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ABSTRACT

This 13 an expository paper of a new
approach to the 8Special Theory of Relat-
ivity. Revriting Lorentz transformation
equations in differential form, the basilc
equations of unrestricted motion are
formulated in the euclidean 4-space-~time,
showing that such a formulation is pos-
s=ible, with the advantage of cancellation
of all paradoxes and giving a clear
physical picture of the space and time, as
well as the meaning of the relativistic
transformation in the free space.

Starting with the principle of momentum
conservatlon, the dynamlcs of the free
particle is also considered and, by
following the proposed new line of attack,
quite unusual results are derived, such as
the wvolume of the Universe or the mass
(and enezrgy) Invariance principle.

INTRODUCTION: EINSTEIN'S APPROACH IO
IHE FREE PARTICLE RELATIVISTIC DYNAMICS.

We begin with briefly reviewing the
relatlvistic dynamics of a particle in
free motlon, as it comes from Einsteln's
theorle and te point ocut some of its
drawvbacks.

It has been experimentally verified and
universally accepted that the performance
of matter {(in fact, any amount of matter)
is governed by the Principle of Least
Action ({Maupertius, 1740), according to
wvhich, the actlion integral

t

s = _]" Bx,¥,2;v .V v, t) dt (1.1)
1
1

has a statlonary value. In (1.1),'1:‘ and

t, are two fixed instants of time and 8 is=

the total energy of the system under
consideration. The most obvious con-
sequence of the Least Action Principle 1is
the straight-line path of the particle.

In the relativistic (Einstein's] space-
tine "continuum®, the concept of
*distance™ glves way to that of "interwval"
and, consistently with Minkowski geometry,
the "stralght 1line" 1= replaced by the

"longest interval"®, which amounts to
compute the extremum of the integral
. b
= - .2
S .. - K J'u ds 1.2y

wvhere K 1is a constant and s the interval
between two f£ixed points, a and b.

An alternative approach in the classical

Mechanics is to apply the well known
Hamilton Princple:
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‘z
&3 = —__cs._|‘t ds = 0 (1.3)
formulated in terms of the Lagrange

function L. In the Special Relatlivity (see
[71), p. 41 and (B8], p. 297), the actlon
g_l, as defined in (1.2), is replaced by

S‘ from (1.3}. It 1leads to the eqguation
3 ‘

- kfdas = [® 1L at (1.4)
a t
4

From Lorentz transformations [cf. (2.1)]
we have:

as = c(1 - v¥/e® 1" ™ac

Then, from {(1.4):

L = - Ke(l - viset % {1.5)

For a free particle and at low velocity, L
in (1.5) represents the kinetic energy of

the particle: % = o mgv', m, being the
rest mass. Also from {1.5},
z
-~ Kv
L = Ko + T ... (1.6}
To identlfy L in (1.6) with tk’ the
constant term - ¥c must be disregarded

{in spite of the fact that the classlical
Mechanics limit is achleved letting elther
v + 0 or ¢ » ). Then, the substitutlion of
(1.6) inte (1.4) gives K = m ¢ and, from
(1.2 and (1.%), we gek:

b
s = - m,c j‘ds (1.7a)

ret

L = m c®(1 - vieh)'® (1.7b)

Continuing with the classical approach,
let P pe the generallized Lagrange

coordinates of the s=ystem. A well known
from Analytical Hechanics relationshlp
states:

p, = dL/oq,

*

For a single particle, we take p as the

particle momentum and ﬁ as the wvelocity.
Then,

mnv
o

(1 - v /cz)afz
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"o

m = 1 - vz/cz)szz (1.8)
which is the celebrated Einstein’'s formula
for the mass of a particle in motlion.

Furthermore, let H(p,é,t) = § P ﬁ - L be

the Hamilton function, wvhich can be
interpreted as the total energy of the
system. For the single particle at hand we
find:

(1.9
with m given in (1.8).

