
ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA DE SISTEMAS

A SECURE AND LIGHTWEIGHT AUTHENTICATION PROTOCOL FOR
GATEWAYS IN LORAWAN NETWORKS

THESIS SUBMITTED AS PART OF THE REQUIREMENTS FOR THE AWARD OF
THE DEGREE OF DOCTOR OF PHILOSOPHY IN INFORMATICS

JHONATTAN JAVIER BARRIGA ANDRADE
jhonattan.barriga@epn.edu.ec

SUPERVISOR: PHD. SANG GUUN YOO PARK
sang.yoo@epn.edu.ec

QUITO, JANUARY 2023

THESIS

For the award of the degree of

DOCTOR OF PHILOSOPHY

IN INFORMATICS

Resolution RPC-SO-43-No.501-2014 of the Consejo de Educación Superior

Presented by

JHONATTAN JAVIER BARRIGA

ANDRADE

Thesis supervised by Dr. Sang Guun Yoo Park, Professor

Escuela Politécnica Nacional (EPN).

Oral examination by the following committee:

Jenny Gabriela Torres Olmedo, Ph.D.

Escuela Politécnica Nacional (EPN)

Martha Cecilia Paredes Paredes, Ph.D.

Escuela Politécnica Nacional (EPN)

Luis Felipe Urquiza Aguiar, Ph.D.

Escuela Politécnica Nacional (EPN)

Michele Nogueira Lima, Ph.D.

Federal University of Minas Gerais, External Member

Efraín Rodrigo Fonseca Carrera, Ph.D.

Universidad de las Fuerzas Armadas (ESPE), External

Member

A SECURE AND LIGHTWEIGHT
AUTHENTICATION PROTOCOL FOR

GATEWAYS IN LORAWAN NETWORKS

DECLARATION

I hereby declare under oath that I am the author of this work, which has not previously

been presented for obtaining any academic degree or professional qualification. I also declare

that I have consulted the bibliographic references included in this document.

Through this declaration, I transfer my intellectual property rights corresponding to this

thesis, to the Escuela Politécnica Nacional, as established by the Intellectual Property Law of

Ecuador, its Regulations and the current institutional norms. I declare that this work is based

on the following articles of my authorship (as main author or co-author) related to the title of

this thesis.

• Yoo, S.G., Barriga, J.J. (2017). Privacy-Aware Authentication for Wi-Fi Based Indoor

Positioning Systems. In: Batten, L., Kim, D., Zhang, X., Li, G. (eds) Applications and

Techniques in Information Security. ATIS 2017. Communications in Computer and

Information Science, vol 719. Springer, Singapore.

• Barriga A, J.J., Yoo, S.G. Security over Smart Home Automation Systems: A Survey.

In: Rocha, Á., Guarda, T. (eds) Developments and Advances in Defense and Security.

MICRADS 2018. Smart Innovation, Systems and Technologies, vol 94. Springer, Cham.

• Barriga A., J.J., Yoo, S.G., Polo, J.C. (2019). Enhancement to the Privacy-Aware

Authentication for Wi-Fi Based Indoor Positioning Systems. In: , et al. Applied

Cryptography and Network Security Workshops. ACNS 2019. Lecture Notes in

Computer Science(), vol 11605. Springer, Cham.

• Barriga, J.J., Yoo, S.G. Internet of Things: A Security Survey Review on Long Range

Wide Area Network (LoRaWAN). Journal of Engineering and Applied Sciences, 2019,

14: 9774-9787.

• Barriga, J.J., Yoo, S.G. Securing End-Node to Gateway Communication in LoRaWAN

with a Lightweight Security Protocol. IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3204005.

I also declare that I have acknowledged the collaboration of third parties, and the

contribution made by other published or unpublished material.

Jhonattan Javier Barriga Andrade

CERTIFICATION

I certify that JHONATTAN JAVIER BARRIGA ANDRADE has carried out his research

under my supervision. To the best of my knowledge, the contributions of this work are novel.

PhD. Sang Guun Yoo Park

ADVISOR

ACKNOWLEDGEMENTS

To my supervisor and friend PhD Sang Yoo, for his support, patience and valuable advice

during the development of this work.

To my beloved family Dany, Javi and Sofi for being an important pillar of my life.

To my colleague and friend MSC. Roberto Andrade for his continous support along this

academic journey.

To my parents for their unconditional love and daily support.

To my student Juan Sulca for his great effort and profesionalism.

To the crew of SmartLab, Jose L., Diego P., Alejandro U., Jose G., for always striving and

pushing the limits.

DEDICATED TO

God and my beloved family Dany, Javi and Sofi for supporting me during this new journey.

They have been my rock, inspiration and life with great love. They are kind, fill my heart and

nurture my soul.

Contents

PROLOGUE xiii

RESUMEN xiv

ABSTRACT xvi

1 INTRODUCTION 1

1.1 Problem Statement . 2

1.2 Objectives . 3

1.3 Research Methodology . 3

1.4 Research Contributions . 4

1.5 Thesis Structure . 5

2 BACKGROUND 6

2.1 LoRaWAN features and architecture . 6

2.1.1 Technical Overview . 7

2.1.2 Security in LoRaWAN . 11

2.2 LoRaWAN Vulnerabilities and Proposed Mitigation Mechanisms 13

3 SOLUTION DESIGN 25

3.1 Gateway Registration Protocol . 28

3.2 Gateway Session Key Derivation Protocol . 31

3.2.1 Home Scenario . 31

3.2.2 Roaming Scenario . 34

3.3 Uplink Messages through authenticated gateways 35

3.3.1 Protocol for sending uplink messages over authenticated End-Nodes

and gateways (UMOAEG). 36

vii

3.3.2 Protocol for sending uplink messages over unauthenticated End-Nodes

and gateways (UMOUEG) . 37

3.4 Security issues to be addressed . 40

4 EVALUATION 41

4.1 Security Analysis . 41

4.1.1 Formal Analysis . 41

4.1.2 Informal Analysis . 50

4.1.3 Cryptographic Operations . 51

4.2 Prototype performance evaluation . 53

4.2.1 Hypothesis Definition . 55

4.2.2 Experiment Setup and Execution . 55

4.2.3 Data Collection . 59

4.2.4 Data Analysis . 62

4.2.5 Scenario 1 - OTAA Activation . 62

4.2.6 Scenario 2 - Uplink Messages . 64

4.2.7 Hypothesis validation . 67

4.3 Discussion . 67

5 CONCLUSIONS AND FUTURE WORKS 69

5.1 Conclusions . 69

5.2 Future Works and perspectives . 71

BIBLIOGRAPHY 72

ANNEXES 82

Annex 1: Arduino Sketch LoRaWAN Enhanced Version 83

Annex 2: SPDL Code for formal verification security analysis 91

viii

List of Figures

1.1 Design Science Resarch Stages . 3

2.1 LoRaWAN versions timeline . 6

2.2 LoRaWAN Layers and Classes . 7

2.3 LoRaWAN Architecture . 8

2.4 Smart Parking Architecture based on LoRaWAN 10

2.5 LoRaWAN Smart Parking Solution based on Kubernetes 11

2.6 LoRaWAN 1.1 Join Procedure . 13

2.7 Attacks due to lack of gateway Authentication i) Uplink Packet Injection ii)

Downlink Packet Injection iii)LoRaWAN pacekt sniffing and decoding 24

3.1 Gateway Registration Protocol Summary . 27

3.2 Gateway Registration Protocol Summary . 28

3.3 Gateway Registration Protocol . 29

3.4 Gateway Session Key Registration Protocol Home Sceneraio 32

3.5 Gateway Session Key Registration Protocol Roaming Scenario 33

3.6 Uplink messages over authenticated End-Node and Gateway 38

3.7 Uplink messages over unauthenticated End-Node and Gateway 39

4.1 Cryptographic operations of the proposed solution per role 53

4.2 Cryptographic operations for End-Node Session Key Derivation 54

4.3 Cryptographic operations for End-Node on Uplink Message Delivery 54

4.4 Experiment Stages based on Scientific Method 55

4.5 Arduino Device Log . 56

4.6 Testbed Architecture . 58

4.7 Data table collection template . 59

ix

4.8 Current measurement with multimeter . 60

4.9 Gateway Session Key (GwSKey) derivation process in IoT device. 61

4.10 Gateway Session Key (GwSKey) derivation process in server side (Chirpstack

infrastructure). 61

4.11 OTAA Processing Time . 62

4.12 OTAA Power Consumption . 63

4.13 OTAA Processing Time . 63

4.14 OTAA Power Consumption . 63

4.15 OTAA Processing Time Comparison V1.1 vs V1.1 Enhanced 64

4.16 Power Consumption to send uplink messages in LoRaWAN 1.1 enhanced

version. 65

4.17 CPU Usage to send uplink messages in LoRaWAN 1.1 enhanced version. . . 65

4.18 Power Consumption to send uplink messages in LoRaWAN 1.1 enhanced

version. 66

4.19 CPU Usage to send uplink messages in LoRaWAN 1.1 enhanced version. . . 67

x

List of Tables

2.1 Join-accept parameter summary . 13

2.2 Table II LoRaWAN research summary in terms of vulnerabilities 23

2.3 LoRaWAN parameters obtained through decoding 24

3.1 Notations used in designed protocols . 26

3.1 Notations used in designed protocols . 27

4.1 Notations used in BAN logic. 42

4.2 Scyther Results for Proposed Protocols I . 47

4.3 Scyther Results for Proposed Protocols II . 48

4.4 LoRaWAN cryptographic operations . 51

4.5 Table Cryptographic operations of the proposed solutions 52

4.6 Supported frequency plans for uplink ENi messages under US915 Band . . . 57

4.7 Devices, roles and sensors used . 58

4.8 Backend Roles and software tools . 58

4.9 Uplink Messages statistics for LoRaWAN Enhanced version 64

4.10 Uplink Messages CPU usage statistics for LoRaWAN version 1.1 65

4.11 Uplink Messages statistics for LoRaWAN Enhanced version 66

4.12 Uplink Messages statistics for LoRaWAN Enhanced version - CPU Usage in

usage percent . 66

4.13 Uplink Messages power consumption for different bandwidth configurations . 68

4.14 Uplink Messages CPU usage for different bandwidth configurations 68

xi

Code list

1 IoT Device Data Collection code . 60

2 ESP32 Arduino Sketch Code . 90

3 SPDL Scyther verification Code for Gateway Authentication 92

4 SPDL Scyther verification Code for GWSKey derivation 96

5 SPDL Scyther verification Code for UMOAEG protocol 100

6 SPDL Scyther verification Code for UMOUAEG protocol 106

xii

PROLOGUE

The need to always be connected to the Internet, has led to the appearance and massification

of the Internet of Things (IoT).

This has made it possible to interconnect different types of devices to monitor or control

various ecosystems where there is information that helps humanity make decisions or make

their lives easier. Likewise, this interconnection has generated the appearance of smart

initiatives, such as smart cities, smart waste, smart agriculture, among others. These

initiatives are based on the interconnection of IoT devices through the use of long-range

wireless networks, low energy consumption and little computational cost known as Low

Power Wide Area Network, LPWAN. Nowadays, there are several types of networks based

on LPWAN like Sigfox, NB-IoT, LoRaWAN, among others.

The current work studies specifically LoRaWAN networks due its openness and ease of

making changes over libraries that support IoT devices. LoRaWAN architecture comprises

three main components: End-Nodes, gateways and backend servers; elements that perform

different tasks within the infrastructure. On the one hand, LoRaWAN provides some security

features to register End-Nodes and to protect data integrity and payloads; however, on

the other hand, LoRaWAN specification does not cover all listed elements. For instance,

gateways are one of such components that present security availability issues as they are

qualified as "trusted", such devices lack of authentication over LoRaWAN. This vulnerability

affects availability of End-Nodes.

This work presents a protocol that address gateway authentication by taking care of

hardware resources and power constraints. Since, the use of lightweight cryptographic

functions allows developing authentication protocols for devices that do not have high

computing resources. The proposed protocol has been formally proved that it is secure,

lightweight and that authenticates the gateway over LoRaWAN networks.

xiii

RESUMEN

En el presente trabajo analiza uno de las redes más utilizadas en el mundo de IoT (LoRaWAN),

la cual permite realizar aplicaciones smart de diversos tipos como: smart argriculture, smart

parking, smart metering, entre otros. Aunque ofrece grandes posibilidades de poder realizar

varios de aplicaciones, este protocolo está expuesto a vulnerabilidades de seguridad que

pueden comprometer su confidencialidad, integridad y disponibilidad (CIA). Dentro de los

elementos que componen la infraestructura LoRaWAN se encuentran los gateways, estos

dispositivos a pesar de ser claves en el envío (uplink), recepción (downlink) y transformación

de paquetes LoRa en TCP/IP, no poseen un mecanismo de autenticación para que puedan

ser registrados dentro de la infraestructura de LoRaWAN. Esto representa un problema de

seguridad porque usuarios mal intencionados podrían aprovecharse de esta debilidad para

inyectar paquetes inválidos dentro de la infraestructura. Es por ello, que hemos considerado

profundizar en este aspecto del protocolo para generar una solución que permita dicha

autenticación y fortalezca además la relación entre el End-Node y el Gateway; y el Gateway

con el Network Server.

Para llevar a cabo este trabajo, hemos utilizado la metodología Design Science (DS),

con el objetivo de generar un nuevo artefacto (protocolo de autenticación). Se ha estudiado

también en la literatura para investigar soluciones similares que se puedan dar a este tipo

de problemas en tecnologías similares o inalámbricas. De la misma manera para probar el

impacto que genera esta solución dentro de la infraestructura LoRaWAN, hemos realizado

un experimento donde comparamos una versión de LoRaWAN contra nuestra propuesta.

Del análisis realizado, hemos identificado que este tipo de protocolos deben ser livianos

en términos criptográficos, de bajo consumo energético y poco costo computacional puesto

que serán implementados en dispositivos que tienen dichas características. Adicionalmente,

debemos tener presente que el incluir elementos adicionales podría generar nuevas brechas

de seguridad por lo que nos hemos basado en la especificación LoRaWAN 1.1 para

extender sus capacidades de seguridad y poder así autenticar estos dispositivos dentro

de la infraestructura LoRaWAN sin generar efectos colaterales en el resto de elementos.

Finalmente, para validar el nivel de seguridad de este tipo de protocolos se aplicaron métodos

formales: BAN Logic y Scyther Tool.

xiv

Palabras Clave: LoRaWAN, Autenticación de Gateway, Criptografía Liviana, BAN Logic,

Scyther Tool.

xv

ABSTRACT

This work analyzes one of the most used networks in the world of IoT (LoRaWAN), which

allows to carry out smart applications of various types such as: smart agriculture, smart

parking, smart metering, among others. At the same time that it offers great possibilities

of being able to carry out various applications, it is exposed to security vulnerabilities that

can compromise its integrity, confidentiality and availability (CIA). Within the elements that

make up the LoRaWAN infrastructure there are the gateways. These devices, despite

being key in sending (uplink), receiving (downlink) and transforming LoRa packets into

TCP / IP, do not have an authentication mechanism so that can be registered within the

LoRaWAN infrastructure. This represents a security issue because malicious users could

take advantage of this weakness to inject invalid packets into the infrastructure. That is why

we have considered delving into this aspect of the protocol to generate a solution that allows

such authentication and also strengthens the relationship between the End-Node and the

Gateway; and the Gateway with the Network Server.

To carry out this work, we have used the Design Science (DS) methodology, with the aim

of generating a new artifact (authentication protocol). We have also studied the literature to

investigate similar solutions that can be given to this type of problem in similar or wireless

technologies. In the same way, to test the impact that this solution generates within the

LoRaWAN infrastructure, we have carried out an experiment where we compare a version of

LoRaWAN against our proposal.

From the analysis carried out, we have identified that this type of protocol must be light in

cryptographic terms, with low energy consumption and low computational cost, since they

will be implemented in devices that have these characteristics. Additionally, we must bear in

mind that including additional elements could generate new security gaps, which is why we

have based ourselves on the LoRaWAN 1.1 specification to extend its security capabilities

and thus be able to authenticate these devices within the LoRaWAN infrastructure without

generating side effects in the rest of elements. Finally, to validate the security level of this

type of protocol, formal methods were applied: BAN Logic and Scyther Tool.

Keywords: LoRaWAN, Gateway authentication, Lightweight Cryptography, BAN Logic,

Scyther Tool.

xvi

Chapter 1

INTRODUCTION

The world of the Internet of Things (IoT) is growing exponentially. It is estimated that by 2025,

there will be roughly 77 billion devices connected to the Internet [1–5]. This expansion has

leveraged the emergence of certain smart initiatives (i.e., smart cities, smart campus, smart

metering, smart factory, among others). These initiatives rely on IoT devices with limited

computing and power capabilities that are providing information to back-end systems. IoT

devices can transmit tiny amounts of information (small chunks of bytes) such as light intensity,

temperature, capacity, presence among others. Although they do not require high-speed

connectivity, they demand long life batteries [6], which means that data transmission and

power optimization are important concerns to be addressed.

The use of lightweight secure wireless communication networks to interconnect and

exchange data among IoT devices becomes crucial [7–9]. These wireless networks are

known as Low Power Wide Area Network (LPWAN). LPWAN is a group of technologies /

standards that provide long-range wireless communications, reduced energy consumption

that translates into long-lasting batteries (approximately 10 years), inexpensive deployment

costs (devices start at five dollars [9]), adequate transmission rates and capacity to adapt

to licensed and unlicensed spectrum [10,11]. It also provides multiple options for achieving

IoT connectivity, such as LTE-M, SigFox, NB-IoT, Long Range (LoRa), Long Range Wide

Area Network (LoRaWAN), Weightless-N, and EC-GSM. Among them, the most used are

Long Range Wide Area Network (LoRaWAN), SigFox and Narrow Band–Internet of Things

(NB-IoT) [7–9,12]. They have similarities in terms of architecture but differ in other parameters

such as frequency of operation, security, connection fees, among others.

In terms of research, LoRaWAN possesses more benefits compared to other LPWAN

networks. First, its level of openness facilitates researchers performing customizations in most

of its components. While LoRaWAN uses a free fee spectrum, Sigfox uses a licensed one and

NB-IoT needs to be deployed over a cellular-network [10]. In addition, LoRaWAN does not

require additional third-party infrastructure deployments (back end components) to be used.

1

Everyone is free to implement its own private network using open source tools. LoRaWAN

presents an architecture composed of End-Nodes, gateways and back-end servers (Network

Server NS, Join Server JS and Application Server AS) which is similar to Sigfox and NB-IoT.

Despite LPWAN standards follow data transmission and power optimization requirements;

they define simple protocols to support authentication, security and privacy features because

of computing and energy constraints of IoT devices. Such constraints represent vulnerabilities

that could be exploited to conduct cyberattacks affecting confidentiality, integrity, or availability

(CIA triad) [11]. From the literature, several vulnerabilities at LoRaWAN, affecting CIA triad,

have been discussed [13–21]. Although there is a specification that describes features and

security concerns for LoRaWAN v1.1 [22], it does not cover all architecture components like

gateways. Gateways are key elements in LoRaWAN as they are in charge of translating

LoRa into TCP/IP data as well as transporting data from End-Nodes to back-end servers. In

this work, we highlight the fact that this components are not authenticated over LoRaWAN

and are asumed to be trusted according to the specification of LoRaWAN v1.1. This lack of

authentication presents availability issues for End-Nodes and back-end infraestructure [15,21].

This chapter is structured as follows. First, we describe the problem to be addressed in

this work. Then, we provide the objectives pursued in this research. Later, we describe the

research methodology used. Next, we present our main contributions generated through this

work. Finally, the structure of the remaining chapters is presented.

1.1 Problem Statement

LoRaWAN provides several benefits in terms of applications that could be developed

compared to other technologies like Sigfox or NB-IoT. However, it is exposed to security

vulnerabilities that might compromise confidentiality, integrity or availability of data and

infraestructure as described in [12]. These vulnerabilities target several elements of LoRaWAN

like End-Nodes, gateways or back-end infrastructure. Although LoRaWAN has gone through

a series of improvements to increase the level of security (i.e. new keys within derivation

process), there are still open issues related to gateways since they are considered "trusted"

devices according to the specifications published by LoRa Alliance [22,23]. In this specifications,

there is a mutual authentication mechanism for End-Nodes with back-end infrastructure to

provide payload integrity and confidentiality. Nevertheless, it does not cover gateways or their

relation with End-Nodes or other elements of the back-end infrastructure [22].

Gateways are key elements of LoRaWAN network architecture because they convert

LoRa packets into IP ones, they are essential to allow communication from End-Nodes to

back-end servers (NS, AS and JS) and viceversa. Hence, gateways need to be securely

recognized over the network so that End-Nodes and network servers receive commands and

information from a registered party. This feature can not be implemented over the end-node

2

because it is already authenticated, but has to use a participant that is able to talk and

understand the gateway (network server) [23].

The problem addressed in this work is to provide a secure and lightweight authentication

protocol to register gateways within LoRaWAN network to handle secure round-trip communication

to the nodes and network servers. Our proposed protocol not only authenticate gateways

with network servers, but also with End-Nodes. This protocol handles secure authentication,

and is lightweight to prevent excesive power and computational consumption. Authenticating

the gateway will prevent end-devices receiving forged Class B downlink messages that make

them unavailable. Likewise, network servers will receive valid payloads from recognized

gateways preventing fake uplink message injection or excesive forged uplink messages.

1.2 Objectives

The main objective of this work is to increase the security of LoRaWAN by using lightweight

cryptography that enables gateway authentication to secure communication for IoT devices

and network servers that use this protocol. First, we analyze and identify vulnerabilities in

LoRaWAN to point out gateway authentication issues. Then, we design a security protocol

that uses lightweight cryptography to address the lack of gateway authentication in LoRaWAN

networks. Finally, to evaluate performance and security issues that might affect IoT devices

where this protocol will be deployed, we made a proof of concept (PoC).

1.3 Research Methodology

We have chosen Design Science (DS) as the methodology to conduct our research. DS allows

us to design and develop a new artifact (network security protocol for LoRaWAN) [24, 25].

This methodology can be applied to the context of our research as described in [26–30]. DS

consists of six phases that let a researcher to guide the investigation as shown in figure 1.1

Figure 1.1: Design Science Resarch Stages

DS was chosen because during stages 1 and 2 it will guide us to identify the problem of

3

gateway authentication and define the objectives for our solution to address the identified

problem. During Design and Development we will use this methodology to design protocols

for addressing security issues related to gateway authentication. Demonstration stage will be

used to implement the designed solution into a proof of concept. Then, during the Evaluation

phase we evaluate the security of our solution and a performance analysis in terms of

end-device power consumption and computing performance by analyzing RAM and CPU.

1.4 Research Contributions

The contributions produced throughout this research have been classified in two types:

Journals

• Jhonattan J. Barriga A. and Sang Guun Yoo. Internet of Things: A Security Survey

Review on Long Range Wide Area Network (LoRaWAN). Journal of Engineering and

Applied Sciences, vol. 14, pp. 9774–9787, 09 2019.

• Jhonattan J. Barriga A., J. Sulca, J.L.León, A. Ulloa, D. Portero, J. García, and Sang

Guun Yoo. Smart Parking: A Literature Review from the Technological Perspective.

Applied Sciences, vol. 9, no. 21, 2019.

• Jhonattan J. Barriga A., J. Sulca, J.L.León, A. Ulloa, Diego Portero, J. García, and

Sang Guun Yoo. A Smart Parking Solution Architecture Based on LoRaWAN and

Kubernetes . Applied Sciences, vol. 10, no. 13, 2020.

• Jhonattan J. Barriga A. and Sang Guun Yoo. Securing End-Node to Gateway

Communication in LoRaWAN with a Lightweight Security Protocol . IEEE Access,

vol. 10, pp. 96672-96694, 2022.

Conferences

• Jhonattan J. Barriga A.. Privacy-Aware Authentication for Wi-Fi Based Indoor Positioning

Systems. Sang Guun Yoo and In: Batten, L., Kim, D., Zhang, X., Li, G. (eds)

Applications and Techniques in Information Security. ATIS 2017., Auckland, New

Zealand. Communications in Computer and Information Science, vol 719. Springer,

Singapore.

• Jhonattan J. Barriga A.and Sang Guun Yoo. Security over Smart Home Automation

Systems: A Survey. In: Rocha, Á., Guarda, T. (eds) Developments and Advances

in Defense and Security. MICRADS 2018, Santa Elena, Ecuador. Smart Innovation,

Systems and Technologies, vol 94. Springer, Cham.

4

• Jhonattan J. Barriga A., Sang Guun Yoo and Juan Carlos Polo. Enhancement to

the Privacy-Aware Authentication for Wi-Fi Based Indoor Positioning Systems. In: ,

et al. Applied Cryptography and Network Security Workshops. ACNS 2019, Bogota,

Colombia. Lecture Notes in Computer Science, vol 11605. Springer, Cham.

1.5 Thesis Structure

This thesis is structured as follows. Section 2 describes LoRaWAN architecture, security and

techonology features. Section 3 provides the details on the solution designed for gateway

authentication as well as protocols to enhance security communications betweend end-device,

gateway, and network server. Section 4 evaluates the proposed solution by analyzing

performance implications over the end-device by measuing computational attributes (RAM,

CPU) and power consumption. Finally, Section 5 presents the conclusions of this work.

