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VIII 

RESUMEN 

 

El reconocimiento de gestos de la mano (HGR) es una aplicación importante de la 

interacción humano-computadora (HCI) que utiliza señales electromiográficas (EMG) y 

técnicas de aprendizaje profundo. En el presente trabajo se desarrollan dos modelos de 

HGR para usuarios generales usando el algoritmo de aprendizaje por refuerzo Deep Q-

Network (DQN) y el algoritmo Double Deep Q-Network (DDQN), ambos en base al conjunto 

de datos EMG-EPN-612. Los modelos desarrollados son un ajuste fino de un modelo pre-

entrenado con aprendizaje supervisado y basado en una red convolucional (CNN). Para 

dicho refinamiento, se diseñó una función de recompensa capaz de premiar la constancia 

en las predicciones del modelo mediante recompensas graduales. También se realizó un 

post-procesamiento del modelo en base a la medida de tendencia de moda para lidiar con 

etiquetas intermedias erróneas. Para las pruebas se realizaron experimentos en un 

conjunto de datos con acceso público el cual contiene 612 usuarios. Posteriormente se 

realizó una medición y comparación de la precisión de reconocimiento y clasificación entre 

6 gestos, incluyendo el “no gesto”. Los resultados demostraron que los modelos ajustados 

de manera fina con DQN y DDQN presentan valores similares en cuanto a las métricas 

planteadas. El modelo DQN presenta una mejora del 3.61% y el DDQN una mejora del 

3.45% en precisión de reconocimiento con respecto al modelo base. Por otro lado, la 

precisión de clasificación no ilustra alguna mejora significativa. Finalmente, concluimos que 

DQN presenta un desempeño en general mayor que DDQN en tareas de clasificación y 

reconocimiento de gestos de la mano. 

 

PALABRAS CLAVE: DQN, DDQN, ajuste fino, EMG, Reinforcement Learning, función de 

recompensa, Reconocimiento de Gestos de la Mano. 

  



IX 

ABSTRACT 

 

Hand gesture recognition (HGR) is an important application of human-computer interaction 

(HCI) using electromyographic (EMG) signals and deep learning techniques. In the present 

work, two HGR models for general users are developed using the Deep Q-Network (DQN) 

reinforcement learning algorithm and the Double Deep Q-Network (DDQN) algorithm, both 

based on the EMG-EPN-612 dataset. The developed models are a fine tuning of a pre-

trained model with supervised learning and based on a convolutional network (CNN). For 

such refinement, a reward function capable of rewarding constancy in model predictions 

through gradual rewards was designed. A post-processing of the model was also performed 

based on the fashion trend measure to deal with erroneous intermediate labels. For testing, 

experiments were performed on a publicly accessible dataset containing 612 users. 

Subsequently, a measurement and comparison of the recognition and classification 

accuracy between 6 gestures, including "no gesture", was performed. The results showed 

that the fine-tuned models with DQN and DDQN present similar values in terms of the stated 

metrics. The DQN model presents a 3.61% improvement and the DDQN a 3.45% 

improvement in recognition accuracy with respect to the base model. On the other hand, 

classification accuracy does not show any significant improvement. Finally, we conclude 

that DQN presents an overall better performance than DDQN in classification and hand 

gesture recognition tasks. 

 

KEYWORDS: DQN, DDQN, fine-tuning, EMG, Reinforcement Learning, reward function, 

Hand Gesture Recognition.
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1. INTRODUCTION 

Nowadays, human beings seek to interact effectively with the computer, and this is 

becoming the top priority in people's daily life in terms of interactive and intelligent 

computing [1]. Hand Gesture Recognition (HGR) is widely used in Human-Robot Interaction 

(HRI) to create user interfaces (UI), games or easy-to-learn applications [2]. The main 

problem in this type of recognition is to determine the class from a predefined set of classes. 

In the present project we seek to identify 5-hand-gestures: left hand (wave in), right hand 

(wave out), fist, open hand (open) and double finger tap (pinch) [3]. Figure 1 shows these 

gestures, which are considered static as they do not involve forearm movement to perform 

them. 

 
     

Figure 1. Gestures to be recognized. 

The present project will design two models for the recognition of 5 static hand gestures 

which will use EMG signals and Deep Learning [4], as described in Figure 2. 

 

Figure 2. Description of the components of the proposed system. 
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The components will be organized as follows: 

▪ Component 1: implementation of stage 1 and stage 2 (1st option - DQN). 

▪ Component 2: implementation of stage 1 and stage 2 (2nd option - DDQN). 

