ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ANÁLISIS DEL MODELO PLANTEADO POR LA UNIVERSIDAD DE TULSA APLICADO A UNA MUESTRA DE POZOS CON SISTEMA DE LEVANTAMIENTO ARTIFICIAL TIPO JET DE DISTINTOS CAMPOS DEL ORIENTE ECUATORIANO

TRABAJO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEOS

BÁRBARA LIZBETH PINTO VERGARA barbara.pinto@epn.edu.ec JUAN JOSÉ ZAMBRANO SEVILLA juan.zambrano02@epn.edu.ec

DIRECTOR: MSc. VINICIO RENÉ MELO GORDILLO vinicio.melo@epn.edu.ec

DECLARACIÓN

Nosotros, Bárbara Pinto, Juan José Zambrano, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

BÁRBARA PINTO VERGARA

JUAN JOSÉ ZAMBRANO SEVILLA

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Bárbara Lizbeth Pinto Vergara y Juan José Zambrano Sevilla, bajo mi supervisión.

MSc. VINICIO MELO G. DIRECTOR DE TESIS

AGRADECIMIENTOS

A mi ma, gracias por tus buenos consejos y ejemplo de perseverancia. Gracias por motivarme a ser la mejor versión de mí misma, por apoyarme y motivarme a nunca rendirme y por nunca dudar de mis capacidades.

A mis amigos, en especial a Juan, Kathya y Cristopher, gracias por hacer de este tiempo compartido uno del cual me llevaré las mejores amistades.

A Juan José, por su apoyo y acompañamiento en este, nuestro trabajo.

A mi universidad, la Escuela Politécnica Nacional, por brindarme la oportunidad de adquirir todo el conocimiento necesario y de conocer excelentes amigos y maestros.

Al MSc. Ing. Vinicio Melo, por su apoyo y guía a lo largo de todo el camino no solo en este trabajo, sino también por impartirnos su conocimiento a lo largo de la carrera.

A Sertecpet, por su invaluable apoyo y facilidades brindadas que hicieron posible el desarrollo de este trabajo.

Bárbara

Agradezco a mis padres, Mónica y Ramiro, por su apoyo en todo momento y todo aspecto de mi vida. A mis hermanos Mónica Alejandra y Pablo Andrés, por su aliento y compañía. A mi familia en general, a quiénes debo tanto.

Agradezco a mis amigos en general, quienes me han empujado a ser quién soy y estar donde estoy, mencionando de forma especial a Lino, Eliezer, Slater y Sebastián, porque siempre han estado a lo largo de los años.

A mi amiga y compañera de tesis, Barbara Pinto, por su apoyo a lo largo de la carrera, por su amistad, por su paciencia, por el equipo que somos.

A la Escuela Politécnica Nacional, y cada uno de sus profesores que a su manera y con su metodología aportaron en mi formación.

Al Msc. Ing. Vinicio Melo, por todo su apoyo en el proceso del proyecto de titulación. Por compartir sus conocimientos con vocación, por sus enseñanzas y consejos no solo para mi vida profesional, sino para mi vida personal también

Juan José

DEDICATORIA

A mí, por todo el esfuerzo, sacrificio y dedicación invertidos a lo largo de la carrera.

A mi ma, por ser mi guía y mi apoyo constante a lo largo de toda la carrera y de mi vida. Siempre has sido y siempre eres mi heroína. Te Amo.

A Carlii, por ser mi cómplice y apoyo en todo este camino. Gracias por tus palabras de ánimo, por tu ayuda y por siempre estar a mi lado en todo.

A mi Alexei y a mi Azúcar, por acompañarme siempre en las noches de desvelo y estar siempre a mi lado.

Bárbara

A mis amados padres Mónica y Ramiro, a quienes les debo todo.

A mi familia en general, hermanos, abuelos, tíos, primos, que a lo largo de mi vida todos han aportado y me han apoyado para llegar hasta aquí.

A cada uno de mis amigos que se han hecho presentes y me han acompañado en el camino.

Juan José

DECLARACIÓN	. II
CERTIFICACIÓN	
AGRADECIMIENTOS	IV
DEDICATORIA	. V
RESUMEN XI	
CAPÍTULO 1 DESCRIPCIÓN GENERAL DE LA CUENCA ORIENTE	. 1
1.1 DESCRIPCIÓN GENERAL DE LA CUENCA ORIENTE	. 1
1.2 CARACTERÍSTICAS DEL CAMPO AUCA	. 2
1.2.1 HISTORIA DEL CAMPO AUCA	. 4
1.2.2 LITOLOGÍA DEL CAMPO AUCA	. 5
1.3 CARACTERÍSTICAS DEL CAMPO SACHA	. 5
1.3.1 HISTORIA DEL CAMPO SACHA	. 5
1.3.2 LITOLOGÍA DEL CAMPO SACHA	. 6
1.4 CARACTERÍSTICAS DEL CAMPO PUCUNA	. 7
1.4.1 HISTORIA DEL CAMPO PUCUNA	. 7
1.4.2 LITOLOGÍA DEL CAMPO PUCUNA	. 8
1.5 CARACTERÍSTICAS DEL CAMPO ARMADILLO	. 8
1.5.1 HISTORIA DEL CAMPO ARMADILLO	. 9
1.5.2 ESTRUCTURA DEL CAMPO ARMADILLO	. 9
CAPÍTULO 2 DESCRIPCIÓN DE LOS DIFERENTES SISTEMAS DE	
ВОМВЕО	10
2.1 LEVANTAMIENTO ARTIFICIAL	10
2.2 TIPOS DE LEVANTAMIENTO ARTIFICIAL	10
2.2.1 LEVANTAMIENTO POR EMPUJE DE GAS (GAS LIFT)	10
2.2.2 BOMBEO ELECTRO SUMERGIBLE	10
2.2.3 BOMBEO MECÁNICO	11
2.2.4 BOMBEO TIPO JET	12
CAPÍTULO 3 DESCRIPCIÓN DEL MODELO DE LA UNIVERSIDAD DE	
TULSĄ	19
3.1 PRESENTACIÓN DEL MODELO	19
3.1.1 PROCEDIMIENTO DE CÁLCULO SEGÚN EL MÉTODO DE	LA
UNIVERSIDAD DE TULSA	19
3.2 RESULTADOS OBTENIDOS AL APLICAR EL MODELO DE LA	
UNIVERSIDAD DE TULSA A LOS POZOS DE MUESTRA	27
3.2.1 ESTUDIO DEL POZO I	28
3.2.2 ESTUDIO DEL POZO II	30
3.2.3 ESTUDIO DEL POZO III	33
3.2.4 ESTUDIO DEL POZO IV	35
3.2.5 ESTUDIO DEL POZO V	38
3.2.6 ESTUDIO DEL POZO VI	40
3.2.7 ESTUDIO DEL POZO VII	42
3.2.8 ESTUDIO DEL POZO VIII	45
3.2.9 ESTUDIO DEL POZO IX	47
3.2.10 ESTUDIO DEL POZO X	49
3.2.11 ESTUDIO DEL POZO XI	52
3.2.12 ESTUDIO DEL POZO XII	54
3.3 RESUMEN DE RESULTADOS	57
CAPITULO 4 CONCLUSIONES Y RECOMENDACIONES	57

4.1 CONCLUSIONES	57
4.2 RECOMENDACIONES	60
REFERENCIAS BIBLIOGRÁFICAS	60
ANEXOS	.64

LISTA DE GRÁFICAS

No.	DESCRIPCIÓN	PÁGINA
1.1	Columna estratigráfica de la Cuenca Oriente	3
1.2	Ubicación Geográfica del Campo Auca	4
1.3	Ubicación Geográfica del Campo Sacha	6
1.4	Ubicación Geográfica del Campo Pucuna	8
1.5	Ubicación Geográfica del Campo Armadillo	9
2.1	Esquema de Sistema de Levantamiento Gas Lift	11
2.2	Esquema de Sistema de Bombeo Electro Sumergible	12
2.3	Esquema de Sistema de Bombeo Mecánico	13
2.4	Esquema de Bomba Tipo Jet	13
2.5	Diagrama de la Bomba Tipo Jet	14
2.6	Diagrama de Bomba Fija	15
2.7	Diagrama de Bomba Libre	16
2.8	Sistema Abierto de Inyección de Fluido Motriz	17
2.9	Sistema Cerrado de Inyección de Fluido Motriz	18

LISTA DE CUADROS

No.	DESCRIPCIÓN	PÁGINA
3.1	Áreas de gargantas y toberas de bombas jet por fabricante	20
3.2	Datos Usados para el Pozo I	28
3.3	Resultados del Pozo I	29
3.4	Datos Usados para el Pozo II	30
3.5	Resultados del Pozo II	31
3.6	Datos Usados para el Pozo III	33
3.7	Resultados del Pozo III	33
3.8	Datos Usados para el Pozo IV	35
3.9	Resultados del Pozo IV	36
3.10	Datos Usados para el Pozo V	38
3.11	Resultados del Pozo V	38
3.12	Datos Usados para el Pozo VI	40
3.13	Resultados del Pozo VI	41
3.14	Datos Usados para el Pozo VII	43
3.15	Resultados del Pozo VII	43
3.16	Datos Usados para el Pozo VIII	45
3.17	Resultados del Pozo VIII	46
3.18	Datos Usados para el Pozo IX	47
3.19	Resultados del Pozo IX	48
3.20	Datos Usados para el Pozo X	50
3.21	Resultados del Pozo X	50
3.22	Datos Usados para el Pozo XI	52
3.23	Resultados del Pozo XI	53
3.24	Datos Usados para el Pozo XII	54
3.25	Resultados del Pozo XII	55
3.26	Resumen de Resultados	57

LISTA DE ANEXOS

No.	DESCRIPCIÓN	PÁGINA
1	Capturas del programa en MATLAB al realizar los cálculos de pozo de ejemplo de la Universidad de Tulsa presentado en el paper de Pedersen, P. (2006)	65
2	Capturas del programa en MATLAB al realizar los cálculos del pozo LAG-017 presentado en la tesis de Manoto M. (2019)	67
3	Capturas del programa en MATLAB al realizar los cálculos del Pozo I	69
4	Capturas del programa en MATLAB al realizar los cálculos del Pozo II	71
5	Capturas del programa en MATLAB al realizar los cálculos del Pozo III	73
6	Capturas del programa en MATLAB al realizar los cálculos del Pozo IV	75
7	Capturas del programa en MATLAB al realizar los cálculos del Pozo V	77
8	Capturas del programa en MATLAB al realizar los cálculos del Pozo VI	79
9	Capturas del programa en MATLAB al realizar los cálculos del Pozo VII	81
10	Capturas del programa en MATLAB al realizar los cálculos del Pozo VIII	83
11	Capturas del programa en MATLAB al realizar los cálculos del Pozo IX	85
12	Capturas del programa en MATLAB al realizar los cálculos del Pozo X	87
13	Capturas del programa en MATLAB al realizar los cálculos del Pozo XI	89
14	Capturas del programa en MATLAB al realizar los cálculos del Pozo XII	91
15	Link de descarga del programa desarrollado para el diseño de bomba por el método de la Universidad de Tulsa	93

RESUMEN

En el presente trabajo de titulación, se llevó a cabo un análisis de la eficiencia del modelo propuesto por la Universidad de Tulsa para el diseño de bombas tipo jet. Mediante la aplicación de este modelo, se determinó su idoneidad al analizar la potencia de bomba requerida para lograr el mismo caudal de producción. Este análisis se realizó en una muestra de 12 pozos pertenecientes a los campos Auca, Sacha, Pucuna y Armadillo, ubicados en el Oriente Ecuatoriano.

Para ello, se diseñó un programa en MATLAB que permite realizar los cálculos del modelo de Tulsa. Este programa solicita la información del pozo y provee los resultados del cálculo tanto de manera resumida como paso a paso. Una vez aplicado el modelo a los 12 pozos y comparado a sus condiciones actuales, se observó que en el 91% de los pozos analizados se obtiene una optimización de la potencia utilizada debido a que la presión de la bomba en superficie es menor para la misma tasa de producción. Este programa tiene un entorno amigable con el usuario y además es posible descargarlo e instalarlo en cualquier sistema operativo Windows 8 o superior.

Con los resultados obtenidos, se muestra que, al utilizar el modelo propuesto por la Universidad de Tulsa para el diseño y selección de bombas jet en pozos del Oriente Ecuatoriano, se mejoraría la eficiencia de estos lo cual se vería reflejado en menores costos de producción y por ende un mayor beneficio tanto ambiental como económico para el país.

CAPÍTULO 1

DESCRIPCIÓN GENERAL DE LA CUENCA ORIENTE

1.1 DESCRIPCIÓN GENERAL DE LA CUENCA ORIENTE

Esta se encuentra al este de los Andes ecuatorianos y cubre aproximadamente 100 000 km², es parte de las cuencas subandinas que comprenden desde Colombia hasta Argentina. La Cuenca Oriente ecuatoriana es de extremo interés en lo económico como en lo científico. La explotación de esta ha permitido recopilar una gran cantidad de información geológica y geofísica, esto ha permitido redefinir como fue la evolución geodinámica de la cuenca y sus sistemas depositacionales (Barragán, Baby, & Rivadeneira, 2004).

La Cuenca Oriente tiene una morfología caracterizada por sus relieves, esto la diferencia de otras cuencas ante-país andinas. Entre los relieves subandinos del levantamiento Napo, al NO, y de la Cordillera de Cutucú, al SO, desemboca en el mega-cono aluvial del Pastaza que se desarrolla actualmente hacia la Cuenca Marañon del Perú (Barragán, Baby, & Rivadeneira, 2004).

La formación de la cuenca oriental es el resultado de esfuerzos de compresión que han existido desde finales del período cretácico, lo que provocó el levantamiento de la Cordillera Real y la formación de la propia cuenca de transarco. Su deformación y configuración de campo son el resultado de la inversión tectónica de antiguas fallas normales asociadas con los sistemas de rift del Triásico y/o del Jurásico Inferior. Estas fallas presentan actualmente un fuerte buzamiento, principalmente en dirección N-S o NNE-SSO, y limitan tres corredores petroleros tectónicos con características propias, tales como: sistema Subandu (región occidental), corredor Sacha-Shushufindi. (región central), y el sistema Capiron-Tiputini (drama oriental). Un análisis detallado de las estructuras petroleras y no petroleras condujo a la identificación de tres fases de inversión tectónica que siguieron a la deposición de la caliza A a partir del Turoniano. A medida que comienza el desarrollo de la inversión tectónica, todas las estructuras de petróleo se acumulan en la cuenca (Barragán, Baby, & Rivadeneira, 2004).

La Cuenca Oriente está recubierta por sedimentos de las llanuras de piedemonte y por formaciones pantanosas de los complejos fluviales. Las formaciones aflorantes corresponden a las capas superiores, de edad Mio–Plioceno (Chambira y Curaray) y aluviones del Cuaternario. El clima es tropical y la pluviometría es elevada en todas partes. A través de los paisajes de piedemonte, los valles se abren y en las llanuras periandinas se extienden canales anastomosados o meándricos. Los valles están rellenados por numerosas terrazas areno–limosas (Winckell, Zabrowski, & Sourdat, 1997).

Las partes cretácicas de las Formaciones Napo, Hollín y Basal Tena en la Cuenca Oriente, Ecuador, están bien caracterizadas en modelos estratigráficos secuenciales. Sus elementos clásticos registran cambios eustáticos que ocurrieron globalmente entre las etapas del Aptiano y el Maastrichtiense, lo que refleja cambios paleogeográficos drásticos en plataformas marinas poco profundas, cambios de facies laterales y fluctuaciones de la costa de hasta 200 km (Barragán, Baby, & Rivadeneira, 2004).

En las cuencas de antepaís existe una disminución de la velocidad de sedimentación y la aparición de sedimentos marinos (Fm. Orteguaza, Eoceno-Oligoceno). Los estudios sedimentológicos de los depósitos fluviales del Neógeno en la Cuenca Oriente indican que el sistema fluvial se desarrolló desde una planicie aluvial (Formación Chalcana) hasta un sistema de abanico aluvial de piedemonte (Formación Chambira y Mera). Al mismo tiempo, el drenaje cambia del drenaje vertical original al drenaje horizontal. En el gráfico 1.1 se observa una representación de la columna estratigráfica de la Cuenca Oriente (Barragán, Baby, & Rivadeneira, 2004).

En el presente trabajo, se usaron datos de pozos de los Campos Auca, Sacha, Armadillo y Pucuna, por lo cual a continuación se realizará una descripción a detalle de cada uno de estos.

Los pozos se mantendrán como pozos anónimos para mantener la confidencialidad de los datos.

1.2 CARACTERÍSTICAS DEL CAMPO AUCA

El Campo Auca está ubicado en el Oriente Ecuatoriano, al occidente de la provincia de Orellana. Pertenece al corredor Sacha Shushufindi. Dista 260 km al occidente de la capital ecuatoriana y 10 km al sur de la frontera de Sucumbíos con Colombia. Este campo delimita al norte con los campos Sacha, Yuca, Culebra y Yulebra, al sur con Cononaco, al oriente con Pindo, Anaconda y Conda y al occidente con Puma (Gordon, 2013).

Tiene una longitud de 25 km y mide 4 km de ancho lo que resulta en un área aproximada de 17 000 acres. El gráfico 1.2 muestra la ubicación geográfica del Campo Auca el cual está delimitado por las siguientes coordenadas geográficas:

Latitud: entre 0 grados 34 segundos S y 0 grados 48 segundos S Longitud: entre 76 grados 50 segundos O y 76 grados 54 segundos O

GRÁFICO 1.1 COLUMNA ESTRATIGRÁFICA DE LA CUENCA ORIENTAL

Fuente: IRD- Petroproducción Elaboración: Departamento de Geociencias

GRÁFICO 1.2 UBICACIÓN GEOGRÁFICA DEL CAMPO AUCA

Fuente: Repositorio digital de la Universidad Central del Ecuador. Elaboración: Bustillos & Piedra

1.2.1 HISTORIA DEL CAMPO AUCA

El Campo Auca pertenece a la segunda gran etapa de la exploración petrolera del Oriente ecuatoriano. En esta etapa, que se desarrolla desde 1967 a 1972, se ratificó como cuenca petrolera y se descubrieron los campos Shushufindi, Sacha y Lago Agrio. Este descubrimiento permite establecer la mayor integración de reservas del Ecuador hasta ese entonces (Barragán, Baby, & Rivadeneira, 2004).

El primer pozo exploratorio del Campo Auca fue el pozo Auca 1, que fue completado el 30 de marzo de 1970 y llegó a 10 578 pies de profundidad. Produjo de la arena T, un crudo con 27° API, y de la arena Hollín, 30° API con una producción total que alcanzaba los 3 072 BPD (Barragan, Baby, & Rivadeneira, 2004).

En 1973 inicia el desarrollo del campo, y en 1975 ya cuenta con 24 pozos. Hasta el año 2010, el campo Auca contaba con 51 pozos productores, 2 pozos inyectores, 4 pozos reinyectores, 3 pozos abandonados y 13 pozos cerrados, lo que lleva a un total de 73 pozos perforados en el campo (Guerrero, Valencia, 2010).

En el año 2017, el campo Auca contaba con 63 mil barriles de petróleo de producción promedio por día.

1.2.2 LITOLOGÍA DEL CAMPO AUCA

Este campo cuenta con una estructura anticlinal simétrica. Tiene aproximadamente 23 km de largo, ensanchado en dirección norte e incluye las formaciones Hollín, T, U y Basal Tena principalmente. A continuación, una breve descripción de cada una de acuerdo con Baby, Barragán y Rivadeneira (2014) en su libro "La Cuenca Oriente: Geología y Petróleo".

Formación Hollín (principal y superior). Esta formación tiene un crudo mediano, entre 20 a 30° API, con porcentaje en peso de azufre que oscila entre el 0.5% y 1%. Tiene una porosidad aproximada de 14%.

Arenisca T. Formación que proporciona crudo de 20 a 30° API, con porcentaje en peso de azufre que oscila entre el 0.5% y 1%. Tiene una porosidad aproximada de 12%.

Arenisca U. Formación que proporciona crudo de 20 a 30° API, con porcentaje en peso de azufre mayor a 2%. Tiene una porosidad aproximada de 13%.

Arenisca Basal Tena. Formación que proporciona crudo de 20 a 30° API, con porcentaje en peso de azufre que oscila entre el 0.5% y 1%. Tiene una porosidad aproximada de 19%.