5

Chapter 2

BACKGROUND

This chapter presents the backgorund related with LoRaWAN. Section 2.1 provides technical

information in detail of LoRaWAN, while Section 2.2 presents the discussion about LoRaWAN

vulnerabilities. At the end of this chapter we can denote the importance of gateway authentication.

2.1 LoRaWAN features and architecture

LoRaWAN has gone through a series of improvements, described in its specification, as

shown in Figure 2.1. This thesis is focused on LoRaWAN version 1.1, since it has substantial

improvements in security aspects compared to previous versions, which deserve a deep

analysis to highlight shortcomings.

Figure 2.1: LoRaWAN versions timeline

6

2.1.1 Technical Overview

Long Range Wide Area Network (LoRaWAN) is a LPWAN technology that uses CSS and

FSK modulation. The coverage range of this technology oscillates between 5km within urban

areas and 20km for rural areas. In terms of bandwidth it supports 125Khz and 250Khz.

A payload can handle up to 243 bytes. It implements mutual authentication with the use

of two symmetric keys. For encryption it uses AES-128 in CTR mode and for integrity it

uses Message Authentication Codes (MAC). Its infrastructure is completely open and allows

private implementations given the chance that anyone could implement his own infrastructure

by using open source tools like ChirpStack (https://www.chirpstack.io/) [3], [7–9], [31].

LoRaWAN operates at the MAC layer and it is based on LoRa. LoRa is the physical layer

protocol based con Chirp Spread Spectrum which is similar to FSK modulation, but it provides

a longer communication range [32]. LoRaWAN has gone through several improvements so

that its specification has changed several times. The specification considered for this work

is [22], since it has major changes in terms of session keys.

LoRaWAN works over unlicensed Regional Industrial Scientific Medical (ISM) bands. ISM

bands are 868 MHz in Europe, 915 MHz in North America, and 433 MHz in Asia. LoRaWAN

has three classes known as Class A, B and C as shown in Figure 2.2. Class A is not

optional and has to be implemented by all End-Nodes. Devices that implement more than the

mandatory class are considered High-End devices [22].

Figure 2.2: LoRaWAN Layers and Classes

There are three classes of devices according to LoRaWAN specification. First, class A

devices are bi-directional end nodes which are more energy efficient and have two short

defined reception windows after every uplink message. Class B devices open additional

receive windows on scheduled times with the use of beacons sent by the gateway. Finally,

7

https://www.chirpstack.io/

Class C devices are continuously listening and they are the least energy efficient but offer the

lowest latency level [22].

Architecture

LoRaWAN is composed of three elements: End-Nodes, gateways and back-end servers. On

the one hand, back-end servers are composed of: Network Server (NS), Join Server (JS) and

Application Server (AS). Any end-node that wants to communicate with the back-end server

infrastructure must go through a gateway (Gw). The communication between end-node

(EN) and gateway is performed through LoRa protocol which is based on Chirp Spread

Spectrum [32]. the gateway to back-end servers communication is handled over TCP/IP

protocols [9], [12], [32]. The following Figure 2.3 shows the architecture of LoRaWAN with all

its actors.

Figure 2.3: LoRaWAN Architecture

LoRaWAN Backend Infrastructure

As described in LoRaWAN Backend Interfaces Specification [23], besides radio gateway,

there are three types of servers that are part of the backend architecture of LoRaWAN. Those

servers are: Network Server, Application Server (AS), and Join Server; each of them perform

specific tasks within the whole architecture. The Network Server (NS) is in charge of handling

LoRAWAN MAC layer for End-Nodes, forwarding messages to AS, forwarding Join messages

to JS, frame authentication, end-node verification among others.

8

For Roaming scenario, LoRaWAN Backend Interfaces Specification [23] describes three

roles for the NS which are home (hNS), serving(sNS) and forwarding(fNS). hNS is responsible

for persisting information related to Service, Device and Routing profile, and DeviceEUI. This

roles depends on JS for joining purposes and is connected to AS. In roaming scenario sNS

and hNS are separated and uplink or downlink messages are passed from sNS to hNS. hNS

is in charge of forwarding uplink messages to the proper AS based on DevEUI parameter. In

addition, sNS role handles only MAC layer for the End-Node. Last, fNS handles gateways

and there may exist more than one fNS serving a single End-Node.

According to [23] JS manages End-Device activation process through Over the Air

Activation (OTAA). A single JS could be connected to multiple NSs. This server contains

information concerning Join-Request frames (uplink) and Join-Accept frames (downlink). It

shares derived sessions keys with AS and NS. A JS could be connected to several AS, also

a single AS could be connected to multiple JS. The AS is in charge of handling payloads

(uplink and downlink frames) sent by the End-Devices. AS may be connected to multiple

NSs and JSs, and several AS may be connected to a single NS. According to [23], there are

several interfaces in place to support several procedures within LoRaWAN network from the

perspective of the End-Device (home or roaming). These interfaces are:

• sNS - JS: Used during Roaming Activation Procedure, it helps to obtain NetID from

hNS of a particular EN.

• hNS - JS: Supports Join Procedure between NS and JS.

• hNS - sNS: Supports signaling whilst in roaming as well as payload delivery between

hNS and sNS.

• sNS - fNS: Supports signaling whilst in roaming as well as payload delivery between

sNS and fNS.

• AS - hNS: Supports payload delivery between AS and hNS.

• AS - JS: Supports delivery of Application Session Key (AppSKey).

• EN - NS: Used to support LoRaWAN MAC-layer signalink and payload delivery between

EN and NS.

LoRaWAN can be used to implement applications for any of the following scenarios: Smart

Cities, Smart Waste, Smart Agriculture, Smart Health among others). Its level of openness

facilitates performing customizations in most of its components. Also there are no connection

fees associated, it uses a free spectrum band. Next, we will describe an example of this

usage applied to Smart Parking.

9

LoRaWAN Applications

The continuos growth of IoT has allowed LPWAN networks like LoRaWAN to be considered in

smart initiatives deployments. One of these smart trends is smart cities. It comprises several

applications that are being deployed around the world as they contribute to reduce pollution

and improve the life of citizens The most popular among smart cities is smart parking. It

reduces congestion, has a pricing system that is adjusted based on the demand for availability

on-peak hours, and reinforces traffic laws by using cameras to detect violators as described

in [6].

LoRaWAN is useful for implementing smart parking solutions. According to [33] an smart

parking architecture mainly consists of Sensing Infrastructure and Backend Infrastructure. In

the Sensing side smart parking sensors are deployed while in backend there is a gateway,

network server, join server and application server, as shown in Figure 2.4

Figure 2.4: Smart Parking Architecture based on LoRaWAN

When building such type of solutions, it is important to have an activation mechanism. For

such case we used OTAA to guarantee data integrity and provide confidentiality to information

that is being transmitted. The architecture presented before acts as a template that can

be customized according to the project needs. In a smart parking solution smart parking

sensors are able to detect vehicle presence as well as other environmet details. These data

is transmitted through the gateway to the network server and then to the application one.

This last point can be later connected to another technology or infrastructure as described

in [33] where an MQTT server was used to collect raw data produced by the End-Nodes

10

Figure 2.5: LoRaWAN Smart Parking Solution based on Kubernetes

(Smart Parking Sensors). In the solution proposed in [33] and shown in Figure 2.5 LoRaWAN

architecture was connected to an Rabbit MQ Server to process payloads and provide insights

that were published in a web application and a mobile application through an API REST. As

shown in the work cited, LoRaWAN is versatile because it can be modified and adapts to

various types of IoT-based applications.

2.1.2 Security in LoRaWAN

According to LoRaWAN 1.1 specification it uses some security mechanisms such as mutual

authentication, symmetric cryptography and session key distribution. Mutual authentication is

the process where End-Nodes and back-end servers derive keys to provide data integrity

and confidentiality. This derivation process is part of the activation procedure to register and

end-node over LoRaWAN infrastructure [34]. The procedure for activating and End-Node (EN)

within the LoRaWAN infraestructure is known as Join Procedure or Over The Air Activation

(OTAA). This procedure is described in detail in the next section.

11

Join-Procedure and session keys derivation

LoRaWAN supports two activation processes (join procedures) for enabling End-Nodes over

a LoRaWAN network. Those processes are: Activation By Personalization (ABP) and Over

the Air Activation (OTAA).

The OTAA procedure is started by the end-node. For this purpose, each end-node has

the following security parameters DeviceEUIENi, JoinEUIENi, NwkKeyENi and AppKeyENi . The

last two parameters are 128-bit keys used to derive session keys. These parameters are

factory stored settings. This procedure is considered more secure than ABP since other keys

are derived from known parameters stored in the device. In ABP mode, it is required that all

sessions keys have to be preloaded in the end-node, application server, network server and

join server for executing the join procedure and then sending uplink messages.

The Join-Procedure is a process for authenticating End-Nodes over a LoRaWAN network.

This process is mandatory before sending any uplink message. In order to proceed the

End-Node must first build a Join-Request message composed as follows by the JoinEUI,

DevEUI and the DevNonce. JoinEUI is an identifier of the JS, DevEUI is a unique identifier of

the Device and DevNonce is a sequential 2-byte number generated by the EN. This message

is sent in plain-text. These parameters are evaluated by the JS and NS as follows. JS

verifies that DevEUI is in the authorized list whilst NS validates and keeps a track of every

DevNonce generated. If the procedure is successful, the Network Server will respond with a

Join-Accept message to the EN so that it could derive session keys (Application Session,

Network Session and Join Session keys) [12], [22].

The Join-Accept message contains the following parameters JoinNonce, Home_NetID,

DevAddr DLSettings, RxDelay and CFList [22]. The following table describes the parameters

that are part of the Join-Accept message see Table 2.1.

Once the EN receives the Join-Accept message, the following session keys are derived

according to the specification [22]. Every session key is used for a particular purpose.FNwkSIntKey

and SNwkSIntKey are used to calculate MIC fields for preserving message integrity.NwkSEncKey

is used to cypher messages for NS.AppSKey is used to cypher FrmPayload for AS [22]. The

session keys are derived as follow according to the specification:

FNwkSIntKey=SEnc(NwkKey,0x01||JoinNonce||JoinEUI||DevNonce||pad16)

SNwkSIntKey=SEnc(NwkKey,0x03||JoinNonce||JoinEUI||DevNonce||pad16)

NwkSEncKey=SEnc(NwkKey,0x04||JoinNonce||JoinEUI||DevNonce||pad16)

AppSKey=SEnc(AppKeyENi ,0x02||JoinNonce||JoinEUI||DevNonce||pad16)

JSIntKey=SEnc(NwkKeyENi ,0x06||DevEUIENi||pad16)

After the Join-Accept, JS must record and keeps a track of every JoinNonce generated

every time a Join or a Rejoin is performed. The Join Procedure is summarized in the following

12

Table 2.1: Join-accept parameter summary

Parameter Size(bytes) Generator Purpose
JoinNonce 3 JS Counter value incremented with every Join-Accept

NetID 3 NS Network Identifier
DevAddr 4 NS Device Address

DLSettings 1 NS Downlink Configuration
RxDelay 1 NS Delay between reception and transmission
CFList 16 NS Optional list of network parameters

Figure 2.6: LoRaWAN 1.1 Join Procedure

Figure 2.6.

ABP procedure requires the manual input of session keys listed before. This procedure

does use the same session keys for all their lifetime. It is then, more insecure than OTAA.

There is no join-procedure or session key derivation and if keys are required to be renewed,

they need to be manually configured.

Although there are some security considerations and activation processes described

in the specification, there are still some issues that need to be addressed as they may

compromise integrity and confidentiality of data and actors. These issues are described next.

2.2 LoRaWAN Vulnerabilities and Proposed Mitigation Mechanisms

There are several works discussing LoRaWAN vulnerabilities and possible countermeasures.

One of them found and exploited five potential vulnerabilities for specification 1.0.2 [16]. The

identified vulnerabilities were: i) Replay attack for ABP-activated nodes, an attacker might

use older messages and resend during the current session leading to a lost communication

between node and network server, ii) Eavesdropping, as the key is reused on every cipher

text, an attacker might be able to decrypt information based on previous messages sent with

the same key, iii) Bit-Flipping Attack, although information is encrypted, it could be messed

up. In this case, through a MiTM between TCP connections, an attacker might modify certain

bytes of the encrypted payload, iv) ACK Spoofing, previously captured ACK could be delayed

13

to selectively acknowledge the successful receipt of another distinct message, even if it has

not arrived yet to the backend provider, v) LoRa class B attacks, a malicious user might

attempt to drain the battery of the device by modifying beacon payloads as they are not

encrypted. The aforementioned vulnerabilities show weaknesses over LoRaWAN that affect

integrity, availability and confidentiality. Probably, the most critical is the one that affects

integrity in spite of having a secure symmetric algorithm in place (AES-128), attackers are

able to modify information. Anyhow, the vulnerabilities described before have apparently

been solved in LoRaWAN according to an analysis performed by [18].

Kim et al propose a dual key based schema for a secure authentication in LoRaWAN

1.0.2 [14]. The authors analyze security problems during end-node activation over OTAA. In

this approach, they propose the inclusion of a new key called NwkKey. It has to be stored

in the end-node and must not be shared with others. Such key is pre-shared only with NS,

and will be used to to generate a new session key called as (NwkSKey). On the other hand,

the preexisting AppKey is pre-shared only with AS. With this approach, the OTAA procedure

changes a bit as described by the authors. The authors have proposed several previous steps

that are performed before establishing a communication. First of all, the initial Join Request is

generated and sent to the NS with the NwkKey instead of the AppKey. Then, as the NS knows

the NwkKey, it will calculate the MIC again to validate the Join Request. If such validation is

successful the NwkSKey will be generated. Later, AS generates the AppSKey based on the

AppKey previously shared. Then, the AS sends the AppNonce to the NS. Furthermore, the

NS sends the Join Accept message which contains NwkNonce and AppNonce encrypted with

NwkKey and AppKey respectively. Finally, the end-node decrypts the Join Accept message

and generates NwkSkey and AppSKey which are going to be used instead of the previous

pre-shared keys to prevent a key-leakage. The inclusion of this new key aims to delegate

authentication to every server in the architecture. This proposal has1 been remarkable, as

this new key was included in the new specification of LoRaWAN 1.1. Also, the inclusion of

this new key provided backward compatibility scenarios when dealing with devices working

on versions 1.0.2 and 1.1 as described in LoRaWAN 1.1 specification [22].

Several vulnerabilities have been identified in LoRaWAN as part of an analysis of the

LoRaWAN 1.1 specification [17]. In this review, the authors highlight six attacks. First, the

authors indicate that RF jamming attack affects gateway and end-node letting attackers

to jam such traffic. Moreover, they explain that replay attacks affect the join procedure

where an attacker can jam signals for the OTAA session; an attacker might use previous

join-request to connect to the Network Server. Besides, the aforementioned work indicated

that Beacon Synchronization attack might let malicious users to set up gateways sending

fake beacons. In addition, network traffic analysis would be exploited by an attacker that

sets a rogue gateway to capture information. Additionally, it also warns that by executing a

man-in-the-middle attacks against servers, might compromise unencrypted communication

14

between network server and application server which means that this vulnerability is still

present in the new specification of the protocol. Finally, the authors use a tool called Scyther

to assess cryptography over LoRaWAN where they indeed have concluded that it is a strength

point of the protocol. From the vulnerabilities described before, the first three lead to a DoS

attack, and the rest are related to traffic analysis and MiTM attacks [17].

Replay attacks have been addressed and discussed in depth for LoRaWAN version 1.0.2

as in [35] Kim & Song, 2017a; Na, Hwang, Shin, & Kim, 2017; [36] [37]. One of the proposed

solutions aims to identify moving nodes and try to differentiate malicious nodes from valid

nodes. This solution is oriented to support join procedure over the network server. The

authors address this attack by using Received Signal Strength Indicator (RSSI), which are

used to measure the strength of signal, and Propietary Hand-Shaking. In this scenario, the

authors propose that the RSSI should be stored along with the DevNonce to compare it

with future requests and validate that are not repeated. Validating the RSSI just by itself is

not enough and therefore the server must send a proprietary message (MType set to 111)

instead of join-accept for the join request. The end-node device responds to the proprietary

message of network server with the same MType. This proprietary message is encrypted so

that it could not be modified by an attacker. Anyhow, authors recommend that it is necessary

to validate users through RSSI rather than generating proprietary messages for every join

requests [36].Another proposal is described in [14] where the authors work on LoRaWAN

version 1.0.2 to build a mitigation scenario. The proposed scheme redefines the initial and

non-initial join request. Non-initial join request is used in standard conditions and helps

to confirm the validity of NwkSKey to prevent replay attacks. Whilst, initial join request is

used when the NwkSKey does not exist in the node, and prevents replay attack using the

DevNonce. This initial join request, is valid no matter if the NwkSKey is lost on the end

node [14].

Join Request in over the air activation (OTAA) was the scenario that SeungJae Na et

al used to identify a replay attack and later propose a solution. The authors manifest that

join requests are sent in plain text; therefore, an attacker might sniff join-requests from

other devices and then try to resend them to the network server. If it responds to those old

join-requests any valid node will not be able to communicate. To address this problem, they

suggest to use a token that could be XORed with the current Join Request. This token indeed,

is a previous NwkSKey which will allow to mask the current request (Na et al., 2017).

Another work is the development of the Security Analysis of LoRaWAN Join Procedure

for Internet of Things Networks [37]. The authors have identified that it is not necessary

for an attacker to be present in order to compromise the network, as there is a chance that

an end-device could generate a previous DevNonce. They perform experimentation over a

SX1272 modem by using a jammer and measured the entropy level. They concluded that

the proximity reduces entropy level of the end-device, affecting its ability to produce random

15

information [37].

In [35] an analysis of vulnerabilities in low-power wide-area networks is performed over

LoRaWAN 1.0.2. This work depicts two main vulnerabilities. First, replay attacks during any

type of end-node activation mechanism (ABP or OTAA) during join procedure. Under this

scenario an attacker could send previous join-accept or join-request to disable an end-devices.

The second vulnerability identified was ACK spoofing. In this case, an attacker could intercept

and resend the same ACK message to confirm various messages from the end device. For

this scenario, the attacker must have compromised the gateway before. In this work, authors

have not performed an experimental procedure, but support their findings on reviewing and

analyzing the LoRaWAN specification [35].

In 2016, a secure architecture was proposed [38]. The approach was to include a

certification authority (CA) at the gateway level to use it for authentication handling, authorization

and key management of nodes. This solution contemplates the use of tables to identify

certificates of nodes, a trust table to identify the level of trust of a particular gateway, and a

black list of nodes. A strength of this solution is that it considers a de-authentication phase

and the possibility of changing the CA. In this scenario, a MiTM is not possible as messages

are cyphered with public keys.

Aras Emekcan et al, in their work, identified vulnerabilities in LoRaWAN 1.0.2 specification.

The vulnerabilities found have to do with compromising devices and network keys, assuming

that a malicious attacker might have physically accessed the device and was able to extract

root keys by using Xignal mousetrap. Also, jamming techniques were possible by using cheap

devices to flood LoRa channel causing communication unavailability [39].Besides, replay

attacks over ABP join procedures, and wormhole attacks are possible when an attacker

captures packets from one device and resends them to a distant device to replay a hijacked

packet [40]. To prevent jamming attacks, an initiative based on a Network Intrusion Detection

system is discussed in (Danish et al., 2018); this approach is based on analysis of two

algorithms i.e. Kullback Leibler Divergence (KLD) and Hamming distance (HD). At the end,

the authors found out that KLD performs better and it would be useful to detect jammers

within the radio of a LoRaWAN end node.

Although LoRa Alliance has improved LoRaWAN specification in order to address previous

vulnerabilities, there are still be security issues; and this situation is discussed by [18]. In

regards of join procedure, the author identifies four main threats i.e. key management,

join procedure delegation, backward compatibility, and replay protection in join procedure.

LoRaWAN 1.1 specification includes a handover roaming which opens the threat for a

man-in-the-middle attack (MiTM) since FRMPayloads are first transported from the serving

network server (sNS) to the home network server (hNS) and then to the application server

(AS). LoRaWAN specification does not reinforce physical tampering protection. Indeed, it

increases the possibility of compromising root keys as a malicious user with physical access

16

to device might steal them to decrypt information. The mechanism proposed in this work

would address this issue, as root keys will only be used to perform an initial joint procedure

and then deleted from the node. In the eventual scenario of an attacker compromising the

node, it will not be possible to discover previous session keys. Hence, to properly address key

leakages, it is mandatory that the NS records previous AppSKey [14]. To support backward

compatibility, a new root key (NwkKey) is used to handle join request delegation. But if there is

no proper forward secrecy, when the new root key is taken by an attacker, data from end-node

might be exposed and decrypted. This work contributes with two alternatives to address the

threat; first the author indicates that the node should be configured to always derive AppSKey

based on AppKey no matter the value of OptNeg He also explains that it is necessary to set

the version of the protocol in the node. The author also indicates that a malicious NS might

be able to replay OTAA activation messages on the join server compromising integrity and

confidentiality of application data as there might be an overflow of counter nonce. For this

scenario, the author proposes that the Join Server (JS) must record previous DevNonce and

Jcount0 last values, giving the possibility that JS would be able to identify a possible overflow

of JoinNonce and stop receiving requests from a particular node. These suggestions are

based on protocol review rather than experimentation.

Denial of Service (DoS) also affects LoRaWAN 1.1 as described and tested in (Eef van

Es, Vranken, & Hommersom, 2018). The authors used Coloured Petri Nets (CPNs) and

with the help of CPN-Tools, they simulated and analyzed the following vulnerabilities that

could result in a DoS attack. First, beaconing is a vulnerability that has to do with Class-B

beacons broadcasted by gateways to schedule reception windows. These beacons are not

encrypted or signed. In these circumstances, an attacker might be able to modify timing

references, producing a desynchronization of the window reception, leaving the node unable

to communicate with the network server. According to the author and supported by (Miller,

2016) this vulnerability is still present in LoRaWAN 1.1. Another vulnerability is downlink

routing. First of all, anytime the network wants to start a downlink traffic to a node, it has to rely

on the gateway that is aware of a previous uplink transmission. During the uplink procedure,

nodes broadcast their data to the nearest gateways and then forward packets to the NS

(which is able to track previous gateways used by a particular node). However, an attacker

can eavesdrop uplink transmission and respond through a gateway that is out-of-reach of the

end-node, causing that a valid gateway near from a node would be discarded as it has been

unauthenticated by the malicious gateway. This vulnerability was discovered in version 1.0

and according to the authors it is still present in the new specification. The last vulnerability

found in this work is known as join-accept replay vulnerability. In ABP, network server provides

configuration settings and those have to be inserted manually in the end-node. Meanwhile,

OTAA is more pliable as with few configurations in the node, it will be able to exchange

information with the NS and synchronize configuration details. The weakness is that there

is no reference in the except for a previous request. According to (Eef van Es et al., 2018),

17

this vulnerability has been addressed for version 1.1, but since there is a compatibility for

devices running version 1.0.2, the vulnerability is still present for such devices in the new

specification. This work is the latest in regards of vulnerabilities associated to LoRaWAN 1.1.

A report from the industry written by R. Miller from MWR Labs (Miller, 2016), identifies

seven vulnerabilities in LoRaWAN 1.0 solutions. First of all, weaknesses in key management

as AppKey is stored in two places (End-Nodes and servers). In regards of key usage if the

message payload is analyzed before considering the MIC field, an attacker might bit-flip the

information to modify its content. Second, weaknesses in key generation if keys used over

ABP are generated over a simple procedure such as using Device Address, an attacker might

reverse it to find out the way to compromise all other nodes. Third, devices are supposed

to be trusted; however, the information generated by them could have been mangled. For

instance, it might include bogus characters that would allow an attacker to execute a SQL

Injection attack. Moreover, the gateway could be compromised as it has Internet connectivity

and if it has not been properly hardened, it could be compromised. This vulnerability is

present over all devices with an IP connection to the Internet, in such case a VPN would help

to reduce the risk of exposure. In addition, an invalid counter control would lead an attacker

to devise a payload; therefore, a proper control should be in place to reduce the risk. Finally,

in terms Beacons and Multicast messages there is no way for the node to know that they

were generated by an authentic entity of the system. This work shows a brief enumeration of

the vulnerabilities present and described in other works, but do not make a further analysis

of them and suggest brief recommendations for preventing such attacks. Vulnerabilities

described in this work have also been listed and discussed in (Na et al., 2017).

One of the most common issues in regards of LoRaWAN v1.0.2 is the key management

process as revised in [41]. The authors denote that a major concern of this protocol is

key sharing. During the OTAA procedure the shared AppKey is used to derive NwkSKey

and AppSkey. This procedure is perfomed the first time a device connects to the network.

