ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA QUÍMICA Y AGROINDUSTRIA

EVALUACIÓN DE UN BACTERIÓFAGO CON ACTIVIDAD LÍTICA CONTRA Escherichia coli MEDIANTE ENSAYOS FISICOQUÍMICOS, GENÉTICOS Y FENOTÍPICOS

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE MÁSTER EN BIOCIENCIAS APLICADAS CON MENCIÓN EN BIODESCUBRIMIENTO

MARÍA BELÉN TOAQUIZA VILCA maria.toaquiza@epn.edu.ec

DIRECTORA: MARYNES MONTIEL ROMERO, MSc., PhD. marymont@espol.edu.ec

CODIRECTOR: ING. PEDRO MALDONADO PhD. pedro.maldonado@epn.edu.ec

Quito, julio 2024

© Escuela Politécnica Nacional (2024)

Reservados todos los derechos de reproducción

DECLARACIÓN

Yo, María Belén Toaquiza Vilca, declaro que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

María Belén Toaquiza Vilca

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por María Belén Toaquiza Vilca, bajo mi supervisión.

Marynes Montiel, MsC., PhD DIRECTORA DE PROYECTO Ing. Pedro Maldonado, PhD. CODIRECTOR DE PROYECTO

AUSPICIO

La presente investigación contó con el financiamiento del proyecto "Bacteriófagos provenientes de muestras ambientales con posibles aplicaciones en el control de bacterias ", bajo el código FCV-15-2021, llevado a cabo en el Decanato de Investigación del Departamento de Ciencias de la Vida de la ESPOL.

DEDICATORIA

En memoria de mi padre, Ricardo Toaquiza.

A Dios, quien me ha otorgado la fortaleza necesaria para enfrentar las diversas situaciones que se han presentado en mi vida, guiándome y protegiéndome en cada paso.

A mi mamá, mi hermana Sofía y mi madrina Liliana, quienes han sido un constante pilar de apoyo. Su ejemplo y amor ha sido mi principal fuente de inspiración, motivándome a ser una mejor persona día tras día.

A mis amigos por su constante apoyo y amistad inquebrantable. Han sido pilares esenciales en mi trayecto

AGRADECIMIENTOS

Quiero expresar mi profundo agradecimiento a la Dra. Marynes Montiel por brindarme la oportunidad de participar en este proyecto, así como por su dedicación, orientación y apoyo a lo largo de este proceso. Gracias a su compromiso y liderazgo, he adquirido conocimientos técnicos y habilidades críticas que me serán de utilidad en mi vida profesional. Su dedicación y mentoría han dejado un impacto positivo en mi crecimiento académico y personal.

También quiero agradecer al Dr. Diego Quito por su confianza, paciencia y guía. Y la colaboración de sus técnicos de laboratorio durante el año 2022, Gabriela Cañada y Edison Reyes, quienes, junto con Katya, Ivonne y Daniela, hicieron que mi estadía en la ESPOL fuera una experiencia inolvidable y enriquecedora.

De la misma manera, agradezco al Dr. Pedro Maldonado y al Dr. Omar Ruiz por su confianza, paciencia y valiosa retroalimentación, elementos fundamentales que han contribuido al desarrollo de mi trabajo.

Mi reconocimiento se extiende a todos los profesores de la maestría de Biociencias Aplicadas por compartir su conocimiento de manera excepcional.

Agradezco a todo el Departamento de Ciencias de la Vida de la ESPOL y al personal de la institución por su amabilidad y colaboración durante el desarrollo de mi tesis. Reconozco especialmente el apoyo brindado por los técnicos de docencia, pasantes y ayudantes de investigación del laboratorio de microbiología ambiental durante el período 2022.

Expreso mi reconocimiento al Centro de Nanociencias y Nanotecnologías (CENCINAT) de la Universidad de las Fuerzas Armadas ESPE por su disposición para contribuir al avance de la ciencia.

Finalmente, deseo agradecer a la Escuela Politécnica Superior del Litoral y a la Escuela Politécnica Nacional por su compromiso continuo en proporcionar educación de calidad de tercer y cuarto nivel a la población ecuatoriana, así como por brindar oportunidades para que los estudiantes persigan sus sueños.

Evaluación de un bacteriófago con actividad lítica contra *Escherichia* coli mediante ensayos fisicoquímicos, genéticos y fenotípicos

Toaquiza, Belén¹; Maldonado-Alvarado, Pedro¹; Quito, Diego²; Ruiz, Omar²; Debut, Alexis³; Montiel, Marynes²

¹Escuela Politécnica Nacional, Departamento de Ciencias de Alimentos y Biotecnología, Quito, Ecuador ²Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, Guayaquil, Ecuador ³Universidad de las Fuerzas Armadas-ESPE, Centro de Nanociencia y Nanotecnología, Sangolquí-Ecuador

Resumen: La diseminación ambiental es una preocupación mundial y los bacteriófagos representan una alternativa prometedora para el control de bacterias resistentes a antibióticos debido a su alta especificidad, capacidad de autorreplicarse y coevolución con el huésped. La presente investigación tuvo como objetivo evaluar mediante ensayos fisicoquímicos, genéticos y fenotípicos un bacteriófago con actividad lítica contra *Escherichia coli*. A partir de muestras de agua y sedimentos provenientes del Estero Salado, Guayaquil- Ecuador, se aislaron bacteriófagos pertenecientes a géneros líticos como *Felixunavirus, Dhillonvirus y Justusliebigvirus*. Sin embargo, solo el fago BME3, perteneciente al último género, logró lisar cepas de *E. coli* con diferentes fenotipos de susceptibilidad a antibióticos: 57,14% (8/14) resistentes, 12,5% (1/8) intermedio y 80% (4/5) sensible. Igualmente, BME3 infectó cepas *E. coli* ATCC 25922 y *Salmonella typhimurium* ATCC 14028, y no tuvo reacción contra *Bacillus* sp., *Vibrio* sp. y *Pseudomonas* sp. BME3 demostró estabilidad a temperaturas inferiores a 60°C y en rangos de pH entre 3 a 11, y carece de sensibilidad al cloroformo. Mediante, microscopía electrónica de transmisión se comprobó que BME3 pertenece a la clase *Caudoviricetes*, la longitud de la cabeza icosaédrica y la cola contráctil fue de 102,64±11,57 nm y 105,00±9,00 nm, respectivamente. El genoma del fago BME3 consta ADN bicatenario con 147 371 pb de longitud, con un contenido de GC del 37,5% y 15 genes de ARNt. Además, BME3 carece de genes lisogénicos, resistencia a antibióticos y virulencia, lo que indica que este bacteriófago es seguro para la fagoterapia.

Palabras clave: Bacteriófago, Escherichia coli, Caudoviricetes, control biológico, resistencia bacteriana a antibióticos

Bacteriophage evaluation with lytic activity against *Escherichia coli* using physicochemical, genetic, and phenotypic assay

Abstract: Environmental dissemination is a global concern, and bacteriophages represent a promising alternative for controlling antibiotic-resistant bacteria due to their high specificity, ability to self-replicate, and coevolution with the host. The objective of this research was to evaluate a bacteriophage with lytic activity against *Escherichia coli* through physicochemical, genetic, and phenotypic tests. Bacteriophages from lytic genera such as *Felixunavirus, Dhillonvirus,* and *Justusliebigvirus* were isolated from water and sediment samples from the Estero Salado, Guayaquil- Ecuador. However, only phage BME3, belonging to the last genus, managed to lyse *E. coli* strains with different antibiotic susceptibility phenotypes: 57.14% (8/14) resistant, 12.5% (1/8) intermediate, and 80% (4/5) sensitive. Likewise, BME3 infected strains of *E. coli* ATCC 25922 and *Salmonella typhimurium* ATCC 14028, and did not react with *Bacillus* sp., *Vibrio* sp., and *Pseudomonas* sp. BME3 demonstrated stability at temperatures below 60°C and in pH ranges between 3 to 11 and lacks sensitivity to chloroform. Through transmission electron microscopy, it was verified that BME3 belongs to the *Caudoviricetes* class, with the length of the icosahedral head and the contractile tail was 102.64±11.57 nm and 105.00±9.00 nm, respectively. The genome of phage BME3 consists of double-stranded DNA with a length of 147,371 bp, a GC content of 37.5%, and 15 tRNA genes. Furthermore, BME3 lacks lysogenic genes, antibiotic resistance, and virulence factors, indicating that this bacteriophage is safe for phage therapy.

Keywords: Bacteriophage, Escherichia coli, Caudoviricetes, biological control, bacterial resistance to antibiotics

1. INTRODUCCIÓN

La resistencia bacteriana a los antibióticos es el resultado de múltiples factores, entre los cuales se destacan la automedicación, la prescripción irracional, el uso excesivo y la disminución en el desarrollo de nuevos antibióticos por parte de la industria farmacéutica (Luepke et al., 2017; Raffatellu, 2018; Rios et al., 2016). Estos compuestos se liberan al medio acuático a través de la descarga de aguas residuales domésticas e industriales, así como de los efluentes provenientes de granjas y de la actividad acuícola (Ben et al., 2018; Marathe et al., 2017). En condiciones adecuadas, los residuos de antibióticos en el ambiente pueden ejercer presión selectiva sobre cepas inocuas o serotipos patogénicos de *Escherichia coli*, lo que complica el control de estos microorganismos debido a mutaciones puntuales o transferencia horizontal de genes (conjugación, transducción y transformación) (Bobate et al., 2023; Calero-Cáceres et al., 2019; Gordillo Altamirano & Barr, 2019). Entre los serotipos patógenos de *Escherichia coli* de humanos y animales se encuentran aquellos capaces de provocar diversas enfermedades como enteritis, septicemia, infecciones del tracto urinario, meningitis y diarrea intestinal (Bolocan et al., 2016; Kaper et al., 2004).

El mayor riesgo de la diseminación de bacterias resistentes radica en el contacto de aquellos microorganismos con la microbiota intestinal de humanos y animales. Este contacto puede ocurrir por la ingestión de agua o alimentos contaminados con bacterias (Jiang et al., 2023; Ye et al., 2019).

La resistencia a antibióticos es una amenaza para la salud pública y seguridad alimentaria (Organización Mundial de la Salud, 2020). Se estima que más de 10 millones de personas morirán en 2050 debido a la resistencia a los antibióticos (Alanís, 2005; O'neill, 2014). Se necesitan estudios holísticos sobre la resistencia a los antibióticos en humanos, animales y el medio ambiente para desarrollar estrategias de control efectivas (Van Puyvelde et al., 2018).

En la era de la crisis de resistencia a los antibióticos, la fagoterapia es una alternativa prometedora cuya aplicación empezó hace más de 100 años (Harada et al., 2018; Summers, 1999). Los bacteriófagos son virus que infectan bacterias y se encuentran ampliamente distribuidos en la biosfera, con una abundancia total 10^{31} partículas víricas (Mann, 2005). Se han desarrollado técnicas para descubrir la diversidad de bacteriófagos en varios nichos ambientales a través de la metavirómica, microscopía electrónica de transmisión y polimorfismo de longitud de fragmentos de restricción (RFLP) (Nicolas et al., 2023; Olsen et al., 2020; Yutin et al., 2017).

Los bacteriófagos se clasifican según su ciclo de vida en lisogénico y lítico. El primer estado favorece a la transducción, es decir, la transferencia horizontal de genes de resistencia a los antibióticos o toxinas entre bacterias. Sin embargo, para la fagoterapia es importante el aislamiento y uso de fagos virulentos que provocan la lisis del huésped (Salmond & Fineran, 2015).

El uso de bacteriófagos líticos ofrece varias ventajas importantes en la fagoterapia. En primer lugar, los fagos son fáciles de propagar mediante la autorreplicación y esto ocurre sólo en presencia del huésped (Hatfull et al., 2022; Park et al., 2020). En segundo lugar, los bacteriófagos ofrecen seguridad porque no infectan células eucariotas (Gordillo Altamirano & Barr, 2019; Rios et al., 2016). En tercer lugar, los virus son altamente específicos debido a que estos reconocen y se unen a receptores localizados en la membrana externa del huésped mediante proteínas de unión a receptores (PRB) como fibras o púas de la cola (Maffei et al., 2021). En cuarto lugar, la coevolución del fago con el huésped mediante la transferencia horizontal de genes de dominios de unión al receptor del huésped, incluyendo centros catalíticos con actividad despolimerasa (Pas et al., 2023; Stummeyer et al., 2006).

Sin embargo, el uso de bacteriófagos está limitado por los siguientes factores: la transducción, la presencia de genes tóxicos en el genoma del fago, mecanismos de resistencia a fagos, y la necesidad de disponer de una colección de fagos que proporcione opciones terapéuticas efectivas (Kakasis & Panitsa, 2019).

Tradicionalmente, la fagoterapia se ha centrado en estudios clínicos, veterinarios y de seguridad alimentaria. En el sector clínico, se ha reportado el aislamiento de fagos para el control de bacterias resistentes a los antibióticos en infecciones del tracto urinario o heridas de la piel (Mattila et al., 2015; Slobodníková et al., 2021; Yazdi et al., 2020). En el sector veterinario, fagos poseen interés para infectar cepas patogénicas de *E. coli* causantes de diarrea en ganado o incluso la colibacilosis en aves de corral (Cui et al., 2022; Nicolas et al., 2023). En la seguridad alimentaria, se incluyen investigaciones agrícolas para controlar bacterias resistentes a antibióticos en sistemas suelo-planta en cultivos de zanahoria y lechuga (Ye et al., 2018; Zhao et al., 2019) y la desinfección de semillas (Liao et al., 2022).

Los estudios sobre diseminación de resistencia ambiental en cuerpos de agua son muy escasos. Ecuador cuenta con el primer reporte de detección de cepas *E. coli* con fenotipo de multirresistencia y la presencia del gen de resistencia a colistina y β -lactamasas en muestras ambientales (Calero-Cáceres et al., 2022). Por tal motivo, es importante el aislamiento de bacteriófagos líticos para controlar y prevenir la diseminación de resistencia ambiental de *E. coli*.

En estuarios, se ha reportado la presencia de bacteriófago de la clase Caudoviricetes, siendo los de mayor prevalencia los pertenecientes a la morfología Myoviridae (viriones con cola larga contráctil) seguido de los pertenecientes a la morfología Siphoviridae (cola larga no contráctil) y Podoviridae (cola corta) (Jasna et al., 2018; Turner et al., 2023; Zhang et al., 2021). A pesar de la diversidad y abundancia de bacteriófagos que se encuentran comúnmente en estuarios, no todos son adecuados para el control biológico de E. coli. Por lo tanto, Born et al. (2019) proponen la preselección de fagos estrictamente líticos con morfología Myoviridae (FO1, GJ1, T4 y Vi1) y Podoviridae (N4, T7, SP6) mediante la amplificación del gen de la proteína de la cápside mayor (MCP). Sin embargo, existen otros géneros líticos como Dhillonvirus y Tequintavirus pertenecientes a la morfología Siphoviridae para los cuales no existen reportes de cebadores sobre su identificación (Adams et al., 2017; Golomidova et al., 2019; Maffei et al., 2021; Sváb et al., 2022).

Por lo tanto, los objetivos de la investigación fueron los siguientes: a) seleccionar bacteriófagos con actividad lítica contra la cepa de *Escherichia coli* ATCC 15597 aislados de muestras de agua y sedimentos provenientes del Estero Salado (Guayaquil, Ecuador); b) identificar un bacteriófago lítico con potencial uso en el control biológico de *Escherichia coli* mediante ensayos de biología molecular y perfil de lisis; c) caracterizar de forma fisicoquímica, fenotípica y genética al

menos un bacteriófago con características líticas deseables para su uso en control biológico.

2. METODOLOGÍA

2.1. Muestreo

El aislamiento de los bacteriófagos se realizó a partir de muestras de agua y sedimentos provenientes del Estero Salado (-2.4198713, -80.0299257), estuario ubicado en la ciudad de Guayaquil, Ecuador. El muestreo fue de tipo no probabilístico por conveniencia, en el cual se seleccionaron 15 puntos de muestreo que abarcaron sus diferentes ramales (Tabla FTI. 1). La selección de los sitios de muestreo se basó en los siguientes parámetros: influencia de la actividad antropogénica, seguridad del personal durante la toma de muestras y sitios de fácil acceso. Las muestras de agua se recolectaron en botellas de vidrio con una capacidad de 1 L, mientras que los sedimentos (250 g) fueron depositados en bolsas de plástico. Las muestras se almacenaron a 4°C hasta que fueron recibidas y procesadas en el Laboratorio de Microbiología Ambiental de la Facultad de Ciencias de la Vida de la ESPOL.

2.2. Aislamiento de bacteriófagos a partir de muestras ambientales

La cepa de *Escherichia coli* ATCC 15597 se utilizó para el aislamiento de bacteriófagos tanto en muestras de agua como de sedimentos. Se empleó el método de capa simple de agar descrito por EPA (United States Environmental Protection Agency, 2001) con modificaciones en el procesamiento de sedimentos. Se pesaron 10 g de sedimentos y se mezclaron con 90 mL de solución salina (0.85%). Se agitó para liberar los fagos de las partículas del suelo. Finalmente, se dejó decantar y se recuperó el sobrenadante (Adriaenssens et al., 2011).

Las muestras de agua y el sobrenadante de los sedimentos se procesaron de la siguiente forma: 500 μ L de MgCl₂ (4 M) y 1000 μ L de cloruro de tetrazolio (1%) se añadieron a 100 mL de la muestra. La mezcla se incubó durante 10 min a 37°C. Luego, se agregaron 10 mL de la bacteria en crecimiento en fase logarítmica (0.5 McFarland) y se incubó durante 5 min a 37°C. A continuación, se añadió 100 mL de agar tripticasa soya (TSA, 2X) previamente atemperado a 45°C. La mezcla se homogeneizó y se dispensó en cajas Petri para su incubación a 37°C durante 24 a 48 h.

2.3. Recuperación y purificación de bacteriófagos

Para la recuperación y purificación de bacteriófagos, se empleó la metodología descrita por Lukman et al. (2020). En la selección de placas líticas, se consideró la morfología y el diámetro. Cada placa lítica se recuperó con una punta estéril de micropipeta y se resuspendió en 1 mL de tampón de sodio y magnesio (1 L de tampón SM: 50 mL de Tris-HCl 1 M pH 8, 2 g de MgSO₄.7H₂O, y 5.8 g NaCl). La suspensión se pasó a través de un filtro de membrana de polifluoruro de vinilideno (PVDF) con un tamaño de poro de 0.22 µm y se realizó el método de doble capa de agar. Este proceso se repitió al menos tres veces hasta obtener placas uniformes. Los bacteriófagos recuperados fueron etiquetados como BMXn o BMXSn, donde "BM" corresponde a un indicador general, seguido de "X" que representa el punto de muestreo entre A-O, "S" significa muestras provenientes de sedimentos (su ausencia denota muestras de agua), y "n" indica el número de placa aislada.

Para determinar el título de los aislados se empleó el método de doble capa de agar según la metodología descrita por Kropinski et al. (2009). A partir de la suspensión inicial del fago, se realizaron diluciones seriadas de 10^{-4} a 10^{-7} , con la finalidad de visualizar placas líticas individuales. A un volumen de dilución de 1000 µL se añadieron 200 µL de la bacteria en crecimiento en fase logarítmica (0.5 McFarland) y 10 µL de MgCl₂ (4M). A continuación, se homogenizó la muestra en un vórtex y se incubó a 37°C durante 5 min. La mezcla se añadió a 4 mL de TSA con 0.7% de agar precalentado a 45°C y se dispensó sobre la superficie de placas de TSA con 1.5% de agar. Las cajas Petri se incubaron a 37°C durante 12 h. Los resultados se reportaron como Unidades Formadoras de Placas por mL de muestra (UFP/mL).

Se determinó la actividad lítica del filtrado contra la cepa de *E. coli* ATCC 15597 mediante la prueba de la gota, de acuerdo con la metodología descrita por Mirzaei & Nilsson (2015). En cajas Petri con medio TSA se inoculó el huésped en crecimiento logarítmico (0.5 McFarland), luego se colocaron 10 μ L de suspensión de fagos sobre la superficie. Las cajas se incubaron a 37°C durante 24 h. Los resultados se reportaron como la presencia o ausencia de zonas de lisis.

2.4. Identificación molecular de bacteriófagos líticos

La detección de bacteriófagos estrictamente líticos mediante la reacción en cadena de la polimerasa (PCR) se realizó utilizando la metodología descrita por Born et al. (2019), que se basa en la amplificación del gen MCP. Para la preparación del ADN molde, se recuperaron los fagos a partir de las zonas líticas (prueba de la gota) o placas líticas (método de doble capa de agar) con la ayuda de una punta estéril de micropipeta y se resuspendieron en 100 µL de tampón SM. La suspensión del fago se incubó a temperatura ambiente (17°C) durante 1 h y luego a 95°C por 10 min e inmediatamente se refrigeró a 8°C. Para el análisis de PCR, se utilizaron 2 µL de ADN molde en una reacción de 20 µL, descrita a continuación: 10 µL de GoTaq® Green Master Mix (Promega, USA), 0.8 µL de cada cebador a 100 µM (Macrogen, Corea del Sur), 3.2 µL de ddH2O de grado molecular (Invitrogen, USA) y 2 µL de ADN del fago. La temperatura de annealing fue de 52°C para los géneros T4/T7/SP6/Vi1 y 54°C para los géneros N4/FO1/GJ1.

Con el propósito de validar los resultados obtenidos mediante el análisis de PCR múltiple y detectar los miembros del género *Dhillonvirus* y *Tequintavirus*, se realizó un análisis de PCR con un solo set de cebadores. Se utilizó un volumen de reacción de 20 μ L: 10 μ L GoTaq ® *Green Master Mix*, 0.8 μ L de cada cebador 100 μ M (Macrogen, Corea del Sur), 6.4 μ L de ddH₂O de grado molecular (Invitrogen, USA) y 2 μ L del ADN del fago. La temperatura de *annealing* se ajustó a 50°C (T4, FO1, GJ1, Vi1), 55°C (N4, SP6, T7) o 58 °C (HK578, T5).

Los resultados del análisis de PCR se observaron mediante electroforesis en gel de agarosa al 0.8%. El tamaño esperado de los productos de PCR se presenta en la Tabla 1.

Tabla 1. Tamaño es	sperado de los	productos d	le PCR	para la	detección	d
	hact	teriófagos				

Especies	Género ¹	Producto del PCR (pb)
HK578-2	Dhillonvirus	1100
T5	Tequintavirus	1100
T4	Tequatrovirus	240
T7	Teseptimavirus	440
N4	Enquatrovirus	930
GJ1	Carltongylesvirus	680
SP6	Zindervirus	700
FO1	Felixounavirus	510
Vi1	Kuttervirus	605

¹International Committee on Taxonomy of Viruses (2023)

Los productos de PCR extraídos del gel se purificaron con el kit purificación (Invitrogen). El gen de la proteína de la cápside fue secuenciado mediante el método de Sanger (Sanger et al., 1977), Macrogen, Inc. (Corea del Sur).

