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RESUMEN 

 

El reconocimiento de gestos de la mano (HGR) ha permitido el desarrollo de formas alternativas 

de interacción hombre-máquina en los últimos años. Típicamente, se han desarrollado modelos 

de HGR basados en el aprendizaje supervisado con una gran precisión. Sin embargo, con el 

tiempo, aparece la necesidad de añadir nuevos gestos. En consecuencia, es necesario establecer 

un modelo que sea capaz de adaptarse a este cambio. El aprendizaje por refuerzo es un tipo de 

aprendizaje automático que permite desarrollar agentes capaces de adaptar su 

comportamiento a entornos dinámicos. 

En este trabajo, utilizamos las redes Double Deep-Q (DDQN), un algoritmo de aprendizaje por 

refuerzo, para construir un agente (un modelo HGR en este caso), basado en señales 

electromiográficas (EMGs), capaz de reconocer nuevos gestos a lo largo del tiempo. El modelo 

propuesto es capaz de reconocer 5 gestos de la mano, logrando una precisión del 97,36% en la 

clasificación y del 94,83% para el reconocimiento. Se puede reentrenar a lo largo del tiempo con 

nuevas muestras, recalibrando su precisión y manteniéndola constante. 

PALABRAS CLAVE: Aprendizaje por refuerzo, Aumento de datos, Doble Deep Q-Learning, 

Reajuste online, Reconocimiento de gestos de la mano, Olvido catastrófico 

 



 
 

1 
 

ABSTRACT 
 

Hand gesture recognition (HGR) has enabled the development of alternative forms of human-

machine interaction in recent years. Typically, HGR models based on supervised learning have 

been developed with high accuracy. However, over time, the need to add new gestures appears. 

Consequently, it is necessary to establish a model that is able to adapt to this change. 

Reinforcement learning is a type of machine learning that permits developing agents capable of 

adapting their behavior to dynamic environments. 

In this work, we use Double Deep-Q Networks (DDQN), a reinforcement learning algorithm, to 

build an agent (a HGR model in this case), based on electromyography signals (EMGs), capable 

of recognizing new gestures over time. The proposed model is able to recognize 5 hand gestures, 

achieving an accuracy of 97.36% for classification and 94.83% for recognition. It can be retrained 

over time with new samples, recalibrating its accuracy and keeping it constant. 

KEYWORDS: Catastrophic forgetting, Data augmentation, Double Deep Q-learning, EMG, Hand 

gesture recognition, Online readjustment, Reinforcement learning. 
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1. INTRODUCTION 
 

The problem of hand gesture recognition is to identify the class and the instant of occurrence of 

a hand movement. Hand gesture recognition enables the development of new, more natural 

and human-centered forms of human-machine interaction [1]. One technique to develop a HGR 

is by processing electromyographic signals (EMGs). Which are biomedical signals that measure 

electrical currents generated in muscles during their contraction representing neuromuscular 

activities [2]-[4]. To extract the signals is common to use a non-invasive method called Surface 

electromyography (sEMG). Which gets information by measuring the electric potential field 

produced by active muscle fibers using electrodes on the skin [5]. 

 

1.1. Research question 
 

Using Reinforcement learning, it will be possible to develop a HGR model with online learning 

capability, based on sEMG, that works in real time identifying the following gestures: fist, wave 

in, wave out, open and pinch, which works with a classification and recognition accuracy of at 

least 90%. 

 

1.2. General objective 
 
Develop a real-time hand gesture recognition model, using reinforcement learning and 
electromyography signals, to recognize 5 hand gestures: fist, wave left (wave in), wave right 
(wave out), fingers spread (open), and double tap (pinch). 
 
 

1.3. Specific objectives 
 

• Study the current state of the art related to reinforcement learning, applied to the 

development of HGR systems based on sEMG. 

• Design a reinforcement learning model that meets the following characteristics: 

o Real-time recognition of 5 hand gestures (fist, wave left, wave right, fingers 

spread, double tap), using sEMG measured with the MYO Armband sensor. 

o Recognition and classification accuracy greater than 90% over the test set of the 

EMG-EPN 612 dataset. 

• Evaluate the proposed model using the EMG-EPN-612 database in terms of: 

classification accuracy, recognition accuracy, response time, and recalibration. 

