- XXIX JORNADAS EN INGENIERIA ELECTRICA Y ELECTRONICA -

Automatic Grading System for Object-Oriented
Programming on an E-learning Platform

Darwin Poveda, Gabriel Lopez Fonseca, Jorge Carvajal, Franklin Sanchez

Abstract— Manual grading of Object-Oriented Programming
assignments implies that sometimes the feedback arrives late. In
addition, the main grading criteria is usually functionality, which
leaves other grading criteria aside. This paper presents a platform
that supports different automatic grading processes with quick
feedback. Therefore, this work integrated an architecture that
supports different grading metrics with the Edx MOOC. By using
the external grader, which is a component of Edx, the student’s
answer code was sent and feedback was received. The results
demonstrate the feasibility of integration of Edx with the Grader.

Keywords— automatic grading; e-learning; oop

I. INTRODUCTION

owadays, Object-oriented Programming is required for
some technical engineering degrees. However, the
students face difficulties to learn programming, and it
could cause to fail the course [1]. Therefore, this teaching-
learning process becomes a challenge to teachers and students.

Previous investigations have claimed that the increase in the
amount of exercises to student, and a quick feedback, is
essential to improve the learning process [2]. On the other hand,
the increase in the number of exercises and many students in
the engineering classes makes a manual grading process
unfeasible. For this reason, several investigation have been
oriented to develop technology to perform automatic grading

with quick feedback in the process of teaching-learning [3] [4]

[5].

In [6], several automatic grading programming assignments
tools are reviewed. It was divided in two categories: mature,
and recent developed tools. The analysis of the two types of
tools shows improvements in this field of research, including
security, more linguistic support and plagiarism detection. In
addition, the lack of grading metrics for evaluation is a major
gap in the revised tools. In [7] a typology of the automatic
grading tools was established and relevant information was
provided, such as considering a temporal evolution of these
tools.

The authors gratefully acknowledge the financial support provided by the
Escuela Politécnica Nacional, for the development of the project PII-15-16.

Darwin Poveda is with the Department of Telecommunications and
Information Networks, Escuela Politécnica Nacional, Quito, Ecuador,
(darwin.poveda@epn.edu.ec).

Gabriel Lopez Fonseca is with the Department of Telecommunications and
Information Networks, Escuela Politécnica Nacional, Quito, Ecuador,
(gabriel.lopez@epn.edu.ec).

A massive Open online course (MOOC) is a way to connect,
collaborate and learn by using a browser as a virtual class. This
is an online course, which offers learning material to share with
people around the world [8]. There are many platforms, such as
Moodle, Canvas, Sakai, Blackboard, Coursera, Udacity, and
Edx. Many universities like Harvard and MIT, and other
companies like Google and Microsoft supported the
development of MOOCs, which made them to gain importance
in the context of higher education [9].

This project used the Grader proposed in [10], in order to
support different grading metrics with the MOOC Edx. To
begin, a review was performed about the MOOC platforms
currently used to analyze their characteristics. Then, Edx was
selected as the base platform for this project. For integration, it
was necessary to analyze each component, layer and software
element of the architecture of the Grader proposed in [10].
Eclipse IDE and Java programming language were used to
verify the functionality of the Grader, and the required
corrections were performed. Following, by using the software
development methodology Extreme Programming (XP), the
software artifacts needed for the creation of the Grader
integration module with Edx were designed. Then, the MOOC
Edx was deployed and configured on a server and the software
artifacts designed were developed. Finally, this module was
deployed in the Edx platform and a set of tests were carried out
to verify its functionality, and corrections were made.

The development of this work has been divided into five
sections. It is detailed in section II the analysis of components
used for the proposed investigation. Next, in section III it is
explained the integration of the Grader with the platform Edx.
Finally, in section IV there are presented the conclusions of the
project.

