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Resumen
El aprendizaje profundo o deep learning (DL) debe trabajarse offline porque las fases de
entrenamiento y ejecución se procesan por separado. Este proceso suele requerir diferentes
computadores debido a los requisitos para obtener los modelos. Una limitación de este en-
foque es que los datos de entrenamiento no pueden incorporarse continuamente a la base de
conocimientos porque es necesario repetir un proceso de entrenamiento largo y complejo para
obtener nuevos modelos. Aunque el entorno no sea estático, es crucial entrenar dinámica-
mente los modelos integrando nueva información durante la ejecución. Las redes neuronales
de función de base radiales (RBFNN) permiten un aprendizaje continuo gracias a su alta
velocidad de aprendizaje y a su arquitectura sencilla. Estas redes se alimentan con una capa
de entrada que contiene datos transformados mediante funciones de base radial (RBF). Así,
las RBFNN permiten una interpretación directa de la función, pues cada nodo sólo tiene una
capa oculta. Esta característica puede suponer una ventaja para una mejor comprensión y
control de la red.

Este estudio analizó un enfoque de conjunto de datos dinámico añadiendo nuevos datos al
entrenamiento sobre la marcha, debido a los constantes cambios en los datos del conductor, la
información del vehículo, las condiciones ambientales y los accidentes de tráfico. El conjunto
de datos utilizado para predecir los niveles de riesgo de accidentes, se obtuvo a partir de
trabajos previos de doctorado y maestría de la Escuela Politécnica Nacional el cual contiene
información sobre eventos de conducción.

Finalmente, este trabajo compara el tiempo de procesamiento y el desempeño de Redes Neu-
ronales Convolucionales (CNN) con varios algoritmos de Aprendizaje Automático (ML), in-
cluyendo RBF, Perceptrón Multicapa (MLP) y Random Forest (RF), utilizando métricas de
evaluación de precisión, especificidad y sensibilidad-recall. Los resultados ofrecen recomenda-
ciones para nuevos modelos de predicción de accidentes.

Palabras clave: Aprendizaje Profundo, Redes neuronales de Función de Base Radial, Predic-
ción de accidentes de tránsito, Aprendizaje automático.

xii



Abstract
Deep learning (DL) must be worked offline because the training and execution phases are
processed separately. This process often requires different computers due to the requirements
to obtain the models. A limitation of this approach is that the training data cannot be con-
tinuously incorporated into the knowledge base because a long and complex training process
needs to be repeated to obtain the new models. Although the environment may not be static,
it is crucial to dynamically train models by integrating new information during execution.
Radial Basic Functions Neural Networks (RBFNN) allow for continuous learning due to their
high learning speed and simple architecture. These networks are fed with an input layer
containing data transformed using Radial Basis Functions (RBF). Thus, the RBFNN allows
for a direct interpretation of the function, with each node having only one hidden layer. This
characteristic can provide an advantage in better understanding and control over the network.

The study analyzed a dynamic dataset approach by adding new data to the training on
the fly, given the constant changes in the driver’s data, vehicle information, environmental
conditions, and traffic accidents. The dataset used to predict accident risk levels was obtained
from previous doctoral and master’s works at Escuela Politécnica Nacional that contained
information on driving events.

Finally, this study compares the processing time and performance of Convolutional Neural
Networks (CNN) with several Machine Learning (ML) algorithms, including RBF, Multilayer
Perceptron (MLP), and Random Forest (RF), using evaluation metrics of accuracy, specificity,
and sensitivity-recall. The results provide recommendations for new accident prediction mod-
els.

Keywords: Deep Learning, Radial Basis Function Neural Network, Prediction Traffic Acci-
dents, Dynamic Learning.
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Chapter 1

INTRODUCTION

Road traffic deaths and injuries continue to pose a significant challenge to global health and
development. According to WHO’s Global Status Report on Road Safety 2023 [1], road traffic
crashes are the leading cause of death among children and adolescents aged 5 to 29 years.
In 2021, an estimated 1.19 million people died due to road traffic accidents, which is a 5%
decrease from the 1.25 million deaths recorded in 2010. Even with the global motor vehicle
fleet doubling, there has been a slight overall reduction in deaths. Despite this, the cost of
mobility remains excessively high. Nine out of ten deaths occur in low- and middle-income
countries, while individuals in low-income countries continue to face the highest risk of death
per capita.

In 2023, Ecuadorian National Transit Agency (ANT) recorded 20,994 traffic accidents nation-
wide. Of these, 20.78% involved cars alone, resulting in 18,605 injuries and 2,373 fatalities.
Among cities with the largest populations, Guayaquil had the highest traffic accidents, with
4,402, followed by Quito, with 3,816 accidents [2].

These facts motivated the search for practical solutions to prevent more lives from being lost
due to traffic accidents. An interesting proposal, mentioned by Ren et al. [3], is to use the
large flow of traffic data that can be obtained and, through the use of Deep learning (DL) and
Artificial neural networks (ANN), develop predictive models to reduce the risk levels of traffic
accidents, which can be implemented in effective risk warning systems for drivers. However, it
is important to note that obtaining a good prediction accuracy of the risk of traffic accidents
is complicated because it is related to several factors, like weather or road conditions, which
affect the effectiveness [4]. Another reason is that various conditions differ from one region to
another. Tritat and Lee [5] mentioned that predicting traffic accident risk remains challenging
due to many factors contributing to accidents, including the number of vehicles on the road
and external conditions like weather, road conditions, ambient lighting, and time of day. They
also indicated that recent studies have attempted to combine various factors using complex
models to make better and more precise predictions.

ML methods have been extensively utilized in traffic prediction problems, allowing the pre-
diction of multiple crash injuries using data that includes different causes and factors from
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events on roads and streets [6]. Several studies [7], [8] have explored and analyzed various
types of ANN and concluded that the Multilayer Perceptron Neural Network (MLPNN) is
the most commonly used ANN for predicting road accidents. They also found that in some
cases, RBFNN has better predictive performance than MLPNN, but this difference could be
due to several factors.

However, Ye et al. [9] state that predicting traffic accident risk requires much data. Therefore,
many researchers have turned to DL to develop models for accident risk analysis. Modern DL
networks usually consist of tens or hundreds of successive layers to discover complex structures
in high-dimensional data and to extract hierarchical representations in feature learning [10].

DL has been called the technology that will change the world [11]. In addition to breaking
records in image recognition and speech recognition competitions, DL has produced many
interesting results in a variety of tasks, for example, natural language processing and, in
particular, topic classification, sentiment analysis, question-answering systems, and machine
translation. Also, Tian and Zhang [11] mentioned that Recurrent Neural Networks (RNN)
and CNN are the most widely used deep learning models. The Long Short-Term Memory
(LSTM) is also applied to many diverse learning problems that differ significantly in their
scale and nature from the initially tested problems [12]. An LSTM model can store previous
data and predict future risk trends, making it widely applicable in risk forecasting.

On the other hand, it is crucial to note that RBFNN is a conventional Feed-forward network
(FFN) variety [13], which is a universal approximation function. It is worth mentioning that
RBF has greater precision in describing the relationships between risk factors and accident
frequency. Moreover, the network structure, primarily denoting the number of nodes in hidden
and input layers, is a crucial aspect of neural network model development, given its significant
impact on generalization performance. RBFNN proved to have a significant advantage in
approximating, classifying, and speeding up processes [14].

1.1 Motivation
This study aims to prove that RBFNN learning is faster when only three levels (input, hid-
den layer, output layer) are applied, allowing a dynamic dataset to be used under changing
conditions. Moreover, predictions made using this second method are easily auditable, and
the results can be comparable to those achieved with DL. A key objective of this work was
to compare and evaluate these ML approaches in traffic accident risk prediction and the im-
plications of using a dynamic dataset. We have used the term dynamic dataset [15] to refer
to a process that incorporates new data of driving characteristics collected at specific time
intervals from vehicle agents, processed using relevant mechanisms and algorithms, and finally
added to the main dataset, making it changed. All this is done to acquire information on
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driving events in a real-world environment where data flows continuously.

Thus, we aim to demonstrate that using an RBFNN allows a faster validation process to obtain
new models, and its prediction performance could be comparable to other more complex ANN,
for example, DL networks, when applied to solve problems of predicting accident risk levels
using a dynamic dataset of driving event information.

1.2 Objectives
This thesis work proposes the following objectives:

- Predict traffic accident risk levels using different configurations of DL neural networks
applied to a driving dataset.

- Predict traffic accident risk levels using the same driving dataset employing RBF models.

- Evaluate the performance of both approaches using quantitative metrics.

- Compare the results obtained and recommend each technique’s use.

1.3 Hypothesis
An RBFNN with only three levels allows faster training to obtain models, and its performance
is comparable to that of other ANNs that are more complex and use DL when applied to
solving problems of predicting accident risk levels using a dataset of driving event information.

1.4 Scientific contributions
The scientific contributions are:

- Application of DL and RBFNN for predicting traffic accident risk levels using POLIDriv-
ing, a dataset with information on driving events.

- Evaluation of both approaches in performance and feasibility of application in dynamic
learning using quantitative metrics.