The present work corresponds to component 1. DQN (Deep Q-Network) is a reinforcement 

learning algorithm that seeks to learn optimal policies for sequential decision-making 

problems by optimizing a cumulative future reward signal. Unlike the popular Q-learning 

algorithm, which sometimes learns unrealistically high action values due to a maximization 

step over estimated action values, DQN addresses this problem [5]. 

First, we will start from a hand gesture recognition model previously trained with supervised 

learning, using techniques such as artificial neural networks (ANN) and fully connected 

layers (FCL). The refinement of the model will aim to obtain a predictive model that works 

in real-time (with a response time of less than 300ms from the input EMG signal until the 

system returns a label) to predict compact sequences of labels, using reinforcement 

learning. To this end, a deep learning model will be combined with the Q-learning 

reinforcement learning algorithm. The benefit of Q-learning lies in the fact that, being an 

"off-policy" algorithm, it allows us to interact with the environment in one way, while learning 

a completely different strategy. The interaction of the environment with the agent through 

rewards and actions will allow predicting compact sequences of labels composed of 3 

blocks of labels: a) labels that identify the hand in the resting state, b) labels that identify 

the movement performed and finally c) labels that indicate again the hand in the resting 

state. 

Once the DQN model has been designed and evaluated, a comparison of results with the 

model fitted with DDQN will be performed. The main metrics to compare are classification 

accuracy, recognition, and response time. 

1.1 General Objective 

To develop a real-time recognition model of five hand gestures using the DQN (Deep Q-

learning) reinforcement learning technique based on the EMG-EPN-612 dataset [6]. 

1.2 Specific Objectives 
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• To review the state of the art of the DQN learning algorithm, its applications in the 

field of hand gesture recognition (HGR) and in the prediction of compact tag 

sequences. 

• Design and evaluate a 5-hand-gesture recognition model operating in real-time, 

using DQN and receiving EMG signals. 

• Evaluate and compare the proposed model with the results of component 2 model 

with DDQN (Double Deep Q-learning) in terms of percentage of classification 

accuracy, recognition, and response time. 

1.3 Scope 

This component will focus on improving and optimizing a 5-hand-gesture recognition model 

using DQN (Deep Q-learning) supervised learning.  

For this purpose, Figure 3 summarizes the components of the DQN model: 

 

Figure 3. Components of the DQN Model. 

The figure above consists of three main components: an agent, an environment, and an 

evaluator. The agent is the HGR model, which receives as input the current state of the 

window (s) of the EMG signal and returns as output (a) a label that is coupled to a sequence 

of predictions. The environment is composed of the window that runs through the EMG 

signal and an evaluator, which will have the ground truth to compare it with the sequence 

of predicted labels and return a reward (r). During the development of this component, the 

reward function has been defined. Finally, the environment returns the next portion of the 

EMG signal, and the cycle of the diagram is repeated. 
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1.4 Theoretical Framework 

This section contains the concepts and theoretical foundations on which the information of 

this project will be based. 

1.4.1 Hand Gesture Recognition 

The field of Hand Gesture Recognition (HGR) has gained significant traction, especially for 

applications in human-computer interaction (HCI) [7]. The Myo Armband is a pivotal device 

in this domain, featuring electromyography (EMG) sensors and inertial measurement units 

(IMUs) to track and interpret muscle movements and orientations in the forearm [8]. These 

sensors are key to distinguishing various hand gestures. 

Utilizing the Myo Armband's EMG sensors, researchers can capture the muscle activity 

corresponding to different hand movements. The additional data provided by IMUs, which 

include accelerometers and gyroscopes, enhances the accuracy of gesture detection [9]. 

Several research works have shown the practicality of the Myo Armband in HGR. For 

example, there were demonstrated the integration of deep learning techniques with EMG 

data from the Myo Armband for effective real-time gesture recognition. This highlights the 

synergy of machine learning and EMG data for improved gesture detection [10]. 

Furthermore, the Myo Armband can be used for recognizing brief hand gestures using 

wavelets and support vector machines. Some studies showcase the adaptability of the Myo 

Armband in various computational models [11]. 

The above underlines the effectiveness of the Myo bracelet in the development of advanced 

HGR systems, essential for a more fluid and natural HCI. 

1.4.2 Reinforcement Learning 

Reinforcement Learning (RL) is a branch of Artificial Intelligence that studies how agents 

can learn from their own experience and improve their behavior through interaction with the 

environment. Unlike other learning paradigms, such as supervised learning or unsupervised 

learning, RL does not require labeled data or a predefined objective function but relies on 

the reward or punishment that the agent receives because of its actions. The goal of RL is 

to find an optimal policy that maximizes the accumulated reward over time. RL has proven 

its effectiveness in a wide variety of complex and challenging problems, such as robotic 

control, games, optimization, planning, and decision making [12]. 
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The following Table 1 briefly summarizes the elements that make up a typical system based 

on reinforcement learning and some other that are related to this study. In addition, Figure 

4 illustrates how these elements interact with each other. 

