ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

APROXIMACIÓN NUMÉRICA DEL COEFICIENTE DE ARRASTRE SOBRE UN BANCO DE TUBOS DE ARREGLO RECTANGULAR DENTRO DE UN INTERCAMBIADOR DE CALOR

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

DENNIS WLADIMIR TOMALO GUACHAMIN

dennis.tomalo@epn.edu.ec

DIRECTOR: RICARDO PATRICIO ÁLVAREZ BRICEÑO, PH.D.

ricardo.alvarez@epn.edu.ec

DMQ, febrero 2023

CERTIFICACIONES

Yo, Dennis Wladimir Tomalo Guachamin declaro que el trabajo de integración curricular aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

DENNIS TOMALO

Certifico que el presente trabajo de integración curricular fue desarrollado por Dennis Wladimir Tomalo Guachamin, bajo mi supervisión.

AREZ BRICEÑO, P XDO ÁL

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

DENNIS TOMALO

RICARDO ÁLVAREZ BRICEÑO, PH.D.

DEDICATORIA

Este trabajo el cual representa la culminación de una gran etapa en el ámbito educativo y personal se la dedico a todas las personas que fuera de mi familia aportaron de una u otra manera, con buenas y malas experiencias a ser la persona que hoy está escribiendo esto.

A mi núcleo familiar por día a día demostrarme su apoyo, por nunca dejar de creer en mi y aportar en cada cosa que estuvo a su alcance de todo corazón y sin pedir nada a cambio.

A mis abuelos, Pedro Guachamin y Aida Armas †, que desde este mundo y desde el cielo siempre me han apoyado y me han brindado sus bendiciones, gracias por siempre haberme recordado lo orgullosos que están de su nieto

A mis tíos y primos por estar siempre pendientes y desearme sus mejores deseos.

AGRADECIMIENTO

Agradezco a Dios por haberme dado las fuerzas para luchar día a día hasta lograr este objetivo, Salmo 126:5-6.

A mi familia por todo lo que han hecho por mí.

Al Ingeniero Ricardo Álvarez y a todos los profesores que con sus conocimientos y experiencias han aportado no solo a la culminación de este trabajo, si no a formar un excelente profesional y una gran persona.

A la Escuela Politécnica Nacional y a la Facultad de Ingeniería Mecánica por acogerme en sus aulas y ayudarme en mi formación personal.

ÍNDICE DE CONTENIDO

1 DESCRIPCIÓN DEL COMPONENTE DESARROLLADO	. 1
1.1 Objetivo general	1
1.2 Objetivos específicos	1
1.3 Alcance	1
1.4 Marco Teórico	2
1.4.1 Flujo externo sobre una superficie	. 2
Arrastre por Presión	. 3
Arrastre por Fricción	. 3
1.4.2 Intercambiadores de Calor	. 5
1.4.3 Intercambiadores de tubo y coraza	. 5
1.4.4 Patrones de tubos interiores	. 6
Relación Paso-Diámetro	. 7
Diámetro del casco y número de tubos en su interior	. 8
Velocidades recomendadas para el fluido que circula por la coraza	. 9
2 METODOLOGÍA	10
2.1 Configuración para la determinación del arrastre del flujo alrededor de un cilindro 2D.	.10
Proceso de Modelado	10
Geometría	10
Mallado	11

C	Configuración de la simulación	13
E	Elección de modelo	14
E	Elección del material	15
C	Condiciones de frontera	15
١	/alores de referencia	16
F	Reporte del coeficiente de arrastre	17
I	nicialización	17
C	Cálculo del coeficiente de arrastre	17
2.2	Validación de la simulación 2D	.18
2.3	Configuración para determinar el coeficiente de arrastre en 3D	.20
C	Geometría	20
Ν	Mallado	21
2.4	Validación de la simulación en 3D	.21
3	RESULTADOS, CONCLUSIONES Y RECOMENDACIONES	23
31		
0.1	Resultados	.23
Ľ	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D	.23 23
د. ۲ ۱	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D /órtices generados	.23 23 24
۲ ۲ ۲	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D Vórtices generados Resultados obtenidos del coeficiente de arrastre obtenidos en la simulación 2D	.23 23 24 29
E \ F 3.2	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D /órtices generados Resultados obtenidos del coeficiente de arrastre obtenidos en la simulación 2D	.23 23 24 29 .32
E \ F 3.2 3.3	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D /órtices generados Resultados obtenidos del coeficiente de arrastre obtenidos en la simulación 2D Conclusiones Recomendaciones	.23 23 24 29 .32
C \ F 3.2 3.3 4	Resultados Datos para determinar el coeficiente de arrastre mediante análisis 2D /órtices generados Resultados obtenidos del coeficiente de arrastre obtenidos en la simulación 2D ? Conclusiones Recomendaciones BIBLIOGRAFÍA	.23 23 24 29 .32 .33 34

ÍNDICE DE FIGURAS

Figura 1.1 Fuerzas (En dos dimensiones) que actúan sobre una superficie sometida a un flujo horizontal [1]
Figura 1.2 Placa plana sometida a flujo cruzado [1]4
Figura 1.3 Placa plana sometida a flujo cruzado (perpendicular a la dirección del flujo) [1]4
Figura 1.4 Cilindro sometido a flujo cruzado [1]4
Figura 1.5 Identificación de intercambiadores de calor según el TEMA [2]6
Figura 1.6 Configuraciones de tubos [2]6
Figura 1.7 Parámetros dimensionales de un patrón cuadrado [3]7
Figura 2.1 Boceto en Desing Molder [Fuente Propia]11
Figura 2.2 Etiquetado de fronteras [Fuente Propia]11
Figura 2.3 Parámetros del mallado [Fuente Propia]12
Figura 2.4 Mallado [Fuente Propia]12
Figura 2.5 Mallado cerca de los cilindros [Fuente Propia]13
Figura 2.6 Parámetros del Setup [Fuente Propia]13
Figura 2.7 Variables del Setup [Fuente Propia]14
Figura 2.8 General [Fuente Propia]14
Figura 2.9 Modelo [Fuente Propia]15
Figura 2.10 Elección del material [Fuente Propia]15
Figura 2.11 Condiciones de frontera [Fuente Propia]16
Figura 2.12 Valor de referencia [Fuente Propia]16
Figura 2.13 Creación de reporte [Fuente Propia]17

Figura 2.14 inicialización [Fuente Propia]17
Figura 2.15 Parámetros de cálculo [Fuente Propia]18
Figura 2.16 a) arreglo de referencia, b) arreglo con más filas, c) arreglo con la distancia de las paredes reducidas y d) arreglo con las paredes restringidas [Fuente Propia]
Figura 2.17 CD de diferentes configuraciones [Fuente Propia]20
Figura 2.18 Geometría 3D [Fuente Propia]21
Figura 2.19 Etiquetado de fronteras [Fuente Propia]21
Figura 2.20 Comparación de simulación 2D y 3D [Fuente Propia]22
Figura 3.1 Velocidad máxima en una configuración rectangular [10]24
Figura 3.2 Curvas del coeficiente de arrastre respecto al número de Reynolds clasificadas de acuerdo con el Tau [Fuente Propia]
Figura 5.1 Medidas de los alrededores del arreglo de tubos Tau 1.25 [Fuente Propia]35
Figura 5.2 Medidas de los alrededores del arreglo de tubos Tau 1.33 [Fuente Propia]
Figura 5.3 Medidas de los alrededores del arreglo de tubos Tau 1.42 [Fuente Propia]37
Figura 5.4 Medidas de los alrededores del arreglo de tubos Tau 1.50 [Fuente Propia]

