ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELECTRÍCA Y ELECTRÓNICA

FLUJOS ÓPTIMO DE POTENCIA

HERRAMIENTA COMPUTACIONAL PARA EL CÁLCULO DE FLUJOS ÓPTIMOS DE POTENCIA EN CORRIENTE ALTERNA, CONSIDERANDO DIFERENTES FORMULACIONES MATEMÁTICAS PARA LAS RESTRICCIONES DEL PROBLEMA

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN "INGENIERIA ELÉCTRICA"

ALEXANDER VINICIO LLAMUCA ACOSTA

alexander.llamuca@epn.edu.ec

DIRECTOR: DR. NELSON VICTORIANO GRANDA GUTIÉRREZ

nelson.granda@epn.edu.ec

DMQ, Septiembre 2023

CERTIFICACIONES

Yo, ALEXANDER VINICIO LLAMUCA ACOSTA declaro que el trabajo de integración curricular aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

ALEXANDER VINICIO LLAMUCA ACOSTA

Certifico que el presente trabajo de integración curricular fue desarrollado por ALEXANDER VINICIO LLAMUCA ACOSTA, bajo mi supervisión.

DR. NELSON VICTORIANO GRANDA GUTIÉRREZ DIRECTOR

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como los productos resultantes del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

ALEXANDER VINICIO LLAMUCA ACOSTA

DR. NELSON VICTORIANO GRANDA GUTIÉRREZ

DEDICATORIA

A mis padres, Vinicio y Alexandra.

A mis hermanos, David, Ariel, Abigail y Valentina.

AGRADECIMIENTO

A Dios por guiarme a lo largo de este camino, brindándome sabiduría y fortaleza para poder alcanzar este objetivo tan importante de mi vida.

A mis padres, Vinicio y Alexandra por siempre brindarme su amor, apoyo, cariño, aliento y sobre todo por creer y confiar en mis capacidades para poder culminar de manera exitosa mis estudios en tan prestigiada universidad.

A mis hermanos por siempre estar presentes con su cariño y motivación para crecer día a día como persona.

A mis abuelitos, Alicia, Ángel, Miguel, por su apoyo, amor y disposición de estar siempre para brindarme su ayuda. Un agradecimiento especial a mi abuelita Mariana que me guía y protege desde el cielo.

A mis amigos quienes de una u otra manera me han brindado su apoyo.

Al Dr. Nelson Granda, por ser un guía durante el desarrollo de este trabajo.

ÍNDICE DE CONTENIDO

CERTIFICACIONES	I
DECLARACIÓN DE AUTORÍA	II
DEDICATORIA	III
AGRADECIMIENTO	IV
ÍNDICE DE CONTENIDO	V
RESUMEN	VII
ABSTRACT	VIII
1 INTRODUCCIÓN	1
1.1 Objetivo general	2
1.2 Objetivos específicos	2
1.3 Marco teórico	2
1.3.1 Flujo Óptimo de Potencia en Corriente Alterna (OPF-AC)	2
1.3.2 Función objetivo	3
1.3.2.1 Minimizar costo total de generación.	3
1.3.2.2 Linealización de la función de costos.	
1.3.3 Restricciones de igualdad	5
1.3.4 Restricciones de desigualdad	5
2 METODOLOGÍA	
2.1 Descripción de la herramienta computacional	
2.1.1 Modelación de la Función Objetivo	
2.1.2 OPF-AC en términos de potencia	9
2.1.2.1 Balance de potencia en términos de potencia activa y reactiv	'a 10
2.1.3 Balance de potencia en términos de corriente	
2.1.3.1 Formulación matemática de OPF-AC con balance de potencia corriente 13	a en términos de
2.1.4 OPF-AC con relajación de ecuaciones del flujo de potencia	
2.1.4.1 Linealización de las ecuaciones del flujo de potencia [17]	
3 RESULTADOS, CONCLUSIONES Y RECOMENDACIONE	S 23
3.1 Resultados	23
3.1.1 Sistema IEEE de 14 barras	
3.1.2 Sistema Nacional Interconectado (SNI)	
3.1.2.1 Escenario Lluvioso	

	3.1.2.2	Escenario Seco	35
3.2	CONCL	USIONES	. 40
3.3	Recom	endaciones	. 40
4	REFER	ENCIAS BIBLIOGRÁFICAS	42
5	ANEXC	9S	44
ANEXO	I. MAN	JAL DE USUARIO	44
ANEXO	II. DAT	OS DEL SISTEMA IEEE 14 BARRAS	51
ANEXO	III. TAB	LAS DE RESULTADOS DEL SISTEMA IEEE 14 BARRAS	54
ANEXO	IV. TAE	BLAS DE RESULTADOS DEL SISTEMA NACIONAL	
INTERC	CONETA	DO (SNI)	64

RESUMEN

En el presente Trabajo de Integración Curricular (*TIC*) se desarrolla una herramienta computacional, mediante el uso del lenguaje de programación de Python, que permite dar solución al problema del flujo óptimo de potencia en corriente alterna (*OPF-AC*), y se presenta también una recopilación de información relacionada con el problema: su formulación matemática y métodos de solución.

Se realizará la implementación de varios modelos matemáticos de OPF-AC mediante el uso de la librería PYOMO de Python. Se tendrán en cuenta alternativas de modelación de las restricciones del balance nodal, límites de flujos de potencia. Además, se implementará el modelo del OPF-AC considerando la relajación cuadrática de las restricciones del flujo de potencia. Se presenta una sección para el manejo adecuado del programa donde el usuario podrá seleccionar de manera sencilla los diferentes modelos de la función objetivo, casos de estudio.

Esta herramienta es aplicada al sistema de prueba IEEE de 14 barras y al Sistema Nacional Interconectado (SNI) ecuatoriano considerando dos escenarios hidrológicos: Iluvioso y seco, para los cuales se obtienen: el costo total de generación, la potencia de generación y la demanda del sistema, que son presentados mediante gráficas y tablas con sus respectivos análisis.

PALABRAS CLAVE: Flujo óptimo de potencia, Pyomo, Python, OPF-AC, SNI, ecuaciones del flujo de potencia, formulación matemática, modelos.

ABSTRACT

In the present document corresponding to the Curricular Integration Work (TIC) a computational tool is developed using the Python programming language that allows solving the problem of the Optimal Power Flow in alternating current (OPF-AC), and it is presented a collection of information related to the problem: mathematical formulations and solution methods.

The implementation of several mathematical models of OPF-AC will be carried out using the PYOMO Python library. Alternatives for modeling the restrictions of the nodal balance, limits of power flows will be considered. In addition, the OPF-AC model will be implemented considering the quadratic relaxation of the power flow restrictions. A section is presented for the proper management of the program where the user can easily select the different models of objective function, case studies.

This tool is applied to the IEEE 14-Bus system and to the Ecuadorian National Interconnected System (SNI) considering two hydrological scenarios: rainy and dry, for which the results of the total generation cost, generation power and demand of the system, which are presented through graphs and tables with their respective analysis.

KEYWORDS: Optimal Power Flow, Pyomo, Python, OPF-AC, SNI, power flow equations, mathematical formulation, models.

1 INTRODUCCIÓN

El Despacho Económico (*DE*) se puede describir como el proceso de selección de los generadores que deben ser despachados para lograr que la operación del Sistema Eléctrico de Potencia (*SEP*) sea la más económica, tomando en cuenta la demanda eléctrica total más las pérdidas de potencia y los límites técnicos de los generadores [1]. Para el cálculo del DE no se consideran detalles específicos de la red eléctrica a la se encuentran conectados los generadores, más bien se asocian todos sus efectos a la demanda total y las pérdidas [2].

El Flujo Optimo de Potencia (*OPF*) tiene como objetivo principal determinar el punto de operación óptimo del SEP con el propósito de minimizar su costo total de operación, las pérdidas totales de la red, maximizar el nivel de seguridad o la combinación de cualquiera de ellas. La obtención de estos objetivos es de vital importancia para las empresas eléctricas dado que su operación, por ley, debe cumplir con el mínimo usos de recursos y garantizar un alto nivel de seguridad [3], [4].

El OPF es un problema de optimización no lineal, no convexo, que describe la operación del SEP en estado estacionario, debido a que se requiere determinar el valor óptimo de las variables de control considerando un conjunto de restricciones no lineales de operación. Por tanto, para la formulación del OPF se requiere de: i) Función objetivo, la cual se deberá optimizar, ii) Conjunto de restricciones de igualdad, que corresponden al balance de potencia y, iii) Conjunto de restricciones de desigualdad, que describen los limites operativos de los componentes del SEP [4], [5].

El flujo óptimo de potencia de corriente alterna (*OPF-AC*) considera las ecuaciones completas del flujo de potencia a través de los elementos de transmisión. Comparado la formulación matemática de un OPF de corriente continua (*OPF-DC*) con el OPF-AC, éste último tiene mayores beneficios dado que es más preciso, y, además, considera la potencia reactiva, las pérdidas en el sistema de transmisión y modelación detallada de equipamiento como HVDC, FACTS, cambiadores de tomas, compensación reactiva, etc. Sin embargo, las ecuaciones del flujo de potencia AC son cuadráticas debido a que la potencia depende del cuadrado del voltaje, por lo que la resolución es más compleja al tener un problema de optimización no lineal, no convexo [1].

Para el desarrollo de la herramienta computacional para resolver el problema del OPF-AC se empleará la librería Pyomo que permite formular modelos de optimización mediante varios componentes como: función objetivo, variables, diferentes restricciones, ecuaciones

lineales como no lineales, y, además, permite trabajar con datos de Excel tanto para la inicialización de rutinas de programación como para la impresión de resultados.

1.1 Objetivo general

Desarrollar una herramienta computacional para la solución del flujo óptimo de potencia en corriente alterna considerando diferentes formulaciones matemáticas para las distintas restricciones del problema.

1.2 Objetivos específicos

- Implementar un modelo OPF AC considerando diferentes formulaciones matemáticas para la restricción del flujo de potencia, utilizando la librería PYOMO de Python.
- 2. Implementar un modelo OPF AC tomando en cuenta diferentes alternativas para modelar la restricción de balance nodal, utilizando la librería PYOMO de Python.
- Implementar un modelo OPF AC que implemente diferentes alternativas de relajación de las restricciones del problema, mediante el uso de la librería PYOMO de Python.
- 4. Aplicar la herramienta computacional desarrollada al sistema IEEE de 14 barras, y al Sistema Nacional Interconectado ecuatoriano.

1.3 Marco teórico

1.3.1 Flujo Óptimo de Potencia en Corriente Alterna (OPF-AC)

El OPF-AC es un problema de optimización que tiene como objetivo encontrar un punto de operación en estado estable del SEP garantizando el mínimo costo de operación mientras se cumplen las restricciones de igualdad y desigualdad [6], para asegurar una operación confiable y, además, poner en práctica mercados eficientes [7].

La formulación general del OPF-AC se describe de la siguiente manera:

$$\min f(x) \tag{1.1}$$

Sujeto a:

$$g(x) = 0$$
 (1.2)

$$h^{\min} \le h(x) \le h^{\max} \tag{1.3}$$

Donde, f(x) representa la función objetivo a minimizar, por ejemplo, el costo total de generación o las pérdidas totales del sistema, g(x) representa las restricciones de igualdad que, generalmente, son las ecuaciones de balance de potencia nodal, y h(x) representa las restricciones de desigualdad, que contiene los límites técnicos de operación [8].

El OPF-AC es empleado tanto en la operación como en la planificación del SEP, por ejemplo, para la planificación de expansión, la gestión de la red, los mercados diarios y para el control en tiempo real [9].

1.3.2 Función objetivo

En la formulación del OPF la función objetivo es de suma importancia ya que es necesaria para realizar el proceso de optimización matemática dando como resultado la solución óptima del problema [10]. Existen algunos tipos de función objetivo donde su elección depende del propósito del estudio, por ejemplo, minimización del costo total de generación, de las perdidas o de los cortes de carga [11].

1.3.2.1 Minimizar costo total de generación.

Para minimizar el costo total de generación se tiene la siguiente función objetivo [10]:

$$FO = \min \sum_{n=1}^{Ngen} F_n(P_{gen\,n})$$
(1.4)

Donde:

 $F_n(P_{gen n})$ Es la función de costo de generación del generador n. [USD/h]

N_{gen} Es el número de generadores del SEP.

 $P_{gen n}$ Es la potencia activa generada por cada generador *n*.

El costo de generación, como función de la potencia eléctrica generada, usualmente se expresa como [10]:

$$F_n(P_{gen n}) = a_n * P_{gen n}^2 + b_n * P_{gen n} + c_n$$
(1.5)

Donde:

 a_n Coeficiente cuadrático de costos de la unidad n.

- b_n Coeficiente lineal de costos de la unidad n.
- c_n Coeficiente de costos constante de la unidad n.

1.3.2.2 Linealización de la función de costos.

En la figura 1, se muestra la función de costos de generación que, en general, es una función cuadrática; sin embargo, para facilitar el proceso de solución puede representarse mediante una aproximación lineal por segmentos [2].

