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RESUMEN

Phishing es un tipo de ciberataque de Ingeniería Social que tiene como objetivo engañar

a los usuarios finales, normalmente utilizando páginas web. El método más común para

detectar a este tipo de ataques es por medio de comparar las direcciones URLs con una

blacklist de URLs ya identificadas como páginas de phishing. Sin embargo, el principal

problema es cuando aparecen páginas de phishing nuevas no registradas en la blacklist.

Actualmente, una de las formas más comunes de detectar estas páginas de phishing no

identificadas con anterioridad, es analizando el contenido de las páginas web, es decir,

ingresando palabras de forma no secuencial en algoritmos de aprendizaje profundo, sin im-

portar la secuencia del texto ingresado en los algoritmos de Deep Learning. El objetivo gen-

eral de esta tesis es proponer un modelo que detecte ataques de phishing basándose en el

texto de páginas web sospechosas, utilizando Deep Learning, Procesamiento de Lenguaje

Natural y Word Embedding con GloVe dictionary. De esta forma aprovechamos la riqueza

semántica y sintáctica del texto de la página analizada. Para lograr nuestro objetivo se real-

izó una revisión de la literatura, se evaluaron los rasgos de personalidad y comportamiento

de las personas, se implementó y afinó el modelo de detección de phishing, y finalmente se

hizo una extensión en Chrome llamada NDLP para detectar estos ataques. Se determinó

que el modelo funciona pues los cuatro algoritmos evaluados LSTM, BiLSTM, GRU, and

BiGRU obtuvieron sobre el 96.70% de mean accuracy, y que el algoritmo que dio mejores

resultados fue BiGRU que logró 97.39%. de mean accuracy.

Palabras Claves - Phishing, Ingeniería Social, Aprendizaje Profundo, Procesamiento de

Lenguaje Natural, Diccionario GloVe, Incrustación de Palabras.
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ABSTRACT

Phishing is a type of Social Engineering cyber attack that aims to deceive end users, usually

using web pages. The most common method to detect this type of attack is by comparing

the URLs with a blacklist of URLs already identified as phishing pages. However, the main

problem is when new phishing pages appear that are not registered on the blacklist. Cur-

rently, one of the most common ways to detect these previously unidentified phishing pages

is by analyzing the content of the web pages, that is, by entering words non-sequentially into

deep learning algorithms, regardless of the sequence of the text entered in Deep Learning

algorithms. The main objective of this thesis is to propose a model that detects phishing

attacks based on the text of suspicious web pages, using Deep Learning, Natural Language

Processing, and Word Embedding with the GloVe dictionary. In this way, we take advantage

of the semantic and syntactic richness of the text on the analyzed page. To achieve the

main objective, we conducted a literature review, evaluated people’s personality and behav-

ioral traits, and implemented, evaluated, and refined the phishing detection model. Finally,

we made a Chrome extension called NDLP to detect these attacks. It was determined that

the model works because the four evaluated algorithms, LSTM, BiLSTM, GRU, and BiGRU,

obtained over 96.70% mean accuracy, and the algorithm that gave the best results was Bi-

GRU, which achieved 97.39%.

Keywords - Phishing, Social Engineering, Deep Learning, Natural Language Processing,

GloVe Dictionary, Word Embedding.
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Chapter 1

Introduction

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Scientific Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Other Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1. Problem Statement

Social Engineering is a cyber attack in which attackers try to trick end users into obtaining

confidential information, primarily to defraud them. One of the main types of Social Engi-

neering attacks is through a phishing web page. Attackers create a phishing web page that

appears legitimate. This phishing web page may appear from a bank, credit card, or online

store.

Currently, the primary and most straightforward method to confront this type of attack is

through a blacklist of phishing web pages. The blacklist of phishing web pages has stored

the URLs of the previously identified pages. This method is very effective if a page has

already been identified as phishing. The problem with this method is that new pages are

created every day, and therefore they are not registered on this blacklist.
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Machine Learning algorithms have been implemented to identify these new pages. These

algorithms can predict whether a page is highly likely to be phishing based on similar charac-

teristics to those detected in previous pages. There are different traditional Machine Learn-

ing solutions to address this type of attack, but Deep Learning algorithms stand out among

them. Deep Learning is a branch of Machine Learning, but it differs from traditional al-

gorithms because it has deeper layers. Deep Learning translates into better accuracy in

detecting phishing attacks.

In the state-of-the-art review, most solutions proposed to mitigate phishing that uses

Deep Learning to analyze the URLs of web pages, leaving aside the text in the web pages.