ÍNDICE DE TABLAS

Tabla 1.1 Dimensiones típicas del arreglo de tubos al interior de un intercambiador de casco y tubos [2]
Tabla 1.2 Pitch recomendados para diferentes diámetros de tubos [3]8
Tabla 1.3 Diámetro del casco para arreglos de tubos (Ø3/4" y 15/16" separación) conconfiguración triangular [2]
Tabla 1.4 Velocidades Máximas en diferentes materiales [4]9
Tabla 2.1 Coeficiente de arrastre validado [Fuente Propia]18
Tabla 2.2 Datos de simulación [Fuente Propia]19
Tabla 2.3 Validación de simulación 3D [Fuente Propia] 22
Tabla 3.1 Datos de las condiciones de simulación [Fuente Propia]
Tabla 3.2 Vórtices τ =1.25 [Fuente Propia]25
Tabla 3.3 Vórtices $\tau =$ 1.33 [Fuente Propia]26
Tabla 3.4 Vórtices τ =1.42 [Fuente Propia]27
Tabla 3.5 Vórtices $\tau = 1.5$ [Fuente Propia]28
Tabla 3.6 Resultados obtenidos para Tau 1.25 [Fuente Propia]29
Tabla 3.7 Resultados obtenidos para Tau 1.33 [Fuente Propia]
Tabla 3.8 Resultados obtenidos para Tau 1.42 [Fuente Propia]30
Tabla 3.9 Resultados obtenidos para Tau 1.50 [Fuente Propia]

RESUMEN

El presente trabajo presenta el desarrollo de un modelo computacional para la estimativa del coeficiente de arrastre para un banco de tubos dentro de un intercambiador de calor de tubos y coraza. Para tanto, el primer capítulo comprende una revisión bibliográfica sobre los tipos de intercambiadores de calor, tipos de configuración de los tubos y cantidad de tubos utilizados. Además, se analizan las condiciones de trabajo de un intercambiador de calor y se describen las fuerzas que ejerce el flujo cruzado externo al banco de tubos.

En el siguiente capitulo se muestra la metodología para hacer el modelo computacional y posterior simulación en el software ANSYS. Se inicia con un análisis en 2D para poder determinar el valor del coeficiente de arrastre para diferentes configuraciones de tubos y números de Reynolds, por lo tanto, se indica el procedimiento para la creación de la geometría 2D, mallado, elección del modelo para la solución, configuración de condiciones de frontera y el cálculo. Posteriormente se realiza una validación de la simulación para un modelo en 3D con el fin de determinar la suficiencia del modelo 2D, para lo cual se realiza el mismo proceso y se obtienen valores del coeficiente de arrastre.

Finalmente se tabulan los resultados obtenidos para la simulación en 2D y se compara con datos bibliográficos. Además, los valores obtenidos del coeficiente de arrastre alrededor de un banco de tubos dentro de un intercambiador de calor se muestran en función del número de Reynolds y de la razón paso transversal-diámetro.

PALABRAS CLAVE: intercambiadores de calor, tubo, coraza, fuerza de arrastre, Reynolds.

ABSTRACT

This paper details a study with which the drag coefficient can be determined for a bank of tubes within a shell and tube heat exchanger. The initial part consists of a literature review on the types of heat exchangers, types of tube configuration and number of tubes. The working conditions of the heat exchanger are determined and the forces exerted by the flow through the bank of tubes are indicated.

The following chapter shows the methodology to be able to develop the simulation in the ANSYS program. It starts with a 2D analysis to be able to determine the value of the drag coefficient for different configurations of tubes and Reynolds numbers, therefore, the procedure for the creation of 2D geometry, meshing, choice of the model for the solution is indicated. , configuration of boundary conditions and the calculation. Subsequently, a validation of the simulation is carried out for a 3D model in order to determine the sufficiency of the 2D model, for which the same process is carried out and values are obtained.

Finally, the results obtained for the 2D simulation are tabulated and compared with bibliographic data. In addition, the obtained values of the drag coefficient around a bank of tubes inside a heat exchanger are shown as a function of the Reynolds number and the Tau.

KEYWORDS: heat exchangers, tuve, Shell, drag forcé, Reynolds.

1 DESCRIPCIÓN DEL COMPONENTE DESARROLLADO

Los intercambiadores de calor tubo y coraza son aparatos usados para transferir el calor de un fluido a otro, sin la necesidad de que estos se mezclen. Este tipo de intercambiador de calor es ampliamente usado en las industria farmacéutica, sanitaria, química, petrolera, etc. El diseño de estos aparatos contempla una parte termo-hidráulica y la correspondiente al dimensionamiento de sus componentes estructurales. En este último asunto, es importante estudiar la naturaleza de las fuerzas inducidas por el flujo del lado de la carcasa sobre el arreglo de tubos interno, las cuales son predominante de arrastre. Se espera que estas fuerzas dependan, principalmente, de la velocidad del flujo, de la configuración geométrica de la tubería y de la cercanía entre tubos. Como propuesto en la literatura, el estudio de las fuerzas de arrastre puede realizarse en función de coeficiente de arrastre.

1.1 Objetivo general

Simular un banco de tubos de un intercambiador de calor sometida a fuerzas de arrastre generadas por la corriente del fluido.

1.2 Objetivos específicos

- Realizar una revisión bibliográfica sobre intercambiadores de calor utilizados en la industria, particularmente en el de carcasa y tubos.
- Estudiar la naturaleza de las fuerzas de arrastre ejercidas por un flujo cruzado sobre una estructura.
- Hacer un modelo computacional en el software ANSYS para estimar el coeficiente de arrastre en bancos de tubos rectangulares.
- Validar el modelo desarrollado mediante la estimativa de coeficientes de arrastre para problemas similares cuyos resultados hayan sido reportados en literatura.
- Analizar la variación del coeficiente de arrastre en un banco de tubos rectangulares en función de la velocidad de flujo del lado de la carcasa y el espacio entre tubos.

1.3 Alcance

El presente proyecto de integración curricular tiene como alcance estimar el coeficiente de arrastre debido a flujo externo sobre un arreglo de tubos rectangular dentro de un intercambiador de calor. Para esto, se desarrollará un modelo computacional en el software ANSYS, el cual, una vez validado, permitirá indagar el efecto de la velocidad del flujo y la cercanía entre tubos sobre el coeficiente de arrastre.

1.4 Marco Teórico

1.4.1 Flujo externo sobre una superficie

Cuando existe la interacción entre un fluido y los alrededores de un cuerpo, se generan dos fuerzas principales que se toman en cuenta en el análisis del fenómeno físico, están son: fuerzas de corte (paralelas a la superficie) cuya resultante es la fuerza de arrastre y fuerzas de presión (normales a la superficie) cuya resultante es la fuerza de sustentación como se muestra en la Figura 1.1.

La fuerza de arrastre es producto de la combinación de las fuerzas de fricción y de presión en la dirección paralela al flujo, en el primer caso esta se debe al esfuerzo cortante generado en la pared de los tubos lo que genera los efectos de fricción y en el segundo se debe netamente a la presión o también conocida como arrastre de forma, ya que depende de la forma del cuerpo.