- Presentation of the results in a scientific paper to be submitted to a high-impact scientific
journal.
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1.5 Thesis outline
This thesis follows the structure outlined below: Chapter 2 analyzes related works. Chap-
ter 3 presents the theoretical framework. Chapter 4 describes the methods and materials
used. Chapter 5 showcases the results of the comparison between neural networks and ML
algorithms. Finally, Chapter 6 provides the conclusion and recommendations.
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Chapter 2

RELATED WORK

Building an effective traffic accident risk prediction system is important in traffic accident
prevention. However, predicting the risk of a traffic accident is difficult because many related
factors are involved [3]. For that reason, several types of research have been developed to
predict the risk of traffic accidents. This chapter presents related work that provide evidence
on this topic.

2.1 Risk prediction in traffic accidents
Agarwal [16] developed an ML approach to predict accident risk by training a CNN with
past accident data and Google Maps images of accident-prone road segments. The approach
unlocks the precise interactions of small road features that contribute to higher accident risk.
The study found that the model achieved 93% for precision, 94% for recall, and 0.86 for
F1-score, the highest values observed in this study.

Kumeda et al. [17] applied several classification algorithms to a dataset to classify three
categories of injuries: fatal, severe, and minor. The results showed that Fuzzy-FARCHD
achieved the highest accuracy at 85.94%, followed by RBFNN at 84.14%, Random Forest
(RF) at 83.42%, Naive Bayes (NB) at 80.90%, and MLPNN at 79.27%.

Moosavic et al. [18] developed a DL network model called Deep Accident Prediction (DAP).
This model includes several neural network-based components that use various data attributes
to predict accidents, including traffic events, weather data, points of interest, and time in-
formation. The maximum F1-score achieved for DAP was 0.65 compared to other baseline
models.

Zhao et al. [19] proposed a traffic accident risk forecasting algorithm based on DL for the
edge-cloud internet of vehicles. Real-time traffic data was collected and entered into a CNN
to extract features. The output of the CNN was then classified for features in an RF, enabling
the prediction of traffic accident risks. The proposed algorithm achieved an Area Under the
Curve (AUC) of 0.9921, better than the CNN-based model with an AUC of 0.9478.
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Huang et al. [20] investigated the feasibility of utilizing DL models to identify and forecast
crash occurrence. They utilized volume, speed, and sensor occupancy data obtained from
roadside radar sensors to create a feature set for the DL models. The findings indicate that
the deep model outperforms other models in crash detection and performs similarly in crash
prediction. This study utilized a CNN and achieved an accuracy of 77.34% and an F1-score
of 0.7651 with the best configuration.

Lee et al. [21] developed a risk-level accident classifier using a deep-learning method to predict
high-risk taxi drivers. The study was composed of several stages. In stage 0, data on healthy
taxi drivers were collected. In stage 1, an RF analysis was used to identify the factors that
affect the risk level of accident severity experienced by these drivers. In stage 2, an FFNN
classifier was optimized to predict the severity of the risk level of the accident. In stage 3,
the optimal model for predicting high risk was selected. Thus, the proposed FFNN model
achieved an accuracy 86% and an F1-score of 0.77.

Li et al. [22] proposed a real-time crash risk prediction model for arterials using LSTM and
CNN. The model could learn from various features, including traffic flow characteristics, signal
timing, and weather conditions. Experiments suggested that the proposed model outperforms
the sensitivity of CNN (64%) and LSTM (80%) when operating separately. The results
indicated the promising performance of using LSTM and CNN to predict real-time crash risk
on arterial roads. The achieved sensitivity was 88%, while the false alarm rate was 12%.
Additionally, the AUC value was 0.93.

Wang et al. [23] developed the Model-level Dynamic Fusion Neural Network (Model-DFNN),
which combines satellite imagery and spatiotemporal urban big data in an adaptive way
to calculate the risk levels of traffic accidents throughout the city, resulting in a risk map
that generated a visual guide when creating emergency response plans. They evaluated the
performance of different models; the accuracy obtained was RBF kernel 71.8%, RF 73.2%,
and Model-DFNN 83%, respectively.

Purkrábková et al. [24] conducted a study on the classification of traffic accident risk in urban
areas. Their objective was to propose effective traffic management solutions to minimize social
losses in cities with high traffic volume. Using an available dataset with several sources of
traffic, meteorological data, and other related data, the authors modeled an MLPNN to
address the specific traffic problem. The model achieved an accuracy of 89%, compared to
75.4% for the RF model.

Brühwiler et al. [25] investigated how the integration of different geographic context sets, like
weather conditions, points of interest, and land use, can improve various machine learning risk
assessment models for discriminating between crash and accident-free drivers. The authors
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evaluated the predictive performance of five machine learning classifiers, including Logistic
Regression (LR), RF, XGBoost, FFNN, and LSTM. The better accuracies achieved by these
models were 75.2%, 75.7%, 75.5%, 75.4%, and 55.3%, respectively. The LSTM model did not
outperform the other approaches, possibly due to insufficient training data.

Lin et al. [26] developed a model to predict high-risk intersections for traffic accidents and
prioritize areas for improvement. By analyzing the number of crashes and fatalities, this
study attempts to estimate the relative risk level of individual intersections, determine the
key risk factors, and establish an intersection risk prediction model to predict the probability
and severity of future accidents. The study compared and evaluated the following neural
networks: the better accuracy obtained was NB 71.84%, Decision Tree C4.5 (C4.5) 72.64%,
Bayesian Network (BN) 71.81%, MLP 71.94%, Deep Neural Networks (DNN) 72.92%, Deep
Belief Network (DBN) 72.62%, and CNN 72.62% for creating an accident risk prediction
model.

Kaffash et al. [27] presented a hybrid predictive model for estimating the risk of traffic
accidents using a generalized FFNN and RBFNN tuned with a Self-Organizing Map (SOM).
This predictive model, which incorporates 22 different predictor features, estimated the risk of
road accidents. A quality assessment of the proposed approach for different scenarios showed
that the predicted accident risk had a high level of accuracy: an average accuracy of 90.74%.

Park and Hong [28] proposed a risk prediction model that reflects the road’s static and
dynamic features, including its length, speed limit, traffic volume, altitude, and the azimuth
of the sun. The MLP model was tested using relevant data and achieved an accuracy of 75%
and a recall of 81%.

Wang et al. [29] developed prediction models for traffic crash risk potential using traffic-related
data. They applied the model to 7 classifiers and obtained 84 classification models. Finally,
they compared the performance of the models and proposed the optimal resampling algorithm
and classifier for predicting expressway risk potential. The best models were RF, XGBoost,
and Support Vector Machine (SVM), with accuracies of 80%, 80%, and 81%, respectively.

Using several features, Amorim et al. [30] conducted experiments with various ML algorithms
to determine the best classifier for identifying severe or non-severe accident risks associated
with Brazilian federal road hotspots. The used dataset includes the spatial footprint, weekday
and time of the accident, road type, route, orientation, weather conditions, and accident
type. They tested SVM, RF, and an XGBClassiffer. The accuracies of these approaches were
58.60%, 70.12%, and 71.25%, respectively. The MLPNN model yielded promising results,
achieving an accuracy of 83%, a precision of 84%, a recall of 83%, and an F1-score of 0.82.
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Jin and Noh [31] proposed a system based on deep learning to predict traffic accidents in
urban environments and estimate the associated risk levels using the Accident Risk Index
(ARI). They compared the accuracy of the proposed accident model (CNN-DNN) with SVM,
LR, and MLP, achieving accuracies of 94%, 90%, 88%, and 90%, respectively.

2.2 Related work analysis
The related work propose approaches that use either a static dataset or a heterogeneous source
dataset. However, these studies did not incorporate new data on the fly to train or test new
models. Additionally, most of these works do not present the time used for execution and
obtaining results.

It should be noted that the number of data sources used varied from 6 to 42. The primary
data sources were traffic accidents, including the number of fatalities, injuries, and collisions
resulting in casualties or fatalities. Weather conditions, road infrastructure, driver informa-
tion, and vehicle data were also considered. Figure 2.1 presents the related work using the
most common data sources.

Figure 2.1: Number of related work that uses the most common data sources.

The ANN most frequently used in these studies were RF and MLPNN, followed by CNN,
RBFNN, and LSTM. According to this analysis, the RBFNN is not commonly used in related
work to predict the risk level of traffic accidents. Figure 2.2 shows the most ANN used in
related work.
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Figure 2.2: ANN and algorithms commonly used in related work.

The analyzed studies also showed that CNN and MLPNN achieved the highest accuracy of
93% and 90%, respectively, while RBFNN, RF, and LSTM achieved an accuracy of 84.14%,
83.42%, and 65%, respectively. Figure 2.3 displays the accuracy of all models used in the
related work.

Figure 2.3: Accuracy obtained by ANN and algorithms in related work.

Half of the models in related work used binary classification, while the other half used mul-
ticlass classification; it is important to note that binary classification models yielded better
results than multiclass classification. The accuracy may decrease when the number of pre-
dictor classes increases. Figure 2.4 shows the relationship between the number of predictor
classes and accuracy.
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Figure 2.4: Accuracy according to the number of predictor classes.

Finally, Table 2.1 shows the resume of the analyzed related work.

Table 2.1: Resume of related work

Authors Purpose Accuracy/Results

Agarwal [16]
Develops a machine learning approach using
CNN for predicting accident risk.

Precision: 93%, Recall: 94%, F1-
score: 0.86

Kumeda et al. [17]
Compare different classifier algorithms using a
dataset of crash injury categories.

Accuracy: Fuzzy-FARCHD
85.94%, RBFNN 84.14%, RF
83.42%, NB 80.90%, MLPNN
79.27%

Moosavic et al. [18]
Propose a deep neural network model called the
DAP to predict the risk of a traffic incident.