1.3 CARACTERÍSTICAS DEL CAMPO SACHA

El Campo Sacha está ubicado en el Oriente ecuatoriano, 50 km al sur de la ciudad de Lago Agrio en la provincia de Francisco de Orellana específicamente en el sector "Joya de los Sachas". Este tiene un área de aproximadamente 124 km² delimitado al norte por los campos Palo Rojo, Eno, Vista y Ron. Al sur delimita con Culebra y Yulebra. Al este se localizan Shushufindi y Aguarico y al oeste se encuentran Paraíso, Pucuna y Huachito (Petroamazonas, EP. 2017).

Las coordenadas del campo son: 00 grados 11 minutos 0 segundos a 00 grados 24 minutos 30 segundos latitud sur, y 76 grados 49 minutos 40 segundos a 76 grados 54 minutos 16 segundos longitud oeste. En el gráfico 1.3 se representa su ubicación.

1.3.1 HISTORIA DEL CAMPO SACHA

Este campo al igual que el Campo Auca antes descrito, formo parte de la segunda gran etapa exploratoria de la Cuenca Oriente. Esta etapa se desarrolló de 1976 a 1972. El pozo Sacha 1, el primero del campo, fue perforado en 1969, con torre helitransportable. Llegó a la profundidad de 10 160 pies y produjo petróleo de la formación Hollín, con 30° API a un caudal de 1 328 bpd. La producción del campo empezó en 1972, con 29 269 barriles por día y alcanzando un máximo de 117 591 barriles por día.

Actualmente se lo considera un campo maduro y su producción ha ido declinando hasta llegar a un promedio de aproximadamente 40 mil bpd (Baby et al, 2014).

GRÁFICO 1.3 UBICACIÓN GEOGRÁFICA DEL CAMPO SACHA

Fuente: Petroamazonas EP Elaboración: Petroamazonas EP

1.3.2 LITOLOGÍA DEL CAMPO SACHA

Este campo es un anticlinal de 4 km de ancho en el norte y aproximadamente 7 km de ancho en el sur, con una longitud de 33 km. A continuación, se detallan sus formaciones productoras.

Formación Hollín (principal y superior). De esta formación se recupera crudo mediano de entre 20 y 30° API, con un contenido de azufre dentro del rango de 0.5% a 1%. Presenta una porosidad de alrededor del 18%.

Arenisca T. De esta formación se recupera crudo mediano de entre 20 y 30° API, con un contenido de azufre dentro del rango de 0.5% a 1%. Presenta dos secciones principales, T Principal y T Superior. T principal tiene un espesor entre 20 y 90 pies, presentando su espesor más delgado en los extremos del anticlinal. T Superior por otra parte, tiene un espesor que varía entre 30 y 100 pies que se distribuye en el anticlinal de manera similar a T Principal.

Arenisca U. Presenta un crudo mediano de 20 a 30° API. Su contenido de azufre varía entre el 1% y 2% en peso y presenta también una porosidad promedio de 17%.

1.4 CARACTERÍSTICAS DEL CAMPO PUCUNA

El Campo Pucuna cuenta con un total de 12 pozos productores y un pozo reinyector con una producción de 2 300 BPPD aproximadamente.

Con datos del ARC (Agencia de regulación y control de energía y recursos no renovables) el campo Pucuna presentaba una producción aproximada de 3 500 BPPD.

En el gráfico 1.4 se ve representada la ubicación geográfica del campo Pucuna, el cual tiene las siguientes coordenadas:

Se encuentra en el sector longitud 76 grados 58 minutos 00 segundos oeste, 77 grados 04 minutos 00 segundos oeste, latitud 00 grados 13 minutos 00 segundos sur, 00 grados 18 minutos 00 segundos sur

1.4.1 HISTORIA DEL CAMPO PUCUNA

Descubierto en 1970 por TEXACO, se encuentra ubicado en Francisco de Orellana, en la zona centro oeste de la cuenca oriente, limita con los campos Sacha, Paraíso, Biguno, Huachito y con Palo Azul (Agila & Espinosa, 2012).

En un inicio fue considerado como económicamente no rentable. En posterior se realizaron campañas de investigación sísmica y se reinterpretó la sísmica del campo, con lo cual se decide perforar el pozo Pucuna - 02 que se lo considera rentable con una producción de 2 553 BPPD de 29° API de la arenisca Hollín, de la arenisca "T" se tiene una producción de 1 583 BPPD de 34° API y 120 BPPD de 29° API de la arenisca "U" (Agila & Espinosa, 2012).

GRÁFICO 1.4 UBICACIÓN GEOGRÁFICA DEL CAMPO PUCUNA

Fuente: Petroamazonas EP Elaboración: Departamento de cartografía

1.4.2 LITOLOGÍA DEL CAMPO PUCUNA

Este campo está conformado por un anticlinal asimétrico ligero que cuenta con su eje mayor orientado en dirección NE-SO, tiene un buzamiento que oscila en los 8 grados. Su longitud es de 4.5 km en el eje mayor. Se encuentra limitado por fallas inversas en el este como en el oeste (Agila & Espinosa, 2012).

1.5 CARACTERÍSTICAS DEL CAMPO ARMADILLO

Es parte del Bloque 55, en la provincia de Napo, limita con los campos Auca, Rumiyacu y Cononaco. En 1995 se perforó su primer pozo exploratorio el cual estuvo en producción desde 1997 hasta 1999 teniendo una tasa final de 408 BPPD (Sánchez, 2018).

En el gráfico 1.5 se ve representada la ubicación geográfica del campo Pucuna, el cual tiene las siguientes coordenadas: longitud 76 grados 50 minutos 38.333 segundos oeste, latitud 0 grados 55 minutos 32.275 segundos sur.

GRÁFICO 1.5 UBICACIÓN GEOGRÁFICA DEL CAMPO ARMADILLO

Fuente: Ministerio de Energía y Minas Elaboración: Ministerio de Energía y Minas

1.5.1 HISTORIA DEL CAMPO ARMADILLO

Descubierto en 1986 por medio de una interpretación sísmica realizada por el consorcio CEPE-TEXACO.

Su hallazgo fue confirmado por el departamento de Geofísica de Petroproducción, quienes elaboraron un mapa estructural de la Caliza "A" y así definieron el campo en dos estructuras, Armadillo Norte con un área de 1 544 acres y Armadillo Sur con un área de 2 354 acres (Suriaga & Sagnay, 2009).

1.5.2 ESTRUCTURA DEL CAMPO ARMADILLO

La estructura del campo Armadillo está conformada por un anticlinal asimétrico con dirección NE-SO el cual no tiene definido su cierre estructural, pero se muestra y estima el cierre a los 110 pies (Colala, 2020).

CAPÍTULO 2

DESCRIPCIÓN DE LOS DIFERENTES SISTEMAS DE BOMBEO

2.1 LEVANTAMIENTO ARTIFICIAL

Se conoce como levantamiento artificial a cualquier sistema instalado en el pozo el cual provee de energía al sistema para que los fluidos contenidos en el reservorio puedan ser recuperados en el separador. Los sistemas de levantamiento artificial se instalan en un pozo cuando la energía del sistema no es suficiente para llevar los fluidos producidos a superficie o a su vez cuando se desea elevar la tasa de producción (Melo, 2018).

2.2 TIPOS DE LEVANTAMIENTO ARTIFICIAL

Cada sistema de levantamiento artificial está diseñado para cumplir con la necesidad de cada sistema pozo-yacimiento de acuerdo con sus características tales como profundidad, tipo de fluido, geometría del pozo, entre otros.

2.2.1 LEVANTAMIENTO POR EMPUJE DE GAS (GAS LIFT)

El gas lift tiene como objetivo disminuir el peso de la columna de fluido mediante la variación de las propiedades físicas del mismo por medio del uso de la inyección de gas. Esta disminución en la densidad del fluido permite que más fluido del reservorio sea capaz de entrar a la tubería y en consecuencia que el caudal aumente (Melo, 2018).

El ingreso del gas inyectado al sistema se logra por medio de válvulas de Gas Lift las cuales permiten la comunicación entre el espacio anular y la tubería de producción (ESP OIL ENGINEERING CONSULTANTS, sf). En el gráfico 2.1 se tiene la representación de este proceso.

2.2.2 BOMBEO ELECTRO SUMERGIBLE

Este tipo de levantamiento consiste en una bomba multietapas operada por electricidad la cual mediante un impulsor rotativo causa que el fluido se mueva de forma radial, causando que de esta forma el fluido tenga dirección y sentido de movimiento. El número de etapas de la bomba determinará la potencia de esta.

Este tipo de levantamiento está recomendado para pozos los cuales tengan un alto caudal con alto corte de agua, así como un bajo contenido de gas para evitar

cavitación de la bomba (Melo, 2018). Este sistema está esquematizado en el gráfico 2.2 y consta de las siguientes partes:

GRÁFICO 2.1 ESQUEMA DEL SISTEMA DE LEVANTAMIENTO GAS LIFT

Fuente: ESP OIL ENGINEERING CONSULTANTS Elaboración: ESP OIL ENGINEERING CONSULTANTS

- > Superficie
 - ✓ Transformador.
 - ✓ Variador de frecuencia.
 - ✓ Tablero de control.
 - ✓ Caja de venteo.
 - ✓ Cable trifásico
 - ✓ Cabezal del pozo
- > Fondo
 - ✓ Sensor
 - ✓ Motor
 - ✓ Protector
 - ✓ Separador
 - ✓ Bomba
 - ✓ Cable de potencia

2.2.3 BOMBEO MECÁNICO

Es un método que consiste en una bomba de pistón instalada dentro del pozo la cual es activada por medio de energía de un motor en superficie transmitida por varillas hasta el pistón de la bomba. Este tipo de levantamiento es el más común en el mundo y es usado en pozos que tienen petróleo con un alto grado API y a profundidades someras. El sistema consiste en un balancín en superficie el cual permite el movimiento en un solo eje de las varillas, un motor el cual proporciona la

energía para mover al balancín, una bomba de pistón, una válvula viajera y una válvula fija en el fondo del pozo. El gráfico 2.3 muestra un modelo de bombeo mecánico (Melo, 2018).

GRÁFICO 2.2 ESQUEMA DEL SISTEMA DE BOMBEO ELECTROSUMERGIBLE

Fuente: plusformacion Elaboración: Bárbara Pinto y Juan José Zambrano

2.2.4 BOMBEO TIPO JET

El bombeo tipo jet es un tipo de levantamiento artificial que usa un fluido motriz, agua, petróleo o mezcla, y una bomba que proporciona energía al fluido producido por medio del efecto Venturi. Este efecto es causado por el cambio drástico de diámetros que tiene la garganta y la tobera de la bomba, lo cual convierte la energía cinética de un fluido inyectado desde superficie a energía potencial. Este sistema de levantamiento artificial está especialmente recomendado para pozos de los cuales se produce un fluido corrosivo o con componentes abrasivos, esto se debe a que la bomba carece de partes móviles, por lo que en ambientes hostiles tiene una mayor vida útil. En el gráfico 2.4 se visualiza el diagrama esquematizado de la bomba tipo jet (Melo, 2018).

El bombeo tipo jet tiene las siguientes partes:

Tanque de almacenamiento. En este tanque se almacena el fluido motriz que se bombeara al pozo para proporcionar energía al sistema. Motor. El motor está encargado de proporcionar energía a la bomba de superficie para que sea capaz de propulsar el fluido motriz.

GRÁFICO 2.3 ESQUEMA DEL SISTEMA DE BOMBEO MECÁNICO

Fuente: UNIVERSIDAD DE LOS ANDES. Elaboración: UNIVERSIDAD DE LOS ANDES.

Elaboración: Vinicio Melo

Bomba de superficie. Equipo que permite el bombeo del fluido motriz hacia el pozo. En el país se usan bombas tríplex, que son bombas que usan un émbolo, una camisa con sello metal-metal y una válvula tipo bola.

Separador. Este equipo es usado en centrales de tratamiento del crudo. Como su nombre lo indica, separa el crudo que llega de uno o distintos pozos en 2 fases (agua, gas-petróleo) o 3 fases (agua, gas y petróleo). Estos equipos pueden ser verticales u horizontales dependiendo del caudal que manejen. En el bombeo jet, este equipo tiene la función de separar el fluido que viene del pozo, es decir, la mezcla de fluido motriz con la producción del vacimiento para luego poder volver a inyectar el fluido motriz y así seguir recuperando crudo (Melo,2018).

Manifold o múltiple. Es una configuración de válvulas las cuales ayudan con el direccionamiento del crudo a conveniencia. Estas válvulas controlarán y direccionarán la producción del pozo hacia el separador de uno o de varios pozos a la vez. También se tiene un múltiple que direcciona el fluido motriz hacia varios pozos dependiendo de la necesidad de cada uno (Melo, 2018).

Válvula de control. Este elemento es usado para regular el caudal de fluido motriz hacia el pozo, este equipo permite tener un caudal constante de fluido motriz hacia la bomba aun así cuando exista variaciones en el caudal de producción. Esta válvula se la ubica en el cabezal del pozo. Las características de esta válvula, o el tipo de válvula que se emplee va a ser definido de acuerdo con el sistema de fluido motriz que se utilice y al tipo de bomba subsuperficial instalada (Melo, 2018).

Bomba de fondo. Es una bomba que no consta de partes móviles. Consiste en motor hidráulico, válvula motriz, bomba hidráulica, varilla de la válvula motriz, Varilla media, varilla inferior, tubo de balance y orificios (Melo, 2018). La bomba puede ser fija o móvil. Un diagrama de bomba tipo jet se muestra en el gráfico 2.5

GRÁFICO 2.5 DIAGRAMA DE LA BOMBA TIPO JET

Fuente: Folleto de Levantamiento Artificial Elaboración: Vinicio Melo

Bomba Fija

Este tipo de bomba está unida a la tubería, por lo tanto, para su recuperación es necesario recuperar la tubería. Existen varios tipos de bombas fijas y la mayoría se pueden usar para sistema de circulación de fluido motriz abierto y cerrado. A continuación, se detallan las más usadas (Melo, 2018). Se puede visualizar una representación de bomba fija en el gráfico 2.6

GRÁFICO 2.6 DIAGRAMA DE BOMBA FIJA

Fuente: Bomba fija en casing Elaboración: Miranda, E.

Bomba fija para tubería de revestimiento

Este tipo de bomba tiene un empaque recuperable en el extremo superior, lo que permite fijarla con la tubería de revestimiento. En sistemas abiertos, el fluido motriz y el fluido de producción se mezclan en el espacio anular y viajan a superficie. En sistemas cerrados es necesaria la instalación de una tubería adicional que puede ser concéntrica o paralela. Una instalación de tubería concéntrica consiste en una tubería dentro de la tubería de producción, lo cual formara 2 espacios anulares. El fluido motriz es inyectado por la tubería concéntrica y regresa por el espacio anular formado por esta y la tubería de producción, mientras que el fluido producido retorna por el espacio anular entre la tubería de revestimiento y la tubería de producción. Esta bomba permite manejar un volumen alto de producción (Melo, 2018).

Bomba fija inserta

En esta configuración se instala una tubería dentro de la tubería de producción. Los diámetros pueden variar entre ³/₄" y 1¹/₄" dependiendo del diámetro de la tubería de

producción. En sistema abierto, esta configuración permite que el fluido motriz, juntamente con el fluido producido retornen a superficie a través del espacio anular creado entre la tubería de inyección y la tubería de producción. (Miranda, 2015). Esta bomba está representada en el gráfico 2-6

Bomba fija para tubería de producción

La configuración de este sistema es parecida a la de la bomba fija inserta, sin embargo, con esta es posible manejar mayores unidades de bombeo. Cuando este tipo de bomba es instalado, es posible manejar únicamente sistema de inyección de fluido motriz abierto.

Bomba Libre

Este tipo de bombas no tienen ningún tipo de fijación a la tubería, por lo cual es posible la recuperación de estas mediante la circulación inversa de fluido motriz. Al tener esta ventaja, los costos por recuperación y mantenimiento de la bo0mba se reducen significativamente al igual que el tiempo empleado. A continuación, se describe los principales tipos (Melo, 2018). En el gráfico 2.7 se puede observar un diagrama de una bomba libre.

GRÁFICO 2.7 DIAGRAMA DE BOMBA LIBRE

Fuente: Sertecpet Elaboración: Sertecpet

Bomba libre para tubería de revestimiento

Esta bomba se puede usar tanto para sistema abierto como para sistema cerrado. En sistema abierto, La mezcla de fluidos retorna por el espacio anular mediante un niple de ventana en la parte inferior (Melo,2018). En el caso de un sistema cerrado, se usa una tubería paralela la cual permite el retorno del fluido motriz, mientras que la producción es recuperada por el espacio anular.

Bomba de tuberías paralelas

Esta bomba tiene instalada una tubería paralela a la tubería de producción, esta tubería paralela permite la recuperación de la bomba además del retorno de fluido

motriz en el caso de un sistema cerrado. Cuando se opera en este sistema, el gas del yacimiento es liberado a través del espacio anular, lo cual incrementa la eficiencia (Melo, 2018).

Sistemas de inyección de fluido motriz.

El fluido motriz usado en el bombeo jet es generalmente petróleo previamente separado del agua de formación, sin embargo, hay ocasiones en las que se usa agua como fluido motriz. Dependiendo de los requerimientos del pozo, se usará un sistema de inyección que permita que el fluido motriz y el fluido producido del yacimiento se mezclen o se mantengan separados. Existen 2 tipos de configuraciones (Melo, 2018).

Sistema abierto de inyección de fluido motriz

En este tipo de configuración para bombeo jet, el fluido motriz y el fluido producido se mezclan dentro de la bomba y se los recupera en superficie, se llevan al separador donde se dividirá el agua de la mezcla gas-petróleo o se separarán los 3 fluidos. Por último, el petróleo y el agua se envían por separado a tanques de almacenamiento donde uno de los dos (dependiendo cual se seleccione) será usado de nuevo como fluido motriz (Melo, 2018).

En el caso de que el agua sea el fluido motriz seleccionado, se deberá añadir lubricantes, anticorrosivos y demás productos para preservar la vida útil del sistema en general (Melo, 2018). En el gráfico 2.8 se tiene un esquema de un sistema abierto de inyección de fluido motriz.

GRÁFICO 2.8 SISTEMA ABIERTO DE INYECCIÓN DE FLUIDO MOTRIZ

Fuente: Repositorio digital de la Universidad Autónoma de México. Elaboración: Pérez, J.

Sistema cerrado de inyección de fluido motriz

En este sistema, el fluido motriz no se mezclará con el fluido producido del yacimiento, sino que proporcionará energía a la bomba de fondo y retornará a superficie. Para esto es necesario una tubería adicional por donde el fluido pueda retornar a superficie sin mezclarse con la producción, además de una herramienta conocida como Cámara de Fondo (Melo, 2018). En el gráfico 2.9 se tiene un esquema de un sistema cerrado de inyección de fluido motriz.

El fluido de potencia más usado cuando se aplica este sistema es el agua debido a su alta disponibilidad y bajo costo. Sin embargo, al usar agua como fluido motriz esta debe ser tratada previa a la inyección, se debe agregar anticorrosivos, lubricantes y demás químicos para evitar desgaste prematuro del sistema (Melo, 2018).

La principal ventaja del uso de este sistema es que permite la medición exacta del fluido producido.

GRÁFICO 2.9 SISTEMA CERRADO DE INYECCIÓN DE FLUIDO MOTRIZ

Fuente: Repositorio digital de la Universidad Autónoma de México. Elaboración: Pérez, J.

CAPÍTULO 3

DESCRIPCIÓN DEL MODELO DE LA UNIVERSIDAD DE TULSA

Este modelo fue desarrollado en la Universidad de Tulsa en Oklahoma en 1988 por Bahoua Jiao mediante el uso de una mezcla de aire y agua como fluido de producción y agua como fluido motriz, a 3 000 psi y 1 200 psi respectivamente. Se realizaron 676 pruebas de baja presión y 373 pruebas con altas presiones, en estas últimas se utilizó fluido desde 200 a 3 000 psi con caudales de 200 a 860 bls/d mientras que el aire se bombeo en caudales desde 0 a 185 Mft3/d y las presiones de descarga oscilaron entre 800 a 2 000 psi (Manoto, 2019).

Los principales datos recuperados de este modelo experimental fueron las presiones de succión y descarga y la presión y caudal del fluido motriz (Pedersen, 2006).