On the other hand, the solutions found do not carry out a semantic and syntactic analysis

of the text obtained from the web pages. In other words, they do not use Natural Language

Processing.

1.2. Justification

In a computing environment, there are many methods to protect users from cyberattacks.

These protection methods can be hardware, software, or user consent when Internet brows-

ing. However, a chain will always be broken by its weakest link, which in many cases is

the end user, because it is enough for an attacker to request the personal data of a victim

because they have a job offer or because the victim has won the lottery so that this user

finally ends up falling victim to this attack.

It should be noted that Phishing attacks are mostly non-targeted; that is, they are not

directed at a single person but at many people trying to get one of the people who read a

phishing email or web page to take the bait. Precisely, the term Phishing refers to the fishing

of people.

We justify this work because we understand that to many people it is straightforward to

detect a Social Engineering attack, specifically a Phishing attack, such as observing if a

page being opened has a lock in the URL bar or even reading if the URL that was opened is

what you want to access. On the other hand, of this large number of people, some groups

are more vulnerable and fall victim to these attacks. For this reason, we carried out this

research to offer a tool that uses the latest technology and is available to vulnerable people

to detect if the page that opens in the browser is Phishing.

People are generally victims mainly of their personality traits or behavior. When we talk

about personality traits, we mean that some people are more trusting than others or have
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a helpful spirit, among other features. In contrast, when discussing behavior, we refer to

people who browse the entire web as careless and risky. According to [7], in terms of the

relationship between personality and behavior, the Big Five Model suggests that individual

differences in these personality dimensions influence how people think, feel, and behave in

various situations.

To analyze and determine the most vulnerable personality traits, we wrote the article A

Framework Based on Personality Traits to Identify Vulnerabilities to Social Engineering At-

tacks [5], whereas to determine the risky behavior of people, we wrote the article Analysis of

vulnerabilities associated with Social Engineering attacks based on user behavior [6]. The

content of the two articles can be seen in Annex A.

1.3. Objectives

1.3.1. General Objective

The main objective of this work is to offer users a high-precision tool that uses the latest

technologies for detecting phishing attacks based on Deep Learning and Natural Language

Processing.

It was necessary to carry out the following secondary objectives to achieve the general

objective.

1.3.2. Specific Objectives

• Conduct a Systematic Review of the Literature on Implementing Deep Learning to

detect and mitigate Phishing attacks.

• Conduct a comparative study of the Deep Learning algorithms used to detect Phishing

attacks.

• Determine a Phishing attack detection model using Deep Learning and NLP.

• Tune Deep Learning and NLP hyper-parameters in a detection model and implement

an application to detect Phishing attacks.
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1.4. Scientific Contribution

This research offers a refined model from which an application was made to detect phishing

attacks using Deep Learning and NLP. Thus, the application takes advantage of the syntactic

and semantic richness of the text extracted from phishing web pages. Using this application

is enough for the end user to install an extension in their browser, which will inform them of

the percentage probability a page has of being phished. We made the following scientific

contributions to achieve our objective.

To create a new model to detect phishing attacks, it was necessary to establish the

characteristics of these attacks and how current models mitigate them. Thus, in the arti-

cle Classification of Phishing Attack Solutions by Employing Deep Learning Techniques: A

Systematic Literature Review [3], the general and particular characteristics of the attacks

are first established. Then, a complete review was conducted on how each Deep Learning

algorithm is applied and which datasets and other resources were used to mitigate Phishing

attacks.

In the study [3], it was determined that most solutions that implement Deep Learning are

oriented to the URLs of web pages, which is why there is still much to study in approaches

oriented to the content of web pages. This is why it is justified to carry out a study that

analyzes with which content of web pages the best results are obtained, with HTML code or

with only the text extracted from that code. Additionally, previous observations revealed that

many Deep Learning algorithms currently detect phishing attacks. However, it is necessary

to determine which of these algorithms is most accurate in detecting attacks by analyzing

their content. To answer all these questions, the article Comparative Study of Deep Learning

Algorithms in the Detection of Phishing Attacks Based on HTML and text Obtained from Web

Pages [4] was carried out. This study determined the following findings:

• There is no significant difference between whether the Deep Learning algorithm runs

on HTML code or just the text extracted from that HTML code.

• It was determined that BiGRU is the Deep Learning algorithm that performs best

among the LSTM, BiLSTM, GRU, and BiGRU algorithms for text analysis.

