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RESUMEN

Esta tesis propone un marco de trabajo que permite desarrollar modelos de predicción

de rendimiento de cultivos, solventando las limitaciones de las actuales bases de datos

agrícolas nacionales.

Actualmente, las estadísticas agrícolas a nivel de unidades de producción estan lim-

itadas en su integración con la información de mercado, las variables climáticas y las prác-

ticas de gestión del campo, por lo que este trabajo, hasta la fecha, representa un esfuerzo

novedoso para resolver este problema.

Esta integración de información es crucial para entender las interacciones dinámicas

entre las unidades de producción y los socio-ecosistemas que impactan en los rendimientos

agrícolas. La tesis incluye mecanismos de integración de datos agrícolas y sus aplicaciones,

con una tentativa de construcción de bases de datos transversales, la modelización de

emisiones de gases de efecto invernadero y el desarollo de un modelo de predicción de

ingresos no agrícolas.

Además, se construyó un modelo novedoso de rendimiento de cultivos, denominado

Transformer para Secuencias de cultivos, que integra resultados intermedios para mejorar la

precisión de la estimación del rendimiento. En conjunto, este trabajo contribuye al desarrollo

de sistemas de información agraria con bases de datos más completas y precisas, que

pueden beneficiar a los agricultores, responsables políticos y otras partes interesadas del

sector agrario.

Palabras Claves - Sistema de información agrícola, modelado de rendimiento, minería de

datos, datos de cultivos, estadísticas agrícolas
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ABSTRACT

This work proposes a framework that addresses the limitations of current agricultural statis-

tics to develop yield prediction models.

Currently, agricultural statistics at farm levels do not allow their integration and use

together with market information, climatic variables and field management practices. This

work, to date, represents a novel effort to solve this problem.

This integration of information is crucial for understanding the dynamic interactions

between production units and socio-ecosystems that impact agricultural yields. The thesis

includes a study of data integration and its applications, including the construction of cross-

sectional databases, modeling of greenhouse gas emissions, and non-agricultural income

prediction models.

Additionally, a novel crop yield model was built, called a Crop Sequence Transformer,

which integrates intermediate results to enhance the accuracy of yield estimation. Overall,

this work contributes to the development of more comprehensive and accurate agricultural

information systems, which can benefit farmers, policymakers, and other stakeholders in the

agriculture industry.

Keywords - Agriculture information System, Yield modelling, Data mining, Crop data, Agri-

cultural Statistics
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PROLOGUE

Crop Yield prediction depends on multiple factors interacting in time. Acquiring and mod-

elling information is a limiting factor for farmers in Ecuador and other developing countries.

This thesis is built around the proposition of building a database, integrating farm prac-

tices, market data and agroecological information. This work provides a framework to build

a single model to estimate yields of various crops.

The research began by focusing on agricultural survey data, a continuous survey on

production and area use of Ecuador covering yearly surveys all over the country since 2002.

A literature review analysis was performed and showed that several factors limit the use

of this information for crop yield studies, and require novel strategies to build an adequate

information system.

The central idea of this thesis is to develop an integrated agricultural database that

incorporates on-farm practices, market data, and agroecological context to estimate crop

yields. To achieve this, the research initially focused on analyzing agricultural survey data

from Ecuador, which has been collected annually since 2002. However, a literature review

highlighted the limitations of using this data for crop yield studies and emphasized the need

for novel strategies to build an effective the database. This thesis represents a unique effort

to address this problem and provide a framework for the generation of more comprehensive

and accurate agricultural information systems for estimating crop yields.

The thesis investigates data integration and its applications, including modeling of non-

agricultural income, greenhouse gas emissions resulting from animal production, and crop

yields. Using machine learning and data linkage algorithms, the study shows that 60% of

farms can be re-identified over the years to create a longitudinal dataset from transversal

data. Additionally, the study finds that multi-annual surveys can be utilized to estimate off-

farm income when the information is not present in the survey. The detailed information from

surveys allows for modeling greenhouse gas emissions from enteric fermentation at the farm

level in Ecuador.

I also introduces a novel crop yield model, called a Sequence Crop Transformer, that

xiii



integrates intermediate results to understand the dynamic interactions between crops and

the environment. The results indicate that this model has the potential to predic yields for

various crops and could be applied to various farming conditions in Ecuador.

Overall, the thesis highlights the possibility to integrate information and model interac-

tions between crops and farmers’ socioeconomic and agroecological conditions in Ecuador.

The results suggest that crop sequence modeling could be a promising practice to model

and study farm characteristics.

The repository containing the source code for this work can be accessed at the follow-

ing location: https://github.com/PBG-Ec/CropSeqTransformer.

xiv



Chapter 1

General introduction
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1.1. Background

Smallholder agriculture is the predominant form of production in most developing countries,

and despite the undeniable contribution of millions of farmers to food sovereignty and na-

tional economies, a vast majority of smallholders suffer from poverty with few incentives to

increase productivity. This challenge is fundamental for poverty reduction on large scale.

Moreover, agroecosystems in equatorial countries stand out for their exceptional endemicity

and the ecosystem services they provide [1], [2]. The complexity of agricultural systems and

their relations with its surroundings imply the understanding of interrelations between social

and environmental context. Interactions between ecosystems and society are especially

relevant in tropical areas.

In Ecuador, the understanding of farmer practice facing global change, for instance

weather variability, is still mostly incomplete. From a statistic systems perspective, a prob-

lematic gap of information on smallholders exists. Moreover, with high concentration of

productive soil in a few hands, agriculture policies in South America remain globally secto-

rial, dedicated to major staple crops and a few secondary production systems such as cattle

and dairy production [3]. Global strategies to strengthen agricultural and rural statistics, ad-
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vice building adapted policies and provide a better understanding of small-scale farming [4].

Yet, few applications achieve these goals and integrating agriculture into national statistical

systems is still deficient.

1.2. Design science research approach

I followed principle of Design Science Research (DSR) to define and conceptualize the con-

struction of the data mining framework [5]. Guidelines and principles in DSR help estab-

lishing a rigorous paradigm. Throughout the research process, I followed a series of cycles,

starting with identifying the problem, defining the research problem, and developing a set

of hypotheses to address the problem [6]. The understanding of the objective was primar-

ily translated to a proposal [7]. This proposition finds its relevance and significance from

reviewed literature, filling a need in agronomic research.

The underlying approach to study farming systems employ data mining techniques adapted

to the modelling requirements for large volume of information. As mentioned above, I iden-

tified that enhanced analysis is required to understand smallholder agriculture in Ecuador

[8]. The developed artifact is a data mining framework build to obtain crop yield estimation

in this context.

1.3. Objective

Many models integrating multiple agroecosystems components exist, in developing coun-

tries context [9]. Still, modelling efforts depending on national statistical data are less

common. Indeed, descriptive crop models tend to focus only on a single aspect of yield.

Integrated environmental modelling, propose to integrate socio-ecosystem dynamics, but

requires intensive field monitoring.

The objective of the research is to provide tools and methods to analyze national agri-

cultural data, and generate key indicators and insight in crop production in Ecuador.

From a computational perspective, the contribution of this work is a proof of concept

that the nature of complex trade-offs in agriculture [10] are especially consistent with finding

production optimal under constrain, the same type of problem that neural network algorithm

computes. The use of the data mining framework helps to identify unanticipated patterns

and relationships not apparent in conventional databases. Hidden relations between farm

and environmental characteristics produce complex interactions that can be integrated in a
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systemic framework. Limited resource allocation in smallholder’s farm should be mirrored in

crop sequence, and, even if no information is provided on detailed sequence of crop man-

agement, yield data should reflect the complex interactions occurring dynamically through

time.

1.4. Outline of the thesis

The thesis consists of eight Chapters, including this general introduction chapter. In a chap-

ter 2, this research presents the fundamental limitations of this type of data followed by a

depiction of the ecuadorian context. I expose the problem around the structure of agrarian

statistics system and I identify a gap between the type of agriculture in developing countries

and the type of information available. This, in turn, lead to the identification of a challenge:

model agroecosystems in this context. Then, conclusions are made with the main proposal

to build this framework.

In chapter 3, I describe a data mining framework based upon a model, FARMSIM de-

scribed by [11], [12] to solve this issue. The development of the framework is described

following Cross Industry Standard Process for Data Mining guidelines (CRISP DM).

In the fourth chapter, the application of the framework in the business understanding

phase is initiated, assessing limitations and further expanding on a data model designed for

yield modeling. Additionally, it restates and elaborates on the goals and objectives of the

model, providing a more detailled explanation of its purpose.

The fifth chapter delve into the data understanding phase, describing each data source

employed in this thesis. For certain steps, I elucidate the preprocessing and data cleaning

procedures undertaken to prepare the information.

In the sixth chapter, I focus on the data preparation phase, where I outline the steps

undertaken for integration and variable generation. This section provide a detailed account

of the processes involved in merging different datasets and generating new variables to

enhance the quality and comprehensiveness of the data.

The integration tasks necessary to build a minimum dataset for crop modelling are de-

scribe for three cases: geographical data integration, crop management data and finally a

special attention is accorded to integrate survey into longitudinal datasets to follow individ-

ual farms. The next section describes the generation of variables for two main subsystems

interacting with crop production: estimations of GHG cattle emissions as a proxy of cattle

production and detecting off-farm income with available information from census.
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In the seventh chapter, a crop production model is developed that integrates geographic,

climate, and market data to generate reliable yield predictions. This adaptable model takes

into account three primary subsystems: social, economic and environmental. The foun-

dation of the model is based on thirteen years of production data spanning from 2000 to

2013, from continuous agricultural area and production surveys or ‘Encuesta de Superficie

y Producción Agrícola Contínua’ (hereafter referred to as ‘ESPAC’).

The concluding section of this thesis offers insightful remarks and practical recommen-

dations that underscore the significant potential applications of the data mining framework

and the Crop Sequence Transformer model. These findings aim to provide valuable guid-

ance and support to policymakers, agricultural practitioners, and other stakeholders in the

agricultural sector to enhance their decision-making processes and achieve sustainable and

profitable crop production.

4



Chapter 2

Problem statement
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The farming populations are facing two enormous challenges: on the one side the rapid

growing demand on food systems and, on the other, an increased variability of climatic

conditions due to global warming [13]. Without the capacity to generate and report the

minimum set of agricultural indicators regarding smallholder production, public institution

programs for small-scale agriculture are not always adapted.

Monitoring agriculture outputs remains weak using common sampling methodologies

and despite important investments, few appropriate statistics of smallholders health and

wealth surveys are available in developing countries. In Ecuador until 2013, about 508,038
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farms had an area under five hectares accounting for nearly 60% of the total productive

area. Understanding strategies and drivers of productivity in those farm is a difficult task.

In Ecuador, there is a significant disparity in land access, resulting in a concentration of

cultivated land in a few large agricultural production units (APU). This unequal distribution

is reflected in the dual sampling design, employed for agricultural surveys. The design

consists of an area frame, which is based on stratified geographical grids, and a list frame

that includes approximately 5,000 surveys from extensive haciendas, accounting for nearly

40% of the productive land [14]. This sampling approach allows to obtain representative

information of the diverse agricultural landscape in the country, considering both small-scale

farms and large-scale APUs.

Reviewing known issues concerning data quality will help us to understand the reason

limiting the use of production surveys information. A description of the Ecuadorian setup

will show the necessity to construct a framework, and provide insights to what extent a crop

model can be built. A concise overview of techniques used for modeling crop yields and

their applications is also included.

2.1. On agricultural survey data: limitations in data applications

2.1.1. On the scope of agricultural statistic data

A systematic review of agricultural surveys in the African context showed inconsistencies in

data quality and recurrently missing household data [15]. The direct use of information com-

monly has very low weight in policy dialogue, with public institutions ignoring their existence

and, in turn, generating low incentive to improve statistic system and methodologies. As a

consequence, national programs for agriculture are failing to identify interesting innovation

of smallholders [16]. Although various critics in Carletto et. al (2013) reviewed here are

restricted to African countries, these are still relevant in the context of Ecuador. Indeed, the

same surveying tools are applied and tropical family farming shares common traits.

Conventionally, farm survey focuses on agronomic production with little or no data on

socio-economic components in households. Sampling design is defined on broad land use

categories with few considerations of the socio-geographical setting and rural economy,

making it impossible to understand social environment influencing production. Statistical

system remains confined to the concept of agricultural production unit, forgetting household

contribution with off-farm activities and local consumption:
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‘An integrated approach is thus needed to go beyond measurement and into understanding

agricultural production and its linkages with the non-farm sector as well as with outcomes

of interest, being this poverty, nutrition or food security, inter alia.’ Carletto (2013) page 2,

paragraph 3 [16].

Crop programs, exist with higher frequency and produce different yield estimates at local

levels. The exploitation of these studies is, however, hampered by the lack of standardized

methodologies applied for data collection [17]. Clearly, agricultural censuses enable the

collection of sufficient information to depict intricate patterns in the agricultural landscape.

However, the costs involved in conducting these surveys are substantial, and there is a

decreasing frequency in carrying out agricultural censuses. In Ecuador for instance, no

agricultural census was done since 2000, despite political incentives.

2.1.2. On land productivity assessment

Measuring productivity is at the center of United Nations global strategies [4], and vari-

ous weaknesses of current assessment tools are identified. Agricultural productivity can

be measured as yield: production volume of a crop per unit of land. Both numerator and

denominator are complex to determine and, more so, in the case of smallholders. Survey

may employ recall to inform distinct amounts produced over time, and it has been observed

that smallholders tend to sub-estimate quantities [18] but few research has been done to

evaluate the importance of bias and validation of recall methods. Direct estimation of yield

by producers are known to include various types of biases [19] and may not represent an

adequate data source at scale.

For production volume, local harvest units, such as size of a sack (‘costal’) are usually

standardized using conversion factors, depending on harvesting state as well. Across re-

gions, units also have homonimous names for different amounts. For perennial crops, the

length of harvest periods hamper perception of quantities. Besides, in the equatorial region

harvest spans over several months, in variable quantities, for instance in banana produc-

tion. Adding auto-consumption quantity confuses even more estimates as production have

multiple destinations: local markets, early harvest for social events, gifts, animal feeding

[20]. Some farmers may produce exclusively for their usage with no possibility or interest to

access markets.

In the case of land area quantification, in the ESPAC data almost a quarter of parcels are
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associated crops. In this case, area allocated to each plant must be considered, if the total

area is assigned for both crops, calculations of yield are skewed. Self-reporting quantities of

terrain are subjected to misrepresentation, influence of taxation programs or simply memory

bias that provoke sub-declaration or voluntary rounding. As noted in [16], smaller growers

tend to overestimate land extension leading to a drop of almost a third of real yield values

and, inversely, for larger producer, under estimations of seeded areas have been observed

to increase yield to a third of the true value. Avoid such biases using GPS data reduce

considerably recall distortion but is very time expensive for systematic assessments. The

necessity to evaluate and to define standardized protocols is essential for agricultural data,

without it, lead to varying estimates of productivity and poor quality statistics.

2.1.3. On isolation of agriculture statistic data

For most family farms, livestock can be an asset and a complementary source of income

[21]. Contributions of household members, from men and women, with an additional rev-

enue shape strategy for productivity [22]. Often isolated, agricultural statistics are usually

poorly shared and understood by other agencies. More generally, even when the necessity

has long been identified [23], public institutions fail to recognize that rural economies are

intrinsically diverse across farms, and without integration between data sets and redefini-

tion of common identifiers, few effort is made to support advance analytical applications in

developing countries.

The definition of primary unit of observation, opposing farms rather than households, or

crops rather than individuals, remains an open problem. Despite these limitations, various

examples of data modelling show encouraging results [24]–[26] and carefully curated data

may contribute to robust applications in yield prediction [27].

2.2. On Ecuador agricultural statistical system

An extensive review of the national agricultural statistics system published in 2008 describes

the history of institutional programs and milestones [28]. This document helps to understand

the context in Ecuador. Two public institutions provide Agriculture data in the country: the

ministry of agriculture (Ministerio de Agricultura Ganadería y Pesca, hereafter: MAGAP) and

the national institute of statistics and census (Instituto Nacional de Estadística y Censos,

hereafter: INEC).
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Agricultural statistical system has a relatively long history in Ecuador, with its first census

in 1954. Survey of agricultural production and areas were effective since the 1980s. On

various occasions, it has been revised and modification put under scrutiny. A history of col-

laboration for supervision and assessment with the United States Department of Agriculture

expertise occurred during the 1980s and 1990s. At that time, sample estimators of the area

were re-examined and validated employing cartographic and areal photographic material.

Regarding farmer recall of harvested volume and units, an extensive list of local measure is

used, but no validation and review of the method has been found. Since 2008, incentives to

enhance and integrate agricultural data (Comision Especial de Estadisticas Agropecuarias:

CEEA) identifies as priority the need to produce research on methodologies for agricultural

survey and the necessity of crop forecasts system for yields. The main obstacle utilizing agri-

cultural surveys arises from the nature of this survey type: measuring agriculture instead of

understanding agriculture [16].

MAGAP and INEC share similar programs and duplication of national data on prices and

yields exist. The source of information for price are both based on sampling designs, but

protocols and standardized techniques of the survey are rigorously established in the case

of INEC and raw data from MAGAP may present gaps and missing data. Other important

conflict of duplicate measure, albeit set on different methodologies and objective, concern

staple crop harvests.

Before 2014, the MAGAP yield program was limited to extension projects and provincial

estimates that were calculated without a statistical sampling design. Instead, they relied on

opportunistic campaigns [29]. As of 2021, seasonal yield reports are regularly published by

the MAGAP, arising from various sampling designs for selected crops: rice, cotton, Cocoa,

coffee, corn, soy beans, and potatoes at provincial level in the country. Direct evaluations on

plants are conducted in the case of MAGAP, and self-reported quantities in the case of INEC.

MAGAP sampling designs focused on classified remote sensing imagery identifying land use

as an area of interest, whereas INEC surveys employ general land use categories. Between

MAGAP and INEC, substantial discrepancies exist for area, volume and yield estimations.

As of 2021, no forecast models are available. In Ecuador, a vast majority of produc-

ers are smallholders, have parcels under 2.5 ha (75%, ESPAC estimates), with an elevated

proportion of crop association (26.4% of reported parcels, ESPAC data). With low access

to irrigation, exposition to extreme climate events and high price volatility, yields are ex-

tremely variable. A good forecast system should provide information on future production

and harvest to farmers, public institutions and private sector on demand. Early alerts about
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climate or market events should allow actors to make informed decisions on agronomic and

economic management on the farm.

Ideally, this forecast system should integrate and model effects from climate, soil compo-

sition, labor as well as input quantities: the type, planning and techniques employed for their

applications. The integration of costs fluctuations in time and local production area charac-

teristics can also influence forecast. Data from remote sensors may eventually be added

and enrich geographical context or be used as an indirect estimator.

2.3. Gap between agronomical modelling, smallholders and agri-

culture statistic system

In Ecuador, agriculture contribution to Gross Domestic Product (GDP) fluctuated around

10% according to the Central Bank of Ecuador (BCE). When it comes to employment, a

substantial portion of up to 40% of the workforce originates from rural areas (2001 Population

and Housing Census). For small-scale farming, integrated models should provide insights on

relationships between environment and agriculture and, for instance, dynamics of poverty or

other drivers limiting productivity. A body of published research set around spatialized data

to assess agricultural productivity and land use.

Previous work in Ecuador includes deforestation studies [30], [31], using land change

modelers to predict deforestation in the Amazon region [32]. A major limitation to this method

is the impossibility to incorporate social characteristics of individuals; also calibration can’t

account non-stationarity, common in rural dynamics [33]. In-depth description of family and

trajectories give a deep understanding of agricultural practices [34] but focusing more on

sustainability. The location of transition areas is, as well, very sensitive to modelling ap-

proaches and produce very distinct outcomes for a same set of data [35]. Other modelling

efforts have helped to better understand the mechanism of agricultural practices adoption,

facing climate change [36], and invasive pest diffusion and integrated pest management

[37]. Crop yield modelling for small-scale farming systems employ costly monitoring of soil

or plant biological characteristics, and to date, none of those models are based upon national

statistical surveys.
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2.4. Crop Yield Models

Crop production is influenced by various factors that directly impact plant development or in-

directly affect the availability of agricultural inputs. In the field of agronomy, key components

of production include soil, water, climate, crops and cultivars, as well as farmers’ practices

in managing crops from seed to harvest. Social and cultural practices of farmers also con-

tribute to yield, adding further complexity to understanding crop systems. Determining the

minimum set of information required to model yields and selecting an appropriate tool to

analyze datasets remain open challenges [38].

Historically, Fisher’s work on the development of analysis of variance significantly con-

tributed to establishing modern tools for enhancing productivity in field experiments [39].

Correlation and multiple linear regression are still commonly used analytical tools to un-

derstand the relationship between external factors and crop performance. However, these

methods are limited by the experimental conditions in which they are conducted, as con-

trolled settings are crucial for reproducibility. This constraint often contradicts technological

extension programs, where practices observed in small-scale farming address more com-

plex productive realities [40]. Linear models continue to serve as a typical benchmarking

algorithm in recent studies of this nature [41].

2.4.1. Machine learning algorithms for crop yield prediction

Modern data mining techniques and machine learning propose a different approach to mod-

eling, based on learning from data rather than using a formal approach. This approach

enables the discovery of knowledge from data, identification of patterns, and correlation with

features. The process involves a training phase and a testing phase. In the training phase,

a predictive model is built by analyzing historical data and establishing parameters. Sub-

sequently, in the testing phase, a subset of unseen data is used to evaluate the model’s

performance.

A systematic review on the use of machine learning techniques for crop yield modeling

conducted by Van Klompenburg (2020) identifies neural networks and linear regression as

the most commonly employed modeling tools, followed by Random Forest [42]. Deep learn-

ing methods such as CNN and LSTM are often used, particularly for sequence-based data

[43]. The evaluation of these models is primarily done using metrics such as RMSE (Root

Mean Square Error) and R-squared [41].
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2.4.2. Features for crop yield prediction

A systematic review on the topic reveals that temperature, rainfall, and soil type are identified

as fundamental variables in crop modeling. Additionally, nutrients from the soil or applied as

inputs, as well as field management practices, are also considered in crop modeling. Geo-

graphical information systems (GIS) are commonly employed to obtain data on soil acidity,

cation exchange capacity, soil type, and geographical extent. Furthermore, the type of crop

and its growth variety are typically included in the model. Crop management factors such as

irrigation and fertilization data are also taken into account [42].

However, these models have limitations in their applications, as they are often challeng-

ing to integrate into farmer management systems. The integration of these tools remains a

difficulty. Ideally, such models could be utilized to provide real-time predictions during the

growing season and assist farmers in making informed decisions throughout crop develop-

ment.

Ecuador statistical system lacks integration with market data, with few applications to

study farming systems. National Agricultural Research Institutes produce precise valuable

technical information, but results often stays isolated from the farmer’s day-to-day concern.

It is of utmost importance to provide information on different scales, focusing on the need of

the beneficiaries, and understanding interactions with farming systems, and vulnerability to

environment, market variation, or climate change. I will describe the necessary step to take

toward the construction of a data mining framework to fulfill this task.

2.5. Challenge: build a datamining framework to model agricul-

tural production at farm level

In computer science, a framework is an abstraction, collection of software components avail-

able in code, that run together or independently to achieve a complex task [44], it can be

selectively modified by users for applications. In data analysis, the framework of software

tools would specifically employ methods and algorithms to extract knowledge. Here, the

framework would allow validating, integrate and model components of farming systems.

Also, data mining applications are especially suited for that task, a theoretical interpreta-

tion of data mining applications would: ‘[complete] the task of finding the underlying joint

distribution of the variables in the data.’ [45]. Interestingly, a theoretical understanding of

data mining, is to view the value of extracted patterns as a microeconomics framework [46]

12



in which relevant patterns are used for decision-making to increase the utility.

The research problem defined in this thesis originates in the lack of understanding of

multiple dimensions driving productivity. Productivity is subjected to a various effects of

climate and agroecological components. In Ecuador the tropical landscapes and climate

is exacerbating diversity, allowing for instance farmers to benefit from vertical integration of

climatic layers [47]. The understanding of socio-ecosystems requires a deep understanding

of the rational decision of farmers. A definition of environmental modelling implies:

’[a] close alliance between space and place-based research and complexity as based on

multiple related themes: relationships between people and environment, spatial variability,

processes at multiple and interlocking scales, and combined spatial and temporal analysis

of the system’ O’Sullivan p. 643 paragraph 3 [48].

Natural systems and human society are in narrow interactions and their trajectory are

mutually influenced. Conducting rigorous descriptions of those dynamic interactions is a

major challenge for the scientific community. Since the fifties, formal mathematical modelling

tools based on physics and biology analogies have contributed to the implementation of

static models at first [49].

