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ABSTRACT

Working on hand gesture recognition is important as it enables seamless human-computer

interaction, enhances accessibility in various domains, and opens avenues for innovative

applications in fields such as healthcare, gaming, and virtual reality. This thesis explores the

field of hand gesture recognition, utilizing infrared information and a set of machine learning

and deep learning algorithms. Within the domain of machine learning, a diverse set of al-

gorithms are evaluated, including Artificial Neural Network (ANN), Support Vector Machine

(SVM), k-Nearest Neighbors (KNN), and Decision Trees (DT). We also use the following

deep learning algorithms: Convolutional Neural Networks (CNNs), Recurrent Neural Net-

works (RNNs), and bidirectional Long-Short-Term Memory (BiLSTM), aiming to determine

their potential to improve hand gesture recognition performance. The thesis commences

by addressing the intricacies of hand gesture recognition. This task is far from trivial, as it

involves complex challenges associated with classification and pattern recognition. Among

these challenges are the variability in hand shapes and sizes, occlusions, dynamic move-

ment patterns, and the necessity for robustness to diverse environmental conditions. Then,

we develop a Systematic Literature Review (SLR). Within the corpus of examined works, we

have rigorously assessed the models’ structure, types and quantity of gestures recognized

by these models, the dataset construction, and the sample size of the datasets. We have

also analyzed the sensor technology, the model accuracy, and the computational processing

time associated with these models. Through this exhaustive review, we have synthesized

a comprehensive understanding of the state of the art of the field of hand gesture recogni-

tion using infrared information. This work involved building a dataset using the Leap Motion

Controller sensor. This dataset was created to training and testing our proposed models.

Our dataset comprises an extensive collection of data points obtained from 56 participants,

encompassing a diverse set of 9 static and dynamic gestures. This dataset is composed

of total of 15,120 individual samples, divided into 8,400 static samples and 6,720 dynamic

samples. With this dataset as a foundation, the subsequent chapters delve into model de-

velopment and evaluation. Also, this thesis focuses on evaluating hand gesture recognition

xii



models using feature selection and extraction methods, employing traditional machine learn-

ing algorithms as: ANN, SVM, kNN, and DT. Meanwhile, we evaluate models with automatic

feature extraction via CNN and memory-enhanced models utilizing BiLSTM. These features

are also evaluated in ANN, SVM, and Softmax classifiers. In conclusion, the model employ-

ing BiLSTM for feature extraction and evaluated with ANN attains a recognition accuracy

of 95.73%. Conversely, the model utilizing CNN for feature extraction and assessment with

ANN achieves a recognition accuracy of 91.67%. Notably, these accuracies significantly

diverge from the automatically extracted features evaluated with ANN, which yield a recog-

nition accuracy of 83.23%.

Keywords -

Hand Gesture Recognition, Leap Motion Controller, Feature Selection, Feature Extrac-

tion, Deep Learning
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PROLOGUE

The integration of artificial intelligence into daily lives encourages the exploration of technolo-

gies that facilitate engagement with this dynamic field. The field of hand gesture recognition

is an open way to communicate without words and is a fascinating challenge to researchers.

Imagine a future where we can control our devices, communicate with each other, and even

play games using our hands alone.

Hand gesture recognition is a complex task that requires Machine Learning to solve. This is

because the human hand has many degrees of freedom and can be used to make an infinite

variety of gestures. Additionally, hand gestures can vary depending on cultural background,

individual style, and even the environment in which they are performed.

Despite these challenges, machine learning has significantly progressed in hand gesture

recognition in recent years. This is due to many studies carried out about research methods

of feature extraction and selection, as well as the development of new algorithms, using clas-

sic machine learning and deep learning, where these algorithms can learn complex patterns

from data.

The output of a hand gesture recognition system has great potential to be used in a wide

range of applications. For example, it could be used to control devices such as computers,

smartphones, and TVs. It could also be used to communicate with people with impairments

at speaking or writing. Additionally, hand gesture recognition could be used to create new

and innovative games and entertainment experiences.

In this context, in this thesis we present a comprehensive analysis of the state of the art in

hand gesture recognition, including feature extraction and feature selection methods. I also

analyze the development of hand gesture recognition models and the behavior with both

classical machine learning algorithms and deep learning algorithms.

xiv



Chapter 1

Problem Description

Contents

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Document description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

This chapter provides an overview of real-time hand gesture recognition models using

infrared information and machine learning algorithms. We present a description of the prob-

lem, the objectives that drive the development of the study. Finally, we present the organi-

zation of this thesis.

1.1. Problem Description

Gestures are natural expressions of the body that people widely use to communicate [1].

However, hand gestures are considered to be movements performed in the form of uncon-

ventional language. Hand gestures are especially used by hearing or speech-impaired peo-

ple for communication [2]–[4], including the growing demand for more natural and intuitive

human-machine interfaces. In [5], it is mentioned that 93% of people use unconventional

or non-verbal communication in their daily lives. Hand gesture recognition involves tracking

hand movements and retrieving information describing a gesture.

In the modern world, touch-free interaction has become increasingly relevant, especially

in contexts where hygiene and the reduction of touch surfaces are priorities. Interfaces

1



based on hand gestures offer an intuitive and efficient way to control electronic devices, vir-

tual and augmented reality systems, and medical and rehabilitation applications. However,

one of the main challenges is to achieve accurate and robust gesture recognition in various

environmental conditions and with different users.

In this context, the problem of hand gesture recognition systems has been of great in-

terest to the research community. This is not a trivial problem because it is related to the

problem of pattern recognition and feature extraction. Gesture recognition consists of feed-

ing a set of features into a classifier. Classification tasks involve assigning predefined labels

or categories to input data based on its features, with algorithms learning to categorize them

into predefined classes. Recognition tasks entail multiple classification processes because

the recognition returns the class to which the gesture belongs and the instant in which the

gesture was performed. While both tasks involve making predictions about input data, their

objectives differ significantly: classification centers on label assignment, whereas recogni-

tion emphasizes pattern identification.

The metric for evaluating the recognition is shows in the following expression ρ = 2 ∗
|A∩B|
|A|+|B| ; where A and B represent vectors of data. A is original signal and B is classified

signal. Both the original signal A and the classified signal B, are aligned to determine the

validity of the recognition. Also, we have defined a threshold. The threshold is 0.25 τ = 0.25.

This value is used to confirm the recognition. If the signals intersect, and the value of the

intersection is higher than the threshold τ = 0.25, the signal is accepted as recognized

ρ ≥ τ . On the other hand, the signal will be unrecognized if the signals do not intersect.

The output of a hand gesture recognition system can be used in other systems or in other

fields such as: medicine [6], [7], virtual reality [8], [9], sign language communication [10],

[11], human-machine interaction [12], [13], human-robot interaction, among others.

The researchers in the attempt to solve the hand gesture recognition problem have pro-

posed the use of different types of sensors. The proposed sensors are: Gloves, RGB cam-

eras, electromyographic, electroencephalographic, and infrared sensors. Using gloves can

be uncomfortable for hand movements because it is external artifact that could affect the

movements. The use of RGB cameras involves dealing with problems such as segmen-

tation problems, finger occlusion, and illumination changes. The electromyographic and

electroencephalographic sensors face problems such as noise generated by the sensors or

the environment, signal variation in the electrodes due to sweating, and putting and taking

off the sensors. In this context, infrared sensors are an alternative for implementing hand

gesture recognition models because these devices do not have the problems described
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above. We use the Leap Motion Controller (LMC) in the present project. LMC is a special-

ized hand-tracking device that provides spatial position, directions, and images. It is also a

very accurate, inexpensive, and portable.

In addition, the use of infrared signals in combination with machine learning algorithms

enables the creation of adaptive systems that can learn and improve over time, adapting to

individual user variations and changing environmental conditions. This not only improves the

usability and acceptance of these technologies, but also opens the door to new applications.

Researchers have proposed different models to solve the hand gesture recognition prob-

lem. A hand gesture recognition model consists of different modules: data acquisition, pre-

processing, feature extraction, classification, and post-processing. In the model, the classi-

fier could be designed using machine learning, especially when finding a mathematical or

statistical model of hand gesture is very difficult or even impossible. Finding a mathematical

model of hand gesture requires knowing the dynamics of the problem, and the problems

are usually complex in their behavior. The statistical model of hand gesture must take into

account all the variables involved in the problem and what is the behavior.

In the context of hand gesture recognition using the LMC, the problems encountered in

the scientific literature are the following:

1. Lack of public datasets containing spatial positions, directions, velocities, and images

2. Lack of protocols for data acquisition with the LMC

3. Lack of recognition algorithms, only classification algorithms are reported

4. Decrease in model performance due to finger occlusion

5. Decrease in model performance due to excessive feature extraction functions

The problems to be solved in this work are 1, 3, and 5. Figure 1.1 shows the scheme of

how the thesis is developed to cover the problems encountered. In relation to problem 1, a

dataset will be created because the datasets presented in the scientific literature are gen-

erated for specific problems. In addition, the existing datasets are generated with very few

users, which could lead to a problem of lack of generalization of the algorithms. Problem 3

is studied because many authors report the classification problem as a recognition problem.

Finally, problem 5 is addressed because feature selection and feature extraction are directly

related to the accuracy of the recognition models. In addition, the hand gesture recognition

problem treated with machine learning algorithms works in a scenario very close to overfit-
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ting. This is because these kinds of problems have a high dimensionality. In this sense, it is

necessary to address the problem of feature selection and extraction.

Figure 1.1: Scheme for the development of this thesis

1.2. Objectives

1.2.1. General Objective

Develop hand gesture recognition models using machine learning and information acquired

with the LMC to achieve high classification accuracy and real-time recognition.

1.2.2. Specific objectives

• Investigate how the number of features affects hand gesture recognition models’ clas-

sification and recognition accuracy and processing time.

• Investigate how parameters and hyper-parameters of classification algorithms affect
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classification and recognition accuracy.

• Investigate the architecture of hand gesture recognition models based on parametric,

non-parametric, and deep learning algorithms.

1.2.3. Contribution of the thesis

1. Generation of a dataset of signals acquired with the LMC, using 56 users, each user

repeating each gesture 5 times, for a total of 9 gestures: 5 static and 4 dynamic ges-

tures.

2. Systematic literature review on hand gesture recognition models using machine learn-

ing algorithms and infrared information.

3. Evaluation of manual feature selection and feature extraction methods to achieve high

accuracy on the hand gesture recognition model using infrared signals and machine

learning algorithms.

4. Evaluation of the classifier that best matches the manual features obtained in the pre-

vious step and achieves high accuracy on the hand gesture recognition model using

infrared signals and machine learning algorithms with real-time processing.

5. Evaluation of automatic feature extraction techniques in advancing the performance

and time of processing of hand gesture recognition systems.

6. Evaluation of models employing both manual and automatic feature extraction tech-

niques to determine the most suitable approach for addressing the problems of hand

gesture recognition using real-time infrared signals.

1.3. Document description

In this thesis, we developed a comprehensive systematic literature review (SLR) that is pre-

sented in chapter 2. This SLR analyzes several HGR models proposed in the scientific

literature. The topics analyzed include the structure of the models, the types and number of

gestures, the construction of the datasets, the number of samples obtained, the type of sen-

sors used, the accuracy of the models, and the processing time. In chapter 3, we present a

dataset where the data were acquired using the LMC sensor. The dataset comprises sam-
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ples from 56 subjects, consisting of 9 static and dynamic gestures, with a total of 15,120

acquired samples, including 8,400 static and 6,720 dynamic samples.

In addition, in chapter 4, we present the evaluation of a hand gesture recognition model

using feature extraction and feature selection methods.This chapter evaluates methods of

feature selection as: Maximum Relevance and Minimum Redundancy (MRMR), Sequential,

Neighbor Component Analysis without Parameters (NCAsp), Neighbor Component Analysis

with Parameters (NCAp), Relief-F, and Decision Tree (DT), using traditional classifiers as

artificial neural networks (ANN), support vector machine (SVM), k near neighbors (KNN),

and decision trees (DT).

Chapter 5 evaluates hand gesture recognition models incorporating automatic feature

extraction together advanced deep learning algorithms. This chapter critically examines the

performance of CNN and BiLSTM networks when coupled with Softmax, ANN, and SVM in

the final layer. By rigorously assessing the behavior and efficacy of these architectures in the

context of gesture recognition, valuable insights are gleaned into their respective strengths

and weaknesses. Furthermore, in this chapter we compare the results obtained from the

evaluation of manual feature extraction in chapter 4 and the results obtained from the eval-

uation of automatic feature extraction in HGR model. Finally, in chapter 6, presents the

conclusions.
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Chapter 2

Systematic literature review

Contents

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Literature review of hand gesture recognition using machine learning and

infrared information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Planning phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Conducting phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Reporting phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Problems found in the literature review . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 The lack of public datasets containing spatial position, direction and

image data captured by the LMC . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The lack of protocols to acquire data with the LMC . . . . . . . . . . 24

2.3.3 The absence of recognition algorithms . . . . . . . . . . . . . . . . . 25

2.3.4 Decrease of model performance due to finger occlusion. . . . . . . . 25

2.3.5 Decrease of model performance due to excess features. . . . . . . . 25

2.4 Problems to investigate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 The absence of recognition algorithms . . . . . . . . . . . . . . . . . 26

2.4.2 Decrease of model performance due to excess features . . . . . . . 27

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1. Abstract

This chapter presents a systematic literature review on hand gesture recognition (HGR) us-

ing machine learning and infrared information. The SLR is used to place the problem in its
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proper context within the scientific literature. In this sense, this SLR is performed to verify the

state of the art of existing HGR models. In addition, this SLR is performed using the Kitchen-

ham methodology. This study reviews the architecture of the proposed HGR models in the

scientific literature, also analyzes the types and quantity of gestures used for developing the

models. It also analyzes the protocols for the acquisition and evaluation of data, the types of

sensors used, and the datasets used for model development. Also, this chapter shows the

types of learning that have been used to train HGR models, the processing time, and the

accuracy of HGR models. We also analyze the methods of preprocessing, feature extraction

techniques, and classification algorithms used. Finally, based on the systematic literature

review, we present a list of gaps found and describe the problems that are investigated in

this thesis.

2.2. Literature review of hand gesture recognition using machine

learning and infrared information

Corporal or facial movements are considered a type of gesture used to communicate with

other people [14]. Hand gestures are widely used, especially in non-verbal communication.

These types of gestures transmit emotion and feelings or execute tasks in human-machine

environments. This has resulted in a field of high interest to researchers, especially in the

computer science area.

Hand gesture recognition (HGR) is not a trivial problem. This consists of identifying the

type of gesture executed and the time when the gesture is performed. In this sense, HGR

is considered a problem of feature extraction and pattern recognition [15]. The response

of an HGR system can be used as an input signal for the operation of systems such as:

Human-computer interaction [16], [17], robotics [18], sign language translation [19]–[22],

virtual reality [23], [24], augmented reality [25], medicine [26], [27], among others.

The an SLR is considered a secondary study, which systematically reviews primary stud-

ies related to research questions. An SLR aims to recover information that answers the

research questions, leaving the possibility of adding scientific evidence [28]. Additionally, it

allows the researchers to know how a problem has evolved and the depth with which it has

been investigated.

For developing this SLR, we use the Kitchenham methodology. This methodology presents

three phases: planning, conducting, and reporting. Figure 2.1 illustrates the phases and

8



subphases recommended by the Kitchenham methodology.

Figure 2.1: Phases of the Kitchenham methodology

2.2.1. Planning phase

In this phase, we reviewed secondary studies related to the problem and defined the protocol

for performing the SLR. A secondary study involves the analysis and synthesis of existing

data or literature to address specific research questions or objectives. These studies play

a crucial role in aggregating knowledge, identifying gaps or inconsistencies in the literature,

and generating new insights for further investigation.

Identification the need to develop an SLR

We developed a comprehensive search for secondary works on the hand gesture recognition

problem using machine learning and infrared information. The search for secondary sources

aimed to identify compilations and commentaries related to primary empirical research on

hand gesture recognition using machine learning and infrared data. This attempt serves

both to address research questions and to provide guidance for further investigation. In this

study, we used specific search strings that included the following terms: systematic literature

9



review, state of the art, review, survey, hand gesture recognition, tracking, machine learning

and infrared. The selection criteria for the papers reviewed in this section include papers

published in reputable journals and conferences, and retrieved from the following databases:

IEEEXplorer, ACM Digital Library, Willey Online Library, Science Direct, and Springer.

The following search string was used: (((hand AND gesture AND (recognition OR track-

ing)) AND "machine learning") AND (infrared OR ("infrared information")) AND (("systematic

literature review") OR ("state of the art") OR review OR survey). The search string employed

encompasses all topics pertinent to the subject of the study as delineated in the preceding

paragraph, with the aim of ensuring inclusivity and comprehensiveness, thereby minimizing

the inadvertent exclusion of any relevant works. Nevertheless, despite our thorough inves-

tigation, no specific literature reviews focusing on Hand Gesture Recognition with machine

learning and infrared data were identified at the time of this study. However, seven related

papers were reviewed in the context of hand gesture recognition using machine learning and

computer vision algorithms. [29]–[35] present studies of models based on both colour and

depth images. In addition, the authors in [30], [36]–[38] highlight the challenge of hardware

limitations and processing time in machine learning models that operate in real time. [39].