As stated by Kevin Mitnick [8], there are undoubtedly users who are more prone than

others to fall victim to social engineering attacks. This vulnerability is increased by two main

things: the users’ personalities or their careless behavior. As part of our study, we set out

4



to evaluate users’ most common personality and behavioral characteristics to fall victim to

social engineering attacks. For this, we conducted the following two investigations:

A Framework Based on Personality Traits to Identify Vulnerabilities to Social Engineering

Attacks [5] and Analysis of Vulnerabilities Associated with Social Engineering Attacks Based

on User Behavior [6]. The article [5] evaluated the characteristics that users meet, compared

to the Five-Factor Model (FFM) frame. The study determined that the most common per-

sonality traits for a user to fall victim to a phishing attack are Openness (28.8%), followed

by Agreeableness (27.9%), Conscientiousness (20.2%), Neuroticism (11.5%), and Extraver-

sion (11.5%) respectively. The article [6] evaluated the behavior of people that makes them

more likely to be victims of social engineering attacks.

1.5. Other Scientific Contributions

Since this study began, the author has contributed as an author or co-author to other works

to combat phishing attacks. These related works of the author can be seen in Table 1.1 and

Table 1.2.
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Table 1.1: Other related scientific contributions - Part 1.

Article Journal Authors Year DOI

Un experimento para

crear conciencia en

las personas acerca

de los ataques de

Ingeniería Social [9]

Ciencia UNEMI Benavides-Astudillo

Eduardo,

Fuertes-Díaz Walter,

Sánchez-Gordon

Sandra

2020 10.29076/issn.2528-

7737

Caracterización de

los ataques de

phishing y técnicas

para mitigarlos: una

revisión sistemática

de la literatura [10]

Ciencia y Tecnología Benavides-Astudillo

Eduardo,

Fuertes-Díaz Walter,

Sánchez-Gordon

Sandra,

Nuñez-Agurto Daniel

2020 10.18779/cyt.v13i1.357

Phishing Attack

Detection: A Solution

Based on the Typical

Machine Learning

Modeling Cycle [11]

International

Conference on

Computational

Science and

Computational

Intelligence (CSCI)

Espinoza Bryan,

Simba Jéssica,

Fuertes Walter,

Benavides Eduardo,

Andrade Roberto,

Toulkeridis Theofilos

2019 10.29076/issn.2528-

7737
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Table 1.2: Other related scientific contributions - Part 2.

Article Journal Authors Year DOI

Phishing Attacks:

Detecting and

Preventing Infected

E-mails Using

Machine Learning

Methods [12]

Cyber Security in

Networking

Conference (CSNet)

Oña Diego, Zapata

Lenín, Fuertes

Walter, Rodríguez

Germán, Benavides

Eduardo, Toulkeridis

Theofilos

2019 10.1109/CSNet47905.2019.9108961

Trusted Phishing: A

Model to Teach

Computer Security

Through the Theft of

Cookies [13]

Advances in

Emerging Trends and

Technologies

Rodríguez Germán,

Torres Jenny, Flores

Pamela, Benavides

Eduardo, Proaño

Paola

2019 10.1007/978-3-030-

32033-1_36

Impact of Social

Engineering Attacks:

A Literature Review

[14]

Developments and

Advances in Defense

and Security

Fuertes Walter,

Arévalo Diana,

Castro Joyce

Denisse, Ron Mario,

Estrada Carlos

Andrés, Andrade

Roberto, Peña Felix

Fernández,

Benavides Eduardo

2021 10.1007/978-981-16-

4884-7_3
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1.6. Organization of the Document

The rest of this document is structured as follows: Chapter 2 shows the key concepts applied

in this research. Chapter 3 reviews the literature about the methods that use Deep Learning

to mitigate phishing attacks. In Chapter 4, four Deep Learning algorithms are evaluated

with both HTML code and clear text obtained from that HTML code to determine which

types of input data to the algorithms, HTML or text, are most effective in detecting phishing

attacks. Chapter 5 presents the steps to carry out the Deep Learning and natural language

processing model, which is the central axis of this work. In Chapter 6, the proposed model

is implemented and tested, and it is determined which is the best algorithm among the

four Deep Learning algorithms analyzed. In Chapter 7, the model obtained in the previous

chapter is refined, and an extension is made to install it in the Chrome browser. Finally,

Chapter 8 shows the conclusions and future work of this research.
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Chapter 2

Background

Contents

2.1 Social Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Phishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Web Page-Based Phishing Mitigation Approaches . . . . . . . . . . 13

2.1.3 Email-Based Phishing Mitigation Approaches . . . . . . . . . . . . . 13

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Global Vectors for Word Representation . . . . . . . . . . . . . . . . . . . . 16

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1. Social Engineering

According to Kevin Mitnick, in his book The art of the deception [8], Social Engineering

refers to manipulating people to obtain confidential information or perform specific actions

that can compromise security. To achieve their goal, attackers could include impersonating

someone they trust through phone calls, emails, or even in person to persuade people to

reveal sensitive information.