La fuerza de sustentación es producto de la combinación de las fuerzas viscosas y de presión en la dirección perpendicular a la dirección del flujo.

A continuación, se detallan las fuerzas de arrastre y de sustentación. [1]

Figura 1.1 Fuerzas (En dos dimensiones) que actúan sobre una superficie sometida a un flujo horizontal [1].

Dado la variedad de condiciones en las que se encuentran presentes las fuerzas antes descritas, es difícil determinarlas para cada fenómeno, por lo que se buscó relacionar las características del flujo y el fluido con la fuerza que esta produce en la superficie, y surgen las ecuaciones del coeficiente de arrastre y del coeficiente de sustentación que son correlaciones, que nos permite describir de mejor manera las características de arrastre y sustentación de un cuerpo, las siguientes ecuaciones representan los números adimensionales. Ecuación del Coeficiente de arrastre:

$$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A}$$
 Ecuación 1.1

Ecuación del Coeficiente de sustentación:

$$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$$
 Ecuación 1.2

Donde:

 ρ : densidad del fluido.

V: velocidad de flujo.

A: es el área frontal del cuerpo.

Como se puede ver en las expresiones, el coeficiente de arrastre depende de la velocidad a la que circula el fluido, densidad del fluido, forma y tamaño del sólido, además de la orientación de dirección respecto a la del fluido. [1]

Para el caso del área frontal se toma la sección de la superficie normal a la dirección a la que circula el fluido.

En el caso de la fuerza de arrastre se debe comprender que es la fuerza neta producida por un fluido cuando pasa sobre un cuerpo en la dirección que circula el flujo. Por lo tanto, es importante considerar el fenómeno cuando es flujo cruzado. Se producen dos efectos que se deben estudiar, ya que combinados permiten definir el coeficiente de arrastre y la fuerza total, estos son arrastre por presión y arrastre por fricción.

Arrastre por Presión

Se genera producto de la presión que genera el fluido sobre la superficie de un cuerpo y depende de la geometría que posee el cuerpo.

Arrastre por Fricción

Se genera producto de la fricción que genera el fluido sobre la superficie de un cuerpo y está condicionada por la rugosidad de la superficie del cuerpo [1].

Figura 1.2 Placa plana sometida a flujo cruzado [1].

En la Figura 1.2 se observa como las líneas de corriente se comportan sobre una placa plana que se encuentra paralela al flujo, en la cual se puede observar que el efecto que resalta es el arrastre por fricción que se genera en la superficie de la placa y que este sujeto a la rugosidad de la superficie.

Figura 1.3 Placa plana sometida a flujo cruzado (perpendicular a la dirección del flujo) [1].

En la Figura 1.3 se observa como las líneas de presión se comportan sobre una placa plana que se encuentra perpendicular al flujo, en la cual se puede observar que el efecto que resalta es el arrastre por presión que se genera en la superficie de la placa que colisiona directamente con el flujo y este sujeto a la cantidad de superficie que interactúa de forma normal al fluido.

Figura 1.4 Cilindro sometido a flujo cruzado [1].

Por último, en la Figura 1.4 se observa como las líneas de presión se comportan alrededor de un cilindro. El efecto se asemeja más al que se produce en una placa perpendicular a la dirección

del flujo que a la placa que se ubica paralela, por lo tanto, en este caso predomina el arrastre por presión.

El efecto que se observa en la Figura 1.4 es el que más se aproxima al caso de estudio de este trabajo, en el cual se estudiará el arrastre de un fluido cruzado sobre una tubería de perfil circular. A continuación, se describirá de mejor manera los intercambiadores de calor.

1.4.2 Intercambiadores de Calor

Los intercambiadores de calor se definen como equipos que nos permiten calentar o enfriar un fluido con la ayuda de otro a distinta temperatura, esto se produce a gracias de la transferencia de calor que se genera a través de las paredes de los tubos, los mismos que no permiten que se mezclen ambos fluidos. Estos dispositivos tienen una cantidad extensa de aplicaciones entre las cuales se encuentran condensar, vaporizar, enfriar y calentar. Entre los intercambiadores de calor más comunes tenemos:

- Intercambiadores de tubo y coraza.
- Intercambiadores de aire.
- Intercambiadores de tubería doble.
- Intercambiadores de placa.

Debido al alcance de este estudio, los intercambiadores de calor de tubo y coraza serán mejores descritos en la siguiente sección.

1.4.3 Intercambiadores de tubo y coraza

Este tipo de intercambiador de calor es uno de los más importantes a nivel industrial en especial en la industria química. Este intercambiador de calor usa tubos de poco espesor, los cuales están ubicados en el interior del casco que posee un diámetro mayor. Dada la gran importancia de estos aparatos se creó el grupo The Tubular Exchanger Manufacterers Association (TEMA), que es una asociación que ha propuesto un conjunto de estándares y normas que se emplean en el diseño y la fabricación de intercambiadores de calor [2].

Figura 1.5 Identificación de intercambiadores de calor según el TEMA [2].

Por ejemplo, en la Figura 1.5 se puede observar la clasificación para las partes que conforman un intercambiador de calor. En la primera columna se encuentra la clasificación de los tipos de cabezales estacionarios, en la segunda columna se encuentran los tipos de casos que protegen a los tubos interiores y la tercera columna se identifican los distintos tipos de cabezal extremo posterior.

Entre los diversos parámetros que deben ser definidos para el diseño de un intercambiador de calor de tubo y coraza, existen algunos que deben ser revisados para hacer el modelo computacional del problema.

1.4.4 Patrones de tubos interiores

Figura 1.6 Configuraciones de tubos [2].

Dentro del intercambiador de calor se puede encontrar diferentes patrones geométricos de

ordenamiento de los tubos, las opciones se presentan en la Figura 1.6. El espaciamiento que existe entre tubos depende del paso. El paso del tubo se considera como la distancia entre centro y centro de los tubos, el TEMA recomienda que esta distancia debe ser al menos 1,25 veces el diámetro exterior de los tubos.

En la Tabla 1.1 se encuentran varios diámetros y sus separaciones típicas usadas para diferentes configuraciones [2].

Tabla 1.1 Dimensiones típicas del arreglo de tubos al interior de un intercambiador de casco y

tubos [2].

Diámetro del tubo	Separación entre tubos	Configuración
5/8	13/16	Triangular
5/8	7/8	Cuadrada
5/8	7/8	Cuadrada girada
3/4	15/16	Triangular
3/4	1	Triangular
3/4	1	Cuadrada
3/4	1	Cuadrada girada
1	1-1/4	Triangular
1	1-1/4	Cuadrada
1	1-1/4	Cuadrada girada

Relación Paso-Diámetro

El espaciamiento que tiene el arreglo de tubos dentro de un intercambiador de calor es la relación entre el pase (pitch) y el Diámetro exterior del tubo (Do) como se muestra en la Figura 1.7 [3].

Figura 1.7 Parámetros dimensionales de un patrón cuadrado [3].

El valor de esta relación no debe ser muy pequeña ya que esto debilitaría a la estructura de los deflectores, los cuales son los encargados del cambio de dirección del flujo y donde reposan los tubos. Por este motivo existen valores de paso para diferentes diámetros de tubos como se muestra en la Tabla 1.2 [3].

