACI 318-19, 2019)

Donde:

s: Espaciamiento longitudinal de refuerzo a corte

$$s_{lo} \le \min\left(\frac{d}{4}; 6 * d_{bl}; 15cm\right)$$
$$s_{c} \le \min\left(\frac{d}{2}; 2 * s_{lo}; 30cm\right)$$

Donde:

slo: Espaciamiento longitudinal en la zona de confinamiento

s_c: Espaciamiento longitudinal fuera de la zona de confinamiento

d_{bl}: Diámetro de la varilla longitudinal

El diseño a flexión y corte en vigas se presenta de manera detallada en el ANEXO V.

Diseño de Columnas

• Diseño a flexocompresión

La sección 4.3.3. de la NEC-SE-HM propone que la cuantía máxima de refuerzo longitudinal en columnas debe estar en el rango de 1% a 3%. Para el presente trabajo se establece que todas las columnas tengan una cuantía alrededor del 1%, con lo cual se desarrolla el diagrama de interacción P-M y se representa la fuerza axial Pu y momento Mu obtenidos de las combinaciones mayoradas de carga, tratando que se encuentren dentro de la zona aceptable de diseño, que sería por debajo de la recta que representa la carga axial máxima y la curva de capacidad reducida.

Figura 2.7.8. Diagrama de interacción P-M en columnas.

Fuente: López Esteban

• Diseño a corte y confinamiento

En base a la sección 18.7.6.1.1. del ACI 318-19, el cortante probable de diseño para columnas (VPR_{DISENO}) se lo determina tomando en cuenta las fuerzas máximas que pueden producirse en los extremos de la columna (en las caras de los nudos). Estas fuerzas son obtenidas utilizando la resistencia máxima probable a flexión en cada extremo de la columna. Sin embargo, estas fuerzas cortantes no necesariamente deben ser mayores que las fuerzas cortantes determinadas en base a la resistencia de los nudos en función del momento probable Mpr de las vigas que llegan al nudo.

$$VPR_{Viga} = \frac{MPR1_{Vizq(-)} + MPR1_{Vder(+)}}{Hn}$$

Ecuación 2.7.11. Corte probable en columna procedente de vigas (ACI 318-19, 2019) Donde:

 $MPR1_{Vizq(-)} + MPR1_{Vder(+)}$: Momentos probables desarrollados en vigas en función de la Ecuación 2.7.5.

Hn: Luz libre de columna

$$VPR_{Col} = \frac{MPR_{Col}}{Hn}$$

Ecuación 2.7.12. Corte probable desarrollado en columna

Donde:

MPR_{Col}: Momento probable desarrollado en la columna, obtenido del Diagrama de interacción P-M, mediante la proyección del punto (Pu, Mu) hacia la curva de capacidad probable.

Por lo tanto, para columnas del primer piso, considerando que las rótulas plásticas en vigas y base de columnas se forman, se tiene que:

$$VPR_{DISE\tilde{N}O} = VPR_{Viga} + VPR_{Col}$$

Ecuación 2.7.13. Corte probable de diseño en columnas del primer piso

Mientras que para el resto de columnas en las cuales se considera la formación de rótulas plásticas únicamente en las vigas se tiene:

$$VPR_{DISE\tilde{N}O} = VPR_{Viga}$$

Ecuación 2.7.14. Corte probable de diseño en columnas diferentes al primer piso

Por otro lado, en base a la tabla 18.7.5.4. del ACI 318-19, el refuerzo por confinamiento en columnas se lo obtiene como el mayor valor entre:

• $Ash1 = 0.3 * \left(\frac{Ag}{Ach} - 1\right) * \frac{f'c}{fy} * s * bc$

•
$$Ash2 = 0.09 * \frac{f'c}{fy} * s * bc$$

• $Ash3 = 0.2 * \frac{Pu}{fy*Ach} * s * bc * kf * kn$

$$Kf = 0.2 * \frac{f'c}{1750} + 0.6 \ge 1$$
; $Kn = \frac{\#varillas}{\#varillas - 1}$

Donde:

Ag: Área bruta de la sección transversal de columna [cm²]

Ach: Área del núcleo confinado de la sección transversal de columna [cm²]

bc: Longitud transversal del núcleo del miembro, medida entre bordes externos del refuerzo transversal [cm]

s: Espaciamiento longitudinal del refuerzo transversal [cm]

$$s_{lo} \le \min\left(\frac{b}{4}; \frac{h}{4}; 6 * d_{bl}; 10cm\right)$$
$$s_c \le \min\left(\frac{d}{2}; 6 * d_{bl}; 15cm\right)$$

Donde:

 s_{lo} : Espaciamiento longitudinal en la zona de confinamiento

 s_{lo} : Espaciamiento longitudinal fuera de la zona de confinamiento

d_{bl}: Diámetro de la varilla longitudinal

El diseño a corte y confinamiento en columnas se presenta en el ANEXO VI.

Diseño de conexión Viga - Columna

El diseño de la conexión viga columna se basa en 3 revisiones: deterioro por adherencia, corte y anclaje.

El chequeo del deterioro por adherencia, se lo hace en base a la sección 18.8.2.3. del ACI 318-19, donde se establece que la sección paralela al acero de refuerzo en el nudo, debe tener una dimensión de:

$$h_{viga} \ge 20 * d_{bl_{columna}}$$
 y $h_{columna} \ge 20 * d_{bl_{viga}}$

A continuación, el chequeo por corte se rige en la sección 18.8.4.1. del ACI 318-19, donde se establece que la resistencia a corte (*Vcol*) se la calcula en base al momento probable de las vigas, definido por la **Ecuación 2.7.6.** Adicionalmente, en base a la Figura 4.6 del ACI 352RS-02, se evalúa en el nudo el cortante horizontal como:

$$T = \alpha * As * fy$$

Ecuación 2.7.15. Tensión proporcionada por el acero de refuerzo (ACI 352RS-02, 2002)

$$V_i = T1 + T2 - V_{col}$$

Ecuación 2.7.16. Cortante efectivo en el nudo viga-columna (ACI 352RS-02, 2002) Mientras que el cortante de diseño en el nudo se determina como:

$$\phi * Vn = 0.85 * \gamma * \sqrt{f'c} * bj * hc$$

Ecuación 2.7.17. Cortante de diseño en el nudo viga-columna (ACI 352RS-02, 2002) Donde:

bj: Ancho efectivo

$$bj = min(b_{viga} + hc; b_{viga} + 2 * x)$$

hc: Dimensión de columna paralela al refuerzo longitudinal

 γ : Factor que depende del tipo de conexión (aplicable para unidades de kg y cm)

Tabla 2.7.7. Factor y en función del tipo de conexión viga-columna

Co	γ	
C. Interior	bv>0.75bc	5.3
C. Interior	bv<0.75bc	4
C. Exterior	bv>0.75bc	4
C. Exterior	bv<0.75bc	3.2
C. E	3.2	

Fuente: Sección 4.3.1. Tabla 1 (ACI 352RS-02, 2002)

Por tanto, según la sección 18.4.4.7.1. del ACI 318-19, se tiene que se debe cumplir:

$$V_i \leq \phi * Vn$$

Finalmente, la revisión de anclaje en el nudo se la hace según lo dispuesto en la sección 18.8.5.1. del ACI 318-19, donde se establece que para varillas a tracción embebidas en el nudo la longitud de desarrollo l_{dh} es el máximo valor entre $8d_b$ y 15 cm, considerando un hormigón de peso normal.

$$l_{dh} = \frac{fy * d_b}{17 * \lambda * \sqrt{f'c}}$$

Ecuación 2.7.18. Longitud de desarrollo de barras en tracción (ACI 318-19, 2019)

El diseño de la conexión viga-columna se presenta de manera detallada en el ANEXO VII.

2.8 Aplicación del método de Diseño Directo Basado en Desplazamientos (DDBD)

La aplicación del DDBD que se muestra en esta sección se la realizó con las mismas secciones de los elementos establecidas en el DBF, las cuales se encuentran propuestas en la **Tabla 2.7.5.**, a su vez se analiza para las 3 geometrías propuestas el siguiente pórtico:

Figura 2.8.1. Pórtico a analizar en el método DDBD.

Fuente: López Esteban

Espectro elástico de diseño en desplazamientos

El espectro elástico de diseño en desplazamientos (Sd) correspondiente a un amortiguamiento del 5% es representado en la **Figura 1.4.8.** del presente trabajo, lo cual a su vez con los datos propios del sitio de implantación de la estructura mostrados en la **Tabla 2.7.3.** y tomando como periodo el periodo límite T_L , se obtiene:

Tabla 2.8.1. Espectro elástico de diseño en desplazamientos para las 3 geometrías
propuestas.

Z	0.40	[-]
Fa	1.00	[-]
F_{d}	1.00	[-]
Fs	0.75	[-]
η	2.48	[-]
r	1	[-]
T ₀	0.075	[s]
Tc	0.413	[s]

ΤL	2.400	[s]
Sa	0.171	[-]
Sd = Δ∟,5%	0.244	[m]

Fuente: López Esteban

Etapa 1: Determinación del sistema equivalente de un grado de libertad

Una estructura conformada por pórticos resistentes a momento corresponde a un sistema de varios grados de libertad, por lo que para aplicar el método de DDBD es necesario pasar a un sistema equivalente de un solo grado de libertad. A continuación, se muestra el procedimiento de cálculo para la determinación del sistema equivalente de la Geometría 2 propuesta en el presente trabajo, cuya determinación se basa en el cálculo de los siguientes parámetros, propuestos en la sección 5.2.1. de Priestley et al. (2007).

1) <u>Desplazamiento de piso de diseño</u>

$$\Delta_i = \delta_i \left(\frac{\Delta_c}{\delta_c} \right)$$

Ecuación 2.8.1. Desplazamiento de diseño de piso (Priestley et al., 2007)

Donde:

 Δ_c : Desplazamiento del entrepiso crítico [m]

 δ_c : Forma del modo inelástico normalizado del entrepiso crítico.

 δ_i : Forma del modo inelástico normalizado.

- Para $n \leq 4$

$$\delta_i = \frac{H_i}{H_n}$$

- Para n > 4

$$\delta_i = \frac{4}{3} \left(\frac{H_i}{H_n} \right) \left(1 - \frac{H_i}{4H_n} \right)$$

Donde, i = 1 a n (número de pisos)

De esta manera, considerando que la Geometría 2 es de 12 pisos, que el entrepiso crítico será el primer piso que tiene una altura de 3 m y que la deriva objetivo de piso es del 2% se tiene que:

$$\Delta_c = \Delta_1 = 0.02 * 3 m = 0.06 m$$
$$\delta_c = \delta_1 = \frac{4}{3} \left(\frac{3 m}{36 m} \right) \left(1 - \frac{3 m}{4 * 36 m} \right) = 0.213$$
$$\Delta_i = \delta_i \left(\frac{0.06}{0.213} \right)$$

2) Desplazamiento de diseño del sistema equivalente

$$\Delta_d = \frac{\sum_{i=1}^n (m_i \Delta_i^2)}{\sum_{i=1}^n (m_i \Delta_i)}$$

Ecuación 2.8.2. Desplazamiento de diseño del sistema equivalente (Priestley et al., 2007)

Donde:

 m_i : Masa del iésimo piso [Ts²/m]

Considerando las cargas gravitacionales expuestas en la sección 2.5 del presente, y el peso propio de los elementos, la masa por piso es:

Piso	Peso Losa	Peso Vigas	Peso Columnas	Peso Total / Piso	Masa / Piso
	[Т]	[T]	[Т] [Т]		[T.s²/m]
12	243.000	92.448	26.352	361.800	36.881
11	243.000	92.448	52.704	388.152	39.567
10	243.000	92.448	52.704	388.152	39.567
9	243.000	92.448	52.704	388.152	39.567
8	243.000	92.448	52.704	388.152	39.567
7	243.000	92.448	52.704	388.152	39.567
6	243.000	92.448	61.056	396.504	40.418
5	243.000	92.448	69.408	404.856	41.270
4	243.000	92.448	69.408	404.856	41.270
3	243.000	92.448	69.408	404.856	41.270
2	243.000	92.448	69.408	404.856	41.270
1	243.000	92.448	69.408	404.856	41.270
Base			34.704	34.704	3.538
Suma:	2916.000	1109.376	732.672	4758.048	485.020

Tabla 2.8.2. Masa por piso (Geometría 2).

Fuente: López Esteban

La determinación de la masa por piso de la geometría 1 y 3 se presenta en el ANEXO VIII.

De esta manera conociendo la masa y el desplazamiento de diseño por piso se obtienen los siguientes resultados:

Tabla 2.8.3. Parámetros necesarios para el cálculo del desplazamiento de	diseño (del
sistema equivalente (Geometría 2).		

Dia a l	Altura, Hi	Masa, mi		Δi			
PISO, I	[m]	[T.s ² /m]	Oi	[m]	mi^Δi	mı *Δı⁻	ΜΙ ΔΙ^ΗΙ
12	36	36.88	1.000	0.551	20.339	11.217	732.216
11	33	39.57	0.942	0.520	20.558	10.681	678.414
10	30	39.57	0.880	0.485	19.194	9.311	575.826
9	27	39.57	0.813	0.448	17.729	7.944	478.693
8	24	39.57	0.741	0.409	16.164	6.603	387.925
7	21	39.57	0.664	0.366	14.497	5.311	304.430
6	18	40.42	0.583	0.322	13.003	4.183	234.048
5	15	41.27	0.498	0.274	11.327	3.109	169.908
4	12	41.27	0.407	0.225	9.273	2.083	111.270
3	9	41.27	0.313	0.172	7.112	1.226	64.012
2	6	41.27	0.213	0.117	4.847	0.569	29.082
1	3	41.27	0.109	0.060	2.476	0.149	7.429
Σ =					156.519	62.387	3773.252

Fuente: López Esteban

Se tiene entonces que el desplazamiento de diseño del sistema equivalente es:

$$\Delta_d = \frac{62.387}{156.519} = 0.399 \, m$$

3) Masa del sistema equivalente

$$m_e = \frac{\sum_{i=1}^n (m_i \Delta_i)}{\Delta_d}$$

Ecuación 2.8.3. Masa del sistema equivalente (Priestley et al., 2007)

Reemplazando los valores ya calculados se tiene que:

$$m_e = \frac{156.519}{0.399} = 392.681 \ \frac{Ts^2}{m}$$

4) <u>Altura efectiva del sistema equivalente</u>

$$H_e = \frac{\sum_{i=1}^n (m_i \Delta_i H_i)}{\sum_{i=1}^n (m_i \Delta_i)}$$

Ecuación 2.8.4. Altura efectiva del sistema equivalente (Priestley et al., 2007)

$$H_e = \frac{3773.252}{156.519} = 24.107 \, m$$

5) Ductilidad de desplazamiento de diseño del sistema equivalente

$$\mu = \frac{\Delta_d}{\Delta_y}$$

Ecuación 2.8.5. Ductilidad de desplazamiento de diseño del sistema equivalente (Priestley et al., 2007)

Donde:

 Δ_{γ} : Desplazamiento de fluencia [m]

$$\Delta_y = \theta_y * H_e$$

Ecuación 2.8.6. Desplazamiento de fluencia (Priestley et al., 2007)

La deriva de fluencia de piso para pórticos de hormigón armado es:

$$\theta_y = 0.5 * \varepsilon_y * \frac{L_B}{h_b}$$

Ecuación 2.8.7. Deriva de fluencia de piso (Priestley et al., 2007)

- L_B : Luz entre ejes de columnas [m]
- h_b : Altura de la viga [m]

 ε_{v} : Deformación de fluencia del refuerzo longitudinal

$$\varepsilon_y = \frac{f_y}{Es}$$

Ecuación 2.8.8. Deformación de fluencia (Priestley et al., 2007)

Se tiene mediante la aplicación de las ecuaciones antes mostradas, los siguientes resultados:

$$\varepsilon_y = \frac{4200 \ kg/m^2}{2000000 \ kg/m^2} = 0.0021$$

Conociendo que la luz entre ejes de columnas y la altura de la viga es 6 m y 0.6 m respectivamente,

$$\theta_y = 0.5 * 0.0021 * \frac{6 m}{0.6 m} = 0.011 \frac{1}{m}$$
$$\Delta_y = 0.011 * 24.107 m = 0.253 m$$
$$\mu = \frac{0.399 m}{0.253 m} = 1.575$$

6) <u>Amortiguamiento viscoso del sistema equivalente</u>

Para pórticos de hormigón armado:

$$\xi_{eq} = 0.05 + 0.565 \left(\frac{\mu - 1}{\mu \pi}\right)$$

Ecuación 2.8.9. Amortiguamiento viscoso del sistema equivalente (Priestley et al., 2007)

$$\xi_{eq} = 0.05 + 0.565 \left(\frac{1.575 - 1}{1.575 * \pi}\right) = 11.563\%$$

El factor de escalamiento para un amortiguamiento del 11.563% para la determinación del desplazamiento de respuesta del periodo de la esquina es:

$$DSF = \sqrt{\frac{7}{2 + \xi_{eq}}}$$

Ecuación 2.8.10. Factor de escala del amortiguamiento (Priestley et al., 2007)

$$DSF = \sqrt{\frac{7}{2 + 11.563}} = 0.718$$

Se tiene entonces que el desplazamiento en el periodo de la esquina T_L para un amortiguamiento viscoso equivalente del 11.563% es:

$$S_{d'} = \Delta_{L=11.56\%} = S_d * DSF = 0.244 \ m * 0.718 = 0.175 \ m$$

7) <u>Periodo efectivo del sistema equivalente</u>

El periodo efectivo en la respuesta del desplazamiento pico se determina del espectro de desplazamiento, como se muestra en la **Figura 2.8.2.**, en donde se entra con el valor de desplazamiento de diseño y se obtiene el periodo efectivo T_e asociado al amortiguamiento viscoso equivalente calculado.

Figura 2.8.2. Determinación del periodo efectivo del sistema equivalente.

Fuente: Sección 5.2 Figura 5.1.d (Priestley et al., 2007)

8) <u>Rigidez efectiva del sistema equivalente</u>

$$K_e = \frac{4 * \pi^2 * m_e}{T_e}$$

Ecuación 2.8.11. Rigidez efectiva del sistema equivalente (Priestley et al., 2007)

9) <u>Cortante basal de diseño</u>

$$F = V_{Base} = K_e * \Delta_d$$

Ecuación 2.8.12. Cortante basal de diseño (Priestley et al., 2007)

En este punto, es necesario realizar un chequeo para saber si la capacidad de desplazamiento excede el espectro de demanda, es decir:

$$\Delta_d > \Delta_{L=X\%}$$

Donde:

 Δ_d : Desplazamiento de diseño del sistema equivalente [m]

 $\Delta_{L=X\%}$: Desplazamiento para un amortiguamiento diferente al 5% [m]

De esta manera, y tras el manejo de los datos que se tiene para cada geometría propuesta en el presente trabajo, se tiene que efectivamente dicha condición se cumple, la capacidad de desplazamiento excede el espectro de demanda. Siendo necesario realizar un chequeo adicional en base a la sección 3.4.6 de Priestley et al. (2007), para saber si se tiene uno de los dos siguientes casos:

a) Desplazamiento de fluencia excede el valor del desplazamiento correspondiente al periodo de la esquina en el espectro elástico del 5% de amortiguamiento

Esto se obtiene en estructuras muy flexibles o cuando la intensidad de la demanda sísmica es baja, por lo tanto, en este caso se calcula el periodo de respuesta elástico, el cual será mayor que el periodo de la esquina T_L. La respuesta de desplazamiento es igual a $S_d = \Delta_{L=5\%}$ y el cortante basal de diseño vendrá dado por:

$$V_{Base} = K_{el} * \Delta_{L=5\%}$$

Ecuación 2.8.13. Cortante basal de diseño por método a (Priestley et al., 2007)

$$K_{el} = \frac{0.1 * W_e}{\Delta_y}$$

Ecuación 2.8.14. Rigidez elástica (Priestley et al., 2007)

Donde:

Kel: Rigidez elástica [T/m]

 W_e : Peso efectivo de la estructura [T]

 b) Desplazamiento de fluencia es menor que el valor del desplazamiento correspondiente al periodo de la esquina en el espectro elástico del 5% de amortiguamiento

En este caso se tiene que la respuesta inelástica ocurrirá, pero no al nivel de ductilidad correspondiente al desplazamiento o capacidad de deriva de la estructura. Para este caso se plantea el siguiente procedimiento de prueba y error:

1. Calcular el desplazamiento de diseño Δ_d y el desplazamiento para un amortiguamiento diferente al 5% $\Delta_{L=X\%}$, luego verificar que estos valores sean incompatibles con el espectro de desplazamientos.

2. Proponer un valor estimado de desplazamiento final de respuesta Δ_{df} , el cual estará entre $\Delta_{L=X\%}$ y Δ_d .

3. Calcular la demanda de ductilidad de desplazamiento correspondiente a Δ_{df} como: $\mu = \Delta_{df} / \Delta_{y}$.

4. Calcular el amortiguamiento ξ correspondiente a la demanda de ductilidad μ .

5. Calcular la respuesta de desplazamiento Δ en T_L correspondiente a ξ .

6. Usar el valor de Δ como nueva estimación del desplazamiento final Δ_{df} .

7. Repetir del paso 3 al 6 hasta encontrar una solución estable.

Para cualquiera de estos dos casos se debe realizar la verificación de los efectos P- Δ , en base a la sección 3.6 de Priestley et al. (2007) como:

$$\theta_{\Delta} = \frac{P * \Delta_d}{M_d} \le 0.33$$

Ecuación 2.8.15. Índice de estabilidad (Priestley et al., 2007)

Donde:

P: Carga axial (Peso efectivo de la estructura) [T]

 M_d : Momento de diseño en la base [T.m]

$$M_d = V_{Base} * H_e$$

Para estructuras de hormigón armado, cuando el índice de estabilidad excede 0.10, el momento de diseño en la base debe ser amplificado por los efectos P- Δ como:

$$M_{B} = K_{e} * \Delta_{d} * H + C * P * \Delta_{d} \quad con \quad C = 0.5$$

Ecuación 2.8.16. Momento de diseño en el base amplificado (Priestley et al., 2007) De esta manera, con los resultados obtenidos hasta este punto se puede decir lo siguiente de cada geometría propuesta:

• Geometría 1

El desplazamiento de diseño $\Delta_d = 0.211 m$ excede la demanda de desplazamiento máxima posible para el amortiguamiento calculado $\Delta_{L=11.71\%} = 0.174 m$.

El desplazamiento de fluencia $\Delta_y = 0.132 m$ es menor que el desplazamiento de la esquina asociado al 5% de amortiguamiento $\Delta_{L=5\%} = 0.244m$.

Por lo tanto, en esta geometría se aplica la solución presente en el caso (b).

• Geometría 2

El desplazamiento de diseño $\Delta_d = 0.399 m$ excede la demanda de desplazamiento máxima posible para el amortiguamiento calculado $\Delta_{L=11.56\%} = 0.175 m$.

El desplazamiento de fluencia $\Delta_y = 0.253 m$ es mayor que el desplazamiento de la esquina asociado al 5% de amortiguamiento $\Delta_{L=5\%} = 0.244m$.

Por lo tanto, en esta geometría se aplica la solución presente en el caso (a).

• Geometría 3

El desplazamiento de diseño $\Delta_d = 0.586 m$ excede la demanda de desplazamiento máxima posible para el amortiguamiento calculado $\Delta_{L=11.52\%} = 0.176 m$.

El desplazamiento de fluencia $\Delta_y = 0.373 m$ es mayor que el desplazamiento de la esquina asociado al 5% de amortiguamiento $\Delta_{L=5\%} = 0.244m$.

Por lo tanto, en esta geometría se aplica la solución presente en el caso (a).

