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RESUMEN 

 

 

En el mundo existen aproximadamente 65 millones de amputados, de los cuales el 38,7% 

corresponden a amputaciones de miembros superiores, y la mayoría de estos se encuen-

tran en países en vías de desarrollo. Esto lleva a la necesidad de una prótesis de mano 

asequible y de fácil fabricación que alivie la situación de estas personas. Este proyecto 

propone el uso del aprendizaje por refuerzo para la operación de una prótesis mioeléctrica. 

Se construyó en 3D un prototipo de prótesis con materiales flexibles a partir de un modelo 

de código abierto, de bajo costo con 4 grados de libertad, 1 para cada dedo excepto el 

meñique. El entrenamiento del agente que opera la prótesis se dividió en dos etapas, si-

mulación y fine-tuning. Para ello, se implementó un modelo simplificado de la dinámica de 

la prótesis para simulación. El entrenamiento en simulación permitió rápidas pruebas de 

concepto y selección de hiperparámetros. Fue necesario un ajuste fino para adaptar el 

agente al hardware real. Se consideraron tres enfoques para la función de recompensa, 

los mejores resultados se obtuvieron con la combinación de 2 de ellos: la distancia al obje-

tivo y una recompensa discreta dependiendo de la acción seleccionada por el agente. El 

desempeño de la prótesis se midió utilizando la tasa de éxito en las tareas de agarrar y 

soltar obteniendo un 86%. A partir de esto, concluimos que se dio un paso exitoso hacia la 

meta de una prótesis de mano mioeléctrica completamente funcional.  

 

Palabras clave: prótesis mioeléctrica, EMG, operación de prótesis usando aprendizaje por 

refuerzo, Deep Q-learning  
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ABSTRACT 

 

 

In the world exists approximately 65 million amputees, 38.7% of which correspond to upper 

limb amputations, and most of them are found in developing countries. This leads to the 

necessity of an affordable, easy-to-made hand prosthesis to alleviate these people situa-

tion. This project proposes the use of reinforcement learning to train an agent for the oper-

ation of a myoelectric prosthesis. A prosthesis prototype with flexible materials was built 

from an open-source model chosen from the literature. The prothesis was modified and built 

as a low-cost 3D printed prototype with 4 degrees of freedom, 1 for each finger but the little. 

A commercial electromyography sensor is used, and just during evaluation a glove with 

flexion sensors. The training of the agent that operates the prosthesis was divided in two 

stages, simulation and fine-tuning. For this matter, a simplified model of the prosthesis dy-

namics was implemented for simulation. Simulation training allowed fast proof of concept 

testing and hyperparameters selection. Fine-tuning was necessary to adapt the agent to the 

real hardware. Three approaches for the reward function were considered, the best results 

were obtained with the combination of 2 of them: the distance to the target, and a discrete 

reward depending on the selected action by the agent. The performance of the prosthesis 

was measured using the success rate of the grasp and release tasks obtaining an 86%. 

From this, we conclude that this research was a successful first step towards achieving a 

fully functional myoelectric hand prosthesis.  

 

Keywords: myoelectric prosthesis, EMG, reinforcement learning for prosthesis operation, 

deep Q-learning  
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CHAPTER 1:  

INTRODUCTION 

1.1 Background 

It is estimated that in the world are 65 million amputees due to trauma and different dis-

eases. Most of traumatic amputations are found in developing countries, and 38.7% of it 

corresponds to upper limb amputations (McDonald et al., 2020). In Ecuador, Consejo 

Nacional para la Igualdad de Discapacidades (CONADIS by its acronym in Spanish) in 

January 2022 estimated that 215 thousand people suffer physical disability, considering 

people with hand amputation. Amputees can improve their quality of life by using active 

prosthesis, as these allow different degrees of mobility, instead of passive prosthesis that 

are intended to be more cosmetic. Among active prothesis, the ones that have the greatest 

potential to reproduce the 27 degrees of freedom of a human hand are the myoelectric 

prostheses. This kind of prosthesis measures the electromyography signals EMG that trans-

mit the movement intention sent from the brain to the skeletal muscles, causing muscle 

contraction, the base of force and movement. Unfortunately, commercial myoelectric pros-

theses are unaffordable for most people in developing countries due to its high cost (be-

tween 20 and 30 thousand US dollars). Furthermore, its functionality is still very limited, 

reason for which they have high abandonment rates.  

In this project, we propose the development of an agent using reinforcement learning for 

the operation of a myoelectric prosthesis. The agent’s input will be EMG signals from a user 

and kinematic information related to the posture of the prosthesis. The final goal would be 

to implement and train the machine algorithms on amputees, but in this project, the EMG 

signals will be acquired from the right forearm of a user with no disability. A prototype of a 

myoelectric prosthesis for the right hand will be built with 4 degrees of freedom and will be 

able to imitate a whole-hand grasping movement. This prototype will be based on an open-

source design and will be built using 3D printing.  
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1.2 General objective  

Design, train and implement an agent using reinforcement learning to the operation of a 

myoelectric transradial prosthesis using EMG signals. 

1.3 Specific objective  

1. Review the literature about prosthesis control using EMG, and 3D printed Open-Source 

active prosthesis designs to compare results with the present project.  

2. Build a transradial myoelectric prosthesis with 4 degrees of freedom and develop its 

communication interface with a central PC. 

3. Design an agent using reinforcement learning that uses the EMG signal from an 8-chan-

nel commercial sensor and the relative encoders position to control the actuators of the 

hand prosthesis in real time. 

4. Train the agent so that the hand prosthesis can imitate a whole-hand grasp movement 

from the right hand of a user with no disability. 

5. Evaluate the agent’s real-time operation and performance using the success rate on the 

execution of whole-hand grasp and release tasks. 

1.4 Hypothesis 

An agent trained with reinforcement learning that uses an 8-channel EMG commercial de-

vice can operate a 4 degrees of freedom myoelectric prosthesis to imitate a whole-hand 

grasp movement. 
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CHAPTER 2:  

THEORETICAL FRAMEWORK AND LITERATURE REVIEW 

2.1 Prosthesis overview  

There are two kinds of prostheses: active and passive. Passive or aesthetic prostheses do 

not have any type of movement and only replicate the morphology of the hand. Meanwhile, 

active or functional prostheses are much more versatile because they have actuators that 

allow finger movement. In the case of active prostheses, the essential movement they must 

perform is to open and close the hand (Fajardo et al., 2020). More versatile models allow 

independent finger control (Vasan & Pilarski, 2017), but its functionality is still limited. 

Among the active prostheses, there are three types of activation: manual, body-powered 

and myoelectric. Manual prostheses use a button or a similar mechanism for activation. 

Body-powered prostheses use the movement of another part of the body to activate the 

prosthesis. For its part, myoelectric prostheses try to predict the user's movement intention, 

by measuring the EMG signal that travels from the brain to the muscles through the nervous 

system (Castellini, 2019). Via this mechanism it is commanded the activation of electric 

motors that give movement to the prosthesis. Body-powered prostheses are the most widely 

used, as they are generally considered more robust. This is because myoelectric prosthe-

ses significantly reduce their accuracy due to poor placement, electrode displacement, bad 

conductivity contact with the skin, and require continuous adaptations over time (Farina et 

al., 2014). However, the great opportunity with myoelectric prostheses is that EMG signals 

travel through the arm of the individual with the movement information, even though the 

limb has been amputated. Potentially, it can also be used in lower limb prosthesis because 

they have the same principle. This technology —when using surface electrodes— is also 

non-invasive, and thus reduces the risk of complications as it does not need chirurgical 

intervention. Unfortunately, commercial myoelectric prostheses currently have a high cost 

(between 20 and 30 thousand dollars in the US), far from the budget of most families in 

Ecuador. This generates the need to develop low-cost active prostheses.  

A recent option that has emerged as an affordable alternative for the construction of pros-

theses is 3D printing. These initiatives have the advantage of being cheaper to manufacture, 

although they still have performance and durability limitations. In this sense, there are sev-

eral Open-Source models for 3D printing of prostheses. Some of these initiatives allow the 

dimensions and shapes of the prosthesis to be customized to better fit the specific 
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measurements of a user. Most of these prostheses, however, are body-powered, which 

significantly limits the mobility they provide.  

2.2 Prosthesis research challenges  

Scientific research regarding active prostheses can be synthesized in the following 6 sub-

problems (Castellini, 2019).  

  

Figure 2.1 Subproblems in prosthesis research 
from (Castellini, 2019) 

• Socket technology: refers to the mechanism by which the patient inserts and ad-

justs the prosthesis to her body. 

•  Hardware: refers to the number of motors, degrees of freedom and versatility of 

movement that the prostheses have. 