Figura 1.- Función de costos no lineal: (a) cuadrática, (b) aproximación lineal por segmentos [2]. Por tanto, la función de costos de generación puede ser expresada como un conjunto de funciones lineales distribuidas en tres segmentos donde la variable $P_{gen n}$ es reemplazada por tres nuevas variables descritas como $P_{gen n1}$, $P_{gen n2}$, $P_{gen n3}$. Cada segmento tendrá designado un valor de pendiente s_{n1} , s_{n2} , s_{n3} , entonces la función de costos se expresa como la suma de la potencia de la generación mínima más la multiplicación de cada uno de los costos por sus respectivas pendientes [2].

$$F_i(P_{gen n}) = P_{gen n}^{min} + s_{n1} * P_{gen n1} + s_{n2} * P_{gen n2} + s_{n1} * P_{gen n3}$$
(1.6)

$$0 \le P_{gen\,n,k} \le P_{gen\,n,k} \qquad \forall k = 1,2,3 \tag{1.7}$$

Donde:

 $\begin{array}{ll} F_i(P_{gen\ n}) & \text{Es la función de costo del generador } n. \ [USD/h] \\ P_{gen\ n} & \text{Es la potencia activa generada por cada generador } n. \\ P_{gen\ n}^{min} & \text{Es la potencia activa mínima generada por el generador } n. \\ s_{n,k} & \text{Valor de la pendiente del generador } n \ \text{correspondiente a cada segmento } k. \end{array}$

1.3.3 Restricciones de igualdad

Por lo general, el balance de potencia se emplea como restricción de igualdad g(x), es decir, se debe cumplir que la potencia total generada sea igual a la potencia total de demanda más las pérdidas [12]:

$$\sum_{\substack{n=1\\N\in\Omega}}^{N\in\Omega} P_{gen\,n} = \sum_{\substack{i=1\\N}}^{N} P_{d\,i} + P_i \qquad \forall i \in N \qquad (1.8)$$

$$\sum_{\substack{n=1\\n=1}}^{N} Q_{gen\,n} = \sum_{\substack{i=1\\i=1}}^{N} Q_{d\,i} + Q_i \qquad \forall i \in N \qquad (1.9)$$

- $P_{gen n}$ Potencia activa del generador *n* conectado en la barra *i*. [MW]
- $Q_{gen n}$ Potencia reactiva del generador *n* conectado en la barra *i*. [MVAr]
- P_{di} Potencia activa de demanda conectada en la barra *i*. [MW]
- $Q_{d\,i}$ Potencia reactiva de demanda conectada en la barra *i*. [MVAr]
- *P_i* Potencia activa neta inyectada en la barra *i*.[MW]
- *Q_i* Potencia reactiva neta inyectada en la barra *i*. [MVAr]
- Ω Conjunto de generadores conectados en la barra *i*.

Los términos de P_i y Q_i se pueden calcular como la sumatoria de los flujos de potencia AC a través de los elementos que se conectan a la barra *i*, y pueden ser expresados en coordenadas polares o en coordenadas rectangulares [12].

1.3.4 Restricciones de desigualdad

Este conjunto de restricciones considera los límites máximos y mínimos tanto de las variables de control como de estado [8]. A continuación, se presentan cada uno de estos límites operativos:

Límites técnicos de generación:

Potencia activa:

$$P_{gen n}^{\min} \le P_{gen n} \le P_{gen n}^{\max} \quad \forall i \in N$$
(1.10)

Donde:

Valor de potencia activa máxima de generación de la unidad *n* conectada a la barra *i*. [MW]

 $P_{gen n}^{min}$ Valor de potencia activa mínima de generación de la unidad *n* conectada a la barra *i*. [MW]

Potencia reactiva:

$$Q_{gen n}^{min} \le Q_{gen} \le Q_{gen n}^{max} \quad \forall i \in N$$
(1. 11)

Donde:

- Q_{genn}^{max} Valor de potencia reactiva máxima de generación de la unidad *n* conectada a la barra *i*. [MVAr]
- Q_{genn}^{min} Valor de potencia reactiva mínima de generación de la unidad *n* conectada a la barra *i*. [MVAr]

Límites de magnitud de voltaje:

Cuando se ocupan restricciones del flujo de potencia expresadas en coordenadas polares, se expresan como:

$$V_i^{\min} \le V_i \le V_i^{\max} \qquad \forall i \in N \tag{1.12}$$

Cuando se ocupan restricciones del flujo de potencia expresadas en coordenadas rectangulares, se expresan como:

$$V_i^{min} \le \sqrt{(V_i^r)^2 + (V_i^m)^2} \le V_i^{max} \quad \forall i \in N$$
 (1.13)

Donde:

V _i ^{max}	Valor de voltaje máximo	en la barra i.
-------------------------------	-------------------------	----------------

 V_i^{min} Valor de voltaje mínimo en la barra *i*.

- V_i^r Valor real del voltaje en la barra *i*.
- V_i^m Valor imaginario del voltaje en la barra *i*.

Límites del ángulo de voltaje:

$$\delta_i^{\min} \le \delta_i \le \delta_i^{\max} \quad \forall i \in \mathbb{N}$$
(1. 14)

Donde:

- δ_i^{max} Valor del ángulo máximo del voltaje en la barra *i*.
- δ_i^{min} Valor del ángulo mínimo del voltaje en la barra *i*.

Límites de flujo de potencia aparente en líneas de transmisión o transformadores:

$$S_{ij}^{min} \le S_{ij} \le S_{ij}^{max} \quad \forall \, i, j \in \mathbb{N}$$
(1. 15)

$$S_{ij}^{min^2} \le P_{ij}^2 + Q_{ij}^2 \le S_{ij}^{max^2} \quad \forall \ i,j \in \mathbb{N}$$
(1.16)

$$P_{ij} = G_{ij}V_i^2 - V_i * V_j (B_{ij}\sin(\delta_{ij}) + G_{ij}\cos(\delta_{ij})) \quad \forall i,j \in \mathbb{N}$$

$$(1. 17)$$

$$Q_{ij} = -B_{ij}V_i^2 - V_i * V_j(G_{ij}\sin(\delta_{ij}) - B_{ij}\cos(\delta_{ij})) \quad \forall i,j \in \mathbb{N}$$

$$(1. 18)$$

Donde:

- S_{ij}^{max} Valor de potencia aparente máxima transmitida de la barra *i* hacia la barra *j*.
- S_{ij}^{min} Valor de potencia aparente mínima transmitida de la barra *i* hacia la barra *j*.
 - P_{ij} Valor de potencia activa transmitida de la barra *i* hacia la barra *j*.
 - Q_{ij} Valor de potencia reactiva transmitida de la barra *i* hacia la barra *j*.

2 METODOLOGÍA

Para el desarrollo de la herramienta computacional que permita resolver el problema del OPF-AC, considerando diferentes formulaciones matemáticas, se empleó el entorno Spyder y la librería Pyomo, que permite realizar la formulación de diferentes modelos matemáticos de optimización [13].

2.1 Descripción de la herramienta computacional

Se implementan cuatro diferentes formulaciones matemáticas para resolver el OPF-AC:

- Ecuación de balance considerando potencias activa y reactiva con las ecuaciones del flujo de potencia en coordenadas polares,
- Ecuación de balance considerando potencias activa y reactiva con las ecuaciones del flujo de potencia en coordenadas rectangulares,
- Ecuación de balance considerando potencias activa y reactiva con la linealización de las ecuaciones del flujo de potencia, y,
- iv. Ecuación de balance considerando corrientes con el flujo de potencia expresado en coordenadas rectangulares.

Además, se implementan dos formas para expresar a la función objetivo: la primera que representa a la función de costos de generación mediante una ecuación cuadrática y, la segunda que expresa a la función de costos de manera lineal. Entonces, el tiempo de solución del programa cambiara de acuerdo con el tipo de función seleccionada.

Para encontrar la solución de los diferentes casos, se hace uso del solver IPOPT (Interior Point Optimizer), el cual es un software de código abierto que tiene la capacidad de resolver problemas de optimización no lineal de un alto grado [14].

2.1.1 Modelación de la Función Objetivo

Para este caso, se cuenta con la implementación de dos modelos de función objetivo, la función de costos cuadrática y la función de costos lineal, las cuales serán empleadas para todos los casos del OPF-AC y su diferencia se podrá observar tanto en el tiempo que se demora el programa para obtener una solución óptima como en el valor del costo total del sistema.

Figura 2.- Código de la función objetivo.

Se puede observar en la figura 2 el desarrollo del código correspondiente a la función objetivo, donde se tiene dos funciones, la denominada objetive que contiene el costo total del sistema en dólares y, la otra función cost_function que contiene la formulación de las funciones objetivos empleando el condicional if, else, que en el caso de elegir en el archivo 'ejecutable.py' la opción #1 en la variable MetFO se utilizarla la ecuación cuadrática (1.5) para la resolución del problema, o caso contrario seleccionado la opción #0 se hace uso de la ecuación lineal (1.6).

2.1.2 OPF-AC en términos de potencia

Para este modelo se considera la restricción de igualdad correspondiente al balance nodal en términos de potencia activa y reactiva, que se encuentran representadas en las ecuaciones (1.8) y (1.9) respectivamente.

#RETRICCIÓN DE IGUALDAD	
<pre>def Balance_P_def2(model): P=sum(model.P[j] for j in model.6)</pre>	
Pd=sum(model.demP[d] for d in model.D) Pl=sum(model.FLP[n] for n in model.N)	
return P==Pd+Pl #P DE GENERACIÓN = P DE DEMANDA + P DE PÉRDIDAS	
<pre>model.Balance_P2 = pyo.Constraint(rule=Balance_P_def2, doc = ' Balance de Potencia Activa Nodal')</pre>	
<pre>def balance_potencia2Q(model): Q=sum(model.Q[j] for j in model.G)</pre>	
Qd=sum(model.demQ[d]	
Ql=sum(model.FLQ[n] for n in model.N) return Q==Qd+Q1 #Q DE GENERACIÓN = Q DE DEMANDA + Q DE PÉRDIDAS	
<pre>model.bal_pot2Q = pyo.Constraint(rule=balance_potencia2Q,doc = ' Balance de Potencia Reactiva Nodal'</pre>)

En la figura 3 se muestra el desarrollo de las ecuaciones del balance nodal en el programa, donde tanto para la potencia activa como reactiva se crea su respectiva función, se puede observar que se crea las variables que obtendrán los valores totales de potencia de generación, demanda y pérdidas del sistema para al final formar la ecuación que describe el balance, es decir, la potencia de generación total debe ser igual a la potencia de demanda más las de pérdidas.

2.1.2.1 Balance de potencia en términos de potencia activa y reactiva

Para este modelo las restricciones de igualdad se expresan en las ecuaciones (2.1) y (2.1) de la siguiente manera [9]:

$$\sum_{\substack{n=1\\N\in\Omega}}^{N\in\Omega} P_{gen\,n} = \sum_{\substack{i=1\\N}}^{N} P_{di} + P_i \qquad \forall i \in N$$
(2. 1)

$$\sum_{n=1}^{N \in \Omega} Q_{gen n} = \sum_{i=1}^{N} Q_{di} + Q_i \qquad \forall i \in N$$

$$(2.2)$$

Además, se plantean dos formas de representar las ecuaciones del flujo de potencia de corriente alterna, la primera expresando a los voltajes en coordenadas polares y, la segunda con los voltajes en coordenadas rectangulares, por lo cual el modelo modificará la restricción de los límites del voltaje dependiente del caso seleccionado. A continuación, se presenta el desarrollo de las expresiones matemáticas:

Expresadas en coordenadas polares:

Para esta formulación se utiliza la representación en forma polar del voltaje, donde V_i es la magnitud del voltaje y, δ_i es el ángulo en la barra *i*.

Los términos correspondientes a P_i y Q_i de las ecuaciones (2.1) y (2.2) representan a las ecuaciones del flujo de potencia de corriente alterna, que se expresan en forma polar de la siguiente manera [15]:

$$P_i = V_i \sum_{\substack{j=1\\N}}^{N} V_j * (G_{ij} * \cos(\delta_i - \delta_j) + B_{ij} \sin(\delta_i - \delta_j)) \qquad \forall i \in N$$
(2.3)

$$Q_i = V_i \sum_{j=1}^{N} V_j * (G_{ij} * \sin(\delta_i - \delta_j) - B_{ij} * \cos(\delta_i - \delta_j)) \qquad \forall i \in \mathbb{N}$$
(2.4)

Donde:

- V_i, V_j Magnitud del voltaje en la barra *i* y *j*, respectivamente.
- δ_i, δ_j Ángulos del voltaje en la barra *i* y *j*, respectivamente
- G_{ij} Valor de conductancia del elemento i j de la matriz Y_{barra} . [1/ Ω]

Figura 4.- Representación de las ecuaciones del flujo de potencia en coordenadas polares.

En la figura 4 se puede observar la implementación de las ecuaciones (2.3) y (2.4), donde se define dos nuevas funciones para el cálculo del flujo potencia activa y reactiva empleando un lazo for para obtener los valores de potencia en cada una de las barras que conforman el sistema, la formulación del sumatorio de las ecuaciones (2.3) y (2.4), cada una con sus respectivos valores de voltaje, ángulo, conductancia y suceptancia, se encuentran desarrolladas en la variable suma, que luego retorna la variable *model.FLP* donde se multiplica al sumatorio por su respectivo voltaje correspondiente a la barra *i* para completar todos los términos de las ecuaciones. Entonces, este modelo se utilizará cuando el usuario selección la opción #1 en el método de resolución en el archivo 'ejecutable.py'.

Expresadas en coordenadas rectangulares:

En esta formulación, se exprese de forma rectangular al voltaje, es decir, en una parte real y una imaginara que se representa por V_i^r y V_i^m respectivamente. Entonces, las ecuaciones de la potencia activa y reactiva inyectadas en cada barra del sistema se expresan de la siguiente manera [15]:

$$P_{i} = \sum_{j=1}^{N} [V_{i}^{r} * (G_{ij} * V_{j}^{r} - B_{ij} * V_{j}^{m}) + V_{i}^{m} * (G_{ij} * V_{j}^{m} + B_{ij} * V_{j}^{r})] \qquad \forall i \in N$$
(2.5)

$$Q_{i} = \sum_{j=1}^{N} [V_{i}^{m} * (G_{ij} * V_{j}^{r} - B_{ij} * V_{j}^{m}) - V_{i}^{r} * (G_{ij} * V_{j}^{m} + B_{ij} * V_{j}^{r})] \quad \forall i \in \mathbb{N}$$
(2.6)

Donde:

- V_i^r Valor de la parte real del voltaje en la barra *i*.
- V_i^m Valor de la parte imaginaria del voltaje en la barra *i*.
- V_j^r Valor de la parte real del voltaje en la barra *j*.
- V_i^m Valor de la parte imaginaria del voltaje en la barra *j*.
- G_{ij} Valor de conductancia del elemento i j de la matriz Y_{barra} .

B_{ij} Valor de suceptancia del elemento i - j de la matriz Y_{harra} .

Figura 5.- Código desarrollado para las ecuaciones del flujo en coordenadas rectangulares.