Development review protocol

The definition of the protocol is a guide that helps to address the problem and identify the

primary studies that will be part of the SLR. For the development of this work, the protocol

is based on research questions, strategies for selecting primary studies, selecting relevant

studies, assessing the quality of the selected studies, and discussing the results.

The definition of the research questions is the most critical step, since the retrieval of

evidence from the primary studies is based on these questions. In this sense, we define a

generic model of machine learning, population, intervention, and outcomes to describe the

research questions that will guide this work. The generic machine learning model consists of

data acquisition, preprocessing, feature extraction, classification, and postprocessing mod-

ules. Figure 2.2 illustrates the generic machine-learning model. The population will be all

instances of the gestures generated by the hand. The gestures are defined as open hand,

close hand, wave in, wave out, and pinch. The intervention will be the models based on ma-

chine learning and infrared information. Finally, the outcomes will be recognition accuracy

and processing speed. In this context, the research questions which guide this work are:
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General research question

• What is the state of the art for existing hand gesture recognition models that use ma-

chine learning and infrared information?

Specific research questions

• What is the architecture of the proposed models for hand gesture recognition based

on machine learning and infrared information?

• What are the protocols, types of sensors, and types of dataset used to develop hand

gesture recognition models based on machine learning and infrared information?

• What types of learning (supervised, semi-supervised, unsupervised, or reinforcement

learning) have been used to train hand gesture recognition models with infrared infor-

mation?

• What are the processing time and recognition accuracy of hand gesture recognition

models that use machine learning and infrared information?
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Figure 2.2: Generic model of a HGR algorithm where solid lines mean continuity of pro-

cesses and dashed lines mean that processes that can be executed by skipping other pro-

cesses

Strategy for searching primary studies

This section defines the scientific databases used to search for primary studies related to

real-time hand gesture recognition using machine learning and infrared information. The

databases are defined in Table 2.1. Scientific databases are indispensable tools, providing

a rich repository of structured information critical to research and analysis. These databases

provide access to diverse peer-reviewed journals, scholarly articles, and experimental data

across many disciplines. These repositories also enable researchers to explore existing

knowledge, validate hypotheses, and derive insights to further their investigations. In ad-

dition, scientific databases often facilitate collaboration and knowledge sharing within the

research community.
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Databases URLs

ACM http://dl.acm.org/

IEEE Xplorer http://ieeexplore.ieee.org/

Science Direct http://sciencedirect.com/

Springer http://link.springer.com/

Willey http://onlinelibrary.wiley.com/

ArXiv arxiv.org

Table 2.1: Databases used for searching primary studies for this SLR

In addition, we define keywords that cover a wide range of research questions. These

keywords are used to develop search strings. The general search string used is:

((((((hand gesture) OR (hand poses)) AND recognition) OR (hand tracking)) AND ma-

chine learning) AND ((infrared) OR (infrared information) OR (Leap Motion) OR (Kinect))).

Selection of relevant studies

In this phase, we apply the following steps to select the primary studies for the SLR:

1. Select HGR articles only defined in the databases described in Table 2.1.

2. Constrain the search of articles between 2015 and 2019 and articles of conferences

and journals.

3. Select all studies where the title contains any of the following phrases:

(a) Hand gesture recognition

(b) Hand poses

(c) Hand tracking

(d) (a),(b), or (d) with any machine learning algorithms

(e) (a),(b), or (d) with any infrared device

4. If the title does not contain any of the topics in point three, we search in the abstract,

keywords, and conclusions whether the article mentions infrared sensors, machine

learning algorithms, or hand gesture recognition. If this condition is met, then the

article is selected.
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5. The selected articles are registered in a spreadsheet. The features retrieved from

each article are types of gestures, types of input, data origin, types of subjects, fea-

ture extraction, classifiers, number of samples, reported measures, article origin, and

methodology.

6. Applying exclusion and inclusion criteria.

7. Register the chosen articles, after applying step 6 in a second spreadsheet. If this

condition is met, then the article is selected.

8. Apply the Likert scale to rate the selected articles and determine scientific validation.

In addition, we have defined variables that allow us to obtain information to answer the

research questions posed in this SLR. These variables are: Model structure, data set con-

struction, training parameters, processing time and speed, and accuracy.

2.2.2. Conducting phase

In this phase, the primary studies related to the problem are identified, and according to

the evaluation metrics, it is decided which ones will become part of the SLR. From the

selected studies, we extracted all the evaluation metrics and the relevant information such

as model structure, data set construction, training parameters, time of processing, speed of

processing, and accuracy to help answer the research questions.

Research identification

In this subsection, we applied the search strings in scientific databases, then selected only

articles that contain in the title HGR, hand poses and hand tracking. Also, these 3 topics

are related to machine learning algorithms and infrared devices. If these topics are not in

the title, we searched in the abstract, keywords and conclusions. In addition, if the articles

mention infrared sensors, machine learning algorithms, or hand gesture recognition and

are published in congresses or journals between 2015 and 2019. Then, the most relevant

information from these studies is extracted and stored in spreadsheets.

This is the first step for answering the research questions. In this process, extracting as

much information as possible about the research problem is necessary. In this sense, we

obtained 1174 papers from indexed databases and 231 papers from non-indexed databases.
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Studies selection

This subsection defines the inclusion and exclusion criteria. The articles selected in the

previous subsection will be assessed according to these criteria. This evaluation determines

the primary studies that meet the conditions and are passed on to the following step. The

inclusion and exclusion criteria used for this SLR presented in Table 2.2.

- Articles that use machine learning and infrared information

for hand gesture recognition.

- Only articles from databases shown in Table 2.1.

Inclusion - Only articles from congresses and journals.

- Peer-reviewed items.

- Works that present models or that compare models.

- Publications between January 2015 and December 2020

- Articles that are not related to hand gesture recognition.

- Articles that do not use infrared information and machine

learning for hand gesture recognition.

- Articles with years of publication earlier than 2015.

Exclusion - If the publications do not define population, intervention,

and outcomes (accuracy and time).

- All articles that are not in English.

- Works that present only applications and do not propose

a model.

Table 2.2: Criteria for inclusion or exclusion of studies in the SLR

Applying the inclusion and exclusion criteria yielded 203 articles. Additionally, we exclude

articles that do not present models, population, intervention, and outcomes, obtaining 69

articles.

Quality assessment

This doctoral thesis employs a rigorous methodology for conducting an SLR, emphasizing

quality evaluation criteria. These criteria are defined and discussed with a peer reviewer, in

this case, the appointed tutor. Selected studies undergo evaluation based on these criteria

to ensure the credibility and reliability of the SLR findings. To avoid researcher bias, discus-
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sions with the peer reviewer are integral. Table 2.3 presents the quality evaluation criteria

for transparency and reproducibility, enhancing the trustworthiness of the SLR outcomes.

Quality criteria a b c d e

The findings are credible 0.5

The findings are important 0.5

The research brings new knowledge 0.25

The evaluation address well its original aims and proposal 0.5

The scope of research let new researches 0.5

The basis for evaluating the result is clear 0.5

The research design is defensible 0.25

The sample design, target selection of classes, is well doc-

ument

-0.5

The data collection was well carried out -0.5

The approach, formulation and, analysis of the problem has

been adequately carried out

0.5

The diversity of perspective and context has been explored

(related work)

0.5

The links between data, interpretation, and conclusions

clear

0.25

The reporting is clear and coherent 0.25

The theoretical contributions, the perspectives, the values

that the research leaves are clear

0.5

The research process has been adequately documented 0.5

Table 2.3: Assessment quality criteria of the articles using a Likert scale weighting. This is

an example of how to proceed with the evaluation of the articles.

The weighting criteria are: a) strongly disagree, b) disagree, c) neither agree nor dis-

agree, d) agree, and e) strongly agree. The researcher evaluates each quality assessment

criteria reported in the papers, giving a weighting of -1, -0.5, 0.25, 0.5, and 1 respectively.

We chose these weights based on the principle that when equivalent evaluation criteria exist

in both sets (a and b) and (d and e), the sum equals zero
∑

a+ b+ d+ e = 0. This criterion

ensures that the analyzed articles are positioned in the middle of the quality spectrum, with

a summation of
∑

c thus maintaining a balanced assessment framework.
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In the case that the summation of the weights a,b,d,e sets are not zero,
∑

a+ b+ d+ e ̸= 0,

the summation of the set c is taken as the threshold τ =
∑

c, and for an article to be part

of the review, the value of the total summation of the weights must be equal to or greater

than the threshold qs =
∑

a+ b+ d+ e ≥ τ . After this evaluation 44 articles are included in

the SLR. 12 from IEEE, 5 from ACM, 15 from ScienceDirect, 11 from Springer, and 1 from

Willey.

Data extraction

In this section, we retrieve information about the selected articles that will help answer the

research questions. We retrieve information about: Model structure, dataset construction,

training parameters, processing time and speed, and accuracy of the reported models. To

avoid bias, the retrieved information is peer-reviewed.

In [25] it is presented a dynamic gesture recognition system integrating LSTM and CNN

networks to evaluate six classes of gestures. Data collection involves 3D spatial positions

and finger velocity captured using a Leap Motion Controller (LMC). Single-take records of

gestures are manually segmented with video assistance, and an LSTM-based algorithm

is proposed for automated labeling. Post-processing consolidates frames with short gaps

between gestures. The system comprises recognition and classification modules, utiliz-

ing LSTM and CNN architectures. Model training employs cross-validation, yielding 98.4%

accuracy and 125ms response time. However, details on data acquisition protocols and

contributors are lacking.

The paper [40] introduces a real-time gesture recognition system employing the Kinect

sensor, capable of recognizing 16 gestures. Depth images are utilized to address various

challenges such as background interference and illumination changes. Preprocessing tech-

niques involve calculating pixel differences to accommodate subject mobility and employing

the footfill algorithm to define hand regions. Feature extraction is conducted using SIFT

and SURF techniques. Model training employs SVM with linear and radial kernels on an

8000-image dataset, yielding accuracies of 98% with SURF and 91% with SIFT. Average

processing times are 0.12s with SURF and 0.30s with SIFT. While a data acquisition proto-

col is briefly detailed, the number of subjects contributing to the dataset remains unspecified.

In [41] it is presented the development of a rehabilitation platform, also contributing to a

systematic literature review through its classification and recognition model for eight static

and dynamic gestures. The dataset comprises data from 30 injury-free subjects, each re-
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peating gestures 100 times, collected using a Leap Motion Controller (LMC) at 150 frames/s.

Preprocessing involves smoothing, while feature extraction includes window division (w = 20)

and computation of mean, distance, and angles between fingertip and palm center. Static

gestures are classified using discriminant analysis (DA) and SVM, while dynamic gestures

utilize hidden Markov models (HMM), achieving accuracies of 99.09% and 98.76%, respec-

tively. The rehabilitation system evaluation reports an accuracy of 80%, though processing

time remains unreported.

In [42] a model for recognizing 28 Arabic alphabet letters is introduced, capable of de-

tecting both static and dynamic gestures. Data acquisition employs the Leap Motion Con-

troller (LMC) and the Kinect, capturing velocity, orientation, and depth images. To ensure

dataset consistency, data from both sensors are standardized to millimeters. Preprocessing

involves principal component analysis (PCA) for length adjustment and redundancy elimi-

nation. Feature vectors are constructed from normalized finger lengths and angles, feeding

into an SVM classifier with a Gaussian kernel. Model training with 1121 samples and 280

validation samples achieves 93% training accuracy and 86% testing accuracy. However,

details on post-processing and processing time are omitted.

In [43], the authors propose a system for recognizing sign language and semaphoric

hand gestures using 30 gestures (18 static and 12 dynamic). Spatial coordinate data is

gathered through CML, focusing on joint angles for various fingers. They train and test the

model on the SHREC database and introduce a proprietary dataset with 1200 samples from

20 subjects aged 20 to 28 (15 males, 5 females). The data acquisition protocol involves a

5-second sample at 200 Hz. The dataset lacks preprocessing, but a feature vector includes

angles between phalanges, particularly for the thumb, along with spatial fingertip positions.

These features feed a classifier named DLSTM, a combination of RNN and LSTM. The

model achieves an accuracy of 96.4102%, precision of 96.6434%, and recall of 96.4102%.

However, the authors do not provide a detailed protocol for reporting data.

In paper [44] a gesture recognition system is presented with a focus on recognizing

Arabic numerals (0 - 9) and the capital letters A and Z through 12 dynamic gestures. The

study aims to showcase the efficiency of data capture using the Leap Motion Controller and

proposes an effective gesture recognition method based on finger positions and hand ori-

entation. The authors construct a dataset with 12 subjects, each repeating the 12 gestures

10 times, resulting in 1200 samples. While the paper lacks a preprocessing module, it em-

phasizes the deterministic learning theory and employs the Gaussian function as a radial

basis function. The system is divided into a training phase and a recognition phase. During
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training, 3D finger data acquisition, calculation of fingertip motion angles, feature selection,

and modeling of dynamic finger motion are performed. In the recognition phase, new data

acquisition, fingertip motion angle calculation, feature selection, and the construction of a

bank of dynamic estimators occur based on the training results. Feature selection includes

spatial positions and angles, feeding a neural network with a radial basis function. Cross-

validation is employed for training, yielding reported accuracies of 95.83% with 2 folds and

97.25% with 10 folds. The paper, however, does not provide values for classification and

recognition metrics.

In [45] a medical image manipulation system is presented, designed for sterile environ-

ments and employing 11 dynamic gestures identified through discussions with surgeons

during technical hospital visits. The Leap Motion Controller (LMC) captures spatial posi-

tions and finger/palm directions to create a dataset of 550 samples from 10 individuals. The

model encompasses data acquisition, feature extraction, and classification modules. While

the paper doesn’t explicitly mention a preprocessing module, data normalization within the

range [-1, 1] is applied. The feature vector is constructed using the window splitting tech-

nique (w = 20), focusing on palm center spatial positions and fingertips. Extracting arithmetic

mean, standard deviation, covariance, and root mean square results in six vectors, which

are concatenated to form the feature vector. These features feed into an SVM classifier

with nonlinear Gaussian radial basis functions as the kernel. Model training employs cross-

validation, yielding an accuracy of 81%.

In [46], the authors tackle the finger occlusion issue using two Leap Motion Controller

(LMC) sensors. They employ three gestures for experimental demonstration, focusing on

estimating fingertips’ position, palm characteristics, normal and direction vectors, and hand

rotation. To enhance accuracy, an offline classifier is trained using an artificial hand, captur-

ing data from the two LMCs at a sampling rate of 120 frames/sec, resulting in a dataset of

108 samples. Instead of depth image analysis, the authors directly analyze hand position.

Calibration of sensors at a 150-degree angle is crucial due to potential field-of-view overlap.

Preprocessing involves transforming data from a global to a local hand coordinate system.

The feature vector includes x, y, and z components derived from palm position, normal plane,

direction values, rotation at the Roll angle, dot product between normal vector and direction,

and a sensor confidence estimate. These features feed into an SVM classifier. While details

on model training are lacking, a recognition accuracy of 90.80% is reported. However, the

paper does not specify whether this accuracy pertains to classification or recognition, and

no protocol for the reported values is provided.
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The extraction of information from the papers that are part of this SLR can be found in

detail in the article [39]. However, in this thesis 8 articles are mentioned so that the reader

can observe the data extraction methodology.

Data synthesis

In this section, we answer the research questions. The variable that contributes to research

question 1 is the model structure. The model structure includes a) data acquisition, b)

preprocessing, c) feature extraction, d) classification, and e) postprocessing modules. The

architecture of a machine learning model is the union of all the modules or the union of

some of them. The complexity of these architectures is elucidated through Figure 2.3, which

presents a histogram detailing the prevalence of different module combinations across a set

of articles analyzed in the SLR.

Figure 2.3: Architecture of the machine learning models for the HGR found in the SLR

In the architecture of machine learning models, researchers deploy diverse methods

and techniques within each module to maximize the likelihood of achieving great accuracy.

These modules are foundational building blocks, each tailored to address specific tasks or

challenges inherent in the learning process. For example, in the data preprocessing mod-

ule, techniques such as normalization [26], [36], [47]–[49], segmentation [50]–[53], filters

[54]–[56], and feature engineering are employed to enhance data quality and relevance.
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Similarly, within the feature extraction module, methods like principal component analysis

(PCA) [57]–[59], convolutional neural networks (CNNs) [26], [60]–[62], or recurrent neural

networks (RNNs) [26], [60], [62] may be utilized to extract meaningful patterns and repre-

sentations from raw input data. The choice of algorithms and models within the learning

module itself—ranging from classical methods like support vector machines (SVMs) [54],

[57], [63], artificial neural network (ANN) [64], [65] and hidden Markov model (HMM) [54] to

sophisticated deep learning architectures—depends on the complexity of the task and the

nature of the data. Furthermore, researchers often incorporate ensemble methods, regular-

ization techniques, and hyperparameter tuning to fine-tune model performance and mitigate

overfitting.