Comparing the obtained results with those obtained from the use of artificial neural 

networks and support vector machines previously used in the PIGR-19-07 research 

project. 
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1.4. General background 
 

There are several models, mostly based on supervised learning, focused on hand gesture 

recognition in real time. For example: feed-forward artificial neural networks [6]-[8], 

convolutional neural networks [2,9], and support vector machines [10]-[11]. These models allow 

real-time recognition (in a response time of less than 300 milliseconds [12]), from four gestures 

[13] to ten gestures [10]. There is a sub-classification of all these models: general (trained with 

signals from multiple users) and specific (trained by each user with its own data. Among the best 

results for the specific models are 95.32% in classification [14] and 94.20% for recognition [15] 

and for general models 87.53% in classification [16] and 85.08% in recognition [6]. 

The aforementioned models focus on using only data previously labeled by humans. Basing their 

learning on a completely offline/static training and do not deal in depth with the variability 

existing in these signals along the time. When working with sEMG there is interpersonal and 

intrapersonal variability. That is, how a hand gesture is performed by one person differs in how 

it is performed by another (interpersonal variability) and also differs from the gesture performed 

by the same person at a different time (intrapersonal variability) [17]. 

To mitigate interpersonal and intrapersonal variability it is necessary to build adaptive 

algorithms that can respond to a dynamically changing environment. One advantage of 

reinforcement learning is that its algorithms are adaptive [18]. In this work, we propose an HGR 

model that takes as input surface EMGs, which measure the electric potential produced by active 

muscle fibers, permitting the recognition of gestures without using data explicitly labeled. The 

training of this model has two phases: offline (no human interaction) and online (human 

interaction). For offline training, we use a dataset composed of 612 users. For the online training, 

we use 100 users. 

 

1.5. Contribution 
 

We propose some improvements regarding previous reinforcement learning models focused on 

EMGs: 

• Experience replay with reserved cache for each class.  

• Interpolation of epsilon from 1 to 0.01.  

• Re-definition of the Markov Decision Process, so that the next state is the same as the 

current state, to improve performance.  

• Post-processing of impure labels isolated from other groups of labels.    

When adding new gestures and evaluating classification and recognition, we have encountered 

a major problem: “Catastrophic Forgetting”. This is an inevitable feature of models based on 

connections [19]. We also described ways to mitigate and address this problem in order to get 

the best result. 
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2. LITERATURE REVIEW 
 

2.1. Variability 
Several works [33,34,36,48] have shown that HGR based on sEMG strongly depends on the 

subject. It depends on subject-specific characteristics such as muscular mass, skin thickness, 

strength of the mean voluntary contractions [33] and pattern of muscle synergies [36]. Among 

different users this dependency produces interpersonal variability. 

The EMG signals change according to muscle wasting, changes in the electrode position and 

force variation [35]. The works [45]–[47] show that the EMG setup is also intrinsically variable, 

because of: fiber crosstalk, skin perspiration, small movements of the skin-to-electrode interface, 

power line interference and donning/doffing. Some works have therefore reported covariate 

shift, a phenomenon that occurs when the probability distribution of the input variables (sEMG 

data) changes with time [37], both for individual users and across different users [38]. These 

changes cause an intrapersonal variability, this is, the gesture performed by the same person 

differs along the time [17]. 

Minor changes of the EMG traces can hinder pattern recognition, degrading the system 

performance down, as shown in [48]. Therefore, re-training seems to be mandatory as noted in 

[34]. That work also shows how different feature representations play a more critical role in 

achieving a robust performance considering that minor changes. This work focuses on 

intrapersonal variability, mainly due to the accurate representation of features for specific users 

because sEMG strongly depends on the subject [33]. Creating a general model considering the 

variation of several users along the time is not as practical as a specific model that only considers 

the variation of only the user who will use the HGR system. 

To minimize this variance, models must be re-trained every time a user interacts with the HGR 

system [40]. For each training, we must collect a large dataset to achieve high performance, 

which is time consuming and inconvenient in terms of usability. If re-training is not performed, 

the classification accuracy will decrease [39]. For instance, in [49] the performance of the HGR 

system over five days decreased by an average of 4.1% per day. 