A continuación, se presentan los resultados obtenidos para la determinación del sistema equivalente de un grado de libertad, con sus correcciones correspondientes y el cortante basal de diseño para la geometría 2:

Geometría 2					
Δ_{d}	0.399	[m]			
m _e	392.681	[T.s²/m]			
H _e	24.107	[m]			
Δ _y	0.253	[m]			
μ	1.575	[-]			
ξ _{eq}	11.563	[%]			
DSF	0.718	[-]			
$S_{d'} = \Delta_{L,11.56\%}$	0.175	[m]			

Tabla 2.8.4. Parámetros del sistema equivalente de un grado de libertad (Geometría 2)

El desplazamiento de fluencia excede el desplazamiento asociado al 5% de amortiguamiento

W _e	3852.205	[T]
Kelástico	1521.849	[T/m]
T _{elástico}	3.192	[T/m]
Δ_{d}	0.2440	[m]
Vb	371.388	[T]
M _b	8953.158	[Tm]
μ =	1.000	[-]
ξeq =	5.00%	[-]

Chequeo efectos P-Δ							
$\Theta_{\Delta} =$	0.105	[-]					
ΘΔ>0.1>Amplificar capacidad de momento							
en la base							
С	0.5	[-]					
Mb	9423.199	Tm					
Vb	[T]						
Vb/pórtico = 97.721 [T]							
Fuente: López Esteban							

La determinación del sistema equivalente de un grado de libertad para las geometrías 1 y 3 se presentan en el **ANEXO IX.**

Etapa 2: Determinación del perfil de desplazamientos

10) Distribución del cortante basal de diseño a los niveles de piso

La distribución del cortante basal de diseño en los diferentes niveles de piso se lo hizo en base a la sección 5.4 de Priestley et al. (2007), en donde se propone la siguiente expresión:

$$F_i = F_t + 0.9 * V_B * \frac{(m_i \Delta_i)}{\sum_{i=1}^n m_i \Delta_i}$$

Ecuación 2.8.17. Distribución del cortante basal de diseño a los niveles de piso (Priestley et al., 2007)

Con,

$$F_t = 0.1 * V_B \rightarrow en \ el \ nivel \ de \ techo$$

 $F_t = 0 \rightarrow en todos los demás niveles$

Donde:

V_B: Cortante basal de diseño [T]

Tabla 2.8.5. Distribución d	el cortante basal	de diseño a los	niveles de pis	o (Geometría 2)
-----------------------------	-------------------	-----------------	----------------	-----------------

Piso, i	Altura, Hi [m]	Masa, mi [T.s ² /m]	δ _i	Δi [m]	mi *∆i	mi *∆i²	mi *∆i*Hi	F _i [T]
12	36	36.88	1.000	0.551	20.339	11.217	732.216	21.201
11	33	39.57	0.942	0.520	20.558	10.681	678.414	11.552
10	30	39.57	0.880	0.485	19.194	9.311	575.826	10.785
9	27	39.57	0.813	0.448	17.729	7.944	478.693	9.962
8	24	39.57	0.741	0.409	16.164	6.603	387.925	9.082
7	21	39.57	0.664	0.366	14.497	5.311	304.430	8.146
6	18	40.42	0.583	0.322	13.003	4.183	234.048	7.306
5	15	41.27	0.498	0.274	11.327	3.109	169.908	6.365
4	12	41.27	0.407	0.225	9.273	2.083	111.270	5.210
3	9	41.27	0.313	0.172	7.112	1.226	64.012	3.997
2	6	41.27	0.213	0.117	4.847	0.569	29.082	2.724
1	3	41.27	0.109	0.060	2.476	0.149	7.429	1.391
Σ =					156.519	62.387	3773.252	97.721

Fuente: López Esteban

11) <u>Análisis de inercia agrietada de elementos</u>

Para el estudio adecuado del comportamiento estructural de pórticos de hormigón armado resistentes a momento, se hace uso de inercias reducidas en los elementos que lo conforman, esto ya que se debe considerar rigideces que sean consistentes con la respuesta asociada al desplazamiento inelástico máximo, y además considerar la inercia reducida de vigas ya que se espera el comportamiento columna fuerte-viga débil. Esta inercia viene dada como:

$$I_{eff} = \frac{I_{cr}}{\mu}$$
; ($\mu = 1$, para columnas)

Ecuación 2.8.18. Inercia efectiva de los elementos.

Donde:

μ: Ductilidad de desplazamiento de diseño del sistema equivalente

Icr: Inercia agrietada de los elementos

La inercia agrietada de los elementos viene dada como el máximo valor entre:

$$I_{cr_{min}} = \frac{M_y}{E_c * \Phi_y} \quad y \quad I_{cr_{análisis}} = \frac{M_{análisis}}{E_c * \Phi_y}$$

Ecuación 2.8.19. Inercia agrietada de los elementos.

Donde:

E_c: Módulo de elasticidad del hormigón [MPa]

 Φ_{v} : Curvatura de fluencia [1/m]

 M_{ν} : Momento de fluencia [KN.m]

Manálisis: Momento de análisis de la estructura [KN.m]

A partir de las ecuaciones anteriormente expuestas y considerando las secciones de vigas y columnas de la geometría 2 que se muestran en la **Tabla 2.7.5.**, se presenta la determinación de la inercia agrietada mínima para la columna interior del piso 0 al piso 6 C85x85 y la viga V50x60, para lo cual se hace uso del diagrama momento-curvatura, en la determinación de la curvatura de fluencia (Φ_{γ}) y el momento de fluencia (M_{γ}).

Figura 2.8.3. Diagrama momento-curvatura C85x85.

Fuente: López Esteban

Inercia agrietada mínima en columnas					
lcr min = My / (Ec * Φy)					
My	2720.950	[kN.m]			
Ec	24628.4	[Mpa]			
Фу	0.0059041	[1/m]			
lcr	0.01871254	[m4]			

Tabla 2.8.6. Inercia agrietada mínima C85x85

Fuente: López Esteban

Figura 2.8.4. Diagrama momento-curvatura V50x60.

Fuente: López Esteban

Inercia agrietada mínima en vigas						
Icr min = My / (Ec * Φy)						
My =	301.223	[kN.m]				
Ec =	24628.4	[Mpa]				
Фу =	0.0061044	[1/m]				
lcr =	0.002004	[m4]				
Fuente: López Esteban						

Tabla 2.8.7. Inercia agrietada mínima V50x60.

Por otro lado, para la determinación de la inercia agrietada del análisis, son necesarios los momentos de análisis ($M_{análisis}$), los cuales se obtienen mediante la modelación del pórtico de la **Figura 2.8.1.** bajo una condición de simple apoyo en la base y sometido a las fuerzas laterales obtenidas de la distribución del cortante basal de diseño a los niveles de piso y a los momentos en base de columnas. Este proceso se vuelve iterativo, ya que se comienza asumiendo una inercia efectiva de los elementos de acorde a la sección 6.1.6. de la NEC-SE-DS con 50% para vigas y 80% para columnas, a partir de lo cual se determina los momentos en vigas y columnas y se recalcula la inercia efectiva en estos elementos, lo

cual servirá como valor de inercia para la siguiente iteración. De esta manera, se realiza el proceso sucesivamente hasta que los resultados de inercia efectiva entre una iteración y otra no presenten variación.

Figura 2.8.5. Modelación de pórtico tipo ante cargas laterales y momentos en base de columnas (Geometría 2)

Fuente: López Esteban

	Мо	Momentos del análisis				
Piso	Vigas	Columnas	Columnas			
	riguo	Int.	Ext.			
	[T.m]	[T.m] [T.m]				
12	8.76	14.64	7.14			
11	12.8	18.63	9.49			
10	17.21	21.81	11.13			
9	21.56	24.27	12.35			
8	25.65	26.42	13.41			
7	29.46	28.48	14.43			
6	32.53	31.76	15.74			
5	34.65	36.51	17.87			
4	36.01	42.71	21.24			
3	38.7	47.66	23.85			
2	40.29	51.42	26.50			
1	37.72	63.50	31.80			

Tabla 2.8.8. Momentos en vigas y columnas obtenidos del análisis (Geometría 2)

Fuente: López Esteban

		leff anális	is	leff min				
	М	análisis / (Ec	*Ф у) / µ		Му / (Ес * Фу) / μ			
Piso	Vigos	Columnas	Columnas	Vigao	Columnas	Columnas		
	viyas	Int.	Ext.	viyas	Int.	Ext.		
	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]		
12	0.0005	0.0010	0.0004	0.0020	0.0102	0.0055		
11	0.0007	0.0013	0.0006	0.0020	0.0102	0.0055		
10	0.0009	0.0015	0.0007	0.0020	0.0102	0.0055		
9	0.0012	0.0016	0.0007	0.0020	0.0102	0.0055		
8	0.0014	0.0018	0.0008	0.0020	0.0102	0.0055		
7	0.0016	0.0019	0.0008	0.0020	0.0102	0.0055		
6	0.0018	0.0024	0.0011	0.0020	0.0187	0.0104		
5	0.0019	0.0028	0.0012	0.0020	0.0187	0.0104		
4	0.0020	0.0033	0.0014	0.0020	0.0187	0.0104		
3	0.0021	0.0037	0.0016	0.0020	0.0187	0.0104		
2	0.0022	0.0039	0.0018	0.0020	0.0187	0.0104		
1	0.0020	0.0049	0.0022	0.0020	0.0187	0.0104		

Tabla 2.8.9. Inercia efectiva de análisis e inercia efectiva mínima (Geometría 2)

Fuente: López Esteban

Tabla 2.8.10. Inercia efectiva asumida (Geometría 2)

	leff asumida								
	Max (leff análisis, leff min)								
Piso	Vigas		Columna	S	Columna	IS			
	viyas		Int.		Ext.				
	[m^4]	%	[m^4]	[m^4] %		%			
12	0.0020	22	0.01018	39	0.00548	37			
11	0.0020	22	0.01018	39	0.00548	37			
10	0.0020	22	0.01018	39	0.00548	37			
9	0.0020	22	0.01018	39	0.00548	37			
8	0.0020	22	0.01018	39	0.00548	37			
7	0.0020	22	0.01018	39	0.00548	37			
6	0.0020	22	0.01871	43	0.01045	40			
5	0.0020	22	0.01871	43	0.01045	40			
4	0.0020	22	0.01871	43	0.01045	40			
3	0.0021	23	0.01871	43	0.01045	40			
2	0.0022	24	0.01871	43	0.01045	40			
1	0.0020	23	0.01871	43	0.01045	40			
	F	uent	e: López Est	ebar]				

El análisis de la inercia agrietada de los elementos para la geometría 1 y 3 se presenta en el **ANEXO X**.

12) <u>Desplazamientos y derivas de piso</u>

Los desplazamientos y derivas de piso, que se obtienen del análisis del pórtico tipo ante cargas laterales y con las inercias efectivas de los elementos, son aquellos asociados a la respuesta inelástica de la estructura.

Dico	Δ piso i	θi
F150	[m]	%
12	0.256	0.276%
11	0.248	0.383%
10	0.237	0.495%
9	0.222	0.603%
8	0.204	0.704%
7	0.183	0.798%
6	0.159	0.836%
5	0.134	0.881%
4	0.107	0.909%
3	0.080	0.915%
2	0.052	0.902%
1	0.025	0.847%
0	0.000	0.000%

Tabla 2.8.11. Desplazamientos y derivas inelásticas de piso (Geometría 2)

Fuente: López Esteban

Fuente: López Esteban

El perfil de desplazamientos y las derivas inelásticas de piso para la geometría 1 y 3 se presenta en el **ANEXO XI.**

Etapa 3: Determinación de acciones (momentos y cortantes)

A continuación, se muestra el proceso para la determinación de las acciones (momentos y cortantes) en los elementos (vigas y columnas), en base al cálculo de los siguientes parámetros, propuestos en el capítulo 5 de Priestley et al. (2007).

13) <u>Momento total de volteo (OTM)</u>

El momento total de volteo inducido por las fuerzas laterales en la base de la edificación viene dado por:

$$OTM = \sum_{i=1}^{n} F_i H_i$$

Ecuación 2.8.20. Momento total de volteo (Priestley et al., 2007)

14) <u>Capacidad de momento en la base de columna</u>

$$\sum_{j=1}^{m} M_{Cj} = V_B * 0.65 * H_1$$

Ecuación 2.8.21. Capacidad de momento en la base de columna (Priestley et al., 2007) Donde:

V_B: Cortante basal de diseño [T]

*H*₁: Altura del primer piso [m]

15) <u>Fuerza de tensión en la base de columna</u>

$$\sum_{i=1}^{n} V_{Bi} = T = \frac{\left(\sum_{i=1}^{n} F_{i}H_{i} - \sum_{j=1}^{m} M_{Cj}\right)}{L_{base}}$$

Ecuación 2.8.22. Fuerza de tensión en la base de columna (Priestley et al., 2007) Donde:

L_{base}: Distancia entre la fuerza de tensión y compresión (ancho total de la estructura) [m]

16) <u>Fuerza cortante de piso</u>

$$V_{s,i} = \sum_{k=i}^{n} F_k$$

Ecuación 2.8.23. Fuerza cortante de piso (Priestley et al., 2007)

Donde:

 F_k : Fuerzas laterales de piso [T]

17) Cortante sísmico de vigas en los extremos

$$V_{Bi} = T * \frac{V_{s,i}}{\sum_{i=1}^{n} V_{s,i}}$$

Ecuación 2.8.24. Cortante sísmico en los extremos de vigas (Priestley et al., 2007)

18) <u>Momentos sísmicos de vigas en los extremos</u>

$$M_{Bi(eje\ col)} = \frac{V_{Bi} * L_B}{2} \quad ; \qquad M_{Bi(cara\ col)} = \frac{V_{Bi} * (L_B - h_c)}{2}$$

Ecuación 2.8.25. Momentos sísmicos en extremos de vigas en eje y cara de columna (Priestley et al., 2007)

Donde:

- *L_B*: Luz entre ejes de columnas [m]
- h_c: Altura de la columna [m]

 Tabla 2.8.12.
 Momentos y cortantes sísmicos en extremos de vigas (Geometría 2)

Piso, i	Altura, H _i	Fi	V _{si}	OTM (Mom. volteo)	V _{Bi}	M _{Bi} (Eje.Col)	Vigas (bxh)	Columnas (bxh)	M _{Bi} * (Cara.Col)
	[m]	[Т]	[T]	[T.m]	[Т]	[T.m]	[cm]	[cm]	[T.m]
12	36	21.201	21.201	0.000	3.261	9.783	50x60	75x75	8.560
11	33	11.552	32.753	63.603	5.038	15.114	50x60	75x75	13.225
10	30	10.785	43.538	161.861	6.697	20.091	50x60	75x75	17.580
9	27	9.962	53.500	292.475	8.229	24.688	50x60	75x75	21.602
8	24	9.082	62.583	452.976	9.626	28.879	50x60	75x75	25.269
7	21	8.146	70.729	640.724	10.879	32.638	50x60	75x75	28.558
6	18	7.306	78.035	852.910	12.003	36.010	50x60	85x85	30.908
5	15	6.365	84.400	1087.014	12.982	38.947	50x60	85x85	33.429
4	12	5.210	89.610	1340.213	13.784	41.351	50x60	85x85	35.493
3	9	3.997	93.607	1609.043	14.398	43.195	50x60	85x85	37.076
2	6	2.724	96.330	1889.863	14.817	44.452	50x60	85x85	38.155
1	3	1.391	97.721	2178.853	15.031	45.094	50x60	85x85	38.706
Σ =		97.721	824.006	2472.017	126.748				

Fuente: López Esteban

19) <u>Momentos por cargas gravitacionales en vigas</u>

Los momentos gravitacionales en vigas serán determinados mediante el método de análisis simplificado para vigas continuas no preesforzadas y losas en una dirección, establecido en la sección 6.5. del ACI 318-19. En donde Mu debido a cargas gravitacionales se calcula de acuerdo a la siguiente tabla:

Momento	Localización	Condición	M_{u}
	Vanas autromas	Extremo discontinuo monolítico con el apoyo	$w_u \ell_n^2/14$
Positivo	vanos extremos	El extremo discontinuo no está restringido	$w_u \ell_n^2/11$
	Vanos interiores	Todos	$w_u \ell_n^2/16$
	Cara interior de los apoyos	Miembros construidos monolíticamente con viga dintel de apoyo	$w_u \ell_n^2/24$
	exteriores	Miembros construidos monolíticamente con columna como apoyo	$w_u \ell_n^2 / 16$
	Cara exterior	Dos vanos	$w_u \ell_n^2 / 9$
Negativo ⁽¹⁾	apoyo interior	Más de dos vanos	$w_u \ell_n^2 / 10$
	Las demás caras de apoyos	Todas	$w_u \ell_n^2/11$
	Cara de todos los apoyos que cumplan (a) o (b)	(a) Losas con luces que no excedan de 3 m (b)Vigas en las cuales la relación entre la suma de las rigideces de las columnas y la rigidez de la viga exceda de 8 en cada extremo del vano	$w_u \ell_n^2/12$

Tabla 2.8.13. Momentos aproximados para vigas continuas no preesforzadas y losas er	n
una dirección	

Fuente: Sección 6.5. Tabla 6.5.2 (ACI 318-19, 2019)

El valor de Wu es determinado mediante el siguiente análisis:

W = 1.2 * CM + 1.6 * CV

Donde:

s: Longitud del claro corto [m]

CM: Carga muerta [T]

CV: Carga viva [T]

Datos			
Carga viva			
CV	250.000	[kg/m2]	
Carga muerta			
Sobrecarga	750	[kg/m2]	
PP elementos/losa	256.00	[kg/m2]	
СМ	1006.00	[kg/m2]	
Combinaciones de carga			
W=1.2CM+1.6CV	1833.400	[kg/m2]	
W=1.2CM+1.6CV	1.833	[T/m2]	
Eugente: Lánez Estabon			

Tabla 2.8.14. Carga total uniforme por m2

Fuente: López Esteban

De esta manera se obtienen los siguientes valores de momentos últimos en vigas por cargas gravitacionales:

• En ejes

• En caras de columna

20) Momentos de diseño en vigas

Los momentos sísmicos obtenidos deben ser comparados con los momentos gravitacionales y el mayor entre estos dos será el momento de diseño asumido en vigas. Esto es posible observar en la **Tabla 2.8.15.** en donde para los 3 últimos pisos los momentos debido a carga vertical superan a los obtenidos por el análisis de carga lateral.

21) Fuerza cortante de diseño en vigas

La fuerza cortante de diseño a lo largo de la viga está dada por:

$$V_{x} = \frac{(M^{\circ}_{E,r} - M^{\circ}_{E,l})}{L_{B}} + \frac{w^{\circ}_{G} * L_{B}}{2} - w^{\circ}_{G} * x$$

Ecuación 2.8.26. Cortante de diseño a lo largo de viga (Priestley et al., 2007)

Adicionalmente el momento en el centro del tramo de la viga puede ser determinado como:

$$M_{x} = M_{E,l}^{\circ} + (M_{E,r}^{\circ} - M_{E,l}^{\circ}) * \frac{x}{L_{B}} + \frac{w_{G} * L_{B}}{2} * x - \frac{w_{G} * x^{2}}{2}$$

Ecuación 2.8.27. Momentos de tramo en viga (Priestley et al., 2007)

Donde:

L_B: Luz entre ejes de columnas [m]

 $M_{E,r}^{\circ}$; $M_{E,l}^{\circ}$: Momentos en los ejes de las columnas izquierda y derecha, aplicados un factor de sobrerresistencia $\phi^{\circ} = 1.35$, según la sección 5.10. de Priestley et al. (2007). [T.m]

w_G: Carga gravitacional sobe las vigas del pórtico representativo [T/m]

x: Distancia medida desde el eje de la columna izquierda [m]

A partir de los valores de carga mostrados en la **Tabla 2.8.14.**, se puede determinar la carga gravitacional sobre las vigas del pórtico representativo como:

$$w_G = (CM + CV) * Ancho cooperante$$

$$w_G = \left(\frac{1006}{1000} + \frac{250}{1000}\right) * 6 = 7.536 \left[\frac{T}{m}\right]$$
Piso, i	Altura, H _i	Columnas (bxh)	Vigas (bxh)	M _{Bi} (Eje.Col)	M _{Bi} * (Cara.Col)	M _x Tramo (x=3m)	V _{cc} Borde (Cara colum)
	[m]	[cm]	[cm]	[T.m]	[T.m]	[T.m]	[T]
12	36	75x75	50x60	23.144	18.401	33.912	29.245
11	33	75x75	50x60	23.144	18.401	33.912	29.245
10	30	75x75	50x60	23.144	18.401	33.912	29.245
9	27	75x75	50x60	24.688	21.602	33.912	30.892
8	24	75x75	50x60	28.879	25.269	33.912	32.778
7	21	75x75	50x60	32.638	28.558	33.912	34.469
6	18	85x85	50x60	36.010	30.908	33.912	35.610
5	15	85x85	50x60	38.947	33.429	33.912	36.931
4	12	85x85	50x60	41.351	35.493	33.912	38.013
3	9	85x85	50x60	43.195	37.076	33.912	38.843
2	6	85x85	50x60	44.452	38.155	33.912	39.409
1	3	85x85	50x60	45.094	38.706	33.912	39.698

 Tabla 2.8.15. Cortantes de diseño en vigas (Geometría 2)

22) Fuerza cortante de diseño en columnas

Para columnas cuadradas de pórticos en dos direcciones, la resistencia nominal a corte requerida en la dirección principal, viene dada por:

$$\Phi_{s}V_{N,2} \ge \sqrt{2} \left(\Phi^{\circ}V_{E,1} + 0.1 * \frac{\mu}{\sqrt{2}} * V_{E,base,1} \right) \le \frac{(M^{\circ}_{t} - M^{\circ}_{b})}{H_{c}}$$

Ecuación 2.8.28. Fuerza cortante de diseño en columnas (Priestley et al., 2007)

Donde:

 μ° : Demanda de ductilidad diagonal

$$\mu^{\circ} = \frac{\mu}{\sqrt{2} * \phi^{\circ}} < 1 \qquad \rightarrow \qquad \mu^{\circ} = 1$$

Ecuación 2.8.29. Demanda de ductilidad diagonal (Priestley et al., 2007)

Donde:

 $V_{E,1}$: Cortante sísmico en columnas [T]

V_{E,base,1}: Cortante sísmico en la base de columnas [T]

 M_{t}° ; M_{b}° : Momentos probables en cabeza y pie de columna del primer piso [T.m]

 H_c : Luz libre de columna [m]

Debido a la configuración del pórtico del eje 2 que se está analizando, los cortantes de piso se dividen entre las columnas interiores y exteriores en una proporción de 1:2, es decir 1/3 para columnas interiores y 1/6 para columnas exteriores, a su vez considerando que el pórtico analizado se encuentra bajo una acción biaxial, los cortantes debido al sismo en columnas se determinan como:

$$V_{E,1} = \frac{1}{6} * \sqrt{2} * V_s \quad \rightarrow \quad Columas \ exteriores$$

Ecuación 2.8.30. Cortante sísmico en columnas exteriores (Priestley et al., 2007)

$$V_{E,1} = \frac{1}{3} * \sqrt{2} * V_s \rightarrow Columns exteriores$$

Ecuación 2.8.31. Cortante sísmico en columnas interiores (Priestley et al., 2007) Donde:

 V_s : Fuerza cortante de piso [T]

Piso, i	Altura, H _i	Columnas (bxh)	V _{si}	VE _{ext} (Col. Ext)	VE _{int} (Col. Int)	Vu _{ext} (Col. Ext)	Vu _{int} (Col. Int)
	[m]	[cm]	[T]	[T]	[T]	[T]	[T]
12	36	75x75	21.201	4.997	9.994	20.566	41.132
11	33	75x75	32.753	7.720	15.440	24.242	48.483
10	30	75x75	43.538	10.262	20.524	27.674	55.347
9	27	75x75	53.500	12.610	25.220	30.844	61.687
8	24	75x75	62.583	14.751	29.502	33.734	67.467
7	21	75x75	70.729	16.671	33.342	36.326	72.651
6	18	85x85	78.035	18.393	36.786	38.650	77.301
5	15	85x85	84.400	19.893	39.786	40.676	81.351
4	12	85x85	89.610	21.121	42.243	42.334	84.667
3	9	85x85	93.607	22.063	44.127	43.605	87.211
2	6	85x85	96.330	22.705	45.410	44.472	88.944
1	3	85x85	97.721	23.033	46.066	44.915	89.829

Tabla 2.8.16. Cortantes de diseño en columnas (Geometría 2)

Fuente: López Esteban

23) <u>Momentos de diseño en columnas</u>

Tomando en cuenta que las columnas analizadas forman parte de un pórtico resistente a momento bidireccional, se debe realizar la consideración de la entrada biaxial, como se muestra:

Figura 2.8.7. Vista en planta de entrada de momentos al interior de una columna de pórticos bidireccionales

Fuente: Sección 5.6.2.c Figura 5.16 (Priestley et al., 2007)

$$\sum M_{CD} = \sqrt{(M_{B1P} + M_{B1N})^2 + (M_{B2P} + M_{B2N})^2}$$

Ecuación 2.8.32. Suma requerida de capacidades de momento diagonal de columnas (Priestley et al., 2007)

Donde:

 M_{B1P} ; M_{B2P} : Momentos positivos en vigas [T.m]

 M_{B1N} ; M_{B2N} : Momentos negativos en vigas [T.m]

A partir de este análisis, se tiene que los momentos de columnas correspondientes al nivel de diseño de fuerzas sísmicas son:

• Columnas interiores

$$M_{C1f} = \sqrt{8} * M_{Bi} \quad \rightarrow \quad$$
Último piso

$$M_{C1f} = \frac{\sqrt{8}}{2} * M_{Bi} \rightarrow Otros pisos$$

• Columnas exteriores

$$M_{C1f} = \sqrt{5} * M_{Bi} \rightarrow \hat{U}ltimo \ piso$$

$$M_{C1f} = \frac{\sqrt{5}}{2} * M_{Bi} \rightarrow Otros pisos$$

Donde:

M_{Bi}: Momentos en extremos de vigas

A partir de los parámetros anteriormente expuestos, se calculan los momentos de diseño en columnas como:

$$M_{C1,des} = \Phi^{\circ} * \omega_f * M_{C1f}$$

Ecuación 2.8.33. Momento de diseño en columnas (Priestley et al., 2007) Donde:

 ω_f : factor de amplificación dinámica

Figura 2.8.8. Amplificación dinámica de momentos en columnas de pórticos.