Este modelo, en comparación con su antecesor, el modelo de Petrie, Wilson y Smart, únicamente difiere en los coeficientes adimensionales de pérdida de presión en la tobera y pérdida de presión en la garganta, que se representan como Kn y Ktd respectivamente (Jiao, 1988).

3.1 PRESENTACIÓN DEL MODELO

Este modelo busca predecir el recobro de presión N como función de la relación adimensional de flujo de masa (Manoto, 2019).

$$N = \frac{P_D - P_S}{P_N - P_D} \tag{3.1}$$

A continuación, se presentará el modelo en unidades de campo.

3.1.1 PROCEDIMIENTO DE CÁLCULO SEGÚN EL MÉTODO DE LA UNIVERSIDAD DE TULSA

Para este método, se necesitarán los siguientes datos obtenidos del diseño mecánico del pozo, pruebas de laboratorio y pruebas de presión. Estos datos deben estar en unidades de campo para poder aplicarlos directamente en las correlaciones.

- ✓ Profundidad de la bomba (ft)
- ✓ Diámetro exterior del casing (pg)
- ✓ Diámetro interior del casing (pg)
- ✓ Diámetro exterior del tubing (pg)
- ✓ Diámetro interior del tubing (pg)

- ✓ Diámetro exterior de las juntas del tubing (pg)
- ✓ Temperatura de fondo (°F)
- ✓ Temperatura de cabeza (°F)
- ✓ Presión de succión (psi)
- ✓ Presión de cabeza (psi)
- ✓ Tasa de producción (bl/día)
- ✓ Corte de agua
- ✓ GOR (PCŠ/bl)✓ API (°API)
- ✓ Gradiente del agua de formación (psi/ft)
 ✓ Viscosidad del agua (cP)
- Viscosidad del petróleo (cP)
 Gradiente del petróleo (psi/ft)
- ✓ Presión de operación asumida (psi)

Adicional a estos datos, se necesitará las áreas de la tobera y garganta (AN y AT) brindados por el fabricante de la bomba. Estas áreas se obtienen de las siguientes tablas del cuadro 3.1:

	Cla	aw		_		Ko	be		
G	arganta	Tobera			G	Garganta		Tobera	
No.	Área	No.	Área		No. Área		No.	No. Área	
А	0.0046	1	0.0018		1	0.0060	1	0.0024	
В	0.0072	2	0.0030		2	0.0077	2	0.0031	
С	0.0104	3	0.0038		3	0.0100	3	0.0040	
D	0.0142	4	0.0054		4	0.0129	4	0.0052	
Е	0.0187	5	0.0074		5	0.0167	5	0.0067	
F	0.0239	6	0.0094		6	0.0215	6	0.0086	
G	0.0311	7	0.0108		7	0.0278	7	0.0111	
Н	0.0376	8	0.0122		8	0.0359	8	0.0144	
I	0.0447	9	0.0148		9	0.0464	9	0.0186	
J	0.0526	10	0.0175		10	0.0599	10	0.0240	
K	0.0654	11	0.0239		11	0.0774	11	0.0310	
L	0.0796	12	0.0311		12	0.1000	12	0.0400	
М	0.0957	13	0.0450		13	0.1292	13	0.0517	
Ν	0.1190	14	0.0658		14	0.1668	14	0.0668	
0	0.1445	15	0.0851		15	0.2154	15	0.0863	
Ρ	0.1763	16	0.1251		16	0.2783	16	0.1114	
Q	0.2154	17	0.1552		17	0.3594	17	0.1439	
R	0.2593	18	0.1950		18	0.4642	18	0.1858	
S	0.3127	19	0.2464		19	0.5995	19	0.2400	
Т	0.3760	20	0.3119		20	0.7743	20	0.3100	
U	0.4515	21	0.3821		21	1.0000			
V	0.5426				22	1.2916			
W	0.6520				23	1.6681			

CUADRO 3.1 ÁREA DE GARGANTA Y DE TOBERA

CONTINUACIÓN CUADRO 3.1 ÁREA DE GARGANTA Y DE TOBERA

24 2.1544

Guiberson						
Garganta Tobera						
No.	No. Área		Área			
0	0.0044	DD	0.0016			
0	0.0071	CC	0.0028			
0	0.0104	BB	0.0038			
1	0.0143	А	0.0055			
2	0.0189	A+	0.0075			
3	0.0241	В	0.0095			
4	0.0314	B+	0.0109			
5	0.0380	С	0.0123			
6	0.0452	C+	0.0149			
7	0.0531	DD	0.0177			
8	0.0661	Е	0.0241			
9	0.0804	F	0.0314			
10	0.0962	G	0.0452			
11	0.1195	Н	0.0661			
12	0.1452	I	0.0855			
13	0.1772	J	0.1257			
14	0.2165	Κ	0.1590			
15	0.2606	L	0.1963			
16	0.3127	М	0.2463			
17	0.3750	Ν	0.3117			
18	0.4513	Ρ	0.3848			
19	0.5424					
20	0.6518					

National						
G	arganta	Tobera				
No.	Área	No.	Área			
1	0.0064	1	0.0024			
2	0.0081	2	0.0031			
3	0.0104	3	0.0039			
4	0.0131	4	0.0050			
5	0.0167	5	0.0064			
6	0.0212	6	0.0081			
7	0.0271	7	0.0103			
8	0.0346	8	0.0131			
9	0.0441	9	0.0167			
10	0.0562	10	0.0212			
11	0.0310	11	0.0271			
12	0.0910	12	0.0346			
13	0.1159	13	0.0441			
14	0.1476	14	0.0562			
15	0.1879	15	0.0715			
16	0.2392	16	0.0910			
17	0.3046	17	0.1159			
18	0.3878	18	0.1476			
19	0.4938	19	0.1879			
20	0.6287	20	0.2392			

Fuente: Melo, 2014 Levantamiento Artificial Elaboración: Bárbara Pinto y Juan José Zambrano 1. Se selecciona el tipo de sistema de bombeo tipo jet

Sistema abierto o sistema cerrado

2. Se calcula G_S, el gradiente del fluido que ingresa a la bomba

$$G_s = f_w * G_w + (1 - f_w) * G_o$$
(3.2)

 f_w : Fracción de agua.

 G_w : Gradiente del agua.

*G*_o: Gradiente del petróleo.

3. Se calcula A_{CM}, área mínima de la garganta para evitar cavitación:

$$A_{cm} = 80 * \left[\frac{1}{691} * \sqrt{\frac{G_s}{P_s}} + \left(\frac{(1 - f_w) * GOR}{24650 * P_s} \right) \right]$$
(3.3)

 P_s : Presión de succión.

GOR: Relación gas-petróleo.

4. Se selecciona un valor de A_N y A_T que cumpla con:

$$(A_T - A_N) > A_{CM} \tag{3.4}$$

 A_T : Área de la garganta. A_N : Área de la tobera.

5. Se calcula R, la relación adimensional entre la garganta y la tobera:

$$R = \frac{A_T}{A_N} \tag{3.5}$$

- 6. Se asume P_T, un valor de presión de operación en superficie:
- 7. Se calcula la presión y el caudal en la tobera:

$$P_n = P_T + (G_N * L) + (P_{FN})_{estimado}$$
(3.6)

$$Q_N = 832 * A_N * \sqrt{\frac{P_N - P_S}{G_N}}$$
(3.7)

- G_N : Gradiente del fluido en la tobera.
- *L*: Profundidad de la bomba.
- P_N : Presión en la tobera.

El termino P_{FN} se refiere a la pérdida de presión en la tubería debido a la fricción. Este factor tiene dependencia directa con el corte de agua, la viscosidad del fluido, y la longitud del tubing. El valor de P_{FN (estimado)} es usualmente el 1% del valor de P_n.

8. Se calcula las pérdidas de presión por fricción del fluido motriz que circula en la tubería de inyección:

$$v = 0.01191 * \frac{Q_N}{\phi_{int_{tubing}}}$$
(3.8)

$$\rho_{osc} = \frac{141.5}{131.5 + ^{\circ}API} \tag{3.9}$$

$$T_{prom} = \frac{T_{cabeza} + T_{fondo}}{2} \tag{3.10}$$

$$\rho_o = \frac{\rho_{os}}{\frac{1+\frac{p_{os}}{1+\frac{p_{os}$$

Con estos datos se calcula el Numero de Reynolds:

$$N_{Re} = 7.742 * 10^3 * \frac{\nu * \phi_{int_{tubing}}}{\frac{\bar{\mu}}{\bar{\rho}}}$$
(3.12)

 $\bar{\mu}$: viscosidad promedio del fluido.

Si es que se tiene flujo laminar ($N_{Re} < 2\ 100$), entonces se usa las siguientes ecuaciones+}

$$f = \frac{64}{N_{Re}}$$

$$P_{FN} = 7.95 * 10^{-6} * \frac{\bar{\mu} * L * Q_N}{\left(\phi_{int_{tubing}}\right)^4}$$
(3.13)

f : factor de fricción.

P_{FN}: Perdidas de presión por fricción.

Si es que se tiene flujo turbulento ($N_{Re} \ge 2$ 100), entonces se usa las siguientes ecuaciones:

$$f = 0.0361 * \frac{\left(\frac{\bar{\mu}}{\bar{\rho}}\right)^{0.21}}{(d*\nu)^{0.21}}$$
(3.14)

$$11.46 * 10^{-6} * \rho_0 * L * f * \frac{(Q_N)^2}{\left(\phi_{int_{tubing}}\right)^5}$$
(3.15)

9. Se calcula la presión con la que el fluido motriz entra a la tobera:

$$P_n = P_T + (G_N * L) + P_{FN}$$
(3.16)

10. Se calcula el caudal de fluido motriz en la tobera:

$$Q_N = 832 * A_N * \sqrt{\frac{P_N - P_S}{G_N}}$$
 (3.17)

11. Se calcula el caudal de descarga:

 $P_{FN} =$

$$Q_D = Q_S + Q_N \tag{3.18}$$

12. Se calcula el gradiente de presión del fluido de descarga:

$$G_D = \frac{G_N Q_N + G_S Q_S}{Q_D} \tag{3.19}$$

13. Se calcula el corte de agua en el fluido de descarga:

$$f_{wd} = f_w * \frac{Q_S}{Q_D} \tag{3.20}$$

 Q_D : Caudal de descarga.

14. Se calcula la relación gas-liquido GLR:

$$GLR = \frac{Q_S * (1 - f_w) * GOR}{Q_D}$$
(3.21)

15. Se calcula las pérdidas por fricción en la tubería de producción.

Caso I. GLR ≤10

$$v = 0.01191 * \frac{Q_N}{\left(\phi_{int_{casing}}\right)^2 - \left(\phi_{ext_{tubing}}\right)^2}$$
(3.22)
$$N_{Re} = 7.742 * 10^3 * \frac{v * \left(\phi_{int_{casing}} - \phi_{ext_{tubing}}\right)}{\frac{\bar{\mu}}{\bar{\rho}}}$$

~

 $\phi_{int_{casing}}$: Diámetro interior del casing. $\phi_{ext_{tubing}}$: Diámetro exterior del tubing.

Flujo turbulento (N_{Re} >2 100):

(3.23)

$$e = \frac{\phi_{int_{casing}} - \phi_{juntas_{tubing}}}{\phi_{int_{casing}} - \phi_{ext_{tubing}}}$$
(3.24)

$$f = 0.0361 * \frac{\left(\frac{\overline{\mu}}{\overline{\rho}}\right)^{0.21}}{\left(\left(\phi_{int_{casing}} - \phi_{ext_{tubing}}\right) * v\right)^{0.21}}$$
(3.25)

$$\mu_D = (1 - f_w) * \mu_o + f_w * \mu_w$$
(3.26)

$$\bar{\gamma} = \frac{G_D}{0.433} \tag{3.27}$$

$$P_{FD}$$

$$=\frac{11.46*10^{-6}*\bar{\gamma}*L*f*(Q_{D})^{2}}{\left(\phi_{int_{casing}}-\phi_{ext_{tubing}}\right)*\left(\left(\phi_{int_{casing}}\right)^{2}-\left(\phi_{ext_{tubing}}\right)^{2}\right)^{2}*\left(\frac{\phi_{int_{casing}}}{\phi_{int_{casing}}-\phi_{ext_{tubing}}}\right)^{0.1}*(1+1.5*e^{2})^{0.25}$$
(3.28)

 $\phi_{juntas_{tubing}}$: Diámetro de las juntas del tubing.

 μ_D : Viscosidad del fluido de descarga.

 μ_w : Viscosidad del agua.

 μ_o : Viscosidad del petróleo.

 $\bar{\gamma}$: Gradiente del fluido.

 P_{FD} : Perdidas de presión por fricción en el fluido de descarga.

Flujo laminar ($N_{Re} \le 2 \ 100$):

$$e = \frac{2 * \phi_{juntas}{}_{tubing}}{\phi_{int}{}_{casing} - \phi_{ext}{}_{tubing}}$$
(3.29)

$$P_{FD} = \frac{7.95 * 10^{-6} * \mu * L * Q_D * \left(\frac{\emptyset_{int_{casing}}}{\emptyset_{int_{casing}} - \emptyset_{ext_{tubing}}}\right)^{0.1}}{\left(\emptyset_{int_{casing}} - \emptyset_{ext_{tubing}}\right) * \left(\left(\emptyset_{int_{casing}}\right)^2 - \left(\emptyset_{ext_{tubing}}\right)^2\right)^2 * (1 + 1.5 * e^2)}$$
(3.30)

$$P_D = G_D * L + P_{FD} + P_{wh} (3.31)$$

 P_D : Presión de descarga. P_{wh} : Presión de cabeza.
Caso II. GLR >10:

Para calcular la presión de descarga P_D en el caso de que GLR sea igual o mayor a 10 PCS/bl, se aplica el método para calcular la presión final de Hagerdorn y Brown.

16. Se establece el coeficiente adimensional de pérdida en la tobera:

Este coeficiente se lo toma de la tesis de la Universidad de Tulsa de donde se obtuvo el modelo.

17. Se calcula el coeficiente de pérdida de presión en la garganta y en el difusor:

$$R_p = \frac{P_D}{P_N} \tag{3.32}$$

$$K_{TD} = 0.1 + 3.67 * 10^{-3} * R_p^{-2.33} * GLR^{0.63} * R^{0.33}$$
(3.33)

18. Se calcula la tasa adimensional de flujo másico:

$$Q_G = \frac{Q_S * GLR}{1000}$$
(3.34)

$$M = \frac{Q_S + 0.2178 * Q_G}{Q_N} \tag{3.35}$$

 Q_G : Caudal de gas.

19. Se calcula los parámetros adimensionales B y C necesarios para el cálculo de la recuperación de presión adimensional en el paso 20:

$$B = 2R * \left[\frac{(1 - 2R) * (M^2 * R^2)}{(1 - R)^2} \right]$$
(3.36)

$$C = R^2 * (1+M)^2 \tag{3.37}$$

M: Flujo másico adimensional.

20. Se calcula la recuperación de presión adimensional:

$$H = \frac{B - (1 - K_{TD}) * C}{(1 + K_N) - B + (1 - K_{TD}) * C}$$
(3.38)

(0.40)

21. Se recalcula la presión en la tobera:

$$P'_{N} = \frac{P_{D} - P_{S}}{H} + P_{D}$$
(3.39)

22. Se recalcula la presión de succión de la bomba:

$$P'_{S} = P_{D} - H * (P'_{N} - P_{D})$$
(3.40)

23. Se recalcula la presión de operación de la bomba en superficie:

$$P'_{T} = P'_{N} - G_{N} * L + P_{FN}$$
(3.41)

24. Se calcula el caudal de succión de la bomba en el que empieza la cavitación:

$$Q_{SC} = Q_S * \frac{A_T - A_N}{A_{CM}}$$
(3.42)

25. Se calcula la eficiencia de la bomba

$$E = M * H \tag{3.43}$$

26. Se calcula la potencia de la bomba en superficie:

$$HP = 1.7 * 10^{-5} * Q_N * P'_T \tag{3.44}$$

3.2 RESULTADOS OBTENIDOS AL APLICAR EL MODELO DE LA UNIVERSIDAD DE TULSA A LOS POZOS DE MUESTRA.

El modelo presentado anteriormente fue aplicado a una muestra de 12 pozos de diferentes campos del oriente ecuatoriano. Todos los pozos de la muestra actualmente utilizan el sistema de levantamiento artificial por bomba jet con el modelo tradicional.

En los siguientes cálculos, se utilizó la presión actual con la que están operando los pozos como punto de comparación para observar si se puede optimizar la producción mediante la aplicación del modelo propuesto por la Universidad de Tulsa. Por medidas de confidencialidad, no se divulgará el nombre real de los pozos y se los numerará del 1 al 12.

Se diseñó un programa en MATLAB para aplicar el modelo de la Universidad de Tulsa. Este programa solicita los datos del pozo y realiza los cálculos mostrados anteriormente. Además, tiene la opción de mostrar las ecuaciones utilizadas y el resultado a detalle de cada paso.

Este programa, conjuntamente con un breve manual de usuario, está disponible para su libre descarga, uso e instalación en el enlace y código QR presentado en el Anexo No.15.

En el diseño de este programa, se realizaron cálculos para comprobar su correcto funcionamiento. Estos cálculos se basaron en el pozo de la tesis de la Universidad

de Tulsa por Jiao, B. Este fue presentado con detalle en el paper de Pedersen, P. También se realizaron cálculos del pozo LAG-017 presentados en la tesis de Manoto, M. Al realizar los cálculos con el programa, se obtuvo una diferencia de 2 HP en la potencia de la bomba de superficie en ambos casos, lo cual representa un error del 2.2% y del 2.7%, respectivamente. Los cálculos realizados para el pozo de la Universidad de Tulsa y el pozo LAG-017 se presentan en los anexos 1 y 2, respectivamente.

3.2.1 ESTUDIO DEL POZO I

Los datos de este pozo, utilizados para aplicar el modelo de la Universidad de Tulsa se presentan en la siguiente tabla:

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	10050	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{intcasing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{int}{}_{casing}$	2.992	pg
OD juntas tubing	Ø _{juntas} tubing	4.5	pg
Temperatura de fondo	T _{fondo}	228	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	901	psi
Presión de cabeza	Pwh	30	psi
Tasa de producción	Qs	510	bpd
Corte de agua	fw	0.29	
GOR	GOR	147.17	PCS/bl
Gravedad API	API	16.7	API
Gradiente agua formación	Gw	0.42	psi/ft
Viscosidad del agua	μ_w	0.262	cP
Viscosidad del petróleo	μ_o	4.255	cP
Gradiente petróleo	Go	0.3736	psi/ft
Presión de operación	Pt	3333.3	psi
Área tobera (tablas)	An	0.0122	pg ²
Área garganta (tablas)	At	0.0311	pg ²

CUADRO 3.2 DATOS USADOS PARA EL POZO I

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

Después de cargar los datos a la aplicación, presentes en el anexo 3, se obtuvo los siguientes resultados presentados en el cuadro 3.3

CUADRO 3.3 RESULTADOS DEL POZO I

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección	_	Sistema	_
I	del fluido motriz		Abierto	-
2	Cálculo del gradiente del fluido de	Gs	0.387	psi/ft
	entrada a la bomba		0.007	po#rt
3	Cálculo del área anular mínima de la	Acm	0.0176	pg ²
	garganta para evitar cavitación		Áraaa	10
4	Comprobación que los valores de $\Delta T_{\rm V} \Delta N_{\rm cumplon}$ que $(\Delta T_{\rm c} \Delta N)_{\rm S} \Delta cm$	(A⊤-A _N)>Acm	Areas	-
	Cálculo de la relación adimensional		Validas	
5	entre el área de la tobera y el área	R	0.392	-
	de la garganta			
6	Se asume un valor de presión de	D	2222.2	noi
6	operación en la bomba de superficie	Pt	3333.3	psi
7	Cálculo de la presión y la tasa de	Pn	7017.80	psi
/	fluido motriz en la tobera	Qn	1298.8	bpd
		V	1.728	ft/s
		ρ _{osc}	0.954	g/cm ³
	Cálculo de las párdidas de presión	Tprom	169	°F
8	en la tubería de fluido motriz	ρο	0.906	g/cm ³
		NRe	8524.836	-
		f	0.0353	-
		PFn	25.977	psi
9	Cálculo de la presión y la tasa de	Pn	7062.003	psi
	fluido motriz en la tobera	Qn	1303.483	bpd
10	Cálculo del caudal de descarga	QD	1813.483	bpd
11	Cálculo del gradiente del fluido de	Gn	0.3774	psi/ft
	descarga			•
12	Calculo del corte de agua en el fluido	f _{wD}	0.0815	-
12	Cálculo do la rolación das líquido	CLP	20.385	PCS/bl
13	Calculo de la relación gas-líquido	GLK	29.305	ft/s
		NRo	3642.00	-
			0.639	-
14	Cálculo de las pérdidas de presión	f	0.033	
17	en la tubería de descarga		3 0424	сР
		γ Υ	0.8715	-
			5 584	nsi
15	Cálculo de la presión de descarga	<u>Р</u> р	3828 306	psi
10	Se toma el valor del coeficiente de		0020.000	
16	pérdida en la tobera, según el	KN	0.04	-
	método de la U Tulsa			
47	Cálculo del coeficiente de pérdida	Rp	0.542	-
17	en la garganta y el difusor	K _{TD}	0.194	-
40	Cálculo de la tasa de flujo másico,	Qg	53.29	MPCS/d
١ð	adimensional	М	0.4	-

No.	Descripción del cálculo	Símbolo	Valor	Unidad
10	Cálculo de los parámetros	В	0.798	-
19	adimensionales B y C	С	0.301	-
20	Cálculo de la recuperación de presión adimensional	Н	0.729	-
21	Re-cálculo de la presión en la tobera	P'n	7842.202	psi
22	Re-cálculo de la presión de succión de la bomba	P's	901	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	4113.5	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q_{sc}	544.67	bpd
25	Cálculo de la eficiencia de la bomba	E	0.291	-
26	Cálculo de la potencia de la bomba en superficie	HP	101.28	HP

CONTINUACIÓN CUADRO 3.3 RESULTADOS DEL POZO I

Elaboración: Bárbara Pinto y Juan José Zambrano

Como se observa en el cuadro antes presentado, la presión de operación de la bomba de superficie recalculada da un valor de 4 113.5 psi, cuando la presión de superficie actual es de 3 333.3 psi. Es por esto que la aplicación de este modelo no es recomendable en este pozo.