2.1.1. Phishing

As first described in 1987 [15], Phishing is a technique of imitating an authoritative entity to

deceive users into stealing confidential and susceptible information. Later, in 1996, a Usenet
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newsgroup redefined the term Phishing by placing itself around stealing accounts and pass-

words in American Online (AOL) (https://www.phishing.org/history-of-phishing) [15]. Phish-

ing is a form of cyber attack in which attackers use deceptive tactics, such as fake emails,

text messages, or websites, to impersonate legitimate entities to obtain victims’ sensitive

information, such as usernames, passwords, or financial information [16].

Phishing Life Cycle

In general, the life cycle of a Phishing attack consists of five consecutive steps (see Fig. 2.1) [17]:

1. The phisher creates a fraudulent web page. This website is usually a copy of a popular

benign website.

2. The phisher tries to lure users to the malicious page using various means, such as

email, WhatsApp, Messenger, and other web pages.

3. Once users are on the fraudulent page, they are asked for confidential information.

Later, this information is used against the same users or their organizations.

4. The attack is consummated. In other words, money or other benefits are obtained from

the users without them realizing it is illicit.

5. The phisher deletes all evidence that allows it to be traced.

Figure 2.1: Phishing attack life-cycle

Types of Phishing Attacks

Phishing attacks can be grouped into seven categories [18]:
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Deceptive Phishing. Through this attack, the phisher sends many deceptive e-mails with

links that redirect the user to spoofed web pages.

Malware-based Phishing. Attachments are sent to the victim differently. These files con-

tain malicious code that runs on the user’s computer as soon as they are downloaded.

Key Loggers and Screen Loggers. It is similar to the previous attack. In this attack, the

phisher installs and uses keyloggers and screen loggers to capture typed information

and screenshots and then sends them to the attacker.

Session Hijacking. Through this attack, valid user sessions are manipulated to gain unau-

thorized access to information stored on a user’s computer.

Web Trojans. They appear unnoticed when users try to enter their credentials on a com-

puter. With the help of these web trojans, the user’s credentials are collected locally

and transmitted to the phisher.

DNS-based Phishing. Through this attack, users are redirected to a fraudulent site, altering

the user’s host file or the domain name of a company they intend to visit.

Man-in-the-middle Phishing. First, hackers position themselves between the user and the

legitimate website. Later, they record the information entered but continue transmitting

it so that the users’ transactions are unaffected. Finally, they send that information to

themselves.

It is worth noting that most Phishing attacks are carried out on websites or e-mails [19],

trying to imitate as accurately as possible legitimate websites and e-mails. Web page-based

approaches are divided into three groups [20]: (i) approaches based on the URL address

of the web page [21], (ii) approaches based on the content of the web page [22], and (iii)

approaches based on the visual appearance of the images [23]. As can be observed in

Figure 2.2, detecting a Phishing page is relatively easy for an expert in the field; it will notice

that instead of using "oo" in the Facebook word in the URL, the phisher will place "00";

however, this detection is challenging for common users [24].

On the other hand, email-based Phishing approaches can be classified into two types [25]:

(i) approaches oriented to the e-mail header and (ii) approaches based on the e-mail body

as illustrated in Figure 2.3.
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Figure 2.2: Example of website Phishing on URL

Figure 2.3: Example of e-mail Phishing

Anti-phishing Techniques

The methods used for detecting Phishing pages can be divided into three [26], [27]:
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• Blacklist-based Phishing detection methods;

• Heuristic Phishing detection methods; and

• ML-based Phishing detection methods.

From the methods exposed, Machine Learning is the most effective method for the early

detection of Phishing attacks. However, it is worth distinguishing between traditional Ma-

chine Learning algorithms and algorithms based on Deep Learning. The methods for finding

the relevant characteristics of a data set in traditional Machine Learning may involve con-

siderable time consumption for the people involved in finding these features [28]. One of

the critical aspects of adopting a Deep Learning-based approach is that it is unnecessary to

select characteristics by hand. Instead, Deep Learning can select essential characteristics

by discovering an intricate structure in analyzing a large amount of data [29]. In [30], an

experiment demonstrates the higher accuracy of Deep Learning algorithms over traditional

ML algorithms. Additionally, it is observed that the training time in Deep Learning is much

longer (80 times difference); however, the memory usage is much lower (almost 500 times

difference).