Fuente: Sección 5.8.4.c Figura 5.25 (Priestley et al., 2007)

Piso, i	Altura, H _i	M _{Bi} (Eje.Col)	M _{C1f} (Col. Int)	M _{C1f} (Col. Ext)	ω _f	M _{C1} ,des Col. Int (Eje viga)	M _{C1} ,des Col. Ext (Eje viga)	Vigas (bxh)	M _{∪C} Col. Int (Cara viga)	M _{UC} Col. Ext (Cara viga)
	[m]	[T.m]	[T.m]	[T.m]		[T.m]	[T.m]	[cm]	[T.m]	[T.m]
12	36	9.783	27.671	21.876	1.000	37.356	29.533	50x60	30.591	24.184
11	33	15.114	21.374	16.898	1.050	30.298	23.953	50x60	23.533	18.604
11			21.374	16.898	1.050	30.298	23.953		23.049	18.222
10	30	20.091	28.413	22.462	1.100	42.193	33.357	50x60	34.944	27.626
10			28.413	22.462	1.100	42.193	33.357		32.553	25.736
9	27	24.688	34.914	27.602	1.150	54.204	42.852	50x60	44.565	35.231
9			34.914	27.602	1.150	54.204	42.852		42.443	33.554
8	24	28.879	40.841	32.288	1.150	63.406	50.127	50x60	51.645	40.829
8			40.841	32.288	1.150	63.406	50.127		49.900	39.449
7	21	32.638	46.157	36.491	1.150	71.659	56.652	50x60	58.153	45.974
7			46.157	36.491	1.150	71.659	56.652		56.587	44.736
6	18	36.010	50.925	40.260	1.150	79.062	62.504	50x60	63.990	50.588
6			50.925	40.260	1.150	79.062	62.504		62.605	49.493
5	15	38.947	55.079	43.544	1.150	85.510	67.602	50x60	69.053	54.591
5			55.079	43.544	1.150	85.510	67.602		67.880	53.664
4	12	41.351	58.479	46.232	1.150	90.789	71.775	50x60	73.159	57.837
4			58.479	46.232	1.150	90.789	71.775		72.226	57.100
3	9	43.195	61.088	48.294	1.150	94.838	74.976	50x60	76.276	60.301
3			61.088	48.294	1.150	94.838	74.976		75.595	59.763
2	6	44.452	62.865	49.699	1.150	97.598	77.158	50x60	78.354	61.944
2			62.865	49.699	1.150	97.598	77.158		77.937	61.615
1	3	45.094	63.773	50.417	1.150	99.007	78.272	50x60	79.347	62.729
1			63.773	50.417	1.150	99.007	78.272		80.949	66.047
0	0		63.519	31.759	1.000	63.519	31.759			

Tabla 2.8.17. Momentos de diseño en columnas (Geometría 2)

24) Cargas axiales en columnas

Las fuerzas axiales en columnas se las determina mediante las cargas de gravedad y las fuerzas axiales dadas por la contribución de las fuerzas cortantes sísmicas de las vigas:

$$P_{CM} = CM_{piso} * A_{cooperante}$$
$$P_{CV} = CV_{piso} * A_{cooperante}$$
$$P_{Eo} = R_{v} * \sum V_{Eo} > P_{E}$$

Ecuación 2.8.34. Carga axial sísmica reducida en columnas (Paulay & Priestley, 1992) Donde:

 R_{v} : factor de reducción de carga axial sísmica

 $\sum V_{Eo}$: Suma de las fuerzas cortantes en vigas inducidas por el sismo de todos los pisos por encima del nivel considerado

El factor de reducción de carga axial sísmica viene dado en base a la sección 4.6.6. de Paulay & Priestley (1992):

Floors Above	Dynamic Magnification Factor, ω^a				, ω ^α	
the Level Considered	1.3 or less	1.5	1.6	1.7	1.8	1.9
2	0.97	0.97	0.96	0.96	0.96	0.95
4	0.94	0.94	0.93	0.92	0.91	0.91
6	0.91	0.90	0.89	0.88	0.87	0.86
8	0.88	0.87	0.86	0.84	0.83	0.81
10	0.85	0.84	0.82	0.80	0.79	0.77
12	0.82	0.81	0.78	0.76	0.74	0.72
14	0.79	0.77	0.75	0.72	0.70	0.67
16	0.76	0.74	0.71	0.68	0.66	0.63
18	0.73	0.71	0.68	0.64	0.61	0.58
20	0.70	0.68	0.64	0.61	0.57	0.54
or						
more						

Tabla 2.8.18. Factor de reducción de carga axial

Fuente: Sección 4.6.6 Tabla 4.5 (Paulay & Priestley, 1992)

• Columnas interiores

.. .

.

Para las columnas interiores, considerando que el pórtico que se está analizando tiene vanos regulares de 6 m, las fuerzas axiales de cortante sísmico se contrarrestan.

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	Comb U1 (CM+CV)
	[m]	[T]	[T]	[T]	[Т]	[T]
12	36	40.200	40.200	9.00	9.00	49.200
11	33	43.128	83.328	9.00	18.00	101.328
10	30	43.128	126.456	9.00	27.00	153.456
9	27	43.128	169.584	9.00	36.00	205.584
8	24	43.128	212.712	9.00	45.00	257.712
7	21	43.128	255.840	9.00	54.00	309.840
6	18	44.056	299.896	9.00	63.00	362.896
5	15	44.984	344.880	9.00	72.00	416.880
4	12	44.984	389.864	9.00	81.00	470.864
3	9	44.984	434.848	9.00	90.00	524.848
2	6	44.984	479.832	9.00	99.00	578.832
1	3	44.984	524.816	9.00	108.00	632.816
0	0	2.169	526.985		108.00	634.985
Σ =		526.985				

Tabla 2.8.19. Cargas axiales de columna interior (Geometría 2)

• Columnas exteriores

Та	abla 2.8.2	20. Carga	as axiale:	s de colu	mna exte	rior (Geom	etría 2)	
		Axial por				Carga axial	Reducción	Car

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	M _{Bi} (Eje.Col)	Carga axial sísmica Piso, i	Reducción de Carga axial Sísmica	Carga axial sísmica red, Acum
	[m]	[T]	[T]	[T]	[T]	[T.m]	[T.m]	[-]	[T.m]
12	36	20.100	20.100	4.50	4.50	9.783	4.403	1.00	4.403
11	33	21.564	41.664	4.50	9.00	15.114	6.801	0.95	10.644
10	30	21.564	63.228	4.50	13.50	20.091	9.041	0.93	18.828
9	27	21.564	84.792	4.50	18.00	24.688	11.110	0.91	28.532
8	24	21.564	106.356	4.50	22.50	28.879	12.996	0.89	39.250
7	21	21.564	127.920	4.50	27.00	32.638	14.687	0.86	50.772
6	18	22.028	149.948	4.50	31.50	36.010	16.204	0.82	61.322
5	15	22.492	172.440	4.50	36.00	38.947	17.526	0.77	71.431
4	12	22.492	194.932	4.50	40.50	41.351	18.608	0.75	82.975
3	9	22.492	217.424	4.50	45.00	43.195	19.438	0.72	94.186
2	6	22.492	239.916	4.50	49.50	44.452	20.003	0.70	104.818
1	3	22.492	262.408	4.50	54.00	45.094	20.292	0.67	114.643
0	0	2.169	264.577		54.00				114.643
Σ =		264.577							

Piso, i	Altura, H _i	Comb U1 (CM+CV)	Comb U2 (CM+CV+CS)	Comb U3 (CM+CV-CS)
	[m]	[T]	[T]	[T]
12	36	24.600	29.003	20.197
11	33	50.664	61.308	40.020
10	30	76.728	95.556	57.900
9	27	102.792	131.324	74.260
8	24	128.856	168.106	89.606
7	21	154.920	205.692	104.148
6	18	181.448	242.770	120.126
5	15	208.440	279.871	137.009
4	12	235.432	318.407	152.457
3	9	262.424	356.610	168.238
2	6	289.416	394.234	184.598
1	3	316.408	431.051	201.765
0	0	318.577	433.220	203.934

La determinación de acciones en los elementos de la geometría 1 y 3 se presentan en el **ANEXO XII.**

Etapa 4: Diseño estructural de elementos

El diseño estructural se lo hace en base al diseño por capacidad expuesto en Priestley et al. (2007) y las normativas vigentes: NEC-SE-HM (2014) y ACI 318-19 (2019).

Un factor importante en el diseño estructural de los elementos es considerar cuando las resistencias de los materiales exceden sus valores de diseño, lo cual se produce comúnmente, en donde los momentos a desarrollarse en los sitios de formación de rótulas plásticas exceden los valores de diseño. Por esta razón, según la sección 4.2.6. de Priestley et al. (2007), las resistencias de diseño de los materiales para las zonas donde se espera que se formen las rótulas plásticas son las siguientes:

Hormigón: $f'_{ce} = 1.3f'_{c}$ Acero de refuerzo: $f_{ye} = 1.1f_{y}$

Por otro lado, los requerimientos generales para el diseño por capacidad expuestos en la sección 5.8. de Priestley et al. (2007), se basan en que la resistencia requerida básica debe regirse a la siguiente relación:

$$\Phi_s S_D \ge S_R = \Phi^\circ \omega S_E$$

Ecuación 2.8.35. Carga axial sísmica reducida en columnas (Paulay & Priestley, 1992) Donde:

Φ_s : Factor de reducción de resistencia

S_D: Resistencia de diseño de la acción protegida por capacidad

S_R: Resistencia requerida confiable de la acción de diseño

 Φ° : Relación entre la capacidad de momento de sobreresistencia y la capacidad requerida de las rótulas plásticas (Factor de sobreresistencia)

ω: Amplificación de la acción que se está considerando debido a los efectos de modo superior (Factor de amplificación dinámica)

 S_E : Acción de diseño protegida por capacidad correspondiente a la distribución de la fuerza lateral de diseño obtenida del DDBD

Para pórticos de hormigón armado resistentes a momento, las consideraciones de diseño por capacidad están relacionadas con la resistencia a flexión y corte de la viga, resistencia a flexión y corte de la columna, y posiblemente la carga axial de la columna, por tanto, con las acciones (momentos, cortantes y axiales) obtenidos en los ítems anteriormente expuestos y en base a las consideraciones tomadas para el diseño estructural de los elementos en el método DBF planteadas en la sección 2.7. de este trabajo, se presenta a continuación la determinación del refuerzo longitudinal y transversal en vigas y columnas.

25) Refuerzo longitudinal y transversal en vigas

El refuerzo longitudinal en vigas es obtenido mediante la **Ecuación 2.7.4.** expuesta en el presente trabajo, obteniendo así los siguientes resultados:

Piso, i	Altura, H _i	Vigas (bxh)	M _{Bi} * Diseño (Cara.Col)	M _{Gi} (1.2CM+1.6CV) (Cara.Col)	ρ	As _{calculado}
	[m]	[cm]	[T.m]	[T.m]	[-]	[cm2]
12	36	50x60	11.557	18.401	0.0031	8.391
11	33	50x60	17.853	18.401	0.0031	8.391
10	30	50x60	23.732	18.401	0.0036	9.778
9	27	50x60	29.163	18.401	0.0045	12.095
8	24	50x60	34.114	18.401	0.0053	14.236
7	21	50x60	38.554	18.401	0.0060	16.180
6	18	50x60	41.726	18.401	0.0065	17.583
5	15	50x60	45.130	18.401	0.0071	19.101
4	12	50x60	47.916	18.401	0.0075	20.355
3	9	50x60	50.053	18.401	0.0079	21.324
2	6	50x60	51.509	18.401	0.0081	21.987
1	3	50x60	52.253	18.401	0.0083	22.327

Tabla 2.8.21. Acero de refuerzo longitudinal en extremos vigas (Geometría 2)

Piso, i	Altura, H _i	Vigas (bxh)	M _x Tramo (x=3m)	ρ	As _{calculado}
,.	[m]	[cm]	[T.m]	[-]	[cm2]
12	36	50x60	33.912	0.0059	15.79539
11	33	50x60	33.912	0.0059	15.79539
10	30	50x60	33.912	0.0059	15.79539
9	27	50x60	33.912	0.0059	15.79539
8	24	50x60	33.912	0.0059	15.79539
7	21	50x60	33.912	0.0059	15.79539
6	18	50x60	33.912	0.0059	15.79539
5	15	50x60	33.912	0.0059	15.79539
4	12	50x60	33.912	0.0059	15.79539
3	9	50x60	33.912	0.0059	15.79539
2	6	50x60	33.912	0.0059	15.79539
1	3	50x60	33.912	0.0059	15.79539

Tabla 2.8.22. Acero de refuerzo longitudinal en centro de vigas (Geometría 2)

Para el refuerzo transversal en vigas, considerando que el corte obtenido por el método DDBD (V_{cc}), es el equivalente al corte (V_u) definido en el método DBF, se tiene en base a la **Ecuación 2.8.26.** que:

$$V_{x} = \underbrace{\frac{(M^{\circ}_{E,r} - M^{\circ}_{E,l})}{\Gamma_{B}}}_{V_{hip}} + \underbrace{\frac{w^{\circ}_{G} * L_{B}}{2} - w^{\circ}_{G} * x}_{V_{cv}}$$

Tabla 2.8.23. Corte hiperestático y corte por carga vertical en vigas (Geometría 2)

Piso. i	V _{cc} (Cara colum)	Vhip	Vcv	
,	[T]	[T]	[T]	
12	29.245	9.463	19.782	
11	29.245	9.463	19.782	
10	29.245	9.463	19.782	
9	30.892	11.110	19.782	
8	32.778	12.996	19.782	
7	34.469	14.687	19.782	
6	35.610	16.204	19.405	
5	36.931	17.526	19.405	
4	38.013	18.608	19.405	
3	38.843	19.438	19.405	
2	39.409	20.003	19.405	
1	39.698	20.292	19.405	

Fuente: López Esteban

Por lo tanto, tomando en cuenta el cortante de la viga más crítica (Piso 1), se verifica lo siguiente:

$$V_{hip} \ge \frac{1}{2}V_u \quad \rightarrow \quad Vc = 0$$

Debiéndose cumplir que:

 $Vs \le 4 * Vc$

Donde *Vc* y *Vs* se determinan en base a la **Ecuación 2.7.8.** y **Ecuación 2.7.9.** del presente trabajo respectivamente, y el espaciamiento sigue los mismos criterios establecidos en el diseño de vigas por el método DBF.

1/2*Vu	19.849	[T]			
Vc	0.000	[Τ]			
Vs	52.930	[T]			
Revisión					
	ок				
Av/s	0.233	[cm2/cm]			

Espacimiento						
Zona d	e Confinamie	nto Lo				
Lo	1.20	m				
SLO	12.00	cm				
s _{Lo} asumido	12.00	cm				
Fuera de Lo						
s	24.00	cm				
s asumido	24.00	cm				
Av	2.801	[cm2]				
# ramales	3.57	1Estr=2ramles				
# ramales asu	4	-				
# Estribos	2	-				

Tabla 2.8.24	. Acero de	refuerzo tra	nsversal en	vigas	(Geometría	2)
--------------	------------	--------------	-------------	-------	------------	----

Fuente: López Esteban

26) Refuerzo longitudinal y transversal en columnas

Para el refuerzo longitudinal en columnas al igual que en el método FBD, se propone una cuantía de refuerzo longitudinal en el rango de 1% a 3%, donde para el presente trabajo se establece que todas las columnas tengan una cuantía alrededor del 1%, con lo cual se desarrolla el diagrama de interacción P-M, se representa la fuerza axial Pu y momento Mu obtenidos, y se valida que dichas acciones se encuentren dentro de la zona aceptable de diseño.

Mientras que, para el refuerzo transversal en columnas, tomando en cuenta que el corte obtenido por el método DDBD (V_u), es el equivalente al corte (VPR_{DISENO}) definido en el método FBD, se calcula *Vc* y *Vs* en base a la **Ecuación 2.7.8.** y **Ecuación 2.7.9.** del presente trabajo respectivamente. Debiéndose cumplir que:

 $Vs \le 4 * Vc$

Adicionalmente, el refuerzo por confinamiento en columnas y el espaciamiento siguen los mismos criterios establecidos en el diseño de columnas por el método DBF.

Es así que se obtiene los siguientes resultados de acero de refuerzo transversal para la columna interior C85x85 de la geometría 2:

DATOS:					
bw	85	cm			
h	85	cm			
#varillas long	16	-			
фLong	25	mm			
фEstribo	12	mm			
Hn	2.40	m			
f'c	280	kg/cm2			
fy	4200	kg/cm2			
фCorte	0.75	-			
r	4	cm			
d	79	cm			

Tabla 2.8.25. Acero	de refuerzo transversal er	n columnas (Geometría 2)

Corte por capacidad						
Vu_cap	т					
Capacidad a	Capacidad a corte del Hormigón					
Vc	59.21	т				
Corte en el refuerzo						
Vs	60.56	Т				

Zona de Confinamiento Lo					
Lo	0.85	m			
s	10.00	cm			
s asumido	10.00	cm			
Zona de Central L1					
L1	0.70	m			
s	15.00	cm			
s asumido	10.00	cm			

1.84

cm2

Av

Revisión	
OK	

Ash1	3.37	cm2
Ash2	4.62	cm2
Pu	632.82	Т
0.3*fc*Ag	606.9	Т
kf	1	
kn	1.14	
Ash3	4.47	cm2
Ash	4.62	cm2

Aestribo	4.62	cm2
# ramales	4.08	1Estr=2ramles
# ramales asum	5	-
# Estribos	2	-
# Ganchos	1	-

Fuente: Lo	ópez Esteban
------------	--------------

Piso, i	Columnas (bxh)	MUC Col. Int (Cara viga)	Pu, Comb U1 (CM+CV)	As _{calculado}	ρ	As refuerzo long.	Vu _{int} (Col. Int)	As refuerzo Trans.
	[cm]	[T.m]	[T]	[-]	[-]	[-]	[T]	[-]
12	75x75	30.591	49.200	60.8212338	0.0108	16¢22mm	41.132	2Eø12mm@10cm
11	75x75	23.533	101.328	60.8212338	0.0108	16¢22mm	48.483	2Eø12mm@10cm
10	75x75	34.944	153.456	60.8212338	0.0108	16¢22mm	55.347	2Eф12mm@10cm
9	75x75	44.565	205.584	60.8212338	0.0108	16¢22mm	61.687	2Eф12mm@10cm
8	75x75	51.645	257.712	60.8212338	0.0108	16¢22mm	67.467	2Eф12mm@10cm
7	75x75	58.153	309.840	60.8212338	0.0108	16¢22mm	72.651	2Eф12mm@10cm
6	85x85	63.990	362.896	78.5398163	0.0109	16¢25mm	77.301	2Ey1Gø12mm@10cm
5	85x85	69.053	416.880	78.5398163	0.0109	16¢25mm	81.351	2Ey1Gø12mm@10cm
4	85x85	73.159	470.864	78.5398163	0.0109	16¢25mm	84.667	2Ey1Gø12mm@10cm
3	85x85	76.276	524.848	78.5398163	0.0109	16¢25mm	87.211	2Ey1Gø12mm@10cm
2	85x85	78.354	578.832	78.5398163	0.0109	16¢25mm	88.944	2Ey1Gø12mm@10cm
1	85x85	80.949	632.816	78.5398163	0.0109	16¢25mm	89.829	2Ey1Gø12mm@10cm
0			634.985					

Tabla 2.8.26. Acero de refuerzo longitudinal y transversal en columnas interiores(Geometría 2)

Tabla 2.8.27.	Acero de	e refuerzo	longitudinal	y transver	rsal en	columnas	exteriores
			(Geometrí	a 2)			

Piso, i	Columnas (bxh)	MUC Col. Ext (Cara viga)	Pu, Comb U2 (CM+CV+CS)	Pu, Comb U3 (CM+CV- CS) ρ		As refuerzo long.	Vu _{ext} (Col. Ext)	As refuerzo Trans.
	[cm]	[T.m]	[T]	[T]	[-]	[-]	[T]	[-]
12	65x65	24.184	29.003	20.197	0.0119	16¢20mm	20.566	1Ey1Gø12mm@10cm
11	65x65	18.604	61.308	40.020	0.0119	16¢20mm	24.242	1Ey1Gø12mm@10cm
10	65x65	27.626	95.556	57.900	0.0119	16¢20mm	27.674	1Ey1Gø12mm@10cm
9	65x65	35.231	131.324	74.260	0.0119	16¢20mm	30.844	1Ey1Gø12mm@10cm
8	65x65	40.829	168.106	89.606	0.0119	16¢20mm	33.734	1Ey1Gø12mm@10cm
7	65x65	45.974	205.692	104.148	0.0119	16¢20mm	36.326	1Ey1Gø12mm@10cm
6	75x75	50.588	242.770	120.126	0.0108	16¢22mm	38.650	2Eq12mm@10cm
5	75x75	54.591	279.871	137.009	0.0108	16¢22mm	40.676	2Eq12mm@10cm
4	75x75	57.837	318.407	152.457	0.0108	16¢22mm	42.334	2Eq12mm@10cm
3	75x75	60.301	356.610	168.238	0.0108	16¢22mm	43.605	2Eq12mm@10cm
2	75x75	61.944	394.234	184.598	0.0108	16¢22mm	44.472	2Eq12mm@10cm
1	75x75	66.047	431.051	201.765	0.0108	16ф22mm	44.915	2Eq12mm@10cm
0			433.220	203.934				

Fuente: López Esteban

El diseño de la viga más crítica (piso 1) para la geometría 1 y 3 se presenta en el **ANEXO XIII.**, mientras que el diseño de una columna interior y una exterior (piso 1) para estas mismas geometrías se presenta en el **ANEXO XIV.**

3 RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

3.1 Resultados

En esta sección se presentan la comparación de los resultados de cortante basal, derivas inelásticas y diseños, obtenidos para las 3 geometrías propuestas, mediante la aplicación del diseño basado en fuerzas (DBF) y diseño directo basado en desplazamientos (DDBD).

Cortante basal

Considerando que las secciones de los elementos para la aplicación del DBF y DDBD mostradas en la **Tabla 2.7.5.** fueron las mismas, se tiene que el peso de las estructuras entre un método y otro no varía.

Por otro lado, para la aplicación del método DBF, el cortante basal de la estructura se calcula como el producto entre el peso de la estructura y el coeficiente de cortante basal C **Tabla 2.7.4.**, dado por las características del sitio de implantación de la estructura y de la tipología estructural, mientras que para el método DDBD el cortante basal se lo determina a partir del estudio de la estructura equivalente de un grado de libertad, obteniendo los siguientes valores:

Geometría	Peso estr	uctura [T]	Cortante	Basal [T]	% Cortante Basal [%]		
	DBF	DDBD	DBF	DDBD	DBF	DDBD	
Geometría 1	2189.167	2189.167	116.026	252.218	5.30%	11.52%	
Geometría 2	4799.376	4799.376	134.383	390.886	2.80%	8.14%	
Geometría 3	7661.376	7661.376	145.566	417.671	1.90%	5.45%	

Tabla 3.1.1. Peso estructura, cortante basal y porcentaje de cortante basal por DBF yDDBD de las 3 geometrías propuestas.

Fuente: López Esteban

A partir de la **Tabla 3.1.1.** se puede notar que el cortante basal calculado por el método DDBD supera el calculado por el método DBF en 136.19 T, 256.50 T y 272.11 T, para las geometrías 1, 2 y 3 respectivamente.

Figura 3.1.1. Comparación del cortante basal por DBF y DDBD de las 3 geometrías propuestas.

Derivas

Las derivas inelásticas de piso obtenidas por el método DBF, se determinan mediante el producto de las derivas elásticas del análisis estático lineal en el programa ETABS por 0.75*R*, mientras que por el método DDBD, las derivas inelásticas se determinan del análisis del pórtico tipo ante cargas laterales y con las inercias efectivas de los elementos.

Debido a que las 3 geometrías propuestas presentan plantas regulares con longitud de vanos iguales, las derivas inelásticas de piso en el sentido "x-x" y "y-y" son iguales, por lo tanto, los resultados mostrados a continuación corresponden a las de estos dos sentidos.

Geometría 1

La deriva inelástica máxima determinada por el método DBF se da en el piso 3 y es de 0.918%, mientras que la deriva inelástica máxima por el método DDBD se da en el piso 2 y es de 0.949%.

Piso	θi [%] DBF	θi [%] DDBD
6	0.400%	0.420%
5	0.616%	0.598%
4	0.806%	0.768%
3	0.918%	0.895%

Tabla 3.1.2. Derivas inelásticas de piso por DBF y DDBD (Geometría 1)

2	0.883%	0.949%		
1	0.484%	0.868%		
0	0.000%	0.000%		

	Derivas inelásticas de piso							
6								
5								
4								
Piso 3								
2								
1								
00.0	00% 0.50% 1.00% 1.50% 2.00% 2.50% Deriva [%]							
——— Deriva DDBD Deriva DBF – – – – Límite NEC-15								

Fuente: López Esteban

Figura 3.1.2. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 1).

Como se puede observar en la **Figura 3.1.2.** para la geometría 1, las derivas inelásticas presentan una gran similitud entre el método DBF y DDBD, con la variación más considerable en el piso 1.

Geometría 2

La deriva inelástica máxima determinada por el método DBF se da en el piso 4 y es de 0.904%, mientras que la deriva inelástica máxima por el método DDBD se da en el piso 3 y es de 0.915%.

