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RESUMEN 

El reconocimiento de gestos de la mano (HGR) mediante señales de electromiografía 

(EMG) es fundamental en la interacción humano-computador, permitiendo una 

comunicación natural entre humanos y tecnología en diversas aplicaciones como prótesis, 

robótica y dispositivos de rehabilitación. Aunque las técnicas de aprendizaje supervisado, 

como las Redes Neuronales Convolucionales (CNN), han sido ampliamente exploradas en 

sistemas de HGR y han alcanzado altos niveles de precisión, el aprendizaje por refuerzo 

(RL) se destaca por su capacidad para aprender de la interacción y resolver problemas de 

decisión secuenciales. Algoritmos como Q-Learning y Deep Q-Network (DQN) han 

mostrado resultados prometedores en HGR y EMG. En esta investigación, se propone 

comparar el rendimiento de las técnicas de aprendizaje por refuerzo DQN y DDQN en HGR 

utilizando el conjunto de datos EMG-EPN-612, evaluando la precisión de los modelos tanto 

en reconocimiento como en clasificación. Las contribuciones principales incluyen el diseño 

de una función de recompensa para este contexto y la utilización de una red neuronal 

convolucional preexistente para un ajuste fino. Los resultados muestran que los modelos 

con ajuste fino, junto con DQN y DDQN, presentaron valores similares en las métricas 

propuestas. Se observó una mejora del 3.61% en la precisión de reconocimiento para el 

modelo DQN y una mejora del 3.45% para el modelo DDQN en comparación con el modelo 

base. Sin embargo, no se encontraron mejoras significativas en la precisión de 

clasificación. En conclusión, se encontró que DQN generalmente tuvo un mejor rendimiento 

que DDQN en este escenario. 

PALABRAS CLAVE: Aprendizaje por Refuerzo, Deep Q-Network, Double Deep Q-

Network, Reconocimiento de Gestos de la Mano, Electromiografía, Función de 

Recompensa. 
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ABSTRACT 

Hand Gesture Recognition (HGR) using Electromyography (EMG) signals is a crucial 

component of Human-Computer Interaction, enabling natural communication between 

humans and technology in various applications such as prosthetics, robotics, and 

rehabilitation devices. While supervised learning techniques like Convolutional Neural 

Networks (CNNs) have been extensively explored in HGR systems and have achieved high 

levels of accuracy, reinforcement learning (RL) stands out for its ability to learn from 

interaction and solve sequential decision problems. Algorithms such as Q-Learning and 

Deep Q-Network (DQN) have shown promising results in HGR and EMG. This research 

aims to compare the performance of reinforcement learning techniques DQN and DDQN in 

HGR using the EMG-EPN-612 dataset, evaluating the accuracy of the models in both 

recognition and classification. Key contributions include the design of a reward function for 

this context and the use of a pre-existing convolutional neural network for fine-tuning. The 

results show that models with fine-tuning, alongside DQN and DDQN, exhibited similar 

values in the proposed metrics. A 3.61% improvement in recognition accuracy was 

observed for the DQN model and a 3.45% improvement for the DDQN model compared to 

the baseline model. However, no significant improvements were found in classification 

accuracy. In conclusion, it was found that DQN outperformed DDQN in this scenario. 

KEYWORDS: Reinforcement Learning, Deep Q-Network, Double Deep Q-Network, Hand 

Gesture Recognition, Electromyography, Reward Function. 
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1 INTRODUCTION 

Hand Gesture Recognition (HGR) enables natural interaction between humans and 

technology [1]. The process entails recognizing both the temporal aspect of a hand 

movement and its associated gesture class [2]. Myoelectric control, which relies on 

interpreting electrical signals produced by muscles using Electromyography (EMG), has 

gained significant traction in recent years. EMG recognition systems have demonstrated 

remarkable applicability across human-computer interaction. This preference arises from 

their ability to accurately capture subtle movements, which results in reliable data [3]. 

In this study, we plan to conduct a comparison of two widely adopted reinforcement learning 

techniques: the Deep Q-Network (DQN) and Double Deep Q-Network (DDQN). Through an 

evaluation, we will assess their performance in both recognition accuracy and classification 

accuracy. Furthermore, these methods will be employed using two distinct approaches, with 

models being trained from scratch and fine-tuned from a pre-existing model. Additionally, 

post-processing will be implemented on these models to observe its impact on the overall 

performance. Consequently, this work aims to assess a total of eight different models: 

• DQN model trained from scratch. 