However, during ABP both keys (NwkSKey and AppSkey) must be written in the device,

making this a notable insecure procedure as those keys are never updated. Considering

the ABP scenario those static session keys have a great rate of being compromised due

to their lack of dynamicity. An attacker obtaining those keys would be able to decrypt all

the information being sent. On the other hand, in LoRaWAN 1.1 some security measures

have been considered to improve the generation of session keys; however, the procedure

is still insecure as the generation of new session keys is based on two non-removable keys

(AppKey and NwkKey) that have been previously loaded inside the end-device. To mitigate

this vulnerability, authors propose the inclusion of EDHOC which is a lightweight key exchange

protocol for establishing symmetric keys among two end-node devices. To integrate this

solution to LoRaWAN, authors have designed three messages to securely update session

keys. This protocol will be acting between the end-node and the network server according

18

to the authors. EDHOC acts on top of other protocols and will be able to derive NwkSKey

and AppSKey previously obtained through OTAA. It is important to consider that before any

communication an EDHOC negotiation must be executed to derive the previous mentioned

session keys. Authors have shown that this solution will not use more than 176 bytes which

can be supported by the greatest data-rate of LoRa configurations known as SF7 and SF8.

The solution discussed before has been tested over LoRaWAN v1.0.2 and it might need to

be modified to be supported by LoRaWAN version 1.1.

Five types of attacks have been identified, discussed and analyzed in [42]. The work was

merely focused on LoRaWAN version 1.0. It shows weak points of the protocol in regards

of decrypt attacks and DoS attacks. First of all, a device might be forced to reuse previous

session keys making it possible that a frame of a past session would become valid and hence

replayed to the Network Server (NS). To execute this attack, a device must use a repeated

DevAddr, DevNonce and AppNonce. The authors support their statement on the birthday

paradox and hence if an attacker is able to compromise the AppNonce (3-bytes length),

the randomness of the session will only depend on DevNonce (2-byte length) parameter.

Likewise, the specification does not clearly state how to handle unconfirmed Join Requests.

In this scenario, a Join Request might contain a previously generated DevNonce. A replay

attack is possible with the previous scenario because frames from previous sessions might be

replayed in a new session. A message decryption is feasible through the described scenario

as the device uses the same keystream to protect different frames. According to the authors

a similar approach can be directed to target the NS making it to use the same DevAddr,

DevNonce and AppNonce without performing any validation as the specification states that a

record of some DevNonce must be stored. Therefore, if the attacker is able to force the server

to generate the same security parameters, a replay attack might be executed. This attack

is possible as the AppNonce is not long enough and it is pseudo-generated. On the other

hand, Denial of Service attacks could affect end-node devices and NS. The main objective

of this attack is to disconnect the device form the network by forcing it not to share its new

session keys with the NS. The lack of confirmation of a Join Accept with a corresponding

Join Request makes the device to be out of the network. Similarly, if the NS completes the

key exchange procedure with the device all messages sent to the device will be ignored.

AppNonces are generated every time a Join Request is received but if an attacker is able

to replay to the NS with a previous Join Request the end-node device will not share the

same session keys. The authors point out that a lack of integrity between the NS and the

Application Server (AS) is present, as messages traveling between them are encrypted

only but lack of a mechanism to calculate their integrity. Likewise, data integrity might be

compromised as data encryption is performed in counter mode only and hence a bit flipping

attack over the ciphertext could be executed. Finally, some recommendations are listed by

the authors. First of all, to mitigate decrypt or replay attacks, it is important to validate that

either AppNonce or DevNonce have been previously generated or to add counter instead of

19

a random procedure; however, this last recommendation might allow an attacker to guess the

next parameter to be used. Increasing the size of the fields that carry such information would

help to avoid repetition. Second, to prevent DoS attacks it is recommended to associate a

particular Join-Request with a Join-Accept message. Finally, confirming keys would allow

to prevent a replay or decrypt attack anyhow, those session keys might be generated twice

and hence such countermeasure would not be enough so it must combine with the previous

mentioned recommendations. This work depicts vulnerabilities of LoRaWAN v1.0. Most

of the analysis performed is based entirely over the specification but authors have proved

mathematically or practically (through formulas) that most of the attacks are real and might

be exploited by malicious users. Countermeasures proposed by the authors are valid but

might demand additional hardware resources over considering that end-node devices have a

very limited computational capacity.

Key management and replay attacks are also identified as potential vulnerabilities in

LoRaWAN and hence a solution is proposed in [43]. The authors aim to add additional

security measures to the current steps of LoRaWAN 1.0 to increase its level of security by

generating an authentication procedure between the end-node device and the Application

Server (AS). The authors propose the inclusion of a 3-step authentication confirmation

between the end-node and the AS after the AppSKey has been generated. Also, there is

a novel proposal for the DevNonce generation to obtain fresh Join-Request messages and

prevent replay attacks. This approach claims to be secure as demonstrated by the authors

using Ban Logic and AVISPA Tool. Also, it appears to be a low computational cost solution

according to the tests performed. This solution has been implemented over a Smart Parking

case study. Finally, although the work described is based on version 1.0, it could be applied

to version 1.1 as LoRaWAN still lacks of a proper end-to-end security that delivers privacy;

however, the authors state that performance testing should be performed to validate its

feasibility. This work might be applied to the new version of LoRaWAN, but it is important to

consider that there are power and computing restrictions for its implementation.

A major concern for improving LoRaWAN security is battery consumption. For that reason,

there are scientific works for increasing security in LoRaWAN that aim to reduce battery

consumption (a major premise of IoT) as proposed in [43]. The authors consider this fact to

optimize AES-128 and come up with a solution called Secure Low Power Communication

(SeLPC) which is based on D-Box that are renewed after a certain period of time and adding

it to the AES process to improve its performance without scarifying security. This approach is

based on two major phases: key generation and data encryption process. The purpose of

the first stage is to update the AppSKey and the S-Box of AES after a period of n days (which

could be configured by the network administrator). To achieve such goal, Enhanced version of

DASS algorithm (used to handle S-Box) and D-Box generation are used. Finally, D-Box and

AppSkey are updated every n days according to the definition adopted. Second, to perform

20

data encryption authors suggest that lieu to the fact that AppSKey and D-Box are updated

frequently it will only be required to perform 5 rounds of AES-128 to encrypt the message

to be sent. This approach is resistant to known-key attack as malicious user might have

obtained a previous AppSKey, but he still needs the D-Box and a newly updated AppSKey.

Also, replay-attacks are not possible because the Reply message is based on AppSKey

and time parameter. Finally, although an attacker could be able to sniff over the channel

and obtain an older AppSKey he could not be able to decrypt the message as AppSKey

is based on a time variable. This work focus on secure one key, but as mentioned by the

authors it needs to be extended to secure NwkSKey and MIC-code generation. In terms

of performance, authors show that it might save around 26% of power consumption. Even

though this approach is not specified for a particular version of LoRaWAN, it coud be applied

over the current version.

J. Kim and J. Song discuss a novel approach to securely share cryptographic keys

for protecting Device to Device (D2D) communication. Authors mentioned that their work

guarantees mutual authentication, integrity and confidentiality [44]. This work aims to support

authentication between two devices interacting within a LoRaWAN system. The scheme

proposed will generate two new messages (SecureD2DReq and SecureD2DAns) and will

use NwkSKeys generated by the Network server together with a Device Nonce to produce

encryption keys and integrity keys. Although this work does not directly address a vulnerability

or a particular attack, it proposes a schema for increasing data rates. However, this approach

needs to be tested over the new protocol specification.

The work described in [20] examines LoRaWAN 1.1 vulnerabilities. The authors use a

tool called Scyther which is a formal tool to verify the security of protocols [45]. In this work,

authors prove in a formal way that there are issues in regards of key exchange in version

1.0; however, according to the authors, they have not found weaknesses in version 1.1 of

LoRaWAN specification. According to the findings, the OTAA procedure of version 1.0 lacks

of proper association between the end-device and the NS or AS. This is produced because

join-request and join-accept are not properly acknowledged. On the other hand, in terms of

version 1.1 authors state that there might be security flaws in the AES algorithm using ECB

for encrypting join-accept messages. Man-in-the-middle-attack (MITM) are possible through

the bit-flipping attack even in the new version of LoRaWAN as discussed by the authors. The

problem is that messages are encrypted between the end-node and the servers, but there is

no mechanism to guarantee that messages sent between NS and AS are trustable in terms

of integrity. According to the specification, NS and AS have to trust each other but there is

no procedure described to achieve it. One of the most critical issues that has been denoted

by the authors is root key-preloading, it poses a threat as those keys could be extracted by

a malicious user and hence compromise the confidentiality of the information exchanged.

Roaming capabilities of LoRaWAN may end up in MITM attacks as handover-roaming is

21

present. Also, this feature might result in a fallback since handover-roaming is not present

in the previous versions of LoRaWAN. Anyhow, the discussed vulnerabilities have not been

tested over a real implementation to confirm if such weaknesses might represent a real risk

to the protocol.

In spite of using a secure encryption algorithm like AES-128. LoRaWAN is susceptible to

bit-flipping attacks. In this attack, a malicious user would be able to forge encrypted payloads

to produce fake information. Anyhow, authors in [13] have proposed a shuffling method to

prevent attackers exploiting such vulnerability. The procedure consists in two phases: i) Shift

phase where all the bytes perform a circular shift to the left and ii) Swap phase where the

end-device swaps positions of the previously shifted bytes. Although the approach seems

to be secure it might generate some performance issues. Also, it is not clear what would

happen with repeated messages and hence they should have a different way of mixing bytes

every time. Besides, an integrity check must be in place to prevent data corruption.

The authors in [19] described an approach for protecting gateway from activation by

personalization (ABP) replay attacks. In their prososal, authors suggest a flow of events

to detect if a replay attack is taking place, they use a database to create a list of devices

with open data from LoRaWAN packets to store Device Address(DevAddr), Check Sum

(CSum) and Frame Counter (FCnt). With previous data, they create a signature to identify if a

message is repeated. They have created an algorithm that validates if a device has been

reseted, a FCnt or a CSum are duplicated.

In terms of gateway authentication, the following works have been identified [15, 21].

In [15], the authors discuss the importance of gateway authentication and propose security

protocols to authenticate gateways and mutually authenticate devices and gateways. The

author proposes the inclusion of a third-party (Access Server) that will handle preloaded

shared keys. The proposed protocol starts with the generation of a random nonce which

is later replied by the end-node. These data is later processed by the access server which

acknowledges a random nonce generated by the end-node and then the gateway hashes

its random nonce previously generated together with the one generated by the end-node.

Although this approach proposes a lightweight authentication mechanism, it relies on a

third-party; however, this third-party could be replaced by the network server (NS) in a

LoRaWAN network.

In the second approach [21], authors also rely on a third-party (a Certificate Authority) to

authenticate the gateway over LoRaWAN network. They specify a format of the certificate to

be recognized by the CA; however, authors focus on the relationship Gateway-LoRaWAN

backend infraestructure. This approach uses Join-Server (JS) as a mean of communication

between network server and CA Third-party. Finally an offline root CA is in charge of

authenticating requests and to provide acknowledgment to the gateway and the network-server.

Even though this approach provides authentication it requires a third-party to be part of the

22

infraestructure and it does not provide a mean to enhance the security of the relation between

end-node and gateway.

The following table 2.2, shows a summary of vulnerabilities found in LoRaWAN versions.

From previous table it can be denoted that gateways are devices prone to attacks. However,

from the literature reviewed there a few works that point out authentication as mean of

contention. Hence, our work will address this issue as gateways play an important role

within LoRaWAN infraestructure. They transform LoRa packets into TCP/IP packets making

End-Nodes available to deliver data to backend infrastructure.

Table 2.2: Table II LoRaWAN research summary in terms of vulnerabilities

Reference Research Focus LoRaWAN Version
[21] Gateway Attacks (Authentication)* 1.1
[15] Gateway Attacks (Authentication)* LPWan
[12] Gateway Attacks 1.1
[46] Gateway Attacks 1.0 and 1.1
[16,47,48] Gateway Attacks 1.0
[17] Security Analysis 1.1
[40] Security analysis 1.0
[14,41,49–51] Key management improvements 1.0
[52] Key management distribution

improvements with blockchains
1.1

[53] Root key protection in JS 1.1
[20] Formal security verification 1.0 and 1.1
[54] Join Procedure backward

compatibility
1.0

[55] Replay attacks 1.0
[56] Replay attacks 1.0
[57] Join Procedure with blockchains 1.1
[58] Jamming attacks 1.0

The following figure 2.7 depicts the types of attacks that might occur due to lack of

gateway authentication. A malicious user would be able to exploit three scenarios. First,

considering that LoRaWAN traffic is wireless and therefore easy to sniff, he could decode

some information of the payload as described in table 2.3. With such parameters decoded, a

malicious user would try to craft, forge or create fake or valid uplink or downlinkg packets that

might be injected to the network server or to the end-node. This lack of authentication is to

be solved by using lightweight cryptography and without including third-party technologies to

the current LoRaWAN specification. The design of the proposed solution is described and

analyzed in the next chapter.

23

Table 2.3: LoRaWAN parameters obtained through decoding

Parameter Obtained by decoding
MHDR Yes
MACPayload Yes
MIC Yes
FHDR Yes
FPort Yes
FRMPayload No
DevAddr Yes
FCtrl Yes
FCnt Yes
FOpts No

Figure 2.7: Attacks due to lack of gateway Authentication i) Uplink Packet Injection ii)
Downlink Packet Injection iii)LoRaWAN pacekt sniffing and decoding

24

Chapter 3

SOLUTION DESIGN

Based on Table 2.2 the lack of authentication has been identified as an issue that has not

been addressed yet. With this input, in this chapter we describe the solution proposed, which

consists of three protocols:

• Section 3.1 describes the Gateway Registrarion Protocol which authenticates the

gateway through the Network Server (fNS in roaming scenario) by generating a new

key (GrpKeyGrpId) to authenticate it over the LoRaWAN infrastructure.

• Section 3.2 presents Gateway Session Key Derivation Protocol, which is designed

from two scenarios home and roaming. It produces a new session key that will be

used between the EN and the Gw. This key will be known as GwSKey and it will be

generated during the Join Procedure. It will be shared to the NS and later to the Gw or

group of Gw tied to a particular NS.

• Section 3.3 contemplates protocols for sending uplink messages messages over

authenticated End-Nodes and gateways (UMOAEG) and over unauthenticated End-Nodes

and gateways (UMOUEG) by using GwSKey to enhance the level of security when

delivering uplink messages.

To design the protocols mentioned above, we based our proposal on previous works

like [59–64] because they use lightweight cryptography approach to achieve security issues

like authentication. We used lightweight cryptographic functions like Symmetric Encryption,

XOR and Hashing that does not need a third-party (CA) to validate its authenticity. Therefore,

cryptographic operations do not demand high computational resources to be processed.

Figure 3.1 presents a summary of the outcomes of every protocol. It shows the new derived

keys coloured in red and green respectively, the order of the steps performed to obtain such

keys and the participants that hold each of the new derived keys.

Table 3.1 compiles all notations used as well as a brief description of every one.

25

Table 3.1: Notations used in designed protocols

Notation Description
Gwi Gwis’ device
Ui i th user
RN1, RN2, . . . , RNn Random nonces
ENi End-nodei
AppSKeyENi Session key used to cypher data to AS from End-node
NwkSEncKeyENi Session key used to cypher data to NS from End-node
JSIntKeyENi Network Session key derived during OTAA
GwSKeyENi Session key used to cypher data to Gw from End-node
SNwkSIntKeyENi Session key used to calculate partial MIC over uplink

messages, full MIC on downlink messages and rejoin
request.

FNwkSIntKeyENi Session key used to calculate partial MIC over uplink
messages.

GwKeyGwi Gateway Symmetric key
GwKeyGwj..n Symmetric keys of other gateways
AppKeyENi Pre-shared root application key
NwkKeyENi Pre-shared root network key
NAKeyENi Calculated key between AppKeyENi XOR NwkKeyENi to

derive GwSKeyENi

GwEUIGwi Gateway Extended Unique Identifier
DevEUIENi Device Extended Unique Identifier
GwDevIdENi End-node anonymous identity
GrpKeyGrpId Symmetric Group Key for multicast messages
GrpId Group Identifier of a set of gateways connected to a fNS
MICGw MIC used to validate integrity between fNS and Gwi
PubkeyfNS, PrivkeyfNS fNS’s asymmetric key pair
PubkeyNS, PrivkeyNS NS’s asymmetric key pair
PubkeyJS, PrivkeyJS JS’s asymmetric key pair
IDUi Identification of Ui
PWUi Password of Ui
|| String concatenation
h. One way hash function
⊗ Exclusive OR operation
mic. Message Integrity Code function
aes_cmac AES Message Authentication Code function
SEnc(x,y) Symmetric encryption of message y using the key x
SDec(x,y) Symmetric decryption of message y using the key x
MICPy Additional MIC to protect Payload Integrity
MIC_PENi MIC to validate message Integrity between ENi and Gwi
JS Join Server
NS Network Server
AS Application Server
DevAddrENii Device Address assgined by the network server
MHDR MAC Header
FHDR Frame Header
Mtype Message Type
EJP Extended For Join Protocol (RFU unused bits)

26

Figure 3.1: Gateway Registration Protocol Summary

Table 3.1: Notations used in designed protocols

Notation Description
FPort Optional Port Field
FCtrl Frame Control
FCnt Frame Counter
FOpts Frame Options
Payload Unencrypted Message Payload
FRMPayload Encrypted Frame Payload
B0 Uplink B0 MIC computation block format
B1 Uplink B0 MIC computation block format
msg Whole message that is composed of MHDR, FHDR, FPort,

FRMPayload

27

3.1 Gateway Registration Protocol

This protocol registers a gateway within a LoRaWAN network. During this registration, the

Gateway (Gw) will share its symmetric key with the Network Server (NS). In this scenario, it is

assumed that the gateway symmetric key will reside in secure place that cannot be tampered.

A summary of the steps performed are shown in figure 3.2.

Figure 3.2: Gateway Registration Protocol Summary

In the proposed scenario each NS is in charge of one or a group of gateways. According

to the LoRaWAN backend specificaction V1.0 [23], fNS is in charge of managing Gateways. A

Gateway points to a particular fNS. There might be several Gws deployed within the network

and connected to a network server. The number of gateways depend on the number of nodes

that can be handled and the scope of the deployed network. This protocol aims to mitigate the

vulnerability described as Rogue Gateway attacks. This is a formal protocol that must take

place before any Gw wants to be part of a LoRaWAN network. The process for registering

a gateway into the LoRaWAN network is shown in detail in Figure 3.3, and is executed as

follows. For this scenario, it is assumed that the network administrator has to configure the

Gwi to connect to a fNS or a set of them.

First, the user in charge of performing the configuration is a network administrator which

provides his/her credentials IDUi, PWUi into the gateway. Then, the gateway Gwi generates a

random nonce RN1 and a random symmetric key RSK. It also computes GwSKa=h(RSK

|| GwKeyGwi), where GwKeyGwi is a symmetric key that comes from factory and is stored

in a secure place in the gateway, and calculates GwInf=SEnc(GwSka, RN1||GwEUIGwi)

where GwEUIGwi is a 64-bit Unique Identifier of the gateway, and SEnc(x,y) is a symmetric

encryption function of a message y using the key x, || is a concatenation operation, and h(.)

is a one-way hash function. Then, it calculates the following:

• MReq = h(IDUi||h(PWUi)) ⊗ GwSka (Where ⊗ is an XOR operation.

• M1 = (MReq||IDUi||GwInf)

The gateway (Gwi) communicates with the fNS and asks for gateway registration by

sending M1. After receiving the request, fNS Obtains IDUi from M1 and calculates h(IDUi||h(PWUi)).

28

Figure 3.3: Gateway Registration Protocol

29

It obtains GwSKa by executing MReq ⊗ h(IDUi||h(PWUi)) . It extracts RN1||GwEUIGwi by

performing SDec(GwSKa, GwInf) where SDec(x,y) is a symmetric decryption function of

message y using key x. It generates two random nonces RN2 and RN3 and then computes

the symmetric groupkey key for all gateways associated to fNS by executing GrpKeyGrpId

= h(GwKeyGwi ||GwKeyGwj ||GwKeyGwj+1 ||GwKeyGwj+n ||RN3), where GwKeyGwn is a symmetric

key that belongs to a particular registered gateway n. This key is the group symmetric key

that will be used by the fNS to share multicast messages with its registered gateways. Then,

it generates a sequential integer GrpId to identify the group of gateways connected to it. It

stores (GwEUIGwi,h(GwEUIGwi),GrpKeyGrpId,GrpId) in its LocalDB. For this scenario, every

time a gateway is registered, the GrpKeyGrpId will be calculated and shared (multicast) to all

the gateways tied to a fNS. Finally, it calculates M2=SEnc(GwSka,GrpKeyGrpId||RN1’||RN2)

and sends it back to Gwi.

Once Gwi receives M2, it obtains GrpKeyGrpId||RN1’||RN2’ by decrypting SDec(GwSKa,M2).

Then, it validates if the received random nonce RN1’ matches the previously generated one

RN1, to guarantee the freshness of the message. If previous validation was correct, it

calculates MICGw = aes_cmac(GrpKeyGrpId, RN2’||GwEUIGwi), where aes_cmac(x,y) is

an AES Message Authentication Code function that uses a key x to produce a code of a

message y. Then, it computes MA=SEnc(GrpKeyGrpId, RN2’||MICGw). Later, it calculates M3

= MA||h(GwEUIGwi) and sends M3 to fNS.

Finally, upon reception of M3, fNS obtains h(GwEUIGwi) and compares against its LocalDB

to obtain the GrpKeyGrpId of the gateway that is requesting the registration process used

for further decrytption operations. It decrypts MA to obtain RN2’ and MICGw by executing

SDec(GrpKeyGrpId, MA) using the key retrieved from its LocalDB. Then, fNS calculates

MICGw’ by executing aes_cmac(GrpKeyGrpId, RN2||GwEUIGwi) where RN2 is the previous

random nonce generated by fNS. It compares MICGw’ against the received MICGw to

validate that the message has been generated by the gateway requesting registration. Also, it

validates RN2 against RN2’ to validate the freshness of the message. If both comparisons are

valid, fNS stores the tuple (h(GwEUIGwi||GrpKeyGrpId), AUTHORIZED_TRUE) in its database

to authorize messages coming from the just registered gateway. Otherwise, it prohibits

the gateway by registering the tuple (h(GwEUIGwi), AUTHORIZED_FALSE). For future use,

the fNS will first validate the authorization status of a gateway before accepting/forwarding

packets to other network servers.

The proposed scenario applies for home or roaming scenarios. In case of home

deployment, NS acts as fNS, sNS and hNS according to the LoRaWAN backend interfaces

specification [23]. In our proposal the fNS plays the role of NS.

It is important to consider that if a gateway Gwi is unregistered or registered into a group,

then a recalculation procedure should be conducted by fNS and the resulting key must be

shared among the group through multicast. For the leaving scenario, the multicast operation

30

will not consider the leaving gateway, it will unauthorize Gwi in the fNS database by registering

the tuple (h(GwEUIGwi), AUTHORIZED_FALSE) and calcuating the new group key as follows

GrpKeyGrpId = h(GwKeyGwj ||GwKeyGwj+1 ||GwKeyGwj+n).

3.2 Gateway Session Key Derivation Protocol

3.2.1 Home Scenario

The process for deriving the Gateway Session Key (GwSKeyENi) in a LoRaWAN Home

Scenario is executed as follows (see Figure 3.4). The steps highlighted in green are part of

our contribution.

This procedure is executed during the Join-Procedure OTAA described in the LoRaWAN

1.1 specification. Once the EN has passed all validation procedures by NS and JS, it starts

the Session Key Derivation Process. According to the specification, there are five keys that

are derived and shared with the Network Server and the Application Server. In this scenario,

a new symmetric key based on previous Network Key and Application Key is calculated by

using an XOR function and then using it to calculate a sixth session key known as GwSKeyENi.

The following steps are executed:

• NAKeyENi=NwkKeyENi ⊗ AppKeyENi

• GwSKeyENi=aes_cmac(NAKeyENi ,h(DevEUIENi||

DevNonceENi||JoinNonceENi||JoinEUIENi))

Once obtained, JS generates M1 and asymmetrically encrypts it with the public key of the

Netowrk Server (NS) NSPubkey. JS is able to determine GwEUIGwi as it comes in the payload

of the Join-Procedure. JS computes:

• M1= AEnc(NSPubkey ,GwEUIGwi||DevEUIENi

||GwSKeyENi)

• GwDevIdENi=h(GwSKeyENi ||DevEUIENi)

JS stores {GwDevIdENi , DevEUIENi} for further processing, M1 is sent back to the network

server by using the sharing process of session keys and JoinAccept is forwarded to End

Node.

The network server (NS) receives M1 and decrypts it by executing ADec(NSPubkey,M1)

to obtain GwEUIGwi||DevEUIENi ||GwSKeyENi , where ADec(x,y) is an asymmetric decryption

function that uses a public key x to decrypt a message y. Then, it calculates M2 by executing

M2=SEnc(GrpKeyGrpId,GwEUIGwi||DevEUIENi||GwSKeyENi) and sends it to the gateway.

31

Figure 3.4: Gateway Session Key Registration Protocol Home Sceneraio

32

Figure 3.5: Gateway Session Key Registration Protocol Roaming Scenario

33

The Gateway receives M2 and decrypts it by executing SDec(GrpKeyGrpId,M2) to obtain

GwEUIGwi||DevEUIENi ||GwSKeyENi .Then, it calculates h(GwSKeyENi||DevEUIENi) to generate

a unique anonymous identifier for the end-node. Gwi, also stores a maximum idle time

(defined by the network administrator) Max Idle Time (MITENi) for such ENi to prevent storing

data of devices that are not using that gateway or that devices that have not transmitted data

in a period of time greater than (MITENi). Finally, the gateway stores {GwDevIdENi, GwSKeyENi,

MITENi} in its database for decrypting further messages sent by a particular end-node.