2.5. Determinación del perfil de lisis de los bacteriófagos

Para determinar el perfil de lisis de los bacteriófagos identificados como líticos mediante PCR y aquellos que forman placas uniformes, se llevó a cabo un *screening* utilizando la prueba de la gota según metodología descrita por Kutter (2009). Esta prueba se realizó frente a 29 cepas de *E. coli* obtenidas de investigaciones previas de la Dra. Montiel sobre resistencia ambiental, así como cepas de *E. coli* ATCC 25922 y *Salmonella typhimurium* ATCC 14428. Como control, se utilizó la cepa de *E. coli* ATCC 15597. Las cajas Petri con TSA se inocularon con las cepas bacterianas a 0.5 de McFarland, y se goteó de 4-7 μ L de cada fago. Los resultados se registraron como la presencia o ausencia de actividad lítica del fago por cada cepa bacteriana evaluada.

2.6. Selección y enriquecimiento del bacteriófago de interés

En selección del bacteriófago de interés, se consideró la capacidad lítica frente a otras cepas de *E. coli* o la identificación molecular. Para incrementar el título del bacteriófago de interés, se utilizó la técnica descrita por Poxleitner et al. (2018) con algunas modificaciones. Con una punta estéril de micropipeta, se recuperó una placa de lisis y se resuspendió en 5 mL de caldo tripticasa soya (TSB). Al contenido del tubo se agregaron 300 μ L de la cepa *E. coli* ATCC 15597 (0.5 de la escala de McFarland) y se incubó durante 4 h a 37°C. Luego, el medio de cultivo se centrifugó a 8000 × g durante 10 min, se recuperó el sobrenadante y pasó por un filtro PVDF de jeringa de 0.22 μ m. Para determinar el título se aplicó el método de capa doble de agar.

2.7. Determinación del perfil de lisis del fago de interés

Con el bacteriófago de interés enriquecido a un título de 1×10^9 UFP/mL, se evaluó nuevamente el rango del huésped mediante la prueba de la gota, descrita en el apartado 2.5. Adicionalmente, se determinó la actividad lítica contra

Bacillus sp., *Pseudomonas* sp. y *Vibrio* sp. Todos los ensayos se realizaron por triplicado.

2.8. Estabilidad térmica y pH

Para las pruebas de estabilidad del fago, se utilizó la metodología descrita por Hu et al. (2021) con algunas modificaciones. En la evaluación de la estabilidad térmica, 1 mL de lisado de fago $(1 \times 10^8 \text{ UFP/mL})$, ajustado a un pH de 8, se sometió a deferentes temperaturas (35°C, 37°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 75°C y 80°C) durante 1 h. Para evaluar la estabilidad al pH, 100 µL de lisado de fago $(1 \times 10^9 \text{ UFP/mL})$ se añadieron a 900 µL de tampón SM ajustado con NaOH (5 M) o HCL (5 M) a pH de 3, 5, 7, 9 y 11, y se incubaron a 37°C durante 1 hora. El título de cada tratamiento se determinó mediante el método de doble capa de agar utilizando como huésped a la cepa de *E. coli* ATCC 15597. Todos los ensayos se realizaron por triplicado.

2.9. Sensibilidad al cloroformo

Para determinar la sensibilidad al cloroformo del fago de interés, se empleó el método descrito por Chénard et al. (2015). A 500 μ L y 750 μ L del fago (1 × 10⁹ UFC/mL) se añadieron 500 μ L y 250 μ L de cloroformo puro, respectivamente, y se agitó durante 1 h. La mezcla se centrifugó a 4100 × g durante 5 min e inmediatamente se recuperó el sobrenadante. La muestra se incubó a 17°C durante 2 h para eliminar el cloroformo residual. Se determinó el título del fago de interés mediante el método de doble capa de agar y se utilizó como huésped la cepa de *E. coli* ATCC 15597. Todos los ensayos se realizaron por triplicado.

2.10. Caracterización morfológica mediante microscopía electrónica

La caracterización morfológica del bacteriófago de interés se realizó mediante microscopía electrónica de transmisión (MET) (marca FEI modelo Tecnai G2 Spirit Twin, equipado con la cámara Eagle 4K, USA) en colaboración con el Centro de Nanociencias y Nanotecnologías (CENCINAT) de la Universidad de las Fuerzas Armadas ESPE. Se empleó la metodología descrita por Wang et al. (2022) con algunas modificaciones. Se colocaron 5 µL de la muestra del bacteriófago de interés (1×10^9 UFP/mL) en una rejilla redonda para microscopía electrónica de cobre con soporte de Formvar/carbono. A continuación, se realizó la tinción negativa mediante la adición de 5 µL de ácido fosfotúngstico al 2% durante 1 segundo. Se secó con papel filtro y la muestra se introdujo en el MET y se operó a 80 kV. La longitud de la cola y el diámetro de la cápside se midieron con un programa informático de análisis de imágenes, Fiji versión 1.54f

2.11. Extracción de ADN y secuenciación del virus

En la extracción de ADN se empleó el método descrito por Jofre & Muniesa (2020) con algunas modificaciones. Por cada 500 μ L de suspensión de fago (1 × 10⁹ UFP/mL) se agregaron 1.5 μ L de DNAsa (6 U/mL) (Applied Biological Materials Inc, Canadá) y 0.5 μ L RNAsa (20 ug/mL) (Invitrogen, USA), y se incubó a 37°C durante 1 h. Se inactivó la DNAsa incubando la

mezcla a 80°C por 10 min. A la mezcla se añadieron 12 μ L proteinasa K (20 mg/mL) (Invitrogen, USA) y 1000 μ L de tampón de proteinasa K (1M Tris HCl, pH 8, 2 mL 0.5 M EDTA, pH, 10 mL 10% SDS, 100 mL H₂O), se homogeneizó y se incubó la mezcla a 55°C por 1 h. El DNA fue extraído y purificado utilizando las minicolumnas de ADN HiBind ® (OMEGA BIO-TEK, USA).

La concentración de ADN se cuantificó utilizando un espectrofotómetro ultravioleta-visible (UV-Vis) (NanoDrop) a una longitud de onda de 260 nm. Se realizó una corrida electroforética en gel de agarosa al 0.8%. El genoma del fago se secuenció usando la plataforma NovaSeq6000 de Illumina en lecturas de extremos pares de 150 nucleótidos (nt).

2.12. Ensamblaje del genoma y análisis bioinformático

Los análisis de secuencias, que incluyen normalización, ensamblaje de novo y anotaciones, se realizaron con BBNorm, SPAdes (Bankevich et al., 2012) y Glimmer3 (Delcher et al., 2007) en Geneious Prime versión 2023.2.1. El empaquetamiento del ADN se determinó mediante PhageTerm (Garneau et al., 2017). La anotación de genes se ejecutó con las herramientas BLAST y Uniprot en NCBI, y RCSB Protein Data Bank (Rose et al., 2015). Los ARN de transferencia (ARNts) se identificaron mediante tRNA scan-SE (Chan et al., 2021) y ARAGORN (Laslett, 2004). Para identificar genes de resistencia a los antimicrobianos (ARGs), se emplearon las bases de datos CARD (Alcock et al., 2019) y ResFinder 4.1 1 (Zankari et al., 2017). Además, la base de datos PhageScope (Wang et al., 2024) se utilizó para detectar posibles factores de virulencia presentes en el genoma del fago. Las plataformas PhageScope y DeepTMHMM se utilizaron para predecir proteínas con topología transmembrana (Hallgren et al., 2022; Wang et al., 2024).

El análisis filogenético y la clasificación taxonómica de los fagos se realizaron mediante los árboles filogenéticos a nivel de nucleótidos utilizando el servidor web VICTOR (Meier-Kolthoff & Göker, 2017) para ayudar en la clasificación taxonómica de las plataformas de virus y VIRIDIC (Moraru et al., 2020). Además, se llevó a cabo un análisis comparativo de secuencias codificantes (CDS) entre fagos relacionados utilizando Clinker (Gilchrist & Chooi, 2021).

2.13. Diseño de cebadores y detección por PCR

Para diseñar los cebadores de detección, se utilizaron los genes de la proteína de la cápside mayor (MCP) y de la ADN polimerasa (Pol) para garantizar la pureza de los lisados del fago. Se utilizó Geneious Prime para diseñar los cebadores, los cuales se muestran en la Tabla 2.

 Tabla 2. Cebadores de detección para la amplificación de un fragmento de la proteína de la cápside mayor (MCP) y de la ADN polimerasa (Pol)

Cebador	Secuencia (5′ →3′)	Tamaño del
		producto (bp)
MCP-fw	CAGACTGTAGCTGTACAGTGCG	629
MCP-rev	TGATAACCTGCGTACCGAAGCG	
Pol-fw	GGTATGGAGCCACCATCGCACT	826
Pol-rev	GCCTTACGAACAAGATCATCGTC	

En este ensayo, se utilizó ADN molde obtenido mediante el método propuesto por Born et al. (2019) y la metodología modificada de Jofre & Muniesa (2020), descrito en los apartados 2.4 y 2.11, respectivamente. La mezcla de PCR contenía 1 µl de ADN molde, 5 µl de GoTaq® 2X *Green Master Mix* (Promega, USA), 0.5 µl de cada cebador a 40 µM (Macrogen, Corea del Sur), 3 µl de ddH₂O de grado molecular (Invitrogen, USA). La temperatura de *annealing* fue de 55°C. Los productos amplificados se separaron por electroforesis en geles de agarosa al 2%.

2.14. Análisis estadístico

En los ensayos de caracterización fisicoquímica, los datos fueron sometidos a un análisis paramétrico mediante la prueba de Shapiro-Wilk para confirmar la distribución normal de los resultados. Posteriormente, los resultados se sometieron a un análisis de varianza de un factor (ANOVA), seguido de comparaciones post hoc de Tukey para comprobar las diferencias entre los tratamientos. Todos los análisis se llevaron a cabo con un nivel de confianza de significancia del 0.05, empleando los softwares estadísticos R versión 4.2.2 para el análisis e Infostat versión 2020 para la generación de gráficos.

3. RESULTADOS Y DISCUSIÓN

3.1. Aislamiento de bacteriófagos a partir de muestras ambientales

El método de capa simple, al utilizar un volumen considerable de muestra (100 mL de agua), permite determinar el conteo real de bacteriófagos en el ambiente, y se recomienda su uso para aguas poco contaminadas o subterráneas (US EPA, 2001). Por tal motivo, el conteo de bacteriófagos en las muestras de agua fue menor a 200 UFP/100 mL, con excepción del punto K (1400 UFP/100 mL), que corresponde a una zona residencial. No se logró recuperar fagos a partir de las muestras de sedimentos, especialmente en los puntos E, J, L, M, N y O (Tabla FTI. 1). Esto podría atribuirse a las propiedades de los sedimentos que dificultan la desorción, como contenido de humedad, pH, minerales, cantidad de materia orgánica y la composición del suelo. Para este tipo de matrices, se recomienda el aislamiento de fagos mediante métodos de enriquecimiento (Nair et al., 2022).

3.2. Recuperación de bacteriófagos

A partir de quince muestras agua y nueve de sedimentos se detectó 76 placas líticas que representan la presencia de bacteriófagos, las cuales mostraron diversidad en su morfología y tamaño. Mediante el método de simple capa se identificaron 8 tipos de morfología según la turbidez (Figura 1). Se identificaron placas claras (Figura 1A), turbias (Figura 1B), con un halo semitransparente (Figura 1C) y la presencia de halos turbios y claros de tamaño variable (Figura 1D-G). Entre las placas más comunes reportadas en investigaciones, destacan aquellas que son claras, turbias, con halo y "ojo de buey" (Abedon, 2018; Jurczak-Kurek et al., 2016). Las placas D, E, F y G corresponden a la morfología de "ojo de buey", resultado de la disminución de la eficiencia lítica, posiblemente debido al envejecimiento del césped bacteriano o a fenómenos de inhibición de la lisis (Jurczak-Kurek et al., 2016).

Figura 1. Morfología de las placas de lisis identificadas. (A) clara; (B) turbia; (C) clara rodeada por un halo delgado; (D) borde semitransparente con centro claro pequeño; (E) centro claro marcado con borde semitransparente; (F) borde y centro claro con halo turbio; (G) "ojo de buey" centro turbio con diferentes halos; y (H) crecimiento extendido.

La morfología H corresponde a una lisis extendida, atribuida a la presencia de enzimas virales que degradan la pared bacteriana, como endolisinas, holinas o spaninas (Abeysekera et al., 2022).

Las placas con morfología "ojo de buey" continuaban expandiéndose en el césped bacteriano o replicándose, resultados similares se han reportado para el fago T7 (Yin, 1991). Igualmente, Pan et al. (2022) han reportado variación en el tamaño de las placas en bacteriófagos Ca que infectan *Hafnia paralvei*. Además, se identificó que la morfología de las placas no era constante entre el método de capa simple y doble de agar, lo cual se atribuye a cambios de nutrientes en los medios de cultivo, dado que cada bacteriófago tiene requerimientos específicos (Ramesh et al., 2019).

3.3. Identificación molecular de bacteriófagos líticos

Mediante la prueba de goteo, se observó la actividad lítica de los bacteriófagos aislados contra *E. coli* ATCC 15597. El 71% (54/76) de los aislados infectaron a la cepa huésped, mostrando lisis turbia, clara y la visualización de placas líticas (título bajo). El 29% restante (22/76) no presentó reacción contra el huésped, lo cual puede atribuirse a la disminución del título, debido a factores como temperatura, acidez, presencia de iones y la exposición a la luz solar (Hyman & Abedon, 2010; Kutter, 2009).

Debido a estos factores, el título de los 54 bacteriófagos disminuyó y se perdieron cuatro muestras. Por lo tanto, se realizó la extracción de ADN a partir de placas líticas obtenidas mediante el método de doble capa de agar, de acuerdo con las recomendaciones de Born et al. (2019). El género *Dhillonvirus* fue el más frecuente con 58% (29/50) en muestras de agua y sedimentos. Mientras el 40% de los fagos (20/50) no se lograron identificar mediante PCR, 14 muestras provenían de agua y 16 presentaban un estado de crecimiento lisogénico, evidenciado por zonas de lisis turbias e incluso crecimiento bacteriano. Además del género *Dhillonvirus*, se identificó una muestra correspondiente al género *Felixounavirus*. Resultados similares han sido reportados en

estudios sobre la diversidad de bacteriófagos cultivables de *E. coli* a partir de aguas residuales (Olsen et al., 2020).

3.4. Perfil de lisis de los bacteriófagos

Siete aislados del género *Dhillonvirus* junto con un bacteriófago "no identificado" lograron infectar cepas distintas al huésped control (Tabla AII. 1). La ausencia de reacción por parte de los otros bacteriófagos líticos se puede atribuir a los factores como multiplicidad óptima de infección (MOI), concentración de cationes divalentes y el reconocimiento de proteínas de unión al receptor (PBR) del fago a los receptores primarios o secundarios del huésped (Bertozzi Silva et al., 2016; Islam et al., 2012; Landry & Zsigray, 1980).

Los fagos BMA1, BME3 y BMH4 infectaron a *E. coli* ATCC 25922, cepa control para susceptibilidad a los antimicrobianos (American Type Culture Collection, n.d.). Otros miembros del género *Dhillonvirus* mostraron actividad lítica contra cepas de *E. coli* susceptibles a los antibióticos. Las cepas sensibles a antibióticos fueron infectadas en un 40% (2/5) por BMA1 y 20% (1/5) por BMA2, BMC1y BMFS1. El fago BMA1 lisó el 12.50% (1/8) cepas con resistencia intermedia. Las cepas resistentes fueron susceptibles a fagos en 42.86% (6/14) por BMA2, 14.29% (2/14) por BMC1 y 7.14% (1/14) por BMA1, BMAS1 y BMH5. Estos bacteriófagos reconocen al glucano en el antígeno O como receptor primario y a proteínas superficiales (LpTD o FhuA) como secundarios del huésped.

Aunque el fago BMG5 pertenece al género *Felixunavirus* no logró infectar *Salmonella typhimurium*, resultados similares lo han reportado por Cui et al. (2022). Estos fagos reconocen al huésped a través del lipopolisacárido (LPS) (Maffei et al., 2021). BME3 presentó un amplio rango de huésped y logró lisar cepas de *E. coli* y *Salmonella typhimurium*. Entre las cepas de *E. coli* con diferentes fenotipos de susceptibilidad a los antibióticos, el fago BME3 infectó con éxito el 57.14% (8/14) de las bacterias resistentes, el 80% (4/5) de las cepas sensibles y el 12.50% (1/8) con resistencia intermedia.

1	abla 5. Activitati	inica de los	Dacte	nora	gos ai	stauo	snen		o cep	as ue	E. CO	<i>u</i> ann	olenta	105, E	. con .	AICC	_ 155	91, E	. con	AICC	- 239.	22 Y I	saime	nena	iypni	тити	m A	ICC I	4020			
GÉNERO	FAGO	Log UFP/mL	ATCC 15597	ATCC 25922	ATCC 14028	ESAN 11	3CAL 86	3CAL 130	ETRA 7	3CO 69	ETRA 5	SAN 4	EMS 5	EMS 6	T SME	8 SME	EMS 11	3CO 160	SAN 2	EMS4	ESAN 31	3CAL 45	3CAL 141	ETRA 1	ETRA 6	3CO 85	3CO 119	3CO 122	3CO 141	3CO 142	3CO 148	3CO 163
ohithito	Suscentibilidad		7	~	7	S	S	S	S	S	<u>т</u>	T	T	<u>т</u>	<u></u>	<u>г</u>	<u>т</u>		R	R	R	R	R	R	R	R	R	R	R	R	R	 R
Dhillonvirus	Busceptionidad BMA1	7.00					5	5	5	5	-	1	1	1	1	1	1	1	ĸ	ĸ	<u> </u>	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	<u> </u>	<u> </u>	<u> </u>
Dhillonvirus	DMAT	7.00	т ,	т	-	т	-	т	-	-	т	-	-	-	-	-	-	-	-	-	т	-	-	-	-	-	-	-	-	-	-	-
Dhillomvirus	DMA2	1.19	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	+	-	-	+	-	+	+	-	+	+	-	-
Dhillonvirus	BMA5	0.94	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dnillonvirus	BMASI	8.00	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMBI	8.85	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMC1	8.41	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-	-
Dhillonvirus	BMCS1	8.88	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMCS2	8.79	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMCS3	8.36	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMD1	7.40	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BME1	7.30	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
No identificado	BME3	9.00	+	+	+	+	+	+	+	-	-	+	-	-	-	-	+	-	+	-	-	+	+	-	-	+	-	+	+	+	-	-
Dhillonvirus	BME4	8.70	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BME5	8.92	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMF2	7.08	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMFS1	9.26	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMG1	6.40	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMG2	5.56	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Felixunavirus	BMG5	8.70	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMH2	8.30	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMH4	8.34	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMH5	6.18	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMK1	5.95	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMK2	8.00	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMK3	7.00	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMKS1	5.26	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BML	7.95	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMM	7.79	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMN2	4.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMN4	8.00	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dhillonvirus	BMO3	5.32	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabla 3. Actividad lítica de los bacteriófagos aislados frente a 26 cepas de E. coli ambientales, E. coli ATCC 15597, E. coli ATCC 25922 y Salmonella typhimurium ATCC 14028

En la matriz se refleja el efecto del fago en el huésped, indicando la presencia de lisis (+) y la ausencia de lisis (-). El fenotipo de susceptibilidad a antibióticos se define mediante las letras S (sensible), I (intermedio) y R (resistente).

3.5. Selección del bacteriófago de interés para la fagoterapia

BME3 no se logró identificar mediante PCR, pero presentó actividad lítica contra cepas de *E. coli* susceptibles a antibióticos. Además, el proceso de purificación del fago BME3 resultó más sencillo en comparación a los fagos identificados dentro del género *Dhillonvirus*. BME3 exhibió una morfología constante en términos de turbidez y tamaño, formando placas claras con un diámetro menor a 1 mm (Figura 2A). Las placas pequeñas pueden atribuirse a la lenta difusión de los bacteriófagos de cabeza grande (*Myoviridae*) a través de la capa superior del agar (Jurczak-Kurek et al., 2016).

Figura 2. Caracterización del bacteriófago BME3. (**A**) Morfología de las placas líticas formadas por BME3 frente a *E. coli* ATCC 15597 determinada por el método de doble capa de agar. BME3 produce placas claras con un diámetro inferior a 1 mm. (**B**) Morfología por microscopía electrónica de transmisión (TEM) de BME3 con una barra de escala (200 nm). El virión del fago se tiñó con ácido fosfotúngstico al 2% y se observó mediante TEM.

El análisis por microscopía electrónica de transmisión (TEM) reveló que el bacteriófago BME3 pertenece a la clase *Caudoviricetes* y presenta morfología *Myoviridae* (Turner et al. 2023). La longitud de la cabeza icosaédrica y la cola contráctil fue aproximadamente 102.64±11.57 nm y 105.00±9.00 nm, respectivamente (Figura 2B).

3.6. Determinación del rango de huésped del bacteriófago BME3

BME3, además de ser capaz de lisar cepas susceptibles a antibióticos tiene la capacidad de infectar *Salmonella typhimurium*. Sin embargo, BME3 no muestra actividad contra cepas de *Bacillus* sp., *Pseudomonas* sp. y *Vibrio* sp. Esta especificidad de BME3 indica su seguridad y potencial uso en aplicaciones específicas, reduciendo el riesgo de afectar otros microorganismos del entorno (Hyman & Abedon, 2010).

3.7. Estabilidad fisicoquímica de BME3

BME3 mostró estabilidad hasta una temperatura máxima de 60°C durante una hora, lo que indica que es termoestable. Sin embargo, se observó una disminución del título del fago a 65°C, y temperaturas superiores a 80°C fueron letales para BME3 (Figura 3A). Del mismo modo, el fago BME3 demostró estabilidad en rangos de pH entre 3 y 11 durante 1 h de incubación a 37°C (Figura 3B). Esta notable estabilidad a las variaciones de pH y temperatura posiciona a BME3 como un candidato óptimo para la fagoterapia, en particular para el control de *E. coli* en entornos de riego, aguas residuales y marinos (Iskender & Soyer, 2023; Namura et al., 2008; Y. Zhang et al., 2022)

Figura 3. Estabilidad fisicoquímica de BME3 expresada como unidades formadoras de placa por mL (UFP/mL). Se realizaron experimentos independientes para determinar la estabilidad a la temperatura (A), al pH (B) y al cloroformo (C). Los resultados se presentan como valores medios ± desviaciones estándar (DE) de tres ensayos independientes. Letras iguales indican que no hay diferencia estadística entre tratamientos (p>0.05), mientras que letras diferentes indican una diferencia estadísticamente significativa (p<0.05).