Myoelectric Prosthesis Operation with Reinforcement Learning
 

5 

• Sensor technology: refers to the capacity, resolution and reliability of the sensor 

to capture physiological signals related to movement intention and tactile perception. 

• Independent and force control: refers to the ability to independently control the 

movement of each finger including the level of force; as part of the control is gesture 

recognition. 

• Co-adaptation: refers to both the prosthesis calibration process and the user's 

learning process. 

• Performance evaluation: refers to some regulatory framework or procedure that 

allows comparing or certifying the characteristics of a prosthesis. 

The socket is the mechanism by which the user can connect the prosthesis to their body. 

The challenge in this area is that dimensions and weight —between other characteristics— 

must be adapted to each person during the prosthesis connection with the elbow or shoul-

der. Also comfort, sanitation, and the connection with the sensors must be taken into ac-

count (Hallworth et al., 2020).  

Each of the aforementioned aspects will be analyzed below, explaining the advances and 

challenges for new research reported by the literature. Special attention will be paid to con-

trol algorithms and gesture recognition, because they are the areas in which this project 

plans to make a scientific contribution.  

2.3 Hardware and Degrees of Freedom 

With respect to the hardware, Prostheses currently consist of few degrees of freedom DoF 

when compared to the total versatility of the human hand. The human hand is estimated to 

have 27 degrees of freedom: 3 for translation, 3 for rotation, and 4 for each finger except 

the thumb that has 5 (ElKoura & Singh, 2003). Fingers have 3 joints with flexion-extension 

type of movement, and 1 joint with abduction-adduction. Abduction-adduction is the pair of 

movements of a finger joint in the same plane of the palm, abduction is moving away, and 

adduction is coming closer. The other type of movement is flexion-extension: flexion is the 

movement of a finger trying to touch the palm, and extension is its oppositive, trying to move 

away. The thumb has 5 degrees of freedom: 3 flexion-extension joints as the rest of the 

fingers, and 2 abduction/adduction, 1 additional than the other fingers in the trapeziometa-

carpal joint (between the trapezium and the metacarpal) (Rahman & Al-Jumaily, 2013).  

In this sense, 3D printing has allowed the appearance of new prosthesis designs with var-

ying degrees of freedom. In (Fajardo et al., 2020) a low-cost prosthesis with 6 degrees of 
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freedom is presented, one per finger that allows the hand to open and close, and another 

to rotate the wrist. In (Vasan & Pilarski, 2017) was used the Bento Arm with 5 degrees of 

freedom that allows him to pronate-supinate and open-close his hand. In addition, in this 

work a glove was used to measure the desired position that the prosthesis should follow 

(see Figure 2.2). Increasing degrees of freedom implies installing more motors in the struc-

ture, and therefore increasing the electrical consumption and the total weight of the pros-

thesis. The selection and placement of degrees of freedom and its driving motors is im-

portant as its size correlates with the prosthesis force and thus can only be reduced to 

certain extend.  

 

Figure 2.2 Usage of commercial prosthesis in research 
from (Vasan & Pilarski, 2017)  

A modern approach proposes using flexible materials for prosthesis 3D printing. 

(Mohammadi et al., 2020) developed a soft prosthesis with TPU material, which design is 

open source. Its hand model was subjected to mechanical stress tests to verify that it can 

withstand a 1Kg load and 45 000 cycles before the appearance of some cracks 

(Mohammadi et al., 2020). This model, however, consists of only 5 degrees of freedom, one 

for each finger. The advantage of using flexible materials is that it reduces the number of 

moving parts, which may increase its durability.  

2.4 Sensors used in prosthesis  

Sensors are used to measure biological signals and are the base for gesture recognition 

systems that predict the user's move intention. Electromyography is a technique that rec-

ords the electrical activity of skeletal muscles (Jaramillo-Yánez et al., 2020). There are two 

types of sensors: intramuscular and superficial. Intramuscular electromyography involves 

inserting needles directly into a person's muscle. In (George et al., 2020) a 96 Utah Slanted 
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electrode array was inserted into two transradial amputees. These monitoring systems have 

high accuracy but involve subjecting the patient to medical surgery to install the sensors. In 

contrast, surface electromyography is a non-invasive technique that uses surface elec-

trodes that are placed in contact with the skin. However, its drawback is lower measurement 

accuracy due to location, temperature, skin conductivity, and interference between EMG 

signals from various muscles (Weiss et al., 2015). In (Côté-Allard et al., 2019) is a compar-

ison of EMG commercial devices (view Figure 2.3). The most affordable commercially avail-

able surface EMG sensors (less than $2,000) are the Myo Armband and the gForce Pro 

(view Figure 2.4). These consist of 8 surface channels to measure differential EMG signal 

and a 9-axis IMU at 50 Hz with Bluetooth communication to the computer. They differ in the 

EMG sampling rate (gForce Pro at 1Khz and Myo Armband at 200Hz). With respect of the 

rest of devices, those have higher sampling rates, resolution, number of channels, and 

higher quality data. A comparison of a medical-grade with a low-cost device was carried out 

by (Pizzolato et al., 2017) concluding that dexterous control can be performed with a small 

decreased performance. Based on all this, we consider that wireless low-cost EMG devices 

may be suitable for myoelectric prosthesis control.  

  

Figure 2.3 Comparison of different surface EMG devices  
from (Côté-Allard et al., 2019) 
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One of the reasons that makes it difficult to compare the performance of available prosthe-

ses is the lack of a clear evaluation methodology. Not being clear about the capabilities and 

limitations of a prosthesis has caused a high level of abandonment among amputees. Pro-

cedures in this direction have recently appeared in the literature. (Manero et al., 2019) pro-

poses asking questions related to quality of life and, additionally, assess motor skills when 

using the prosthesis. Other works have used the TLX load test (NASA Task Load Index) 

(Fajardo et al., 2020), which evaluates a user's mental, temporal and physical effort when 

interacting with a prosthesis. Although there exist proposed solutions, in most of the cases, 

these are isolated efforts.  

 
a) Myo Armband b) GForce-Pro 

Figure 2.4 EMG commercial devices  

Research regarding prosthetics must also take into account psychological factors. Such as 

that 35% of patients abandon the use of a prosthesis in the long term (Manero et al., 2019). 

In the adult population, the main reasons for hand prosthesis abandonment are related to 

the lack of sensory feedback, poor appearance, aesthetics, limited performance character-

istics, and low comfort and durability. The challenges related to prosthetics do not end there, 

because another area of great challenges is related to children. They require continual 

changes or updates of the prosthesis structure as the individual grows, which complicates 

the mechanical and electronic design. In addition, the weight of the prosthesis must be 

adjusted to the body proportions. This inconvenience is more accentuated in children under 

5 years of age, since they are still developing their psychomotor skills (Manero et al., 2019). 

In general, coadaptation is still a challenge as amputee and prosthesis change and degrade 

over time. For this reason, WHO guidelines state that a person with amputation needs a 

new prosthesis every 3 years.  
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2.5 Machine learning applied in prosthesis  

The control approaches mentioned so far used some version of an expert system or a su-

pervised learning technique. However, these have the drawback of requiring an expert on 

the field to model the environment, or —in the case of supervised learning— that each 

sample must be labeled beforehand. In the case of the prosthesis, labeling the optimal 

speed and torque for a given scenario can be difficult or arduous to obtain. Approaches 

such as reinforcement learning can provide additional benefits to these systems, because 

it can learn directly from interactions with the environment to find an optimal policy. Rein-

forcement learning algorithms are based on Markov decision processes, where it try to max-

imize the expected value of the discounted reward given an initial state and action (Sutton 

& Barto, 2018). An MDP is the system formed between an agent and an environment, the 

agent can perform actions that modify the environment, and the environment return rewards 

and observations based on these actions. Reinforcement learning algorithms could help 

solve the problem of adapting active prostheses to their users, due to their online and con-

tinuous learning capacity. In this work we will use reinforcement learning to train the pros-

thesis to execute the proposed movements based on the EMG signals measured in the 

operator's forearm.  

A challenge in the design and training of an agent using reinforcement learning is to ade-

quately define the actions, observations and rewards representation of the prosthesis. Few 

works have been found in the scientific literature that use reinforcement learning for the 

recognition of hand gestures. For example, (Englehart & Hudgins, 2003; Kukker & Sharma, 

2018) present reinforcement learning algorithms based on artificial neural networks and 

deep learning techniques for recognition of hand gestures. These works use signals ac-

quired with commercial Myo armband sensors and the PowerLab 26T. However, the num-

ber of samples used, and the number of users during training is too low for it being consid-

ered to real world applications. (Seok et al., 2018) proposes a deep reinforcement learning 

algorithm to recognize human arm movement patterns using a surface EMG sensor. The 

results show that the model is more stable and is more accurate in predicting arm movement 

patterns. In addition, it allows the adaptation of the prostheses to the needs of the patient. 