2.1.2. Web Page-Based Phishing Mitigation Approaches

According to [19], web page-based approaches are divided into three groups:

• Approaches based on the URL address of the web page [20].

• Approaches based on the web page’s content [21].

• Approaches based on the visual appearance of the images [22].

2.1.3. Email-Based Phishing Mitigation Approaches

According to [23], the email-based solution approaches can be divided into two groups:

Approaches oriented to the email header, and those based on the email body.

2.2. Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence that aims to develop models

that allow computers to learn independently without being specifically programmed. The
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learning is carried out based on the data entered. This learning is based on data and

previous experiences [31].

The idea that machines learn comes from around 1950, from the hand of Alan Touring

[32]. Although he did not establish the concept of Machine Learning, he did lay the foun-

dations for developing Artificial Intelligence and Machine Learning. Turing addressed the

fundamental question: Can machines think? The idea of Touring is that machines can learn

based on their experience, by trial and error, and thus improve their performance without the

need to follow a predefined algorithm.

2.2.1. Deep Learning

According to [33], Deep Learning is a Machine Learning technique where many layers of

information processing stations are exploited by classification patterns and features or by

learning by representation. However, it has become popular due to two factors: a notable

increase in processing capabilities (e.g., video cards, graphical processors, etc.) and the

large amount of data available.

An advantage of Deep Learning over traditional Machine Learning is that the user or

expert doesn’t need to indicate the features of a malicious page because the algorithm can

detect them automatically and independently [34]. Another advantage is that the more data

that is processed in a Deep Learning algorithm, the greater accuracy is obtained, while in a

traditional Machine Learning algorithm, a plateau is reached, from which a better result can

no longer be obtained [35].

Depending on whether the algorithms are trained to yield obtainable results, Machine

Learning and Deep Learning algorithms’ Phishing solutions may be classified into three

subgroups: unsupervised, supervised, and hybrid. Our study is of a supervised type and

binary classification because it is based on detecting whether the text of a web page is

malicious based on pre-trained algorithms with a class that indicates whether it is Phishing

or ham.

Deep Learning is a subset of ML techniques where there are two or more internal and

hidden layers, hierarchically organized, to process information. See Figure 2.4. The main

advantages of using Deep Learning techniques instead of traditional ML techniques are

twofold: (i) Deep learning techniques give more accurate results than traditional ML tech-

niques, and (ii) Traditional ML techniques are very time-consuming, dedicated to manually

selecting the best features for the detection of a Phishing threat, whereas in Deep Learn-
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ing this process is automatic, that is, the Deep Learning algorithm selects by itself the best

features.

Figure 2.4: Example of a Deep Neural Network with two hidden layers

Fig. 2.4 depicts the general scheme of a Deep Neural Network (DNN) [33]. Thus, in the

input layer, the characteristics vector of the object analyzed is entered, while in the output

layer, there is a probability vector associated with the given inputs. Between these two

vectors, there are many layers (two layers, with blue and green nodes in this graph) whose

nodes or neurons are interconnected. Thus, the output of the computation of one neuron is

the input of the next neuron.

2.3. Natural Language Processing

Natural Language Processing (NLP) is a branch of Artificial Intelligence that combines com-

putational linguistics and Artificial Intelligence to enable computers to understand and inter-

pret natural human language [36].

It is stated in the article [2] that the majority of attack mitigation techniques that use

Deep Learning do not perform a semantic or syntactic analysis of the text of the analyzed

web pages; the text captured from the pages is entered sequentially into the different Deep

Learning algorithms, thus disregarding the intrinsic richness in the relationships between the
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entered words. For this reason, the model proposed in this study is oriented towards first

pre-processing the text using Natural Language Processing.

2.4. Global Vectors for Word Representation

Global Vectors for Word Representation (GloVe) is a vector representation model commonly

used with Natural Language Processing. The main idea is that when entering the text to

be analyzed, the semantic and syntactic relationships between the words of the text are

captured, analyzing the co-occurrences of words in large volumes of data. Thus, each

word is assigned a vector, and in this way, by subtracting or performing operations on these

vectors, the existing relationships between the words can be obtained [37].