En la figura 5 se muestra el uso de dos funciones, una para encontrar la de potencia activa y otra para la potencia reactiva por cada barra del sistema donde, en ambos casos, se empieza definiendo una variable suma, luego se procede a definir cada uno de los valores de la parte real e imaginaria del voltaje para la barra i y j, respectivamente,. Además, se puede observar que se emplea un lazo for que permitirá obtener el valor total de la potencia neta en cada barra. Las ecuaciones (2.5) y (2.6) se formulan en la variable suma que se forma a partir de las variables reales e imaginarias del voltaje junto con los valores de suceptancias y conductancias obtenidas en la matriz Y_{barra} del sistema y, finalmente el valor total de potencia de cada una de las barras retorna en la variable *model.FLP* y *model.FLQ*, respectivamente, empleadas para cumplir con el balance nodal de potencia. Para resolver el problema con esta formulación matemática de los flujos se debe seleccionar la opción #2 en el método de resolución en el archivo ejecutable.

2.1.3 Balance de potencia en términos de corriente

En cuanto a este modelo se emplea el balance de corriente nodal para cada una de las barras del sistema, donde se representará la corriente en coordenadas rectangulares, es decir, contara con un valor real y otro imaginario expresados como: $i_i = i_i^r + i_i^m$ [16].

Las ecuaciones que expresan el flujo de corriente por líneas y transformadores en función de coordenadas rectangulares se describen de la siguiente manera [12]:

$$i_{ij}{}^{r} = g_{ij}{}^{net} * V_{i}{}^{r} - b_{ij}{}^{net} * V_{i}{}^{m} + G_{ij} * V_{j}{}^{r} - B_{ij} * V_{j}{}^{m} \quad \forall (i,j) \in K$$
(2.7)

$$i_{ij}{}^{m} = g_{ij}{}^{net} * V_{i}{}^{m} + b_{ij}{}^{net} * V_{i}{}^{r} + G_{ij} * V_{j}{}^{m} + B_{ij} * V_{j}{}^{r} \quad \forall (i,j) \in K$$
(2.8)

Donde:

V_i^r	Valor de la parte real del voltaje en la barra <i>i</i> .
V_i^m	Valor de la parte imaginaria del voltaje en la barra i .
V_j^r	Valor de la parte real del voltaje en la barra <i>j</i> .
V_j^{m}	Valor de la parte imaginaria del voltaje en la barra <i>j</i> .
g _{ij} ^{net}	Valor de conductancia del elemento $i - j$ de la matriz Y_{neta} .
b _{ij} ^{net}	Valor de suceptancia del elemento $i - j$ de la matriz Y_{neta} .
K	Conjunto de líneas de transmisión

Por tanto, las ecuaciones que definen al balance de corriente nodal para cada barra del sistema se escriben de la siguiente manera:

$$i_i^r - \left(\sum_{(i,j)\in K} i_{ij}^r + G_{ij}^{sh} * V_i^r - B_{ij}^{sh} * V_i^m\right) = 0$$
(2.9)

$$i_i^{\ m} - \left(\sum_{(i,j)\in K} i_{ij}^{\ r} + G_{ij}^{\ sh} * V_i^{\ m} + B_{ij}^{\ sh} * V_i^{\ r}\right) = 0$$
(2. 10)

Donde:

- i_i^r Valor de la parte real de corriente en la barra *i*.
- i_i^m Valor de la parte imaginaria de corriente en la barra *i*.
- G_{ij}^{sh} Valor de conductancia shunt del elemento i j de la matriz Y_{barra} .
- B_{ij}^{sh} Valor de suceptancia shunt del elemento i j de la matriz Y_{barra} .

2.1.3.1 Formulación matemática de OPF-AC con balance de potencia en términos de corriente

Para este modelo la ecuación (2.11) representa la función de costos cuadrática, las restricciones de igualdad se expresan en las ecuaciones (2.12) y (2.13), mientras que las ecuaciones (2.14) a (2.19) representan las restricciones de desigualdad. Por tanto, el OPF-AC en términos de corriente se formula de la siguiente manera [16]:

$$F_n(P_{gen n}) = a_n * P_{gen n}^2 + b_n * P_{gen n} + c_n$$
(2. 11)

s.a:

$$i_{i}^{r} = \left(\sum_{(i,j)\in K} i_{ij}^{r} + G_{ij}^{sh} * V_{i}^{r} - B_{ij}^{sh} * V_{i}^{m}\right) \qquad \forall i \in N$$
(2. 12)

$$i_i^{\ m} = \left(\sum_{(i,j)\in K} i_{ij}^{\ r} + G_{ij}^{\ sh} * V_i^{\ m} + B_{ij}^{\ sh} * V_i^{\ r}\right) \qquad \forall i \in N$$
(2. 13)

$$P_{gen n} - (V_i^r * i_i^r + V_i^m * i_i^m) = P_{di}$$
(2.14)

$$Q_{gen\,n} - (V_i^r * i_i^r - V_i^m * i_i^m) = Q_{di}$$
(2. 15)

$$P_{gen n}^{min} \le P_{gen n} \le P_{gen n}^{max} \quad \forall i \in \mathbb{N}$$
(2. 16)

$$Q_{gen n}^{\min} \le Q_{gen n} \le Q_{gen n}^{\max} \quad \forall i \in N$$
(2. 17)

$$V_i^{min} \le \sqrt{(V_i^r)^2 + (V_i^m)^2} \le V_i^{max} \qquad \forall i \in \mathbb{N}$$
(2. 18)

$$\sqrt{(i_{ij}r)^2 + (i_{ij}m)^2} \le i_{ij}max \qquad \forall i, j \in K$$
(2. 19)

Donde, las ecuaciones (2.16) y (2.17) contienen los límites de potencia activa y reactiva en cada barra, (2.14) y (2.15) representan el balance de potencia con el flujo de potencia en términos de corriente y voltaje de forma rectangular, los límites de voltaje se expresan en (2.18) y, los limites correspondientes al flujo de corriente por líneas y transformadores se muestra en la ecuación (2.19).

El desarrollo de este modelo parte del cálculo de los valores de corriente que fluyen a través de líneas de transmisión y transformadores correspondientes a las ecuaciones (2.7) y (2.8) que permiten formar las ecuaciones del balance nodal de corriente, para luego cumplir tanto con las restricciones de igualdad como de desigualdad que conforman el modelo total. A continuación, se muestra la implementación dentro del programa del modelo:

Figura 6.- Código implementado para el cálculo del flujo de corriente por líneas y trafos.

En la figura 6 se muestra el desarrollo de las ecuaciones (2.7) y (2.8) para encontrar los valores de corriente real e imaginaria que fluye a través de las líneas de transmisión y transformadores del sistema, donde las expresiones from corresponden a los valores de corriente que fluye desde la barra *i* hacia *j*, mientras que las funciones *to* contienen los valores que fluyen desde la barra *j* hacia *i*.

Figura 7.- Código correspondiente al balance nodal de corriente real.

Una vez encontrados los valores que se muestra en la figura 6 se obtiene las ecuaciones (2.12) y (2.13) empleando dos funciones para encontrar la corriente de barra real e imaginaria, respectivamente, en la figura 7 se puede observar el código correspondiente al desarrollo de la ecuación (2.12) con la que se obtiene el valor real de corriente en cada una de las barras del sistema, donde se emplea un lazo for que permite realizar la sumatoria de las corrientes de líneas y transformadores calculadas anteriormente, donde lo primero que se realiza es verificar la posición de las líneas para luego con el condicional if, else se compruebe que la línea pertenezca a una barra y, que no se vuelva a leer la misma línea dos veces, para de manera posterior en la variable *InI* ir almacenando y sumando los valores de corriente que pertenecen a esa barra, lo cual se realiza de la misma forma en caso de que exista transformadores dentro del sistema, finalmente en la variable *InI* se puede observar la formulación de la ecuación (2.12) que retorna en la variable *model. Ibr* con el valor real de la corriente de cada barra del sistema, de igual forma se desarrolla el código para obtener los valores imaginarios de la corriente en cada barra.

Figura 8.- Código del flujo de potencia en términos de corriente y voltaje.

Como se pueda observar en la figura 8 la potencia activa y reactiva se expresan en las variables *model*. *FLP* y *model*. *FLQ* respectivamente, donde se realiza la multiplicación del voltaje por la corriente que representan a los términos que restan a la potencia de generación de las ecuaciones (2.14) y (2.15), en el código los valores de voltaje se definen en forma rectangular, los valores de corrientes son los que se obtienen a partir de las ecuaciones (2.12) y (2.13) tanto su parte real como imaginaria y, posteriormente, se forman las ecuaciones de potencia, donde para la primera función correspondiente a la potencia activa se expresa como la suma de sus valores, mientras que para la potencia reactiva se expresan como la resta y, además, se intercambia en la multiplicación los valores del voltaje.

2.1.4 OPF-AC con relajación de ecuaciones del flujo de potencia

Este modelo del OPF-AC se formula con las ecuaciones características del flujo de potencia de corriente alterna linealizadas cuyo desarrollo se muestra en la siguiente sección.

2.1.4.1 Linealización de las ecuaciones del flujo de potencia [17].

Los flujos de potencia entre barras (i,j) se expresa de la siguiente manera:

$$P_{ij} = (V_i^2 - V_i * V_j * \cos(\delta_{ij})) * G_{ij} - V_i * V_j * B_{ij} \sin(\delta_{ij}) \quad \forall i, j \in \mathbb{N}$$
(2.20)

$$Q_{ij} = -(V_i^2 - V_i * V_j * \cos(\delta_{ij})) * B_{ij} - V_i * V_j * G_{ij} \sin(\delta_{ij}) \quad \forall \, i, j \in \mathbb{N}$$
(2.21)

Considerando que la diferencia entre los ángulos de las barras es pequeña cuando se expresan en radianes, y usando la expansión en series de Taylor de las funciones seno y coseno hasta el término cuadrático, se tiene:

$$\cos(\delta_i - \delta_j) \approx 1 - \frac{\delta_{ij}^2}{2}$$
(2. 22)

$$\sin(\delta_i - \delta_j) \approx \delta_{ij}$$
(2.23)

Para desacoplar *V* y δ , se asume que la magnitud del voltaje es cercana a 1 p.u (*V* \approx 1 *p.u*):

$$V_i * V_j * \delta_{ij} \approx \delta_{ij} \tag{2.24}$$

$$V_i * V_j * \delta_{ij}^2 \approx \delta_{ij}^2$$
(2.25)

Al remplazar las expresiones de (2.22) a (2.26) en las ecuaciones (2.20) y (2.21) se obtiene las siguientes ecuaciones:

$$P_{ij} = G_{ij} * (V_i^2 - V_i * V_j) - B_{ij} * \delta_{ij} + \frac{1}{2} * G_{ij} * \delta_{ij}^2 \quad \forall i, j \in \mathbb{N}$$
(2.26)

$$Q_{ij} = -B_{ij} * (V_i^2 - V_i * V_j) - G_{ij} * \delta_{ij} + \frac{1}{2} * (-B_{ij}) * \delta_{ij}^2 \quad \forall \ i, j \in \mathbb{N}$$
(2.27)

Tomando en cuenta que V^2 es una variable independiente, se emplea la siguiente transformación matemática para el término de la magnitud de voltaje no lineal ($V_{ij} = V_i - V_j$):

$$V_i^2 - V_i * V_j = V_i^2 - \left(\frac{V_i^2 + V_j^2}{2} - \frac{V_{ij}^2}{2}\right) = \frac{V_i^2 - V_j^2}{2} + \frac{V_{ij}^2}{2}$$
(2.28)

Por tanto, aplicando la transformación matemática (2.28) en las ecuaciones (2.26) y (2.27) se tiene el modela de la red linealizado con Q y V expresado de la siguiente manera:

$$P_{ij}{}^{\Lambda} = G_{ij} * \frac{V_i{}^2 - V_j{}^2}{2} - B_{ij} * \delta_{ij} + P_{ij}{}^L$$
(2.29)

$$Q_{ij}{}^{\Lambda} = -B_{ij} * \frac{V_i{}^2 - V_j{}^2}{2} - G_{ij} * \delta_{ij} + Q_{ij}{}^L$$
(2.30)

$$P_{ij}{}^{L} = \frac{1}{2}G_{ij} * \left(\delta_{ij}{}^{2} + V_{ij}{}^{2}\right)$$
(2. 31)

$$Q_{ij}{}^{L} = \frac{1}{2}(-B_{ij}) * (\delta_{ij}{}^{2} + V_{ij}{}^{2})$$
(2. 32)

Donde:

 P_{ij}^{Λ} Aproximación lineal del flujo de potencia activa.

 Q_{ij}^{Λ} Aproximación lineal del flujo de potencia reactiva.

$$P_{ij}^{L}$$
 Pérdidas de potencia activa en el elemento $i - j$.

$$Q_{ij}^{L}$$
 Pérdidas de potencia reactiva en el elemento $i - j$.

Las ecuaciones (2.29) y (2.30) representas las ecuaciones del flujo de potencia linealizadas, a excepción de las ecuaciones (2.31) y (2.32) que representan las pérdidas donde se incluyen el efecto de las magnitudes de tensión.