The last eguation is another, probably the
most famous relationship proposed by
Einstein. The main purpose of this article
ts to question 1ts wvalidity. In fact,
several objections can be formulated with
respect to the statement {1.9}, wvhen
combined with (1.8). The first one is
obvious: 1f both relationships were true,
the energy of an isolated system can
become unbounded and the very concept of
energy, let alone the conservation law,
would be bereft of their physical meaning
[B]. Besides, there are other
considerations that show otherwise. This
is the case, for example, of eg.'s (1I.7T)
for three reasons:

a) There is no oblective justification in
switching, in the relativistic case, from
the meaningful Least Action Principle to
that of Hamilton, only because it proved
to be useful in Classical Mechanica.

b)) As it has been mentioned earller, it
becomes difficult to justify the dropping
of the constant (possibly of infinite
value in the classical approximation).

c) As it will be proved later on, the main
drawback of Elnstein's theory that event-
ually leads to a number of inconslstencles
and contradictions in both Special and
General Relativities 1s to interpret the
interval s as a sort of "dlstance” 1in a
static space-and-time "continuum®. Such a
space can admlttedly exlst as a mental
exerclise, but it can never be our
Universe, complying with the lawvws of
physics and subject to a constant
expansion, as it 1= supposed to have been
proved beyond any reasonable doubt (31,
(41.

Il. EUCLIDEAN VERSUS MINKOWSKI SPACES

An universally accepted assumption ls that
the only vector of intrinsic slignificance
is the velocity vector. Quite naturally,
this assertion can be used as the basls
for the relativistic transforms. To this
end, rewrite the Lorentz transformations
in the differential form:

at = R (4t - ve 2ax)
dx = R {(-V 4t + dx)

dy = dy (2.1)
"dz = dz

vhere at, dx, d;, d; are refered to
the rest frame, R = (1 - vzc-zj_hq and VvV

moving frame velocity
in the {(common) x and x direction.

is the {constant)
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The first conseguence of writing the
Lorentz transformations in the
dlfferential form (2.1) or, which is fthe
same, to interpret them as eguations of
motlon, is the surmounting of a conceptual
Alfficulty that lies at the very root of
Einstein's Special Relatlvity, namely, the
one related to the notion of simultanelty.

In effect, after 1ntegratlng the ¢first
egquation (2.1} over a finite interval
(t*,tz: of time t associated with the
moving system, we get: -

_ -~ - _ PR =
tz = tl = R[(tz t’) Vo (xz x‘)]

where (ta,t’) and (xz ,xt) are some finite

intervals along the axes t and x,
respectively in the fixed reference
system. Incldentally, the last equation 1=
the elassical result normally guoted when
discussing the Lorentz (non differentlal)
transformations and interpreted in the

sense that, for t‘= t and x, - x, {two

z
events occuring simultaneocusly at tvwo
different points in the fixed system) the
interval tz - t1 does net wvanish, which

means that the simultaneity has been lost.
1t happens, howvever, that, according to
the present discussion, this conclusion is

false, because the conditien t = t, (dt =
= 0) implies dx = 0 as well, owing to the
fact that every motion ({dx = Q) is

necessarily time consuming {(dt = 0}.

It 1s also interesting te obaserve that,
unlike the foregoing result, the converse

is not true, that is, the condition dx = 0

does not imply dt= 0, which means that dax
does neot (in general) wanish. This lack of
symmetry between the (normal} space and
the time in the relativistic space-time is
quite meaningful and suggests that the
time should not be conveniently considered

as an independent component (4"
direction} in the 4-dimensional space but
some sort of norm assoclated with a linear
(vector) space [(5]1. This suggestion is
further suppokrted by the non negativeness
of dt (complying with the principle of
causality which, to our best knawledge,
holds in the observed Universe) and shall
be ultimately established in what follows.

As the next step, it will be helpful to

define the new functions, wiv), wiv} and

@{¥) by the relationships: tanh w = wv/ie,
tanh w = v/c, tanh @& = V/c, with
: 12
dx,2 dy .2 az,=z
v oS [‘E’ + (G0t ‘E']

etc. Using these definltions 1t is not

difficult to prove the followving
relationships:
R - cosh ‘e {2.2a)
R = ; + @ (scalar velocity
composttion) (2.2b)
dx = = dx = dx (Lorentz contractlion,
sinh w sinh w

modified) (2Z.2c)
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at = = at - 9x {(time transform)
c
cosh w cosh w
{2.24}
with dx invariant under Lorentz

transformations {(2.1}. Observe that sinh y
i an odd function and cosh w an even
function of w {(time-like transforms).