En el tratamiento de sensibilidad al cloroformo, BME3 mantuvo la estabilidad frente a diferentes concentraciones con una disminución no significativa (p<0.05) del título al 92% en presencia de cloroformo a concentraciones del 25% y 50% en comparación con el tratamiento de control (Figura 3C). Esta característica sugiere que la BME3 podría utilizarse eficazmente en procesos de purificación para la eliminación de biomasa sin verse comprometida por la presencia de cloroformo (Luong et al., 2020).

3.8. Anotación del genoma del fago BME3

El genoma completo del bacteriófago BME3 comprende 147 371 pb de ADN de doble cadena y se depositó en el NCBI con el número de acceso PP239276. El genoma tiene un contenido de G+C del 37.5% y 15 ARNt. BME3 presentaba repeticiones terminales directas (DTRs) con un tamaño de 342 pb. Se identificaron un total de 256 CDSs en el genoma, de las cuales 133 CDSs estaban en la cadena positiva y 123 en la negativa. Se determinó la función de 112 CDSs, mientras que las 144 CDSs restantes se definieron como proteínas hipotéticas o proteínas con funciones desconocidas. Dentro del grupo de genes funcionales se encuentran las proteínas de estructura, lisis, regulación, replicación y empaquetamiento (Tabla AIII. 1 y Figura AIII. 1). No se detectaron genes de virulencia ni genes de resistencia a los antibióticos ni genes lisogénicos (integrasa) en el genoma del fago BME3.

ARNt

BME3 alberga 15 ARNts: Met^{CAT} , Met^{CAT} , Leu^{TAG} , Phe^{GAA} , Pro^{TGG} , Gln^{TTG} , Gly^{TCC} , Thr^{TGT} , Asn^{GTT} , Tyr^{GTA} , Lys^{TTT} ,

Ser^{GCT}, Ser^{TGA}, Leu^{TAA} y Met^{CAT}. Los ARNts desempeñan un papel crítico en la traducción y facilitan la integración del genoma del fago en el cromosoma del hospedador, contribuyendo en última instancia a la compatibilidad del genoma y aumentando la virulencia del fago (Bailly-Bechet et al., 2007).

Genes de empaquetamiento del ADN

El empaquetamiento del ADN genómico implica un complejo de empaquetamiento que comprende varias proteínas: la terminasa, que tiene un dominio ATPasa N-terminal y un dominio nucleasa C-terminal; y el portal, que se localiza en el ápice de la procápside. La actividad nucleasa de la terminasa es cortar el ADN replicado al principio y al final del proceso, mientras que el dominio ATPasa facilita la condensación del ADN empaquetado. La interacción entre la terminasa y la proteína portal permite el almacenamiento del ADN dentro de la cápside (Dasgupta et al., 2024). Además, se predice que el genoma de BME3 contiene la endonucleasa HNH, que mejora la actividad de la terminasa durante el corte del ADN (Kala et al., 2014).

Proteínas de metilación

El fago BME3 alberga 4 CDSs que potencialmente codifican proteínas metiltransferasas, que sirven para proteger el material genómico del fago contra la escisión por las endonucleasas de restricción del huésped (Murphy et al., 2013). El análisis BLASTx predijo que el fago codifica 3 clases de metiltransferasas de ADN huérfanas de tipo II. Estas enzimas catalizan la transferencia del grupo metilo de la Sadenosilmetionina, dando lugar a la generación de productos como nitrógeno-4-metilcitosina, nitrógeno-6-metiladenina y carbono-5-metilcitosina (Wilson, 1991). Para validar estos hallazgos, es necesaria una predicción tridimensional de las proteínas y una comparación del número de dominios conservados. Además, los bacteriófagos han desarrollado mecanismos para contrarrestar los sistemas de restricción del hospedador, asegurando el éxito de la infección mediante la síntesis de bases hipermodificadas en el genoma del fago (Weigele & Raleigh, 2016).

Proteínas del metabolismo de nucleótidos

El genoma del bacteriófago BME3 revela la presencia de ribonucleótido reductasas de clase I (NrdA y NrdB) y de clase III (NrdD y NrdG). Estas enzimas desempeñan un papel crucial en la síntesis de desoxirribonucleótidos y operan en condiciones aeróbicas y anaeróbicas, respectivamente (Lundin et al., 2009). En particular, se ha informado de hallazgos similares en el fago rV5 (Kropinski et al., 2013). Otras enzimas implicadas en la síntesis de ADN son la timidilato sintasa y la timidina quinasa (Miller et al., 2003).

Proteínas de replicación y reparación

En el genoma del bacteriófago BME3 se han predicho dos CDSs que codifican la helicasa/primasa y la helicasa de la familia UvrD/Rep. Estas enzimas están implicadas en diversos procesos como la replicación, reparación y recombinación del ADN. La helicasa/primasa en forma hexamérica junto con la polimerasa y la proteína de unión al ADN monocatenario (ss) se integra en el replisoma o complejo de replicación, facilitando la generación de múltiples copias del material genómico (Lo & Gao, 2021). Cada una de estas enzimas requiere tiorredoxina como cofactor, que se deriva de la célula huésped. Mientras tanto, la helicasa de la familia UvrD/Rep, en forma no hexamérica, exhibe una polaridad 3' \rightarrow 5' para desenrollar el ADN y su función principal es reparar el material genómico (Yokota, 2022).

Proteínas de lisis

BME3 presenta las siguientes proteínas de lisis: holina, endolisina y complejo spanina. La lisis de la célula procariota es el evento final de la infección, que conduce a la liberación de viriones. La holina perfora la membrana citoplasmática y desencadena la degradación del peptidoglicano mediada por la endolisina (Abeysekera et al., 2022; Cahill & Young, 2019). Tras la degradación del peptidoglicano, el complejo spanina fusiona la membrana interna y externa, lo que provoca la ruptura celular (Berry et al., 2012). Mediante DeepTMHMM se predijeron dos holinas con topología de clase II (61 y 81 residuos), cada una con dos segmentos a-helicoidales transmembrana (Smith et al., 1998). Además, el complejo spanina es codificado por dos genes separados, uno para la lipoproteína de la membrana externa (o-spanina) y otro para la proteína de la membrana interna (i-spanina) (Berry et al., 2010). Las endolisinas de fagos tienen un gran potencial para controlar los patógenos bacterianos e incluso combatir la formación de biopelículas, estas enzimas no son tóxicas para los humanos (Liu et al., 2023).

Proteínas de morfogénesis

Las proteínas estructurales tienen tres segmentos principales: las proteínas de la cápside, de la cola y de la placa base. La cápside incluye la proteína principal de la cápside, la proteína de decoración de la cabeza y la proteína de andamiaje. Las proteínas que integran la estructura de la cola son la vaina contráctil, el tubo central y la cinta métrica. Cabe destacar que la longitud de la proteína cinta métrica se correlaciona con la longitud de la cola; phi92 y BME3 presentan el mismo número de residuos (659 aa). En cuanto a la estructura de la placa base, está compuesta por fibras de cola y picos de cola (Schwarzer et al., 2015). Estas proteínas tienen un porcentaje de identidad superior al 98% (cobertura del 96%) con bacteriófagos como phi92, muut, PHBO5, alia y PDO6, a excepción de la proteína de la púa de la cola.

3.9. Análisis filogenético

La búsqueda BLAST realizada en NCBI reveló el 98% de identidad entre el fago BME3 y las secuencias genómicas de fagos similares a phi92 como KMB37, Paula, inny, alia, EmilieFrey, PATM, PHB05, arall, y muut; con una cobertura de secuencia entre 93% y 97%. Mediante el análisis de VIRIDIC, la similitud intergenómica del fago BME3 y otras especies del género *Justusliebigvirus* fue menor al 95%, a excepción de la secuencia genómica Paula (95.2%) (Figura 4).

El árbol filogenético generado por el sitio web VICTOR (a nivel de nucleótidos) confirmó que BME3 corresponde a una especie del género *Justusliebigvirus*. Los fagos como

nepoznato, ESCO5, ZCKP1 y anhysbys se agruparon dentro del género *Phapecoctavirus*. Ambos géneros pertenecen a la subfamilia *Stephanstirmvirinae* (Figura 5).

Figura 4. Mapa de calor VIRIDIC de BME3 con los 27 homólogos más cercanos identificados por BLAST. La mitad derecha muestra la similitud intergenómica entre los fagos, donde la intensidad del color indica el nivel de similitud. La mitad inferior izquierda muestra el porcentaje de cobertura del primer fago, junto con el porcentaje de alineación y el porcentaje de cobertura del segundo fago.

Figura 5. Árbol filogenético basado en el genoma completo de BME3 y parientes cercanos generado por el sitio web VICTOR. Árbol filogenético de distancia Genoma-BLAST (GBDP) inferido utilizando la fórmula D0 (nucleótido) y con un soporte medio del 6%. Los números sobre las ramas son valores de soporte pseudo-bootstrap GBDP de 100 réplicas. Las longitudes de las ramas de los árboles VICTOR resultantes están escaladas en función de la fórmula de distancia respectiva. La flecha señala BME3.

El fago BME3, junto con otros miembros del género *Justusliebigvirus*, ha demostrado la capacidad de lisar enterobacterias, incluidas cepas de *Escherichia coli* y *Salmonella typhimurium* (Nicolas et al., 2023; Schwarzer et al., 2012). Esta actividad lítica se extiende a cepas encapsuladas y no encapsuladas, lo cual se atribuye a su aparato de adsorción multivariante, que se compara con una navaja suiza nanométrica debido a la disposición de las fibras

de la cola y púas de la cola en la placa base (Schwarzer et al., 2012).

En la comparación del genoma, se observó que los genes menos conservados son los que codifican para proteínas estructurales, en particular proteínas de unión a receptores, como la proteína de la púa y fibra de la cola (Figura AIV. I). La púa de la cola consta de dos CDSs con longitudes de 102 y

552 aminoácidos, respectivamente. El primer segmento muestra similitud con miembros del género Justusliebigvirus (Paul Scherrer, con 79% de identidad y 98% de cobertura) y Phapecoctavirus (ZCKP1, con 100% de identidad y 98% de cobertura). Mientras tanto, el segundo segmento muestra homología con las proteínas de unión a receptores, GenBank Acc.No. MDB8464820.1, con una cobertura del 91% y una identidad del 82.7% y GenBanK Acc. WP_252514376.1, con una cobertura del 91% y una identidad del 82.68%. Además, el CDS de la fibra de la cola tiene una longitud de 939 aminoácidos. El fago BME3 comparte similitudes con otros fagos del género Justusliebigvirus, como PHB05, phiWec18, alia, JLBYU50, Paula, inny y Paul Scherrer; excepto con el fago phi92. Los resultados de BLASTx indican una cobertura y un porcentaje de identidad superiores al 99% y al 86%, respectivamente.

Los PBR tienen una estructura homotrimérica y generalmente poseen dos dominios: N-terminal y C-terminal. El dominio Nterminal facilita la unión del PBR a la placa base del fago y puede reutilizarse entre los miembros de la familia. Por el contrario, el dominio C-terminal puede albergar un centro catalítico con actividad depolimerasa e incluir chaperonas responsables del correcto plegamiento de la proteína y de facilitar la multimerización (Dunne et al., 2021; Latka et al., 2019; Müller et al., 2008; Ouyang et al., 2024).

La púa de la cola, debido a su actividad despolimerasa pueden degradar la cápsula bacteriana o LPS, lo que permite al fago acceder a la membrana bacteriana e iniciar la infección (Dunne et al., 2021; Schwarzer et al., 2015; Stummeyer et al., 2006). Durante la infección, las fibras laterales de la cola del fago se unen a los glicanos de la superficie del huésped o a antígenos comunes enterobacterianos. A continuación, las fibras cortas de la cola reconocen la glucosa del núcleo externo del LPS provocando la inyección del genoma del fago en la célula bacteriana (Maffei et al., 2021).

El fago BME3, al igual que phi92, es un fago polivalente que posee una estructura ramificada de PBR. Cada PBR puede reconocer diferentes receptores e incrementar el rango de huésped (Ouyang et al., 2024; Pas et al., 2023). BME3 tiene dos púas de cola: uno comparte homología con phi92 y se conoce como "colanidasa", que probablemente degrada el ácido colánico que constituye la cápsula del huésped (Schwarzer et al., 2012). Por el contrario, la otra púa de la cola carece de homología con la enzima endosialidasa (ENDO92), responsable de degradar la cápsula compuesta de ácido siálico con enlaces α -2,8 y α -2,9 (Schwarzer et al., 2015). Del mismo modo, esta última enzima muestra una baja conservación entre los miembros del género *Justusliebigvirus* (Olsen et al., 2020).

Los resultados de BLASTx indican que BME3 codifica una despolimerasa, posiblemente una endorhamnosidasa (endoglicosidasa), debido a la similitud con la proteína de la púa de la cola del fago P22 de *Salmonella* (Steinbacher et al., 1997). La intercambiabilidad del sitio activo entre una endorhamnosidasa y una endosialidasa es factible y puede ocurrir a través de mecanismos de transferencia horizontal de genes (Chen et al., 2014; Pas et al., 2023; Stummeyer et al., 2006; Walter et al., 2008).

3.10. Detección de BME3 por PCR

Los dos conjuntos de cebadores diseñados, uno para amplificar el gen de la proteína de la cápside y el otro para el gen de la ADN polimerasa, respectivamente, permiten la detección del fago BME3. Además, se obtuvieron resultados favorables utilizando ambos métodos de extracción de ADN molde (Figura 6).

Figura 6. Detección de BME3 mediante reacción en cadena de la polimerasa (PCR). Se muestra la amplificación de fragmentos correspondientes a la proteína de la cápside mayor (MCP) y a la polimerasa (Pol). L: Marcador de peso molecular (100-2000 pb), Carriles 1 y 4: control negativo, Carriles 2 y 3: 629 pb (MCP), Carriles 5 y 6: 826 pb (Pol). Carriles 2 y 5: ADN extraído por el método de Born et al. (2019); Carriles 3 y 6: ADN extraído por un método modificado de Jofre & Muniesa (2020).

4. CONCLUSIONES

A partir de muestras de agua y sedimentos provenientes del Estero Salado, ubicado en la ciudad de Guayaquil-Ecuador, se logró aislar bacteriófagos líticos pertenecientes a los géneros *Felixunavirus, Dhillonvirus y Justusliebigvirus.* Los fagos pertenecientes a los dos últimos géneros pueden infectar cepas de *E. coli* con diferente fenotipo de susceptibilidad a antibióticos, pero solo el bacteriófago BME3 logró lisar la cepa de *Salmonella typhimurium.*

El fago BME3 tiene una morfología *Myoviridae*, es termoestable, resistente a variaciones de pH y no es sensible al cloroformo. Su genoma carece de genes de resistencia a antibióticos, toxinas y de lisogenia. Estas características sugieren al fago BME3 como una opción prometedora para la fagoterapia, destinado a controlar la diseminación ambiental de resistencia bacteriana a antibióticos.

5. REFERENCIAS

Abedon, S. T. (2018). Detection of Bacteriophages: Phage Plaques. In *Bacteriophages* (pp. 1–32). Springer International Publishing. https://doi.org/10.1007/978-3-319-40598-8_16-1

- Abeysekera, G. S., Love, M. J., Manners, S. H., Billington, C., & Dobson, R. C. J. (2022). Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. *Frontiers in Microbiology*, 13. https://doi.org/10.3389/fmicb.2022.1044143
- Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Mushegian, A. R., Nibert, M., Sabanadzovic, S., Sanfaçon, H., Siddell, S. G., Simmonds, P., Varsani, A., Zerbini, F. M., Gorbalenya, A. E., & Davison, A. J. (2017). Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 162(8), 2505–2538. https://doi.org/10.1007/S00705-017-3358-5/TABLES/7
- Adriaenssens, E. M., Ceyssens, P. J., Dunon, V., Ackermann, H. W., van Vaerenbergh, J., Maes, M., de Proft, M., & Lavigne, R. (2011). Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, Belonging to the "phiKMV-Like Viruses." *Applied and Environmental Microbiology*, 77(10), 3443. https://doi.org/10.1128/AEM.00128-11
- Alanís, A. J. (2005). Resistance to Antibiotics: Are We in the Post-Antibiotic Era? *Archives of Medical Research*, *36*(6), 697–705. https://doi.org/10.1016/j.arcmed.2005.06.009
- Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V, Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., Faltyn, M., Hernandez-Koutoucheva, A., Sharma, A. N., Bordeleau, E., Pawlowski, A. C., Zubyk, H. L., Dooley, D., Griffiths, E., Maguire, F., Winsor, G. L., Beiko, R. G., Brinkman, F. S., Hsiao, W. W., Domselaar, G. V., McArthur, A. G. (2019). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkz935
- American Type Culture Collection. (n.d.). Escherichia coli (Migula) Castellani y Chalmers 25922 TM. Retrieved May 25, 2024, from https://www.atcc.org/products/25922
- Bailly-Bechet, M., Vergassola, M., & Rocha, E. (2007). Causes for the intriguing presence of tRNAs in phages. *Genome Research*, *17*(10), 1486–1495. https://doi.org/10.1101/gr.6649807
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology*, *19*(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
- Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2018). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. https://doi.org/10.1016/j.envres.2018.11.040

- Berry, J., Rajaure, M., Pang, T., & Young, R. (2012). The Spanin Complex Is Essential for Lambda Lysis. *Journal* of Bacteriology, 194(20), 5667–5674. https://doi.org/10.1128/JB.01245-12
- Berry, J., Savva, C., Holzenburg, A., & Young, R. (2010). The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation. *Protein Science*, *19*(10), 1967–1977. https://doi.org/10.1002/pro.485
- Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiology Letters, 363(4), fnw002. https://doi.org/10.1093/femsle/fnw002
- Bobate, S., Mahalle, S., Dafale, N. A., & Bajaj, A. (2023). Emergence of environmental antibiotic resistance: Mechanism, monitoring and management. *Environmental Advances*, 13, 100409. https://doi.org/10.1016/j.envadv.2023.100409
- Bolocan, A. S., Callanan, J., Forde, A., Ross, P., & Hill, C. (2016). Phage therapy targeting Escherichia coli a story with no end? *FEMS Microbiology Letters*, 363(22), fnw256. https://doi.org/10.1093/femsle/fnw256
- Born, Y., Knecht, L. E., Eigenmann, M., Bolliger, M., Klumpp, J., & Fieseler, L. (2019). A major-capsidprotein-based multiplex PCR assay for rapid identification of selected virulent bacteriophage types. *Archives of Virology*, 164(3), 819–830. https://doi.org/10.1007/s00705-019-04148-6
- Bowen, M. (2013). Antimicrobial stewardship: Time for change. *Equine Veterinary Journal*, 45(2), 127–129. https://doi.org/10.1111/EVJ.12041
- Cahill, J., & Young, R. (2019). *Phage Lysis: Multiple Genes* for Multiple Barriers (pp. 33–70). https://doi.org/10.1016/bs.aivir.2018.09.003
- Calero-Cáceres, W., Tadesse, D., Jaramillo, K., Villavicencio, X., Mero, E., Lalaleo, L., Welsh, C., Villacís, J. E., Quentin, E., Parra, H., Ramirez, M. S., Harries, A. D., & Balcázar, J. L. (2022). Characterization of the genetic structure of mcr-1 gene among Escherichia coli isolates recovered from surface waters and sediments from Ecuador. *Science of The Total Environment*, 806, 150566.

https://doi.org/10.1016/j.scitotenv.2021.150566

- Calero-Cáceres, W., Ye, M., & Balcázar, J. L. (2019). Bacteriophages as Environmental Reservoirs of Antibiotic Resistance. *Trends in Microbiology*, 27(7), 570–577. https://doi.org/10.1016/J.TIM.2019.02.008
- Chan, P. P., Lin, B. Y., Mak, A. J., & Lowe, T. M. (2021). tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. *Nucleic Acids Research*, 49(16), 9077–9096. https://doi.org/10.1093/nar/gkab688
- Chen, C., Bales, P., Greenfield, J., Heselpoth, R. D., Nelson, D. C., & Herzberg, O. (2014). Crystal Structure of ORF210 from E. coli O157:H1 Phage CBA120 (TSP1), a Putative Tailspike Protein. *PLoS ONE*, 9(3), e93156. https://doi.org/10.1371/journal.pone.0093156
- Chénard, C., Chan, A. M., Vincent, W. F., & Suttle, C. A. (2015). Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. *The*

ISME Journal, *9*(9), 2046. https://doi.org/10.1038/ISMEJ.2015.24

- Cui, J. qi, Liu, W. hua, Zang, Y. xin, Zhang, C., Zou, L., Sun, H. zhi, Pan, Q., & Ren, H. ying. (2022). Characterization and complete genome analysis of a bacteriophage vB_EcoM_DE7 infecting donkey-derived Escherichia coli. Virus Research, 321. https://doi.org/10.1016/J.VIRUSRES.2022.198913
- Dasgupta, S., Thomas, J. A., & Ray, K. (2024). Mechanism of Viral DNA Packaging in Phage T4 Using Single-Molecule Fluorescence Approaches. *Viruses*, 16(2), 192. https://doi.org/10.3390/v16020192
- Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics*, 23(6), 673–679. https://doi.org/10.1093/bioinformatics/btm009
- Dunne, M., Prokhorov, N. S., Loessner, M. J., & Leiman, P. G. (2021). Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. *Current Opinion in Biotechnology*, 68, 272–281. https://doi.org/10.1016/j.copbio.2021.02.006
- Garneau, J. R., Depardieu, F., Fortier, L.-C., Bikard, D., & Monot, M. (2017). PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. *Scientific Reports*, 7(1), 8292. https://doi.org/10.1038/s41598-017-07910-5
- Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. *Medicina (Kaunas, Lithuania)*, 47(3), 137–146.
- Gilchrist, C. L. M., & Chooi, Y.-H. (2021). clinker & amp; clustermap.js: automatic generation of gene cluster comparison figures. *Bioinformatics*, 37(16), 2473–2475. https://doi.org/10.1093/bioinformatics/btab007
- Golomidova, A. K., Kulikov, E. E., Babenko, V. V., Ivanov, P. A., Prokhorov, N. S., & Letarov, A. V. (2019). Escherichia coli bacteriophage Gostya9, representing a new species within the genus T5virus. *Archives of Virology*, 164(3), 879–884. https://doi.org/10.1007/s00705-018-4113-2
- Gordillo Altamirano, F. L., & Barr, J. J. (2019). Phage Therapy in the Postantibiotic Era. *Clinical Microbiology Reviews*, 32(2). https://doi.org/10.1128/CMR.00066-18
- Hallgren, J., Tsirigos, K. D., Damgaard Pedersen, M., Juan, J., Armenteros, A., Marcatili, P., Nielsen, H., Krogh, A., & Winther, O. (2022). DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. *BioRxiv.* https://doi.org/10.1101/2022.04.08.487609
- Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M. (2018). Biotechnological applications of bacteriophages: State of the art. *Microbiological Research*, 212–213, 38–58. https://doi.org/10.1016/J.MICRES.2018.04.007
- Hatfull, G. F., Dedrick, R. M., & Schooley, R. T. (2022). Annual Review of Medicine Phage Therapy for Antibiotic-Resistant Bacterial Infections. https://doi.org/10.1146/annurev-med-080219