II. ANALYSIS OF COMPONENTS

» A. Grader Architecture

The architecture of the Grader proposed in [10] is based on the
use of the Orchestration Service [11]. It has some important
characteristics:

Jorge ' Carvajal is with the Department of Telecommunications and
Information Networks, Escuela Politécnica Nacional, Quito, Ecuador,
(jorge.carvajal@epn.edu.ec).

Franklin Sénchez is with the Department of Telecommunications and
Information Networks, Escuela Politécnica Nacional, Quito, Ecuador,
(franklin.sanchez@epn.edu.ec).

JIEE, vol. 29,2019

- TELECOMUNICACIONES Y REDES DE INFORMACION -

e Complete Control of the Processes, service calls, and
implements the grading process.

e Uses an XML configuration file to define the grading
process.

e Uses calls and answers to the submodules of the
grading process.

This architecture supports several grading criteria or metrics,
which are considered grading submodules independent of each
other. This independence helps to provide modularity,
extensibility and flexibility.

Figure 1 shows the layer-based architecture. The two top layers
are fixed and the three bottom layers are completely dynamic.

Figure 1. Proposed architecture for the grading process [10].

It has four grading submodules: the first checks the structure of
a set of files (CheckGradingSubmodule). The second compiles
a set of source code files in Java
(CompilationGradingSubmodule). The third, tests a set of
source files against test cases (TestGradingSubmodule).
Finally, the forth evaluates the style of a source code file in Java
(StyleGradingSubmodule).

B. Edx external grader Module

Edx has a service called XQueue, which allows to communicate
Edx with the Grader [13]. XQueue exchanges information
through JSON objects. For this job, this module must be
modified to add more queues. The queues are used to support:
grading submodule administration, sending additional files, and
submitting assignments to be evaluated. A queue is a socket that
has an IP address and a destination port. The web service, which
connects with each queue is located within the Grader and it
receives JSON objects.

The following steps describes the entire process of external
grader when evaluating an assignment:

e The student edits the solution code for an assignment in’
an external grader Textbox. Then select Submit and
wait for feedback.

e The Grader takes the submitted code from XQueue.

e The tests that the teacher has defined are executed in
the Grader.

JIEE, vol. 29, 2019

e The Grader returns the final grading and comments
from the assignment to XQueue.

e XQueue delivers the results to the Edx Learning
Management System (LMS) and is stored in the
database.

e The student receives the final grade and feedback of the
assignment.

III. INTEGRATION OF THE GRADER WITH EDX

It is necessary to create a mechanism to integrate the
architecture of the Grader with the Edx platform. The features
added to the platform, after adding the grading module are:

e Administration of grading submodules.

e Administration and configuration of the grading
process.

e Automatic grading, and feedback considering the
grading submodules.

A. Selection of the platform

It was selected Edx as a base platform for the Grader because
it has the following characteristics [12]:

e Flexible architecture, this means that the platform
architecture allows to communicate with other
components. For example, an automatic Grader.

e GNU/GPL license. Allows to modify and improve
design for specific needs.

e Easy access to documentation and source code.
e Provides a component called external grader.

B. Grader Customization

The Grader proposed in [10] was created to work on the Moodle
platform with the Virtual Programming Lab (VPL) module. For
this research, the Grader was given some corrections for
integration with the EDX platform using the external grader
module. These corrections are described below:

e In the CheckGradingSubmodule.java class, a
compressed file (Zip extension) was expected as a
student response, in which all files must be included to
be qualified. In this project, the submissions are made
by writing the response code in a Textbox of external
grader, therefore, the lines of code whose functionality
was to receive a compressed file and the decompression
of it, were commented.

e In the TestingGradingSubmodule.java class, the
Corrector.java file is used, which has test cases to
evaluate the code sent by the student. To compile the
Corrector.java file you need the tool JUnit [13]. This
tool allows to create test cases, making instances of the
classes to test their correct functioning. Its result is the
number of correct and incorrect tests, which are stored
in a text file. This last process of the grading submodule
had errors. To solve this, after compiling the
Corrector.java file using two JUnit executable JAR
files, a statement was raised to save the result to the