The variable that contributes to answer the second research question is the construction

of the dataset. To build a dataset, it is necessary to identify the types of sensors used. It

is also necessary to identify whether the samples were collected using a data acquisition

protocol. The sensors reported in SLR are Leap Motion Controller, Kinect, Intel RealSence,

and Interactive Gesture Camera. Table 2.4 shows the articles that used LMC to construct

the dataset and the number of samples used to construct the dataset.

Article number of samples

[60] 1005

[66] 1200

[67] 550

[46] 108

[68] 2000

[69] 5000

[70] 100

[65] 3600

[71] 220

Table 2.4: Articles in which datasets are constructed using LMC and number of samples

obtained.

Table 2.5 also shows the articles that used Kinect and the number of samples used to

build the dataset.
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Article number of samples

[63] 8000

[72] 1200

[50] 800

[73] 3000

[58] 50000

[74] 5040

[75] 507000

[76] 1600

[77] 3280

[56] 12000

[78] 700

Table 2.5: Articles in which datasets are constructed using Kinect and number of samples

obtained.

The training algorithms contribute to answering the third research question. In this sense,

we analyze the machine learning types used, such as supervised, semi-supervised, unsu-

pervised, and reinforcement learning. The SLR showed that the problem of HGR in all pa-

pers reviewed used supervised learning. We also examine the hyper-parameters for tuning

these algorithms and whether these hyper-parameters are adjusted manually or automat-

ically. In the data acquisition module the hyper-parameter adjustment is performed in a

heuristic way by trial and error. The pre-processing module adjusts the hyper-parameters

using the heuristic trial and error technique. In the feature extraction module, the hyper-

parameter setting is done by trial and error, but the hyper-parameters can also be adjusted

automatically. The algorithms used for classification perform the work automatically. It con-

sists of mapping the input data with their respective labels, and the trained model can return

a label for a new data set.

Finally, the processing time and speed, and the accuracy of the reported models are the

variables used to answer the fourth research question. Both processing time and processing

speed are considered critical variables in machine learning models due to the complexity and

many mathematical calculations. In this context, obtaining values representing high classi-

fication and recognition rates is challenging. In addition, many models report classification

accuracy as recognition accuracy.

The SLR of HGR indicates that the Support Vector Machine (SVM) algorithm is the most
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prevalent choice for classification tasks. SVMs are favored for their ability to perform both lin-

ear and non-linear classification. Consequently, SVMs can compute an optimal hyperplane

for classification [37], [68], [79]. On the other hand, Recurrent Neural Networks (RNNs)

represent a family of classifiers adept at processing sequential data by retaining memory

information within hidden layers. The review highlights RNNs’ utility in classifying dynamic

gestures [35] Also, the k-Nearest Neighbors (kNN) algorithm, a non-parametric approach,

relies on the quantity of available data and assumes similarity between nearby features.

Proximity is measured using various distance metrics. The SLR showed that the highest

accuracy was achieved with the kNN [47].

2.2.3. Reporting phase

In this section, we report and discuss the findings of this SLR. In this context, one of the

biggest challenges for researchers starting to work with machine learning is to obtain a

dataset that represents the problem they are investigating. The techniques used in the

preprocessing modules for position and spatial data are: normalization and the simultaneous

use of low-pass and high-pass filters, while for images it is segmentation.

The feature extraction module is considered very important in machine learning models.

The techniques reported are dimensionality reduction using principal component analysis

[57]–[59], the distance between the tips of adjacent fingers, the angle between the first finger

and each of the other fingers, the distance between the fingertip and the center of the palm,

the angle between adjacent fingers [32], [46], [51], [54], [65], [68], [69], [72], [80]. Also, used

measured statistics as mean of velocity of palm [54], arithmetic mean, standard deviation,

root mean square, covariance [67], and in [81] used SIFT-SURF. Some authors propose

to develop automatic feature extraction using autoencoder neural networks or convolutional

neural networks.

In the classification module, researchers showed the use of artificial neural networks

(ANN), K-near neighbors (KNN), support vector machine (SVM), convolutional neural net-

works (CNN). Also, the researchers reported the use of long short-term memory (LSTM),

which is a kind of cell of neural networks with memory.
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2.3. Problems found in the literature review

This SLR reveals many challenges and complexities inherent within the research of HGR

problem. These challenges span a spectrum of domains, ranging from methodological limi-

tations, data availability, and gaps in knowledge. Understanding and addressing these prob-

lems are imperative for ensuring the integrity and reliability of the review findings. This

section briefly describes the problems encountered in the papers reviewed during the SLR.

2.3.1. The lack of public datasets containing spatial position, di-

rection and image data captured by the LMC

One challenge encountered in machine learning pertains to the significant volume of data

required for model development. Each researcher begins constructing a dataset tailored

to the specific nuances of their problem domain, encompassing factors such as types of

gestures and data acquisition devices utilized. However, a recurring issue arises as many

researchers opt not to share or release their meticulously curated datasets to the public do-

main. Consequently, this lack of publicly available datasets poses a considerable hindrance

when researchers endeavor to test the generalizability and efficacy of their models on di-

verse datasets, thereby complicating the validation and comparison of machine learning

approaches across studies.

2.3.2. The lack of protocols to acquire data with the LMC

The absence of standardized protocols for data acquisition utilizing the LMC presents a

significant challenge to the reproducibility of research findings. Without publicly available

datasets or clearly defined procedures, replicating studies becomes exceedingly difficult,

impeding scientific progress and hindering the validation of proposed methodologies. More-

over, the lack of established protocols increases the risk of potential errors during data

collection, including improper sensor placement or suboptimal hand positioning by users.

These factors can significantly impact the performance of machine learning models, lead-

ing to diminished accuracy and reliability of results. Therefore, addressing the need for

comprehensive data acquisition protocols is imperative for ensuring the robustness and re-

producibility of research conducted with the LMC.
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2.3.3. The absence of recognition algorithms

The absence of dedicated algorithms for hand gesture recognition poses a notable chal-

lenge within the field of machine learning. While numerous algorithms are adept at solving

classification problems by assigning predefined labels to input data, the task of hand ges-

ture recognition encompasses a broader scope. In this context, classification involves cat-

egorizing input gestures into predefined classes or categories based on extracted features

and learned patterns. However, true recognition extends beyond the classification and ne-

cessitates a deeper understanding of the gesture’s context, intent, and temporal dynamics.

Recognition encompasses multiple and repeated classifications. Unlike classification, which

focuses solely on assigning labels to input data, recognition involves a holistic understanding

of gestures, including their spatial variations, temporal sequences, and contextual relevance.

Therefore, while classification accuracy is a valuable metric for assessing algorithm perfor-

mance, true recognition accuracy encompasses a more comprehensive evaluation of the

algorithm’s ability to accurately interpret and respond to a diverse range of hand gestures in

real-world scenarios.

2.3.4. Decrease of model performance due to finger occlusion.

Occlusion presents a significant challenge in hand gesture recognition, particularly when

one or more fingers overlap with others. When the sensor attempts to estimate the positions

of the hand and fingers from the captured image, occluded fingers can lead to inaccuracies in

the position estimation. This occurs because the sensor’s ability to discern individual finger

positions is compromised when they are obscured or overlapping, resulting in erroneous

estimations. Consequently, occlusion significantly diminishes the performance and accuracy

of the model, highlighting the need for robust techniques to mitigate the effects of occlusion

in hand gesture recognition systems.

2.3.5. Decrease of model performance due to excess features.

In machine learning, the careful selection and management of features hold profound signif-

icance, influencing the performance and efficacy of the models. Features are fundamental

upon which models discern patterns, relationships, and structures embedded within the

data. A meticulous curation of relevant features enhances a model’s capacity to capture

intricate relationships and reinforces its generalization ability, facilitating robust performance
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on data instances. Conversely, an excess of irrelevant or redundant features can precipitate

overfitting, where the model assimilates noise or irrelevant patterns from the training data,

thereby compromising its capacity to generalize effectively. Consequently, the feature selec-

tion and engineering process emerges as a critical endeavor in developing machine learning

models, with far-reaching implications for their interpretability, computational efficiency, and

predictive accuracy.

2.4. Problems to investigate

For the problems defined above, our investigation aims to address several critical issues

identified within the literature. Specifically, we will focus on examining the construction of

datasets, addressing the absence of dedicated recognition algorithms, and exploring the

detrimental effects of feature overload on model performance. By probing into these chal-

lenges, our study seeks causes, implications, and potential avenues for mitigation.

2.4.1. The absence of recognition algorithms

This subsection defines the difference between the classification and recognition problems.

The classification problem consists of giving a data vector X = [x1, x2, x3, ..., xm] to a model

f , and the model returns the class to which the data vector belongs y = f(X). Figure 2.4

illustrates the classification problem.

Figure 2.4: Illustration of the hand gesture classification process using a signal with spatial

data.

The recognition problem consists of classifying the gesture to the class to which it be-

longs and defining its execution time. The execution time indicates the moment when the

execution started and the moment when the execution of the gesture ended. The recognition
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problem can be treated as a successive classification problem. And the series of successive

classifications can be performed using a sliding window scheme, where the classifier returns

a label and time for each window. In this sense, at the end of sliding the window through

the entire signal, two arrays are obtained, an array of labels and the array of times to which

the labels correspond. Figure 2.5 illustrates the recognition problem. In this context, the

recognition problem is considered more complex than the classification problem.

Figure 2.5: Illustration of the hand gesture recognition process using a signal with spatial

data.

2.4.2. Decrease of model performance due to excess features

Working with machine learning models is challenging due to the high dimensionality and

limited amount of data available for their training. This leads to the overfitting of the models.

Overfitting occurs when a model remembers the training data and cannot generalize to new

data. In this context, it is necessary to generate a feature extraction process. Time domain

feature extraction is developed using functions that adequately represent the problem. This

process’s challenge is defining the appropriate combination of feature extraction functions

so that the model can achieve a maximum accuracy value according to the metric used.

We also use a feature selection process to define the best combination of features. Figure

2.6 shows the decrease in model performance when applying multiple feature extraction

functions. It happens when the number of features is finite.
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Figure 2.6: Illustration showing the selection process of the most significant feature extrac-

tion functions

2.5. Conclusions

In this chapter, we have presented an exhaustive systematic literature review concerning

hand gesture recognition. To carry out the SLR, we used the Kitchenham methodology and

reviewed five indexed databases: IEEE Xplorer, ACM Digital Library, Willey Online Library,

Science Direct, and Springer. Also, we defined a generic machine learning model, research

questions, population, intervention, and outcomes to acquire information about the problem;

after the evaluation of primary works exposed in the scientific literature have included 44

articles in the SLR and concluded the following.

Concerning the first research question, we conclude that the scientific literature presents

several models that try to solve the problem of hand gesture recognition using machine

learning and infrared information. Mapping the generic model with the models shown in

primary studies, we observed that not all works use the proposed modules. However, these

models present the results of their research such as the value of accuracy of the classifica-

tion and some works present the processing time.

To the second research question, we observed that the models evaluate different types

and numbers of gestures, and the construction of the dataset differs in the number of sam-

ples obtained, the shape, origin, and type of sensor used. In this sense, the works are not

comparable. For the third research question, we observed that the models approached the

problem from the type of supervised learning. In this sense, these models present that the

adjustment of parameters in the data acquisition and pre-processing modules is carried out

in a heuristic way and by trial and error. In contrast, the feature extraction module is per-
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formed automatically and in heuristic mode. Finally, the classification module is automatic.

Research question four is based on the accuracy and time of processing. Due to the

complexity and many mathematical calculations, these variables are considered critical in

machine learning models. Also, many models report the accuracy of the classification as

the accuracy of recognition, which is a mistake, and not all works reported the processing

time.

Finally, this chapter presents the gaps in the HGR problem, such as the deficiency in

data acquisition protocols, the construction of the generic dataset that allows researchers

to test their models, and measure the classification accuracy, recognition, and processing

time of the algorithms. Also, there are datasets with a limited number of samples and few

repetitions of the gestures acquired with Leap Motion. The lack of protocols for recognition

and the lack of automatic feature extraction methods for spatial positions.
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Chapter 3

Dataset construction
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3.1. Abstract

A dataset is a critical part for the development of machine learning models because these

models need data for training and testing. In this chapter, we present the construction of a

dataset consisting of five static and four dynamic gestures. This dataset will be used for the

development of this thesis study and is constructed using the Leap Motion Controller. This

dataset contains data from using 56 subjects. This chapter also discusses the types of hand

gestures: statics and dynamics. The interface created for data acquisition is also described.

Lastly, the structure of the data from the acquired dataset is outlined.

3.2. Considerations from dataset construction

The systematic literature review presented in the previous chapter shows different datasets

for the hand gesture recognition problem. These datasets could be public or private and
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were designed according to the needs of the researchers. The researchers present a dif-

ferent number of gestures, types of gestures, number of samples, and different numbers

of people forming a dataset in their datasets. In this sense, the construction of a dataset

requires considerations such as: the protocol of data acquisition, the type of data, and the

information of the users involved in the construction of the dataset. The dataset proposed

here is distinct from those found in the SLR in terms of data volume. While the largest

dataset identified in the literature contains 5000 observations, the proposed dataset includes

15120 observations. Additionally, unlike the LMC datasets in the SLR, which contain only

spatial data, the proposed dataset incorporates image sequences and demographic infor-

mation. Overall, the dataset supporting this thesis comprises both spatial data and images,

providing a more comprehensive resource for analysis and research.

3.2.1. Data acquisition protocol

Nowadays, hand gestures are formalized to interpret the operations of some technical move-

ments as robot movements in human-machine interaction [82], among others. To acquire

data using the Leap Motion Controller, begin by placing the device on a stable surface, en-

suring its LED indicator faces the individual performing the gestures. Maintain a distance

of approximately 20 cm between the hand and the surface of the sensor for optimal per-

formance. Orient the hand movements primarily along the Z-axis direction of the sensor

to ensure accurate tracking. Execute the desired hand gestures within the sensor’s field

of view, ensuring consistency and deliberate movements to capture reliable data. Once

the gestures are performed, record the data captured by the Leap Motion Controller for

subsequent analysis and processing. This protocol ensures consistent and accurate data

acquisition, facilitating the development and evaluation of HGR models. In addition, it allows

for a certain uniformity of data among users. This process is shown in Figure 3.1.
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Figure 3.1: Position and orientation of the hand and of the LMC for data acquisition

In the development of this research, the sampling formula based on the normal dis-

tribution N = Z2∗p∗q
e2

; was used to ensure that the sample is representative of the target

population. With Z as confidence level of 95% and a margin of error e of 13%, it was deter-

mined that a sample N of 56 users would be adequate to obtain meaningful results. This

statistical approach is justified by the need to balance the accuracy of the results with the

operational feasibility of data collection. By keeping the margin of error within a reasonable

range, it can be guaranteed that the conclusions derived from the sample can be extrapo-

lated to the population of men and women aged 18 to 56 years with a proportion of 90% for

people aged 17 to 27 years in the central part of the country, minimizing the possibility of

biases and systematic errors.

Each of the 56 users selected for experimentation represents an independent obser-

vation that contributes variability and robustness to the analysis. The consideration of a

13% error in this context allows us to capture the intrinsic heterogeneity of the individual

responses and the probability distributions associated with each user. This experimental

design ensures that statistical inferences and predictive models developed from the data

collected are sufficiently robust and generalizable.
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The dataset was built with volunteers of the Universidad Técnica de Ambato, including

students and faculty members (women and men aged 18 to 46 years). The volunteers

developed nine gestures, each subject repeated the gesture 30 times. The sampling period

was five seconds, and the subject could perform the gesture at any time during this period.

With these considerations, at least 56 users are required.

The static hand gesture dataset contains 1680 observations of each gesture, for a total

of 8400 observations. The LMC has a sampling frequency of 200 Hz. However, since our

dataset stores spatial position, directions, and images, the sampling frequency is reduced

to 70 Hz. Each dataset instance contains data from the palm of the hand and of the five

fingers, and each finger contains three X, Y, and Z channels [83].

3.2.2. Leap Motion Controller

A hand gesture recognition system uses both invasive and non-invasive devices to track

hand gestures [79], [84]. Invasive devices are sensors embedded in the muscle of the

hands and tips of fingers. Invasive sensors used for hand gesture recognition serve as tools

in capturing and interpreting signals or hand movements. The invasive sensors provide

real-time data, facilitating tasks such as recognizing hand gestures. These sensors may en-

counter accuracy issues or require regular calibration to ensure reliable performance. More-

over, prolonged use of invasive sensors, like gesture recognition sensors, may necessitate

periodic adjustments to maintain functionality and mitigate risks associated with long-term

implantation.