- Hu, Y., Tong, S., Li, P., An, X., Song, L., Fan, H., & Tong, Y. (2021). Characterization and genome sequence of the genetically unique Escherichia bacteriophage vB_EcoM_IME392. Archives of Virology, 166(9), 2505–2520. https://doi.org/10.1007/s00705-021-05160-5
- Hyman, P., & Abedon, S. T. (2010). Bacteriophage Host Range and Bacterial Resistance (Vol. 70, pp. 217–248). https://doi.org/10.1016/S0065-2164(10)70007-1
- International Committee on Taxonomy of Viruses. (2023). *Current ICTV Taxonomy Release*. https://ictv.global/taxonomy
- Iskender, I., & Soyer, Y. (2023). Phage Therapy Against Pathogenic Escherichia coli (O104:H4, O157:H7, and O26) Strains in Irrigation Water During Garden Cress (Lepidium sativum Linn.) Vegetation. Foodborne Pathogens and Disease, 20(12), 553–562. https://doi.org/10.1089/fpd.2023.0020
- Islam, M. R., Ogura, Y., Asadulghani, M., Ooka, T., Murase, K., Gotoh, Y., & Hayashi, T. (2012). A sensitive and simple plaque formation method for the Stx2 phage of Escherichia coli O157:H7, which does not form plaques in the standard plating procedure. *Plasmid*, 67(3), 227– 235. https://doi.org/10.1016/j.plasmid.2011.12.001
- Jasna, V., Parvathi, A., & Dash, A. (2018). Genetic and functional diversity of double-stranded DNA viruses in a tropical monsoonal estuary, India OPEN. 8, 16036. https://doi.org/10.1038/s41598-018-34332-8
- Jiang, L., Zhai, W., Wang, J., Li, G., Zhou, Z., Li, B., & Zhuo, H. (2023). Antibiotics and antibiotic resistance genes in the water sources of the Wuhan stretch of the Yangtze River: Occurrence, distribution, and ecological risks. *Environmental Research*, 239, 117295. https://doi.org/10.1016/j.envres.2023.117295
- Jofre, J., & Muniesa, M. (2020). Bacteriophage Isolation and Characterization: Phages of Escherichia coli (pp. 61– 79). https://doi.org/10.1007/978-1-4939-9877-7_4
- Jurczak-Kurek, A., Gasior, T., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Topka, G., Necel, A., Jakubowska-Deredas, M., Narajczyk, M., Richert, M., Mieszkowska, A., Wróbel, B., Węgrzyn, G., & Węgrzyn, A. (2016). Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. *Scientific Reports 2016 6:1, 6*(1), 1– 17. https://doi.org/10.1038/srep34338
- Kakasis, A., & Panitsa, G. (2019). Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. *International Journal of Antimicrobial Agents*, 53(1), 16–21. https://doi.org/10.1016/j.ijantimicag.2018.09.004
- Kala, S., Cumby, N., Sadowski, P. D., Hyder, B. Z., Kanelis, V., Davidson, A. R., & Maxwell, K. L. (2014). HNH proteins are a widespread component of phage DNA packaging machines. *Proceedings of the National Academy of Sciences*, 111(16), 6022–6027. https://doi.org/10.1073/pnas.1320952111
- Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. *Nature Reviews Microbiology*, 2(2), 123–140. https://doi.org/10.1038/nrmicro818

- Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., & Johnson, R. P. (2009). Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay (pp. 69–76). https://doi.org/10.1007/978-1-60327-164-6_7
- Kropinski, A. M., Waddell, T., Meng, J., Franklin, K., Ackermann, H.-W., Ahmed, R., Mazzocco, A., Yates, J., Lingohr, E. J., & Johnson, R. P. (2013). The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. *Virology Journal*, 10(1), 76. https://doi.org/10.1186/1743-422X-10-76
- Kutter, E. (2009). *Phage Host Range and Efficiency of Plating* (pp. 141–149). https://doi.org/10.1007/978-1-60327-164-6_14
- Landry, E. F., & Zsigray, R. M. (1980). Effects of Calcium on the Lytic Cycle of Bacillus subtilis Phage 41c. *Journal* of General Virology, 51(1), 125–135. https://doi.org/10.1099/0022-1317-51-1-125
- Laslett, D. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Research*, 32(1), 11–16. https://doi.org/10.1093/nar/gkh152
- Latka, A., Leiman, P. G., Drulis-Kawa, Z., & Briers, Y. (2019). Modeling the Architecture of Depolymerase-Containing Receptor Binding Proteins in Klebsiella Phages. *Frontiers in Microbiology*, 10. https://doi.org/10.3389/fmicb.2019.02649
- Liao, Y.-T., Zhang, Y., Salvador, A., Harden, L. A., & Wu, V. C. H. (2022). Characterization of a T4-like Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing Escherichia coli O45 Contaminated on Mung Bean Seeds. *Microbiology Spectrum*, 10(1). https://doi.org/10.1128/spectrum.02220-21
- Liu, B., Guo, Q., Li, Z., Guo, X., & Liu, X. (2023). Bacteriophage Endolysin: A Powerful Weapon to Control Bacterial Biofilms. *The Protein Journal*, 42(5), 463–476. https://doi.org/10.1007/s10930-023-10139-z
- Lo, C.-Y., & Gao, Y. (2021). DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication. *Viruses*, 13(9), 1739. https://doi.org/10.3390/v13091739
- Luepke, K. H., Suda, K. J., Boucher, H., Russo, R. L., Bonney, M. W., Hunt, T. D., & Mohr, J. F. (2017). Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*, 37(1), 71–84. https://doi.org/10.1002/phar.1868
- Lukman, C., Yonathan, C., Magdalena, S., & Waturangi, D. E. (2020). Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. *BMC Research Notes*, *13*(1), 8. https://doi.org/10.1186/s13104-019-4859-y
- Lundin, D., Torrents, E., Poole, A. M., & Sjöberg, B.-M. (2009). RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank. *BMC Genomics*, 10(1), 589. https://doi.org/10.1186/1471-2164-10-589
- Luong, T., Salabarria, A. C., Edwards, R. A., & Roach, D. R. (2020). Standardized bacteriophage purification for

personalized phage therapy. *Nature Protocols* 2020 15:9, 15(9), 2867–2890. https://doi.org/10.1038/s41596-020-0346-0

- Maffei, E., Shaidullina, A., Burkolter, M., Heyer, Y., Estermann, F., Druelle, V., Sauer, P., Willi, L., Michaelis, S., Hilbi, H., Thaler, D. S., & Harms, A. (2021). Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. *PLOS Biology*, 19(11), e3001424. https://doi.org/10.1371/journal.pbio.3001424
- Mann, N. H. (2005). The Third Age of Phage. *PLoS Biology*, 3(5), e182. https://doi.org/10.1371/journal.pbio.0030182
- Manohar, P., Tamhankar, A. J., Lundborg, C. S., & Ramesh, N. (2018). Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. *PLOS ONE*, *13*(10), e0206278.
 - https://doi.org/10.1371/journal.pone.0206278
- Marathe, N. P., Pal, C., Gaikwad, S. S., Jonsson, V., Kristiansson, E., & Larsson, D. G. J. (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. *Water Research*, 124, 388–397. https://doi.org/10.1016/j.watres.2017.07.060
- Mattila, S., Ruotsalainen, P., & Jalasvuori, M. (2015). On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy. *Frontiers in Microbiology*, 6, 1–7. https://doi.org/10.3389/fmicb.2015.01271
- Meier-Kolthoff, J. P., & Göker, M. (2017). VICTOR: genomebased phylogeny and classification of prokaryotic viruses. *Bioinformatics*, *33*(21), 3396–3404. https://doi.org/https://doi.org/10.1093/bioinformatics/bt x440
- Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., & Rüger, W. (2003). Bacteriophage T4 Genome. *Microbiology and Molecular Biology Reviews*, 67(1), 86–156. https://doi.org/10.1128/MMBR.67.1.86-156.2003
- Mirzaei, M. K., & Nilsson, A. S. (2015). Isolation of Phages for Phage Therapy: A Comparison of Spot Tests and Efficiency of Plating Analyses for Determination of Host Range and Efficacy. *PLOS ONE*, *10*(3), e0118557. https://doi.org/10.1371/JOURNAL.PONE.0118557
- Moraru, C., Varsani, A., & Kropinski, A. M. (2020). VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. *Viruses*, *12*(11), 1268. https://doi.org/10.3390/v12111268
- Müller, J. J., Barbirz, S., Heinle, K., Freiberg, A., Seckler, R., & Heinemann, U. (2008). An Intersubunit Active Site between Supercoiled Parallel β Helices in the Trimeric Tailspike Endorhamnosidase of Shigella flexneri Phage Sf6. Structure, 16(5), 766–775. https://doi.org/10.1016/j.str.2008.01.019
- Murphy, J., Mahony, J., Ainsworth, S., Nauta, A., & van Sinderen, D. (2013). Bacteriophage Orphan DNA Methyltransferases: Insights from Their Bacterial Origin, Function, and Occurrence. *Applied and Environmental Microbiology*, 79(24), 7547–7555. https://doi.org/10.1128/AEM.02229-13

- Nair, A., Ghugare, G. S., & Khairnar, K. (2022). An Appraisal of Bacteriophage Isolation Techniques from Environment. *Microbial Ecology*, 83(3), 519–535. https://doi.org/10.1007/s00248-021-01782-z
- Namura, M., Hijikata, T., Miyanaga, K., & Tanji, Y. (2008). Detection of *Escherichia coli* with Fluorescent Labeled Phages That Have a Broad Host Range to *E. coli* in Sewage Water. *Biotechnology Progress*, 24(2), 481– 486. https://doi.org/10.1021/bp070326c
- Nicolas, M., Trotereau, A., Culot, A., Moodley, A., Atterbury, R., Wagemans, J., Lavigne, R., Velge, P., & Schouler, C. (2023). Isolation and Characterization of a Novel Phage Collection against Avian-Pathogenic *Escherichia coli*. *Microbiology Spectrum*, *11*(3). https://doi.org/10.1128/spectrum.04296-22
- Olsen, N. S., Forero-Junco, L., Kot, W., & Hansen, L. H. (2020). Exploring the Remarkable Diversity of Culturable Escherichia coli Phages in the Danish Wastewater Environment. *Viruses*, *12*(9), 986. https://doi.org/10.3390/v12090986
- O'neill, J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. . http://amr-review.org/
- Organización Mundial de la Salud. (2020). *Resistencia a los antimicrobianos*. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibi%C3%B3ticos
- Ouyang, R., Ongenae, V., Muok, A., Claessen, D., & Briegel, A. (2024). Phage fibers and spikes: a nanoscale Swiss army knife for host infection. *Current Opinion in Microbiology*, 77, 102429. https://doi.org/10.1016/j.mib.2024.102429
- Pan, L., Li, D., Sun, Z., Lin, W., Hong, B., Qin, W., Xu, L., Liu, W., Zhou, Q., Wang, F., Cai, R., Qian, M., & Tong, Y. (2022). First Characterization of a Hafnia Phage Reveals Extraordinarily Large Burst Size and Unusual Plaque Polymorphism. *Frontiers in Microbiology*, 12. https://doi.org/10.3389/fmicb.2021.754331
- Park, D.-W., Lim, G., Lee, Y., & Park, J.-H. (2020). Characteristics of lytic phage vB_EcoM-ECP26 and reduction of shiga-toxin producing Escherichia coli on produce romaine. *Applied Biological Chemistry*, 63(1), 19. https://doi.org/10.1186/s13765-020-00502-4
- Pas, C., Latka, A., Fieseler, L., & Briers, Y. (2023). Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. *Virology Journal*, 20(1), 174. https://doi.org/10.1186/s12985-023-02138-4
- Poxleitner, M., Pope, W., Jacob-Sera, D., Sivanathan, V., & Hatfull, G. (2018). *Phage Discovery Guide. Howard Hughes Medical Institute.*
- Raffatellu, M. (2018). Learning from bacterial competition in the host to develop antimicrobials. *Nature Medicine*, 24(8), 1097–1103. https://doi.org/10.1038/s41591-018-0145-0
- Ramesh, N., Archana, L., Madurantakam Royam, M., Manohar, P., & Eniyan, K. (2019). Effect of various bacteriological media on the plaque morphology of Staphylococcus and Vibrio phages. *Access Microbiology*, *1*(4). https://doi.org/10.1099/acmi.0.000036

- Rios, A. C., Moutinho, C. G., Pinto, F. C., Fiol, F. S. Del, Jozala, A., Chaud, M. V, Vila, M. M. D. C., Teixeira, J. A., & Balcão, V. M. (2016). Alternatives to overcoming bacterial resistances: State-of-the-art. *Microbiological Research*, 191, 51–80. https://doi.org/10.1016/j.micres.2016.04.008
- Rose, P. W., Prlić, A., Bi, C., Bluhm, W. F., Christie, C. H., Dutta, S., Green, R. K., Goodsell, D. S., Westbrook, J. D., Woo, J., Young, J., Zardecki, C., Berman, H. M., Bourne, P. E., & Burley, S. K. (2015). The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. *Nucleic Acids Research*, 43(D1), D345–D356. https://doi.org/10.1093/nar/gku1214
- Salmond, G. P. C., & Fineran, P. C. (2015). A century of the phage: past, present and future. *Nature Reviews Microbiology*, *13*(12), 777–786. https://doi.org/10.1038/nrmicro3564
- Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences*, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
- Schwarzer, D., Browning, C., Stummeyer, K., Oberbeck, A., Mühlenhoff, M., Gerardy-Schahn, R., & Leiman, P. G. (2015). Structure and biochemical characterization of bacteriophage phi92 endosialidase. *Virology*, 477, 133– 143. https://doi.org/10.1016/j.virol.2014.11.002
- Schwarzer, D., Buettner, F. F. R., Browning, C., Nazarov, S., Rabsch, W., Bethe, A., Oberbeck, A., Bowman, V. D., Stummeyer, K., Mühlenhoff, M., Leiman, P. G., & Gerardy-Schahn, R. (2012). A Multivalent Adsorption Apparatus Explains the Broad Host Range of Phage phi92: a Comprehensive Genomic and Structural Analysis. *Journal of Virology*, 86(19), 10384–10398. https://doi.org/10.1128/JVI.00801-12
- Slobodníková, L., Markusková, B., Kajsík, M., Andrezál, M., Straka, M., Liptáková, A., & Drahovská, H. (2021). Characterization of Anti-Bacterial Effect of the Two New Phages against Uropathogenic Escherichia coli. Viruses, 13(7), 1348. https://doi.org/10.3390/v13071348
- Smith, D. L., Struck, D. K., Scholtz, J. M., & Young, R. (1998). Purification and Biochemical Characterization of the Lambda Holin. *Journal of Bacteriology*, 180(9), 2531–2540. https://doi.org/10.1128/JB.180.9.2531-2540.1998
- Steinbacher, S., Miller, S., Baxa, U., Budisa, N., Weintraub, A., Seckler, R., & Huber, R. (1997). Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage. *Journal of Molecular Biology*, 267(4), 865–880. https://doi.org/10.1006/jmbi.1997.0922

Stummeyer, K., Schwarzer, D., Claus, H., Vogel, U., Gerardy-Schahn, R., & Mühlenhoff, M. (2006). Evolution of bacteriophages infecting encapsulated bacteria: lessons from *Escherichia coli* K1-specific phages. *Molecular Microbiology*, 60(5), 1123–1135. https://doi.org/10.1111/j.1365-2958.2006.05173.x

- Summers, Williams. (1999). Felix d'Herelle and the Origins of Molecular Biology. Yale Univ. Press.
- Sváb, D., Falgenhauer, L., Papp, V., Rohde, M., Chakraborty, T., & Tóth, I. (2022). Characterisation of new anti-O157 bacteriophages of bovine origin representing three genera. Archives of Microbiology, 204(4). https://doi.org/10.1007/s00203-022-02839-4
- Turner, D., Shkoporov, A. N., Lood, C., Millard, A. D., Dutilh,
 B. E., Alfenas-Zerbini, P., van Zyl, L. J., Aziz, R. K.,
 Oksanen, H. M., Poranen, M. M., Kropinski, A. M.,
 Barylski, J., Brister, J. R., Chanisvili, N., Edwards, R.
 A., Enault, F., Gillis, A., Knezevic, P., Krupovic, M., ...
 Adriaenssens, E. M. (2023). Abolishment of
 morphology-based taxa and change to binomial species
 names: 2022 taxonomy update of the ICTV bacterial
 viruses subcommittee. Archives of Virology, 168(2), 74.
 https://doi.org/10.1007/s00705-022-05694-2
- United States Environmental Protection Agency. (2001). *Method 1602: Male-specific (F+) and Somatic Coliphage in Water bySingle Agar Layer (SAL) Procedure.* https://nepis.epa.gov/Exe/ZyNET.exe/P1002D21.TXT?

ZyActionD

- Van Puyvelde, S., Deborggraeve, S., & Jacobs, J. (2018). Why the antibiotic resistance crisis requires a One Health approach. *The Lancet Infectious Diseases*, *18*(2), 132– 134. https://doi.org/10.1016/S1473-3099(17)30704-1
- Walter, M., Fiedler, C., Grassl, R., Biebl, M., Rachel, R., Hermo-Parrado, X. L., Llamas-Saiz, A. L., Seckler, R., Miller, S., & van Raaij, M. J. (2008). Structure of the Receptor-Binding Protein of Bacteriophage Det7: a Podoviral Tail Spike in a Myovirus. *Journal of Virology*, 82(5), 2265–2273. https://doi.org/10.1128/JVI.01641-07
- Wang, L., Tan, Y., Liao, Y., Li, L., Han, K., Bai, H., Cao, Y., Li, J., Gong, Y., Wang, X., & Peng, H. (2022). Isolation, Characterization and Whole Genome Analysis of an Avian Pathogenic Escherichia coli Phage vB_EcoS_GN06. Veterinary Sciences, 9(12). https://doi.org/10.3390/VETSCI9120675
- Wang, R. H., Yang, S., Liu, Z., Zhang, Y., Wang, X., Xu, Z., Wang, J., & Li, S. C. (2024). PhageScope: a wellannotated bacteriophage database with automatic analyses and visualizations. *Nucleic Acids Research*, 52(D1), D756–D761. https://doi.org/10.1093/nar/gkad979
- Weigele, P., & Raleigh, E. A. (2016). Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. *Chemical Reviews*, 116(20), 12655–12687. https://doi.org/10.1021/acs.chemrev.6b00114
- Wilson, G. G. (1991). Organization of restriction-modification systems. *Nucleic Acids Research*, 19(10), 2539–2566. https://doi.org/10.1093/nar/19.10.2539
- Yazdi, M., Bouzari, M., Ghaemi, E. A., & Shahin, K. (2020). Isolation, Characterization and Genomic Analysis of a Novel Bacteriophage VB_EcoS-Golestan Infecting Multidrug-Resistant Escherichia coli Isolated from Urinary Tract Infection. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-020-63048-x

- Ye, M., Sun, M., Huang, D., Zhang, Z., Zhang, H., Zhang, S., Hu, F., Jiang, X., & Jiao, W. (2019). A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. *Environment International*, *129*, 488–496. https://doi.org/10.1016/J.ENVINT.2019.05.062
- Ye, M., Sun, M., Zhao, Y., Jiao, W., Xia, B., Liu, M., Feng, Y., Zhang, Z., Huang, D., Huang, R., Wan, J., Du, R., Jiang, X., & Hu, F. (2018). Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment. *Environmental Pollution*, 241, 978–987. https://doi.org/10.1016/j.envpol.2018.04.070
- Yin, J. (1991). A quantifiable phenotype of viral propagation. *Biochemical and Biophysical Research Communications*, 174(2), 1009–1014. https://doi.org/10.1016/0006-291X(91)91519-I
- Yokota, H. (2022). Quantitative and kinetic single-molecule analysis of DNA unwinding by <i>Escherichia coli</i> UvrD helicase. *Biophysics and Physicobiology*, 19(0), e190006. https://doi.org/10.2142/biophysico.bppb-v19.0006
- Yutin, N., Makarova, K. S., Gussow, A. B., Krupovic, M., Segall, A., Edwards, R. A., & Koonin, E. V. (2017). Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. *Nature Microbiology*, 3(1), 38–46. https://doi.org/10.1038/s41564-017-0053-y
- Zankari, E., Allesøe, R., Joensen, K. G., Cavaco, L. M., Lund, O., & Aarestrup, F. M. (2017). PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. *Journal of Antimicrobial Chemotherapy*, 72(10), 2764–2768. https://doi.org/10.1093/jac/dkx217
- Zhang, C., Du, X. P., Zeng, Y. H., Zhu, J. M., Zhang, S. J., Cai, Z. H., & Zhou, J. (2021). The communities and functional profiles of virioplankton along a salinity gradient in a subtropical estuary. *Science of the Total Environment*, 759. https://doi.org/10.1016/J.SCITOTENV.2020.143499
- Zhang, Y., Huang, H.-H., Ma, L. Z., Masuda, Y., Honjoh, K.,
 & Miyamoto, T. (2022). Inactivation of mixed Escherichia coli O157:H7 biofilms on lettuce by bacteriophage in combination with slightly acidic hypochlorous water (SAHW) and mild heat treatment. *Food Microbiology*, 104, 104010. https://doi.org/10.1016/j.fm.2022.104010
- Zhao, Y., Ye, M., Zhang, X., Sun, M., Zhang, Z., Chao, H., Huang, D., Wan, J., Zhang, S., Jiang, X., Sun, D., Yuan, Y., & Hu, F. (2019). Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. *Science of The Total Environment*, 657, 918– 925. https://doi.org/10.1016/j.scitotenv.2018.11.457

ANEXO I	19
FICHA TÉCNICA N.º 1	19
Aislamiento de bacteriófagos	19
FICHA TÉCNICA N.º 2	21
Identificación molecular de bacteriófagos	21
FICHA TÉCNICA N.º 3	23
Caracterización fenotípica del bacteriófago BME3	23
FICHA TÉCNICA N.º 4	24
Caracterización fisicoquímica del bacteriófago BME3	24
ANEXO II	33
Tabla AII. 1. Información de las cepas bacterianas utilizadas para evaluar la actividad lítica de los	fagos
aislados	33
ANEXO III	35
Figura AIII. 1. Mapa del genoma del fago BME3	35
Tabla AIII. 1. Anotaciones de CDS del genoma del bacteriófago BME3	36
ANEXO IV	51
Figura AIV 1Comparación del genoma de los bacteriófagos phi92, BME3 y VEcB con Clinker	51

ÍNDICE DE ANEXOS

ANEXO I

FICHA TÉCNICA N.º 1 AISLAMIENTO DE BACTERIÓFAGOS

Muestra: Bacteriófagos aislados a partir de muestras de agua y sedimentos provenientes del Estero Salado

Objetivo: Seleccionar bacteriófagos con actividad lítica contra la cepa de *Escherichia coli* ATCC 15597 aislados de muestras de agua y sedimentos provenientes del Estero Salado.