According to the specification, once the Join-Accept message was received, the end-node

must derive session keys. At this point the End-Node calculates:

• NAKeyENi=NwkKeyENi ⊗ AppKeyENi

• GwSKeyENi=aes_cmac(NAKeyENi ,h(DevEUIENi||

DevNonceENi||JoinNonceENi||JoinEUIENi))

to obtain the session key used to send messages to a particular Gateway. The GwSKeyENi is

a 128-bit key. This key will be renewed on every Re-Join procedure according to the protocol

described before. The key is assumed to be stored in a secure place with tamper proof

mechanisms.

3.2.2 Roaming Scenario

In case the LoRaWAN infrastructure is working on Roaming Scenario, the following considerations

are in place, and the protocol for such scenario is shown in Figure 3.5.

According to the LoRaWAN backend specification [23] when an End-Node ENi works over

roaming the following additional steps are required once a Join Request has been dispatched.

First, the Join Request arrives to NS2 and it has to determine if it is acting as the (hNS) for

the ENi. It also has to determine if it has been identified to work with JS which is identified by

JoinEUI, if such is not the case, the process must terminate at this point. Otherwise, it has to

perform a DNS lookup to identify the IP address of JS. In case NS2 is not able to identify the

(hNS), it has to send a request that contains DevEUI to JS to retrieve such information. JS

has to respond to such request either with a succesfull response containing the NetID of NS1

if NS2 belongs to authorized networks or with a No Roaming Agreement Response. Then,

NS2 performs a DNS lookup to obtain the IP Address of NS1 (hNS) by using the previously

obtained NetID and also it sends a request (ProfileReq) containing the DevEUI to retrieve

profile information of the device. Later, if the device is allowed for roaming NS1 should inform

to NS2 through a successfull notification (ProfileAns). If the device has not been authorized a

failure notification is forwarded. Once NS2 received a successfull confirmation with handover

roaming type, it has to start a new message request (HRStartReq) to NS1 that contains

the JoinRequest, MACVersion, ULMetaData, DevAddr, DLSettings, RxDelay, CFList and

34

Device Profile Timestamp. NS1 forwards the Join-Request to JS to start the JS Session

Key Derivation process. During this process, the derivation of the new key GwSKeyENi is the

same as described in previous section. JS send an answer message (HRStartAns) to NS2

containing the roaming activation status as well as Join-Accept response. The differences

here compared to previos home scenario are that M1 will be encrypted with the public key of

M2 and M2 is message encrypted with the public key of NS1, as described below:

• M1 = AEnc(NS1PubKey, GwEUIGwi ||DevEUIENi ||GwSkeyENi)

• M2 = AEnc(NS2PubKey,ADec(NS1PubKey,M1))

Upon reception of M2, NS2 calculates M3 by executing ADec(NS2PubKey,M2) and then

builds M4 by executing SEnc(GrpKeyGrpId),M3, M4 is then forwarded to the gateway.

Once Gwi receives M4, it executes SDec(GrpKeyGrpId),M4) to obtain

GwEUIGwi ||DevEUIENi ||GwSkeyENi . Then, it calculates GwDevIdENi = h(GwSkeyENi ||DevEUIENi)

and stores { GwDevIdENi , GwSkeyENi} in tis LocalDB.

Finally, ENi derives GwSkeyENi in the same way as stated in the previous section (Home

Scenario).

3.3 Uplink Messages through authenticated gateways

The process for sending uplink messages through a registered gateway is described as

follows. This procedure is executed after the OTAA Join-Procedure has been successfully

acknowledge with a Join-Accept message. It applies for Unconfirmed Data Up Messages

and is divided in two scenarios.

The first one applies when a end-node ENi has joined (OTAA Activation) through a

registered gateway Gwi which has already been registered through the fNS. The second

scenario applies when an end-node ENi wants to send a message over a registered gateway

but ENi is not registered over that Gwi. In our proposal a Gwi must be registered over the

LoRaWAN infraestructure before forwarding any message.

First of all, ENi calculates all the following as part of the construction of the uplink message

according to LoRaWAN 1.1 specification [22]:

• MHDR=Mtype||EJP||Major

• FHDR=DevAddr||FCtrl||FCnt||FOpts

• msg=MHDR||FHDR||FPort||FRMPayload

• cmacS=aes_cmac(FNwkSIntKeyENi,B1||msg)

35

• cmacF=aes_cmac(FNwkSIntKeyENi,B0||msg)

• MIC=cmacS[0..1]||cmacF[0..1]

• FRMPayload = SEnc(AppSKeyENi,Payload)

• PHYPayload=MHDR||FHDR||FPort||FRMPayload

Then, ENi calculates GwDevIdENi =h(GwSKeyENi||DevEUIENi) which is a temporary

anonymous identifier that depends on a session key previously established with a Join-Accept

and changes with every message, it is 9 bytes long distributed as follows. The hashed

parameter has been divided in 4 parts, the protocol will randomly take one of the parts (8

bytes) and will add a ninth byte to mark the corresponding portion sent.

For the FHDR, we propose to use dynamic Device Address to make sniffing harder. The

new device Address (DevAddr) will be calculated as follow DevAddrENi = SEnc(GwDevIdENi,

DevAddr). This parameter will use the full key GwDevIdENi generated and will be increased

with every time an uplink message is sent.

Also, according to LoRaWAN 1.1 Specification [22] there are two unused (4..2) bits in

MAC Header that are reserved for future use (RFU). This proposal uses these bits so that

ENi defines the type of message to be built by creating EJP which will take the value EJP

= 0x01 to identify a secured type of message to be delivered through a registered gateway

(Gwi).

In addition, our proposal considers adding an integrity MIC for FRMPayload. ENi

calculates a new MIC after FRMPayload has been symmetrically ciphered. This new MIC is 4

bytes length as is calculated as follows MIC_Py=aes_cmac(AppSKeyENi, FRMPayload)[0..3]

and will be used to validate, accept or decline a message if FRMPayload was tampered by

malicious users.

Moreover, our proposal considers adding a 4-byte MIC for validating messages sent from

ENi to Gwi. This MIC is calculated as follows by ENi

MIC_PENi=aes_cmac(GwSKeyENi,msg||GwDevIdENi||FCntUp)[0..3].

Finally, once all previous components have been calculated, ENi calculates

M1 = MHDR||FHDR||FPort||FRMPayload||MIC||MICPy||MIC_PENi and sends it to Gwi.

3.3.1 Protocol for sending uplink messages over authenticated End-Nodes
and gateways (UMOAEG).

The purpose of this protocol is to deliver messages over a Gwi that has already been

registered within LoRaWAN infrastructure by using an authenticated Eni.

Once Gwi receives M1, it verifies if GwDevIdENi is in the LocalDB GwDevIdENi, GwSKeyENi.

If such validation is true, it calculates DevAddr = SDec(GwDevIdENi, DevAddrENi), extracts

36

GwSKeyENi and calculates MIC_PENi’=aes_cmac(GwSKeyENi,msg||GwDevIdENi

||FCntUp)[0..3]

and compares against MIC_PENi from M1, if it matches, Gwi builds

M2 = MHDR||FHDR||FPort||FRMPayload||MIC||MICPy and calculates M3=SEnc(GrpKeyGrpId,M2)

which is then forwarded to the Network Server (NS).

Then, NS calculates SDec(GrpKeyGrpId,M3) to obtain M2. It then calculates cmacS and

cmacF to validate MIC according to [22], if such validation is true M2 is then forwarded to

the Application Server (AS).

Finally, after AS receives M2, it calculates MIC_Py’=aes_cmac(AppSKeyENi, FRMPayload)[0..3]

and validates against MIC_Py from M2 to verify that FRMpayload has not been altered whilst

in transit. If that validation was succesfull it then executes SDec(AppSKeyENi,FRMPayload)

to obtain Payload in plain text and then decodes it; otherwise, AS aborts the process. The

designed protocol is shown in Figure 3.6.

3.3.2 Protocol for sending uplink messages over unauthenticated End-Nodes
and gateways (UMOUEG)

The protocol designed can be seen in Figure 3.7 In this scenario, the purpose is to deliver an

uplink message over an authenticated ENi a registered Gwi but the session key has not been

delivered yet to Gwi. First of all, once Gwi receives M1, it verifies if GwDevIdENi is not in the

LocalDB GwDevIdENi, GwSKeyENi. If so, it temporally stores M1,GwDevIdENi,GwSKeyENi in a

TempDB. Then, it extracts DevEUIEni from LocalDB, calculates

M2=SEnc(GrpKeyGrpId,GwDevIdENi||GwEUIGwi||DevEUIENi) and forwards it to NS.

Upon reception ofM2, NS executes SDec(GrpKeyGrpId,M2) to obtain

GwDevIdENi||GwEUIGwi||DevEUIENi and then calculates

M3=AEnc(PubkeyJS,GwDevIdENi||GwEUIGwi||DevEUIENi) using asymmetric encryption with

the public key of JS and forwards it.

Once JS receives M3 it asymmetrically decrypts it by executing ADec(PubkeyJS,M3) to

obtain GwDevIdENi|| GwEUIGwi|| DevEUIENi and then it validates if GwDevIdENi is in LocalDB

and DevEUIENi is in the Supported Device List of JS, if so it calculates the following:

• NAKeyENi=NwkKeyENi ⊗ AppKeyENi

• GwSKeyENi=aes_cmac(NAKeyENi ,h(DevEUIENi

||DevNonceENi||JoinNonceENi||JoinEUIENi))

• M4= AEnc(PubkeyNS ,GwEUIGwi||DevEUIENi ||

GwSKeyENi ||GRANTED)

On the other hand if there is no match JS calculates:

37

Figure 3.6: Uplink messages over authenticated End-Node and Gateway

38

Figure 3.7: Uplink messages over unauthenticated End-Node and Gateway

39

M4= AEnc(PubkeyNS ,GwEUIGwi||DevEUIENi ||UNAUTHORIZED). Then M4 is sent back to

NS.

NS receives M4 and then asymmetrically decrypts it by executing ADec(PubkeyNS, M4)

to obtain M5 to calculate M6=SEnc(GrpKeyGrpId,M5) and then sents it back to Gwi.

Gwi receives M6 and symetrically dercrypts by executing SDec(GrpKeyGrpId,M6) to obtain

MR = GwEUIGwi ’||DevEUIENi ’||GwSkeyENi ’||STATUS. Then, Gwi validates if MR contains

GRANTED response, if so, it then retrieves M1,GwDevIdENi ,GwSkeyENi from TempDB by

using GwSkeyENiand calculates MIC_PENi’ = aes_cmac(GwSKeyENi, msg||GwDevIdENi||FCntUp)[0..3].

It compares if MIC_PENi’ is equal to MIC_PENi obtained from M1, stores (GwDevIdENi ,

GwSkeyENi , DevEUIENi), calculates DevAddr = SDec(GwDevIdENi, DevAddrENi), builds

MP1=MHDR||FHDR||FPort||FRMPayload||MIC||MICPy, calculates MP2=SEnc(GrpKeyGrpId,

MP1) and forwards it to NS .

Then, NS calculates SDec(GrpKeyGrpId,MP2) to obtain M2. It then calculates cmacS and

cmacF to validate MIC according to [22], if such validation is true M2 is then forwarded to

the Application Server (AS).

Finally, after AS receives M2, it calculates MIC_Py’=aes_cmac(AppSKeyENi, FRMPayload)[0..3]

and validates against MIC_Py from M2 to verify that FRMpayload has not been altered whilst

in transit. If that validation was succesfull it then executes SDec(AppSKeyENi,FRMPayload) to

obtain Payload in plain text and then decodes it; otherwise, AS aborts the process.

3.4 Security issues to be addressed

The previous designed protocols are mean to address authentication issues between

End-Nodes and Gateways, as well as Gateways with Network Servers. Currently, LoRaWAN

specification does not specify authentication issues of the gateway. With the designed

protocols a gateway will have to be registered before connecting to a LoRaWAN network. In

addition, this trusting relation that we are proposing between gateway and End-Nodes will

allow secure message delivery for Class B devices which are configured to receive messages

directly from the gateway to attemp some tasks for future works.

40

Chapter 4

EVALUATION

In this chapter, we evaluate the proposed protocols from the security and the performance

perspectives. Section 4.1 performs the analysis from the security perspective by using the

following approaches:

1. BAN Logic to formally analyze the security of The Gateway Registration Protocol (GRP).

2. Scyther Tool to evaluate the security level of GRP and the other protocols: Gateway

Session Key Derivation Protocol (GSKDP), UMOAEG and UMOUEG.

3. An informal analysis to evaluate possible attacks over the proposed protocols.

4. Analysis of the number and types of cryptographic operations included.

Section 4.2 evaluates the impact in terms of perfomance of the solution over the End-Node

by evaluating RAM, CPU and Power Consumption. Finally in Section 4.3 we discuss the

results obtained to determine the impact generated over ENi devices.

4.1 Security Analysis

4.1.1 Formal Analysis

In this section, we demonstrate the security of the Gateway Registration Protocol by using

BAN logic which is a group of rules, created by Burrows–Abadi–Needham, used to evaluate

protocols that exchange information. It is used to determine if information is trusted and

secure against eavesdropping. This logic contains notations, rules, goals, idealized forms of

messages and assumptions which are used to proof the security of the protocol that is being

examined [65].

41

BAN logic notations

The following Table 4.1 presents the notations used for BAN logic.

Table 4.1: Notations used in BAN logic.

Notation Description

X |≡ Y X believes a statement Y

#(Y) X is updated and fresh

X ◁ Y X sees that Y

X |∼ Y X once said the statement Y

X ⇒ Y X controls that Y

X K←→ Y K is a secret shared key between X and Y
K7−→ X X has K as a public key

{Y}K Y is encrypted with K

⟨Y⟩K Y is combined with K

BAN logic rules

BAN logic uses some rules to verify the security of a protocol. These rules are described

below:

• Message meaning rule: this rule concerns message interpretation when shared keys

are used. It states that if X believes in shared key with Z and itself and X sees a

message Y encrypted with K, then X believes that Z once said Y.

• Nonce verification rule: it allows to determine that a message is recently generated

(fresh) and that a sender believes that message is fresh.

• Jurisdiction rule: describes that a principal X is going to trust beliefs where Z has

control over (jurisdiction).

• Feshness rule: determines that a message has been created recently.

• Belief rule: represents things that can be believed but have not necessarily been sent.

The following are the rules of BAN logic:

1. Message meaning rule: X|≡X
K←→Z,X◁{Y}K

X|≡Z|∼Y

2. Nonce verification rule: X|≡#(Y),X|≡Z|∼Y
X|≡Z|≡Y

3. Jurisdiction rule: X|≡Z⇒Y,X|≡Z|≡Y
X|≡Y

42

4. Freshness rule: X|≡#(Y)
X|≡#(Y,W)

5. Belief rule: X|≡(Y,W)
X|≡Y

Security Goals

The following are the goals defined for the Gateway registration protocol:

Goal 1: Gwi |≡ (Gwi
GrpKeyGrpId←−−−−−−→ f NS)

Goal 2: f NS |≡ (Gwi
GrpKeyGrpId←−−−−−−→ f NS)

Goal 3: Gwi |≡ f NS |≡ (Gwi
GrpKeyGrpId←−−−−−−→ f NS)

Goal 4: f NS |≡ Gwi |≡ (Gwi
GrpKeyGrpId←−−−−−−→ f NS)

Idealizaed forms of messages

The idealized form of the messages of our protocol are shown below:

Msg1: Gwi → f NS : {GwSKa}h(IDUi||h(PWUi))
, IDUi, {RN1, GwEUIGwi}GwSKa

Msg2: f NS→ Gwi : {RN1, RN2, Gwi
GrpKeyGrpId←−−−−−→ f NS}GwSKa

Msg3: Gwi → f NS : {RN2, MICGw, h(GwEUIGwi)}
Gwi

GrpKeyGrpId←−−−−−→ f NS

Assumptions

The assumptions are listed below:

A1: f NS |≡ (Gwi
h(IDUi)||h(PWUi)←−−−−−−−−→ f NS)

A2: f NS |≡ #(RN1)

A3: Gwi |≡ (Gwi
h(IDUi)||h(PWUi)←−−−−−−−−→ f NS)

A4: Gwi |≡ #(RN2)

Proof using BAN logic

1. According to Msg1, the following is obtained:

(S1) : f NS ◁ GwSKah(IDUi || h(PWUi)), IDUi, {RN1, GwEUIGwi}GwSKa

43

2. By using S1 and A1 with the message meaning rule, we obtain:

(S2) : f NS |≡ GWi |∼ {(h(IDUi||h(PWUi)), RN1, GwEUIGwi}GwSKa

3. Using S2 and A2, with the freshness rule, the following is obtained:

(S3) : f NS |≡ #(GWSKa(h(IDUi || h(PWUi))), IDUi, {RN1, GwEUIGwi}GwSKa

4. By using S1 and A1 with the message meaning rule, we obtain:

(S4) : f NS |≡ GW i |∼ GWSKa

5. By using Nonce Verification Rules, S3 and S4, we obtain:

(S5) : f NS |≡ GW i |≡ GWSKa

6. According to S5 and Jurisdiction rule, we obtain:

(S6) : f NS |≡ GWSKa

7. According to Msg2, we obtain:

(S7) : Gwi ◁ {RN1, RN2, Gwi
GrpKeyGprId←−−−−−→ f NS}GwSKa

8. Using S6 and S7 with the message meaning rule, we obtained:

(S8) : Gwi |≡ f NS |∼ Gwi
GrpKeyGprId←−−−−−→ f NS

9. Using S8, A2 and A4 with the nonce verification rule, we obtained:

(S9) : Gwi |≡ f NS |≡ Gwi
GrpKeyGprId←−−−−−→ f NS

(Goal3)

44

10. Using S9 and jurisdiction rule, the next is obtained:

(S10) : Gwi |≡ Gwi
GrpKeyGprId←−−−−−→ f NS

(Goal1)

11. By using the Key Generation Algorithm of the Protocol (Since Gwi
GrpKeyGprId←−−−−−→ f NS is

generated by fNS)

(S11) : f NS |≡ Gwi
GrpKeyGprId←−−−−−→ f NS

(Goal2)

12. According to Msg3, the following is obtained:

(S12) : f NS ◁ {RN2, MICGw, h(GwEUIGwi)}
Gwi

GrpKeyGprId←−−−−−→ f NS

13. By using S11, S12, and message meaning rule, we obtain:

(S13) : f NS |≡ GWi |∼ (RN2, MICGw, h(GwEUIGwi))

14. Using S13, A2 and A4 with the nonce verification rule

(S14) : GWi |≡ f NS |≡ (RN2, MICGw, h(GwEUIGwi))

15. By using the validation of the returned RN2, MICGw

(S15) : f NS |≡ GWi |≡ Gwi
GrpKeyGprId←−−−−−→ f NS

(Goal4)

Scyther tool

To formally validate the security of a protocol, there are several tools like AVISPA, Proverif,

Tamarin and Scyther. We chose Scyther as it is good in verifying multi-protocol attacks, it also

verifies protocols by bounded and unbounded number of sesions, it uses SPDL language, it

also assumes that every protocol runs in the same network as described in [66]. Scyther is a

tool that performs formal security analysis of protocols considering the assumption of perfect

cryptography. It means that the adversary cannot learn from an encrypted message unless

he possesses the key for decryption [67]. According to the authors, this tool helps finding

problems when building protocols. This tool uses Security Protocol Description Language

(SPDL), which has a programming syntax similar to C or Java.

45

Scyther is able to evaluate security properties such as; i. Aliveness ensures that partners

are live, ii. Weakagree assures that a partner is communicating with each other rather than

an intruder, iii. Niagree which means that the parties shall agree on the value of variables

after a protocol has been executed, iv. Nisynch validates that everything is executed by

triggers, occurs in order and contents are preserved, v. SKR refers to secrecy of session

keys, vi. Secret refers to the secrecy of a particular parameter as stated in [67].

Scyther is developed over python and has a Graphic User Interface (GUI) and CLI

interface, both of them can be used to analyze protocols and show claims. The results shown

in tables 4.2 and 4.3 are taken from the GUI and are able to show a “Failed" statement in the

“Status" column when there is a security issue and will display all attacks found with the help

of a button that will launch a new window containing a graphic that denotes the attack. On the

other hand, if everything goes well the “Status" column will show an “OK" statement combined

with the “No attacks" words meaning that there are no attacks that affect the analyzed claim.

In terms of data types, Scyther is flexible and any type could be defined in order to

represent a variable. It is important to clarify that Scyther does not analyze data types, it

views the state of security of the whole protocol rather than checking for robustness of keys

or algorithms used.

From the literature review, Scyther has been used to perform a formal analysis of the

security protocols of LoRaWAN as described in [20]. In that work, authors prove the security

of the OTAA Join-Procedure process by designing the protocol from scratch according to the

specification. The results

obtained showed that V1.0 is susceptible to attacks as there is a weak relation between

the End-Node and the NS/AS particular during the join process. The tests performed were

focused on Non-injective agreement and Non-injective synchronization.

To perform the analysis of the proposed protocols, we took the designs established in the

previous section and translated them to the SPDL language following all the steps designed.

Analysis of Gateway Registration Protocol

First of all, this protocol was coded including all variables as described in Figure 3.3. For

this scenario, the Gwi is authenticated against NS . Then NS , calculates a group key that

includes all previous symmetric keys received from other gateways that have been registered

already. Every time a gateway arrives or leaves this GrpKeyGrpIdis recalculated. The Scyther

analysis of this protocol is shown in Table 4.2. The secrecy of GrpKeyGrpIdremains intact by

showing no attacks, likewise all claims (Alive, Weakagree, Niagree, Nisynch) are marked with

status OK showing that no attacks are possible. This validates that the proposed protocol is

secure.

46

Table 4.2: Scyther Results for Proposed Protocols I

Protocol Role Claim Status Attack patterns
Gateway Registration
Protocol Gateway Alive OK No attacks

Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks

Network Server Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks

Gateway Session Key
Derivation Protocol End-Node Alive OK No attacks

Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
SKR GwSkeyENi OK No attacks

Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks
Secret GwSkeyENi OK No attacks

Network Server Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks
Secret GwSkeyENi OK No attacks

Join Server Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeyENi OK No attacks

47

Table 4.3: Scyther Results for Proposed Protocols II

Protocol Role Claim Status Attack patterns
UMOAEG Protocol End-Node Alive OK No attacks

Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeyENi OK No attacks
Secret AppSKey OK No attacks

Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeyENi OK No attacks
Secret AppSKey OK No attacks

NS Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeyENi OK No attacks
Secret AppSKey OK No attacks

AS Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeyENi OK No attacks
Secret AppSKey OK No attacks

UMOUAEG Protocol End-Node Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
SKR AppSKey OK No attacks
SKR GwSkeyENi OK No attacks

Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks
Secret GwSkeyENi OK No attacks

Network Server Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeyGrpId OK No attacks
Secret GwSkeyENi OK No attacks

Join Server Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret AppSKey OK No attacks
Secret GwSkeyENi OK No attacks

48

Analysis of Gateway Session Key Derivation Protocol

The Gateway Session Key Derivation Protocol was coded by including all variables involved

during the OTAA procedure as described in the specification of LoRaWAN 1.1. This protocol

is composed of three main roles: End-Node (Dev), Gateway, Network Server and Join

Server. The results shown that Alive, Weakagree, Niagree and Nisynch are OK and are

not susceptible to attacks. In addition, the secrecy of all the sessions keys generated

is preserved among all the roles. The new introduced key GwSKeyENi represented by

aes_cmac(NAKeyENi ,h(DevNonceENi||JoinNonceENi||JoinEUIENi)) shows no attacks, meaning

that the OTAA Join Procedure is not feasible to other attacks due to its inclusion. It is important

to mention that this new session key preservers the same length (16 bytes) as other derived

keys during Join Procedure.

This new key is shared to the Gateway through the Network Server, which uses a

pre calculated group key (GrpKeyGrpId) to multicast this session key (GwSkeyENi) to other

gateways that are connected to the same Network Server. Therefore, only the gateway or its

group of gateways that belong to the same Network Server can decrypt messages sent by

ENi and then forward payloads to the backend infrastructure. The results of Scyther execution

are displayed in Table 4.2.

Analysis of protocol UMOAEG

According to the LoRaWAN 1.1 specification once the Join Procedure has performed and

End-Node device would be able to send data to the Application Server. As stated before,

the design was translated to a SPDL file to reflect all interactions between the involved roles.

In this case the participants were: End-Node (Dev), Gateway, Network Server (NS) and

Application Server (AS).

All the variables used in the protocol where declared as String for testing purposes. String

was defined as a userType variable as it is not a common data type of Scyther.

As shown in, Table 4.2 there are no potential vulnerabilities in the proposed protocol. It

means that as long as an End-Node uses a valid GwSkey, a message will be delivered to

the Application Server, otherwise, it will be discarded by the Gateway before sending it to the

backend infrastructure.

The secrecy of session keys is preserved according to the results shown by Scyther

as well as MIC and MIC_PENi validation fields to protect the FRMPayload from bit-flipping

attacks.