Para expresar las ecuaciones de las pérdidas de tipo lineal se toma en consideración los valores de condiciones iniciales de $V = V_0$ y $\delta = \delta_0$, la ecuación (2.31) de pérdidas de potencia se puede expresar en términos del ángulo y de la magnitud de voltaje como:

$$P_{ij}{}^{L} = \frac{1}{2}G_{ij} * \delta_{ij}{}^{2} + \frac{1}{2}G_{ij} * V_{ij}{}^{2} = P_{ij,\delta}{}^{L} + P_{ij,V}{}^{L}$$
(2. 33)

Al aplicar el desarrollo de la serie de Taylor de primer orden, el término $P_{ij,\delta}^{L}$ se linealiza de la siguiente manera:

$$P_{ij,\delta}{}^{L} = \frac{1}{2}G_{ij} * \delta_{ij}{}^{2} \approx G_{ij} * \delta_{ij,0} * \delta_{ij} - \frac{1}{2}G_{ij} * \delta_{ij,0}^{2}$$
(2.34)

En cuanto a $P_{ij,V}^{L}$ al ser una función del voltaje, primero se aplica la transformación de V^{2} y luego se aplica el desarrollo de la serie de Taylor de primer orden:

$$P_{ij,V}{}^{L} = \frac{1}{2}G_{ij} * V_{ij}{}^{2} \approx \frac{G_{ij}}{2} * \frac{(V_{i} + V_{j})^{2}}{(V_{i,0} + V_{j,0})^{2}} V_{ij}{}^{2} = \frac{G_{ij}}{2} * \frac{(V_{i}^{2} - V_{j}^{2})^{2}}{(V_{i,0} + V_{j,0})^{2}}$$
$$= G_{ij} * \frac{V_{i,0} - V_{j,0}}{V_{i,0} + V_{i,0}} (V_{i}^{2} - V_{j}^{2}) - \frac{G_{ij}}{2} (V_{i,0} - V_{j,0})^{2}$$
(2.35)

Por tanto, las ecuaciones linealizadas de las pérdidas se expresan de la siguiente manera:

$$P_{ij}{}^{L} = (G_{ij} * \delta_{ij,0} * \delta_{ij} - \frac{1}{2}G_{ij} * \delta_{ij}{}^{2}) + (G_{ij} * \frac{V_{i,0} - V_{j,0}}{V_{i,0} + V_{j,0}}(V_{i}{}^{2} - V_{j}{}^{2}) - \frac{G_{ij}}{2}(V_{i,0} - V_{j,0})^{2})$$
(2.36)
$$Q_{ij}{}^{L} = ((-B_{ij}) * \delta_{ij,0} * \delta_{ij} - \frac{1}{2}(-B_{ij}) * \delta_{ij}{}^{2}) + ((-B_{ij}) * \frac{V_{i,0} - V_{j,0}}{V_{i,0} + V_{j,0}}(V_{i}{}^{2} - V_{j}{}^{2}) - \frac{(-B_{ij})}{2}(V_{i,0} - V_{j,0})^{2})$$
(2.37)

Finalmente, las ecuaciones del flujo de potencial por líneas de transmisión y transformadores de forma lineal con pérdidas se muestran a continuación [18]:

$$P_{ij}^{\Lambda} = G_{ij} * \frac{V_i^2 - V_j^2}{2} - B_{ij} * \delta_{ij} + (G_{ij} * \delta_{ij,0} * \delta_{ij} - \frac{1}{2}G_{ij} * \delta_{ij}^2) + (G_{ij} * \frac{V_{i,0} - V_{j,0}}{V_{i,0} + V_{j,0}} (V_i^2 - V_j^2) - \frac{G_{ij}}{2} (V_{i,0} - V_{j,0})^2)$$

$$(2.38)$$

$$Q_{ij}^{\Lambda} = -B_{ij} * \frac{V_i^2 - V_j^2}{2} - G_{ij} * \delta_{ij} + ((-B_{ij}) * \delta_{ij,0} * \delta_{ij} - \frac{1}{2}(-B_{ij}) * \delta_{ij}^2) + ((-B_{ij}) * \delta_{i$$

Donde:

- P_{ij}^{Λ} Aproximación lineal del flujo de potencia activa.
- Q_{ij}^{Λ} Aproximación lineal del flujo de potencia reactiva.

 $V_{(i,j),0}$ Valor de voltaje de condiciones iniciales.

 $\delta_{ij,0}$ Valor del ángulo de voltaje de condiciones iniciales.

Para este modelo las ecuaciones de la potencia activa y reactiva inyectadas en cada barra empleadas para el balance nodal de potencia se expresan de la siguiente manera [17]:

$$P_{i} = \sum_{(i,j)\in K} P_{ij}^{A} + \left(\sum_{j=1}^{N} G_{ij}\right) * V_{i}^{2} \qquad \forall i \in N$$
(2.40)

$$Q_{i} = \sum_{(i,j)\in K} Q_{ij}^{\Lambda} + (\sum_{j=1}^{N} -B_{ij}) * V_{i}^{2} \qquad \forall i \in N$$
(2. 41)

Donde, los segundos términos de las ecuaciones (2.40) y (2.41), representan los flujos de potencia por los elementos shunt del sistema, son líneas dado a que V^2 es considera una variable independiente [17].

A continuación, se presenta la implementación de este modelo para la resolución del OPF-AC con la relajación de las ecuaciones del flujo de potencia:

Figura 9.- Código desarrollado de las ecuaciones linealizadas del flujo de potencia por líneas de transmisión.

En la figura 9 se muestra la implementación de dos funciones, para desarrollar las ecuaciones (2.38) y (2.39), donde la primera realiza el cálculo del flujo de potencia que va desde la barra *i* hacia la barra *j* y, la segundo calcula el flujo de manera inversa. Como se pude observar se empieza definiendo cada una de las variables de voltajes, suceptancias, conductancias para forman las ecuaciones, donde la primero que se realiza es la formulación de ecuación (2.36) en la línea 469 que representa a las pérdidas de potencia y, posteriormente, se completa la ecuación en la variable *model.Pij* obteniendo así los valores del flujo de potencia activa por las líneas de transmisión que conforman el sistema de estudio. De igual manera se plantea las funciones para realizar el cálculo para transformadores.

Figura 10.- Código implementado para las potencias inyectas en cada barra con la relajación de las ecuaciones del flujo de potencia.

La implantación de las ecuaciones (2.40) y (2.41) dentro del programa, se muestra en la figura 10 donde se formula dos funciones para encontrar los valores tanto de la potencia activa y reactiva inyectadas en cada barra del sistema, para lo cual se hace uso de un lazo *for* que permite identifica las posición de cada una de las líneas del sistema para realizar el sumatorio de las potencias de líneas y transformadores que llegan a cada barra junto con el segundo término de cada ecuación que se expresa en la variable *suma*, para de manera posterior formar la ecuación total en la variable *model.FLP*, para el caso de la potencia activa, obteniendo de esa manera los valores totales de la potencia activa y reactiva inyectada en cada una de las barras que luego se emplean en el balance nodal de potencia.

3 RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

3.1 Resultados

Para analizar y verificar que la herramienta computación desarrollada funciona de manera correcta, se aplica a dos casos de estudio, el sistema IEEE de 14 barras y el Sistema Nacional Interconectado (SNI) ecuatoriano.

3.1.1 Sistema IEEE de 14 barras

Figura 11.- Modelo del sistema de prueba IEEE de 14 barras [19].

Los parámetros de entrada del sistema se presentan en el Anexo II. A continuación, se presentan los resultados obtenidos seleccionado las siguientes opciones en el programa:

- Función objetivo: Cuadrática.
- Método de resolución: OPF-AC expresando las ecuaciones del flujo de potencia en coordenadas polares.

Dato	Valor
Costo total del sistema	8178.87 [USD/h]
Potencia Generada	265.41 [MW]
Demanda	259 [MW]

Tabla 3. 1 Resultados del OPF-AC polar.

En la tabla 3.1 se muestran los resultados obtenidos al ejecutar el caso del OPF-AC con las restricciones del flujo de potencia expresado de forma polar, donde el sistema genera un total de 265.41 [MW] para satisfacer la demanda y su costo de generación es igual a 8178.87 [USD/h]. Además, se tiene que la potencia de generación es mayor a la demanda, ya que el sistema considera pérdidas, cumpliendo de manera correcta con la restricción del balance nodal de potencia.

Figura 12.- Potencia de generación.

En la figura 12 se muestra el aporte de los 5 generadores que formar parte del sistema, los generadores hidroeléctricos son los encargados de cubrir en mayor porcentaje a la demanda, debido a que su costo de generación es menor, donde el que mayor potencia entrega es el generador conectado a la primera barra (Gen_001) con un total de 154.02 [MW] abasteciendo el 59.46% del total de la demanda. Mientras que los generadores termoeléctricos son los que menor potencia aportan al sistema esto debido a que su costo de generación es elevado.

Figura 13.- Valores del voltaje en cada barra del sistema.

Como se observa en la figura 13 los voltajes en cada barra toman valores mayores al 1,0 p.u, cumpliendo de manera correcto los límites de voltaje que para este sistema deben estar entre 0,94 a 1,06 p.u.

Figura 14.- Resultados de los ángulos de voltaje en cada barra.

En la figura 14 se presenta los valores que toman los ángulos de los voltajes por barra, donde se muestra que la barra 1 toma un valor del ángulo igual a cero ya que esta es considerada como la barra slack del sistema, mientras que las demás barras toman valores de ángulos no tan elevados que permiten tener una operación segura del sistema.

Figura 15.- Valores de potencia reactiva de cada generador.

La figura 15 muestra la potencia reactiva producida por los generadores al sistema, donde el valor más alto de reactivos es entregado por el generador conectado a la barra 1, y en sí esta potencia es la cargada de generar pérdidas al sistema ya que el programa realiza un flujo de potencia de corriente alterna.

Potencia por lineas de Transmisión [MW]

Figura 16.- Valores del flujo de potencia por las líneas del sistema.

En la figura 16 se puede observar los valores de potencia que fluye a través de cada línea de transmisión (LT) del sistema, donde el flujo de potencia por las líneas que parten de la barra 1 son las de mayor valor debido a que el generador conectado a esa barra es el que mayor potencia entrega por ende deber fluir una mayor potencia por esas líneas para que ayuden al transporte del total de la potencia para lograr a satisfacer la demanda y que el sistema trabaje en condiciones seguras.

Figura 17.- Cargabilidad de las líneas de transmisión del sistema.

En cuanto a la cargabilidad de las LT del sistema, se muestra en la figura 17 que por las líneas que parten de la barra 1 se tiene que el flujo de potencia alcanza la capacidad máxima de transporte de las líneas, mientras que las demás líneas se encuentran por debajo del 50% de su potencia máxima logrando así cumplir con los límites de operación.

Figura 18.- Porcentaje de cargabilidad de los transformadores del sistema.

En la figura 18 se puede observar los resultados del porcentaje de cargabilidad de los 5 transformadores que componen el sistema, donde se muestra que los transformadores no se encuentran sobrecargados y operan en valores menores a su capacidad máxima cumpliendo así un operación confiable dentro de sus límites.

A continuación, se presentan los resultados obtenidos empleando cada una de las formulaciones matemáticas del OPF-AC:

		Función de Co	unción de Costos Cuadrática			
Datos	В	alance de Potenc	Balance de Corriente			
Restricciones de Flujos de potencia	Coordenadas polares	Coordenadas rectangulares	Coordenadas rectangulares			
Costo Total [USD/h]	8178.87	8178.87	8401.13	8206.54		
Potencia de Generación [MW]	265.41	265.41	270.417	266.242		
Demanda [MW]	259	259	259	259		
Tiempo de ejecución [seg]	0.103	0.110	0.124	0.135		

Tabla 3. 2 Resultados con función de costos cuadrática.

En la tabla 3.2 se muestran los resultados del costo de generación, potencia de generación y el tiempo de ejecución que se obtiene con la herramienta computacional empleando la función de costos cuadrática en los diferentes modelos del OPF-AC, donde para los dos primeros casos cuanto se trabaja con balance nodal de potencia la diferencia está en el tiempo que se demora el programa para obtener una solución óptima debido a la formulación de las ecuaciones del flujo de potencia dando un costo de 8178.87 [USD/h] para un potencia generada de 265.41 [MW], en cuanto al modelo con la relajación de las ecuaciones del flujo de potencia una mayor potencia de generación por lo cual el costo aumenta. Para el caso donde se emplea balance nodal de corriente el tiempo de ejecución es mayor en comparación con otros casos debido al cálculo de las corrientes y,

además, presenta un costo mayor a los casos bases ya que la potencia de generación aumenta tomando un valor de 8206.54 [MW].

Datos	В	alance de Potenc	Balance de Corriente	
Restricciones de Flujos de potencia	Coordenadas polares	Coordenadas rectangulares	Coordenadas rectangulares	
Costo Total [USD/h]	6391.53	6391.53	6450.31	6405.38
Potencia de Generación [MW]	264.56	264.56	267.5	265.253
Demanda [MW]	259	259	259	259
Tiempo de ejecución [seg]	0.079	0.080	0.090	0.104

Tabla 3. 3 Resultados con función de costos lineal.

Los resultados que se muestran en la tabla 3.3 son los obtenidos haciendo uso de la función de costos linealizada representada en 50 segmentos, para el caso donde se expresa de forma diferente a las ecuaciones del flujo de potencia se tiene un costo de 6391.53 [USD/h] para una generación total de 264.56 [MW]. El modelo que realiza los cálculos de corriente del sistema para realizar el balance toma un tiempo de 0.104 [seg] para encontrar una solución óptima siendo el mayor en comparación a los demás casos al igual que cuando se expresa la función de costos de forma cuadrática, y la generación de potencia es de 265.253 [MW] dando un costo total igual a 6405.38 [USD/h]. En comparación con los resultados obtenidos en la tabla 3.2 se puede observar que el costo de generación del sistema disminuye producto de la linealización de la función objetivo y, además, al emplear menos recursos para resolver el problema el tiempo de oPF-AC para cualquiera de sus formulaciones matemáticas.

3.1.2 Sistema Nacional Interconectado (SNI)

El SNI ecuatoriano es un sistema con un gran número de generados, líneas de transmisión y elementos, por tanto, la resolución del problema OPF-AC se vuelve más complejo. A continuación, se presentan los resultados obtenidos considerando dos escenarios: Seco y Lluvioso

3.1.2.1 Escenario Lluvioso

El SNI cuenta con un gran número de centrales hidroeléctricos que para esta temporada van a contar con un gran caudal que permitirá trabajar a sus diferentes unidades con su capacidad máxima ayudando a cubrir la demanda de manera adecuada. En cuanto a la demanda se tiene varias cargas conectadas a una misma barra, por lo cual para ahorrar recursos en la programación se las modela en su valor total dentro de una sola carga, donde la demanda total del sistema es de 3210.794 [MW].

Para este caso se selecciona las siguientes opciones dentro del programa:

- Función de costos cuadrática
- Método de resolución: OPF-AC con las restricciones del flujo de potencia expresadas de forma polar.

Dato	Valor	
Costo total del sistema	12712.87 [USD/h]	
Potencia Generada	3361.337 [MW]	
Demanda	3210.794 [MW]	

La potencia total entregada por las unidades que confirman el SNI para este caso es de 3361.337 [MW], con lo cual se cubre adecuadamente a la demanda, dando un costo total de generación igual a 12712.87 [USD/h]. A continuación se presentas las gráficas obtenidas al aplicar este caso al SNI con sus respectivas descripciones que ayudaran a comprender la operación del sistema:

Figura 19.- Potencia entrega por cada generador del SIN.