Desarrollo:

En la Figura FTI. 1, se presentan los puntos de muestreo en el Estero Salado, estuario ubicado en la ciudad de Guayaquil.

Figura FTI. 1. Lugares de muestreo de agua y sedimentos en el Estero Salado

En la Tabla FTI. 1, se presenta el aislamiento de bacteriófagos a partir de muestras de agua ambientales del Estero Salado mediante el método de capa simple. Se reportó un alto título de fago en la muestra de agua del punto K, correspondiente a una zona urbana. Mientras, en muestras de sedimentos no se logró recuperar fagos en el punto E, J, L-O.

Zona de muestreo	Características de la zona	Zona	UFP/100mL de agua	UFP/100 g de sedimentos
А	Kennedy Norte	Urbana	62	130
	(Bosque salado)			
В	Puente Policentro	Urbana y poco	185	260
		comercial		

Tabla F	ГІ. 1.	Aislamiento	de	bacteriófagos	de	Estero	Salado
		monumento		ouccentoragos		Lotero	Salado

С	Puente	Urbana y	22	240
	Federación	recreacional		
D	Puente Albán	Urbana y	168	160
	Borja	comercial		
E	Puente Zigzag	Comercial	58	0
F	Puente Velero	Zona recreacional	6	20
G	Estadio Barcelona	Urbano marginal y recreacional	201	70
Н	H Puente Portete		98	20
Ι	Estero Tres Bocas	Urbano y manglar	38	20
J	Estero	Residencial	170	0
	Palanqueado			
K	Puente Liza	Residencial	1776	100
L	Puerto Muerto	Urbano	99	0
М	Parque Lineal	Urbano 75% y	14	0
	Fertisa	25% manglar		
Ν	Estero El Muerto	Industrial 10% y manglar 90%	6	0
0	Estero Cobina (Playita El Guasmo)	Urbana e industrial	15	0

FICHA TÉCNICA N.º 2

IDENTIFICACIÓN MOLECULAR DE BACTERIÓFAGOS

Muestra: ADN molde de los bacteriófagos aislados

Objetivo: Identificar bacteriófagos líticos mediante la amplificación del gen de la proteína de la cápside mayor

Fundamento:

En la Tabla FTII. 1, se presentan los cebadores que se utilizaron en la detección de bacteriófagos líticos mediante la amplificación del gen de la proteína de la cápside mayor.

Bacteriófagos	Secuencias (5´3´)
HK578 F	GGTGAAGTGCTGAAGGAYGTTR
HK578 R	CCACGTTGAAGTCGAATCRCC
HK578 F2	CGAYAACCTGAACGTDTTCAACG
HK578 R2	CMGTCAGCGTAACCAGTACGC
T5 F	GSWCARYTTAGACCRTGACGR
T5 R	GCTRARCGTMTGCGTRAAGAGC
T5 F2	CARCAGACCYTTMGGYTKACCV
T5 R2	GAACTTGGTCTGGGTGATCTGG
$T4-F^1$	CCCTGCTGTTCCAGATCGANAARGARG C
$T4-R^1$	CTGCCTGGCGTACTGGTCDATRWANAC
$T7-F^1$	GACAAGCGGAAGGACATCAANCAYACNGAR A
$T7-R^1$	CGCGTAGTTGGCGGCRTTNGGCATNA
$N4-F^1$	GGATGATCGTAATATTAATGATCAGGGNATHRAYGC
$N4-R^1$	GACATAAAGCCCATTTCGCCRWANGGRTC
$GJ1-F^1$	GGCTGCGCGTATGATTAGGAYATHGAY GA
$GJ1-R^1$	CCAATGCATCACCGGCADCCADATYTC
SP6-F ¹	CACCGTGATTGCGCGTAAYACNGTNGC
SP6-R ¹	TTCCCAACGATCCGGAATNGCNCCYTC
FO1-F ¹	CGCCATTGAAGAACTGCGTRWRCAYAT GGA
FO1-R ¹	GGCATCATATAGGAATGCGCYTCRAAR TC
Vi1-F ¹	GCCGATTAATATTGCGATGGAYTTYTT
Vi1-R ¹	CCAGCATAAAGGTCATAAATTTCCAYTTYTC
	¹ (Born et al., 2019)

Tabla FTII. 1. Cebadores para la identificación de bacteriófagos líticos

Desarrollo:

En la Figura FTII. 1, se presentan los resultados de corrida electroforética para la detección de bacteriófagos del género *Dhillonvirus* con los cebadores HK578-2 a una temperatura de *annealing* de 58°C. Con estos cebadores se obtuvo el tamaño deseado del producto de PCR para la detección del bacteriófago lítico.

Figura FTII.2. Detección del género *Dhillonvirus* mediante reacción en cadena de la polimerasa (PCR). Se muestra la amplificación de fragmentos correspondientes a la proteína de la cápside mayor (MCP) con un tamaño de 1100 pb. L: Marcador de peso molecular (100-2000 pb). 1: BMH4; 2: BMH5;3: BMJ1;4: BMJ3; 5: BMJ4; 6: BMK1;7: BMKS1; 8: BMM2; 9: BMO4; 10: BMO3.

FICHA TÉCNICA N.º 3

CARACTERIZACIÓN FENOTÍPICA DEL BACTERIÓFAGO BME3

Muestra: Bacteriófagos BME3

Objetivo: Caracterizar de forma fenotípica al bacteriófago BME3 con características líticas deseables para su uso en control biológico.

Desarrollo:

Los resultados del perfil de lisis del bacteriófago BME3 se presentan en la Tabla FTIII. 1. Se apreció que el fago BME3 logró lisar 16 cepas bacteriana de un total de 33. El fago infectó cepas de *E. coli* susceptibilidad a antibióticos e incluso *Salmonella*, pero no tuvo reacción contra *Bacillus* sp., *Pseudomonas* sp. y *Vibrio* sp.

Fenotipo de resistencia a antibióticos	Total de cepas	Cepas lisadas por el fago BME3	Cepas no lisadas por el fago BME3	Frecuencia relativa (%)
No definido	6	3	3	50.00
Resistente	14	8	6	57.14
Sensible	5	4	1	80.00
Intermedio	8	1	7	12.50
Total	33	16	17	48.49

Tabla FTIII.1. Actividad lítica del bacteriófago BME3

En la Tabla FTIII. 2, se presenta las mediciones de la estructura del bacteriófago. Los resultados fueron obtenidos a partir de las mediciones realizadas a las micrografías con software de análisis de imágenes Fiji. Debido a que el fago posee una cola contráctil, las mediciones de tamaño del fago y largo de la cola puede ser variable.

Fago	Escala	Largo	Diámetro de la	Largo de la	Ancho de la	Largo de la
8	(nm) total (h		cola (nm)	cola(nm)	capside(nm)	capside (nm)
1	500	150	34	60	119	98
2	500	228	23	105	132	117
3	200	157	31	54	100	92
7	200	166	23	67	81	94
8	200	229	28	96	132	114
6	500	144	31	47	103	90
14	200	160	27	66	93	94
15	200	162	27	69	83	92
11	500	233	28	114	125	121
16	500	181	30	74	100	104
17	200	192	27	68	120	113
Promedio		182	28.09	74.55	108.00	102.64
Desviación estándar		33.56	3.33	21.31	18.54	11.57

Tabla FTIII. 2. Mediciones del bacteriófago

FICHA TÉCNICA N.º 4

CARACTERIZACIÓN FISICOQUÍMICA DEL BACTERIÓFAGO BME3

Muestra: Bacteriófago BME3 enriquecido

Objetivo: Caracterizar de forma fisicoquímica al bacteriófago BME3 para su uso en control biológico.

Desarrollo:

En la Figura FTIV. 1, se presentan los diagramas de cajas simultáneos correspondiente a los resultados obtenidos en el tratamiento de sensibilidad térmica. Se apreció que la media del tratamiento a 60°C es diferente a la media de los tratamientos a 30, 35, 40, 45°C y 50°C.

Análisis de varianza

Ho: No hay efecto de los tratamientos en el título del fago

Hi: Al menos hay un efecto de los tratamientos en el título de los fagos

```
Df Sum Sq Mean Sq F value Pr(>F)
FI 11 2.928e+20 2.662e+19 11.83 3.47e-07 ***
Residuals 24 5.402e+19 2.251e+18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Conclusiones:

Mediante el ANOVA se aprecia que la temperatura si tiene un efecto sobre el título del fago, se rechaza Ho.

Supuesto de Normalidad

Ho: Los datos provienen de una distribución normal

Hi: Los datos no provienen de una distribución normal

Shapiro-Wilk normality test

```
data: residuals(BdD.aov)
W = 0.94611, p-value = 0.07887
```

Conclusión: Mediante la Prueba de Shapiro-Wilk a un nivel de significancia de 0.05, se acepta Ho (p_valor=0.07887), es decir, los datos se ajustan a una distribución normal (Figura FTIV. 2A).

Supuesto de varianza constante

Ho: Las varianzas de los tratamientos son iguales

Hi: Las varianzas de los tratamientos son diferentes

Conclusión: En la prueba de Levene a un nivel de significancia de 0.05, se acepta Ho (p_valor=0.4711), es decir, se cumple el supuesto de varianza constante. En la Figura FTIV. 2B, se aprecia que los valores se distribuyen de forma aleatoria y no siguen un patrón.

Supuesto de independencia

Ho: ρ = 0
Hi: ρ > 0
> durbinWatsonTest(BdD.aov)
lag Autocorrelation D-W Statistic p-value
1 -0.400058 2.705007 0.808
Alternative hypothesis: rho != 0

Conclusiones: En la Figura FTIV. 2C se aprecia que los datos se distribuyen de forma aleatoria y no siguen un patrón, es decir, los datos cumplen con supuesto de independencia.

Tabla FTIV.2. Normalidad (A). Predichos vs Residuos (B). Predichos vs Residuos (C).

Comparaciones o pruebas de rango múltiple:

Ho: $\mu_i = \mu_j$

 $\mathsf{Hi:}\mu_i \neq \mu_j$

Tabla FTIV. 1. Comparaciones post hoc de Tukey de los tratamientos de estabilidad térmica

FI	Diff	Lwr	upr	p adj
35-30	1.03×10^{9}	-3.38×10^{9}	5.5×10^{9}	0.999
37-30	$-7.67 imes 10^8$	$-5.18 imes 10^9$	$3.7 imes10^9$	1.000
40-30	$3.33 imes 10^8$	$-4.08 imes 10^9$	$4.8 imes10^9$	1.000
45-30	$2.03 imes10^9$	$-2.38 imes 10^9$	$6.5 imes10^9$	0.869
50-30	$-1.17 imes10^9$	$-5.58 imes 10^9$	$3.3 imes10^9$	0.997
55-30	$-3.15 imes 10^{9}$	-7.57×10^{9}	$1.3 imes10^9$	0.345
60-30	$-4.74 imes10^9$	-9.16×10^{9}	$-3.3 imes 10^8$	0.028
65-30	$-5.67 imes 10^{9}$	$-1.01 imes 10^{10}$	$-1.2 imes 10^9$	0.005
70-30	$-5.67 imes 10^{9}$	$-1.01 imes 10^{10}$	$-1.2 imes 10^{9}$	0.005
75-30	$-5.67 imes 10^{9}$	$-1.01 imes 10^{10}$	$-1.2 imes 10^{9}$	0.005
80-30	$-5.67 imes 10^{9}$	$-1.01 imes 10^{10}$	-1.2×10^{9}	0.005
37-35	$-1.80 imes10^9$	$-6.22 imes 10^{09}$	$2.6 imes10^9$	0.935
40-35	$-7.00 imes 10^8$	$-5.12 imes 10^{09}$	$3.7 imes10^9$	1.000
45-35	$1.00 imes 10^9$	-3.42×10^{09}	$5.4 imes10^9$	0.999
50-35	-2.20×10^{9}	$-6.62 imes 10^{09}$	$2.2 imes 10^9$	0.805
55-35	$-4.19 imes10^9$	$-8.60 imes 10^{09}$	$2.3 imes 10^8$	0.074
60-35	$-5.78 imes10^9$	$-1.02 imes 10^{10}$	$-1.4 imes 10^{9}$	0.004
65-35	$-6.70 imes10^9$	$-1.11 imes 10^{10}$	-2.3×10^{9}	0.001
70-35	$-6.70 imes10^9$	$-1.11 imes 10^{10}$	-2.3×10^{9}	0.001
75-35	$-6.70 imes10^9$	$-1.11 imes 10^{10}$	-2.3×10^{9}	0.001
80-35	$-6.70 imes10^9$	$-1.11 imes 10^{10}$	$-2.3 imes 10^{9}$	0.001
40-37	$1.10 imes 10^9$	-3.32×10^{09}	$5.5 imes10^9$	0.998
45-37	$2.80 imes 10^9$	$-1.62 imes 10^{09}$	$7.2 imes10^9$	0.511
50-37	$-4.00 imes10^8$	$-4.82 imes 10^{09}$	$4.0 imes10^9$	1.000
55-37	$-2.39 imes 10^{9}$	$-6.80 imes 10^{09}$	$2.0 imes10^9$	0.720
60-37	$-3.98 imes10^9$	$-8.39 imes 10^{09}$	$4.4 imes10^8$	0.105
65-37	$-4.90 imes 10^{9}$	$-9.32 imes 10^{09}$	$-4.8 imes 10^{8}$	0.021
70-37	$-4.90 imes10^9$	$-9.32 imes 10^{09}$	$-4.8 imes 10^{8}$	0.021
75-37	$-4.90 imes 10^{9}$	$-9.32 imes 10^{09}$	$-4.8 imes 10^{8}$	0.021
80-37	$-4.90 imes10^9$	$-9.32 imes 10^{09}$	$-4.8 imes 10^{8}$	0.021
45-40	$1.70 imes 10^{9}$	$-2.72 imes 10^{09}$	$6.1 imes 10^{9}$	0.955
50-40	-1.50×10^{9}	$-5.92 imes 10^{09}$	$2.9 imes10^9$	0.981
55-40	-3.49×10^{9}	$-7.90 imes 10^{09}$	$9.3 imes 10^8$	0.222
60-40	$-5.08 imes 10^{9}$	$-9.49 imes 10^{09}$	$-6.6 imes 10^{8}$	0.015
65-40	$-6.00 imes 10^{9}$	$-1.04 imes 10^{10}$	$-1.6 imes 10^{9}$	0.003
70-40	$-6.00 imes 10^{9}$	$-1.04 imes 10^{10}$	$-1.6 imes 10^{9}$	0.003
75-40	$-6.00 imes10^9$	$-1.04 imes 10^{10}$	-1.6×10^{9}	0.003

FI	Diff	Lwr	upr	p adj
80-40	-6.00×10^{9}	$-1.04 imes 10^{10}$	$-1.6 imes 10^{9}$	0.003
50-45	-3.20×10^{9}	$-7.62 imes 10^{09}$	$1.2 imes 10^9$	0.326
55-45	$-5.19 imes 10^9$	$-9.60 imes 10^{09}$	$-7.7 imes 10^{8}$	0.012
60-45	$-6.78 imes10^9$	$-1.12 imes 10^{10}$	$-2.4 imes 10^{9}$	0.001
65-45	$-7.70 imes 10^{9}$	$-1.21 imes 10^{10}$	-3.3×10^{9}	0.000
70-45	$-7.70 imes 10^{9}$	$-1.21 imes 10^{10}$	-3.3×10^{9}	0.000
75-45	$-7.70 imes 10^{9}$	$-1.21 imes 10^{10}$	-3.3×10^{9}	0.000
80-45	$-7.70 imes 10^{9}$	$-1.21 imes 10^{10}$	$-3.3 imes 10^{9}$	0.000
55-50	$-1.99 imes 10^{9}$	$-6.40 imes 10^{09}$	$2.4 imes10^9$	0.884
60-50	-3.58×10^{9}	$-7.99 imes 10^{09}$	$8.4 imes10^8$	0.195
65-50	$-4.50 imes10^9$	$-8.92 imes10^{09}$	$-8.3 imes 10^7$	0.043
70-50	$-4.50 imes10^9$	$-8.92 imes10^{09}$	$-8.3 imes 10^7$	0.043
75-50	$-4.50 imes10^9$	$-8.92 imes10^{09}$	$-8.3 imes 10^7$	0.043
80-50	$-4.50 imes10^9$	$-8.92 imes10^{09}$	$-8.3 imes 10^7$	0.043
60-55	$-1.59 imes 10^{9}$	$-6.01 imes 10^{09}$	$2.8 imes10^9$	0.971
65-55	-2.51×10^{9}	$-6.93 imes 10^9$	$1.9 imes10^9$	0.658
70-55	-2.51×10^{9}	$-6.93 imes 10^{9}$	$1.9 imes10^9$	0.658
75-55	-2.51×10^{9}	$-6.93 imes 10^9$	$1.9 imes10^9$	0.658
80-55	-2.51×10^{9}	$-6.93 imes 10^9$	$1.9 imes10^9$	0.658
65-60	$-9.23 imes 10^{8}$	$-5.34 imes 10^9$	$3.5 imes10^9$	1.000
70-60	$-9.23 imes 10^{8}$	-5.34×10^{9}	$3.5 imes 10^9$	1.000
75-60	$-9.23 imes 10^{8}$	-5.34×10^{9}	$3.5 imes 10^9$	1.000
80-60	$-9.23 imes 10^{8}$	-5.34×10^{9}	$3.5 imes 10^9$	1.000
70-65	-7.22×10^4	-4.42×10^{9}	$4.4 imes10^9$	1.000
75-65	$-7.26 imes 10^4$	$-4.42 imes 10^9$	$4.4 imes10^9$	1.000
80-65	$-7.33 imes 10^4$	$-4.42 imes 10^9$	$4.4 imes10^9$	1.000
75-70	$-4.39 imes 10^2$	$-4.42 imes 10^9$	$4.4 imes10^9$	1.000
80-70	-1.11×10^{3}	$-4.42 imes 10^9$	$4.4 imes10^9$	1.000
80-75	-6.66×10^{2}	-4.42×10^{9}	$4.4 imes10^9$	1.000

Conclusión:_Mediante la prueba Tukey a un nivel de significancia del 0,05, se aprecia que la media de los tratamientos a 30, 35, 37, 40, 45 y 50°C son diferentes a los tratamientos a 65, 70, 75 y 80°C. Igualmente, no hay diferencias entre los tratamientos entre la media de 55°C con 60°C y 65°C (Tabla FTIV. 1).

Sensibilidad al pH

En el diagrama de caja del tratamiento de sensibilidad al pH se aprecia que la media de los tratamientos es igual (Figura FTIV. 3).

Análisis de varianza

Ho: No hay efecto de los tratamientos en el título del fago

Hi: Al menos hay un efecto en el título de los fagos

Conclusiones:

Mediante el ANOVA se aprecia que el pH no tiene un efecto sobre el título del fago, se acepta Ho (p_valor=0.982).

Supuesto de Normalidad

Ho: Los datos provienen de una distribución normal

Hi: Los datos no provienen de una distribución normal

Shapiro-Wilk normality test

data: residuals(BdD.aov)
W = 0.94948, p-value = 0.4169

<u>Conclusión</u>: En la Figura FTIV. 4-A, se observa que los valores se ajustan a una distribución normal. Mediante la prueba de Shapiro-Wilk con un valor de significancia de 0.05, se acepta Ho.

Supuesto de homocedasticidad

Ho: La varianza de los tratamientos son iguales

Hi: La varianza de los tratamientos son diferentes

```
> leveneTest(CONTEO~FI,data=BdD)
Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
group 5 0.606 0.6971
        12
```

Conclusión: Con la prueba de Levene con un nivel de significancia de 0.05, se acepta la hipótesis nula (p_valor=0.6971), es decir, se cumple el supuesto de varianza constante (Figura FTIV. 4B).

Supuesto de independencia

Ho: Los residuos cumplen con el supuesto de independencia

Hi: Los residuos no cumplen con el supuesto de independencia.

```
> durbinWatsonTest(BdD.aov)
lag Autocorrelation D-W Statistic p-value
    1   -0.06017158    2.069904    0.2
Alternative hypothesis: rho != 0
```

Conclusión: En el gráfico de orden de corrida versus residuos (Figura FTIV. 4C) se observa una aleatorización en la distribución de los puntos, es decir, no se detecta un patrón o tendencia y los datos cumplen con el supuesto de independencia. Igualmente, mediante la prueba de Durbin Watson a un nivel de significancia de 0.05, se acepta Ho (p_valor=0.2).

Figura FTIV. 4. Normalidad (A). Predichos vs Residuos (B). Orden de la corrida vs Residuos (C)

Sensibilidad al cloroformo

En la Figura FTIV. 5, se aprecia que el tratamiento a 25% y 50% de concentración de cloroformo es diferente al control.

Figura FTIV. 5. Diagrama de cajas del tratamiento de sensibilidad al cloroformo

Análisis de varianza

Ho: No hay efecto de los tratamientos en el título del fago

Hi: Al menos hay un efecto en el título de los fagos

Conclusiones:

Mediante el ANOVA a un nivel de significancia de 0.1, se rechaza Ho. El cloroformo tiene un

efecto sobre el título del fago.

Supuesto de normalidad

Ho: Los datos provienen de una distribución normal

Hi: Los datos no provienen de una distribución normal

```
> shapiro.test(residuals(BdD.aov))
        Shapiro-Wilk normality test
data: residuals(BdD.aov)
W = 0.86542, p-value = 0.1098
```

Conclusión: Mediante el Figura FTIV. 6-A se observa que los valores se ajustan a una distribución normal. Igualmente, esto se comprueba con la prueba de Shapiro_Wilk con un valor de significancia de 0.05, se acepta Ho (p_valor=0.1098).

Supuesto de homocedasticidad

Ho: La varianza de los tratamientos son iguales

Hi: La varianza de los tratamientos son diferentes

```
> leveneTest(CONTEO~FI,data=BdD)
Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
group 2 2.3749 0.1739
        6
```

Conclusió*n*: Con la prueba de Levene con un nivel de significancia de 0.05, se acepta la hipótesis nula (p_valor=0.1739), es decir, se cumple el supuesto de varianza constante (Figura FTIV. 6-B).

Supuesto de independencia

Ho: Los residuos cumplen con el supuesto de independencia.

Hi: Los residuos no cumplen con el supuesto de independencia.