Statistical modelling has received benefits from this approach integrating land-use and

land-use change as a function of climatic, agro-ecological and economic components. An

abundant literature revolves around the agriculture environment modelling and fall back on a

diverse family of models, including generalized mixed models [9], generalized additive mod-

els [50], logistic regression or markovian models [51], [52]. On a lower scale, modelling tools

such as crop models and livestock management software suffer from fragmentation of im-

plementation [53] and are often highly sophisticated and not adapted to rural communities.

At farm level, conceptual model for farm information systems in literature is usually manage-

ment oriented [54]. And despite effort toward technified and precision agriculture, continuous

monitoring of farm activity remains financially impractical for small-scale agriculture..

Production of small-scale farming core data is still very limited, despite the key contribu-

tion of small farmers to food sovereignty. And precise description of the multiple aspect of

farm production is costly and usually done over a small area [3]. With the overabundance

of high-resolution data, coming from various sources, the efficient computational tools and

calculating power may allow building more complicated models based on the empirical data

[53].

In Ecuador, the gap in productivity is a subject of research as government extension

agencies and small-scale production units differ in goals [55]. I propose that a data mining
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framework of available information will allow organizing, evaluate and validate alternative

data sources, and construct a crop yield model. Integration of different sources will enrich

the original national agricultural statistics system, and provide novel approach to the study

of farm and socio-ecosystem interactions with yield modelling as a use case.

As central part of this work, a rich dataset of a decade of national survey is analysed. Ar-

eas and production surveys are intended to produce estimations at provincial and national

scale. For this research, I have no interest in computing regional or national estimations.

Instead, I intend to use information at parcel level to model production. Survey sampling

designs cover many landscapes and diversity of production in the country. Also, advance

analysis of this information may be sufficient to cover representative landscapes and under-

stand their specificities.

2.6. Research questions

Based on the mentioned limitation of statistical information for agriculture, a model build

using data-mining framework would allow to answer the following question:

R.Q.1 – In what way does the novel data mining framework contribute to the modelling

of crop yields ? How does the model perform to handle underlying interactions between

environmental and social variables for crop modelling?

To solve this problem, through the construction of the DM framework, subsequent inter-

mediate questions need to be answered:

R.Q.2 - How different sources of information can be used and validated? What data mining

techniques are relevant in this particular case, to enrich production and area surveys?

R.Q.3 - At which scale can data sources be integrated spatially and temporally?

R.Q.4 - In what manner the proposed model contributes the theoretical background for yield

models, and how does it perform handling socio-ecosystem representations?

2.7. Proposal

Current statistic provides aggregated information from national surveys, technical data from

agronomic research institutes and case studies from development programs. Nevertheless,

the separation between those elements, limits their applications. An integrated data mining

framework could help produce technical and theoretical knowledge of farmer practices at a

national scale.
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This research proposes a framework to develop a data mining project based upon na-

tional statistics that allows studying crop yields based on interactions between farm and

environment. Detailed description the operating procedures for integration models and ana-

lytics tools are key to this implementation, providing a source, libraries and original data [8].

This proposal of data mining framework is tied to the context of national agriculture statis-

tics, considering limitations mentioned above. Available sources of data should provide

structured information for crop modelling. This exercise hypothesized that modern machine

learning tools and methodologies can overcome limitations inherent to agriculture statistics.

The primary focus of this study revolves around addressing the challenge of developing

a crop model based on survey data. The underlying issue stems from concerns regarding

the usefulness and precision of the available information for this type of approach. I propose

that modern data mining tools can overcome these issues and help build a model for the

diverse range of farming strategies, farm types, and crops using the same tool.The creation

of a crop modelling database can still contribute to studying various aspects of farming in

Ecuador.

The significance of the yield model developed will lie in its ability to:

- Establish an adaptable framework for incorporating variables encompassing sequence

data, and time invariant spatial information,

- Employ a single model capable of capturing the complexities of non-linear input effects,

- Utilize a unified model that accommodates different types of farms and that encompasses

various types of crops.

15



Chapter 3

Design of the solution: a data mining

framework for agricultural data

Contents

3.1 Iterative process to answer objectives with the design science research . . 16

3.2 General components of the framework . . . . . . . . . . . . . . . . . . . . . 18

3.3 Datamining framework proposal for agriculture data . . . . . . . . . . . . . 18

In this chapter I propose a data mining framework, tailored to the context of national

agriculture statistics, taking into account the aforementioned limitations. Although there are

various limitations, the available sources of data should provide structured information that

can be used for crop modeling. I first outline the iterative process used to address the

research questions. I then introduce the general components of the framework and present

a conceptual data model. Finally, I propose a data mining framework customized for the

agricultural domain, which incorporates specific steps to tackle agricultural challenges within

a standardized data mining process.

3.1. Iterative process to answer objectives with the design sci-

ence research

My approach to Design Science follows an incremental and iterative process [56]. Each

phase of the process is closely connected to the research questions I aimed to address, and

I actively incorporated feedback and input from intermediate results throughout the process.

By adopting an incremental approach, I gradually built upon previous phases the frame-
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Process Iterations

Figure 3.1: Design Science Research representation of iterations followed in this thesis.

work and incorporated new observations and insights as I progressed. The Design Science

approach was characterized by an ongoing dialogue with stakeholders and alignment with

research questions (as defined in chapter 2, section 2.6).

I initiated my research by identifying and justifying the problem, as outlined in Chapter

2. In the first iteration, I focused on defining the framework and designing the necessary

components to address Research Question 2, which involved enriching the database (refer

to R.Q.2 in Figure 3.1). This iteration involved the implementation of various data mining

processes related to variable generation. Subsequently, I proceeded to the second iteration,

which revolved around Research Question 3. In this phase, my objective was to develop an

integration model using record linkage techniques, thereby enhancing the database. This

enriched database was then made available for the subsequent modeling phase (R.Q.4).

I conducted a final iteration that centered around Research Question 4. During this

phase, my main focus was on building the yield model and evaluating the obtained re-

sults. Through this iterative process, I was able to refine my approach and make significant

progress in addressing the research questions posed.
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3.2. General components of the framework

I suggest to build a framework considering a combination of farming subsystems, based on

previous works by [57], originally built to evaluate nutrient use in animals and cropping sys-

tems. The model was originally built for smallholders with diversified production [58]. This

structure consists of three major elements: fields, households and livestock constituting to-

gether a farm, and a set external components: climate, markets and off-farm activities (see

figure 3.2).

Multiple boxes indicate various instances of a model (fields and farms). This combination

of modules illustrates the extent of the component available for the final model, although the

surveys cannot cover soil nutrients, or detailed description of the inputs used in production.

As a first step in this research, identification of principal sources of raw data was com-

piled, from components of the Ecuadorian agriculture statistic system ; quality and main

limitations evaluated, with pre-processing step defined for each element. During this phase,

I harmonized available raw data sources when duplication existed, e.g. past price series

for crop products. Then, a definition of common scales was established, to integrate data

discontinuities in time and geographical scale. I validated overlapping sources building com-

parison models and aggregating secondary sources of data [59]. I followed recommenda-

tions on improving statistic reliability and coverage describe in [60] specifically adapted to

agriculture statistics in developing countries.

In a second phase, I developed a conceptual data model to organize and make informa-

tion available for data mining. This resulting integration of data will be tested through two

applications: (i) using record linkage techniques to evaluate to potential re-identification of

farms, and (ii) using indirect estimators to update variables in the survey dataset.

3.3. Datamining framework proposal for agriculture data

Finally, as solution the aforementioned problem, I adapted a data mining framework from

Cross Industry Standard Process for Data Mining projects (hereafter: CRIPS DM). This

methodology is commonly used in various data analysis projects and has a major benefit of

having no restriction on the domain or tools [61].
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Figure 3.3: Data Mining Framework adapted to agriculture data modelling.
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The structure and guideline applied to this research project was adapted (see figure 3.3)

using the following steps:

• a. Business understanding: for crop yield estimation, operations, and overall context,

business objectives are developed and challenges evaluated, to develop the solution,

• b. Data understanding: review and validation of the data,

• c. Data preparation: this phase has two steps: (i) integration of information and (ii)

variable generation with the proposed framework,

• d. Modelling crop yield using different farm components,

• e. Evaluation: selection of methods, assessment of quality and capacity to answer the

research proposal,

• f. Deployment: key findings, further Research, and recommendation for agricultural

statistics users.

As is the case with most data mining projects, the data preparation phase is typically

the most extensive. In my research, I followed the same framework proposal presented

here in multiple iterations to generate variables for the crop yield model (represented as

recursive arrow inside data preparation phase in figure 3.3). These adaptations are crucial

in addressing the challenge of limited information in agricultural production. In particular, I

focused the efforts on enhancing the data preparation phase through data integration and

variable generation techniques (see figure 3.3).

By integrating different data sources and generating new variables, I aimed to enrich the

available information and improve the quality and comprehensiveness of my dataset. Poten-

tial users of the framework are primarily actors in agriculture production and policy: policy-

makers, agro-researcher and project managers. The final artifact, constitute an instantiation
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of operations, models and methods [62], to model yield, integrating different aspects of a

farm.
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Chapter 4

Business understanding: agriculture

modelling assessment

Contents

4.1 Assessment of requirement, resources and limitations . . . . . . . . . . . . 22

4.2 Conceptual data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In this chapter, I review the needs, operations required and goals as a first step of the

proposed framework. This involves understanding the agriculture information required to

model production, the target users, and the services that a yield model of this kind can offer.

This understanding is crucial for making informed decisions that will help to build a pertinent

solution to contribute to crop yields modelling at this scale. Afterwards, I specify the overall

objectives of the study.

4.1. Assessment of requirement, resources and limitations

In order to establish the dataset requirement for my analysis, I utilized the approach outlined

in [38]. This approach utilizes indicators that capture both soil production and environmental

variation. While there are numerous indicators that can impact crop yield, I used Minimum

Data Set (MDS) to limit the number of required indicators. I operate under the assumption

that the available data will be sufficient to cover the minimum dataset requirements for each

individual crop, and can furthermore be supplemented with additional secondary informa-

tion.

In addition, to the fundamental information obtained from production surveys, there are
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various other sources of data that can be accessed. The MAGAP provides geographical

data on soil and elevation variables, which can be paired with global climate information

from CRU. Monthly producer prices for key products can also be obtained from two different

sources: the MAGAP and the INEC. Additionally, crop management references have been

published primarily by the INIAP.

Utilizing various sources of data at different scales presents a significant risk, as it may

potentially compromise the quality of input for the model. This is due to the fact that uncer-

tainties can propagate through the estimation process, ultimately reducing the quality of the

information being used, as noted in [63].

In order to address the propagation of uncertainty, I can compare the multivariate nature

of the time series that is constructed for the model by adding or subtracting components to

the yield modeling process.

4.2. Conceptual data model

Among the available information, ESPAC are the principal source of data. These data sets

are the central focus of this research will be investigated over the course of 14 years (2000

– 2013) and additional data integration is bound to the structure and units defined in the

surveys.

Various entities of the MAGAP make available sources of information. MAGAP direction

of information provided the price data of main crops monitored from 1998 and 2013, soil

maps and terrain characteristics are public data sets provided by MAGAP’s SIGTierras pro-

gram. For crops, management references from the national institute of agronomic research

(Instituto Nacional de Investigaciones Agropecuarias, hereafter: INIAP) were compiled and

gathered in a single database.

As described above, additional information for market prices (INEC), crop systems and

climate were integrated from public entities data sets and international statistics when not

locally available.

The general process of information consists in unifying those data sources, using tech-

niques of integration, imputations and validation. In another phase, I implemented models

combining those components (figure 4.1).

All sources of data monitor farming components over 2000 and 2013, and subsequent

data integration consider time and spatial location of data entries, in some case yearly and

monthly data.
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Figure 4.1: General flow of information. All sources in the farms database are compiled

over 2000 and 2013, and subsequent integration consider time and spatial location of data

entries, in some case yearly or monthly.

In pre-processing phase, definition of common identifiers, levels of aggregation and

transformation of geographic data was completed. A comparison of performance for record

linkage for agricultural surveys resulted in numerous evaluation of merging algorithms, best

results were obtained with Neural Networks but similar performance was observed with un-

supervised algorithm expectation maximization. Cattle demographic models and off-farm

activity estimation produced interesting intermediary results.

The proposed conceptual data model (see figure 4.2) considers various production sub-

systems, between crops and animal husbandry, and multiple source of data for geographical

data from geographical information systems (GIS) of MAGAP programs, climate and market,

and farm data.

Relations between entities are defined by common identifiers and arrow illustrates the pos-

sible connection between databases. Planning and distribution of labor within the farm and

activities is not modeled, but it has been shown that availability of total family and hired labor

is adequate for yield modelling in some crops [24].
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Figure 4.2: Relational conceptual data model to build a yield model based on available

sources for social, economic and environmental data.

4.3. Objectives

To implement agricultural models, both software and hardware infrastructure are necessary,

including processing, analysis, visualization, servers, and storage. Applications that serve

information and knowledge to end-users can be created based on the data in the infrastruc-

ture. For example, a supply chain manager might receive a yield forecast, a farmer might

receive estimates of disease-related crop damage, and the effects of a policy change on

farm income could be assessed.

Application chains can be simple or complex and involve various operations such as data

access, extraction, transformation, integration, and analysis. This may include the use of one

or multiple models, the integration of output from different models, and the transformation,

analysis, and visualization of model output.

Finally, the agricultural systems model will provide information to aid businesses, farm-

ers, and institutions in making well-informed decisions. In this context, I view data as an

entity that is only considered as "information" when it is accompanied by descriptive and

quality attributes.
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Information can then be integrated with other sources to identify causal relationships

and ultimately produce knowledge, which provides wisdom for end-users to make informed

decisions based on their own understanding of the information [64].

As specific objectives I integrated selected sources of information and generated vari-

ables for cattle and labor. In the final stage, I developed a time series model for predicting

crop yield, incorporating socio-environmental factors and their impact on yield. The perfor-

mance of the model was evaluated, and conclusions drawn based on the results.

In the upcoming chapter, I will provide a detailed breakdown of each dataset as part of

the data understanding and describe the process of integrating geographical and time series

data.
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Chapter 5

Data understanding: agriculture data

sources

Contents
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In this particular chapter, the objective was to take a closer and more detailed look at the

available data for mining. The aim was to identify any potential caveats or limitations and

produce a comprehensive statistical description of the data. During this phase, I carefully

evaluated the quality of the data, paying close attention to factors such as consistency and

external validation. The goal was to provide a thorough assessment of the data in order to

ensure its accuracy and reliability for future data mining processes.

I limited my sources exclusively to publicly available datasets for obtaining information,

which can be openly accessed online. In specific instances concerning crop management

data, information may also be obtained from publicly accessible online publications. This

information was downloaded directly from public institutions: MAGAP, INEC and University

public repositories.
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5.1. Survey of agricultural area and production

ESPAC are yearly national surveys, describing land use, crops, forestry, labor and breeding

activities in roughly 41,700 observations each year. Sampling units or segments are exten-

sion of land of approximately two square kilometers, inside which every farm is surveyed,

reporting land use at parcel level.

The structure of ESPAC survey design is based on a multiple sampling frame [65]. In this

case, an area frame and a list frame of enumerated specialized and large units of production,

combined in a single estimator. The area frame is then divided in standardized strata, based

upon the predominant land use in the sampling units: pasture, temporary and annual crops,

forest and natural vegetation (FAO, 2015), and an additional stratum for the Amazon region.

The survey statistical universe is based upon the Third National Agricultural Census

(CNA) of the year 2000, and the period of interest for this study spans from 2000 to 2013.

The surveys are carried out yearly between November and December at the national level,

in all provinces, except for Galápagos and non-delimited areas. Because the structure of

the survey and national census is almost identical, the 2000 dataset is also included in the

set of data. From 2002 to 2008 the sample design remained constant, with minor modifica-

tion during 2009–2013 period, as two new provinces (Santa Elena and Santo Domingo de

los Tsáchilas) were created with an addition of 115 sample units (SM) to the area frame.

The statistical design allows reliable estimation for 26 products parametrized on areas and

productivity each year.

The ensuing statistical estimation has the official purpose to provide basic information for

crop planning and diversification of production, price regulations and production incentives

for policy-makers. In practice, the use of this information is relatively limited. I use here

ESPAC data without expansion factors.

Therefore, it is important to note that the results obtained from the survey do not aim

to provide aggregated estimates of agricultural production at a national level. Instead, the

focus is on gaining a deeper understanding of the various factors that influence crop yields.

The continuity of the survey’s sampling design ensures that the fluctuations observed over

time correspond to the same geographic areas and landscapes. This approach allows for

a more detailed analysis of the specific drivers that impact agricultural productivity within

these regions.
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5.1.1. Survey variables

ESPAC survey investigates permanent and transitory crops, pastures and describes syn-

thetically animal breeding for cattle, pigs, sheep and poultry and labor.

This survey also describes land use and land tenure, including areas of forest and natural

vegetation. Parcels under the producer responsibility are described in terms of planted

or sown area, harvested area, quantity and sales of agricultural products, during the year

investigated. The applied questionnaire considers four types of crops: pasture, transitory,

permanent, and scattered trees.

An additional module evaluates animal husbandry demographics, with a register of ani-

mals by sex, age groups for animals the day of interview, sold, sacrificed and dead animals

along the year. For cattle, mean production of milk is also monitored.

5.1.2. Data cleaning

These data sets are already subjected to rigorous standardization of quality assessment

during data acquisition, digitizing and review. Careful interpretation of non-coding and miss-

ing values, minor change in categorical labels across years was performed, with extensive

standardization to adapt census surveys to ESPAC surveys. Geographic codification was

revised and homogenize to match official 2001 administrative and political divisions.

5.2. Crop management data

An exhaustive compilation of technical references for agricultural crop management se-

quence and respective costs were gathered, based on the list of crops described in the

ESPAC. One hundred and ninety-seven crops were compiled in a database, from 14 dif-

ferent bibliographical sources ranging from 2000 to 2018. A vast majority of management

sequences (87 % of reported crops) originated from publications the national institute of

agronomic research INIAP, and already compiled in technical reports [66]–[68], by agricul-

tural researchers and developers [67], [69]–[71], and student thesis [72]–[75].

I classified expenses and activities in homogeneous groups and aggregated the informa-

tion. These groups match information on input use reported in ESPAC databases (irrigation,

fertilizer and pesticide use, labor) with addition of activity sequence (soil preparation, seed-

ing, crop management, harvest). For permanent crops, cost progress with age of crops, for

each permanent crop, costs are reported for each year from seeding of crops until a matu-
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ration phase. Associated common crops are modeled, with crop management reference for

the following associations: bean-corn, coffee-citrus or cacao-citrus, cacao-banana. Then I

adjusted all costs to January 2008 dollars, according to the publication year and considering

inflation index on inputs [76].

I compared duplicated crop management references and averaged when comparable.

Validation with experts and other references were effectuated to ensure consistency of com-

piled data on the principal crops. I adjusted cost per activity and expense (material, labor)

monthly covering the research period (2000–2013). Finally, I built a common codification

for crops together with national surveys with crop code, levels of technification, and special

region for crop management references in certain cases.

In the case of permanent crops, I identified a limitation on the use of the information.

A special feature of the survey for permanent crops includes scattered and isolated trees.

The registry of these trees accounts for almost a third of records, without register of planted

area nor age of the crop. To evaluate the productivity of those trees, planted area must

be inferred. I calculated theoretical area of dispersed tree using tree density from standard

management reference and imputed age of crop based on multiple imputations and linear

Bayesian regression.

5.3. Market data

The agricultural public information system from the MAGAP provided past series on product

prices to producers (2000–2013), thereafter referred as PPP, I included price to consumers

in markets, warehouse and trade fair. The prices are reported per product and market with

the date of measure.

Through the market-monitoring system, MAGAP agents collected in every province data

from 50 different markets. From 2000 and 2010, MAGAP standard procedure in price moni-

toring show inconsistencies and differ significantly over the 2011 and 2016 period. I obtained

after data merging of both series, 488,827 price data points, for 220 products, including fruits,

vegetables, tuber and roots. After comparing with survey list of products, 96 series match-

ing product description were retained. Data was aggregate as mean national price monthly,

from PPP and using market or warehouses data when PPP was missing (see figure 5.1).

During years 2000–2011, a standard data acquisition protocol was not strictly applied,

and missing missing information appeared for various series, causing an important uncer-

tainty about the data quality for this period. For validation and extrapolation of missing data,
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Figure 5.1: Potato price series from various ecuadorian markets, raw MAGAP data

2000–2010.

I compared PPP series with price to producers’ index (PPI) from INEC.

Matching index gives the opportunity to compare these independent measurements of the

same products prices. Using standardized sampling technique, PPI data series more pre-

cise measure of market fluctuations but without giving an estimate of price in dollars (see

figure 5.2).

I applied machine learning techniques to predict transformed PPI series with PPP as

targets and using a distance metric for time series comparisons [77], I then identified the

nearest predicted value using PPI transforms to validate and impute, if necessary, market

prices when original data was missing (see figure 5.2).

After validation, I completed missing series and series without national reference using

FAO Statistics yearly producer price data (Food and Agriculture Organization of the United

Nations, 2020), and, when not available for Ecuador, I used prices from Peru or Colombia.

From national survey list of products of 192 permanent and transitory crop products, 152

price series were gathered in the market database, using 12 unmodified original series from

PPP data, 63 series with combination of PPP and imputed PPI data, and 89 from FAO Stat

database.
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5.4. Spatial data

The ESPAC 2013 database included the GPS coordinates of farms, at the principal farm

building door, for 41,943 data points. The localization of the farm is also reported as ‘locality’

name: small village, remote locations in string value.

5.4.1. Pre-processing and validation

The major issue with geographical coordinate in the database originated from to lack of

standard measurement and formatting with many erroneous entries. Longitude and latitude

fields were formatted using a heuristic approach to repair coordinates, providing a set of

correction rules. The process of cleaning followed four steps:

- (i) Extraction of coordinates from the nearest locality:

I matched ESPAC locality names with 2010 INEC cartographic locality database using fuzzy-

string-comparison and made a posterior validation of IGM military institute of geography to-

pographic maps.
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- (ii) Calculation of distance from nearest locality:

The distance between farm and the localities was computed, and distance to the nearest

locality retained. Distance above 6000 m was flagged as coordinates subjected to revision

- (iii) Application of a set of rules corresponding to typing or reporting errors:

The main correction observed was on latitude signs (inversion between positive and nega-

tive), decimal position, imputation of digits when consecutive coordinates show absent digits

- (iv) Validation of coordinate:

Finally, a last validation was done using a subset of corrected coordinates and observing

presence of farm buildings, based on observation of public satellite imagery.

5.4.2. Pseudo-sampling unit polygon

The obtained set of corrected points helped build ‘pseudo-sampling unit polygons’, define

as geographical units around farm coordinates (500-meter buffer) and joining group of sur-

veyed farms per sampling unit in a single polygon using concave polygons defined by Hull

algorithms [78] (see figure 5.3).

Figure 5.3: Map of pseudo-sampling units in Santa Elena Province: Farm coordinates are

depicted as circles (one point buffer), and corresponding pseudo-sampling units as poly-

gones.
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In the subsequent chapter, as a crucial step in the data preparation phase, these units

are utilized to integrate additional geographical measures including accessibility, bio climatic

factors, and agroecological zoning. Subsequently, the chapter explores additional integra-

tion applications and the creation of relevant covariates aimed at encompassing the various

aspects of farm activities.
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This chapter outlines the development of two data preparation phase: integration of in-

formation and generation of covariates.

First, the integration phase involved several tasks to combine information related to the

primary component of the information system (yearly agriculture surveys). Those tasks in-

cludes geographical data, crop management data, and detailed methods of farm re-identification

across multiple years.

Second, two applications were created for generating covariates related to crop pro-

duction: one to estimate greenhouse gas emissions from cattle production, and another to

identify dependence on off-farm income. These covariates are essential for understanding

the connections between crop production and other critical aspects of farming systems, as

shown in chapter 3, figure 3.2 of the NUANCES-FARMSIM model.

Developing these applications not only helps to fill data gaps but also enables an as-

sessment of the quality and consistency of the information gathered during the research.

Furthermore, it puts the data mining framework for agruculture data under scrutiny, the sub-

ject of focus in this thesis.
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6.1. Geographical data integration

Elevation information was derived from corrected coordinates and obtained through the use

of the Google elevation API [79]. The estimated error resulting from ground measurements

was minimal, with only a few meters [80], thus having no impact on the crop modeling

process at this stage.

To obtain past climate data, a high-resolution climate surface database [81] was utilized.

This database provided normal and average monthly temperatures and precipitation for the

specific period, which were adjusted to the elevation of each location. This climate model is

based on the CRU TS monthly high-resolution gridded multivariate climate [82] and physio-

geographic models, making it well-suited for representing mountainous terrain at a kilometer

scale [81].

Pseudo-sampling unit polygons were used to extract soil information [83]. A set of 64

soil descriptors was computed for each polygon, and these descriptors were then subjected

to a Principal Component Analysis (PCA). The PCA allowed for the combination of soil

characteristics within each sampling unit, resulting in five components that accounted for

70% of the overall variation.