F1-score: 0.65

Zhao et al. [19]
Propose a traffic accident risk forecasting al-
gorithm based on deep learning for edge-cloud
internet of vehicles.

AUC: 0.9921

Huang et al. [20]
Investigate the feasibility of utilizing deep
learning models to identify and forecast crash
occurrence.

Accuracy: 77.34%, F1-score:
0.7651

Lee et al. [21]
Develop a risk-level accident classifier using a
deep-learning method to predict high-risk taxi
drivers.

Accuracy: 86%, F1-score: 0.77

Li et al. [22]
Propose a real-time crash risk prediction model
for arterials using LSTM and CNN.

Sensitivity: LSTM 80%, CNN:
64%, LSTM-CNN 88%
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Table 2.1: Resume of related work (cont.)

Authors Purpose Accuracy/Results

Wang et al. [23]
Propose a model to predict the levels of risk for
traffic accidents.

Accuracy: RBF 71.8%, RF
73.2%, DFNN-model 83%

Purkrábková et al. [24]

Conducted a study on the classification of traf-
fic accident risk in urban areas. Their objective
was to propose effective traffic management so-
lutions to minimize social losses in cities with
high traffic volume.

Accuracy: MLPNN 89%, RF
75.4%

Brühwiler et al. [25]
Evaluate machine learning risk assessment
models: LR, RF, XGBoost, FFNN, and LSTM
networks.

Accuracy: LR 75.2%, RF 75.7%,
XGBoost 75.5%, FFNN 75.4%,
LSTM 55.3%

Lin et al. [26]
Develop a model to predict high-risk intersec-
tions for traffic accidents.

Accuracy: DNN 72.62%, DBN
72.62%, MLP 71.94%, CNN
72.62%

Kaffash et al. [27]
Present a hybrid predictive model for estimat-
ing the risk of road accidents.

Accuracy: 90.74%

Park and Hong [28]

Propose a risk prediction MLP model that re-
flects the road’s static and dynamic features:
length, speed limit, traffic volume, altitude,
and azimuth of the sun.

Accuracy: 75%, Precision: 73%,
Recall: 81%

Wang et al. [29]
Develop prediction models for traffic crash risk
potential using traffic-related data.

Accuracy: RF 80%, XGBoost
80%, SVM 81%

Amorim et al. [30]

Conduct experiments with various machine
learning algorithms to determine the best clas-
sifier for identifying severe or non-severe acci-
dent risks associated with Brazilian federal road
hotspots.

Accuracy: SVM 58.60%, RF
70.12%, XGBClassiffer 71.25%,
MLPNN 83%

Jin and Noh [31]
Propose a system based on deep learning to
predict traffic accidents in urban environments
and estimate the associated risk levels.

Accuracy: SVM 90%, LR 88%,
MLP 90%, CNN-DNN 94%
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Chapter 3

THEORETICAL FRAMEWORK

This chapter presents the most important conceptual components of the thesis work, focusing
on describing the ML algorithms, the ANN used, and the applied techniques.

3.1 Deep Learning
ML is a field of computer science that aims to provide machines with intelligence to perform
tasks very similar to those performed by humans [32]. ML includes several approaches, such
as supervised learning (SL), unsupervised learning (UL), reinforcement learning (RL), and
DL. SL allows for identifying relationships and dependencies from input data or features
and predicting output values through their predictor class labels. UL involves discovering
new information from a dataset without a label or predictor class. RL aims to learn how
to perform a sequence of actions in an environment that maximizes an agent’s rewards for a
given task. DL is primarily based on ANN, designed to simulate the functioning of the human
brain. Figure 3.1 shows the taxonomy of ML approaches [32].

Figure 3.1: Machine Learning approaches.

DL represents a new line of research in the field of ML [33]. It is a complex algorithm that has
achieved good speech and image recognition results and solves complex problems in pattern
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recognition. DL has enabled machines to imitate various human activities, like seeing, hearing,
and even thinking. For this reason, many researchers [9], [5] have chosen this approach to
develop risk assessment models.

3.2 Rectified Linear Unit
Rectified Linear Unit (ReLU) is an activation function widely used that adds non-linearity
to DL models and resolves the vanishing gradients problem [19]. It ranks among the most
commonly used activation functions in DL. The Equation 3.1 defined the ReLU activation
function.

ReLU(x) =

{
x(x > 0)

0(x ≤ 0)
. (3.1)

3.3 Convolutional Neural Networks
CNN is utilized for computer vision and classification tasks and is effective for processing data
with various dimensionalities based on the convolution operations applied (1D, 2D, or 3D) [7].
The CNN network comprises four main operations: convolution, pooling or subsampling, non-
linearity, and classification. These operations form the building blocks of the CNN network.
The purpose of the convolution layer is to convolve the input features and include a bias [19].
The calculation of the convolutional layer is shown in Equation 3.2.

S(i, j) = (X∗W )(i, j) =
∑
m

∑
n

x(i+m, j + n)∗w(m,n) + b, (3.2)

where X is the input feature, W is the convolutional kernel, and b is the bias.

One crucial feature of this neural network is its output with fully connected layers. The
primary reason for this implementation is its ability to classify the features of the input
data into different categories within the training dataset. Figure 3.2 shows a CNN model
architecture.

3.4 Random Forest
The RF algorithm is a simple ML classification method that can produce accurate results
without complicated hyperparameter tuning [17]. RF builds multiple decision trees (DT) and
combines them to achieve high and accurate predictions. Figure 3.3 shows the correlation
between a DT and an RF. A DT takes on a tree-like structure that enables data classification
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Figure 3.2: CNN Architecture.

[33]. The main goal of a DT is the condensation and organization of classification rules within
a training dataset.

Figure 3.3: Correlation between Decision Tree and Random Forest.

Additionally, RF can be applied to classification and regression problems in current ML
systems. It is a tree-based model, and its classification method is non-linear [29].

The RF classifier utilizes the Gini Index (GI) metric for attribute selection [30]. This index
measures the impurity of an attribute concerning classes. When selecting a case x randomly
from a given training set A and indicating that it belongs to a certain class Ci, the GI is
described in Equation 3.3.
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∑∑
j ̸=i

(f(Ci, A)/|A|)(f(Cj , A)/|A|), (3.3)

where f(Ci, A)/|A| represents the probability that the selected case x belongs to class Ci.

The RF classifier has an advantage over other decision tree methods because when using new
training data, adult trees are not pruned whenever a tree reaches maximum depth.

3.5 Radial Basis Function
The RBFNN is a type of FFNN [34], and it has a simple structure, concise training, and
quick convergence, enabling it to approximate any non-linear function [14]. For these reasons,
RBFNN has a wide range of applications. The RBFNN structure consists of an FFNN with
three layers, including a single hidden layer [35]. The first layer is the input layer, composed
of the signal source node. The second layer is the hidden layer, and the type of problem
determines the number of hidden units. The transfer function of the hidden units is a non-
linear function with radial symmetry and a non-attenuating negative relationship with the
center. The third layer is the output layer, which responds to the input mode.

The RBFNN is known for improved prediction efficiency and more stable results [14]. RBFNN
assists in quickly finding suitable prediction models that RBFNN needs tuning fewer param-
eters. The RBF networks frequently train more rapidly than back-propagation networks [8].
These networks are comparatively resilient against non-stationary inputs due to the behavior
of their hidden units employing radial basis functions. The Gaussian function is considered
the basis function of the RBF network. Therefore, the representation of the general formula
for the RBF output is described in Equation 3.4.

y(x) =

M∑
i=1

wie

(
−(||x−ci||)

2

2σ2

)
, (3.4)

where, input, output, center, width, and number of basis functions centered at ci are denoted
by x, y(x), ci, σ, and M , respectively. Similarly, weights are denoted by wi. Figure 3.4 shows
a RBF architecture [35].

3.6 Multilayer Perceptron
An MLPNN is a type of FFNN that functions sets of input data onto a set of fitting outputs.
It consists of an input layer, a hidden layer, and an output layer [17]. Each hidden layer
comprises a set of neurons that receive data from the previous layer, add weight, and then
pass it through a non-linear activation function. The first hidden layer receives data from the
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Figure 3.4: RBF Architecture.

input layer, and each successive layer follows suit. The output layer receives the last hidden
layer’s output, adds weight, and passes it through a non-linear activation function to produce
the target output. The most commonly used technique for solving non-linear problems today
is MLPNN [8]. Figure 3.5 displays the straightforward architecture of an MLPNN [8], where
xi indicates the input for the network.

Figure 3.5: MLPNN Architecture.

The Equation 3.5 represents the Multilayer Perceptron (MLP) output.

yi
(
x(j)
)
= φ

(
n∑

k=1

wikx
(j)
k + bi

)
, (3.5)

where, φ(x) is the non-linear activation function, yi is the output of i-th neuron, x(j) is the
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input of j-th layer, x(j)k is the value of k-th neuron in j-th layer, wik is the weight between
i-th neuron to k-th neuron and bi is the bias value for i-th neuron.

3.7 Mutual Information matrix
The MI matrix quantifies the non-linear dependence between two random variables [36].
Therefore, given a multivariate time series, an MI matrix can be constructed in a stationary
environment by evaluating the MI values between each pair of variables. The MI matrix is for-
mally defined in Equation 3.6. Given am-dimensional process ξ, denoted by xi(i = 1, 2, . . . ,m)

the i-th dimensional of the process measurement, then the MI matrix over ξ is defined.