Table 1. Elements of Reinforcement Learning. 

Element Description 

Agent and 

Environment 

The agent, as the learner and decision-maker, interacts with the 

environment, which encompasses everything outside the 

agent. The agent’s actions influence the environment, which in 

turn responds with new situations and rewards [13]. 

Reward Signal The agent receives a numerical reward signal from the 

environment at each time step. This signal serves as an 

indicator of the agent’s performance and its goal. The agent’s 

objective is to maximize the total reward it receives over time 

[13]. 

Action This refers to the limited possibilities of the agent in the 

environment, in this case, to the 5 gestures and the “non-

gesture”. 

State It denotes the immediate observation from the environment. In 

this research, the state is determined by the spectrograms of 

EMG signals. 

Interface A system that enables the interaction between two entities, 

namely the agent and the environment. 

 

 

Figure 4. Reinforcement Learning elements related to DQN algorithm. 
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1.4.3 Q-learning 

Q-learning is a reinforcement learning algorithm that aims to learn an action-value function, 

Q(s, a), which represents the expected value of taking an action a in a state s and following 

an optimal policy thereafter [14]. 

The fundamental mechanism of Q-learning is the iterative update of the Q function using 

the Bellman equation, which links the value of Q(s, a) with the value of Q(s’, a’) for the next 

state and action. The update is done using observed rewards and estimated Q values [14]. 

Q-learning is an off-policy and model-free algorithm, meaning it doesn’t require knowledge 

of the environment’s transition model and can learn from transitions generated by an 

exploration policy different from the optimal one [15]. 

Q-learning is used to make decisions in reinforcement learning by choosing the action that 

maximizes the Q value for the current state. This involves a balance between exploitation 

and exploration, which can be regulated using an action selection strategy like the ε-greedy 

rule [15]. 

1.4.4 Deep Q-Network (DQN) 

Deep Q-Network (DQN) is a reinforcement learning algorithm that merges Q-learning with 

deep neural networks. This combination allows reinforcement learning to be applied in 

complex, high-dimensional environments such as video games or robotics. Q-learning is a 

value-based reinforcement learning method that estimates a state-action value function, 

which represents the expected return when taking an action in a state and following an 

optimal policy [16]. 

DQN is a variant of Q-learning that approximates the value function with a neural network 

and uses techniques like experience replay memory and fixed targets to enhance the 

stability and performance of learning. DQN has proven its ability to outperform humans in 

several Atari games using only pixel images as input [17]. 

1.4.5 Fine-Tuning 

Fine-tuning is a technique to adapt a pre-trained model to a specific task, by adjusting some 

or all the model’s parameters with new data. It is useful when we have a large and general 

pre-trained model for a similar problem, but not enough data for the task at hand. Depending 

on the level of similarity between the tasks and the features, we can fine-tune the entire 

model or only a subset of its layers. Fine-tuning can improve the performance and the 

efficiency of the model, but it can also reduce its robustness to distribution shifts [18]. 
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Fine-tuning is a transfer learning technique that consists of modifying the weights and 

biases of a deep learning model that has been pre-trained on a source dataset [19]. It has 

several benefits for improving the performance of deep learning models [20] which are listed 

in the Table 2. 

Table 2. Fine-Tuning benefits in Deep Learning Models performance 

Benefict Description 

Preventing overfitting By using the weights of a pre-trained model 

on a large and diverse dataset, the risk of 

memorizing the training data is avoided and 

the model’s generalization is improved. 

Speeding up training By starting from an initialization close to the 

optimal solution, the number of iterations 

needed to reach convergence is reduced 

and time and computational resources are 

saved. 

Overcoming data scarcity By leveraging the knowledge extracted 

from a source dataset, an effective model 

can be trained with a small or limited target 

dataset, which is common in many 

problems of computer vision, gesture 

recognition, etc. 

 

1.4.6 Related Works 

To contextualize the work done, some research on hand gesture recognition (HGR) 

research with reinforcement learning (RL) is summarized in the Table 3. 

Table 3. Summary of related works. 

Related Work 
Applied 

techniques 

Classification 

Results (%) 

Recognition 

Results (%) 
Conclusions 

Hand Gesture 

Recognition 

Using EMG-IMU 

Signals and 

Deep Q-

Networks 

Agent-based 

in DQN on an 

ANN 

97.50%±1.13% 88.15%±2.84% 

This research 

concludes that 

DQN can learn 

policies from 

online 
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experiences 

[21]. 