On the other hand, two categories of non-invasive sensors for HGR systems are distin-

guished [79]. The first category is sensors that cover parts of the body, such as the Myo

Armband [84], [85] and Smart Gloves, which use inertial sensors, for example, accelerome-

ters, magnetometers, and gyroscopes. These sensors improve the way of interaction. Nev-

ertheless, they present some limitations in the sensitivity of the measurements. The second

category is non-contact sensors, and they are based on sensors that generally use vision

depth cameras that generate stereo vision. Some of these cameras are Microsoft Kinect

[86], [87], Intel RealSense Camera, and Leap Motion Controller (LMC) [88]. Sensors falling

into the second category prioritize user safety and comfort. However, they often encounter

challenges related to sensitivity to lighting conditions, occlusion, complex backgrounds, and

variations in interaction distances from the sensor [79], [89]. These sensors provide two

types of data: spatial positions and images [79].
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In this context, the most used sensors are the Kinect and LMC [90] due to the great

demand of the market for its commercial development. The Kinect device extracts 25 spatial

positions of the human body and comprises depth sensors, skeleton tracking, and color

cameras [91]. The disadvantage of the Kinect is its high cost. Also, the Kinect is not a

device for capturing data on a specific body part.

On the order hand, the LMC is a low-cost, accurate, and dedicated device for capturing

hand movements. The LMC shown in figure 3.2. The device delivers 27 spatial positions of

the hand and the fingers. Also, the LMC returns the directions of fingertips. The LMC also

provides a sequence of images from 2 infrared cameras. From these images, the device

estimates the spatial position of the hand and fingers.

Figure 3.2: The hand features acquired with the LMC

This estimation is based on the 3D coordinate axes whose origin is in the center of the

sensor. In addition, Figure 3.3 shows how the LMC can track the hand in a range of 150

degrees wide and 61 cm high, with an accuracy of 0.01 mm [92].
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Figure 3.3: Architecture of LMC, field of view, and hand performing the gesture

Figure 3.4 shows how the LMC returns a sequence of grayscale images f(h,w, 1), . . . , f(h,w, T ),

where the image f(h,w, t) contains a snapshot of the hand movement at time t, with t =

1, 2, 3, . . . , T . Notably, such sequences can represent various gestures, as exemplified by

Figure 3.4, which specifically illustrates a close hand gesture.

Figure 3.4: Sequence of frames that represent a hand gesture

The LMC also returns the spatial positions of the palm of the hand and the fingertips at

time t. The spatial data are represented by the matrix, as shown in the following expression.

Pt = [p
(x)
(1,t), p

(y)
(1,t), p

(z)
(1,t), ..., p

(x)
(5,t), p

(y)
(5,t), p

(z)
(5,t)]

(leap)
t , where [p

(x)
(i,t), p

(y)
(i,t), p

(z)
(i,t)] is the vector with

the spatial positions of the ith finger concerning the sensor coordinate axes. The LMC

returns the directions of the fingertips at time t.These data are represented in the matrix

Dt = [d
(x)
(1,t), d

(y)
(1,t), d

(z)
(1,t), ..., d

(x)
(5,t), d

(y)
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(i,t)] the vector with the
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directions of the ith finger with respect to the sensor coordinate axes.

3.2.3. Types of gesture

Gestures are divided into two types: static and dynamic. Static gestures refers to a hand

or body posture that remains stationary or unchanged over a period of time. Static gestures

involve holding a specific pose or position to convey meaning or information. The static

gestures are shown in Figure 3.5, and these gestures are Pinch, Fist, Open Hand, Wave In,

and Wave Out [93].

Figure 3.5: Static hand gestures

• Pinch is a gesture in which the user makes a motion in which the middle and ring

fingers press together with the thumb.

• Fist is a movement of the hand performed by closing each of the fingers toward the

center of the user’s palm.

• Open Hand gesture involves spreading and separating all fingers, typically held in a

perpendicular position to the surface or direction of reference.

• Wave In gesture involves aligning the little, middle, ring, and index fingers parallel to

each other, generating a rotational movement of the hand around the user’s internal

line of sight.

• Wave Out gesture involves aligning the little, middle, ring, and index fingers parallel

to each other, then generating a rotational movement of the hand outward, away from

the user’s body or central line of sight.

On the other hand, a dynamic gesture refers to a continuous or changing movement

made by the hand or body, typically used to convey information, commands, or expressions.

The evolution of these gestures must be determined in time-lapse for each one [93]. Figure
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3.6 shows the dynamic hand gesture. These gestures are swipe, circle, screen taps, and

key taps.

Figure 3.6: Dynamic Hand Gesture

• Circle is a movement of the index finger that rotates around its axis, forming a kind of

circle in a certain number of repetitions.

• A Swipe hand gesture is a motion where the open hand is moved across a surface or

through the air in a specific direction, typically to interact with a device or system. This

gesture involves a continuous hand movement in a linear trajectory.

• Key Taps is a gesture in which the movement of the index finger is in the form of an

arc to the hand, producing a kind of click as a pointer.

• Screen Tap hand gesture involves tapping one or more fingers on a touchscreen or

similar interactive surface to initiate an action or select an item.

For hand gesture recognition using the LMC, a three-dimensional Cartesian plane cen-

tered at the device’s origin serves as the reference. The system extracts spatial coordinates

of the palm and fingertips along with the direction of the fingertips. Simultaneously, images

capturing the hand movement are acquired. Additionally, demographic information of the

user is gathered alongside spatial and directional data.

Utilizing spatial and directional positions for hand gesture recognition offers a compre-

hensive approach to capturing and interpreting hand gestures accurately. Spatial positions

provide valuable information about the precise location of key hand landmarks, such as the

palm and fingertips, in three-dimensional space. By capturing the spatial coordinates of

these landmarks, the recognition model can discern the specific gestures being performed

with high precision. Directional positions add another layer of detail to the gesture recogni-

tion process by capturing the orientation of the fingertips relative to the center of the carte-

sian plane. This directional data provides insights into the shape or configuration of the hand

during the gesture, enhancing the model’s ability to differentiate between different gestures

with similar spatial positions. By combining spatial and directional information, the hand
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gesture recognition model gains a robust understanding of the hand’s movement in space

and its orientation, allowing for more accurate and reliable recognition of a wide range of

gestures.

Incorporating demographic data into the hand gesture recognition process enriches the

understanding of user behavior and preferences, enhancing the overall user experience.

Demographic information, such as age, gender, ethnicity, occupation, email, and whether

you have suffered injuries to your right limb, provides valuable context about the user’s char-

acteristics and potential variations in hand movements based on individual traits. Age is

related to factors such as motor skills development, which may influence the speed or range

of motion in hand gestures. Gender differences in hand size or finger length could impact

the spatial distribution of key landmarks during gesture execution.

3.3. Exploratory data analysis

In this section, we perform an exploratory analysis of the data obtained. The exploratory

analysis consists of checking the completeness and reliability of the data collected, defining

the source of the data, and checking the distribution of the data. We present data such as

the age of the users involved in constructing the dataset. Gender and occupation are also

presented. The distribution of the raw and normalized data is also presented.

3.3.1. Demographic data analysis

In conducting demographic analysis on the dataset, the reported age of participants serves

as a focal point. Figure 3.7 illustrates a normal distribution of participant ages, indicative of

a typical spread within the dataset. In addition, it is observed that there are six people over

forty years of age. However, it’s essential to note that the accuracy of the models remains

unaffected by these users as long as the gestures are executed proficiently. Thus, while

deviations from the norm are observed, their impact on model accuracy remains negligible

when gestures are performed effectively.

Having a normal distribution in the ages within the dataset presents an advantage. Be-

cause a normal distribution suggests that the majority of participants fall within a central

range, this balance helps ensure that the dataset represents a diverse yet typical sample of

the population under study. Additionally, a normal distribution facilitates statistical analysis

and interpretation. Many statistical techniques and machine learning algorithms assume

38



normality in the data, allowing for more robust and reliable results. Moreover, a normal dis-

tribution simplifies the identification of trends, patterns, and relationships within the dataset,

enabling researchers to draw meaningful insights and make informed decisions.

Figure 3.7: Representation of the age of users in the dataset

In the demographic analysis of the dataset, Figure 3.8 depicts the gender distribution

among the 56 users included. The data reveals a relatively balanced representation of

gender, with 27 male participants and 29 female participants. This gender parity is advanta-

geous as it ensures diversity and inclusivity within the dataset, allowing for a comprehensive

understanding of hand gesture recognition across different demographic groups. Further-

more, a balanced gender distribution facilitates gender-specific analyses and insights, en-

abling researchers to explore potential differences or similarities in gesture performance

between males and females. Overall, the gender distribution depicted contributes to the

dataset’s robustness and validity, enhancing the reliability and applicability of findings de-

rived from the analysis.
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Figure 3.8: Gender of the users that are part of the dataset

The dataset presented in the Figure 3.9, comprising 56 users, it is revealed that 49 indi-

viduals do not report any injuries in their right limbs. Conversely, a smaller subset of users,

totaling 7 individuals, have experienced some form of injury. This distribution highlights the

prevalence of uninjured participants within the dataset, indicating a predominantly healthy

sample population. However, the inclusion of users with injuries provides valuable insights

into the potential impact of such conditions on hand gesture recognition performance. By

considering both injured and uninjured users, the dataset captures a more comprehensive

range of experiences and capabilities, enriching the analysis and facilitating a nuanced un-

derstanding of gesture recognition across diverse user profiles.
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Figure 3.9: Injury users

For the analysis of the dataset X, a visualization of the data distribution based on the

classes y is presented. Given that the dataset is multidimensional Xi = [x1, x2, ..., xn] , a

t-distributed Stochastic Neighbor Embedding (tSNE) technique is employed to reduce the

dimensionality to two components Xi = [c1, c2]. . Figure 3.10 illustrates the distribution

of raw data points corresponding to the five static gestures. This visualization allows for a

clearer understanding of the inherent structure and clustering tendencies within the dataset,

facilitating subsequent analysis and interpretation.

Figure 3.10: Distribution of the dataset with raw data
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Visualizing data dispersion is integral to exploratory data analysis as it provides valuable

insights into the underlying structure and patterns within a dataset. By representing data

in graphical formats, researchers can discern trends, clusters, and outliers, facilitating the

identification of biases, anomalies, and areas of interest. These visualizations aid in assess-

ing feature importance, class imbalance, and separability issues, informing the selection

of appropriate modeling techniques and preprocessing steps. Moreover, they help validate

assumptions, refine data processing pipelines, and improve model performance. Overall,

visualizing data dispersion enhances understanding, interpretation, and communication of

dataset characteristics, contributing to more robust and reliable machine learning outcomes.

Once the dataset dispersion is visualized, data preprocessing steps can be performed

to enhance the quality of the data representation. This includes techniques such as nor-

malization, which aims to standardize the scale of features within the dataset. Normalizing

the data helps to improve data dispersion and ensures that classes are better grouped, fa-

cilitating clearer separation and classification. As illustrated in Figure 3.11, the application

of normalization techniques can lead to a more optimized dataset representation, enabling

more effective analysis and modeling processes.

Figure 3.11: Distribution of the dataset with normalized data

Upon visualizing the dataset using the two-component representation, a histogram anal-

ysis reveals a distribution that tends toward a normal distribution, as shown in figure 3.12.

This observation suggests that the data points are distributed symmetrically around the

mean, with the majority clustered near the center and fewer instances towards the tails of
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the distribution. The advantage of having a dataset that follows a normal distribution lies in

its statistical properties, which facilitate various analytical and modeling processes. Normal

distribution allows for the application of parametric statistical tests and inference methods,

which assume normality in the data. Additionally, machine learning models perform opti-

mally when the data conforms to a normal distribution. Therefore, having a dataset that

exhibits a tendency towards a normal distribution enhances the reliability and interpretability

of analytical results.

Figure 3.12: Normal distribution of the dataset

Similarly, Table 3.1 presents a correlation between the two dimensions and the probability

value of the correlation coefficient being non-zero.

Correlation p-value

Value 0.107073 0.0000

Table 3.1: Correlation data and p-value from a two-dimensional dataset

3.4. Conclusions

This chapter shows how to build a dataset. For dataset construction, we need to define the

type of sensor used. In this sense, we have described the difference, advantages and disad-

vantages between invasive and non-invasive sensors. After describing the types of sensors,

we decided to use the Leap Motion Controller because it is an inexpensive, accurate, and
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dedicated device for capturing hand movements.

We also developed a data acquisition interface. This interface is designed in MATLAB

and acquires demographic data, spatial positions, and images. To avoid problems in the

construction of the data set, we developed a data acquisition protocol. This protocol de-

scribes how the gesture should be executed by the user. Finally, the dataset was built with

56 volunteers; each volunteer performed five static and four dynamic gestures. In this sense,

the dataset consists of spatial positions, directions, velocities, and images of the performed

gesture. The dataset contains 15120 samples, 8400 static samples and 6720 dynamic sam-

ples.
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Chapter 4

Evaluation of hand gesture

recognition models using feature

extraction and feature selection

methods
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4.1. Abstract

Hand gesture recognition is closely related to pattern recognition, where overfitting can oc-

cur when there are many predictors relative to the size of the training set. Therefore, we

can reduce the dimensionality of the feature vectors through manual feature selection and

45



extraction techniques. This thesis proposes a study of feature selection and extraction meth-

ods for tested with traditional machine learning algorithms. The feature selection methods

analyzed are: Maximum Relevance and Minimum Redundancy (MRMR), Sequential, Neigh-

bor Component Analysis without Parameters (NCAsp), Neighbor Component Analysis with

Parameters (NCAp), Relief-F, and Decision Tree (DT). Feature selection methods were fed

with seventeen feature extraction functions, which return a score proportional to their im-

portance. Finally, the feature extraction are ranked according to their scores and tested in

classic machine learning algorithms such as ANN, SVM, kNN and DT.

4.2. Introduction

HGR is not a trivial problem because it is viewed as a pattern recognition problem [98], [99].

Also, the HGR problem is challenging to solve using mathematical or statistical models.

Because to use mathematical models is necessary to know the complete problem comport-

ment [100]. In contrast, statistical models need to know all variables and their comportment.

For this reason, it is feasible to try to solve the HGR problem using deep learning methods

or machine learning algorithms.

In this context, deep learning methods can address the HGR problem because these

methods extract features automatically. However, deep learning methods have become

complex to use because HGR systems need portability. In addition, deep learning meth-

ods require a large computational load and programming of complex models. The problem

of the computational load has been solved by using GPUs. And the portability problem is

solved using portable GPUs. However, portable GPUs require high power consumption,

which is against portability.

In this sense, we need to return to traditional machine learning algorithms such as Ar-

tificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbors (KNN),

Decision Trees (DT), among others. Machine learning algorithms typically operate in mul-

tidimensional environments, where data is usually represented as high-dimensional feature

vectors. These feature vectors capture various data characteristics and represent the data in

a format that the machine learning algorithm can analyze. By working in a multidimensional

environment, machine learning algorithms can capture complex relationships and patterns

within the data that can be used for tasks such as classification, regression, clustering, and

dimensionality reduction. The machine learning models use feature selection and feature

extraction as dimensionality reduction techniques.
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Feature extraction is a fundamental process in machine learning that involves transform-

ing raw data into a set of representative features or attributes. These features are selected or

engineered to capture relevant information from the input data while reducing its dimension-

ality. This process often involves techniques such as mathematical transformations, dimen-

sionality reduction methods, or domain-specific knowledge to extract informative features

that can effectively represent the characteristics of the data. Feature extraction plays a cru-

cial role in machine learning because it enables algorithms to work with more manageable

and meaningful representations of complex data, leading to improved model performance

and interpretability.

Feature selection is a process in machine learning aimed at identifying and choosing a

subset of the most relevant features from the original set of input variables. feature selection

involves directly choosing a subset of existing features without altering their values. The

objective of feature selection is to improve model performance by reducing the dimensional-

ity of the dataset and removing irrelevant, redundant, or noisy features that may hinder the

learning process or lead to overfitting.

According to [101], The performance of machine learning models depends on the num-

ber of input variables utilized. While increased input variables can enhance accuracy, this

relationship is limited by the finite nature of the dataset. As the number of features rises,

model performance may improve but only up to a certain point. Beyond this threshold,

additional features may lead to issues such as overfitting, where the model learns noise in-

stead of true patterns. Consequently, model performance may decline due to unnecessary

complexity. According to [102] the excess of variables can reduce the model performance

because there may be a high correlation between variables. The definition of the variables

with the highest descriptive load for the problem is not a trivial task. This is the reason why a

lot of feature extraction and selection methods have been in development. Feature selection

methods use some selection criteria, such as redundancy or data relevance, among others.

Feature selection methods are grouped into filter, wrapper, and embedded categories.

Filter methods assign a score based on correlation, mutual information, or the classifier’s

performance on a single variable. Wrapper methods utilize the relevance of a feature subset

to predict a machine learning model’s performance accurately. Finally, embedded methods

incorporate the selection of features into the training phase of algorithms such as DT [103].

In [104]–[106], the authors adopt the features selection as the variables retrieved by the

leap motion controller. These features are the position and the orientation of the fingers and

the hands. In addition, the authors use functions such as the mean, the standard deviation,

47



the correlation, the Shannon entropy, the kurtosis and the skewness as feature extraction.