Although few works have been found in the literature related to the use of reinforcement 

learning for gesture recognition and/or prosthesis control, the use of these techniques have 

the potential of helping to solve some of its remaining challenges, especially the challenges 

related with proportional, and simultaneous prosthesis control.  

  



10 

CHAPTER 3:  

METHODOLOGY AND MATERIALS 

In the previous chapter was reviewed the different approaches used in prosthetics construc-

tion and development; as well as the main control techniques that have been applied based 

on Machine Learning. This review enabled us to understand the problematic and focus our 

research efforts on a specific topic. As the objectives dictate, an operator agent had to be 

trained. For that matter, it was required a prosthesis prototype to develop and train the 

reinforcement learning models.  

This chapter describes, on one hand, the development of the hardware and software com-

ponents of the prosthesis, and the other, the implementation of a platform for training an 

operator agent using the reinforcement learning framework. The hardware component con-

sists of the design and construction of the prosthesis prototype with its electronics sensors 

and actuators. The software component consists of the communication protocol, and inter-

face to support the execution and interaction between the different entities (such as the 

EMG sensor, prosthesis actuators and agent). The development and selection of the agent, 

as well as the usage of the reinforcement learning framework, are more related to the re-

search objectives and thus, are taken special attention.  

3.1 EMG sensor 

The most important sensor in a myoelectric prosthesis is the EMG sensor. This sensor al-

lows to capture the electromyography signal that carries the intention of movement from the 

brain to the muscles. The Thalmic’s Myo Armband (Figure 2.4b) was preferred among the 

commercial EMG surface sensors for its robust API and affordability. Although it has a lower 

sampling frequency than the Oymotion’s GForce -Pro, from our experience (Zea et al., 

2021), the current GForce-Pro SDK version is still in development with some issues, 

whereas the Myo Armband has a more robust and stable communication.  

3.2 Prosthesis hardware construction  

The main considerations taken into account for the design and construction of the prosthe-

sis prototype are the following: 

• Usage of available local materials 
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• Affordable material costs 

• Usage of 3D print Open-Source prosthesis models 

3.2.1 Selected prosthesis base model 

Following these considerations an Open-Source model was selected. The selected model 

called X-Limb (Mohammadi et al., 2020), and developed by The University of Melbourne, 

has multi-articulating capabilities using a flexible and soft material (Thermoplastic Polyure-

thane TPU). The finger’s movement is achieved by pulling a tendon-like thread that makes 

the finger bend by force. This special characteristic makes this hand prosthesis design out-

stands from other prosthesis designs. In this design, each finger may have independent 

movement capabilities, resulting in 5 Degrees of Freedom (DoF). With respect to durability, 

the authors report that a finger can withstand 45000 cycles before the appearance of cracks 

in the membrane joints (Mohammadi et al., 2020). As can be seen in Figure 3.1, this design 

uses a Quick Wrist Disconnect QWD to connect with the body. The right-hand model was 

selected as base design for fabrication using 3D printing. This base model required some 

design modifications that will be briefly mentioned below.  

 

Figure 3.1 X-Limb Open Source anthropomorphic hand design 
from (Mohammadi et al., 2020)  

3.2.2 Degrees of freedom and actuators selection 

The prosthesis prototype will have 4 Degrees of Freedom DoF, each one in a different finger 

of the hand prosthesis except for the little finger. This was decided for several reasons, 

mainly because we consider that an 8-channel EMG device will be able to capture a maxi-

mum of 4 independent movements due to the antagonistic nature of muscle pairs. Although 
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the prosthesis with 4 fingers may seem odd, we consider that this simplification does not 

interfere with the research objectives of this project that are focused on training an operator 

agent with reinforcement learning.  

The actuators in the prosthesis are in charge of pulling the tendon threads to close the 

fingers. Following the base model, the actuators in our prosthesis design are DC motors so 

that a larger torque in a smaller space can be obtained compared with servo motors. To 

comply with our objective to build the prosthesis design with local materials, the suggested 

DC motors must be changed. In Table 3.1 is summarized the specifications of the selected 

DC motors. The main difference with respect to the suggested DC motors is the gear ratio 

(1000:1 to 100:1). This motor change implies a faster speed and a lower torque. In this 

research, the prosthesis prototype is not intended to carry weight yet, so we consider ac-

ceptable this difference. The prosthesis will require 4 of these motors, each one for a De-

gree of Freedom. 

Table 3.1 Motor specifications 

The selected motor includes an extended shaft, this is in order to connect a magnetic en-

coder for measuring the prosthesis fingers position. The base model uses absolute rotary 

encoders that allows a precise measurement of each motor position but needs to be in-

serted in the shaft of the motor. In our design, we use incremental magnetic encoders that 

are widely available. With these encoders each motor speed will be measured, and the 

angular position will be calculated.  

Parameter Value 

Type DC motor with extended shaft 

Size 10 x 12 x 26 mm (+ 14 mm shaft) 

weight 9.5 g 

gear ratio 100.37:1 

No load speed 310 rpm @ 6v 

Stall current 1.6 A @ 6v 

speed 250 rpm 

torque 0.29 kg * cm 

current 0.33 A 
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3.2.3 Structure 3D modifications 

The base prosthesis model requires some adjustments to match the criteria and constraints 

stablished for this research. The QWD (a medical-grade socket purchased in the base mod-

el) was replaced because its high cost turn it to be not of easy acquisition. For that matter, 

a socket mechanism consisting of a wrist and forearm was developed to allow the connec-

tion with the body of an amputee. Also, the motor specifications are different with respect 

to the original design for availability reasons; to accommodate these motors a spool and a 

case were developed.  

 
a) forearm 

 
b) wrist 

Figure 3.2 Prosthesis forearm and socket design modifications 

In Figure 3.2 is presented the designed forearm and wrist connector. As can be observed, 

in this prototype, the wrist does not have mobility, and the degrees of freedom come from 

the finger’s movement. The shallow space inside the forearm is intended for hardware allo-

cation. On the wider side of the forearm is reserved an empty space so that the amputee’s 

stump could be inserted. Figure 3.3 shows the motor case and spool designed. The case 

encloses the motor to avoid glides and vibrations, it also leaves an open space for the en-

coder wires.  

 
a) case 

 
b) motor and spool in case 

Figure 3.3 Spool and case designs 
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In Appendix I is included the blueprints of the mechanical design of all these components 

such as the designed spool, palm connector, motor cases and the forearm socket.  

3.2.4 3D Fabrication structure 

The prosthesis prototype consists of several parts that have to be 3D printed (fingers, palm, 

forearm, cases, etc.). Among these, the fabrication of the fingers requires special attention 

because its flexibility enable the mobility of the prosthesis. The flexibility for the fingers is 

achieved printing in TPU material. The usage of flexible materials is a new approach under 

research as an alternative to moving mechanical part. In Table 3.2 is summarized the print-

ing parameters used for the fabrication of the flexible fingers. These parameters are im-

portant as the flexibility and durability of the hand depends directly on it and might change 

significantly for a different set of parameters. 

Table 3.2 Flexible fingers 3D printing parameters  

3.2.5 Power driver and circuitry 

The motor driver used is the Adafruit Motor Shield v1.0. This motor driver is capable of 

driving up to 4 DC motors, and it is based on the integrated circuit L293D that provides a 

nominal current of 600 mA. Using this driver, the motor speed can be controlled by Pulse 

Width Modulation PWM. A PCB Connection Board was developed to connect the 4 motors 

of the prosthesis with the driver shield and with the embedded controller.  

More details about the circuitry of the prosthesis are presented in Appendix II. Table 5.1 of 

this appendix shows the connections between the connections board and the Arduino con-

troller, There is included the wiring used for the motor-encoder connector, the motor con-

nections board with its PCB design; and a hardware-like diagrams.  

Parameter Value 

Filament type TPU 

Filament diameter 1.75 ± 0.02 mm 

Print speed 26 mm/s 

Infill  Gyroid with 2 perimeters 

# Top layers 3 

# Bottom layers 2 

Bed temperature 65 ºC 

Extrusor temperature 205 ºC 
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3.2.6 Embedded controller and Agent Server 

An embedded controller is required in the prosthesis to handle the communication between 

the different sensors, to receive and decode the action chosen by the agent, and to send 

the corresponding signal to drive the actuators. The embedded controller requires at least 

4 PWM and 8 digital inputs for processing the magnetic encoder of each motor. An Arduino 

Uno R3 is used for this purpose. This contains 8-bit PWM signals, this implies that speed 

can be controlled in a discrete range between 0-255, forward and backwards direction. The 

selected motor driver is a board specifically for this microcontroller. This means that we 

reduce the effort on the electronic design by using compatible hardware.  