En la figura 19 se muestra el aporte de cada generador al sistema para lograr abastecer la demanda donde el despacho total de generación es mayor al valor de la demanda. Como se puede observar las centrales hidroeléctricas son las de mayor participación, destacándose de manera clara el aporte de Coco Codo Sinclair y Paute.

La central de mayor generación es Coco Codo Sinclair con un aporte de 674.95 [MW], seguida de Paute-Molino con 506.54 [MW] y Sopladora con una potencia de 487.35 [MW], está ultima despachada al máximo de su capacidad.

Figura 20.- Flujo de potencia por líneas de transmisión del sistema.

La potencia que fluye a través de las líneas de transmisión (L/T) se muestra en la figura 20, donde se destaca la L/T Coca Codo Sinclair – San Rafael y L/T San Rafael – El Inga

con un flujo de 838.66 [MW] y 836.8 [MW] respetivamente, encargadas de transportar la potencia generada por Coca Codo Sinclair. En cuanto a la cargabilidad de las líneas, todas se encuentran trabajando dentro de sus límites, es decir, no se tiene líneas con sobrecargas.

Datos	В	alance de Potenc	Balance de Corriente	
Restricciones de Flujos de potencia	Coordenadas polares	Coordenadas rectangulares	Coordenadas rectangulares	
Costo Total [USD/h]	12712.87	12712.87	13224.43	12771.65
Potencia de Generación [MW]	3361.337	3361.337	3528.588	3360.958
Demanda [MW]	3210.794	3210.794	3210.794	3210.794
Tiempo de ejecución [seg]	60.59	65.27	58.18	69.98

Tabla 3. 5 Resultados del SNI en temporada lluviosa.

En la tabla 3.5 se muestran los resultados obtenidos con las diferentes formulaciones del OPF-AC, donde se observa que en las formulaciones en forma polar y rectangular, los costos y potencia generada son los mismos; la diferencia que existe entre estos dos métodos es el tiempo de ejecución donde las ecuaciones del flujo de potencia en forma rectangular toma más tiempo, que este caso es de 65.27 [seg]. En cuanto a los resultados del OPF-AC expresado con el balance de corriente presenta resultados diferentes ya que se tiene una mayor generación de potencia lo que eleva el costo total de generación; y además, debido a que se realizan cálculos de corrientes, encontrar la solución toma un tiempo de 69.98 [seg]. Sin embargo, como se observa los resultados presentan valores cercanos con lo cual se garantiza un correcto funcionamiento de la herramienta computacional desarrollada.

3.1.2.2 Escenario Seco.

En cuanto a la temporada seca, las centrales hidroeléctricas resultan afectadas ya que no tienen la suficiente cantidad de agua para la producción de energía eléctrica, siendo principalmente perjudicadas las de embalse debido a que la disminución del caudal no permite aprovechar la capacidad máxima de sus unidades, quedando algunas fuera de servicio. En cuanto a la demanda total del sistema es igual que el caso anterior.

Para este escenario se realizan ciertas modificaciones en el parque de generación: se deja fuera de servicio a 3 unidades de Paute, una unidad San Francisco y una unidad de Agoyán.

Para este caso se selecciona las siguientes opciones dentro del programa:

- Función de costos cuadrática
- Método de resolución: OPF-AC con balance nodal de corriente.

Tabla 3. 6 Resultados obtenidos del OPF-AC con balance de corriente nodal.

Dato	Valor
Costo total del sistema	13147.91 [USD/h]
Potencia Generada	3369.107 [MW]
Demanda	3210.794 [MW]

Para la temporada seca, considerando la formulación del OPF-AC con la restricción del balance en términos de corriente, se tiene un despacho de potencia igual a 3369.107 [MW] dando un costo total de generación igual a 13147.91 [USD/h] que en comparación con el caso presentado en la sección anterior se tiene un mayor precio como consecuencia de un aporte mayor de potencia por parte de las centrales térmicas.

A continuación se presentas las gráficas obtenidas al aplicar este caso al SNI:

Figura 21.- Potencia de generación por cada unidad del SNI.

En la figura 21 se muestra el despacho de potencia, donde las centrales Coca Codo Sinclair, Paute Molino y Sopladora continúan siendo las que mayor potencia entregan, cubriendo alrededor del 48% de la demanda, esto debido a que el principal objetivo del OPF-AC es minimizar el costo de operación sistema y por tanto, se debe aprovechar toda la capacidad de las centrales que presentan menor costo de generación. Sin embargo, para este caso se puede observar una mayor participación de las centrales térmicas para cubrir el porcentaje restante de la demanda.

El despacho de potencia de las principales centrales para este escenario son: 567.54 [MW] por parte de Coca Codo Sinclair, 324 [MW] y 435.03 [MW] de Sopladora y Paute-Molino, respectivamente. Al comparar los valores de potencia obtenidos en la temporada lluviosa

se presenta una claramente disminución en el aporte de potencia pero de igual forma se logra cumplir con la demanda empleando un despacho mayor por parte de las otras centrales que forman parte del sistema.

Figura 22.- Resultados del flujo de potencia por L/Ts del SNI.

De igual forma que en el caso anterior las líneas de transmisión que se destacan en la figura 22 son las correspondientes a las L/Ts que forman parte del sistema de transmisión de extra alta tensión de 500 [kV] como lo son Coca Codo Sinclair – San Rafael y San Rafael – El Inga que presentan un flujo similar mayor a 600 [MW] que son las encargadas de transportar y aprovechar de la mejor manera el total de la potencia generada por la central hidroeléctrica Coca Codo Sinclair. En cuanto a las cargabilidad de las líneas ninguna se encuentra trabajando por encima de su capacidad máxima cumpliendo de forma correcta con sus límites permitiendo encontrar una solución óptima para el sistema.

Datos	B	alance de Potenc	Balance de Corriente		
Restricciones de Flujos de potencia	Coordenadas polares	rdenadas Coordenadas Linealización olares rectangulares (Relajación)			
Costo Total [USD/h]	13122.96	13122.96	13670.66	13147.91	
Potencia de Generación [MW]	3356.631	3356.631	3397.798	3369.107	
Demanda [MW]	3210.794	3210.794	3210.794	3210.794	
Tiempo de ejecución [seg]	60.43	63.73	57.93	71.20	

Tabla 3. 7 Resultados del SNI en temporada seca.

En la tabla 3.7 se presentan los resultados de los diferentes modelos del OPF-AC aplicado al SNI en temporada seca, donde el costo de generación es similar para los casos donde se modifica la forma de expresar el flujo de potencia tomando un valor de 13122.96 [USD/h] cuando el sistema genera una potencia de 3356.631 [MW] y, además, la diferencia en ambos casos se nota en el tiempo que tarda el programa en encontrar una solución óptima. Sin embargo, el modelo que emplea más tiempo para resolver el problema es cuando se selecciona la opción del balance de corriente con un tiempo de 71.20 [seg]. En comparación con los resultados obtenidos con hidrología lluviosa se puede observar un aumento del costo de generación del sistema como producto de una participación mayor de las centrales térmicas en el aporte de potencia para satisfacer a la demanda.

Cabe destacar también que la herramienta computacional para los casos del SNI cuenta con archivos que permiten almacenar los datos iniciales del modelo, debido a que es un sistema complejo con varios parámetros, por lo cual ayudan a disminuir el tiempo que tarde el programa en encontrar la solución óptima.

3.2 CONCLUSIONES

- Se desarrolló una herramienta computacional que permite resolver el flujo óptimo de potencia de corriente alterna considerando diferentes formulaciones matemáticas, empleando lenguaje de programación de Python junto con la librería Pyomo. La herramienta fue aplicada a los sistemas IEEE de 14 barras y el SNI ecuatoriano.
- Se observó en los resultados que, al tratarse de un problema de optimización de costos que depende de la potencia de generación, el programa se enfoca en aprovechar la máxima potencia de los generadores de menor costos para lograr obtener una solución óptima que se encuentre dentro de cada uno de los límites técnicos.
- En el caso del sin, las centrales hidroeléctricas son las que mayor participación tienen para satisfacer la demanda ya que su costo de generación es menor en comparación a las centrales térmicas, y además, son las centrales con mayor capacidad instalada en nuestro país.
- En cuanto a los resultados obtenidos del OPF-AC con balance de potencia nodal se tiene valores iguales tanto en el costo total de generación como en el valor de potencia generada y su diferencia se ve reflejada en el tiempo que se demora el programa en encontrar la solución optimo debido a la formulación matemática seleccionada.
- Para el caso del SNI se hace uso adicional de archivos que permiten almacenar los datos del modelo al ejecutar por primera vez el programa, esto con el objetivo de no saturar el programa ya que se trata de un sistema complejo con gran cantidad de elementos, y también ayudará a que el tiempo para encontrar la solución sea menor.
- De acuerdo con los resultados obtenidos en los diferentes casos de estudio se puede concluir que la herramienta computacional desarrollada funciona de manera correcta.

3.3 Recomendaciones

- Para tener una simulación correcta del programa se debe verificar tener instaladas todas las librerías necesarias, y además, contar con el solucionar (solver) adecuado para optimización no lineal, dentro del entorno Anaconda.
- En cuanto a las formulaciones de los diferentes casos del OPF-AC se recomienda revisar diferentes autores que permitan tener un mayor conocimiento del problema y encontrar las ecuaciones adecuades para facilitar la programación.
- Utilizar SEP de prueba pequeños al inicio para poder comprobar de una manera más sencilla y rápida el correcto funcionamiento del programa, para posteriormente, emplearlo en sistemas más complejos.

4 REFERENCIAS BIBLIOGRÁFICAS

[1] S. Chatzivasileiadis, Optimization in Modern Power Systems, First edition. Copenhagen, Denmark, 2018.

[2] A. J. Wood, B. F. Wollenberg, y G. B. Sheblé, POWER GENERATION, OPERATION, AND CONTROL, THIRD EDITION. Hoboken, New Jersey, 2014.

[3] J. F. Marley, D. K. Molzahn, y I. A. Hiskens, «Solving Multiperiod OPF Problems Using an AC-QP Algorithm Initialized With an SOCP Relaxation», IEEE Transactions on Power Systems, vol. 32, n.º 5, pp. 3538-3548, sep. 2017, doi: 10.1109/TPWRS.2016.2636132.

[4] K. Frauendorfer, H. Glavitsch, y R. Bacher, Eds., Optimization in Planning and Operation of Electric Power Systems: Lecture Notes of the SVOR/ASRO Tutorial Thun, Switzerland, October 14–16, 1992. Heidelberg, Germany, 1993.

[5] M. A. Ríos, C. J. Zapata, y O. Gómez, «Flujo de Potencia Óptimo con Restricciones de Estabilidad de Voltaje», p. 8, may 2014.

[6] M. Jereminov, A. Pandey, y L. Pileggi, «Equivalent circuit formulation for solving AC optimal power flow», IEEE Transactions on Power Systems, vol. 34, n.º 3, pp. 2354-2365, 2018.

[7] M. B. Cain, R. P. O'neill, y A. Castillo, «History of optimal power flow and formulations», Federal Energy Regulatory Commission, vol. 1, pp. 1-36, 2012.

[8] B. Sereeter, C. Vuik, C. Witteveen, y P. Palensky, «Optimal power flow formulations and their impacts on the performance of solution methods», en 2019 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2019, pp. 1-5.

[9] A. S. Nair, S. Abhyankar, S. Peles, y P. Ranganathan, «Computational and numerical analysis of ac optimal power flow formulations on large-scale power grids», Electric Power Systems Research, vol. 202, p. 107594, 2022.

[10] C. López Servin, «Estudio de flujos de potencia óptimos de C.A. empleando el método de punto interior.», Instituto Politécnico Nacional, México, 2016.

[11] H. Glavitsch y R. Bacher, «Optimal power flow algorithms», Analysis and control system techniques for electric power systems, vol. 41, pp. 135-206, 1991.

42

[12] S. A. Sadat y K. Kim, Numerical Performance of Different Formulations for Alternating Current Optimal Power Flow. 2021. doi: 10.36227/techrxiv.16578962.

[13] W. E. Hart et al., Pyomo-optimization modeling in python, vol. 67. Springer, 2017.

[14] «Ipopt: Documentación». https://coin-or.github.io/Ipopt/ (accedido 7 de julio de 2023).

[15] S. Frank y S. Rebennack, «A Primer on Optimal Power Flow: Theory, Formulation, and Practical Examples». Colorado School of Mines, octubre de 2012.

[16] «A Current-Voltage Successive Linear Programming Approach to Solving the ACOPF - Buscar con Google». https://www.google.com/search?q=A+Current-Voltage+Successive+Linear+Programming+Approach+to+Solving+the+ACOPF&rlz=1C1 CHBF_esEC843EC843&oq=A+Current-

Voltage+Successive+Linear+Programming+Approach+to+Solving+the+ACOPF&aqs=chro me..69i57.650j0j7&sourceid=chrome&ie=UTF-8 (accedido 7 de julio de 2023).

[17] Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, y C. Kang, «A Linearized OPF Model with Reactive Power and Voltage Magnitude: A Pathway to Improve the MW-Only DC OPF», IEEE Transactions on Power Systems, vol. PP, jun. 2017, doi: 10.1109/TPWRS.2017.2718551.

[18] D. K. Molzahn y I. A. Hiskens, «A Survey of Relaxations and Approximations of the Power Flow Equations», EES, vol. 4, n.º 1-2, pp. 1-221, feb. 2019, doi: 10.1561/3100000012.

[19] J. Valerino, R. Núñez, A. Díaz, y M. Banderas, «La estabilidad de la tensión de los sistemas eléctricos de potencia utilizando el programa "PSAF"; Voltage stability of electric power system using the program "PSAF"», Ingeniería Energética, vol. 33, pp. 84-93, ago. 2012.