• DDQN model trained from scratch. 

• DQN model trained from scratch with post-processing. 

• DDQN model trained from scratch with post-processing. 

• DQN fine-tuned model. 

• DDQN fine-tuned model. 

• DQN fine-tuned model with post-processing. 

• DDQN fine-tuned model with post-processing. 

Given that, the complete research encompasses two components, with the first focusing on 

Deep Q-Network (DQN) and the second on Double Deep Q-Network (DDQN). The work 

herein will take the second component. Consequently, all the models mentioned in relation 

to DDQN (including those trained from scratch and fine-tuned with or without post-

processing) will form an integral part of the development process within this work.  
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1.1 General objective 

Develop a real-time hand gesture recognition model using the Double Deep Q-Network 

(DDQN) reinforcement learning technique based on the EMG-EPN-612 dataset. 

1.2 Specific objectives 

1. Review the state of the art of hand gesture recognition models using reinforcement 

learning, specifically DDQN-based models. 

2. Design and assess a hand gesture recognition model for five different gestures 

using EMG signals from the EMG-EPN-612 dataset through the DDQN learning 

technique. 

3. Compare the results of the DDQN model with the results of the Deep Q-Network 

(DQN) model in terms of gesture classification and recognition accuracies. 

1.3 Scope 

This work consists of four phases detailed below: 

1. Agent-Environment implementation phase: In this phase an interface is created for 

interaction between the agent and its environment, which is represented by the EMG 

signal spectrogram. This interface allows the agent to perform actions and receive 

information about the state of the environment. 

2. DDQN configuration phase: The reinforcement learning (RL) reward function will be 

created based on the aspects of the problem and the characteristics of the involved 

environment. Then, an optimal set of hyperparameters will be determined for 

satisfactory results in solving the issue. 

3. Training with DDQN: The RL model training will be conducted using a convolutional 

neural network as a target network, focusing especially on optimizing its 

hyperparameters. 

4. Results evaluation phase: In the final phase, the model’s performance will be 

exhaustively evaluated by analyzing its performance, accuracy, and response time. 

This evaluation will be conducted using a validation dataset, allowing us to gain a 

solid understanding of the efficiency of the model.  
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1.4 General background 

Hand Gesture Recognition (HGR) is a key component of Human-Computer Interaction 

(HCI), enabling natural interaction between humans and technology. HGR systems identify 

specific hand gestures from a predefined set and the instant of their occurrence, serving 

various applications such as controlling upper-limbs prosthetics and robotics, human-

computer interfaces including mouse control and gaming, and medical applications like data 

visualization and image manipulation during medical procedures. It is also suitable for 

rehabilitation devices, device control, and sign language recognition [1], [4], [5]. HGR can 

be achieved through different methods, one of which is non-invasive surface 

Electromyography (EMG) using devices such as the Myo Armband [6]. This method is less 

intrusive and more comfortable compared to invasive EMG techniques, making it a good 

option for everyday use in diverse applications. 

Supervised learning HGR recognition systems have been broadly researched through 

supervised learning techniques such as Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN) [1] , or even Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) approaches. Those models have demonstrated that HGR systems can 

take advantage of the supervised learning approach reaching an accuracy of 92.93% ± 

8.23% and a recognition accuracy of 91.60% ± 8.81% [2]. 

Reinforcement learning (RL) stands out as a technique that differs significantly from 

supervised learning. While supervised learning involves being explicitly told which actions 

lead to an outcome, RL discovers which actions maximize a reward signal by a trial-and-

error approach. Although supervised learning could generalize responses in situations, 

alone it is not adequate for learning from interaction [7] which is particularly relevant for 

HGR systems as it enables learning from new data. Additionally, unlike supervised learning, 

RL is appropriate for solving sequential decision problems [8]. 

Q-learning is one of the popular reinforcement learning algorithms due to its simplicity. On 

the other hand, DQN is an algorithm that introduces deep neural networks to approximate 

a policy [9]. However, DQN evaluates and selects actions over the same target network that 

can result in overestimated values. To prevent this behavior, DDQN introduces a second 

network, one for action selection and the other for evaluation [8]. Elements of DDQN are 

illustrated in Figure 1 include:  
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• Action: This refers to the actions taken by the agent within an environment. 