A very illuminating geometric
interpretation cam be given to (2.2). To
this end define

dw = ¢ 4t

a arc cos(l/cosh ) = arc tan(sinh w)=

arc sin(tanh w)

Suppose also dy = dz = 0 {(the x-~directed
rectillnear motion). It gilves dz2 = dw* -
- dax*®, which is the definition of the
relativistic interval. Revrlte it
(returning to the euclidean space [5]) as

dv® = ax® + ax (2.3
Eguation (2.3) sinply states the
pythagorean theorem, as depicted in Fig. 1
and interprets the Lorentz transforms
(2.1) as a rotation in the (time space x)
x (pure space x) plane {or hyperplane 1f a
nore than one—-dimensilonal motion is
involved). In fact, a generalization for
any motion Iin an arbitrary r direction is
straigtforwarxd. Obsmserve also that Iin this
model the trajectory of the 1light is
normal to the world-line of the emitting
object (not tilted 45%).

dX Lk = - - — — — dw

B

X

Fig. 1. Rectilinear motion in the
relativistic 2-space plane interpreted asa
rotation.

I1I. SOLUTION OF THE TWIN-CLOCK PARADOX

An important consequence of the return to -

the euclidean space is the disappearance
of the famaous Einsteln's twin-~clock
paradox. Te prove that there 1s no such a
paradox, consider the object B, in motion
relative to the object A, as depicted in
Fig. 2. For simplicity 1t will be supposed
that B follows the solid, (broken-line)
path, although a more reailis
will be one shown with the dotted line.

Before starting with the relatlive speed
c tanh 8 = ¢ sin .o, the object B
138

c situation

synchronizes the twin-clock with A, At B',
B's clock

changes there 1its course and starts the
return path toward A. At A., the system B

shows tbn = d‘/(c cos a‘). B

merges vith A agln. After returning home,
whereas B's clock says that the
travelling time lasted

d cos a. + d_cos a
1 1 2 2

t, = c

for A, oblect B has been absent

4 + 4
t = 1 z
a c

seconds. The sltuation would be reversed
if, for example at Ag, system A had

decided to change 1its gquliescent course
alengt x and Jjoln B, reaching it at B.'.

In this case, A's clock would lag

B'l —_ BI
- a[
At = ———— =

te = 1

= (AB ' = A.A, + A B

Thus, there s no paradox at all.
Moreover, In the 1light of the previous
discussion, the bewilderling {but currently
accepted a= true} statement that in the
relativistic space-time "the straight line
l1s the longest path between two points”®
[7]1 (in opposition to the euclidean space
wvhere it is the most obviocus shortest
path} can be simply reformulated in
equally obvious terms by saying that
moving along a straight line one travels
the longest way. The essence of this
restatement lles in the fact that Lorentz
eguations’ (2.1) refer to the motlon, not
te a satatlec universe. Incidentally, the
same (s true for Maxwell's eguations,
which - as it will be proved elsvhere -
fulfll eq. (2.1); and conversely: 1t can
be shown that it 1= possible to derive
from {2.1) alternative (not Einstein's)
general relativistic equations, compatible

with the maxwellian electrodynamic theory.

1V, VELOCITY VECTCOR IN EUCLIDEAN 4-SPACE,

As 1t has been already mentioned, egq.
(2.3) 18 readily generalized (by simply
rotating the X,¥,Z system) to an
arbitrarily criented d-radius vector in
euclldean 4-space (vhich fxrom novw on will

be abreviated to E-4D). Consequently, 1If

41 =  {dx® + dy’ + dz")*"* is  an element
of arc in the ordlihary space refered to a
set of orthonormal coordinates, any
4-dimensional arc (4-arc) squared can be

‘written as

av'= dx®+ a1%= da®+ ax®+ ay®+ dz®  (4.1)
with
dw = c dt = cosh w dxy (4.2)

Aa it has been proved in Sec. I1I, dx is
constant, which allows to interpret x as
a parameter and, as such, it will be
relabeled Z. Then, the guotients
: = 4% . = 9y . = 4z
r_(!)- F I ry(!)- Ik r=(a‘.')_ ar
(= stands for "equal by definition®) can
be interpreted as derivatives of the space

(4.3)
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coordinates with respect
parameter, and_the integral

to the

as = | (2 + % + T + 1)V*
x 1% =

azr (4.4)

as the distance {(or interval) between two

fixed points (events) Iin E-4D.