- XXIX JORNADAS EN INGENIERIA ELECTRICA Y ELECTRONICA -

resultTesting.txt file. This file will be created in the
same directory where the Grader is located, as shown
in Figure 2. The number of correct and incorrect tests
will be extracted from this file, with which the grade of
the submodule is calculated.

comand = o st it L. et oL fr sttt
i, vt o)

Figure 2. Corrective in the TestingGradingSubmodule.java class

rsiTetin, "

e In the StyleGradingSubmodulejava class, the
Checkstyle [14] tool is used. This tool allows you to
verify that a Java source code file (.java extension) has
all the necessary comments and tags, in Javadoc [15]
format. This tool results are the location of the
comment or the label missing of the code being
grading. It was found that the comment counter and
missing tags in the code for the Spanish language did
not work correctly. The problem was solved by adding
a logical operator OR (||) within the conditional, in
-order to additionally look for matches in the Spanish
language, as can be seen in Figure 3

iﬂmgﬁts!ﬂmﬁim(“hﬂs& | leesmtsizl contains{"con’) i{lresez tsl1]. contains{"comment”) {

nisstoments += 1;

}
ffresults[i]. contains("hone") 8 [results[1]. contains! “tiqueta®) || results[1]. contans("tag"} }{
missTags += ;
Figure 3. Corrective in the StyleGradingSubmodule.java class

e Finally, in the Orchestator.java class, the HTML tag
was increased to define a paragraph (<p> </p>), as
shown in Figure 4. This change allows to generate an
organized result at the time of displaying the comments
to the student at the Edx platform.

String firalhesponse = "cploment :=5»</p>"this.getSubaissionConf| } getGeneralCompent)+
"pAne]--</pps
"\ sthis. getSabmissionConf{ | getDetaledConents)4/ Detailed nes
Cb' Pt pps
"\nbrade :=>>"+this. gt SubnissionConf (). getFinalGrade(;

F i gure 4. Corrective i in the Orchestrator.java class

After the customization, it was tested its operation using a
scenario created in the Eclipse IDE. After performing all these
configurations, the Grader was exported as an executable JAR
file. Its name is Evaluation.jar and it was stored in a GitHub
repository, it can be observed or downloaded from [16].

C. Integration Design of the Grader with the Edx platform

The integration can be described through a set of processes:
create an assignment, manage and configure the grading
process, and submit an assignment. Following, there are
explained each integration process design.

e Create an assignment: First the teacher must access to
Edx Studio. Then it is created an assignment using the
external grader component and send it to the platform
studio. The assignment is stored in the database and
returns an affirmative response. The assignment is
created in the Edx Studio and LMS. Figure 5 shows the
sequence diagram to create an assignment.

Edx 3
[:smw-m! l :Data Base
i |
Store assigment: :
- Comrect answer- ~ 7
L

Figure 5. Sequence diagram to create an assignment

Manage and configure the grading process: The teacher
must manage the grading submodules and send to the
LMS of the EdX platform. This configuration is stored
in the database. It is then sent to the socket submission-
queue of XQueue, which will create an HTTP request
message to the Grader. In the Grader, there is a Web
service that receives the request, creates the XML
configuration file, and sends an affirmative response in
the HTTP response message. This response is stored in
the database and is sent to the platform so that the
teacher can observe. Figure 6 shows the sequence
diagram for managing and configuring the grading
process.