```
> durbinWatsonTest(BdD.aov)
lag Autocorrelation D-W Statistic p-value
    1 -0.4162493 2.266802 0.8
Alternative hypothesis: rho != 0
```

Conclusión: En el gráfico de orden de corrida versus residuos (Figura FTIV. 6C), se aprecia una aleatorización en la distribución de los puntos, por lo tanto, no se detecta un patrón o tendencia y los datos cumplen con el supuesto de independencia. Mediante la prueba de Durbin Watson a un nivel de significancia de 0.05, se acepta Ho (p_valor= 0.8).

Figura FTIV. 6. Normalidad (A). Predichos vs Residuos (B). Orden de corrida vs Residuos (C).

Comparaciones o prueba de rango múltiple

A continuación, se aplicaron pruebas de rango múltiple para identificar las medias de los tratamientos que son significativamente diferentes.

Prueba de Tukey

```
Ho:µ<sub>i</sub> = µ<sub>j</sub>
Hi:µ<sub>i</sub> ≠ µ<sub>j</sub>
95% family-wise confidence level
Fit: aov(formula = CONTEO ~ FI, data = BdD)
$FI
diff lwr upr p adj
25-0 -347333333 -7264129975 317463308 0.0688298
50-0 -3636666667 -7427463308 154129975 0.0583475
50-25 -16333333 -3954129975 3627463308 0.9904262
```

Conclusión: Mediante la prueba de Tukey a un nivel de significancia del 0.05 se aprecia que no existe diferencia significativa entre los tratamientos.

ANEXO II

Escherichia coli - ATCC 15597 - Escherichia coli - ATCC 25922 - Escherichia coli ESAN 2 Agua AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ESAN 4 Agua AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ESAN 11 Agua AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ESAN 11 Agua AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ESAN 31 Agua AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ECAL 45 Alimentos AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ECAL 130 Alimentos AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ECAL 141 Alimentos AK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I Escherichia coli ETRA 1 Aguas residu	
ATCC 15597 Escherichia coli ATCC 25922ESAN 2Agua subterránea $AK^S, AMP^R, AMC AUG^R, CAZ^R, CTX^R, ETP^S, FEP^K, FOX^R, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 4AguasubterráneaAK^S, AMP^R, AMC AUG^R, CAZ^R, CTX^R, ETP^S, FEP^K, FOX^R, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 11AguasubterráneaAK^S, AMP^R, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 31AguasubterráneaAK^S, AMP^I, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 31AguasubterráneaAK^S, AMP^I, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 45AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 130AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 141AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^R, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 141AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^R, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 1AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 5AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 5AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, I$	
Escherichia coli ATCC 25922Escherichia coliESAN 2Agua subterránea $AK^{S}, AMP^{R}, AMC AUG^{R}, CAZ^{R}, CTX^{R}, ETP^{S}, FEP^{R}, FOX^{R}, IMP^{S}, ITOB^{S}, TZP^{S}$ Escherichia coliESAN 4Agua subterránea $AK^{S}, AMP^{R}, AMC AUG^{R}, CAZ^{R}, CTX^{R}, ETP^{S}, FEP^{R}, FOX^{R}, IMP^{S}, ITOB^{S}, TZP^{S}$ Escherichia coliESAN 11Agua 	
ATCC 25922Escherichia coliESAN 2Agua $AK^{\$}, AMP^{\aleph}, AMC AUG^{\aleph}, CAZ^{\aleph}, TD^{\$}, TD^{\bullet}, TD^{\$}, TD^{\bullet}, TD^{\$}, TD^{\$}, TD^{\$}, TD^{\bullet}, TD^{\$}, TD^{5}, TD^{*}, TD^{$	
Escherichia coliESAN 2Agua subterránea $AK^S, AMP^R, AMC AUG^R, CAZ^R, CTX^R, ETP^S, FEP^R, FOX^R, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 4AguasubterráneaAK^S, AMP^R, AMC AUG^R, CAZ^R, CTX^R, ETP^S, FEP^R, FOX^R, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 11AguasubterráneaAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliESAN 31AguasubterráneaAK^S, AMP^I, AMC AUG^S, CAZ^S, CTX^I, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 45AlimentosAK^S, AMP^I, AMC AUG^S, CAZ^S, CTX^R, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 86AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^R, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 130AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 141AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^R, ETP^S, FEP^R, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliECAL 141AlimentosAK^S, AMP^S, AMC AUG^S, CAZ^R, CTX^R, ETP^S, FEP^R, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 1AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^S, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 5AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^I, FOX^S, IMP^S, ITOB^S, TZP^SEscherichia coliETRA 5AguasresidualesAK^S, AMP^S, AMC AUG^S, CAZ^S, CTX^S, ETP^S, FEP^I, FOX^S, IMP^S, ITOB^S, TZP^S$	
SubterráneaCTX ^R , ETP ^S , FEP ^R , FOX ^R , IMP ^S , I TOB ^S , TZP ^S Escherichia coliESAN 4Agua subterráneaAK ^S , AMP ^R , AMC AUG ^R , CAZ ^R , CTX ^R , ETP ^S , FEP ^R , FOX ^R , IMP ^S , I TOB ^S , TZP ^S Escherichia coliESAN 11Agua subterráneaAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , TOB ^S , TZP ^S Escherichia coliESAN 31Agua subterráneaAK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , TOB ^S , TZP ^S Escherichia coliESAN 31Agua subterráneaAK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , TOB ^S , TZP ^S Escherichia coliECAL 45AlimentosAK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , CTX ^R , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 45AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 130AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 141AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 1Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 5Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^S , H TOB ^S , TZP ^S	CIP ^I , CN ^S ,
Escherichia coliESAN 4Agua subterráneaAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliESAN 11Agua subterráneaAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliESAN 31Agua subterráneaAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 45AlimentosAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , CTX ¹ , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 45AlimentosAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 130AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 141AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliETRA 1Aguas residualesAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$} Escherichia coliETRA 5Aguas residualesAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , I TOB ^{\$} , TZP ^{\$}	KZ^{R} , MEM ^S ,
Escherichia coliESAN 11Agua subterráneaTOB ^s , TZP ^s AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliESAN 31Agua subterráneaAK ^s , AMP ^l , AMC AUG ^s , CAZ ^s , CTX ^l , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliECAL 45AlimentosAK ^s , AMP ^l , AMC AUG ^s , CAZ ^s , CTX ^l , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliECAL 86AlimentosAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliECAL 130AlimentosAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliECAL 141AlimentosAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliECAL 141AlimentosAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliETRA 1Aguas residualesAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Escherichia coliETRA 5Aguas residualesAK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s	, CIP ^s , CN ^s , KZ ^s , MEM ^s ,
Escherichia coliESAN 11Agua subterráneaAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , I	
Escherichia coliESAN 31Agua subterráneaTOB ^{\$} , TZP ^{\$} AK ^{\$} , AMP ^I , AMC AUG ^{\$} , CAZ ^{\$} , CTX ¹ , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , M TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 45AlimentosAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , CTX ¹ , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 86AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 130AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 141AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 141AlimentosAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliETRA 1Aguas residualesAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , CTX ^{\$} , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , H TOB ^{\$} , TZP ^{\$} Escherichia coliETRA 5Aguas residualesAK ^{\$} , AMP ^{\$} , AMC AUG ^{\$} , CAZ ^{\$} , TOB ^{\$} , TZP ^{\$}	CIP ^s , CN ^s , KZ ^s , MEM ^s ,
Escherichia coliESAN 31Agua subterráneaAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , CTX ¹ , ETP ^{\$} , FEP ^{\$} , FOX ^{\$} , IMP ^{\$} , M TOB ^{\$} , TZP ^{\$} Escherichia coliECAL 45AlimentosAK ^{\$} , AMP ¹ , AMC AUG ^{\$} , CAZ ^{\$} , 	
Escherichia coliECAL 45subterráneaCTX ¹ , ETP ^S , FEP ^S , FOX ^S , IMP ^S , K TOB ^S , TZP ^S Escherichia coliECAL 45AlimentosAK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , CTX ^R , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 86AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 130AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 141AlimentosAK ^S , AMP ^R , AMC AUG ^S , CAZ ^R , CTX ^R , ETP ^S , FEP ^R , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 1Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 5Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^S , H TOB ^S , TZP ^S	CIP ^I , CN ^S ,
Escherichia coliECAL 45AlimentosAK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , CTX ^R , ETP ^S , FEP ^S , FOX ^S , IMP ^S , I TOB ^S , TZP ^S Escherichia coliECAL 86AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 130AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 141AlimentosAK ^S , AMP ^R , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^R , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 1Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 5Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^S , H TOB ^S , TZP ^S	ΚΖ ^R , MEM ^S ,
Escherichia coliECAL 86AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 130AlimentosAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliECAL 141AlimentosAK ^S , AMP ^R , AMC AUG ^S , CAZ ^R , CTX ^R , ETP ^S , FEP ^R , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 1Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 5Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H TOB ^S , TZP ^S	CIP ^s , CN ^s , KZ ^s , MEM ^s ,
Escherichia coliECAL 86AlimentosARS, AMPS, AMC AUGS, CAZS, CTZS, ETPS, FEPS, FOXS, IMPS, H TOBS, TZPSEscherichia coliECAL 130AlimentosAKS, AMPS, AMC AUGS, CAZS, CTXS, ETPS, FEPS, FOXS, IMPS, H TOBS, TZPSEscherichia coliECAL 141AlimentosAKS, AMPR, AMC AUGS, CAZS, CTXS, ETPS, FEPS, FOXS, IMPS, H TOBS, TZPSEscherichia coliETRA 1Aguas 	CIDS CNS
Escherichia coliECAL 130AlimentosAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$Escherichia coliECAL 141AlimentosAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$Escherichia coliETRA 1Aguas residualesAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$Escherichia coliETRA 5Aguas residualesAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$Escherichia coliETRA 5Aguas residualesAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$Escherichia coliETRA 5Aguas residualesAK\$, AMP\$, AMC AUG\$, CAZ\$, CTX\$, ETP\$, FEP\$, FOX\$, IMP\$, H TOB\$, TZP\$	CIP ³ , CN ³ , KZ ⁸ , MEM ⁸ ,
Escherichia coliECAL 141AlimentosAK ^S , AMP ^R , AMC AUG ^S , CAZ ^R , CTX ^R , ETP ^S , FEP ^R , FOX ^S , IMP ^S , H TOB ^S , TZP ^S Escherichia coliETRA 1Aguas residualesAK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , 	CIP ^s , CN ^s , KZ ^s , MEM ^s ,
Escherichia coli ETRA 1 Aguas AK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , H Escherichia coli ETRA 5 Aguas AK ^S , AMP ^S , AMC AUG ^S , CAZ ^R , TOB ^S , TZP ^S Escherichia coli ETRA 5 Aguas AK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , residuales CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^S , A TOB ^S , TZP ^S TOB ^S , TZP ^S Excherichia coli ETRA 5 Aguas AK ^S , AMP ^S , AMC AUG ^S , CAZ ^S , TOB ^S , TZP ^S	, CIP ^R , CN ^S , KZ ^R , MEM ^S ,
Escherichia coli ETRA 1 Aguas AK ^s , AMP ^s , AMC AUG ^s , CAZ ^k , CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H Escherichia coli ETRA 5 Aguas CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , H TOB ^s , TZP ^s Aguas AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^I , FOX ^s , IMP ^s , H Escherichia coli ETRA 5 Aguas AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^I , FOX ^s , IMP ^s , H TOB ^s , TZP ^s TOB ^s , TZP ^s CTX ^s , ETP ^s , FEP ^I , FOX ^s , IMP ^s , H	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Escherichia coli ETRA 5 Aguas residuales AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CTX ^s , ETP ^s , FEP ^I , FOX ^s , IMP ^s , H TOB ^s , TZP ^s	, CIP ^s , CN ^s , KZ ^s , MEM ^s ,
TOB^{S}, TZP^{S}	, CIP ^I , CN ^S , KZ ^I , MEM ^S ,
$\mathbf{E} \mathbf{I} \cdot \mathbf{I} \cdot \mathbf{I} = \mathbf{E} \mathbf{E} \mathbf{D} \mathbf{A} \mathbf{C}$	
<i>Escherichia coli</i> ETRA 6 Aguas AK ³ , AMP ^K , AMC AUG ³ , CAZ ³ , residuales CTX ^R , ETP ^S , FEP ^I , FOX ^S , IMP ^S , F	CIP ^R , CN ^S , KZ ^R , MEM ^S ,
TOB ^S , TZP ^S	
Escherichia coli ETRA 7 Aguas AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , residuales CTXS, ETP ^s , FEP ^s , FOX ^s , IMP ^s , I	CIP ^s , CN ^s , KZ ^s , MEM ^s ,
<i>Escherichia coli</i> EMS 4 Agua potable AK ^s , AMP ^I , AMC AUG ^s , CAZ ^s , CTX ^I , ETP ^I , FEP ^s , FOX ^s , IMP ^I , M	CIP ^s , CN ^s , IEM ^s , TOB ^s ,

EMS 5

EMS 6

Escherichia coli

Escherichia coli

Agua potable

Agua potable

AK^S, AMP^S, AMC AUG^S, CAZ^S, CIP^I, CN^S,

CTX^s, ETP^I, FEP^s, FOX^s, IMP^I, MEM^s, TOB^s, TZP^s, STX^I, NOR^s, ATM^s AK^s, AMP^s, AMC AUG^s, CAZ^s, CIP^s, CN^s,

CTX^I, ETP^s, FEP^I, FOX^s, IMP^s, MEM^s, TOB^s, TZP^s, STX^s, NOR^I, ATM^s

Tabla AII. 1. Información de las cepas bacterianas utilizadas para evaluar la actividad lítica de los fagos aislados

		1	
Escherichia coli	EMS 7	Agua potable	AK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , CIP ^S , CN ^S ,
			CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^S , MEM ^S , TOB ^S ,
			TZP ^S , STX ^I , NOR ^S , ATM ^S
Escherichia coli	EMS 8	Agua potable	AK ^S , AMP ^I , AMC AUG ^S , CAZ ^S , CIP ^S , CN ^S ,
			CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^I , MEM ^S , TOB ^S ,
			TZP ^S , STX ^S , NOR ^S , ATM ^S
Escherichia coli	EMS 11	Agua potable	AK ^s , AMP ^I , AMC AUG ^s , CAZ ^s , CIP ^s , CN ^s ,
			CTX ^I , ETP ^S , FEP ^I , FOX ^S , IMP ^S , MEM ^S , TOB ^S ,
			TZP ^S , STX ^S , NOR ^S , ATM ^S
Escherichia coli	ECO 69	Estuario	AK ^s , AMP ^s , AMC AUG ^s , CAZ ^s , CIP ^s , CN ^s ,
			CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , KZ ^s , MEM ^s ,
			TOB ^S , TZP ^S
Escherichia coli	ECO 85	Estuario	AK^{S} , AMP^{R} , $AMC AUG^{I}$, CAZ^{R} , CIP^{R} , CN^{S} ,
			CTX ^S , ETP ^S , FEP ^S , FOX ^S , IMP ^I , KZ ^R , MEM ^S ,
			TOB ^s , TZP ^s
Escherichia coli	ECO 119	Estuario	AK ^S , AMP ^{I,} AMC AUG ^S , CAZ ^S , CIP ^S , CN ^S ,
			CTX ^S , ETP ^S , FEP ^I , FOX ^S , IMP ^S , KZ ^R , MEM ^S ,
			TOB ^S , TZP ^I
Escherichia coli	ECO 122	Estuario	AK ^s , AMP ^I , AMC AUG ^I , CAZ ^S , CIP ^S , CN ^S ,
			CTX ^I . ETP ^S , FEP ^S , FOX ^S , IMP ^I , KZ ^I , MEM ^S ,
			TOB^{S} . TZP^{R}
Escherichia coli	ECO 141	Estuario	AK^{S} , AMP^{R} , AMC , AUG^{I} , CAZ^{S} , CIP^{I} , CN^{S} ,
			CTX ^s , ETP ^s , FEP ^s , FOX ^s , IMP ^s , KZ ^I , MEM ^s ,
			TOB^{S} . TZP^{I}
Escherichia coli	ECO 142	Estuario	AK^{S} , AMP^{R} , AMC , AUG^{R} , CAZ^{S} , CIP^{S} , CN^{S} ,
	200112	25000010	CTX^{S} ETP ^S FEP ^S FOX ^S IMP ^S KZ ^R MEM ^S
			$TOB^{S} TZP^{I}$
Escherichia coli	ECO 148	Estuario	$AK^{S} AMP^{R} AMC AUG^{S} CAZ^{S} CIP^{R} CN^{S}$
	200110	25000010	CTX^{S} ETP ^S FEP ^S FOX ^S IMP ^S KZ ^R MEM ^S
			$TOB^{S} TZP^{I}$
Escherichia coli	ECO 160	Estuario	$AK^{S} AMP^{I} AMC AUG^{S} CAZ^{S} CIP^{I} CN^{S}$
Lisener tenna con	200 100	Lotanio	CTX^{S} ETP^{S} EEP^{S} EOX^{S} IMP^{S} KZ^{I} MEM^{S}
			$TOR^{S} TZP^{I}$
Escherichia coli	ECO 163	Estuario	$AK^{S} AMP^{R} AMC AUG^{I} CA7^{S} CIP^{R} CN^{S}$
Listnerienita con	200 105	Listanio	CTX^{I} ETP ^S FEP ^S FOX ^S IMP ^S KZ ^R MFM ^S
			$TOB^S TZP^R$
Salmonella		_	-
typhimurium ATCC			
14028			
1,020			

Nota: AK: amikacina; AMP: ampicilina; AMC AUG: amoxicilina- ácido clavulánico; CAZ: Ceftazidima; CIP: ciprofloxacino; CN: gentamicina; CTX: cefotaxima, ETP:ertapenem; FEP: cefepime; FOX: cefoxitina; IMP: imipenem; KZ: cefazolin; MEM: meropenem; TOB: tobramicina; TZP: piperacilina-tazobactam; STX: trimetoprima-sulfametoxazol; NOR: norflaxacina; ATM: aztreonam.

ANEXO III

Figura AIII. 1. Mapa del genoma del fago BME3.La asignación de las funciones para cada secuencia codificante (CDS) son las siguientes: proteínas estructurales (verde), proteínas de replicación, regulación y empaquetamiento (azul), ARNt (morado), lisis (rojo) y proteínas hipotéticas (gris). Además, se incluye las repeticiones terminales directas (DTR) (naranja).

Mini	Maxi	Direc	Lengh	P utativa function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	r utative function	Result	cover (%)	values	y (%)	Accession	(kDa)
1483	1866	Rever	127	Hypothetical protein	Escherichia phage	96	4×10^{-90}	100	YP_00901	14.778
		se			phi92				2581.1	
2327	2752	Rever	141	Hypothetical protein	Escherichia phage	99	$2.00 \times$	99.29	AXY8160	16.492
		se			vB_vPM_PD114		10-87		1.1	
2806	3192	Rever	128	Hypothetical protein	Escherichia phage alia	99	$6.00 \times$	98.44	YP_00998	14.174
		se					10-78		5227.1	
3189	3413	Rever	74	Hypothetical protein	Escherichia phage	94	$2.00 \times$	98.59	WBF5425	8.507
		se			EC_OE_11		10-42		3.1	
3784	4053	Rever	89	Hypothetical protein	Escherichia phage arall	98	$1.00 \times$	97.75	QHR6755	9.905