Using principal component analysis is commonly used in soil classification, allowing to

identify patterns in soil characteristics potentially represented by a wide range of collinear

variables [84]. Here, the PCA allowed for the combination of soil characteristics within each

sampling unit, resulting in five components that accounted for 70% of the overall variation.

Nevertheless, following the work of [85] fourteen original descriptors not employed in the

PCA analysis were also retained.

The PCA analysis does not incorporate these variables as they are typically employed

to comprehend crop production patterns : available water capacity (six categories), organic

matter (three categories), cation-exchange capacity (five categories), summing in total nine-

teen soil variables. The characterization of the sampling units showed consistency across

the described geographical area, and the soil taxonomy reported in the data (USDA-NRCS,

2016).

Figure 6.1 displays the first two principal components, illustrates the first two principal

components, with soil type as illustrative variable. The PCA performed over the 2240 sam-

pling units encompass the five main soil types present in Ecuador, even in the absence of

exact farm and parcel location data. This observation holds true despite the absence of

precise farm and parcel location data.
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Figure 6.1: Principal component analysis (PCA) relating soil physical and chemical proper-

ties in sampling units illustrated by soil types.

The identified soil characteristics play a vital role in influencing yield, and it was expected

that the pseudo polygons formed by the sampling units capture an important contribution on

productivity.

Similarly, the accessibility of homogeneous accessibility zones [83] was summarized

and tested for the corresponding "markets" related to specific crops, including the farmer

input market, coffee and cacao collection centers, palm oil extractors, fruit collection centers,

corn collection centers, rice milling centers, milk industry/milk collection centers, and poultry

collection centers.

6.2. Integration of crop management systems

Crop Management Systems (CMS) are created with the use of agronomic references, how-

ever, to reduce the variability in cost estimations, I have adjusted these general models. I

have categorized the main crop components into four management sequences, which are

soil preparation, seeding, crop practices, and harvest (refer to figure 6.2).
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Figure 6.2: Crop sequence components in crop management systems.

For each of these steps, I have further divided the secondary cost groups into phytosan-

itary chemicals (pesticides, herbicides, and fungicides), fertilizer, oil consumption, irrigation

usage, and labor .

I have made adjustments to annual variations for intermediate costs using the national

statistics database for each secondary cost group in each sequence. However, other inter-

mediate costs have not been taken into account, such as farmland rent, technical support,

soil analysis, and transportation costs (both internal and external).

For each crop in the historical database, I have assigned a CMS from the management

database. In each case, I have applied a decision tree based on the available references,

taking into consideration significant geographic differences for the same crop CMS (coast,

highlands, rain forest), technification level (high use of inputs or low use), and crop model

associations, if available.

6.3. Integration of multiple year survey data

One key component of national statistics for agricultural systems are surveys and census.

In many developing countries such as Ecuador, these are often the only source of national

information, yet only a few efforts for integration of yearly records have been made and

mainly for health data [86]–[90]. Agricultural surveys provide complete descriptions of land

ownership and farm characteristics, systematically reporting land use on a parcel level [91].

Surveys usually cover small areas of geographical sampling units. Those sampling units are

not modified from year to year, and with few exceptions (non-response, drop out) the same

farms are surveyed in consecutive years.

These conditions should be ideal for record linkage, but in practice no identifiers and very

few of the farmers’ personal information are provided. On a national scale, matching data
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sets by hand is prohibitive, but integrating them can be done using probabilistic methods

[92]. Modern Machine learning techniques offer new and efficient ways for managing large

amounts of data. This is especially advantageous when the quantity of observations is

important, which is the case with agricultural surveys.

In the context of Ecuador, where small-scale farming prevails, very few sources of na-

tional data exist. Agricultural statistics often exist only in isolation, and are usually poorly-

shared and understood by other agencies. Even when the necessity has long been identified

[23], public institutions fail to recognize that rural economies are intrinsically diverse across

farms. Without integration between data sets and the definition of common identifiers, little

effort is made to support analytic applications in developing countries. Therefore, it is essen-

tial to understand farmers’ practices and drivers susceptible to affect production over time

[93].

The main objective of this study is to adapt previous work related to agricultural data

matching [94], [95] to the context of yearly surveys. The originality of this research is dual:

first, matching successive yearly data sets, with the aim to produce longitudinal records of

farm history; and secondly, match records using only numeric features, an uncommon case

in data matching where textual descriptors are usually employed (producer and farm names,

addresses).

I applied various matching procedures to successive yearly surveys. I used public data

sets from the Ecuadorian National Statistical Institute: the Encuesta de Superficie y Pro-

ducción Agropecuaria Continua (ESPAC: Agricultural land use and continuous production

survey) from the years 2010 to 2012. Little to no variation in survey design occurred during

those years, representing a rich source of information for agricultural policies [14]. I com-

pared 125098 records from three data sets, and the results were evaluated over three pairs

of data sets, using two different sets of variables and 16 algorithms leading to 96 matching

trials.

Records did not include names or address, nor consistent identifiers of farm house-

holds. I explored using numerical features such as production characteristics, crop area,

level of production and sampling features as pseudo-identifiers. These variables are subject

to yearly variations as farms evolve in time, for instance by acquisition or session of land, or

simply change in land use. The matching algorithm should provide robust matching results

in spite of these variations of farm activities. A wide variety of record linkage methods were

evaluated, including probabilistic methods and a different set of unsupervised and super-

vised machine learning techniques. For each algorithm, calculations were repeated over
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various pairs of data sets, which allowed us to evaluate “out of the sample” and generaliza-

tion quality.

In the next section this article provides an overview of record linkage standard procedure;

describing the necessary steps and emphasizing evaluation metrics. The following section

details the “data setup”: context, preprocessing and selection of pseudo-identifiers, and a

short description of the matching methods that were applied to the data sets. In the last

section, results are reported and discussed in regards to their implications for agricultural

statistical systems.

6.3.1. Record linkage

Record linkage consists of merging data sets based on common entities. In this process,

two records are compared. “Matches” are identified when two records are considered the

same entity and “non-matches” in other cases, similar to a classification problem. The data

setup usually involves two data sets with no unique identifiers [96]. Record linkage has

applications in numerous domains: health records [92], [97], administrative surveys [98],

[99] or research on historic census [100], [101]. Previous work with record linkage in the

agricultural context has focused on analyzing national census, identifying duplicate entries

(deduplication) [94], [102] and integrating farm records to agro-industrial data sets [95].

The procedure for record linkage involves four steps: data preparation, indexing or block-

ing, classification, and evaluation (see figure 6.3). Preparation of data requires common

attributes between data sets to be standardized. Typically string attributes are used, such as

names or addresses, and numerical measures, such as date of birth. In this process various

sources of errors may increase the difficulty of record linkage: the population between data

sets may differ, pseudo-identifiers vary as a result of distinct data acquisition processes, and

values may be missing or changing over time [103].

An optional step called “indexing” or “blocking” consists of dividing the data sets into

smaller groups by using group identifiers, and producing pairs to compare only from these

groups.

This technique reduces the number of comparisons to evaluate and the computation

time required to match pairs. Without this group comparison, the number of pairs for two

data sets of size m increase quadratically (m squared). The step of separating pairs using a

common key is particularly relevant in my case, considering the sampling structure.

41



Figure 6.3: Data process for agricultural survey record linkage.

By employing blocking techniques, I can ensure that pairs within the same block share

similar characteristics or are derived from the same sampling unit [104]. The surveys are

conducted through yearly visits to geographical sampling units. In each unit, systematic

sampling of all farms was carried out each year [28]; further details on blocking are provided

in the data setup section.

The choice of classification algorithms may produce widely different results depending on

the comparison function and selected variables to compare. When comparing two records,

the classification algorithm will receive a similarity vector based on the considered attributes,

and label it as match or non-match. As this process is realized using blocking, and optimizing

execution of methods lead to run times not exceeding a few hours, computational efficiency

will not be assessed. The evaluation step is equivalent to the evaluation of a binary classifier.

Results can be summarized in a contingency table, comparing true match status to predicted

outcome. Here, the first entry indicates reference true match or non-match for any given pair

and classifiers output as shown in table 6.1.

Predicted status is based on a similarity threshold, below which a pair of records are

considered to be a non-match. When comparing methods, evaluating algorithms in terms

of quality of classification is not trivial. Indeed, methods can produce different sets of pairs,

with different distance metrics produced when comparing results.
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Table 6.1: Contingency table used in record linkage.

Predicted class: Match Non-match

True status: Match
True Positives False Negatives

(true match: TM) (false non-match: FNM)

Non-match
False Positive True Negatives

(false match: FM) (true non-match: TNM)

The similarity value from one method may not be related to another and could produce

misleading comparisons. Comparing different algorithms with the same threshold should be

avoided [105]. Another problem arises from the fact that record linkage produces a strong

imbalance between the number of non-match and matches. Consequently, high accuracy

may arise from a classifier that only predicts non-match without match identified [106].

As imbalance between match and non-match is usually very high, F-score statistics (har-

monic mean of precision and sensitivity) is preferred in record linkage [105]. I propose here

to employ an evaluation method proposed by [105] that overcomes the limitation of com-

paring thresholds, providing that for given a value of F-score, the same number of predicted

matches are compared. The main idea is to rewrite F-score as a weighted mean of precision

and recall:

F =
2

P−1 +R−1
=

2P ∗R
P +R

=
2TM

FNM + FM + 2TM
(6.1)

and rewrite F-score as:

F = p ∗R+ (1− p) ∗ P (6.2)

where:

p =
(FNM + TM)

(FNM + FM + 2TM)
(6.3)

Comparing F and p, the weights p could inform on the relative importance given to precision

and recall. Using p in relation to F to evaluate algorithms produce a fair comparison as the

same number of predicted matches are compared. I can use this metric p to graphically

compare various algorithms without the use of thresholds.

Finally, to evaluate matched databases retaining only predicted pairs, a final step called

deduplication eliminates multiple occurrences of records [107]. In fact, farms are uniquely
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defined in each dataset: only one match per record should occur between two given data

sets. This additional step was added to produce a single match per observation, using

linear assignment, as proposed by Jaro [99], [108]. The final result is a longitudinal dataset

for multiple year linkage.

6.3.2. Data setup

Each record linkage exercise is adapted to the nature and availability of information. In my

case, true match status is available, allowing us to compare results on a common refer-

ence. This true status has been obtained in previous work, obtaining personal data from

each dataset. In this part, I will first describe the context of the agricultural survey and

the comparison that has been performed. Then the preparation and selection of variables

is presented. Finally, a description of the algorithms is provided and, how evaluation was

performed.

The continuous production and area surveys (ESPAC) are yearly national surveys, which

describe land use, crops, forestry, labor, and breeding activities in roughly 41,700 observa-

tions each year. Three consecutive years were selected: 2010-2012 (see figure 6.4). To

account for variation between years, I evaluated all three combinations between 2010, 2011,

and 2012 data sets.

The goal was to produce a longitudinal dataset for the three selected years. True match

status was established in a previous work (Belmont 2019, unpublished) using farmer and

farm name and address.

Overlapping observations between years is estimated over 80%, enhancing the potential

performance of the linkage algorithm, as noted by [99]. The remaining observations are

missing, possibly due to non-response or when no agricultural activities were registered

on farms. Surveys are usually based on a multiple frame [65]. The sampling design is

constituted by an area frame and a list frame. The area frame is divided into standardized

strata, based upon the predominant land-use in the sampling units: pasture, temporary and

annual crops, forest and natural vegetation, and an additional stratum for Amazonian region.

The list frame is a list of the main farms in extension or production in a specific sector.

The two sampling frames may overlap, 1 or 2% of units, and usually require deduplication

[96]; this aspect of the process is not taken into consideration in this research, as duplicates

can be identified.
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Figure 6.4: True matches raw difference in value for selected variables: farmers age

(Farmer.age), number of paid workers (Paid.labor), pasture coverage (Pasture.cov), land

tenure (Tenure), sequential survey number (Seq.number).

As mentioned above, record linkage was performed between the three pairs of annual

data sets for each algorithm: 2010-2011, 2010-2012, and 2011-2012. Processing steps are

described in figure 6.3: identification of features, indexing, classification and evaluation of

linkage quality. Corresponding weights were normalized using minmax (0,1). The analysis

was performed using R programming language (version 4.0.2) and data sets are available

online (here). Original data sets have thousands of variables; in the following section I

describe the data preprocessing and selection methods that I applied.

6.3.3. Pre-processing and attribute selection

Identifying a set of farm features for record linkage is especially challenging in Ecuador.

Small scale farming activities vary significantly over time, as farmers employ different adap-

tive strategies [109].
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In the absence of string identifiers, farms are described numerically. The inclusion of

continuous variables provoked a considerable increase in computation time when testing

different algorithms. Converting numerical variables to categorical variables and using quan-

tiles and normalization within blocks helped to reduce variance among identified pairs and

reduce computational time. I evaluated consistency of variables based on the true match

subset (see figure 6.4) in order to confirm that these remained constant or very similar over

time. For instance, the number of parcels between years is centered on zero but annual

change appears when farmers merge or divide parcels, or as land is transferred, acquired

or leased. A subset of 13 descriptors was defined, selecting variables with lower contribution

to variance using principal component analysis.

Common characteristics representing consistency over time include: (i) category of farm

ownership: (privately owned, rented); (ii) farm category: subsistence farms which generate

no income by selling products, family farms, “capitalist” farms, business farms, and hacien-

das, where no family member works on the farm, (iii) farmer’s age and (iv) sex, (v) labor on

farm, (vi) cattle density cite(see:Alkemade 2013), (vii) average milk production per cow, (viii)

presence of horses, donkeys or both; (ix) farm size (as quintile of land distribution), (x) pas-

ture and (xi) irrigation cover (as percentage of total land), and (xii) forest cover (as quintile

of the percentage of total land) and number of parcels (xiii).

A second reduced set was built to test survey design variables: two “agronomic” vari-

ables: land tenure and farm size as quintile of land distribution, survey ponderation factors

assigned to each farm with very few adjustments from year to year; finally, a sequential

survey number allows for partial identification. Sequential survey numbers correspond to a

determined sequence of farms that each survey taker has to follow. Each year, the sequence

begins with the same first farm and proceeds in the same order as previous years [29].

In table 6.2, I report descriptive statistics of retained variables. Valid and missing data in

percentage is described, and number of categories in the left column and mean value right

column are reported. Quantity of missing value did not exceed 11.2 %, which is within the

range of effective record linkage as tested by [99]. Those attributes are common descriptors

in standard agricultural surveys [94].

6.3.4. Indexing

As previously stated, by using group identifiers, I can reduce the number of comparisons to

evaluate.
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Table 6.2: Variable characteristics.
Categorical attributes: Valid Missing (%) Categories

Farm type

2010 41081 - 5

2011 41428 - 5

2012 42590 - 5

Farm ownership: (proper, rent. . . )

2010 41081 - 2

2011 41428 - 2

2012 42590 - 2

Farmer sex

2010 41081 - 2

2011 41428 - 2

2012 42590 - 2

Land extension

2010 41081 - 5

2011 41428 - 5

2012 42590 - 5

Pasture extension quantile

2010 41081 - 5

2011 41428 - 5

2012 42590 - 5

Presence/Absence of horses and/or donkeys

2010 41081 - 3

2011 41428 - 3

2012 42590 - 3

Numerical attributes: Year: Valid Missing (%) Mean

Age (birth year) 2010 40218 863(2.1%) 1967

2011 40887 541(1.3%) 1968

2012 42050 540(1.3%) 1969

Paid Labor (persons) 2010 41081 - 2.06

2011 41428 - 1.9

2012 42590 - 1.85

Area under irrigation (%) 2010 41081 - 0.09

2011 41428 - 0.1

2012 42590 - 0.08

Number of parcels 2010 41081 - 1.49

2011 41427 1(0%) 1.5

2012 42590 - 1.53

Animal density 2010 41081 - 0.36

(cattle unit / 2011 41428 - 0.37

hectare) 2012 42590 - 0.34

Average milk 2010 38703 2378(5.8%) 1.28

production 2011 39033 2395(5.8%) 1.34

(liters/animal/day) 2012 37803 4787(11.2%) 1.21

Ponderation factor 2010 41081 - 0.81

2011 41428 - 0.81

2012 42590 - 0.8
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For instance, individuals are paired together using a region code as a common identifier.

One individual from a group in the first dataset is compared to the others from the same

group in the second dataset, and not from the whole dataset, thus reducing computation of

pairs.

Agricultural surveys utilize a rotation scheme of sampling units to avoid repeated inter-

views and response burden. Here, consistency of the sampling design over years, with no

sampling rotation, allowed us to define consistent blocking indexes. In this dataset, only

small modifications were made in order to adapt to new political divisions which occurred

in 2009, but the majority of sampling units remained constant. This sampling design would

assure a high overlapping between years. Sampling units contain 16 farms on average and

up to 92 in most populated areas. The total of pairs computed reached 1,036,906 pairs for

2010-2011, 1,021,664 pairs for 2011-2012, and 1,003,527 pairs for 2010-2012. For each

pair, a distance metric is computed using a classification algorithm. The next section de-

scribes the algorithms employed.

6.3.5. Classification algorithms

In this section I summarize the types of algorithms employed for classification. For a given

set of pairs, a distance metric, or weight is assigned to a pair. The value of the weights

indicates if the pair is a match or a non-match, based upon a defined threshold. I selected

a wide range of classification algorithms to provide an overview of the best-performing algo-

rithms for this task using existing methods [95]. Different methods can produce very different

results.

Before implementing classification methods, I use deterministic matching as baseline.

Deterministic matching evaluates a pair given the assumption that all fields are equal.

Matching methods can be categorized into two general families: Stochastic or probabilis-

tic matching and “Machine learning” methods. In total, 16 methods were applied, leading

to 96 evaluations including variation in parameters, and each producing weight output for

the three paired data sets. Probabilistic approaches included: propensity score matching

adapted to the context of data linkage, Epilink method, Stochastic matching approaches

using an expectation–maximization algorithm with the Fullegi Sunter model, and a scaling

algorithm.

Machine learning algorithms consisted of unsupervised methods: clustering (Fuzzy C-

Means), and supervised methods: Artificial neural network, Recursive partition tree, Bag-
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ging decision tree, and Adaboost. In the case of Machine learning, models are required

to handle highly skewed predicted targets. Indeed, a paired dataset is mostly composed

of non-matched pairs with a very low quantity of match [110]. This data imbalance may

highly decrease the capacity of the machine learning techniques to identify matches among

training data sets [111].

Probabilistic and stochastic methods

In the following section, I describe methods using a probabilistic approach to matching. The

main idea is to infer the distribution of distances between pairs to compute weights. These

methods are most commonly used for record linkage.

Stochastic record linkage

Stochastic record linkage makes use of the Expectation-Maximization algorithm. The

Fellegi-Sunter model is commonly employed in record linkage, and a short description of

the procedure is given, for more details see [103], [111]. This method was computed using

the R package Recordlinkage, with the emWeights procedure. This procedure is based on a

decision model, assigning a probabilistic weighting for pairs of records [112]. For a collection

of potential pairs, comparison patterns are computed, then conditional probabilities over

these patterns give a probability of belonging to a set of matches or a set of non-matches.

I aim to merge two sets A1 and A2 of size N1 and N2 respectively, using a set X of com-

mon variables. In a sample size of N1*N2 pairs, a comparison vector noted γx(i, j) is defined

with the pair of the ith observation in A1 and jth observation in A2. This vector represents the

level of within-pair similarity for the xth variable between the ith and jth observations, of data

sets A1 and A2 respectively. As noted in [99], corresponding elements of the comparison

vector can be set according to Lx similarity levels for the xth variable:

γx(i, j) =



0

1
...

Lx − 2

Lx − 1



Different

Similar

Identical

(6.4)

Thus, the conditional probability of the match status M is denoted:

m(γij) = P (γij |M = 1) ∧ u(γij) = P (γij |M = 0) (6.5)
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Where M take the value 0 for non-match with a probability m(γij) and 1 for match with a

probability u(γij).

Finally, under the Fellegi-Sunter model weights w are computed according to:

wγij = log(
m(γij)

u(γij)
) (6.6)

and used to define linkage rules distinguishing between match and non-match.

The Fellegi-Sunter model has various limitations: the assumption of independence of

matching variables and the treatment of missing values [98]. An extension of the Fellegi-

Sunter model (see: FastLink [99]) proposes a different approach, relaxing the assumption

of independence of matching variables. The treatment of missing data is essential and, in

absence of imputation, data is usually treated as disagreement. Here, the canonical model

assumes that data is missing at random conditional to the variables M (see equation 5: on

conditional probability of the match above). The Fastlink algorithm has shown an important

increase in computational efficiency and overall performance.

Other probabilistic methods

I adapted Propensity Score Matching (PSM) to record linkage. For statistical matching,

the PSM algorithm consists of pairing two observations according to a score [113]. The ap-

proach uses a logit model to estimate a dependent variable taking a binary value in data sets

to match 0 in the first dataset, 1 in the second [114]. The predicted probability or the propen-

sity score, is a conditional probability of belonging to a dataset, given a set of variables.

Based on the nearest propensity score, each observation is given a "donor unit”, in this case

using nearest neighbor matching. An R implementation of PSM, MatchIt was employed (see:

[113]. A similar procedure called Epilink, using another distance metric between pairs [92]

was also evaluated (see R package: Recordlinkage, epiClassify procedure).

I also evaluated the Scaling procedure, another approach providing no explicit assump-

tion of statistical independence, based on correspondence analysis (described in [115]. This

method allows for identification of most discriminatory identifiers based upon the minimiza-

tion of a loss function [116]. The R implementation Scalelink was employed.

Machine learning methods

I make a distinction between Machine learning methods and probabilistic ones as the design

of the machine learning methods employed here are not predicting a probability distribution

over a set of classes. These methods produce a likelihood of an observation to belong to a
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certain class. As mentioned above, supervised methods can only be evaluated using true

match as training data.

Supervised classifiers were implemented using a labeled pair as training, and applying

the trained model to the remaining pair dataset, ensuring that no paired records were shared

between training and testing data sets. For instance, a model trained over 2011-2012 pairs

was tested on 2010-2012 pairs, trained model on pairs from 2010-2012 were tested on

2010-2011 pairs, and trained model on pairs from 2010-2011 were tested on 2011-2012

pairs.

Four methods are selected: (i) Recursive partitioning tree [117], using rpart R-package,

using anova as the splitting rule; (ii) artificial Neural Networks [118] using nnet R-package

(decay = 5*10-4, maximum iteration off 300, Initial random weights = 0.1); (iii) bagging de-

cision tree [119], and (iv) adaptive boosting, using fastAdaboost, [120] Adaboost.M1 algo-

rithm. The last two methods are a linear combination of weak decision tree classifiers.

Finally, an unsupervised machine learning method, using clustering as a classifier, was

evaluated. Fuzzy C-means clustering was tested here, in particular because of computa-

tional efficiency and the flexibility of the method [121]. An R implementation of this algorithm

was used from package e1071 (cmeans).

For supervised methods, an additional matching exercise was implemented separately

using subsets divided per sampling strata. As for the use of neural networks, a commit-

tee of networks was evaluated, using various combinations of pseudo-identifiers and using

ensemble averaging.

6.3.6. Evaluation

In this step, two forms of evaluation are employed using F-score and p metric, as described in

section 2. After identifying the best methods, I report the performance on deduplicated data

sets. The first form is used to compare fairly distinct methods with the same complete set

of pairs. In the second form, the deduplication step consists of removing multiple matches

for the same observation, providing a matched dataset where one observation has one only

match.

In the latter, comparisons of methods are less accurate as they are based on different

sets of pairs. I report these results in order to illustrate what can be obtained building a

transversal dataset.

51



Table 6.3: An Illustration of matched records over three consecutive years.

Pairs of databases

Variable: 2010-2011 2011-2012 2010-2012

Identifier: 996 42220 83914

Year 2010 2011 2012

Name Arcadio Arcadio Arcadio jose

Surname Buendia Buendia Buendia

Farm Class 3 3 3

Sex 0 0 0

Year of birth 1969 1969 1969

Land tenure 1 1 1

Livestock density 0 0.01 0

Number of parcels 1 2 1

Extension area 4 4 5

Pasture 1.5 1.3 1.5

EM weight 0.515 0.437 0.151

EM predicted 42220 83914 996

Once classification was completed, F-score and p (as described in section 2) were cal-

culated for different thresholds after minmax scaling of obtained weights. Graphical obser-

vation of performance helps to fairly distinguish between methods. The best methods were

assessed as deduplicated results after threshold selection. This comparison, despite the

subjectivity of threshold selection between methods, will help illustrate the application for

multiple year linkage. Thresholds were established programmatically, using extreme value

theory [122], providing an illustration of the potential of building transversal data sets with

yearly agricultural surveys.

For each pair of matched records, algorithm weights and predicted matches were evalu-

ated. Each algorithm was evaluated over three pairs of data sets, with two sets of variables

for 16 models, leading to a total of 96 evaluations.