Tube	Tube Pitch			Heaviest	Tube	Nominal	Minimum Std. Ligaments (96% of ligaments must equal or exceed values tabulated below)						Minimum		
Dia d _o		Tube Pitch p/do p-do Recomended Gage	$\frac{\text{Fube Pitch}}{p} \frac{p/d_0}{p-d_0}$		Recom- mended Tube Gage BWG	Hole Dia. Std. Fit	Liga- ment Width			Tu	besheet	Thickne	\$\$		
							25.4	38.1	50.8	63.5	76.2	101.6	127.0	152.4	1
6.4	7.94	1.25	1.59	22	6.579	1.372	0.635	0.635	0.635	0.635	-			•	0.635
	9.53	1.50	3.18	20		2.946	2.108	1.956	1.778	1.626	-	-	-		1.524
9.5	11.51	1.21	1.98	20	9.754	1.753	1.041	0.914	0.813	0.711	0.610	-	-	-	0.762
	12.70	1.33	3.18	18	20100	2.946	2.210	2.108	2.007	1.905	1.778	1.575	-	•	1.524
	13.49	1.42	3.97	18		3.734	3.023	2.896	2.794	2.692	2.591	2.362	2.159	1.930	1.905
12.7	15.88	1.25	3.18	18	12.954	2.921	2.261	2.159	2.083	2.007	1.930	1.753	1.600	-	1.524
	16.67	1.31	3.97	16		3.708	3.048	2.972	2.870	2.794	2.718	2.565	2.388	2.235	1.905
	17.46	1.38	4.76	16		4.521	3.835	3.759	3.683	3.607	3.505	3.353	3.200	3.023	2.286
15.9	19.05	1.20	3.18	16	16.129	2.921	2.032	1.956	1.905	1.829	1.778	1.651	1.499	1.372	1.524
	19.84	1.25	3.97	15		3.708	2.819	2.769	2.692	2.616	2.565	2.438	2.311	2.184	1.905
	20.64	1.30	4.76	14		4.521	3.607	3.556	3.480	3.429	3.353	3.226	3.099	2.972	2.286
	22.23	1.40	6.35	14		6.096	5.207	5.131	5.080	5.004	4.953	4.801	4.674	4.547	3.048
19.1	23.81	1.25	4.76	13	19.304	4.521	3.632	3.581	3.531	3.480	3.429	3.302	3.200	3.099	2.286
	25.40	1.33	6.35	12		6.096	5.232	5.182	5.105	5.055	5.004	4.902	4.801	4.674	3.048
	26.99	1.42	7.94	12		7.696	6.807	6.756	6.706	6.655	6.604	6.477	6.375	6.274	3.810
	28.58	1.50	9.53	12		9.271	8.407	8.357	8.280	8.230	8.179	8.077	7.976	7.849	4.699
22.2	27.78	1.25	5.56	12	22.479	5.309	4.445	4.394	4.343	4.318	4.267	4.166	4.064	3.988	2.667
	28.58	1.29	6.35	12		6.096	5.232	5.207	5.156	5.105	5.055	4.953	4.877	4.775	3.048
	30.16	1.36	7.94	10		7.696	6.833	6.782	6.731	6.680	6.655	6.553	6.452	6.375	3.810
	31.75	1.43	9.53	10		9.271	8.407	8.382	8.331	8.280	8.230	8.128	8.052	7.950	4.699
25.4	31.75	1.25	6.35	10	25.705	6.045	5.207	5.156	5.131	5.080	5.029	4.953	4.877	4.801	3.048
	33.34	1.31	7.94	9		7.645	6.782	6.756	6.706	6.680	6.629	6.553	6.477	6.375	3.810
	34.93	1.38	9.53	9		9.220	8.382	8.331	8.306	8.255	8.204	8.128	8.052	7.976	4.699
31.8	39.69	1.25	7.94	9	32.106	7.595	6.756	6.731	6.680	6.655	6.629	6.553	6.502	6.426	3.810
38.1	47.63	1.25	9.53	8	38.557	9.068	8.255	8.230	8.204	8.179	8.153	8.077	8.026	7.976	4.572
50.8	63.50	1.25	12.70	6	51.359	12.141	-	11.328	11.303	11.278	11.252	11.227	11.176	11.125	6.350
63.5	79.38	1.25	15.88	6	64.211	15.164	-	14.35	14.34	14.32	14.304	14.27	14.24	14.21	7.62
76.2	95.25	1.25	19.05	6	77.038	18.212	-	17.41	17.4	17.38	17,369	17.34	17.31	17.29	8.89

Tabla 1.2 Pitch recomendados para diferentes diámetros de tubos [3].

Diámetro del casco y número de tubos en su interior

Otro parámetro importante para considerar en el diseño los intercambiadores de calor de tubo y coraza es el tipo de configuración de los tubos dentro de la carcasa, por lo que la norma de estándares de diseño del TEMA nos indica en la Tabla 1.3.el tamaño del casco con su respectiva cantidad de tubos dependiendo del número de pases [2].

Tabla 1.3 Diámetro del casco para arreglos de tubos (Ø3/4" y 15/16" separación) con configuración triangular [2].

Shell	Diam. of	Num	ber of '	Tube Pa	sses	-
In. Limit - In.		1	2	4	6	8
8.07	6.821	38	32	26	24	18
10.02	8.770	62	56	47	42	36
12.00	10.750	109	98	36	82	80
13.25	12.000	127	114	96	90	86
15.25	14.000	170	160	140	136	128
17.25	16.000	239	224	194	188	178
19.25	18.000	301	282	252	244	234
21.00	19.250	361	342	314	306	290
23.25	21.500	442	420	386	378	364
25.00	23.375	531	506	458	446	434
27.00	25.375	637	602	550	536	524
29.00	27.375	721	692	640	629	594
31.00	29.375	847	822	766	722	720
33.00	31.375	974	938	872	852	826
35.00	33.375	1102	1068	1004	988	958
37.00	35.250	1220	1200	1144	1104	1078
39.00	37.250	1377	1330	1258	1248	1212
42.00	40.250	1611	1580	1498	1464	1456
44.00	42.250	1782	1738	1650	1624	1592
48.00	46.000	1965	1908	1834	1801	1766
52.00	50.000	2347	2273	2178	2152	2110
56.00	54.000	2704	2660	2556	2526	2489
60.00	58.000	3399	3343	3232	3195	3162

Velocidades recomendadas para el fluido que circula por la coraza

La importancia de conocer las velocidades típicas que se utilizan para el fluido del lado de la carcasa radica en la eficiencia térmica del intercambiador de calor y su influencia sobre el arrastre que sufren los tubos. Según las normas del Heat Exchanger Institute (HEI), se indica la Tabla 1.4 correspondiente a las velocidades típicas de acuerdo con el tipo de material de los tubos [4].

Material del tubo	Velocidad del fluido
	ft/seg
Acero Inoxidable, Aleaciones de Níquel, Titanio	10.0
Cobre-Níquel (70-30, 80-20, 90-10)	9.0
Acero de baja aleación	9.0
Cobre, Aluminio-Latón	8.5
Acero al carbono	8.0

Tabla 1.4 Velocidades Máximas en diferentes materiales [4]

2 METODOLOGÍA

En la presente sección se detalla la metodología usada para las simulaciones del coeficiente de arrastre usando modelos computacionales en 2D y 3D. El modelo computacional fue validado mediante la comparación de los resultados obtenidos para el caso de arrastre generados por un flujo de aire externo a un banco de tubos y resultados publicados en la literatura. El software seleccionado para ejecutar la simulación es ANSYS Fluent, el cual utiliza el método de volúmenes finitos para el cálculo de los problemas de flujo laminar y turbulento [5]. En primer lugar, se detallarán los pasos para la configuración de la simulación fluido-estructural en 2D y posteriormente extender a una simulación en 3D en la cual se realizarán las simulaciones para la obtención de los coeficientes de arrastre para un banco de tubos en un intercambiador de calor.