• Reward function: One of the crucial aspects of both DQN and DDQN algorithms. 

This function is responsible for determining the agent’s behavior [10]. 

• State: Represents the current observation given by the environment. In this work, 

the state is defined as spectrograms of EMG signals. 

• Agent: An entity that runs actions inside the environment and its goal is to optimize 

its performance through learning. 

• Environment: The context where the agent makes decisions. In this case, EMG 

signals represent the environment. 

• Interface: A system that facilitates the interaction between two entities (agent and 

environment). 

 

Figure 1. DDQN algorithm elements. 

Previous research on EMG HGR using RL has shown promising results. For instance, [11], 

who employed Q-learning for EMG classification, achieving classification accuracy of up to 

90.78% and recognition accuracy of 87.51%. This demonstrates the potential of Q-learning 

for addressing both recognition and accuracy challenges within the EMG domain. However, 

it is essential to note that this method requires training multiple models. They trained 306 

distinct models using 100 samples for model development, 13 for validation, and 12 for 

testing. Additionally, they divided the training phase into two stages: the first stage involves 

optimizing hyperparameters with 306 user data, and the second stage utilized the remaining 

data [11]. 
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In line with previous research, [12] applied DDQN for adapting HGR models to changing 

gesture requirements. Through enhancements in experience replay and algorithmic post-

processing, the DDQN model achieved classification accuracy of 97.36% and recognition 

accuracy of 94.83% on the same dataset. These results surpass those obtained by other 

methods such as SVM, Artificial Neural Networks (ANN), and Q-learning [12]. This study 

highlights the potential of DDQN for enhancing EMG HGR performance in dynamic gesture 

recognition scenarios. 

A separate study compared the performance of supervised learning and reinforcement 

learning (RL) EMG HGR systems using the EMG-EPN-612 dataset [13]. Supervised 

learning produced superior results, with classification accuracy of 90.49% and recognition 

accuracy of 86.83%. These findings underscore the supervised learning technique [13]. 

This research utilized a CNN approach incorporating parallel convolutions and max-pooling 

layers inspired by GoogLeNet [14]. 

Finally, a study proposes a user-specific HGR system using DQN and DDQN algorithms 

[5]. This research incorporated LSTM as an additional layer to an ANN, resulting in the DQN 

model without LSTM as the optimal one. This model achieved classification accuracy of up 

to 90.37% and recognition accuracy of 82.52% [5]. 

1.5 Contribution 

Our work aims to expand upon this body of work by directly comparing DQN and DDQN RL 

techniques in HGR using the EMG-EPN-612 dataset. The primary contributions of this 

project are outlined below. 

• We developed two HGR user-general reinforcement learning models based on DQN 

and DDQN algorithms. These models accept spectrograms of EMG signals as input. 

• To determine which algorithm is best suited for our environment, we evaluated the 

DQN and DDQN models in terms of classification and recognition accuracies. 

• We designed a comprehensive reward function to cover this work scenario 

considering suggestions from [10]. This versatile reward function can be easily 

customized for further enhancements and research in the future.  
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2 METHODOLOGY 

In this section, we present a base flow designed to address the EMG-based HGR problem, 

as illustrated in Figure 2. This architecture encompasses an RL multi-agent environment, 

reward function, hyperparameter optimization, fine-tuning, and post-processing. As 

previously mentioned, DQN utilizes a deep neural network as its target network. In our 

proposed implementation, we will employ a CNN-based model from the previous research 

by [2] in two stages. The first stage involves initializing the CNN with randomly assigned 

weights. The second stage entails fine-tuning the CNN using an already trained model. Both 

models are founded on the same GoogLeNet CNN architecture [2], [14]. 

 

Figure 2. Hand gesture recognition proposed workflow.  