An important aspect of this research is that the agent (the entity that makes the decisions 

about the prosthesis movement) is not located in the embedded controller. The system ar-

chitecture was designed this way to avoid during the development and training of the agent, 

the constraints of memory and processing speeds innate of embedded systems. The agent 

is implemented in Matlab R2021b, running in a personal desktop computer called Agent 

Server. The communication interface between the embedded controller and the Agent 

Server is described in the following Sections.  

3.3 Software architecture  

As mentioned in the previous Section, the proposed system deploys the agent in a personal 

desktop computer, aka Agent Server. The Agent Server must transmit the desired action to 

the prosthesis, as well as to receive the signal from the EMG sensor. Hence, a communi-

cation interface needed to be designed between devices.  

In Figure 3.4 is summarized the communication intention between devices. The EMG sen-

sor is sending the EMG signal via Bluetooth to the Agent Server, so that the agent can infer 

the intention of movement of the user. The Agent Server, on the other side, communicates 

via USB serial with the prosthesis through the embedded controller. In broad terms, the 

prosthesis reports the angular position of each Degree of Freedom DoF; and receives an 

action to execute from the Agent Server.  

 

Figure 3.4 Communication diagram between devices  
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3.3.1 Communication protocol 

A communication protocol between the Agent Server and the prosthesis was designed in 

order to have an efficient data transmission and to reduce its latency. A type of command 

with its parameter is sent in a packet, and it is decoded in the corresponding receiving de-

vice. An example of the main packets sent in the communication from the Agent Server to 

the prosthesis is presented in Table 3.3 and from the prosthesis to the Agent Server in Table 

3.4.  

Table 3.3 Communication protocol: commands of the Agent Server 

Table 3.4 Communication protocol: messages from the prosthesis 

The transmission rate of the communication protocol is also important and was set to a 

reliable pace for each device. In Table 3.5 is presented the transmission rates between the 

devices in our system. The Flexion Glove has not been described so far but will be intro-

duced in the following Sections.  

Message Packet Sample  Description  

sendAllSpeed( 

PWM1, 

PWM2, 

PWM3, 

PWM4) 

"aFFB45C00d34" 

 
Sends the desired speed to the motors. A motor 

code is encoded with upper case letters (e.g., B…C) 

in the case of forward movement or positive speed, 

and in lower case letters for backwards movement.  

The motor speed is sent next to the motor code as 

a 2-digit hexadecimal number (e.g., aFF, motor 1 in 

reverse direction with 255 PWM).  

resetEncoder() "R:" Resets the internal counter of each encoder to 0.  

stop() "S:" Stops all motors.  

changePeriod( 

p=100) 

"P100" 

 
Sets the period of the prosthesis for transmitting po-

sition values [in milliseconds].  

Message Packet Sample  Description  

transmit( 

p1, 

p2, 

p3, 

p4) 

"x23490y1000z0w796" 

 
Sends the incremental measure of the encoders. 

Motors are encoded with the lower cases (e.g., 

x…y…z…w…), and the relative angular position is 

sent next to it (e.g., y1000, for motor 2 the rela-

tive angular position is 1000).  
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Table 3.5 Transmission rates 

3.4 Difference between flexion-extension the prosthesis hand  

Finishing the description of the prosthesis is important to describe the types of movements 

it has to perform. From the objectives of this research, the prosthesis requires 2 types of 

movements: 

• Whole-hand grasp of the prosthesis, that from now on will be called flexion, and 

• Release, that will be called extension.  

Although these movements are complimentary —for they are controlled by moving its cor-

responding motor forward or backwards— they are not identical. When executing the move-

ment of flexion, the agent will have full control of the prosthesis position, but during exten-

sion, the agent will have partial and delayed control. This is due to the tendon-like pulling 

mechanism implemented to move the fingers: a finger bends (or closes) when the motor 

pulls its thread; and retreats (or opens) when the motor loose the tension in the thread. The 

force for this retreat does not come from the motor, but from the elastic force of the bended 

finger; and was observed to be delayed with respect to the motor movement. For this rea-

son, is considered that the extension movement has a partial and delayed control.  

3.5 Reinforcement Learning: agent and environment  

Once built the prosthesis prototype, the development of the operator agent using Reinforce-

ment Learning begins. As explained in Chapter 2, it is of crucial importance the differentia-

tion of agent and environment. In Figure 3.5 is presented a diagram of the agent-environ-

ment interaction. The environment is composed of the prosthesis, the EMG sensor and a 

reward function module; and it is defined by its internal state 𝑠𝑡. The agent is located in the 

Agent Server and chooses an action 𝐴𝑡 to interact with the environment, and in return re-

ceives a reward 𝑟𝑡. Each of its components will be described in detail in the following sec-

tions.  

Sender Receiver Period | Frequency 

EMG sensor Agent Server 5 ms | 200 Hz 

Agent Server Prosthesis 200 ms | 5 Hz 

Prosthesis Agent Server 100 ms | 10 Hz 

Flexion Glove Agent Server 100 ms | 10 Hz 
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Figure 3.5 States and actions in the agent—environment interaction 

3.6 Agent actions  

The agent action 𝐴𝑡 is vector of 4 components containing the desired movement of each 

Degree of Freedom in the prosthesis. In each episode step, the agent chooses an action 

and sends it via serial to the embedded controller in the prosthesis. Each action component 

corresponds to a motor. In Table 3.6 is included the mapping between motors and prosthe-

sis fingers. As shown in Figure 3.5, each action component has 3 discrete possibilities: 1 

that means move the corresponding motor forward, -1 move the corresponding motor back-

wards, and 0 stop. For example, an action of the form (0, −1,1,0) would mean to stop motor 

and 4, move backwards motor 2, and move forward motor 3. The size of the action space 

is the number of possible combinations of the action components (Equation (1)).  |𝐴𝑡| = |{−1,0,1}|𝑁𝐷𝑜𝐹 = 34 = 81 (1) 

Table 3.6 Mapping between actions and motors  

The prosthesis listens for an action 𝐴𝑡, and decodes it for its execution. A constant PWM 

speed was selected heuristically for each motor of the prosthesis (view Table 3.6). The 

Finger Motor index PWM speed 

Little 1 170 

Index  2 170 

Thumb  3 255 

Middle  4 170 
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speed for the thumb was set to the maximum possible (255), because it requires a larger 

torque for closing the prosthesis hand properly. 

3.7 State representation  

As shown in Figure 3.5, the state is composed of a total of 44 features: 40 features extracted 

from the EMG signal, and 4 cinematic features corresponding to the finger positions.  

3.7.1 EMG feature extraction  

The EMG signal 𝑬 ∈ [−1,1]𝑤×8 in a window of size 𝑤 is reduced to 40 features using a set 

of selected feature extraction functions. This set of functions 𝜓 was tested and developed 

in a previous research in the problem of hand gesture recognition of 5 gestures using EMG 

signals (Barona López et al., 2020). These functions are: Standard Deviation, Integral Ab-

solute Envelope, Mean Absolute Value, EMG Energy and Root mean square. Because the 

Agent Server sends the desired action to the prosthesis each 200 ms (view Table 3.5), 

during this period, the EMG signal is stored in a buffer. Hence, the window size was set to 

this value 200 ms (40 points@200 Hz).  

 

Figure 3.6 EMG feature space (dataset 612-EMG-EPN)  

Due to disparity between the order of magnitude between features (view Figure 3.6), the 40 

EMG features are normalized using the z-score. For that matter, center and scale values 

were precalculated (view Figure 3.7) using the training set of the dataset 612-EMG-EPN 

(Benalcázar et al., 2020).  
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Figure 3.7 z-score normalization values by EMG feature  

3.7.2 Cinematic features  

The Second component of the agent’s state is the cinematic features. These features rep-

resent the degree of movement of the 4 fingers in the prosthesis. These cinematic features 

are inferred from the incremental count of the encoders in the motors. The measurement of 

the encoders can be used to calculate an angular relative position of the shaft of the motors.  

Based on all this, a transformation is required, because the agent requires information about 

the degree of closeness of the fingers, but the available measure of the encoder is angular 

position. In order to represent the degree of closeness of the hand, we use a glove with 

flexion sensors that will be called Flexion Glove.  

3.7.3 Flexion Glove for position feedback  

The Flexion Glove is a glove developed in (Estrada Jiménez, 2016) for Sign Language 

Recognition. It has one flexion sensor for the thumb, and two flexion sensors for the fingers 

index, middle, ring and little. It samples data at 10 Hz.  

The Flexion Glove will be used both by the operator and by the prosthesis (shown in Figure 

3.8), in 3 separate instances:  

• By the prosthesis, to the estimation of prosthesis hand position.  