 

2.2. Online learning and Catastrophic forgetting 
 

In online/streaming learning, a model learns online in a single pass loop over any portion of the 

dataset and it can be evaluated at any point rather than only between large batches. In [34] the 

user only needs to calibrate the system once a day, and it does not have to track unpredictable 

long-term changes (over a period of months). A supervised input data is usually considered for 

updating the model parameters [35]. However, this can be a problem when we need to add new 

gestures with no labeled data and preserve the accuracy. 

We can use special learning techniques to adapt the HGR system to the users. Some adaptative 

methods, suitable for boosting the learning process, allow the model to leverage the experience 

gained over many source subjects to reduce the training time of a new target user [50]–[52]. In 

this way, the learning process does not start every time from scratch and it reduces to a faster 

refinement of prior knowledge [39]. 



5 
 

While applying online learning, besides the variance in sEMG, we have to consider the 

“Catastrophic forgetting” (CF) problem because it is an inevitable characteristic of 

“connectionist” models [19]. As noted in [23], updating neural networks incrementally over time 

causes CF, and the new learning causes a rewrite of existing representations. CF in feed-forward 

neural networks was first observed in [53] and subsequently studied in [41]. CF is observed when 

a neural network is first trained on a dataset D1 and subsequently retrained on a disjunct dataset 

D2. This retraining causes the neural network to forget what it learned from dataset D1 almost 

immediately, in one or two minibatch steps [43]. 

Catastrophic Forgetting can be mitigated mainly with: ensemble methods [54,55], dual-memory 

systems [56]– [59] and regularization approaches as Dropout [60]. Although another work [42] 

showed that Dropout is not very effective. One influential solution has involved the use of two 

different complementary learning systems [61], encoding the new information and reactivating 

it in an interleaved manner. Allowing constant updating of the full scope of semantic 

representations such that new information does not overwrite older information [44]. In [24] 

the authors identified three primary mechanisms to mitigate catastrophic forgetting: 

1) Replay of previous knowledge.  

2) Regularization mechanisms to constrain parameter updates. 

3) Expanding the neural network as more data becomes available. 

In the special report “The great ai reckoning“ [25], several researchers stated that some options 

to mitigate catastrophic forgetting are: 

1) Elastic weight consolidation, also suggested by [19,44]: It is freezing important weights 

when learning new tasks. This algorithm protects individual network parameters such 

as synaptic weights by evaluating their importance for prior learning. Weights are 

regulated by a quadratic loss function that acts like a spring to pull important weights 

back toward the previous weight value. This method selectively slows the learning rate 

of protected synaptic weights. It increases the speed of learning in less important 

synaptic weights [44]. 

2) Progressive neural networks: It is the creation of a neural network for each task and 

freeze its connections. 

3) Knowledge distillation: It is training several neural networks and averaging their 

predictions. 

One reason for selecting reinforcement learning in this work is because it works with an 

experience replay, so the replay technique is included. Freezing the model weights and its 

connections is a good way of not forgetting what has been learned. However, as explained in 

the report, this means that over time the elasticity of the neural network will be reduced to a 

point where everything will be frozen and the network cannot assimilate new knowledge. 

However, preserving some connections produced better results in the mitigation of CF. 
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3. METHODOLOGY 
 

3.1. Architecture 
The architecture proposed is based on [22]. This is composed of 5 stages: data acquisition, pre-
processing, feature extraction, classification and post-processing. We represent this in Figure 
1. 

 

Figure 1: Hand Gesture Recognition architecture based on Q-Learning to learn to classify and recognize EMG signals 

 

3.1.1. Data acquisition 
The EMG-EPN-612 [27] database was used. This dataset contains EMGs from 612 users, the 

measurements were made using the MYO Armband device with a sampling frequency of 200Hz. 

Half of the users were used for training, validation and testing and the remaining users were 

used for public evaluation on the [26] web platform. The datasets are composed of 25 

repetitions of the following gestures: fist, wave in, wave out, open, pinch and no gesture or 

relaxation gesture measurements. For each gesture, there is EMG information, ground truth and 

user information, except for user datasets corresponding to testing hosted on the web platform. 

The tuning of hyperparameters was done using the first 306 users, and with these 

hyperparameters the model was evaluated publicly on the web page. 