Table 6.3 shows reported results for matching over the three pairs of data sets. I obtained

weights for each record to identify individuals without the use of name and surname as

pseudo-identifiers. For each record, a matching weight was calculated and corresponding

prediction of pairs was stored. In this example only the weights for fastLink EM algorithms
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are reported. Even for a single algorithm, between combinations of years, the value of

weights varies significantly.

6.3.7. Results

In this section results are organized into three sections: (i) a graphical method using “fair

metric” comparison for the whole dataset and per sampling strata; (ii) an evaluation of best

performing algorithms after deduplication; (iii) results over combined data sets, to obtain

transversal records between 2010 and 2012.

Algorithm comparison: graphical methods

Here, methods are compared using the graphical method discussed in section 2: a common

“similarity threshold” for a given number of matches was calculated. Then, using the “p”

ratio of known true matches by the sum of predicted and known matches, results are shown

graphically against the values of F-score (see figure 6.5). In this figure, rows show evaluation

of pairs formed from the three different pairs of data sets: the first row with 2010-2011, the

second row showing 2011-2012, and the third row 2010-2012.

The plotted lines represent the best algorithms (higher F-scores for a given value of “p”).

Each algorithm is plotted twice: with the first subset of 13 variables (suffix “_s1”) and with

the second with four variables (suffix “_s2”). The following probabilistic methods are plotted:

sca: scaling method, fll: Fastlink : EM Fellegi-Sunter adaptation, ems: EM Fellegi-Sunter

model. For machine learning methods the following methods were plotted: net: Artificial

neural networks, ada: adaboost, bag: bagged clustering.

While using only agricultural characteristics, overall, the use of sampling design variables

as pseudo-identifiers performed better in terms of F-score and observing performance in

F-score p plots (line above perform better). This may suggest that among small farms,

variability in characteristics is too high to be considered across years.

Unsupervised learning methods, supervised method with recursive partition tree, Epilink

and propensity score matching performed much worse than EM and scaling algorithm and

are not reported in figure 6.5. Globally, algorithms performed with similar performance com-

pared to one another between the three assessed pair data sets (see figure 6.5). As for

2010-2012 pairs, as expected, globally lower performance was recorded across methods,

as variability due to farm change increased as expected, hindering linkage. Between the

two groups of methods, supervised methods outperform unsupervised ones.
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Figure 6.5: F-score - p plots of the three paired datasets in row and by groups of algorithms

in column (Probabilistic and Machine learning).

Among unsupervised methods, sampling design subset of variables produced highly

variable results among years, with a high F-score on 2010-2011 dataset and very low F-

score when comparing to 2010-2012 data sets. In comparison with agronomic variables,

quality of matching remained stable over the years. The EM Fellegi Sunter algorithm con-

sistently performed below the rest of the methods (figure 6.5, “eml_s1”, “eml_s2”), whereas

the canonical model of Fastlink procedure performed best among evaluated methods (see

figure 6.5, “fll_s1”, “fll_s2”).

When recall weight p was near 0.53 with almost equal weight to precision (0.47) as

scaling, with similarfor F-score value ( “sca_s1”).

Among supervised methods, using sampling design variables consistently outperformed

agronomic variables; all supervised algorithms remained consistent in prediction perfor-

mance through tested yearly dataset pairs. Adaptive boosting and Bagged clustering at-

tained low F-score (0.17 and 0.19 for the 2010-2011 pairs) and ANN performed better than

any other method in all cases.

54



Figure 6.6: F-score - p plots 2010-2011 pair data sets, and per sampling stratas the follow-

ing methods are plotted: sca: scaling, fll: fast linkage, nxt: NN-committee, net: NN, ads:

adaboost, per stratas.

When comparing performance over survey strata, six principal strata of the survey results

remained similar, with ANN performing better in all strata except the list frame subset of

records. In figure 6.6, areas with a majority of: temporary crops, perennial crops, pasture,

forest; areas in the Amazon region and list frame strata are plotted. The size of blocks can

vary considerably between strata: 23 farms on average in areas predominantly covered with

temporary crops and 10 farms in areas that are predominantly forest.

The diversity of land use and farm systems are linked to the strata, and linkage methods

performed significantly better in pasture strata and significantly worse in the case of the

Amazon Forest region and perennial crop strata. For temporary crops where diversity block

size is superior, all methods performed at a lower level. For those strata, differences between

supervised methods with sampling variables (ANN “net_s2”) and unsupervised ones with

agronomic variables (Fastlink “fll_s1”) are almost not noticeable and ranked similarly.

The list frame (figure 6.6, on the last row to the right) behaves differently with an overall
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better F-score performance than other stratas, and the Adaptive boosting method performed

better than other methods only in these strata. This sub-population presents different char-

acteristics: in this subset of farms are only selected farms with important size (over a 100

hectares), specialized in one crop (over 50 hectares dedicated to only one crop) or spe-

cialized (poultry, pig production or flowers for instance). The weak learner combination of

adaboost method may be more adapted to capture these variations.

When comparing performance over survey strata, six principal strata of the survey results

remained similar with ANN performing better in all strata except for the list frame subset of

records. In figure 6.6, areas with a majority of temporary crops, perennial crops, pasture, for-

est, amazon region and list frame strata are plotted. The size of blocks can vary considerably

between strata: 23 farms on average in areas predominantly covered with temporary crops

and 10 farms in areas that are predominantly forest. Linkage methods performance was

significantly better in pasture strata and worse in the Amazon Forest region and perennial

crop strata.

For temporary crops where block size can reach more than a hundred farms, the results

are less accurate. For those stratums, differences between supervised machine learning

methods (ANN “net_s2”) and unsupervised ones with agronomic variables (Fastlink “fll_s1”)

are similar. The list frame (see figure 6.6, on the last row to the right) behaves differently

with overall better F-score performance than other stratas and the method Adaptive boosting

performed better than other methods only in these strata. This sub-population presents

different characteristics, with selected farms according to their degree of specialization and

important size. The weak learner combination of the adaboost method may be more adapted

to capture these variations.

Results after deduplication

Once a classification algorithm is applied, the complete dataset of pairs, including match

and non-match, can be used to describe relations between data sets, using pair weights

as ponderation. Nevertheless, as the entities are fixed farms, described only once in each

dataset, there is an important overlap between data sets: a large proportion of the individuals

are present in both data sets. The process of eliminating duplicates, or deduplication, allows

one to obtain a ‘clean’ dataset with only one farm linked to another.

Ideally, overall precision and recall should be maximized to ensure a high linkage quality

during deduplication.
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Table 6.4: Merging results for four different methods, after deduplication.

Method Variable subset Year TP Precision Recall F-score

ANN

Sampling 2010-2011 12518 44 83.6 57.6

Design 2010-2012 6728 23.1 78.5 35.7

Variables 2011-2012 11536 38.9 84.9 53.3

EM fastlink

Agronomic 2010-2011 12005 39.3 92.8 55.2

Variables 2010-2012 8315 27.7 89.4 42.3

2011-2012 12066 39 92.8 54.9

Ensemble

Sampling 2010-2011 13052 48.6 79.1 60.3

Design 2010-2012 7098 25.6 75 38.1

Variables 2011-2012 12021 42.8 79.9 55.8

It is especially difficult to establish a threshold that optimizes F-score, and produces a

high match rate. Additionally, for this step, mean weights were averaged to produce an

ensemble of learners based only on the best algorithm giving slightly better results than

best algorithms (see table 6.4: “ensemble”).

After deduplication: methods performed with average precision but recall remained high:

for pairs of consecutive years (2010-2011 and 2011-2012) almost 50% of true match pairs

were re-identified, with ANN algorithm leading to highest F1-scores and EM algorithm fastlink

with only agronomic variables.

Results on successive years

When evaluating methods identifying pairs of records matched on the three pairs of data

sets, validation dataset raised 12280 individuals.

Among evaluated algorithms, interestingly the unsupervised method outperforms the su-

pervised one (see table 6.5), in terms of precision and it allows for the identification of almost

around 40% of individuals; whereas using ensemble “majority” over deduplicated results

more than 50% of these individuals were re-identified.

6.3.8. Discussion

In this research, I used yearly data to test various record linkage techniques to produce

longitudinal data.
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Table 6.5: Merging results for four different methods, with identified individuals over three

years.

Method Variable subset TP Precision Recall F-score

ANN SDv 5638 27.7 45.9 34.6

EM fastlink SDv 4895 39.1 39.9 39.5

EM fastlink Agv 4624 43.6 37.7 40.4

Ensemble: majority SDv 6292 60.4 51.2 55.4

I showed that common linkage methods demonstrate remarkable results in allowing com-

plex linkage with numerical descriptors between yearly databases. When no true match is

available, only unsupervised methods can be used, and Fellegui Sunter algorithm showed

similar accuracy as supervised methods (AdaBoost, Artificial Neural Networks), proving ad-

equate to rebuild populations of individuals with anonymized data. In this section, I review

the implications of using agriculture survey for record linkage: yearly data, numeric pseudo-

identifiers and the interest of using sampling data.

Typical record linkage makes use of textual pseudo identifiers such as name, surname,

or company name. This information can be used to re-identify a unique individual with high

likelihood, despite differences in text fields. Here, I propose using only numeric attributes

such as farmer age, number of workers, categories land tenure, land extension, or irrigation

to identify the correct match between data sets.

Using similar setup, recent work on the potential of re-identification in public surveys,

using only demographic attributes, have shown strong evidence that the combination of

pseudo-identifiers (15 socio-demographic variables) in anonymized data-sets lead to very

high linkage precision (99.98%) for North-American populations [123].

Re-identification was carried out successfully on numerous national surveys, using sam-

pling zip codes as blocking attributes. My hypothesis was that by using adequate block-

ing variables and comparison functions, similar results can be obtained. for farm surveys

records. These are, by nature unmovable, but their extension can vary by acquisition or

transfer of land.

Despite the variable nature of the pseudo-identifiers, I could review differences between

identified matches (true match), and show that little variation occurs over time for selected

variables. Descriptors of farm categorical characteristics (ownership, type of farm) and land

use (size, pasture, forest, irrigated area, number of parcels) are less susceptible to change

58



from one year to another. For production, cattle density, average milk production per cow,

presence of horses or donkeys were robust characteristics to identify a farm over years.

Finally, Farmer’s personal information (age, sex), or the availability of permanent labor

on farm were expect to have the same consistency over time but performed poorly, as a

different person is selected from one year to another for the same farm.

Understanding survey sampling structure can contribute to record linkage quality. Se-

quential numbering within primary sampling units for instance, can be viewed as pseudo

identifier. In a sampling unit, the path followed by surveyor is fixed, starting and following the

same path every year. This variable, despite the fact that farms are not always surveyed con-

secutively, was determinant in farm re-identification, and could be used as window blocking,

a proxy of the geographical sub units inside sampling units.

Sampling frames for national surveys are generally defined by census enumeration ar-

eas, or census tract. These units are the smaller administrative units, standardized in size

among urban and rural areas [124].In Ecuador, geographic units were stratified according to

a coarse land-use classification and then combined with a list frame.

Results showed that within the diversity of rural landscapes, record linkage for the list

frame produce the best results, followed by “pasture” farms, extension with prevailing for-

est cover and the amazon region. This could be explained considering farm density across

strata, with fewer observation within sampling unit in the best performing regions. Con-

versely, high farm density causes an increase in comparison pairs, reducing correct match-

ing.

6.3.9. Conclusions

My results help to provide insights on how to improve data integration process for agricul-

tural establishments: (i) carefully selected numeric farm characteristics can provide enough

information for matching, (ii) for agriculture survey, geographical blocking allows to reduce

calculations, and sequential identifiers and ponderation factors are survey characteristics

helping re-identification.

Despite the fact that this evaluation was performed on an almost constant sampling de-

sign, matching results suggest that at most 51% of individuals could be re-identified through

years, but it is necessary to provide more stable pseudo-identifiers to increase recall levels.

In the context of small-scale farm, the major type of farm in developing countries, there

is a wide variation in characteristics and non-response rate that affect accuracy of matching.
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Small scale farming is a key population for future food systems [13], [125] and beyond the

scope of agriculture production, it is necessary to build, at a national scale, a more efficient

information system to understand specificities in small scale farming systems.

The scope of these surveys is limited to the productive components of the farms, relevant

in the context of developed countries, but incomplete for developing economies. In those

countries, production is inter-related to the social background, and the multiple incomes of

a farmer’s family are key drivers for production [21], but this information is often lacking [16].

This evaluation of record linkage methods for agricultural survey shows that despite low

false positive rates, the quality of matching experiments led to low recall in matching.

For future works, complementing surveys with socio-economic background could provide

enough information for better record linkage, and, at the same time, complement information

of social background on each farm to provide insights for local policies and development

entities.

6.4. Variable generation: enteric fermentation emission model

The increasing demand for livestock products for human diet, particularly in developing coun-

tries, has a significant importance in farm organization and resource allocation competing

with crops. However, the implications for smallholders and their adaptation to meet the

demand is still lacking precise assessment [126]. Climate change, affecting migration, frag-

mentation of farms, and productivity are among the many limitations for small-scale farming

systems.

By putting under scrutiny the evidence of livestock intensification in the Andes, focusing

on Ecuadorian highlands, I aimed at providing an analysis of changes in livestock breeding

management. As dairy market grows in developing countries, the following dilemma arises:

How to reduce the vulnerability of smallholders with profitable livestock production systems

while maintaining a sustainable pressure on the ecology of these areas?

This section aims at providing detailed prediction for farm categories, including small-

holders. Specifically, I modified the data mining process to the concept of Life Cycle As-

sessment (LCA) and implemented a modified version of the Global Livestock Environmental

Assessment Model (GLEAM). Using local data collection over twenty years and secondary

data, my results show that for dairy cattle, methane emissions factor from cattle is lower

among marginal farms 86 KgCH4head
−1year−1 compared to semi-intensive and intensive

farms across time and geographical regions (107.4 and 113.5 respectively).
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Following the proposed framework, I succeed in producing disaggregated information, I

demonstrate that this type of application is relevant for developing countries, where produc-

tion data is often unavailable.

6.4.1. Smallholder and environmental impact assessment

Smallholder farming is the predominant form of agriculture in most developing countries.

Despite the undeniable contribution of millions of farmers to food sovereignty and national

economies, a vast majority of those farmers suffer from poverty [127]. Yet, there are few

incentives to understand, study and model productivity impact at this scale. In Ecuador, the

study of farmer practice facing global change, for instance weather variability, is still mostly

incomplete [128].

To evaluate the environmental impact, local assessment for sustainable projects are of-

ten conducted. Meta analysis of literature concerning smallholder agriculture showed that, a

major limitation for assessment remains of statistical nature [129], from sampling bias, and

publication bias. In fact, the published information documents only positive results obtained

in local projects. Moreover, the lack of standardized definition of smallholder farming limits

comparative studies of existing research [130]. For instance, [131] and [132] describe the

impact of jathrofa, a perennial crop used as bio fuel, from observing results of local surveys

for smallholder perception and land use.

At global scale, models rely on aggregated data, without consideration of individual farm

strategies. At this scale, the combination of multiple production subsystems is not taken into

account [133]. Each subsystem has different goals and interaction between them constitutes

a complex system on the farm, affecting directly farming practices. Nevertheless, statistical

data from survey campaigns provide detailed information from representative samples. To

estimate methane emission of cattle on the farm, a method [134] proposed by the Intergov-

ernmental Panel on Climate Change (IPCC) has been implemented. Created in 1988, the

IPCC is an intergovernmental group of researchers that provide comprehensive information

on anthropogenic climate change [135].

The IPCC gathered evidence of the increase in surface temperature over the last century,

due to the warming potential of a combination of greenhouse gases (GHG). The increased

concentration of these gases in the atmosphere increase the absorption of terrestrial infrared

radiation, raising global surface temperature [136]. Among those gases, methane is twenty-

five times more effective than carbon dioxide at trapping heat in the atmosphere [137]. The
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methane composition in the atmosphere is significantly altered by animal production.

Moreover, methane emission from anthropogenic activities comes mainly from enteric

fermentation from cattle [138]. Despite the substantial contribution of agriculture to GGE

(20%), no country applies mandatory restriction to agricultural emissions. In Ecuador almost

half of those emissions (44.32% [139]) are caused by cattle livestock.

6.4.2. Life cycle assessment: GLEAM

Agriculture production worldwide relies on local data collection, centralized in surveys and

census by governments at national level or isolated in multiple agriculture research cen-

ters at regional level. While modern remote sensing information provides continuous data

streams for climate, economic or land-cover information; national agriculture data collection

has lacked tools, and technology to implement modern and updateable information systems.

Models integrating multiple production components exist, focusing on precision agricul-

ture [140], or modeling determinants of land use change [9] for instance. Yet, modeling ef-

forts depending on national statistical data is less common. Indeed, descriptive crop models

tend to focus only on a single aspect of productivity, as yield for instance [16]. Other ap-

proaches, as integrated environmental modeling, include socio-ecosystem dynamics [141].

Environmental impact of each sub-production system can be assessed using the life

cycle concept. LCA is defined around the concept that a product, generate environmental

externalities from raw materials down to waste removal [142]. This approach quantifies the

impact on each phase of product life cycle. LCA combines different objectives on each

production system. As multiple sources of data allow enriching local data sets, collection of

survey data can be revisited, and current limitations of enteric fermentation models can be

overcome. On a farm, several production systems interact, between crops on each parcel,

animal breeding, and of farm activities contributing to income [143].

The scope of GLEAM includes assessment of the production chain from cradle to farm

and farm gate to retail. The model measures the impact of emission from enteric fermen-

tation but also from animal excretion, manure, and crop emission from field operations, ex-

ternal input production and land use change. The model includes farm to retail impact

assessment (processing and transport). For this research, only cradle to farm components

for enteric fermentation estimation are considered, as summarized in figure 6.7. Manure en-

vironmental impact is not explored, enteric fermentation being the main source of emissions

and the main objective of this work.
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Figure 6.7: Overview of GLEAM model scope adapted from GLEAM manual.

Enteric fermentation is the process by which carbohydrates are broken down by micro-

organism into nutrients during digestion [136]. The resulting molecules are absorbed into

the blood stream of the animals. Methane is a byproduct of fermentation and is expelled

from the body as emissions. This gas constitutes a significant loss of energy for the animals,

representing between 2 and 12% of the gross energy intake [144]. Hence, the control and

reduction of enteric methane could improve productivity and reduce climate change at the

same time.

The measure methane emissions from enteric fermentation is understood as energy

loss by methane generation, calculated as a percentage of loss of the gross energy intake

(conversion factor). This percentage is then employed to calculate Emission Factors (EF):

the annual mass of methane produced by animal [145]. Those emission factors can vary

considerably, ranging from 76 kg for mature females in the US, to 28 kg in India. This

measure depends on the region, the category of cattle and feeding situation [134].

To estimate enteric fermentation, standardized methodologies have been established by

the IPCC [134]. As mentioned above, these guidelines propose three methods of estimation

based on methodological complexity and data availability and state of research on animal

emissions [146]. The Tier 1 method is based on standard data; however, the parameters

does not distinguish animal types, age, sex or differences in local cattle management. The
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second method, Tier 2, contemplates more detailed data on the population of animals, their

feed intake, and with expert knowledge, parameters according to the main management

categories identified in the country. Tier 3 methodology includes values from the laboratory

and possibly locally defined emission models.

When information about cattle management is missing, EF default values can be used

(Tier 1 methodology), but models for EF based on locally calculated values (Tier 2) produce

important discrepancies when compared to default values [147], [148]. The Tier 2 method-

ology requires to extensively document herd management practices: available feed and

intake, production levels and cattle demographics. Using Tier 2 methodology, variation of

EF depends on feed digestibility [149], and conversion factors. Those factors are estimated

bases on digestibility may even produce value outside the range of default value provided

by the IPCC [150], and for this parameter default value are still in debate [151].

Using small sample data (30 observations), GLEAM model has been successfully ap-

plied in developing countries, for instance in Ethiopia [152]. In Ecuador, the same approach

was applied to estimate emissions for the year 2016 [139]. A national project for Climate

Smart Cattle (CSC) was developed using nationally representative sample data, but without

stratification to study farm typologies or region. Sample results are employed in the study as

reference for model parametrization. In other cases, when using national data, in Malawi for

instance [153], data collected was insufficient to provide robust results.Other studies applied

Tier 2 methodology, but failing to calculate emission factors, and using default values [154].

In developing countries, comparison performed between Tier 2 and Tier 3 methodology,

showed that farm-scale model provides more robust estimations [155],and integrating diet

characteristics key to obtain country-specific methodology and parameter estimates for en-

teric methane [148]. In this research, for each production process a DM project is developed,

producing a combination of multiple objectives. In this application, coordinated outputs are

considered as ’intermediate’ deployment phase (see figure 6.7). This integrated model for

productive environment has been described in [156].

6.4.3. Enteric fermentation estimations process

In this section, I apply the framework proposed in chapter 3 to generate variables. To model

Enteric fermentation following GLEAM model, the different steps I followed, helped providing

an efficient methodology to combine production systems inside the farming units (see figure

6.8).
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Figure 6.8: Multiple process followed for LCA Emission models.

I combined the life cycle abstraction to fit the proposed framework. This case study for

estimation of emissions shows that this methodology is relevant to analyze LCA process.

As proposed in GLEAM model, the estimation of enteric fermentation can be broken

down in four different modules: a crop model, an intake model, a herd model and an emission

model (see figure 6.8).

Those estimations are produced annually, similar to the frequency of agricultural surveys.

Secondary information concerns GAEZ data set [157], where yields are estimated over two

different periods, based on historic data: 2000 and 2010, and prediction 2011 and 2020.

The combination of outputs for the crop module and intake module is done sequentially,

while the herd and intake modules are processed in parallel. The combined output is then

applied to the emission module as described in table 6.6.

6.4.4. Business understanding

I describe the adaptations made to the GLEAM model, to provide estimation at farm level

from national survey data. The model support farm-level estimations for distinct farm typolo-

gies.
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The objective is to apply the DM framework to support the modeling of crop production,

herd dynamics as predictors for enteric fermentation emissions. For the purpose of this

case study, I adopted Tier 2 level estimation. The goal of this model is to support LCA based

analysis and produce farm-level estimations of emissions.

Estimating Greenhouse Gas Emissions (GGE) in agriculture is a complex task, especially

for enteric fermentation, where the volume of methane emissions are evaluated as a dietary

loss of energy. This quantity is directly dependent on diet management for cattle [158].

A modeling approach was implemented based on GLEAM, version 2.0 (rev.5 2018). This

model is based on a LCA to model common livestock around the world. LCA allows following

the environmental impact of a product life cycle, following externalities in each production

phase. This approach is especially useful to identify steps upon which measures can be

taken to change environmental impacts and act upon the whole life cycle of the product.

Despite lack of precise information from cattle production for smallholders, the increasing

availability of agricultural data for production, yields, and survey data for cattle manager

can complement sources of information. The amount of data makes it difficult for decision

makers and agronomists to combine and extract useful information. As described above,

LCA help to understand the multiple dimensions of a problem. This Tier 2 approach was

parametrized accounting for production system typologies, allowing calculations of different

combination farming systems at different spatial scales.
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Table 6.6: Multiple processes for variable generation.

Production Modules Crop module Intake module

Business understanding Objective: obtain yield estimation

and fraction of feed. Define min-

imum dataset for crop models,

identify data necessity, availability

of historical data

Objective: estimate composed di-

gestibility at farm level. Select

main feed types, potential yields,

necessary data on feed composi-

tion, and feeding variable affecting

intake.

Data understanding ESPAC crop data, GAEZ v4, de-

fine spatial and temporal extent

Feed composition IS, Feed Pa-

rameter

Data preparation Feed crops, identify outliers, ex-

traction of GAEZ data, Integrate

GAEZ cover data to ESPAC

Compile feed composition table,

and feed parameter, Integrate to

ESPAC format

Modeling Evaluation Model crop yields in dry matter Calculate ration and composed di-

gestibility

Evaluate Evaluate yield potential, produced

dry matter per hectare, compare

with local references

Compare digestibility to local ref-

erences, review

Deploy Export output and join to ESPAC

format

Export output and join to ESPAC

format

Production Modules Herd Module Emission module

Business understanding Objective: estimate average pres-

ence of cattle on farm. Identify

cattle management practices, de-

fine typologies of farmers in ES-

PAC cattle data, CSC Survey

Objective: estimate enteric fer-

mentation emissions. Describe

Tier 2 methodology, identify limi-

tations and bias, standard param-

eters and combining data sources

Data understanding Define breeding farm, typologies,

adapt data format

Parameter for Regional Surveys,

results from precedent modules

Data preparation ESPAC, Nacional survey collec-

tion

Build a cattle database and merge

emission parameters

Modeling Evaluation Model cattle population dynamics

using discrete time matrix model

Apply deterministic model

Evaluate Compare modeled population to

initial estimates

Evaluate model, per farm types,

animal types, products and region

Deploy Export output and join to ESPAC

format

Produce report of yearly emission,

graphic and estimates for stake-

holders
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The section was organized around four variable generation objectives, aiming: (i) to

build a feed ration module, and estimate available feed on the farm, (ii) to build a feed intake

module to calculate ration composition, (iii) to develop a herd model, to provide correct

estimate of cattle population for age groups, and finally (iv) to build an emission module

combining the results (see table 6.6).