2.1 Configuración para la determinación del arrastre del flujo alrededor de un cilindro 2D

El análisis de las fuerzas generadas por un flujo cruzado externo alrededor de un cilindro es un problema importante debido a sus diversas aplicaciones en diferentes áreas de la ingeniería. Justamente, uno de esos problemas es la estimativa de la fuerza de arrastre debido al paso de un flujo externo sobre una estructura. Para analizar este problema se pueden realizar simulaciones en 2D y 3D. Antes del modelado en 3D, se configurará un modelo 2D con el objeto de determinar la validez de las condiciones asumidas e ingresadas en el programa ANSYS Fluent. Para poder determinar la validez del modelo se tomará como referencia los resultados de coeficiente de arrastre cuyos valores se reportados en la literatura.

Proceso de Modelado

El modelo inicia abriendo ANSYS Workbench y seleccionando el módulo que trabaja con problemas de dinámica de fluidos computacionales (CFD) "Fluent".

Geometría

Para la validación del modelo computacional, se resolverá el problema en 2D cuyos resultados hayan sido publicados en la literatura. En ese sentido, se aplicará la geometría utilizada en [6]. En la Figura 2.1 se muestra la geometría exportada al Desing Molder de ANSYS para proceder al mallado.

Figura 2.1 Boceto en Desing Molder [Fuente Propia]

Mallado

Una vez creado el modelo, se procede a definir las fronteras del dominio como se observa en la Figura 2.2. Las fronteras se definen de esta manera: A-Cylinders (cilindros), B-Outlet (salida), C-Inlet (entrada) y D-Wall (paredes). La designación de las fronteras es necesaria para aplicar la aplicación de las condiciones de borde.

Figura 2.2 Etiquetado de fronteras [Fuente Propia]

Dado que se tomará la mayor cantidad de medidas del coeficiente de arrastre cerca de los tubos, se propone hacer un mallado más fino en esta zona. Esta característica permitirá tener una mejor definición de los vórtices, los cuales se sabe que deberán aparecer por los resultados reportados en [6] y la literatura en general en desprendimiento de vórtices [7]. El correcto mallado depende de varios factores, los cuales deben ser configurados de forma manual entre los cuales podemos mencionar: tamaño de la cara (face sizing), inflación (inflation), tamaño de los elementos (element size), etc. En la Figura 2.3 se puede observar los valores usados para estos parámetros. En la Figura 2.4 se puede observar la malla generada y en la Figura 2.5 el detalle del refinado de la malla en el cilindro.

Details of "Face Sizing" - Sizing				Details of "Inflation" - Inflation 👓 🖛 🕂 🗖				
E Scope			Ξ	E Scope				
	Scoping Method	Geometry Selection		Scoping Method	Geometry Selection			
	Geometry	1 Face		Geometry	2 Faces			
Definition		Definition						
	Suppressed	No		Suppressed	No			
	Туре	Element Size		Paur dans Cooping Mathed	Coometry Selection			
	Element Size	15, mm	1	boundary scoping Method	Geometry selection			
Ξ	Advanced			Boundary	1 Edge			
	Defeature Size	Default (1, mm)		Inflation Option	First Layer Thickness			
	Behavior	Soft		First Layer Height	10, mm			
	Growth Rate	Default (1,2)		Maximum Layers	20			
	Capture Curvature	No		Growth Rate	1,1			
	Capture Proximity	No		Inflation Algorithm	Pre			

Figura 2.3 Parámetros del mallado [Fuente Propia]

Figura 2.4 Mallado [Fuente Propia]

Figura 2.5 Mallado cerca de los cilindros [Fuente Propia]

Configuración de la simulación

Para ingresar los datos para la simulación se debe abrir la pestaña Setup del Workbench y se mostrará la ventana Fluent Launcher, representada en la Figura 2.6, en la cual se define el Solver Processes y el procesamiento en paralelo, para posterior presionar Start. Los parámetros se definen en concordancia con los recursos computacionales que se posea.

Fluent Launcher 2020 R2 (Setti —							
Fluent Launcher	ANSYS						
Simulate a wide range of industrial applications using t purpose setup, solve, and post-processing capabilities of Fluent.	he general- of ANSYS						
Dimension							
② 2D							
⊖ 3D							
Options							
Double Precision							
Disalau Mash After Deed							
Display Mesh After Reading							
Do not show this panel again							
Load ACT							
Parallel (Local Machine)							
Calvas Pressone	A •						
Solver Processes	-+ •						
Solver GPGPUs per Machine	1						
 Show More Options Show Learning Reso 	urces						
Start Cancel Help	-						

Figura 2.6 Parámetros del Setup [Fuente Propia] 13

La configuración se debe hacer de forma descendente en el menú mostrado en la Figura 2.7.

Figura 2.7 Variables del Setup [Fuente Propia]

En la opción "General" se debe seleccionar Transient (Transitorio) dado que los valores van a ir cambiando con el tiempo hasta que la simulación se estabilice, después se debe ingresar el valor de la gravedad como se indica en la Figura 2.8.

General			(
Mesh			
Scale	Cł	heck Report Quality	
Display	Un	iits	
Solver			
Туре		Velocity Formulation	
 Pressure-B Density-Bas 	ased sed	Absolute Relative	
Time		2D Space	
Steady		Planar	
Transient		 Axisymmetric 	
		 Axisymmetric Swirl 	
✓ Gravity			
Gravitational Ac	celera	ation	
X (m/s2) 0		-	
Y (m/s2) -9.8		-	
Z (m/s2) 0		-	

Figura 2.8 General [Fuente Propia]

Elección de modelo

Los modelos para la solución de problemas que contiene ANSYS se muestran en la Figura 2.9. El modelo se selecciona en base al régimen de fluido que se encuentre ya sea laminar con Reynolds ≤ 2300 o turbulento con Reynolds ≥ 4000. En el caso del flujo Laminar se usa el modelo Viscous-Laminar, mientras que para el turbulento se puede usar modelos como: k-omega, Transition SST, k-épsilon, etc. El k-épsilon es el que se usa con mayor frecuencia debido a su bajo costo computacional y entrega resultados satisfactorios para números de Reynolds altos [8] y es el que se usa en este estudio.

. .

Models
Models
Multiphase - Off
Energy - Off
Viscous - Laminar
Radiation - Off
Heat Exchanger - Off
Species - Off
Discrete Phase - Off
Solidification & Melting - Off
Acoustics - Off
Structure - Off
Potential/Li-ion Battery - Off

Figura 2.9 Modelo [Fuente Propia]

Elección del material

Se debe seleccionar el fluido con el cual se va a trabajar en la pestaña "Materials", como se muestra en la Figura 2.10. En este caso se selecciona la opción aire ya que es el fluido utilizado en el trabajo [6], el cual fue usado como referencia. El material del cilindro no considera en la simulación ya que se supone un elemento rígido.