3.2.2 ESTUDIO DEL POZO II

Los resultados de este pozo, utilizados para aplicar el modelo de la Universidad de Tulsa se presentan en el cuadro 3.4

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9837.93	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{intcasing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{intcasing}$	2.992	pg
OD juntas tubing	Ø _{juntas} tubing	4.5	pg
Temperatura de fondo	Tfondo	222	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	470	psi
Presión de cabeza	Pwh	30	psi
Tasa de producción	Qs	209	bpd
Corte de agua	fw	0.85	
GOR	GOR	592.75	PCS/bl
Gravedad API	API	27	API

CUADRO 3.4 DATOS USADOS PARA EL POZO II

Dato	Símbolo	Valor	Unidad
Gradiente agua formación	Gw	0.42	psi/ft
Viscosidad del agua	μ_w	0.272	сP
Viscosidad del petróleo	μ_o	1.332	сP
Gradiente petróleo	Go	0.343	psi/ft
Presión de operación	Pt	3000	psi
Área tobera (tablas)	An	0.0239	pg ²
Área garganta (tablas)	At	0.0526	pg ²

CONTINUACIÓN CUADRO 3.4 DATOS USADOS PARA EL POZO II

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

Después de cargar los datos a la aplicación, esto se observa en el anexo 4, se obtuvo los siguientes resultados presentados en el cuadro 3.5

No	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del fluido motriz	-	Sistema Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.408	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.0105	pg²
4	Comprobación que los valores de AT y AN cumplan que (AT-AN)>Acm	(A⊤- Aℕ)>Acm	Áreas válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de la garganta	R	0.454	-
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3000	psi
7	Cálculo de la presión y la tasa de	Pn	6323.935	psi
	fluido motriz en la tobera	Qn	2592.855	bpd
		V	3.449	ft/s
		Posc	0.892	g/cm ³
	Céleule de les nérdides de presién en	Tprom	166	°F
8	Calculo de las perdidas de presión en	ρο	0.848	g/cm ³
		NRe	50908.838	-
		f	0.0243	-
		P _{Fn}	65.206	psi
0	Cálculo de la presión y la tasa de	Pn	6321.967	psi
9	fluido motriz en la tobera	Qn	2592.419	bpd
10	Cálculo del caudal de descarga	Q_{D}	2801.419	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.349	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.0634	-
13	Cálculo de la relación gas-líquido	GLR	6.633	PCS/bl

CUADRO 3.5 RESULTADOS POZO II

,		
	RESULIADOS	
	NEODEL ADOO	

No	Descripción del cálculo	Símbolo	Valor	Unidad
		V	1.229	ft/s
		NRe	16834.238	-
	Cálcula da los nárdidos do presión en	е	0.639	-
14	Calculo de las perdidas de presión en	f	0.0306	-
	la luberta de descarga	μD	0.217	cP
		Ý	0.806	-
		Pfd	8.749	psi
15	Cálculo de la presión de descarga	PD	3473.149	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	K _N	0.04	-
17	Cálculo del coeficiente de pérdida en	Rp	0.549	-
17	la garganta y el difusor		0.137	-
10	Cálculo de la tasa de flujo másico,		18.58	MPCS/d
10	adimensional	М	0.0822	-
19	Cálculo de los parámetros	В	0.909	-
15	adimensionales B y C	С	0.241	-
20	Cálculo de la recuperación de presión adimensional	Н	1.562	-
21	Re-cálculo de la presión en la tobera	P'n	5395.408	psi
22	Re-cálculo de la presión de succión de la bomba	P's	470	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	2068.135	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q _{sc}	570.049	bpd
25	Cálculo de la eficiencia de la bomba	E	0.128	-
26	Cálculo de la potencia de la bomba en superficie	HP	101.532	HP

En este pozo se usó una bomba Jet Claw 11J, con la cual se obtuvo resultados favorables debido a que la actual presión de operación de la bomba de superficie para el fluido motriz de este pozo es de 3 000 psi. Aplicando el método de la Universidad de Tulsa, la presión recalculada de la bomba de superficie es de 2 068.135 psi para el mismo caudal de producción, lo cual significa una menor potencia y por lo tanto menores costos de operación tanto en equipos como en recursos.

En este trabajo se usó solamente bombas Jet Claw debido a que son las más usadas en el país, sin embargo, la bomba Guiberson E-7, con área de tobera igual

a 0.0239 pg² y área de garganta igual a 0.0526 pg² también cumple con la relación de áreas igual a 0.454 y podría ser usada como sustituto a la bomba Jet Claw 11J.

3.2.3 ESTUDIO DEL POZO III

Los datos de este pozo, utilizados para aplicar el modelo de la Universidad de Tulsa se presentan en el cuadro 3.6

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9217	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{int casing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{int casing}$	2.992	pg
OD juntas tubing	$\phi_{juntas}{}_{tubing}$	4.5	pg
Temperatura de fondo	T _{fondo}	214	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	412.13	psi
Presión de cabeza	Pwh	70	psi
Tasa de producción	Qs	91	bpd
Corte de agua	fw	0.1	
GOR	GOR	136	PCS/bl
Gravedad API	API	30.4	API
Gradiente agua formación	Gw	0.423	psi/ft
Viscosidad del agua	μ_w	0.285	cP
Viscosidad del petróleo	μ_o	1.883	cP
Gradiente petróleo	Go	0.339	psi/ft
Presión de operación	Pt	3000	psi
Área tobera (tablas)	An	0.0122	pg ²
Área garganta (tablas)	At	0.0311	pg ²

CUADRO 3.6 DATOS USADOS PARA EL POZO III

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

A continuación, en el cuadro 3.7 se presentan los resultados a detalle de la aplicación del método, se lo puede revisar en el anexo 5.

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del fluido motriz	-	Sistema Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.348	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.00492	pg²

CUADRO 3.7 RESULTADOS POZO III

,		
	7 DEALU TADA	
CONTINUACIC	INCOULIAD	JU I UZU II

No.	Descripción del cálculo	Símbolo	Valor	Unidad
Λ	Comprobación que los valores de AT y	(A⊤-	Áreas	
4	AN cumplan que (AT-AN)>Acm	A _N)>Acm	válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de	R	0.392	-
	la garganta			
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3000	psi
7	Cálculo de la presión y la tasa de fluido	Pn	6069.049	psi
	motriz en la tobera	Qn	1310.128	bpd
8	Calculo de las perdidas de presion en	V	1.743	ft/S
	la tuberia de fiuldo motriz	ρ _{osc}	0.874	g/cm ³
•	Cálculo de las pérdidas de presión en	l prom	162	°F
8	la tubería de fluido motriz	ρο	0.832	g/cm ³
		NRe	17850.156	-
8	Cálculo de las pérdidas de presión en	t –	0.0303	-
	la tuberia de fluido motriz	PFn	19.0674	psi
9	Cálculo de la presión y la tasa de fluido	Pn	6110.672	psi
	motriz en la tobera	Qn	1314.939	bpd
10	Cálculo del caudal de descarga	QD	1405.939	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.34	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.00647	-
13	Cálculo de la relación gas-líquido	GLR	7.922	PCS/bl
		V	0.617	ft/s
		NRe	5862.66	-
	Cálcula da las párdidas da presián an	е	0.639	-
14	La tuboría do doscargo	f	0.0382	-
	la luberta de descarga	μ _D	1.696	сP
		Ý	0.785	-
		P _{FD}	2.51	psi
15	Cálculo de la presión de descarga	PD	3207.218	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-
47	Cálculo del coeficiente de pérdida en la	Rp	0.524	-
17	garganta y el difusor	KTD	0.144	-
40	Cálculo de la tasa de flujo másico,	Qg	11.138	MPCS/d
18	adimensional	M	0.071	-
10	Cálculo de los parámetros	В	0.785	-
19	adimensionales B y C	С	0.176	-
20	Cálculo de la recuperación de presión adimensional	Н	1.275	-
21	Re-cálculo de la presión en la tobera	P'n	5398.532	psi

No.	Descripción del cálculo	Símbolo	Valor	Unidad
22	Re-cálculo de la presión de succión de la bomba	P's	412.13	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	2287.60	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q_{sc}	349.388	bpd
25	Cálculo de la eficiencia de la bomba	E	0.0906	-
26	Cálculo de la potencia de la bomba en superficie	HP	56.825	HP

CONTINUACIÓN CUADRO 3.7 RESULTADOS POZO III

Elaboración: Bárbara Pinto y Juan José Zambrano

Para este pozo se utilizó una bomba Jet Claw de geometría 8G, tras aplicar el método de la Universidad de Tulsa se obtiene que en este caso si es recomendable aplicar este modelo ya que la presión de operación de la bomba de superficie que se obtiene, 2 287.6 psi, es menor que la presión de operación de la bomba de superficie que superficie que está trabajando actualmente en este pozo.

3.2.4 ESTUDIO DEL POZO IV

La información correspondiente a este pozo, la cual fue empleada en la implementación del modelo de la Universidad de Tulsa, se muestra en el cuadro 3.8

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9431	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{int}{}_{casing}$	6.276	pg
OD tubing	ϕ_{ext} tubing	2.85	pg
ID tubing	$\phi_{intcasing}$	2.441	pg
OD juntas tubing	Ø _{juntas tubing}	4.5	pg
Temperatura de fondo	T _{fondo}	220	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	647	psi
Presión de cabeza	Pwh	200	psi
Tasa de producción	Qs	300	bpd
Corte de agua	fw	0.12	
GOR	GOR	119.5	PCS/bl
Gravedad API	API	30.4	API
Gradiente agua formación	Gw	0.425	psi/ft
Viscosidad del agua	μ_w	0.275	сP
Viscosidad del petróleo	μ_o	1.639	cP
Gradiente petróleo	Go	0.350	psi/ft

CUADRO 3.8 DATOS USADOS PARA EL POZO IV

Dato	Símbolo	Valor	Unidad		
Presión de operación	Pt	3250	psi		
Área tobera (tablas)	An	0.0148	pg ²		
Área garganta (tablas)	At	0.0376	pg ²		

CONTINUACIÓN CUADRO 3.8 DATOS USADOS PARA EL POZO IV

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

A continuación, en el cuadro 3.9 se presentan los resultados a detalle de la aplicación del método, lo cual se encuentra visible en el anexo 6

CUADRO 3.9 RESULTADOS POZO IV

No.	Descripción del cálculo	Símbolo	Valor	Unidad
	Selección del método de invección		Sistema	
1	del fluido motriz	-	Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.359	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.0122	pg²
4	Comprobación que los valores de AT y AN cumplan que (AT-AN)>Acm	(A _T - A _N)>Acm	Áreas válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de la garganta	R	0.393	-
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3250	psi
7	Cálculo de la presión y la tasa de	Pn	6491.681	psi
	fluido motriz en la tobera	Qn	1589.84	bpd
		V	3.177	ft/s
		Posc	0.874	g/cm ³
		T _{prom}	165	°F
8	calculo de las perdidas de presión	ρο	0.831	g/cm ³
		NRe	30457.139	-
		f	0.0270	-
		PFn	70.944	psi
0	Cálculo de la presión y la tasa de	Pn	6485.65	psi
9	fluido motriz en la tobera	Qn	1589.02	bpd
10	Cálculo del caudal de descarga	QD	1889.02	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.352	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.019057	-
13	Cálculo de la relación gas-líguido	GLR	16.7007	PCS/bl

,		
LUNTINUALIUN	CUADRU 3.9 RESULTADUS	

No.	Descripción del cálculo	Símbolo	Valor	Unidad
		V	0.071958	ft/s
		NRe	9679.8	-
	Cálquia da las párdidas da prosián	e 0.51839	-	
14	en la tubería de descarga	f	0.038142	-
	en la luberta de descarga	μ _D	1.4476	cP
		Ý	0.81303	-
		Pfd	2.7892	psi
15	Cálculo de la presión de descarga	PD	3522.9	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	ΚN	0.04	-
17	Cálculo del coeficiente de pérdida	Rp	0.54319	-
17	en la garganta y el difusor	Ktd	0.16591	-
10	Cálculo de la tasa de flujo másico,	Q_g	31.548	MPCS/d
10	adimensional	М	0.19312	-
10	Cálculo de los parámetros	В	0.79058	-
13	adimensionales B y C	С	0.22056	-
20	Cálculo de la recuperación de presión adimensional	Н	1.053	-
21	Re-cálculo de la presión en la tobera	P'n	6263.9	psi
22	Re-cálculo de la presión de succión de la bomba	P's	647	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	3018.322	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q_{sc}	560.01	bpd
25	Cálculo de la eficiencia de la bomba	E	0.20336	-
26	Cálculo de la potencia de la bomba en superficie	HP	90.59	HP

En este pozo se utilizó una bomba Jet Claw 9H que logró resultados satisfactorios. Esto se debió a que la presión actual de operación de la bomba de superficie para el fluido motriz es de 3 250 psi. Al aplicar el método de la Universidad de Tulsa, se recalculó la presión de la bomba de superficie y se determinó que era de 3 018.322 psi para el mismo caudal de producción. Esto se traduce en una menor potencia requerida y, por lo tanto, en menores costos de operación tanto en equipos como en recursos.

3.2.5 ESTUDIO DEL POZO V

En el cuadro 3.10 se presentan los datos usados para el Pozo V

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9364	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{intcasing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{int_{casing}}$	2.992	pg
OD juntas tubing	$\phi_{juntas}{}_{tubing}$	4.5	pg
Temperatura de fondo	Tfondo	220	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	553.8	psi
Presión de cabeza	Pwh	100	psi
Tasa de producción	Qs	243	bpd
Corte de agua	fw	0.1	
GOR	GOR	150	PCS/bl
Gravedad API	API	25	API
Gradiente agua formación	Gw	0.44	psi/ft
Viscosidad del agua	μ_w	0.275	cP
Viscosidad del petróleo	μ_o	2.126	cP
Gradiente petróleo	Go	0.356	psi/ft
Presión de operación	Pt	3250	psi
Área tobera (tablas)	An	0.0108	pg ²
Área garganta (tablas)	At	0.0239	pg ²

CUADRO 3.10 DATOS USADOS PARA EL POZO V

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

En el cuadro 3.11 se plantean los resultados, presentes en el anexo 7, obtenidos al aplicar el método para este pozo.

CUADRO 3.11 RESULTADOS POZO V

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del		Sistema	_
I	fluido motriz	-	Abierto	-
2	Cálculo del gradiente del fluido de	Ga	0.264	nci/ft
2	entrada a la bomba	65	0.304	psi/it
2	Cálculo del área anular mínima de la	Acm	0.0114	ng ²
3	garganta para evitar cavitación	Acm	0.0114	ру
4	Comprobación que los valores de AT y	(A _T -	Áreas	
4	AN cumplan que (AT-AN)>Acm	A _N)>Acm	válidas	-

No.	Descripción del cálculo	Símbolo	Valor	Unidad
	Cálculo de la relación adimensional			
5	entre el área de la tobera y el área de la	R	0.451	-
	garganta			
6	Se asume un valor de presion de operación en la bomba de superficie	Pt	3250	psi
			6519.090	
7	Cálculo de la presión y la tasa de fluido	Pn	1	psi
	motriz en la tobera	Qn	1163.034 bpd 2 ft/s 0.904 g/cm³ 165 °F 0.860 g/cm³ 14497.14 - 0 - 0.0316 - 16.473 psi 6567.808 psi 1167.773 bpd 0.357 psi/ft 0.0172 - 23.253 PCS/bl	
		<u> </u>	2	
		V	1.547	ft/S
		ρ _{osc}	0.904	g/cm ³
	Cálcula da las nárdidas da nrasián en la	l prom	165	°F
8	Calculo de las perdidas de presion en la	ρο	0.860	g/cm ³
		NRe	14497.14	-
		f	0.0316	
			16 472	- nci
	Cálcula da la prosián y la taga da fluida	FFn D	6567 909	psi psi
9	Calculo de la presion y la tasa de lídido	F n	1167 772	psi bod
10		Qn	1/10/.772	bpd
10	Cálculo del caudal de descarga	QD	1410.773	υρα
11	descarga	GD	0.357	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.0172	-
13	Cálculo de la relación gas-líquido	GLR	23.253	PCS/bl
		V	0.619	ft/s
		NRe	5382.0488	-
	Cálcula da los párdidos da presión en la	е	0.639	-
14	Calculo de las perdidas de presión en la tubería de descarga	f	0.0389	-
	luberta de descarga	μD	1.918	сP
		Ý	0.825	-
		Pfd	2.748	psi
15	Cálculo de la presión de descarga	PD	3450.57	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-
47	Cálculo del coeficiente de pérdida en la	Rp	0.525	-
17	garganta y el difusor	Ктр	0.192	-
10	Cálculo de la tasa de flujo másico,	Qg	32.805	MPCS/d
18	adimensional	М	0.214	-
10	Cálculo de los parámetros	В	0.906	-
19	adimensionales B y C	С	0.301	-
20	Cálculo de la recuperación de presión adimensional	Н	1.113	-
21	Re-cálculo de la presión en la tobera	P'n	6051.67	psi

CONTINUACIÓN CUADRO 3.11 RESULTADOS POZO V

No.	Descripción del cálculo	Símbolo	Valor	Unidad
22	Re-cálculo de la presión de succión de la bomba	P's	553.8	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	2733.862	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Qsc	278.634	bpd
25	Cálculo de la eficiencia de la bomba	E	0.238	-
26	Cálculo de la potencia de la bomba en superficie	HP	60.303	HP

CONTINUACIÓN CUADRO 3.11 RESULTADOS POZO V

Elaboración: Bárbara Pinto y Juan José Zambrano

Para este pozo se utilizó una bomba Jet Claw 7F, la cual arrojó resultados positivos debido a que la presión actual de operación de la bomba de superficie para el fluido motriz es de 3 250 psi. Al aplicar el método de la Universidad de Tulsa, se recalculó la presión de la bomba de superficie a 2 733.862 psi para el mismo caudal de producción, lo que se traduce en una reducción de la potencia necesaria y, por ende, en una disminución de los costos operativos tanto en equipos como en recursos.