On the other hand, [90] presents a feature extraction of fingertip angles, fingertip distance,

fingertip height, and fingertip position, and over these features use f-value, sequential feature

selection, and random forest feature for its study. On the basis of this study, [107] mentions

that the reduction of the number of features to a reasonable number is necessary, then

they sort the more significant features with the f-score algorithm. The f-score calculates the

ratio of the variance between classes and the variance within classes. Also, [108] uses the

Gaussian Mixture Model to select features.

Within the framework of the filtering methods for feature selection, we analyze the method

of the Maximum Relevance Minimum Redundancy (MRMR) and the Sequentials. For wrap-

per methods, we analyzed Neighbors Component Analysis with lambda parameters (NCAp)

and Neighbors Component Analysis without parameters (NCAsp). Finally, for embedded

methods, we analyze the Relief-F and Decision Tree (DT) methods for hand gesture classi-

fication and recognition. These methods are applied to a data set consisting of M observa-

tions and a set of 17 features. The features are obtained by applying 17 feature extraction

functions to a raw data set retrieved from the Leap motion controller.

Feature selection methods are selected based on widespread adoption within the field.

These methods are favored for their effectiveness in identifying and prioritizing relevant fea-

tures essential for accurate classification and recognition tasks. Additionally, feature extrac-

tion functions are employed due to their incorporation of measures of central tendency and

dispersion, enabling a more comprehensive characterization of the dataset. By leveraging

these functions, the aim is to enhance the data categorization process and improve the

discriminatory power of the resulting machine learning models.

4.3. Model description

In this chapter, we propose a generic machine learning model based on the spatial positions

and directions of the hand to evaluate manual feature extraction and selection methods.

The evaluation of these methods is performed in the classification module of the model. The

classification module works with parametric and non-parametric classifiers.

A parametric classification algorithm models the function P (y = 1|x;β) where β is the

set parameters. The training of parametric algorithms consists of adjusting the values of β

using an optimization algorithm [109]. This work uses ANN and SVM as parametric algo-

rithms.
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ANN is inspired by biological neural networks. The biological neuron consists of den-

drites, soma, and axon. By analogy, the dendrites of a biological neuron correspond to the

connections made between the input variables of an artificial neuron and the node where

the mathematical operations are executed. This node corresponds to the soma and allows

the neuron to be activated and generate a response. The response would correspond to

the output function of the artificial neuron, equivalent to the axon of the biological neuron.

Figure 4.1 illustrates the biological neuron and the artificial neuron.

Figure 4.1: Analogy of a biological neuron and an artificial neuron

An artificial neuron is called a perceptron. The perceptron is a linear classifier that re-

sults from calculating the scalar product of the input vector x and the synaptic weights β,

according to the following equation g(x) = f(β0 + β1x1 + ...+ βnxn), where f represents the

activation function [110].

ANN is a result of connecting several perceptrons grouped in layers, as shown in Figure

4.2. ANN is a non-deterministic algorithm due to the random weight initialization. ANNs are

widely used because of their high parallelism, high approximation capabilities, high noise

tolerance, and their good capabilities of learning and generalization [111].
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Figure 4.2: Artificial neural network

SVM iSVM is a supervised learning algorithm utilized for classification and regression

tasks in machine learning. It works by constructing a hyperplane or a set of hyperplanes in

a high-dimensional space to separate instances of different classes. The primary objective

of SVM is to find the hyperplane that maximizes the margin between the classes, thereby

improving the model’s generalization performance. SVM is particularly effective in handling

high-dimensional data and is known for its versatility in dealing with both linearly separable

and non-linearly separable datasets through the use of kernel functions. Furthermore, SVM

is initially designed as a binary classifier, distinguishing between two classes. To extend it to

multiclass classification tasks, various strategies like one-vs-one or one-vs-all are employed,

enabling SVM to handle multiple classes effectively. [112]. SVM uses linear functions such

as wxi + b ≥ 1, where w and x are vectors. The closest vectors to the hyperplane are called

support vectors.

Non-parametric classifier is a type of machine learning algorithm that doesn’t make ex-

plicit assumptions about the underlying distribution of the data. Non-parametric classifiers

learn directly from the training data, adjusting their complexity based on the data’s charac-

teristics. These classifiers are particularly useful when the underlying data distribution is

complex or unknown, as they can adapt more flexibly to different types of data without re-

lying on predefined parameters or assumptions. [113]. This thesis uses KNN and DT as
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non-parametric algorithms.

KNN is called a lazy algorithm. It is a non-parametric method because it does not in-

volve parameter adjustment or estimation. Also, it is a deterministic algorithm that identifies

dynamically k observations of a dataset that are similar to a new observation. To identify

similarities kNN uses a distance metric. The distances metrics could be the Euclidean dis-

tance, Minkowski, Mahalanobis or the dynamic time warping (DTW) method [114], [115].

KNN defines the number of neighbors according to the value of K. KNN represents a higher

similarity when the distance between samples is small, so they are highly likely to belong to

the same label [116].

DT is a machine learning algorithm used for classification and regression. This algorithm

selects an attribute from a set of training instances. The attribute selected is a tree node.

Next, the decision tree is built using a training instance and the selected attribute. Each

internal node tests an attribute xi, each branch assigns an attribute value, and each leaf

gives a class. The DT is very susceptible to changes in dataset values. The tree is traversed

from root to leaf to classify a new input [117].

These algorithms rely on various data inputs to make predictions or classifications, mak-

ing the quality and relevance of the input signals a crucial factor in their performance. When

applied to hand gesture recognition tasks, these algorithms require precise and meaningful

signals to learn and classify different gestures effectively. The signals retrieved from the LMC

are vital inputs for training and testing these machine-learning models. Figure 4.3 shows a

scheme of the HGR model using infrared information retrieved by LMC. The data are filtered

and normalized in the preprocessing module. The feature extraction module uses methods

that will be discussed later in this chapter, while the classification module use algorithms

such as ANN, SVM, KNN, and DT.
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Figure 4.3: General scheme of HGR model using infrared information

For this thesis, we used two types of signals for the data acquisition module using the

LMC. The first signal is points of spatial positions, and the second is directions. The first

signal corresponding to the points of the spatial positions is represented as time series. The

spatial position of the fingers at time t is represent using:

Pt = [p
(x)
(1,t), p

(y)
(1,t), p

(z)
(1,t), ..., p

(x)
(5,t), p

(y)
(5,t), p
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(5,t)]

(leap)
t , being [p

(x)
(i,t), p

(y)
(i,t), p

(z)
(i,t)] the vector with the

spatial positions of the i-th finger concerning the sensor coordinate axes. The second signal

corresponding to the directions represented using:

Dt = [d
(x)
(1,t), d

(y)
(1,t), d

(z)
(1,t), ..., d

(x)
(5,t), d

(y)
(5,t), d
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(leap)
t , being [d

(x)
(i,t), d

(y)
(i,t), d

(z)
(i,t)] the vector with the

directions of the i-th finger concerning the sensor coordinate axes.

The preprocessing module consists only of normalized spatial positions. For the fea-

ture extraction module, we use the window division technique. We define a window size of

w = 18 and a step size of s = 15.

Each observation pi = [x1, ..., xn], of the matrix P is divided into windows Ow = [xi,xi+1, ...,xj ],

where |w| = j − i + 1. The feature extractor functions fextractor are applied to the data of
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each window Ow; obtaining fe = fextractor(Ow).

The union of the features of each channel forms the feature vector of the window few =

[fe1, ..., fek]. Figure 4.4 shows the feature extraction of 3 channels of the first window.

Figure 4.4: Feature extraction of three channels from window 1

In the classification module, we use a feedforward ANN with two hidden layers. The

first hidden layer uses 25 neurons and also uses ReLU as an activation function. The sec-

ond hidden layer uses 15 neurons and logsig as the activation function. The input of ANN is

the number of features according to the number of combinations of feature selection func-

tions. Since the optimization functions use cross-entropy, gradient descent is used for of

weight adjustment. The cross-entropy is a loss function used to measure the performance

of classification models, particularly in probabilistic contexts. It calculates the difference

between the true label and the predicted probability distribution, penalizing confident but in-

correct predictions more heavily. By minimizing cross-entropy, the model improves its ability

to accurately predict class probabilities. The gradient descent method is an optimization

algorithm used to minimize the loss function in machine learning models by iteratively ad-

justing the model parameters. It calculates the gradient of the loss function with respect to

the parameters and updates the parameters in the opposite direction of the gradient to find

the optimal values. This process continues until the loss function converges to a minimum

value, indicating the best-fit model parameters. In addition, ANN uses 2000 epochs and
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a regularization factor for weight decay of 1.0e1. This architecture was selected based on

empirical testing, which compared it with other architectures and found it to have the lowest

possible model error. The selection process employed an accuracy estimation paradigm to

ensure the most accurate model was chosen.

The SVM classifier uses a Gaussian kernel, with a scale of order 10. the parameter

scale refers to a scaling factor applied to features before fitting the model. It helps normal-

ize the input data to ensure that all features have a similar scale, which can improve the

convergence of the optimization algorithm and the overall performance of the SVM model.

Typically, scaling is essential when the features have different units or scales, preventing

certain features from dominating others during training. KNN was set with k equal to 3 with

the Euclidean distance. DT uses the technique of information gain to build the tree. Also,

this algorithm uses 100 levels of depth for training.

The postprocessing module fine-tunes the label vector resulting from the evaluation of

each window in the classification module. Given that the elements of the label vector may

differ, each element l̂ = (l̂1, l̂2, ·, l̂n) is scrutinized individually. If the label at position l̂t differs

from its immediate predecessor l̂t−1, but matches the label immediately before and after it

l̂t−1 == l̂t+1, the evaluated label is modified to match the previous label l̂t := l̂t−1.

4.4. Feature extraction methods

For the present work, we defined 17 feature extraction functions. These functions are based

on statistical measures of central tendency, dispersion, amplitude, wavelength, among oth-

ers. The feature extraction functions used are described below.

• Variance (VAR) measures the signal amplitude and the power

• Root mean square (RMS) is a meaningful way of calculating the average of values

over a period of time

• Mean absolute value (MAV) define the average of the summation of absolute value of

signal

• Enhanced mean absolute value (EMAV) is an extension of MAV define a p value this

value is used to select a region of the signal

• Modified mean absolute value (MMAV) is an extension of MAV this assign the weight

window function
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• Modified mean absolute value 2 (MMAV2) is another extension of MAV feature by

assigning the continuous weight window function

• Difference absolute standard deviation value (DASDV) is the square root of the average

of the difference between the squared contiguous values

• Enhanced wavelength (EWL) is an extension of WL define a p value this value is used

to select a region of the signal

• Average amplitude change (AAC) measures the average change of the signal ampli-

tude

• Wavelength (WL) can be calculated by simplifying the cumulative length of waveform

summation

• Slope sign change (SSC) determines the number of times in which the number of wave

form changes sign

• Detector log (DL) is good at estimating the exerted force

• Pulse percentage rate (MYOP) this function is adapted by leap motion controller signal

• Amplitude Willinson (WAMP) acts as an indicator of the firing of motor unit potentials

• Simple square integral (SSI) is defined as the summation of square values of signal

amplitude

• Standard deviation (SD)

• mean value (MV) [118].

4.5. Feature selection methods

To assess the effectiveness of the feature selection methods, a fresh dataset is derived from

the one detailed in Chapter 3. This new dataset captures hand movements by summing

each finger’s components’ X, Y, and Z spatial positions. The structure of the dataset is MxN,

where M is the total number of observations and N is the number of features describing the

movement of the hand. Each feature extraction function described in the preview section is

applied to the dataset, and a matrix Mx17 is obtained. Each data obtained by the feature

extraction function represents a predictor.
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4.5.1. Filter methods

The minimal-redundancy maximum-relevance algorithm belongs to the family of wrapper

methods for feature selection. The algorithm finds a set of mutually and maximally exclusive

features. The algorithm quantifies redundancy and relevance, as from the dependence of a

pair of features and the dependence of a variable against the response variable [119]. The

algorithm for maximizing relevance examines the relationship between a variable and the

response variable. In [120] present the equation VS = 1
|S|

∑
x∈S I(x,y), where VS represents

the maximization value, |S| represents the set of features or predictor variables, (x,y) rep-

resents the predictor variable and the response variable, respectively, and I represents the

indicator function of the dependence between the predictor and the response variable.

While for the minimization, the dependence between the pair of predictor variables is

observed, as presented in the following equation WS = 1
|S|2

∑
(x,z)∈S I(x,z). Where WS rep-

resents the value of minimization of the dependence between the predictor variables, and

(x,z) represents the predictor variables. The I indicator function measures the correlation

between predictor variables. VS measures the maximum relevance of a variable against

the response variable. It analyzes the extent to which a variable is dependent on the target

outcome, providing insights into its predictive power. WS quantifies the redundancy among

predictor variables, and aims to minimize redundancy, ensuring that the selected variables

provide unique and complementary information for predictive modeling.

The algorithm of MRMR returns an index and an associated score. The score defines the

importance of the predictor variable. In this context, the MRMR algorithm is fed with data

extracted from the functions in the following order: MAV, EMAV, MMAV, MMAV, MMAV2,

VAR, RMS, DASDV, SD, MV, ACC, WL, EWL, LD, SSC, MYOP, WA, SSI. Once the MRMR

algorithm processes the dataset with the feature extraction functions, the algorithm returns

the score of the most significant predictor variables, as shown in figure 4.5. The order of the

variables corresponds to VAR, SSC, EWL, SD, WA, WL, LD, DASDV, EMAV, MYOP, MAV,

ACC, MMAV, SSI, MMAV2, MV, RMS.
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Figure 4.5: Order of feature extraction functions after running feature selection functions

with the algorithm MRMR. The order of the functions on the X-axis are as follows VAR, SSC,

EWL, SD, WA, WL, LD, DASDV, EMAV, MYOP, MAV, ACC, MMAV, SSI, MMAV2, MV, RMS.

Sequential selects a subset of features from the data matrix X that best predicts the data

in y, where X is a matrix of data and y are the classes. This sequential feature selection

method iteratively chooses features until there is no further enhancement in prediction ac-

curacy. It relies on a predefined criterion function to identify the optimal subset of features.

The process involves two main steps: initially splitting the dataset into training and testing

sets, followed by a cross-validation procedure. During evaluation, the method calculates the

mean score based on the summed values returned by the criterion function, divided by the

total number of test observations. This mean score serves as the basis for ranking candidate

feature subsets. Moreover, the method evaluates classification performance by considering

the number of misclassified observations.

After computing the mean criterion values for each candidate feature subset, the method

chooses the candidate feature subset that minimizes the mean criterion value. This process

continues until adding more features does not decrease the criterion. In this thesis, the

method is fed with the data matrix Mx17, the values of the features correspond to the values

of the randomly ordered feature selection functions. Table 4.1 presents in the first column the
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Initial order of feature extrac-

tor functions

Order according to the score

after applying the sequential

feature selection method

Score

MAV MYOP 0.000768282

EMAV LD 0.000723214

MMAV EWL 0.000658022

MMAV2 WL 0.00061593

VAR MAV 0.000597222

RMS SSC 0.000588435

DASDV MMAV 0.000586876

SD EMAV 0.000584325

MV MV 0.000583475

SSC VAR 0.000583333

WL MMAV2 0

EWL RMS 0

LD DASDV 0

AAC SD 0

MYOP AAC 0

WA WA 0

SSI SSI 0

Table 4.1: Score of feature extraction functions using sequential method

initial functions, while the second column presents the ordered feature selection functions

based on the score returned by the method.

4.5.2. Wrapper methods

The neighbor component analysis (NCA) aims to optimize a linear transformation of the

feature space to maximize the accuracy of the models. The process of NCA is similar to

KNN, where k equals one. NCA also has a distance metric, and for measuring the dis-

tance, NCA selects a xI randomly as a reference point to other feature vectors xj . It ob-

tains di,j = (xi,xj), where d represents the distance. NCA’s effectiveness lies in its direct

optimization of the k-NN classifier’s performance and interpretable insights into feature im-

portance. NCA iteratively updates the transformation matrix based on observed classifier

performance. It measures neighborhood relationships between data points to evaluate the

impact of different feature subsets on classification accuracy. NCA adjusts the transforma-
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tion matrix parameters to increase the likelihood of correct class predictions for each data

point based on its neighbors. The iterative process continues until convergence, ensuring

no further improvement in classification accuracy.

In this thesis we experimented with two versions of NCA. One version with parameter

setting called NCAp and another version without parameter setting called NCAsp. Neigh-

bor Component Analysis with Parameters (NCAp) utilizes various parameters to adjust the

classification accuracy, including the regularization value (lambda), optimization function, fit

method, and standardization process [121]. To determine the optimal lambda value, we cre-

ate an array of 50 evenly spaced values ranging from 0, incremented by 3. Each value is

scaled by the standard deviation of the total observations and divided by the total number of

observations. Subsequently, the NCA algorithm is executed for each value in the array, em-

ploying a k-fold cross-validation with a value of 5, to mitigate bias. The optimization function

employed is stochastic gradient descent. Finally, we present the order of the most significant

feature extractor functions reported according to Table 4.2.