@ Edx Grader

:Teacher LMS-Edx :Data Base E l XQueue ‘ { ‘Grader Server

HI i 1 H 1

&s 1 i 1

5 ; 3 ' '

tor 19 1 i

t-Send to subrrission-queu :

'

~Sty

HTTH request
% HTT) D

o -~ -Store response —

t
1
ke -Send respon: 1 {

T

L

Figure 6. Sequenée diagram to rﬁanage and conﬁgure. the grading process

Submit an assignment: The student must edit their Java
source code for response to an assignment, using an
external grader text box and send to the Edx platform
LMS. The response code is stored in the database. It is
then sent to the Java-queue of XQueue, which creates
an HTTP request message to the Grader. In the Grader,
there is a Web service that receives the request, begins
the grading process, and sends the final grading and
comments in an HTTP response message. This
response is stored in the database and is sent to the
platform so that the student can observe the
assignment's feedback. Figure 7 shows the sequence
diagram for submitting an assignment.

e 3 e

]
@ Edx Grader
l Student ; 5 LMS-Edx i { :Data Base T § XQueue ; !:GﬁdsSm
T T T T
L —— Send cod ! | ! !
‘ : :
F-Send to java-que! ;
TP rmea-ﬂ
-HTTR response.
k= -Store respanse ~ T :
it I
t i

ke (Grade, comntents} i

JIEE, vol. 29,2019

Figure 7. Sequence diagram to send an assignment

. TELECOMUNICACIONES Y REDES DE INFORMACION -

D. Implementation of the integration of Grader with Edx

After installing Edx (v Ficus. 3) [17] in the Ubuntu Operating
System (v 14.04), some configurations were made, because to
use the Grader it is necessary that all the required files are
within it. For this project, in XQueue of the Edx platform, three
new queues were created: submission-queue, which
communicates with the SubmisssionConf.py service to create
the XML configuration file; Corrector-queue, which
communicates with the Corrector.py service to create the
Corrector.java file; and Java-queue, which communicates with
the JavaGrader.py service to start the grading process. To
configure the three new queues, the following steps were
followed:

1. Edit the xqueue.env.json file. The following three lines
were added:

"java-queue": "http://localhost:1710",
"corrector-queue": "http://localhost:1720",
"submission-queue": "http://localhost:1730",

After this step, three new queues have been added to
XQueue. To start the Grader the following steps were followed:

1. Access to the /edx directory and download the GitHub
evaluation Project from [16].

The project has the files Submission.py, Corrector.py,
JavaGrader.py, Evaluationjar and another files
necessary for the Grader.

2. Access the /edx/Evaluation/ directory and run the three
Python files in the background.

sudo python JavaGrader.py &
sudo python Corrector.py &
sudo python SubmissionConf.py &

3. Verify that all three services are running in the
background.

At the end of this point, the Grader was working and waiting
for an assignment to be qualified.

The operation of the JavaGrader.py and SubmissionConf.py
files, which are necessary for integration, is detailed below.

The executable file JavaGrader.py, receives from Xqueue all
the information of the assignment sent in a JSON object, begins
the grading process and returns the feedback of the
assignments. BaseHTTPServer of Python 3, was used to
implement an HTTP server (Web server). The following steps
describe the operation of the JavaGrader.py file:

e An HTTP server is created, which listens to all client,
requests in the socket (IP address: localhost, port:
1710).

e The sentresponse Java source Code, the package name,
and the name of the Java files to be created are extracted
from the JSON object.

e With the above information, all Java source (.java
extension) codes are created within the indicated
package.

JIEE, vol. 29, 2019

e The grading process is executed by sending the XML
configuration file as a parameter.

e The final grading and comments returned by the Grader
are captured.

e The Java source codes (.java) and bytes source codes
(.class) are deleted from the package. The source codes
were created by JavaGrader.py service, instead the byte
codes were created by the Grader.

e Creates a JSON object that contains the state of the
process, the final grade, and the comments. This object
is sent as an answer to XQueue.