According to (2.2c), for a rectillnear,
parallel to x-axis motion, that 1s to say,
fpr :|:y =r_

general case, (2.2c) must be replaced by

r®* + 2 + r® = sinh™y
" v =

and from (4.1,

dw, = z = z : z
W=, ¥ ry +xr, + 1 = cosh“w . (4.5)

{

= 0, we have £, = sinh w. In a

However, because of the fact that a
vanizshingly small element of a (contlinuousa
and differentiable) axc can be
approximated by a stralght-line segment,
equation (4.7) becomes indpendent of the
form of the trajectory. On the other hand,
it will be proved elsvhere that, in the
general case (not restricted to a
stralght-line motion), the coefficients
X, s ry, r are functions of both w and ¥.

Equation (4.7) reveals the fundamental
fact that the speed of light in vacuum is
at the same time the absolute veloclty of
every oblect or system in E-4D, regardless
of 1ts behavicour in the ordilnary space
(xrecall the Michelson-Morley experiment).
In particualar, with » = 0 (the system at
rest), u_, u_, W = 0 and uy = c {the

L)

Fig. 2. An object, B,
No clock

running
paradox is registered.

After multiplying r , r , r by
-

v x

=_—°¢ _ dx
u{ = gosh y at (4.6a)
we get
u = S—:liii = ax
= cosh w dat

c xr (T)

= ¥ _ 4
U, ® cesh v E% (4.6b)
o o= o =28 s
"= -~ cosh w at

Egq.'s (4.6) can bhe interpreted as the
components of the 4-veloclty wvector in

E-4D. They also fulfil an important
relationship

z 2z X =z

ul + ul + ul + ug = c* (4.7)

in accordance with (4.1) (to be compared
with a somewvhat simllar eguaticon gucted in
the current literature for Minkowski space

171: &ht = 1, where Einstein's summation
caoanvention has been appllied; notlce,
however, that neither v nor u,  are the
normallzed val}es of U, etc. In fact,
they have no definite physical meaning).

Strictly speaking, the 4-velocity

components (4.68) have been derived for a
rectilinear, arbiltrarily oriented motlon.
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away from - and returning to - a.

speed of 1light in timel). ©On the other

hand, when w -+ m, we have:

£ tanh V|w=w - c

and the particle veloclty approaches the
spesd cf light in the normal space
({orthogonal to x axis, in agreement with
the discussion of Sec. II}.

¥, HYPERSPHERICAL COQORDINATE3: VOLUME OF
THE UNIVERSE., i

Equation (4.7) also has an important
cosmological implication, namely it
allows to evaluate the volume of the
present-day Universe, provided its age ls
known, which is seemingly the case.

Indeed, according to (4.7), the very
space, Iindependently of the behaviour and
amount of the matter scattered across it,
may be conce ived as a 3-dimenslonal
spherical hypersur face in the 4-space
defined by the set of orthonormal
coordinates uz, u_, uy, u_. The radius of

»»
the sphere is c, as depicted symbolically
in Fig. 3, where v represents the normal
space veloclty axis in the directlon
{expressed in the usual notation):

v+ = u i +u j ¥ ulk.
= » =
However, wve shall resort for convenlence
to the hyper - =spherical coordinates,

deflined (with reference to Fig. 3, and c©
replaced for generality by ) as £ollows:
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= o cos d

o sin o cos & (51)

"

P Sin a 3ln 8 cos ¢

X X X X
[

e sin o sin & siln ¢

where &, ¢ are the usual latitude and
longltude in spherical coordinates
[observe that definltion (5.1} can be
naturally extended to a more-dimenslional
spacel.