M =


I(x1;x1) I(x1;x2) . . . I(x1;xm)

I(x2;x1) I(x2;x2) . . . I(x2;xm)
...

... . . . ...
I(xm;x1) I(xm;x2) . . . I(xm;xm)

 ∈ Rm×m, (3.6)

where I(xi;xj) denotes MI between variables xi and xj .

According to Shannon information theory, I(xi;xj) is defined over the join probability distri-
bution of xi and xj and their respective marginal distribution [36]. Equation 3.7 presents the
definition of I(xi;xj).

I(xi;xj) = H(xi) +H(xj)−H(xi, xj), (3.7)

where H(·) denote the entropy and H(·, ·) denotes the join entropy. In particular, I(xi;xi) =
H(xi).

In theory, the MI matrix is symmetric and non-negative. Furthermore, without any depen-
dence on the paired variables, it reduces to a diagonal matrix with the entropy of each variable
on the main diagonal.

3.8 Data Balancing
Imbalanced data significantly affects the learning process since most standard machine learn-
ing algorithms expect a balanced class distribution or an equal misclassification cost [37]. For
this reason, it was necessary to solve the dataset imbalance problem.
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Let us consider dt an imbalanced dataset with dtmin and dtmaj being the subsets of samples
belonging to the minority and majority classes, respectively. The balancing ratio of the dataset
is defined in Equation 3.8

rdt =
|dtmin|
|dtmaj |

, (3.8)

where |.| represents the cardinality of a set. The process of balancing involves resampling dt

into a new dataset dtres, such that rdt > rdtres .

3.8.1 Oversampling

With oversampling, the quantity of minority class samples is increased to match that of the
majority classes. The dataset size is increased. Oversampling can achieve balance in the data
by generating new samples in dtmin until the desired balancing ratio rdtres is reached. The
process of oversampling is depicted in Figure 3.6.

Figure 3.6: Oversampling process.

The Synthetic Minority Oversampling Technique (SMOTE) is essential for oversampling the
minority class to generate balanced datasets [38]. It achieves this by oversampling each
minority class sample and including synthetic examples along the line segments joining any
or all of the k minority class nearest neighbors. The number of neighbors from the k-nearest
neighbors is randomly selected based on the amount of oversampling required.

3.8.2 Undersampling

Undersampling reduces the number of samples in the majority class dtmaj . The quantity of
majority class samples dtmaj is reduced to match that of the minority classes, resulting in an
overall reduction in dataset size. The undersampling technique is illustrated in Figure 3.7.
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Figure 3.7: Undersampling process.

The Nearmiss method is one of the most commonly used techniques for performing dataset
undersampling [39]. Its objective is to choose a sample from the majority class nearest to
multiple samples from the minority class. The selection criterion for samples from the majority
class is the one with the smallest average distance to the three nearest samples from the
minority class.

3.9 Evaluation Metrics
One way to evaluate machine learning models is through measurements. These measurements,
commonly called evaluation metrics, allowed us to measure certain aspects, trends, or results.
Furthermore, additional techniques have been utilized to support the acquisition of evaluation
metrics for an ML model.

3.9.1 Confusion Matrix

The Confusion Matrix (CM) is used to observe the estimates of the classification possibilities of
the respective True (T) and False (F) values and the Positive (P) and Negative (N) predicted
classes [40]. True Positives (TP) occur when a positive result is predicted and the value is
also positive. False Positives (FP) occur when a positive result is predicted, but the value
is negative. False Negatives (FN) occur when a negative result is predicted, but the value is
positive. True Negatives (TN) are obtained when a negative result is predicted and the value
is negative. The values estimated by the CM [40] are detailed in Figure 3.8.

3.9.2 Classification Measurements

For classification problems, the most common metrics are Prediction Accuracy Rate (PAR),
True Positive Rate (TPR) - Sensitivity, True Negative Rate (TNR) - Specificity, F1 Score,
and AUC [40].
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Figure 3.8: Confusion Matrix values.

The metrics described in [8] were used to evaluate the effectiveness of the models developed
in this work. The Specificity (SPE) is defined in Equation 3.9. SPE is calculated by dividing
the number of correct negative predictions TN by the total number of negatives F. The
Sensitivity (SEN) is defined in Equation 3.10. SEN is calculated by dividing the number of
accurate positive predictions TP by the total number of positives T. The Accuracy (ACC) is
defined in Equation 3.11. ACC is calculated by dividing the sum of two accurate predictions,
TP + TN, by the total number of data P + N. The elapsed time (Et) in seconds is used to
calculate the training time and validate the models.

SPE =
TN

TN + FP
=

TN

N
, (3.9)

SEN =
TP

TP + FN
=

TP

P
, (3.10)

ACC =
TP + TN

TN + TP + FN + FP
=

TP + TN

P +N
. (3.11)

3.9.3 Cross-Validation

Cross-validation, a type of Monte Carlo method [41], is a data resampling technique used
to evaluate the generalization ability of predictive models and prevent overfitting to avoid
creating a model perfectly adapted to the dataset at hand but unable to generalize well to
new, unseen data. On the other hand, a simpler model may be less affected by inherent
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noise, but it may not capture the relation between variables well, resulting in underfitting.
Finding the right balance between overfitting and underfitting is crucial for achieving good
generalization performance.

Figure 3.9: Holdout method.

There are several types of cross-validation, of which the most important are the holdout
method and K-fold cross-validation [41].

Figure 3.10: K-fold method.

The Holdout method is a simple form of cross-validation. It involves dividing the dataset into
two sets: the training set and the testing set. The function approximator fits a function using
only the training set. Then, the approximator function predicts the output values for the data
in the testing set (which it has never seen before). The errors made are accumulated to give
the mean absolute test set error, which is used to evaluate the model. The method has the
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advantage of taking no longer to compute. However, its evaluation can have a high variance.
Figure 3.9 illustrates the Holdout method.

The K-fold cross-validation method improves upon the Holdout method. The data set is
divided into k subsets, and the holdout method is repeated k times. Each time, one k subset
represents the test set, and the other k-1 subsets are combined to form a training set. Then,
the average error across all k trials is computed. This method has the advantage of being
less sensitive to how the data is divided. Each data point is included in the test set once
and in the training set k-1 times. Increasing k reduces the variance of the resulting estimate.
However, this method has the disadvantage of requiring the training algorithm to be rerun
from scratch k times, resulting in k times more computation needed to make an evaluation.
This method is shown in Figure 3.10.
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Chapter 4

METHODOLOGY

This chapter outlines the research paradigm, methods and techniques, and elements used
to design the algorithm models and conduct experiments. It includes materials, computa-
tional software, a methodology overview, a dataset description, a model configuration, and
hyperparameter setup information.

4.1 Research Paradigm
This research utilized a postpositivist paradigm, known for embracing the scientific method
and allowing for a deep analysis of the quantitative approach to obtain cause-effect results. In
this manner, the research’s traceability and reproducibility are ensured.

4.2 Research Methods and Techniques
The experimental method was chosen for its scientific criteria, which allows for data collec-
tion through experimentation. This method enables the determination of causes and effects
through the analysis of quantitative variables, leading to a conclusion regarding the acceptance
or rejection of the proposed hypothesis. To support this method, statistical and comparative
analysis techniques were used to interpret and analyze the findings.

4.3 Materials
The laptop detailed in Table 4.1 was the primary tool for developing, executing, and evaluating
the ANN and classification algorithms.

Table 4.1: Hardware specifications

Hardware Specifications

Laptop

Intel Core i7-12700H CPU
1TB SSD of storage

16 GB of RAM
NVIDIA GeForce RTX 3060 GPU
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4.4 Computational Software
The software utilized in this study is outlined in Table 4.2.

Table 4.2: Required software

Type Software Version
Laptop OS Windows 11 Pro x64 bits

IDE Visual Studio Code 1.87.0
Programming language Python 3.11.4
Programming language R 2.8.2

Python Library Scikit-learn 1.3.0
Machine learning platform Tensorflow 2.15.0

4.5 Methodology overview

Figure 4.1: Project for predicting traffic accident risk levels.

This investigation is part of a larger project that aims to construct a dataset gathering in-
formation on driver’s data, vehicle information, environment conditions, and traffic accidents
in various locations throughout Quito city and its surroundings. By utilizing DL and ML
algorithms, the researchers hope to obtain models to assess the risk level of traffic accidents
and integrate them into a secure alert system that allows drivers to receive notifications about

24



their current situation via their mobile phones.

The project comprises three phases or agents: acquisition/storage, processing, and presenta-
tion. The acquisition/storage agent comprises a mobile application and an OBD2 scanner.
Its purpose is to collect information about weather conditions, traffic accident data, and a
driver’s vital sign information and store all this data in a repository.

The processing agent consists of software tools that enable the reading of available driving
data, processing it in an ML model, and reorganizing the resulting data in a repository. The
response or presentation agent is a mobile application that enables querying of data available
from a repository and presenting this information to end users, who represent the drivers that
will use this application. Figure 4.1 displays the complete context of the project mentioned
above.

This work aims to contribute to the processing phase by developing and evaluating models
that can be used to predict accident levels. Thus, similar to Kumeda [17], the primary ob-
jective of this study was to propose creating models that treated this classification problem
for predicting accident risk. These models helped predict accident risk levels by analyzing
a driving incident dataset based on various factors, including driver’s data, weather condi-
tions, deaths in accidents at the location, and car characteristics. The methodology used to
implement the different classification models of this study is described in Figure 4.2.