Cell Zone Conditions	(?
Zone (Filter Text	
solid-fff_surface	
Fluid	
Zone Name	
solid-fff_surface	
Material Name water-liquid	▼ Edit

Condiciones de frontera

En las condiciones de frontera se configura las velocidades previamente calculadas de acuerdo a los parametros del problema Figura 2.11.

cone Filter Text cylinder fff_surface inlet interior-fff_surfac outlet	tions			(?) () () () () () () () () () () () () ()			
wall Velocity I Zone Name inlet	nlet)	×
Momentum Velocity S	Thermal Specification N Reference Velocity Mag	Radiation	Species ude, Normal 1 te 0.301442597	DPM to Bounda	Multiphase ry	Potential	
	iniai Gauge Pr	App	oly Close	Help			•

Figura 2.11 Condiciones de frontera [Fuente Propia]

En el caso de las paredes laterales, debe cambiar su condición a "symmetry" con el objetivo de indicar que en esas regiones todas las variables son cero y así evitar que afecten los valores del coeficiente de arrastre y la condición de salida para la presión es nula.

Valores de referencia

Los valores de referencia se refiere al punto de inicio de la simulación, por lo tanto se debe seleccionar desde inlet (entrada) como se muestra en la Figura 2.12.

Referen	ce Values	(?)
Compute	from	
inlet		-
	Reference Values	
	Area (m2)	1
	Density (kg/m3)	998.2
	Depth (m)	1
	Enthalpy (j/kg)	0
	Length (m)	1
	Pressure (pascal)	0
	Temperature (k)	288.16
	Velocity (m/s)	0.3014426
	Viscosity (kg/m-s)	0.001003
	Ratio of Specific Heats	1.4
	Yplus for Heat Tran. Coef.	300

Figura 2.12 Valor de referencia [Fuente Propia]

Reporte del coeficiente de arrastre

Para seleccionar lo que se desea calcular, se debe crear un nuevo reporte en la sección "Solutions" y seleccionar Drag, como se muestra en la Figura 2.13.

Report Definitions		×
	Report Definition Properties	-
	Name :	_
delta-time	Report Type :	- 1
drag	Field :	
iters-per-timesten	Surface/Zone Names :	_
ters per unestep	Per Surface/Zone :	_
	Average Over :	_
Expression Surface Report + Volume Report + Force Report + Drag DPM Report + User Defined Drag Drag	Report File Definitions Report Plot Definitions	
Torceill		Þ
Clos	se Help	

Figura 2.13 Creación de reporte [Fuente Propia]

Inicialización

De la misma manera que los valores de referencia, se debe iniciar desde inlet y el metodo debe ser Standard, como se representa en la Figura 2.14.

Solution Initialization
Initialization Methods
Hybrid InitializationStandard Initialization
Compute from
Reference Frame
Relative to Cell Zone
Absolute
Initial Values
Gauge Pressure (pascal)
0
X Velocity (m/s)
0.3014426
Y Velocity (m/s)
0

Figura 2.14 inicialización [Fuente Propia]

Cálculo del coeficiente de arrastre

\$

Finalmente, se configura los parámetros de cálculo como son: Numer of Time Steps, Time Step Size y Max iterations/Time Step como muestra la Figura 2.15.

Run Calculation		(?	>
Check Case		Preview Mesh Motion	
lime Advancement			
Туре		Method	
Fixed	-	User-Specified	
Parameters			
Number of Time Steps		Time Step Size (s)	
400	۵	3018	
Max Iterations/Time Step		Reporting Interval	
20	-		_
Profile Undate Interval	-	-	
	-		
Options			
Extrapolate Variables			
Report Simulation Sta	tus		
Colution Processing			
Statistics			
Data Sampling for Tim		tictics	
	ie sta	105005	
Data	File C	Quantities	
Solution Advancement			
	Calc	ulate	-

Figura 2.15 Parámetros de cálculo [Fuente Propia]

2.2 Validación de la simulación 2D

Con el objetivo de validar el modelo matemático generado con los pasos de la sección 2.1, se reproducen las simulaciones del coeficiente de arrastre cuyas condiciones y resultados son detalladas en el trabajo [6] el cual determina el coeficiente de arrastre para un arreglo de tubos escalonados de diámetro 3/8", con un fluido de aire a 15°C y los datos del CD se presentan en la Tabla 2.1.

Reynolds	Velocidad (m/s) @ 15°C	Energía cinética turbulenta [k] (m2/s2)	Tasa de disipación de la energía cinética turbulenta [e] (m2/s3)	CD Tabulado	CD Simulado	%Error
500	0,12134	5,52121E-05	6,74114E-08	0,72	0,84	16,67%
1000	0,24268	0,000220848	5,39291E-07	0,68	0,74	8,82%
1500	0,36402	0,000496909	1,82011E-06	0,65	0,66	1,54%
2000	0,48536	0,000883393	4,31433E-06	0,6	0,6	0,00%
2500	0,60670	0,001380302	8,42642E-06	0,58	0,56	3,45%
3000	0,72804	0,001987635	1,45609E-05	0,57	0,54	5,26%
3500	0,84937	0,002705392	2,31221E-05	0,56	0,52	7,14%

Tabla 2.1 Coeficiente de arrastre validado [Fuente Propia]

En la Tabla 2.1 se presentan las variables del CD Simulado y se estima el porcentaje de error

entre los datos de literatura y los simulados van desde el 0% hasta el 16%. Además, uno de los objetivos de realizar esta tabla es verificar la configuración de los parámetros de la simulación que no fueron detallados en [6] por ejemplo, velocidad máxima, temperatura y nos permiten determinar con mayor certeza que estos son los datos usados en la simulación.

Para observar cómo cambian los valores de CD cuando se utilizan diferentes condiciones de la geometría del banco de tubos, se modelaron diferentes arreglos de tubos variando la cantidad de filas, columnas y la distancia entre las restricciones laterales (paredes) como se muestran en la Figura 2.16. Sin embargo, nótese que la distribución de los tubos, diámetro y razón pasediámetro es la misma.

Figura 2.16 a) arreglo de referencia, b) arreglo con más filas, c) arreglo con la distancia de las paredes reducidas y d) arreglo con las paredes restringidas [Fuente Propia]

Las velocidades fueron calculadas a 15°C e ingresadas como condiciones de frontera para todos los casos, en la Tabla 2.2 se muestran los resultados del coeficiente de arrastre de las simulaciones.

Bounolde	CD Referencia	CD Más Filas	CD Paredes	CD Paredes
Reynolus	(a)	(b)	Reducidas (c)	Restringidas (d)
500	0,72	1,5	1,96	8,09
1000	0,68	1,21	1,7	5,35
1500	0,65	1,04	1,55	4,37
2000	0,6	0,95	1,43	3,87
2500	0,58	0,89	1,35	3,58
3000	0,57	0,84	1,3	3,37
3500	0,56	0,8	1,25	3,23

Tabla 2.2 Datos de simulación [Fuente Propia]

Los valores de CD en la Tabla 2.2 son representados gráficamente en la Figura 2.7 para verificar la diferencia del CD calculado en cada configuración y la variación de estos con el número de Reynolds.