Functions Score

LD 3.819

EMAV 2.869

MMAV2 2.820

MMAV 2.413

SD 2.256

DASDV 2.229

MYOP 1.865

AAC 1.760

WL 1.665

EWL 1.665

MAV 1.489

MV 1.489

VAR 0.045

SSI 0.029

RMS 0.029

SSC 6.06exp-15

WA 2.24exp-58

Table 4.2: Score of feature extraction functions using NCAp with parameters.
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Table 4.2 reveals a clear trend in model performance based on the sequential application

of feature extraction functions selected by the NCAp method. Initially, there is a discernible

improvement in performance with the incorporation of the first 6 functions. Subsequently,

performance appears to plateau as additional functions are included from the 7 to the 15

position. However, beyond this point, there is a noticeable decline in model performance.

A second model is also generated using Neighbor Component Analysis Without Parame-

ters (NCAsp). The input for this method is the observations and the classes as parameters.

The observations are the matrix (dataSetFeatures) and their respective labels y. Table 4.3

presents a score of the most significant predictor functions.

Functions Score

LD 9.202

MYOP 8.740

WL 3.577

EWL 3.381

SSI 2.246

EMAV 6.97exp-3

MMAV2 2.97exp-3

SD 2.65exp-3

MMAV 1.18exp-3

MAV 9.23exp-4

MV 9.23exp-4

DASDV 2.76exp-7

VAR 3.12exp-9

RMS 2.74exp-9

AAC 4.56exp-10

SSC 3.26exp-41

WA 2.83exp-159

Table 4.3: Score of feature extraction functions using NCAsp without parameters.

According to Table 4.3, we can observe a pattern where the performance gradually in-

creases with the incorporation of the first five feature extraction functions. However, beyond

this point, as additional feature extraction functions are included, there appears to be a de-

cline in performance.
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4.5.3. Embedded methods

Another feature selection algorithm used in this thesis is Relief-F. It operates by evaluating

the importance of each feature based on its ability to distinguish between observations of

different classes. The algorithm assigns a weight to each feature, representing its relevance

in classification. Relief-F works by iteratively sampling observations from the dataset and

comparing the feature values of each observation with those of its nearest neighbors from

the same and different classes. By computing the differences in feature values, Relief-F

assesses how well each feature discriminates between observations of the same and dif-

ferent classes. Features that consistently exhibit large differences between observations of

different classes are assigned higher weights, indicating their importance in the classifica-

tion process. In this way, Relief-F effectively selects the most discriminative features while

disregarding irrelevant or redundant ones, ultimately improving the performance of machine

learning models by reducing dimensionality and focusing on the most informative features

[122].

In [120], they present the equation to update the weights when the class of the selected

observation and the predicted observation class are the same. The equation is wi
j = wi−1

j −
∆j(xr∗xq)

m ∗ drq. Where wi
j are the weight of feature j at observation i, wi−1

j are the weight

of feature j at observation i− 1, ∆j(xr ∗ xq) is the difference between the jth feature value

of the selected observation xr and jth feature value of the predicted observation xq, m is

the total number of features in the dataset, and drq is the distance between the selected

observation xr and the predicted observation xq.

Likewise, updating the weights is required when the feature vectors xr and xq belong to

classes with different labels, as indicated by the following equation. wi
j = wi−1

j +
pyq

1−pyr
∗

∆j(xr∗xq)
m ∗drq. Where wi

j represent the weights of the predictor for ith iteration pyr represent

a priory probability of the class which xr belongs, pyq represent a priory probability of the

class which xq belongs, m represents the iterations number given for updating the weights.

Finally, ∆j(xr ∗ xq) is a difference in the predictors’ values between the observations xr and

xq.

The algorithm is fed with the feature extractor functions without a specific order. After

applying the algorithm, we obtain the following ranking. LD, SSC, EWL, MYOP, DASDV,

MMAV, ACC, WL, EMAV, SD, MAV, MV, RMS, SSI, VAR, MMAV2, WA. Figure 4.6 presents

the ranking of the feature extractor functions.
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Figure 4.6: Ranking of most important feature using Relief-F. The order of the functions on

the X-axis are as follows LD, SSC, EWL, MYOP, DASDV, MMAV, ACC, WL, EMAV, SD, MAV,

MV, RMS, SSI, VAR, MMAV2, WA.

In the context of using decision trees (DT) as a feature selection method, a decision tree

is represented by the function DT (textbfx), where x represents the input feature vector.

The decision tree recursively partitions the feature space into subsets based on the values

of the features. At each node t, the algorithm selects the feature xj that best splits the

data into subsets XL
t and XR

t based on a splitting criterion such as entropy or Gini impurity,

where L is left and R is right. The algorithm continues recursively until a stopping criterion

is met, such as reaching a maximum depth or minimum number of samples per leaf. The

resulting decision tree implicitly ranks features based on their importance in determining the

target variable, with features closer to the root node being deemed more important. Table

4.4 shows the order of the feature extraction functions based on the selection of the most

relevant attribute using DT
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Initial order of feature

extractor functions

Order according to

the score after apply-

ing the sequential fea-

ture selection method

MAV LD

EMAV MYOP

MMAV WL

MMAV2 EWL

VAR SSI

RMS EMAV

DASDV MMAV2

SD SD

MV MMAV

AAC MAV

WL MV

EWL DASDV

LD VAR

SSC RMS

MYOP AAC

WA SSC

SSI WA

Table 4.4: Order of feature extraction functions using the decision tree.
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4.6. Evaluation of feature extraction and feature selection meth-

ods

The evaluation consisted of ordering the feature extractor functions according to the score

provided by each feature selection method proposed. Then, the dataset is divided into win-

dows. The windows have a length of 20 with steps of 15. The function with the highest score

reported is applied to each window, and at the end, a vector of labels is obtained. The label

that the classifier returns is chosen by a majority vote. Then, the same process is executed,

but with the feature selection function with the second highest score, and so on, until all

feature selection functions are combined. This process is repeated 10 times, and finally, a

10x17 matrix is obtained, where each cell corresponds to the accuracy. The average accu-

racy across the 10 iterations is calculated, yielding a comprehensive performance overview.

The maximum accuracy achieved across all experiments is then determined. The index of

this maximum value corresponds to the optimal combination of feature selection functions,

indicating the most effective approach for the given dataset and classification task, as pre-

sented in the following pseudocode of the table 4.5.

1 Fs = [VAR, SSC, EWL, SD, WA, WL, LD, DASDV, EMAV, MYOP, MAV,

ACC, MMAV, SSI, MMAV2, MV, RMS];

2 Win = 20;

3 Step = 15;

4 Ds = data;

5 i = 1;

6 Alg = [ANN, SVM, KNN, DT];

7 for repetition = 1 :10

8 until (i = 1 : length(Fs))

9 for (j = 1 : (size(ds,2))/Win)

10 acc(j) = Alg(Fs(1:i)(ds(Win)));

10 end

11 acc(i,j) = mode(acc);

12 end

13 end

Table 4.5: Algorithm 1, returns the accuracy of the evaluation of feature extraction functions

on ANN, SVM, kNN, DT classifiers.

In Algorithm 1, Fs denotes the array of feature extraction functions, arranged based on

64



the scores provided by the feature selection methods. Meanwhile, ds represents the dataset,

and Alg signifies the array of classifiers utilized for evaluating the feature extraction functions.

Table 4.6 shows a summary of the experiments. It shows the number of combinations

represented by the variable idx. It also shows the maximum accuracy and the standard de-

viation of each model trained, and tested. Also, in the recognition column the processing

time is presented.

Training Testing Recognition

idx Acc std idx Acc std idx Acc std time

MRMR ANN 17 98.332 0.180 13 92.759 1.454 9 82.271 1.820 82.411

SVM 17 98.948 0.135 9 91.413 1.619 9 79.915 2.456 13.119

KNN 8 91.600 1.090 8 91.600 1.089 9 77.091 1.901 0.865

DT 16 89.903 0.949 16 89.903 0.949 16 75.288 2.295 0.303

NCAp ANN 17 98.341 0.185 10 92.736 1.482 13 83.335 2.314 80.065

SVM 17 98.948 0.135 10 91.527 1.429 12 80.121 3.004 12.236

KNN 12 91.018 1.883 12 91.018 1.883 13 77.667 2.662 0.683

DT 13 89.903 1.801 13 89.903 1.801 17 75.364 2.319 0.263

NCAsp ANN 17 98.319 0.182 4 92.239 1.682 15 81.674 2.568 90.904

SVM 17 98.948 0.135 9 91.321 1.237 12 79.864 3.051 15.756

KNN 4 90.121 1.141 4 90.121 1.141 4 75.046 3.081 0.695

DT 11 89.903 1.813 11 89.903 1.813 17 75.333 2.267 0.264

ReliefF ANN 17 98.332 0.131 13 92.878 1.773 13 83.403 2.508 88.053

SVM 17 98.948 0.135 10 91.158 1.742 12 80.379 2.540 12.526

KNN 3 91.394 0.782 3 91.394 0.782 13 76.591 2.787 0.661

DT 13 89.842 1.326 13 89.842 1.326 13 76.136 3.136 0.238

Sequentials ANN 16 98.471 0.114 14 93.079 1.579 14 83.515 1.854 67.565

SVM 17 98.948 0.177 15 90.776 1.617 15 79.818 3.102 12.129

KNN 15 90.752 0.894 15 90.752 0.894 14 76.652 2.766 0.595

DT 14 89.867 1.143 14 89.867 1.143 16 75.394 2.4061 0.191

DT ANN 16 98.504 0.120 6 93.055 1.506 16 83.227 2.305 44.792

SVM 17 98.948 0.135 7 91.382 1.646 15 79.864 3.298 6.853

KNN 13 90.824 0.789 13 90.824 0.789 15 76.621 2.327 0.591

DT 15 89.842 1.218 15 89.842 1.220 15 75.379 2.291 0.186

Table 4.6: Overview of maximum training, testing, and recognition accuracies achieved by

feature selection methods in classification algorithms. Also included are standard deviations,

number of feature combinations, and processing times.

Figure 4.7 shows the testing accuracy grouped by each method and evaluated for each
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proposed classification algorithm. In addition, the number of combinations of feature extrac-

tor functions with which the methods reach their maximum value is presented.

Figure 4.7: Summary of the maximum training, testing, and recognition accuracy of feature

selection methods evaluated in classification algorithms. Standard deviation, number of

feature combinations, and processing time.

In Figure 4.7, it is evident that the disparities in reported accuracies are minimal, with

overlapping standard deviation values. This tells us that there is no significant difference

between the methods in the evaluated algorithms. This leads us to perform a statistical

hypotesis testing to determine significant differences and to define the method, the combi-

nation of feature selection functions, and the best-performing algorithm. Since there are 10

repetitions of the experiments, a test of variance hypothesis is performed to demonstrate

whether there is a statistically significant difference in the evaluation of the feature selection

methods. Figure 4.8 shows that all the methods evaluated with ANN have the maximum ac-

curacy score. It is also evident that only with the ANN algorithm the data present a variation,

this is due to the fact that the algorithm introduces a variability due to the stochasticity in the

initialization of its weights. The other methods do not present a variability, so they could be

compared directly. Now, with the ANN data, first, the normality test is performed using the

Shapiro-Wilk normality test. Then, we check if we have a homogeneity of variances. Finally,

an ANOVA is performed.
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Figure 4.8: Variability of the data and the algorithms with the highest accuracy values

Figure 4.9 offers a detailed breakdown of the performance results obtained from each

feature selection method, categorized by the respective algorithms they were evaluated with.

Notably, the evaluation reveals that across all algorithms, the ANN algorithm consistently

achieves the highest accuracy rates when paired with various feature selection methods.

Within the ANN framework, it is evident that both the Sequential and Decision Tree (DT)

methods stand out with remarkable accuracies, boasting 93.079% and 93.055%, respec-

tively. However, a critical aspect to consider in this analysis lies in the number of feature

extraction functions employed to attain these accuracy levels. Specifically, Sequential uti-

lizes a larger set of 14 distinct functions, while DT achieves comparable results with a leaner

selection of only 6 feature extraction functions. This nuanced comparison underscores the

significance of selecting an optimal feature selection strategy tailored to the specific algo-

rithmic context, balancing accuracy requirements with computational efficiency.
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Figure 4.9: Evaluation of the accuracy of the feature selection methods, with the number of

combinations of features grouped by the classification algorithm

In table 4.7 illustrates the results of a statistical analysis aimed at discerning signifi-

cant differences among the various feature selection methods evaluated within the ANN

framework. The statistical examination reveals a lack of statistically significant differences

between the Sequential and DT methods, despite their status as the most accurate options.

However, it’s noteworthy that while both methods achieve comparable levels of accuracy,

Sequential relies on a combination of 14 feature selector functions, whereas DT utilizes a

more streamlined set of 6 functions. This discrepancy prompts a deeper investigation into

the response times exhibited by each algorithm when coupled with the respective feature se-

lection methods. Understanding the interplay between accuracy, computational efficiency,

and the number of feature extraction functions employed is crucial for optimizing the overall

performance of the machine learning model in practical applications.
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Methods diff lower upper p adj

MRMR-DT -0.272 -0.467 -0.076 0.002

NCAp-DT -0.295 -0.490 -0.099 0.001

NCAsp-DT -0.790 -0.995 -0.587 0.000

ReliefF-DT -0.153 -0.348 0.042 0.204

Sequential-DT 0.048 -0.170 0.270 0.985

NCAp-MRMR -0.023 -0.192 0.146 0.998

NCAsp-MRMR -0.592 -0.670 -0.340 0.000

ReliefF-MRMR 0.119 -0.050 0.288 0.309

Sequential-MRMR 0.320 0.125 0.515 0.000

NCAsp-NCAp -0.496 -0.676 -0.317 0.000

ReliefF-NCAp 0.142 -0.027 0.311 0.146

Sequential-NCAp 0.343 0.148 0.538 0.000

ReliefF-NCAsp 0.638 0.459 0.817 0.000

Sequential-NCAsp 0.839 0.635 1.043 0.000

Sequential-ReliefF 0.201 0.006 0.396 0.040

Table 4.7: Evaluation of the accuracy of the feature selection methods, with the number of

combinations of features grouped by the classification algorithm.

In the context of hand gesture recognition utilizing infrared signals from the Leap Motion

Controller, the processing time emerges as a pivotal factor influencing the selection of an op-

timal feature selection method. Illustrated in Figure 4.10, the processing time in milliseconds

for feature selection methods at their peak accuracy is depicted. Notably, the Decision Tree

(DT) stands out as the feature selection algorithm boasting the shortest processing time,

achieving maximum model accuracy with the utilization of just 6 feature extraction functions.

This efficiency is particularly advantageous in real-time applications where swift processing

is imperative for seamless interaction and response. However, it’s crucial to strike a balance

between processing time and accuracy, as more complex feature selection methods may of-

fer enhanced precision at the cost of increased computational overhead. Thus, selecting an

appropriate feature selection strategy hinges on weighing these factors against the specific

requirements and constraints of the application scenario.
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Figure 4.10: Evaluation of the processing time of the feature selection methods.

4.7. Conclusions

This chapter also analyzes the MRMR, Sequential, NCAp, NCAsp, Relief-F, and DT feature

selection methods. In addition, we define a hand gesture recognition and classification

model to evaluate the score reported by the above feature selection methods. The model

comprises five modules: data acquisition, preprocessing, feature extraction, classification,

and postprocessing. We test the ANN, SVM, KNN, and DT algorithms in the classification

module. The dataset used in this study consists of five gestures. These gestures are open

hand, fist, wave in, wave out, and pinch. The dataset contains 1680 observations for each

gesture, totaling 8400. The input data is an array of 8400x17. The seventeen predictors

are formed by computing the functions MAV, EMAV, MMAV, MMAV2, VAR, RMS, DASDV,

SD, MV, ACC, WL EWL, LD, SSC, MYOP, WA, SSI. The output of these functions is fed into

the MRMR, Sequential, NCAp, NCAsp, Relief-F and DT feature selection methods. These

methods return a score according to the relevance of the feature extraction functions.

The feature selection methods return distinct orders of feature extraction functions based

on their scores. MRMR ranks the functions combining the top four functions yields a max-

imum accuracy of 92.71% for classification and 82.1% for recognition. Sequential method
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ranks features differently, present a combination of 14 functions achieves 93.0788% accu-

racy for testing and 83.5152% for recognition, with a processing time of 67.5646 seconds.

NCAp ranks the top ten functions yield 92.7% accuracy for classification and 82.2% for

recognition. NCAsp ranks the top four functions to achieve 92.3% accuracy for classifica-

tion and 81.4% for recognition. Relief-F ranks using thirteen functions yield 92.9% accuracy

for test classification and 83.6% for recognition. Finally, DT ranks features combining six

functions achieves 93.0545% accuracy for testing and 83.2273% for recognition, with a pro-

cessing time of 44.7923 seconds.