3.1.2. Pre-processing 
The energy-based orientation correction method described in [28] was used, because the cuffs 

are susceptible to electrode rotation. In order to perform the recognition part, it is necessary to 

make a segmentation process, partitioning the EMG in several windows. Twenty-four windows 

are generated and labeled using a sliding window of 300 points and stride of 30 points. 

3.1.3. Feature extraction 
Feature extraction methods are useful to extract relevant features from the EMGs, which can 

be defined in time, frequency, or time-frequency domains [14]. We generated five features for 

each of the 8 channels of the EMG signal, resulting in 40 features based. The 5 features 

generated are: Standard deviation (SD), Absolute envelope (AE), Mean absolute value (MAV), 

Energy (E) and Root mean square (RMS) [15]. 
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3.1.4. Classification 
We use Q-learning for classification which is an off-policy algorithm of reinforcement learning. 

For any finite Markov Decision Process (MDP), Q-learning finds an optimal policy by maximizing 

the expected value of the total reward given both an initial state and an action. We can 

implement this using lookup tables to store the Q values for each state and action of an 

environment [29]. However, this approach is not suitable for environments with a large state-

action spaces. To simplify the representation of this table, we can use an approximation function. 

An artificial feed-forward neural network serves this purpose. With this neural network we can 

approximate the value of Q for each state received as input, as if it were a linear regression 

[29,30]. Finally, for a more stable learning we use Double Deep-Q Network (DDQN), which is an 

off-policy reinforcement learning algorithm that utilizes double estimation to counteract 

overestimation problems with traditional Q-learning [62]. 

Training will be done by reading mini-batches from the experience replay (ER). ER also helps to 

break correlations and to increase training speed [31,32]. We reserve some space for each action. 

This is necessary because the model predicts much more no gesture class (“relax” state), 
producing overfitting. With separated reserved cache we limit their influence on the rest of the 

gestures. We structured each tuple inside the ER in the following way: 

Et = [statet , actiont , rewardt , statet+1 , terminal_flag] 

Where statet+1 is equal to statet because no matter which action selects the agent for a state, it 

will not change, actiont is the action taken by the agent at statet, rewardt is the reward given for 

that action and terminal_flag indicates if the analyzed signal window is the final one. 

The reason for doing this is that for any signal window received by the agent, no matter what 

action it takes, the next signal window was already segmented from the same signal. The agent 

has no influence on the future of the first signal window. With this consideration, when applying 

the Bellman equation, the agent focuses his training on understanding the current window. Also, 

it is necessary to reduce the gamma discount factor to get better results. We have shown that 

with these changes, the accuracy improved regarding other reinforcement learning models for 

HGR. The definition of the reinforcement learning entities is the following: 

• Environment: For offline training, we defined the environment in code where the label 

of each window is already known. Here, the reward is obtained by comparing the 

prediction of a window with the actual label of that window. For online learning, the 

environment is represented by a human who gives a reward for the final prediction. It 

is important to emphasize that the human does not give a reward per window, but for 

the whole signal. Then the reward is assigned to each signal window depending on the 

muscle activity detected by an external algorithm. 

• Agent: Is a Double Deep-Q Network that receives a state and predicts which action will 

give it the best reward. 

• State: Is the window portion of the entire segmented signal. 

• Episode: In an episode, the agent will interact with all the windows of a single 

segmented signal. 

• Action: Is the choice that the agent must make about which gesture belongs to each 

window. 

• Reward: A value of 1 is given when the agent predicts correctly the signal window class 

and -1 when the agent predicts incorrectly it. 
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The selected hyper-parameters are shown in Table 1. These hyper-parameters are used in the 

static model and in the online model. We got better results using regularization by adding a 

“Dropout” layer after the first activation function. 

Table 1: Hyperparameters 

Name Configuration 

Sliding window size 300 
Sliding window stride 30 

Optimizer ADAM 

Input Layer 40 neurons 

Hidden Layer 1 40 neurons 

Activation Layer 1 ReLU 

Dropout Layer 0.1 

Hidden Layer 2 40 neurons 
Activation Layer 2 ReLU 

Output Layer 6 neurons 

Epsilon From 1 to 0.01 
Gamma 0.1 

Alpha decay 0.1 

Loss function MSE 
Batch size 128 

Learning rate 0.001 

Interval for learn from replay 10 steps 

Epochs 5 
Experience replay size 600 

 

3.1.5. Post-processing 
 

The agent predicts one gesture class for each window. To know the gesture of the complete 

signal, it is necessary to merge all the predictions of the windows and reach a consensus on 

getting the mode. All predicted gestures that do not match the mode are spurious predictions. 