The SubmisssionConf.py execution file, receives from XQueue
a JSON object with all the configuration of the grading process.
Using that object creates an XML configuration file. Like the
JavaGrader.py file, Python 3 BaseHTTPServer was used to
create a Web server, The following steps describe the operation
of the SubmisssionConf.py file:

e An HTTP server is created that listens to all client
requests in the socket (IP address: localhost, port:
1730).

e The entire grading process configuration, the package
name and the name of the XML file to be created are
extracted from the JSON object.

e With the above information, the XML configuration
file is created within the indicated package.

e Creates a JSON object that contains the state of the
process and a successful creation comment from the
XML configuration file. This object is sent as an
answer to XQueue.

Following, a scenario has been created in Edx using the external
grader component. Figure 8 shows the basic settings for this
component.

kproblem>
<texty
i <p>Escriba un codigo en Java que cumpla la tabla</p>
<table>
<tra<thyEntrada xo/the<tinSalidac/tha</tr>
Ceractdr@</dictd>adftdx</try
cterctdylo/tdrctdr2e/tdr< e
terctdr2¢/tdictdrac/ tdr </ tey
</table»
<ftext>

<t g

£ *java-queue”>
<textbox rows="18" cols="8@" mode="java" tabsize="4"/»
<codeparam>
<initial_display>
</initial_display>
<grader_payload>
{"problem_name": "Deberl,Program”}
</grader_payload>
<Ffeodeparam>
</eoderesponsed
¢fproblem> . ’ : 5 "
Figure 8. Setting up an exercise using external grader.

This configuration uses HTML tags. The fields of the
configuration are:

e Text: this field contains the problem statement.

. XXIX JORNADAS EN INGENIERIA ELECTRICA Y ELECTRONICA -

e Coderesponse: this field contains the queue name, to
which a JSON object is to be sent. This object contains
all the information in the submission and the response
code edited by the student.

e Textbox: this field defines the size of the text box and
the style (either text, Java, XML, etc.) so that the
student can edit his code. If there are many files, they
must be separated with the tag “*Codigo™.

e Codeparam: this field contains the parameters for
sending the student's response. This in turn has two
fields:

o Initial display, in this field you can edit an
initial text that appears in the TextBox.

o Grader payload, this field contains a JSON
object to create all the files to qualify. The
name of the object is problem_name and the
content is the name of the package and the
files to be created for your grading. The
package to be used and the names of the files
must be separate with commas (,) and without
spaces.

E. XML Configuration File

To execute the Grader's performance tests is necessary the
XML configuration file that is is shown in Figure 9. For this
scenario, this file has 3 grading submodules:

e CompilationGradingSubmodule, in this section in the
<factor> tag a grading factor of 10 out of 100 has been
defined and in the <action-file-list> tag the files to be
compiled are written (MateEnPOO. java and
TestMateEnPOO java).

e TestingGradingSubmodule, in this section in the
<factor> tag a grading factor of 70 out of 100 has been
defined and in the <action-file-list> tag the file
Corrector.java is written, which runs tests on the
methods of the MateEnPOO .java class.

o StyleGradingSubmodule, a grading factor of 20 out of
100 has been defined in this section and the files are
written in the <action-file-list> tag (MateEnPOO.java
and TestMateEnPOO.java) that your style will be
verified with the file checkstyle.jar.

F. Configuration of Grading Submodules

To use the Grader, which has been integrated with the Edx
platform, it is necessary to create all the submodules of grading
to use. These submodules must be created in the XML
configuration file. For this project, a template was created to
administer and configure the grading process, which is unique
for each assignment. This template was established for the three
grading submodules: CompilationGradingSubmodule, to
compile a set of source files in Java; TestGradingSubmodule,
to test a set of source files against test cases; and
StyleGradingSubmodule, to evaluate the style of a source code
file in Java. This template is only visible by the teacher or
administrator of the platform. The template format for
Compilation Grading Submodule is shown in Figure 10, which
applies to the other three submodules since they have a common
format.