• By the operator, during a dataset acquisition (prior training) to record hand move-

ments that will be used in offline training.  

• And, again by the operator, during online training to measure real-time hand move-

ments, and to calculate agent rewards (view Section 3.10.4).  
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a) operator  

 
b) prosthesis  

Figure 3.8 Usage of the Flexion Glove  

Although, the Flexion Glove in the prosthesis does not fit perfectly (the index and the thumb 

were a little bit off), it could be adjusted in the transformation after the dataset acquisition.  

3.7.4 Dataset acquisition  

 

Figure 3.9 EMG signal captured with EMG sensor  

A dataset of prerecorded EMG and flexion signals from the hand of the operator was ac-

quired. This dataset is formed of 400 samples in total: 200 samples of the movement Flex-

ion, and another 200 samples of Extension. For this dataset acquisition, the operator wore 

the EMG sensor and the Flexion Glove. Each sample recorded lasts between 2 and 5 sec-

onds. In Figure 3.9 (EMG) and in Figure 3.10 (flexion values) is presented a sample of this 

dataset. The signals corresponding to Flexion are on the left side of the axes, while on the 

right side are the signals corresponding to Extension. The flexion signals (Figure 3.10) 

have its lowest values when the sensor is relaxed (the hand is open) and increase in value 

when bended (the hand is closed). As a side note, the Flexion Glove returns a Boolean 

value for when the middle and index fingers are touching, as well as orientation information 

of the palm (yaw, pitch and roll angles), but both of these signals are ignored in this re-

search.  
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Figure 3.10 Flexion signals captured with Flexion Glove 

3.7.5 Transformation from encoder data to prosthesis position  

As discussed in Section 3.7.2, the position of the prosthesis fingers 𝑝 needs to be inferred 

from the encoder data of its motors. To determine a suitable transformation, measurements 

of different prosthesis movements while using the Flexion Glove (as shown in Figure 3.8.B) 

were recorded.  

 

Figure 3.11 Mapping between encoder and flexion data (prosthesis index finger)  

This recording consisted of 5 time-separated episodes of the flexion movement. This re-

cording is shown in Figure 3.11 for the index finger, and in Figure 3.12 for the middle finger. 

In these figures, the encoder signal (blue) and the flexion signals are proportional following 

a similar trend, although in different scales. One of these flexion signals was calculated as 

the sum of the lower and upper flexion signals of its corresponding finger. It is important to 

note that the flexion upper signal of a finger is driven mainly by the joint between the palm 
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and the proximal phalange, while the lower signal is driven mainly by the intermediate and 

distal phalanges. Also, from the figures can be observed that the upper flexion signal best 

captures the movement of the prosthesis, while the lower signal is less perceptible. 

 

Figure 3.12 Mapping between encoder and flexion data (prosthesis middle finger)  

The encoder count will be transformed using a polynomial to obtain an estimate of the po-

sition of the prosthesis hand. For each DoF, a polynomial was selected between different 𝑑-degree polynomials fit with the flexion and encoder data recorder (view Figure 3.13).  

Additionally to the different polynomials fit in Figure 3.13, the loose zone is highlighted in 

red. This zone represents the space that the motor can rotate freely without pulling the finger 

thread. It is important in our design, as it allows the motor to gain speed to pull the thread 

strong enough to bend the finger. It was necessary to identify it in every finger to know when 

the finger does indeed start to bend. Another important zone is the breaking zone over on 

which the finger is completely close and if it keeps pulling it might damage itself. The trans-

formation function considers both of these limits to estimate the prosthesis position.  

 

Figure 3.13 Transformation from encoder data to flexion data for the index finger  
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3.8 Episode definition  

In order to train our agent, the episode structure shown in Figure 3.14 will be used. The 

movements flexion and extension will be separated in continuous episodes. Odd episodes 

will be loaded with random samples of the flexion movement, and the next episode will be 

loaded with the corresponding extension movement. This way, the last position of an epi-

sode, matches the initial position of the next one. All points inside the loose zone will corre-

spond to the same prosthesis position, this is due to, inside this zone, the finger does not 

reflect any movement, and hence stay in the same position. The system will block the move-

ment of the agent if it intends to surpass the break limit, avoiding any hardware damage.  

 

Figure 3.14 Flexion target and prosthesis position in a pair of episodes for a DoF 𝒊  
3.9 Reward function selection  

The reward function is the indirect way through which the desired objective can be thought 

to the agent. In our case, we want the agent to learn to operate the prosthesis motors so 

that the prosthesis position 𝑝𝑖(𝑡) of a degree of freedom 𝑖 follows as close as possible the 

flexion signal 𝑓𝑖(𝑡) of the finger 𝑖 (view Figure 3.14). The flexion signal 𝑓𝑖(𝑡) is problematic 

in the sense that it is obtained from the Flexion Glove, but our objective is not to use flexion 

sensors (as it measures the flexion of the fingers, unavailable in an amputee), but to use 

EMG signals. For this reason, the Flexion Glove will only be used during training and during 

evaluation to calculate the reward function, and not during normal execution.  

The reward function that provided us with the best performance (alternative 3) was a com-

bination of 2 approaches: calculating the distance between the target 𝑓𝑖(𝑡) and the prosthe-

sis position 𝑝𝑖(𝑡) (alternative 1), and directly rewarding the action choose by the agent if it 
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closes the gap to the target 𝑓𝑖(𝑡) (alternative 2). These alternatives will be discussed in 

further detail in the following subsections.  

3.9.1 Alternative 1: rewarding based on distance  

In this approach, the reward function 𝑅𝑑 (Equation (3)) on a given time instant 𝑡 is the neg-

ative sum of the distances (Equation (2)) between the target 𝑓𝑖(𝑡) and the prosthesis posi-

tion 𝑝𝑖(𝑡) of each degree of freedom 𝑖.  

The problem with this approach (view Figure 3.15) is that it punishes its reaction time and 

the transmission delay that does not depend on the agent. It also seemed to cause unstable 

and abrupt movements of the prosthesis because the rewards were very noisy.  

 

Figure 3.15 Rewarding based on distance  

3.9.2 Alternative 2: rewarding based on direction  

The second reward approach 𝑅𝑑𝑖𝑟 (Equation (4)) selects among discrete rewards depend-

ing on the chosen action of the agent. To calculate this reward the correct action �̅�𝑖 is re-

quired, additionally it requires a tolerance 𝜏𝑖 and the break limit 𝑏𝑖. Unlike the previous 

reward function, this function correctly punishes the agent when it wants to go further from 

the breaking limit.  

𝑑𝑖 = |𝑓𝑖(𝑡) − 𝑝𝑖(𝑡)|, 𝑖 = {1 … 4} (2) 

𝑅𝑑 = − ∑ 𝑑𝑖4
𝑖=1  (3) 

𝑅𝑑𝑖𝑟 = ∑ {+𝟐,−𝟏,−𝟐,−𝟑, 
𝑖𝑓 𝑎𝑖 = �̅�𝑖𝑖𝑓 𝑎𝑖 = 0 𝑎𝑛𝑑 𝑑𝑖 > 𝜏𝑖𝑖𝑓 𝑎𝑖 = −�̅�𝑖  𝑎𝑛𝑑 𝑝𝑖 < 𝑏𝑖𝑖𝑓 𝑎𝑖 = 1 𝑎𝑛𝑑 𝑝𝑖 ≥ 𝑏𝑖

4
𝑖=1  

(4) 
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Where: 𝑎𝑖 is the action taken by the agent for DoF 𝑖,  �̅�𝑖 is the ideal action that the agent can take,  𝜏𝑖 is a tolerance range constant,  𝑏𝑖 is the break limit. 

This reward function, described in Figure 3.16, works well but does not take in consideration 

how far the position of the prosthesis 𝑝𝑖(𝑡) is from the target 𝑓𝑖(𝑡). This resulted in an agent 

satisfied with its performance, because took the correct actions, but finished far from the 

target.  

 

Figure 3.16 Rewarding based on action direction  

3.9.3 Alternative 3: Distance and direction rewarding  

The best performance was obtained with the combination of both approaches: distance 

rewarding combined with directional rewarding. This combination uses a constant factor 𝑐𝑖 
that scales the distance values and defines the relative contribution of each part. This re-

ward function can be understood as a modulation, where the 𝑅𝑑𝑖𝑟 signal is the modulating 

signal, and 𝑅𝑑 is the carrier. This approach has the advantage of rewarding based on the 

correct action, and how far the prosthesis position is from the target.  