The main source of information used in this project comes from national statistic databases

obtained from public sources, available here:ESPAC, analyzed over the two decades (2000-

2020). All analysis and data preparation are implemented based on the Comprehensive R

Archive Network (CRAN) in R programming language [159] version 4.02, and code available

upon request here: PBG-Ec.

6.4.5. Data understanding

In this step, collections of data are acquired, conserving only relevant information from

sources data sets. Formatting and organizing data sets, identifying outliers or incomplete

information was realized. The consistency of the compiled information and the inclusion of

secondary data sources are described in this phase.

As mentioned above, comparison between methods produce very different results be-

tween Tier 1 and Tier 2 depending on consideration on dry matter intake estimation or using

specific composition and feed availability characteristic (Tier 3) [148]. To describe the data

flow and procedure taken to elaborate the model implemented in this research, available

source of information were compiled (see figure 6.9). The sources of data are evaluated to

verify their applicability for Tier 2 modeling. Tier 2 approach requires a substantial amount

of data, but provides measure of efficiency at different scales. Changes on emissions are

observable yearly, as the effects of new management practices.

To produce robust estimation for Tier 2 methodology, farm-level parameters must include

information for herd demographics, herd production (average animal weight), crop produc-

tion and feed composition. From GLEAM model four main steps of livestock supply chain

are modeled. In this study, I focus on three components of enteric fermentation estima-

tion: a demographic model to estimates of total cattle head, a module for ration digestibility

estimation.

A final module estimate the emissions from enteric fermentation based upon IPCC Tier

2 methods. The data flow is shown in figure 6.9 on the left, from original source of data, the

four modules combine all production models of information .
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Figure 6.9: Data flow of the model implemented (left); Map of the sampling units on the

territory (on the right).

I employ local data collection of Ecuadorian Annual Agriculture Area and Production Sur-

vey (ESPAC) from 2000 to 2020, integrated to geographic data sets: Global Agro-Ecological

Zoning (GAEZ) and secondary data for model parametrization. The coverage of this survey

is national, with sampling units over the three main region of Ecuador as shown in figure 6.9

on the right side.

National statistics and secondary databases were employed to evaluate the environmen-

tal impact along the production chain for cattle meat and milk on farm [160]. This case study

utilizes data obtained from five different sources: (i) ESPAC data, with animal demographic

data and crop production data at parcel level, (ii) CSC survey data, with sample data of

farm types and animal performance data, (iii) Feed parameters for consumption (GLEAM 2),

and Tier 2 coefficients (compiled from [158], from IPCC [134]), (iv) Average dry matter yield

reference from global geographical data [157], (v) Feed composition table (FEEDPEDIA in-

formation system [161]).

The DM project was built around the information from ESPAC data between 2002 and

2020. This information was collected by the Ecuadorian National Institute of Statistics and

Census (ENISC), following a rigorous sampling design and applying standard survey meth-
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ods for this type of agriculture data [14]. The data was retained only for farm with cattle

production, and separated in two data sets:

• First, a parcel production dataset with 1,201,553 observations and 35 features with

50,819 parcels described each year on average. Crop production per parcel describes

seeded area, use of irrigation, fertilizer and pesticides, seeding date, harvest date,

area and yearly quantities harvested and sold.

• Second a herd dataset of farms contain 384,906 observations and 148 features with

16,116 farms described each year on average (with a maximum if 16,786 farms in

2005 and a minimum of 12,723 farms in 2020). This dataset contains socio-economic

information about farmers: sex, age, education and generic information about the farm:

land tenure, labor composition and number of parcels. For animal production and each

species, an inventory of existing, bought and sold animals per sex and age groups is

reported, along with sacrificed, born and death animals over a period of one year.

This information was complemented with a recent national survey [139] with 331 obser-

vations and 140 features. This survey was conducted in 2017 to evaluate GLEAM parame-

ters: average animal production performance (average weight, weight gain, milk fat content)

per regions, farm types and orientation (meat or milk production).

For yield estimations of pastures and crop residual, GAEZ v4 dataset was extracted from

1525 world raster images (see FAO on-line resources at gaez-services.fao.org). For data

extraction, theme 2 (Agro-climatic Potential Net Primary Production) and theme 5 (Actual

Yields and Production) data were selected. The information retained concern the period

2000-2020 applying Climatic Research Unit (CRU) climatic model and historic data. The

spatial resolution of this dataset is of approximately 10 square kilometers at the equator, for

obtainable yields [157].

6.4.6. Data preparation

In this section, the treatment of primary sources is described: cleaning, building attributes

and merging information. The resulting data sets must provide necessary input for modeling

to be performed.
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Farm typologies

Reviewing literature on smallholder cattle breeders [162], [163] and local experts opinion

on cattle breeding system, typologies for farms with livestock were built combining two at-

tributes: grazing intensity and farm economic typologies [126], [164] (see table 6.7). The

first attribute, are farm typologies for developing countries, that classifies farms upon the

type of household economy, depending on the type of income generated from agriculture

production. Here I retain four main farm typologies:

• Marginal farms: using traditional production practices, income are principally depend-

ing on off-farm family labor, and few production income or exchange.

• Family farms: use family labor as principal labor force, production is partially sold in

markets.

• Employer farms: paid labor constitutes the main workforce, and production is sold on

national markets.

• Business farms: highly technicians, and production intended to agribusiness and ex-

portation.

The second attribute, are grazing intensities [164], measured in livestock units (LU),

using three categories:

• Low intensity: up to 1 LUHa−1 (livestock unit per hectare). This category corresponds

to nearly pristine natural rangelands and marginal grazing-based feed is given to live-

stock with minimal human intervention.

• Moderate intensity (1.1 to 2.5 LUHa−1): when pasture use low external input (manure)

and grazing follows seasonal patterns.

• High intensity (2.6 to 3.5 LUHa−1): when management heavily depends on external

inputs fertilized pastures with high renewal, and a high availability of land exists.

Finally, the combination of two variables provides more detail on intensification levels

and cattle management. Semi-intensive farm is the most important group, with more than

2300 observations per year on average, except for the Amazon region with no more than

418 observations between all farm typologies (see table 6.7).
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Table 6.7: Farm classification according to typologies and grazing intensity (above), num-

ber of observations from surveys 2000-2020 (below: total and average farms per year in

parenthesis).

Farm_typology Low_Density Moderate_Density High_density

Subsistence farm-

ing

Marginal Marginal Marginal

Family Agriculture Semi-intensive Semi-intensive Intensive

Employer Farming Semi-intensive Intensive Intensive

Business Farming Semi-intensive Intensive Intensive

Farm_type Region Meat Milk

Marginal Amazon 2643 (132) 1576 (79)

Marginal Coast 34764 (1738) 18987 (949)

Marginal Highland 9296 (465) 5500 (275)

Semi-intensive Amazon 6934 (347) 8370 (418)

Semi-intensive Coast 51360 (2568) 82904 (4145)

Semi-intensive Highland 46930 (2346) 62741 (3137)

Intensive Amazon 464 (31) 748 (37)

Intensive Coast 5312 (266) 31439 (1572)

Intensive Highland 4443 (222) 10495 (525)
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Table 6.8: Parameters for emission model (IPCC) and for herd performance (Highland milk

farms CSC average).

Animal class Cfi Ca (m/sii) C Cpreg

Calf male 0.322 0.17/0.36 1

Heifer male 0.322 0.17/0.36 1

Bull 0.370 0.17/0.36 1.2

Calf female 0.322 0.17/0.36 0.8

Heifer female 0.322 0.17/0.36 0.8

Cow (non lac.) 0.322 0.17/0.36 0.8

Cow (lactating) 0.386 0.17/0.36 0.8 0.1

Animal class lw(m/si/i) mw(m/si/i) awg(m/si/i) fat(m/si/i)

Calf_Male 30.0/ 31.1/ 21.0 118.3/113.6/ 65.8 0.242/0.226/0.123

Heifer_Male 206.7/196.1/110.5 383.3/361.1/200.0 0.265/0.243/0.175

Bull 483.0/461.9/560.5 531.9/508.4/654.3 0.268/0.255/0.514

Calf_Female 29.1/ 30.4/ 21.0 91.3/103.3/ 65.8 0.245/0.228/0.123

Heifer_Female 153.6/176.2/110.5 278.2/322.0/200.0 0.187/0.215/0.175

Cow 397.1/412.6/409.9 406.6/443.8/472.2 0.236/0.226/0.342 3.7/3.4/3.7

In parenthesis: (m) marginal farms and (si) semi-intensive and (i) intensive farms

Cfi: Maintenance coefficient, Ca: Activity coefficient,

Cpreg: Pregnancy Coefficient, C: Growth Coefficient,

lw: live weight, mw: mature weight, awg: average weight gain, fat: milk % of fat.

The resulting information was merged with corresponding default values provided in

[134], to estimate maintenance, activity, pregnancy and growth coefficients (see table 6.8).

Theses values are directly mergeable with farm data sets.

Animal weights

Reference weights were calculated from original information of CSC projects, disaggregate

at farm orientation and products (see table 6.8, the lower part shows highland milk farms

averages). For each farm type and orientation, various characteristics such as weight and

mature weights for animal types are reported.

The parameters calculated in this dataset follow formulas provided in GLEAM documen-

tation ([165] part 2.1: Herd module for large ruminants) described in data modeling. For

cattle management reproductive values; farm data was employed.
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Crop module: Yield data

From GAEZ tiff images, data was extracted as average values inside the survey geographical

units. Geographical extension covered in surveys corresponds to parish units (995), and

yield value was averaged from pixel values, for 63 crop types, type of input, irrigation regime

and corresponding period. A dataset of 1,525,563 entries was built. Unit for yields were

homogenized to kilograms per hectare. An example of the forage crop alfalfa is shown in

figure 6.9 on the right side, the blue color indicate the yield values. In some cases, crops

are divided between highland and lowland regions for extraction. Key from the crop module

was built for data extraction the match six different fields from the parcel production dataset.

The output of the module was then fed to the intake module.

6.4.7. Models implemented to generate intermediate variables

In this section I describe the modeling techniques that should be applied and the steps

performed to observe if results are consistent with the objectives. Various cycles of modeling

were performed. Multiple iterations for the crop module, comparison between expert data

and empirical information, and herd model were evaluated. The best models are presented

in the following section.

In this section, and based on expert knowledge and literature, I identified three relevant

characteristics to describe farms. Cattle systems are divided: (i) by the main agro-ecological

regions of Ecuador: highlands, coast and Amazon, (ii) based on cattle orientation: milk of

meat production, and (iii) according to the typology of farms (marginal, family, business

farms, see [3]) and cattle density [164]. These typologies are extensively described in the

data preparation phase.

Herd model

Instead of using GIS grid population from global data sets [166], a model of cattle population

was implemented using matrix population models [167]. Information from survey gives a

detailed description of cattle movement in the year including birth, death, lost or sacrificed,

purchased and sold animals. All this information is compiled in a population matrix form,

to estimate average animal number over a period of one year instead of reporting animal

number on the day of the survey (see figure 6.10).

This herd demographic module uses a discrete time matrix model to simulate cattle
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population dynamics [168] and differ from GLEAM herd module. The application of this

demographic model has been used in similar context [169] for calculation of sex and age

distribution for different ruminant species, and used to estimate feed requirements.

Females

Males 1 2 3
Sm,1 Sm,2*gm,2

Sm,2*(1- gm,2)Sm,0 Sm,3

1 2 3Sf,1 Sf,2*gf,2

Sf,2*(1- gf,2)Sf,0 Sf,3

ff,2 ff,3

fm,3

fm,2

Figure 6.10: Life cycle graph and structure of un-truncated cattle model.

In this case, untruncate model is employed as adult animals over 5 years of age are

commonly maintained in production. Using age-based population variables, age classes

and transitions between them (see figure 6.10 nodes and arrows respectively). Transition

labels indicate the probability of moving or contributing to the node at the end of the arrow

over the projection interval. Nodes refer to offspring (1), yearlings (2), two or more years

adults (3). I assume transitions occur over the time scale of 1 year. Parameters S, f and g

refer to age-specific survival and fertility and growth rate respectively.

The parameters and indexing of the fertility arcs reflects the assumption that recruitment

and fecundity occur immediately following survival. The matrix equation estimating the pop-

ulation dynamics between time t and t+1 is defined as:

x(t+ 1) = A ∗ x(t) = G ∗ S ∗ F ∗ x(t) (6.7)

Where x(t) is a vector for the number of animals in a defined age and sex class at time t;
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A is a projection matrix with demographic rates; G is a growing matrix for surviving animals;

S is a survival matrix defined as S = I − D − O, I is the identity matrix, D is mortality

matrix, O is off take matrix; F is fecundity matrix. The results are then evaluated based on

original values of cattle demographics. In the workflow of coupled models, the predicted

demographic data is fed to the emission module.

Feed ration and intake model

The feed composition data is processed using GLEAM approach (see: [165], chapter 3), with

the goal of measuring the average composition in the ration. After estimating composition of

the ration, the nutritional values of each feed material are multiplied by the fraction of each

feed material in the ration, and weighted average of digestible energy per kg of dry matter

for the ration [138]. In this model two feeding types of animals are defined, adult females,

and replacement animals.

To adapt the calculation of ration composition and nutritional values of the ration per kilo-

gram of dry matter, I proposed modifications to obtain the feed intake. As surveys document

the production of each crop on farm, value for feed composition will be derived from harvest

volumes and areas. From survey data (parcel production dataset), only crops associated to

cattle feed were retained.

Three four of feeds are measured: (i) main pasture and mixed pastures: corresponding

to seeded area, aerial part, fresh; (ii) cut pastures: forage, silage pastures and crop residue,

(iii) feed crops: harvested quantity unsold and available for cattle, (iv) concentrates: these

feeds are characterized by a low-fiber composition (< 20%) and elevated energy digestibility

(> 60%), and employed to complement rations. Supplemental information was also compiled

from feedipedia for digestibility values [161].

For each crop, remaining harvested quantities between harvested and sold production

was considered as available for cattle feed. For potential use of crop residue or pasture,

harvested area was used for dry matter estimation. Two efficiency adjustment factors were

applied corresponding for each feed material: (i) Feed Use Efficiency (FUE), as only a frac-

tion of the gross yield that is used as feed, and Mass Fraction Allocation of Feed (MFA) as a

fraction of the total mass of the crop is ingested by the animal.

As very few information is available on pasture yields, the same methodology as CSC

project was employed [139]. Average rations composition value from a national survey was

applied according to animal types (dairy cow, and average rations for other cattle), other
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variables were considered: natural region (highland, coast, rain forest), production orienta-

tion (dairy or meat), and intensification level (marginal or business farming). Average ration

composition in kilograms for feed and other non-pasture items were established. The frac-

tion of available dry matter was estimated from dry matter yields (GAEZ) and the remaining

volume of production calculated as the difference between harvested and sold volumes. For

pastures, digestibility depends on age of the crop [170] and low input pasture decrease in

quality after each cut.

Using fertilization for perennial pastures can maintain potential digestibility. I took into

consideration the variety and age for multi-annual pasture. Dry matter content increases with

age of pastures [171], and seasonal grazing [172], a decrease in digestibility of roughly 2.5%

per year has been reported. I used this value as reference to account aging pastures when

no fertilization is used. Average digestibility of theses rations was computed accordingly.

These predicted digestibility data is fed to the emission module.

Emission model

A secondary database was created for each farm, using estimates of herd demographics

and digestibility from the intake module. Each row in the database contains records of the

animal category. Using the feed intake information, the methane emissions are calculated

by converting the difference between digestible energy and metabolizable energy (refer to

figure 6.7). The average digestibility from the feed ration module is combined with IPCC

coefficients, which include maintenance, activity, growth, and pregnancy, as well as herd

performance (refer to table 6.8).

These adjusted parameters are then used to calculate the daily gross energy intake for

different cattle types, following IPCC equations (refer to table 6.9).

The information for each record produces a prediction of methane emission per animal

type (gram per day and emission factor Ym). These results are combined to calculate EFs

for each farm and animal type. Finally, EFs are multiplied by the average yearly presence of

animals on farm, output from the herd module. Values are estimated yearly, and compared

within each production type for Ecuador by averaging over all models outputs.
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Table 6.9: Equations for daily gross energy intake estimation (2006 IPCC Guidelines).
Net energy for maintenance:

Cfi: maintenance coefficient ;w: average live body

weight

NEm = Cfi ∗ w0.75

Net energy for activity:

Ca: activity coefficient NEa = Ca ∗NEm

Net energy for growth:

Bw: average live body weight (kg); C: growth coeffi-

cient ; Mw: mature adult live body weight (kg); Wg:

average daily weight gain (kg day-1)

NEg = 22.02 ∗ (Bw/C ∗Mw)0.75 ∗Wg1.097

Net energy for lactation:

Milk: kg of milk produced per day; fat: pct fat con-

tent of milk

NEl = milk ∗ (1.47 + 0.40 ∗ fat)

Net energy for mobility:

wloss: Weight losses lactating cows NEmob = 19.7 ∗ wloss

Net energy for pregnancy:

Cpreg: Pregnancy coefficient; NEm: net energy for

maintenance

NEp = Cpreg ∗NEm

Ratio of net energy available for maintenance:

DE: digestible energy expressed as a percentage of

gross energy

REM = 1.123− 4.092 ∗ 10−3 ∗DE + 1.126 ∗ 10−5 ∗

DE2 − (25.4/DE)

Ratio of net energy available for growth:

DE: digestible energy expressed as a percentage of

gross energy

REG = 1.164 − 5.160 ∗ 10−3 ∗DE + 1.308 ∗ 10−5 ∗

DE2 − 37.4/DE2 − 37.4/DE

Gross Energy:

Gross energy intake GE = [(Nem+Nea+Nel+Nemob+Nep)/REM+

NEg/REG]/(DE/100)

Conversion factor of methane:

Percentage of gross energy in feed converted to

methane

Y m = 9.75− 0.05 ∗DE

Emission Factor:

GE = gross energy intake, Y m = conversion factor

of methane, the factor 55.65 (MJKg−1CH4) is the

energy content of methane

EF = GE ∗ Y m ∗ 365/55.65
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6.4.8. Model evaluation

For the herd module, comparison between raw data and demographic model outputs are

reported. For the intake model, I review the consistency of dry matter availability over the

time period. Estimates were compared between IPCC Tier 1 references and among models

within each module. Finally, for emission model, I discuss EF estimates and compare the

results with or without inclusion of the different intermediate modules.

Herd model

To evaluate the herd module I compared herd size (number of heads) between original

data and the simulated population dynamic predicted by the model. Results are shown

as total herd size and per cattle type for five years (2004, 2008, 2012, 2016 and 2020) to

observe difference between surveys (see in figure 6.11 in the top panel). Per farm type, herd

size differences are shown in figure 6.11 in the bottom panel, as a percentage of original

herd size. The use of the population matrix model increase the estimate of the population,

with a higher number of female adults (cow), but remaining cattle types show almost no

change. This is possibly attributable to the low fertility rate and the practice of maintaining

adults over five years of age in production. When compared between farm types, milk farms

present higher variation in population, with an average increase of herd size of 7.2, 3 and 5

percentage for marginal, semi-intensive and intensive farms respectively.

For dairy farms, this is consistent with the observation that adult females stay on the farm.

Among the distinct types of farms, the management of the herd in marginal farm traditionally

rely upon the purchase of adult animals for production. The increased number of animals

for this category is observable both in meat and milk production.

These values are observed without using expansion factors for national herd estimates,

and despite change in sampling design (for the 2014-2020 period), herd size produced by

the model remain stable across typologies.

Crop and intake models

The module produces an estimate of available dry matter for cattle among the different

source of feeds. The production of livestock depends for the most part on the quality of diets

(or rations for cattle). The feed intake properties affect emissions from enteric fermentation.
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Figure 6.11: Herd size: evaluation using demographic model adjusted (M.A.) and original

data (O.D).

The output from crop and intake models allow us to report estimates of the feed compo-

sition and the average digestibility predicted. In Ecuador, the main source of feed remains

free-range grazing, as tropical pastures are perennial and few seasonal variation occurs

compared to higher latitudes. From CSC project, pasture proportion exceeded 93 % of the

total ration for all types of farms. The output of the crop module is reported as the estimation

of available feeds.

In the above panel of figure 6.12 the change of feed availability over time is presented.

In 1999, Ecuador suffered a profound financial crisis, combined with an extreme climatic

drought caused by El Niño-Southern Oscillation. This situation impacted durably livestock

farming, with a reduction in herd size and input expenditure. Figure 6.12 shows that the pro-

portion of harvest remaining from cereals contributed above any other type of feed in 2000.

In the following years, this contribution decreased. Marginal farms rely almost completely

upon grass, whereas semi-intensive farms combines various types of feeds, with cereals

and other crops such as pulses, tubers and roots. For semi-intensive and intensive farms,

availability of feed contribution vary considerably between years, as cereals constitute an

important contribution of dry matter.
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Figure 6.12: Dry matter composition and Digestibility over time: differences between farm

types.

These fluctuations of feed composition impact digestibility estimations. Intensive farms

combine grass and cereals and digestibility exceed 55% on average, and 60% in the high-

land and coast region. Across years, the Amazon region presents the lowest value of di-

gestibility, below 55%, and median value in the coastal region exceed highland values. The

wide span of digestibility estimates obtained from the intake model contrasts with standard

values usually applied in national inventories.

Emission model

The application of Tier 2 methodology included animal weight, milk produced and digestible

energy. The combination of these factors affect productivity. Enteric methane EFs can be

viewed as production loss, and overall, the lowest values were observed among marginal

livestock farms.

In the table 6.10 EF are presented by cattle and farm types. For meat production, bull EF

reach 79 KgCH4head
−1year−1 where semi-intensive and intensive farms reach 102.8 and

115.6 respectively.
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Table 6.10: Emission Factors per farm and product, average values and 95% confidence

interval in parenthesis in KgCH4head
−1year−1.

Product Farm type Calf Heifer Bull

Meat Marginal 13.5 (13.5-13.5) 38.5 (38.4-38.6) 79 (78.8-79.1)

Semi-intensive 14.7 (14.7-14.8) 43.2 (43.2-43.3) 102.8 (102.7-103)

Intensive 15.2 (15.1-15.2) 44.6 (44.4-44.8) 115.6 (114.9-116.2)

Milk Marginal 13.4 (13.4-13.5) 38.3 (38.2-38.5) 71.4 (71.3-71.6)

Semi-intensive 15.8 (15.8-15.8) 46.3 (46.2-46.3) 89.2 (89.1-89.3)

Intensive 10.8 (10.8-10.8) 30.8 (30.8-30.9) 90.8 (90.7-91)

Tier 1 reference 49 49 61

Product Farm type Non lactating cow Lactating Cow

Meat Marginal 49.2 (49.1-49.3) 72.6 (72.5-72.8)

Semi-intensive 63 (63-63.1) 91 (90.8-91.1)

Intensive 57.6 (57.3-57.8) 81.4 (81-81.8)

Milk Marginal 51.9 (51.8-52) 86 (85.8-86.3)

Semi-intensive 66 (66-66.1) 107.4 (107.3-107.6)

Intensive 62.5 (62.4-62.6) 113.5 (113.2-113.8)

Tier 1 reference 64 72

In dairy production the same order occurs with marginal farms (86KgCH4head
−1year−1)

below semi-intensive and intensive farms (107.4 and 113.5 KgCH4head
−1year−1 respec-

tively). For other cattle, calves, heifers and non-lactating cows, dairy production units present

EFs value above meat production, and semi-intensive farms show the highest EF values.

National averages were nearly equal or below default EF values proposed by the IPCC

for the region (see last row in table 6.10): heifer EFs 5 to 30% below, calves 67 to 77% below

and for non-lactating cows 23.1 to 0% below. For bull and lactating cows in contrast, EFs

were above reference values exceeding up to 89.5% for bull in meat intensive farms, and

over 57.6% for intensive dairy farms.

For the period 2000-2020, I calculated methane emissions averaged per livestock units,

to evaluate the effect of herd composition by farm types, as shown in figure 6.13. It appears

that semi-intensive farm always produces more emissions than intensive and intensive ones.

Tendencies between highland and coast regions are comparable, while average EFs in the

Amazon region approach values above 100 KgCH4LU
−1year−1 but without clear differ-

ences between farm types.
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Figure 6.13: Mean annual emission per livestock unit by farm type over 2000-2020 period,

by region and type of product.

In the highland region marginal farm are the least source of methane emissions, with

EFs around 50 KgCH4LU
−1year−1, followed by intensive farms with values between 60

and 70 KgCH4LU
−1year−1. and semi-intensive farm reaching 80 KgCH4LU

−1year−1.