49

Analysis of protocol UMOUEG

In our proposed scenario, we have identified that if an ENi has gone through a Join procedure

using a different Gateway. It is possible to re-generate the GwSkeyENiand pass it to the

Gateway so that it could deliver messages to the back-end infrastructure no matter if this is a

newly authenticated Gateway over the platform. In case a rogue gateway aims to forward a

message to the AS, it will not be able to determine the GrpKeyGrpIdrequired to forward the

payload to the NS /fNS .

For this scenario, there are five roles participating in the communication Dev, Gateway, NS,

Join Server(JS) and Application Server (AS). Each of them is in charge of encrypting/decrypting

particular parts of the message.

The results displayed by Scyther (see Table 4.3) showed that the implementation does not

have potential attacks and it could be considered as a secure protocol. All claims are marked

with the OK word and the Verified Niagree, Nisynch, Alive, Weekagree and session keys.

4.1.2 Informal Analysis

This part examines the security of the proposed set of protocols by reviewing possible

attacks [59].

Man in the middle attack. This attack is not possible as the uplink messages dispatched

are using secure encryption functions. When ENi sends a message to Gwi, it uses the

symmetric session key (GwSKey) derived during the Join-Procedure. And when the Gwi

wants to send a message to fNSi, it uses the symmetric key GrpKeyGrpId. Likewise, when fNSi

wants to communicate with Gwi, it uses the calculated symmetric key GrpKeyGrpId. Using

secure encryption functions, let proposed protocols to maintain confidentiality and integrity of

messages.

Replay attack. During the gateway registration protocol phase, random nonces are used

to avoid replay attacks. Even if the attacker grabs the random nonce, he needs to have

gateway credentials to perform a full registration procedure. Also, the attacker will not be able

to generate valid messages to the gateway as the session key used to cipher it is calculated

during Join and Rejoin procedures respectively.

Password guessing attack. PWUi is not stored and is only known by the user in charge

of performing registration procedure. A variant of it this value h(PWUi) is used to validate a

user. It is important to consider that h(.) is a one way has function that cannot reversed to

obtain original credentials.

Privileged-insider attack. In the proposed solution, the network administrator (Ui) only

have credentials for registering gateways and could not be able to capture other credentials

because they are transmitted with a one-way hash function h(PWUi).

50

Brute force attack. The attacker might try to decrypt the uplink message generated by

an end-node. However, the message is protected by symmetric key of 128-bit length that

could be changed on demand.

Separation of responsibilities. A gateway (Gw) will only handle a pre-calculated

temporary root key (GwSKa) and every end-node session key (GwSKeyENi). A gateway will

not be able to derive GwSKeyENi as it does not store parameters for such purpose.

4.1.3 Cryptographic Operations

In order to determine a potential performance affectation, it is important to analyze and

identify the number of additional cryptographical operations that will take place with the current

proposed solution. This cryptographical operations comprise hashing, simple XOR, symmetric

encryption, symmetric decryption, asymmetric encryption, and asymmetric decryption.

First of all, the current operation of the protocol already includes some cryptographic

operations according to the specification [22] that are listed in the table below. The considered

operations were taken from the Join-Procedure activation and the Uplink message delivery.

Table 4.4 contains the operation name, the number of cryptographic operations, the entity that

performs such operation and the phase where that operation takes place (Join-Procedure or

UplinkMSG delivery). For the analysis it is important not to overload the End-Node as it has

limited computational and power resources.

Table 4.4: LoRaWAN cryptographic operations

LoRaWAN
Operation

Entity
Cryptographic Operations

XOR Hash CMACSEnc SDec AEnc ADec

Session key
derivation

EN - - - 5 - - -

JS - - - 5 - - -

Uplink
message

EN - - 3 2 - - -

NS - - 2 - - - -

AS - - - - 1 - -

The following table 4.5 shows the total number of additional cryptographic operations to

be executed by every entity considering the new protocols proposed.

The following Figure 4.1 provides a summary of the additional effort to be made by all

participant entities to implement the protocols of the proposed solution. According to the

results shown in table 4.5 and figure 4.1, there are more encryption and decryption functions

to be executed; however, none of them belong to the end-node. As mentioned before,

the End-Node should not be overloaded as that is the entity with the lowest computational

capacity, the other devices provide more computational resources so that the inclusion of new

51

Table 4.5: Table Cryptographic operations of the proposed solutions

Cryptographic Operations

Proposed
Protocols

Entity XOR Hash CMACSEnc SDec AEnc ADec

Gateway
Registration

Gw 1 4 1 2 1 - -

fNS 1 5 1 1 2 - -

GwSKey
Derivation

JS 1 2 1 - - 1 -

fNS - - - 1 - - 1

Gw - 1 1 - - - -

EN 1 1 1 - - - -

UMOAEG

EN - 1 2 - - - -

Gw - - 1 1 - - -

fNS - - - - 1 - -

AS - - 1 - - - -

UMOUEG

EN - 1 2 - - - -

GW - - 1 2 1 - -

fNS - - - 1 2 1 1

JS 1 1 1 - - 1 1

AS - - 1 - - - -

52

cryptographic functions would not affect its overall performance. Devices like the gateway are

able to run over robust devices. The whole back-end infrastructure (Join-Server, Application

Server and Newtork Server) are able to run over servers, virtual servers or containers in

cloud infrastructures.

To have a better understanding on the impact over the End-Node the following Figures

4.2, 4.3 show a comparison of the proposed solution with current LoRaWAN version in terms

of cryptographic operations during the Session Key Derivation (Join-Procedure) and Uplink

Message Delivery. In blue are all the new cryptographic functions added by the proposed

solution whilst in orange are the current LoRaWAN cryptography operations. As showed

one new type of operation is XOR. Also, another operation that comes from our proposal

is hashing. CMAC operations refer to actions for calculating Message Integrity codes to

guarantee message integrity. The proposed solution does not add new decryption functions

or asymmetric operations.

Figure 4.1: Cryptographic operations of the proposed solution per role

The proposed protocols do not aim to implement new symmetric algorithms or to increase

their encryption level (i.e. changing to AES-256). The solution is tied to the specification

and although it will perform more cryptographic operations, their complexity will remain

which means that the current computational resources would be enough to process the new

operations.

4.2 Prototype performance evaluation

As part of the validation that is to be performed according to DS methodology. We conduct

some experiments to validate the effects in terms of computing performance(RAM and CPU)

and power consumption performance over LoRaWAN end-node devices. To achieve so, we

53

Figure 4.2: Cryptographic operations for End-Node Session Key Derivation

Figure 4.3: Cryptographic operations for End-Node on Uplink Message Delivery

54

have designed an architecture based on LoRaWAN (see figure 4.6).

We will perform the following steps (see figure 4.4) to conduct our expriments as based

in [68].

Figure 4.4: Experiment Stages based on Scientific Method

4.2.1 Hypothesis Definition

Research question: Does a lightweight secure communication protocol allows gateways to be

authenticated over a LoRaWAN affects performance and power consumption over end-node

devices?

Null Hypothesis (H0): Gateway authentication protocol does not affect performance and

power consumption in end-node devices.

Alternative Hypothesis (Ha): Gateway authentication protocol affects performance and

power consumption in end-node devices.

Variables to be analyzed

• RAM measured in bytes (B).

• CPU measured in Hertz (Hz).

• Current consumption measured in Mili amperes (mA).

• Battery Voltage measured in Volts (V).

• Time to generate packets measured in seconds (s).

4.2.2 Experiment Setup and Execution

In this stage, we will conduct the experiments and take measurments related to performance

in terms of power and computational resources. The proposed solution mainly introduces

changes over two stages of LoRaWAN communication. First of all, during the activation

process a third key is derived and is therefore required to measure the impact of such task as

the end-node will be dealing with it. The other phase is uplink messages where messages

55

properly encrypted are meant to be delivered to LoRaWAN backend infrastructure. In this

phase, we have enhanced the security to protect the message between End-Nodes and

Gateway, there cryptographic operations that will take place in the end-node. In summary,

the following scenarios will be considered to conduct the experiments:

• Over the air activation (OTAA)

• Uplink Messages

During the execution of the experiments we will use predefined payloads combined with

information of power consumption and data of the sensor connected to the end-node as

shown in figure 4.5. We tested our solution under US915 which is the licensed frequency

for this contry, with the following Spread factor(SF) configuration and Bandwidth as we have

estimated in [69] that our solution might not be supported in all configurations. The following

table 4.6 shows the supported transmision configurations.

Figure 4.5: Arduino Device Log

Experiment assumptions and constraints

In order to conduct the experiments, there are some assumptions / restrictions that are

in place due to factors like geographic location, technology limitations, hardware features,

among others. These assumptions / constraints are documented below.

56

Table 4.6: Supported frequency plans for uplink ENi messages under US915 Band

Spread Factor (SF) Bandwidth in kHz Status Tested
SF7 125 Supported �
SF8 125 Supported �
SF9 125 Supported �

SF10 125 Not Supported in our solution -
SF11 125 Not supported by US915 region -
SF12 125 Not supported by US915 region -
SF7 500 Supported -
SF8 500 Supported -
SF9 500 Supported -

SF10 500 Supported -
SF11 500 Supported -
SF12 500 Not supported in our solution -

• Device Classes: ENi must be configured to work in Class A mode, as this approach

does not consider yet downlink messages (Classes B and C ENi).

• Frequency Band: Due to technology limitations, compatibility and geographic location

ENi devices only support US915 frequency (902-928 MHz). From 902.3 MHz to 914.9

MHz with 64 channels and 200 KHz spacing for uplink messages, 923.3 MHz to 927.5

MHz with 8 channels for downlink messages with 600 KHz spacing, and 903.3 MHz to

914.2 MHz with 1.6 MHz spacing.

• Gateway features: Due to technology limitations, gateway is not able to be deployed

outdoors for collecting information outside lab perimeter.

Testbed architecture componentes

In this section the following architecture (see figure 4.6) has been designed and deployed

to perform experiments for the two scenarios described in section 4.2.2. This architecture

is based on LoRaWAN specification [22,34]. We have developed and modified our version

of Chirpstack to support new security features proposed in this approach to authenticate

Gateways. Changes has been made over Appplication Server, Network Server, Join Server,

Chirpstack API, Chirpstack Bridge.

The following tables 4.7 and 4.8 describe the elements used to build the architecture

described in previous section. Table 4.7 describes the hardware used for deploying arduino

sketch code, to support both types two versions of the sketch have been created as ESP32

devices use libraries that are not fully compatible with Arduino devices.

57

Figure 4.6: Testbed Architecture

Role Hardware Sensors/Add-ons
Gateway Raspberry Pi 3 B+ RAK 2245 Ver A. Pi Hat

End-node A Heltech ESP 32 Wifi LoRa Photosensitive Sensor
End-node B Heltech ESP 32 Wifi LoRa V2 Photosensitive Sensor
End-node C Arduino UNO Elego Photosensitive Sensor
End-node D Arduino UNO R3 Photosensitive Sensor

Table 4.7: Devices, roles and sensors used

Role Software
Network Server Chirpstack OS - Network Server

Application Server Chirpstack OS - Application Server
Gateway Bridger Chirpstack OS - Gateway Bridge

Table 4.8: Backend Roles and software tools

58

4.2.3 Data Collection

The following code 1 is used to collect statistics from End-Nodes, this code registers

information about CPU usage, RAM usage and Battery Voltage over Arduino IDE Serial

Monitor. The output obtatined is later downloaded to an excel file to be processed for further

analysis. The table shown in figure 4.7 was used to proccess information collected from log

files. This table has 3 columns: i) Original Message, corresponds to the original message

captured from the Arduino IDE Serial Monitor. ii) Time column, extracts the time when the

message was captured. iii) Event, collects all information and metrics generated by the ENi

whilst sending packages. The following diagram describe steps followed to collect data.

Figure 4.7: Data table collection template

To collect information about milli amperes consumed, we will be using a multimeter

connected in series as shown in figure 4.8. Device information will be collected for 5 minutes.

Security Keys

During the process of data collection, we verify that keys are derived according to our protocol

design and specification. This section compiles that are used to authenticate devices and

enhance security between ENi <-> Gwi <-> NS . Besides pointing out derived keys, we also

determine the time taken to perform such tak measured in seconds (s).

Gateway Session Key Derivation

The following figures 4.9 and 4.10, shows the results of introducing the new key for the

End-Node to secure communication between ENi <-> Gwi .

59

Figure 4.8: Current measurement with multimeter

1 void getDeviceStatistics(){
2 //Hardware Statistics
3 long T0 = millis();
4 uint32_t startCycle = ESP.getCycleCount();
5 while (millis() < T0 + 1000) {}
6 uint32_t endCycle = ESP.getCycleCount();
7 Serial.printf("CPU Usage Hz: %u\n", endCycle - startCycle);
8 startCycle = ESP.getCycleCount();
9 delay(1000);

10 endCycle = ESP.getCycleCount();
11 Serial.printf("CPU Usage Hz: %u\n", ((endCycle - startCycle)));
12 Serial.println("Heap Free Bytes: "+String(ESP.getFreeHeap()));
13

14 //Power Consumption Statistics (Volts)
15 Serial.println("Battery : "+String(ReadVoltage(voltagePin))+" V");
16

17 //Sensor Data
18 Serial.println("Photo Sensor : "+GetSensorData(sensorPin));
19 }

Code 1: IoT Device Data Collection code

60

Figure 4.9: Gateway Session Key (GwSKey) derivation process in IoT device.

Figure 4.10: Gateway Session Key (GwSKey) derivation process in server side (Chirpstack
infrastructure).

61

In figure 4.9 highlighted in yellow appears the new derived key. In light a message to

define the star time when the device built the Join Request and sent to the server. In green,

the picture shows the final time when the Join Accept was received and then derived GwSKey.

It took approximately 5.08 seconds (s). From previous tests we have identified that there is a

mean time of 5.084 seconds (s) to derive this new key compared with the previous LoRaWAN

specification.

4.2.4 Data Analysis

4.2.5 Scenario 1 - OTAA Activation

For this scenario we have not configured specific bandwidth to deliver Join Request messages

as this is handled internally by the End-Node.

LoRaWAN 1.1

The time taken to build every Join request is denoted in figure 4.11.

Figure 4.11: OTAA Processing Time

The following figure 4.11 denotes power consumption measured in mili amperes (mA) for

the generation of Join Requests during Over the Air Activation Procedure.

LoRaWAN Enhanced

Figure 4.13 shows the time taken for a Join Request Message to be generated. On the other

hand, figure 4.14 shows power consumption measurements in terms of milli amperes(mA)

and Battery Voltage (V).

Figure 4.15 shows a comparision of processing times between the two versions. In this

figure, it can be noted that processing times are greater for the LoRaWAN enhanced version,

62

Figure 4.12: OTAA Power Consumption

Figure 4.13: OTAA Processing Time

Figure 4.14: OTAA Power Consumption

63

it took around 1 more second to generate a Join Request compared to the Original OTAA

activation procedure of LoRaWAN version 1.1.

Figure 4.15: OTAA Processing Time Comparison V1.1 vs V1.1 Enhanced

4.2.6 Scenario 2 - Uplink Messages

LoRaWAN 1.1

The following figures denote power consumption 4.16 and CPU usage 4.17 for LoRaWAN

version 1.1. The next figure shows power consumption measured in mA according to different

frequency configurations.

This figure 4.16 denotes the usage of CPU when generating uplink messages to the

LoRaWAN backend infrastructure. The next table 4.9 shows a summary of the satistics

collected in terms of power consumption of the LoRaWAN 1.1 version of the procotol.

Frequency Mean (mA) Min (mA) Max (mA) Average (mA)
SF7 - BW125 62,12 58,53 66,47 62,33
SF8 - BW125 64,37 60,40 70,16 65,06
SF9 - BW125 75,04 73,53 76,47 75,06

Table 4.9: Uplink Messages statistics for LoRaWAN Enhanced version

CPU usage is measured in percentage as denoted in the following figure 4.17.

In table 4.10, it can be seen that the average CPU usage for the three configurations

bandiwdths is 0.04%.

In the previous figures, it can be seen that the SF9 configuration demands more power

consumption and CPU usage.

64

Figure 4.16: Power Consumption to send uplink messages in LoRaWAN 1.1 enhanced
version.

Figure 4.17: CPU Usage to send uplink messages in LoRaWAN 1.1 enhanced version.

Frequency Mean Min Max Average
SF7 - BW125 0,04 0,04 0,05 0,04
SF8 - BW125 0,04 0,03 0,04 0,04
SF9 - BW125 0,04 0,01 0,08 0,04

Table 4.10: Uplink Messages CPU usage statistics for LoRaWAN version 1.1

65

LoRaWAN Enhanced

In figure 4.18 we can see that the proposed solution consumes more power with SF9 (78.57

mA approximately) configuration whilst with SF7 it requires approximately 67,58 mA for

transmitting information. We can also identify that Voltage consumption is dropping as battery

is discharging, it has reduced from 4.17V to 4,15V while sending around 75 messagews

every five seconds. The following table 4.11 shows statistics values of the results obtained.

Figure 4.18: Power Consumption to send uplink messages in LoRaWAN 1.1 enhanced
version.

Frequency Mean (mA) Min (mA) Max (mA) Average (mA)
SF7 - BW125 67,41 64,80 70,90 67,58
SF8 - BW125 76,47 73,53 80,23 76,87
SF9 - BW125 78,62 76,71 80,33 78,57

Table 4.11: Uplink Messages statistics for LoRaWAN Enhanced version

The following information (see Figure 4.19 and Table 4.12) shows CPU usage statistics

for the LoRaWAN Enhanced version. This values are represented in percentage of usage.

According to the figure SF9 is the configuration that demands more computational resources.

Frequency Mean Min Max Average
SF7 - BW125 0,04 0,04 0,05 0,04
SF8 - BW125 0,08 0,08 0,08 0,08
SF9 - BW125 0,07 0,04 0,09 0,07

Table 4.12: Uplink Messages statistics for LoRaWAN Enhanced version - CPU Usage in
usage percent

66

Figure 4.19: CPU Usage to send uplink messages in LoRaWAN 1.1 enhanced version.

RAM Analysis

For LoRaWAN v1.1, the sketch file (program) uses 272304 bytes (20%) of storage, the total

amount is 1310720 bytes. Global variables uses 15624 bytes (4%) of dynamic memory,

leaving 312056 bytes free for local variables. The maximum size is 327680 bytes.

For LoRaWAN v1.1 enhanced version,the sketch file (program) uses 291472 bytes (22%)

of storage, the total amount is 1310720 bytes. Global variables uses 15660 bytes (4%) of

dynamic memory, leaving 312056 bytes free for local variables. The maximum size is 327680

bytes.

In terms of RAM memory, for LoRaWAN 1.1 version the solution has a left heap space of

368252 bytes whilst the enhanced version has 368468 bytes left of heap, according to the

log.

4.2.7 Hypothesis validation

To validate our hypothesis we have used wilcoxon test. From those results, it was determined

that the values obtained are lower than 0.05 which indicates the null hypothesis is rejected

and hence alternative hypothesis is accepted by confirming that Gateway authentication

protocol affects performance and power consumption in end-node devices.

4.3 Discussion

In the Over the Air Activation Scenario, have identified that our approach requires approximately

87.19 mA to build and send Join Requests, and LoRaWAN 1.1 implementation uses 75.03

mA. It means that our solution requires more power to achieve such task (12.16 mA) which

represents 16% extra power effort. However, this amount of power does not represent an

67

issue as it is small and could be satisfied with rechargeable batteries.

From the results compiled in previos section 4.2, it can be seen that our solution demands

more power consumption but it is not that siginifcant as shown in table 4.13. We have coded

LoRaWAN 1.1 as "Lv11" and then enhanced version as "LEv11" to make table columns

smaller. According to the results obtained there would be an extra effort of around 18%

to send uplink packets over our solution compared to version 1.1. However, this does not

represent an issue for the use of our solution as the bandwidth configuration depends on the

size of the payload being sent. For our testing we decided to validate our solution through

several scenarios.

Frequency Lv11 (mA) LEv11 (mA) Difference (mA) Extra Power Required
SF7 - BW125 62,33 67,58 5,25 8,42%
SF8 - BW125 65,06 76,87 11,81 18,15%
SF9 - BW125 75,06 78,57 3,51 4,67%

Table 4.13: Uplink Messages power consumption for different bandwidth configurations

The following table 4.14 shows the a summary of the results obtained in terms of CPU

usage for the diffente bandwidth configurations. The value of the columns is expressed in

percentage. This table also shows a considerable demand of hardware resources (CPU

usage). However, the demand of resources is not quite considerable as the increase is less

than 1% of usage. Therefore, the proposed approach will not affect the performance of the

devices.

Frequency Lv11 LEv11 Difference Extra CPU Required
SF7 - BW125 0,04 0,04 0,00 0,00%
SF8 - BW125 0,04 0,08 0,04 122,55%
SF9 - BW125 0,04 0,07 0,03 56,32

Table 4.14: Uplink Messages CPU usage for different bandwidth configurations

On the other hand, in terms of RAM and storage our proposed approach demands an

extra 2% of storage. This, does not represent an issue for deploying this solution in similar

devices with limited resources.

From the results obtained it can be said that demands more power and computational

resources. However, as it has been described the required amounts can be handled with

the inclusion of batteries with higher capacity. For instance, with such amount of constant

consumption, assuming that we will have a 1100mA battery, we could be able to send

messages for around 16 hours to drain the battery totally, This scenario implies that the

device will be working all day sending messages every 5 seconds. However, this is not a use

case for LoRaWAN as Class A devices are intended to sense information in large periods of

time. As mentioned before, this approach is not intended yet to Class B or C devices as they

are more power demanding and might need an unlimited power source to work efficiently.

68

Chapter 5

CONCLUSIONS AND FUTURE
WORKS

This chapter presents the conclusions as well as future works of the thesis. Section 5.1

presents the conclusions while Section 5.2 describes limitations and future works concerning

LoRaWAN networks.

5.1 Conclusions

In this work, we have proposed a secure and lightweight protocol to address gateway

authentication over LoRaWAN infrastructure. Within IoT architectures, authentication is a

major security concern. In most cases, it is mostly oriented to End-Devices as they are

information producers; however, there are other devices like gateways that are assumed to

be "trusted". Authentication task is performed by including third-party elements (like CA or

Blockchain) or is an implementation that is part of a specific piece of software. This turns

out in several types of deployments that might lead to compromise architectures by opening

more vulnerabilities. Gateway authentication is a feature that is out of the LoRaWAN scope,

and hence this has led to empirically make the best effort to address such issue. Our solution

provides a design that takes advantage of LoRaWAN architecture without including further

components or roles.

The literature points out several types of vulnerabilities as shown in Table 2.2. Most of

the research have focused in improving LoRaWAN v1.0.x. and have not deeply analyzed

v1.1 as it seems to fix most security vulnerabilities reported in versions 1.0.x. However, this

assumption has not been confirmed since few works analyzing v1.1 have found that are still

vulnerabilities to be addressed. It called our attention that during the review of the literature

we found that the gateway is an element qualified as "trusted" and within the specification

there is no mechanism to ensure that statement. In fact, this lack of assurance led us to

69

understand that this device, despite being critical, is not authenticated within the LoRaWAN

network. Hence, this non-existence of authentication is vaguely or almost nully discussed

and analyzed. Only a few works discuss this availability issue [15,21,46].

Lighweight cryptographic operations provide an appropriate level of security to accomplish

tasks like authentication. These operations are oriented to be deployed over devices with

few computational resources. Operations like XOR combined with other techniques such

as hashing provide an adequate level of protection when they are oriented to protect small

amounts of information. Likewise, symmetric encryption is not a consumer of computational

resources if there are no huge keys to be calculated. Moreover, CMAC (Cipher-based

message authentication codes) are a mechanism to verify the autenticity of a message

and are generally based on symmetric cryptography. The combinataion of XOR, hashing,

symmetric cryptography and CMAC allowed to design a set of lightweight security protocols to

properly handle the lack of gateway authentication over LoRaWAN network. This design can

address authentication on two sides: End-Node with gateways, and gateways with LoRaWAN

back-end infrastructure (Network Server). The proposed approach, related to other works

like [21], does not include new elements that may generate new security breaches.

BAN Logic and Scyther Tool formally verify the level of security of communication protocols.

These tools are popular among research community to point out security issues or denote

great strength in security aspects. These techniques have allowed to determine that, from

a formal security perspective, including new protocols in LoRaWAN infrastructure does not

open breaches. Likewise, this set of protocols does not represent a problem of energy and

computational consumption for the End-Node. Although the primary target of this approach

was gateways, we cannot ignore collateral effects that can be generated on elements with low

energy consumption and computational cost (End-Nodes). We have measured RAM, CPU,

Time, Battery Voltage and Energy current over an IoT monitoring scenario (light sensing), to

evaluate the impact of this solution over the End-Node. The results obtained in section 4.2

have shown that despite requiring additional capacities, this solution is not a high consuming

resource one. It generates a small impact but it is not representative and does not represent

a threat to the performance of the equipment or its power source. The approach used for this

evaluation contemplate IoT devices with limited and similar hardware features as other smart

sensing devices. Therefore, these protocols can be implemented over IoT sensing devices

and gateways with similar or higher hardware and energy resources.