5 ANEXOS

ANEXO I. MANUAL DE USUARIO

El programa desarrollado está formado por varios archivos o scripts que cumplen diferentes funciones para poder plantear y resolver el problema del flujo óptimo de potencia de corriente alterna en sus diferentes formulaciones matemáticas. A continuación, se presenta la descripción de cada script:

ejecutable.py ×	modeloPyomo.py ×	formatopyomo.py $ imes$	leerentrada.py $ imes$			
#======						
# leerent	rada.py					
# ESTE SC #=======	ript carga el arc	nivo de datos de (excei			
import pa	import pandas as pd					
4-5-3						
det leere if an	ntrada(arcnivo,me	TRESOLUCION):				
11 01	class Datos:	0303/ 2000003.2032				
	definit	(self, BUS, LOAD,	GEN, LINE, SHUNT	, COST):		
	self.BUS =	BUS				
	self.LOAD	= LOAD				
	self.ITNF					
	self.SHUNT	= SHUNT				
	self.COST	= COST				
	class BUS:					
	definit	(self, number, i	name, vn_kv, ety	pe, zone, in_service	, min_vm_pu, max_vm_	
	self.nam	ie = name				
	self.vn_	kv = vn_kv				
	self.ety	pe = etype				
	self.zon	e = zone				
	self.in_	service = in_serv:	ice			
	self.max	vm_pu = min_vm_pu	u U			
	self.vm_	i = vm_i	-			
	self.Tip	o = Tipo				
	class LOAD:					
	definit	(<i>self</i> , number, i	name, bus, p_mw,	q_mvar, const_z_per	cent, const_i_perce	
	self.nam	le = name				
	self.bus	= bus				
	self.p_m	w = p_mw				
	self.q_m	ivar = q_mvar				
	self.con	st_z_percent = com st_i_percent = com	nst_z_percent			
	self.sn	mva = sn mva	isc_i_percent			
	self.sca	ling = scaling				
	self.in_	service = in_serv	ice			
	self.ety	pe = etype				
	class GEN:	crollable = contro	DIIADIE			
	definit	(self, number, i	name, bus, p_mw,	vm_pu, sn_mva, min_	q_mvar, max_q_mvar,	
	self.num	ber = number				
	self.nam	e = name				
	self.bus	= bus				
	self.vm	w = p_mw u = vm bu				
	self.sn_	mva = sn_mva				
	self.min	_q_mvar = min_q_m	var			
	self.max	_q_mvar = max_q_m	var			
	self.sca	ling = scaling				
	self.sia	service = in serv	ice			
	self.etv	pe = etype				
	self.con	trollable = contro	ollable			
	self.min	_p_mw = min_p_mw				

Figura 23.- Ventana del script 'leerentrada.py'.

En la figura 23 se muestra el script que permite trabajar con los datos de los archivos de Excel que contiene todos los parámetros de los diferentes sistemas eléctricos. Lo primero que se realiza es la importación de la librería pandas, que es empleada para el manejo de datos, luego se crea la función *leerentrada* para agrupar los datos del sistema en diferentes clases dependiendo del tipo de elemento que, posteriormente, serán empleados para darles el formato necesario para poder trabajar con la librería Pyomo.

Figura 24.- Ventana del script 'formatopyomo.py'.

En la figura 24 se presenta el archivo donde se realiza la implementación de la función *formatopyomo* que se utiliza para poder trabajar con las diferentes variables en el formato de Pyomo, donde para cada una de las variables del sistema, por ejemplo, número barras, costos, potencias, se crea diferentes diccionarios con sus respectivos nombres que,

posteriormente, serán empleados para formar las diferentes ecuaciones de cada uno de los casos del problema.

Luego, una vez ya realizo la lectura y la modificación del formato de los datos, se desarrolla el script denominado modeloPyomo, que se muestra en la figura 25, donde se crea las diferentes funciones con las restricciones de igualdad y desigualdad para formar y resolver el OPF-AC dependiendo de la formulación matemática seleccionado.

ejecu	table.py ×	modeloPyomo.py \times	formatopyomo.py ×	leerentrada.py ×		
	import p	vomo.environ as p	vo			
	import n	umpy as np	/-			
	import F(OP.Nuevo.FAC as f	ac			
	def crea	rModelo(red, MetF	O, testcase,MetRes	olucion):		
	#	CREO EL I	MODELO DE PYOMO			
	mode.	1 = pyo.AbstractM	odel()			
	mode.	1.basemva=pyo.Par	am(witnin=pyo.NonN thip-pyo_NopNogati	legativeReals)		
	mode	l d1=nvo Param(wi	thin=py0.NonNegati	veIntegers)		
	mode	l.buses1=pvo.Para	m(within=pvo.NonNe	pativeIntegers)		
	mode	1.lines1=pyo.Para	m(within=pyo.NonNe	gativeIntegers)	# NÚMERO DE LÍNEAS	
	mode	l.trafos1=pyo.Par	am(within=pyo.NonN	legativeIntegers) # NÚMERO DE TRANSFO	RMADORES
	mode	l.ltTotal=pyo.Par	am(within=pyo.NonN	legativeIntegers) # NÚMERO DE TRAFOS	Y LÍNEAS
	mode	<pre>1.G = pyo.RangeSe</pre>	t(0, model.g1)# CO	NTADOR CENTRALE	S	
	mode.	1.D = pyo.RangeSe	t (0, model.d1) # CO	NTADOR DE CARGA	S	
	mode	<pre>1.N = pyo.RangeSe</pre>	t(0, model.buses1)	# CONTADOR DE B	ARRAS	
	mode.	<pre>1.L = pyo.RangeSe</pre>	t(0, model.lines1)	# CONTADOR DE	LINEAS	
	mode.	1.TRANSF=pyo.Rang	eSet(0, model.traf	os1) # CONTADOR	DE TRANSFORMADORES	
	mode.	1.LT = pyo.Kanges	et(0, model.itiota	11) # CONTADOR D	E LINEAS Y TRAFOS	
	mode	l c1 - pyo.Param()	model 6)			
	mode	1.cl = py0.Param(model G)			
	mode	1.Nseg = pvo.Para	m(model.G)			
	mode	1.Yb = pyo.Param(model.N.model.N)			
	mode	1.Ynet = pyo.Para	m(model.N,model.N)			
		PAARÁME	TROS LÍMITE DE GEN	IERACIÓN		
	mode	l.Pmax = pyo.Para	m(model.G) # PARÁM	IETRO POTENCIA M	ÁXIMA CENTRALES	
	mode.	l.Pmin = pyo.Para	m(model.G) # PARÁM	IETRO POTENCIA M	ÍNIMA CENTRALES	
	mode.	l.Qmax = pyo.Para	m(model.G) # PARAM	IETRO POTENCIA M	AXIMA CENTRALES	
	mode.	1.Qmin = pyo.Para	m(model.G) # PARAM	ETRO POTENCIA M	INIMA CENTRALES	
	mode.	1.ng_Slack= pyo.P	aram(model.u) # PA m(model D)	KAMETRO SLACK		
	mode	l.demO = pyo.Para	m(model.D)			
	mode	1.P = pvo.Var(mo	del.G. domain=pvo.	NonNegativeReal	s, initialize=0)	
	mode	l.Pi = pyo.Var(m	odel.N, initialize	:=0)		
	mode	l.Qi = pyo.Var(m	odel.N, initialize	e=0)		
	mode	l.Pij=pyo.Var(mo	del.L, initialize=	•0) ·		
	mode	l.Pji=pyo.Var(mo	del.L, initialize=	:0)		
	mode	l.PijT=pyo.Var(mo	del.TRANSF, initia	lize=0)		
	mode.	1.PjiT=pyo.Var(mo	del.TRANSF, initia	lize=0)		
	mode.	1.Qij=pyo.Var(mo	del.L, initialize=	·0)		
	mode.	1.Q1j1=pyo.var(mo	del.TRANSF, initia del l initializo-	(112e=0)		
	mode	l.OjiT=nvo.Var(mo	del.TRANSF. initia	lize=0)		
	mode	1.Piimax = pvo.Pa	ram(model.L) # PAR	ÁMETRO POTENCIA	ii POR LÍNEAS	
	mode	1.PijTmax = pyo.P	aram(model.TRANSF)			
	mode	1.BaseMVA=pyo.Par	am()`			
		- POSICIÓN LÍNEAS	Y TRAFOS			
	mode	l.AuxTYS=pyo.Rang	eSet(0, 1)			
	mode.	l.lpos = pyo.Para	m(model.AuxTYS,mod	el.L)		
	mode.	l.tpos = pyo.Para	m(model.AuxTYS,mod	el.TRANSF)		
	mode.	1.Q = pyo.Var(mo	del.G, initialize=	·0)		
	mode.	I.FLP = pyo.Var()	model.N, initializ	(e=0)		
	mode.	1.PLQ = pyo.var(1	odel N initializ	e=0)		
	mode.	1.QC = pyo.va r(m	ouer.w, initialize	:-0)		

Figura 25.- Ventana del script 'modeloPyomo.py'.

Como se observa en la figura 25 el programa parte de la importación de algunas librerías necesarias para poder desarrollar el código. Luego, se tiene el desarrollo de una función denominada *crearModelo* donde se crea el modelo abstracto de Pyomo, debido a que no se trabaja con valores fijos, con los diferentes parámetros, variables de estado y de control, restricciones para formular el problema del OPF.

Dentro de los parámetros se puede observar que se definen los datos de costos, potencia máximas y mínimas, demandas, posiciones de líneas y transformadores, y, entre otras variables más.

Se presenta también las variables de estado donde se tiene el voltaje de barras como su ángulo, mientras que en las variables de control se presentan la potencia activa y reactiva de generación.

Luego de la creación del modelo se desarrolla el código de la función objetivo y de las diferentes restricciones del problema, que se muestra en las figuras de la sección 2.1 con su respectiva descripción.

A continuación se presenta como se debe hacer uso de la herramienta computacional:

El archivo principal de la herramienta computacional se denomina como 'ejecutable.py' que se muestra en la figura 26, desde este script se pone en marcha al programa para obtener la solución del OPF-AC

Como primer paso para poder ejecutar el programa se muestra en la línea 12 de la figura 26 que se debe seleccionar el caso de estudio donde se presenta los siguientes sistemas de potencia:

- i. La red IEEE de 14 barras.
- ii. La red IEEE de 5 barras.
- iii. El Sistema Nacional Interconectado (SNI) en temporada lluviosa.
- iv. El Sistema Nacional Interconectado (SNI) en temporada seca.

Los nombres de los casos de estudio se pueden observar en la figura 26 a partir de la línea 10 hasta la 15, presentando un rango de opciones desde la #0 hasta #4 dependiente del caso de estudio que se desee ejecutar, para lo cual en la línea 17 se presenta la variable *testcase* donde se debe modificar el número que se encuentra entre corchetes al lado de *archivo*.

El siguiente paso es escoger la función objetivo, ya sea esta lineal (opción #0) o cuadrática (opción #1), en la variable MetFO presente en la línea 22 se debe modificar el número para elegir con cual función de costos va a trabajar el programa.

Por último, se debe seleccionar la formulación matemática para la resolución del OPF-AC en la variable *MetResolucion* que se encuentra en la línea 27 donde se puede elegir desde la opción #0 hasta la #3 y, además, a partir de la línea 29 se muestra en comentarios la descripción para poder identificar con facilidad cada una de las opciones.

```
modeloPyomo.py × formatopyomo.py × leerentrada.py ×
      from pyomo.opt import SolverFactory
      import time
      from FOP.leerentrada import leerentrada
      from FOP.formatopyomo import formatopyomo
      import FOP.guardarres as res
      import FOP.modeloPyomo as modeloC
      tic = time.time()
      #----- ESCOGER EL ARCHIVO DE PRUEBA (0-1-2-3) ------
      archivo = [
                   'IEEE_14_bus_system_pwlV2.xlsx', # 0 Red IEEE 14 barras
                   '5BARRAS.xlsx',
'SNI_Lluvioso.xlsx',
                                                     # 1 5 barras
                                                     # 2 SNI Lluvioso
                                                     # 3 SNI Seco
                   'SNI_Seco.xlsx',
                   1
      testcase = 'FOP/testcases/' + archivo[1]
      #----- FLUJO ÓPTIMO DE POTENCIA AC ------
      # ESCOGER EL MÉTODO DE RESOLUCIÓN:
      MetFO=1 # SELECCIONAR LA FUNCIÓN OBJETIVO
      #0:LÍNEAL
      #1:CUADRÁTICA
      MetResolucion=2 # SELECCIONAR LA FORMULACIÓN DEL OPF-AC
      #0: OPF-AC con Relajación de Ecuaciones del Flujo de Potencia.
      #1: OPF-AC con Restricion de flujos de potencia expresado en Coordenadas Polares.
      #2: OPF-AC con Restricion de flujos de potenciaexpresado en Coordenadas Rectangulares.
      #3: OPF-AC con Ecuación de Balance Nodal usando Corrientes.
      solver='ipopt'
      out=0
      opt=({'solver':solver,'out':out})
37
38
39
      testcase = testcase
      mod = 'FOPAC'
      ptc = leerentrada(testcase,MetResolucion) # LEER EL CASO DE ESTUDIO
      data = formatopyomo(ptc,mod,MetResolucion, testcase)
optimise = SolverFactory(opt['solver'])
      print("MODELO")
      model=modeloC.crearModelo(ptc, MetFO, testcase,MetResolucion) # CREA MODELO DE PYOMO
      print("DATOS")
      i=model.create_instance(data) # INIALIZACIÓN
      solver=SolverFactory('ipopt') # SOLUCIONADOR DE MODELOS NO LINEALES
      print("RESOLVER")
      results = solver.solve(i) # RESOLVER MODELO
      print(results)
      res.guardarSalida(i,ptc, testcase,MetResolucion) # IMPRESIÓN RESULTADOS
      toc = time.time() - tic
      print('Tiempo:', toc) # IMPRESIÓN DEL TIEMPO TOTAL DE EJECUCIÓN.
```

Figura 26.- Ventana del script 'ejecutable.py'.

Una vez que se ingresa de manera correcta todos los datos anteriores descritos, lo primero que realiza el programa es la creación del modelo en la línea 44, donde se formulan de las diferentes ecuaciones, luego en la línea 46 se procede a inicializar, donde se vuele a crear una nueva instancia del modelo ingresando los datos que se encuentran en el diccionario de PYOMO lo cual da forma a las ecuaciones, que posteriormente serán resueltas con el solver *ipopt* que se muestra en la línea 47. Finalmente, una vez que el programa resuelve el problema se imprimen los resultados y el tiempo que se demoró en encontrar una solución óptima lo cual se puede se encuentra en la línea 51 y 52.