It’s important to note that there’s no statistically significant difference between the Se-

quential and DT methods, which are quite comparable. However, there’s a notable discrep-

ancy between Sequential and ReliefF, as well as DT and ReliefF, with Sequential and DT

emerging as the top-performing methods. The other approaches exhibit lower accuracy

rates. Nonetheless, for our specific problem, employing DT as a feature selection method

alongside ANN is recommended. While Sequential performs similarly, DT requires only six

functions to achieve optimal accuracy, resulting in significantly reduced processing time.
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Chapter 5

Hand gesture recognition using

automatic feature extraction and

deep learning algorithms with

memory
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5.1. Abstract

Gesture recognition serves a crucial role in expressing emotions and facilitating commu-

nication between individuals and machines. Hand gesture recognition, in particular, gar-

ners significant interest among researchers due to its inherently complex nature as a high-

dimensional pattern recognition problem. The challenge lies in effectively capturing and
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processing the vast array of data inherent in hand movements. Feature selection and ex-

traction are key strategies to mitigate the dimensionality issue, offering avenues to enhance

the performance of machine learning models. To this end, we propose evaluating automatic

feature extraction functions and comparing models employing both manual and automatic

feature extraction techniques. Manual extraction employs statistical functions to capture

central tendencies, while automatic extraction leverages advanced methods such as Con-

volutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM).

These features are further evaluated within classifiers such as Softmax, Artificial Neural

Networks (ANN), and Support Vector Machines (SVM). Notably, the most successful model

emerges as the combination of BiLSTM and ANN (BiLSTM-ANN), achieving an impressive

accuracy rate of 99.9912%.

5.2. Introduction

The quality and quantity of data are closely related to the performance and generalization

of machine learning models. The quantity of data depends on the nature of the problem,

the technology used to acquire the data, and the availability of the data. In general, ma-

chine learning models tend to perform better when trained on larger amounts of data. With

more data relative to the model complexity, the model has a greater opportunity to learn the

underlying patterns and relationships in the data, which can lead to better predictions and

generalization to new, and unseen data. Data quality means that the data is free of errors,

noise, and bias, which can improve the accuracy and reliability of machine learning models.

Also, data quality is related to how well the features describe the problem [123]–[125].

In this sense, machine learning models are affected by the problem of the curse of di-

mensionality. This problem occurs when many features are included as inputs of machine

learning models. The machine learning models can work in a scenario that is close to falling

into an overfitting problem. Overfitting occurs when there are many features relative to the

amount of training data. Including many features can also increase the computational com-

plexity of the model, making it more difficult to train and use in practice [76], [126], [127].

It is necessary to use dimensionality reduction techniques. These techniques are feature

selection and feature extraction [99]. Feature selection is the selection of the best functions

that can represent the problem. At the same time, feature extraction selects and transforms

the most relevant and informative features from a data set. Feature extraction is a critical

step in machine learning models [128]. This is because the quality and relevance of the
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features can greatly affect the performance and accuracy of the model. In many cases, the

original data may contain many redundant, noisy, or irrelevant features for the task at hand,

leading to overfitting and poor generalization performance. To avoid these problems, it is

important to carefully select and preprocess the most relevant and informative features for a

given task. The process of feature extraction involves domain knowledge, statistical analysis,

and data visualization techniques to identify the most important features and discard the

redundant or irrelevant ones. There are two ways to approach the process of obtaining the

best features. The first is manual feature extraction (addressed in the previous chapter), and

the second is automatic feature extraction.

Manual feature extraction for hand gesture recognition requires domain knowledge and

expertise in signal processing and feature engineering. It can be time-consuming and labor-

intensive and may require iterative experimentation and refinement to identify the most in-

formative features for a given application. However, it can also be more interpretable and

understandable than automatic feature extraction techniques because the features are ex-

plicitly defined and selected based on human insight and intuition.

In contrast to automatic feature extraction is a machine-learning technique that involves

deep learning [129]. Automatic feature extraction for hand gesture recognition using the

Leap Motion Controller could use CNN or Recurrent Neural Networks (RNN) [60], [130]. In

addition, automatic feature extraction for hand gesture recognition can save time and effort

in feature engineering and can potentially discover more informative and complex features

than manual methods. However, it requires large amounts of training data and computational

resources and may be more difficult to interpret and understand than manual methods.

In this chapter, we propose an HGR model that takes as input time series based on the

spatial positions and directions of the fingers of the hand. In addition, we to comparate man-

ual and automatic feature extraction for the problem. The manual extraction is performed us-

ing statistical features such as: pulse percentage rate (MYOP), detector log (LD), wavelength

(WL), enhanced wavelength (EWL), difference absolute standard deviation value (DASDV),

and standard deviation (SD). These feature extraction functions are selected based on their

great performance demonstrated in the previous chapter’s evaluation. We use CNN and BiL-

STM to extract features automatically. In addition, the extracted features are evaluated using

Softmax, ANN, and SVM classifiers. We also propose to evaluate the data on classifiers like

CNN-ANN, CNN-SVM, BiLSTM-ANN, and BiLSTM-SVM.
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5.3. Description of methods used for developing automatic fea-

ture extraction

This subsection uses the spatial positions and directions retrieved by the LMC. The LMC

represents the position of the fingertips at time t using the matrix

Pt = [p
(x)
(1,t), p

(y)
(1,t), p

(z)
(1,t); ...; p

(x)
(5,t), p

(y)
(5,t), p

(z)
(5,t)]

(leap)
t , being [p

(x)
(i,t), p

(y)
(i,t), p

(z)
(i,t)] the vector with the

spatial positions of the ith finger with respect to the sensor coordinate axes. The directions

of the fingertips at time t are represented using the matrix:

Dt = [d
(x)
(1,t), d

(y)
(1,t), d

(z)
(1,t); ...; d

(x)
(5,t), d

(y)
(5,t), d

(z)
(5,t)]

(leap)
t , being [d

(x)
(i,t), d

(y)
(i,t), d

(z)
(i,t)] the vector with the

directions of the ith finger with respect to the sensor coordinate axes. For this work, we

use the data of the tips of each finger. Then, at each time t, we obtain two matrices Pt

and Dt. The change of the values of the matrices at the times t1, t2, t3, ..., tn characterizes

the hand gesture. This data are processed by statistical functions that manually extract fea-

tures, and by deep learning algorithms to extract features automatically. In both cases, the

features obtained are evaluated in classifiers such as ANN and SVM, as shown in Figure 5.1.

Figure 5.1: Overview of the chapter, where automatic feature extraction is evaluated and

compared to manual feature extraction.

5.3.1. Convolutional neural network

CNN is a neural network that has multiple convolutional layers. According to [131], a con-

volutional layer is a small logistic regression where the convolution mask determines the

weights, and the input data values define the constants. The mask can be a matrix or a vec-

tor. It is a matrix if the input data is two-dimensional (2D) and a vector if it is one-dimensional
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(1D). The output of the convolutional layer can be the same size as the input data if an arti-

fice called padding is used and the step is one. Padding consists of adding values of -1 or

0 outside the size of the input data; the number of values added depends on the size of the

mask. A stride is the number of steps in which the convolution is performed. In addition, the

CNN has a pooling layer. This layer reduces the dimensionality of the input data. Finally,

CNN returns a vector smaller than the input data with a good abstraction or representation

of the input data. Figure 5.2 shows the general process of a CNN.

Figure 5.2: Convolutional neural network

5.3.2. Recurrent neural networks

A recurrent neural network (RNN) is designed to perform prediction or classification based

on sequential data. These data can be, for example, time series or words within a sentence.

In time series, the values of time t are inferred from the values of time t − 1. In the same

sense, the values of time t + 1 are inferred from the values of time t. In this context, the

challenge for RNNs lies in their ability to process inputs sequentially, ensuring that informa-

tion at time t is processed in the correct sequence as it was presented at previous t− 1 and

subsequent t + 1 time steps. However, the inputs at different time steps may vary, posing

a challenge for RNN architectures. Specifically, RNNs must effectively manage and update

their parameters over time to adapt to changing input patterns while preserving the memory

of past inputs. This necessitates the construction of RNN architectures with adaptable pa-

rameters that can effectively capture temporal dependencies and patterns within sequential

data streams. [132]. The types of RNNs are defined by the different architectures of these

neural networks. Among the different types of RNNs, we have long short-term memory

(LSTM) and gated recurrent unit (GRU). There is also a variant of LSTM called bidirectional

long short-term memory (BiLSTM).
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RNNs can assume different configurations depending on the problem to be solved.

These configurations are Sequence to Sequence, Sequence to Target, Target to Sequence,

and Target to Target. The target-to-target configurations are similar to feed-forward neural

networks. This type of neural network has no memory. The target-to-sequence configura-

tions correspond to 1 input at a time, and the model receives many targets. The sequence-

to-target configuration is when there is one sequence of input data, and the network can pre-

dict one output value. Finally, the sequence-to-sequence configuration corresponds when

the input is a sequence of data, where each data is a time instant, and the model predicts a

sequence of targets with a label for each time instant.

5.4. Analysis of manual and automatic feature extraction

This chapter evaluates and compares automatic feature extraction with manual feature ex-

traction. Manual feature extraction is performed by combining statistical functions. Automatic

feature extraction is performed using a CNN and a combination of BiLSTM networks. In the

same context, features are evaluated using Softmax, ANN, and SVM classifiers. In all ex-

periments, we measure the accuracy of classification and recognition of hand gestures. In

addition, during the execution of the experiments, the processing time of prediction is mea-

sured. Time is an essential variable in the evaluation of recognition algorithms. This is

because these algorithms are used in real-time applications.

5.4.1. Manual feature extraction

In this chapter, we use the following feature extraction function: Pulse percentage rate

(MYOP), which calculates the average magnitude of the changes between consecutive data

points in a signal, detector log (LD) is good at estimating the exerted force, wavelength (WL)

can be calculated by simplifying the cumulative length of the waveform summation, En-

hanced Wavelength (EWL) is an extension of WL, Difference Absolute Standard Deviation

Value (DASDV) is the square root of the average of the difference between the squared ad-

jacent values, and Standard Deviation (SD). These feature extraction functions are selected

from the analysis presented in Chapter 4.4. The dataset, comprising spatial and directional

positions, undergoes processing using the windowing technique. Within each window, fea-

tures are extracted by applying the previously outlined feature extraction functions. These

extracted features serve as inputs to the classifiers, facilitating the subsequent classification
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process.

In this evaluation, we use a feedforward ANN with two hidden layers. The first hidden

layer uses ReLU as an activation function with 25 neurons. The second hidden layer uses

logsig as an activation function and 15 neurons. The input of ANN is the number of features

according to the number of feature selection functions. We apply gradient descend to the

cross-entropy between the predictions of the ANN and the true labels to adjust its weights.

Additionally, ANN uses 2000 epochs and a regularization factor of 1.0e-1. For the SVM clas-

sifier, we used the Gaussian kernel and a scale factor of order 10. Table 5.1 presents the

results of evaluating hand gesture testing and recognition using manual feature extraction

on the described ANN and SVM architecture. These architectures are used because they

are the best architectures according to the evaluation in the previous chapter.

Manual Feature extraction

Algorithms Classification Testing Recognition Average time of clas-

sification testing

ANN 92.936 83.227 57 milliseconds

SVM 91.370 79.863

Table 5.1: Average Classification testing and recognition for manual feature extraction

5.4.2. Automatic feature extraction

For automatic feature extraction, we use CNNs. The network receives 30 values as time

series of 70 observations as input. The 30 values consist of 15 values for each finger’s X,

Y, and Z spatial positions, along with 15 values indicating the directions of the tips of each

finger. Consequently, the initial tensor is 30 x 70 in size, serving as input to the CNN, config-

ured with a 1D architecture. The 1D architecture is applied to a one-dimensional convolution

network. CNN 1D is a type of neural network commonly used for processing sequential data,

such as time series or signals, and processes data along a single dimension, typically the

time axis. Its ability to capture local patterns and hierarchical features makes it a powerful

tool for extracting meaningful representations from one-dimensional data.
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CNN-softmax

The first convolution block is formed by a convolution layer consisting of 4 filters of 1x3

with a stride of 1. The second layer is a batchNormalizationLayer with a MeanDecay of 0.1.

The third layer is a leakyReluLayer with a scale of 0.01, while the fourth layer is an average-

PollingLayer with a poolSize of 5, a stride of 1, and a padding of 0. The second convolution

block consists of 8 filters of 1x3 and a stride 1. The second layer of this second block is a

batchNormalizationLayer with a MeanDecay of 0.1. The third layer is a leakyReluLayer with

a scale of 0.01. The fourth layer is an averagePollingLayer with a poolSize of 5, a stride of 1,

and a padding of 0. The convolution layers are connected to a fullyConnectedLayer with 5

resulting classes. The output of this layer is normalized by a layerNormalizationLayer with an

epsilon of 1x10-5. Because it is a multi-class problem, it is connected to a softmaxLayer and

finally connected to a classificationLayer. Figure 5.3 shows the schema of the CNN-softmax

model.

Figure 5.3: Automatic feature extraction using CNN and softmax

The optimization technique for the cost function is stochastic gradient descent with mo-

mentum (sgdm). In this work, MATLAB is used to implement the CNN architecture. We set

parameters like LearnRateSchedule = piecewise. This parameter allows us to reduce the

79



learning rate during training, is associated with LearnRateDropFactor = 0.2. This parameter

is a multiplicative factor that allows us to reduce the learning rate every certain number of

epochs. We set LearnRateDropPeriod = 1, meaning the learning rate is updated at the end

of each epoch. Similarly, we set InitialLearnRate = 1e-4 is the value of the initial learning

rate. The algorithm is trained for 20 epochs, specified by MaxEpochs = 20. In this sce-

nario, 20 epochs are selected due to the limited training data available, with early stopping

and data augmentation utilized to mitigate the risk of overfitting. The training algorithm will

group the data into mini-batches to evaluate the gradient of the loss function and update the

weights with MiniBatchSize = 32. Finally, we use data augmentation and obtain a dataset

three times larger than the original dataset. Table 5.2 shows the results of the classification

and recognition of the CNN-softmax model.

CNN-ANN and CNN-SVM

The last layer of the CNN-softmax returns a label. In our case, the model has the layers

fullyConnected, layerNormalization, and softmax. The softmax layer reports a label based

on the features obtained by the convolutional layer. To implement the CNN-ANN and the

CNN-SVM, we excluded the fullyConneted, layerNormalization, and softmax layers from the

CNN-softmax model because the particular interest of the work is to obtain the features ab-

stracted by the convolutional blocks. Thus, we enter the CNN architecture at the point where

the problem is abstracted and the features are captured before being passed to the fully con-

nectedlayer. This gives us a tensor of 8 x 70 at the end of the CNN. This tensor is flattened,

resulting in a feature vector of 560 predictors. This feature vector is fed into the ANN and

SVM classification algorithms. The SVM algorithm is trained with a Gaussian kernel and a

scale of 10. The architecture of the ANN consists of 1 hidden layer. This hidden layer has 25

neurons, and its activation function is a ReLU function. Also, since the input feature vector

is large, a lambda regularization factor of 2.5e-1 is defined. Figure 5.4 shows the automatic

feature extraction scheme using CNN with an ANN and an SVM as classifiers.
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Figure 5.4: Classification using ANN and SVM algorithms with automatic feature extraction

by convolution

The ANN and SVM algorithms were trained using the same CNN configuration. Table

5.2 shows the experimental results of automatic feature extraction using CNN and training

traditional machine learning algorithms.

Algorithms Classification Recognition Average pro-

cessing time

CNN-softmax 93.971 88.005

CNN-ANN 99.795 91.67 30 milliseconds

CNN-SVM 99.403 90.73

Table 5.2: Accuracy of classification, recognition and around processing time of the CNN-

softmax, CNN-ANN, and CNN-SVM model.

In terms of classification accuracy, the CNN-ANN model stands out with the highest

accuracy of 99.795%, followed closely by CNN-SVM at 99.403%, and CNN-softmax at

93.971%. This demonstrates the superior performance of CNN-ANN and CNN-SVM over

CNN-softmax in classifying hand gestures. Similarly, in recognition accuracy, the CNN-ANN

model exhibits the highest performance with an accuracy of 91.67%, followed by CNN-SVM
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at 90.73%, and CNN-softmax at 88.005%. This reaffirms the dominance of CNN-ANN in

recognizing hand gestures compared to the other models. Notably, the CNN-ANN model

boasts a processing time of approximately 30 milliseconds, indicating efficient computa-

tional speed. Overall, the CNN-ANN model emerges as the most promising choice among

the evaluated models, excelling in both classification and recognition accuracies while main-

taining a commendable processing time.

Models with automatic feature extraction and memory cells

We evaluated an RNN of the type BiLSTM in the configuration sequence-to-sequence. This

algorithm is fed with the spatial positions and directions of the X,Y, and Z coordinates of the

fingertips. The BiLSTM-ANN and BiLSTM-SVM architecture is shown in Figure 5.5. This

algorithm returns a vector of labels, one for each time point. This vector of labels allows us

to generate the recognition output.