Figura 2.17 CD de diferentes configuraciones [Fuente Propia]

En la Figura 2.17 se observa como el coeficiente de arrastre varía en sus valores cuando se modifica su geometría, sin embargo, la tendencia a la baja se mantiene en todas las simulaciones. Además, se ratifica que el CD de comprobación que representa a la Figura 2.16 a) posee gran similitud con el CD de la literatura, por lo tanto este se usa para futuras comparaciones al referirnos al CD 2D.

2.3 Configuración para determinar el coeficiente de arrastre en 3D

Con el fin de determinar la pertinencia del desarrollo de un modelo 3D para el estudio del mismo problema, se va a emigrar a una configuración 3D y comparar los resultados obtenidos en la simulación.

Para la modelación 3D se usa el mismo software ANSYS, con su modulo Fluid Flow (Fluent) y los pasos a seguir con los mismos de la sección 2.1 a diferencia de la geometría y la definición de las fronteras en el mallado.

Geometría

Para la creación de la geometría 3D se usa el programa Autodesk Inventor, partiendo del boceto en 2D y asignándole un espesor de 10 mm, como se muestra en la Figura 2.18.

20

Figura 2.18 Geometría 3D [Fuente Propia]

Mallado

Una vez creado el modelo, se procede a definir las fronteras del dominio, como se observa en la Figura 2.19. Las fronteras se definen de esta manera: A-Wall (paredes), B-Cylinders (cilindros), C-Fluid Domain (dominio del fluido), D-Outlet (salida) y E-Inlet (entrada). La designación de las fronteras en necesario para aplicar las condiciones de borde.

Figura 2.19 Etiquetado de fronteras [Fuente Propia]

2.4 Validación de la simulación en 3D

En base a los datos previos obtenidos en la simulación 2D, se realiza una comparación con los valores del coeficiente de arrastre obtenidos en la simulación en 3D, como se muestra en la Tabla 2.3 y en la Figura 2.20.

CD 2D	CD 3D	%Error
0,84	0,82	2,98%
0,74	0,77	3,38%
0,66	0,62	6,21%
0,6	0,62	2,50%
0,56	0,58	3,21%
0,54	0,55	0,93%
0,52	0,53	2,70%

Tabla 2.3 Validación de simulación 3D [Fuente Propia]

Figura 2.20 Comparación de simulación 2D y 3D [Fuente Propia]

Dado que el porcentaje de error entre la simulación 2D y 3D es inferior al 6,3% podemos mantener una configuración 2D, lo cual nos permitirá ahorrar recursos informáticos en la simulación.

3 RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

En este capítulo se muestran los resultados de las simulaciones realizadas para estimar el coeficiente de arrastre en los diferentes modelos 2D, que consideran una tubería de tubo rectangular. Se analizó la influencia de las variables planteadas en los objetivos, que son velocidad y razón pase trasversal-diámetro (τ).

3.1 Resultados

Datos para determinar el coeficiente de arrastre mediante análisis 2D

Para determinar esta sección se utilizaron los datos correspondientes al Tau y diámetro especificados en la Tabla 1.2. Se seleccionó el valor del diámetro más común en los tubos del intercambiador de calor, el cual es 19,1mm (0,75 pulg) [9]. Estos datos nos permiten definir los parámetros para la configuración de la simulación 2D. Los resultados se presentan en la Tabla 3.1.

Fluido	Agua
Número de cilindros	30
Temperatura (°C)	15
Diámetro (mm)	19,1
Densidad (kg/m3)	999,19
Viscosidad Dinámica (Pa*s)	1,12E-03
	1,25
-	1,33
l	1,42
	1,5
	500
	1000
	1500
Reynolds	2000
	2500
	3000
	3500

Tabla 3.1 Datos de las condiciones de simulación [Fuente Propia]

Para la configuración de velocidades, se debe tomar en cuenta que en arreglos de tubos alineados el número de Reynolds se calcula a partir de la velocidad máxima que se encuentra cruzando el área mínima del flujo entre los tubos [10], como se muestra en la Figura 3.1.

Figura 3.1 Velocidad máxima en una configuración rectangular [10]

En este caso se puede tomar cualquier valor entre el paso transversal y el longitudinal para la Ecuación 3.1 ya que poseen los mismos valores y con esto de despeja la velocidad de la Ecuación 3.2.

$$V_{max} = \frac{S_T}{S_T - D} V$$
 Ecuación 3.1

Donde

Vmax : Velocidad Máxima

S_T : Paso Transversal

D: Diámetro

V: Velocidad

$$Re_D = \frac{\rho V_{max} D}{\mu}$$
 Ecuación 3.2

Donde

 Re_D : Reynolds

 ρ : Densidad del fluido

 μ : Viscosidad dinámica del fluido

Vórtices generados

En las Tabla 3.2 a la Tabla 3.5, se puede observar el comportamiento del fluido que cruza el arreglo del banco de tubos, en el cual se nota el cambio del comportamiento de las líneas de flujo en los diferentes Reynolds.

Tabla 3.2 Vórtices τ =1.25 [Fuente Propia]

Tabla 3.3 Vórtices $\tau = 1.33$ [Fuente Propia]

Tabla 3.4 Vórtices τ =1.42 [Fuente Propia]

Tabla 3.5 Vórtices $\tau = 1.5$ [Fuente Propia]

A partir de los gráficos de los vórtices presentados se distingue que detrás de cada cilindro las líneas de flujo celeste son más turbulentas ya que se empiezan a distorsionar, su dirección ya no son paralelas a la dirección del flujo de entrada del fluido y tienden a ser más caóticas mientras el número de Reynolds aumenta, en los Re=500 las líneas de flujo muestran una ligera distorsión de su dirección, mientras que en un Re=3500 dejan de ser por completo paralelas y por su interacción con el cilindro siguiente crea vórtices. La intensidad de los vórtices se relaciona también con el paso longitudinal que posee el arreglo de tubos, ya que entre menos sea el

espacio entre cilindros menos distancia tienen las líneas de flujo para crear vórtices, como se observa la diferencia entre el Re=3500 del τ =1.25 y el τ =1.5, en el primer caso el vórtice no se desarrolla por completo y por lo tanto su intensidad es menos, mientras en el segundo caso al tener un mayor espacio entre los cilindros, se observa que se forman hasta 2 vórtices, siendo este caso el mas intenso y dando como resultado más turbulencia detrás de cada cilindro.

Resultados obtenidos del coeficiente de arrastre obtenidos en la simulación 2D

En esta sección se presentan los resultados de las simulaciones realizadas a diferentes tau y velocidades del agua dentro del intercambiador de calor. Es de importancia mencionar que la velocidad se la obtiene de la Ecuación 3.1 ya que depende del tipo de configuración y de donde ocurre la velocidad máxima.

Los resultados desde la Tabla 3.6 a la Tabla 3.9, están representados en función de un paso longitudinal y las variables relacionadas a este.