3.2.6 ESTUDIO DEL POZO VI

En el cuadro 3.12 se muestran los datos correspondientes a este pozo, que han sido utilizados para aplicar el modelo desarrollado por la Universidad de Tulsa.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	8468	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{int}{}_{casing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{int}{}_{casing}$	2.992	pg
OD juntas tubing	Ø _{juntas tubing}	4.5	pg
Temperatura de fondo	Tfondo	205	°F
Temperatura de cabeza	T _{cabeza}	120	°F
Presión de succión	Pwf	635.32	psi
Presión de cabeza	Pwh	100	psi
Tasa de producción	Qs	179	bpd
Corte de agua	fw	0.133	
GOR	GOR	136	PCS/bl
Gravedad API	API	30.8	API
Gradiente agua formación	Gw	0.44	psi/ft
Viscosidad del agua	μ_w	0.302	cP

CUADRO 3.12 DATOS USADOS PARA EL POZO VI

Dato	Símbolo	Valor	Unidad		
Viscosidad del petróleo	μ_o	1.316	сP		
Gradiente petróleo	Go	0.343	psi/ft		
Presión de operación	Pt	3250	psi		
Área tobera (tablas)	An	0.0108	pg ²		
Área garganta (tablas)	At	0.0239	pg ²		

CONTINUACIÓN CUADRO 3.12 DATOS USADOS PARA EL POZO VI

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

A continuación, en el cuadro 3.13 se presentan los resultados, demostrados en el anexo 8, obtenidos al aplicar el método.

CUADRO 3.13 RESULTADOS POZO VI

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del	_	Sistema	_
-	fluido motriz	-	Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.356	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.00748	pg²
4	Comprobación que los valores de AT y AN cumplan que (AT-AN)>Acm	(A⊤- Aℕ)>Acm	Áreas válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de la garganta	R	0.452	-
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3250	psi
7	Cálculo de la presión y la tasa de fluido	Pn	6099.1	psi
'	motriz en la tobera	Qn	1133.03	bpd
		V	1.507	ft/s
	Cálculo de las pérdidas de presión en la tubería de fluido motriz	Posc	0.872	g/cm ³
		Tprom	162.5	°F
8		ρο	0.830	g/cm ³
		NRe	22028.5	-
		f	0.0289	-
		PFn	12.5019	psi
0	Cálculo de la presión y la tasa de fluido	Pn	6147.6	psi
9	motriz en la tobera	Qn	1138.05	bpd
10	Cálculo del caudal de descarga	QD	1317.05	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.345	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.0180	-
13	Cálculo de la relación gas-líquido	GLR	16.0254	PCS/bl

No.	Descripción del cálculo	Símbolo	Valor	Unidad
		V	0.578	ft/s
		NRe	7836.9	-
		е	0.639	-
14	Calculo de las perdidas de presión en la	f	0.0360	-
	luberta de descarga	μD	1.146	сP
		Ý	0.797	-
		Pfd	1.933	psi
15	Cálculo de la presión de descarga	PD	3026.779	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-
17	Cálculo del coeficiente de pérdida en la	Rp	0.492	-
17	garganta y el difusor	Ktd	0.492	-
10	Cálculo de la tasa de flujo másico,	Q_g	21.106	MPCS/d
10	adimensional	М	0.161	-
10	Cálculo de los parámetros	В	0.905	-
19	adimensionales B y C	С	0.275	-
20	Cálculo de la recuperación de presión adimensional	Н	1.257	-
21	Re-cálculo de la presión en la tobera	P'n	4929.2	psi
22	Re-cálculo de la presión de succión de la bomba	P's	635	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P'_{t}	2031.365	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q _{sc}	313.237	bpd
25	Cálculo de la eficiencia de la bomba	E	0.203	-
26	Cálculo de la potencia de la bomba en superficie	HP	43.67	HP

CONTINUACIÓN CUADRO 3.13 RESULTADOS POZO VI

Para la aplicación del método de la Universidad de Tulsa se usó una bomba Jet Claw con una geometría 7F. Esto reflejo resultados favorables debido a que la presión de operación de la bomba de superficie en el pozo es actualmente de 3 250 psi, y la presión recalculada, para la misma tasa de producción es de 2 031.365 psi. Esto se vería reflejado como una ventaja al momento de aplicar el método en el este pozo, debido a que se necesitaría una menor potencia en la bomba de superficie y en consecuencia los costos de operación bajarían, dando así un mayor margen de ganancia.

3.2.7 ESTUDIO DEL POZO VII

En el cuadro 3.14 se exponen los datos de este pozo, los cuales se emplearon para aplicar el modelo estudiado.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9380	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	Ø _{intcasing}	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{int_{casing}}$	2.992	pg
OD juntas tubing	$\phi_{juntas}{}_{tubing}$	4.5	pg
Temperatura de fondo	T _{fondo}	214	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	392.64	psi
Presión de cabeza	Pwh	70	psi
Tasa de producción	Qs	105	bpd
Corte de agua	fw	0.11	
GOR	GOR	136	PCS/bl
Gravedad API	API	30.4	API
Gradiente agua formación	Gw	0.424	psi/ft
Viscosidad del agua	μ_w	0.285	cP
Viscosidad del petróleo	μ_o	2.133	сP
Gradiente petróleo	Go	0.339	psi/ft
Presión de operación	Pt	3500	psi
Área tobera (tablas)	An	0.0094	pg ²
Área garganta (tablas)	At	0.0187	pg ²

CUADRO 3.14 DATOS USADOS PARA EL POZO VII

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

En el cuadro 3.15 se visualizan los resultados, presentes en el anexo 9, obtenidos una vez aplicado el método.

CUADRO 3.15 RESULTADOS POZO VII

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del	_	Sistema	-
	fluido motriz		Abierto	
2	Cálculo del gradiente del fluido de	Gs	0.340	nci/ft
2	entrada a la bomba	03	0.549	psi/it
2	Cálculo del área anular mínima de la	Acm	0 00595	na ²
3	garganta para evitar cavitación	Acm	Acm 0.00585	pg−
1	Comprobación que los valores de AT y	(A _T -	Áreas	
4	AN cumplan que (AT-AN)>Acm	A _N)>Acm	válidas	-
	Cálculo de la relación adimensional entre			
5	el área de la tobera y el área de la	R	0.502	-
	garganta			
6	Se asume un valor de presión de	D.	2500	nai
6	operación en la bomba de superficie	Γt	3500	psi
7	Cálculo de la presión y la tasa de fluido	Pn	6619.2	psi
1	motriz en la tobera	Qn	1059.05	bpd

No.	Descripción del cálculo	Símbolo	Valor	Unidad
		V	1.409	ft/s
		Oosc	0.874	a/cm ³
		Torom	162	°F
8	Cálculo de las pérdidas de presión en la	00	0.832	a/cm ³
	tubería de fluido motriz	NRe	12738 1	
	-	f	0.0325	-
			13 611	nsi
	Cálculo de la presión y la tasa de fluido	P _n	6671.8	nsi
9	motriz en la tobera		1063.5	bpd
10	Cálculo del caudal de descarda		1168.5	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.340	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.00988	-
13	Cálculo de la relación gas-líquido	GLR	10.876	PCS/bl
		V	0.513	ft/s
		NRe	4301.5	-
		е	0.639	-
14	Cálculo de las pérdidas de presión en la	f	0.0408	-
	tuberia de descarga	μ _D	1.9012	cP
		Ý	0.786	-
		PFD	1.8851	psi
15	Cálculo de la presión de descarga	PD	3265.2	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de	K _N	0.04	-
	Cálculo del coeficiente de pérdida en la	Rn	0 489	_
17	darganta y el difusor	Кр	0.400	_
	Cálculo de la tasa de fluio másico		12 709	MPCS/d
18	adimensional	M	0 101	-
	Cálculo de los parámetros	B	1 0053	-
19	adimensionales B v C	C	0.306	-
20	Cálculo de la recuperación de presión adimensional	H	1.645	-
21	Re-cálculo de la presión en la tobera	P'n	5011.116	psi
22	Re-cálculo de la presión de succión de la bomba	P's	392.64	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	1839.312	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q _{sc}	167.124	Bpd
25	Cálculo de la eficiencia de la bomba	E	0.166	-
26	Cálculo de la potencia de la bomba en superficie	HP	36.947	HP

CONTINUACIÓN CUADRO 3.15 RESULTADOS POZO VII

Para el pozo VII se utilizó una bomba Jet Claw con una geometría 6E. Al analizar la presión de operación recalculada utilizando el modelo de la Universidad de Tulsa se obtiene una presión de 1 839.312 psi que al comparar con la presión de operación actual con la que están trabajando el pozo, 3 500 psi, se obtiene que el modeló utilizado en este trabajo es favorable ya que optimiza el proceso al conseguir la misma producción con una menor potencia en la bomba.

3.2.8 ESTUDIO DEL POZO VIII

A continuación, en el cuadro 3.16, se presentan los datos usados para la aplicación del modelo en este pozo.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9150	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	ϕ_{int}_{casing}	6.299	pg
OD tubing	$\phi_{ext}{}_{tubing}$	3.5	pg
ID tubing	$\phi_{int}{}_{casing}$	2.992	pg
OD juntas tubing	$\phi_{juntas}{}_{tubing}$	4.5	pg
Temperatura de fondo	Tfondo	230	°F
Temperatura de cabeza	T _{cabeza}	100	°F
Presión de succión	Pwf	375	psi
Presión de cabeza	Pwh	100	psi
Tasa de producción	Qs	165	bpd
Corte de agua	fw	0.1	
GOR	GOR	49.64	PCS/bl
Gravedad API	API	30	API
Gradiente agua formación	Gw	0.427	psi/ft
Viscosidad del agua	μ_w	0.259	cP
Viscosidad del petróleo	μ_o	3.159	сP
Gradiente petróleo	Go	0.348	psi/ft
Presión de operación	Pt	3600	psi
Área tobera (tablas)	An	0.0108	pg ²
Área garganta (tablas)	At	0.0239	pg ²

CUADRO 3.16 DATOS USADOS PARA EL POZO VIII

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

En el cuadro 3.17 se presentan los resultados, visibles en el anexo 10, obtenidos aplicando el modelo de la Universidad de Tulsa

|--|--|

No.	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del	_	Sistema	_
	fluido motriz	-	Abierto	-
2	Cálculo del gradiente del fluido de	Gs	0.356	nsi/ft
	entrada a la bomba	00	0,000	p0//1
3	Cálculo del área anular mínima de la	Acm	0.00815	pq ²
	garganta para evitar cavitacion	()	Á na a a	13
4	Comprobación que los valores de AT y	(A⊺-	Areas	-
	An cumpian que (AT-AN)>Acm	AN)>ACIII	validas	
5	entre el área de la tobera y el área de la	R	0 452	_
5	carcanta		0,432	-
	Se asume un valor de presión de			
6	operación en la bomba de superficie	Pt	3600	psi
-	Cálculo de la presión y la tasa de fluido	Pn	6720,225	psi
1	motriz en la tobera	Qn	1212,721	bpd
		V	1,613	ft/s
		ρ _{osc}	0,876	g/cm ³
		Tprom	165	°F
8	Calculo de las perdidas de presion en la	Po	0,833	g/cm ³
		NRe	9858,397	-
		F	0,0343	-
		P _{Fn}	18,390	psi
0	Cálculo de la presión y la tasa de fluido	Pn	6769,0374	psi
9	⁹ motriz en la tobera		1217,376	bpd
10	Cálculo del caudal de descarga	QD	1382,376	bpd
11	Cálculo del gradiente del fluido de	Gn	0 0/0	nci/ft
	descarga	O D	0,343	poi/it
12	Cálculo del corte de agua en el fluido de	fwD	0.0119	-
	descarga		5,5115	500/11
13	Cálculo de la relación gas-líquido	GLR	5,332	PCS/bl
		V	0,513	ft/s
		NRe	3431,244	-
	Cálculo de las pérdidas de presión en la	E	0,642	-
14	tubería de descarga	T	0,0428	-
		μο	2,846	СР
		Y D	0,806	-
45			2,687	psi
15	Calculo de la presión de descarga	PD	3298,761	psi
16	Se luma el valur del coenciente de	K.	0.04	
01	de la ITTulsa	rxn	0,04	-
	Cálculo del coeficiente de pérdida en la	Rn	0 487	
17	arganta v el difusor	Κ _{TD}	0 143	
	Cálculo de la tasa de fluio másico		7.37	MPCS/d
18	adimensional	M	0.137	-

No.	Descripción del cálculo	Símbolo	Valor	Unidad
10	Cálculo de los parámetros	В	0,905	-
19	adimensionales B y C	С	0,264	-
20	Cálculo de la recuperación de presión adimensional	Н	1,381	-
21	Re-cálculo de la presión en la tobera	P'n	5415,429	psi
22	Re-cálculo de la presión de succión de la bomba	P's	375	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	2246,392	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Qsc	264,971	bpd
25	Cálculo de la eficiencia de la bomba	E	0,189	-
26	Cálculo de la potencia de la bomba en superficie	HP	51,655	HP

CONTINUACIÓN CUADRO 3.17 RESULTADOS POZO VIII

En esté pozo se planteó una bomba Jet Claw de geometría 7F la cuál al aplicar el modelo se obtiene resultados que optimizarían la producción de este pozo, ya que actualmente la prisión de operación en la bomba de superficie es de 3 600 psi y al aplicar el modelo sería de 2 246,392 psi para obtener la misma producción.

3.2.9 ESTUDIO DEL POZO IX

En el cuadro 3.18 se presentan los datos utilizados para la aplicación del método.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9364	Ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{int}{}_{casing}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg
ID tubing	$\phi_{intcasing}$	2.992	pg
OD juntas tubing	Ø _{juntas} tubing	4.5	pg
Temperatura de fondo	Tfondo	220	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	305	psi
Presión de cabeza	Pwh	100	psi
Tasa de producción	Qs	243	bpd
Corte de agua	fw	0.1	
GOR	GOR	150	PCS/bl
Gravedad API	API	25	API
Gradiente agua formación	Gw	0.421	psi/ft
Viscosidad del agua	μ_w	0.275	cP

CUADRO 3.18 DATOS USADOS PARA EL POZO IX

Dato	Símbolo	Valor	Unidad				
Viscosidad del petróleo	μ_o	2.126	cP				
Gradiente petróleo	Go	0.356	psi/ft				
Presión de operación	Pt	3500	psi				
Área tobera (tablas)	An	0.0122	pg ²				
Área garganta (tablas)	At	0.0311	pg ²				

CONTINUACIÓN CUADRO 3.18 DATOS USADOS PARA EL POZO IX

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

En el cuadro 3.19 se presentan los resultados, demostrados en el anexo 11, obtenidos al aplicar el modelo de la Universidad de Tulsa.

CUADRO 3.19 RESULTADOS POZO IX

No	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del fluido motriz	-	Sistema Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.362	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.0165	pg²
4	Comprobación que los valores de AT y AN cumplan que (AT-AN)>Acm	(A⊤- A _N)>Acm	Áreas válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de la garganta	R	0.0392	-
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3500	psi
7	Cálculo de la presión y la tasa de fluido	Pn	6766.6	psi
'	motriz en la tobera	Qn	1367.3	bpd
		V	1.819	ft/s
	Cálculo de las pérdidas de presión en la	ρ _{osc}	0.904	g/cm ³
		Tprom	165	°F
8		ρο	0.860	g/cm ³
		NRe	17044.06	-
		f	0.0305	-
		P _{Fn}	22.08	psi
0	Cálculo de la presión y la tasa de fluido	Pn	6812.3	psi
9	motriz en la tobera	Qn	1372.2	bpd
10	Cálculo del caudal de descarga	QD	1615.2	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.357	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.0150	-
13	Cálculo de la relación gas-líguido	GLR	20.310	PCS/bl

,		
LONTINUALION	CUADRO 3 19	5 207018

No	Descripción del cálculo	Símbolo	Valor	Unidad
		v	0.706	ft/s
	Cálcula da las párdidas da presián en la	NRe	6161.8	-
14	tubería de descarda	е	0.639	-
	tubena de descarga	f	0.0378	-
		μD	1.917	cP
1/	Cálculo de las pérdidas de presión en la	Ý	0.824	-
	tubería de descarga	Pfd	3.497	psi
15	Cálculo de la presión de descarga	PD	3447.01	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	K _N	0.04	-
17	Cálculo del coeficiente de pérdida en la	Rp	0.506	-
17	garganta y el difusor	Ktd	0.188	-
18	Cálculo de la tasa de flujo másico,	Qg	32.805	MPCS/d
10	adimensional	M	0.182	-
19	Cálculo de los parámetros	В	0.787	-
10	adimensionales B y C	C	0.215	-
20	Cálculo de la recuperación de presión adimensional	Н	1.0474	-
21	Re-cálculo de la presión en la tobera	P'n	6446.9	psi
22	Re-cálculo de la presión de succión de la bomba	P's	305	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	3134.622	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q _{sc}	278.53	bpd
25	Cálculo de la eficiencia de la bomba	E	0.191	-
26	Cálculo de la potencia de la bomba en superficie	HP	81.246	HP

En el pozo IX se eligió una bomba Jet Claw de una geometría 8G. Con la cual se obtuvieron resultados que favorecen a la optimización de la producción del pozo, puesto que la potencia de la bomba en superficie sería menor al operar con una presión de 3 134.622 psi en lugar de los 3 500 psi actuales.

3.2.10 ESTUDIO DEL POZO X

En el cuadro 3.20 se presentan los datos utilizados para la aplicación del método.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	10179	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{int_{casing}}$	6.276	pg
OD tubing	$\phi_{ext_{tubing}}$	2.85	pg
ID tubing	$\phi_{int_{casing}}$	2.441	pg
OD juntas tubing	$\phi_{juntas}{}_{tubing}$	4.5	pg
Temperatura de fondo	T _{fondo}	222	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	757.864	psi
Presión de cabeza	Pwh	77	psi
Tasa de producción	Qs	397	bpd
Corte de agua	fw	0.39	
GOR	GOR	357.32	PCS/bl
Gravedad API	API	29.7	API
Gradiente agua formación	Gw	0.423	psi/ft
Viscosidad del agua	μ_w	0.272	cP
Viscosidad del petróleo	μ_o	0.939	cP
Gradiente petróleo	Go	0.331	psi/ft
Presión de operación	Pt	3200	psi
Área tobera (tablas)	An	0.0239	pg ²
Área garganta (tablas)	At	0.0526	pg ²

CUADRO 3.20 DATOS USADOS PARA EL POZO X

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

A continuación, se presentan los resultados obtenidos aplicando el método en el cuadro 3.20. Esto se puede revisar en el anexo 12.

CUADRO 3.21 RESULTADOS POZO X

No	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del		Sistema	
1	fluido motriz	-	Abierto	-
2	Cálculo del gradiente del fluido de	Ga	0.267	nci/ft
2	entrada a la bomba	05	0.507	psi/it
3	Cálculo del área anular mínima de la	٨cm	0.0172	ng ²
3	garganta para evitar cavitación	Acm	0.0172	Pg
Л	Comprobación que los valores de AT y	(A⊤-	Áreas	
4	AN cumplan que (AT-AN)>Acm	A _N)>Acm	válidas	-
	Cálculo de la relación adimensional			
5	entre el área de la tobera y el área de la	R	0.454	-
	garganta			
6	Se asume un valor de presión de	D.	3200	nei
0	operación en la bomba de superficie	Гt	5200	psi

No	Descripción del cálculo	Símbolo	Valor	Unidad
7	Cálculo de la presión y la tasa de fluido	Pn	6507.002 7	psi
	motriz en la tobera	Qn	2619.55	bpd
		V	5.236	ft/s
		ρ _{osc}	0.877	g/cm ³
	Cálculo do los párdidos do prosián on lo	Tprom	166	°F
8	calculo de las perdidas de presión en la tuboría do fluido motriz	ρο	0.834	g/cm ³
		NPo	87930.25	
		INILE	0	-
		f	0.0216	-
8	Cálculo de las pérdidas de presión en la tubería de fluido motriz	P _{Fn}	167.0251	psi
٩	Cálculo de la presión y la tasa de fluido	Pn	6405.0477	psi
3	motriz en la tobera	Qn	2596.218	bpd
10	Cálculo del caudal de descarga	QD	2993.218	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.336	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.0517	-
13	Cálculo de la relación gas-líquido	GLR	28.909	PCS/bl
	Cálculo de las pérdidas de presión en la tubería de descarga	V	1.140	ft/s
		NRe	26874.312	-
		е	0.518	-
14		f	0.0277	-
		μD	0.586	cP
		Ý	0.776	-
		Pfd	5.822	psi
15	Cálculo de la presión de descarga	PD	3503.433	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-
47	Cálculo del coeficiente de pérdida en la	Rp	0.547	-
17	garganta y el difusor	KTD	0.196	-
40	Cálculo de la tasa de flujo másico,	Qg	86.532	MPCS/d
10	adimensional	M	0.160	-
10	Cálculo de los parámetros	В	0.910	-
19	adimensionales B y C	С	0.277	-
20	Cálculo de la recuperación de presión adimensional	н	1.251	-
21	Re-cálculo de la presión en la tobera	P'n	5698.0484	psi
22	Re-cálculo de la presión de succión de la bomba	P's	757.0864	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	2493	psi

CONTINUACIÓN CUADRO 3.21 RESULTADOS POZO X

No	Descripción del cálculo	Símbolo	Valor	Unidad
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q_{sc}	659.409	bpd
25	Cálculo de la eficiencia de la bomba	ш	0.2	-
26	Cálculo de la potencia de la bomba en superficie	HP	122.256	HP

CONTINUACIÓN CUADRO 3.21 RESULTADOS POZO X

Elaboración: Bárbara Pinto y Juan José Zambrano

Para el pozo X se eligió una bomba Jet Claw de una geometría 11J. Con la cual se obtuvieron resultados que muestran una optimización de la producción del pozo utilizando el modelo de la Universidad de Tulsa, puesto que la potencia de la bomba en superficie sería menor al operar con una presión de 2 493 psi en lugar de los 3 200 psi actuales.