Piso	θi [%] DBF	θi [%] DDBD	
12	0.274%	0.276%	
11	0.407%	0.383%	
10	0.546%	0.495%	
9	0.670%	0.603%	
8	0.775%	0.704%	
7	0.861%	0.798%	
6	0.876%	0.836%	
5	0.903%	0.881%	
4	0.904%	0.909%	
3	0.857%	0.915%	
2	0.709%	0.902%	
1	0.338%	0.847%	
0	0.000%	0.000%	

Tabla 3.1.3. Derivas inelásticas de piso por DBF y DDBD (Geometría 2)

Figura 3.1.3. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 2)

Como se puede observar en la **Figura 3.1.3.** para la geometría 2, las derivas inelásticas presentan una gran similitud entre el método DBF y DDBD, con la variación más considerable en los pisos 1 y 2.

Geometría 3

La deriva inelástica máxima determinada por el método DBF se da en el piso 7 y es de 0.929%, mientras que la deriva inelástica máxima por el método DDBD se da en el piso 4 y es de 0.921%.

Dies	θi [%]	θi [%]		
PISO	DBF	DDBD		
18	0.250%	0.249%		
17	0.348%	0.327%		
16	0.457%	0.411%		
15	0.559%	0.495%		
14	0.651%	0.577%		
13	0.736%	0.660%		
12	0.773%	0.707%		
11	0.820%	0.760%		
10	0.860%	0.811%		
9	0.893%	0.855%		
8	0.917%	0.887%		
7	0.929%	0.907%		
6	0.908%	0.906%		
5	0.891%	0.917%		
4	0.848%	0.921%		
3	0.760%	0.917%		
2	0.588%	0.905%		
1	0.259%	0.873%		
0	0.000%	0.000%		

Tabla 3.1.4. Derivas inelásticas de piso por DBF y DDBD (Geometría 3)

Fuente: López Esteban

Como se puede observar en la **Figura 3.1.4.** para la geometría 3, las derivas inelásticas presentan una gran similitud entre el método DBF y DDBD, con la variación más considerable en los pisos 1, 2 y 3.

Figura 3.1.4. Comparación de las derivas inelásticas de piso por DBF y DDBD (Geometría 3)

Las derivas inelásticas máximas por el método DDBD son mayores que las obtenidas por el método DBF en un 3.76% y 1.22% para las geometrías 1 y 2 respectivamente, mientras que para la geometría 3 la deriva inelástica máxima por el método DBF es mayor que la del DDBD en un 0.87%.

Tabla 3.1.5. Derivas inelásticas máximas de piso por DBF y DDBD de las 3 geometrías
propuestas

Geometría	Derivas inelásticas máximas θi [%]			
	DBF	DDBD		
Geometría 1	0.918%	0.949%		
Geometría 2	0.904%	0.915%		
Geometría 3	0.929%	0.921%		

Figura 3.1.5. Comparación de las derivas inelásticas máximas de piso por DBF y DDBD de las 3 geometrías propuestas.

Diseños

Como se mencionó anteriormente, las secciones de los elementos para las cuales se realizó el diseño estructural tanto en el DBF y DDBD son las mostradas en la **Tabla 2.7.5.**, obteniendo los siguientes resultados para vigas y columnas:

<u>Vigas</u>

Tanto para la aplicación del DBF y DDBD se realizó el diseño estructural de la viga con mayores solicitaciones para cada geometría, cuyos resultados son:

Tabla 3.1.6. Acero de refuerzo longitudinal y transversal colocado en vigas por DBF yDDBD de las 3 geometrías propuestas

Geometría	As _{lor} (extremo [c	^{ngitudinal} os de viga) m ²]	As _{longitudi} de vig	_{nal} (centro a) [cm²]	As _{transversal} [cm ²]		
	DBF	DDBD	DBF	DDBD	DBF	DDBD	
Geometría 1	19.41	31.42	15.39	31.42	1.58	1.58	
Geometría 2	23.19	43.99	20.11	31.42	1.58	3.16	
Geometría 3	24.73 50.27		20.11	31.42	2.37	3.16	

La cantidad de acero de refuerzo longitudinal colocado en extremos de vigas por el método DDBD supera en alrededor del 60%, 90% y 100%, al colocado por el método DBF para las geometrías 1, 2 y 3 respectivamente.

Figura 3.1.6. Comparación del acero de refuerzo longitudinal colocado en extremos de vigas por DBF y DDBD de las 3 geometrías propuestas.

Por otro lado, la cantidad de acero de refuerzo longitudinal colocado en el centro de vigas por el método DDBD supera en alrededor del 100%, 60% y 60%, al colocado por el método DBF para las geometrías 1, 2 y 3 respectivamente.

Fuente: López Esteban

Finalmente, la cantidad de acero de refuerzo transversal a corte colocado en vigas por el método DDBD supera en alrededor del 100% y 30%, al colocado por el método DBF para las geometrías 2 y 3 respectivamente, mientras que para la geometría 1 se mantiene igual.

Figura 3.1.8. Comparación del acero de refuerzo transversal colocado en vigas por DBF y DDBD de las 3 geometrías propuestas.

Fuente: López Esteban

A continuación, en la **Tabla 3.1.7.** se presenta el resumen de las secciones armadas de vigas (diámetro, número de varillas y número de estribos) tanto por el método DBF y DDBD, para las tres geometrías propuestas:

Tabla 3.1.7. Armado de vigas por DBF y DDBD de las 3 geometrías propuestas

Fuente: López Esteban

<u>Columnas</u>

El diseño estructural de columnas se lo realizó para una columna interior (B2) y una exterior (A2) en cada geometría propuesta, tanto para la aplicación del DBF y DDBD, tomando en cuenta los cambios de secciones cada 6 pisos.

Tabla 3.1.8. Acero de refuerzo longitudinal y transversal colocado en vigas por DBF y
DDBD de las 3 geometrías propuestas

Geometría 1									
	Columnas Interiores				Columnas Exteriores				
Piso	As _{longitudinal} [cm ²]		As _{transversal} [cm ²]		As _{longitudinal} [cm ²]		As _{transversal} [cm ²]		
	DBF	DDBD	DBF	DDBD	DBF	DDBD	DBF	DDBD	
P0 - P6	5 50.27		3.	.95	40.72		3.95		
Geometría 2									
Piso	Piso Columnas Interiores			0	Columnas	Exterio	res		

	ASlongitudin	al [cm²]	AStransve	ersal [cm ²]	As _{longitudinal} [cm ²]		Astransversal [cm ²]		
	DBF	DDBD	DBF	DDBD	DBF	DDBD	DBF	DDBD	
P0 - P6	78.5	4	5.	.65	60).82	4	1.52	
P6 - P12	60.8	2	4.	.52	50).27	27 3.39		
	Geometría 3								
	Co	lumnas I	nteriores	6	Columnas Exteriores				
Piso	AS longitudin	al [cm²]	As transve	ersal [cm ²]	As _{longitu}	_{dinal} [cm²]	As _{transv}	_{/ersal} [cm²]	
	DBF	DDBD	DBF	DDBD	DBF	DDBD	DBF	DDBD	
P0 - P6	98.5	2	7.	.70	78.54		5.65		
P6 - P12	78.5	4	5	65	60).82	4.52		
P12 - P18	60.8	2	4	52	50	50.27 4.52		1.52	

De esta manera a partir de la **Tabla 3.1.8.**, es posible notar que habiendo asumido las mismas secciones para el DBF y DDBD, y manteniendo la cuantía alrededor del 1% se tiene que la cantidad de acero de refuerzo longitudinal y transversal es la misma para los dos métodos, teniendo que en el acero transversal predomina el acero de refuerzo por confinamiento.

A continuación, en la **Tabla 3.1.9.** se presenta el resumen de las secciones armadas de columnas (diámetro, número de varillas y número de estribos) tanto por el método DBF y DDBD, para las tres geometrías propuestas:

		Geometría 1			
	Columnas I	nteriores	Columnas	Exteriores	
Piso	DBF	DDBD	DBF	DDBD	
P0 - P6	9.65	<u> Corte Transversal</u> <u> •16Ø20 3E y 2G Ø10 @0.10 </u>		Corte Transversal •16Ø18 3E y 2G Ø10 @0.10	
		Geometría 2			
	Columnas I	nteriores	Columnas	Exteriores	
Piso	DBF	DDBD	DBF	DDBD	

Tabla 3.1.9. Armado de columnas por DBF y DDBD de las 3 geometrías propuestas

Fuente: López Esteban

Debido a que los resultados de cantidad de acero de refuerzo colocado en columnas no presentan variación, se procede a hacer un análisis de las solicitaciones a flexocompresión y corte, para encontrar las diferencias más notables entre los dos métodos.

De tal forma, en la **Tabla 3.1.10.** se presenta la comparación entre las solicitaciones (Mu, Pu) para las 3 geometrías propuestas, tanto de la aplicación del DBF y DDBD, las cuales graficadas en el diagrama de interacción P-M permiten notar claramente que, para todas las columnas, las solicitaciones (Mu, Pu) del método DDBD, son mayores que las del método DBF.

Tabla 3.1.10. Comparación de las solicitaciones a flexocompresión en columnas por DBFy DDBD de las 3 geometrías propuestas

Fuente: López Esteban

A continuación, en la **Tabla 3.1.11.** se presenta la comparación entre la cantidad de acero por corte (Av) determinada para las 3 geometrías propuestas con ambos métodos, notando una amplia variación de los resultados en las columnas del primer piso, en donde el acero por corte determinado por el método DBF es notablemente mayor que el obtenido por el método DDBD, mientras que para las columnas de pisos superiores se tiene en ciertos casos un ligero incremento de acero por el método del DDBD.

		Geometría 1			
	Columnas	Interiores	Columna	s Exteriores	
Piso	Av [c	;m²]	Av	[cm²]	
	DBF	DDBD	DBF	DDBD	
P0 - P6	3.46	1.75	2.90	0.50	
		Geometría 2			
	Columnas	Interiores	Columnas	s Exteriores	
Piso	Av [c	;m²]	Av [cm²]		
	DBF	DDBD	DBF	DDBD	
P0 - P6	5.04	1.84	4.02	0.63	
P6 - P12	0.63	1.77	0.68	0.59	
		Geometría 3			
	Columnas	Interiores	Columnas	s Exteriores	
Piso	Av [c	:m²]	Av	[cm²]	
	DBF	DDBD	DBF	DDBD	
P0 - P6	6.49	1.16	5.08	0.75	
P6 - P12	0.75	1.41	0.67	0.67	
P12 - P18	0.67	1.15	0.58	0.58	

Tabla 3.1.11.	Comparación de la cantidad de acero a corte en columnas por DBF y
	DDBD de las 3 geometrías propuestas

3.2 Conclusiones

- Actualmente, en la NEC-SE-DS (2014) se establecen como métodos de diseño sismorresistente el método DBF y DDBD, siendo el DBF de aplicación obligatoria para todo tipo de estructuras del Ecuador, estas razones se deben en gran parte a la familiaridad de los diseñadores con el DBF, por otro lado, el DDBD el cual se propone como un método alternativo al DBF, es de aplicación relativamente más sencilla y permite controlar de mejor manera el desempeño de una estructura sometida a diferentes niveles de intensidad sísmica, a partir de establecer un desplazamiento objetivo, el cual está en función del nivel de daño que se espera en la estructura, en donde mediante la resistencia se logra alcanzar el desplazamiento establecido, a diferencia del método de las fuerzas en donde los desplazamientos conducen a la resistencia.
- En la aplicación del método DBF las secciones determinadas en el predimensionamiento estuvieron sujetas a cambios para lograr un comportamiento estructural adecuado en el análisis estático líneal, y poder cumplir con los siguientes principales chequeos: traslación en los dos primeros modos de vibración, derivas inelásticas menores al 2% y periodo fundamental obtenido del software ETABS menor o igual al determinado por el método 2 (1.3 * *T_{metodo1}*) establecido en la NEC-SE-DS (2014), siendo este último el parámetro más incidente en la obtención de las secciones finales de los elementos, las cuales se emplearon también para la aplicación del método DDBD.
- Los cortantes de la base obtenidos por el método DDBD son notablemente mayores a los obtenidos por el método DBF, en alrededor de un 117%, 191% y 187% más, para las geometrías 1, 2 y 3 respectivamente. Dicha variación se debe a la forma en la que cada método establece la demanda de ductilidad de la estructura, en donde para el método DBF se estableció un factor de reducción de resistencia sísmica *R* = 8 para todas las estructuras, asumiendo de esta manera que dicho valor no cambia con el periodo y tipo de suelo. Por otro lado, para el DDBD, se calcula la ductilidad de desplazamiento de diseño del sistema equivalente μ, obteniendo valores de 1.38 en la geometría 1 y el valor de 1.00 en la en la geometría 2 y 3.
- Para las 3 geometrías propuestas se tiene que las derivas inelásticas determinadas por el método DBF son similares a las alcanzadas en el método DDBD y menores al 2% establecido en la NEC-SE-DS (2014), obteniendo la mayor variación de las

derivas inelásticas máximas entre ambos métodos de aproximadamente el 4%. Por lo tanto, habiendo considerado las mismas secciones de los elementos estructurales para ambos métodos, el factor para la determinación de las derivas inelásticas (0.75*R*) por el método del DBF permite obtener resultados similares a los obtenidos por la aplicación del DDBD al pórtico representativo ante cargas laterales, determinados a partir de las inercias efectivas de los elementos.

- El DBF es un método elástico que agrieta los elementos para la determinación de la rigidez y las derivas máximas, con la finalidad de considerar en cierta parte el daño de estos, por lo tanto, en base a lo establecido en la NEC-SE-DS (2014), para la aplicación del DBF en el presente trabajo se ocupó los valores de inercias agrietadas de 0.50*Ig* para vigas y 0.80*Ig* para columnas, mientras que para el DDBD se optó por el cálculo real de estas inercias agrietadas, obteniendo en la geometría 1: 0.17*Ig* para vigas y 0.38*Ig* para columnas, geometría 2: 0.22*Ig* para vigas y 0.40*Ig* para columnas, geometría 3: 0.22*Ig* para vigas y 0.39*Ig* para columnas, notando de esta manera que las inercias agrietadas reales calculadas corresponden aproximadamente a la mitad de las inercias agrietadas establecidas en la norma.
- Para las 3 geometrías analizadas, se obtuvo que la capacidad de desplazamiento excede el espectro de demanda $\Delta_d > \Delta_{L=X\%}$, y a su vez también para la geometría 1 el desplazamiento de fluencia es menor que el valor del desplazamiento correspondiente al periodo de la esquina en el espectro elástico del 5% de amortiguamiento, por tanto, en este caso se tiene que la respuesta inelástica ocurrirá, pero no al nivel de ductilidad correspondiente al desplazamiento, mientras que para la geometría 2 y 3 el desplazamiento de fluencia excede el valor del desplazamiento correspondiente al periodo de la esquina en el espectro elástico del 5% de amortiguamiento, mientras que para la geometría 2 y 3 el desplazamiento de fluencia excede el valor del desplazamiento correspondiente al periodo de la esquina en el espectro elástico del 5% de amortiguamiento, esto debido a que la estructura es muy flexible o la intensidad de la demanda sísmica es baja.
- La cantidad de acero de refuerzo longitudinal y transversal obtenido en vigas por el método del DDBD es mayor a la determinada por el método del DBF, en aproximadamente un 77%, 75% y 80% más, para las geometrías 1, 2 y 3 respectivamente, esta variación se da ya que las solicitaciones de momento y corte en las vigas para el método del DDBD son mayores.
- En cuanto al diseño de columnas tanto para el DBF y el DDBD se obtuvieron las mismas cantidades de acero de refuerzo longitudinal y transversal, habiendo

considerado una cuantía del 1% para el refuerzo longitudinal y teniendo una preponderancia del acero por confinamiento, para el refuerzo transversal. Sin embargo, a través del análisis de las solicitaciones a flexocompresión y corte de ambos métodos, se puede notar sus principales diferencias.

- En base al análisis comparativo de las solicitaciones a flexocompresión en columnas, se tiene que en el método del DDBD las secciones presentan una mayor demanda (Mu, Pu), esto debido a un notable incremento en los momentos calculados por dicho método, con esto se puede concluir que las columnas planteadas tienen un comportamiento más eficiente en el método DDBD.
- De acuerdo a la comparación de la cantidad de acero a corte en columnas, se tiene que en la columna del primer piso el método DBF presenta mayores solicitaciones de acero, ya que este método emplea las máximas acciones que pueden llegar a desarrollarse en el elemento, al considerar la formación de rótulas plásticas en dichas columnas, es decir para determinar el cortante de diseño, el DBF considera la resistencia máxima probable a flexión en la columna, por otro lado esto no ocurre en el método DDBD, en donde el cortante de diseño para columnas está en función de la demanda a corte correspondiente al diseño por cargas laterales aplicada un factor de sobrerresistencia, obteniendo así las acciones que realmente actúan en las columnas ante la demanda sísmica considerada.
- El incremento en los valores de momentos y cortantes en los elementos estructurales del DDBD, se debe a que en este método se obtuvo valores considerablemente mayores de cortante basal, con respecto al DBF, los cuales generan solicitaciones mucho más grandes en vigas y columnas.

3.3 Recomendaciones

- En la aplicación del método DDBD realizar la consideración de los efectos P Δ, a través de la cuantificación del índice de estabilidad (θ_Δ), el cual deberá ser menor a 0.33 para estructuras de hormigón armado, caso contrario las dimensiones de los elementos estructurales serán incrementadas. Adicionalmente, si el índice de estabilidad es mayor que 0.10 se debe amplificar el momento de diseño en la base.
- Comúnmente las resistencias de los materiales exceden sus valores de diseño (f'_{ce}, f_{ye}), por lo tanto, esto debe ser considerado especialmente en los sitios de formación de rótulas plásticas.

Para próximas investigaciones se recomienda:

- De la misma manera en que se realizó la obtención de las derivas inelásticas en el método DDBD, con las inercias efectivas de los elementos, se recomienda calcular las inercias agrietadas reales en la aplicación del DBF y comparar estos resultados con los valores que establece la NEC-SE-DS (2014).
- Realizar las verificaciones de diseño de las estructuras planteadas mediante uno de estos dos métodos aceptables de verificación: análisis tiempo historia y análisis estático no lineal (pushover), este último permite incurrir en el comportamiento no lineal de las estructuras, haciendo que estas desarrollen toda su capacidad y permitiendo identificar la ubicaciones o grados de daño.
- Realizar el diseño de estas mismas estructuras por ambos métodos, sujetas a los mismos materiales, pero aplicadas una demanda sísmica mayor, con la finalidad de evaluar los resultados obtenidos, y comparar la precisión y aplicabilidad del método.

4 REFERENCIAS BIBLIOGRÁFICAS

- ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary (ACI 318-19). Farmington Hills: American Concrete Institute.
- ACI 352RS-02. (2010). Recomendaciones para el Diseño de Conexiones Viga-Columna en Estructuras Monolíticas de Concreto Reforzado. Farmington Hills: American Concrete Institute.
- Andrade, J., & Carillo, F. (2018). ANÁLISIS COMPARATIVO ENTRE LOS DISEÑOS SISMORRESISTENTES DE LA NORMA ECUATORIANA DE LA CONSTRUCCIÓN [NEC 2015] Y EL DISEÑO DIRECTO BASADO EN DESPLAZAMIENTO [DDBD]. Quito: Escuela Politécnica Nacional.
- ASCE 7-16. (2017). *Minimum Design Loads and Associated Criteria for Buildings and Other Structures.* Virginia: American Society of Civil Engineers.
- Carvajal, L. (2006). *Metodología de la Investgación Científica. Curso general y aplicado* (28 ed.). Santiago de Cali: U.S.C.
- Cayancela, D., & Reyes, A. (2022). ANÁLISIS COMPARATIVO ECONÓMICO ESTRUCTURAL DE UN EDIFICIO DE 15 PISOS EN LA CIUDAD DE QUITO, DISEÑADO CON ACERO DE REFUERZO GRADO 60 - ACERO DE REFUERZO GRADO 80 - HORMIGÓN NORMAL F'C 28MPA Y HORMIGÓN LIVIANO F'C 28MPA. Quito: Escuela Politécnica Nacional.

fib. (2003). Displacement-based seismic design of reinforced concrete buildings. fib Bulletins, 196.

- León, D. (2022). APLICACIÓN DEL DDBD (DIRECT DISPLACEMENT BASE DESIGN) Y COMPARACIÓN CON EL FBD (FORCE BASED DESIGN) EN ESTRUCTURAS REGULARES DE HASTA 4 PISOS. (ENFOCADO A EVALUAR GEOMETRÍA ESTURCTURAL). Quito: Escuela Politécnica Nacional.
- López, A. (2006). ANÁLISIS COMPARATIVO DEL DESEMPEÑO DE PÓRTICOS PLANOS DISEÑADOS POR EL CÓDIGO ECUATORIANO DE LA CONSTRUCCIÓN Y POR EL MÉTODO DE DISEÑO DIRECTO BASADO EN DESPLAZAMIENTOS. Loja: Universidad Técnica Particular de Loja.
- López, S. (2009). *DISEÑO POR DESPLAZAMIENTO DE ESTRUCTURAS DE CONCRETO*. Ciudad Universitaria : Universidad Nacional Autónoma de México.
- NEC-SE-CG. (2014). Norma Ecuatoriana de la construcción: Cargas (No Sísmicas). MIDUVI.
- NEC-SE-DS. (2014). Norma Ecuatoriana de la construcción: Peligro Sísmico, Diseño Sismorresistente. MIDUVI.
- NEC-SE-HM. (2014). Norma Ecuatoriana de la construcción: Estructuras de Hormigón Armado. MIDUVI.
- OES, C. O. (1995). Vision 2000: Performace Based Seismic Engineering of Buildings. Sacramento: Structural Engineers Association of California.
- Ordoñez, J. L. (2015). DISEÑO SÍSMICO BASADO EN DESPLAZAMIENTOS DE ESTRUCTURAS DE HORMIGÓN ARMADO APORTICADAS Y ESTRUCTURAS CON MUROS DE CORTE. Quito: Escuela Politécnica Nacional.

- Paulay, T., & Priestley, M. J. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. USA: John Wiley & Sons, Inc.
- Pineda, S., & Villafuerte, S. (2022). ESTUDIO DE LA INFLUENCIA EN EL DISEÑO DE ACERO DE REFUERZO GRADO 80 Y HORMIGÓN DE ALTA RESISTENCIA (55MPa) FRENTE AL ACERO DE REFUERZO CONVENCIONAL GRADO 60 Y HORMIGÓN F'C 28MPa EN UN EDIFICIO DE HORMIGÓN ARMADO DE 18 PISOS. Quito: Escuela Politécnica Nacional.
- Priestley, M. J., Calvi, G. M., & Kowalsky, M. J. (2007). *Displacement-Based Seismic Design of Structures*. Pavia, Italia: IUSS Press.
- Sandoval, P. (2000). PROCEDIMIENTO DE DISEÑO SÍSMICO POR DESEMPEÑO, BASADO EN UN MÉTODO SIMPLIFICADO DE ANÁLISIS NO LINEAL. Ciudad Universitaria: Universidad Nacional Autónoma de México.
- Shibata, A., & Sozen, M. A. (1976). Substitute Structure Method for Seismic Design in Reinforced Concrete. American Society of Civil Engineers.
- Sosa, D. (2022). Apuntes de la clase de TIC: Aplicación del DDBD (Direct Displacement Base Design) y comparación con el FBD (Force Based Design) en estructuras regulares de 5 a 20 pisos. Quito: Escuela Politécnica Nacional.