En la figura 26 se muestra un ejemplo del correcto ingreso de los datos anterior donde el programa se encuentra configurado para emplear la función de costos cuadrática en el caso del IEEE de 5 barras empleando la formulación del balance de potencia con las ecuaciones del flujo de potencia expresadas en forma polar.

Figura 27.- Presentación e impresión de resultados.

En la figura 27 se puede observar la impresión de los resultados una vez que se manda a correr el programa, los cuales se presentan en la parte derecha de la ventana principal, donde en la parte superior se encuentran los diferentes resultados de manera gráfica y, en la parte inferior se imprimen los resultados del costo total del sistema y un cuadro resumen que presenta los valores de la potencia de generación, demanda con sus respectivas unidas y, al final se muestra el tiempo total de ejecución para encontrar la solución. Además, cabe destacar que los resultados también se los puede encontrar dentro de la carpeta que contine el programa en un archivo de Excel denominado como *Resultados.xlsx*.

ANEXO II. DATOS DEL SISTEMA IEEE 14 BARRAS

Barra	Voltaje Nominal [kV]	Voltaje [p.u.]	Tipo
Bus_0001	132	1.06	Slack
Bus_0002	132	1.045	PV
Bus_0003	132	1.01	PV
Bus_0004	132	-	PQ
Bus_0005	132	-	PQ
Bus_0006	33	1.07	PV
Bus_0007	1.0	-	PQ
Bus_0008	11	1.09	PV
Bus_0009	33	-	PQ
Bus_0010	33	-	PQ
Bus_0011	33	-	PQ
Bus_0012	33	-	PQ
Bus_0013	33	-	PQ
Bus_0014	33	-	PQ

Tabla 1. Datos del voltaje y tipo de barras.

Carga	Barra	P[MW]	Q[MVAr]
Load_0002	Bus_0002	21.7	12.7
Load_0003	Bus_0003	94.2	19
Load_0004	Bus_0004	47.8	-3.9
Load_0005	Bus_0005	7.6	1.6
Load_0006	Bus_0006	11.2	7.5
Load_0009	Bus_0009	29.5	16.6
Load_0010	Bus_0010	9	5.8
Load_0011	Bus_0011	3.5	1.8
Load_0012	Bus_0012	6.1	1.6
Load_0013	Bus_0013	13.5	5.8
Load_0014	Bus_0014	14.9	5

Generador	Voltaje	Qmin	Qmax	Pmin	Pmax
	[p.u.]	[MVAr]	[MVAr]	[MW]	[MW]
Gen_0001	1.06	-160	300	30	320
Gen_0002	1.045	-40	50	40	180
Gen_0003	1.01	-22	40	25	195
Gen_0006	1.07	-15	24	20	245
Gen_0008	1.09	-15	24	10	150

Tabla 3. Datos de capacidad de los generadores.

Tabla 4. Datos de líneas de transmisión.

Línea	from_bus	to_bus	r [Ω/km]	x [Ω/km]	b [nf/km]
Line_0001_0002/1	Bus_0001	Bus_0002	6.753542	20.61956	401.9064167
Line_0001_0002/2	Bus_0001	Bus_0002	6.753542	20.61956	401.9064167
Line_0001_0005	Bus_0001	Bus_0005	9.414187	38.8625	749.0074167
Line_0002_0003	Bus_0002	Bus_0003	8.187537	34.49428	666.7993333
Line_0002_0004	Bus_0002	Bus_0004	10.12509	30.722	569.3675
Line_0002_0005	Bus_0002	Bus_0005	9.922968	30.29685	517.60675
Line_0003_0004	Bus_0003	Bus_0004	11.67582	29.80027	526.741
Line_0004_0005	Bus_0005	Bus_0004	2.326104	7.337246	194.86375
Line_0006_0011	Bus_0011	Bus_0006	1.034332	2.166021	0
Line_0006_0012	Bus_0006	Bus_0012	1.33849	2.785771	0
Line_0006_0013	Bus_0013	Bus_0006	0.7203735	1.41864	0
Line_0009_0010	Bus_0009	Bus_0010	0.3464109	0.9202054	0
Line_0009_0014	Bus_0014	Bus_0009	1.384228	2.944439	0
Line_0010_0011	Bus_0010	Bus_0011	0.8935243	2.091643	0
Line_0012_0013	Bus_0012	Bus_0013	2.405819	2.176693	0
Line_0013_0014	Bus_0013	Bus_0014	1.861428	3.789938	0

Transformador	Barra HV	Barra LV	HV [kV]	LV [kV]	r	x [p.u]
					[p.u]	
Trf_0004_0007	Bus_0004	Bus_0007	132	1	0	0.20912
Trf_0004_0009	Bus_0004	Bus_0009	132	33	0	0.55618
Trf_0005_0006	Bus_0005	Bus_0006	132	33	0	0.25202
Trf_0007_0008	Bus_0008	Bus_0007	11	1	0	0.17615
Trf_0007_0009	Bus_0009	Bus_0007	33	1	0	0.11001

Tabla 5. Datos de transformadores.

ANEXO III. TABLAS DE RESULTADOS DEL SISTEMA IEEE 14 BARRAS

Método de resolución: OPF-AC expresado en coordenadas polares:

• Función objetivo: Cuadrática.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	5.76E-29	1.06
Bus_0002	-3.09368	1.045
Bus_0003	-7.67141	1.01
Bus_0004	-6.97413	1.020304
Bus_0005	-5.89708	1.023783
Bus_0006	-9.42924	1.07
Bus_0007	-8.87935	1.052727
Bus_0008	-7.99817	1.09
Bus_0009	-10.472	1.035305
Bus_0010	-10.5693	1.033777
Bus_0011	-10.1208	1.047983
Bus_0012	-10.3212	1.053707
Bus_0013	-10.4071	1.047239
Bus_0014	-11.4656	1.022284

Tabla 6. Resultados del voltaje y ángulo de barras.

Tabla 7. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	154.0219	50.33281
Gen_0002	Bus_0002	40	4.241804
Gen_0003	Bus_0003	41.38838	8.640134
Gen_0006	Bus_0006	20	4.357596
Gen_0008	Bus_0008	10	4.357596

• Función objetivo: Lineal.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	2.59E-33	1.06
Bus_0002	-0.08998	1.045
Bus_0003	-6.10497	1.01
Bus_0004	-4.92992	1.020243
Bus_0005	-3.96575	1.024014
Bus_0006	-7.46225	1.07
Bus_0007	-6.85441	1.052739
Bus_0008	-5.97324	1.09
Bus_0009	-8.457	1.035376
Bus_0010	-8.5629	1.033845
Bus_0011	-8.13394	1.048025
Bus_0012	-8.35094	1.053705
Bus_0013	-8.43341	1.047257
Bus_0014	-9.46859	1.022336

Tabla 8. Resultados del voltaje y ángulo de barras.

Tabla 9. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	51.7912	47.19699
Gen_0002	Bus_0002	157.7693	5.109548
Gen_0003	Bus_0003	25	8.305978
Gen_0006	Bus_0006	20	4.317652
Gen_0008	Bus_0008	10	4.317652

Método de resolución: OPF-AC expresado en coordenadas rectangulares:

• Función objetivo: Cuadrática.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	-3.1E-30	1.06
Bus_0002	-3.09368	1.045
Bus_0003	-7.67141	1.01
Bus_0004	-6.97413	1.020304
Bus_0005	-5.89708	1.023783
Bus_0006	-9.42924	1.07
Bus_0007	-8.87935	1.052727
Bus_0008	-7.99817	1.09
Bus_0009	-10.472	1.035305
Bus_0010	-10.5693	1.033777
Bus_0011	-10.1208	1.047983
Bus_0012	-10.3212	1.053707
Bus_0013	-10.4071	1.047239
Bus_0014	-11.4656	1.022284

Tabla 10. Resultados del voltaje y ángulo de barras.

Tabla 11. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	154.0219	50.33281
Gen_0002	Bus_0002	40	4.241804
Gen_0003	Bus_0003	41.38838	8.640134
Gen_0006	Bus_0006	20	4.357596
Gen_0008	Bus_0008	10	4.357596

• Función objetivo: Lineal.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	7.14E-33	1.06
Bus_0002	-0.08998	1.045
Bus_0003	-6.10497	1.01
Bus_0004	-4.92992	1.020243
Bus_0005	-3.96575	1.024014
Bus_0006	-7.46225	1.07
Bus_0007	-6.85441	1.052739
Bus_0008	-5.97324	1.09
Bus_0009	-8.457	1.035376
Bus_0010	-8.5629	1.033845
Bus_0011	-8.13394	1.048025
Bus_0012	-8.35094	1.053705
Bus_0013	-8.43341	1.047257
Bus_0014	-9.46859	1.022336

Tabla 12. Resultados del voltaje y ángulo de barras.

Tabla 13. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	51.7912	47.19699
Gen_0002	Bus_0002	157.7693	5.109548
Gen_0003	Bus_0003	25	8.305978
Gen_0006	Bus_0006	20	4.317652
Gen_0008	Bus_0008	10	4.317652

Método de resolución: OPF-AC con relajación de las ecuaciones del flujo de potencia:

• Función objetivo: Cuadrática.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	-1.543E-31	1.06
Bus_0002	-2.8889222	1.045
Bus_0003	-7.0516475	1.01
Bus_0004	-6.6386319	1.02068087
Bus_0005	-5.6228026	1.0241466
Bus_0006	-9.100472	1.07
Bus_0007	-8.4494697	1.05297767
Bus_0008	-7.4407226	1.09
Bus_0009	-10.076377	1.03563831
Bus_0010	-10.185671	1.03406683
Bus_0011	-9.764506	1.04814004
Bus_0012	-9.9876739	1.05372113
Bus_0013	-10.069041	1.04729838
Bus_0014	-11.094768	1.02251026

Tabla 14. Resultados del voltaje y ángulo de barras.

Tabla 15. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	151.6298	65.94547
Gen_0002	Bus_0002	40	4.994232
Gen_0003	Bus_0003	47.33988	8.997325
Gen_0006	Bus_0006	20	4.499087
Gen_0008	Bus_0008	11.44771	4.499087

• Función objetivo: Lineal.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	-1.1E-38	1.06
Bus_0002	-0.05778	1.045
Bus_0003	-6.07616	1.01
Bus_0004	-4.90437	1.020245
Bus_0005	-3.94249	1.02402
Bus_0006	-7.43824	1.07
Bus_0007	-6.82925	1.052741
Bus_0008	-5.94808	1.09
Bus_0009	-8.43204	1.035379
Bus_0010	-8.53811	1.033847
Bus_0011	-8.10954	1.048027
Bus_0012	-8.32687	1.053705
Bus_0013	-8.40927	1.047257
Bus_0014	-9.44399	1.022338

Tabla 16. Resultados del voltaje y ángulo de barras.

Tabla 17. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	53.63724	36.47483
Gen_0002	Bus_0002	158.8623	3.992375
Gen_0003	Bus_0003	25	7.665145
Gen_0006	Bus_0006	20	4.071304
Gen_0008	Bus_0008	10	4.071304

Método de resolución: OPF-AC con balance de corriente nodal.

• Función objetivo: Cuadrática.

Barra	Ångulo [grados]	Voltaje [p.u.]
Bus_0001	-3.3E-28	1.06
Bus_0002	-3.09368	1.045
Bus_0003	-7.67141	1.01
Bus_0004	-6.97413	1.020304
Bus_0005	-5.89708	1.023783
Bus_0006	-9.42924	1.07
Bus_0007	-8.87935	1.052727
Bus_0008	-7.99817	1.09
Bus_0009	-10.472	1.035305
Bus_0010	-10.5693	1.033777
Bus_0011	-10.1208	1.047983
Bus_0012	-10.3212	1.053707
Bus_0013	-10.4071	1.047239
Bus_0014	-11.4656	1.022284

Tabla 18. Resultados del voltaje y ángulo de barras.

Tabla 19. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	154.8532	51.00893
Gen_0002	Bus_0002	40	4.268229
Gen_0003	Gen_0003 Bus_0003		8.652677
Gen_0006	Bus_0006	20	4.36256
Gen_0008	Bus_0008	10	4.36256

L/T o Transformador	from_bus	to_bus	I_FROM	I_TO
Line_0001_0002/1	Bus_0001	Bus_0002	0.945161	0.94191
Line_0001_0002/2	Bus_0001	Bus_0002	0.945161	0.94191
Line_0001_0005	Bus_0001	Bus_0005	0.490004	0.494497
Line_0002_0003	Bus_0002	Bus_0003	0.434266	0.441862
Line_0002_0004	Bus_0002	Bus_0004	0.398833	0.399636
Line_0002_0005	Bus_0002	Bus_0005	0.29856	0.301371
Line_0003_0004	Bus_0003	Bus_0004	0.094472	0.083581
Line_0004_0005	Bus_0005	Bus_0004	0.442801	0.441132
Line_0006_0011	Bus_0011	Bus_0006	0.115501	0.115501
Line_0006_0012	Bus_0006	Bus_0012	0.081784	0.081784
Line_0006_0013	Bus_0013	Bus_0006	0.198896	0.198896
Line_0009_0010	Bus_0009	Bus_0010	0.025796	0.025796
Line_0009_0014	Bus_0014	Bus_0009	0.073926	0.073926
Line_0010_0011	Bus_0010	Bus_0011	0.078409	0.078409
Line_0012_0013	Bus_0012	Bus_0013	0.022344	0.022344
Line_0013_0014	Bus_0013	Bus_0014	0.081073	0.081073
Trf_0004_0007	Bus_0004	Bus_0007	0.231354	0.231354
Trf_0004_0009	Bus_0004	Bus_0009	0.119686	0.119686
Trf_0005_0006	Bus_0005	Bus_0006	0.337868	0.337868
Trf_0007_0008	Bus_0008	Bus_0007	0.231344	0.231344
Trf_0007_0009	Bus_0009	Bus_0007	0.307667	0.307667

Tabla 20. Resultados del flujo de corriente por líneas y transformadores.

• Función objetivo: Lineal.