Figure 4.2: Overview of the proposed methodology for implementing models.

The study aims to show how feasible it is to apply a dynamic dataset approach that allows the
incorporation of new data to improve risk level prediction and generate more accurate models
for handling driver warnings. The task is to find an algorithm configuration that reduces the
time required for validation and processing when working with this dataset type.
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4.6 Dataset description
The PoliDriving dataset was used in this study, which was generated after an earlier inves-
tigation by some team members of artificial intelligence at the Escuela Politécnica Nacional
[42]. It comprises 2634 samples with 23 numerical features and one predictive class, its fields
corresponding to driver information, vehicle data, weather conditions, and traffic accidents.

The data was acquired, processed, and updated to provide a dynamic dataset that supported
the development, training, and testing of all obtained models. Table 4.3 provides a general
description of the PoliDriving dataset.

Table 4.3: Dataset description

No. Feature Description Unit Type

1 steering_angle
Vehicle steering wheel plane angle respect to the
road surface in sexagesimal degrees.

grades

2 speed Vehicle speed in meters per second. m/s
3 rpm Vehicle engine speed in revolutions per minute. rpm

4 acceleration
Vehicle acceleration in meters per second
squared.

m/s2

5 throttle_position
Sensor used to monitor the air intake of the en-
gine.

%

6 engine_temperature Temperature of the air entering the engine. °C
7 system_voltage Voltage of the vehicle’s electrical system. V

8 barometric_pressure
Pressure variable to change based on weather con-
ditions.

kPa

9 distance_travelled Distance traveled by the vehicle in one-time unit. km
10 latitude Latitude coordinates of the geographic position. λ degrees
11 longitude Longitude coordinates of the geographic position. ω degrees
12 heart_rate Number of contractions of the heart per minute. bpm

13 current_weather
Category for daily weather forecast in a specific
location.

numerical

14 temperature Forecasted temperature for a specific location. °C
15 real_feel_temperature Temperature for a specific location. °C

16 wind_speed
Relationship of the distance traveled by air con-
cerning the time spent traveling it.

m/s

17 relative_humidity Measurement of water vapor content in the air. %

18 uv_index
Ultraviolet solar radiation intensity that incident
on the Earth’s surface.

UV

19 cloud_cover
Percentage of the sky covered by clouds in a spe-
cific location, measured in octas.

octa

20 ceiling
Height of the lower level cloud layer or broken
clouds.

m

26



Table 4.3: Dataset description (cont.)

No. Feature Description Unit Type

21 pressure
Force per unit area exerted by the atmosphere at
a specific point.

inch

22 precipitation
Water that falls from the atmosphere to the
Earth’s surface.

l/m2

23 accidents_onsite
Number of deaths occurred in accidents at the
location.

deaths

4.6.1 Feature analysis

Reducing the dimension of a dataset is a critical technique in data analysis. This task is
complex because it involves reducing the number of related variables while retaining the most
important information. This reduction is necessary to improve computational efficiency and
prevent overfitting.

During the dataset analysis, feature selection was necessary to obtain an optimal set of fea-
tures. The use of Principal Component Analysis (PCA) and linear discriminant analysis
(LDA) was not considered appropriate since these techniques are particularly effective only
when the data have a linear relationship, meaning that each characteristic of the dataset can
be expressed in terms of the others. The Mutual Information matrix (MI) was used to observe
the dependence between non-linear variables.

To generate the correlation graph that simulates the objective of the MI matrix, we utilized
the cor package developed in the R programming language. This package is described in
Appendix A.1, and the corresponding code is displayed in Appendix A.2.

The scores of each feature were calculated using the mutual_info_classif function from the
Python scikit-learn library, representing the degree of dependence between each variable and
the target class. The mutual_info_classif function is described in Appendix A.3.

4.6.2 Undersampling dataset

The dataset presents the problem of imbalanced data concerning the predictor class. Imbal-
anced data significantly affects the learning process.

For preprocessing the data, the undersampling technique was used to reduce the number of
samples to the minority class to generate a balanced dataset. It was implemented utilizing
imbalanced-learn [37], an open-source Python toolkit that offers a broad array of methods
for dealing with the common issue of imbalanced datasets in pattern recognition and ML.
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Thus, the Nearmiss method version 1 was employed to balance the data [39]. Appendix A.4
describes the imbalanced-learn toolkit, while Appendix A.5 explains the Nearmiss method.

4.7 Model selection and configuration
Four approaches are analyzed to build models and evaluate their performance in classifying
accident risk levels. Based on the evidence presented in the related works analyzed in this
study, CNN, RF, and MLP networks were chosen since they are commonly used for their high
efficiency. The results obtained by these networks showed that they have a high accuracy rate
and good prediction estimates.

The objective is to compare these results against the RBF networks to test and confirm
their quality in terms of speed and accuracy. The crucial point of comparison will be the
time these algorithms require to validate and process the acquisition of new models using a
dynamic dataset.

4.8 Hyperparameters
The models tested include CNN and an RF classifier. Subsequently, two variants of the RBF
algorithm were examined, followed by the MLP classifier. The GridSearchCV class was used
from the Python scikit-learn library to adjust the best hyperparameters. The details of this
class can be found in Appendix A.6.

4.8.1 CNN model

The CNN model was implemented using TensorFlow with a 1D input layer and four 1D con-
volutional layers. The model also included a fully connected layer and a 1D output layer. The
ReLU activation function was used for the input, convolutional, and fully connected layers,
while the output layer employed the Softmax activation function. Appendix A.7 describes
the TensorFlow platform.

Additionally, all convolutional layers have a Maxpooling1D with a kernel_size. Moreover,
Dropout was finally applied to the fully connected layer. Figure 4.3 shows the configuration
of the CNN model.

4.8.2 CNN-RF model

The CNN-RF model was created using the RandomForestClassifier class from the Python
scikit-learn library. Appendix A.8 provides additional information on the RandomForest-
Classifier class. The input of the CNN-RF model is an intermediate layer (conv1D) of the
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Figure 4.3: CNN configuration.

CNN model. Figure 4.4 shows the configuration of the CNN-RF model.

Figure 4.4: CNN-RF configuration.

4.8.3 RBF models

The Gaussian function is the main base function for RBF, and it was implemented for the
two analyzed approaches. The first algorithm was implemented through the GaussianPro-
cessClassifier class and the RBF kernel from the Python scikit-learn library. The Gaussian-
ProcessClassifier class is detailed in Appendix A.9.

The second RBF approach used the C-Support Vector Classification (SVC) class from the
same Python scikit-learn library. The class SVC is described in Appendix A.10. The config-
urations of these models are depicted in Figure 4.5.
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Figure 4.5: RBF configurations.

4.8.4 MLP model

The MLPClassifier class from the Python scikit-learn library was used to implement the MLP
classifier model. The MLPClassifier class is described in Appendix A.11. The configuration
used is shown in Figure 4.6.

Figure 4.6: MLP configuration.

4.9 Implementation and evaluation models
These models were developed to assess their efficiency and performance in predicting levels of
risk for traffic accidents. All models were tested and validated using the POLIDriving dataset.
They were implemented in Python using the Visual Studio Code IDE mentioned in Appendix
A.12. The hyperparameters obtained for each model were utilized, and a cross-validation
approach with a fold of 5 was employed to evaluate each model.

The CM provided values to compute for three main metrics used in this study: ACC, SPE,
and SEN. These metrics were chosen for specific reasons. ACC validates the correctness of
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the predictions made by the developed models. SPE helps determine whether risk levels are
correctly excluded from non-risk events. In other words, it allows distinguishing between
events that appear risky but are not. Finally, using SEN allows for determining whether an
event is risky and enables assessing whether a driver is driving safely or engaging in risky
driving behavior.

The list below outlines the activities conducted to carry out each experiment:

1. Dataset

(a) The MI matrix should be applied to the dataset to generate the corresponding
correlation graph.

(b) Calculate the scores of each dataset feature using the MI matrix.

(c) Select the features with the highest scores and determine the number of features
encompassing the largest number of factors while avoiding the largest number of
related features.

(d) Finally, perform model validation using the resulting dataset.

2. Models

(a) Once the dataset has been preprocessed, apply the undersampling method.

(b) The number of predictor classes is determined, their values are coded, and all data
is normalized.

(c) The hyperparameters are then calculated, and the corresponding values are used
to create the architecture of each model.

(d) Each model is implemented in Python using the calculated hyperparameters.

(e) Cross-validation is performed using 5-fold, and in each fold, the CM values and the
corresponding evaluation metrics for each model (ACC, SPE, SEN) are obtained.

(f) Finally, the average scores for each evaluation metric computed in each fold and
for each model are obtained.

(g) In the case of the CNN model, it is necessary to save the generated model.
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Chapter 5

RESULTS

This chapter presents the study results, including feature analysis and selection, dataset
undersampling results, obtained hyperparameters, and a comparison of model performance.

5.1 Feature analysis
The MI matrix was used to identify correlations between attributes, allowing for the recogni-
tion of the main attributes in the dataset and their relationships with the target class. Figure
5.1 shows the correlation between the dataset’s features.

5.2 Feature selection
We considered the 12 most important features. Figure 5.2 describes the obtained score values
of each feature.

The significance of these characteristics lies in their ability to encompass a wide range of
factors that impact accident risk prediction and their correlation with the target class. Table
5.1 describes the selected features with the scores respectively.