5 ANEXOS

ANEXO I. Definición de geometrías estructurales

• Configuración en planta de las 3 geometrías propuestas:

• Configuración en elevación de las 3 geometrías propuestas:

GEOMETRÍA 3

Dat	tos										
h _{LOSA}	15	cm									
			VIGA				L	.OSA		Ver	ificación
# Elemento	b	h	Condición	Centroide	Inercia	L.izq	L.der	b	Inercia	α _f	αfm
V 1-A-B	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	
V 1-B-C	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	
V 1-C-D	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	
V 2-A-B	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V 2-B-C	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V 2-C-D	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V3-A-B	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V 3-B-C	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V 3-C-D	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V4-A-B	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	
V 4-B-C	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	
V 4-C-D	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	2.24
V A-1-2	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	2.24
V A-2-3	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	
V A-3-4	35	40	Borde	22.64	239912.71	0.00	6.00	3.00	84375.00	2.84	
V B-1-2	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V B-2-3	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V B-3-4	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V C-1-2	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V C-2-3	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V C-3-4	35	40	Interior	24.36	277037.31	6.00	6.00	6.00	168750.00	1.64	
V D-1-2	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	
V D-2-3	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	
V D-3-4	35	40	Borde	22.64	239912.71	6.00	0.00	3.00	84375.00	2.84	

ANEXO II. Comprobación de sistema de vigas descolgadas

ANEXO III. Predimensionamiento de columnas

Predimensionamiento columna interior B2 (Geometría 1):

COLUMNA INTERNA (B2) DATOS: Cargas Carga Muerta [T/m²] Carga Viva [T/m²] 0.75 _____0.25 Vigas: Generales: γ Hormigon 2.40 T/m^3 Altura entrepiso 3.00 m Área cooperante 36.00 m^2 b h L_vigas W_viga 35 40 12.00 cm cm m k, 4 -280 kg/cm2 0.336 T/m 4200 kg/cm2 1% fy cuantía PRE-DISEÑO

P2 Columna nivel	СМ [Т]	CM wights [T]	Carga C Super	olumna ior [T]	q _{см} Carga Muerta
B2 Columna niver	A _T x W _{losa}	CIVI VIGAS [1]	b (cm)	h (cm)	acumulada [T]
			30	30	
PISO 6	27.00	4.032	0.	00	31.03
PISO 5	27.00	4.032	0.	65	62.71
PISO 4	27.00	4.032	0.	65	94.39
			30	30	
PISO 3	27.00	4.032	0.	65	126.07
PISO 2	27.00	4.032	0.	65	157.75
PISO 1	27.00	4.032	0.	65	189.43

B2 Columna nivel	СМ [Т]	CM vigas [T]	Carga Columna Superior [T]		q _{см} Carga Muerta
bz columna niver	A _T x W _{losa}		b (cm)	h (cm)	acumulada [T]
			55	55	
PISO 6	27.00	4.032	0.	00	31.03
PISO 5	27.00	4.032	2.	18	64.24
PISO 4	27.00	4.032	2.	18	97.45
			65	65	
PISO 3	27.00	4.032	3.	04	131.53
PISO 2	27.00	4.032	3.	04	165.60
PISO 1	27.00	4.032	3.	04	199.67

Tamaño diseño (Po/4)	Sección (Po/4)	1.2 CM + 1.6 CV [T]	q _{ev} Carga Viva reducida [T]	% reducción carga viva acumulada	Carga Viva acumulada [T]	Carga Viva [T]
EEVEE	30x30	51.64	9.00	1.00	9.00	9.00
33233	40x40	93.42	11.36	0.63	18.00	9.00
	55x55	140.52	17.03	0.63	27.00	9.00
	55x55	187.62	22.71	0.63	36.00	9.00
65X65	60x60	234.72	28.39	0.63	45.00	9.00
	65x65	281.82	34.07	0.63	54.00	9.00
-						

Carga Viva [T]	Carga Viva acumulada [T]	% reducción carga viva acumulada	q _{ev} Carga Viva reducida [T]	1.2 CM + 1.6 CV [T]	Sección (Po/4)		Tamaño diseño (Po/4)
] [
9.00	9.00	1.00	9.00	51.64	30x30		EEVEE
9.00	18.00	0.63	11.36	95.26	40x40		33833
9.00	27.00	0.63	17.03	144.19	55x55		
9.00	36.00	0.63	22.71	194.17	55x55		CTCT
9.00	45.00	0.63	28.39	244.14	60x60		05X05
9.00	54.00	0.63	34.07	294.11	65x65		

Predimensionamiento columna interior B2 (Geometría 2): •

COLUMNA INTERNA (B2) DATOS Cargas Carga Muerta [T/m²] Carga Viva [T/m²] 0.75 0.25 Vigas: Generales: Y Hormigon 2.40 T/m^3 Altura entrepiso 3.00 m Área cooperante 36.00 m^2 b h L_vigas 35 40 12.00 cm cm m 4 -280 kg/cm2 4200 kg/cm2 W_viga 0.336 T/m k, fy cuantía: 1%

PRE-DISEÑO

P2 Columna nivel	СМ [Т]	CM wights [T]	Carga Columna Superior [T]		q _{cM} Carga Muerta
bz columna niver	A _T x W _{losa}	Civi vigas [1]	b (cm)	h (cm)	acumulada [T]
			30	30	
PISO 12	27.00	4.032	0.	00	31.03
PISO 11	27.00	4.032	0.	65	62.71
PISO 10	27.00	4.032	0.65		94.39
			30	30	
PISO 9	27.00	4.032	0.	65	126.07
PISO 8	27.00	4.032	0.	65	157.75
PISO 7	27.00	4.032	0.	65	189.43
			30	30	
PISO 6	27.00	4.032	0.	65	221.11
PISO 5	27.00	4.032	0.	65	252.79
PISO 4	27.00	4.032	0.	65	284.47
			30	30	
PISO 3	27.00	4.032	0.	65	316.15
PISO 2	27.00	4.032	0.	65	347.83
PISO 1	27.00	4.032	0	65	270 51

						-	
Carga Viva [T]	Carga Viva acumulada [T]	% reducción carga viva acumulada	q _{cv} Carga Viva reducida [T]	1.2 CM + 1.6 CV [T]	Sección (Po/4)		Tama dise (Po)
9.00	9.00	1.00	9.00	51.64	30x30		65.
9.00	18.00	0.63	11.36	93.42	40x40		034
9.00	27.00	0.63	17.03	140.52	65x65		
9.00	36.00	0.63	22.71	187.62	55x55		75
9.00	45.00	0.63	28.39	234.72	60x60		/5x
9.00	54.00	0.63	34.07	281.82	75x75	1	
9.00	63.00	0.63	39.74	328.92	70x70	1	05
9.00	72.00	0.63	45.42	376.02	75x75	1	85%
9.00	81.00	0.63	51.10	423.12	85x85	1	
						1	
9.00	90.00	0.63	56.78	470.22	85x85	1	05.0
9.00	99.00	0.63	62.45	517.32	90x90	1	95X
9.00	108.00	0.63	68.13	564.42	95x95	1	
B2 Columna nivel CM [T]		CM vigas [T]	Carga C Super	olumna rior [T]	q _{см} Carga Muerta		
-------------------------	-------------------------------------	--------------	------------------	--------------------	---------------------------------		
	A _T X VV _{losa}		b (cm)	h (cm)	acumulada [T]		
			65	65			
PISO 12	27.00	4.032	0	.00	31.03		
PISO 11	27.00	4.032	3	.04	65.11		
PISO 10	27.00	4.032	3	.04	99.18		
			75	75			
PISO 9	27.00	4.032	4	.05	134.26		
PISO 8	27.00	4.032	4	.05	169.34		
PISO 7	27.00	4.032	4	.05	204.43		
			85	85			
PISO 6	27.00	4.032	5	20	240.66		
PISO 5	27.00	4.032	5	.20	276.89		
PISO 4	27.00	4.032	5	.20	313.13		
			95	95			
PISO 3	27.00	4.032	6	.50	350.66		
PISO 2	27.00	4.032	6	.50	388.19		
PISO 1	27.00	4.032	6	.50	425.72		

Tamaño diseño (Po/4)	
65x65	
75x75	
85x85	
95x95	

Predimensionamiento columna interior B2 (Geometría 3): •

COLUMNA ESQUINERA (B2)

Gen	erales:	
y Hormigon	2.40	T/m^3
Altura entrepiso	3.00	m
Área cooperante	36.00	m^2
k _{LL}	4	-
f'c	280	kg/cm2
fy	4200	kg/cm2
cuantía:	1%	-

Vigas: 35 40 12.00 0.336 b h L_vigas W_viga cm cm m T/m

PRE-DISEÑO

DATOS:

 Cargas

 Carga Muerta [T/m²]
 Carga Viva [T/m²]

 0.75
 0.25

					-
			Carga C	olumna	q _{cM} Carga
B2 Columna nivel	CM [T]	CM vigas [T]	Super	ior [T]	Muerta
52 00101112	A _T x W _{losa}	ciii 1,8-2 []	h (cm)	h (cm)	acumulada
			D (c,	11 (c,	[T]
			30	30	
PISO 18	27.00	4.032	0.	00	31.03
PISO 17	27.00	4.032	0.	65	62.71
PISO 16	27.00	4.032	0.	65	94.39
			30	30	
PISO 15	27.00	0.	65	126.07	
PISO 14	27.00	4.032	0.	65	157.75
PISO 13	27.00	4.032	0.	65	189.43
			30	30	
PISO 12	27.00	4.032	0.	65	221.11
PISO 11	27.00	4.032	0.	65	252.79
PISO 10	27.00	4.032	0.	65	284.47
			30	30	
PISO 9	27.00	4.032	0.	65	316.15
PISO 8	27.00	4.032	0.	65	347.83
PISO 7	27.00	4.032	0.	65	379.51
			30	30	
PISO 6	27.00	4.032	0.	65	411.19
PISO 5	27.00	4.032	0.	65	442.87
PISO 4	27.00	4.032	0.	65	474.55
			30	30	
PISO 3	27.00	4.032	0.	65	506.23
PISO 2	27.00	4.032	0.	65	537.91
PISO 1	27.00	4.032	0.	65	569.59

Carga Viva	Carga Viva acumulada	% reducción carga viva	q _{ev} Carga Viva	1.2 CM + 1.6 CV	Sección
111	[T]	acumulada	reducida [1]		(P0/4)
9.00	9.00	1.00	9.00	51.64	30x30
9.00	18.00	0.63	11.36	93.42	40x40
9.00	27.00	0.63	17.03	140.52	70x70
9.00	36.00	0.63	22.71	187.62	55x55
9.00	45.00	0.63	28.39	234.72	60x60
9.00	54.00	0.63	34.07	281.82	80x80
9.00	63.00	0.63	39.74	328.92	70x70
9.00	72.00	0.63	45.42	376.02	75x75
9.00	81.00	0.63	51.10	423.12	90x90
9.00	90.00	0.63	56.78	470.22	85x85
9.00	99.00	0.63	62.45	517.32	90x90
9.00	108.00	0.63	68.13	564.42	100x100
9.00	117.00	0.63	73.81	611.52	100×100
9.00	126.00	0.63	79.49	658.62	105x105
9.00	135.00	0.63	85.16	705.72	110x110
9.00	144.00	0.63	90.84	752.82	110×110
9.00	153.00	0.63	96.52	799.92	115x115
9.00	162.00	0.63	102.20	847.02	120x120

P2 Columna nivol	CM [T]	CM wight [T]	Carga C Super	olumna rior [T]	q _{см} Carga Muerta
B2 Columna niver	A _T x W _{losa}	CIVI VIgas [1]	b (cm)	h (cm)	acumulada [T]
			70	70	
PISO 18	27.00	4.032	0.	00	31.03
PISO 17	27.00	3.	53	65.59	
PISO 16	27.00	4.032	3.	53	100.15
			80	80	
PISO 15	27.00	4.032	4.	61	135.79
PISO 14	27.00	4.032	4.	61	171.43
PISO 13	27.00	4.032	4.	.61	207.07
			90	90	
PISO 12	27.00	4.032	5.	.83	243.94
PISO 11	27.00	4.032	5.	.83	280.80
PISO 10	27.00	4.032	5.83		317.66
			100	100	
PISO 9	27.00	4.032	7.	20	355.90
PISO 8	27.00	4.032	7.	20	394.13
PISO 7	27.00	4.032	7.	20	432.36
			110	110	
PISO 6	27.00	4.032	8.	71	472.10
PISO 5	27.00	4.032	8.	71	511.85
PISO 4	27.00	4.032	8.	71	551.59
			120	120	
PISO 3	27.00	4.032	10	.37	592.99
PISO 2	27.00	4.032	10	.37	634.39
PISO 1	27.00	4.032	10	.37	675.79

Tam dise (Po	Sección (Po/4)	1.2 CM + 1.6 CV [T]	q _{ev} Carga Viva reducida [T]	% reducción carga viva acumulada	Carga Viva acumulada [T]	Carga Viva [T]
		•				
	30x30	51.64	9.00	1.00	9.00	9.00
70	40x40	96.88	11.36	0.63	18.00	9.00
	70x70	147.43	17.03	0.63	27.00	9.00
	55x55	199.29	22.71	0.63	36.00	9.00
80	60x60	251.14	28.39	0.63	45.00	9.00
	80x80	302.99	34.07	0.63	54.00	9.00
	70x70	356.31	39.74	0.63	63.00	9.00
90	75x75	409.63	45.42	0.63	72.00	9.00
	90x90	462.95	51.10	0.63	81.00	9.00
		1				
	85x85	517.92	56.78	0.63	90.00	9.00
100	90x90	572.88	62.45	0.63	99.00	9.00
	100x100	627.84	68.13	0.63	108.00	9.00
	100x100	684.62	73.81	0.63	117.00	9.00
110	105x105	741.39	79.49	0.63	126.00	9.00
	110x110	798.17	85.16	0.63	135.00	9.00
	115x115	856.93	90.84	0.63	144.00	9.00
120	115x115	915.70	96.52	0.63	153.00	9.00
	120×120	074.46	103.30	0.62	102.00	0.00

95

ANEXO IV. Configuración en 3D para las 3 geometrías propuestas

Geometría 3

ANEXO V. Diseño de vigas (DBF)

• Diseño de viga V40x60 Eje 2, Piso 2 (Geometría 1):

As colocado	5φ14	2φ16		2φ	16		2φ	16		2φ.	16
	5φ14				•				•		
	As (colocado)	11.718	7.697	11.718	11.718	7.697	11.718	11.718	7.697	11.718	
		7.697	7.697	7.697	7.697	7.697	7.697	7.697	7.697	7.697	
ļ	Revision As	ОК	ОК	OK	ОК	ОК	OK	ОК	ОК	OK	
-		ОК	OK	OK	OK	ОК	OK	ОК	ОК	OK	
L	<u># Espacios</u>	4									
Espacia	miento	5.450	6.250	5.450	5.450	6.250	5.450	5.450	6.250	5.450	OK
		0.25	0.25	0.25	0.25	0.23	0.25	0.25	0.25	0.25	UK
				DISE	ÑO A CO	RTE					
[Acero de lo	isa (cm2)	6				α	1.4]		
					DA	TOS	φ λ	0.75 1			
	As (cm^2)	17 719	12 607	17 719	17 719	12 607	17 719	17 719	12 607	17 719	
	<u> Aa (ciii 2)</u>	7.697	7.697	7.697	7.697	7.697	7.697	7.697	7.697	7.697	
$M_{PR} = As * \alpha * fy * \left(d - \frac{As * \alpha * fy}{s \cdot \alpha + fy}\right)$	Mprob(T*m)	50.558	40.084	50.558	50.558	40.084	50.558	50.558	40.084	50.558	
[1.5] (10)		23.363	23.363	23.363	23.363	23.363	23.363	23.363	23.363	23.363	
$V_{HIP} = \frac{M_{PRi} + M_{PRj}}{In}$	VHip (T)		13.817			13.817			13.817		
Lit			13.817			13.817			13.817	l	
	<u>VHip (T)</u>		13.82			13.82			13.82		
$V_{11} = V_{-} \pm V_{-}$	- V(T)		27 79		, I	27 72			27 79	' I	
$v u = v_{CV} + v_{HIP}$	<u>vu(i)</u>		27.79			21.12			27.79		
$Vc = 0.53 * \lambda * \sqrt{f'c} * b * d$	<u>Vc (T)</u>		19.16			19.16			19.16		
$Si V_{HIP} > \frac{1}{2}Vu \rightarrow Vc = 0$											
$Vs = \frac{Vu}{d} - Vc$	<u>Vs (T)</u>		17.89			17.80			17.89		
ψ	1				I					I	
<u>4*Vc ó 2.2*λ*</u>	raiz(f'c)*b*d (T)		76.62			76.62			76.62		
$Vs \le 4Vc$							1				
Si Vc = 0			OK		I	OK	1	ļ	OK		
$V3 \leq 2.2 * \pi * \sqrt{1} C * D * u$											
$\frac{Av}{s} = \frac{Vs}{fy * d}$	Av/s (cm^2/cm)		0.078894552			0.07848303			0.078894552		
					l I						
	<u>Av (cm^2)</u>		0.631156418			0.627864237			0.631156418		
	l		DATOS		1 1		ESPACIAMIEN	ITO A CORTE			
		φVLP(mm)		14		ZONA DE CON	FINAMIENTO	ZONA C	ENTRAL		
		Área.E(cm^2)		0.79		SLoadop(cm)	8	Sadop(cm)	16		
	#Ramales	1	0.80		1	0.80		1	0.80		
		1 1 ESTRIBO	камаL ф 10mm @ 8cm	n y @16cm	1 ESTRIBO	φ 10mm @ 8cr	n y @16cm	1 1 ESTRIBO	φ 10mm @ 8cm	n y @16cm	

• Diseño de viga V50x60 Eje 2, Piso 4 (Geometría 2):

# Espacios	4									
Espaciamiento	7.800	8.500	7.800	7.800	8.500	7.800	7.800	8.500	7.800	ОК
	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	ОК
			DISE	ÑO A CO	RTE					
Acero de I	osa (cm2)	6				α	1.4			
				DA	TOS	ф	0.75			
						λ	1			
As (cm^2)	19 132	16 053	19 132	19 132	16 053	19 132	19 132	16 053	19 132	
<u></u>	10.053	10.053	10.053	10.053	10.053	10.053	10.053	10.053	10.053	
((
$M_{PR} = As * \alpha * fy * \left(d - \frac{As \cdot \alpha * fy}{1.7 * f'_{cb}}\right)$ (Mprob(T*m)	55.430	47.228	55.430	55.430	47.228	55.430	55.430	47.228	55.430	
(Ling vis)	30.452	30.452	30.452	30.452	30.452	30.452	30.452	30.452	30.452	
$M_{PRi} + M_{PRi}$ VHin (T)	1	16 676			16 676			16 676		
$V_{HIP} = \frac{Ln}{Ln}$	·	16.676			16.676			16.676		
<u>VHip (T</u>)	l	16.68			16.68			16.68		
	1									
$V_{11} = V_{11} + V_{11}$	J	31 22			30.62			31 22		
		31.22			30.02			51.22		
	1		1	I		I			1	
$Vc = 0.53 * \lambda * \sqrt{f'c} * b * d$ $\underbrace{Vc(T)}_{1}$		0.00			0.00			0.00		
$Si V_{HIP} > \frac{1}{2} Vu \rightarrow Vc = 0$										
Kar Ve (T)	J	41.62		1	10.92	1		41.62	1	
$Vs = \frac{va}{\phi} - Vc$		41.02			40.82			41.02		
	1			I.		1			1	
<u>4*Vc ó 2.2*λ*raiz(f'c)*b*d (T)</u>		99.40			99.40			99.40		
$Vs \le 4Vc$ $Si Vc = 0$ $Vs \le 2.2 * \lambda * \sqrt{f'c} * b * d$		ОК		I	ОК]	l	ОК		
$\frac{Av}{a} = \frac{Vs}{f_{\rm cons} d}$ Av/s (cm ⁴ 2/cm)		0.183516928			0.179989591			0.183516928		
s fy * d										
A / A ?!	J	1 400125 420	1	1	1 42001(724	1		1 400125 420	I	
<u>Av (cm*2)</u>	!	1.468135426			1.439916/31			1.468135426		
	1			I		I			I	
		DATOS				ESPACIAMIEN	TO A CORTE			
	φVLP(mm)		14		ZONA DE CON	FINAMIENTO	ZONA C	ENTRAL		
	φEstribo(mm)		10		SLO(CM)	8.4	S(CM)	16		
	Area.E(GIII''Z)		0.79	I I	scoauop(cm)	ŏ	Sau0p(GIII)	70	1	
#Ramales		1.87			1.83			1.87		
	2	RAMALES		2	RAMALES		2	RAMALES		
	1 ESTRIBO	þ 10mm @ 8cn	n y @16cm	1 ESTRIBO	ф 10mm @ 8cr	n y @16cm	1 ESTRIBO	ф 10mm @ 8cn	n y @16cm	

• Diseño de viga V55x60 Eje 2, Piso 7 (Geometría 3):

	MO	MENTO I	REQUERI	DO (DATO	DS)				
		VIGA	EJE 2 STO	RY 7					
Cara de columna	1.00								
<u>Mu (T*m)</u>	27.92 0.00 6.27 12.38	27.92 9.54	25.06 8.64	0.00 11.67	25.06 8.64	27.92 9.54	0.00 12.38	27.92 6.27	
<u>Vcv (T) (1.2D+1.6L)</u>	15.40			14.11			14.64		
<u>Tu (T)</u>	0.00			0.00			0.00		
L (m)	6.00			6.00			6.00		
<u>Ln (m)</u>	5.000			5.000			5.000]
	DISEÑO A FLEXIÓN fc (Kg/cm^2) 28/0 ý (Kg/cm^2) 4200 r (cm) 6 β1 0.85 φ 0.3	0 0 5 5 9	VALOR b [cm] h [cm] d [cm]	ES VIGA 55 60 54]	Mumax(+) Mumax(-) Mumáx	12.38 27.92 27.92]	

ANEXO VI. Diseño de columnas (DBF)

• Diseño de columna interna C65x65 "2B" PB-PISO 6 (Geometría 1):

• Diseño de columna interna C85x85 "2B" PB-PISO 6 (Geometría 2):

• Diseño de columna interna C100x100 "2B" PB-PISO 6 (Geometría 3):

ANEXO VII. Diseño de conexión viga-columna (DBF)

• Conexión viga-columna interna "2B" Piso 1 (Geometría 1):

bv _{asum} [cm]	40	bv<0.7	75bc:No se reduce 0.	5Ash	
h" [cm]	57				s * h'' * f'c (Ag)
s [cm]	12	_			$Ash1 = 0.3 * \frac{fy}{fy} \left(\frac{1}{Ac} - 1\right)$
s _{asum} [cm]	10				
Ramas	cortas=Ramas larg	gas			s * h'' * f'c
Ash1 [cm2]	3.42	_			$Ash2 = 0.09 * \frac{fy}{fy}$
Ash2 [cm2]	3.42				
kf	1	_			Pu Pu
kn	1.1	_			$Ash3 = 0.2 * s * h'' * kf * kh * \frac{1}{fy * Ac}$
Ash3 [cm2]	2.8			7	,,,
Ash [cm2]	3.42	@	10	-	f'c
sh dis [cm2]	3.42	@	10		$kf = \frac{f^2}{1750} + 0.6 \ge 1$
ESTRIBO [cm]	1.00	_			1750
#Ramales	5.0				$kn = \frac{\#varillas}{\#varillas - 2}$
#Estribos	2				$\pi \nu u r u u u = 2$
# Ganchos	1				
		φ	10	mm	
2	Estribos	@	10	cm	
		Φ	10	mm	
1 COLUMNA FUER	Ganchos TE VIGA DEBIL	<u>ф</u> @	10 10	mm cm	
1 COLUMNA FUER	Ganchos TE VIGA DEBIL	φ @ 	10 10	mm cm	
1 COLUMNA FUER ΣΜ	Ganchos TE VIGA DEBIL		10 10	mm cm	
1 COLUMNA FUER ΣM As1 [cm2]	Ganchos		10 10	mm cm	
1 COLUMNA FUER ΣM As1 [cm2] Mn1 [t*m] 1	Ganchos TE VIGA DEBIL N _{vig} 20.3 42.25		10 10	cm	
1 ΣOLUMNA FUER ΣM As1 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m]	Ganchos TE VIGA DEBIL N _{vig} 20.3 42.25 7.7 13.2		10 10	mm cm	
1 COLUMNA FUER ΣM As1 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mn2 [t*m]	Ganchos TE VIGA DEBIL 0 20.3 42.25 7.7 17.2 504	¢ @	10 10	cm	
1 COLUMNA FUER <u>S</u> M As1 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m]	Ganchos		$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	cm	
1 COLUMNA FUER 5 Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m] Mnvig [t*m] p. p.	Ganchos TE VIGA DEBIL N _{vig} 20.3 42.25 7.7 17.2 59.4 83.2 105 E9	$\begin{array}{c} \Phi \\ \hline e \\ \hline \end{array}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	mm cm	
1 ΣOLUMNA FUER ΣM As1 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mncol [t*m] P ₀ [t] P [t] P [t]	Ganchos TE VIGA DEBIL N _{vig} 20.3 42.25 7.7 17.2 59.4 83.2 185.58 (5.0)	$\begin{array}{c} \Phi \\ \hline e \\ \hline \end{array}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n viga$	mm cm	
1 COLUMNA FUER <u>p</u> M As1 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m] P _D [t] P _L [t] p (t] P (t]	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 25.5	$\sum_{n \text{ col}}^{\Phi}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n viga$	mm cm	
1 COLUMNA FUER 2 M Masi [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m] Mnvig [t*m] P ₀ [t] P ₅ [t] P ₅ [t]	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 0	$\sum_{n \in \mathcal{O}} M_{n col}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	cm	
1 COLUMNA FUER:	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 195.59 195.	$\sum_{n \in \mathcal{D}} M_{n col}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	cm	
1 COLUMNA FUER: <u>F</u> M As1 [cm2] Mn2 [t*m] Mnv0 [t*m] Mnv0 [t*m] P ₀ [t] P ₁ [t] P ₅ [t] 2 PD+1.6*PL 0.9 PD-PS utility	Ganchos TE VIGA DEBIL	$\sum_{n=1}^{n} M_{n col}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	mm cm	
1 COLUMNA FUER: MA51 [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m] P ₀ [t] P ₁ [t] P ₅ [t] 2 PD+1.6*PL 0.9 PD-PS st col [cm2]	Ganchos TE VIGA DEBIL 0.01 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 	$\sum_{n=1}^{\infty} M_{n col}$	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	mm cm	
1 COLUMNA FUER MAS1 [cm2] Mn1 [t*m] AS2 [cm2] Mn2 [t*m] Mnvig [t*m] Mnvig [t*m] P ₀ [t] P ₁ [t] P ₁ [t] P ₁ [t] P ₁ [t] P ₂ [t] P ₂ [t] P ₁ [t] P ₂ [t] P ₁ [t] P ₂ [t] P ₂ [t] P ₁ [t] P ₂	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9		$\frac{10}{10}$ $\geq 1.4 * \sum M_n viga$	mm cm	
1 COLUMNA FUER [Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnxog [t*m] Mnxog [t*m] P ₀ [t] P ₁ [t] P ₅ [t] 2 PD+1.6*PL 0.9 PD-PS st col [cm2] An col [t*m] Mncol [t*m]	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9 111.9 	Ф @	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$	mm cm	
1 COLUMNA FUER [Mn1 [t*m] As2 [cm2] Mn1 [t*m] As2 [cm2] Mncol [t*m] Po [t] Pi [t] Pi [t] Pi [t] Pi [t] Po [t] 2 PD+1.6*PL 0.9 PD-PS st col [cm2] An col [t*m] Mncol [t*m] In col [t*m]	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9 111.9 90.00 90.00	Ф @	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$ 166.97	mm cm	
1 COLUMNA FUER 5 Mai [cm2] Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnv0 [t*m] Mnc0 [t*m] Po [t] Po [t] Po [t] Po [t] Po [t] Po [t] Po [t] Po [t] Po [t] COLUMNA FUER St col [cm2] Mncol [t*m] Mncol [t*m] Mncol [t*m]	Ganchos TE VIGA DEBIL 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9 111.9 90.00 180.0	Ф @	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$ 166.97	mm cm	
1 COLUMNA FUER	Ganchos TE VIGA DEBIL	Φ @	$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$ 166.97	mm cm	
1 COLUMNA FUER 2 Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mncoi [t*m] P ₀ [t] P ₁ [t] P ₂ [t] COLUMNA FUER Mncoi [t*m] Mncoi [t*m] Mncoi [t*m] Mncoi [t*m] Mncoi [t*m]	Ganchos TE VIGA DEBIL N _{vig} 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9 111.9 90.00 180.0		$\frac{10}{10}$ $\geq 1.4 * \sum M_n v_{iga}$ 166.97	mm cm	
1 COLUMNA FUER [Mn1 [t*m] As2 [cm2] Mn2 [t*m] Mnvig [t*m] Mnvig [t*m] Mnvig [t*m] Mnvig [t*m] Mnvig [t*m] Mnvig [t*m] Anvig [t*m] Mnvig [t*m] Mncol	Ganchos TE VIGA DEBIL 0.vig 20.3 42.25 7.7 17.2 59.4 83.2 185.58 45.00 0.05 295 166.97 50.27 55.9 111.9 90.00 180.0	Ф @	$\frac{10}{10}$ $\geq 1.4 * \sum M_n viga$ 166.97	mm cm	