  

𝑅 = 𝑅𝑑𝑖𝑟 − ∑ 𝑐𝑖 ∗ 𝑑𝑖4
𝑖=1  (5) 
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3.10 Training the agent  

Training the agent consists in improving its policy based on experience captured from the 

interaction between the agent and its environment (view Figure 3.5). A reinforcement learn-

ing algorithm updates the agent policy to maximize the expected discounted reward. The 

training framework was developed in Matlab R2021b.  

One difficulty in our research was the (relatively) slow movement inherent of the prosthesis 

hardware. Training completely on hardware would imply limiting the number and time of the 

different experiments. To handle this limitation, the training of the agent was divided into 2 

stages:  

• Stage 1 pretraining in simulation: in which the majority of hyperparameters are 

chosen from several parallel tests using a simplified simulation model of the pros-

thesis.  

• Stage 2 fine tuning in hardware: in which the best agent from Stage 1 was adapted 

to the hardware.  

3.10.1 Prosthesis simulation  

A simplified simulation of the prosthesis was developed in order to accelerate the training 

process during the selection of hyperparameters. This model consists of a parameterized 

function for each finger that returns the next position (represented as the motor encoder 

count) after a given time, given an initial speed. This parameterized function has the form 

of Equation (6). The increasing resistance the finger face when it is bending is reflected in 

the damping factor 𝜌, Equation (7). In Figure 3.17 is plot the damping factor vs the encoder 

position; as can be observed, the resistance increases (tends to cero) with the position.  

 

Figure 3.17 Damping factor  

𝑥𝑡+1 = { 𝑥𝑡 + 𝑘 ∗ 𝑃𝑊𝑀 𝑖𝑓 𝑠𝑖𝑔𝑛(𝑥𝑡) ≠ 𝑠𝑖𝑔𝑛(𝑃𝑊𝑀)𝑥𝑡 + 𝑘 ∗ 𝑃𝑊𝑀 ∗ 𝜌(𝑥𝑡) 𝑖𝑓 𝑠𝑖𝑔𝑛(𝑥𝑡) = 𝑠𝑖𝑔𝑛(𝑃𝑊𝑀) (6) 
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Where: 𝑥𝑡 is the position simulated   𝑃𝑊𝑀 is the PWM speed,  𝑘 is a speed constant,   𝜌(𝑥𝑡) is a damping factor, function of the position.  

This simulation parameters were calibrated for the motors and the flexible fingers of the 

prosthesis; and using it, the pretraining stage was carried on.  

3.10.2 Selection of training algorithm (Q-Learning with Experience Replay vs Policy 

Gradient)  

Two training algorithms were compared. First preliminary experiments were based on Policy 

Gradient, but due its negative results this training algorithm was replaced by Deep Q-Learn-

ing with Experience Replay.  

• Policy Gradient PG was used for its advantage of learning directly the policy from 

the full experience of an episode. However, most of the agent configurations tested 

resulted in a saturation of the actions. In Figure 3.18 can be observed the first 200 

episodes of a training session.  

 

Figure 3.18 Saturation of actions when training with Policy Gradient  

𝜌(𝑥𝑡) = 11 + ( 𝑥𝑡2000)15 (7) 
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For motor 1, 2 and 4, the agent always closes the finger independently of the input. It also 

can be observed that the first episodes (< 50) the agent tries different actions but afterwards 

it stabilizes without considering if it is a flexion or extension episode; this behavior was 

observed up until 2000 episodes. Variations with baseline, no baseline gave similar results; 

variating the learning rate resulted in accelerating or delaying this process.  

• Deep Q-Learning with Experience Replay was the algorithm that overcame the 

saturation problem obtained with PG. For the rest of this report this was the algo-

rithm used with an experience buffer of size 10 000.  

Deep Q-Learning requires to be defined a parameterized function to be its critic. In our case, 

shallow neural network architectures will be tested as critic.  

3.10.3 Training Stage 1: simulation pretraining  

Using the simulation model of the prosthesis, described above, several simulations in par-

allel were executed. Different hyperparameters (such as learning rate, discount factor, batch 

size, etc.) were tested. Further details of the procedure for hyperparameters selection are 

described in Section 4.1. Pretraining in simulation allowed us to test a larger number of 

agents and combinations compared with training directly on hardware. A rough estimate is 

that simulation accelerated training times by a factor of 12. The desktop computer was an 

AMD FX-8370 at 4 GHz with 16GB of RAM and 8 cores. Around 4 different training in-

stances could run simultaneously on this machine.  

3.10.4 Training stage 2: hardware fine tuning  

The stage 2 of the training corresponds to the hardware fine tuning. The best model from 

pretraining will be retrained on hardware and with the operator. The fine tuning is important 

as the simulation is an approximation of the real behavior of the prosthesis. Learning rate 

must be reduced to make small adjustments in the weights of the critic network. The explo-

ration factor 𝜀 also was carefully reset at the beginning of the fine tuning. Further details of 

this are described in Section 4.2.  
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CHAPTER 4:  

EXPERIMENTATION AND RESULTS  

In this Chapter will be described the systematic process for hyperparameter selection, the 

fine tuning in hardware, and the evaluation of the trained agent.  

4.1 Hyperparameters selection  

This prosthesis prototype contains several hyperparameters; a few have been set before-

hand whether based on the literature or based on preliminary experiments. But for most of 

it, an iterative procedure was followed to find a suitable set of hyperparameters. On each 

iteration of this procedure, 4 training simulations were carried on, varying only a single hy-

perparameter. The number of training simulations (4) where the maximum number of par-

allel instances that could be run in the personal desktop computer (view Section 3.10.3).  

The details of the procedure of hyperparameters selection are described in Table 4.1 (part 

I) and Table 4.2 (part II). On top of each column is demarked the hyperparameter to test, 

and below are shown its different values. Highlighted on red are the values for which the 

performance was notably worst, (in this whole procedure there was not any value with no-

tably best performance). Connecting each column is the value chosen from each iteration. 

Table 4.1 Procedure of hyperparameters selection (part I) 

 

Where: 𝜶 is the learning rate for the training algorithm of the shallow neural network.   𝜸 is the discount factor used to calculate the discounted reward.   𝒏𝒔𝒕𝒆𝒑 𝑻𝑫 is the number of future rewards used to estimate the value of the policy 

during the critic’s network update.   𝒎𝒊𝒏𝒊-𝒃𝒂𝒕𝒄𝒉 𝒔𝒊𝒛𝒆 is the size of random experience sampled to execute experience 

replay.   #𝒏𝒆𝒖𝒓𝒐𝒏𝒔 is the number of neurons in the hidden layer of the critic’s network.   
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𝒂𝒄𝒕𝒇𝒄𝒏 is the activation function used on the critic’s network.   #𝒍𝒂𝒚𝒆𝒓𝒔 is the number of hidden layers. For this experiment, the number of weights 

was maintained close to 1500.   𝜺 is the initial probability threshold to choose a random action instead of the agent’s 

considered best action. The epsilon-greedy strategy used reduces the 𝜀 by a rate of 

0.005 at the end of each training step, up to the minimum value of 0.01.   𝑫𝑸𝑵 represents whether the reinforcement algorithm is Deep-Q learning or Double 

deep Q learning.   𝝀 is the weight decay for 𝐿2 regularization.   𝜷 is the momentum for the SGDM optimizer (stochastic gradient descent with mo-

mentum).  

Table 4.2 Procedure of hyperparameters selection (part II) 

 

It is interesting to note the performance of the hyperparameters, in some cases the same 

hyperparamter changed its behavior after calibrating another one. For instance, in Table 

4.1, 𝛾 = 1 had a notably bad performance, but after changing the n-step TD parameter, 𝛾 =1 improves its performance. In the case where there was not a clear improvement the 

default value was prefered.  

To select the hyperparameter during this iterative process, 2 evaluation metrics where 

considered: the agent reward and the RMSE between the target and prosthesis position. 

During training is expected that the episode reward increases over time meaning that it 

learned; at the same time, the RMSE is expected to decrease implying a closer trajectory 

of the prosthesis position to the target. In Figure 4.1 is compared the average (between 40 

consecutive episodes) agent reward during varying the learning rate on each training, and 

in Figure 4.2 is shown the RMSE for the same experiment. As can be observed, RMSE and 

agent reward are complementary, in the sense that when one increases the other tend to 

decrease, and viceversa. But this relation is not linear and thus both curves were used to 

tune the hyperparameter.  
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Figure 4.1 Agent training varying learning rate (reward)  

 

Figure 4.2 Agent training varying learning rate (RMSE)  

For most hyperparameters, the different values tested had a similar performance. For in-

stance, in the case of activation function (view Figure 4.3) the functions relu, elu, leaky rely 

at the end of the training oscillated around a similar value. With respect to the activation 

function tanh can be argued that it had a lower performance. Only the swish activation func-

tion shown a significantly worse performance and thus was discarded. The rest of hyperpa-

rameters were tuned for the Stage 1 of training in simulation following an alike procedure.  