/'-

Fig. 3. A symbollic picture of
in the 4-velocity space.

a 4-sphere

The coordinate system (p,a,8,¢) defined in
{5.1) is orthogonal; thu=, the element of
arc is given by

ds® = goodp= + g“dauz + gzzdez + g”dwz

¥here 9 is the fundamantal metric tensor
with the only non zerc components:

9o = i 9,, = P": g, = P sin"a;
9o = stlnza sinteo
as it can be easlily verified by

differentiating (5.1). The wvolume of the
constant-o hypersurface 1s computed by
using the well known formula from vector
analysis (see for example (1], [2]1): .

= 1,2
= d a 4a 5.2

dz‘p gp - | & ( )
where gp is the cofactor of - . in
det(gm]:

g 0 [+]
qg_ = “ = {p"sln®a sin o®
P 2 gzz o

[V} 0 - 1 (5.3)

By substlituting {5.3) into (5.2 and
integrating over a & [— %, +g-], e e [0,nr1,
¢ = [D, 2], we get:
F

r =2

[ Ll

In our case, p = © = 3 x 10' m/s. To
compute the desired space volume 1t |is

aufficlent to replace o by ct, t belng the
age of the hypersfere (the Unlverse).
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Assuming t = 1.5 x 10" years, = 4.8 x
10’73, we finally get:

£ =2r"(3 x 4.8 x 10*™)" =26 x 107 m

ct
(5.4

Equation (5.4) can be considered as a
remarkable result in view of the fact that
presently 1t is still considered as an
unasolved guestion whether the Universe is
finlte or infinlte. Related to it there 1is
also the problem of the unaccountable
extreme flatness o¢f the Universe. The
restatement of the Special Theory of
Relativity under discussion glives the
ansver to both questlons, although we
shall not dwell on this point any longer
here. It may also be pointed out that the
relativistic Doppler effect and the
computation of Hubble constant problems
are easily solved in the same way.

Vi, RELATIVISTIC MASS AND FORCE TEANSFORMS

We are ready now to return to the question
of the relativistic mass transform taken
on in Section I and, related to 1t, the
momentum and energy conservation laws. To
this end let P (m_,v) and Pa(m.,v:) be
with the rest masses wm
and mo_ respectively. According te egq.

{1.8}) and the deflnition of w we have:

two particiles

n = mo‘cosh v m, = mogcosh L7

v, = € tanh L v, = ¢€ tanh v,

and the momentum conservation law (which
we shall consider provisionally wvalid even
in the relativistic world) requires the
fulfilment of the eguation

cno‘sinh ¥, * cnoaslnh w, = const.

Differentiating:

cm°1cosh v, dw; + cmozcosh v, dwz = 0
(6.1)

After multiplying both terms Iin (6.1) by ¢

and dlvliding by 4f (both constant), we

arrive akt:

dy : dw
=z 1 z = -
[ mO‘coah vy ar + c mozcosh v, ar - Q

. (6.2}
The reson for multiplying (6.2) by ¢ i3 to
dimensionally equate both terms to a
force, It allows to interpret (6£.2) as the
relativistic form of the 3™¥ Newton law:
F = - F_, wilth

4 ]

z dv,

l?t = C mOicosh ¥, ar s 1 =1,2

or, generically,

Ay = ~
[ nocosh w

(6.3

In {6.3), F(w,f) has been supposed (a
guite loglcal supposition}! both w - and
Z-dependent. To be =pecific, we shall
provislqnally assume

F(w,2) = F, (Z) cosh™w (6.4)

where F‘(Z) (nothing to do with Ft foxr 1 =
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= 1) can be regarded as a force, function
of ¥ only; that is to say, invarlant in
the relativistic transformatlon (rotation
in E-4D). The definition of F‘(l) given in

(6.4) can be considered at this point as
axiomatic. Its ultlmate justiflcation wlll
be infered from the consequences of
paramount importance in the Relativistic

Dynamics, relayed to a further report.