Like the studies mentioned previously, we adopted the use of the same EMG-EPN-612 

dataset [15] for our research, given that we utilized the identical CNN architecture. This 

comprehensive dataset comprises 612 users’ EMG signals recorded via the Myo armband 

for a duration of five seconds, which translates to 1000 data points per user intended for 

HGR model development and benchmarking. These signals represent five distinct hand 

gestures: wave-in, wave-out, fist, open, and pinch. Additionally, the dataset encompasses 

EMG signals of users’ hands remaining relaxed, denoted herein as “noGesture”. The 

mentioned gestures are shown in Figure 3. The dataset is partitioned into two separate 

groups: one consisting of 306 users (150 samples per user) for training purposes due to its 

inclusion of ground truth data (the part of the signal where the gesture was performed), and 

the other remaining 306 users for testing purposes [15]. 

 

Figure 3. The five gestures to be classified and recognized. 
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2.1 RL multi-agent environment 

To ensure a fair comparison between DQN and DDQN, it is crucial to provide both agents 

with an equivalent learning environment through their respective training phases. Observing 

their behavior from the beginning establishes a foundation for further analysis during fine-

tuning and validation stages. It is important to note that, within the context of this research 

scenario, the environment operates under two distinct actions, states, and rewards, as 

described in Figure 4. 

 

Figure 4. Proposed reinforcement learning multi-agent environment. 

 

2.2 Reward function 

Designing a practical reward function for an RL agent is a challenging problem [10]. Thus, 

our reward function considers the percentage of the effective EMG signal on the current 

window as the difficulty of the current gesture and consistent performance. 

A gradual reward involves assigning proportionate rewards based on the similarity between 

the predicted action and the expected action. In this case, the reward function uses the 

percentage of the effective signal as a reward if the model makes a correct prediction; 

otherwise, the reward is -1. This percentage will be subtracted by 2 because complex 
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predictions are located at the beginning and end of the effective signal where it does not 

have all the information. Hence, if the current window covers 100% of the effective signal, 

the maximum reward will be 1. 

Our observations indicate that the default gesture (noGesture) is an easy prediction for the 

model, so the reward is lower in these cases. Instead of awarding +1 for a correct prediction, 

we award +0.5 when processing an entire default gesture signal or +0.25 when processing 

parts of the signal that do not correspond to a gesture. Thus, this part of the reward function 

and the gradual reward attracts the model towards correct predictions, the reward function 

accomplishes a dense learning signal [10]. A high-level explanation can be observed in 

Figure 5 flowchart. 

 

Figure 5. Proposed reward function flowchart. 

Finally, if the model has been making correct decisions for consecutive windows, then it is 

awarded a reward. The idea is that this mechanism incentivizes the model to maintain 

consistent performance, as this will result in additional rewards over the EMG signal. With 

this method of assigning rewards, we could strengthen the recognition phase of the model. 

This approach is known as an intrinsic motivation signal inspired by curiosity or desire of 

novelty, biasing the model towards being consistent [10].  For that, consider the following 

aspects:  
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• A counter is maintained which is incremented each time the model makes a correct 

prediction within a window. 

• At the end of the current window, the long-term reward is computed and given to 

the agent. 

• The counter is reset to zero upon a bad prediction and the process restarts. 

Since we want to give greater rewards for more consecutive correct predictions, we 

consider an exponential function (Equation 1) for computing the additional reward. Where 

𝛼 and 𝛽 defines the behavior of the reward and 𝑊 is the number of consecutive correct 

predictions. 

𝑅(𝑊) = 𝛼𝑒𝛽𝑊 − 𝛼 

Equation 1. Proposed long-term reward function. 

2.3 Hyperparameters 

Following the establishment of the environment, which included the target network and 

reward function, we executed multiple experiments to identify the optimal hyperparameters 

for the training process. Since the convolutional neural network was initialized from scratch, 

we conducted trials with datasets containing 1 user, 75 users, and the complete training 

dataset consisting of 306 users. 

Table 1. DDQN hyperparameters experiments from a scratch model. 

Users Count Episodes Learn Rate Epsilon Decay Target Smooth Factor 

1 15000 1E-02 1E-05 1E-04 

1 15000 1E-03 1E-05 1E-04 

1 15000 1E-05 1E-04 1E-03 

1 5835 1E-03 1E-05 1E-03 

1 30000 1E-06 1E-05 1E-03 

75 44693 1E-02 1E-04 1E-03 

75 45000 1E-06 1E-05 1E-03 

75 44998 1E-02 1E-05 1E-04 

306 91800 1E-05 1E-04 1E-03 

306 91800 1E-06 1E-05 1E-04 

306 91800 9E-06 1E-04 1E-03 

306 45432 1E-06 1E-05 1E-03 

 

Table 1 summarizes our experiments, with learning rate determining the rate at which the 

algorithm adjusts the network based on new learnings. Meanwhile, epsilon decay regulates 
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the exploration vs exploitation balance by gradually decreasing random actions over time. 