		se					10-57		3.1	
4102	4272	Rever	56	Hypothetical protein	Escherichia phage	98	$7.00 \times$	100	YP_00734	6.433
		se			phAPEC8		10-33		8377.1	
4354	4638	Rever	94	Hypothetical protein	Escherichia phage alia	98	$1.00 \times$	100	YP_00998	10.966
		se					10-61		5222.1	
4721	5044	Rever	107	Hypothetical protein	Escherichia phage alia	99	$1.00 \times$	98.13	YP_00998	12.492
		se					10-71		5221.1	
5374	5676	Rever	100	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	YP_00901	11.015
		se			phi92		10-52		2573.1	
5724	6125	Rever	133	Hypothetical protein	Escherichia phage	99	$3.00 \times$	99.25	YP_00901	14.216
		se			phi92		10-90		2572.1	
6435	6572	Rever	45	Hypothetical protein	Escherichia phage	97	$7.00 \times$	100	BDU1311	5.628
		se			phiWec187		10-22		3.1	
6588	6947	Rever	119	Hypothetical protein	Enterobacteria phage	99	$2.00 \times$	99.16	AMM433	14.158
		se			ECGD1		10-79		35.1	
7034	7204	Rever	56	Hypothetical protein	<i>Escherichia</i> phage	98	$1.00 \times$	100	YP_00901	6.091
		se	-		phi92		10-20	100	2568.1	0.4.44
7296	7511	Rever	71	Phosphoribosylpyrophosphate	Salmonella phage	98	$2.00 \times$	100	UIS31601.	8.164
0004		se	-	synthetase	UAB_1		10^{-41}	100		0.000
8004	8243	Rever	1/9	Hypothetical protein	Escherichia phage alia	98	7.00 ×	100	YP_00998	9.080
	0511	se					10-51	100	5215.1	6 710
8329	8511	Rever	60	Hypothetical protein	Escherichia phage	98	$6.00 \times$	100	YP_00998	6.718
		se			vB_EcoM_PHB05		10-35		4590.1	

 Tabla AIII. 1. Anotaciones de CDS del genoma del bacteriófago BME3

Mini	Maxi	Direc	Lengh	Dutating from stige	Best-matchBLASTp	Query	Е-	Identif	•	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
8600	8965	Rever	121	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	YP_00998	13.716
		se			VEcB		10-83		7438.1	
9061	9240	Rever	59	Hypothetical protein	Escherichia phage alia	98	$5.00 \times$	98.31	YP_00998	6.923
		se					10-31		5213.1	
9388	9942	Rever	184	Hypothetical protein	Escherichia phage	99	$9.00 \times$	98.91	QXV8385	20.867
		se			PaulScherrer		10-100		4.1	
9944	10204	Rever	86	Hypothetical protein	Escherichia phage	98	$5.00 \times$	98.84	BDU1310	9.763
		se			phiWec187		10-57		5.1	
10207	10353	Rever	48	Hypothetical protein	Escherichia phage	97	$2.00 \times$	100	YP_00901	5.537
		se			phi92		10-26		2561.1	
10432	10794	Rever	120	Membrane protein	Escherichia phage	99	$9.00 \times$	97.5	UGL6207	13.909
		se			JLBYU50		10-83		3.1	
10880	11152	Rever	90	Hypothetical protein	Escherichia phage	98	$2.00 \times$	97.78	YP_00998	9.877
		se			vB_EcoM_PHB05	-	10-57		4586.1	
11211	11354	Rever	47	Hypothetical protein	Salmonella phage	79	$4.00 \times$	97.37	UIS31592.	5.660
11400	11614	se	70		UAB_I	00	10-17	07.14	l LUG21501	7 750
11402	11614	Forw	70	Hypothetical protein	Salmonella phage	98	$5.00 \times$	97.14	UIS31591.	7.750
10400	12070	ard	102			00	10 ⁻⁴³	100		21 720
12428	12979	Rever	183	Hypothetical protein	Escherichia phage	99	5.00 × 10-132	100	YP_00998	21.738
12090	12060	se Davar	220	Endonualassa	VECB	0.9	10 .02	100	7431.1 VD 00009	27 512
12980	13909	Rever	329	Endonuclease	<i>Escherichia</i> phage	98	0.00	100	1P_00998	57.515
14044	15171	Boyor	375	A TDasa	VECD Escherichia phono	08	0.00	100	7450.1 VD 00001	11 748
14044	131/1	Kevel so	575	Allase	phi02	90	0.00	100	2554.1	41.740
15183	15620	Rever	145	Hypothetical protein	Escharichia phage alia	00	1.00 ×	00.31	VP 00008	16 /73
15165	13020	se	145	Hypothetical protein	Escherichia phage ana	22	1.00 × 10-89	<i>99.</i> 31	5203 1	10.475
15635	15808	Rever	57	Hypothetical protein	<i>Escherichia</i> phage	92	$3.00 \times$	100	YP 00901	6 644
10000	15000	se	51	Trypoulotion protein	phi92	2	10 ⁻²⁹	100	2552.1	0.011
15829	16080	Rever	83	Hypothetical protein	<i>Escherichia</i> phage	98	$1.00 \times$	98.8	YP 00901	9 535
1002)	10000	se	0.5		phi92	20	10-50	2010	2551.1	1.000
16080	16631	Rever	183	Hypothetical protein	<i>Escherichia</i> phage	99	$7.00 \times$	97.27	BDU1309	21.656
		se			phiWec187		10-131		5.1	
16751	17041	Forw	96	Hypothetical protein	<i>Escherichia</i> phage	98	$1.00 \times$	98.96	QXV8144	10.803
		ard			JohannJBalmer		10E-61		5.1	
17054	17341	Forw	95	Hypothetical protein	Escherichia phage	98	$7.00 \times$	100	YP_00734	10.779
		ard		^	phAPEC8		10-62		8612.1	

Mini	Maxi	Direc	Lengh	Dutative franction	Best-matchBLASTp	Query	Е-	Identif	A	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
17338	17691	Forw	117	Hypothetical protein	Escherichia phage	99	$4.00 \times$	99.15	YP_00901	13.887
		ard			phi92		10-80		2547.1	
17704	17859	Forw	51	Hypothetical protein	Escherichia phage	98	$9.00 \times$	98.04	YP_00901	5.938
		ard			phi92		10-29		2546.1	
17856	18056	Forw	66	Hypothetical protein	Escherichia phage	98	$1.00 \times$	100	YP_00998	7.602
		ard			muut		10-39		5774.1	
18057	18203	Forw	48	Hypothetical protein	Escherichia phage	97	$9.00 \times$	97.92	UPW3860	5.416
		ard			vB_EcoM_ESCO32		10-24		9.1	
18200	18628	Forw	142	Hypothetical protein	Escherichia phage	99	$2.00 \times$	99.3	YP_00998	16.522
		ard			vB_EcoM_PHB05		10-101		4571.1	
18632	18904	Forw	90	Hypothetical protein	Escherichia phage	98	$1.00 \times$	98.89	YP_00998	11.065
		ard			vB_EcoM_PHB05		10-58		4570.1	
18934	19059	Forw	41	Hypothetical protein	Escherichia phage	97	$5.00 \times$	97.56	YP_00998	4.464
		ard			vB_EcoM_PHB05		10-20		4569.1	
19069	19335	Forw	88	Hypothetical protein	Escherichia phage alia	98	$5.00 \times$	100	YP_00998	10.809
		ard					10-36		5191.1	
19396	19560	Forw	54	Hypothetical protein	Escherichia phage	98	$1.00 \times$	100	YP_00901	6.256
		ard			phi92		10-30		2540.1	
19571	19864	Forw	97	Hypothetical protein	Escherichia phage	94	$2.00 \times$	98.92	YP_00998	11.699
		ard			VEcB		10-61		7413.1	
19866	20321	Forw	151	Hypothetical protein	Enterobacteria phage	99	$7.00 \times$	99.34	CAH7774	17.684
		ard			phi92		10-108		764.1	
20323	20685	Forw	120	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	YP_00901	13.784
		ard			phi92		10-70		2537.1	
20686	21036	Forw	116	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	YP_00901	13.358
		ard			phi92		10-80		2536.1	
21038	21424	Forw	128	DUF4326 domain-containing	Escherichia phage	99	$2.00 \times$	100	YP_00998	15.068
		ard		protein	vB_vPM_PD06		10-84		4643.1	
21402	21767	Forw	121	Hypothetical protein	Escherichia phage	99	$8.00 \times$	99.17	YP_00998	13.720
		ard			vB_EcoM_PHB05		10-82		4562.1	
21789	22304	Forw	171	Hypothetical protein	Escherichia phage	99	$1.00 \times$	99.42	CAH7774	20.422
		ard			vB_Eco_PATM		10-124		759.1	
22313	22789	Forw	158	Hypothetical protein	Escherichia phage	99	$4.00 \times$	99.37	YP_00998	18.631
		ard			vB_vPM_PD06		10-111		4646.1	
22791	24527	Forw	578	UvrD / Rep family helicase	Escherichia phage	99	0.00	99.83	QXV7820	65.267
		ard			EmilieFrey				9.1	

Mini	Maxi	Direc	Lengh	Dutating for ation	Best-matchBLASTp	Query	Е-	Identif	•	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
24538	24789	Forw	83	Hypothetical protein	Escherichia phage	98	$5.00 \times$	97.59	YP_00998	9.363
		ard			vB_EcoM_PHB05		10-52		4558.1	
24786	25358	Forw	190	Histidyl tRNA synthetase	Escherichia phage	99	$2.00 \times$	99.47	WBF5420	21.524
		ard			EC_OE_11		10-137		3.1	
25371	25805	Forw	144	tRNA amidotransferase	Escherichia phage	99	$3.00 \times$	100	YP_00901	16.175
		ard			phi92		10-99		2528.1	_
25823	26773	Forw	316	Hypothetical protein	Escherichia phage arall	98	0.00	99.68	QHR6750	36.575
		ard	-				0.00	100	5.1	
26863	28662	Forw	599	Class III anaerobic ribunucleotide	Enterobacteria phage	99	0.00	100	AMM435	67.367
20.650	20120	ard	150	reductase	ECGDI		1.00	00.70	26.1	10.012
28659	29129	Forw	156	Class III anaerobic ribonucleotide	Escherichia phage	99	$1.00 \times$	98.72	YP_00998	18.013
20150	20210	ard	200	A TRace	VB_ECOM_PHB05	0.0	10-110	100	4553.1	12 100
29150	30310	Forw	386	AlPase	Escherichia phage	98	0.00	100	YP_00998	43.468
20257	20549	aru Eomu	62	Uvmothatical motain	Inuut Each suishig p hogo	08	1.00 ×	100	3792.1 VD 00001	7 150
50557	50548	rorw	05	Hypothetical protein	escherichia phage	98	1.00 × 10-35	100	1P_00901	7.130
30560	20715	Eoru	51	Hypothetical protain	pill92 Escherichia phogo	02	10^{-10}	100	ZJZ1.1 VD 00001	6.061
30300	30713	ard	51	Hypothetical protein	phi92	92	2.00 × 10 ⁻²⁷	100	2520.1	0.001
30718	31374	Forw	218	Haloacid dehydrogenase	Escherichia phage	99	$3.00 \times$	100	OXV8380	20 315
50710	51574	ard	210	Therefore delly drogenase	PaulScherrer	,,,	10 ⁻¹⁴⁸	100	7 1	20.313
31367	32224	Forw	285	Putative phosphoribosyltransferase	Escherichia phage	99	0.00	98.6	YP 00998	33 225
51507	32221	ard	200		vB EcoM PHB05		0.00	20.0	4548.1	00.220
32217	32933	Forw	238	phosphatase	<i>Escherichia</i> phage alia	99	$1.00 \times$	99.58	YP 00998	26.192
		ard		1 1	1 0		10-172		5169.1	
32943	33149	Forw	68	Holin	Escherichia phage	98	$1.00 \times$	100	YP_00901	7.663
		ard			phi92		10-29		2516.1	
33164	33412	Forw	82	Hypothetical protein	<i>Escherichia</i> phage	98	$2.00 \times$	100	QXV8380	9.081
		ard			PaulScherrer		10-51		3.1	
33490	34467	Forw	325	Tellurium resistance protein TerC	Escherichia phage	99	0.00	100	YP_00998	35.753
		ard			vB_vPM_PD06				4663.1	
34507	34713	Forw	68	Hypothetical protein	Escherichia phage	94	$4.00 \times$	100	YP_00901	8.119
		ard			phi92		10-41		2513.1	
34700	35290	Forw	196	Hypothetical protein	Escherichia phage	82	$2.00 \times$	99.38	YP_00998	20.968
		ard			VEcB		10-30		7386.1	
35326	36177	Forw	283	Hypothetical protein	Escherichia phage	99	0.00	99.29	BDU1305	32.676
		ard			phiWec187				7.1	

Mini	Maxi	Direc	Lengh	Dutating from stige	Best-matchBLASTp	Query	Е-	Identif	A	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
36246	37349	Forw	367	tellurite resistance	Escherichia phage	99	0.00	100	YP_00998	41.260
		ard			vB_EcoM_PHB05				4540.1	
37363	37569	Forw	68	Hypothetical protein	Escherichia phage	98	$4.00 \times$	100	YP_00998	7.945
		ard			vB_EcoM_PHB05		10-41		4539.1	
37569	37769	Forw	66	Hypothetical protein	Escherichia phage	93	$3.00 \times$	100	YP_00901	7.678
		ard			phi92		10-40		2508.1	
37769	38332	Forw	187	Hypothetical protein	Escherichia phage	99	$1.00 \times$	98.4	YP_00998	21.188
		ard			vB_EcoM_PHB05		10-133		4537.1	
38325	38594	Forw	89	Hypothetical protein	Escherichia phage	98	$3.00 \times$	96.63	YP_00998	10.178
		ard			VEcB		10-46		7380.1	
38596	39390	Forw	264	vWA domain-containing protein	Escherichia phage	99	0.00	100	YP_00998	29.618
		ard			vB_vPM_PD06				4671.1	
39463	40059	Forw	198	Hypothetical protein	Serratia phage	78	$5.00 \times$	100	UES35883	22.090
		ard			KKP_3263		10-141		.1	
40124	40726	Forw	200	Hypothetical protein	Salmonella phage	99	$1.00 \times$	100	UIS31540.	22.980
		ard			UAB_1		10-125		1	
40819	41328	Forw	169	Putative cell wall hydrolase	<i>Escherichia</i> phage	99	$4.00 \times$	98.82	WBF5417	19.490
41000	41 61 7	ard		T	EC_OE_II		10-121	100	8.1	10 700
41339	41617	Forw	92	Hypothetical protein	Escherichia phage	98	$6.00 \times$	100	YP_00998	10.739
41 < 17	410.47	ard			vB_EcoM_PHB05	00	10-00	100	4531.1	0.707
41617	41847	Forw	76	Hypothetical protein	Escherichia phage	98	$1.00 \times$	100	YP_00901	8.727
41005	42010	ard	<i>C</i> 1		phi92	0.9	10-40	100	2500.1 VD 00001	7 424
41825	42019	Forw	64	Hypothetical protein	Escherichia phage	98	2.00 ×	100	YP_00901	7.434
42077	12640	ard	107	Changes Itransferrage	pn192	00	10 55	100	2499.1 VD 00001	21.562
42077	42040	FOrw	18/	Glycosyltransierase	<i>Escherichia</i> phage	99	5.00 × 10-135	100	1P_00901	21.302
12650	12226	Eomu	220	Clusseltransforms	Enterobactoria phogo	00	10^{100}	00.56	2490.1 AMM425	26 197
42030	43330	roiw	220	Grycosyntansierase	Enterobacienta pliage	99	5.00×10^{-167}	99.30	AWW1433	20.467
12222	44207	Eoru	324	Glucosultransforms	ECODI Escherichia phogo	00	10	00.60	VD 00008	36 108
45525	44297	ard	324	Grycosyntansierase	vB EcoM PHB05	77	0.00	99.09	1F_00998 4526 1	50.490
11309	15253	Eorw	314	Glycosyltransferase	Fscharichia phage	99	0.00	100	4320.1 AXV8152	36 183
44,507	45255	ard	514	Gryeosyntansierase	vB vPM PD114	<i>))</i>	0.00	100	A 1	50.105
45253	45522	Forw	89	Hypothetical protein	<i>Fscherichia</i> phage	98	$4.00 \times$	100	YP 00901	10.828
-5255	-5522	ard			nhi92	20	10-57	100	2494 1	10.020
45535	47307	Forw	590	Primase/helicase protein	Escherichia nhage	99	0.00	99.83	YP 00998	66 756
10000	.,	ard		protoin	vB EcoM PHB05		5.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4523.1	00.700

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accordion	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
47318	47713	Forw	131	Putative endonuclease/hydrolase	Escherichia phage	99	$4.00 \times$	99.24	YP_00998	14.492
		ard			vB_vPM_PD06		10-90		4684.1	
47804	50383	Forw	859	Polymerase	Escherichia phage	99	0.00	99.88	CAH7774	98.538
		ard			vB_Eco_PATM				719.1	
50521	51114	Forw	197	Nucleotidyltransferase	Escherichia phage	99	$2.00 \times$	100	YP_00901	23.419
		ard			phi92		10-145		2490.1	
51158	51556	Forw	132	Hypothetical protein	Escherichia phage	99	$4.00 \times$	100	YP_00998	15.161
		ard			vB_EcoM_PHB05		10-89	1.0.0	4518.1	
51573	52520	Forw	315	TPA: single-stranded DNA-binding	Escherichia phage	99	0.00	100	QHR7539	34.416
		ard		protein	outra		0.00	100	5.1	
52581	53312	Forw	243	methyltransferase	Escherichia phage	99	0.00	100	YP_00998	27.926
522.00	52700	ard	1.40	TT .1 .1 1	vB_vPM_PD06	00	4.00	100	4690.1	16.024
53269	53700	Forw	143	Hypothetical protein	Escherichia phage	99	$4.00 \times$	100	YP_00901	16.034
52726	ECEEE	ard	020	The fill is used as in	pni92	00	10-33	00.02	2486.1	00 701
53/30	20222	Rever	939	1 all protein	<i>Escherichia</i> phage	99	0.00	98.83	YP_00998	99./91
56505	50556	se Dovor	652	Lateral tail fiber protein with type I	VB_ECONI_PHBU5	00	0.00	00.00	4514.1	60.000
30393	38330	Rever	033	collagon domain	vB EcoM ESCO32	99	0.00	99.08	0P W 3800	09.088
58507	61011	Boyor	804	colonidoso toiloniko	Fachariahia phaga	00	0.00	00.63	0.1 VD 00008	86 761
36397	01011		804	colandase tanspike	vB vPM PD06	22	0.00	<i>99</i> .05	11_00998	80.704
61011	61352	Rever	113	Lipoprotein	Fscharichia phage	99	3 00 ×	100	YP 00901	13 072
01011	01552	se	115	Lipoprotein	nhi9?	"	10 ⁻⁷³	100	2481.1	15.072
61362	61913	Rever	183	Tail fiber assembly protein	Escherichia phage	99	$2.00 \times$	99.45	YP 00998	20,958
01002	01715	se	105		muut		10-129	<i>>></i>	5833.1	20.750
61923	62906	Rever	327	Tail fiber protein	Salmonella phage	99	0.00	100	UIS31517.	35.608
		se		F	UAB 1				1	
62920	63549	Rever	209	Baseplate protein	<i>Escherichia</i> phage	99	$3.00 \times$	100	YP 00998	23.299
		se			vB_EcoM_PHB05		10-152		4508.1	
63552	65039	Rever	495	Baseplate wedge subunit	Escherichia phage alia	99	0.00	100	YP_00998	53.981
		se							5129.1	
65039	65284	Rever	81	Membrane protein/ holin	Escherichia phage	98	$4.00 \times$	100	YP_00998	9.468
		se			vB_EcoM_PHB05		10-52		4506.1	
65281	65589	Rever	102	Tail spike protein	Klebsiella phage	99	$1.00 \times$	100	YP_00980	10.765
		se			ZCKP1		10-67		3406.1	
65639	67297	Rever	552	Tail spike protein						59.159
		se								

Mini	Maxi	Direc	Lengh	Dutating from stien	Best-matchBLASTp	Query	Е-	Identif	•	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
67306	69465	Rever	719	Tail fiber protein	Escherichia phage alia	99	0.00	99.03	YP_00998	81.619
		se							5125.1	
69474	72350	Rever	958	Tail fiber protein	Escherichia phage	99	0.00	99.58	UPW3747	108.44
		se			vB_EcoM_ESCO8				6.1	3
72350	72823	Rever	157	Tail fiber protein	Escherichia phage	99	9.00 ×	100	YP_00901	16.743
		se			phi92		10-108		2472.1	
72816	73451	Rever	211	Hypothetical protein	Escherichia phage	99	$3.00 \times$	100	YP_00998	23.635
		se			vB_EcoM_PHB05		10-158		4499.1	
73455	74192	Rever	245	Baseplate spike	Escherichia phage	99	9.00 ×	100	YP_00998	25.732
54105		se	226	D	vB_EcoM_PHB05		10-177	100	4498.1	07.01.6
/4195	/5205	Rever	336	Baseplate hub	Escherichia phage	99	0.00	100	YP_00998	37.016
75000	75641	se	120	Vision stars to a locate in	VB_ECOM_PHB05	00	5.00	00.20	4497.1 VD 00000	15 000
15222	/5641	Rever	139	Virion structural protein	<i>Escherichia</i> phage alla	99	5.00 × 10-84	99.28	YP_00998	15.999
75652	76262	se Dovor	226	Tail fiber protein	Each arishia phago	00	10°	100	VD 00008	26.060
73033	70303	Kevel	250		vB vDM DD06	99	5.00 × 10-149	100	1F_00998 4710 1	20.009
76470	78/58	Rever	650	Tail length tang measure protein	VD_VFW_FD00	07	10	00 38	4/10.1 UCI 6216	72 876
/04/9	70430	se	039	Tan length tape measure protein	II BYU50	21	0.00	99.30	0.1	12.070
78478	78651	Rever	57	Hypothetical protein	Escherichia phage	98	8 00 ×	98 25	YP 00998	6 7 5 7
/01/0	70051	se	51	hypothetical protein	vB EcoM PHB05	70	10 ⁻³²	20.25	4493.1	0.757
78753	79235	Rever	160	Tail assembly chaperone	<i>Escherichia</i> phage	99	$3.00 \times$	100	YP 00901	18.092
		se			phi92		10-112		2464.1	
79279	79758	Rever	159	Virion structural protein	<i>Escherichia</i> phage	99	$4.00 \times$	99.37	YP 00901	17.326
		se		L L	phi92		10-110		2463.1	
79817	81223	Rever	468	Tail sheath	<i>Escherichia</i> phage	96	0.00	100	YP_00901	51.103
		se			phi92				2462.1	
81244	81900	Rever	218	Tc1 tail completion protein	Escherichia phage	99	$2.00 \times$	99.08	UPW3769	25.038
		se			vB_EcoM_ESCO9		10-156		0.1	
81893	82309	Rever	138	Minor head protein	Escherichia phage	89	$1.00 \times$	100	YP_00901	15.735
		se			phi92		10-87		2460.1	
82354	82842	Rever	162	Tail completion or Neck1 protein	Escherichia phage	99	$3.00 \times$	100	YP_00901	18.151
		se			phi92		10-115		2459.1	
82842	83390	Rever	182	Tail capping protein	Escherichia phage	99	$6.00 \times$	100	YP_00998	20.139
00400	00750	se	11.0		vB_vPM_PD06		10-120	100	4719.1	10.01.5
83403	83753	Rever	116	Hypothetical protein	Escherichia phage	99	$3.00 \times$	100	YP_00901	13.016
		se			ph192		10-00		2457.1	

Mini	Maxi	Direc	Lengh	Dutating formation	Best-matchBLASTp	Query	Е-	Identif	A	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
83839	84840	Rever	333	Major capsid protein	Escherichia phage	99	0.00	100	YP_00998	37.086
		se			vB_EcoM_PHB05				4484.1	
84862	85254	Rever	130	Head decoration	Escherichia phage	99	$8.00 \times$	100	YP_00998	13.841
		se			vB_EcoM_PHB05		10 ⁻⁸⁷		4483.1	
85273	86388	Rever	371	Putative scaffold protein	Escherichia phage	96	0.00	99.44	YP_00998	41.014