A Hand Gesture 

Recognition 

System Using 

EMG and 

Reinforcement 

Learning: A Q-

learning 

Approach 

Agent-based 

in Q-learning 
90.78% 87.51% 

This work 

shows that Q-

learning can 

learn from 

online 

experiences 

[22]. 

A comparison of 

EMG-based 

hand gesture 

recognition 

systems based 

on supervised 

and 

reinforcement 

learning 

CNN-based 

model 

(supervised 

learning) 

90.49%±9.7% 86.83%±11.30% 

The simplest 

model based 

on supervised 

learning has 

better results 

than the 

reinforcement 

learning 

approach [23]. 

Deep Q-

Network 

model 

(reinforcement 

learning) 

76.27%±11.9% 67.89%±13.3% 

A Deep Q-

Network-based 

hand gesture 

recognition 

system for 

control of robotic 

platforms 

DQN agent-

based 
97.45%±1.02% 88.05%±3.10% 

It is possible to 

design a 

human-

machine 

interface 

based on an 

EMG-IMU-

based HGR 

system and 

IMU signals 

[24]. 

 

In summary, the studies on hand gesture recognition using reinforcement learning 

techniques showcase promising results. The DQN-based models, particularly in the 

contexts of EMG-IMU signals, consistently demonstrated high accuracy in classifying and 
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recognizing hand gestures. Additionally, the application of Q-learning also yielded 

competitive results, indicating the adaptability of RL approaches to this domain. 

1.4.7 Contribution 

Our research seeks to build upon existing studies by directly comparing the DQN and DDQN 

RL techniques in Hand Gesture Recognition (HGR) using the EMG-EPN-612 dataset. The 

key contributions of our project are summarized as follows: 

• We created two user-general reinforcement learning models for HGR, employing 

DQN and DDQN algorithms. These models take spectrograms of EMG signals as 

their input. 

• To identify the algorithm best suited for our context, we assessed the DQN and 

DDQN models based on classification and recognition accuracies. 

• We formulated a comprehensive reward function tailored to the specifics of our 

scenario, considering recommendations from [25]. This adaptable reward function 

can be easily tailored for future enhancements and research. 
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2. METHODOLOGY 

In this segment, we introduce a fundamental process aimed at tackling the problem of EMG-

based HGR, as depicted in the Figure 5. This structure includes an RL multi-agent 

environment, reward function, hyperparameter optimization, fine-tuning, and post-

processing. As noted earlier, DQN employs a deep neural network as its target network. In 

our suggested implementation, we will use a CNN-based model from prior research by [4] 

in two phases. The first phase involves initializing the CNN with randomly allocated weights. 

The second phase involves fine-tuning the CNN using a pre-trained model. Both models 

are based on the same GoogLeNet CNN architecture. 

 

Figure 5. Applied Methodology 

As mentioned in previous studies, we used the same EMG-EPN-612 dataset [6] for our 

research, as we employed the same CNN architecture. This extensive dataset includes 

EMG signals from 612 users, recorded using the Myo armband over a five-second duration, 

resulting in 1000 data points per user for HGR model development and benchmarking. The 

signals represent five unique hand gestures: wave-in, wave-out, fist, open, and pinch. The 

dataset also includes EMG signals from users’ relaxed hands, referred to here as 

“noGesture”. These gestures are depicted in Figure 1. The dataset is divided into two 

groups: one group of 306 users (with 150 samples per user) for training, which includes 

ground truth data (the part of the signal where the gesture was performed), and the 

remaining 306 users for testing. 
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2.1 RL multi-agent environment 

To guarantee an equitable comparison between DQN and DDQN, it's essential to equip 

both agents with a similar learning environment during their respective training stages. 

Monitoring their behavior from the outset lays the groundwork for additional analysis during 

the fine-tuning and validation phases. It's noteworthy that, in the context of this research 

scenario, the environment functions under two distinct actions, states, and rewards, as 

illustrated in Figure 6. 

 

Figure 6. RL Multi-Agent Environment 

2.2 Reward function 

Creating a functional reward system for a Reinforcement Learning agent poses a significant 

challenge [25]. Our reward system considers the proportion of the effective EMG signal 

present in the current window, the complexity of the current gesture, and the agent’s 

performance consistency. 