Table 5.1: Selected features with the highest
score

Position Feature Score
1 distance_travelled 1.050792
2 latitude 0.860045
3 speed 0.733158
4 longitude 0.701887
5 rpm 0.447969
6 throttle_position 0.288088
7 steering_angle 0.236202
8 system_voltage 0.201812
9 accidents_onsite 0.194004
11 heart_rate 0.112412
10 engine_temperature 0.080994
12 barometric_pressure 0.077778
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Figure 5.1: Mutual Information matrix.
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Figure 5.2: Mutual information scores.

5.3 Dataset undersampling
Undersampling was necessary to balance the dataset. Figure 5.3 shows the number of samples,
480, 1155, 496, and 503, for each class in the original imbalance dataset.

The Nearmiss method version 1 mentioned in Appendix A.5 was used to balance the dataset.
This method transformed the unbalanced data into four balanced classes, each with 480
samples. These four predictor classes represent different risk levels: low, medium, high, and
very high.
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Figure 5.3: Imbalance dataset.

The POLIDriving dataset consisted of 2634 samples. However, to ensure balanced categories
of the predictor class through undersampling, the dataset was reduced to 1920 samples.

5.4 Hyperparameters tuning
The hyperparameters obtained for each model are presented in this section.

5.4.1 CNN

The architecture and the hyperparameters used for the CNN were a 1D input layer of 32
neurons and four 1D convolutional layers with 128, 64, 128, and 256 neurons, respectively.
A fully connected layer with 512 neurons and a 1D output layer. All convolutional layers
have a Maxpooling1D of 1 with a kernel_size of 3. A Dropout of 0.5 was applied to the fully
connected layer. The hyperparameters included the Adam optimizer with a learning_rate of
0.001, a beta of 0.9, and a momentum of 0.99. The testing phase consisted of 100 epochs with
a batch_size of 32. Table 5.2 presents the hyperparameters calculated for the CNN network.
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Table 5.2: CNN hyperparameters

Hyperparameters Values
1D input layer 32, ReLu

1D convolutional layer 1 128, ReLu
1D convolutional layer 2 64, ReLu
1D convolutional layer 3 128, ReLu
1D convolutional layer 4 256, ReLu
1D fully connected layer 512, ReLu

1D output layer 4, Softmax
maxpooling1D 1

dropout 0.5
kernel_size 3
optimizer adam

learning_rate 0.001
beta_1 0.9
beta_2 0.999
epsilon 1e-07

ema_momentum 0.99
epochs 100

batch_size 32

5.4.2 CNN-RF

Like input, the CNN-RF model takes an intermediate layer of the CNN network, with an
output shape of (None, 2, 256) and 98560 params. CNN-RF is a mixed model because it
utilizes a DL network and a classification algorithm. The hyperparameters considered were
a max_depth and n_estimators. The hyperparameters of the CNN-RF model are shown in
Table 5.3.

Table 5.3: CNN-RF hyperparameters

Hyperparameters Values
Input layer (None, 2, 256)
max_depth 15
n_estimators 50

5.4.3 RBF models

For the GPC-RBF model, the main hyperparameter is a composite kernel with a constant
scale (1**2) multiplied by the base kernel RBF with a length scale of 1. The SVC-RBF model
has a kernel RBF and regularization hyperparameters C of 7000 and gamma of 0.01. Table
5.4 shows the hyperparameters mentioned above.
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Table 5.4: RBF hyperparameters

Model Hyperparameters Values

GPC-RBF
kernel_type RBF

kernel 1**2
max_iter_predict 20

SVC-RBF
kernel RBF
C 7000

gamma 0.01

5.4.4 MLP

The hyperparameters utilized by the MLP model were the ReLU activation, alpha, hid-
den_layer_sizes, learning_rate, max_iter, and solver. The hyperparameters of this model
are shown in Table 5.5.

Table 5.5: MLP hyperparameters

Hyperparameters Values
activation ReLU
alpha 0.0001

hidden_layer_sizes (100,50,30)
learning_rate adaptative
max_iter 1500
solver adam

5.5 Model evaluation results
The section below outlines the evaluation metrics for each of the implemented models. It is
important to note that these results were obtained using 5-fold cross-validation.

5.5.1 CNN

The evaluation results of the CNN model are presented in Table 5.6. The results calculated
for each fold are detailed in Appendix B.1.

Table 5.6: CNN model results

Fold Accuracy Specificity Sensitivity
1 0.9270 0.9748 0.9244
2 0.8958 0.9650 0.8913
3 0.9479 0.9826 0.9478
4 0.9687 0.9895 0.9686
5 0.9661 0.9886 0.9672
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The evaluation of the model lasted 694.2 seconds.

5.5.2 CNN-RF

Table 5.7 presents the results of evaluating the CNN-RF model. Appendix B.2 presents the
evaluation metrics results obtained in each fold.

Table 5.7: CNN-RF model results

Fold Accuracy Specificity Sensitivity
1 0.9661 0.9884 0.9658
2 0.9479 0.9824 0.9484
3 0.9687 0.9895 0.9681
4 0.9609 0.9871 0.9619
5 0.9583 0.9861 0.9573

The evaluation of the model took approximately 695.9 seconds.

5.5.3 GPC-RBF

The evaluation results for the GPC-RBF model are presented in Table 5.8. The outcomes of
each fold of this model are displayed in Appendix B.3.

Table 5.8: GPC-RBF model results

Fold Accuracy Specificity Sensitivity
1 0.8958 0.9651 0.8966
2 0.9036 0.9680 0.9041
3 0.9088 0.9696 0.9097
4 0.9114 0.9705 0.9144
5 0.8880 0.9628 0.8881

The evaluation of the model took 302.3 seconds.

5.5.4 SVC-RBF

The results of the SVC-RBF model evaluation are shown in Table 5.9. Appendix B.4 presents
the results generated by this model in each fold and its respective CM.

The model was evaluated in an elapsed time of 1.7 seconds.
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Table 5.9: SVC-RBF model results

Fold Accuracy Specificity Sensitivity
1 0.9114 0.9704 0.9134
2 0.9140 0.9715 0.9130
3 0.9036 0.9681 0.9027
4 0.9348 0.9783 0.9342
5 0.9062 0.9685 0.9059

5.5.5 MLP

The evaluation results of the MLP model are presented in Table 5.10. Appendix B.5 presents
the evaluation metrics results and the respective CM for each fold.

Table 5.10: MLP model results

Fold Accuracy Specificity Sensitivity
1 0.9244 0.9744 0.9252
2 0.9088 0.9699 0.9099
3 0.9296 0.9769 0.9298
4 0.9192 0.9734 0.9177
5 0.8958 0.9654 0.8983

The model was evaluated using the cross-validation method, which took 10.7 seconds.

5.6 Comparing model results
After conducting the experiments and evaluating the presented models, this section compares
and analyzes the obtained evaluation metric values.

5.6.1 Comparing evaluation metric scores

Table 5.11 displays the evaluation metrics and the elapsed time obtained for each evaluated
model.

The results show that the CNN-RF model achieved the highest accuracy (0.9604) and better
classification capability, but it took longer to execute and evaluate (695.9 seconds) than the
other models. The CNN model achieved the second-best accuracy (0.9411) and had a similar
execution time to CNN-RF with 694.2 seconds. The MLP model achieved an accuracy
of 0.9156 and had a short execution time of 10.7 seconds. The SVC-RBF model had the
best run time, taking only 1.7 seconds. Its accuracy was also good, with a score of 0.9140,
similar to the MLP model’s accuracy. Finally, the GPC-RBF model achieved a comparable
accuracy score of 0.9016 and an execution time of 302.3 seconds.
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Table 5.11: Comparison of the model results

Model ACC SPE SEN Time (s)
CNN 0.9411 0.9801 0.9398 694.2

CNN-RF 0.9604 0.9867 0.9603 695.9
GPC-RBF 0.9016 0.9672 0.9026 302.3
SVC-RBF 0.9140 0.9713 0.9139 1.7

MLP 0.9156 0.9720 0.9162 10.7

The ACC values for the models are displayed in Figure 5.4.

Figure 5.4: Accuracy model scores.

It is important to note that while the accuracies of the rest of the models are comparable
to the best model accuracy CNN-RF with 0.9604, the SVC-RBF model in 1.7 seconds of
evaluation achieved a significant accuracy (0.9140) obtaining similar good results to MLP
and CNN models. Finally, the less-performing but not worst was the GPC-RBF model,
which achieved less accuracy with 0.9016.

Based on the analysis of SPE values, it is evident that the positional order of the models
remains unchanged. Consequently, the trend of SPE follows that of ACC. The SPE values
for the models are displayed in Figure 5.5.
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Figure 5.5: Specificity model scores.

The performance of the models about the previous evaluation metrics is consistent with that
of the SEN. The SEN values for the models are displayed in Figure 5.6.

Figure 5.6: Sensitivity model scores.

Upon analyzing these results, it is evident that two DL models, CNN-RF and CNN, stand
out in ACC, SPE, and SEN.

5.6.2 Comparing execution time

Based on the execution time, it is evident that the DL models take much more time to be
evaluated than the rest of the implemented models. The evaluation times of each model are
presented in Figure 5.7.
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Figure 5.7: Model evaluation times.