		se			vB_vPM_PD06				4723.1	
86391	86870	Rever	159	DNA methyltransferase	Escherichia phage	99	7.00×	100	YP_00901	18.217
		se			phi92		10-114		2453.1	
86967	88535	Rever	522	Portal protein	Escherichia phage	99	0.00	99.81	YP_00901	58.019
		se			phi92				2452.1	
88633	90717	Rever	694	Terminase large subunit	<i>Escherichia</i> phage	99	0.00	99.86	YP_00901	79.201
	01010	se			phi92		<i>.</i>	100	2451.1	10.005
90726	91010	Rever	94	o-spanin	Escherichia phage	98	6.00×	100	QXV/813	10.307
000 (1	01077	se	120		EmilieFrey	00	10-01	07.1	1.1 NJD55410	15 650
90961	913//	Rever	138	1-spanin	<i>Escherichia</i> phage	99	2.00×	97.1	WBF5412	15.650
01420	01/01	se	57	How other time to in	EC_OE_II	0.9	10-25	100	9.1 VD 00001	6.049
91428	91601	Rever	57	Hypothetical protein	<i>Escherichia</i> phage	98	4.00×	100	YP_00901	6.948
01740	02020	Se Boyor	06	Hypothetical protein	pill92 Escherichia phogo	08	10^{50}	100	2446.1 VD 0000	11.027
91/40	92030	Kevel	90	Hypothetical protein	rbi02	90	2.00× 10-62	100	17447 1	11.057
02137	02406	Boyor	80	Hypothetical protein	Escherichia phage	08	$10 \\ 6.00 \times$	100	12447.1 VP 00001	10 562
92137	92400	se	09	Trypothetical protein	nhi92	20	10-59	100	2446 1	10.302
92740	92818	Rever		Met	pm/2		10		2440.1	
2740	12010	se								
92834	92909	Rever		Met						
2031	/2/0/	se								
92998	93082	Rever		Leu						
		se								
93159	93233	Rever		Phe						
		se								
93239	93314	Rever		Pro						
		se								
93322	93396	Rever		Gln						
		se								
93496	93570	Rever		Gly						
		se								

Mini	Maxi	Direc	Lengh	Putativa function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	i utative function	Result	cover (%)	values	y (%)	Accession	(kDa)
93626	93949	Rever	107	Hypothetical protein	Escherichia phage	99	$4.00 \times$	98.13	BDU1299	12747
		se			phiWec187		10-70		3.1	
93973	94047	Rever		Thr						
0.44.00		se								
94138	94222	Rever		Asn						
0.4000	0.401.6	se								
94230	94316	Rever		lyr						
04222	04207	se		Luc						
94322	94397	Rever		Lys						
0/523	0/608	Rever		Sar						
94323	94000									
94617	94769	Rever	50	Hypothetical protein	<i>Escherichia</i> phage	98	9.00 ×	98	YP 00998	5 699
21017	1105	se	50	Trypothetical protein	vB EcoM PHB05	20	10 ⁻²⁷	20	4471.1	5.077
94788	94877	Rever		Ser			10			
		se								
95203	95288	Rever		Leu						
		se								
95320	95395	Rever		Met						
		se								
95403	95669	Rever	88	Hypothetical protein	Escherichia phage	98	$1.00 \times$	100	YP_00998	9.794
		se			vB_EcoM_PHB05		10-54		4470.1	
96143	97876	Rever	577	Nicotinamide	Escherichia phage	99	0.00	99.83	AXY8146	65.050
		se		phosphoribosyltransferase	vB_vPM_PD114				7.1	
97948	98841	Rever	297	Ribose-phosphate	<i>Escherichia</i> phage alia	99	0.00	99.66	YP_00998	33.576
00252	00.000	se	100	pyrophosphokinase		00	2.00	00.10	5334.1	14 110
99252	99620	Forw	122	Hypothetical protein	Escherichia phage	99	$2.00 \times$	99.18	YP_00901	14.118
00697	00004	ard	65	How oth otional mustain	pn192	0.9	10^{-04}	100	2437.1 ND 0000	7 ()5
99087	99884	FOTW	05	Hypothetical protein	<i>Escherichia</i> phage	98	2.00 × 10-39	100	12426 1	7.025
00881	10012	Forw	70	Hypothetical protein	Escharichia phage	08	10^{10}	100	12430.1 VP 00001	0.154
77001		ard	13		nhi92	20	2.00 × 10 ⁻⁵¹	100	2435 1	9.134
10007	10040	Forw	111	Transposase-like protein	Escherichia phage	99	$300 \times$	100	YP 00901	12 649
4	9	ard	111	riansposase-like protein	nhi92	,,	10 ⁻⁷²	100	2434.1	12.077
10040	10068	Forw	92	Hypothetical protein	<i>Escherichia</i> phage	98	6.00 ×	100	YP 00901	10.505
6	4	ard		5 F F	phi92		10-60	~ ~	2433.1	

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
10068	10087	Forw	63	Hypothetical protein	Serratia phage	98	$2.00 \times$	100	UES35815	7.239
4	5	ard			KKP_3263		10-36		.1	
10087	10121	Forw	113	Hypothetical protein	Escherichia phage alia	99	$2.00 \times$	98.23	YP_00998	13.135
8	9	ard					10-75		5327.1	
10122	10137	Forw	49	Hypothetical protein	Escherichia phage	98	$9.00 \times$	97.96	AXY8145	5.957
9	8	ard			vB_vPM_PD114		10-27		8.1	
10137	10173	Forw	119	Hypothetical protein	Escherichia phage inny	99	$3.00 \times$	100	QHR6974	13.723
8	7	ard					10 ⁻⁸³		2.1	
10173	10228	Forw	183	phosphoesterase	Escherichia phage	99	$9.00 \times$	100	QHR7534	21.428
7	8	ard			outra		10-134		2.1	
10229	10322	Forw	310	RNA ligase	Escherichia phage	99	0.00	99.35	YP_00998	35.604
0	2	ard			muut				5640.1	
10322	10362	Forw	134	ATPase	Salmonella phage	99	$5.00 \times$	100	UIS31464.	15.680
3	7	ard			UAB_1		10-94		1	
10363	10395	Forw	106	Hol-like chemotaxis	Escherichia phage	99	$1.00 \times$	100	YP_00901	12.196
7	7	ard			phi92		10-66		2425.1	
10396	10418	Forw	74	Hypothetical protein	Escherichia phage	98	$2.00 \times$	100	YP_00901	8.564
1	5	ard			phi92		10-44		2424.1	
10419	10438	Forw	62	Hypothetical protein	Escherichia phage	98	$7.00 \times$	100	YP_00901	7.084
4	2	ard			phi92		10-38		2423.1	
10436	10548	Forw	371	ATP-dependent DNA ligase	Escherichia phage	99	0.00	99.19	UGL6220	42.156
9	4	ard			JLBYU50				3.1	
10568	10640	Forw	240	Nucleotide pyrophosphohydrolase	Escherichia phage	99	$1.00\times$	100	YP_00901	27.374
2	4	ard			phi92		10-174		2420.1	
10644	10671	Forw	92	Hypothetical protein	Escherichia phage	98	5.00×	100	YP_00998	10.646
1	9	ard			vB_EcoM_PHB05		10-60		4450.1	
10673	10761	Forw	294	Exonuclease recombination-	Escherichia phage	99	0.00	100	YP_00901	33.141
0	4	ard		associated	phi92				2418.1	
10768	10790	Forw	70	Hypothetical protein	Escherichia phage	98	2.00×	100	YP_00901	7.762
9	1	ard			phi92		10-42		2417.1	
10799	10902	Forw	344	Exonuclease	Escherichia phage	99	0.00	99.42	YP_00998	39.811
4	8	ard			vB_EcoM_PHB05				4447.1	
10902	10998	Forw	320	DNA polymerase exonuclease	Escherichia phage	99	0.00	99.69	YP_00998	36.356
5	7	ard		subunit	vB_EcoM_PHB05				4446.1	
11002	11042	Forw	133	Hypothetical protein	Escherichia phage	99	$4.00 \times$	100	YP_00998	15.362
6	7	ard			vB_EcoM_PHB05		10-92		4445.1	

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
11041	11060	Forw	64	Hypothetical protein	Escherichia phage	98	$5.00 \times$	100	YP_00901	7.292
1	5	ard			phi92		10-39		2413.1	
11059	11117	Forw	191	HNH endonuclease	Escherichia phage	99	$1.00 \times$	98.43	YP_00998	22.032
5	0	ard			vB_EcoM_PHB05		10-137		4443.1	
11121	11177	Forw	187	Thymidine kinase	Escherichia phage	99	$5.00 \times$	100	YP_00901	21.239
6	9	ard			phi92		10-136		2411.1	
11176	11235	Forw	196	Hypothetical protein	Escherichia phage	99	$1.00 \times$	99.49	YP_00998	22.704
3	3	ard			vB_EcoM_PHB05		10-131		4441.1	
11236	11333	Forw	323	Thymidylate synthase	Escherichia phage	99	0.00	99.38	QXV8156	37.012
3	4	ard			JohannJBalmer				5.1	
11343	11384	Forw	136	Hypothetical protein	Escherichia phage	99	$2.00 \times$	100	YP_00901	15.673
2	2	ard			phi92		10-84		2408.1	
11385	11410	Forw	82	Hypothetical protein	Escherichia phage	98	$9.00 \times$	100	YP_00901	9.373
5	3	ard			phi92		10-54		2407.1	
11411	11637	Forw	753	Class I ribonucleotide reductase	Escherichia phage	99	0.00	99.87	WBF5408	85.911
5	6	ard		alpha subunit	EC_OE_11				7.1	
11641	11675	Forw	111	Hypothetical protein	Escherichia phage	99	$6.00 \times$	100	QXV7835	12.721
7	2	ard			EmilieFrey		10-78		0.1	
11673	11782	Forw	361	Class I ribonucleoside diphosphate	Escherichia phage	99	0.00	100	YP_0090	41.686
9	4	ard		reductase small subunit	phi92				12404.1	
11782	11804	Forw	72	Hypothetical protein	Escherichia phage	98	$7.00 \times$	100	YP_00901	7.996
4	2	ard			phi92		10-44		2403.1	
11803	11821	Forw	60	Hypothetical protein	Escherichia phage	98	$9.00 \times$	100	YP_00901	6.794
5	7	ard			phi92		10-33		2402.1	
11822	11836	Forw	48	Hypothetical protein	Escherichia phage	97	$2.00 \times$	100	YP_00998	5.226
0	6	ard			vB_vPM_PD06		10-19		4773.1	
11835	11868	Forw	108	Hypothetical protein	Escherichia phage	99	$1.00 \times$	99.07	WBF5408	12.355
6	2	ard			EC_OE_11		10-/1		1.1	
11869	11889	Forw	65	Hypothetical protein	Enterobacteria phage	98	$2.00 \times$	100	AMM434	7.608
6	3	ard			ECGD1		10-39		05.1	
11889	11987	Forw	329	Nucleotide-sugar epimerase	Escherichia phage	99	0.00	100	YP_00998	37.343
0	9	ard			vB_vPM_PD06				4776.1	
11988	12075	Forw	289	Glucose-1-phosphate	Escherichia phage	99	0.00	100	UPW3850	31.961
8	7	ard		thymidylyltransferase	vB_EcoM_ESCO32				4.1	
12077	12132	Forw	184	dTDP-4-dehydrorhamnose 3.5-	Escherichia phage	99	$5.00 \times$	100	YP_0099	21.236
0	4	ard		epimerase	vB_EcoM_PHB05		10^{-133}		84427.1	

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
12132	12215	Forw	276	dTDP-4-dehydrorhamnose	Escherichia phage	99	0.00	99.64	AXY8142	30.267
1	1	ard		reductase	vB_vPM_PD114				4.1	
12215	12241	Forw	86	Thioredoxin domain	Escherichia phage	98	$1.00 \times$	100	YP_00998	9.998
4	4	ard			vB_EcoM_PHB05		10-56		4425.1	
12241	12256	Forw	47	Hypothetical protein	Escherichia phage	97	$2.00 \times$	100	YP_00901	5.482
9	2	ard			phi92		10-24		2393.1	
12257	12307	Forw	166	Baseplate hub subunit and tail	Escherichia phage	99	$2.00 \times$	99.4	WBF5407	18.879
5	5	ard		lysozyme	EC_OE_11		10-117		3.1	
12311	12386	Forw	250	PhoH-like phosphate starvation-	Escherichia phage	99	0.00	100	YP_00901	27.865
4	6	ard		inducible	phi92				2391.1	
12390	12439	Forw	164	Hypothetical protein	Escherichia phage	99	$2.00 \times$	100	YP_00901	19.129
3	7	ard			phi92		10-115		2390.1	
12439	12504	Forw	217	Peptidase HslV family	Escherichia phage	99	$2.00 \times$	99.54	YP_0099	23.777
4	7	ard			muut		10-128		85679.1	
12508	12551	Forw	142	Hypothetical protein	Escherichia phage	99	$6.00 \times$	100	YP_00901	16.796
9	7	ard			phi92		10-99		2388.1	
12550	12601	Forw	169	DNA methyltransferase	Escherichia phage	99	$4.00 \times$	98.82	YP_00901	19.614
7	6	ard			phi92		10-109		2387.1	
12603	12626	Forw	76	Hypothetical protein	Escherichia phage	98	$4.00 \times$	100	YP_00901	8.528
0	0	ard			phi92		10-47		2386.1	
12626	12646	Forw	67	Hypothetical protein	Escherichia phage alia	98	$4.00 \times$	100	YP_00998	7.518
0	3	ard					10-40		5282.1	
12652	12718	Forw	220	DNA invertase	Escherichia phage	99	$8.00 \times$	100	YP_00901	24.683
1	3	ard			phi92		10-160		2384.1	
12719	12739	Forw	67	Hypothetical protein	Escherichia phage	98	$3.00 \times$	100	YP_00901	7.690
3	6	ard			phi92		10-40		2383.1	
12740	12798	Forw	190	Histidyl tRNA synthetase	Escherichia phage	99	$2.00 \times$	99.47	YP_00901	20.878
8	0	ard			phi92		10-135		2382.1	
12799	12831	Forw	108	Hypothetical protein	Escherichia phage	99	$3.00 \times$	100	YP_00901	12.590
1	7	ard			phi92		10-71		2381.1	
12831	12906	Forw	247	NinI-like serine-threonine	Escherichia phage	99	0.00	99.6	QXV8153	28.173
7	0	ard		phosphatase	JohannJBalmer				6.1	
12906	12938	Forw	106	Hypothetical protein	Escherichia phage	82	$2.00 \times$	94.32	UPW3731	12.442
0	0	ard			vB_EcoM_ESCO8		10-50		7.1	
12939	12996	Forw	192	DprA-like DNA recombination-	Escherichia phage alia	99	$4.00 \times$	100	YP_00998	21.687
1	9	ard		mediator protein			10-141		5275.1	

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
12995	13047	Forw	172	Hypothetical protein	Escherichia phage	99	$2.00 \times$	98.84	QHR7553	19.654
6	4	ard			outra		10-121		6.1	
13047	13072	Forw	85	Hypothetical protein	Escherichia phage	98	$3.00 \times$	100	YP_00901	9.651
1	8	ard			phi92		10-53		2376.1	
13081	13122	Forw	137	Hypothetical protein	Escherichia phage	99	$7.00 \times$	100	QXV8392	16.009
4	7	ard			PaulScherrer		10-95		5.1	
13122	13221	Forw	329	DNA (cytosine-5-)-	Escherichia phage arall	99	0.00	99.7	QHR6759	37.830
7	6	ard		methyltransferase					8.1	
13221	13233	Forw	40	Hypothetical protein	Escherichia phage	97	$7.00 \times$	97.5	YP_00998	4.940
6	8	ard			VEcB		10-18		7248.1	
13234	13294	Forw	202	Hypothetical protein	Escherichia phage	99	$3.00 \times$	99.5	UPW3732	23.682
0	8	ard			vB_EcoM_ESCO8		10-148		3.1	
13300	13353	Forw	177	Putative aminoacyl-tRNA	Escherichia phage	99	$5.00 \times$	98.87	YP_00998	20.403
3	6	ard		synthetase	muut		10-124		5696.1	
13353	13427	Forw	246	Hypothetical protein	Serratia phage	99	$9.00 \times$	99.59	UES35992	28.718
3	3	ard			KKP_3263		10-158		.1	
13426	13507	Forw	271	Sir2 (NAD-dependent deacetylase)	Serratia phage	99	0.00	98.89	UES35991	30.866
3	8	ard			KKP_3263			4.0.0	.1	
13512	13538	Forw	85	Hypothetical protein	Escherichia phage	98	$6.00 \times$	100	YP_00998	9.587
3	0	ard			vB_EcoM_PHB05		10-57	100	4402.1	0.400
13555	13577	Rever	73	Hypothetical protein	<i>Escherichia</i> phage	98	$2.00 \times$	100	YP_00901	8.428
6	10 (10	se	107	T	phi92		10-43	07.0	2367.1	10.045
13586	13618	Rever	107	Hypothetical protein	Escherichia phage	99	$5.00 \times$	97.2	YP_00998	12.245
2	5	se	07	TT .1 .1 1	vB_EcoM_PHB05	00	10-70	100	4400.1	11 144
13619	13648	Rever	95	Hypothetical protein	Escherichia phage	98	$1.00 \times$	100	YP_00901	11.144
4		se	57	How other time to in	pni92	0.9	10^{-02}	100	2365.1	C (10
13649	13666	Rever	57	Hypothetical protein	Escherichia phage	98	$2.00 \times$	100	YP_00998	6.618
1 12(92	4	se	100	How other time to in	muut $T = L^{-1} L^{-1}$ mission and T	00	1000	00.00	5/03.1	00 171
13682	13/42	Rever	199	Hypothetical protein	<i>Escherichia</i> phage arall	99	1.00 × 1.0-140	98.99	QHK6/58	22.1/1
1	12770	se Davan	00	How oth otional mustain	Eschenishin above	0.0	2.00	100	8.1 VD 00001	10 201
15/45	13/70	Rever	90	Hypothetical protein	<i>Escherichia</i> phage	98	5.00 × 10-59	100	1P_00901	10.381
4	12702	Bever	70	membrone protein	pill92 Eachemichia phoco	08	10%	100	2301.1 VD 00009	× 070
0	13/92	Kever	70	memorane protein	<i>Escherichia</i> phage	98	4.00 × 10-29	100	1 P_00998	8.070
0	12010	Bower	60	Hypothetical protein	Illuut Esshariahia phasa	02	2.00 \	100	J/U/.1 VD 00001	7 007
13/92	13810	Kever	00	rypometical protein	<i>Escherichia</i> phage	00	5.00 × 10-28	100	1 P_00901	/.08/
2	4	se			pm92		10-5		2009.1	

Mini	Maxi	Direc	Lengh	Dutating for ation	Best-matchBLASTp	Query	Е-	Identif	•	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	y (%)	Accession	(kDa)
13809	13850	Rever	136	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	UPW3754	15.634
8	8	se			vB_EcoM_ESCO9		10-93		7.1	
13861	13886	Rever	82	Hypothetical protein	Escherichia phage inny	98	$1.00 \times$	100	QHR6967	9.487
4	2	se					10-52		3.1	
13885	13912	Rever	87	Hypothetical protein	Escherichia phage arall	98	$5.00 \times$	100	QHR6758	9.753
9	2	se					10-57		2.1	
13912	13934	Rever	72	Hypothetical protein	Escherichia phage	98	$1.00 \times$	98.61	YP_00901	8.351
2	0	se			phi92		10-44		2355.1	
13954	13979	Rever	80	Hypothetical protein	Escherichia phage	98	$1.00 \times$	98.75	YP_00998	9.158
8	0	se			vB_EcoM_PHB05		10-35		4389.1	
13978	14000	Rever	74	Hypothetical protein	Enterobacteria phage	98	$2.00 \times$	98.65	AMM433	8.663
3	7	se			ECGD1		10-23		63.1	
14006	14023	Rever	57	Hypothetical protein	Escherichia phage	98	$7.00 \times$	100	YP_00901	6.838
1	4	se			phi92		10-35		2352.1	
14023	14048	Rever	83	Hypothetical protein	Enterobacteria phage	98	$7.00 \times$	100	AMM433	9.454
1	2	se			ECGD1		10-52		61.1	
14047	14077	Rever	99	Hypothetical protein	Escherichia phage	99	$6.00 \times$	100	YP_00998	12.180
9	8	se			muut		10-65		5717.1	
14077	14101	Rever	79	Hypothetical protein	Escherichia phage	98	$3.00 \times$	100	YP_00901	8.881
8	7	se			phi92		10-49		2349.1	
14100	14120	Rever	64	Hypothetical protein	Escherichia phage	98	$5.00 \times$	100	YP_00998	7.324
8	2	se			vB_EcoM_PHB05		10-40		4384.1	
14120	14166	Rever	152	Hypothetical protein	Escherichia phage alia	99	$2.00 \times$	100	YP_00998	17.878
4	2	se					10-110		5246.1	
14167	14202	Rever	114	Hypothetical protein	Escherichia phage	99	$3.00 \times$	100	QXV8150	13.051
9	3	se			JohannJBalmer		10-55		5.1	
14202	14219	Rever	57	Hypothetical protein	Escherichia phage	94	$9.00 \times$	100	YP_00998	7.063
5	8	se			vB_EcoM_PHB05		10-32		4381.1	
14219	14278	Rever	194	Hypothetical protein	Escherichia phage	99	$5.00 \times$	99.48	WBF5427	23.154
8	2	se			EC_OE_11		10-143		0.1	
14296	14318	Rever	74	Hypothetical protein	Escherichia phage	97	$7.00 \times$	100	YP_00998	8.430
1	5	se			muut		10-47		5727.1	
14319	14341	Rever	72	Hypothetical protein	Escherichia phage	98	$9.00 \times$	95.83	YP_00901	8.524
5	3	se			phi92		10-33		2338.1	
14340	14375	Rever	116	Hypothetical protein	Escherichia phage	99	$6.00 \times$	100	UPW3856	13.990
6	6	se			vB_EcoM_ESCO32		10 ⁻⁸²		1.1	

Mini	Maxi	Direc	Lengh	Dutative function	Best-matchBLASTp	Query	Е-	Identif	Accession	MW
mum	mum	tion	t (aa)	Putative function	Result	cover (%)	values	values y (%)	Accession	(kDa)
14377	14406	Rever	99	Hypothetical protein	Escherichia phage	99	$1.00 \times$	100	YP_00998	11.317
0	9	se			vB_vPM_PD06		10-67		4833.1	
14406	14419	Rever	43	Hypothetical protein	Enterobacteria phage	97	$9.00 \times$	100	AMM433	5.017
6	7	se			ECGD1		10-21		48.1	
14428	14473	Rever	150	Hypothetical protein	Escherichia phage	99	$8.00 \times$	98	QHR7549	17.380
2	4	se			outra		10-103		6.1	
14475	14496	Rever	71	Hypothetical protein	Escherichia phage	98	$4.00 \times$	98.59	YP_00998	8.065
0	5	se			muut		10-33		5734.1	
14496	14542	Rever	152	Hypothetical protein	Escherichia phage	99	$9.00 \times$	97.37	QXV7827	17.499
7	5	se			EmilieFrey		10-108		5.1	
14549	14586	Rever	121	Hypothetical protein	Salmonella phage	99	$1.00 \times$	100	UIS31372.	14.130
6	1	se			UAB_1		10-85		1	

Figura AIV 1.-Comparación del genoma de los bacteriófagos phi92, BME3 y VEcB con Clinker. Las flechas indican las secuencias codificantes; el color verde representa las proteínas estructurales y el color azul, las proteínas de replicación, reguladoras y de empaquetamiento. Las flechas están unidas por regiones sombreadas que señalan el porcentaje de identidad de aminoácidos. Las fechas naranjas simbolizan proteínas con un porcentaje de identidad distinto del 100%, como histona deacetilasa dependiente de NAD, peptidasas HslV, fosfato inducible por inanición tipo PhoH, espiga de la cola, fibra de la cola, ribonucleótido reductasa anaerobia de clase III, helicasa de la familia UvrD/Rep y endonucleasa (color naranja de izquierda a derecha). Entre estas proteínas, de la púa y la fibra de la cola no mostraron ninguna conservación en relación con sus homólogas