The reward system is designed to gradually assign rewards based on the degree of 

similarity between the predicted and expected actions. If the model’s prediction is correct, 

the reward is the percentage of the effective signal. However, if the prediction is incorrect, 

the reward is -1. This percentage is reduced by 2 to account for the increased complexity 

of predictions at the start and end of the effective signal, where full information may not be 

available. As a result, if the current window encompasses 100% of the effective signal, the 

maximum reward is 1. 
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We’ve noticed that the default gesture (noGesture) is relatively easy for the model to predict, 

so the reward for these instances is reduced. Instead of a +1 reward for a correct prediction, 

we award +0.5 when processing a complete default gesture signal or +0.25 when 

processing signal parts that don’t correspond to a gesture. This aspect of the reward 

function, combined with the gradual reward, encourages the model to make correct 

predictions, providing a dense learning signal [25]. Figure 7 summarizes how the reward 

function works. 

 

Figure 7. Designed Reward Function 

In conclusion, if the model consistently makes correct decisions over several windows, it 

receives a reward. This strategy encourages the model to maintain steady performance, as 

it will lead to additional rewards over the EMG signal. By assigning rewards in this manner, 

we can enhance the model’s recognition phase. This method is referred to as an intrinsic 

motivation signal, which is inspired by curiosity or a desire for novelty and biases the model 

towards consistency [25]. To implement this, we consider the following factors: 

• A counter is kept, which is incremented each time the model makes a correct 

prediction within a window. 

• At the end of the current window, the long-term reward is calculated and given to 

the agent. 
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• If a prediction is incorrect, the counter is reset to zero, and the process begins anew. 

As we aim to provide larger rewards for more consecutive correct predictions, we use an 

exponential function (Equation 1) to calculate the additional reward. Here, α and β 

determine the reward’s behavior, and W represents the number of consecutive correct 

predictions. 

𝑅(𝑊) = 𝛼𝑒𝛽𝑊 − 𝛼 

 

Equation 1. Long-term reward function 

2.3 Hyperparameters 

After setting up the environment, which included the target network and reward function, 

several experiments to pinpoint the best hyperparameters for the training process are 

carried out. Given that the Convolutional Neural Network (CNN) was initialized from scratch, 

we ran tests with datasets that included 1 user, 75 users, and the full training dataset of 306 

users. 

Table 4 provides a summary of our experiments. The learning rate dictates the speed at 

which the algorithm modifies the network based on new learnings. The epsilon decay 

manages the balance between exploration and exploitation by gradually reducing random 

actions over time. The target smooth factor influences the stability of the network updates 

during training. 

Table 4. Hyperparameter experiments for the DQN model starting from zero. 

Users Count Episodes Learn Rate Epsilon 

Decay 

Target Smooth 

Factor 

1 15000 1.00E-02 1.00E-05 1.00E-04 

1 15000 1.00E-03 1.00E-05 1.00E-04 

1 15000 1.00E-05 1.00E-04 1.00E-03 

1 5835 1.00E-03 1.00E-05 1.00E-03 

1 30000 1.00E-06 1.00E-05 1.00E-03 

75 44693 1.00E-02 1.00E-04 1.00E-03 

75 45000 1.00E-06 1.00E-05 1.00E-03 

75 44998 1.00E-02 1.00E-05 1.00E-04 

306 91800 1.00E-05 1.00E-04 1.00E-03 

306 91800 1.00E-06 1.00E-05 1.00E-04 
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306 91800 9.00E-06 1.00E-04 1.00E-03 

306 45432 1.00E-06 1.00E-05 1.00E-03 

 

2.4 Fine-tuning 

To accelerate our research, we utilized an existing CNN user general model from [4], which 

is grounded on GoogLeNet and has been trained on an identical dataset. We enhanced this 

model by fine-tuning it using the DDQN algorithm. The fine-tuning process necessitated 

significant work in optimizing hyperparameters. As a result, we conducted iterative 

experiments to achieve a satisfactory level of convergence in the training progress, 

following the same methodology outlined in the hyperparameters section. The fine-tuning 

experiments are summarized in Table 5. 

Table 5. Hyperparameter fine-tuning experiments for the DQN model. 

Users 

Count 
Episodes 

Learn 

Rate 

Epsilon 

Decay 

Target 

Smooth 

Factor 

306 45900 1.00E-07 1.00E-06 1.00E-04 

306 45900 1.00E-06 1.00E-05 1.00E-04 

75 22500 1.00E-07 1.00E-05 1.00E-04 

75 22500 1.00E-06 1.00E-05 1.00E-04 

1 15000 1.00E-08 1.00E-03 1.00E-04 

 

2.5 Post-processing 

Post-processing is performed to refine the predicted EMG signals. The main goal is to detect 

and process ongoing sequences of valid gestures while discarding isolated occurrences of 

disregarded or insignificant actions. Disregarded gestures (noGesture) are easy to identify, 

hence they are given less focus and don’t need extra modifications during processing.  