• Conexión viga-columna de borde "1B" Piso 6 (Geometría 2):

	DISEÑO CONEXIÓN DE BORDE VIGA-COLUMNA										
	DATOS						1				
н	[m]	3						\bigcirc			
fy [k	g/cm2]	4200						_(в)			
fc [k	g/cm2]	280									
Rec [cm] 4		4									
	α	1.40						\frown			
								<u> </u>			
	COLUMNA							\bigcirc			
bc [cm]	65										
hc [cm]	65										
16	Φ	20					COLUMNA				
0.3 fc Ag [t]	355						1				
VIGA EJE		1			VIGA EJE		В				
b [cm]		50			b [cm]	50					
h [cm]		60			h [cm]	60					
As sup.	5	Φ	16		As sup.	5	Φ	16			
As sup. Ref	2	Φ	14		As sup. Ref	2	Φ	14			
As sup. [cm2]	2] 13.1			As sup. [cm2]	13.1						
As inf.	5	Φ	16		As inf.	5	Φ	16			
As inf. Ref	0	Φ	0		As inf. Ref	0	Φ	0			
As inf. [cm2]		10.1			As inf. [cm2]		10.1				
As total [cm2]		23.2			As total [cm2]		23.2				

4. ANCLAJE		
	ESTA REVISIÓN APLICA EN NUDOS EXTERIORES (EN LA DIRECCIÓN PERPENDICULAR AL BORDE) Y ESQUINEROS	
Longitud requerida de anclaje (Ldh)		
λ 1		
$l_{dh} = \frac{fy * \phi_{viga}}{17 * \lambda * \sqrt{f'c}}$		
ldh 23.62 cm		
ldh disp 57.00 cm		
$l_{dh} < l_{dh_{disp}}$		
Cumple		

• Conexión viga-columna de borde "1B" Piso 12 (Geometría 3):

ANEXO VIII. Determinación de masa por piso

Piso	Peso Losa	Peso Vigas	Peso Columnas	Peso Total / Piso	Masa / Piso
	[T]	[T]	[T]	[T]	[T.s ² /m]
6	243.000	82.944	19.152	345.096	35.178
5	243.000	82.944	38.304	364.248	37.130
4	243.000	82.944	38.304	364.248	37.130
3	243.000	82.944	38.304	364.248	37.130
2	243.000	82.944	38.304	364.248	37.130
1	243.000	82.944	38.304	364.248	37.130
Base			19.152	19.152	1.952
Suma:	1458.000	497.664	229.824	2185.488	222.782

• Masa por piso (Geometría 1):

• Masa por piso (Geometría 3):

Piso	Peso Losa	Peso Vigas	Peso Columnas	Peso Total / Piso	Masa / Piso
	[T]	[T]	[T]	[T]	[T.s ² /m]
18	243.000	100.742	30.384	374.126	38.137
17	243.000	100.742	60.768	404.510	41.234
16	243.000	100.742	60.768	404.510	41.234
15	243.000	100.742	60.768	404.510	41.234
14	243.000	100.742	60.768	404.510	41.234
13	243.000	100.742	60.768	404.510	41.234
12	243.000	100.742	69.696	413.438	42.145
11	243.000	100.742	78.624	422.366	43.055
10	243.000	100.742	78.624	422.366	43.055
9	243.000	100.742	78.624	422.366	43.055
8	243.000	100.742	78.624	422.366	43.055
7	243.000	100.742	78.624	422.366	43.055
6	243.000	100.742	88.704	432.446	44.082
5	243.000	100.742	98.784	442.526	45.110
4	243.000	100.742	98.784	442.526	45.110
3	243.000	100.742	98.784	442.526	45.110
2	243.000	100.742	98.784	442.526	45.110
1	243.000	100.742	98.784	442.526	45.110
Base			49.392	49.392	5.035
Suma:	4374.000	1813.363	1429.056	7616.419	776.393

ANEXO IX. Determinación del sistema equivalente de un grado de libertad (DDBD)

• Sistema equivalente de un grado de libertad (Geometría 1):

				Date	os				
Dat	tos Generales								
ty Fa	4200	[Kg/cm2]							
ES	2000000	[Kg/cm2]							
L Span	6.00	[[1]] [m]							
<u>ь</u>	0.00	[11]							
П _b	0.00	[11]							
0 t	0.02	[-]							
n n	5.00	[11]							
Ц	19.00	[⁻]							
[ŋ]	10.00	[11] [m/c2]				<i>,</i>			
161	5.61	[11732]							
εy =	0.002	[-]							
θy =	0.011	[1/m]							
				Cortante	Basal				
A	0.0000	[]							
$\Delta_c = \Delta_1$	0.0600	[m]							
$\delta_c = \delta_1$	0.2130	[m]							
•	0.211	[]							
Δ _{di}	0.211	[11]							
factor f	0.1050	[m] [1]							
lactor, i	0.8768	[-]							
	Altura Hi	Masa mi		۸i	۸i				F.
Piso, i	[m]	$[T c^2/m]$	δί	[m]		mi *∆i	mi *∆i²	mi *∆i*Hi	(T)
6	10	25 19	1 000	0.282	0.247	8 600	2 1 4 7	156 416	20 561
5	10	37.12	0.880	0.282	0.247	8.050	2.147	121 020	13 236
3	12	37.13	0.000	0.240	0.217	6 79/	1.733	81 529	11 1/6
3	9	37.13	0.583	0.164	0.105	5.350	0.771	48,153	8 777
2	6	37.13	0.407	0.115	0.101	3 737	0.376	22 420	6.130
1	3	37.13	0.213	0.060	0.053	1.953	0.103	5.860	3.204
Σ =						34.592	6.393	435.398	63.055
[1	1			1				
Δ _d	0.185	[m]		V1 =	10.51	[T]			
m _e	187.188	[T.s ² /m]		V2 =	21.02	[T]			
H _e	12.587	[m]		V3 =	21.02	[T]			
Δ _y	0.132	[m]		V4 =	10.51	[T]			
μ	1.398	[-]			T				
ξ _{eq}	10.123	[%]		M1 =	20.5	[T.m]			
DSF =	0.760	[-]		M2 =	41.0	[T.m]			
$S_{d'} = \Delta_{L,10.12\%}$	0.185	[m]		M3 =	41.0	[T.m]			
T _e	2.392	[s]		M4 =	20.5	[T.m]	_		
K _e	1291.878	[T/m]							
Vb	238.738	[T]							
Mb	3004.893	[Tm]							
Chara	una oferta P								
Cneq		-Δ							
$\Theta_{\Delta} =$	U.113	[-]							
0.1>A	ento en la ba								
r rion	0.5	[_]							
M	3174 567	[Tm]							
V.	252 219	[T1]							
۷b	232.210	ניז							
Vb/pórtico =	63.055	[T]							

• Sistema equivalente de un grado de libertad (Geometría 3):

				Datos				
Det	tos Conoralas							
Da	tos Generales	[Ka/cm2]						
Fs	2000000	[Kg/cm2]						
Lspan	6.00	[ng/clli2]						
Lb	6.00	[m]						
-b h _b	0.60	[m]						
θ.	0.02	[-]						
H	3.00	[m]						
n	18	[-]						
Hn	54.00	[m]						
[g]	9.81	[m/s2]				<i>i</i>		
εγ	0.002	[-]						
θγ	0.011	[1/m]						
			Cc	ortante Basal				
$\Lambda_{-} = \Lambda_{-}$	0.0600	[m]						
$\Delta_c - \Delta_1$	0.0000	[m]						
0 _c - 0 ₁	0.0750	[III]						
	Altura. Hi	Masa. mi		Δi				F:
Piso, i	[m]	$[T_s^2/m]$	δ _i	[m]	mi *∆i	mi *∆i²	mi *∆i*Hi	[T]
18	54	38.14	1.000	0.821	31.326	25.732	1691.618	18.570
17	51	41.23	0.962	0.790	32.581	25.744	1661 634	8.453
16	48	41.23	0.902	0.757	31 222	23 641	1498 659	8 101
15	45	41.23	0.522	0.723	29 793	21 527	1340 702	7 730
14	43	41.23	0.835	0.686	28.295	19.416	1188.390	7.341
13	39	41.23	0.789	0.648	26.727	17.324	1042.350	6.935
12	36	42.14	0.741	0.608	25.643	15.602	923.145	6.653
11	33	43.05	0.690	0.567	24.414	13.844	805.656	6.334
10	30	43.05	0.638	0.524	22.558	11.819	676.747	5.853
9	27	43.05	0.583	0.479	20.630	9.885	557.006	5.353
8	24	43.05	0.527	0.433	18.629	8.060	447.089	4.833
7	21	43.05	0.468	0.385	16.555	6.365	347.651	4.295
6	18	44.08	0.407	0.335	14.752	4.937	265.536	3.828
5	15	45.11	0.345	0.283	12.770	3.615	191.557	3.313
4	12	45.11	0.280	0.230	10.369	2.383	124.427	2.690
3	9	45.11	0.213	0.175	7.891	1.380	71.019	2.047
2	6	45.11	0.144	0.118	5.337	0.631	32.022	1.385
<u> </u>	3	45.11	0.073	0.060	2.707	212.068	8.120 12972 229	104 418
2 -					502.199	212.000	120/3.320	104.410
Δ _d	0.586	[m]		V1 =	17.40	[T]	1	
m _e	618.614	[T.s ² /m]		V2 =	34.81	[T]	1	
H	35.542	[m]		V3 =	34.81	[T]		
Δ,,	0.373	[m]		V4 =	17.40	[T]	1	
μ	1.569	[-]		L			J	
ξ _{en}	11.521	[%]		M1 =	33.9	[T.m]]	
DSF	0.720	[-]		M2 =	67.9	[T.m]	1	
$S_{d'} = \Delta_{1.11.52\%}$	0.176	[m]		M3 =	67.9	[T.m]	1	
El desplzamie	to de fluencia	excede el		M4 =	33.9	[T.m]		
desplazamie	ento asociado	al 5% de					-	
am	ortiguamiento)						

Welástico	6068.601	[T]
K _{elástico}	1626.131	[T/m]
T _{elástico}	3.875	[T/m]
Δ_{d}	0.2440	[m]
V _b	396.837	[T]
M _b	14104.425	[Tm]
μ=	1.000	[-]
ξeq =	5.00%	[-]
Chequ	ieo efectos P-	-Δ
Θ_=	0.105	[-]
θ∆>0.1>Ar	mplificar capa	acidad de
mome	ento en la bas	se
С	0.5	[-]
M _b	14844.907	Tm
V _b	417.671	[T]

ANEXO X. Determinación de inercia agrietada de elementos (DDBD)

• Inercia agrietada de elementos (Geometría 1):

	Primera Iteración																	
							leff analisis	5		leff min				lcr asumi	da			
		μ	ivion	ientos del a	nalisis	Manalisis /(Ec*φy)/μ			M	у /(Ес*фу	-)/μ	N	1ax (leff analisis	if analisis, leff min)			
Piso	Vises	Columnos	Viges	Columnas	Columnas	Viana	Columnas	Columnas	Viana	Columnas	Columnas	Viges		Columna	is	Columna	as	
	Vigas	Columnas	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas		Int.		Ext.		
	[-]	[-]	[T.m]	[T.m]	[T.m]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	%	[m^4]	%	[m^4]	%	
6	1.398	1	7.89	15.52	6.84	0.0003	0.0009	0.0004	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
5	1.398	1	12.45	15.85	9.64	0.0005	0.0009	0.0005	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
4	1.398	1	17.38	18.24	10.62	0.0007	0.0011	0.0006	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
3	1.398	1	21.51	23.57	11.41	0.0008	0.0014	0.0006	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
2	1.398	1	24.16	29.24	16.33	0.0009	0.0017	0.0009	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
1	1.398	1	23.89	41.00	20.50	0.0009	0.0024	0.0011	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	

	Segunda Iteración																	
			Mam		nalisia		leff analisis	5		leff min				lcr asumi	ida			
		μ	wom	ientos del a	nalisis	Manalisis /(Ес*фу)/µ			м	у / (Ес * фу)/μ	N	lax (leff analisis,	f analisis, leff min)			
Piso	Vigor	Columnac	Vigor	Columnas	Columnas	Vigas	Columnas	Columnas	Vigor	Columnas	Columnas	Vigor		Columna	as	Columna	as	
	Vigas	Columnas	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas		Int.		Ext.		
	[-]	[-]	[T.m]	[T.m]	[T.m]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	%	[m^4]	%	[m^4]	%	
6	1.398	1	8.53	14.19	7.57	0.0003	0.0008	0.0004	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
5	1.398	1	12.62	18.09	10.61	0.0005	0.0011	0.0006	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
4	1.398	1	17.2	20.27	11.45	0.0007	0.0012	0.0006	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
3	1.398	1	21.09	22.34	11.14	0.0008	0.0013	0.0006	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
2	1.398	1	23.58	29.16	15.77	0.0009	0.0017	0.0009	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	
1	1.398	1	23.55	41.00	20.50	0.0009	0.0024	0.0011	0.0012	0.0059	0.0038	0.0012	17	0.00588	40	0.00385	36	

• Inercia agrietada de elementos (Geometría 3):

Primera Iteración															-		
			Mam		nalisia		leff analisis	5		leff min				lcr asumi	ida		
		μ	wom	ientos del a	nalisis	Mai	nalisis /(Ec*	φγ)/μ	M	у / (Ес*фу	y)/μ	N	1ax (leff analisis	, leff	min)	
Piso	Vigas	Columnas	Viges	Columnas	Columnas	Viges	Columnas	Columnas	Viges	Columnas	Columnas	Viges		Columna	as	Column	as
	vigas	Columnas	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas		Int.		Ext.	
	[-]	[-]	[T.m]	[T.m]	[T.m]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	%	[m^4]	%	[m^4]	%
18	1.00	1.00	8.92	13.14	5.78	0.0005	0.0009	0.0004	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
17	1.00	1.00	12.13	15.39	7.78	0.0007	0.0011	0.0005	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
16	1.00	1.00	15.43	17.94	9.21	0.0008	0.0013	0.0006	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
15	1.00	1.00	18.75	20.08	10.26	0.0010	0.0015	0.0006	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
14	1.00	1.00	21.99	22.13	11.28	0.0012	0.0016	0.0007	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
13	1.00	1.00	25.18	24.38	12.4	0.0014	0.0018	0.0008	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
12	1.00	1.00	27.92	27.45	14	0.0015	0.0022	0.0010	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
11	1.00	1.00	30.21	29.14	15.29	0.0016	0.0024	0.0011	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
10	1.00	1.00	32.49	30.89	15.9	0.0018	0.0025	0.0011	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
9	1.00	1.00	34.67	34.15	16.33	0.0019	0.0028	0.0012	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
8	1.00	1.00	36.67	37.26	17.32	0.0020	0.0030	0.0013	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
7	1.00	1.00	38.48	39.77	19.12	0.0021	0.0032	0.0014	0.0020	0.0222	0.0129	0.0021	21	0.02216	41	0.01287	38
6	1.00	1.00	39.34	42.5	20.08	0.0021	0.0038	0.0016	0.0020	0.0355	0.0218	0.0021	22	0.03550	43	0.02178	40
5	1.00	1.00	40.32	45.36	21.92	0.0022	0.0041	0.0018	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40
4	1.00	1.00	41.02	48.74	24.11	0.0022	0.0044	0.0020	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40
3	1.00	1.00	41.39	52.76	26.87	0.0022	0.0048	0.0022	0.0020	0.0355	0.0218	0.0022	23	0.03550	43	0.02178	40
2	1.00	1.00	41.47	57.76	30.85	0.0022	0.0052	0.0025	0.0020	0.0355	0.0218	0.0022	23	0.03550	43	0.02178	40
1	1.00	1.00	40.66	67.9	33.9	0.0022	0.0061	0.0028	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40

	Segunda Iteración																
			Mom	ontos dol a	nalicic		leff analisis	5		leff min				lcr asumi	ida		
		μ	WOII	ientos del a		Mar	nalisis /(Ec*	φγ)/μ	My	/ / (Ес * фу	μ/(N	lax (leff analisis	, leff	min)	
Piso	Vigor	Columnac	Vigor	Columnas	Columnas	Vigas	Columnas	Columnas	Vigas	Columnas	Columnas	Vigor		Columna	as	Columna	as
	Vigas	Columnas	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas	Int.	Ext.	vigas		Int.		Ext.	
	[-]	[-]	[T.m]	[T.m]	[T.m]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	[m^4]	%	[m^4]	%	[m^4]	%
18	1.00	1.00	8.16	13.24	6.26	0.0004	0.0010	0.0004	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
17	1.00	1.00	11.21	16.03	8.22	0.0006	0.0012	0.0005	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
16	1.00	1.00	14.47	18.66	9.57	0.0008	0.0013	0.0006	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
15	1.00	1.00	17.79	20.83	10.66	0.0010	0.0015	0.0007	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
14	1.00	1.00	21.06	22.97	11.73	0.0011	0.0017	0.0007	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
13	1.00	1.00	24.3	25.41	12.96	0.0013	0.0018	0.0008	0.0020	0.0123	0.0068	0.0020	20	0.01231	36	0.00683	34
12	1.00	1.00	27.17	28.88	14.73	0.0015	0.0023	0.0011	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
11	1.00	1.00	29.31	30.61	15.97	0.0016	0.0025	0.0012	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
10	1.00	1.00	31.44	31.53	16.33	0.0017	0.0026	0.0012	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
9	1.00	1.00	33.38	33.84	16.19	0.0018	0.0027	0.0012	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
8	1.00	1.00	34.95	39.21	19.06	0.0019	0.0032	0.0014	0.0020	0.0222	0.0129	0.0020	20	0.02216	41	0.01287	38
7	1.00	1.00	37.63	42.39	20.91	0.0020	0.0034	0.0015	0.0020	0.0222	0.0129	0.0020	21	0.02216	41	0.01287	38
6	1.00	1.00	39.36	43.78	21.25	0.0021	0.0040	0.0017	0.0020	0.0355	0.0218	0.0021	22	0.03550	43	0.02178	40
5	1.00	1.00	40.03	46.49	22.99	0.0022	0.0042	0.0019	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40
4	1.00	1.00	40.54	50.89	25.48	0.0022	0.0046	0.0021	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40
3	1.00	1.00	42.43	53.07	26.74	0.0023	0.0048	0.0022	0.0020	0.0355	0.0218	0.0023	23	0.03550	43	0.02178	40
2	1.00	1.00	42.33	56.33	29.61	0.0023	0.0051	0.0024	0.0020	0.0355	0.0218	0.0023	23	0.03550	43	0.02178	40
1	1.00	1.00	39.9	67.9	33.9	0.0022	0.0061	0.0028	0.0020	0.0355	0.0218	0.0022	22	0.03550	43	0.02178	40

ANEXO XI. Perfil de desplazamientos y derivas inelásticas de piso (DDBD)

• Perfil de desplazamientos y derivas inelásticas de piso (Geometría 1):

• Perfil de desplazamientos y derivas inelásticas de piso (Geometría 3):

ANEXO XII. Determinación de acciones de diseño en elementos (DDBD)

• Momentos y cortantes de diseño en vigas (Geometría 1):

Determinación	do	acciones	٥n	vinas
Deleiiiiiiaciuii	ue	acciones	<i>C</i> 11	viuas

- Distribución del cortante basal a los niveles de piso

Diag i	Altura, Hi	Masa, mi	×	Δi	∆i _{corregido}	mi *Ai			Fi
P150, 1	[m]	[T.s ² /m]	0i	[m]	[m]	ΠΙΔΙ	mι^Δι		[1]
6	18	35.18	1.000	0.282	0.247	8.690	2.147	156.416	20.561
5	15	37.13	0.880	0.248	0.217	8.068	1.753	121.020	13.236
4	12	37.13	0.741	0.209	0.183	6.794	1.243	81.529	11.146
3	9	37.13	0.583	0.164	0.144	5.350	0.771	48.153	8.777
2	6	37.13	0.407	0.115	0.101	3.737	0.376	22.420	6.130
1	3	37.13	0.213	0.060	0.053	1.953	0.103	5.860	3.204
Σ =						34.592	6.393	435.398	63.055

- Determinación de momentos en las vigas

Piso, i	Altura, H _i	Fi	V _{si}	OTM (Mom. volteo)	V _{Bi}	M _{Bi} (Eje.Col)	Vigas (bxh)	Columnas (bxh)	М _{ві} * (Cara.Col)
	[m]	[T]	[T]	[T.m]	[T]	[T.m]	[cm]	[cm]	[T.m]
6	18	20.561	20.561	0.000	2.918	8.754	40x60	65x65	7.805
5	15	13.236	33.797	61.683	4.796	14.388	40x60	65x65	12.830
4	12	11.146	44.943	163.074	6.378	19.133	40x60	65x65	17.061
3	9	8.777	53.720	297.902	7.623	22.870	40x60	65x65	20.393
2	6	6.130	59.850	459.062	8.493	25.480	40x60	65x65	22.720
1	3	3.204	63.055	638.612	8.948	26.844	40x60	65x65	23.936
Σ =		63.055	275.925	827.776	39.157				

Мсј	122.956	[T.m]	$\sum M_{c} = V_{B} \times 0,70 H_{1}$	Priestley Sec-5.5.1	Capacidad de momento en la base de columna
т	39.157	[T]	$\sum_{i=1}^{n} V_{Bi} = T = \left(\sum_{i=1}^{n} F_i H_i - \sum_{j=1}^{m} M_{Qj}\right) / L_{how}$	Priestley Ec-5.34	Fuerza de tensión en la base de columna

- Determinación de momentos y cortantes de tramo en Vigas

Puntos:							
х	0	[m]					
х	3	[m]					
х	2.675	[m]					

Asumir:								
¢°	1.35	[-]						

Piso, i	Altura, H _i	Columnas (bxh)	Vigas (bxh)	M _{Bi} (Eje.Col)	M _{Bi} * (Cara.Col)	M _x Tramo (x=3m)	V _x Tramo (Centro Tramo	V _{cc} Borde (Cara colum)
	[m]	[cm]	[cm]	[T.m]	[T.m]	[T.m]	[T]	[T]
6	18	65x65	40x60	23.144	18.401	33.912	9.286	29.445
5	15	65x65	40x60	23.144	18.401	33.912	9.286	29.445
4	12	65x65	40x60	23.144	18.401	33.912	9.286	29.445
3	9	65x65	40x60	23.144	20.393	33.912	10.292	30.450
2	6	65x65	40x60	25.480	22.720	33.912	11.466	31.625
1	3	65x65	40x60	26.844	23.936	33.912	12.080	32.239

• Momentos, cortantes y axiales de diseño en columnas (Geometría 1)

- Amplificación dinámica de cortante en columnas

u° 1.000 [-]