Using (6.4) we can eliminate F(p,I) in
[6.3), with the result:

= S% (6.5}

cosh®y
To properly interpret (6.5) we shall use

the classical definition of force as the
time derivative of the momentum. For

=
cm

F (&) =

example, in the - case of the x-axls
directed motion we have:
2
ai{m _v) cm
F,~ —gqo——> = 2 g—‘; (6.6a)
* cosh™ w

where the results of Sec. II have been
used. Combining (6.6a) with (6.5) we can
also write:

Fl(EJ

ix  cosh w R

F

The last eguation shows that F, . is equal
to F‘(C) when w = 0, that is to say,

represents the force applied to the
particle at rest, perpendicularly to the
trajectory {x-axls). F‘(t) does not depend

on w, which also means that the
perpendicularity between the trajectory
and F‘({J holds for any speed (or w} and,

thus, can be considered as a fundamental
fact in both Special  and General
Relativity. This subject will be treated
in more detail later on.

Now, consider the energy function. To this

end we combine both equations (6.6) and
get:

F
ix - z
F‘(Ei ar = Tanh v dx = c L d{tanh w)}
and, after rearranging terms,

dx = £“m_tanh w ditanh ») = m v dv
o x 3

(6.7
Suppose nov that the parxticle has been
emitted from the origin in x - x plane
with the inltial wvelocity Vo in the x-

direction.
get:

Integrating (6.7)1 over x we

E.]
_ s z _ 2
j; F, dx = m (v v,)

5 N {6.8)

equation that represents the 1llve-force
law. For x = m, Vv vanishes, and eg.(6.8)

gilves:

m . z .
J; F ax + —m v, =20 (6.9)
wvhich simply states that the kinetle
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. {hypothetically)

energy of the particle, abandoned to
itself, is entlirely spent in the work done
by the same particle. Incidentally, after
averaging over a system of particles, 1t
agrees with the well known virlal theorem.

The term moc3 naturally appearing in the

previous eguatlons glves, as it is
expected to, the rest energy of the
partlcle, postulated by Einstein. There ls
a drastic difference though between
Einstein's statement and the present point
of wview, namely that eguations (6.8),
{6.9) that express the energy conservatlon
lav are formulated in terms of the resat
nass and, thus, remain invariant in
relativistic transformations. Yet the fact
that the mass of the particle increases
with its speed according to Einstein's
law (1.8) has been experimentally verified
beyond any reasonable doubt. Or does it?
It happens that the only fact vwe know for
certain is that the inertia of a
mechanical system increases with its
velocity which, by itself, allows
different interpretations.

In effect, according to Newton's 2™ law,
which we have no reason to suppose not to
hold Iin the relativistic mechanics, the
acceleration in the rectilinear motlon 1s
determined by the ratio between the force
and the mass, providing that the former
is co-directional with the acceleration.
Let the motion be oriented along x-axls.
Then the eguation .

F (I) F
Pl o
x m m

(6.10)

satisfies the relativistic requirement of
the Increasing inertia and, at the same
time, keeps the system mass constant. 1In
the discussion of the Relativistic
Dynamics, equatlion (6.10}) will be formally
derived by other means.

To better underestand the meaning given
here to the relationship between the force
and the +trajectory, a segment of the
latter for a particle {assumed pointlike)
in the #-x plane 1a represented 1n Flg.4.
The force, by assumption, is perpendicular
to the trajectory which forms angle a with

" the x-axls.

From the wvector diagram 1n Fig. 4, the

following relationships are immediately
derived:
F_(Z}
F;x = F‘(E) cos a = Coshlw {(6.11a)
le = - F‘(:] sin a = - F‘({) tanh w
{6.11b)

where o vs. w transformations, deflned in
Sec. II, have been used.

Egquatlion (6.1lla) has already been derived
in (6.6), whereas F.x, defined in (6.11b},

can be  lnterpreted as the "brake force™
responslible for the relatiwvistic dilatian
cf time, assoclated with the motion (cf.
Sec. III). Iin the limit, when the particle
reaches the speed of
light &, the wvhole force I= "spent™ 1in
keeping the tralectory perpendicular to
the xy-axis (and, by the same, confined to
the "normal" space, exclusively). In this

141



situation, the entire energy of the
particle - which is invariant and amounts
to m_c - 1s bound to be transformed into

radiation, according to Max Planck law:
8 = hp.
All that leads to the important conclusion

X
Fqi§) Fyx
Fix
x
Fig. 4. Trajectory of a particle
accelerated in x—x plane and vector

diagram of the accelerating force.

that only the 1light {(actually electro-
magnetic radiation in general) propagates
with the spead of light.