%2xml version="1.8" encoding="UTF-8"%>
<ns2:submissionCont xmlnsins2="es upm.dit.tfm.grad™s
<studentsStudent indentificatione/students>
<activitysActivity indentification</activitys
<subsission>submission indentification</subntssion>
<baze-grades100</base-grade>
«final-gradess. 8¢/ flnal-grades
<gensral-comment/s
<detailed-comments/x
<submodules>
<submodules
<progran-naneves.upm,dit. tfn.grad.sub. CompliationGradingsubnodules/frogran-nane>
<descriptionxComptlationSubnodulesc/description
<progran-parameters /o
«factor>10.88</factors
<caction-File-11st-Matematica/MateEnPC0. Java, Natematica/PruebaMateEnP00. Java</action-File-lists
<exgcutedsnos/execytad>
<staterfaileds/states
<grade»8.8e/grade>
<comments />
</ sybmodules
<subnodule>
<progran-nameses. upn.dit. tfm grad.sub. TestingGradingSubmodule</progran- name>
<descriptionsTestingSubmodule</description>
<progran-parametersxCorrector, Java«/progran-paraneters>
«factor>70.00«/Factor
<action-File-11st>Matematica/Corrector. jave,Hatematica.Corrector</action- fite-sts
<executed>no</executeds
«state>falled</statex
<grade0. B« grades
<comnents [»
</subnodutes
<submoduler
<progr sn-name>es, upm.dit, £Fm.grad. sub. StyleGradingSubnodules/program: nane>
«descriptionsStyleGradingSubnodules/descriptions
eprogran-paranetersslibrertas/vpl/iibs/checkstyle. jar; Javadoc. xml;5;5«/progran- parsseterss
<factor>38.08</factor»
<action-file-1ist>Natematica/MateEnPO0. java,Hatenatica/PruebanateEnP00. Java</action-file-1ist>
<executedanos fexecuted>
<state>falled«/states
<grade=8,0</grade>
<corments />
</submoduies
<fsubmodules>
</ns2:subnisstontonfs|

Figure 9. XML configuration file

submissonConf.xml
0 points possible fungraded)

Parametros de configuracion para el Calificador Externo

2 - Lupm.dit, tiw. grad.sub 1 prog

<program-parameters />

<factor>10.00</ facter>

<action-file-list>Deberl/Program. javac/sction-file-11st>
<exncutedynoc/ exncutads

<staterfaslede/ suata>

<grade0.0¢/grade>

Compilation Grading Submodule

Press £SC then TAB or dlick outside of the code editor to exit

Correct

Ok, File SubmissionConf.xml created

Figure 10. Compilation Grading Submodule
After creating an activity with assignments at Edx, it must be
published before it can be visualized in the platform. It can be
configured the grading process, by increasing or decrementing
submodules from the template. If it is set the grading process,
then it must be set the factor field considering each submodule
used.

G. Feedback from the Grader

The process for the student is very simple. First, it has to be
edited the solution code for an assignment. Then it is selected
Submit, and finally it is received the feedback from the Grader.
An example of feedback is shown in Figure 11.

JIEE, vol. 29,2019

- TELECOMUNICACIONES Y REDES DE INFORMACION -

Comiment 1=>>

Everything OK. Congratulations!t <:] General
ficae e comment

R

[CompilationSubmodule (Comments):
Compilation Ok.

TestingSubmodule {Comments): Detailed

comments
Testing OK.
StyleGradingSubmodule (Comments):

iStyle OK.

+ Correct (141 point) <:::3 State, Grade

Figure 11. Feedback from the Grader

IV. RESULTS

A. Functionality Tests and Acceptance of Students

First, a short introduction was made regarding the use of the
system to the students of the Object Oriented Programming
(OOP) subject, who collaborated with the project.

Students were asked to use the Automatic Grader tool for a
month, in which the solution was tested and any inconvenience
was corrected. Finally, the solution was stable and we
proceeded to conduct a survey to students in order to understand
its user experience to determine the degree of functionality, and
the acceptance level among the students. It is necessary to
mention that students were asked to consider only the
Inheritance and Exceptions exercises.