Nonetheless, it’s crucial to consider that a sequence of valid gestures might be succeeded 

by a disregarded gesture. To handle this scenario, our post-processing method looks for 

ongoing sequences of valid gestures in the predicted data. Once these sequences are 

found, all following classes within that sequence are substituted with the most frequent 

class. This strategy guarantees that each intended gesture is precisely depicted while 
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preserving the overall coherence and continuity of the processed EMG signal. Figure 8 

illustrates the scenarios that this method addresses. 

 

Figure 8. Post-processing stage. a) Raw predicted data from the RL model. b) Post-

processed data ready for an application. 

Using this post-processing technique, the model is capable of efficiently identifying and 

categorizing intricate patterns from initial predictions, thereby enhancing the precision of 

classification and recognition. 
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3. RESULTS 

This section will present the results obtained from the evaluation of our proposed general 

user HGR models. This evaluation involved testing a variety of hyperparameters and 

assessing the performance of the model both with and without the implementation of the 

post-processing stage. The hyperparameters that remained unchanged for the Deep Q-

Network (DQN) and Double DQN (DQN) models, which were developed from scratch, it 

means the baseline model hyperparameters, are detailed in the following Table 6. 

Table 6. Baseline model hyperparameters 

Hyperparameter Fixed Value 

Learn Rate 1.00E-06 

Gradient Threshold 1 

Optimizer “adam” 

Gradient Threshold Method “l2nrom” 

Used Device “gpu” 

Target Smooth Factor 1.00E-04 

Minibatch Size 32 

Number of steps to look ahead 1 

Discount Factor 0.98 

Experience Buffer Length 50 

Epsilon Decay 1.00-E05 

Use Double DQN? TRUE 

Save Experience Buffer with Agent? TRUE 

Max Episodes 918000 

 

Considering the intricate process of pinpointing the best hyperparameters during the fine-

tuning stage, Table 7 lists the most efficient hyperparameters that we found for the defined 

DQN and DDQN models. 

Table 7. Best-founded hyperparameters for the DQN and DDQN models 

Hyperparameter Fixed Value 

Learn Rate 1.00E-07 

Gradient Threshold 1 

Optimizer “adam” 

Gradient Threshold Method “l2nrom” 
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Used Device “gpu” 

Target Smooth Factor 1.00E-04 

Minibatch Size 32 

Number of steps to look ahead 1 

Discount Factor 0.98 

Experience Buffer Length 50 

Epsilon Decay 1.00-E06 

Use Double DQN? TRUE 

Save Experience Buffer with Agent? TRUE 

Max Episodes 45900 

 

The recognition accuracy results of our proposed general-user HGR model are shown in 

Figure 9. Although the models we developed do not exceed the accuracy of the existing 

post-processed model (which achieves accuracies of 83.26%, 82.87%, 91.91%, and 

91.98% respectively). It's important to note that using existing models results in an accuracy 

improvement of up to 9.11% for the post-processed DQN model and up to 8.69% for the 

post-processed DDQN model compared to a model trained from scratch. However, when 

we focus on models without post-processing, our proposed models show higher recognition 

accuracy. Specifically, the use of fine-tuning results in a 3.45% increase over the DDQN 

and a 3.61% increase with the DQN model. In addition, DDQN models trained from scratch 

improve recognition by 1.59%, while DQN models result in a 2.46% increase in recognition 

accuracy compared to the existing models. Moreover, fine-tuned models without processing 

also perform better than both the models trained from scratch and the post-processed 

models. 
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Figure 9. Comparison of the recognition accuracy between the obtained user-general 

models and the pre-existing (baseline) model by applying different improvement techniques. 

The results of the classification accuracy for our suggested general-user HGR models are 

illustrated in Figure 10. The data shows that there isn't a significant difference in 

classification accuracy between the models that are post-processed and those that aren't. 

However, it's a model trained from scratch doesn't exceed the performance of the pre-

existing model in this research, whether it's DDQN or DQN. Interestingly, the pre-existing 

post-processed DDQN model outperforms our suggested post-processed DDQN model by 

8.19% and 8.18%, respectively. When it comes to fine-tuned models, these models 

enhance the classification accuracy of DDQN by up to 0.89%, and of DQN by 0.92%. 

Moreover, when looking at the fine-tuned models that aren't post-processed, DDQN fine-

tuned improves classification accuracy by 0.75% and DQN fine-tuned by 0.81%. 

Furthermore, DQN shows superior performance than DDQN, regardless of whether they 

are fine-tuned or not. Specifically, the post-processed DQN model that's fine-tuned 

outperforms its equivalent by 0.03%, while the fine-tuned DQN model without post-

processing advances it by 0.06%. Additionally, the post-processed DQN model trained from 

scratch surpasses its non-post-processed counterpart by 0.11%, and the DQN model 

trained from scratch without post-processing sees a slight improvement of 0.01%. 
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Figure 10. Comparison of the classification accuracy between the obtained user-general 
models and the pre-existing (baseline) model by applying different improvement 

techniques. 