The major milestone obtained with this research, was the development of LoRaWAN

library to support V1.1 [70] available in github 1. To the best of our knowledge, there are no

open and public frameworks that currently handle that version. This library can be deployed

over IoT Arduino like devices supporting LoRaWAN network connectivity and are agnostic to

the type of application deployed.

1Available at: https://github.com/JuanSulca/arduino-lmic

70

5.2 Future Works and perspectives

IoT devices leveraged on LPWAN protocols and using LoRaWAN are growing and predictions

state there will be billions in few years. This exponential growth opens greatly involved

the participation of industry and academia to develop new applications. However, security

issues are a latent concern that is not necessarily addressed to the same extent as the

new solutions that appear. This opens the door to face security problems that might

compromises confidentialiy, integrity and availability (CIA triad) of information and systems

based on this technologies. Therefore, it is necessary to profundize in solutions that enhances

authentication and key exchange by reducing human intervention to prevent misconfigurations

that might lead to open new vulnerabilities.

One of the limitations that appear in this research is that current protocols are based on

cryptographic libraries that would be deprecated and hence providing such support would

affect and demand more power consumption. The current source code shall be optimized to

adapt to other scenarios where IoT devices would have less hardware or energy resources.

Another limitation found during our research is related to data transmission rates. The

devices used, operated over 915Mhz but LoRaWAN can operate over 433Mhz and 868Mhz

depending on the country where the test is performed. Although the library is adaptable

to any type of frequency, it would be useful to test over such frequencies to analyze the

behaviour of the proposed solution under such conditions.

LoRaWAN has several types of configurations, it is important to extend the advantages

of the proposed protocols to authenticate downlink messages so that End-Nodes will only

be able to receive trusted messages from gateways, for a fully authenticated architecture

ensuring end-to-end security.

The inclusion of AI would improve authentication schemes by recognizing other elements

of the infrastructure. Also, it would allow to build proactive tools to identify potential attacks

like DDoS over this type of technologies. It would allow not only to develop protections over

TCP/IP layered protocols but also LPWAN schemes.

Finally, zero-trust is a novel approach that allows to define a policy for accessing resources

based on needs to work. The inclusion of initiatives like Zero-Trust over LoRaWAN networks

would allow to have a fine granularity model where devices can share specific information with

other members of the back-end infrastructure or share information among other End-Node

devices.

71

Bibliography

[1] Y. Qian, “Towards decentralized iot security enhancement: A blockchain approach,”

Comput. Electr. Eng, vol. 72, pp. 266–273, 11 2018.

[2] E. Clarissa, F.-B. Gregor, and H. David, “From facets to a universal definition-an

analysis of iot usage in retail,” in 14th International Conference on Wirtschaftsinformatik

Proceedings, Siegen, Germany, february 2019.

[3] R. Sinha, Y. Wei, and S.-H. Hwang, “A survey on lpwa technology: Lora and nb-iot,”

ICT Express, vol. 3, pp. 14–21, 03 2017.

[4] S. R. Department, “Iot: number of connected devices worldwide 2012-2025 |

statista,” p. 11, 11 2016. [Online]. Available: https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/

[5] G. Inc, “Leading the iot,” Gartner Inc, Tech. Rep., 2017. [Online]. Available:

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

[6] J. J. Barriga, J. Sulca, J. L. León, A. Ulloa, D. Portero, R. Andrade, and S. G. Yoo, “Smart

parking: A literature review from the technological perspective,” Applied Sciences,

vol. 9, no. 21, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/21/4569

[7] J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, “A survey on lora networking:

Research problems, current solutions, and open issues,” IEEE Communications

Surveys and Tutorials, vol. 22, no. 1, pp. 371–388, 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/8883217

[8] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN

technologies for large-scale IoT deployment,” ICT Express, vol. 5, no. 1, pp. 1–7, Mar.

2019. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01670379

[9] M. A. Ertürk, M. A. Aydın, M. T. Büyükakkaşlar, and H. Evirgen, “A survey on lorawan

architecture, protocol and technologies,” Future Internet, vol. 11, no. 10, 2019. [Online].

Available: https://www.mdpi.com/1999-5903/11/10/216

72

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.mdpi.com/2076-3417/9/21/4569
https://ieeexplore.ieee.org/document/8883217
https://hal.archives-ouvertes.fr/hal-01670379
https://www.mdpi.com/1999-5903/11/10/216

[10] R. O. Andrade and S. G. Yoo, “A comprehensive study of the use of lora in the

development of smart cities,” Applied Sciences, vol. 9, no. 22, 2019. [Online]. Available:

https://www.mdpi.com/2076-3417/9/22/4753

[11] K. O. Adefemi Alimi, K. Ouahada, A. M. Abu-Mahfouz, and S. Rimer, “A

survey on the security of low power wide area networks: Threats, challenges,

and potential solutions,” Sensors, vol. 20, no. 20, 2020. [Online]. Available:

https://www.mdpi.com/1424-8220/20/20/5800

[12] J. J. Barriga and G. Yoo S, “Internet of things: A security survey review on long range

wide area network (lorawan),” J. Eng. Appl. Sci, vol. 14, pp. 9774–9787, 09 2019.

[13] J. Lee, D. Hwang, J. Park, and K.-H. Kim, “Risk analysis and countermeasure for

bit-flipping attack in lorawan,” 2017 International Conference on Information Networking

(ICOIN), pp. 549–551, 2017.

[14] J. Kim and J. Song, “A dual key-based activation scheme for secure lorawan,” Wirel.

Commun. Mob. Comput, vol. 2017, 2017.

[15] L. Jae Young, “A study on gateway authentication protocol in iot,” Journal of

Convergence for Information Technology, vol. 7, no. 3, p. 91–96, 2017.

[16] X. Yang, E. Karampatzakis, C. Doerr, and F. Kuipers, “Security vulnerabilities in lorawan,”

2018 IEEE/ACM Third International Conference on Internet-of-Things Design and

Implementation (IoTDI), pp. 129–140, 2018.

[17] I. Butun, N. Pereira, and M. Gidlund, “Analysis of lorawan v1.1 security,” Proceedings of

the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation

of Smart Objects -SMARTOBJECTS ’18, pp. 1–6, 2018.

[18] T. Dönmez and E. Nigussie, “Security of lorawan v1.1 in backward compatibility

scenarios,” Procedia Computer Science, vol. 134, pp. 51–58, 2018.

[19] E. Gresak and M. Voznak, “Protecting gateway from abp replay attack on lorawan,” in

AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory

and Application, I. Zelinka, P. Brandstetter, T. Trong Dao, V. Hoang Duy, and S. B. Kim,

Eds. Cham: Springer International Publishing, 2018, pp. 400–408.

[20] M. Eldefrawy, I. Butun, N. Pereira, and G. M, “Formal security analysis of lorawan,”

Comput. Networks, vol. 148, pp. 328–339, 01 2019.

[21] A. Mohamed, F. Wang, I. Butun, J. Qadir, R. Lagerström, P. Gastaldo, and D. D. Caviglia,

“Enhancing cyber security of lorawan gateways under adversarial attacks,” Sensors,

vol. 22, no. 9, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/9/3498

73

https://www.mdpi.com/2076-3417/9/22/4753
https://www.mdpi.com/1424-8220/20/20/5800
https://www.mdpi.com/1424-8220/22/9/3498

[22] L. Alliance, “Lorawan tm 1.1 specification,” p. 97331, 2017. [Online]. Available: https:

//lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf

[23] A. Lora, “Ts2-1.1.0 lorawan backend interfaces specification,” p. 85, 2020.

[Online]. Available: https://resources.lora-alliance.org/technical-specifications/

ts002-1-1-0-lorawan-backend-interfaces

[24] R. H. Alan, T. M. Salvatore, P. Jinsoo, and R. Sudha, “Design science in information

systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004. [Online]. Available:

http://www.jstor.org/stable/25148625

[25] A. Hevner and S. Chatterjee, Design Science Research Frameworks. Boston,

MA: Springer US, 2010, pp. 23–31. [Online]. Available: https://doi.org/10.1007/

978-1-4419-5653-8_3

[26] G. A. Abdul, “Cryptonet generic security framework for cloud computing environments,”

Ph.D. dissertation, School of Information and Communication Technologies , 2011.

[Online]. Available: https://www.diva-portal.org/smash/get/diva2:411892/FULLTEXT01.

pdf

[27] A. Dennis, R. Jones, D. Kildare, and C. Barclay, “Design science approach

to developing and evaluating a national cybersecurity framework for jamaica,”

THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING

COUNTRIES, vol. 62, no. 1, pp. 1–18, 2014. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/j.1681-4835.2014.tb00444.x

[28] M. Steven and C. Dan, “A design science approach to constructing critical infrastructure

and communicating cybersecurity risks,” Technology Innovation Management Review,

vol. 5, pp. 6–16, 06/2015 2015. [Online]. Available: http://timreview.ca/article/902

[29] R. Jyri and P. Rauno, “Design science research towards resilient cyber-physical ehealth

systems,” FinJeHeW, vol. 9, p. 203, 2017. [Online]. Available: http://www.psc-europe.eu

[30] A. Alexei, “Implementing design science research method to develop a cyber security

framework for heis in moldova,” in The 11th International Conference on Electronics,

Communications and Computing, 03 2021, pp. 228–231.

[31] W. Group, “What makes sigfox so secure for the internet of things,” WND Group,

Tech. Rep., 09 2017. [Online]. Available: https://www.wndgroup.io/2017/09/18/

sigfox-security-internet-things/

[32] L. Alliance, “A technical overview of lora ® and lorawan tm what is it?” San Ramon, CA,

2015. [Online]. Available: https://lora-developers.semtech.com/uploads/documents/

files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf

74

https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://resources.lora-alliance.org/technical-specifications/ts002-1-1-0-lorawan-backend-interfaces
https://resources.lora-alliance.org/technical-specifications/ts002-1-1-0-lorawan-backend-interfaces
http://www.jstor.org/stable/25148625
https://doi.org/10.1007/978-1-4419-5653-8_3
https://doi.org/10.1007/978-1-4419-5653-8_3
https://www.diva-portal.org/smash/get/diva2:411892/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:411892/FULLTEXT01.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1681-4835.2014.tb00444.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1681-4835.2014.tb00444.x
http://timreview.ca/article/902
http://www.psc-europe.eu
https://www.wndgroup.io/2017/09/18/sigfox-security-internet-things/
https://www.wndgroup.io/2017/09/18/sigfox-security-internet-things/
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf

[33] J. J. Barriga, J. Sulca, J. León, A. Ulloa, D. Portero, J. García, and S. G. Yoo, “A smart

parking solution architecture based on lorawan and kubernetes,” Applied Sciences,

vol. 10, no. 13, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/13/4674

[34] L. Alliance, “Lorawan remote multicast setup specification v1.0.0 | lora alliance tm,” 06

2019. [Online]. Available: https://lora-alliance.org/wp-content/uploads/2020/11/remote_

multicast_setup_v1.0.0.pdf

[35] S. Iskhakov, R. Meshcheryakov, and A. Iskhakova, “Analysis of vulnerabilities in

low-power wide-area networks by example of the lorawan ∗,” IV International Research

Conference "Information Technologies in Science, Management, Social Sphere and

Medicine, vol. 72, pp. 334–338, 2017.

[36] W. Sung, H. Ahn, J. Kim, and S. Choi, “Protecting enddevice from replay attack on

lorawan,” 20th International Conference on Advanced Communication Technology

(ICACT), p. 1, 2018.

[37] S. Tomasin, S. Zulian, and L. Vangelista, “Security analysis of lorawan join procedure

for internet of things networks,” 2017 IEEE Wireless Communications and Networking

Conference Workshops, WCNCW 2017, pp. 1–6, 2017.

[38] S. Naoui, M. Elhdhili, and L. Saidane, “Enhancing the security of the iot lorawan

architecture,” 2016 International Conference on Performance Evaluation and Modeling

in Wired and Wireless Networks (PEMWN), pp. 1–7, 2016.

[39] E. Aras, N. Small, G. Ramachandran, S. Delbruel, W. Joosen, and D. Hughes,

“Selective jamming of lorawan using commodity hardware,” Proceedings of the 14th EAI

International Conference on Mobile and Ubiquitous Systems: Computing, Networking

and Services, pp. 363–372, 2017.

[40] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring the security

vulnerabilities of lora,” in 2017 3rd IEEE International Conference on Cybernetics

(CYBCONF), 2017, pp. 1–6.

[41] S.-I. R, “Enhancing lorawan security through a lightweight and authenticated key

management approach,” Sensors, vol. 18, p. 1833, 06 2018.

[42] G. Avoine and L. Ferreira, “Rescuing lorawan 1.0,” Financial Cryptography and Data

Security, vol. 3, pp. 779–787, 2018.

[43] K. Tsai, Y. Huang, F. Leu, I. You, Y. Huang, and C. Tsai, “Aes-128 based secure low

power communication for lorawan iot environments,” IEEE Access, 2018.

[44] J. Kim and J. Song, “A secure device-to-device link establishment scheme for lorawan,”

IEEE Sensors Journal, vol. 18, pp. 2153–2160, 2018.

75

https://www.mdpi.com/2076-3417/10/13/4674
https://lora-alliance.org/wp-content/uploads/2020/11/remote_multicast_setup_v1.0.0.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/remote_multicast_setup_v1.0.0.pdf

[45] Cispa, A. Nasir, H. Qureshi, A. Ashfaq, S. Mumtaz, and J. Rodriguez, “Network intrusion

detection system for jamming attack in lorawan join procedure,” 2018 IEEE International

Conference on Communications (ICC), pp. 1–6, 06 2014.

[46] M. Olof, T. Rikard, W. Joakim, and K. Stig Arne, “A survey on attacks and defences

on lorawan gateways,” Decision Support Systems and Industrial IoT in Smart Grid,

Factories, and Cities, pp. 19–38, 6 2021.

[47] L. S. Laufenberg, “Impersonating lorawan gateways using semtech packet forwarder,”

CoRR, vol. abs/1904.10728, 2019. [Online]. Available: http://arxiv.org/abs/1904.10728

[48] F. Coman, K. Malarski, M. Petersen, and R. S, “Security issues in internet of things:

Vulnerability analysis of lorawan, sigfox and nb-iot,” Glob. IoT Summit, pp. 1–6, 2019.

[49] M. Ralambotiana, “Key management with a trusted third party using lorawan protocol :

A study case for e2e security,” Pdfs.Semanticscholar.Org, p. 78, 2018.

[50] S.-Y. Gao, X.-H. Li, and M.-D. Ma, “A malicious behavior awareness and defense

countermeasure based on lorawan protocol,” Sensors, vol. 19, p. 5122, 11 2019.

[51] M. Van Leent, “An improved key distribution and updating mechanism for low power

wide area networks (lpwan),” Master’s thesis, Universitei Leiden, 2017.

[52] J. Han and J. Wang, “An enhanced key management scheme for lorawan,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), pp.

407–416, 2018.

[53] V. Ribeiro, R. Holanda, A. Ramos, and J. J. P. C. Rodrigues, “Enhancing key

management in lorawan with permissioned blockchain,” Sensors, vol. 20, no. 11, 2020.

[Online]. Available: https://www.mdpi.com/1424-8220/20/11/3068

[54] T. Dönmez and E. Nigussie, “Security of join procedure and its delegation in

lorawan v1.1,” in The 15th International Conference on Mobile Systems and

Pervasive Computing (MobiSPC 2018) / The 13th International Conference on

Future Networks and Communications (FNC-2018) / Affiliated Workshops, Gran

Canaria, Spain, August 13-15, 2018, ser. Procedia Computer Science, A. Yasar and

E. M. Shakshuki, Eds., vol. 134. Elsevier, 2018, pp. 204–211. [Online]. Available:

https://doi.org/10.1016/j.procs.2018.07.202

[55] J. Kim and J. Song, “A simple and efficient replay attack prevention scheme

for lorawan,” in Proceedings of the 2017 the 7th International Conference

on Communication and Network Security, ser. ICCNS 2017. New York, NY,

USA: Association for Computing Machinery, 2017, p. 32–36. [Online]. Available:

https://doi.org/10.1145/3163058.3163064

76

http://arxiv.org/abs/1904.10728
https://www.mdpi.com/1424-8220/20/11/3068
https://doi.org/10.1016/j.procs.2018.07.202
https://doi.org/10.1145/3163058.3163064

[56] S. Na, D. Hwang, W. Shin, and K. Kim, “Scenario and countermeasure for replay attack

using join request messages in lorawan,” International Conference on Information

Networking, pp. 718–720, 2017.

[57] S. M. Danish, M. Lestas, H. K. Qureshi, K. Zhang, W. Asif, and M. Rajarajan,

“Securing the lorawan join procedure using blockchains,” Cluster Computing, vol. 23,

no. 3, pp. 2123–2138, Sep 2020. [Online]. Available: https://doi.org/10.1007/

s10586-020-03064-8

[58] M. Ingham, J. Marchang, and D. Bhowmik, “Iot security vulnerabilities and predictive

signal jamming attack analysis in lorawan,” IET Inf. Secur, vol. 14, pp. 368–379, 2020.

[59] S. G. Yoo and J. J. Barriga, “Privacy-aware authentication for wi-fi based indoor

positioning systems,” in Applications and Techniques in Information Security, L. Batten,

D. S. Kim, X. Zhang, and G. Li, Eds. Singapore: Springer Singapore, 2017, pp.

201–213.

[60] J. J. Barriga A., S. G. Yoo, and J. C. Polo, “Enhancement to the privacy-aware

authentication for wi-fi based indoor positioning systems,” in Applied Cryptography and

Network Security Workshops, J. Zhou, R. Deng, Z. Li, S. Majumdar, W. Meng, L. Wang,

and K. Zhang, Eds. Cham: Springer International Publishing, 2019, pp. 143–155.

[61] M. T. Hammi, E. Livolant, P. Bellot, A. Serhrouchni, P. Minet, and P. A.

Minet, “A lightweight iot security protocol,” 2017. [Online]. Available: https:

//hal.archives-ouvertes.fr/hal-01640510

[62] V. Varadharajan, U. Tupakula, and K. Karmakar, “Lightweight authentication

mechanism and oauth protocol for iot devices,” Advanced Cyber Security

Engineering Research Centre, Tech. Rep., 2018. [Online]. Available: https:

//www.newcastle.edu.au/__data/assets/pdf_file/0003/552018/TR2-ISIF-ASIA.pdf

[63] R. Amin, N. Kumar, G. Biswas, R. Iqbal, and V. Chang, “A light weight authentication

protocol for iot-enabled devices in distributed cloud computing environment,” Future

Generation Computer Systems, vol. 78, pp. 1005–1019, 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167739X1630824X

[64] J. Oh, S. Yu, J. Lee, S. Son, M. Kim, and Y. Park, “A secure and lightweight

authentication protocol for iot-based smart homes,” Sensors, vol. 21, pp. 1–24, 2 2021.

[Online]. Available: https://www.mdpi.com/1424-8220/21/4/1488

[65] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM

Trans. Comput. Syst., vol. 8, no. 1, p. 18–36, feb 1990. [Online]. Available:

https://doi.org/10.1145/77648.77649

77

https://doi.org/10.1007/s10586-020-03064-8
https://doi.org/10.1007/s10586-020-03064-8
https://hal.archives-ouvertes.fr/hal-01640510
https://hal.archives-ouvertes.fr/hal-01640510
https://www.newcastle.edu.au/__data/assets/pdf_file/0003/552018/TR2-ISIF-ASIA.pdf
https://www.newcastle.edu.au/__data/assets/pdf_file/0003/552018/TR2-ISIF-ASIA.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X1630824X
https://www.mdpi.com/1424-8220/21/4/1488
https://doi.org/10.1145/77648.77649

[66] S. S. Ahamad and A. S. K. Pathan, “Trusted service manager (tsm) based

privacy preserving and secure mobile commerce framework with formal verification,”

Complex Adaptive Systems Modeling, vol. 7, pp. 1–18, 12 2019. [Online]. Available:

https://casmodeling.springeropen.com/articles/10.1186/s40294-019-0064-z

[67] C. Cremers, “Scyther: Semantics and verification of security protocols,”

Ph.D. dissertation, Technische Universiteit Eindhoven, 2006. [Online]. Available:

https://pure.tue.nl/ws/files/2425555/200612074.pdf

[68] S. Peisert and M. Bishop, “How to design computer security experiments,” in Fifth World

Conference on Information Security Education, L. Futcher and R. Dodge, Eds. New

York, NY: Springer US, 2007, pp. 141–148.

[69] J. J. Barriga and S. G. Yoo, “Securing end-node to gateway communication in lorawan

with a lightweight security protocol,” IEEE Access, vol. 10, pp. 96 672–96 694, 2022.

[Online]. Available: https://ieeexplore.ieee.org/document/9875282

[70] J. M. S. Coral, “Adaptación de la biblioteca lmic en arduino para soportar

la especificación lorawan versión 1.1.” 7 2021. [Online]. Available: http:

//bibdigital.epn.edu.ec/handle/15000/21728

[71] I. Butun, N. Pereira, and M. Gidlund, “Security risk analysis of lorawan and future

directions,” Futur. Internet, vol. 11, pp. 1–22, 2018.

[72] T. Mundt, J. Bauer, A. Gladisch, J. Goltz, S. Rietschel, and S. Wiedenmann, “General

security considerations of lorawan version 1.1 infrastructures,” MobiWac 2018 -Proc.

16th ACM Int. Symp. Mobil. Manag. Wirel. Access, pp. 118–123, 2018.

[73] D. Basu, T. Gu, and P. Mohapatra, “Security issues of low power wide area networks in

the context of lora networks,” CoRR, vol. abs/2006.16554, 2020. [Online]. Available:

https://arxiv.org/abs/2006.16554

[74] C. Cremers, “The scyther tool: Verification, falsification, and analysis of security

protocols -tool paper,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial and Lecture Notes in Bioinformatics, vol. 5123, pp. 414–418, 2008.

[75] A. Acosta, E. Tena-Sánchez, C. Jiménez, and J. Mora, “Power and energy issues on

lightweight cryptography,” J. Low Power Electron, vol. 13, pp. 326–337, 09 2017.

[76] K. Olha, “An investigation of lightweight cryptography and using the key derivation

function for a hybrid scheme for security in iot,” Master’s thesis, Blekinge Institute of

Technology, 2017.

78

https://casmodeling.springeropen.com/articles/10.1186/s40294-019-0064-z
https://pure.tue.nl/ws/files/2425555/200612074.pdf
https://ieeexplore.ieee.org/document/9875282
http://bibdigital.epn.edu.ec/handle/15000/21728
http://bibdigital.epn.edu.ec/handle/15000/21728
https://arxiv.org/abs/2006.16554

[77] J.-P. Kaps and B. Sunar, “Energy comparison of aes and sha-1 for ubiquitous

computing,” in Emerging Directions in Embedded and Ubiquitous Computing. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 372–381.

[78] M. Kumar, “Single bit full adder design using 8 transistors with novel 3 transistors xnor

gate,” Int. J. VLSI Des. Commun. Syst, vol. 2, pp. 47–59, 12 2011.

[79] K. Luke E, C. Jiaming James, T. Rebecca, L. Vicky, and M. Matthew, “Security and

performance in iot: A balancing act,” IEEE Access, vol. 8, pp. 121 969–121 986, 2020.

[80] K. Peter, B. Lena, L. Leandro, S. Thomas C, and W. A. Matthias, “A performance

study of crypto-hardware in the low-end iot,” in Proceedings of the 2021 International

Conference on Embedded Wireless Systems and Networks. ACM, 2 2021, power

Consumption for SHA-256 in mA. [Online]. Available: https://github.com/

[81] T. T. Industries, “The things network - lorawan airtime calculator,” 2016. [Online].

Available: https://www.thethingsnetwork.org/airtime-calculator

[82] L. A. T. C. R. P. Workgroup, “Rp002-1.0.3 lorawan® regional parameters,” San Ramon,

CA, 5 2021. [Online]. Available: https://hz137b.p3cdn1.secureserver.net/wp-content/

uploads/2021/05/RP002-1.0.3-FINAL-1.pdf?time=1672853176

[83] L. Alliance, “Lora basics™ station | developer portal,” LoRa Alliance.

[Online]. Available: https://lora-developers.semtech.com/build/software/lora-basics/

lora-basics-for-gateways

[84] I. Chatzigiannakis, V. Liagkou, and L. &, “Brief announcement: Providing end-to-end

secure communication in low-power wide area networks,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) (Vol. 10879 LNCS, pp. 101–104, 2018.

[85] E. van Es, “Lorawan vulnerability analysis:(in) validation of possible vulnerabilities in

the lorawan protocolspecification.” Master’s thesis, OpenUniversity of the Netherlands,

2018.

[86] Gartner, “Gartner says 4.9 billion connected "things" will be in

use in 2015. retrieved,” Gartner Inc., Tech. Rep., 11 2014.