The scores obtained by the SVC-RBF model were compared to those of the CNN-RF
model. The two models obtained comparable values for SPE (0.9713 - 0.9867) and SEN
(0.9139 - 0.9603), but the training times were significantly different: 694.2 seconds for the
CNN-RF model versus 1.7 seconds for the SVC-RBF model. The MLP model has an
execution time of 10.7 seconds, a better time than the DL models, and is only a little slower
than the SVC-RBF model, which is the fastest.

5.7 Discussion
Data is the fundamental resource for any algorithm or model. The results and conclusions
can be reached depending on the dataset quality and the target. Therefore, the first issue
analyzed in this study was the dataset. Amorim et al. [30] state that SL techniques in ML have
demonstrated good results when the dataset’s most successful characteristics or attributes are
chosen.

The MI matrix was utilized to identify these attributes, which enabled the recognition of the
main attributes of the dataset and their relationships. It is noteworthy that when some mul-
tiple related attributes or attributes pertain to a common area, for example, the attributes
related to climatic conditions, selecting the most representative attribute is sufficient to avoid
the need to select the remaining related attributes. This approach also helps to reduce re-
dundancy. Sometimes, selecting a larger number of related features may not improve the
accuracy of algorithms and may even result in no advantage. Amorim et al. [30] also note
that the dataset must be balanced for an ML algorithm to be effective. This affirmation is
especially important in SL, where an imbalance in the predictor class can cause the algorithm
to favor predicting the classes with the largest number of samples while performing poorly on
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classes with fewer samples.

This study validated that prediction accuracy is poor when using an unbalanced dataset. This
problem is further complicated when dealing with a dynamic dataset that constantly adds
new information. However, techniques like undersampling can be used to maintain balance
in the number of samples for each predictor class category. The study analyzed a dynamic
dataset approach by updating only the values of a few more driving event tuples without
changing the total number of samples. The purpose was to observe if there were relevant
changes in the results and performance metrics of the models.

Nevertheless, there was no evidence to confirm that this process affects the training process;
for example, when adding new data and the correct balance of the predictor class is main-
tained, it could not be proven to impact negatively the performance or accuracy of the models
significantly. It may not be possible to obtain conclusive evidence since we did not work with
a larger amount of data. However, it is evident that when the dataset grows, the training
times increase and the prediction accuracy varies. The issue of the dynamic dataset could be
analyzed in greater depth in future work.

On the other hand, focusing on the analyzed DL, RBF, and ML models, referring firstly to
what Tian and Zhang mentioned [11], is about DL approaches; the most used DL networks
are CNN and RNN. This statement can be explained by the fact that this approach obtains
robust models and develops a good generalization of a particular problem. In this study, we
were able to provide evidence, particularly with the CNN-RF, where its prediction accuracy is
the best compared to the rest of the analyzed models; the applied cross-validation technique
indicated that the DL models, CNN, and CNN-RF obtained the best accuracy results (0.9411
and 0.9604) respectively. Hence, Ye et al. [9] also mention that many researchers in recent
times are using DL networks to create models for risk assessment and prediction.

Another aspect that is also important to mention about DL is the fact that when using the
CNN in combination with a classification algorithm like RF, the prediction accuracy increased;
so, for example, with the CNN model, a prediction accuracy of 0.9411 was obtained, while
when this same ANN was combined with the RF, this new model obtained a prediction
accuracy of 0.9604. From this fact, we can also affirm that a CNN could obtain better results
when working with another algorithm, at least if it is a classification algorithm.

However, the critical aspect discussed of these DL approaches is the time consumed to eval-
uate and train models. For example, in this research, we observed that the CNN-RF needs
approximately 695.9 seconds to validate a prediction model by classification using a relatively
small dataset (1920 samples), compared to the SVC-RBF, the best time execution model ob-
tained, whose run time is only 1.7 seconds. With this evidence, an RBF approach allows faster
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training even though these models do not always achieve good generalization and robustness
in solving specific problems that could be scaled in magnitude and complexity. However,
the scores obtained by the SVC-RBF model were compared to those of the CNN-RF model.
The two models obtained comparable values for SPE (0.9713 - 0.9867) and SEN (0.9139 -
0.9603), but the training times were significantly different: 694.2 seconds for the CNN-RF
model versus 1.7 seconds for the SVC-RBF model.

Finally, it should be noted that the MLP model also obtained good efficiency performances,
with an accuracy of 0.9156. Its execution time is quite fast, taking only 10.7 seconds for its
evaluation. These experiments suggest that the SVC-RBF model can be used to evaluate and
predict traffic accident risk levels quickly and effectively.
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Chapter 6

CONCLUSIONS

Traffic accidents represent a significant threat to human life and a daily danger. Therefore,
new tools and technologies are needed to enhance a driver’s prediction and risk measurement
capabilities while using transportation. Developing IA models has enabled us to determine
accident risk values previously unknown in our environment. These data allow us to identify
the riskiest points or those with a higher risk level in each stretch of road. The implemented
configurations with DL and ML approaches were tested with a dataset of driving events of
traffic accident levels. This process allowed the generation of prediction models for these
risk levels. Comparing and evaluating these approaches showed that RBF models were faster
in evaluating prediction than DL models. This study concluded that RBFNN models are
simpler in configuration and have fewer hyper-parameters to consider, contrary to DL network
configurations.

Furthermore, RBF allows faster training and comparable efficiency. This fact is advanta-
geous because when using a dynamic dataset that will continuously be updated with new
information, RBF allows us to quickly obtain new predictive models, thereby improving the
predictive capabilities with new information. The advantage of working with a dynamic
dataset is adapting this new information to generate more accurate and useful predictions.
Hence, the advantage of having an RBF model is that it allows us to find new prediction
models agilely, even in real-time, due to its processing speed.

The DL models showed the best performance results than the other models. It is evident
that the predictive ability of DL models stands out, and they approach optimal values for
a predictive model. However, the most crucial drawback of the DL approach is that the
time required to test and train a model is high, and it is estimated that it tends to increase
according to the greater amount of information in the dataset used. For example, in this study,
a dataset that can be considered small has been used, and it has already been confirmed that
the times used by the DL models implemented for evaluation and training are high. The MLP
model proved to be a good prediction model; its execution times are very good compared to
the DL models and only a little slower when compared to the RBF models.

This work is part of a larger project; therefore, this contribution has been made precisely
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to discover the optimal models that can be used for the project’s plans. The study’s main
contribution was finding fast and efficient models for predicting accident risk levels since these
models are expected to be implemented on a cloud server. When comparing the CNN, RF,
RBF, and MLP models, it was evident that the RBF model performed the best, presenting
the best execution time and comparable performance and prediction efficiency.

Finally, this study will enable the development of new RBF-oriented models to achieve more
accurate predictions of high-risk events and traffic accidents. It will also help drivers make
better decisions to avoid tragic accidents in our city.

The main limitation of this study was that a relatively small dataset was used for the experi-
mentation due to the amount of data collected and the balancing process. However, this is real
information on driving events obtained from the Quito city’s roads and surroundings, data
that cannot be obtained from any other source. This fact represents progress in generating
predictive models, allowing us to issue risky driving alerts in our environment.

Future work on this topic would involve fully implementing the dynamic dataset and incor-
porating new data from time to time to evaluate the behavior and execution times when
using RBF models to generate predictive models. Furthermore, other approaches can further
improve the prediction of accident risk levels.
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Appendix A

Development software, packages,
and code lines

A.1 cor R package
cor compute the variance of x and the covariance or correlation of x and y if these are vectors.
If x and y are matrices, then the covariances (or correlations) between the columns of x and
the columns of y are computed.

Usage

cov (x , y=NULL, use=” everyth ing ” , method=c ( ” pearson ” , ” kenda l l ” , ”
spearman” ) )

Parameters
x: A numeric vector, matrix, or data frame.
y: NULL (default) or a vector, matrix, or data frame with compatible dimensions to x. The
default is equivalent to y = x (but more efficient).

A.2 MI correlation graph code
This line of code was implemented in the R programming language to generate the MI matrix
graph.

l ibrary ( r eadx l )
l ibrary ( c o r r p l o t )
l ibrary ( RColorBrewer )

datos <− read . csv ( f i l e = ”C: /Users/Cr i s t i an/Documents/EPN/Maestr ía
en Computación/OneDrive − Escuela Po l i t é c n i c a Nacional/2022−B/
Tes i s/Dataset/20221215_151443_c l u s t e r i n g . csv ” )

datos <− datos [ , c (

i



” s t e e r i n g_ang le ” , ” speed ” , ”rpm” , ” a c c e l e r a t i o n ” , ” t h r o t t l e_
po s i t i o n ” , ” eng ine_temperature ” , ” system_vo l tage ” , ”
barometr ic_pre s su r e ” , ” d i s t ance_t r a v e l l e d ” , ” l a t i t u d e ” , ”
l ong i tude ” , ” heart_r a t e ” , ” cur rent_weather ” , ” temperature ” ,
” r e a l_f e e l_temperature ” , ”wind_speed ” , ” r e l a t i v e_humidity ” ,
”uv_index ” , ” c loud_cover ” , ” c e i l i n g ” , ” p r e s su r e ” , ”
p r e c i p i t a t i o n ” , ” a c c i d en t s_on s i t e ” ) ]

# Corre l a t i on Graph
png ( he ight = 1024 , width = 1024 , f i l e = ”C: /Users/Cr i s t i an/

Documents/EPN/Maestr ía en Computación/OneDrive − Escuela
Po l i t é c n i c a Nacional/2022−B/Tes i s/Images/MI_matrix . png” )

co r r <− round( cor ( datos ) , 1)

mi_matrix . plot <− c o r r p l o t ( corr ,
type = ”upper ” ,
i s . c o r r = FALSE,
order = ” hc lu s t ” ,
addCoef . col = TRUE,
method = ” square ” ,
col = colorRampPalette (c (

brewer . pa l (7 , ” Set2 ” ) [ 2 ] ,
”white ” , brewer . pa l (7 , ” Set2 ” ) [ 1 ]

) ) (100) ,
t l . col = ” black ” ,
t l . s r t = 60 ,
number . cex = 0 .75 ,
diag = TRUE

)
mi_matrix . plot
dev . of f ( )

A.3 mutual_info_classif Python function
Estimate Mutual Information for a discrete target variable. MI between two random variables
is a non-negative value, which measures the dependency between the variables. It equals
zero if two random variables are independent, and higher values mean higher dependency.
The function relies on nonparametric methods based on entropy estimation from k-nearest
neighbor distances.
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Usage

sk l e a rn . f e a t u r e_ s e l e c t i o n . mutua l_ in fo_c la s s i f (X, y )

Parameters
X: (n_samples, n_features) Feature matrix.
y: (n_samples,) Target vector.