Piso, i	Altura, H _i	Columnas (bxh)	V _{si}	VE _{ext} (Col. Ext)	VE _{int} (Col. Int)	Vu _{ext} (Col. Ext)	Vu _{int} (Col. Int)
	[m]	[cm]	[1]	[1]	(T)	[T]	[1]
6	18	65x65	20.561	4.846	9.693	15.460	30.920
5	15	65x65	33.797	7.966	15.932	19.671	39.343
4	12	65x65	44.943	10.593	21.186	23.218	46.436
3	9	65x65	53.720	12.662	25.324	26.011	52.022
2	6	65x65	59.850	14.107	28.214	27.961	55.923
1	3	65x65	63.055	14.862	29.724	28.981	57.962

- Amplificación dinámica de momentos en columnas

				Ec. 5.46b							
Piso, i	Altura, H _i	M _{Bi} (Eje.Col)	VE _{int} (Col. Int)	M _{C1f} (Col. Int)	M _{C1f} (Col. Ext)	ω	M _{C1} ,des Col. Int (Eje viga)	M _{C1} ,des Col. Ext (Eje viga)	Vigas (bxh)	M _{uc} Col. Int (Cara viga)	M _{UC} Col. Ext (Cara viga)
	[m]	[T.m]	[1]	[T.m]	[T.m]		[T.m]	[T.m]	[cm]	[T.m]	[T.m]
6	18	8.754	9.693	24.759	19.573	1.000	33.424	26.424	40x60	27.060	21.393
5	15	14.388	15.932	20.348	16.087	1.100	30.217	23.889	40x60	23.853	18.857
5				20.348	16.087	1.100	30.217	23.889		22.994	18.179
4	12	19.133	21.186	27.059	21.392	1.150	42.009	33.211	40x60	34.786	27.501
4				27.059	21.392	1.150	42.009	33.211		32.787	25.920
3	9	22.870	25.324	32.343	25.570	1.150	50.213	39.697	40x60	40.991	32.406
3				32.343	25.570	1.150	50.213	39.697		39.598	31.305
2	6	25.480	28.214	36.034	28.488	1.150	55.943	44.227	40x60	45.328	35.835
2				36.034	28.488	1.150	55.943	44.227		44.455	35.145
1	3	26.844	29.724	37.964	30.013	1.150	58.938	46.595	40x60	47.450	37.513
1				37.964	30.013	1.150	58.938	46.595		47.836	39.141
0	0			40.985	20.493	1.000	40.985	20.493			

- Cargas axiales en columnas exteriores

CV 0.25 [T/m2]

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	M _{Bi} (Eje.Col)	Carga sísmica Piso, i	Carga sísmica, Acum	Reducción de Carga Sísmica	Carga sísmica red, Acum
	[m]	[1]	[1]	[T]	(T)	[T.m]	[T.m]	[T.m]	[-]	[T.m]
6	18	19.172	19.172	4.50	4.50	8.754	3.939	3.939	1.00	3.939
5	15	20.236	39.408	4.50	9.00	14.388	6.475	10.414	0.96	9.997
4	12	20.236	59.644	4.50	13.50	19.133	8.610	19.024	0.95	17.978
3	9	20.236	79.880	4.50	18.00	22.870	10.292	29.316	0.93	27.263
2	6	20.236	100.116	4.50	22.50	25.480	11.466	40.782	0.91	37.111
1	3	20.236	120.352	4.50	27.00	26.844	12.080	52.861	0.89	47.047
0	0	1.197	121.549		27.00			52.861		47.047
Σ =		121.549								

Piso, i	Altura, H _i	Comb U1 (CM+CV)	Comb U2 (CM+CV+CS)	Comb U3 (CM+CV-CS)	
	[m]	[1]	[1]	[1]	
6	18	23.672	27.611	19.733	
5	15	48.408	58.405	38.411	
4	12	73.144	91.122	55.166	
3	9	97.880	125.143	70.617	
2	6	122.616	159.727	85.505	
1	3	147.352	194.399	100.305	
0	0	148.549	195,596	101.502	

- Cargas axiales en columnas interiores

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	Comb U1 (CM+CV)
	[m]	(T)	(11)	[1]	(T)	[T]
6	18	38.344	38.344	9.00	9.00	47.344
5	15	40.472	78.816	9.00	18.00	96.816
4	12	40.472	119.288	9.00	27.00	146.288
3	9	40.472	159.760	9.00	36.00	195.760
2	6	40.472	200.232	9.00	45.00	245.232
1	3	40.472	240.704	9.00	54.00	294.704
0	0	1.197	241.901		54.00	295.901
Σ =		241.901				

• Momentos y cortantes de diseño en vigas (Geometría 3):

- Distribución del cortante basal a los niveles de piso

Diese i	Altura, Hi	Masa, mi	Ŧ	Δi				Fi
PISO, I	[m]	[T.s ² /m]	Oi	[m]	mi "Δi	mi^Δi ⁻	mi "Δi"Hi	[T]
18	54	38.14	1.000	0.821	31.326	25.732	1691.618	18.570
17	51	41.23	0.962	0.790	32.581	25.744	1661.634	8.453
16	48	41.23	0.922	0.757	31.222	23.641	1498.659	8.101
15	45	41.23	0.880	0.723	29.793	21.527	1340.702	7.730
14	42	41.23	0.835	0.686	28.295	19.416	1188.390	7.341
13	39	41.23	0.789	0.648	26.727	17.324	1042.350	6.935
12	36	42.14	0.741	0.608	25.643	15.602	923.145	6.653
11	33	43.05	0.690	0.567	24.414	13.844	805.656	6.334
10	30	43.05	0.638	0.524	22.558	11.819	676.747	5.853
9	27	43.05	0.583	0.479	20.630	9.885	557.006	5.353
8	24	43.05	0.527	0.433	18.629	8.060	447.089	4.833
7	21	43.05	0.468	0.385	16.555	6.365	347.651	4.295
6	18	44.08	0.407	0.335	14.752	4.937	265.536	3.828
5	15	45.11	0.345	0.283	12.770	3.615	191.557	3.313
4	12	45.11	0.280	0.230	10.369	2.383	124.427	2.690
3	9	45.11	0.213	0.175	7.891	1.380	71.019	2.047
2	6	45.11	0.144	0.118	5.337	0.631	32.022	1.385
1	3	45.11	0.073	0.060	2.707	0.162	8.120	0.702
Σ =					362.199	212.068	12873.328	104.418

- Determinación de momentos en las vigas

Piso, i	Altura, H _i	Fi	V _{si}	OTM (Mom. volteo)	V _{Bi}	M _{Bi} (Eje.Col)	Vigas (bxh)	Columnas (bxh)	M _{Bi} * (Cara.Col)
	[m]	[T]	[T]	[T.m]	[T]	[T.m]	[cm]	[cm]	[T.m]
18	54	18.570	18.570	0.000	2.934	8.801	55x60	80x80	7.627
17	51	8.453	27.023	55.709	4.269	12.807	55x60	80x80	11.099
16	48	8.101	35.124	136.778	5.549	16.646	55x60	80x80	14.427
15	45	7.730	42.854	242.150	6.770	20.310	55x60	80x80	17.602
14	42	7.341	50.196	370.713	7.930	23.789	55x60	80x80	20.617
13	39	6.935	57.130	521.299	9.025	27.075	55x60	80x80	23.465
12	36	6.653	63.783	692.689	10.076	30.228	55x60	90x90	25.694
11	33	6.334	70.118	884.039	11.077	33.230	55x60	90x90	28.246
10	30	5.853	75.971	1094.393	12.001	36.004	55x60	90x90	30.604
9	27	5.353	81.323	1322.305	12.847	38.541	55x60	90x90	32.760
8	24	4.833	86.157	1566.275	13.611	40.832	55x60	90x90	34.707
7	21	4.295	90.452	1824.745	14.289	42.867	55x60	90x90	36.437
6	18	3.828	94.280	2096.101	14.894	44.681	55x60	100x100	37.234
5	15	3.313	97.593	2378.940	15.417	46.251	55x60	100x100	38.543
4	12	2.690	100.283	2671.718	15.842	47.526	55x60	100x100	39.605
3	9	2.047	102.331	2972.568	16.166	48.497	55x60	100x100	40.414
2	6	1.385	103.715	3279.560	16.384	49.153	55x60	100x100	40.961
1	3	0.702	104.418	3590.707	16.495	49.486	55x60	100x100	41.238
Σ =		104.418	1301.320	3903.959	205.575				

Mcj	203.614	[T.m]	$\sum M_{c} = V_{B} x \text{ 0,70 H}_{1} \qquad \begin{array}{c} \text{Priestley} \\ \text{Sec-5.5.1} \end{array}$	Capacidad de momento en la base de columna
т	205.575	[T]	$\sum_{i=1}^{n} V_{\theta i} = T = \left(\sum_{i=1}^{n} F_i H_i - \sum_{j=1}^{n} M_{\zeta j}\right) / L_{how} \begin{array}{l} \text{Priestley} \\ \text{Ec-5.34} \end{array}$	Fuerza de tensión en la base de columna

Asumir:								
¢°	1.35	[-]						

Piso, i	Altura, H _i	Columnas (bxh)	Vigas (bxh)	M _{Bi} (Eje.Col)	M _{Bi} * (Cara.Col)	M _x Tramo (x=3m)	V _x Tramo (Centro Tramo	V _{cc} Borde (Cara colum)
	[m]	[cm]	[cm]	[T.m]	[T.m]	[T.m]	[T]	[T]
18	54	80x80	55x60	23.144	18.401	33.912	9.554	29.148
17	51	80x80	55x60	23.144	18.401	33.912	9.554	29.148
16	48	80x80	55x60	23.144	18.401	33.912	9.554	29.148
15	45	80x80	55x60	23.144	18.401	33.912	9.554	29.148
14	42	80x80	55x60	23.789	20.617	33.912	10.705	30.299
13	39	80x80	55x60	27.075	23.465	33.912	12.184	31.777
12	36	90x90	55x60	30.228	25.694	33.912	13.603	32.820
11	33	90x90	55x60	33.230	28.246	33.912	14.954	34.170
10	30	90x90	55x60	36.004	30.604	33.912	16.202	35.419
9	27	90x90	55x60	38.541	32.760	33.912	17.343	36.560
8	24	90x90	55x60	40.832	34.707	33.912	18.374	37.591
7	21	90x90	55x60	42.867	36.437	33.912	19.290	38.507
6	18	100x100	55x60	44.681	37.234	33.912	20.107	38.947
5	15	100x100	55x60	46.251	38.543	33.912	20.813	39.653
4	12	100x100	55x60	47.526	39.605	33.912	21.387	40.227
3	9	100x100	55x60	48.497	40.414	33.912	21.824	40.664
2	6	100x100	55x60	49.153	40.961	33.912	22.119	40.959
1	3	100x100	55x60	49.486	41.238	33.912	22.269	41.109

- Amplificación dinámica de cortante en columnas

u° 1.000 [-]

Piso, i	Altura, H _i	Columnas (bxh)	V _{si}	VE _{ext} (Col. Ext)	VE _{int} (Col. Int)	Vu _{ext} (Col. Ext)	Vu _{int} (Col. Int)
	[m]	[cm]	[T]	[T]	[T]	[T]	[T]
18	54	80x80	18.570	4.377	8.754	20.676	41.351
17	51	80x80	27.023	6.369	12.739	23.366	46.731
16	48	80x80	35.124	8.279	16.558	25.943	51.887
15	45	80x80	42.854	10.101	20.202	28.403	56.806
14	42	80x80	50.196	11.831	23.662	30.739	61.478
13	39	80x80	57.130	13.466	26.931	32.946	65.891
12	36	90x90	63.783	15.034	30.068	35.063	70.125
11	33	90x90	70.118	16.527	33.054	37.078	74.156
10	30	90x90	75.971	17.906	35.813	38.941	77.881
9	27	90x90	81.323	19.168	38.336	40.644	81.288
8	24	90x90	86.157	20.307	40.615	42.182	84.364
7	21	90x90	90.452	21.320	42.639	43.549	87.097
6	18	100x100	94.280	22.222	44.444	44.766	89.533
5	15	100x100	97.593	23.003	46.006	45.821	91.642
4	12	100x100	100.283	23.637	47.274	46.677	93.354
3	9	100x100	102.331	24.120	48.239	47.328	94.657
2	6	100x100	103.715	24.446	48.892	47.769	95.538
1	3	100x100	104,418	24.611	49.223	47,992	95.985

• Momentos, cortantes y axiales de diseño en columnas (Geometría 3)

Determinación de acciones en columnas

- Amplificación dinámica de cortante en columnas

u° 1.000 [-]

Piso, i	Altura, H _i	Columnas (bxh)	V _{si}	VE _{ext} (Col. Ext)	VE _{int} (Col. Int)	Vu _{ext} (Col. Ext)	Vu _{int} (Col. Int)
	[m]	[cm]	[T]	(T)	Г	[T]	[T]
18	54	80x80	18.570	4.377	8.754	20.676	41.351
17	51	80x80	27.023	6.369	12.739	23.366	46.731
16	48	80x80	35.124	8.279	16.558	25.943	51.887
15	45	80x80	42.854	10.101	20.202	28.403	56.806
14	42	80x80	50.196	11.831	23.662	30.739	61.478
13	39	80x80	57.130	13.466	26.931	32.946	65.891
12	36	90x90	63.783	15.034	30.068	35.063	70.125
11	33	90x90	70.118	16.527	33.054	37.078	74.156
10	30	90x90	75.971	17.906	35.813	38.941	77.881
9	27	90x90	81.323	19.168	38.336	40.644	81.288
8	24	90x90	86.157	20.307	40.615	42.182	84.364
7	21	90x90	90.452	21.320	42.639	43.549	87.097
6	18	100x100	94.280	22.222	44.444	44.766	89.533
5	15	100x100	97.593	23.003	46.006	45.821	91.642
4	12	100x100	100.283	23.637	47.274	46.677	93.354
3	9	100x100	102.331	24.120	48.239	47.328	94.657
2	6	100x100	103.715	24.446	48.892	47.769	95.538
1	3	100x100	104.418	24.611	49.223	47.992	95.985

- Amplificación dinámica de momentos en columnas

				Ec. 5.46b							
Piso, i	Altura, H _i	M _{Bi} (Eje.Col)	VE _{int} (Col. Int)	M _{C1f} (Col. Int)	M _{C1f} (Col. Ext)	ω _f	M _{C1} ,des Col. Int (Eje viga)	M _{C1} ,des Col. Ext (Eje viga)	Vigas (bxh)	M _{uc} Col. Int (Cara viga)	M _{uc} Col. Ext (Cara viga)
	[m]	[T.m]	[T]	[T.m]	[T.m]		[T.m]	[T.m]	[cm]	[T.m]	[T.m]
18	54	8.801	8.754	24.892	19.679	1.000	33.604	26.566	55x60	27.717	21.912
17	51	12.807	12.739	18.112	14.318	1.033	25.266	19.974	55x60	19.379	15.320
17				18.112	14.318	1.033	25.266	19.974		19.349	15.297
16	48	16.646	16.558	23.541	18.611	1.067	33.899	26.800	55x60	27.983	22.122
16				23.541	18.611	1.067	33.899	26.800		26.244	20.748
15	45	20.310	20.202	28.722	22.707	1.100	42.652	33.719	55x60	34.997	27.668
15				28.722	22.707	1.100	42.652	33.719		33.240	26.278
14	42	23.789	23.662	33.642	26.597	1.133	51.473	40.693	55x60	42.060	33.252
14				33.642	26.597	1.133	51.473	40.693		40.381	31.924
13	39	27.075	26.931	38.290	30.271	1.150	59.445	46.996	55x60	48.354	38.227
13				38.290	30.271	1.150	59.445	46.996		46.864	37.049
12	36	30.228	30.068	42.749	33.796	1.150	66.368	52.469	55x60	53.787	42.522
12				42.749	33.796	1.150	66.368	52.469		52.436	41.454
11	33	33.230	33.054	46.995	37.153	1.150	72.959	57.680	55x60	59.027	46.665
11				46.995	37.153	1.150	72.959	57.680		57.759	45.662
10	30	36.004	35.813	50.918	40.254	1.150	79.050	62.494	55x60	63.849	50.477
10				50.918	40.254	1.150	79.050	62.494		62.683	49.555
9	27	38.541	38.336	54.505	43.090	1.150	84.619	66.897	55x60	68.252	53.958
9				54.505	43.090	1.150	84.619	66.897		67.192	53.120
8	24	40.832	40.615	57.745	45.651	1.150	89.648	70.873	55x60	72.222	57.096
8				57.745	45.651	1.150	89.648	70.873		71.272	56.345
7	21	42.867	42.639	60.623	47.927	1.150	94.118	74.407	55x60	75.741	59.879
7				60.623	47.927	1.150	94.118	74.407		74.896	59.210
6	18	44.681	44.444	63.189	49.955	1.150	98.100	77.555	55x60	78.879	62.359
6				63.189	49.955	1.150	98.100	77.555		78.136	61.772
5	15	46.251	46.006	65.409	51.711	1.150	101.548	80.281	55x60	81.583	64.497
5				65.409	51.711	1.150	101.548	80.281		80.959	64.003
4	12	47.526	47.274	67.213	53.136	1.150	104.348	82.494	55x60	83.758	66.216
4				67.213	53.136	1.150	104.348	82.494		83.265	65.827
3	9	48.497	48.239	68.585	54.221	1.150	106.478	84.178	55x60	85.395	67.511
3				68.585	54.221	1.150	106.478	84.178		85.038	67.229
2	6	49.153	48.892	69.513	54.955	1.150	107.919	85.317	55x60	86.479	68.368
2				69.513	54.955	1.150	107.919	85.317		86.262	68.196
1	3	49.486	49.223	69.984	55.327	1.150	108.649	85.895	55x60	86.993	68.774
1				69.984	55.327	1.150	108.649	85.895		89.036	72.580
0	0			67.871	33.936	1.000	67.871	33.936			

- Cargas axiales en columnas exteriores

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	M _{Bi} (Eje.Col)	Carga sísmica Piso, i	Carga sísmica, Acum	Reducción de Carga Sísmica	Carga sísmica red, Acum
	[m]	[T]	[T]	[T]	(T)	[T.m]	[T.m]	[T.m]	[-]	[T.m]
18	54	20.785	20.785	4.50	4.50	8.801	3.960	3.960	1.00	3.960
17	51	22.473	43.258	4.50	9.00	12.807	5.763	9.723	0.95	9.237
16	48	22.473	65.730	4.50	13.50	16.646	7.491	17.214	0.93	16.009
15	45	22.473	88.203	4.50	18.00	20.310	9.139	26.353	0.91	23.982
14	42	22.473	110.676	4.50	22.50	23.789	10.705	37.058	0.89	32.797
13	39	22.473	133.149	4.50	27.00	27.075	12.184	49.242	0.86	42.348
12	36	22.969	156.118	4.50	31.50	30.228	13.603	62.845	0.82	51.219
11	33	23.465	179.582	4.50	36.00	33.230	14.954	77.799	0.77	59.905
10	30	23.465	203.047	4.50	40.50	36.004	16.202	94.000	0.75	70.030
9	27	23.465	226.512	4.50	45.00	38.541	17.343	111.344	0.72	80.168
8	24	23.465	249.977	4.50	49.50	40.832	18.374	129.718	0.70	90.154
7	21	23.465	273.442	4.50	54.00	42.867	19.290	149.008	0.67	99.836
6	18	24.025	297.466	4.50	58.50	44.681	20.107	169.115	0.65	109.925
5	15	24.585	322.051	4.50	63.00	46.251	20.813	189.928	0.63	119.655
4	12	24.585	346.636	4.50	67.50	47.526	21.387	211.315	0.61	127.845
3	9	24.585	371.221	4.50	72.00	48.497	21.824	233.138	0.58	135.220
2	6	24.585	395.806	4.50	76.50	49.153	22.119	255.257	0.56	142.944
1	3	24.585	420.390	4.50	81.00	49.486	22.269	277.526	0.54	149.864
0	0	3.087	423.477		81.00			277.526		149.864
Σ =		423.477								

Piso, i	Altura, H _i	Comb U1 (CM+CV)	Comb U2 (CM+CV+CS)	Comb U3 (CM+CV-CS)
	[m]	[T]	[T]	[T]
18	54	25.285	29.245	21.325
17	51	52.258	61.495	43.020
16	48	79.230	95.239	63.221
15	45	106.203	130.185	82.222
14	42	133.176	165.973	100.379
13	39	160.149	202.497	117.801
12	36	187.618	238.836	136.399
11	33	215.582	275.487	155.678
10	30	243.547	313.578	173.517
9	27	271.512	351.680	191.344
8	24	299.477	389.631	209.323
7	21	327.442	427.277	227.606
6	18	355.966	465.891	246.042
5	15	385.051	504.706	265.397
4	12	414.136	541.981	286.291
3	9	443.221	578.441	308.001
2	6	472.306	615.250	329.362
1	3	501.390	651.254	351.526
0	0	504.477	654.341	354.613

- Cargas axiales en columnas interiores

Piso, i	Altura, H _i	Axial por CM, i	Axial por CM, Acum.	Axial por CV, i	Axial por CV, Acum	Comb U1 (CM+CV)
	[m]	ГЛ	[1]	[T]	гл	ГЛ
18	54	41.570	41.570	9.00	9.00	50.570
17	51	44.946	86.515	9.00	18.00	104.515
16	48	44.946	131.461	9.00	27.00	158.461
15	45	44.946	176.406	9.00	36.00	212.406
14	42	44.946	221.352	9.00	45.00	266.352
13	39	44.946	266.298	9.00	54.00	320.298
12	36	45.938	312.235	9.00	63.00	375.235
11	33	46.930	359.165	9.00	72.00	431.165
10	30	46.930	406.094	9.00	81.00	487.094
9	27	46.930	453.024	9.00	90.00	543.024
8	24	46.930	499.954	9.00	99.00	598.954
7	21	46.930	546.883	9.00	108.00	654.883
6	18	48.050	594.933	9.00	117.00	711.933
5	15	49.170	644.102	9.00	126.00	770.102
4	12	49.170	693.272	9.00	135.00	828.272
3	9	49.170	742.442	9.00	144.00	886.442
2	6	49.170	791.611	9.00	153.00	944.611
1	3	49.170	840.781	9.00	162.00	1002.781
0	0	3.087	843.868		162.00	1005.868
Σ =		843.868				

ANEXO XIII. Diseño de vigas (DDBD)

• Diseño de viga V40x60 Eje 2, Piso 1 (Geometría 1):

DISEÑO DE VIGAS

VIGA								
40	х	60						
r	6	cm						
d	54	cm						

- Refuerzo longitudinal en los extremos de vigas

Piso, i	Altura, H _i	Vigas (bxh)	M _{Bi} * Diseño (Cara.Col)	M _{Gi} (1.2CM+1.6CV) (Cara.Col)	к	ρ	As _{calculado}
	[m]	[cm]	[T.m]	[T.m]	[-]	[-]	[cm2]
6	18	40x60	10.537	18.401	0.04816	0.00391	8.44237
5	15	40x60	17.320	18.401	0.04816	0.00391	8.44237
4	12	40x60	23.032	18.401	0.05425	0.00442	9.54802
3	9	40x60	27.530	18.401	0.06484	0.00532	11.49291
2	6	40x60	30.672	18.401	0.07224	0.00596	12.86831
1	3	40x60	32.314	18.401	0.07611	0.00629	13.59304

- Refuerzo longitudinal en centros de tramo de vigas

Piso, i	Altura, H _i	Vigas (bxh)	M _x Tramo (x=3m)	к	ρ	As _{calculado}
	[m]	[cm]	[T.m]	[-]	[-]	[cm2]
6	18	40x60	33.912	0.08875	0.00740	15.98981
5	15	40x60	33.912	0.08875	0.00740	15.98981
4	12	40x60	33.912	0.08875	0.00740	15.98981
3	9	40x60	33.912	0.08875	0.00740	15.98981
2	6	40x60	33.912	0.08875	0.00740	15.98981
1	3	40x60	33.912	0.08875	0.00740	15.98981

- Refuerzo longitudinal colocado en viga Piso 1

Piso, i	Altura, H _i	Vigas (bxh)	As _{colocado} (Ex	tremos viga)	As _{colocado} (C	centro viga)
	[m]	[cm]	[cm2]		[cm2]	
1	3 40x60	40,460	As. Superior	5¢20mm	As. Superior	5¢20mm
		As. Inferior	5¢20mm	As. Inferior	5¢20mm	

- Refuerzo trasnversal viga piso 1

фLong	20	[mm]
¢_Estribo	10	[mm]
¢_corte	0.75	[-]

Vc	21.841	[T]
4Vc	87.366	[T]

Piso, i	V _{cc} Borde (Cara colum)	Vsismo	Vcv
	[T]	[T]	[T]
6	29.445	9.286	20.159
5	29.445	9.286	20.159
4	29.445	9.286	20.159
3	30.450	10.292	20.159
2	31.625	11.466	20.159
1	32.239	12.080	20.159

16.119	[T]			
21.841	[T]			
21.144	[T]			
Revisión				
ОК				
	16.119 21.841 21.144 Revisión OK			

Av/o	0.002	[om2/om]
AV/S	0.093	[cmz/cm]

Espacimiento			
Zona de Confinamiento Lo			
Lo	1.20	m	
S _{Lo}	12.00	cm	
s _{Lo} asumido	12.00	cm	
Fuera de Lo			
S	24.00	cm	
s asumido	24.00	cm	