Important aspects were considered to determine the
functionality of the solution, such as: the operation of each of
the tools that make up the solution and access to each of them.
Regarding the acceptance of the solution, the presentation of the
solution interface, page load times, ease of use and student
experiences when using the solution were considered. The
results of the applied survey to students are presented below:

e The presentation of the Automatic Qualifier interface
was regular.

e Regarding the time it takes to load a page within the
Automatic Qualifier at the Laboratory, such as: login,
online evaluation, and navigation between pages, it
was obtained that the largest number of responses is in
a waiting time of 2 -4 seconds. According to [10] these
values are within the acceptable time range for page»
loading.

e Most students have little difficulty using the tool and
its use was simple.

e The results obtained show that uploading the code
showed difficulty, because students have a resistance
to using a template to complete the solution code for a
given problem.

JIEE, vol. 29, 2019

e The results obtained show that the feedback given by
the tool was useful and practical.

e The results obtained show that there is no great
acceptance by the students of the style rating metric.

e According to the previous analysis, it is evident that
the use of the solution was a simple and presented no
difficulties for the students. Therefore, it can be
concluded that the Automatic Grader had a positive
impact and achieved good acceptance in the students.

B. Functionality and Acceptance Tests of the Teacher

The applied survey collected the opinions given by the
collaborating teacher of the project. Once this information was
collected, an analysis was carried out, the results of which are
presented below:

* The design and ease of use, as well as the access time
to the Automatic Grader is good. These results affirm
the result obtained by the students.

e The display of the exercise description and the
evaluation of the Automatic Grader always worked.

» The metrics that the teacher consider important are the
test and compilation cases, instead the style metric
leaves it aside.

e Regarding the use of the Automatic Grader in a full
semester, the teacher strongly agree that it would be
useful for learning of OOP.

e Finally, the teacher is satisfied with the metrics
proposed and the feedback obtained from the
Automatic Grader.

V. CONCLUSION

It was configured an automatic grader for Object Oriented
Programming code using the Edx platform. A scenario was
created to test the performance of the Grader and the required
corrections were made. These corrections were carried out on
the classes CheckGradingSubmodule.java,
StyleGradingSubmodule.java,
TestingGradingSubmodule.java, and Orchestator.java. Then it
was designed the integration between the Grader and the Edx
platform for the processes: creation of an assignment,
management and configuration of the grading scheme, and
submission of an assignment. Following this, the integration
was implemented, based on the processes designed. Finally, the
results of the implementation showed that the Automatic
Grader checked Object Oriented Programming code by giving
a score with its corresponding feedback, and the teacher was
able to configure the metrics of the grading process
successfully.

REFERENCES

[1] S. Willman, R. Lindén, E. Kaila, T. Rajala, M.-J. Laakso, y
T. Salakoski, «On study habits on an introductory course on
programmingy, Comput. Sci. Educ., vol. 25, n.° 3, pp. 276-
291, jul. 2015.

[2] M. Amelung, K. Krieger, y D. Rosner, «kE-Assessment as a
Service», IEEE Trans. Learn. Technol., vol. 4, n.° 2, pp.
162-174, abr. 2011.

- XXIX JORNADAS EN INGENIERIA ELECTRICA Y ELECTRONICA -

[3] H. Le, «Interactive Computer Science Exercises In edX»,
2016.

[4] T. Barrios y M. B. Marin, «Aprendizaje mixto a través de
laboratorios virtualesy, Signos Univ., 2014.

[5]J. C. Rodriguez-del-Pino, E. Rubio Royo, y Z. Hernandez
Figueroa, «A Virtual Programming Lab for Moodle with
automatic assessment and anti-plagiarism features», 2012.

[6]J. C. Caiza y J. M. del Alamo Ramiro, «Programming
assignments automatic grading: review of tools and
implementations», en 7th International Technology,
Education and Development Conference (INTED2013),
Valencia, Spain, 2013, pp. 5691-5700.