PASO (mm)	Reynolds	Velocidad (m/s) @ 15°C	CD
	500	0,02982	2,63
	1000	0,05963	2,61
23,81	1500	0,08945	2,56
	2000	0,11927	2,4
	2500	0,14908	2,39
	3000	0,17890	2,33
	3500	0,20872	2,3

Tabla 3.6 Resultados obtenidos para Tau 1.25 [Fuente Propia]

Tabla 3.7 Resultados obtenidos para Tau 1.33 [Fuente Propia]

PASO (mm)	Reynolds	Velocidad (m/s) @ 15°C	CD
25,4	500	0,02982	2,2
	1000	0,05964	1,87
	1500	0,08946	1,82
	2000	0,11927	1,77
	2500	0,14909	1,74
	3000	0,17891	1,65
	3500	0,20873	1,61

PASO (mm)	Reynolds	Velocidad (m/s) @ 15°C	CD
26,99	500	0,02982	1,68
	1000	0,05964	1,46
	1500	0,08946	1,41
	2000	0,11928	1,37
	2500	0,14910	1,33
	3000	0,17892	1,29
	3500	0,20874	1,27

Tabla 3.8 Resultados obtenidos para Tau 1.42 [Fuente Propia]

Tabla 3.9 Resultados obtenidos para Tau 1.50 [Fuente Propia]

PASO (mm)	Reynolds	Velocidad (m/s) @ 15°C	CD
28,58	500	0,02982	1,21
	1000	0,05964	1,13
	1500	0,08946	1,11
	2000	0,11928	1,07
	2500	0,14910	1,05
	3000	0,17893	1,03
	3500	0,20875	1

Los coeficientes de arrastre simulados en función el número de Reynolds están representados en la Figura 3.2. Se puede observar que la tendencia no es lineal con pendiente negativa, más bien se ajusta a una función exponencial con un exponente negativo, es decir cada gráfica del coeficiente de arrastre disminuye a medida que Reynolds aumenta, demostrando que el coeficiente de arrastre es inversamente proporcional a la Velocidad lo que ya se presentó en la Ecuación 1.1

Figura 3.2 Curvas del coeficiente de arrastre respecto al número de Reynolds clasificadas de acuerdo con el Tau [Fuente Propia]

Se observa que entre mayor es el tau y con ello el paso transversal, el coeficiente de arrastre disminuye esto se debe a que cuanto más se separe un cilindro del otro, menor es la interacción entre los mismos, lo cual permite que tanto los perfiles de velocidad como los de temperatura tengan más espacio para que se desarrollen por completo y así conseguir una similitud de los valores de estas variables, lo que conlleva como resultado a una reducción en la fuerza de arrastre.

3.2 Conclusiones

- A través de la revisión bibliográfica se revisó los diferentes parámetros geométricos que intervienen en la configuración de un arreglo de tubos dentro de un intercambiador de calor de tubo y coraza.
- Las fuerzas de arrastre que se generan por la interacción de un fluido con la superficie de un objeto tienen un impacto significativo en la estabilidad y la eficiencia de un intercambiador de calor, ya que estos afectan la estabilidad de los tubos pudiendo deformarlos, afectar la resistencia de los tubos, pudiendo provocar daños internos.
- El software ANSYS Fluent, permite calcular el coeficiente de arrastre para un banco de tubos considerando diferentes modelos de resolución, velocidades y geometría.
- El modelo presentado en bibliografía nos permite validar el modelo computacional en el análisis 2D y posterior ser usadas para la nueva configuración y condiciones de bordes de un arreglo rectangular de tubos de un intercambiador de calor.
- El análisis 3D presenta resultados del coeficiente de arrastre ligeramente más cercanos a los valores de bibliografía, presentando un error de 4,2%, que en este caso resulta más exacto que el análisis 2D. Sin embargo, un modelo 2D permite ahorrar tiempo de cálculo y recursos computacionales, a costo de estimar el coeficiente de arrastre con errores de hasta 6,3%, en comparación a los valores aceptados en la literatura.
- A medida que el Reynolds aumenta el coeficiente de arrastre disminuye ya que la turbulencia mezcla las capas del fluido cercanas a la superficie del objeto, reduciendo la gradiente de velocidad en la superficie y disminuyendo la fuerza de arrastre, lo que también reduce la viscosidad y la tensión superficial en la superficie del cilindro.
- El valor del coeficiente de arrastre presenta una diminución conforme aumenta el Reynolds, pero no de forma lineal, ya que como se observa en las simulaciones de validación y de estudio, las reducciones más significativas se presentan en Reynolds menores a 1000.
- En lo que respecta al análisis del coeficiente de arrastre en función del Tau y el Reynolds, se obtuvo menores valores a mayor Tau y Reynolds, lo que en términos de perdida de energía un arreglo de tubos con Tau 1,5 y velocidades mayores a 3500, presentarían menores perdidas.

3.3 Recomendaciones

- Los resultados obtenidos en las simulaciones pueden ser tomados como referencia para ser validados con pruebas experimentales.
- ANSYS Fluent presenta diferentes tipos modelos para el cálculo del coeficiente de arrastre por lo cual se debe analizar el modelo que presente menores tiempos de convergencia en los resultados estimados.
- Para trabajar con dimensiones más realistas en el cálculo del coeficiente de arrastre se debe considerar un mayor cronograma para la simulación debido a los recursos computacionales disponibles.
- Para recibir resultados más cercanos a la realidad se debe realizar un refinamiento en los alrededores de los cilindros ya que es donde se concentrarán la mayor cantidad de los cálculos del coeficiente de arrastre.

4 BIBLIOGRAFÍA

- [1] Y. A. CENGEL, MECANICA DE FLUIDOS: FUNDAMENTOS Y APLICACIONES, 4 ed., Casa del Libro, 2020.
- [2] R. C. Byrne, STANDARS OF THE TUBULAR EXCHANGER MANUFACTURERS ASSOCIATION, 10 ed., D. Gaddis, Ed., 2019.
- [3] R. S. Subramanian, «Shell-and-Tube Heat Exchangers,» New York.
- [4] Heat Exchanger Institute, Inc., STANDARS for SHELL AND TUBE HEAT EXCHANGERS, Quinta ed., Cleveland, 2013.
- [5] S. A. E. y. A. E. M. Mauro Grioni, SIMULACIÓN DE FLUJO TRANSITORIO 2D ALREDEDOR DE UN CILINDRO CIRCULAR HORIZONATAL CONSIDERANDO EL EFECTO SUELO, La Plata: Martín I. Idiart, Ana E. Scarabino y Mario A. Storti, 2017.
- [6] C. E. y. J. S., «Drag Coefficient and Stanton Number Behavior in Fluid Flow Across a Bundle of Wing-Shaped Tubes,» *Heat Trasnfer,* vol. 1, p. 6, 2006.
- [7] I. M. C. D. R. D. Pijush K. Kundu, FLUID MECHANICS, London: ELSEIVER, 2016.
- [8] G. Richmond, «Modelos de turbulencia introductorio,» Costa Rica, 2019.
- [9] R. K. F. T. R. G. &. d. O. Álvaez-Briceño, «Update results on hydrodynamic mass and damping estimations in tube bundles under two-phase crossflow,» 2017.
- [10] A. J. G. YUNUS A. CENGEL, Transferencia de calor y masa, Reno: Mc Graw Hill, 2011.

5 ANEXOS

ANEXO I. Medidas de los alrededores de los arreglos de tubos para diferentes Tau

Figura 5.1 Medidas de los alrededores del arreglo de tubos Tau 1.25 [Fuente Propia]

Figura 5.2 Medidas de los alrededores del arreglo de tubos Tau 1.33 [Fuente Propia]

Figura 5.3 Medidas de los alrededores del arreglo de tubos Tau 1.42 [Fuente Propia]

Figura 5.4 Medidas de los alrededores del arreglo de tubos Tau 1.50 [Fuente Propia]