Av	1.119	[cm2]
# ramales	1.42	1Estr=2ramles
# ramales asu	2	-
# Estribos	1	-
# Ganchos	0	-

• Diseño de viga V55x60 Eje 2, Piso 1 (Geometría 3):

DISEÑO DE VIGAS

	VIGA	
55	х	60
r	6	cm
d	54	cm

- Refuerzo longitudinal en los extremos de vigas

Piso, i	Altura, H _i	Vigas (bxh)	M _{Bi} * Diseño (Cara.Col)	M _{Gi} (1.2CM+1.6CV) (Cara.Col)	к	ρ	As _{calculado}
	[m]	[cm]	[T.m]	[T.m]	[-]	[-]	[cm2]
18	54	55x60	10.297	18.401	0.03502	0.00282	8.37199
17	51	55x60	14.984	18.401	0.03502	0.00282	8.37199
16	48	55x60	19.476	18.401	0.03336	0.00268	7.96660
15	45	55x60	23.762	18.401	0.04070	0.00329	9.76510
14	42	55x60	27.833	18.401	0.04768	0.00387	11.48917
13	39	55x60	31.678	18.401	0.05426	0.00442	13.13244
12	36	55x60	34.687	18.401	0.05942	0.00486	14.42864
11	33	55x60	38.132	18.401	0.06532	0.00536	15.92387
10	30	55x60	41.315	18.401	0.07077	0.00583	17.31642
9	27	55x60	44.226	18.401	0.07576	0.00626	18.59938
8	24	55x60	46.854	18.401	0.08026	0.00666	19.76582
7	21	55x60	49.190	18.401	0.08426	0.00701	20.80883
6	18	55x60	50.266	18.401	0.08610	0.00717	21.29143
5	15	55x60	52.033	18.401	0.08913	0.00744	22.08650
4	12	55x60	53.467	18.401	0.09159	0.00765	22.73469
3	9	55x60	54.559	18.401	0.09346	0.00782	23.22960
2	6	55x60	55.297	18.401	0.09472	0.00793	23.56511
1	3	55x60	55.672	18.401	0.09536	0.00799	23.73551

-	Refuerzo	longitudinal	en centros	de tramo	de vigas
		.ongnaama	011 00110 00	ao namo	ao ngao

Piso, i	Altura, H _i	Vigas (bxh)	M _x Tramo (x=3m)	к	ρ	As _{calculado}
	[m]	[cm]	[T.m]	[-]	[-]	[cm2]
18	54	55x60	33.912	0.06454	0.00530	15.72705
17	51	55x60	33.912	0.06454	0.00530	15.72705
16	48	55x60	33.912	0.06454	0.00530	15.72705
15	45	55x60	33.912	0.06454	0.00530	15.72705
14	42	55x60	33.912	0.06454	0.00530	15.72705
13	39	55x60	33.912	0.06454	0.00530	15.72705
12	36	55x60	33.912	0.06454	0.00530	15.72705
11	33	55x60	33.912	0.06454	0.00530	15.72705
10	30	55x60	33.912	0.06454	0.00530	15.72705
9	27	55x60	33.912	0.06454	0.00530	15.72705
8	24	55x60	33.912	0.06454	0.00530	15.72705
7	21	55x60	33.912	0.06454	0.00530	15.72705
6	18	55x60	33.912	0.06454	0.00530	15.72705
5	15	55x60	33.912	0.06454	0.00530	15.72705
4	12	55x60	33.912	0.06454	0.00530	15.72705
3	9	55x60	33.912	0.06454	0.00530	15.72705
2	6	55x60	33.912	0.06454	0.00530	15.72705
1	3	55x60	33.912	0.06454	0.00530	15.72705

- Refuerzo longitudinal colocado en vigas

Piso, i	Altura, H _i	Vigas (bxh)	As _{colocado} (Extremos viga)		As _{colocado} (C	centro viga)
	[m]	[cm]	[cm2]		[cm2]	
1	1 3 55x60	As. Superior	8¢20mm	As. Superior	5¢20mm	
1		55X60	As. Inferior	8¢20mm	As. Inferior	5¢20mm

- Refuerzo trasnversal viga piso 1

фLong	20	[mm]
¢_Estribo	10	[mm]
¢_corte	0.75	[-]

Vc	30.032	[T]
4Vc	120.128	[T]

Piso, i	V _{cc} Borde (Cara colum)	Vsismo	Vcv
	[T]	[T]	[T]
18	29.148	9.554	19.594
17	29.148	9.554	19.594
16	29.148	9.554	19.594
15	29.148	9.554	19.594
14	30.299	10.705	19.594
13	31.777	12.184	19.594
12	32.820	13.603	19.217
11	34.170	14.954	19.217
10	35.419	16.202	19.217
9	36.560	17.343	19.217
8	37.591	18.374	19.217
7	38.507	19.290	19.217
6	38.947	20.107	18.840
5	39.653	20.813	18.840
4	40.227	21.387	18.840
3	40.664	21.824	18.840
2	40.959	22.119	18.840
1	41.109	22.269	18.840

1/2*Vu	20.554	[T]		
Vc	0.000	[T]		
Vs	54.811	[T]		
Revisión				
ок				

Av/s 0.242 [cm2/cm]

Espacimiento						
Zona d	Zona de Confinamiento Lo					
Lo	1.20	m				
SLo	12.00	cm				
s _{Lo} asumido 12.00		cm				
	Fuera de Lo					
s	24.00	cm				
s asumido	24.00	cm				

Av	2.900	[cm2]
# ramales	3.69	1Es tr=2ramles
# ramales asu	4	-
# Estribos	2	-
# Ganchos	0	-

ANEXO XIV. Diseño de columnas (DDBD)

• Diseño de columna interna C65x65 "2B" PB-PISO 6 (Geometría 1):

DISEÑO DE COLUMNAS

- Refuerzo longitudinal y transversal de columna interior

COLUMNA INTERIOR							
P0-P6	P0-P6 65 x 65						

Piso, i	Altura, H _i	Columnas (bxh)	MUC Col. Int (Cara viga)	Pu, Comb U1 (CM+CV)	As _{calculado}	ρ	As refuerzo long.	Vu _{int} (Col. Int)	As refuerzo Trans.
	[m]	[cm]	[T.m]	[T]	[cm2]	[-]	[-]	[Т]	[-]
6	18	65x65	27.060	47.344	50.2654825	0.01189716	16¢20mm	30.920	2Ey1Gø10mm@10cm
5	15	65x65	23.853	96.816	50.2654825	0.01189716	16¢20mm	39.343	2Ey1Gø10mm@10cm
4	12	65x65	34.786	146.288	50.2654825	0.01189716	16¢20mm	46.436	2Ey1Gq10mm@10cm
3	9	65x65	40.991	195.760	50.2654825	0.01189716	16¢20mm	52.022	2Ey1Gø10mm@10cm
2	6	65x65	45.328	245.232	50.2654825	0.01189716	16¢20mm	55.923	2Ey1Gq10mm@10cm
1	3	65x65	47.836	294.704	50.2654825	0.01189716	16¢20mm	57.962	2Ey1Gq10mm@10cm
0	0			295.901					

			DISEÑO POR CORTE
			I.
Corte	por capacida	d	
Vu_cap	57.96	т	$Vu_{cap} = VPR_{Diseño}$
Capacidad a corte del Hormigón			
Vc	34.01	Т	$V_c = 0.53 * \sqrt{f'c * b_w * d}$
Corte	en el refuerz	0	$V_{\prime\prime}$
Vs	43.27	Т	$V_s = \frac{4}{\phi} - V_c$
	Revisión		$V \leq 4 * V$
	ОК		

Espaciamiento

Zona de (Zona de Confinamiento Lo					
Lo	0.65	m				
S	10.00	cm				
s asumido	10.00	cm				
Zona de Central L1						
L1	1.10	m				
s	12.00	cm				
s asumido	10.00	cm				

Ace	ero Refuerzo	por corte	
Refuerzo m	ínimo para c	ortante	$\int \int \frac{1}{\sqrt{2}} b_w s 1$
Av min 1	0.52	cm2	$A_{v,\min} \ge 0.2\sqrt{J_c} - \frac{f_{yt}}{f_{yt}}$ ACI 10.6.2.2
Av min 2	0.54	cm2	$A_{v,\min} \ge 3.5 \frac{b_w s}{f_{yt}}$
			$V_s * s$
Av	1.75	cm2	$A_v = \frac{1}{fy * d}$

~ <u>6</u> -	+223.00	cmz
Ac =	3249.00	cm2

Acero Refuerzo por confinamiento

Ash1	3.42	cm2	$Ash1 = 0.3 * \frac{s * h'' * f'c}{c} \left(\frac{Ag}{t} - 1\right)$
Ash2	3.42	cm2	fy (Ac)
			$Ash2 = 0.09 * \frac{s * h'' * f'c}{c}$
Pu	294.70	Т	fy
0.3*fc*Ag	354.9	Т	
kf	1		$Ash3 = 0.2 * s * h'' * kf * kn * \frac{Pu}{2}$
kn	1.14		fy * Ac
Ash3	2.81	cm2	$kf = \frac{f'c}{1750} + 0.6 \ge 1$
			#norillas
Ash	3.42	cm2	$kn = \frac{\#varillas}{\#varillas - 2}$

Aestribo	3.42	cm2
# ramales	4.36	1Estr=2ramles
# ramales asum	5	-
# Estribos	2	-
# Ganchos	1	-

2	Estribos	ф	10	mm	@	10	cm
1	Ganchos	ф	10	mm	@	10	cm

Diseño de columna exterior C60x60 "2A" PB-PISO 6 (Geometría 1): •

DISEÑO DE COLUMNAS

- Refuerzo longitudinal y transversal de columna exterior

	COLUMNA	EXTERIOR								
P0-P6	60	х	60							
Piso, i	Piso, i Altura, H _i Columnas MUC Col. (bxh) Ext (Cara viga)		Pu, Comb U2 (CM+CV+CS)	Pu, Comb 12 U3 (CM+CV- CV+CS) CS)		ρ	As refuerzo long.	Vu _{ext} (Col. Ext)	As refuerzo Trans.	
	[m]	[cm]	[T.m]	[T]	[T]	[cm2]	[-]	[-]	[T]	[-]
6	18	60x60	21.393	27.611	19.733	40.7150408	0.01130973	16ф18mm	15.460	2Ey1Gq10mm@10cm
5	15	60x60	18.857	58.405	38.411	40.7150408	0.01130973	16ф18mm	19.671	2Ey1Gø10mm@10cm
4	12	60x60	27.501	91.122	55.166	40.7150408	0.01130973	16ф18mm	23.218	2Ey1Gq10mm@10cm
3	9	60x60	32.406	125.143	70.617	40.7150408	0.01130973	16ф18mm	26.011	2Ey1Gq10mm@10cm
2	6	60x60	35.835	159.727	85.505	40.7150408	0.01130973	16ф18mm	27.961	2Ey1Gq10mm@10cm
1	3	60x60	39.141	194.399	100.305	40.7150408	0.01130973	16ф18mm	28.981	2Ey1Gø10mm@10cm
0	0			195.596	101.502					

DISEÑO POR CORTE

Corte	por capacida	d	
Vu_cap	28.98	т	$Vu_{cap} = VPR_{Diseño}$
Capacidad a	corte del Ho	rmigón	
Vc	28.79	т	$V_c = 0.53 * \sqrt{f'c * b_w * d}$
Corte	en el refuerz	0	V_{rr}
Vs	9.85	т	$V_s = \frac{-u}{\phi} - V_c$
	Revisión		$V \leq 4 * V$
	OK		

Espaciamiento

ОК

Zona de	Confinamien	to Lo	$l_0 > (\frac{hn}{h}, h_0, h_0, 45 \text{ cm})$
C	0.60	m	$L_0 \ge (6, bc, bc, tc, 45cm)$
	10.00	cm	$s = min(\frac{b}{a}, \frac{h}{a}, 6 * \phi, 10 cm)$
asumido	10.00	cm	$5 = mm(4, 4, 5 * \phi_{col}, 10 cm)$
Zona	a de Central L	1	
L1	1.20	m	$s = min(\frac{d}{d} \cdot 6 * 0 \cdot 15 cm)$
S	10.80	cm	$3 = mm(_2, 0 * \phi_{col}, 15 cm)$
s asumido	10.00	cm	

Ace	ero Refuerzo	por corte	
Refuerzo m	ínimo para c	ortante	$\int \int \frac{1}{2} \int $
Av min 1	0.48	cm2	$A_{v,\min} \ge 0.2\sqrt{f_c} - \frac{\pi}{f_{yt}}$ ACI 10.6.2.2
Av min 2	0.50	cm2	$A_{v,\min} \ge 3.5 \frac{b_w s}{f_{yt}}$
	-	-	$V_s * s$
Av	0.50	cm2	$A_v = \frac{1}{fy * d}$

Ag =	3600.00	cm2
Ac =	2704.00	cm2

Acero Refuerzo por confinamiento

Aestribo	3.45	cm2
# ramales	4.39	1Estr=2ramles
# ramales asum	5	-
# Estribos	2	-
# Ganchos	1	-

2	Estribos	ф	10	mm	@	10	cm
1	Ganchos	ф	10	mm	8	10	cm

• Diseño de columna interna C100x100 "2B" PB-PISO 6 (Geometría 3):

DISEÑO DE COLUMNAS

- Refuerzo longitudinal y transversal de columna interior

COLUMNA INTERIOR						
P12-P18	80	х	80			
P6-P12	90	х	90			
P0-P6	100	х	100			

Piso, i	Altura, H _i	Columnas (bxh)	MUC Col. Int (Cara viga)	Pu, Comb U1 (CM+CV)	Ascalculado	ρ	As refuerzo long.	Vu _{int} (Col. Int)	As refuerzo Trans.
	[m]	[cm]	[T.m]	[T]	[-]	[-]	[-]	[T]	[-]
18	54	80x80	27.717	50.570	60.8212338	0.00950332	16¢22mm	41.351	2Eø12mm@10cm
17	51	80x80	19.379	104.515	60.8212338	0.00950332	16¢22mm	46.731	2Eø12mm@10cm
16	48	80x80	27.983	158.461	60.8212338	0.00950332	16¢22mm	51.887	2Eø12mm@10cm
15	45	80x80	34.997	212.406	60.8212338	0.00950332	16¢22mm	56.806	2Eø12mm@10cm
14	42	80x80	42.060	266.352	60.8212338	0.00950332	16¢22mm	61.478	2Eø12mm@10cm
13	39	80x80	48.354	320.298	60.8212338	0.00950332	16¢22mm	65.891	2Eø12mm@10cm
12	36	90x90	53.787	375.235	78.5398163	0.00969627	16¢25mm	70.125	2Ey1Gq12mm@10cm
11	33	90x90	59.027	431.165	78.5398163	0.00969627	16¢25mm	74.156	2Ey1Gq12mm@10cm
10	30	90x90	63.849	487.094	78.5398163	0.00969627	16¢25mm	77.881	2Ey1Gq12mm@10cm
9	27	90x90	68.252	543.024	78.5398163	0.00969627	16¢25mm	81.288	2Ey1Gq12mm@10cm
8	24	90x90	72.222	598.954	78.5398163	0.00969627	16¢25mm	84.364	2Ey1Gq12mm@10cm
7	21	90x90	75.741	654.883	78.5398163	0.00969627	16¢25mm	87.097	2Ey1Gq12mm@10cm
6	18	100x100	78.879	711.933	98.5203456	0.00985203	16¢28mm	89.533	2Ey1Gq14mm@10cm
5	15	100x100	81.583	770.102	98.5203456	0.00985203	16¢28mm	91.642	2Ey1Gq14mm@10cm
4	12	100x100	83.758	828.272	98.5203456	0.00985203	16¢28mm	93.354	2Ey1Gq14mm@10cm
3	9	100x100	85.395	886.442	98.5203456	0.00985203	16¢28mm	94.657	2Ey1Gq14mm@10cm
2	6	100x100	86.479	944.611	98.5203456	0.00985203	16¢28mm	95.538	2Ey1Gø14mm@10cm
1	3	100x100	89.036	1002.781	98.5203456	0.00985203	16¢28mm	95.985	2Ey1Gø14mm@10cm
0	0			1005.868					

DISEÑO POR CORTE

Corte	por capacida	d				
Vu_cap	95.98	т	$Vu_{cap} = VPR_{Diseño}$			
Capacidad a	corte del Ho	rmigón				
Vc	82.66	т	$V_c = 0.53 * \sqrt{f'c} * b_w * d$			
Corte	Corte en el refuerzo		V_{ii}			
Vs	45.32	т	$V_s = \frac{\cdot u}{\phi} - V_c$			

Revisión	$V_s \leq 4 * V_c$
ОК	

Espaciamiento

Confinamient	to Lo	$L_0 > (\frac{hn}{h}, h_0, h_0, 45 \text{ cm})$	
1.00	m	$L0 \ge \left(\frac{1}{6}, bc, hc, 43cm\right)$	
10.00	cm	$s = min(\frac{b}{a}, \frac{h}{a}, 6 * \phi, 10 cm)$	
10.00	cm	$4, 4, 5 + \varphi_{col}, 100m)$	
de Central L	1		
0.40	m	$s = min(\frac{d}{d} \cdot 6 * 0 \cdot 15cm)$	
15.00	cm	$o = mm(2, 0 * \theta_{col}, 10 m)$	
10.00	cm		
	Confinamient 1.00 10.00 10.00 de Central L 0.40 15.00 10.00	Confinamiento Lo 1.00 m 10.00 cm 10.00 cm 0.00 cm de Central L1 0.40 15.00 cm 10.00 cm	

Ace	ero Refuerzo	por corte	
Refuerzo m	ínimo para c	ortante	$\int \int \frac{d}{dt} b_w s$
Av min 1	0.80	cm2	$A_{v,\min} \ge 0.2 \sqrt{f_c} - \frac{\pi}{f_{yt}}$ ACI 10.6.2.2
Av min 2	0.83	cm2	$A_{v,\min} \ge 3.5 \frac{b_w s}{f_{yt}}$
			$V_s * s$
Av	1.16	cm2	$A_v = \frac{s}{fy * d}$

DISEÑO POR CONFINAMIENTO

Ag =	10000.00	cm2
Ac =	8464.00	cm2

Acero Refuerzo por confinamiento

Ash1	3.34	cm2	$Ash1 = 0.3 * \frac{s * h'' * f'c}{c} \left(\frac{Ag}{t} - 1\right)$
Ash2	5.52	cm2	fy (Ac)
			$Ash2 = 0.09 * \frac{s * h^{-1} * f^{+}c}{c}$
Pu	1002.78	Т	fy
0.3*fc*Ag	840	Т	
kf	1		$Ash3 = 0.2 * s * h'' * kf * kn * \frac{Pu}{c}$
kn	1.14		fy * Ac
Ash3	5.93	cm2	$kf = rac{f'c}{1750} + 0.6 \ge 1$
			#varillas
Ash	5.93	cm2	$kn = \frac{\#varitias}{\#varillas - 2}$

Aestribo	5.93	cm2
# ramales	3.85	1Estr=2ramles
# ramales asum	4	-
# Estribos	2	-
# Ganchos	1	-

2	Estribos	ф	14	mm	@	10	cm
1	Ganchos	ф	14	mm	0	10	cm

• Diseño de columna exterior C90x90 "2A" PB-PISO 6 (Geometría 3):

DISEÑO DE COLUMNAS

- Refuerzo longitudinal y transversal de columna exterior

COLUMNA EXTERIOR							
P12-P18 70 x 70							
P6-P12	80	х	80				
P0-P6	90	х	90				

Piso, i	Altura, H _i	Columnas (bxh)	MUC Col. Ext (Cara viga)	Pu, Comb U2 (CM+CV+CS)	Pu, Comb U3 (CM+CV- CS)	As _{calculado}	ρ	As refuerzo long.	Vu _{ext} (Col. Ext)	As refuerzo Trans.
	[m]	[cm]	[T.m]	[T]	[T]	[-]	[-]	[-]	[T]	[-]
18	54	70x70	21.912	29.245	21.325	50.2654825	0.01025826	16¢20mm	20.676	2Eø12mm@10cm
17	51	70x70	15.320	61.495	43.020	50.2654825	0.01025826	16¢20mm	23.366	2Eø12mm@10cm
16	48	70x70	22.122	95.239	63.221	50.2654825	0.01025826	16¢20mm	25.943	2Eø12mm@10cm
15	45	70x70	27.668	130.185	82.222	50.2654825	0.01025826	16¢20mm	28.403	2Eø12mm@10cm
14	42	70x70	33.252	165.973	100.379	50.2654825	0.01025826	16¢20mm	30.739	2Eø12mm@10cm
13	39	70x70	38.227	202.497	117.801	50.2654825	0.01025826	16¢20mm	32.946	2Eø12mm@10cm
12	36	80x80	42.522	238.836	136.399	60.8212338	0.00950332	16¢22mm	35.063	2Eø12mm@10cm
11	33	80x80	46.665	275.487	155.678	60.8212338	0.00950332	16¢22mm	37.078	2Eø12mm@10cm
10	30	80x80	50.477	313.578	173.517	60.8212338	0.00950332	16¢22mm	38.941	2Eø12mm@10cm
9	27	80x80	53.958	351.680	191.344	60.8212338	0.00950332	16¢22mm	40.644	2Eø12mm@10cm
8	24	80x80	57.096	389.631	209.323	60.8212338	0.00950332	16¢22mm	42.182	2Eø12mm@10cm
7	21	80x80	59.879	427.277	227.606	60.8212338	0.00950332	16¢22mm	43.549	2Eø12mm@10cm
6	18	90x90	62.359	465.891	246.042	78.5398163	0.00969627	16¢25mm	44.766	2Ey1Gø12mm@10cm
5	15	90x90	64.497	504.706	265.397	78.5398163	0.00969627	16¢25mm	45.821	2Ey1Gø12mm@10cm
4	12	90x90	66.216	541.981	286.291	78.5398163	0.00969627	16¢25mm	46.677	2Ey1Gø12mm@10cm
3	9	90x90	67.511	578.441	308.001	78.5398163	0.00969627	16¢25mm	47.328	2Ey1Gø12mm@10cm
2	6	90x90	68.368	615.250	329.362	78.5398163	0.00969627	16¢25mm	47.769	2Ey1Gø12mm@10cm
1	3	90x90	72.580	651.254	351.526	78.5398163	0.00969627	16¢25mm	47.992	2Ey1Gq12mm@10cm
0	0			654.341	354.613					

DISEÑO POR CORTE

Corte	por capacida	d		
Vu_cap	47.99	Т	$Vu_{cap} = VPR_{Diseño}$	
Capacidad a corte del Hormigón		rmigón		
Vc	66.69	Т	$V_c = 0.53 * \sqrt{f'c * b_w * d}$	
Corte	Corte en el refuerzo		V_{ai}	
Vs	-2.70	Т	$V_s = -\frac{u}{\phi} - V_c$	
Revisión OK			$V_s \leq 4 * V_c$	

Espaciamiento

Zona de	Confinamien	to Lo	$L_0 > (\frac{hn}{m} \cdot hc; hc; 45cm)$		
Lo	0.90 m		$Lo \geq \left(\frac{6}{6}, bc, nc, 45cm\right)$		
S	10.00	cm	$s=min(\frac{b}{4},\frac{h}{4},6*\phi_{col},10cm)$		
s asumido	10.00	cm			
Zona de Central L1					
L1	0.60	m	$s = min(\frac{d}{d} \cdot 6 * 0 + 15 cm)$		
S	15.00	cm	$s = mm(2, 0 * U_{col}, 15 cm)$		
s asumido	10.00	cm			

Ace	ero Refuerzo	por corte	
Refuerzo m	ínimo para co	ortante	$b_w s$
Av min 1	0.72	cm2	$A_{v,\min} \ge 0.2\sqrt{f_c} - \frac{\pi}{f_{yt}}$ ACI 10.6.2.2
Av min 2	0.75	cm2	$A_{v,\min} \ge 3.5 \frac{b_w s}{f_{yt}}$
			$V_s * s$
Av	0.75	cm2	$A_v = \frac{1}{fy * d}$

DISEÑO POR CONFINAMIENTO

Ag =	8100.00	cm2
Ac =	6724.00	cm2

Acero Refuerzo por confinamiento

Ash1	3.36	cm2
Ash2	4.92	cm2
Pu	663.32	Т

Pu	663.32	Т
0.3*fc*Ag	680.4	Т
kf	1	
kn	1.14	
Ash3	4.40	cm2
Ash	4.92	cm2

$$Ash1 = 0.3 * \frac{s * h'' * f'c}{fy} \left(\frac{Ag}{Ac} - 1\right)$$
$$Ash2 = 0.09 * \frac{s * h'' * f'c}{fy}$$
$$Ash3 = 0.2 * s * h'' * kf * kn * \frac{Pu}{fy * Ac}$$
$$kf = \frac{f'c}{1750} + 0.6 \ge 1$$
$$\#varillas$$

$kn = \frac{\pi vartur}{\# varillas - 2}$

Aestribo	4.92	cm2
# ramales	4.35	1Estr=2ramles
# ramales asum	5	-
# Estribos	2	-
# Ganchos	1	-

2	Estribos	ф	12	mm	0	10	cm
1	Ganchos	ф	12	mm	0	10	cm