In the coast region, marginal and semi-intensive farms have similar levels of emission,

with around 60 to 70 KgCH4LU
−1year−1. Tendencies are reported with 95% confidence

intervals (shown as a gray area around the lines in figure 6.13), in the case of the Amazon

region meat intensive farms, the low number of farms surveyed cause a wide uncertainty

in these estimates. Finally, to compare the effect of the modules on EF estimates, results

per farm types are shown in table 6.11 comparing: Tier 1 model, Tier 1 with herd module

outputs, Tier 2 with intake model and original population estimates, and Tier 2 with intake

and herd module. As components are added to the model, estimates decrease in value.

For meat production, the reduction in EF per LU reach 26.5%, 4.4%, 4.7% for marginal,

semi-intensive and intensive farms. For dairy production these differences reach 28.2%,

2.8% and 13.4% for the same farm type respectively.
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Table 6.11: Average emission comparing model components, per farm type, average values

and 95% confidence interval in parenthesis, EF in KgCH4LU
−1year−1.

Product Farm type Tier 1 Model Herd + Tier 1 Model

Meat Marginal 81.7 (81.4-81.9) 80.4 (80.1-80.7)

Semi-intensive 82.4 (82.2-82.5) 81.8 (81.7-82)

Intensive 71.2 (70.8-71.7) 70 (69.6-70.4)

Milk Marginal 80.5 (80.3-80.8) 76.9 (76.6-77.2)

Semi-intensive 81.2 (81.1-81.3) 78.7 (78.6-78.8)

Intensive 75.2 (75-75.4) 70.6 (70.4-70.7)

Product Farm type Intake Model Intake + Herd model

Meat Marginal 66.6 (66.2-66.9) 64.6 (64.2-64.9)

Semi-intensive 81 (80.8-81.3) 78.9 (78.7-79.2)

Intensive 71.6 (70.9-72.3) 68 (67.3-68.7)

Milk Marginal 67.1 (66.8-67.4) 62.8 (62.5-63.1)

Semi-intensive 83.2 (83.1-83.4) 79 (78.8-79.1)

Intensive 71.6 (71.3-71.8) 66.3 (66.1-66.5)

The inclusion of the herd module provoke the major shift in estimate in comparison to

the results obtained with Tier 2 with intake model only.

6.4.9. Conclusions

In this section, I applied the proposed DM framework to model enteric fermentation. I de-

scribe detailed steps to adjust to Life Cycle Assessment and adapt GLEAM models to a

national survey and at farm level. This implies that estimates are limited by sampling resolu-

tion, but provide detailed description of farm types practices and enteric emission description

over time.

Specifically, I have restricted my demonstration to the detailing activities in marginal,

semi-intensive and intensive farms, combining crop, intake and herd models applying sev-

eral times the framework proposed in this thesis, to get partial results and the final model.

Coupling discrete time matrix models with survey data is key for GHG estimations. Cattle

type yearly inventories are standard methodology in agricultural survey. The composition

of herds on the farm was estimated with the average presence of animals. Using dynamic

population models produce a larger number of animals, as the average presence tends to
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inflate adults numbers in the herd.

Despite those efforts, cattle estimates from recall in surveys can be a source of un-

certainty [63] and require adequate standardization of examiners in the field. Using the

framework to implement GLEAM approach performed adequately to document and visualize

estimates and combination of crops and cattle management, understanding the availability

of dry matter. Additionally, the EF estimates produced help to understand the practices for

smallholders. The obtained results were consistent with [139], semi-intensive farms produc-

ing the higher amount of methane among livestock breeders. For instance, in dairy produc-

tion, semi-intensive farms maintain a level of production relatively elevated in comparison to

the nutritional quality of rations.

Implications for global warming policies

In my model, drivers of emissions linked to market fluctuations for feeds, meat and milk,

or climate events were not considered. During 2000 to 2002, after the financial crisis of

1999, a surge in farm price index could explain the low digestibility of feed and the above-

average emission of most regions. After 2010, national program for dairy production may

have provoked the observable increase in methane emissions from 2010 to 2015. Food

production generates important amount of GHG and at the current rate, even with substantial

reduction of emission in other sectors, a temperature rise to 1.5 C may not be prevented

[173].

The global food system contributes between 30 and 50% of global emission. Those

emissions originate mainly from the livestock supply chain, with methane emission of ani-

mals with inefficient conversion rate of feed to food [174]. Despite uncertainty in estimation,

increase in livestock emission has significantly increased in the last decades [175]. Livestock

units have more than doubled over 1980-2014 in developing countries while decreasing in

intensity in developed countries.

Yet, as methane half-life is relatively shorter than carbon dioxide (10.5 versus 120 years),

reduction in methane emissions are expected to alleviate on a short-term basis, the effects

of global warming. Visualizing herd management at scale helps to consider management

practices for each typology of cattle breeders. The evolution of those practices provide

the necessary information to mediate GHG emissions. Further implementation of Tier 2

approaches in both modeling and inventory may reduce the uncertainties, especially for Latin

America and Africa. However, shifting from a Tier 1 to Tier 2 approach might also require
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additional information on farming practices. Actual feed intake and feed quality information

may not be available [176] and still constitutes a source of uncertainty.

I extended these phases by combining the agricultural data framework to LCA to model

methane emissions from enteric fermentation. My initial research suggests that this method-

ology will be useful for stakeholders in developing GHG inventory.

Additional research utilizing other data sets, from other countries could provide insight for

LCA. Following the framework described in chapter 2, eased the construction and iterations

between models, providing a clear approach to understand LCA processes. Adapting the

guidelines of the methodology to the necessities of LCA (combination of models with CRISP-

DM as a solution) enhanced the integration of secondary data in the overall process, for

instance using yield estimates for pasture. All This adaptation could help to carry out DM

projects for similar problems, including farming systems and survey information at national

scale.

Including enteric emissions in crop estimation is particularly relevant as it allows us to

capture the allocation of limited resources by small-scale farmers between different produc-

tion systems, often involving trade-offs with crop production [163]. By using emissions as a

proxy for the intensity of livestock production on farms, I can potentially model the trade-off

between crops and livestock. In the next section, I will address similar trade-offs by directly

modeling off-farm income.

6.5. Variable generation: modelling economic orientation of APUs

Monitoring crop areas and agricultural production constitutes a complex information system,

generally promoted by public entities.In Ecuador, there are two sources of information, on

the one hand, the Surface and Continuous Agricultural Production Surveys (ESPAC) that are

carried out every year, and on the other, the National Agricultural Censuses (CNA) carried

out every 10 years [14].

However, due to the high costs of the latter, there is a lack of important information in

the agricultural statistics of several countries [16], sometimes complemented by data mining

methods. The purpose of this section is apply the DM framework for agriculture data to pre-

dict the economic orientation of production units, between agricultural and non-agricultural

activity.

The ESPACs produce basic information on agricultural management from a census sub-

sample, while the information managed in the censuses is broader, including components
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related to production, such as accessibility, income outside the production units or from

non-agricultural activity. The disaggregation of the information from the censuses reaches

the canton level, while the surveys provide estimators at the level of provinces or group of

provinces for the most remote regions of the Ecuadorian Amazon [14].

No agricultural censuses have been carried out since the year 2000 in Ecuador, and little

secondary information is available to complement the ESPAC. In this case, it is particularly

interesting to investigate the possibilities of using data modeling techniques, and obtaining

estimates of the components [177] not available in continuous surveys, similar to small area

estimates.

To solve this lack of information, it is proposed to use machine learning methods to

complement surveys with censuses. These models consist of applying regressions on ob-

servable responses based on a set of auxiliary variables such as location, size, production

orientation in the Agricultural Production Units (APU).

These models are usually calibrated based on surveys, and by construction, the same

variables present in the censuses allow obtaining higher resolution estimates for the entire

population [178]. Thus, data updating usually consists of using sample-based surveys with

additional information, and censuses are more limited in scope [179]. Similar applications

are also made for agricultural production using information from remote sensors [180].

In the configuration of the CNA and the ESPAC, these applications are particularly

adapted, the ESPAC being a representative sub-sample of the CNA. In this particular case,

it is proposed to use the census omitting the sub-sample to train a model and evaluate it on

the ESPAC sub-sample as an out-of-sample set. Using the same set of auxiliary variables,

predictions are obtained in the successive years of the ESPAC surveys (2002-2013), as a

test of the model.

In public statistics programs, surveys provide unbiased, probabilistic, and statistically

significant data sets, defined by sampling. The sampling frames are constructed based

on censuses of complete populations to ensure that the estimators are representative at

the defined levels of disaggregation [90]. Seen from the machine learning perspective, the

census-survey update is equivalent to a supervised learning task.

Previous studies have shown that regression tree models are able to robustly and highly

accurately predict health, crowding, and well-being variables [181]. There are many ad-

vantages in the use of machine learning models over traditional estimation models, since

these presuppose statistical constraints prior to their application and advanced skills in their

implementation.
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The limitations to approach this type of analysis are concentrated in the difficulties to

reconcile suitable tools to capture non-linear behaviors, spatial autocorrelation, use regula-

tion mechanism to avoid over-fitting and take into account the computation times that can be

very long. In this research I provide estimates of APUs environment variables with the use

of ML, regression trees and deep neural networks. I show that alternative machine learning

models allow obtaining better robust results than traditional methods.

In the first part, I will expose the context of the information used for the analysis, the data

sources, the formalization of the modeling problem and the possible modeling methodolo-

gies. In the second part, I will apply the data mining framework proposed in chapter 2 and

finally report the results of the model implemented. And in the last part, the implications of

these results are analyzed to solve the identified problem.

6.5.1. Data source

The data mining project was built around the information from the ESPAC data from the

year 2002 and the census of 2000. This information was collected by the National Insti-

tute of Statistics and Censuses of Ecuador (INEC), following a rigorous sampling design

and applying standard survey methods for this type of agricultural data [28]. The data was

separated into two data sets (see figure 6.14):

- the census set (excluding the survey subset) with 115303 observations, used as training

set, and,

- the survey data set, with 38803 observations, used as the validation set.

Previous studies have shown that Small Area Estimation methods are especially suitable

for modeling survey information with census data [182].

However, in my case, I sought to use census data on sets of surveys and the use of

regressions appears more relevant, due to the amount of training data and the availability

of auxiliary socio-economic variables. In this study, I was able to train models predicting the

economic orientation of APUs in terms of agricultural income using co-variables.

6.5.2. Models

I trained a model based on the agricultural indicators observed in the 2000 agricultural cen-

sus. I then used this model to predict the missing responses from the annual surveys of

surface and agricultural production and generate predictions for each survey observation.

From a machine learning perspective, it is a supervised learning task (see figure 6.14).
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Figure 6.14: Organization of the data mining process.

Suppose we have a set of N individuals denoted by [N ] = 1, 2, ...N .The survey is a

subset I ⊂ [N ] of n individuals from this population. From the administrative data set we

obtain a vector of d features xi ∈ Rd for each individual i.

From the census data set we obtain responses yi ∈ R (regression) if the individual was

in the census (i ∈ I) or yi = NA otherwise.

The goal of supervised learning is to learn an unknown function f : Rd → 0, 1 from a set

of training examples D = (xi, yi)i∈I , each of which consists of an input vector xi ∈ Rd and

an associated output that can be binary and i ∈ 0, 1 or real value yi ∈ R .

This function should approximate the unknown true function yi ≈ f(xi) on the training

data i ∈ I in order to generalize to new data i ∈ I that is not seen in the training phase.

When predicting the prevalence or mean score I will use the observed responses when

available in the survey and the model predictions for each individual not in the survey. There-

fore, the predictor y ∗ i is defined as:
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y∗i :=


y∗i i ∈ I

f(xi) i /∈ I

(6.8)

Given a partition of individuals at r = 1, ...,K mutually exclusive geographic regions Rr ,

where R1 ∪ ... ∪RK = [N ] and Rr ∩Rs = ∅ if r ̸= s, I calculate the predicted prevalence or

average score in each region simply as the average:

pr =
1

||Rr||
∑
i∈Rd

y∗i (6.9)

The model-independent prediction intervals can be determined as follows. The goal is to

calculate b = 1, ..., B bootstrapped statistics p(b)r for the true mean in each region, and take

their 95% percentile intervals as the prediction intervals.

To quantify model uncertainty, I resample the training data as data sets D(b)Bb = 1 and

denote a model trained on each as f(b). The uncertainty of the result in the classification is

a Bernoulli test yi ∼ Bern(pi) of the true probability pi and I assume that the result in the

regression follows a normal distribution and i ∼ N(µi, σ
2
i ) given the true mean µi and the

variance σ2i . The results are independent given their true means.

For the selection of models, I draw on the literature and retained 4 types of models:

logistic regression, generalized with mixed effects,a decision tree model considering the

sampling design effect, and deep neural networks.

Null model: logístic regression

One-dimensional logistic regression can be used to try to correlate the probability of a binary

qualitative variable (I assume it can take the real values "0" and "1") with a scalar variable

x [183]. The idea is that logistic regression approximates the probability of obtaining "0"

(a certain event does not occur) or "1" (the event occurs) with the value of the explanatory

variable x.

In this case, I consider as a response a binary variable, dependence or not on non-

agricultural income Y = [yi] of the APUs interviewed and a series of socio-economic and

agricultural variables associated with the response.

Under these conditions, the approximate probability of the event will be approximated by

a logistic function of the type:

π(x) =
1

e−(β0+β1x) + 1
(6.10)
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which can be reduced to calculating a linear regression for the logit probability function:

g(x) = ln
π(x)

1− π(x)
= β0 + β1x (6.11)

or an exponential regression:

π(x)

1− π(x)
= e(β0+β1x) (6.12)

Considering that the data analyzed are significant sampling, it is also relevant to explore

the possibility of using mixed models, described below.

Generalized mixed models

Generalized linear mixed models are an extension of generalized linear models, in which

the linear predictor contains random effects in addition to the fixed effects [184]. It allows

analyzing correlated data in cases where there is a cluster effect.

This type of model is especially interesting for modeling survey data, usually stratified

and staged [185]. In these cases, the effect of the sampling design can be modeled with this

type of formulation. This allows taking into account the heteroskedasticity of the variance

by including stratum or sampling units as random factors. Mixed models are formalized with

the following equation:

y = Xβ + Zu + ϵ (6.13)

where y is the response as in the previous case, but apart from a matrix X of predictor

variables with β fixed effects regression coefficients, Z is a design matrix of q random effects

where u are the coefficients of the random effects and ϵ the residuals or unexplained part of

y by the model. decision trees, and deep neural networks.

Decision tree

Decision trees are supervised classification methods. XGBoost is a machine learning algo-

rithm that provides a gradient boosting framework [186] and allows to perform supervised

learning tasks. This algorithm uses a Newton-Raphson optimization method, with a second

order Taylor approximation in the loss function.

A generic XGBoost algorithm, without regulation, can be defined in three main stages.
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The model input stage is defined with a training set: {(xi, yi)}Ni=1 , a loss function differ-

entiable L(y, F (x)), and M and α learning rate.

1. The model is then initialized with a constant value: f̂(0)(x) = argmin
θ

N∑
i=1

L(yi, θ).

2. In a second stage for m = 1 to M :

2.1. Gradients are calculated ĝm(xi) and hessians ĥm(xi):

ĝm(xi) =

[
∂L(yi, f(xi))

∂f(xi)

]
f(x)=f̂(m−1)(x)

(6.14)

ĥm(xi) =

[
∂2L(yi, f(xi))

∂f(xi)2

]
f(x)=f̂(m−1)(x)

(6.15)

2.2. A base classifier is fitted using the training set

{
xi,−

ĝm(xi)

ĥm(xi)

}N

i=1

solving the follow-

ing optimization problem:

ϕ̂m = argmin
ϕ∈Φ

N∑
i=1

1

2
ĥm(xi)

[
− ĝm(xi)

ĥm(xi)
− ϕ(xi)

]2

(6.16)

f̂m(x) = αϕ̂m(x) (6.17)

2.3. The model is then updated:

f̂(m)(x) = f̂(m−1)(x) + f̂m(x) (6.18)

3. The following output is obtained in the last stage:

f̂(x) = f̂(M)(x) =
M∑

m=0

f̂m(x) (6.19)

This algorithm has several advantages: it handles missing values in the model instead

of using imputation techniques, and it saves a lot of time in data pre-processing, model

specification and prediction compared to other techniques [187].

Deep neural networks

Deep neural networks (DNN) are machine learning methods based on artificial neural net-

works [188], which involve several input and output layers in their architecture. They allow

complex modeling non-linear relationships [189]. The general model is formalized as follows:

y(x,w) = f(

M∑
j=1

wiψj(x)) (6.20)
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where f(.) is a non-linear function of activation or the identity function in the case of a

regression.

Neural networks are extensions of these cases in which the basis function ψ(j) is defined

as dependent on adjustable parameters at the same time as its coefficients wj. A neural

network uses basal functions that follow the same form such that the function itself is a non-

linear function of input data combinations where the coefficients in the linear combination

are adaptive parameters. This leads to a basic neural network model that can be described

in a series of transformations.

First, a set of M linear combinations of x1, variablesisconstructed..., xD of the form:

aj =
∑
i=1

w
(1)
ji xi + w

(1)
j0 (6.21)

where j = 1, 2, ...,M and the exponent in brackets (1) indicates that the corresponding

parameter is in the first layer of the network. I refer to the parameters wji and wjo as weights

and biases [190]. The quantity aj are activations that are transformed by a differentiable

nonlinear function h(.) giving: zj = h(aj).

These quantities correspond to the output of the base function (see first equation) called

hidden units. The nonlinear function h(.) are generally sigmoidal like the logistic function.

These values are consecutively combined to obtain units of output activations:

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (6.22)

where k = 1, ...,K, and K is the total of observations. This transformation corresponds

to the second layer of the network, and as in the first layer w(2) and w(2)
k0 correspond to the

weights and biases respectively.

Finally, the outputs of the activation units are transformed by an appropriate activation

function according to the nature of the response variable yk. The selection of the function

also depends on the distribution of this response variable with considerations similar to those

of linear regression models.

6.5.3. Process followed to estimate predominant income

I use the same framework proposed in Chapter 2 to generate off farm income estimations

(see figure 6.15).Identifying the application context of machine learning models will help to

identify solutions for the agricultural information context.
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Figure 6.15: Steps followed in the data mining process.

In the evaluation phase of the model, effectiveness and quality metrics are reported to

improve its performance. Finally, in the last phase, I present the graphical representation of

the estimated results.

6.5.4. Business understanding

Previous Research (Bouchakour et al., 2020) have explored the prediction of off-farm work in

agricultural production units (APUs) and have identified key factors associated with income

and diversification of activities in rural households (refer to Table 6.12).

These factors include human capital indicators such as education level, diplomas, family

labor, and gender of household members. Additionally, characteristics of the APU head,

such as age and gender, as well as the level of agricultural income, play significant roles.

The study conducted in Algeria [191] also incorporated producer perceptions regarding

production, equipment availability (such as tractors, vehicles, and irrigation equipment), and

farm size, including arable and irrigated land.

The non-agricultural income can be observed based on two variables present in the agri-

cultural census databases: the declaration of the producer if the main source of income was
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agricultural, and the proportion of hours dedicated to activities within the APU in relation to

the total declared working hours.

Both variables propose a measurement of the agricultural orientation of the APU. The dec-

laration of source of income does not have lost values, but in the case of the declaration of

hours worked, on the other hand, 26% of the information has not been collected during the

census. Despite not having quantitative detail in the first type of response, I will use this one

due to the important level of missing data in the measurement of hours.

Table 6.13 shows that in the APU typology with the lowest production capacity, only 51%

of APUs rely primarily on farming income, whereas in the other typologies, over 78.7% do

so. It is worth noting that in APUs where individuals are hired outside the family circle, 78.7%

rely mostly on agricultural activity, while in mercantilist family units (who sell to the market

and use only family labor), the percentage is even higher, reaching an average of 84.0%.

For the two remaining typologies - Capitalists and large extensions (which belong to quintile

5 of total area distribution of the APU) - the percentage is similar, with 85.1% and 83.3%,

respectively.

6.5.5. Data understanding

This section describes the data sources used for the elaboration of the models, the objective

variables of the models, and the auxiliary variables. During the last agricultural census,

some key variables of the production units have been surveyed.

Specific forms were applied to describe the equipment, machinery and facilities of the

APUs and also, the commercialization and transport of the APUs (accessibility), availability

of technical assistance and affiliation to organizations, source of income, and working hours.

In this study I focus on the source of income variable. The scope of this methodology

could be applicable to a greater diversity of data, involving the production of information

between censuses and surveys, as long as the problem can be formalized as a supervised

data learning problem.

This methodology could also be used as an automatic data prediction system. Three

databases have been used: the base of productive plots, the base of general character-

istics of the APU, the base of surfaces in the APU. For the set of auxiliary variables, the

surveys provide information annually between 2002 and 2021. Table 6.12 summarizes a

description of the type and number of observations in the training and validation sets, and

the percentage of missing values.
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Table 6.12: Variable description.

Farm regio1 Region factor -

Characteristics strat01 Sample stratum of the survey factor -

Agricultural riegh % of land with irrigation numeric -

Characteristics ferth % of land with fertilization numeric -

fitoh % of land used for phytosanitary numeric -

sum_ganad Sum of animals in the UPA (cattle in

animal load unit)

numeric -

auha Number of animals per hectare numeric -

lpv liter per cows numeric -

eq_t Total of equines in the UPA numeric -

Land use divtot Total diversity numeric -

isimp Simpson index of declared agrobio-

diversity

numeric 4.10%

s_barbec Area fallow numeric -

s_pasttot Pasture area numeric -

s_culttot Area in other crops numeric -

Crop ctv_cr1 Type of crop on the plot factor -

Description ctv_cven Quantity sold on the parcel numeric 11.33%

ctv_fert Use of fertilization in the plot binary 11.30%

ctv_fito Use of phytosanitary products on the

plot

binary 19.74%

ctv_rieg Irrigation use on the plot binary 19.74%

ctv_asem Year of planting of the crop in the plot numeric 7.60%

ctv_ccos Amount harvested in the plot numeric 9.56%

ctv_mcos Harvest month of the crop in the plot numeric 44.08%

ctv_msem Planting month of the crop in the plot numeric 43.73%

ctv_scos Harvested area in the plot numeric 7.73%

ctv_semi Type of seed used in the plot factor 26.00%

ctv_ssem Area planted in the plot numeric 9.00%

Despite the fact that the validation set is constant over time, with a sample design that

corresponds to the same areas each year, previous surveys have shown the difficulty of

matching data sets of this type from year to year.
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Table 6.13: Distribution of APUs by type.

Class APU with predominant farming income

Subsistence family APU 51.6%

Business family APU 84.0%

Employers’ APU 78.7%

Capitalist APU 85.1%

Hacienda (Q5 area) 83.3%

The objective was restricted here to implementing predictive models to estimate variables

missing from the surveys.

Crop data

From this database, the main production components have been extracted: the crop code,

planting and harvest dates, use of agricultural inputs, amounts and areas, planted and har-

vested.

To obtain synthetic information, the crops in the first plot were summarized, summarizing

30 % of the total cultivated surfaces. Of these plots, to reduce the dispersion of the data, the

crops were classified into 10 main categories, capturing 63.4 % of the crops.

Farm characteristics data

This information provides a summary of the household and family workers’ composition,

including their sex and age, as well as details about permanent and occasional workers.

It also contains characteristics of the APU producer, such as age, sex, education level,

agricultural education, and age.

Land use data

In this database, the areas under the responsibility of the producers are described in detail.

The surfaces according to use are reported for each piece of land: pastures, perennial and

transitory crops, fallow land and surfaces with natural cover or forest and moorland cover.

This information is very relevant to relate it to the intensity of land use and is closely related

to the economic orientation of the APUs.
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6.5.6. Data analysis

For the selection of variables, the used exploration algorithm performs the best selection

of subsets by identifying the best model that contains a given number of predictors, where

the best one is quantified by Residual Sum of Squares (RSS). The algorithm allowed to

confirm the use of variables identified in the literature review and add additional components,

generating the best set of variables for each model size [192]. The number of observations

reaches a total of 154,710 productive units, with 115,907 in the training set (census) and

38,803 in the training set (survey).

To account for changes in representativeness between censuses and surveys, certain

categorical variables were grouped together. The number of strata was adjusted due to

operational constraints in the field, resulting in fewer segments in the Amazon region. Ad-

ditionally, variables such as region, general classification of farm type, and land tenure type

were included to provide further information.

6.5.7. Modelling

In this phase, the four supervised models were trained: logistic regression, generalized

mixed regression, regression trees, and neural networks.

For the regression trees, different parameters were evaluated in a first phase by means

of cross-validation, and a depth of 5 was determined, with 126 epochs.

For neural networks, data normalization was applied after analysis, and the retained

model consisted of 4 sequential layers with the following architecture (c1: 256, c2: 124, c3:

64, c4: 6) used regularization by dropout, mean square error as a loss function. The training

of the model was performed with a batch size of 124 with 20% of the set for testing.