[Online]. Available: https://www.gartner.com/en/newsroom/press-releases/

2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-\

up-31-percent-from-2016

[87] M. Knight and B. Seeber, “Decoding lora: Realizing a modern lpwan with sdr,”

Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016. [Online]. Available:

https://pubs.gnuradio.org/index.php/grcon/article/view/8

79

https://github.com/
https://www.thethingsnetwork.org/airtime-calculator
https://hz137b.p3cdn1.secureserver.net/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf?time=1672853176
https://hz137b.p3cdn1.secureserver.net/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf?time=1672853176
https://lora-developers.semtech.com/build/software/lora-basics/lora-basics-for-gateways
https://lora-developers.semtech.com/build/software/lora-basics/lora-basics-for-gateways
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-\up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-\up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-\up-31-percent-from-2016
https://pubs.gnuradio.org/index.php/grcon/article/view/8

[88] R. Krejčí, O. Hujňák, and M. Švepeš, “Security survey of the iot wireless protocols,”

2017 25th Telecommunication Forum (TELFOR), pp. 1–4, 2017.

[89] C. Kuo, V. Chang, and C. Lei, “A feasibility analysis for edge computing fusion in lpwa

iot environment with sdn structure,” Proceedings of 2017 International Conference on

Engineering and Technology, ICET 2017, pp. 1–6, 2018.

[90] K. Ema and S. Mark, “Security-related research in ubiquitous computing - results of a

systematic literature review,” CoRR, vol. abs/1701.00773, 2017. [Online]. Available:

http://arxiv.org/abs/1701.00773

[91] V. Liagkou, C. Stylios, and D. Salmas, “Vr training model for exploiting security in lpwan,”

Procedia CIRP, vol. 79, pp. 724–729, 2019.

[92] M. Kais, B. Eddy, C. Frederic, and M. Fernand, “A comparative study of lpwan

technologies for large-scale iot deployment,” ICT Express, vol. 5, no. 1, pp.

1–7, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S2405959517302953

[93] R, Hwang, D. Shin, W. Kim, and K, “Scenario and countermeasure for replay attack

using join request messages in lorawan,” Mendeley -Reference Management Software

& Researcher Network, pp. 718–720, 08 2016.

[94] K. Olsson, S. Finnsson, V. Dadarlat, E. De Poorter, and A. Munteanu, “Exploring lora

and lorawan: A suitable protocol for iot weather stations,” Proceedings of IEEE Sensors,

2017.

[95] B. Oniga, V. Dadarlat, E. De Poorter, and A. Munteanu, “Analysis, design and

implementation of secure lorawan sensor networks,” Proceedings -2017 IEEE 13th

International Conference on Intelligent Computer Communication and Processing, pp.

421–428, 2017.

[96] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An

overview,” IEEE Communications Surveys and Tutorials, vol. 19, pp. 855–873, 2017.

[97] Eef, H. Vranken, and A. Hommersom, “Denial-of-service attacks on lorawan,”

Proceedings of the, 08 2018.

[98] J. J. Barriga A and S. G. Yoo, “Security over smart home automation systems: A survey,”

in Developments and Advances in Defense and Security, Á. Rocha and T. Guarda, Eds.

Cham: Springer International Publishing, 2018, pp. 87–96.

[99] T. Yang, F. Zhai, H. Xu, and W. Li, “Design of a secure and efficient

authentication protocol for real-time accesses of multiple users in piot-oriented

multi-gateway wsns,” Energy Reports, vol. 8, pp. 1200–1211, 2022, 2021

80

http://arxiv.org/abs/1701.00773
https://www.sciencedirect.com/science/article/pii/S2405959517302953
https://www.sciencedirect.com/science/article/pii/S2405959517302953

International Conference on New Energy and Power Engineering. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2352484722003080

[100] J. Oh, S. Yu, J. Lee, S. Son, M. Kim, and Y. Park, “A secure and lightweight

authentication protocol for iot-based smart homes,” Sensors, vol. 21, no. 4, 2021.

[Online]. Available: https://www.mdpi.com/1424-8220/21/4/1488

81

https://www.sciencedirect.com/science/article/pii/S2352484722003080
https://www.mdpi.com/1424-8220/21/4/1488

ANNEXES

82

Annex 1: Arduino Sketch LoRaWAN Enhanced Version

1

2 /***
3 * LoRaWAN v1.1 with Security Enhancementes for ESP32 Devices
4 * @author Jhonattan Barriga
5 * v1.0 - gwSKey derivation and sensor metrics
6 *
7 ***/
8

9 #include <Arduino.h>
10 #include <lmic.h>
11 #include <hal/hal.h>
12 #include <SPI.h>
13 #include "heltec.h"
14

15 #ifdef COMPILE_REGRESSION_TEST
16 # define FILLMEIN 0
17 #else
18 # warning "You must replace the values marked FILLMEIN with real values from the TTN control

panel!"↪→

19 # define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN)
20 #endif
21 #define CFG_us915 1
22

23 //LoRaWAN initial security features
24 static const u1_t PROGMEM APPEUI[8]={ 0xF9, 0x51, 0x02, 0xD0, 0x7E, 0xD5, 0xB3, 0x70 };
25 void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
26 //Dev EUI
27 static const u1_t PROGMEM DEVEUI[8]={ 0x63, 0x24, 0xBC, 0x18, 0x84, 0xF7, 0x8A, 0x4E };
28 //JoinEUI
29 static const u1_t PROGMEM JoinEui[8] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
30 void os_getJoinEui (u1_t* buf) { memcpy_P(buf, JoinEui, 8);}
31

32 // This key should be in big endian format.
33 //AppKey
34 static const u1_t PROGMEM APPKEY[16] = { 0xD8, 0x9E, 0x6E, 0xD1, 0x37, 0x76, 0x86, 0x8D,

0x7B, 0xAE, 0xCB, 0x3E, 0x40, 0x46, 0x30, 0x47 };↪→

35 void os_getAppKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
36 //NwkKey
37 static const u1_t PROGMEM NwkKey[16] = { 0xA1, 0xB2, 0xC3, 0xD4, 0xE5, 0xF6, 0xA7, 0xB8,

0xC1, 0xD2, 0xE3, 0xF4, 0xA5, 0xB6, 0xC7, 0xD8 };↪→

38 void os_getNwkKey (u1_t* buf) { memcpy_P(buf, NwkKey, 16);}
39

40 static uint8_t mydata[] = "Node A - V1.1 Modified "; //Part of payload to be sent
41 static osjob_t sendjob;
42

43 //Empty functions
44 void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
45 void os_saveFCntUp (u4_t cntr){}

83

46 void os_getFCntUp (u4_t* buf){}
47 void os_saveNFCntDown (u4_t buf){}
48 void os_getNFCntDown (u4_t* buf){}
49 void os_saveAFCntDown (u4_t buf){}
50 void os_getAFCntDown (u4_t* buf){}
51 void os_saveDevNonce (u2_t buf){}
52 void os_getDevNonce (u2_t* buf){}
53 void os_saveJoinNonce (u2_t buf){}
54 void os_getJoinNonce (u2_t* buf){}
55 u1_t os_deviceResterted (){return 0;}
56

57 // Schedule TX every this many seconds (might become longer due to duty cycle limitations).
58 const unsigned TX_INTERVAL = 5;
59

60 // Pin mapping
61 const lmic_pinmap lmic_pins = {
62 .nss = 18,
63 .rxtx = LMIC_UNUSED_PIN,
64 .rst = 14,
65 .dio = {26, 33, 32}
66 };
67

68

69 //Sensor variables.
70 float Celsius, Fahrenheit, Kelvin;
71 float currentTemp;
72 float currentHumidity;
73 int sensorPin = 34; // select the input pin for the LDR
74 int sensorValue = 0; // variable to store the value coming from the sensor
75 int voltagePin = 37;
76

77 //Sensor Ultrasonic
78 #define trigPin 17
79 #define echoPin 2
80

81 float duration;
82 float distance;
83 String totalDistance;
84

85 //Convert bytes to Hex Format
86 void printHex2(unsigned v) {
87 v &= 0xff;
88 if (v < 16)
89 Serial.print('0');
90 Serial.print(v, HEX);
91 }
92

93 //Event Handler
94 void onEvent (ev_t ev) {
95 Serial.print(os_getTime());
96 Serial.print(": ");

84

97 switch(ev) {
98 case EV_SCAN_TIMEOUT:
99 Serial.println(F("EV_SCAN_TIMEOUT"));

100 break;
101 case EV_BEACON_FOUND:
102 Serial.println(F("EV_BEACON_FOUND"));
103 break;
104 case EV_BEACON_MISSED:
105 Serial.println(F("EV_BEACON_MISSED"));
106 break;
107 case EV_BEACON_TRACKED:
108 Serial.println(F("EV_BEACON_TRACKED"));
109 break;
110 case EV_JOINING:
111 Serial.println(F("EV_JOINING"));
112 Heltec.display -> clear();
113 Heltec.display -> drawString(5,0, "EV_JOINING");
114 Heltec.display -> display();
115 break;
116 case EV_JOINED: //Device Joined, print session keys
117 Heltec.display -> clear();
118 Heltec.display -> drawString(5,0, "EV_JOINED_DEVICE");
119 Heltec.display -> display();
120 Serial.println(F("EV_JOINED"));
121 {
122 u4_t netid = 0;
123 devaddr_t devaddr = 0;
124 u1_t nwkKey[16];
125 u1_t artKey[16];
126 u1_t gwSKey[16];
127 LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey, gwSKey);
128 Serial.print("netid: ");
129 Serial.println(netid, DEC);
130 Serial.print("devaddr: ");
131 Serial.println(devaddr, HEX);
132 Serial.print("AppSKey: ");
133 for (size_t i=0; i<sizeof(artKey); ++i) {
134 if (i != 0)
135 Serial.print("-");
136 printHex2(artKey[i]);
137 }
138 Serial.println("");
139 Serial.print("NwkSKey: ");
140 for (size_t i=0; i<sizeof(nwkKey); ++i) {
141 if (i != 0)
142 Serial.print("-");
143 printHex2(nwkKey[i]);
144 }
145 Serial.println();
146 Serial.print("GwSKey: ");
147 for (size_t i=0; i<sizeof(gwSKey); ++i) {

85

148 if (i != 0)
149 Serial.print("-");
150 printHex2(gwSKey[i]);
151 }
152 Serial.println();
153

154 }
155 // Disable link check validation (automatically enabled
156 // during join, but because slow data rates change max TX
157 // size, we don't use it in this example.
158 LMIC_setLinkCheckMode(0);
159 break;
160 case EV_JOIN_FAILED:
161 Serial.println(F("EV_JOIN_FAILED"));
162 break;
163 case EV_REJOIN_FAILED:
164 Serial.println(F("EV_REJOIN_FAILED"));
165 break;
166 case EV_TXCOMPLETE:
167 Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
168 if (LMIC.txrxFlags & TXRX_ACK)
169 Serial.println(F("Received ack"));
170 if (LMIC.dataLen) {
171 Serial.print(F("Received "));
172 Serial.print(LMIC.dataLen);
173 Serial.println(F(" bytes of payload"));
174 }
175 // Schedule next transmission
176 os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
177 break;
178 case EV_LOST_TSYNC:
179 Serial.println(F("EV_LOST_TSYNC"));
180 break;
181 case EV_RESET:
182 Serial.println(F("EV_RESET"));
183 break;
184 case EV_RXCOMPLETE:
185 // data received in ping slot
186 Serial.println(F("EV_RXCOMPLETE"));
187 break;
188 case EV_LINK_DEAD:
189 Serial.println(F("EV_LINK_DEAD"));
190 break;
191 case EV_LINK_ALIVE:
192 Serial.println(F("EV_LINK_ALIVE"));
193 break;
194 case EV_TXSTART: //Start transmitting LoRaWAN packets
195 Serial.println(F("EV_TXSTART"));
196 Heltec.display -> clear();
197 Heltec.display -> drawString(5,0, "EV_TXSTART");
198 Heltec.display -> drawString(5,10, "Freq: "+String(LMIC.freq));

86

199 Heltec.display -> drawString(5,22, "DevNonce: "+String(LMIC.devNonce));
200 Heltec.display -> drawString(5,32, "Node A - V1.1 Modified");
201 Heltec.display -> drawString(5,42,

String(ReadVoltage(voltagePin))+"V-"+GetSensorData(sensorPin));↪→

202 Heltec.display -> display();
203 //Log message - device information
204 Serial.println("Freq: "+String(LMIC.freq)+", DevNonce:

"+String(LMIC.devNonce)+", SF: "+String(LMIC.datarate)+", RSSI: "+String(LMIC.rssi)+",
JoinNonce: "+String(LMIC.joinNonce));

↪→

↪→

205 Serial.print("JoinEUI: ");
206 for (size_t i=0; i<sizeof(JoinEui); ++i) {
207 if (i != 0)
208 Serial.print("-");
209 printHex2(JoinEui[i]);
210 }
211 Serial.println("");
212 break;
213 case EV_TXCANCELED:
214 Serial.println(F("EV_TXCANCELED"));
215 break;
216 case EV_RXSTART:
217 break;
218 case EV_JOIN_TXCOMPLETE:
219 Serial.println(F("EV_JOIN_TXCOMPLETE: no JoinAccept"));
220 Heltec.display -> clear();
221 Heltec.display -> clear();
222 Heltec.display -> drawStringMaxWidth(5,0,128, "EV_JOIN_TXCOMPLETE: no

JoinAccept");↪→

223 Heltec.display -> display();
224 break;
225

226 default:
227 Serial.print(F("Unknown event: "));
228 Serial.println((unsigned) ev);
229 break;
230 }
231 }
232

233 void do_send(osjob_t* j){
234 LMIC_setDrTxpow(DR_SF7,14);
235 // Check if there is not a current TX/RX job running
236 if (LMIC.opmode & OP_TXRXPEND) {
237 Serial.println(F("OP_TXRXPEND, not sending"));
238 } else {
239 // Prepare upstream data transmission at the next possible time.
240

241 String strSensorData = "Node A - V1.1 Modified SF7 ->
"+String(ReadVoltage(voltagePin)) + "V - " +GetSensorData(sensorPin);↪→

242 char charMsgToSend[46];
243 strSensorData.toCharArray(charMsgToSend, strSensorData.length()+1);
244 LMIC_setTxData2(1, (uint8_t *)charMsgToSend, sizeof(charMsgToSend)-1, 0);

87

245 Serial.println(strSensorData);
246 Serial.println(F("Packet queued"));
247 }
248 // Next TX is scheduled after TX_COMPLETE event.
249 }
250

251 void setup() {
252 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
253 pinMode(echoPin, INPUT); // Sets the echoPin as an Input
254 Serial.begin(115200);
255

256 Serial.println(F("Starting"));
257 Heltec.begin(true /*DisplayEnable Enable*/ , true /*LoRa Disable*/ , true /*Serial

Enable*/ , true /*PABOOST Enable*/ , 470E6 /**/);↪→

258 Heltec.display -> drawString(0,0, "Node A - V1.1 Modified");
259 Heltec.display -> clear();
260 Heltec.display -> display();
261

262 // LMIC init
263 os_init();
264

265 LMIC_reset();
266

267 #if defined(CFG_us915)
268 LMIC_selectSubBand(1); //903.1 - 904.9MHz
269 //LMIC_selectSubBand(7); //903.1 - 904.9MHz
270 #endif
271

272 LMIC_setLinkCheckMode(0);
273 // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the

library)↪→

274 //Specify the SF to transmit
275 //DR_SF7 - 125 KhZ
276 //DR_SF8 - 125 KhZ
277 //DR_SF9 - 125 KhZ
278 LMIC_setDrTxpow(DR_SF7,14);
279

280 // Start job
281 do_send(&sendjob);
282

283 }
284

285

286 void loop() {
287 os_runloop_once();
288 getDeviceStatistics();
289

290 }
291

292 void getDeviceStatistics(){
293 //Hardware Statistics

88

294 long T0 = millis();
295 uint32_t startCycle = ESP.getCycleCount();
296 while (millis() < T0 + 1000) {}
297 uint32_t endCycle = ESP.getCycleCount();
298 Serial.printf("CPU Usage Hz: %u\n", endCycle - startCycle);
299 startCycle = ESP.getCycleCount();
300 delay(1000);
301 endCycle = ESP.getCycleCount();
302 Serial.printf("CPU Usage Hz: %u\n", ((endCycle - startCycle)));
303 Serial.println("Heap Free Bytes: "+String(ESP.getFreeHeap()));
304

305 //Power Consumption Statistics (Volts)
306 Serial.println("Battery : "+String(ReadVoltage(voltagePin))+" V");
307

308 //Sensor Data
309 Serial.println("Photo Sensor : "+GetSensorData(sensorPin));
310 }
311

312 double ReadVoltage(byte pin){
313 double sensorValue = analogRead(pin); // Reference voltage is 3.7 so maximum reading is

3.7 = 4095 in range 0 to 4095↪→

314 float voltage = ((float) sensorValue/4095)*3.7;
315 Serial.println("Volts:"+String(voltage)+ "Sensor value: "+sensorValue);
316 return voltage;
317 }
318

319 String GetSensorData(byte sensorPin)
320 {
321

322 sensorValue = analogRead(sensorPin);
323

324 float voltage = sensorValue * (5.0 / 1024.0);
325 String message = "";
326

327 // the lower the voltage, the brighter it is
328 if ((voltage >= 0) && (voltage <= 0.4)) {
329 message = "it is light - ";
330 } else if ((voltage > 0.4) && (voltage <= 2)) {
331 message = "it is bright - ";
332 } else {
333 message = "it is dark - ";
334 }
335 // print out the value you read:
336 Serial.println("Value read:"+String(voltage)+" "+message+" sensorvalue: "+sensorValue);
337 return " "+String(sensorValue)+" LUM";
338

339 }
340

341 String GetDistance() {
342 // Clears the trigPin
343 digitalWrite(trigPin, LOW);

89

344 delayMicroseconds(2);
345 // Sets the trigPin on HIGH state for 10 micro seconds
346 digitalWrite(trigPin, HIGH);
347 delayMicroseconds(5);
348 digitalWrite(trigPin, LOW);
349 // Reads the echoPin, returns the sound wave travel time in microsecondduration =

pulseIn(echoPin, HIGH);↪→

350 duration = pulseIn(echoPin, HIGH);
351 // Calculating the distance
352 distance= duration*0.034/2;
353 // Prints the distance on the Serial Monitor
354 Serial.print("Distance: ");
355 Serial.println(distance);
356 delay(50);
357 return ("D: "+String(distance)+" cm.");
358 }

Code 2: ESP32 Arduino Sketch Code

90

Annex 2: SPDL Code for formal verification security analysis

1 // The protocol is running between Gateway (Gateway) and Network Server (NS).
2 // The predefined shared key userCreds=h(IDui||h(PWui)) between Gateway and Server is

k(Gateway,NS).↪→

3 // dec models a decryption function that is invertible by an encryption function (enc)
4 usertype String;
5 usertype AEScmac;
6 usertype SymKey;
7 hashfunction h;
8

9 //const xor:Function;
10

11 const GwEUI: String;
12 const IDui: String;
13 const PWui: String;
14

15 macro userCreds=h(IDui,h(PWui));
16

17 protocol LoRaWAN-OTAA-v11-GWRegistration(Gateway,NS)
18 {
19 role Gateway {
20 fresh RNonceListG:Nonce;
21 fresh RN1: Nonce;
22

23 fresh MICGw: AEScmac;
24 fresh RSK,GwKey: SymKey;
25 var RN2,RN3: Nonce;
26 var GwKeyJ,GwKeyJ1,GwKeyJN:Nonce;
27

28 macro GwSKa=h(RSK,GwKey);
29

30 macro GrpKeyGrpId=h(GwKey,GwKeyJ,GwKeyJ1,GwKeyJN,RN3);
31

32 macro M1= {userCreds,RN1,GwEUI}k(GwSKa),IDui;
33 macro M2= {RN1,RN2,GrpKeyGrpId}k(GwSKa);
34 macro M3={RN2,MICGw}k(GrpKeyGrpId);
35

36 send_1(Gateway,NS,M1);
37 recv_2(NS,Gateway,M2);
38 match (RN2, RNonceListG);
39 macro RNonceListG=(RNonceListG, RN2);
40 send_3(Gateway,NS,M3);
41

42

43 claim_gw1(Gateway,Running,NS,RN1); //checks that Gateway agrees with NS on
RN1↪→

44 claim_gw2(Gateway,Alive); //assures the Aliveness of Gateway
45 claim_gw3(Gateway,Weakagree); //minimum agreement check between partners according

to Gateway↪→

91

46 claim_gw4(Gateway,Niagree); //validates the non-injective agreement according to
Gateway↪→

47 claim_gw5(Gateway,Nisynch); //validates the non-injective synchronization according
to Gateway↪→

48 claim_gw6(Gateway,Secret,GrpKeyGrpId); //validates the secrecy of GrpKeyGrpId
according to Gateway↪→

49

50 }
51

52 role NS {
53 fresh RNonceList, RN2,RN3:Nonce;
54 var RN1: Nonce;
55 var MICGw:AEScmac;
56 //var GwSKa:String;
57 var RSK,GwKey: SymKey;
58 fresh GwKeyJ,GwKeyJ1,GwKeyJN:Nonce;
59 secret GrpKeyGrpId:Nonce;
60

61 recv_1(Gateway,NS,M1);
62 match (RN1, RNonceList);
63 macro RNonceList=(RNonceList, RN1);
64

65 macro GrpKeyGrpId=h(GwKey,GwKeyJ,GwKeyJ1,GwKeyJN,RN3);
66

67 send_2(NS,Gateway,M2);
68 recv_3(Gateway,NS,M3);
69 match (RN2, RNonceList);
70 macro RNonceList=(RNonceList, RN2);
71

72

73 claim_j1(NS,Running,Gateway,RN2); //checks that NS agrees with Dev on RN2
74 claim_j2(NS,Alive); //assures the Aliveness of NS
75 claim_j3(NS,Weakagree); //minimum agreement check between partners according to NS
76 claim_j4(NS,Niagree); //validates the non-injective agreement according to NS
77 claim_j5(NS,Nisynch); //validates the non-injective synchronization according to NS
78 claim_j6(NS,SKR,GrpKeyGrpId); //validates the secrecy of GrpKeyGrpId according to

NS↪→

79

80 }
81 }
82

83

Code 3: SPDL Scyther verification Code for Gateway Authentication

[p]

1 // The protocol is running between End Device (Dev), Gateway and Network Server/Join Server
(Join).↪→

2 // The predefined shared key (NwkKey) between End Device and Server is k(Dev,Join).
3 // The predefined shared key (GwKey) between Gateway and Network/Join Server is

k(Gateway,Join)↪→

92

4 // dec models a decryption function that is invertible by an encryption function (enc)
5 const dec: Function;
6 usertype String;
7 const pad01,pad02,pad03,pad04,pad05,pad06,pad07,pad08: String;
8 const pad09,pad10,pad11,pad12,pad13,pad14,pad15,pad16: String;
9

10 secret Appkey,NonceList,GwKey: String;
11

12 hashfunction h;
13

14 protocol GwSKeyDerivation (Dev,Join,Gateway,NS)
15 {
16 role Dev {
17 fresh DevNonce: Nonce;
18 fresh MHDRDev: String;
19 var MHDRSrv: String;
20 var JoinNonce: Nonce;
21 var NetID: String;
22 var DevAddr: String;
23 var DLSettings: String;
24 var RxDelay: String;
25 var CFList: String;
26 var JoinReqType: String;
27 fresh JoinEUI:String;
28 fresh DevEUI:String;
29

30 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
31 send_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
32

33 macro JSIntKey={pad06,Dev,pad16 }k(Dev,Join);
34 macro

MIC={JoinReqType,Join,DevNonce,MHDRSrv,JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}JSIntKey;↪→

35 recv_2 (Join,Dev,
MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec} k(Dev,Join),MIC);↪→

36

37 /*LoRaWAN Session Derivation Keys*/
38 macro FNwkSIntKey={pad01,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
39 macro SNwkSIntKey={pad03,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
40 macro

NwkSEncKey={pad04,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);↪→

41 macro JSEncKey={pad05,Dev,pad16}k(Dev,Join);
42 macro AppSKey={pad02,JoinNonce,Join,DevNonce, pad16 }Appkey;
43

44 /*LoRaWAN Session Derivation Key for EN-GW*/
45 macro GwSKeyD = h((k(Dev,Join),Appkey),DevNonce,JoinNonce,Join);
46

47 claim(Dev,Running,Join,DevNonce); //checks that Dev agrees with Join on
DevNonce↪→

48 claim(Dev,Alive); //assures the Aliveness of Dev
49 claim(Dev,Weakagree); //minimum agreement check between partners according

to Dev↪→

93

50 claim(Dev,Niagree); //validates the non-injective agreement according to
Dev↪→

51 claim(Dev,Nisynch); //validates the non-injective synchronization according
to Dev↪→

52 claim (Dev,SKR,FNwkSIntKey); //validates the secrecy of FNwkSIntKey
according to Dev↪→

53 claim (Dev,SKR,SNwkSIntKey); //validates the secrecy of SNwkSIntKey
according to Dev↪→

54 claim (Dev,SKR,NwkSEncKey); //validates the secrecy of NwkSEncKey according
to Dev↪→

55 claim (Dev,SKR,AppSKey); //validates the secrecy of AppSKey according to
Dev↪→

56 claim (Dev,SKR,JSEncKey); //validates the secrecy of JSEncKey according to
Dev↪→

57 claim (Dev,SKR,JSIntKey); //validates the secrecy of JSIntKey according to
Dev↪→

58 claim (Dev,SKR,GwSKeyD); //validates the secrecy of JSIntKey according to
Dev↪→