3.2.11 ESTUDIO DEL POZO XI

En el cuadro 3.22 se presentan los datos utilizados para la aplicación del método.

Dato	Símbolo	Valor	Unidad
Profundidad de la bomba	L	9420.44	ft
OD casing	$\phi_{ext_{casing}}$	7	pg
ID casing	$\phi_{intcasing}$	6.276	pg
OD tubing	$\phi_{ext}{}_{tubing}$	3.5	pg
ID tubing	$\phi_{intcasing}$	2.992	pg
OD juntas tubing	Ø _{juntas tubing}	4.5	pg
Temperatura de fondo	T _{fondo}	228	°F
Temperatura de cabeza	T _{cabeza}	110	°F
Presión de succión	Pwf	580	psi
Presión de cabeza	Pwh	250	psi
Tasa de producción	Qs	280	bpd
Corte de agua	fw	0.65	
GOR	GOR	92.92	PCS/bl
Gravedad API	API	18.2	API
Gradiente agua formación	Gw	0.417	psi/ft
Viscosidad del agua	μ_w	0.262	cP
Viscosidad del petróleo	μ_o	3.232	cP
Gradiente petróleo	Go	0.369	psi/ft
Presión de operación	Pt	3600	psi
Área tobera (tablas)	An	0.0122	pg ²
Área garganta (tablas)	At	0.0311	pg ²

CUADRO 3.22 DATOS USADOS PARA EL POZO XI

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

En el cuadro 3.23 se presenta los resultados obtenidos al aplicar el método. Lo que puede ser revisado en el anexo 13.

No	Descripción del cálculo	Símbolo	Valor	Unidad
1	Selección del método de inyección del fluido motriz	-	Sistema Abierto	-
2	Cálculo del gradiente del fluido de entrada a la bomba	Gs	0.40051	psi/ft
3	Cálculo del área anular mínima de la garganta para evitar cavitación	Acm	0.011285	pg²
4	Comprobación que los valores de AT y AN cumplan que (AT-AN)>Acm	(A⊤- Aℕ)>Acm	Áreas válidas	-
5	Cálculo de la relación adimensional entre el área de la tobera y el área de la garganta	R	0.39228	-
6	Se asume un valor de presión de operación en la bomba de superficie	Pt	3600	psi
7	Cálculo de la presión y la tasa de fluido	Pn	7012.403	psi
<u> </u>	motriz en la tobera	Qn	1338.931	bpd
		V	1.781	ft/s
	Cálculo de las pérdidas de presión en la tubería de fluido motriz	Posc	0.945	g/cm ³
		Tprom	169	°F
8		ρο	0.897	g/cm ³
		NRe	11453.992	-
		f	0.0332	-
		PFn	24.0778	psi
0	Cálculo de la presión y la tasa de fluido	Pn	7058.449	psi
9	motriz en la tobera	Qn	1343.714	bpd
10	Cálculo del caudal de descarga	QD	1623.714	bpd
11	Cálculo del gradiente del fluido de descarga	GD	0.374	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f _{wD}	0.112	-
13	Cálculo de la relación gas-líquido	GLR	5.607	PCS/bl
		V	0.712	ft/s
		NRe	4251.173	-
1/	Cálculo de las pérdidas de presión en	е	0.639	-
17	la tubería de descarga	f	0.0409	-
		μ _D	1.160	сP
		Ý	0.866	-
14	Cálculo de las pérdidas de presión en la tubería de descarga	P _{FD}	4.0365	psi
15	Cálculo de la presión de descarga	PD	3786.650	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-

CUADRO 3.23 RESULTADOS POZO XI

No	Descripción del cálculo	Símbolo	Valor	Unidad
17	Cálculo del coeficiente de pérdida en la	Rp	0.536	-
17	garganta y el difusor	Ktd	0.134	-
18	Cálculo de la tasa de flujo másico,	Qg	9.104	MPCS/d
10	adimensional	М	0.209	-
10	Cálculo de los parámetros	В	0.788	-
19	adimensionales B y C	С	0.225	-
20	Cálculo de la recuperación de presión	Ц	1 0516	_
20	adimensional		1.0010	_
21	Re-cálculo de la presión en la tobera	P'n	6836.102	psi
22	Re-cálculo de la presión de succión de	P'a	580	nsi
	la bomba	1 5		P01
23	Re-cálculo de la presión de operación	P't	3377.653	psi
	en la bomba de superficie			P 0.
	Cálculo de la tasa de flujo en la succión			
24	de la bomba a partir de la cual inicia la	Q_{sc}	468.939	bpd
	cavitación			
25	Cálculo de la eficiencia de la bomba	E	0.220	-
26	Cálculo de la potencia de la bomba en	НР	85 729	НР
20	superficie	1 11	00.729	1.11

CONTINUACIÓN CUADRO 3.23 RESULTADOS POZO XI

El pozo XI se lo trabajó con una bomba Jet Claw de una geometría 8G. El análisis de los resultados presentados al utilizar el modelo de la Universidad de Tulsa favorece ligeramente a la optimización de la producción, ya que la potencia de la bomba en superficie sería menor al operar con una presión de 3 377.653 psi en lugar de los 3 600 psi actuales.

3.2.12 ESTUDIO DEL POZO XII

En el cuadro 3.24 se presentan los datos utilizados para la aplicación del método.

00ADRO 3.24 DATOO 00ADC						
Dato	Símbolo	Valor	Unidad			
Profundidad de la bomba	L	8823	ft			
OD casing	$\phi_{ext_{casing}}$	7	pg			
ID casing	$\phi_{intcasing}$	6.276	pg			
OD tubing	$\phi_{ext_{tubing}}$	3.5	pg			
ID tubing	$\phi_{intcasing}$	2.992	pg			
OD juntas tubing	Ø _{juntas tubing}	4.5	pg			
Temperatura de fondo	Tfondo	221	°F			
Temperatura de cabeza	T _{cabeza}	110	°F			
Presión de succión	Pwf	1352	psi			
Presión de cabeza	Pwh	90	psi			
Tasa de producción	Qs	421	bpd			

CUADRO 3.24 DATOS USADOS PARA EL POZO XII

Dato	Símbolo	Valor	Unidad		
Corte de agua	fw	0.051			
GOR	GOR	229.05	PCS/bl		
Gravedad API	API	25.8	API		
Gradiente agua formación	Gw	0.419	psi/ft		
Viscosidad del agua	μ_w	0.273	cP		
Viscosidad del petróleo	μ_o	1.246	cР		
Gradiente petróleo	Go	0.343	psi/ft		
Presión de operación	Pt	3250	psi		
Área tobera (tablas)	An	0.0239	pg ²		
Área garganta (tablas)	At	0.0526	pg ²		

CONTINUACIÓN CUADRO 3.24 DATOS USADOS PARA EL POZO XII

Fuente: SERTECPET S.A.

Elaboración: Bárbara Pinto y Juan José Zambrano

A continuación, el cuadro 3.25 expone los resultados obtenidos al aplicar el modelo de la Universidad de Tulsa en el pozo XII. Lo cual se presenta en el anexo 14.

CUAL					
No	Descripción del cálculo	Símbolo	Valor	Unidad	
1	Selección del método de inyección del	_	Sistema	_	
	fluido motriz		Abierto		
2	Cálculo del gradiente del fluido de	Gs	0.347	nsi/ft	
	entrada a la bomba		0.011	P0#10	
3	Cálculo del área anular mínima de la	Acm	0.0125	na ²	
	garganta para evitar cavitación	, (6111	,	P9	
4	Comprobación que los valores de AT y	(A⊤-	Areas	-	
	AN cumplan que (AT-AN)>Acm	A _N)>Acm	válidas		
	Cálculo de la relación adimensional entre				
5	el área de la tobera y el área de la	R	0.454	-	
	garganta				
6	Se asume un valor de presión de	D,	3250	nei	
0	operación en la bomba de superficie	I t	5250	psi	
7	Cálculo de la presión y la tasa de fluido	Pn	6216.564	psi	
'	motriz en la tobera	Qn	2367.124	bpd	
		v	3.149	ft/s	
0	Cálculo de las pérdidas de presión en la	ρ _{osc}	0.899	g/cm ³	
0	tubería de fluido motriz	Tprom	165.5	°F	
		ρο	0.855	g/cm ³	
	Cálculo de los párdidos de presián en lo	NRe	50076.301	-	
8	Calculo de las perdidas de presión en la	f	0.0244	-	
		P _{Fn}	49.295	psi	
0	Cálculo de la presión y la tasa de fluido	Pn	6229.434	psi	
3	motriz en la tobera	Qn	2370.253	bpd	
10	Cálculo del caudal de descarga	QD	2791.253	bpd	

CUADRO 3.25 RESULTADOS POZO XII

No	Descripción del cálculo	Símbolo	Valor	Unidad
11	Cálculo del gradiente del fluido de descarga	GD	0.344	psi/ft
12	Cálculo del corte de agua en el fluido de descarga	f_{wD}	0.00769	-
13	Cálculo de la relación gas-líquido	GLR	32.785	PCS/bl
14	Cálculo de las pérdidas de presión en la tubería de descarga	V	1.225	ft/s
		NRe	18072.19 4	-
		е	0.639	-
		f	0.0302	-
		μ _D	1.184	сP
		Ý	0.794	-
		Pfd	7.560	psi
15	Cálculo de la presión de descarga	PD	3131.457	psi
16	Se toma el valor del coeficiente de pérdida en la tobera, según el método de la U Tulsa	KN	0.04	-
17	Cálculo del coeficiente de pérdida en la	Rp	0.502	-
	garganta y el difusor	K _{TD}	0.226	-
18	Cálculo de la tasa de flujo másico,	Q_{g}	91.512	MPCS/d
	adimensional	М	0.186	-
19	Cálculo de los parámetros	В	0.911	-
	adimensionales B y C	С	0.290	-
20	Cálculo de la recuperación de presión adimensional	Н	1.143	-
21	Re-cálculo de la presión en la tobera	P'n	4688.204	psi
22	Re-cálculo de la presión de succión de la bomba	P's	1352	psi
23	Re-cálculo de la presión de operación en la bomba de superficie	P't	1708.769	psi
24	Cálculo de la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación	Q _{sc}	965.933	bpd
25	Cálculo de la eficiencia de la bomba	E	0.212	-
26	Cálculo de la potencia de la bomba en superficie	HP	76.504	HP

CONTINUACIÓN CUADRO 3.25 RESULTADOS POZO XII

Para el pozo XII se trabajó una bomba Jet Claw con geometría 11J. Al analizar los datos obtenidos aplicando el modelo de la Universidad de Tulsa se obtiene resultados favorables, ya que la presión de operación de la bomba en superficie se ve disminuida de 3 250 psi a 1 708.769 psi. Esto manteniendo la misma tasa de producción.

3.3 RESUMEN DE RESULTADOS

En el cuadro 3.26 se muestra un resumen de los resultados de la aplicación del modelo a los 12 pozos de muestra. En este resumen se incluye datos como la geometría de bomba escogida.

N° Pozo	Geometría de bomba (actual)	Geometría de bomba (sugerida)	Presión de operación de bomba de superficie (actual) (psi)	Presión de operación de bomba de superficie (sugerida) (psi)	Recomendado
I	12L	8G	3 333.30	4 113.50	NO
II	12L	11J	3 000.00	2 068.13	SI
	11J	8G	3 000.00	2 287.60	SI
IV	12K	9H	3 250.00	3 018.32	SI
V	11K	7F	3 250.00	2 733.86	SI
VI	8H	7F	3 250.00	2 031.37	SI
VII	8G	6E	3 500.00	1 839.31	SI
VIII	9H	7F	3600.00	2 246.39	SI
IX	11K	8G	3 500.00	3 134.62	SI
Х	11J	11J	3 200.00	2 493.00	SI
XI	11J	8G	3 600.00	3 377.65	SI
XII	11K	11J	3 250.00	1 708.77	SI

CUADRO 3.26 RESUMEN DE RESULTADOS

Elaboración: Bárbara Pinto y Juan José Zambrano

CAPÍTULO 4

CONCLUSIONES Y RECOMENDACIONES

4.1 CONCLUSIONES

Una vez que se han analizado los resultados de los 12 pozos con el modelo de la Universidad de Tulsa por medio de una comparación de igualdad de sus producciones con su funcionamiento actual, al analizar la eficiencia de ambos procesos, se puede establecer lo siguiente:

• El modelo de la Universidad de Tulsa considera diferentes factores de análisis lo que da un resultado completo y permite un análisis detallado de las características de la bomba a seleccionar y su producción.

- El modelo de la Universidad de Tulsa es un modelo efectivo para el análisis y selección de la bomba a utilizar en un pozo debido a que, en la muestra analizada de 12 pozos, solo en uno de ellos el modelo no es recomendado.
- Al aplicar el método de la Universidad de Tulsa en los 12 pozos del Oriente Ecuatoriano, y compararlos con sus condiciones de trabajo actuales, se observa que en la mayoría se obtiene una optimización de la producción al obtener la misma tasa de producción reduciendo la presión de operación de la bomba en superficie. A continuación, se analizan cuantitativamente los resultados obtenidos.
- Para el Pozo I se asumió una presión de operación de la bomba de superficie de 3 333.33 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 4 245.46 psi. La aplicación del modelo en este pozo no es recomendable debido a que la presión de operación en superficie aumentó en un 23.4% para la misma tasa de producción.
- Para el Pozo II se asumió una presión de operación de la bomba de superficie de 3 000 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 068.066 psi. Esto significa que al aplicar el modelo se requeriría 31.06% menos presión en la bomba de superficie para la misma tasa de producción. Con estos datos se concluye que para el Pozo II si es recomendable la aplicación del modelo de la Universidad de Tulsa.
- Para el Pozo III se asumió una presión de operación de la bomba de superficie de 3 000 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 287.660 psi. Esto significa que al aplicar el modelo se requeriría 23.74% menos presión en la bomba de superficie para la misma tasa de producción. Basándonos en estos datos, se puede inferir que el uso del modelo de la Universidad de Tulsa es aconsejable para el Pozo III.
- Para el Pozo IV se asumió una presión de operación de la bomba de superficie de 3 250 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 3 018.322 psi. Esto significa que al aplicar el modelo se requeriría 7.13% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo V se asumió una presión de operación de la bomba de superficie de 3 250 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 733.862 psi. Esto significa que al aplicar el modelo se requeriría 15.88% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo VI se asumió una presión de operación de la bomba de superficie de 3 250 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 031.365 psi. Esto significa que al aplicar el modelo se requeriría 37.49% menos presión en la bomba de superficie para la misma tasa de producción.

- Para el Pozo VII se asumió una presión de operación de la bomba de superficie de 3 500 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 1 839.312 psi. Esto significa que al aplicar el modelo se requeriría 47.45% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo VIII se asumió una presión de operación de la bomba de superficie de 3 600 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 246.392 psi. Esto significa que al aplicar el modelo se requeriría 37.60% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo IX se asumió una presión de operación de la bomba de superficie de 3 500 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 3 134.622 psi. Esto significa que al aplicar el modelo se requeriría 10.44% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo X se asumió una presión de operación de la bomba de superficie de 3 200 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 2 493 psi. Esto significa que al aplicar el modelo se requeriría 22.09% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo XI se asumió una presión de operación de la bomba de superficie de 3 600 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 3 377.653 psi. Esto significa que al aplicar el modelo se requeriría 6.17% menos presión en la bomba de superficie para la misma tasa de producción.
- Para el Pozo XII se asumió una presión de operación de la bomba de superficie de 3 250 psi, y al aplicar el modelo se obtuvo una nueva presión de operación de 1 708.769 psi. Esto significa que al aplicar el modelo se requeriría 47.42% menos presión en la bomba de superficie para la misma tasa de producción.
- Este método ha demostrado ser efectivo y más eficiente que el método convencional para el diseño y selección de bomba jet, debido a que 11 de 12 pozos analizados obtuvieron resultados favorables, eso quiere decir el 91.66% de pozos de esta muestra.
- En el transcurso del desarrollo de los cálculos del presente trabajo, se suscitó el inconveniente de falta de licencia para un programa que calcule de manera más precisa las pérdidas de presión por fricción, es por esto que se usó el método de Brown y Coberly para todos los valores de la relación gas líquido.
- Debido a que en este trabajo se usó el método de Brown y Coberly para estimar las pérdidas de presión por fricción para todos los valores de la relación gas líquido, es posible que exista una diferencia menor al 3% en los cálculos. Sin embargo, se observa que esta variación no tiene mayor impacto en los resultados finales de diseño.

Con el análisis de consumo de diesel se obtuvo que en el pozo I se tiene un porcentaje de ahorro económico de 41.72%. En el pozo II un ahorro de 15.72%. En el pozo III se obtiene un ahorro económico del 51.14%. En el pozo IV un porcentaje de ahorro de 28.09%. Par el pozo V el cálculo nos presenta un ahorro de 65.57%. Con el pozo VI se presenta ahorro del 34.68%. Para el pozo VII se obtiene un ahorro del 73.05%. En el pozo VIII se presentaría un ahorro de 40.78%. Con el cálculo del pozo

4.2 RECOMENDACIONES

- Se recomienda aplicar el modelo de la Universidad de Tulsa en los pozos del oriente ecuatoriano que trabajan con bombeo tipo Jet, puesto que este método es completo y demuestra ayudar a la óptima selección de la bomba hidráulica tipo Jet.
- Se recomienda el análisis de la totalidad o al menos de la mayoría de pozos del oriente ecuatoriano utilizando este modelo, para comparar su funcionamiento actual y buscar su optimización, de esta manera se tendrá una producción más eficiente en cuanto a recursos, lo cual se traducirá en menores costos y mayores ganancias tanto para la empresa privada como para el país.
- Para la aplicación del método en la industria y, con la posibilidad de obtención de licencias, se recomienda el uso de software que permita un cálculo más exacto de las pérdidas de presión por fricción. Aunque el método de Brown y Coberly es una aproximación confiable, en la industria se puede invertir el capital y así realizar predicciones más acertadas.

REFERENCIAS BIBLIOGRÁFICAS

Agila, C., & Espinosa, C. (2012). Estudio técnico -Económico para incrementar la

producción de petróleo en el campo Pucuna operado por EP Petroecuador.

Quito: Escuela Politécnica Nacional.