Lastly, the target smooth factor impacts the stability of the network updates during training. 

2.4 Training 

During our training phase, we utilized a graphical process unit to optimize performance, 

specifically an NVIDIA Quadro P4000. Our training script incorporates a range of 

parameters designed to manage and evaluate the training process effectively. Particularly, 

the "StopTrainingCriteria" parameter is set to "EpisodeCount", implying that training will 

cease upon achieving a predetermined number of episodes, as defined by "maxEpisodes". 

The "SaveAgentCriteria" parameter is set to "EpisodeFrequency", ensuring regular saves 

of the agent's parameters throughout training at the specified interval, determined by 

"SaveAgentValue". Lastly, the "Verbose" parameter is set to "true", yielding detailed logs 

and outputs during training, thereby granting valuable insights into the dynamics of the 

training process. 

2.5 Fine-tuning 

To expedite our research, we also took advantage of the pre-existing CNN user general 

model from [2], which is based on GoogLeNet and has been trained over the same dataset 

[2]. We optimized this model by fine-tuning it through the DDQN algorithm. Fine-tuning 

required extensive efforts in hyperparameters optimization. Consequently, we 

experimented iteratively to bring the training progress to a satisfactory convergence level 

using the same approach of the hyperparameters section. The hyperparameters 

experiments for fine-tuning are resumed in Table 2. 

Table 2. DDQN fine-tuning hyperparameters experiments. 

Users Count Episodes Learn Rate Epsilon Decay Target Smooth Factor 

306 45900 1E-07 1E-06 1E-04 

306 45900 1E-06 1E-05 1E-04 

75 22500 1E-07 1E-05 1E-04 

75 22500 1E-06 1E-05 1E-04 

1 15000 1E-08 1E-03 1E-04 
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2.6 Post-processing 

A post-processing is conducted to clean EMG predicted signals. The primary objective is to 

identify and process continuous sequences of valid gestures while eliminating isolated 

instances of ignored or inconsequential actions. Ignored gestures (noGesture) are simple 

to recognize; thus, they receive minimal attention and require no additional adjustments 

during processing. However, it is important to consider the possibility that a valid gesture 

sequence might be followed by an ignored gesture. To account for this situation, our post-

processing technique searches for continuous sequences of valid gestures within the 

predicted data. Once identified, all subsequent classes within that sequence are replaced 

with the most common class. This approach ensures that every intended gesture is 

accurately represented while maintaining the overall integrity and continuity of the 

processed EMG signal. Figure 6 illustrates instances where our proposed method 

encounters discrepancies between the predicted and actual EMG signals. Figure 6a depicts 

such scenarios when mismatches occur at the beginning (Case 1), middle (Case 2), and 

end (Case 3) of the signal, respectively. In contrast, Figure 6b presents the post-processed 

signals for each of these instances (Case 1, Case 2, and Case 3). 

 

Figure 6. Post-processing stage. 

a) Raw predicted data from the RL model, b) Post-processed data ready for an 

application. 

By employing this post-processing method, our model can effectively recognize and classify 

complex patterns from raw predictions, leading to improved classification and recognition 

accuracy.  
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3 RESULTS 

In this section, we present the outcomes of evaluating our proposed user-general HGR 

models by testing various hyperparameters and evaluating the model with and without the 

post-processing stage. The unaltered hyperparameters for scratch DQN and DDQN models 

are outlined in Table 3. 

Table 3. DDQN hyperparameters experiments. 

Hyperparameter Value 

LearnRate 1.00E-06 

Optimizer "adam" 

GradientThresholdMethod "l2norm" 

UseDevice "gpu" 

TargetSmoothFactor 1.00E-04 

MiniBatchSize 32 

NumStepsToLookAhead 1 

DiscountFactor 0.98 

ExperienceBufferLength 50 

EpsilonDecay 1.00E-05 

UseDoubleDQN TRUE 

SaveExperienceBufferWithAgent TRUE 

MaxEpisodes 91800 

 

Given the complexity of identifying optimal hyperparameters during the fine-tuning phase, 

Table 4 provides the most effective hyperparameters for both the fine-tuned DQN and 

DDQN models. 