59 }
60 role Gateway{
61

62 var DevEUI: String;
63 var GwEUI:String;
64 var DevNonce: Nonce;
65 var JoinNonce: Nonce;
66

67 /*Receives M1 from Join containing GwSessionKey*/
68 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
69 macro M2= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Gateway,NS);
70 recv_m2gw(NS, Gateway,M2);
71

72 claim (Gateway,Secret,k(Join,Gateway)); //validates the secrecy of GwKey
according to Gateway↪→

73 claim (Gateway,SKR,GwSKeyGw); //validates the secrecy of GwSKey according to
Gateway↪→

74 claim(Gateway,Weakagree);
75 claim(Gateway,Niagree);
76 claim(Gateway,Nisynch);
77 claim(Gateway,Alive);
78 }
79 role NS {
80 var DevEUI: String;
81 var GwEUI:String;
82 var DevNonce: Nonce;
83 var JoinNonce: Nonce;
84

85 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Join,NS);
86 recv_m1ns(Join, NS,M1);
87

88 macro M2= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Gateway,NS);
89 send_m2gw(NS, Gateway,M2);

94

90

91 }
92 role Join {
93 fresh JoinNonce: Nonce;
94 fresh MHDRSrv: String;
95 fresh NetID: String;
96 fresh DevAddr: String;
97 fresh DLSettings: String;
98 fresh RxDelay: String;
99 fresh CFList: String;

100 fresh NonceList: String;
101 fresh JoinReqType: String;
102 fresh DevEUI: String;
103 fresh GwEUI:String;
104 var DevNonce: Nonce;
105 var MHDRDev: String;
106 var JoinEUI:String;
107 var DevEUI:String;
108

109 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
110 recv_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
111 send_2

(Join,Dev,MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec}k(Dev,Join),MIC);↪→

112

113 /*Sends M1 to Gateway containing GwSessionKey*/
114 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
115 /*macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Join,Gateway);
116 send_m1gw(Join, Gateway,M1);*/
117 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Join,NS);
118 send_m1ns(Join, NS,M1);
119

120 not match (DevNonce, NonceList);
121 macro NonceList=(NonceList, DevNonce);
122

123 claim(Join,Running,Dev,JoinNonce); //checks that Join agrees with Dev on
JoinNonce↪→

124 claim(Join,Alive); //assures the Aliveness of Join
125 claim(Join,Weakagree); //minimum agreement check between partners according

to Join↪→

126 claim(Join,Niagree); //validates the non-injective agreement according to
Join↪→

127 claim(Join,Nisynch); //validates the non-injective synchronization according
to Join↪→

128 claim(Join, SKR, FNwkSIntKey); //validates the secrecy of FNwkSIntKey
according to Join↪→

129 claim(Join, SKR, SNwkSIntKey); //validates the secrecy of SNwkSIntKey
according to Join↪→

130 claim(Join, SKR, NwkSEncKey); //validates the secrecy of NwkSEncKey
according to Join↪→

131 claim(Join, SKR, AppSKey); //validates the secrecy of AppSKey according to
Join↪→

95

132 claim(Join, SKR, JSEncKey); //validates the secrecy of JSEncKey according to
Join↪→

133 claim(Join, SKR, JSIntKey); //validates the secrecy of JSIntKey according to
Join↪→

134 }
135

136 }

Code 4: SPDL Scyther verification Code for GWSKey derivation

1 // The protocol is running between End Device (Dev), Gateway and Network Server/Join Server
(Join).↪→

2 // The predefined shared key (NwkKey) between End Device and Server is k(Dev,Join).
3 // The predefined shared key GrpKeyGrpId) between Gateway and Network Server is

k(Gateway,NS)↪→

4 // dec models a decryption function that is invertible by an encryption function (enc)
5 const dec: Function;
6 usertype String;
7 const pad01,pad02,pad03,pad04,pad05,pad06,pad07,pad08: String;
8 const pad09,pad10,pad11,pad12,pad13,pad14,pad15,pad16: String;
9 usertype TupleDB;

10

11 secret Appkey,NonceList,GwKey: String;
12

13 hashfunction h,cmac;
14

15 protocol UMOAEG (Dev,Join,Gateway,AS,NS)
16 {
17 role Dev {
18 fresh DevNonce: Nonce;
19 fresh MHDRDev: String;
20 var MHDRSrv: String;
21 var JoinNonce: Nonce;
22 var NetID: String;
23 var DevAddr: String;
24 var DLSettings: String;
25 var RxDelay: String;
26 fresh CFList: String;
27 var JoinReqType: String;
28 fresh JoinEUI:String;
29 fresh DevEUI:String;
30 fresh FRMPayload:String;
31 fresh FPort,FOpts,FCnt,FCtrl:String;
32

33 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
34 send_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
35

36 macro JSIntKey={pad06,Dev,pad16 }k(Dev,Join);
37 macro

MIC={JoinReqType,Join,DevNonce,MHDRSrv,JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}JSIntKey;↪→

96

38 recv_2 (Join,Dev,
MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec} k(Dev,Join),MIC);↪→

39

40 /*LoRaWAN Session Derivation Keys*/
41 macro FNwkSIntKey={pad01,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
42 macro SNwkSIntKey={pad03,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
43 macro NwkSEncKey={pad04,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
44 macro JSEncKey={pad05,Dev,pad16}k(Dev,Join);
45 macro AppSKey={pad02,JoinNonce,Join,DevNonce, pad16 }Appkey;
46

47 /*LoRaWAN Session Derivation Key for EN-GW*/
48 macro GwSKeyD = h((k(Dev,Join),Appkey),DevNonce,JoinNonce,Join);
49

50 /*Preparing MSG to Gw*/
51 macro GwDevId = h(GwSKeyD,DevEUI);
52 macro MDevice=(DevAddr,FCtrl,FCnt,FOpts,FPort,{FRMPayload}k(Dev,AS),MIC);
53 macro MICPENi =cmac(GwSKeyD,MDevice,GwDevId,FCnt);
54 macro MICPy= cmac(AppSKey,FRMPayload);
55 macro M1GW=MDevice,MICPy,MICPENi,GwDevId;
56

57 send_m1(Dev,Gateway,M1GW);
58

59 claim(Dev,Running,Join,DevNonce); //checks that Dev agrees with Join on
DevNonce↪→

60 claim(Dev,Alive); //assures the Aliveness of Dev
61 claim(Dev,Weakagree); //minimum agreement check between partners according

to Dev↪→

62 claim(Dev,Niagree); //validates the non-injective agreement according to
Dev↪→

63 claim(Dev,Nisynch); //validates the non-injective synchronization according
to Dev↪→

64 claim (Dev,SKR,AppSKey); //validates the secrecy of AppSKey according to
Dev↪→

65 claim (Dev,SKR,GwSKeyD); //validates the secrecy of JSIntKey according to
Dev↪→

66 }
67 role Gateway{
68

69 var JoinNonce: Nonce;
70 fresh MHDRSrv: String;
71 fresh NetID: String;
72 fresh DevAddr: String;
73 fresh DLSettings: String;
74 fresh RxDelay: String;
75 fresh CFList: String;
76 fresh NonceList: String;
77 fresh JoinReqType: String;
78 fresh DevEUI: String;
79 fresh GwEUI:String;
80 var DevNonce: Nonce;
81 fresh MHDRDev: String;

97

82 fresh JoinEUI:String;
83 var DevEUI:String;
84

85 /*Receives M1 from Join containing GwSessionKey*/
86 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
87 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Join,Gateway);
88 recv_m1gw(Join, Gateway,M1);
89

90 /*Receives M3 from End Node*/
91 fresh Mtype,EJP,Major: String;
92 var DevAddr, FCtrl, FCnt, FOpts,FPort: String;
93 var FRMPayload: String;
94

95 macro M1GW=MDevice,MICPy,MICPENi,GwDevId;
96

97 recv_m1(Dev,Gateway,M1GW);
98

99 match((GwDevId,GwSKeyGw),TupleDB);
100 macro GwDB=(GwDB, (GwDevId,GwSKeyGw));
101

102 macro MICPENi'=cmac(GwSKeyD,MDevice,GwDevId,FCnt);
103 match(MICPENi',MICPENi);
104

105 /*Sends M2 to NS*/
106 macro M3={M1GW}k(Gateway,NS);
107 send_m3(Gateway,NS,M3);
108

109 claim (Gateway,Secret,k(Join,Gateway)); //validates the secrecy of GwKey
according to Gateway↪→

110 claim (Gateway,SKR,GwSKeyGw); //validates the secrecy of GwSKey according to
Gateway↪→

111 claim(Gateway,Weakagree); //minimum agreement check between partners
according to Gateway↪→

112 claim(Gateway,Niagree); //validates the non-injective agreement according to
Gateway↪→

113 claim(Gateway,Nisynch); //validates the non-injective synchronization
according to Gateway↪→

114 claim(Gateway,Alive); //assures the Aliveness of Gateway
115

116 }
117 role Join {
118 fresh JoinNonce: Nonce;
119 fresh MHDRSrv: String;
120 fresh NetID: String;
121 fresh DevAddr: String;
122 fresh DLSettings: String;
123 fresh RxDelay: String;
124 fresh CFList: String;
125 fresh NonceList: String;
126 fresh JoinReqType: String;
127 fresh DevEUI: String;

98

128 fresh GwEUI:String;
129 var DevNonce: Nonce;
130 var MHDRDev: String;
131 var JoinEUI:String;
132 var DevEUI:String;
133

134 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
135 recv_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
136 send_2

(Join,Dev,MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec}k(Dev,Join),MIC);↪→

137

138 /*Sends M1 to Gateway containing GwSessionKey*/
139 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
140 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(Join,Gateway);
141 send_m1gw(Join, Gateway,M1);
142

143 not match (DevNonce, NonceList);
144 macro NonceList=(NonceList, DevNonce);
145

146 claim(Join,Running,Dev,JoinNonce); //checks that Join agrees with Dev on
JoinNonce↪→

147 claim(Join,Alive); //assures the Aliveness of Join
148 claim(Join,Weakagree); //minimum agreement check between partners according

to Join↪→

149 claim(Join,Niagree); //validates the non-injective agreement according to
Join↪→

150 claim(Join,Nisynch); //validates the non-injective synchronization according
to Join↪→

151 claim(Join, SKR, AppSKey); //validates the secrecy of AppSKey according to
Join↪→

152 claim(Join, SKR, GwSKeyGw); //validates the secrecy of GwSKeyGw according to
Join↪→

153 }
154

155 role NS{
156 fresh JoinNonce: Nonce;
157 fresh MHDRSrv: String;
158 fresh NetID: String;
159 fresh DevAddr: String;
160 fresh DLSettings: String;
161 fresh RxDelay: String;
162 fresh CFList: String;
163 fresh NonceList: String;
164 fresh JoinReqType: String;
165 fresh DevEUI: String;
166 fresh GwEUI:String;
167 var DevNonce: Nonce;
168 fresh MHDRDev: String;
169 fresh JoinEUI:String;
170 var DevEUI:String;
171 var DevAddr, FCtrl, FCnt, FOpts,FPort: String;

99

172 var FRMPayload: String;
173

174 recv_m3(Gateway,NS,{M1GW}k(Gateway,NS));
175

176 /*Send M2 to AS*/
177 send_m2(NS,AS,{M1GW}k(NS,AS));
178

179 claim(NS,Alive); //assures the Aliveness of NS
180 claim(NS,Weakagree); //minimum agreement check between partners according to

NS↪→

181 claim(NS,Niagree); //validates the non-injective agreement according to NS
182 claim(NS,Nisynch); //validates the non-injective synchronization according

to NS↪→

183

184 }
185 role AS{
186 fresh JoinNonce: Nonce;
187 fresh MHDRSrv: String;
188 fresh NetID: String;
189 fresh DevAddr: String;
190 fresh DLSettings: String;
191 fresh RxDelay: String;
192 fresh CFList: String;
193 fresh NonceList: String;
194 fresh JoinReqType: String;
195 fresh DevEUI: String;
196 fresh GwEUI:String;
197 var DevNonce: Nonce;
198 fresh MHDRDev: String;
199 fresh JoinEUI:String;
200 var DevEUI:String;
201 var DevAddr, FCtrl, FCnt, FOpts,FPort: String;
202 var FRMPayload: String;
203

204 recv_m2(NS,AS,{M1GW}k(NS,AS));
205 macro MICPy'= cmac((Dev,AS),FRMPayload);
206 match(MICPy',h(FRMPayload,(Dev,AS)));
207

208 claim(AS,Alive); //assures the Aliveness of AS
209 claim(AS,Weakagree); //minimum agreement check between partners according to

AS↪→

210 claim(AS,Niagree); //validates the non-injective agreement according to AS
211 claim(AS,Nisynch); //validates the non-injective synchronization according

to AS↪→

212

213 }
214

215

216 }

Code 5: SPDL Scyther verification Code for UMOAEG protocol

100

1 // The protocol is running between End Device (Dev), Gateway and Network Server/Join Server
(Join).↪→

2 // The predefined shared key (NwkKey) between End Device and Server is k(Dev,Join).
3 // The predefined shared key GrpKeyGrpId) between Gateway and Network Server is

k(Gateway,NS)↪→

4 // dec models a decryption function that is invertible by an encryption function (enc)
5 const dec: Function;
6 usertype String;
7 const pad01,pad02,pad03,pad04,pad05,pad06,pad07,pad08: String;
8 const pad09,pad10,pad11,pad12,pad13,pad14,pad15,pad16: String;
9 usertype TupleDB;

10

11 secret Appkey,NonceList,GwKey: String;
12

13 hashfunction h,cmac;
14

15 protocol UMOUAEG (Dev,Join,Gateway,AS,NS)
16 {
17 role Dev {
18 fresh DevNonce: Nonce;
19 fresh MHDRDev: String;
20 var MHDRSrv: String;
21 var JoinNonce: Nonce;
22 var NetID: String;
23 var DevAddr: String;
24 var DLSettings: String;
25 var RxDelay: String;
26 fresh CFList: String;
27 var JoinReqType: String;
28 fresh JoinEUI:String;
29 fresh DevEUI:String;
30 fresh FRMPayload:String;
31 fresh FPort,FOpts,FCnt,FCtrl:String;
32

33 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
34 send_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
35

36 macro JSIntKey={pad06,Dev,pad16 }k(Dev,Join);
37 macro

MIC={JoinReqType,Join,DevNonce,MHDRSrv,JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}JSIntKey;↪→

38 recv_2 (Join,Dev,
MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec} k(Dev,Join),MIC);↪→

39

40 /*LoRaWAN Session Derivation Keys*/
41 macro FNwkSIntKey={pad01,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
42 macro SNwkSIntKey={pad03,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
43 macro NwkSEncKey={pad04,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);
44 macro JSEncKey={pad05,Dev,pad16}k(Dev,Join);
45 macro AppSKey={pad02,JoinNonce,Join,DevNonce, pad16 }Appkey;
46

101

47 /*LoRaWAN Session Derivation Key for EN-GW*/
48 macro GwSKeyD = h((k(Dev,Join),Appkey),DevNonce,JoinNonce,Join);
49

50 /*Preparing MSG to Gw*/
51 macro GwDevId = h(GwSKeyD,DevEUI);
52 macro MDevice=(DevAddr,FCtrl,FCnt,FOpts,FPort,{FRMPayload}k(Dev,AS),MIC);
53 macro MICPENi =cmac(GwSKeyD,MDevice,GwDevId,FCnt);
54 macro MICPy= cmac(AppSKey,FRMPayload);
55 macro M1GW=MDevice,MICPy,MICPENi,GwDevId;
56

57 send_m1(Dev,Gateway,M1GW);
58

59 claim(Dev,Running,Join,DevNonce); //checks that Dev agrees with Join on
DevNonce↪→

60 claim(Dev,Alive); //assures the Aliveness of Dev
61 claim(Dev,Weakagree); //minimum agreement check between partners according

to Dev↪→

62 claim(Dev,Niagree); //validates the non-injective agreement according to
Dev↪→

63 claim(Dev,Nisynch); //validates the non-injective synchronization according
to Dev↪→

64 claim (Dev,SKR,AppSKey); //validates the secrecy of AppSKey according to
Dev↪→

65 claim (Dev,SKR,GwSKeyD); //validates the secrecy of JSIntKey according to
Dev↪→

66 }
67 role Gateway{
68

69 var JoinNonce: Nonce;
70 fresh MHDRSrv: String;
71 fresh NetID: String;
72 fresh DevAddr: String;
73 fresh DLSettings: String;
74 fresh RxDelay: String;
75 fresh CFList: String;
76 fresh NonceList: String;
77 fresh JoinReqType: String;
78 fresh DevEUI: String;
79 fresh GwEUI:String;
80 var DevNonce: Nonce;
81 fresh MHDRDev: String;
82 fresh JoinEUI:String;
83 var DevEUI:String;
84

85 /*Receives GwSessionKey from Join */
86 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
87 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(NS,Gateway);
88 recv_m1gw(Join, Gateway,M1);
89

90 /*Receives Uplink Message from End Node*/
91 fresh Mtype,EJP,Major: String;

102

92 var DevAddr, FCtrl, FCnt, FOpts,FPort: String;
93 var FRMPayload: String;
94

95 macro M1GW=MDevice,MICPy,MICPENi,GwDevId;
96

97 recv_m1(Dev,Gateway,M1GW);
98

99 match((GwDevId,GwSKeyGw),TupleDB);
100 macro GwDB=(GwDB, (GwDevId,GwSKeyGw));
101

102 macro MICPENi'=cmac(GwSKeyD,MDevice,GwDevId,FCnt);
103 not match(MICPENi',MICPENi);
104

105 /*Sends M2 to NS*/
106 macro M2={GwDevId,GwEUI,DevEUI}k(Gateway,NS);
107 send_m2(Gateway,NS,M2);
108

109 /*Receives M6 from NS*/
110 macro M6={GwDevId,GwEUI,GwSKeyGw}k(NS,Gateway);
111 recv_m6(NS,Gateway,M6);
112

113 claim (Gateway,Secret,k(NS,Gateway)); //validates the secrecy of GrpKeyGrpId
according to Gateway↪→

114 claim (Gateway,SKR,GwSKeyGw); //validates the secrecy of GwSKey according to
Gateway↪→

115 claim(Gateway,Weakagree); //minimum agreement check between partners
according to Gateway↪→

116 claim(Gateway,Niagree); //validates the non-injective agreement according to
Gateway↪→

117 claim(Gateway,Nisynch); //validates the non-injective synchronization
according to Gateway↪→

118 claim(Gateway,Alive); //assures the Aliveness of Gateway
119

120 }
121 role Join {
122 fresh JoinNonce: Nonce;
123 fresh MHDRSrv: String;
124 fresh NetID: String;
125 fresh DevAddr: String;
126 fresh DLSettings: String;
127 fresh RxDelay: String;
128 fresh CFList: String;
129 fresh NonceList,DeviceParms: String;
130 fresh JoinReqType: String;
131 fresh DevEUI: String;
132 fresh GwEUI:String;
133 var DevNonce: Nonce;
134 var MHDRDev: String;
135 var JoinEUI:String;
136 var DevEUI:String;
137

103

138 macro JoinNonceMIC = {MHDRDev,JoinEUI,DevEUI,DevNonce}k(Dev,Join);
139 recv_1(Dev,Join,(MHDRDev,JoinEUI,DevEUI,DevNonce),JoinNonceMIC);
140 send_2

(Join,Dev,MHDRSrv,{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec}k(Dev,Join),MIC);↪→

141

142 /*Sends M1 to Gateway containing GwSessionKey*/
143 macro GwSKeyGw = h(k(Dev,Join),Appkey,DevNonce,JoinNonce,Join);
144 macro M1= {{GwEUI,GwSKeyGw,DevEUI}dec}k(NS,Gateway);
145 send_m1gw(Join, Gateway,M1);
146

147 /*Receives request from NS to provide GwSKey*/
148 macro M3={GwDevId,GwEUI,DevEUI}sk(Join);
149 recv_m3(NS,Join,M3);
150 match(DeviceParms,(GwDevId,GwEUI,DevEUI));
151 send_m4(Join,NS,{GwDevId,GwEUI,GwSKeyGw}sk(NS));
152

153 not match (DevNonce, NonceList);
154 macro NonceList=(NonceList, DevNonce);
155 macro DeviceParams = (DeviceParms,(GwDevId,GwEUI,DevEUI));
156

157

158

159 claim(Join,Running,Dev,JoinNonce); //checks that Join agrees with Dev on
JoinNonce↪→

160 claim(Join,Alive); //assures the Aliveness of Join
161 claim(Join,Weakagree); //minimum agreement check between partners according

to Join↪→

162 claim(Join,Niagree); //validates the non-injective agreement according to
Join↪→

163 claim(Join,Nisynch); //validates the non-injective synchronization according
to Join↪→

164 claim(Join, SKR, AppSKey); //validates the secrecy of AppSKey according to
Join↪→

165 claim(Join, SKR, GwSKeyGw); //validates the secrecy of GwSKeyGw according to
Join↪→

166 }
167

168 role NS{
169 fresh JoinNonce: Nonce;
170 fresh MHDRSrv: String;
171 fresh NetID: String;
172 fresh DevAddr: String;
173 fresh DLSettings: String;
174 fresh RxDelay: String;
175 fresh CFList: String;
176 fresh NonceList: String;
177 fresh JoinReqType: String;
178 fresh DevEUI: String;
179 fresh GwEUI:String;
180 var DevNonce: Nonce;
181 fresh MHDRDev: String;

104

182 fresh JoinEUI:String;
183 var DevEUI:String;
184 fresh DevAddr, FCtrl, FCnt, FOpts,FPort: String;
185 fresh FRMPayload: String;
186

187 recv_m2(Gateway,NS,{GwDevId,GwEUI,DevEUI}k(Gateway,NS));
188

189 /*Send M3 to JS*/
190 macro M3={GwDevId,GwEUI,DevEUI}sk(Join);
191 send_m3(NS,Join,M3);
192

193 /*Receive M4 from JS*/
194 recv_m4(Join,NS,{GwDevId,GwEUI,GwSKeyGw}sk(NS));
195 macro M6={GwDevId,GwEUI,GwSKeyGw}k(NS,Gateway);
196 send_m6(NS,Gateway,M6);
197

198 send_mp1(NS,AS,{M1GW}k(NS,AS));
199

200 claim(NS,Alive); //assures the Aliveness of NS
201 claim(NS,Weakagree); //minimum agreement check between partners according to

NS↪→

202 claim(NS,Niagree); //validates the non-injective agreement according to NS
203 claim(NS,Nisynch); //validates the non-injective synchronization according

to NS↪→

204

205 }
206 role AS{
207 fresh JoinNonce: Nonce;
208 fresh MHDRSrv: String;
209 fresh NetID: String;
210 fresh DevAddr: String;
211 fresh DLSettings: String;
212 fresh RxDelay: String;
213 fresh CFList: String;
214 fresh NonceList: String;
215 fresh JoinReqType: String;
216 fresh DevEUI: String;
217 fresh GwEUI:String;
218 var DevNonce: Nonce;
219 fresh MHDRDev: String;
220 fresh JoinEUI:String;
221 var DevEUI:String;
222 var DevAddr, FCtrl, FCnt, FOpts,FPort: String;
223 var FRMPayload: String;
224

225 recv_mp1(NS,AS,{M1GW}k(NS,AS));
226 macro MICPy'= cmac((Dev,AS),FRMPayload);
227 match(MICPy',h(FRMPayload,(Dev,AS)));
228

229 claim(AS,Alive); //assures the Aliveness of AS
230 claim(AS,Weakagree); //minimum agreement check between partners according to

AS↪→

105

231 claim(AS,Niagree); //validates the non-injective agreement according to AS
232 claim(AS,Nisynch); //validates the non-injective synchronization according

to AS↪→

233

234 }
235

236

237 }

Code 6: SPDL Scyther verification Code for UMOUAEG protocol

106

	PROLOGUE
	RESUMEN
	ABSTRACT
	INTRODUCTION
	Problem Statement
	Objectives
	Research Methodology
	Research Contributions
	Thesis Structure

	BACKGROUND
	LoRaWAN features and architecture
	Technical Overview
	Security in LoRaWAN

	LoRaWAN Vulnerabilities and Proposed Mitigation Mechanisms

	SOLUTION DESIGN
	Gateway Registration Protocol
	Gateway Session Key Derivation Protocol
	Home Scenario
	Roaming Scenario

	Uplink Messages through authenticated gateways
	Protocol for sending uplink messages over authenticated End-Nodes and gateways (UMOAEG).
	Protocol for sending uplink messages over unauthenticated End-Nodes and gateways (UMOUEG)

	Security issues to be addressed

	EVALUATION
	Security Analysis
	Formal Analysis
	Informal Analysis
	Cryptographic Operations

	Prototype performance evaluation
	Hypothesis Definition
	Experiment Setup and Execution
	Data Collection
	Data Analysis
	Scenario 1 - OTAA Activation
	Scenario 2 - Uplink Messages
	Hypothesis validation

	Discussion

	CONCLUSIONS AND FUTURE WORKS
	Conclusions
	Future Works and perspectives

	BIBLIOGRAPHY
	ANNEXES
	Annex 1: Arduino Sketch LoRaWAN Enhanced Version
	Annex 2: SPDL Code for formal verification security analysis