Figure 11 showcases the confusion matrices for the best-performing general-user DQN and 

DDQN model's classification. Figure 11a shows a confusion matrix for the DQN model 

without post-processing, where high values on the main diagonal indicate good 

performance. In contrast, Figure 11b presents the confusion matrix for the DDQN model 

without post-processing, with values on the main diagonal like those of the DQN, suggesting 

comparable efficiency. Figure 11c reveals an improvement in the performance of the DQN 

model with post-processing, as evidenced by increased values on the main diagonal 

compared to Figure 11a. Finally, Figure 11d illustrates a confusion matrix for the DDQN 

model with post-processing, where an increase in correct predictions is observed compared 

to its version without post-processing, indicating that post-processing can boost the 

accuracy of both DQN and DDQN models. 
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Figure 11. Confusion matrices for DQN and DDQN models trained from scratch. a) DQN 
no post-processed model, b) DDQN no post-processed model, c) DQN post-processed 

model, d) DDQN post-processed model. 

On the other hand, Figure 12 presents the confusion matrices for the top performing fine-

tuned DQN and DDQN models. Figure 12a, representing the DQN without post-processing, 

shows a good performance evidenced by the high values on the main diagonal. Figure 12b, 

corresponding to the DDQN without post-processing, presents a similar prediction efficiency 

to that of the DQN, as can be seen from the values on the main diagonal. On the other 

hand, Figure 12c, corresponding to the DQN with post-processing, shows an improvement 

in performance, evidenced by the increased values on the main diagonal compared to 

Figure 12a. Finally, Figure 12d, representing the DDQN with post-processing, shows an 

increase in correct predictions compared to its version without post-processing, suggesting 

that post-processing can improve the accuracy of both DQN and DDQN fine-tunned models. 
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Figure 12. Confusion matrices for fine-tuned DQN and DDQN models. a) DQN no post-
processed fin-tuned model, b) DDQN no post-processed fine-tuned model, c) DQN post-

processed fine-tuned model, d) DDQN post-processed fin-tuned model. 

It's clear to conclude the models depicted in Figure 11 are less effective than those in Figure 

12. Specifically, the least accurately classified gesture in the fine-tuned models achieves up 

to 93%, whereas the least accurately classified gesture in the models trained from scratch 

only reaches a performance level of 73%. 

Finally, the detailed examination of the comparison between DQN and DDQN reveals minor 

but important variations in their effectiveness for recognition and classification tasks. When 

it comes to recognition, DQN typically surpasses DDQN, especially in scenarios that do not 

involve fine-tuning. Table 8 summarizes the experiments performed to obtain the general 

user model with the best metrics. For greater understanding, experiments that start with “ft” 

imply that they are a fine-tuning of the base model, otherwise it is a model experiment from 

scratch. Furthermore, all these experiments were trained with 306 user’s information, this 

is referenced in the “u306” nomenclature. For the reward, 2 function variations were 

experimented: linear (lin) and exponential (exp). The “gtr” nomenclature implies that ground 

truth is used to give the reward. The hyperparameters learning rate, epsilon decay and 

target smooth factor are linked to “lr”, “ed” and “tsm” nomenclature, respectively. Numerical 

values close to the hyperparameter nomenclature imply a negative exponential factor, e.g., 

lr6 means a value of 1e-06 for the learning rate. 
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Table 8. Best model experiments obtained. 

Experiment Name Description 

E1 
ft-u306-gtr-exp-lr6-ed5-

tsm4 

Fine-tuned model with an 

exponential reward function 

based on the ground truth; 

learning rate = 1e-06; 

epsilon decay = 1e-05; 

target smooth factor = 1e-04  

E2 
ft-u306-gtr-exp-lr7-ed6-

tsm4 

Fine-tuned model with an 

exponential reward function 

based on the ground truth; 

learning rate = 1e-07; 

epsilon decay = 1e-05; 

target smooth factor = 1e-04 

E3 u306-exp-gtr-lr6-ed5-tsm3 

Model trained from scratch 

with an exponential reward 

function based on the 

ground truth;  

learning rate = 1e-06; 

epsilon decay = 1e-05; 

target smooth factor = 1e-03 

E4 u306-gtr-exp-lr5-ed4-tsm3 

Model trained from scratch 

with an exponential reward 

function based on the 

ground truth;  

learning rate = 1e-05; 

epsilon decay = 1e-04; 

target smooth factor = 1e-03 

E5 u306-gtr-exp-lr6-ed5-tsm4 

Model trained from scratch 

with an exponential reward 

function based on the 

ground truth;  

learning rate = 1e-06; 

epsilon decay = 1e-05; 

target smooth factor = 1e-04 
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E6 u306-gtr-lin-lr5-ed4-tsm3 