[71 M. Guerrero, D. S. Guaman, y J. C. Caiza, «Revisién de
Herramientas de Apoyo en el Proceso de Ensefianza-
Aprendizaje de Programacion», Rev. Politécnica, vol. 35,
n.° 1, p. 84, feb. 2015.

[8] P. Ruiz Martin, «Presente y futuro de los Massive Open
Online Courses (MOOC): Analisis de la oferta completa de
cursos de las plataformas Coursera, EdX, Miriada X y
Udacity.», 2013.

[91J. S. Ruiz, H. J. P. Diaz, J. A. Ruipérez-Valiente, P. J.
Mufioz-Merino, y C. D. Kloos, «Towards the Development
of a Learning Analytics Extension in Open edX», en
Proceedings of the Second International Conference on
Technological Ecosystems for Enhancing Multiculturality,
New York, NY, USA, 2014, pp. 299-306.

[10]J. C. Caiza, «Automatic Grading of Programming
Assignments: Proposal and Validation of an Architecture»,
ESPANA/Escuela Técnica Superior de Ingenieros de
Telecomunicaciones-Universidad Politécnica de
Madrid/2013, 2013.

[11] P. Mayer, A. Schroeder, y N. Koch, «MDD4SOA: Model-
driven service orchestration», en Enterprise Distributed
Object Computing Conference, 2008. EDOC’08. 12th
International IEEE, 2008, pp. 203-212.

[12] «About Open edX | Open edX Portal». [En linea].
Disponible ~ en: https://open.edx.org/about-open-edx.
[Accedido: 01-jun-2017].

[13] «JUnit - About». [En linea]. Disponible en:
http://junit.org/junit4/. [Accedido: 11-jul-2017].

[14] «checkstyle — Javadoc Comments». [En linea]. Disponible
en: http://checkstyle.sourceforge.net/config_javadoc.html.
[Accedido: 11-jul-2017].

[15] «How to Write Doc Comments for the Javadoc Tool». [En
linea]. Disponible en:
http://www.oracle.com/technetwork/articles/java/index-
137868.html. [Accedido: 11-jul-2017].

[16] «DarwinPoveda/Evaluation», GitHub. [En linea].
Disponible en:
https://github.com/DarwinPoveda/Evaluation. [Accedido:
14-jul-2017].

[17] «3.4.1. Installing Open edX Fullstack — Installing,
Configuring, and Running the Open edX Platform
documentation». [En linea]. Disponible en:
http://edx.readthedocs.io/projects/edx-installing-
configuring-and-
running/en/latest/installation/fullstack/install_fullstack.htm
I#installing-open-edx-fullstack. [Accedido: 03-jul-2017].

JIEE, vol. 29,2019

Darwin Poveda. was born in Quito,
Ecuador on June 28, 1991. Information
Network Engineer, Escuela Politécnica
Nacional, 2018.

Gabriel Lopez Fonseca. Information
Network Engineer, Escuela Politécnica
Nacional, 2010. Master in Systems
Security, Sheffield Hallam University, UK,
2015. Master in Communications
Management and Information
Technologies, Escuela Politécnica

Nacional, 2017. Currently working as a
Teacher Researcher at Escuela Politécnica
Nacional in Quito.

Jorge Carvajal, was born in Quito,
Ecuador on August 2, 1984. Electronics
and Telecommunications Engineer,
Escuela Politécnica Nacional. Master's
degree in Information Technology,
Universidad de Ciencias Aplicadas
Mannheim. Currently working as an
Assistant Teacher at Escuela Politécnica
Nacional in Quito.

Franklin Leonel Sanchez Catota,
Electronics and Telecommunications
Engineer, Escuela Politécnica Nacional.
Interuniversity Master in Telematic
Engineering, Universidad Carlos IIl of
Madrid and Universidad Politécnica de
Catalunya. Currently working as a full-
time added Teacher at Escuela Politécnica
Nacional in Quito.