Ayan, C. & Corbett, C. (2016). *Defining Rod Pumps*. slb.com. https://www.slb.com/resource-library/oilfield-review/defining-series/definingrod-pumps

- Baby, P., Rivadeneira, M., & Barragán, R. (2014). La Cuenca Oriente: Geología y Petróleo. Quito, Ecuador.
- Bauerberg Klein Sistemas de Levantamiento Artificial. (s. f.). <u>https://bauerberg-</u>klein.com/courses/sistemas-de-levantamiento-artificial-2/
- Bustillos, J. & Piedra, J. (2016). Correlación estratigráfica y estructural para determinar la continuidad de las areniscas "u", "t" y hollín en el pad M del Campo Auca. [Tesis de Grado, Universidad Central del Ecuador] Repositorio digital de la Universidad central del Ecuador http://www.dspace.uce.edu.ec/handle/25000/5862
- Colala, E. (2020). Diseño de un fluido de perforación WBM para la perforación de las secciones intermedia y de producción de los pozos del campo Armadillo. Quito: Escuela Politécnica Nacional.
- Corredor, S., Galindo, R. (2018). Identificación de aplicables los sistemas de levantamiento artificial a yacimientos de crudo pesado a alta profundidad sometidos a un proceso de combustión in situ. [Tesis de grado, Universidad Industrial de Santander] Repositorio digital de la Universidad de Santander. http://tangara.uis.edu.co/biblioweb/tesis/2018/172835.pdf
- Jiao, B., Blais, R., & Schmidt, A. (1990) *Efficiency and Pressure Recovery in Hydraulic Jet Pumping of Two-Phase Gas/Liquid Mixtures*. SPE Prod *Eng* 5 <u>https://doi.org/10.2118/18190-PA</u>

Manoto, M. (2019). Estudio del sistema tipo jet instalado en el Campo Lago Agrio, utilizando el modelo propuesto por la Universidad de Tulsa para incrementar la producción. [Tesis de grado, Escuela Politécnica Nacional]. Repositorio digital de la Escuela Politécnica Nacional. http://bibdigital.epn.edu.ec/handle/15000/20408
Melo, V., (2014) Levantamiento Artificial. Quito, Ecuador

Melo, V., (2018) Levantamiento Artificial. Quito, Ecuador

- Miranda, E. (2015). Producción de petróleo con bombeo hidráulico tipo jet, utilizando como fluido motriz el agua del sistema de reinyección, en un campo del oriente ecuatoriano. [Tesis de grado, Escuela Politécnica Nacional] Repositorio digital de la Escuela Politécnica Nacional. http://bibdigital.epn.edu.ec/handle/15000/12741
- Pedersen, P. J., (2006) Review and application of the Tulsa liquid jet pump model. Trondheim.
- Pérez, J. (2013). Alternativas en el bombeo hidráulico tipo Jet para optimizar la producción de hidrocarburos. [Tesis de Grado, Universidad Autónoma de México] Repositorio digital de la Universidad Autónoma de México. http://132.248.52.100:8080/xmlui/handle/132.248.52.100/6746
- Rivera, L., Quijano, J. & González, S. (2012). *Bombeo hidraulico tipo jet*. SlideShare. https://es.slideshare.net/gabosocorro/bombeo-hidraulico-tipo-jet
- Sánchez, C. (2018). *Dimensionamiento del tren de tratamiento del crudo de la CPF del Campo Armadillo.* Quito: Escuela Politécnica Nacional.

Schlumberger. (s. f.). Gas_lift. https://glossary.slb.com/en/terms/g/gas_lift

- Sertecpet. (2019). Sistemas de Bombeo Hidráulico Jet Claw®. https://www.sertecpet.net/sistemas-de-bombeo-hidraulico-jet-claw/
- Sertecpet. (2020). Sistemas de Bombeo Hidráulico Jet Claw®. https://www.sertecpet.net/sistemas-de-bombeo-hidraulico-jet-claw/
- Sertecpet. (2020a). Bomba Jet BOMBEO HIDRÁULICO DESCRIPCIÓN DE LOS DIFERENTES SISTEMAS. <u>https://1library.co/article/bomba-jet-bombeo-</u> hidr%C3%A1ulico-descripci%C3%B3n-diferentes-sistemas.yjdk94py

- Suriaga, L., & Sagnay, F. (2009). Optimización y Actualización de la Evaluación del Análisis Técnico-Económico del Campo Armadillo en la Zona Oriental del Ecuador. [Articulo,ESPOL] Repositorio digital de la ESPO L. <u>http://www.dspace.espol.edu.ec/handle/123456789/138</u>
- Tovar, E. (2019). *MÉTODOS DE LEVANTAMIENTO ARTIFICIAL*. <u>https://www.academia.edu/38331889/M%C3%89TODOS_DE_LEVANTAMI</u> ENTO_ARTIFICIAL
- Vaca, L. (2012). Análisis técnico económico para el cambio de sistema de levantamiento artificial de bombeo hidráulico a bombeo electro sumergible en pozos con alto potencial en el área sacha para incrementar la producción.
 [Tesis de grado, Escuela Politécnica Nacional]. Repositorio digital de la Escuela Politécnica Nacional. Nacional.
 http://bibdigital.epn.edu.ec/handle/15000/4631
- Vargas, E., Acosta, I., Castro, T. & Figueroa, M. (2008). *Bombeo Electrosumergible*. Plusformacion. <u>https://plusformacion.com/Recursos/r/Bombeo-</u> <u>electrosumergible</u>
- Vásquez, R. (2020). Métodos de levantamiento artificial más utilizados en Venezuela. https://www.linkedin.com/pulse/m%C3%A9todos-delevantamiento-artificial-m%C3%A1s-utilizados-en-v%C3%A1squezrojas/?originalSubdomain=es
- Villareal, K. (2018). Análisis técnico económico de la implementación de bombas electrosumergibles con tecnología Power Save en pozos del campo Sacha.
 [Tesis de grado, Escuela Politécnica Nacional]. Repositorio digital de la Escuela
 Politécnica

http://bibdigital.epn.edu.ec/handle/15000/19629

ANEXOS

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DE POZO DE EJEMPLO DE LA UNIVERSIDAD DE TULSA PRESENTADO EN EL PAPER DE PEDERSEN, P. (2006)

承 MATLAB App					- 🗆 X
ESCUELA POLITÉCNICA NACIONAL DISEÑO	FA DE BOMBA JE	ESCUELA POLITÉCNICA N CULTAD DE GEOLOGÍA Y T MEDIANTE EL MÉTODO	IACIONAL PETRÓLEC DE LA UNI	DS IVERSIDAD DE TU	Construction of the constr
Datos mecánicos del po)ZO	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	5.5 pg 4.892 pg 2.375 pg 1.995 pg 3.063 pg 145 *F 60 *F 100 psia	Profundidad de la bomba	6000 ft 1000 psia 2500 psi 0.0167 pg ² 0.0562 pg ² de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	600 bl/dla 0.25 1000 35 *API 0.455 psi/ft 0.368 psi/ft 5 cP 5 cP
		CALCULAR			

											SEOLOGIA Y
ados Resultad	los detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
is	0.38975	psi/ft	NRe Fuido Iny	10691.9303		NRe descarga	4177.3635	1	Flujo masico adimensional	0.5086	Ċ.
cm	0.035398	pg ²	f Fluido Motriz	0.033734	1	e	0.72666	I	в	0.61306	
At-An)>Acm	Válido		Pfn Fluido motriz	117.66	psi	f Fluido descarga	0.041094	i	с	0.20096	
	0.29715		Pn real	4590.34	psi	Viscosidad descarga	4.1302	сP	Recuperacion de presion (adim)	0.44553	
n estimado	4661.3861	psi	Qn real	1372.4094	bl/día	Grav. especifica descarga	0.86516		Presion en la tobera (recalculada)	5402.2616	psi
In estimado	1385.9216	bl/día	Q fluido descarga	1972.4094	bl/dla	Perdidas de presion descarga	9.1337	psi	Presion de succion (recalculada)	1000	psi
el fluido motriz	4.1473	ft/s	Grad fluido descarga	0.37462	psi/ft	Presion de descarga	2356.8314	psi	Presion de operacion (recalculada)	3311.9216	psi
ensidadOilSC	0.84985	g/cm ³	Frac Agua en la descarga	0.076049	Ē	Rp	0.51343		Tasa limite de cavitacion	669.5338	bl/día
Promedio	102.5	*F	GLR	228.1474	PCS/bl	Coef. de perdidas en la garganta	0.45563	1	Eficiencia	0.2266	
ensidadOil	0.83458	g/cm ³	Vel. fluido descarga	1.2843	ft/s	Qg	450	MPCS/dia	Potencia de la bomba en superficie	85.8559	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO LAG-017 PRESENTADO EN LA TESIS DE MANOTO M. (2019)

MATLAB App ESCUELA POLITÉCNICA NACIONAL DISEÑO	FA D DE BOMBA JE	ESCUELA POLITÉCNI CULTAD DE GEOLOGÍ T MEDIANTE EL MÉTO	CA NACIONAI A Y PETRÓLE ODO DE LA UI	SOS (×
Datos mecánicos del p	ozo	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.366 pg 3.5 pg 2.992 pg 4.5 pg 1000 *F 711 *F 88 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver áreas disponibles de garganta	9630 ft 410 psia 3550 psi 0.0122 pg ² 0.0311 pg ² y tobera de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	80 bl/dia 0.4 945 PCS/bl 29.1 *API 0.44 psi/ft 0.3816 psi/ft 0.31 cP 4.94 cP
		CALCULA	R		

					K	EGGETADOG				and the second	E GEOLOGIA Y
tados Resultado	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
3s	0.40496	psi/ft	NRe Fuido Iny	7348.3257	Ċ.	NRe descarga	2368.0014		Flujo masico adimensional	0.066391	Ċ.
Acm	0.0081267	pg ²	f Fluido Motriz	0.036498	E	e	0.65108		В	0.78496	
At-An)>Acm	Válido		Pfn Fluido motriz	26.6991	psi	f Fluido descarga	0.046296		С	0.17499	
۲	0.39228		Pn real	7198.1089	psi	Viscosidad descarga	2.9709	cP	Recuperacion de presion (adim)	1.2308	
^o n estimado	7153.2752	psi	Qn real	1353.7965	bl/día	Grav. especifica descarga	0.8843		Presion en la tobera (recalculada)	6515.5789	psi
2n estimado	1349.3183	bl/día	Q fluido descarga	1433.7965	bl/día	Perdidas de presion descarga	3.3092	psi	Presion de succion (recalculada)	410	psi
/el fluido motriz	1.7952	ft/s	Grad fluido descarga	0.3829	psi/ft	Presion de descarga	3778.6689	psi	Presion de operacion (recalculada)	2867.47	psi
DensidadOilSC	0.88107	g/cm ³	Frac Agua en la descarga	0.022318	É.	Rp	0.52495	E	Tasa limite de cavitacion	186.0527	bl/día
Promedio	85.5	°F	GLR	31.6363	PCS/bl	Coef. de perdidas en la garganta	0.20661	í	Eficiencia	0.081716	
DensidadOil	0.87297	g/cm ³	Vel. fluido descarga	0.60392	ft/s	Qg	45.36	MPCS/dia	Potencia de la bomba en superficie	73.3261	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO I

5					R	SULIADUS				ano	E GEOLOGIA Y P
ados Resultado	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
15	0.38706	psi/ft	NRe Fuido Iny	8524.8364		NRe descarga	3642.9906		Flujo masico adimensional	0.40016	
icm	0.017697	pg ²	f Fluido Motriz	0.035377	6	e	0.63977		в	0.79893	
At-An)>Acm	Válido		Pfn Fluido motriz	25.977	psi	f Fluido descarga	0.042292	6	с	0.30168	
t	0.39228		Pn real	7062.003	psi	Viscosidad descarga	3.0424	сР	Recuperacion de presion (adim)	0.72929	
'n estimado	7017.802	psi	Qn real	1303.4832	bl/dia	Grav. especifica descarga	0.87156	6	Presion en la tobera (recalculada)	7842.2022	psi
n estimado	1298.799	bl/día	Q fluido descarga	1813.4832	bl/dia	Perdidas de presion descarga	5.5841	psi	Presion de succion (recalculada)	901	psi
el fluido motriz	1.7279	ft/s	Grad fluido descarga	0.37739	psi/ft	Presion de descarga	3828.3065	psi	Presion de operacion (recalculada)	4113.4992	psi
lensidadOilSC	0.95479	g/cm ³	Frac Agua en la descarga	0.081556	Ľ.	Rp	0.5421	6	Tasa limite de cavitacion	544.6728	bl/dla
Promedio	169	٠k	GLR	29.3856	PCS/bl	Coef, de perdidas en la garganta	0.19442		Eficiencia	0.29184	1
ensidadOil	0.90623	g/cm ³	Vel. fluido descarga	0.79587	ft/s	Qg	53.2903	MPCS/dia	Potencia de la bomba en superficie	101.2799	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO II

承 MATLAB App					- 🗆 X
ESCUELA POLITÉCNICA NACIONAL	I FA(ESCUELA POLITÉCNI CULTAD DE GEOLOG	CA NACIONAL ÍA Y PETRÓLE	os (HULLA POLITECNICA MACOUNT
DISEÑ Datos mecánicos del	NO DE BOMBA JE	T MEDIANTE EL MÉT	ODO DE LA UI	Datos de fluido	LSA
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 222 °F 1100 °F 300 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver áreas disponibles de garganta	9838 ft 470 psia 3000 psi 0.0239 pg ² 0.0526 pg ² y tobera de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	209 bl/dia 0.85 592.8 PCS/bl 27 *API 0.42 psi/ft 0.3433 psi/ft 0.272 cP 1.332 cP
		CALCULA	R		

										inter a	W GEOLOGIA Y P
ados Resultad	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
is	0.40849	psi/ft	NRe Fuido Iny	50940.4979	Ċ.	NRe descarga	16843.6947		Flujo masico adimensional	0.082131	ċ
cm	0.010521	pg ²	f Fluido Motriz	0.024304	1 - C	e	0.63977	1	В	0.90917	
At-An)>Acm	Válido		Pfn Fluido motriz	65.2794	psi	f Fluido descarga	0.030663	0	с	0.24176	1
t	0.45437		Pn real	6312.0571	psi	Viscosidad descarga	0.21704	сP	Recuperacion de presion (adim)	1.5623	
n estimado	6314.1946	psi	Qn real	2593.9932	bl/día	Grav. especifica descarga	0.80406		Presion en la tobera (recalculada)	5380.192	psi
in estimado	2594.4676	bl/día	Q fluido descarga	2802.9932	bl/dia	Perdidas de presion descarga	8.7349	psi	Presion de succion (recalculada)	470	psi
el fluido motriz	3.4517	ft/s	Grad fluido descarga	0.34816	psi/ft	Presion de descarga	3463.8931	psi	Presion de operacion (recalculada)	2068.1348	psi
lensidadOilSC	0.89274	g/cm ³	Frac Agua en la descarga	0.063379		Rp	0.54877	1	Tasa limite de cavitacion	570.1381	bl/dla
Promedio	166	*F	GLR	6.6296	PCS/bl	Coef. de perdidas en la garganta	0.1377		Eficiencia	0.12832	£
lensidadOil	0.84862	a/cm ³	Vel fluido descaroa	1 2301	ft /c	Qq	18.5827	MPCS/dia	Potencia de la bomba en superficie	101 3337	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO III

Datos mecánicos del po	DZO	Datos de bomba jet	Datos de fluido
OD Casing	7 pg	Profundidad de la bomba 9217	Tasa de producción 91 bl/c
ID Casing	6.276 pg	Presión de succión 412.1	sia Corte de agua 0.1
OD Tubing	3.5 Pg	Presión de operación (asumida) 3000	si GOR 136 PCS
D Tubing	2.992 Pg	Área Tobera (Tablas) 0.0122	9 ² •API 30.4 *AP
OD Juntas Tubing	4.5 Pg	Área garganta (Tablas) 0.0311	g ² Grad. Agua de formación 0.4228 psi/
Temperatura de fondo	214 °F	Ver áreas disponibles de garganta y tobera de la bon	ba Gradiente petróleo 0.3396 psi/
lemperatura de cabeza	110 °F		Viscosidad del agua
Presión de cabeza	70 psia		Viscosidad del petróleo 1.883 c ^p

					N	ESULIADUS				101140	DE GEOLOGIA Y PI
tados Resultado	s detailados	Ecuaciones	Ecuaciones continuación	Bibliografia							
òs	0.34789	psi/ft	NRe Fuido Iny	17850.1559	c.	NRe descarga	5862.6663		Flujo masico adimensional	0.07105	Ċ.
Acm	0.0049226	pg ²	f Fluido Motriz	0.030292		e	0.63977		В	0.78501	
At-An)>Acm	Válido		Pfn Fluido motriz	19.0674	psi	f Fluido descarga	0.038271	E	с	0.17653	
२	0.39228		Pn real	6110.6719	psi	Viscosidad descarga	1.6965	сР	Recuperacion de presion (adim)	1.2755	
on estimado	6069.0488	psi	Qn real	1314.9394	bl/día	Grav. especifica descarga	0.78545	L	Presion en la tobera (recalculada)	5398.5323	psi
2n estimado	1310.1283	bl/día	Q fluido descarga	1405.9394	bl/día	Perdidas de presion descarga	2.5102	psi	Presion de succion (recalculada)	412.13	psi
/el fluido motriz	1.743	ft/s	Grad fluido descarga	0.3401	psi/ft	Presion de descarga	3207.218	psi	Presion de operacion (recalculada)	2287.8604	psi
DensidadOilSC	0.874	g/cm ³	Frac Agua en la descarga	0.0064725	í	Rp	0.52486		Tasa limite de cavitacion	349.3884	bl/día
Promedio	162	۴F	GLR	7.9224	PCS/bl	Coef. de perdidas en la garganta	0.14458		Eficiencia	0.090626	
DensidadOil	0.83248	g/cm ³	Vel. fluido descarga	0.61702	ft/s	Qg	11.1384	MPCS/dia	Potencia de la bomba en superficie	56.8253	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO IV

				- 🗆 X
FA	ESCUELA POLITÉCNIC CULTAD DE GEOLOGÍA	A NACIONAL Y PETRÓLE		
zo	Datos de bomba jet		Datos de fluido	
7 pg	Profundidad de la bomba	9431 ft	Tasa de producción	300 bl/dia
6.276 pg	Presión de succión	647 psia	Corte de agua	0.12
2.85 pg	Presión de operación (asumida)	3250 psi	GOR	119.5 PCS/bl
2.441 Pg	Área Tobera (Tablas)	0.0148 pg ²	°API	30.4 °API
4.5 pg	Área garganta (Tablas)	0.0376 pg ²	Grad. Agua de formación	0.4259 psi/ft
220 °F	Ver áreas disponibles de garganta y t	tobera de la bomba	Gradiente petróleo	0.3506 psi/ft
110 °F			Viscosidad del agua	0.275 cP
200 psia			Viscosidad del petróleo	1.639 CP
		I		
	CALCULAR	ł		
	FA DE BOMBA JE zo 7 9 6.276 9 2.441 9 2.441 9 2.441 9 2.201 °F 110 °F 200 psia	DE BOMBA JET MEDIANTE EL MÉTO zo Datos de bomba jet 7 pg Profundidad de la bomba 6.276 pg Presión de succión 2.85 pg Presión de operación (asumida) Á-5 pg Área garganta (Tablas) 220 °F Ver áreas disponibles de garganta y	Datos de bomba jet 7 pg 6.276 pg 2.441 pg 4.5 pg 110 rf 200 psia Ver áreas disponibles de garganta y tobera de la bomba CALCULAR	Datos de bomba jet Datos de fluido 285 pg Presión de succión 647 psia 285 pg Presión de operación (asumida) 3250 psi 220 ff Trea obera (Tablas) 0.0148 pg² 110 ff Outraines de garganta y tobera de la bomba Gard entreción 200 psia CALCULAR CALCULAR

ATLAB App ESCUE POLITE NACIO	LA ÉCNICA NAL				RI	ESULTADOS				Scottur P	
iltados Result	ados detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
Gs	0.35964	psi/ft	NRe Fuido Iny	30457.1395		NRe descarga	9679.6471		Flujo masico adimensional	0.19312	
Acm	0.012214	pg ²	f Fluido Motriz	0.027076		e	0.51839		В	0.79058	
(At-An)>Acm	Válido		Pfn Fluido motriz	70.9447	psi	f Fluido descarga	0.03 <mark>4</mark> 446		с	0.22056	
R	0.39362		Pn real	6485.6536	psi	Viscosidad descarga	1.4476	сР	Recuperacion de presion (adim)	1.053	
Pn estimado	6491.6814	psi	Qn real	1589.0207	bl/día	Grav. especifica descarga	0.81303		Presion en la tobera (recalculada)	6253.9762	psi
Qn estimado	1589.8407	bl/día	Q fluido descarga	1889.0207	bl/día	Perdidas de presion descarga	2.7892	psi	Presion de succion (recalculada)	647	psi
Vel fluido motriz	3.1778	ft/s	Grad fluido descarga	0.35204	psi/ft	Presion de descarga	3522.9129	psi	Presion de operacion (recalculada)	3018.3226	psi
DensidadOilSC	0.874	g/cm ³	Frac Agua en la descarga	0.019057		Rp	0.54319		Tasa limite de cavitacion	560.0137	bl/día
T Promedio	165	*F	GLR	16.7007	PCS/bl	Coef. de perdidas en la garganta	0.16591		Eficiencia	0.20336	
	0.83122	a/cm ³	Vel. fluido descarga	0.71958	ft/s	Qg	31.548	MPCS/dia	Potencia de la bomba en superficie	90.5945	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO V