Model trained from scratch 

with a lineal reward function 

based on the ground truth; 

learning rate = 1e-05; 

epsilon decay = 1e-04; 

target smooth factor = 1e-03 

 

Figure 13 illustrates the recognition accuracy of six different models (E1 to E6) using two 

methods: Recognition DQN and Recognition DDQN. Each model corresponds to a different 

configuration of parameters such as learning rate, epsilon decay, and target smooth factor, 

as detailed in the Table 8 provided. The graph shows that the model E2, a fine-tuned model 

with an exponential reward function based on the ground truth and a learning rate of 1e-07, 

achieved the highest recognition score for both DQN and DDQN methods at approximately 

20.76% and 20.92%, respectively. On the other hand, model E6, which was trained from 

scratch with a linear reward function based on the ground truth and a learning rate of 1e-

05, had the lowest performance for the DDQN method at about 15.99%. Similarly, model 

E3, trained from scratch with an exponential reward function based on the ground truth and 

a learning rate of 1e-06, had the lowest performance for the DQN method at around 16.10%. 

 

Figure 13. Comparison of the recognition accuracy between the experimented models. 
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Figure 14 presents the classification success rates of six distinct models (E1 to E6), each 

employing one of two methods: Classification DQN and Classification DDQN. Each model 

is defined by a unique set of parameters, as outlined in the provided Table 8. 

The graph reveals that the Classification DQN method begins with a 95.45% accuracy at 

E1, reaches its peak at 97.02% at E3, and concludes at 87.12% at E6. Conversely, the 

Classification DDQN method starts at a lower 84.64% at E1, but it overtakes Classification 

DQN from E4 and finishes slightly higher at 87.43% at E6.

 

Figure 14. Comparison of the classification accuracy between the experimented models. 

 

The code used for this work is hosted in the following GitHub repository: 

https://github.com/laboratorioAI/2024_EMG_DQN_DDQN 

Belonging to the Alan Turing Artificial Intelligence Laboratory of the Escuela Politécnica 

Nacional. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

The objective of this research was to create real-time hand gesture recognition models 

using the Deep Q-Network (DDQN) reinforcement learning method, utilizing the EMG-EPN-

612 dataset. During the fine-tuning phase, optimal hyperparameters for both the fine-tuned 

DQN and DDQN were discovered. The findings indicated that while our suggested models 

did not exceed the recognition accuracy of the pre-existing post-processed model, they 

demonstrated superior recognition accuracy when focusing on non-post-processed models 

due to the design of the reward function. Fine-tuning resulted in a 3.61% improvement in 

DQN and a 3.45% increase in DDQN model's recognition accuracy compared to the pre-

existing models. Moreover, fine-tuned models without processing also outperformed both 

the models trained from scratch and the post-processed models. 

In terms of classification accuracy, there was no significant difference between post-

processed and non-post-processed models. However, a model trained from scratch did not 

exceed the pre-existing model in this study. Fine-tuned models increased the classification 

accuracy of DQN by up to 0.92%, and of DDQN by 0.89%. Furthermore, fine-tuned models 

that are not post-processed improved DQN’s performance by 0.81% and DDQN’s by 0.75%. 

Finally, DQN demonstrated superior overall performance than DDQN in both recognition 

and classification tasks. 

Based on the previous results, we can conclude that the development of hand gesture 

recognition models has significant potential for future applications. These include the 

development of more advanced models, control of hand prosthetics, creation of immersive 

gaming experiences, and intuitive control of consumer products. Continued research and 

experimentation are crucial to enhance the accuracy and effectiveness of these systems. 

4.2 Recommendations 

Considering this study’s conclusions, the following suggestions are proposed for future 

investigations in the realm of real-time hand gesture recognition using reinforcement 

learning techniques: 

▪ The outcomes demonstrated that fine-tuning resulted in enhanced recognition and 

classification precision. Nevertheless, there is potential for further exploration of 

other hyperparameters and their influence on model performance. Undertaking a 
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more extensive hyperparameter search could yield superior models and deeper 

insights into the behavior of reinforcement learning-based methods. 

▪ Additionally, an unexplored area worth investigating is the refinement of the reward 

function. Given its pivotal role in determining the model’s final performance through 

reinforcement learning methods, researching innovative reward functions and their 

implications within this specific application could significantly improve our 

comprehension and yield better results. 
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