Through the mode, we can determine the majority class and replace the minority classes 

(spurious classes) with this one. As we can see in Figure 2, we first replace the minority class 

(red) with the majority class (green) different from no gesture, then we “fill” the batches where 
a label or group of labels are isolated from the majority class. 

 

Figure 2: post-processing of the predictions by window. 
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3.2. Online readjustment 
For the readjustment part, a human directly gives feedback. In order to facilitate this interaction, 

the interface shown in Figure 3 was developed. Usually, in the online training, we simply use a 

small learning rate and train directly from the experience replay. This method causes the 

accuracy to remain stable and nearly constant after several iterations. However, the 

disadvantage is that we need the labeled data. The aim of this work is to re-adjust the model 

without using explicitly labeled data, taking advantage of reinforcement learning and the 

correlation breaking property of experience replay. For the evaluation of online learning and the 

adaptation of the model to a dynamic environment, we have simulated the inclusion of new 

classes in real time, using the existing gestures in the dataset. In this way, we can evaluate the 

change of the model's accuracy as it adapts to the environment. 

 

Figure 3: User interface for give feedback to the agent. 

We use different approaches to readjust the model. The goal of each approach is to recover the 

accuracy lost when new classes were included and keep it stable. We start training a model for 

three gesture classes: “fist”, “waveIn” and “waveOut”. Then two new gesture classes (“pinch” 

and “open”) will be included, without previous offline training. Samples of these new gestures, 

got from the dataset of 100 users picked randomly, will gradually be displayed to the agent. The 

advantage of performing this simulation is that we will properly evaluate the agent’s behavior 
in front of the pre-stored labeled ``open” and ``pinch” gestures without ever showing them 

directly. In order to achieve this task, we will make changes only to the output layer and copy 

the rest of the weights (like transfer learning). This whole process is shown graphically in Figure 

4 and it is described in order below: 

a) The system receives an electromyographic signal. 

b) We use a muscle activity detection algorithm based on frequency sampling. It 

will give us the ground-truth.  

c) We will extract the 40 features for each segmentate window. These features will 

be sent to the agent to make a prediction and to the system to associate each feature 

with a label. 

d) The agent makes a prediction p, which will be displayed to the user and stored 

in memory. 
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e) Using the agent’s action prediction, the features and the same predicted label 
“P” will be associated for each respective window of the ground-truth got by the muscle 

activity algorithm. 

f) The interface will display the gesture predicted by the agent.  

g) A human should give positive or negative feedback depending on whether the 

agent got it right or wrong for the gesture performed. 

h) Tuples are generated to insert in the experience replay only using the windows 

where there is muscle activity. Additionally, tuples are generated with the sections 

marked as “relax” but with a positive reward since there is no muscle activity in those 
sections.  

i) We add the tuples to the experience replay in the corresponding cache sections. 

j) A 5-epoch training with a reduced learning rate will be performed on a random 

mini-batch of the experience replay, including the new insertions. 

 

 

Figure 4: Flow for online learning 

If the reward is positive for a gesture that is not known (that is not “fist”, “waveIn” or “waveOut”), 
one can enhance that learning by including a data augmentation of that EMG signal with the 

label that the agent predicted (Figure 5). The techniques used for creating new data were: 

• “moving average box”. - Several smoother signals are generated by averaging 10 or 

more points of the original signal. 

• “shifting”. - Each signal is shifted to the left or right by 10 or more points. 
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Figure 5: Data augmentation overview 

Besides the weight transfer and experience replay techniques, to mitigate catastrophic 

forgetting, a constant epsilon equal to 0.2 was used. This way, the algorithm keeps “exploring” 
even after it has been fully trained. We only used this option when the model is being re-

adjusted. In production, we should reduce the epsilon value to 0. 

4. RESULTS AND DISCUSSION 
This section will present the results of the evaluation of the HGR user specific model on the 

public platform and the online readjustment evaluation. 