Eguaticonsg (6.11) will be used in £further
reports devoted to the Particle Dynamics
(General Relatlivity). As for now, we shall
briefly return to the question of the
momentum and the Least Action Principle,
considered in Sec. I.

YII. ENERGY,  LAGRANGE FUNCTION  ANDR
MOMENTUM IN E—4D -

In Sec. I, a number of inconsistencles
have been found when applying the Hamilton
Principle to the relativistic space-time
continuum. According to the Theory of
Relativity reformulated in the subseqguent
secticns, such difflicultles are mainly due

to the role of "distance™ confered by
Einsteln to the interval s. Thus, by
replacing the Least Action Principle by
the Hamilton Princlple and the f£fixed-time
integral limits in the former by the
extremums of the interval, any track of
phyzical meaning of the transformed
integral has been lost.

The alternative approach which is followed
here 1is the return to the Least Action
Principle: &3 = 0, S being given Ly the
integral defined in (1.1), and computed
along the trajectory in E-4D, with the
time as the integration varlable.
Consequently, according to the discussion
carried out in Sec. II, equation (1.2)
must be replaced by

.l'la as

8 = K (T.1)
rel “ (1 - v’/c')"z

Then, wlth the mass of the particle

conatant, everything trivially falls into
place. In fact, with repect to the meaning
of the Lagrange and Hamilton functlions,
our reasoning i=s as follows.
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In Classlcal Mechanics, the potential
energy U contains an indetermined constant
wvhose absolute wvalue is allowed to become
as large as we are pleased. The same ls
true for the Hamilton functlion H = Bk + U

(!k = kinetic energy} interpreted as the

total energy of the particle, where both

!k and % may be unbounded. In contzast,

from the relativistic point of view, the
total energy of the particle is moc’, a

scalar, and, as such, unaffected by the
rotation of the reference £frame; that Iis
toc say, by the relativistlie transform-
ation, that is, by the speed. We shall
still call the particle enerqgy H and, as
usual, L the Lagrange functlon and use the
well known from Classical Mechanics
eguation L = Ztk— H. In our case,

_ 2z, . z 2. . =
L = motv c ) m,C (tanh™ w 1) mout

{7.2)

where the last egquation Is drawn from the
definltion of uz {4.6a). ©On the other

hand, the particle velocity is tangent to
the trajectory at each peint. Then, by
(7.2), the Hamllton Principle can be
interpreted in the sense that, in any
motlon, under the action of any force -

conservative or hat - the y-projection of
the trajectory 1is kept minimum under
speclflc constraints. In other words,

avery trajectory is the geodesics on a

given sur face (or hypersurface). For
instance, the foregoing discussion £fully
Justify vhy the light propagates

orthogonally to the x-axis in the free
space {and, thus, the absclute flatness of
the Universe) and explain the fact that
the Hamilton action - such as it has been
defined here - s independent of the
speed.

The vector momentum 1s in our case
P =0y {7.3)

and also remains bounded. It is
interesting to cbserve that, by this
assumptlon, it can be proved {6] that the
gravity centre of a mechanical system lis
conserved in the relativistic transform-
ationas, which fails to be true 1if we
replace ., in (7.3) m by the supposedly

"rglativistic™ mass (1.8).

VIII. CONCLUSION

The new approach to the Special Theory of
Relativity summarily described in this
paper offers a more consistent picture of
the relativistic space-time than the one
given by Einstein. In particular, there

are no paradoxes left and the energy
conservation law holds in all
clrcumstances. When applied to the

cosmologlical problems the theory at hand
gives a plausible explanation of many -
£ill now considered as mystericus o
performances of the Universe.

It will be domonstrated elswvhere that the
extension of this method onto the General
Relativity realm is straightforwvard and
leads to other interesting consequences.
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