MATLAB App ESCUELA POLITÉCNICA NACIONAL DISEÑO	FA DE BOMBA JE	ESCUELA POLITÉCNICA CULTAD DE GEOLOGÍA ET MEDIANTE EL MÉTOI	A NACIONAL Y PETRÓLE DO DE LA UI	os	SA
Datos mecánicos del po	020	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 220 "F 110 "F 100 psia	Profundidad de la bomba	9364 ft 553.8 psia 3250 psi 0.0108 pg ² 0.0239 pg ² bera de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	243 bl/dia 0.1 150 PCS/b 25 *API 0.44 psi/ft 0.3561 psi/ft 0.275 cP 2.126 cP
		CALCULAR			

					RI	ESULTADOS				ACULTURE OF	UTO ECOLOGIA Y PET
Itados Resultad	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
Gs	0.36447	psi/ft	NRe Fuido Iny	14497.1406		NRe descarga	5382.0488		Flujo masico adimensional	0.21421	
Acm	0.011425	pg ²	f Fluido Motriz	0.031644		e	0.63977	í	В	0.90676	
(At-An)>Acm	Válido		Pfn Fluido motriz	16.4729	psi	f Fluido descarga	0.038964		с	0.30105	
R	0.45188		Pn real	6567.8081	psi	Viscosidad descarga	1.9181	сР	Recuperacion de presion (adim)	1.1137	Ú.,
Pn estimado	6519.0901	psi	Qn real	1167.7737	bl/día	Grav. especifica descarga	0.82568		Presion en la tobera (recalculada)	6051.6707	psi
Qn estimado	1163.0342	bl/día	Q fluido descarga	1410.7737	bl/día	Perdidas de presion descarga	2.7483	psi	Presion de succion (recalculada)	553.8	psi
Vel fluido motriz	1.5473	ft/s	Grad fluido descarga	0.35752	psi/ft	Presion de descarga	3450.5706	psi	Presion de operacion (recalculada)	2733.8626	psi
DensidadOilSC	0.90415	g/cm ³	Frac Agua en la descarga	0.017225		Rp	0.52538		Tasa limite de cavitacion	278.6338	bl/día
T Promedio	165	۴F	GLR	23.2532	PCS/bl	Coef. de perdidas en la garganta	0.19184		Eficiencia	0.23856	
DensidadOil	0.8599	g/cm ³	Vel. fluido descarga	0.61914	ft/s	Qg	32.805	MPCS/dia	Potencia de la bomba en superficie	60.3034	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO VI

DISENC	DE DOMBA JE		LA UNIVERSIDAD DE TOLSA
Datos mecánicos del po	ozo	Datos de bomba jet	Datos de fluido
OD Casing	7 pg	Profundidad de la bomba 8468	ft Tasa de producción 179 bl/c
D Casing	6.276 pg	Presión de succión 635.3	psia Corte de agua 0.133
DD Tubing	3.5 pg	Presión de operación (asumida) 3250	gor 136 PCS
D Tubing	2.992 pg	Área Tobera (Tablas) 0.0108	1 pg ² •API 30.8 *AP
OD Juntas Tubing	4.5 pg	Área garganta (Tablas) 0.0239	pg ² Grad. Agua de formación 0.44 psi/
Temp <mark>e</mark> ratura de fondo	205 °F	Ver áreas disponibles de garganta y tobera de la b	omba Gradiente petróleo 0.3437 psi/
Temperatura de cabeza	120 °F		Viscosidad del agua
Presión de cabeza	100 psia		Viscosidad del petróleo 1.316 cP

					RI	ESULTADOS				And and a	BITO - ECUADON E GEOLOGIA Y PET
ados Resultad	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
ŝs	0.35647	psi/ft	NRe Fuido Iny	22027.8292		NRe descarga	7836.7015	1	Flujo masico adimensional	0.16133	
kcm	0.0074838	pg ²	f Fluido Motriz	0.028983		e	0.63977		В	0.90546	
At-An)>Acm	Válido		Pfn Fluido motriz	12.5013	psi	f Fluido descarga	0.036008	1 - C	С	0.2754	
τ.	0.45188		Pn real	6147.5994	psi	Viscosidad descarga	1.1464	сР	Recuperacion de presion (adim)	1.2572	
n estimado	6099.1096	psi	Qn real	1138.0179	bl/día	Grav. especifica descarga	0.79769	(Presion en la tobera (recalculada)	4928.9643	psi
2n estimado	1133.0015	bl/día	Q fluido descarga	1317.0179	bl/día	Perdidas de presion descarga	1.9338	psi	Presion de succion (recalculada)	635.32	psi
fel fluido motriz	1.5074	ft/s	Grad fluido descarga	0.3454	psi/ft	Presion de descarga	3026.7793	psi	Presion de operacion (recalculada)	2031.3649	psi
ensidadOilSC	0.87184	g/cm ³	Frac Agua en la descarga	0.018076		Rp	0.49235	(Tasa limite de cavitacion	313.3304	bl/día
Promedio	162.5	۴F	GLR	16.0258	PCS/bl	Coef. de perdidas en la garganta	0.1845	6	Eficiencia	0.20283	(I.
ensidadOil	0.83022	g/cm ³	Vel. fluido descarga	0.57799	ft/s	Qg	21.1062	MPCS/dia	Potencia de la bomba en superficie	43.666	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO VII

Datos mecánicos del po		Datos de bomba iet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 214 *F 110 *F 70 psia	Profundidad de la bomba	9380 ft 392.6 psia 3500 psi 0.0094 pg ² 0.0187 pg ² era de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	105 bl/dia 0.11 136 PCS/1 30.4 *API 0.4244 psi/ft 0.3396 psi/ft 0.285 cP 2.133 cP

MATLAB	Арр										-	□ ×
Į	ESCUELA POLITÉCNIC NACIONAL					RE	SULTADOS				Scotta PO	TO CONCAL MACOUNT
Resultados	Resultados	detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
		0.01000			10707 4400			1004 0400			0.40404	
Gs		0.34893	psi/ft	NRe Fuido Iny	12/3/.4402		NRe descarga	4301.3103		Flujo masico adimensional	0.10134	
Acm		0.005843	pg ²	f Fluido Motriz	0.032516		e	0.63977		В	1.0053	
(At-An)>Acm	Válido		Pfn Fluido motriz	13.6095	psi	f Fluido descarga	0.040842		C	0.30648	
R		0.50267		Pn real	6671.804	psi	Viscosidad descarga	1.9012	сР	Recuperacion de presion (adim)	1.6453	í
Pn est	imado	6619.2213	psi	Qn real	1063.4586	bl/día	Grav. especifica descarga	0.78622		Presion en la tobera (recalculada)	5011.116	psi
Qn es	timado	1058.9965	bl/día	Q fluido descarga	1168.4586	bl/día	Perdidas de presion descarga	1.8849	psi	Presion de succion (recalculada)	392.64	psi
Vel flu	ido motriz	1.4089	ft/s	Grad fluido descarga	0.34044	psi/ft	Presion de descarga	3265.1658	psi	Presion de operacion (recalculada)	1839.3121	psi
Densi	dadOilSC	0.874	g/cm ³	Frac Agua en la descarga	0.0098848		Rp	0.4894		Tasa limite de cavitacion	167.1239	bl/dia
T Pror	nedio	162	۴F	GLR	10.8769	PCS/bl	Coef. de perdidas en la garganta	0.16953		Eficiencia	0.16673	1
Densid	iadOil	0.83248	g/cm ³	Vel. fluido descarga	0.5128	ft/s	Qg	12.7092	MPCS/dia	Potencia de la bomba en superficie	36.9473	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO VIII

Datos mecánicos del po	zo	Datos de bomba jet	Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 P9 6.299 P9 3.5 P9 2.992 P9 4.5 P9 230 "F 100 "F 100 psia	Profundidad de la bomba 9150 ft Presión de succión 375 psi Presión de operación (asumida) 3600 psi Área Tobera (Tablas) 0.0108 pgi Área garganta (Tablas) 0.0239 pgi Ver áreas disponibles de garganta y tobera de la bomb presión	Tasa de producción 16 Corte de agua 0. GOR 49.6 *API 3 Grad. Agua de formación 0.427 Gradiente petróleo 0.348 Viscosidad del agua 0.25 Viscosidad del petróleo 3.15	 5 bl/dia 1 4 PCS/ 6 *API 5 psi/ft 4 psi/ft 9 cP 9 cP

ESCUELA POLITÉCN NACIONA	IICA L				R	ESULTADOS				Boardo of	NITECNICA NAC
ados Resultada	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
Эs	0.35627	psi/ft	NRe Fuido Iny	9858.3977		NRe descarga	3431.2443		Flujo masico adimensional	0.13686	
Acm	0.0081575	pg ²	f Fluido Motriz	0.034314		e	0.64273		В	0.90499	
At-An)>Acm	Válido		Pfn Fluido motriz	18.3899	psi	f Fluido descarga	0.042827		с	0.26391	Ē.,
R	0.45188		Pn real	6769.0374	psi	Viscosidad descarga	2.8462	сР	Recuperacion de presion (adim)	1.3813	
Pn estimado	6720.225	psi	Qn real	1217.3769	bl/día	Grav. especifica descarga	0.80669		Presion en la tobera (recalculada)	5415.4296	psi
2n estimado	1212.7213	bl/día	Q fluido descarga	1382.3769	bl/día	Perdidas de presion descarga	2.6874	psi	Presion de succion (recalculada)	375	psi
/el fluido motriz	1.6134	ft/s	Grad fluido descarga	0.3493	psi/ft	Presion de descarga	3298.7614	psi	Presion de operacion (recalculada)	2246.3922	psi
ensidad0ilSC	0.87616	g/cm ³	Frac Agua en la descarga	0.011936		Rp	0.48733		Tasa limite de cavitacion	264.971	bl/día
Promedio	165	*F	GLR	5.3325	PCS/bl	Coef. de perdidas en la garganta	0.14327	(Eficiencia	0.18904	6
lensidadOil	0.83328	g/cm ³	Vel. fluido descarga	0.60028	ft/s	Qg	7.3715	MPCS/dia	Potencia de la bomba en superficie	51.6556	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO IX

Datos mecánicos del po	ozo	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 220 *F 110 *F 100 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver áreas disponibles de garganta y f	9364 ft 305 psia 3500 psi 0.0122 pg ² 0.0311 pg ² obbera de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	243 bV/dk 0.1 150 PCS/ 25 *API 0.4216 psi/ft 0.3561 psi/ft 0.275 cP 2.126 cP

9					R	ESULTADOS				RGRORD C	STORTAD DE GEOLOGIA Y HTTOL	
ados Resultado	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia								
·S	0.36263	psi/ft	NRe Fuido Iny	17044.0648		NRe descarga	6161.8653		Flujo masico adimensional	0.1823		
icm.	0.016489	pg ²	f Fluido Motriz	0.030587	i	e	0.63977		В	0.78754	1 - E	
At-An)>Acm	Válido		Pfn Fluido motriz	22.0085	psi	f Fluido descarga	0.037873	E.	С	0.2151	÷	
t	0.39228		Pn real	6812.2725	psi	Viscosidad descarga	1.9175	сP	Recuperacion de presion (adim)	1.0474	(
n estimado	6766.6148	psi	Qn real	1372.1837	bl/día	Grav. especifica descarga	0.82462		Presion en la tobera (recalculada)	6446.8947	psi	
In estimado	1367.3613	bl/día	Q fluido descarga	1615.1837	bl/día	Perdidas de presion descarga	3.497	psi	Presion de succion (recalculada)	305	psi	
el fluido motriz	1.8192	ft/s	Grad fluido descarga	0.35706	psi/ft	Presion de descarga	3447.0133	psi	Presion de operacion (recalculada)	3134.6222	psi	
ensidadOiISC	0.90415	g/cm ³	Frac Agua en la descarga	0.015045	1	Rp	0.506		Tasa limite de cavitacion	278.5282	bl/día	
Promedio	165	*F	GLR	20.3104	PCS/bl	Coef. de perdidas en la garganta	0.18785	i	Eficiencia	0.19093	С I	
ensidadOil	0.8599	g/cm ³	Vel. fluido descarga	0.70885	ft/s	Qg	32.805	MPCS/dia	Potencia de la bomba en superficie	81.2464	HP	

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO X

	FA DE BOMBA JE	CULTAD DE GEOLOGI	A Y PETROLE	INVERSIDAD DE TUL	SCALLOGIA VITUALION
Datos mecánicos del po	DZ0	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6276 pg 2.85 pg 2.411 pg 4.5 pg 222 *F 110 *F 77 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver áreas disponibles de garganta	1.018e+04 ft 757.9 psia 3200 psi 0.0239 pg ² 0.0526 pg ²	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	397 bl/dia 0.39 357.3 PCS/ 29.7 *API .423459008 psi/ft 0.3313 psi/ft 0.272 cP 0.939 cP
		CALCULA	R		

MATLAB App Escuela Politécy NACION/	NICA AL				RE	ESULTADOS				Contra P	
Resultados Resultad	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
Gs	0.36723	psi/ft	NRe Fuido Iny	87930.2505	6	NRe descarga	26874.3126		Flujo masico adimensional	0.16017	
Acm	0.017279	pg ²	f Fluido Motriz	0.021672		e	0.51839		В	0.91036	1
(At-An)>Acm	Válido		Pfn Fluido motriz	167.0251	psi	f Fluido descarga	0.027797		С	0.27789	i
R	0.45437		Pn real	6405.0477	psi	Viscosidad descarga	0.58686	сP	Recuperacion de presion (adim)	1.251	L
Pn estimado	6507.0027	psi	Qn real	2596.2187	bl/día	Grav. especifica descarga	0.77609		Presion en la tobera (recalculada)	5698.0484	psi
Qn estimado	2619.5501	bl/día	Q fluido descarga	2993.2187	bl/día	Perdidas de presion descarga	5.8224	psi	Presion de succion (recalculada)	757.864	psi
Vel fluido motriz	5.236	ft/s	Grad fluido descarga	0.33605	psi/ft	Presion de descarga	3503.4337	psi	Presion de operacion (recalculada)	2493.0007	psi
DensidadOilSC	0.87779	g/cm ³	Frac Agua en la descarga	0.051727		Rp	0.54698	i	Tasa limite de cavitacion	659.4088	bl/día
T Promedio	166	۰F	GLR	28.9094	PCS/bl	Coef. de perdidas en la garganta	0.19607		Eficiencia	0.20039	
DensidadOil	0.83441	g/cm ³	Vel. fluido descarga	1.1402	ft/s	Qg	86.5322	MPCS/dia	Potencia de la bomba en superficie	122.256	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO XI

Datos mecánicos del po		Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 228 "F 110 "F 250 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver áreas disponibles de garganta y tobe	9420 ft 580 psia 3600 psi 0.0122 pg ² 0.0311 pg ² era de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	280 bl/dia 0.65 92.92 PC5/J 18.2 *API 0.4171 psi/ft 0.3697 psi/ft 0.262 cP 3.232 cP

NACION/	AL.			RESULTADOS					The second		
ados Resultado	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
is	0.40051	psi/ft	NRe Fuido Iny	11453.9918		NRe descarga	4251.1735		Flujo masico adimensional	0.20985	
cm	0.011285	pg ²	f Fluido Motriz	0.03325		e	0.63977		В	0.78851	
At-An)>Acm	Válido		Pfn Fluido motriz	24.0778	psi	f Fluido descarga	0.040943		с	0.22525	
	0.39228		Pn real	7058.4491	psi	Viscosidad descarga	1.1606	сР	Recuperacion de presion (adim)	1.0515	
n estimado	7012.4028	psi	Qn real	1343.7146	bl/día	Grav. especifica descarga	0.86604		Presion en la tobera (recalculada)	6836.1022	psi
n estimado	1338.9308	bl/día	Q fluido descarga	1623.7146	bl/día	Perdidas de presion descarga	4.0366	psi	Presion de succion (recalculada)	580	psi
el fluido motriz	1.7813	ft/s	Grad fluido descarga	0.37499	psi/ft	Presion de descarga	3786.6504	psi	Presion de operacion (recalculada)	3377.6531	psi
ensidadOilSC	0.94522	g/cm ³	Frac Agua en la descarga	0.11209		Rp	0.53647		Tasa limite de cavitacion	468.9393	bl/día
Promedio	169	۴F	GLR	5.6082	PCS/bl	Coef. de perdidas en la garganta	0.13408		Eficiencia	0.22067	
ensidadOil	0.89715	g/cm ³	Vel. fluido descarga	0.71259	ft/s	Qg	9.1062	MPCS/dia	Potencia de la bomba en superficie	85.7291	HP

CAPTURAS DEL PROGRAMA EN MATLAB AL REALIZAR LOS CÁLCULOS DEL POZO XII

Datos mecánicos del po	ozo	Datos de bomba jet		Datos de fluido	
OD Casing ID Casing OD Tubing ID Tubing OD Juntas Tubing Temperatura de fondo Temperatura de cabeza Presión de cabeza	7 pg 6.276 pg 3.5 pg 2.992 pg 4.5 pg 221 *F 110 *F 90 psia	Profundidad de la bomba Presión de succión Presión de operación (asumida) Área Tobera (Tablas) Área garganta (Tablas) Ver àreas disponibles de garganta y t	8823 ft 1352 psia 3250 psi 0.0239 pg ² 0.0526 pg ² obera de la bomba	Tasa de producción Corte de agua GOR °API Grad. Agua de formación Gradiente petróleo Viscosidad del agua Viscosidad del petróleo	421 bl/dla 0.051 229.1 PC5/1 25.8 *API 0.4193 psi/ft 0.3433 psi/ft 0.273 cP 1.246 cP

											GEOLOGIAY PET
ados Resultado	os detallados	Ecuaciones	Ecuaciones continuación	Bibliografia							
s	0.34716	psi/ft	NRe Fuido Iny	50076.3011		NRe descarga	18072.1939	ĺ	Flujo masico adimensional	0.18603	
cm	0.012509	pg ²	f Fluido Motriz	0.024392		e	0.63977	1	В	0.91093	
At-An)>Acm	Válido		Pfn Fluido motriz	49.2952	psi	f Fluido descarga	0.030213	i	с	0.29041	£
	0.45437		Pn real	6229.4346	psi	Viscosidad descarga	1.1846	сР	Recuperacion de presion (adim)	1.1431	
n estimado	6216.5642	psi	Qn real	2370.2537	bl/día	Grav. especifica descarga	0.79414		Presion en la tobera (recalculada)	4688.2039	psi
n estimado	2367.1243	bl/día	Q fluido descarga	2791.2537	bl/día	Perdidas de presion descarga	7.5598	psi	Presion de succion (recalculada)	1352	psi
el fluido motriz	3.1493	ft/s	Grad fluido descarga	0.34386	psi/ft	Presion de descarga	3131.4574	psi	Presion de operacion (recalculada)	1708.7693	psi
ensidadOilSC	0.89955	g/cm ³	Frac Agua en la descarga	0.0076922		Rp	0.50269	l I	Tasa limite de cavitacion	965.9329	bl/día
Promedio	165.5	۴F	GLR	32.7853	PCS/bl	Coef. de perdidas en la garganta	0.22661	i.	Eficiencia	0.21264	
ensidadOil	0.85531	g/cm ³	Vel. fluido descarga	1.225	ft/s	Qg	91.5121	MPCS/dia	Potencia de la bomba en superficie	76.5041	HP

LINK DE DESCARGA DEL PROGRAMA DESARROLLADO PARA EL DISEÑO DE BOMBA POR EL MÉTODO DE LA UNIVERSIDAD DE TULSA

https://drive.google.com/drive/folders/1bdChFxWAdVPxdb2pNkfD KUinXXgBJDm0?usp=sharing