To prevent over-fitting phenomena, an optimizer, adagrad, was used to avoid over-parameterization

of the model with a learning rate of 10−4 and early stopping of the model when learning did

not show significant improvement. The final result of the models is measured in terms of

accuracy, completeness, and F-value.

6.5.8. Evaluation

The logistic regression model (GLM) and mixed regression (GLMM) did not produce very

different results, presenting high levels of precision (83.9 % and 84.0 % respectively).

However, when adding mixed effects considering the stratification of the data, the Akaike
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information criterion (AIC) shows that the GLMM model is better at representing the data

(see table 6.14).

Looking at the distribution of residuals versus expected values (see figure 6.16 panel

A), I see that the two models produce very similar values. In the XGBoost model, after

the training phase, a set of decision trees was obtained. Each variable contributes to a

different degree in the importance of the construction of the tree (represented in the graph in

figure 6.16 panel B), where the most important variable appears to be the subsistence family

farming typology, the quantity sold (cven), both variables are determinants of the main lines

of production orientation in the APUs.

In the second level of decision, there are variables of surfaces and quantity of family

workers, describing the availability of production factors in the APUs and less easy to in-

terpret, the quantity of equines in the APU. For neural network models, convergence of

accuracy was obtained between training and validation, and despite having a slightly higher

loss in the validation, the results in the testing phase show a substantial improvement of the

model (see figure 6.16 panel C).

The model accuracy shows a slight increase in the validation phase, but does not reach

convergence after 200 epochs.The resultus of the main models are analyzed in the last

phase.

6.5.9. Visualization

Among the chosen models, regarding the prediction of economic orientation of the APUs,

the deep neural networks presented the best results (see table 6.15), however, the decision

tree model has more advantages in terms of ease of implementation. They also proved

to be computationally efficient models with less than one minute of computation time. In

comparison, the model needing more implementation work and computation time was the

GLMM model.

The differences between the models show that, in practical terms, decision trees are

more efficient.

Table 6.14: Logistic regression and mixed models results.

Model AIC logLik deviance df.resid

GLMM 105832.74 -52846.37 105692.74 115837

GLM 105900 -52868.08 115823 115823
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Figure 6.16: Results of regression models: panel A. Generalized Linear Model and Gen-

eralized Mixed Model residuals vs predicted values, panel B.Variable importance metrics of

the decision tree model, C. Deep Neural Network Learning Curves, training and validation

for accuracy and loss during learning.

The neural network model achieves 85.14 % accuracy, but requires a longer implemen-

tation and parameterization phase, requiring more time for trial and error.

With the model with the highest predictive power, predictions can be made from the

period 2002 to 2013 on the ESPAC survey data (see figure 6.17). I observe that the family

subsistence APU typology shows a strong increase in agricultural orientation during the

years 2005-2007, which corresponds to a period of recovery from the economic crisis in

Ecuador.

Also, the typologies of capitalist and hacienda APUs maintain the same composition

(about 95% of APUs) while the remaining categories of APUs (Business family and em-

ployer) show a re-orientation towards agricultural activity but with less variation than subsis-

tence APUs, which were more vulnerable during the 2000 crisis.
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6.5.10. Conclusion

In this section I apply succesfuly the proposed DM framework for predicting non-farm income

in APUs during surveys. I introduce a data modeling methodology for predicting the orienta-

tion of agricultural production units with high accuracy in the context of national agricultural

statistics.

The process of extracting knowledge involves identifying APUs with a predominant agri-

cultural orientation or significant multi-activity in the APU’s economy. I modeled external

income to the APUs by using sets of variables identified in the literature for similar contexts

and through a systematic search.

As a result of this model, knowledge was extracted by adapting the selection phase

of characteristics from agricultural statistical databases. Moreover, the modeling exercise

included the comparison of different machine learning techniques: logistic regression, gen-

eralized mixed models, decision trees and deep neural networks. Measures of accuracy,

completeness and F-value were used to evaluate the models built.

Neural networks improved prediction accuracy (85.14 %) relative to the generic logistic

regression model (83.92 %). As for the regression tree model, it was much more agile to

implement compared to the three other models evaluated. Between the most complex model

to implement and the most agile, an accuracy of 84% was found with logistic mixed models,

compared to 84.62% with the decision tree model.

To provide census-survey estimates for agricultural statistics surveys in Ecuador, I uti-

lized gradient-powered decision trees implemented in the R package ’XGBoost’ as a ma-

chine learning method. The response variables were obtained from the census, while the

features were derived from a production and socio-economic variable subset. Although the

responses were only available for the census set, survey data were available annually.

Table 6.15: Model summary.

Model GLM GLMM XGboost RNP

Precision 83.92 84 84.62 85.14

Exhaustivity 96.8 97.34 97.76 98.12

F1 91.26 91.3 91.67 92.74

Implementation + - ++ +

Over fitting + + ++ +++

Computation time <1 min. 3 h 2.3 min. 42 min.
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Therefore, missing survey responses can be predicted by a model trained on the ob-

served responses, and these predictions are added to the predicted prevalence or average

score in each survey.

Machine learning has multiple benefits: a single machine learning method can learn

the prediction task in a matter of minutes with accuracy similar to that of models specially

designed for the structure of agricultural surveys and censuses. Gradient-powered decision

trees can slightly improve accuracy and drastically improve training and prediction time.

The default hyper-parameters performed well and the adjustment achieved only a small

improvement in performance. Decision trees were unmatched in simplicity and ease of use.

The statistician does not have to perform a complex, time-consuming, and error-prone model

specification process. The method automatically learns nonlinear feature effects.

With the data framework applied to agricultural information, the machine learning model

allows updating information usually missing in countries where statistical resources are

scarce and inter-census periods are very large. I was able to adequately detect the ori-
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entation of the APUs given generic auxiliary variables available in surveys. The result of this

work are predictions of income composition, mostly agricultural or not.

With an automatic process for estimating variables that are complex to obtain, the classi-

fication of APUs in the regions could be completed and supported in order to develop more

efficient public policies for agricultural development. It is recommended to analyze other

important variables to elaborate typologies of APUs relevant to public policies and in addi-

tion to timely data collection campaigns to provide updated information often absent from

agricultural survey statistics, also, the inclusion of socio-economic characteristics in annual

surveys is indispensable to understand the diversity of Ecuadorian agricultural strategies,

and to provide a sufficient auxiliary information to update target variables at lower cost.

It could also help determine which production units could benefit from support programs

or access to resources to improve productivity in their production units and study the reasons

why the APUs do not respond to certain public policy incentives. Future work will test the

validity of this model over time by obtaining other validation points (ESPAC 2019), and will

use this framework to implement predictions of additional variables and enrich data sets

where information on pluri-activity and economic strategies of APUs in Ecuador is missing.

Understanding the diversification of farm and off-farm activities is crucial for compre-

hending the dynamics of agriculture in developing countries.

In the following chapter, I incorporate this variable in the yield model, to account for

resource allocation and competition between crop production and other activities. This vari-

able acknowledges the limitations and constraints faced by small-scale farmers, as resource

scarcity significantly influences crop yields. By considering the allocation of resources, with

the aim to capture the complex interplay between various activities and their impact on agri-

cultural outcomes.
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Chapter 7

Modelling: a crop sequence

transformer for yield prediction
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Yield prediction require a deep understanding of effects and complex interactions be-

tween crop types, management practices and environmental factors. In the fields of en-

gineering and computer science, the development of state of art methods and tools has

recently focus on improving agricultural techniques. Machine learning algorithm and remote

sensors are now widely used to predict yields, but countries where data is unavailable still

rely on agricultural surveys. This research focus on this later case, in tropical countries,

where agriculture is highly diverse in the type of production systems. Specifically, results of
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predicting yield on four principal crops are reported, based on twelve years of data, at parcel

level.

Measurement of crop yield requires precise estimate of volumes and cultivated areas,

yet, at regional and national scale farm situations are rarely considered. Even locally, vari-

ability of yields between farm is huge and access to irrigation for instance is a key factor in

rain-fed agriculture. Missing key factors impacting yield induce high inaccuracies in model

predictions.

The objective is to employ these prediction to predict subsequent yields. More specif-

ically, I compare methods based on multiple regression (linear and non-linear), a machine

learning algorithm, XGBoost, presented in chatper 6, and self-attention neural networks

(transformers). My results indicate that a deep neural network based on the transformer

yields the best results.

7.1. Introduction

Climate change in recent years threatens potential yield every year, as extreme climate

events occurs with increasing frequency. Drought and inundation affect regions where sea-

sonal temperature and precipitation patterns are changing unpredictably, with disastrous

consequence on global food market. Ecologists alerts that future climate events could lead

to global famine around the world.

The present study focuses on the challenges faced by farmers in maximizing their profits,

particularly in the context of climate change and limited growing seasons. Precision Agricul-

ture is an emerging field that employs technology from computer science and engineering

to provide informed decision-making in agriculture. In this field, two aspects are particularly

relevant to address these challenges. The first is the optimization of fertilizer rates to re-

duce waste and increase profits. However, this requires predicting yield and protein content

based on current and historical field properties, as well as climate. The second aspect,

which is the main focus of this paper, involves using machine learning techniques to predict

localized yield and protein content in target fields. Artificial Neural Networks (ANNs) have

shown promise in various domains, due to their ability to learn and recognize patterns from

different input signals. The paper explores the effectiveness of two different approaches to

using ANNs, including simple treebased model and stacked autoencoders. The results in-

dicate that these neural network models outperform traditional regression methods and that

incorporating spatial context improves their performance significantly.
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The chapter is organized as follows: Section 2 discusses related work, Section 3 presents

background information on yield measurements in Agriculture and details the models, Sec-

tion 4 presents the experimental approach and results, Section 5 outlines future research

possibilities, and Section 6 concludes the chapter.

7.2. Related works

7.2.1. Linear and non-linear models

Stepwise multiple linear regression (SMLR) is commonly used to develop empirical mod-

els from large data sets. However, ANNs have the advantage of finding complex non linear

relationships as shown in [193] found that any form of learning and training outperformed lin-

ear methods, with resilient backpropagation performing slightly better than backpropagation.

[194] introduced an ensemble of ANNs in fertilization models, which improves forecasting ac-

curacy and generalization capacity.

7.2.2. Machine learning

Applying ANNs to precision agriculture has shown important improvements in the last decade.

Recent research successfully predict the best crop and fertilization rate using ANNs and

model ensemble (see [195] and [194]). Kuwata and Shibasaki (2015) employed deep neu-

ral networks to estimate corn yield also achieving best results compared to other methods

[196]. Another aplication employed a convolutional neural network and a Long-Short Term

Memory network to classify histograms generated from remotely sensed images, with the

CNN achieving the best RMSE values overall [197]. More recent work demonstrated that

using recurrent neural networks on satellite imagery outperformed state-of-the-art models

[198].

Dutta (2020) included socio-economic components in their model alongside agronomic

variables, resulting in significant improvement [24]. Agent-based models have been previ-

ously used for this kind of modeling, coupling environmental, social and economic models

as shown by [199], with moderate accuracy.

Khaki (2019) showed that a model based on deep neural networks at the plant level

significantly outperformed other popular methods such as Lasso or regression trees [85].
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Gangopadhyay (2019), in contrast, compared various architectures of recurrent neural net-

works to model yields but did not find clear improvement in the conducted experiments [26].

Guodong Du [200] compared recurrent neural networks using Long Short-Term Memory

(LSTM) and spatio-temporal dependencies to model land use, with the results demonstrating

improvement over a simple gated recurrent unit model and confirming the ability of such

models to account for spatio-temporal dependencies. Finally, [25] used deep reinforcement

learning to successfully model crop yields using aggregated data at county level.

7.3. Theoretical background

To provide context for the proposed approach in this paper, it is necessary to first provide an

overview of crop yield models.

Common statistical methods employed to analyse yield using regression or classification

are limited [201]. Processed-based approach, depending on deterministic models, produce

more accurate models. However, the calibration and measurement on plant is not only highly

expensive, it has limited meaning translated to the abundant diversity of farmer practices.

An integrated approach is necessary to understand variability, but interrelations with en-

vironment and ensuing interactions are poorly understood. It is crucial to build models cre-

ated on empirical ground, with the ability to understand underlying farmer practices and

interaction of local context. Such models should be able to adapt to multiple types of inter-

actions usually following multivariate non-parametric, non-linear patterns. Machine learning

techniques are adapted to handle the high level of interaction and abstraction in data, and

have recently shown interesting result in crop modelling using plant measurements [85], soil

characteristics [202], or remote sensing [203] or even yield from survey data [24].

Given a plot of land, microeconomics theory suggest that prices affect productivity and

land characteristics (separation hypothesis). However, existing literature indicates that this

hypothesis does not hold true for many farming contexts, and the inclusion of household

variables is crucial for a comprehensive understanding of production levels [22].

For instance, a study by Vergez et al. (2015) demonstrated interesting relationships

between isoquant curves and productivity, considering factors such as labor and land as

descriptors of rural dynamics [204]. These findings highlight the importance of incorporating

household variables in order to gain a more comprehensive understanding of agricultural

productivity.
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Figure 7.1: Isoquant map for (A) corn production (sampled on 2000-2020 data) with color in

function of log(yield per hectare), and (B) Schematical representation of a typical isoquant

map.

Using information from surveys, isoquant structure could be directly observed for Corn

crop (see panel A, figure 7.1). The term "isoquant" refers to a curve that represents a consis-

tent amount of output. In other words, it signifies equal production levels: when substituting

different combination of production factors, the yield output remains the same as shown in

panel B. The isoquant is also referred to as an equal product curve or a production indiffer-

ence curve.

With this approach, the description of an Agricultural Production System is equivalent to

solving a System of multivariable equations, and finding production optimal under constrain

equivalent to solving Lagrange multipliers optimization problems. The nature of the back

propagation algorithm as shown by Le Cun and Bengio in 1998, is equivalent to the res-

olution of Lagrange multipliers optimization problems [205], and could theoretically model

productivity in agricultural ‘complex’ systems.

I propose to model a large set of crop sequences using this four modelling apporaches,

describing management features over time, along with climate and market data, to evaluate

the capacity of predictive modelling for crops in complex landscapes.

Four distinct modeling approaches were selected for this study. The first approach in-
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volves using simple linear regression as a baseline model, following the methodology pro-

posed by [193]. In addition, a generalized additive model was implemented as the second

approach, despite the need for careful parameterization of nonlinear terms. This model type

allows for easy visualization of variable contributions and accommodates nonlinear effects.

Furthermore, considering the successful application of XGBoost models with sequence data

in previous studies (Zerveas 2020), this machine learning technique, along with transformer

neural networks, was employed as the final modeling approach.

7.3.1. Yield prediction

Yield prediction involves creating a model build around production factors and other en-

dogenous factors and potential interaction from the local environment around a particular

area. This can be done using physical measurements or computational models to estimate

yield values. Yield estimates are typically classified into three types of models : inferential,

predictive, interpolative. Inference models produce yield estimates with existing values, in

a supervised manner. Prediction fill in yield component values where they are predicted

rather than measured. Interpolation maps are created by taking yield measurements at

specific locations within a defined area and estimating yield values between data points.

Aggregation maps render aggregated statistics from the original data, either through mea-

surement or prediction. Among these, aggregation and prediction are the most commonly

used in Precision Agriculture (PA). Yield mapping requires three measurements: the yield

measurement itself, the area over which the measurement was taken, and the location of

the measurement within a field in that area. Yield mapping is closely related to the objective

of fertilization optimization, as it is often used as a basis to determine the optimal fertilization

rate for fields.

7.3.2. Multiple linear regression

A Linear regression is a mathematical model producing metrics of relationship between a

dependent variable and one or more independent variables from a given dataset. Under

the assumption of linear relationship between the variables, using an objective function that

finds a hyperplane that best represents the relationship between the variables. Formally

the model finds the best-fit line minimizing the differences between the observed values of

the dependent variable and the predicted values given by the regression line and can be
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expressed mathematically as:

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ϵ (7.1)

Where: Y represents the dependent variable , X1, X2, ..., Xp are the independent predic-

tors, β0, β1, β2, ..., βp are the regression coefficients and ϵ the error term accounting for the

variability in the dependent variable that is not explained by the independent variables. The

coefficients (β0, β1, β2, ..., βp) are estimated using a method called ordinary least squares

(OLS), which minimizes the sum of squared differences between the observed and pre-

dicted values. Linear regression can also be extended to handle nonlinear relationships by

using techniques such as polynomial regression, where higher-order terms of the indepen-

dent variables are included in the model, or by applying transformations to the variables.

Generalized Additive Model

Nonlinear regression, on the other hand, functions similarly to linear regression, but different

surface shapes are used instead of a linear surface. For the purpose of this model I em-

ployed linear regression, generalized additive model or GAM [206]. The chosen surface is

determined by the overall spread of the data and can vary greatly.

A generalized additive model (GAM) is a statistical model that extends the generalized

linear model (GLM) framework by allowing for non-linear relationships between the response

variable and the predictor variables. It is an interpretable modeling approach commonly used

for regression analysis.

Formally, let’s consider a dataset with n observations. The response variable, denoted

as Y , is assumed to follow a distribution from the exponential family, such as the normal,

binomial, or Poisson distribution. The predictors or independent variables are denoted as

X1, X2, ..., Xp, where p represents the number of predictors.

In a GAM, the relationship between the response variable and each predictor variable

is modeled using smooth functions. These smooth functions capture the non-linear rela-

tionships and allow for complex patterns in the data. The smooth functions are typically

represented using spline functions, such as cubic splines or thin-plate splines.

The GAM can be expressed as:

g(E(Y )) = β0 + f1(X1) + f2(X2) + . . .+ fp(Xp) (7.2)

where g(·) is a known link function that relates the expected value of the response vari-

able to the linear predictor. The term E(Y ) represents the expected value of the response
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variable. The β0 term is the intercept, and f1(X1), f2(X2), . . . , fp(Xp) are the smooth func-

tions representing the non-linear relationships between the predictors and the response

variable.

Each smooth function fj(Xj) is estimated by minimizing a penalized regression criterion

that balances the fit to the data and the smoothness of the function. The penalty term

helps to avoid overfitting and control the complexity of the estimated smooth functions. The

estimation of the smooth functions can be done using various techniques, here cuadratic

penalized regression splines were employed. Once the smooth functions are estimated,

inference and prediction can be carried out using standard statistical techniques, such as

hypothesis testing, confidence intervals, and prediction intervals.

In summary, a generalized additive model is a statistical model that allows for non-linear

relationships between the response variable and the predictors by representing these rela-

tionships using smooth functions. It provides a flexible and interpretable approach to regres-

sion analysis.

XGBoost Decision tree

Decision trees are supervised classification methods. XGBoost is a machine learning algo-

rithm that provides a gradient boosting framework [186] and allows to perform supervised

learning tasks. This algorithm uses a Newton-Raphson optimization method, with a second

order Taylor approximation in the loss function.

XGBoost, short for Extreme Gradient Boosting, is a machine learning algorithm that

belongs to the family of gradient boosting methods. It is designed to optimize and improve

the performance of gradient boosting algorithms by incorporating several enhancements.

Formally, let’s consider a supervised learning problem with a training dataset consist-

ing of n observations. Each observation is represented by a set of p features or predictors

denoted as xij , where i = 1, 2, . . . , n represents the observation index and j = 1, 2, . . . , p

represents the feature index. The corresponding target or response variable for each obser-

vation is denoted as yi.

A generic XGBoost algorithm, without regulation, can be defined in three main stages:

instanciation of the input model, sequentially add weak models to an ensemble model, cal-

culate mean output from the obtained ensemble.

The model input is defined with a training set: {(xi, yi)}Ni=1 , and a loss function differen-

tiable L(y, F (x)), and M and α learning rate.
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XGBoost builds an ensemble of weak prediction models, typically decision trees, to make

accurate predictions. The goal is to learn a strong predictive model by iteratively adding

weak models to the ensemble.

The final prediction model in XGBoost is represented as:

F (x) =

M∑
m=1

fm(x) (7.3)

where F (x) is the final prediction for a given input x, M is the number of weak models, and

fm(x) is the prediction of the m-th weak model.

The key idea behind XGBoost is to iteratively minimize a regularized objective function

that captures the discrepancy between the predicted values and the true values. This objec-

tive function consists of two main components: a loss function that quantifies the prediction

error and a regularization term that penalizes the complexity of the model.

The objective function for XGBoost can be written as:

Obj(θ) =

n∑
i=1

ℓ(yi, F (xi)) +

M∑
m=1

Ω(fm) (7.4)

where ℓ(yi, F (xi)) is the loss function that measures the prediction error for the i-th obser-

vation, F (xi) is the predicted value by the current ensemble model, θ represents the model

parameters, and Ω(fm) is the regularization term that controls the complexity of the m-th

weak model.

To minimize the objective function, XGBoost uses a greedy algorithm that sequentially

adds weak models to the ensemble. At each iteration, it computes the gradient and the

second-order derivative of the loss function with respect to the predicted values. These

derivatives guide the construction of the weak model by fitting the residuals of the current

ensemble.

Additionally, XGBoost incorporates regularization techniques, such as L1 and L2 regular-

ization, to prevent overfitting and improve the generalization of the model. The regularization

terms Ω(fm) penalize the complexity of the weak models by adding regularization penalties

to their structures or weights.

Overall, XGBoost is a powerful algorithm that effectively combines the strengths of gra-

dient boosting and regularization techniques to build accurate predictive models. It is widely

used in various machine learning applications and has achieved state-of-the-art perfor-

mance in many competitions and real-world scenarios.

This algorithm has several advantages: it handles missing values in the model instead

of using imputation techniques, and it saves a lot of time in data pre-processing, model
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specification and prediction compared to other techniques [187].

7.3.3. Neural networks

An artificial neural network is a computing structure designed to process information, loosely

modeled on the structure of the human brain. This structure is composed of processing ele-

ments that are interconnected through unidirectional or bidirectional signal channels. Each

processing element has a local memory and can process local information. The output of

each element depends solely on the current input signals and the values stored in its local

memory (see 6.5.2. Models for more detail). The output of each element branches into as

many collateral connections as necessary . This section provides more details on the trans-

former model here based on a framework for regression [207] as a deep learning method

that, to the best of my knowledge, has not been previously applied in the context of crop

yield modelling.

Transformer

Transformers, introduced in 2017 by a team at Google Brain, are a type of neural network

architecture designed for processing sequential input data, such as natural language. Un-

like recurrent neural networks (RNNs), transformers process the entire input simultaneously

rather than one element at a time. This is made possible by the attention mechanism, which

provides contextual information for any position in the input sequence. The initial concept

of the attention mechanism was introduced by Schmidhuber in 1992 to address the van-

ishing gradient problem [208]. When dealing with time series data, traditional models like

deep multilayer feed-forward networks or recurrent neural networks (RNNs) lack the capa-

bility to effectively propagate gradient information from the output layers back to the input

layers. This limitation hampers their ability to capture long-range dependencies and context

in sequential data.

When processing a natural language sentence, for instance, transformers can analyze

the sentence as a whole instead of individual words, allowing for greater parallelization and

faster training times compared to RNNs.

The architecture of transformers involves two main components: the encoder and the

decoder. The encoder consists of multiple encoding layers that process the input data itera-

tively, one layer after another. Each encoder layer generates encodings that capture relevant

information about the relationships between different parts of the input. These encodings are
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then passed to the next encoder layer as inputs (see figure 7.2).

On the other hand, the decoder also comprises several decoding layers that perform

a similar iterative process using the encoder’s output. However, the decoder layers utilize

the contextual information incorporated in the encoder’s encodings to generate an output

sequence. Both the encoder and decoder layers employ an attention mechanism to achieve

this task effectively. At the parcel scale, the crop model I have developed holds significant

relevance. It enables the computation of multiple length sequences, considering factors

such as the productive capacity of multiple crop varieties, unexpected climatic events, and

adjustments in harvest timing due to decisions made by farmers.

These mathematical formulas and operations define the core computations in the compo-

nents of the Transformer model. By leveraging self-attention, multi-head attention, positional

encodings, and feed-forward networks, the Transformer model achieves state-of-the-art per-

formance in various natural language processing tasks. The encoder transforms an input

sequence and a representation vector. The components of the encoder divide in tow lay-

ers: a multi-head self-attention mechanism and a position feed-forward network. As stated

in [209], self-attention is a mechanism that weigh the importance of elements in an input

sequence in relation to each other combined with a feed-forward network nonlinear relation-

ships. This algorithm computes a representation of the sequence. In detail, the encoding

mechanism employ the following calculations: 1. Self-Attention: Given an input sequence

X of length N, the self-attention mechanism computes the attention weights and outputs the

attended representation. The attention scores (A) are calculated by taking the dot product

of Q and K, scaled by the square root of the dimension of Q and then by multiplying the

attention scores (A) with the Value (V) matrix to obtain the attended representation:

Attention(Q,K, V ) = A ∗ V = softmax(
QKT

√
dk

) ∗ V (7.5)

where WQ,WK ,WV are learnable weight matrices.