Table 4. DDQN fine-tuning hyperparameters experiments. 

Hyperparameter Value 

LearnRate 1.00E-07 

Optimizer "adam" 

GradientThresholdMethod "l2norm" 

UseDevice "gpu" 

TargetSmoothFactor 1.00E-04 

MiniBatchSize 32 

NumStepsToLookAhead 1 

DiscountFactor 0.98 

ExperienceBufferLength 50 

EpsilonDecay 1.00E-06 

UseDoubleDQN TRUE 

SaveExperienceBufferWithAgent TRUE 

MaxEpisodes 45900 
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The recognition accuracy results for our proposed user-general HGR model are presented 

in Figure 7. The developed models do not surpass the pre-existing post-processed model’s 

recognition accuracy (which reaches accuracies of 83.26%, 82.87%, 91.91%, and 91.98% 

respectively). It is noteworthy that using the pre-existing model results in a recognition 

accuracy improvement of up to 9.11% for the post-processed DQN model and up to 8.69% 

for the post-processed DDQN model compared to the model trained from scratch. However, 

when focusing on non-post-processed models, our proposed models exhibit superior 

recognition accuracy. Specifically, employing fine-tuning leads to a 3.45% enhancement 

over DDQN and a 3.61% improvement with the DQN model. Additionally, DDQN models 

trained from scratch increase recognition by 1.59%, while DQN models yield a 2.46% 

improvement in recognition accuracy compared to the pre-existing models. Furthermore, 

fine-tuned models without processing also outperform both the models trained from scratch 

and the post-processed models. 

 

Figure 7. Recognition accuracies for all models. 

The classification accuracy results for our proposed user-general HGR models are depicted 

in Figure 8. The findings reveal that there is no significant difference in classification 

accuracy between the post-processed and non-post-processed models. However, it is 

evident that training a model from scratch does not surpass the pre-existing model in this 

study, be it DDQN or DQN. Notably, the pre-existing DDQN post-processed model 

outperforms our proposed DDQN post-processed model by 8.19% and 8.18%, respectively. 

In terms of fine-tuned models, these models augment the classification accuracy of DDQN 
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by up to 0.89%, and of DQN by 0.92%. Furthermore, when examining the fine-tuned models 

that are not post-processed, DDQN fine-tuned increases classification accuracy by 0.75% 

and DQN fine-tuned by 0.81%. Moreover, DQN demonstrates a better performance than 

DDQN regardless of whether they are fine-tuned or not. Specifically, the fine-tuned post-

processed DQN model outperforms its counterpart by 0.03%, while the fine-tuned DQN 

model without post-processing improves upon it by 0.06%. Additionally, our experiments 

revealed that the DQN post-processed model outperforms the DDQN post-processed 

model by a margin of 0.11%. Furthermore, the DQN model trained from scratch also 

displays a slight improvement of 0.01% compared to the DDQN model. 

 

Figure 8. Classification accuracies for all models. 

In Figure 9, we provide the confusion matrices for our best-performing user-general DQN 

and DDQN models’ classification results. Figure 9a represents the confusion matrix for 

DQN, while Figure 9b displays the confusion matrix for DDQN. Additionally, Figure 9c 

illustrates the confusion matrix for DQN with post-processing, and Figure 9d displays the 

confusion matrix for DDQN with post-processing. Importantly, all these matrices represent 

models trained from scratch to provide a more accurate comparison between the methods. 
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Figure 9. Confusion matrices for DQN and DDQN models trained from scratch. 

a) DQN, b) DDQN, c) DQN post-processed, d) DDQN post-processed. 

In Figure 10, we exhibit the confusion matrices for our best achieved user-general DQN and 

DDQN fine-tuned models' classification results. Figure 10a illustrates the confusion matrix 

for DQN fine-tuned, while Figure 10b demonstrates the confusion matrix for DDQN fine-

tuned. Furthermore, Figure 10c displays the confusion matrix for DQN post-processed fine-

tuned, and Figure 10d provides the confusion matrix for DDQN post-processed fine-tuned. 