 

Figure 4.3 Agent training varying activation function (reward)  
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Using the best combination of hyperparameters found, the agent was trained for 1400 epi-

sodes, in the Agent Server for approximately 1 hour 30 minutes. In Figure 4.4 is shown the 

average reward during training for each episode. As can be seen, most of the learning oc-

curs in the first 200 episodes, after it, the agent improves more slowly its policy. A similar 

behavior can be observed if the training progress is divided by type of movement (Figure 

4.5). It is interesting to note that the agent has a slightly lower reward when closing the 

hand. This can be because the force required for closing the prosthesis hand makes it 

harder to follow, lagging behind and hence obtaining a lower reward.  

 

Figure 4.4 Training progress in simulation  

 

Figure 4.5 Rewards during training by type of movement  

The performance of the agent at the beginning and at the end is displayed in Figure 4.6. In 

this Figure, the red line corresponds with the target flexion signal (right y axis) on each 
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Degree of Freedom, and the blue line corresponds to the encoder position (left y axis). The 

agent at the beginning of the training (Figure 4.6 a, episodes 6 to 10) executes random 

movements, uncoordinated between Degrees of Freedom.  

 
a) beginning of training  

 
b) end of training  

Figure 4.6 Agent performance during training  

As was mentioned in Section 3.8, odd episodes were loaded with the flexion movement, 

while the even episodes have the extension movement. After approximately 1330 training 

episodes (Figure 4.6 b, episodes 1331 to 1335), the agent follows the target flexion signal 

as expected. It is important to note that the finger movement is delayed with respect to the 

target, it happens because the agent starts its motion delayed and because it has a fixed 

speed. The delayed start may be due to the agent needs some context before deciding itself 

to move, as well as the system’s transmission delay. The second reason is that the agent 

does not have speed control, it only has an action to move forward with a constant speed, 
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and therefore there is a limitation on how fast the prosthesis can follow. The only visible 

error in these episodes is in episode 1334, motor 1, where the motor is opening correctly 

the hand, but suddenly reverses direction, but it only happened in 1 of the 3 DoF. In the rest 

of episodes, the agent has a satisfactory behavior. Although, in some cases (episode 1334, 

DoF 2), it might seem that the motor stopped before reaching the desired position, it is a 

false impression occasioned when the motor reaches the loose zone (view Section 3.8).  

4.2 Fine tuning  

The Fine tuning was the second stage of the training process. It consisted of adjusting the 

agent (that was previously trained in simulation) to the prosthesis prototype. This stage is 

important because, most probably, the simulation might differ from the real hardware. For 

this matter, the agent is retrained in the hardware, choosing to this stage a new initial 𝜀 and 

learning rate.  

During simulation, the exploration factor was at maximum (𝜀 = 1) for the agent did not have 

any knowledge and, hence, exploration was recommended. But, during hardware fine tun-

ing, the agent already has some previous knowledge, and therefore the initial exploration 

can be reduced. To set this 𝜀, an analysis of the reduction of the exploration factor was 

carried on. In Figure 4.7 is shown different decay rates and highlighted in green the default 

value of 5e-3. In approximately 50 episodes the agent reaches its minimum value of 0.01 

(1% percent of the actions).  

 

Figure 4.7 Decay rate in epsilon-greedy exploration  

With an initial epsilon of 0.3, different training sessions on hardware were executed varying 

the learning rate as shown in Figure 4.8. As can be observed, the lower learning rate tried 

(𝛼=1e-5) was the value that achieved good performance and will be used for the agent 
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evaluation. Greater values of learning rate did not show any learning over time. Each of 

these experiments took approximately 30 minutes.  

 

Figure 4.8 Training progress during fine tuning in hardware  

The performance curves related with this trained agent (view Figure 4.10) will be analyzed 

in the following Sections.  

4.3 Sample size estimation for testing  

The agent performance evaluation is based on the success rate on the execution of the 

whole-hand grasp and release movements. This evaluation required to record the agent 

performing these movements, called opening and closing. To obtain a significant result, a 

power analysis was conducted to determine the sample size. For this matter, a t-test was 

selected for sample size estimation, as it allows us to probe that there exists a significant 

difference between the mean of two different groups. To compute the sample size is re-

quired selecting an effect size. The effect size 𝑑 is a measure of the magnitude of the as-

sumed effect. For the t-test selected, the effect size is described with the 𝑧-score by Equa-

tion (8), where 𝜇𝑖 is the mean of the 𝑖𝑡ℎ variable and 𝜎 is the standard deviation, either of 

the two groups, or the average between the two. Cohen stablished the following standard-

ized convention: small effect 𝑑 = 0.2, medium effect 𝑑 = 0.5, large effect 𝑑 = 0.8 (Faul et 

al., 2007). In Figure 4.9 is plotted different effect sizes, as can be observed the greater the 

effect size the larger the distance between the means of the two variables.  

𝑑 = 𝜇1 − 𝜇2𝜎  (8) 

To calculate the sample size, it was defined that the first group will be the RMSE between 

the target and the position of the prosthesis generated by the trained agent, and the second 

ground will be the RMSE generated by a random agent. The parameters used to estimate 
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sample size are: 𝛼 = 0.05 probability of false positives, 𝑝𝑜𝑤𝑒𝑟: 1 − 𝛽 = 0.95 probability of 

false negatives, and 𝑑 = 1 as effect size. This way, the statistical test will probe that there 

is at least 1 standard deviation of improvement between the means of the random agent 

and the trained agent. Using these values was stablished that 25 samples per group will be 

required.  

 

Figure 4.9 Cohen’s effect size convention  

4.4 Agent performance  

Using the trained agent to operate the prosthesis, samples for evaluation were recorded of 

the opening and closing movements . In Figure 4.10 is showed some of these samples. In 

similar way than previous Sections, odd episodes correspond to the movement of closing 

the prosthesis hand, and the even episodes in contrast to the opening of the prosthesis. For 

each degree of freedom is plotted the desired flexion target (red) and the prosthesis trajec-

tory (blue). It can be observed that in all samples the agent goes to the right direction, albeit 

in some cases it stops halfway. It is interesting to note that the agent starts to follow the 

target always delayed and with the same slope. The delay for the most samples can be 

considered acceptable. As discussed before, this can be due to transmission delays and 

processing times. The same slope when following the target implies that the degree of free-

dom has a constant speed and faces the same resistance to movement. The constant 

speed is a result of the agent’s action definition. This has the advantage of a small 
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architecture but limits the rate at which the agent can follow the target. In rare cases, when 

opening the hand, for a brief moment, the agent tries to close it further before doing the 

correct action. This is not an error at all, and it most related with the division between epi-

sodes. In general, these results are very similar with the obtained in simulation, meaning 

that the model of the dynamics of the prosthesis —altogether with the fine-tuning stage— 

were correctly carried on.  

 

Figure 4.10 Performance of the trained agent by degree of freedom  

The biggest concern in the results is related with the 3rd degree of freedom (i.e., the thumb). 

It shows an oscillation when closing the hand, always when reaching the flex limit. We con-

sider this is due to the motor having a lower torque than required. As can be observed, the 

agent –for the rest of fingers— learns to stop when reaching this limit. And because they 

have enough torque, they can withstand the flexion force without retracting. But because 
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the thumb (by design) requires a larger torque, the motor cannot stay in that position. A 

motor upgrade could solve this problem but might require a readaptation of the hardware, 

larger battery capacity, etc. Even in this case, we consider the agent learned the correct 

behavior; and this inconvenient helps us to identify areas for improvement.  

4.5 Results discussion  

In Figure 4.11 is presented the results obtained for the tasks of whole-hand grasping and 

releasing. In blue is represented the performance of the trained agent, and in red the ran-

dom agent. For each agent was included the histogram with the distribution of samples that 

fall inside certain RMSE range. A better performance implies a lower RMSE, because the 

lower the RMSE means a closer prosthesis trajectory to the flexion target. The trained agent 

obtained 369.97 ± 55.79 RMSE, while the random agent obtained 511.67 ± 43.02 RMSE. It 

is interesting to note that the trained agent has a larger standard deviation. The obtained 

effect size —when using the larger standard deviation— is 𝑑 = 2.54 (i.e., the means are 

apart 2.5 standard deviations). Although any agent obtained a RMSE distribution that re-

sembled a normal distribution, we consider the results are still valid. It is clear that for the 

majority of samples, the trained agent had a better performance.  