2. Multi-Head Attention: The multi-head attention mechanism in the Transformer incor-

porates multiple parallel self-attention heads to capture different dependencies. It involves

concatenating and linearly transforming the outputs from different attention heads. For each

head i :

MultiheadedAttention(Q,K, V ) = concat(A1V1, A2V2, ..., AHVH)WO (7.6)

where WO is a learnable weight matrix. 3. Positional Encoding: Positional encodings are

added to the input embeddings to incorporate positional information. One popular choice is
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the sinusoidal positional encoding, given by the formulas:

PE(pos, 2i) = sin(pos/100002i/dmodel) (7.7)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel) (7.8)

where pos is the position and i is the dimension index. By using sinusoidal encoding, it

allows the model to extrapolate to sequences longer than sequences in the training set.

4. Feed-Forward Networks: The feed-forward networks in the Transformer consist of

two linear transformations separated by a non-linear activation function, typically a GELU

(Gaussian Error Linear Unit) or ReLU. Mathematically, the feed-forward networks can be

represented as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (7.9)

where W1,W2 are learnable weight matrices, and b1, b2 are learnable bias vectors.

7.4. Experiments

My evaluation approach encompasses various modeling and machine learning methods. I

have selected three subsets of features to consider.

The first subset focuses on environmental variables, including climate factors such as

precipitation and temperature (average, minimum, and maximum).

Additionally, I include variables such as elevation and general regions (coast, highland,

rain forest), as well as the month of seeding.The second subset complements the first by

incorporating other exogenous variables. These variables are understood as factors that

are beyond the farmer’s control. They include soil composition, specifically organic matter

content, and market variables.

Finally, the third subset comprises endogenous variables, which are factors influenced

by farm management. These variables encompass components such as fertilizer usage,

phytochemicals, and other costs related to labor and material expenses. Additionally, I have

incorporated components such as the availability of family labor on the farm, greenhouse

gas emissions from enteric fermentation, and farm accessibility.

By considering these three subsets of features, I aim to comprehensively evaluate the

various modeling and machine learning methods in my approach. Results are presented

and compared for the four implemented methods. Subsequently, a discussion is engaged

regarding these results.
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Figure 7.2: General model architecture for transformer in the case of multivariable time

series with one output.
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The computational time for the most resource-intensive model (transformer) did not ex-

ceed 4 hours, while the parallelized computation version of the transformer took less than 1

hour. As a result, this study does not provide a comparison of the computation times.

In order to detect and prevent overfitting, various learning rates were experimented with,

but ultimately the recommended hyperparameters proved to be the most effective. Addi-

tionally, the inclusion of encoding or decoding blocks did not yield any improvements to

the model. To further address overfitting, the model’s architecture incorporates dropout and

normalization after attention layers and transition function. Dropout randomly eliminates cer-

tain features by setting them to zero, while a penalty is added to the loss function for large

weights. It is worth noting that fine-tuning, the practice of utilizing a pretrained model and

retraining it for a specific task, has the potential to enhance the model’s performance, but it

was not employed in this study.

In the case of random forests, the regularization term omega prevents the phenomenon of

overfitting by penalizing its ability to fit too precisely, thus preventing the model from gener-

alizing to new data.

7.4.1. Approach

I implemented a simple linear regression through yield points. A second model employ

quadratic spline as regressor to account for non linearity. Using spline of fertilizer rate may

be justified as hits a saturation point after which yield values no longer rise. During the

experimentation process, different parameters were tested to discover which architecture

produced the best results.

For GAM, these parameters included various test of non paprametric effects, and in

regression tree the optimal number of iteration was set for each subset and crop. The trans-

former model was the most computationally expensive, and only leanring rate and batchsize

was adatpted, no fine tunning of the model was performed on the number of hidden layers,

and the number of epochs for the SAE.

These parameters were adjusted for each dataset; however, the transformer achieved

optimal performance using a batchsize of 128 and 0.001 in learning rate.

In this study, both linear and non-linear regressions were performed, focusing only on

the first four months of information in the sequence variables. This approach was adopted

to prevent any missing values that could arise from early harvest.

The evaluation process utilized four metrics: Mean Absolute Error, R-squared value
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(R2) as proportion of variance of yield that can be explained by covariable, and Root Mean

Squared Error (RMSE). As for the fourth metric, the yield values were classified into quan-

tiles, and the accuracy of the resulting classification was reported. This classification ap-

proach was employed to consider the sensitivity towards low yields and evaluate the per-

formance of the models in predicting yield categories. These metrics were computed using

10-fold cross-validation, and the average of the results for each fold was subsequently cal-

culated.

The data I analyzed were taken from four different crops: Broad Beans, Potato, "Dry"

Corn (a variety generally cultivated for dry grain harvest ). The data consist of yield values

for a these crops over 13 years using 9 years from 2000 to 2009 for model train data sets, and

four years for the testing dataset. A ratio of 25% was employed for the validation dataset.

The implemented models aim to predict the yield values based on the other information

provided. The primary objective is to accurately estimate and forecast the crop yield using

the available data and the developed models.

In this modelling exercise I included groups of crops according to the availability of infor-

mation.

• Crop with less information, with Broad Beans model with 2409 samples for training,

803 for validation and 2097 samples for testing,

• models with a medium quantity of available data : potato model 10695, 3565, and

6248 samples for training,

• crop with most information : corn with 27577, 9193 and 20834 samples and rice with

64488, 21497 and 28417 samples for training, validation and testing respectively.

In this modeling exercise, I categorized crops based on the amount of available informa-

tion. Crops with limited information, such as the Brad beans model, had 2409 samples for

training, 803 for validation, and 2097 samples for testing. Models with a moderate amount of

available data, such as the potato model, had 10695, 3565, and 6248 samples for training,

validation, and testing, respectively. Finally, crops with the most information, such as corn

with 27577, 9193, and 20834 samples, and rice with 64488, 21497, and 28417 samples for

training, validation, and testing, respectively, were included.
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7.5. Results

I found significant differences between models, globally less accurate when including only

climate variables. The best model in terms of yield quintiles and R2 was transformers for all

crops.

With a limited amount of information available, characterized by thousands of samples for

the broad bean model, the differences between the models are not particularly pronounced

ranging between .

For baseline linear and non parametric regression, in terms of correlation, the results

even decrease was adding exogenous variables starting with 11.3% and 11.1% and reach-

ing 5.2% and 3% for the complete model, for Linear model and GLM respectively.

The transformer model exhibited a remarkable accuracy in predicting yield quantiles with

30.3% (see table 7.1, best results in bold). When incorporating the complete set of exoge-

nous variables, this model achieves the best results in terms of R-squared and accuracy. In

this case, the model fails to generate accurate results due to the limited extent of the train-

ing data. As a result, the predicted values are highly dispersed and do not align well with

the actual data (see figure 7.3). Surprisingly, the regression tree model XGboost performed

almost equally well across when compared with transformer, using the complete set of input

features.

The potato model exhibited better results, achieving a goodness of fit of 36.7% when

predicting yield quantiles (see Table 7.1). Similar to the previous model, the regression

tree model XGBoost consistently performed well, producing comparable results across the

entire dataset. However, the inclusion of additional features had minimal impact on the

performance of linear regression and GAM models, with goodness to fit remaining under

6.5%.

It is worth noting that the addition of management variables, which were constructed

based on standardized management models, mainly benefited models that are typically

more adapted at capturing nonlinear effects.

As the amount of available information increased, only the accuracy transformer models

also showed a significant improvement. For the Corn and Rice models, it is observed that

despite the substantial amount of data, only the transformer model achieved a goodness

of fit above 40%. The second-best model, XGBoost, performed significantly lower with a

goodness of fit of 16% for Corn and 19.1% for Rice.
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Table 7.1: Crop Model results for Broad Beans and Potato, bold indicates best results and

underlining second best.

BROAD BEAN MODEL

Data set Model RMSE R squared MAE Q5Accuracy

Climate Lin.model 1.048 0.113 0.84 0.204

GAM 1.437 0.111 1.031 0.297

Xgboost 1.059 0.112 0.804 0.235

Transformer 1.129 0.131 0.833 0.284

Cli. + Exogenous Lin.model 1.049 0.108 0.835 0.209

GAM 1.458 0.11 1.058 0.295

Xgboost 1.043 0.148 0.777 0.254

Transformer 1.122 0.154 0.793 0.308

Cli. + Exog + Endogenous Lin.model 1.313 0.052 0.836 0.238

GAM 1.889 0.03 1.177 0.294

Xgboost 1.008 0.197 0.736 0.298

Transformer 1.071 0.21 0.793 0.303

POTATO MODEL

Data set Model RMSE R squared MAE Q5Accuracy

Climate Lin.model 6.448 0.032 4.86 0.203

GAM 7.931 0.056 4.983 0.201

Xgboost 6.196 0.131 4.436 0.279

Transformer 4.801 0.256 3.388 0.294

Cli. + Exogenous Lin.model 6.42 0.044 4.774 0.211

GAM 7.941 0.065 4.997 0.204

Xgboost 6.014 0.181 4.24 0.306

Transformer 4.707 0.302 3.212 0.318

Cli. + Exog + Endogenous Lin.model 9.836 0.02 4.572 0.21

GAM 8.066 0.017 5.021 0.216

Xgboost 5.557 0.304 3.842 0.356

Transformer 4.406 0.367 2.981 0.334
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Table 7.2: Crop Model results for Corn and Rice, bold indicates best results and underlining

second best.
CORN MODEL

Dataset Model RMSE R squared MAE Q5Accuracy

Climate Lin.model 1.478 0.086 1.165 0.245

GAM 2.025 0.11 1.592 0.199

Xgboost 1.429 0.15 1.105 0.271

Transformer 1.085 0.382 0.828 0.362

Cli. + Exogenous Lin.model 1.455 0.109 1.165 0.268

GAM 1.902 0.136 1.474 0.207

Xgboost 1.474 0.127 1.124 0.291

Transformer 1.073 0.398 0.818 0.361

Cli. + Exog + Endogenous Lin.model 1.453 0.127 1.121 0.276

GAM 1.937 0.146 1.497 0.216

Xgboost 1.424 0.16 1.074 0.319

Transformer 1.069 0.407 0.818 0.375

RICE MODEL

Dataset Model RMSE R squared MAE Q5Accuracy

Climate Lin.model 1.698 0.131 1.346 0.262

GAM 2.546 0.137 2.128 0.258

Xgboost 1.693 0.143 1.321 0.291

Transformer 1.26 0.441 0.984 0.381

Cli. + Exogenous Lin.model 1.709 0.139 1.349 0.264

GAM 2.528 0.144 2.113 0.258

Xgboost 1.705 0.148 1.325 0.289

Transformer 1.219 0.476 0.944 0.405

Cli. + Exog + Endogenous Lin.model 1.64 0.19 1.296 0.282

GAM 2.543 0.195 2.119 0.258

Xgboost 1.643 0.191 1.264 0.315

Transformer 1.219 0.489 0.937 0.423
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Specifically, the transformer model demonstrated a goodness of fit of 40.7% for Corn

crops and an even higher value of 48.9% for Rice crops. These results indicate the superior

performance of the transformer model compared to other models in accurately predicting

yields for these crop types (see table 7.2).

The substantial increase in accuracy was particularly evident in the Rice crop (see figure

7.3), where the availability of over 25,000 training samples allowed the attention model, such

as transformers, to outperform the other approaches. The transformer models demonstrated

a substantial improvement of over 10 percentage points compared to the other models. The

superior performance of the transformers can be observed in Figure 7.3, which depicts the

predicted yields for broad beans and rice crops.
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Figure 7.3: Predicted and Observed values of Yield for Broad Bean and Rice using complete

set model (Climate, exogenous and endogenous variables).

7.6. Discussion

These results suggest that as the amount of available information increases, the perfor-

mance of the models also improves. Notably, this improvement was observed in the case of

transformers without the need for parameter adjustments, while other modeling approaches

exhibited lower accuracy rates.

With further refinement through techniques like fine-tuning and masking, the perfor-
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mance of the attention models could be enhanced even further. Additionally, transfer learn-

ing could be explored to leverage the trained models and apply them to other crops, poten-

tially improving the predictive capabilities across different agricultural contexts.

Furthermore, the results presented in Table 7.2 reveal that increasing the number of fea-

tures consistently leads to improved results. However, the inclusion of management costs,

based on standardized management models, could introduce additional noise into the yield

modeling process, resulting in significant differences in the outcomes.

Interestingly, the transformer models consistently outperformed the other models across

all crops, increasingly as samples available increase. This pattern was observed for crops

with both high and low sample numbers. Further investigation into the data may shed light

on the underlying factors contributing to this phenomenon. Additionally, it is worth noting that

the XGboost model performed relatively well compared to its performance in yield prediction.

Observing figure 7.3, in the case of broad beans, the predicted yield values exhibit high

dispersion, indicating less accuracy in the predictions. However, for rice crops, the disper-

sion of predicted yield values is significantly reduced, and there is a more structured pattern

in the predictions. This suggests that the transformer models are able to capture the un-

derlying patterns and dependencies in the data, leading to more accurate and consistent

predictions for rice yields.

Through my study, I have successfully showcased the feasibility of yield prediction for

multiple crops by selecting four specific crops based on the available information. Impor-

tantly, this achievement was accomplished without making significant changes to the model

architecture or parameters. Future research endeavors could explore the potential of transfer

learning by fine-tuning and retraining models across different crops. Additionally, extracting

embeddings could offer valuable insights into the relationships between variables, providing

further avenues for investigation and analysis.

With fine tuning I expect to obtain more accurate yield predictions, and provide infor-

mation so that decision-makers can optimize their crop management practices to ensure

yield at early crop developmental stage. These elements are further developed in the next

chapter, which synthesizes the results and outlines the implications for stakeholders.
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Chapter 8

Concluding remarks and

recomendations

Contents

8.1 Synthesis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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8.3 Recommendation for policy makers . . . . . . . . . . . . . . . . . . . . . . . 127

In this section, I provide a comprehensive overview of the different phases of the frame-

work, presenting intermediate results and highlighting the methodological limitations that

accompany them. Furthermore, I discuss the implications of the framework for stakeholders

and potential users, emphasizing the potential benefits and practical applications it offers.

Finally, I delve into the results of yield prediction, showcasing the significance and relevance

of the model’s predictions in Ecuador agricultural context.

8.1. Synthesis of results

In chapter 2, a detailed review of selected literature exposes the limitations of statistical

information for agriculture, and propose a data-mining framework to build a crop yield model.

In chapter 3 the I define general component of such a framework, I based my work on

NUANCES-FARMSIM approach [210], and defined the required characteristics to complete

the objective. The development of the framework is then carried out adapting activities

from the CRISP-DM standarized process, with a detailed explanation of the development

corresponding to each chapter.

In the fourth chapter, during the initial phase of the process, I proceed to establish the

124



objectives and goals. I evaluate the necessary requirements and operations while also

pinpointing the potential risks associated with the construction project.

In chapter 5, I describe a detailed review of available data sources, for each component.

Resources from statistic agriculture systems were identified. Each database was extensively

described, and quality assessed. I have chosen methodologies to ensure the integrity of the

data.

In chapter 6, I report several integration tasks performed to unify selected sources of in-

formation, I performed the definition of common identifiers, levels of aggregation and trans-

formation of geographic data. A specific application of integration using record linkage meth-

ods helped evaluate the potential of producing longitudinal data, with limitations.

Furthermore, I report the successful implementation of the proposed framework in this

thesis, which encompasses a different modeling approach for cattle and labor variables. I

developed two models to generate variables: a Cattle Demographic Model with GHG emis-

sion estimations and a model to predict off-farm activity. In order to implement these models,

I carried out several steps including variable reformatting, aggregation of geographic data,

and modifying crop surveys to a sequence format.

In the final chapter, a time series model was developed to forecast crop yield. I imple-

mented multiple crop models utilizing sequential data to predict yields and examined the

model’s behavior with respect to factors such as price, livestock, and market components.

The performance of the model was thoroughly evaluated using different training sequences

and major crops. Interestingly, my observations indicate that socio-environmental variables

play a significant role in the yield models, beyond the influence of production factors and

climate alone.

The implemented framework demonstrates the feasibility of building an enriched database

by integrating diverse sources of information without aggregating the data. This approach

enables the study of farmer behavior at the individual farm level through record linkage and

provides insights into the changes in off-farm activities and the environmental impact of

farms, such as greenhouse gas emissions from enteric fermentation. Moreover, it show-

cases the ability to model the complex relationship between yield and the diverse socioeco-

nomic and agroecological conditions of Ecuadorian agriculture.

By considering farm-level information and incorporating various factors, such as socioe-

conomic characteristics and agroecological conditions, I gain a deeper understanding of the

dynamics and complexities of agricultural systems. This comprehensive approach allows for

more accurate and nuanced analyses, enabling informed decision-making and the develop-
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ment of targeted interventions to improve agricultural productivity and sustainability.

The methodology described in this thesis presents relevant possibilities, particularly in

the context of national statistical agendas that commonly include standard surveys of agri-

cultural production. To the best of my knowledge, this study represents the first attempt to

leverage the vast amount of information available on crops and farms, including individual

parcels, and analyze this data beyond simple production aggregation.

By delving into the details of each crop and farm, I gain valuable insights that go beyond

traditional approaches. This approach allows us to uncover patterns, trends, and relation-

ships that would otherwise remain hidden. The potential applications of this methodology

are vast, as it opens up new avenues for understanding and optimizing agricultural systems

at a more granular level.

While the complexity of the methodology should not be underestimated, the benefits of

this approach are significant. It provides a framework for extracting valuable information

from existing data sources and utilizing it to inform policy-making, resource allocation, and

decision-making processes in the agricultural sector.

8.2. Methodological issues: data collection and modelling ap-

proaches

The use of survey data in modeling approaches presents significant challenges, particularly

when considering weighted or non-weighted data. By employing expansion factors, it be-

comes possible to generate nationally representative estimates. In the study, I selected the

survey data as a representative sample of rural areas, as the sampling design remained con-

sistent. Over the period from 2000 to 2002, the same areas were surveyed, and the chosen

geographical units were representative of rural landscapes within the provinces of Ecuador.

The practices described in the surveys encompass the necessary variability to model crop

yields, although national production yield estimates may not be achievable. However, by

categorizing farms, the results can serve as a reference to evaluate livestock practices (as

discussed in Chapter 6) or yield levels.

Modelling applications for yield prediction exist, primarily utilizing verified and precise

information from intensive and professional farmers. This type of information enables the

development of accurate prediction models, particularly for regions with intensive agricul-

ture, such as the corn belt in the USA. However, when considering small-scale farming, the
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NUANCES-FARMSIM model allows for the integration of multiple dimensions within a pro-

duction unit, taking into account the agricultural biodiversity of products and livestock found

on a family farm. Nevertheless, these models often rely on abstract representations that sim-

ulate the effects of farmers’ choices. In this endeavor, the formalization of decision-making

is based on local studies and does not heavily rely on probabilistic models on a large scale.

In my case, the applied model demands a significant amount of carefully curated data

to generate accurate estimates. However, in this situation, identifying outliers and potential

bias in the response variable can be challenging. Nonetheless, as demonstrated in Chapter

7, the inclusion of a substantial amount of information enables us to achieve reasonable

precision in yield prediction.

Another limitation of utilizing survey data is the lack of detailed information regarding

monthly labor distribution and resource allocation throughout a crop campaign. Due to the

absence of such data, standardized management models were employed, yielding limited

improvement in terms of accuracy.

8.3. Recommendation for policy makers

As discussed in Chapter 2, production surveys often lack socioeconomic information about

family farms, and the same information gap is present in the survey.

Although considerable effort was made in this study, there remained a lack of suffi-

cient information to fully capture the social dynamics within households, families, and the

socio-economic interactions of farmers in the surrounding area. To address this issue, it is

crucial for the statistical institute, in collaboration with the Ministry of Agriculture, to coordi-

nate efforts aimed at generating detailed information about farms. This may involve cross-

referencing data from land production surveys, remote sensing data analysis, and economic

surveys. By integrating these different sources of information, a more comprehensive and

accurate understanding of farms can be obtained.

However, it is important to further investigate the effect of available socio-economic vari-

ables already part of the sequence data modeling process. This exploration is crucial for en-

hancing the accuracy of the model and validating the observed relationships. The utilization

of ablation, imputation, and masks presents a novel approach for unraveling the intricate re-

lationships between crop management practices, market dynamics, and the socio-economic

context within farms. This methodology offers a novel perspective on combining the interplay

of these factors over time.
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Another approach, could employ the transformer model to impute missing information.

This involves using masks to cover the incomplete information during the training phase and

generating a completed sequence as the output.

The integration of environmental factors was limited in my study. Soil information and

greenhouse gas emissions from enteric fermentation marginally improved the accuracy of

yield estimations. The inclusion of information about pests and their distribution could po-

tentially enhance the modeling of yield loss.

To complement this type of data, it is advisable to compare it with independent sources

of data, as they can provide contrasting information that helps evaluate the accuracy of the

model. For example, using rural diagnostics, an extensive, detailed qualitative and quanti-

tative evaluation of rural dynamics on small territories [211] as a comparison for household

economic livelihoods can assist in confirming economic models and further validating crop

models. Considering that market fluctuations, extreme weather events, and increased avail-

ability of inputs are likely to occur more frequently in the future, traditional modeling efforts

may appear uncertain. However, the abundance of data available and the nature of posi-

tional encoding enables transformers to effectively model complex autoregressive phenom-

ena. Recent publications, such as Chen (2022) on spatiotemporal prediction for pedestrian

trajectories [212] and Song (2023) on spatially accurate El Niño Southern Oscillation predic-

tion, have achieved state-of-the-art performance using single models instead of ensembles

to model complex spatio-temporal dependencies [213].For crops, neural networks applica-

tions seem particularly adapted to complete this task [43].

Furthermore, conducting ablation studies, as demonstrated by Meyer (2019), can pro-

vide valuable insights into the contribution of different features [214]. By removing the fea-

tures module from the final network model and maintaining the same experimental hyper-

parameters and settings, the effectiveness of using monthly index periods can be demon-

strated.

In this study, the emphasis is placed on analyzing farms rather than individual farmers.

The framework utilized involves the utilization of public datasets, and the dataset built in this

work will be made accessible publicly. The conclusive outcomes derived from this research

and the final model serve as evidence of the concept that organizing data adequately offers

valuable insights for modeling intricate systems, thereby enhancing the quality of predictions

through the inclusion of additional model components.

Consequently, it is recommended that further endeavors be undertaken to expand upon

these results. Additionally, alternative modeling outputs using transformer approach could
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be explored to investigate various aspects of very different the farming systems.

Transformer models operate in two phases: the positional encoding phase, where the

model formalizes the positional relationships between variables over time, and the decod-

ing phase, which generates predictions. It is worth considering a broader scope, such as

focusing on the entire farm instead of a single parcel, to simulate farming income or assess

the environmental impact under climate change scenarios, for example. Climate prediction

are already available at high resolution and simulation of change in climate conditions would

enable the evaluation of potential risks to crop production at a local scale.

The deep learning framework, equipped with a versatile and adaptable integration model,

exhibits scalability and is primed for extensive growth with the integration of more data,

diverse crop types, and varying geographical regions. The results of my study underscore

the potential of deep learning techniques in yield prediction, making a significant impact

within agricultural communities. By modeling the complex interactions within small-scale

farming, the model can provide essential information on various agronomic aspects and

pave the way for innovative advancements in crop yield forecasting.

Farmers and herders make up a significant portion of the global population living in

poverty, and ironically, those suffering from hunger are often dependent on agriculture for

their livelihoods. By increasing agricultural productivity, improving incomes, food availability

can be enhanced assets diversified. This, in turn, enables individuals to escape the vicious

cycle of poverty, hunger, and malnutrition. Approximately 70 percent of the target group for

the Millennium Development Goals (MDGs) resides in rural areas, particularly in Asia and

Africa. For many of the rural poor, agriculture plays a crucial role in achieving these goals

successfully. While long-term structural transformations are important, agriculture can de-

liver immediate welfare improvements for impoverished households, helping them overcome

the pressing constraints they face in meeting their basic needs. Therefore, in many parts of

the world, a more productive and profitable agricultural sector is a necessary component in

achieving the MDGs by 2015. Models alerting on crop production could be used between

the government and local communities, influence local agricultural development policies,

and assist in developing more effective strategies for crop management capacity.

Future data mining applications should prioritize the integration of remote sensing data

and accurate farm localization by capitalizing on the updated sampling design of ESPAC,

which includes a geographic information system for each surveyed parcel. Additionally,

there should be a specific emphasis on incorporating remote sensing climate data at the

parcel level to enhance the precision of the models developed. It is worth noting that the

129



current work is was expanded to include data from 2014 to 2023 (chapter 6 GGE modelling),

and potentially completed with the expectation that geographical data will become publicly

accessible in the future.
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