A.4 imbalanced-learn Python toolkit
Imbalanced-learn is an open-source, MIT-licensed library that relies on scikit-learn (sklearn)
and provides tools for classification with imbalanced classes.

A.5 Nearmiss Python method
Class to perform undersampling based on NearMiss methods.

Usage

imblearn . under_sampling . NearMiss ( sampl ing_strategy=’ auto ’ , v e r s i on
=1, n_neighbors=3)

Parameters
sampling_strategy: Sampling information to sample the dataset.
version: Version of the NearMiss to use, possible values are 1, 2, or 3.
n_neighbors: Neighborhood size to consider to compute the average distance to the minority
point samples.

A.6 GridSearchCV Python class
Exhaustive search over specified parameter values for an estimator. The estimator parameters
used to apply these methods are optimized by cross-validated grid search over a parameter
grid.

Usage

sk l e a rn . mode l_se lect ion . GridSearchCV ( est imator , param_grid , s c o r i ng
=None )

Parameters
estimator: This is assumed to implement the scikit-learn estimator interface.
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param_grid: Dictionary with parameters names (str) as keys and lists of parameter settings
to try as values.
scoring: A strategy to evaluate the performance of the cross-validated model on the test set.

A.7 TensorFlow
TensorFlow is an end-to-end open source platform for ML. TensorFlow makes it easy to create
ML models.

Installation

# Current s t a b l e r e l e a s e f o r CPU and GPU
pip i n s t a l l t en so r f l ow

A.8 RandomForestClassifier Python class
It is a random forest classifier. A random forest is a meta-estimator that fits several deci-
sion tree classifiers on various sub-samples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting. Trees in the forest use the best-split strategy.

Usage

sk l e a rn . ensemble . RandomForestClass i f i e r ( n_est imators=100 , c r i t e r i o n
=’ g i n i ’ , max_depth=None , )

Parameters
n_estimators: The number of trees in the forest.
criterion: The function to measure the quality of a split.
max_depth: The maximum depth of the tree.

A.9 GaussianProcessClassifier Python class
Gaussian process classification (GPC) based on Laplace approximation. Internally, the Laplace
approximation approximates the non-Gaussian posterior by a Gaussian.

Usage

sk l e a rn . gauss ian_process . Gau s s i anP ro c e s sC l a s s i f i e r ( k e rne l=None ,
max_iter_predict=100)

Parameters
kernel: The kernel specifies the covariance function of the GP.
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max_iter_predict: The maximum number of iterations in Newton’s method for approximating
the posterior during prediction. Smaller values will reduce computation time at the cost of
worse results.

A.10 SVC Python class
C-Support Vector Classification. The implementation is based on libsvm. The fit time scales
at least quadratically with the number of samples and may be impractical beyond tens of
thousands of samples.

Usage

sk l e a rn . svm .SVC(C=1.0 , k e rne l=’ rb f ’ , gamma=’ s c a l e ’ )

Parameters
C : Regularization parameter. The strength of the regularization is inversely proportional to
C. It must be strictly positive.
kernel: Specifies the kernel type to be used in the algorithm. If none is given, rbf will be
used. If a callable is given, it is used to pre-compute the kernel matrix from data matrices;
that matrix should be an array of shapes (n_samples, n_samples).
gamma: Kernel coefficient for rbf, poly, and sigmoid.

A.11 MLPClassifier Python class
Multi-layer Perceptron classifier. This model optimizes the log-loss function using LBFGS or
stochastic gradient descent.

Usage

sk l e a rn . neural_network . MLPClass i f i er ( h idden_layer_s izes =(100 ,) ,
a c t i v a t i o n=’ r e l u ’ , s o l v e r=’adam ’ , alpha =0.0001 , max_iter=200 ,
l ea rn ing_rate=’ constant ’ , )

Parameters
hidden_layer_sizes: The ith element represents the number of neurons in the ith hidden layer.
activation: Activation function for the hidden layer.
solver: The solver for weight optimization.
alpha: Strength of the L2 regularization term. When added to the loss, the L2 regularization
term is divided by the sample size.
max_iter: Maximum number of iterations.
learning_rate: The initial learning rate used.
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A.12 Visual Studio Code IDE
Visual Studio Code is a lightweight but powerful source code editor that runs on your desktop
and is available for Windows, macOS, and Linux. It has built-in support for JavaScript,
TypeScript, and Node.js and a rich ecosystem of extensions for other languages and runtimes
(C++, C#, Java, Python, PHP, Go, and NET).

Installation

• Download the Visual Studio Code installer.

• Once it is downloaded, run the installer. The installation will only take a minute.
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Appendix B

Model evaluation results

B.1 CNN model

Accuracy: 0.9270
Specificity: 0.9748
Sensitivity: 0.9244

Figure B.1: 1-Fold CNN
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Accuracy: 0.8958
Specificity: 0.9650
Sensitivity: 0.8913

Figure B.2: 2-Fold CNN

Accuracy: 0.9479
Specificity: 0.9826
Sensitivity: 0.9478

Figure B.3: 3-Fold CNN
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Accuracy: 0.9687
Specificity: 0.9895
Sensitivity: 0.9686

Figure B.4: 4-Fold CNN

Accuracy: 0.9661
Specificity: 0.9886
Sensitivity: 0.9672

Figure B.5: 5-Fold CNN
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B.2 CNN-RF model

Accuracy: 0.9661
Specificity: 0.9884
Sensitivity: 0.9658

Figure B.6: 1-Fold CNN-RF

Accuracy: 0.9479
Specificity: 0.9824
Sensitivity: 0.9484

Figure B.7: 2-Fold CNN-RF
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Accuracy: 0.9687
Specificity: 0.9895
Sensitivity: 0.9681

Figure B.8: 3-Fold CNN-RF

Accuracy: 0.9609
Specificity: 0.9871
Sensitivity: 0.9619

Figure B.9: 4-Fold CNN-RF
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Accuracy: 0.9583
Specificity: 0.9861
Sensitivity: 0.9573

Figure B.10: 5-Fold CNN-RF

B.3 GPC-RBF model

Accuracy: 0.8958
Specificity: 0.9651
Sensitivity: 0.8966

Figure B.11: 1-Fold GPC-RBF
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Accuracy: 0.9036
Specificity: 0.9680
Sensitivity: 0.9041

Figure B.12: 2-Fold GPC-RBF

Accuracy: 0.9088
Specificity: 0.9696
Sensitivity: 0.9097

Figure B.13: 3-Fold GPC-RBF
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Accuracy: 0.9114
Specificity: 0.9705
Sensitivity: 0.9144

Figure B.14: 4-Fold GPC-RBF

Accuracy: 0.8880
Specificity: 0.9628
Sensitivity: 0.8881

Figure B.15: 5-Fold GPC-RBF
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B.4 SVC-RBF model

Accuracy: 0.9114
Specificity: 0.9704
Sensitivity: 0.9134

Figure B.16: 1-Fold SVC-RBF

Accuracy: 0.9140
Specificity: 0.9715
Sensitivity: 0.9130

Figure B.17: 2-Fold SVC-RBF
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Accuracy: 0.9036
Specificity: 0.9681
Sensitivity: 0.9027

Figure B.18: 3-Fold SVC-RBF

Accuracy: 0.9348
Specificity: 0.9783
Sensitivity: 0.9342

Figure B.19: 4-Fold SVC-RBF
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Accuracy: 0.9062
Specificity: 0.9685
Sensitivity: 0.9059

Figure B.20: 5-Fold SVC-RBF

B.5 MLP model

Accuracy: 0.9244
Specificity: 0.9744
Sensitivity: 0.9252

Figure B.21: 1-Fold MLP
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Accuracy: 0.9088
Specificity: 0.9699
Sensitivity: 0.9099

Figure B.22: 2-Fold MLP

Accuracy: 0.9296
Specificity: 0.9769
Sensitivity: 0.9298

Figure B.23: 3-Fold MLP
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Accuracy: 0.9192
Specificity: 0.9734
Sensitivity: 0.9177

Figure B.24: 4-Fold MLP

Accuracy: 0.8958
Specificity: 0.9654
Sensitivity: 0.8983

Figure B.25: 5-Fold MLP
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