4.1. Offline/Static results 
The model name in the public evaluator is ”TestPlatformDQNN-0” and the results were: 

• Classification: 97.36 % ± 4.35 %. 

• Recognition:   94.83 % ± 5.55 %. 

The histograms, provided by the online web platform, for both classification and recognition 

generated by the platform can be seen in Figure 6 and Figure 7. 

 

Figure 6: Histogram of classification accuracy. 
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Figure 7:Histogram of recognition accuracy. 

We can see the confusion matrix provided by the online web platform in Figure 8. 

 

Figure 8: Confusion matrix for static training. 

 

4.2. Online readjustment evaluation 
 

4.2.1. Readjusting using only experience and rewards 

When new gestures are added, and we performed no retraining with the known gesture's 

dataset, the classification and recognition accuracy starts around 15% (Figure 9). This shows that 

adding a new neuron in the output layer deconstructs all previous connections and weights. 
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Using only human feedback, a mean accuracy slightly higher than 55% is achieved for 

classification and recognition after 20 interactions for the 100 users. 

 

Figure 9:  Online readjustment only using experience given from a human. 

4.2.2.  Readjusting using experience, rewards and retraining 

Another approach we can apply to improve the results; it is to perform retraining with 

the known gesture dataset. In addition, to improve the results even further, we can use data 

augmentation on all predictions. The initial accuracy got after retraining is 70%. We gradually 

add gestures from new classes, and the final accuracy ranges between 88% and 90% for both 

classification and recognition. Model accuracies remain nearly constant after 20 interactions for 

100 users (Figure 10). 

 

Figure 10: Online readjustment with big batch size retraining. 

 

4.3. Discussion 

The confusion matrix (Figure 8) shows a relatively high error (0.6%) in predicting the 
"noGesture" class instead of the "pinch" class. The classification accuracy of static/offline 
training is higher compared with other works (Table 2), for user-specific models from the 
literature. For the neural network results in [14], we should consider that the authors worked 
with 60 users. The other models, Q-Learning and SVM, worked with the same number of users 
of this work. 
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Table 2: Classification and recognition accuracy comparison 

Model Classification Recognition 

Actual model 97.35% 94.82% 
Q-learning [22] 90.72% 87.51% 

SVM [15] 94.90% 94.20% 

Neural Network [14] 96.37% 94.90% 

 

It is worth mentioning the differences between this work and [22] are: 

• The ADAM optimizer is used instead of Stochastic Gradient Descent with momentum. 

• The mini-batch of the experience replay is shown several times in the training phase. 

• We do not assume that an action will change the current state. 

• The gamma value (discount factor) is significantly reduced to 0.1. 

If we use only experience and not retraining with known dataset when readjusting the 

model, it may take many interactions to achieve high accuracy, 20 interactions do not seem to 

be enough (Figure 9). The best way to reach the highest accuracy faster is retraining every four 

steps with a lower learning rate (Figure 10). The final decision on which model to choose 

depends on the minimum required accuracy and hardware capacity because retraining can be 

expensive. 

5. CONCLUSIONS 
 

We made a literature review of the current state-of-the-art of reinforcement learning 

related to online learning to mitigate the catastrophic forgetting problem. 

We have developed a reinforcement learning model based on Double Deep-Q Network with 
97.35% accuracy in classification and 94.82% in recognition. We have evaluated its robustness 
and adaptability when including a new class, and we got an average accuracy rate of 89.30% for 
both classification and recognition. This accuracy is lower than the accuracy reached by training 
directly with the labeled data, but with the advantage of using only experience and rewards 
given by a human. 

The model can be readjusted after a while, due to the property of experience replay to break 
correlations. In order to keep the high performance of the model, it is necessary for the human 
to interact hundreds of times with the agent, which in practical terms is not convenient. Because 
of the limited number of interactions, it is important to enhance learning with data 
augmentation. This way, whether the prediction is correct or incorrect, we will inject much more 
experience into the experience replay that will be used in the real time training. In the end, the 
model achieves almost a constant accuracy against new unknown classes integration. 

6. FUTURE WORK 

The muscle activity detection algorithm may cause the recognition to fall in the readjusting 

phase, due to incorrect segmentation. Developing a more accurate algorithm for this task will 

be important for future work. 
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