Barra	Ángulo [grados]	Voltaje [p.u.]
Bus_0001	1.1E-31	1.06
Bus_0002	0.069042	1.045
Bus_0003	-5.96268	1.01
Bus_0004	-4.80377	1.020253
Bus_0005	-3.85087	1.024043
Bus_0006	-7.3437	1.07
Bus_0007	-6.73016	1.052747
Bus_0008	-5.84898	1.09
Bus_0009	-8.33373	1.03539
Bus_0010	-8.44048	1.033857
Bus_0011	-8.01344	1.048032
Bus_0012	-8.23206	1.053705
Bus_0013	-8.3142	1.04726
Bus_0014	-9.34709	1.022345

Tabla 21. Resultados del voltaje y ángulo de barras.

Tabla 22. Resultados de la potencia de generación.

Generador	Barra	P[MW]	Q[MVAr]
Gen_0001	Bus_0001	47.08552	48.22614
Gen_0002	Bus_0002	163.1674	4.463015
Gen_0003	Bus_0003	25	8.565693
Gen_0006	Bus_0006	20	4.349296
Gen_0008	Bus_0008	10	4.349296

L/T o Transformador	from_bus	to_bus	I_FROM	I_TO
Line_0001_0002/1	Bus_0001	Bus_0002	0.214641	0.2687
Line_0001_0002/2	Bus_0001	Bus_0002	0.214641	0.2687
Line_0001_0005	Bus_0001	Bus_0005	0.336935	0.348905
Line_0002_0003	Bus_0002	Bus_0003	0.555893	0.559482
Line_0002_0004	Bus_0002	Bus_0004	0.491718	0.490026
Line_0002_0005	Bus_0002	Bus_0005	0.403631	0.402617
Line_0003_0004	Bus_0003	Bus_0004	0.127523	0.124426
Line_0004_0005	Bus_0005	Bus_0004	0.394834	0.393688
Line_0006_0011	Bus_0011	Bus_0006	0.114398	0.114398
Line_0006_0012	Bus_0006	Bus_0012	0.081618	0.081618
Line_0006_0013	Bus_0013	Bus_0006	0.198209	0.198209
Line_0009_0010	Bus_0009	Bus_0010	0.027275	0.027275
Line_0009_0014	Bus_0014	Bus_0009	0.074938	0.074938
Line_0010_0011	Bus_0010	Bus_0011	0.07737	0.07737
Line_0012_0013	Bus_0012	Bus_0013	0.022218	0.022218
Line_0013_0014	Bus_0013	Bus_0014	0.080271	0.080271
Trf_0004_0007	Bus_0004	Bus_0007	0.232952	0.232952
Trf_0004_0009	Bus_0004	Bus_0009	0.120786	0.120786
Trf_0005_0006	Bus_0005	Bus_0006	0.334768	0.334768
Trf_0007_0008	Bus_0008	Bus_0007	0.231243	0.231243
Trf_0007_0009	Bus_0009	Bus_0007	0.308933	0.308933

Tabla 23. Resultados del flujo de corriente por líneas y transformadores.
ANEXO IV. TABLAS DE RESULTADOS DEL SISTEMA NACIONAL INTERCONETADO (SNI)

Método de resolución: OPF-AC expresado en coordenadas polares:

- Función objetivo: Cuadrática.
- Temporada Lluviosa

Generador	Barra	P[MW]	Q[MVAr]
G_HEMB_BABA_U1	Bus 11	212.2169487	44.32817834
G_HEMB_DPER_U1	Bus 03	197.0779452	0.677167162
G_HEMB_MAZA_U1	Bus 24	205.2407144	44.32817834
G_HEMB_PAUT_U1	Bus 32	506.5492562	44.89053839
G_HEMB_PUCA_U1	Bus 71	3.576536362	9.522961062
G_HEMB_SOPL_U1	Bus 22	487.3500048	-6.033836664
G_HPAS_ABAN_U1	Bus 25	7.730537321	44.32817834
G_HPAS_ABAN_U3	Bus 26	9.818898513	44.32817834
G_HPAS_AGOY_U1	Bus 53	81.58155285	7.254299614
G_HPAS_ALAO_U1_U4	Bus 73	137.2299716	44.32817834
G_HPAS_AMBI_U1	Bus 76	130.1777763	44.32817834
G_HPAS_CALO_U1_U2	Bus 07	30.65170577	44.32817834
G_HPAS_CCS_U1	Bus 78	674.9562183	-1.672380658
G_HPAS_CHIL_U1_U2	Bus 65	1.2422E-06	44.32817834
G_HPAS_CHTB_U1_U2	Bus 21	14.68052386	44.32817834
G_HPAS_CMOR_U1_U2	Bus 37	93.73908023	44.32817834
G_HPAS_CMOR_U3	Bus 80	0.002452298	44.32817834
G_HPAS_CUMB_U1_U4	Bus 67	4.016425942	44.32817834
G_HPAS_ECAR_U1	Bus 60	13.12853081	44.32817834
G_HPAS_GUAN_U1_U5	Bus 66	1.14699E-06	44.32817834
G_HPAS_ILL1_U1_U2	Bus 85	0.798283063	44.32817834
G_HPAS_ILL1_U3_U4	Bus 86	1.105035052	44.32817834
G_HPAS_ILL2_U1_U2	Bus 70	72.89044092	44.32817834
G_HPAS_LPLA_U1_U3	Bus 77	1.725875112	44.32817834
G_HPAS_MAND_U1	Bus 12	41.28716341	44.32817834
G_HPAS_NAYO_U1_U2	Bus 68	2.00241E-07	44.32817834

Tabla 24. Resultados de la potencia de generación.

G_HPAS_OCAÑ_U1	Bus 43	9.546628455	44.32817834
G_HPAS_PAPA_U1	Bus 69	2.159999008	44.32817834
G_HPAS_PAPA_U2	Bus 81	4.079999027	44.32817834
G_HPAS_PASO_U1_U2	Bus 64	4.65297E-07	44.32817834
G_HPAS_PENI_U1_U3	Bus 74	30.8469164	44.32817834
G_HPAS_PENI_U4	Bus 83	1.238679247	44.32817834
G_HPAS_RBLA_U1	Bus 84	2.070904359	44.32817834
G_HPAS_RECU_U1	Bus 61	1.85852E-07	44.32817834
G_HPAS_SAUC_U1	Bus 38	9.524090352	44.32817834
G_HPAS_SAUC_U3	Bus 39	9.524090466	44.32817834
G_HPAS_SAUC_U4	Bus 40	9.524090466	44.32817834
G_HPAS_SAYM_U5	Bus 41	17.22640639	44.32817834
G_HPAS_SAYM_U7	Bus 42	17.21963317	44.32817834
G_HPAS_SFRA_U1	Bus 55	46.96394608	2.790708858
G_HPAS_SIBI_U1_U2	Bus 20	13.88482504	44.32817834
G_HPAS_SMCA_U1	Bus 82	1.154763881	44.32817834
G_TMCI_CCAS_U1_U4	Bus 59	0	44.32817834
G_TMCI_CES2_U1_U6	Bus 08	6.99999993	44.32817834
G_TMCI_CES2_U7_U12	Bus 09	6.99999993	44.32817834
G_TMCI_DAYU_U1	Bus 56	0	44.32817834
G_TMCI_GHER_U1_U6	Bus 63	4.99999995	44.32817834
G_TMCI_GROC_U1_U8	Bus 50	3.99999996	44.32817834
G_TMCI_GUA2_U6	Bus 62	19.9999998	44.32817834
G_TMCI_JARA_U1_U5	Bus 04	0	44.32817834
G_TMCI_JARA_U6_U9	Bus 05	0	44.32817834
G_TMCI_JIV3_U1	Bus 58	0	44.32817834
G_TMCI_LAFA_U1_U4	Bus 75	0	44.32817834
G_TMCI_LORE_U1	Bus 57	0	44.32817834
G_TMCI_MAN2_U1_U12	Bus 02	0	44.32817834
G_TMCI_MIRA_U11_U12	Bus 06	4.99999995	44.32817834
G_TMCI_SEL2_U1_U53	Bus 47	0	44.32817834
G_TMCI_SEL3_U1	Bus 48	0	44.32817834
G_TMCI_TGUA_U1_U22	Bus 45	17.99999982	44.32817834
G_TTGA_EQUI_U2	Bus 51	39.9999996	44.32817834
G_TTGA_EQUI_U4	Bus 49	39.9999996	44.32817834

G_TTGA_MAC1_U1	Bus 19	0	8.538122687
G_TTGA_MAC2_TM1	Bus 17	0	44.32817834
G_TTGA_MAC2_TM5	Bus 18	0	44.32817834
G_TTVA_COAZ_U1	Bus 16	15.04000013	44.32817834
G_TTVA_ECOE_U1	Bus 14	12.99999987	44.32817834
G_TTVA_GZEV_TV3	Bus 52	0	16.28515404
G_TTVA_ISCA_U1	Bus 15	84.80031689	44.32817834
G_TTVA_TRIN_U1	Bus 46	0	23.69456893

Método de resolución: OPF-AC con balance nodal de corriente:

- Función objetivo: Cuadrática.
- Temporada Seca

Generador	Barra	P[MW]	Q[MVAr]
G_HEMB_BABA_U1	Bus 11	212.6092	36.47952
G_HEMB_DPER_U1	Bus 03	213.3	0.301634
G_HEMB_MAZA_U1	Bus 24	150	36.47952
G_HEMB_PAUT_U1	Bus 32	435.038	41.25244
G_HEMB_PUCA_U1	Bus 71	3.471053	9.471599
G_HEMB_SOPL_U1	Bus 22	324	-14.3823
G_HPAS_ABAN_U1	Bus 25	9.25414	36.47952
G_HPAS_ABAN_U3	Bus 26	13.062	36.47952
G_HPAS_AGOY_U1	Bus 53	78.53519	7.17706
G_HPAS_ALAO_U1_U4	Bus 73	149.1581	36.47952
G_HPAS_AMBI_U1	Bus 76	140.0074	36.47952
G_HPAS_CALO_U1_U2	Bus 07	44.4343	36.47952
G_HPAS_CCS_U1	Bus 78	567.5421	-3.99007
G_HPAS_CHIL_U1_U2	Bus 65	2.160819	36.47952
G_HPAS_CHTB_U1_U2	Bus 21	22.99326	36.47952
G_HPAS_CMOR_U1_U2	Bus 37	125.2304	36.47952
G_HPAS_CMOR_U3	Bus 80	1.2	36.47952
G_HPAS_CUMB_U1_U4	Bus 67	5.288103	36.47952
G_HPAS_ECAR_U1	Bus 60	59.79311	36.47952

Tabla 25. Resultados de la potencia de generación.

G_HPAS_GUAN_U1_U5	Bus 66	2.22572	36.47952
G_HPAS_ILL1_U1_U2	Bus 85	0.798917	36.47952
G_HPAS_ILL1_U3_U4	Bus 86	1.106253	36.47952
G_HPAS_ILL2_U1_U2	Bus 70	85.34088	36.47952
G_HPAS_LPLA_U1_U3	Bus 77	4.793685	36.47952
G_HPAS_MAND_U1	Bus 12	54.57066	36.47952
G_HPAS_NAYO_U1_U2	Bus 68	5.58E-08	36.47952
G_HPAS_OCAÑ_U1	Bus 43	20.25862	36.47952
G_HPAS_PAPA_U1	Bus 69	2.16	36.47952
G_HPAS_PAPA_U2	Bus 81	4.08	36.47952
G_HPAS_PASO_U1_U2	Bus 64	1.64E-07	36.47952
G_HPAS_PENI_U1_U3	Bus 74	77.13559	36.47952
G_HPAS_PENI_U4	Bus 83	1.252047	36.47952
G_HPAS_RBLA_U1	Bus 84	3.0312	36.47952
G_HPAS_RECU_U1	Bus 61	1.95E-07	36.47952
G_HPAS_SAUC_U1	Bus 38	18.13713	36.47952
G_HPAS_SAUC_U3	Bus 39	18.13713	36.47952
G_HPAS_SAUC_U4	Bus 40	18.13713	36.47952
G_HPAS_SAYM_U5	Bus 41	32.09974	36.47952
G_HPAS_SAYM_U7	Bus 42	32.06693	36.47952
G_HPAS_SFRA_U1	Bus 55	86.47524	2.73865
G_HPAS_SIBI_U1_U2	Bus 20	14.535	36.47952
G_HPAS_SMCA_U1	Bus 82	1.848104	36.47952
G_TMCI_CCAS_U1_U4	Bus 59	0	36.47952
G_TMCI_CES2_U1_U6	Bus 08	7	36.47952
G_TMCI_CES2_U7_U12	Bus 09	7	36.47952
G_TMCI_DAYU_U1	Bus 56	0	36.47952
G_TMCI_GHER_U1_U6	Bus 63	5	36.47952
G_TMCI_GROC_U1_U8	Bus 50	4	36.47952
G_TMCI_GUA2_U6	Bus 62	20	36.47952
G_TMCI_JARA_U1_U5	Bus 04	0	36.47952
G_TMCI_JARA_U6_U9	Bus 05	0	36.47952
G_TMCI_JIV3_U1	Bus 58	0	36.47952
G_TMCI_LAFA_U1_U4	Bus 75	0	36.47952
G_TMCI_LORE_U1	Bus 57	0	36.47952

G_TMCI_MAN2_U1_U12	Bus 02	0	36.47952
G_TMCI_MIRA_U11_U12	Bus 06	5	36.47952
G_TMCI_SEL2_U1_U53	Bus 47	0	36.47952
G_TMCI_SEL3_U1	Bus 48	0	36.47952
G_TMCI_TGUA_U1_U22	Bus 45	18	36.47952
G_TTGA_EQUI_U2	Bus 51	40	36.47952
G_TTGA_EQUI_U4	Bus 49	40	36.47952
G_TTGA_MAC1_U1	Bus 19	50	8.525196
G_TTGA_MAC2_TM1	Bus 17	0	36.47952
G_TTGA_MAC2_TM5	Bus 18	0	36.47952
G_TTVA_COAZ_U1	Bus 16	15.04	36.47952
G_TTVA_ECOE_U1	Bus 14	13	36.47952
G_TTVA_GZEV_TV3	Bus 52	0	16.23992
G_TTVA_ISCA_U1	Bus 15	84.80032	36.47952
G_TTVA_TRIN_U1	Bus 46	25	23.56501