16 

 

Figure 10. Confusion matrices for fine-tuned DQN and DDQN models. 

a) DQN fine-tuned, b) DDQN fine-tuned, c) DQN post-processed fine-tuned, d) DDQN 

post-processed fine-tuned. 

The figures in Figure 10 reveal that the fine-tuned models exhibit better performance 

compared to those illustrated in Figure 9. Specifically, the lowest correctly classified gesture 

in the fine-tuned models attains a performance of 93%, whereas the lowest correctly 

classified gesture in the scratch-trained models only reaches 0.73%. 

The analysis of our study between DQN and DDQN reveals subtle yet significant differences 

in their performance regarding recognition and classification tasks. DQN outperforms 

DDQN, particularly in situations without fine-tuning as it is shown in Figure 11. The chart in 

Figure 11a represents the recognition accuracy for all user-general experiments labeled 

from 1 to 7. In contrast, Figure 11b illustrates the classification accuracy for these same 

user-general experiments numbered from 1 through 7. 
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Figure 11. All user-general experiments. 

a) All user-general experiments recognition accuracies, b) All user-general experiments 

classification accuracies. 

As a final note, all relevant implementation details and source code for our research are 

available to the public through the following GitHub repository: 

https://github.com/laboratorioAI/2024_EMG_DQN_DDQN.  

https://github.com/laboratorioAI/2024_EMG_DQN_DDQN
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4 CONCLUSIONS 

This study aimed to develop real-time hand gesture recognition models using the Double 

Deep Q-Network (DDQN) reinforcement learning technique based on the EMG-EPN-612 

dataset. Through the fine-tuning phase, effective hyperparameters for both the fine-tuned 

DQN and DDQN were identified. The results showed that while our proposed models did 

not surpass the pre-existing post-processed model’s recognition accuracy, the exhibited 

recognition accuracy is superior when focusing on non-post-processed models due to the 

reward function design. Fine-tuning led to a 3.45% enhancement in DDQN and a 3.61% 

improvement with DQN model’s recognition accuracy compared to the pre-existing models. 

Additionally, fine-tuned models without processing also outperformed both the models 

trained from scratch and the post-processed models. 

In terms of classification accuracy, there was no significant difference between post-

processed and non-post-processed models. However, training a model from scratch did not 

surpass the pre-existing model in this study. Fine-tuned models augmented the 

classification accuracy of DDQN by up to 0.89%, and of DQN by 0.92%. Furthermore, fine-

tuned models that are not post-processed improved DDQN’s performance by 0.75% and 

DQN’s by 0.81%. Lastly, DQN demonstrated a better overall performance than DDQN in 

both recognition and classification tasks. 

In summary, this research aimed to develop a real-time hand gesture recognition model 

using the Double Deep Q-Network (DDQN) reinforcement learning technique based on the 

EMG-EPN-612 dataset. Through the evaluation of various hyperparameters and the 

assessment of model performance with and without post-processing, it was concluded that 

fine-tuned models exhibited superior recognition and classification accuracy compared to 

models trained from scratch and pre-existing models without post-processing. However, in 

terms of post-processed models, the pre-existing DDQN and DQN models outperformed 

the proposed ones. The accuracy outcomes suggest that fine-tuning can be an effective 

way to enhance the performance of both DQN and DDQN models. Overall, this study 

contributes to the advancement of real-time hand gesture recognition using reinforcement 

learning techniques and highlights the significance of fine-tuning for improving model 

performance.  
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4.1 Recommendations 

Based on the findings of this study, the following recommendations can be made for future 

research in the field of real-time hand gesture recognition using reinforcement learning 

techniques: 

• The results showed that fine-tuning led to improved recognition and classification 

accuracy. However, there is still room for exploring other hyperparameters and 

their impact on model performance. Conducting a more hyperparameter search 

can lead to even better models and insights into the behavior of reinforcement 

learning-based methods. 

• Furthermore, an area ripe for exploration is refining the reward function. Given its 

crucial role in shaping the model’s ultimate performance through reinforcement 

learning methods, investigating novel reward functions and their repercussions 

within this specific application could significantly enhance our understanding and 

achieve superior results.  
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