82



Figure 5.5: Classification using BiLSTM with Softmax, ANN, and SVM algorithms with auto-

matic feature extraction

The BiLSTM has 34 layers: an input sequence layer, 7 convolution layers, 7 normalization

layers, 7 ReLU layers, 5 pooling layers, 2 dropout layers, one flatten layer, one BiLSTM, one

fully connected layer, one softmax layer, and one classification layer. Figure 5.5 shows

each layer’s configuration parameters. The convolution layers present a vector of weights or

convolution of 1x3 with 8, 16, 32, and 64 filters, respectively These filters are responsible for

extracting various features from the input data, capturing different patterns and structures

present in the sequential input. In addition, all normalization layers have a normalization

factor of 0.1. Similarly, the pooling layers work with the max function with a pool of 5 and

jumps of 1. Also, the dropout layer is configured with a regularization factor of 1e-4 to avoid

overfitting. Finally, the BiLSTM layer presents 128 gates. Table 5.3 shows the classification

and recognition accuracy evaluated in the Softmax classifier.

Furthermore, we obtained the features automatically generated by BiLSTM. These fea-
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tures are obtained at the output of the BiLSTM layer. These features were fed to an ANN-

based classifier. In the same way, an SVM-based classifier is fed. The ANN and SVM

configurations are exactly the same as those used to train the algorithms described in the

previous experiments. Table 5.3 shows the training and testing accuracies of BiLSTM-ANN

and BiLSTM-SVM.

Algorithms Classification Recognition Average pro-

cessing time

BiLSTM-

softmax

95.616 91.86

BiLSTM-ANN 99.999 95.73 30 milliseconds

BiLSTM-SVM 99.999 94.79

Table 5.3: Accuracy of classification, recognition and around processing time of the BiLSTM-

softmax, BiLSTM-ANN, and BiLSTM-SVM models.

From table 5.3, it’s evident that the BiLSTM-ANN model achieves remarkable results

across both classification and recognition tasks. Specifically, it attains a near-perfect classifi-

cation accuracy of 99.999% and a recognition accuracy of 95.73%. This signifies the robust-

ness and efficacy of the BiLSTM-ANN model in accurately classifying and recognizing hand

gestures. Comparatively, the BiLSTM-SVM model also demonstrates excellent performance

with classification and recognition accuracies both reaching 99.999% and 94.79%, respec-

tively. However, the BiLSTM-softmax model lags slightly behind, achieving a classification

accuracy of 95.616% and a recognition accuracy of 91.86%. Additionally, all three mod-

els boast an average processing time of 30 milliseconds, indicating efficient computational

speed. Overall, the BiLSTM-ANN and BiLSTM-SVM models emerge as top contenders,

showcasing exceptional accuracy in hand gesture classification and recognition tasks.

Figure 5.6 summarizes the accuracies obtained from the manual and automatic feature

extraction experiments. It is grouped by feature extraction methods and evaluated in clas-

sification algorithms such as ANN, SVM, and softmax. Additionally, the 95% confidence

intervals, depicted in gray, are shown to overlap. This does not indicate that there is a sig-

nificant difference.
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Figure 5.6: Accuracy of ANN, SVM, and Softmax classifiers with automatic feature extraction

by CNN and BiLSTM. Accuracy of ANN and SVM classifiers with manual feature extraction

In this context, we generate a statistic to determine if there are significant differences.

First, a Shapiro-Wilk normality test is performed, which confirms that the p-value is less than

0.05. Next, a homogeneity of variances test is performed to confirm that the p-value is less

than 0.05. Finally, an ANOVA is performed to determine if there are significant differences.

Table 5.4 shows the statistical analysis to determine if there is a significant difference.

Table 5.4 in the first column shows the feature extraction methods that are compared

to determine if there are significant differences. The column diff represents the difference

between the means of two or more groups being compared, lwr Indicates the lower bound

of the confidence interval for the difference between group means, upr Denotes the upper

bound of the confidence interval for the difference between group means. and ’p adj’ refers

to the adjusted p-value, which is the probability of observing the test statistic or more ex-
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diff lwr upr p adj

CNN-BiLSTM -0.1964 -0.3639 -0.0288 0.0205

Manual-BiLSTM -6.9910 -7.1654 -6.8166 0.0000

Manual-CNN -6.7946 -6.9690 -6.6202 0.0000

Table 5.4: Pairwise test to determine the method that has a significant difference

treme results, given that the null hypothesis is true. To determine that there is a significant

difference in the comparison, the value must be less than 0.05.

For pairwise analysis, the results were filtered to focus on ANN, given its highest re-

ported accuracy. The hypothesis contrast statistic revealed a significant difference between

BiLSTM-ANN and CNN-ANN, with BiLSTM-ANN emerging as superior. Furthermore, dis-

tinctions were observed between the automatic and manual feature extraction methods,

underscoring the importance of method selection in achieving optimal results.

5.5. Conclusion

In this chapter, we have presented the evaluation of 3 hand gesture recognition models,

focusing on performance metrics such as classification accuracy, gesture recognition capa-

bilities, and processing time. The data used to evaluate the model were acquired by the

LMC. Both accuracy and processing time were measured on the model with manual feature

extraction and the models with automatic feature extraction. Manual feature extraction is per-

formed by applying statistical functions of central tendency such as MYOP, LD, WL, EWL,

DASDV, and SD. These functions were chosen based on a the previous chapter, where two

classifiers, ANN and SVM, are evaluated. The results obtained are 92.936% for ANN and

91.370% for SVM for testing, while for recognition, 83.227% for ANN and 79.863% for SVM.

Also, the average classification test time is reported, the test of the models returns about 57

milliseconds. This time is taken over the test set, from when an instance feeds the classifier

to when a label is returned. This evaluation shows that the model is running in real-time.

For automatic feature extraction, a CNN and a BiLSTM are used. The CNN is used to

obtain an abstraction of the 1D input problem based on convolutions. The 1D input feature

vector consists of 2100 features. A total of 516 features were obtained after automatic

feature extraction. These features were fed to classic classifiers. The classifiers used are

Softmax, ANN, and SVM. For the softmax classifier, the accuracies obtained are 93.971%

for classification and 88.005% for recognition. For the evaluation of the features extracted
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by the CNN and classified with an ANN (CNN-ANN), an accuracy of 99.795% is obtained.

In the same context, the CNN-SVM evaluation reports a 99.403% of accuracy. The average

processing time reported for the classification test with CNN-ANN and CNN-SVM is around

the 30 milliseconds.

A BiLSTM is used because the data obtained for gesture recognition is a time series. The

configuration of BiLSTM is sequence to sequence. This is because the algorithm returns a

label for each time point, and this is used for recognition. The BiLSTM evaluated on a

softmax classifier gives a classification accuracy of 95.6161%, and a recognition accuracy

of 91.8601%. The same features extracted by BiLSTM are evaluated an ANN, BiLSTM-ANN,

obtaining an accuracy of 99.9912%, and with a SVM BiLSTM-SVM, obtaining an accuracy of

99.8840%. The processing time in the classification test for the BiLSTM-ANN algorithm and

for BiLSTM-SVM is evaluated, with an average processing time around the 27 milliseconds.

After the evaluation of the models, simple models with manual feature extraction and

complex models with automatic feature extraction. It is observed that there is a significant

difference in the classification accuracy between the simple models and the complex mod-

els. The simple model shows a 92.936% of classification accuracy, and the complex model

shows a 99.8840%. But between the two complex models CNN-ANN and BiLSTM-ANN, the

difference is 0.1962%, which is an almost negligible difference.
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Chapter 6

Conclusions and future works
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In this concluding chapter, we synthesize the findings from the extensive exploration of

the HGR problem undertaken in this thesis. Additionally, we outline potential avenues for

future research and development, aiming to propel the field forward and address lingering

gaps and limitations.

6.1. Conclusions

This thesis delves into the issue of hand gesture recognition, which involves complex chal-

lenges related to extracting features and recognizing patterns. In order to tackle this re-

search problem, an SLR was undertaken. The analysis of this review reveals that re-

searchers employ different architectures of the models to address hand gesture recognition

problems. To establish these architectures, a generic model consisting of modules such

as data acquisition, preprocessing, feature extraction, classification, and post-processing

serves as a foundational framework. Among the findings, it was noted that the majority of re-

searchers incorporated modules for data acquisition, preprocessing, feature extraction, and

classification into their models. Spatial position data emerged as a commonly utilized data

type, although a significant portion of studies did not specify the data utilized. Preprocess-

ing techniques encompassed data normalization, noise reduction filters, and segmentation

methods, while feature extraction predominantly relied on manual techniques such as sta-

tistical methods and finger distance calculations. In terms of classifiers, classical machine
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learning algorithms were prevalent, with SVM emerging as the most commonly utilized clas-

sifier. Notably, only a single article reported employing post-processing techniques. The

primary devices utilized for data acquisition were the Kinect and LMC, with datasets con-

structed using the LMC typically comprising a limited number of users. Furthermore, all

studies employed supervised learning approaches and reported classification accuracies.

This helped to identify several gaps and critical areas for future research in the HGR do-

main, such as: deficiency in data acquisition protocols, data sets created with too few users,

absence of recognition algorithms, and decreased model performance due to too many fea-

ture extraction functions.

This thesis also includes the creation of a dataset, which was achieved using the LMC

involving the participation of 56 individuals. Within this dataset, 9 distinct gestures were

defined, comprising 5 static and 4 dynamic gestures. Each participant executed each ges-

ture 30 times, resulting in a dataset containing a total of 15,120 samples, with 8,400 static

samples and 6,720 dynamic samples. As identified in the SLR, this dataset is noted for

having the largest number of samples among datasets utilized in the realm of hand gesture

recognition employing the LMC. Notably, the acquired data encompasses spatial positions,

orientations, and images. Additionally, it was determined that the dataset was meticulously

constructed to maintain a proportional representation between male and female participants

while also ensuring that the age distribution of participants adheres to a normal distribution.

This thesis also analyzes and evaluates the behavior of the manual feature selection and

feature extraction methods evaluated in classical machine learning algorithms as ANN, SVM,

kNN, and DT. The feature selection methods evaluated are: MRMR, Sequential, NCAp,

NCAsp, Relief-F, and DT as feature selection method. The feature extraction methods are:

MAV, EMAV, MMAV, MMAV2, VAR, RMS, DASDV, SD, MV, ACC, WL EWL, LD, SSC, MYOP,

WA, SSI. The feature extraction methods include statistical functions of central tendency and

dispersion. The feature selection methods evaluate and assign scores based on the most

effective feature extraction technique for the hand gesture recognition challenge. These

scores guide the extraction of features, subsequently inputted into the classifier. Across

all feature selection functions, it is consistently observed that an ANN achieves the high-

est accuracy. Specifically, the sequential method combines 14 feature extraction functions,

yielding an accuracy of 93.0788% for testing and 83.5152% for recognition, with a process-

ing time of 67.5646 seconds. Conversely, utilizing a set of 6 feature extraction functions, the
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Decision Tree (DT) method achieves an accuracy of 93.0545% for testing and 83.2273% for

recognition, with a shorter processing time of 44.7923 seconds.

To discern potential differences, an ANOVA hypothesis test is conducted, revealing that

both sequential and DT methods do not exhibit significant variations in reported accuracy.

However, a noticeable distinction in processing time is observed, primarily attributed to the

disparity in the number of feature extraction functions employed. Given the specifics of our

problem domain, it is advisable to employ DT as a feature selection method in conjunction

with ANN for optimal performance of the hand gesture recognition model.

In this thesis, we comprehensively assess the performance of automatic feature extrac-

tion, focusing on key metrics including classification accuracy, recognition accuracy, and

processing time. Employing CNN and BiLSTM models for feature extraction, the extracted

features are subsequently fed into classifiers such as Softmax, ANN, and SVM.

For the CNN-based classifiers, notable accuracies are achieved across the board. The

CNN-softmax classifier yields 93.971% accuracy for classification and 88.005% for recogni-

tion. Evaluating features extracted by CNN and assessed in CNN-ANN results in 99.795%

accuracy for classification and 91.67% for recognition, while CNN-SVM reports 99.403%

for classification and 90.73% for recognition. The average processing time for classification

tests with CNN-softmax, CNN-ANN, and CNN-SVM is approximately 30 milliseconds.

Similarly, the evaluation of BiLSTM-based models showcases results when assessed with

a softmax classifier, achieving 95.6161% classification accuracy and 91.8601% recognition

accuracy. Transitioning to more complex models, BiLSTM-ANN demonstrates exceptional

performance with 99.9912% classification accuracy and 95.73% recognition accuracy, while

BiLSTM-SVM records 99.840% for classification and 94.79% for recognition. Notably, the

average processing time for classification tests with BiLSTM-Softmax, BiLSTM-ANN, and

BiLSTM-SVM is evaluated to be around 30 milliseconds.

A significant disparity in classification accuracy becomes evident upon contrasting clas-

sical models with manual feature extraction and deep models with automatic feature ex-

traction. While the classical models achieve 92.936% accuracy, the deep models notably

outperform them, showcasing a remarkable 99.999% accuracy. Notwithstanding, the dif-

ference between the two deep models, CNN-ANN and BiLSTM-ANN, is a mere 0.1962%,

which is deemed negligible in practical terms. Finally, in hand gesture recognition, real-time

denotes a system’s ability to process and analyze input data, delivering a response within
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a timeframe of less than 300 milliseconds. Within the scope of this thesis, the process-

ing times recorded by both manual and automatic feature extraction models fall comfortably

under this threshold. Hence, they are deemed to operate effectively in real-time scenarios.

6.2. Future works

Based on the progress made in this thesis, there are exciting opportunities for future re-

search in the HGR field. A future work could be exploring models based on transformer

neural networks. These models could evaluate the accuracy of classification and recogni-

tion in terms of processing time. Comparing these new transformer-based models with the

ones studied in this thesis could offer useful insights into how they perform and what benefits

they might offer. This line of research could have the potential to push forward the field of

hand gesture recognition, leading to stronger and more effective models.

Furthermore, another field that can be explored is how different data types could be com-

bined to construct datasets for the HGR problem. For example, infrared imaging, electroen-

cephalography (EEG), and electromyography (EMG) could enrich the information available

for gesture recognition. Combining these data types could provide complementary informa-

tion, enhancing the discriminative power of HGR systems and improving their performance

in complex real-world scenarios.
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Appendix A

Data acquisition protocol

Data acquisition protocol using the Leap Motion Controller (LMC) for hand gesture recogni-

tion research:

1. Setup and Calibration:

• Ensure that the Leap Motion Controller is securely connected to a compatible

computer system and positioned on a stable surface.

• Calibrate the device according to manufacturer instructions to ensure accurate

hand tracking and gesture detection.

2. Participant Preparation:

• Recruit participants for the study, ensuring they meet any inclusion criteria related

to age, hand dominance, or previous hand injuries.

• Provide participants with informed consent forms detailing the study objectives,

procedures, and any associated risks.

3. Environment Setup:

• Ensure the data acquisition environment is well-lit and free from obstructions to

minimize interference with hand tracking.

• Position the Leap Motion Controller at a comfortable height and angle for partici-

pants, ensuring optimal hand visibility and tracking accuracy.

4. Data Collection Procedure:

• Instruct participants to sit comfortably in front of the Leap Motion Controller, en-

suring a distance of approximately 20 cm between their hand and the sensor.
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• Explain the task instructions clearly, detailing the specific hand gestures or move-

ments required for data collection.

• Begin data recording using the Leap Motion Controller software, capturing both

spatial positions and directional data of the participant’s hand movements.

• Instruct participants to perform a series of predefined hand gestures or move-

ments systematically, ensuring consistent execution across all trials.

• Record demographic information such as age, gender, and any relevant medical

history for each participant to facilitate subsequent analysis.

5. Data Acquisition Parameters:

• Set the sampling rate of the Leap Motion Controller to ensure sufficient temporal

resolution for capturing hand movements accurately.

• Determine the duration of each data recording session, balancing the need for

comprehensive data collection with participant comfort and engagement.

6. Data Quality Control:

• Monitor data acquisition in real-time to identify and address any issues such as

tracking errors or signal noise that may affect data quality.

• Verify the integrity of the recorded data, checking for completeness and consis-

tency across all collected samples.

7. Participant Feedback and Debriefing:

• Provide participants with an opportunity to provide feedback on their experience

with the data acquisition process, addressing any concerns or questions they may

have.

• Debrief participants on the study objectives and outcomes, ensuring they under-

stand how their data will be used and the significance of their participation.

8. Data Storage and Management:

• Store all collected data securely in a designated database or repository, ensuring

compliance with data protection regulations and ethical guidelines.

• Implement data management protocols to organize and catalog the acquired

data, including appropriate labeling and documentation for future analysis.
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9. Ethical Considerations:

• Obtain ethical approval from relevant institutional review boards or ethics commit-

tees prior to commencing data collection, ensuring adherence to ethical principles

and guidelines.

• Safeguard participant privacy and confidentiality by anonymizing personal infor-

mation and obtaining informed consent for data usage and publication.

10. Data Analysis and Interpretation:

• Conduct comprehensive data analysis using appropriate statistical and machine

learning techniques to explore patterns, relationships, and trends within the ac-

quired dataset.

• Interpret the findings of the data analysis in relation to the research objectives,

drawing meaningful insights and conclusions to contribute to the advancement of

hand gesture recognition research.

By following this detailed data acquisition protocol, researchers can ensure systematic

and standardized collection of high-quality data using the Leap Motion Controller for hand

gesture recognition research.
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