 

Figure 4.11 Performance of the trained agent vs the random agent  

To determine the success rate an RMSE threshold of 440 was established. This way, a 

closing or opening sample with an RMSE value lower than or equal to it will be consider as 

correct. With this threshold the success rate for the trained agent was 86% and for the 

random agent 10%. It is important to note that this value is subjective, and the success rate 

of the agents will change for a different RMSE threshold. As was noted in the previous 

section, for some samples the trained agent did not complete the trajectory and stayed at a 
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halfway position. The RMSE threshold was selected to consider a sample incorrect if it is 

notably far from its desired final destination. Based on these results we can conclude that 

the trained agent —and the research project overall— met with its desired goals.  

In Summary, the agent that operates the prosthesis was evaluated using the success rate 

of closing and opening the hand. The t-test for difference between the mean of 2 groups 

was used to calculate the sample size. The groups are the performance of the trained agent 

and of a random agent. The corresponding recordings were taken and a threshold for RMSE 

was selected. With it was calculated the success rate that is presented in Table 4.3.  

Table 4.3 Evaluation results of the trained agent  

  

Parameter  Value  

Sample size  50  

Effect size  2.54  

RMSE  369.97 ± 55.79 

RMSE threshold 440  

Success rate 86%  
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CHAPTER 5:  

CONCLUSSION 

5.1 Conclusions  

The results of this research demonstrate that a myoelectric hand prosthesis was trained 

successfully to follow the movements of opening and closing the hand (flexion extension). 

To achieve this goal, a prosthesis model with flexible materials was chosen from the litera-

ture, modified to meet our requirements and was built including its driving circuitry. This 

prothesis resulted in a low-cost 3D printed prototype with 4 degrees of freedom, 1 for each 

finger but the little. The training of the agent that operates the prosthesis was divided in two 

stages, simulation and fine-tuning. Simulation training allowed a fast proof of concept test 

and hyperparameters selection. Fine-tuning was necessary to adapt the agent to the real 

hardware. The performance of the prosthesis was measured using the success rate of the 

grasp and release tasks obtaining an 86%. From this, we conclude that this research was 

a successful first step towards achieving a fully functional myoelectric hand prosthesis.  

The implementation of a simulation environment for the prosthesis allowed a faster experi-

mentation and tuning of different hyperparameters. It speeded up the training time by a 

factor of 12 and reduced the prosthesis wear. Although the prosthesis dynamics had a sim-

plified model —and was required a fine-tuning stage— the results showed that the simula-

tion model met its goal.  

The degree of freedom in this research corresponded to flexible fingers 3D printed based 

on an open-source model available in the literature. The authors of these models stated 

that the fingers can withstand 45 000 cycles without degradation. But in our experience, at 

least one joint of the fingers but the thumb suffered some sort of damage that needed to be 

completely replace during development. Differences in the fabrication process (quality of 

the TPU material, 3D printing parameters, etc.) might have led to this result. This has im-

portant implications for further research needed with respect to the usage of flexible mate-

rials in prosthesis building.  

The reward function that obtained the best performance was the combination of 2 ap-

proaches: distance to the target and rewarding the chosen action. When they are used 

separately, the former was observed to be a noisy signal surely due to transmission delays 

and prosthesis reaction times. The later reward function learned to move in the correct 
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direction but in some episodes stopped halfway not reaching the desired position. The com-

bination of both approaches obtained good performance with a fixed contribution of each 

part. This contribution was encapsulated in the constant 𝑐𝑖, enforcing a 0 reward when the 

agent selected the correct action but was located at the furthest possible distance. This 

parameter was not subject to exhaustive calibration, and hence can be further improved.  

5.2 Recommendations  

From the experience during the development of this project, we extend the following rec-

ommendations for any researcher interested in myoelectric prosthesis operation using re-

inforcement learning:  

5.2.1 Improve prosthesis simulation  

This project used a simplified model of the prosthesis dynamics. This allowed a faster test-

ing of proof of concepts and hyperparameters tuning, but required some effort at the time 

of training in the prosthesis real hardware (fine-tuning). Improving this simulation model 

might help find a better set of hyperparameters for a better prosthesis performance. In gen-

eral, we recommend implementing even a simple simulation environment when using rein-

forcement learning. We consider time spent in the coding of a simulation environment will 

pay off in a larger agent experience for training and an overall better performance.  

5.2.2 Upgrade embedded microcontroller to increase reaction time  

The materials selected for the construction of the prosthesis were prioritized to meet a fixed 

budget. This resulted in several compromises both in performance and capabilities. The 

one with the greatest impact is the usage of an Arduino Uno as the embedded controller. 

The usage of this component made the electronic design easier, as there is a commercial 

motor driver specifically designed for it (the Adafruit Motor Shield V1.0), with the disad-

vantage of a slow processing time. The reason for the 200 ms of the agent action period is 

to secure at least one measurement of the prosthesis position in the Agent Server. This 

made the reaction times of the prosthesis very slow. Upgrading this component implies a 

cost increase, and a redesign and validation of the electronic circuitry, but would bring sig-

nificant performance improvements.  

  



Myoelectric Prosthesis Operation with Reinforcement Learning
 

43 

5.3 Future work  

Although the objectives of this research were met, this does not mean that the research has 

finished. In the following paragraphs are discussed several aspects that can be improved:  

5.3.1 Feature extraction specialized for prosthesis control instead of hand gesture 

recognition  

This work uses a set of features previously validated in the area of hand gesture recognition. 

Although the fields of prosthesis operation and hand gesture recognition using EMG are 

related in numerous ways, they are not the same. It can be argued that prosthesis control 

is a harder problem than hand gesture recognition. We state this, because prosthesis con-

trol and hand gesture recognition require the prediction of movement intention in real time, 

but prosthesis control require additionally speed and force estimation. This opens the pos-

sibility that the sets of functions for feature extraction had a different performance in these 

two fields. Finding the best set of features in a given problem is not a trivial task, as it is a 

combinatorial problem that increases exponentially with the number of possible options.  

Another possibility in this respect is the inclusion of automatic feature extraction methods 

such as Convolutional Neural Networks or Autoencoders. A comparison of both approaches 

would reveal helpful insights for achieving a better performance of myoelectric prosthesis.  

5.3.2 Deploying the agent in the embedded controller of the prosthesis  

In this research, the agent was deployed in a personal desktop computer called the Agent 

Server. This allowed us a fast development and training, as well as a reduction in the load 

of the embedded controller. But, the inclusion of a second processing unit implied the sac-

rifice of portability, that is fundamental for a fully functional prosthesis. Deploying the agent 

in the embedded microcontroller of the prosthesis would solve this problem, and would also 

reduce the latency, improving the time response of the actuators and making it completely 

portable.  

Running the agent in the prosthesis controller would limit the size and complexity of the 

agent compared to the possibilities available when using a personal desktop computer. It 

also would increase the energetic demand of the entire system, reducing its run time, or 

imposing the need of a battery upgrade, increasing its weight. A possible approach would 

be the usage of microcontrollers with AI modules, such as the Kendrite K210, NVIDIA Jet-

son Nano or alike.  
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5.3.3 Smooth prosthesis control  

One of the biggest caveats of this research is that it does not have speed control. It means 

that the prosthesis cannot perform fast or slow movements, as its speed is fixed. It was 

observed that in these cases, the agent opted for moving and stopping in an attempt to 

emulate different moving speeds. It is clear the disadvantages of this situation. A possible 

solution is to increase the agent period to send more frequently the actions. If this period is 

increase significantly, a speed control could be attained. A more feasible solution would be 

instead directly including speed variations in the actions that the agent can perform. This 

implies increasing the size and complexity of the critic network. A larger size might not be 

a great obstacle as the network has a very small size. But increasing the number of actions 

—or using a continuous action space— would requires further research.  
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APPENDIX 

Appendix I Forearm and socket blueprints 

 

Figure 5.1 Spool dimensions 

 

Figure 5.2 Palm connector dimensions  
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Figure 5.3 Case thumb dimensions  

 

Figure 5.4 Motor case dimensions  
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Figure 5.5 Forearm dimensions 
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Appendix II Electrical connections  

Table 5.1 Connections mapping motor to Arduino controller 

 

Figure 5.6 Motor - encoder wiring 

# finger pin  AF-motor shield v1.1 

1 - VCC VCC 

2 - GND GND 

3 thumb M3 - M3 + 

4 thumb M3 + M3 - 

5 thumb M3 A A5 

6 thumb M3 B A4 

7 middle M4 - M4 - 

8 middle M4 + M4 + 

9 middle M4 A gpio 13 

10 middle M4 B gpio 2 

11 index M2 B A1 

12 index M2 A A0 

13 index M2 + M2 + 

14 index M2 - M2 - 

15 little M1 B A3 

16 little M1 A A2 

17 little M1 + M1 + 

18 little M1 - M1 - 
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Figure 5.7 Connections board schematic 

 

Figure 5.8 PCB design 
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Figure 5.9 Fritzing hardware connection diagram  
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