2.5. Chapter Summary

This chapter reviewed the fundamental concepts necessary to understand this research

work. The approach used goes from general to particular, starting with Social Engineering

concepts and clarifying that Phishing is the most frequent type of Social Engineering cyber

attack. It is highlighted that the best way to detect a new Phishing attack is by using Deep

Learning. However, the precision when applying a Deep Learning algorithm in text detection

improves when fed with a dataset previously processed with Natural Language Processing.

However, the algorithm can improve even more if we embed the input text with the GloVe

Dictionary, through which the semantic relationships and similarities between the words are

captured. Furthermore, at this point, it is also defined that the problem to be solved is binary

and that the algorithms used for the analyses in the following chapters are supervised.
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Chapter 3

Literature Review
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For this thesis, two literature reviews were carried out. The first literature review was car-

ried out at the beginning of this research. It was aimed solely at knowing the most common

techniques for detecting attacks with Phishing and deep learning, how these techniques

were applied, and above all, knowing the gaps in the investigation. One of the most impor-

tant findings of this first review highlights the little treatment given to implementing NLP and

deep learning for detecting Phishing attacks. The second literature review was carried out

in the middle of our research and was aimed at studying phishing mitigation methods using

deep learning techniques, which NLP also supported. This second literature review helped

place our proposal among other related works.
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3.1. Literature Review of Phishing and Deep Learning

This first Systematic Literature Review (SLR) was conducted to determine the Deep Learn-

ing techniques used to combat phishing attacks and the data and tools used in each study.

The methodology proposed by Barbara Kitchenham [38] was rigorously followed to carry out

this Systematic Literature Review. First, the search was conducted on five digital scientific

bases (ACM, IEEExplore, Scopus, SpringerLink, and Taylor & Francis), and 29 primary stud-

ies were selected. From each of the primary studies selected, the following attributes were

characterized: year of publication, scientific database, the country to which it belongs, type

of paper, number of references, and accuracy, among others. Subsequently, the synthesis

of the techniques used was fulfilled, and the studies were classified by attack used, Deep

Learning techniques and sub-techniques used, repositories used, the accuracy obtained,

and the amount of data used.

3.1.1. Research Methodology

We followed the Systematic Literature Review methodology proposed by Barbara Kitchen-

ham [38], in which five consecutive steps were conducted:

1. Define the research questions;

2. Search the relevant documents;

3. Select the primary studies;

4. Map selected primary studies.

First, the related articles were searched for; then, the relevant results were listed. Then,

data extraction was performed, and the reports of the information encountered were finally

produced. Each phase is described next.

Define Research Questions

Main Question

Initially, we define our research’s main research question (MQ). This MQ is: What Deep

Learning techniques are currently used in primary studies to mitigate Phishing attacks?

Secondary Questions Additionally, we define the following secondary research ques-

tions (RQ).
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• RQ1. What are the causes and consequences of Phishing attacks on society?

• RQ2. What Deep Learning techniques are currently used in primary studies to mitigate

Phishing attacks?

• RQ3. How do researchers use Deep Learning techniques or algorithms to reduce the

impact of Phishing attacks?

The first question, RQ1, provides an overview of the causes and consequences of cyber-

attacks on society. The second question, RQ2, identifies which Deep Learning techniques

have been used to detect and mitigate these attacks. Finally, the third question, RQ3, lets

us know how each method has been implemented in primary studies to reduce its impact.

Search Relevant Documents

First, our strategy consisted of defining the search string including the general terms Phish-

ing and Deep Learning. Then, the search string was refined to include specific Deep Learn-

ing techniques. Thus, the search string is as follows:

• Phishing and (“Deep Learning” or Autoencoder or “Sum-Product Network” or “Recur-

rent Neural Network” or “Boltzmann Machine” or “Deep Neural Network” or “Convolu-

tional Neural Network”).

Inclusion Criteria With the research questions defined, we only included the following

publications:

• Whose main topics are Phishing and Deep Learning and its techniques;

• Research with results;

• Writing only in English;

• Describe the application of at least one Deep Learning technique for detecting Phish-

ing attacks;

• Studies published from 2017 onwards.

Exclusion Criteria We excluded the following publications:

• Articles about Phishing only or Deep Learning only, but not both.
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• Articles written in any language other than English.

• Research without precision results.

• Research that does not apply at least one of the Deep Learning techniques.

Quality Criteria To comply with the quality criteria of the search, it has been decided to

conduct the scrutiny only on sources recognized at the scientific level, which are also from

information technology. The indexed databases chosen are: IEEE Explore, Scopus, Taylor

and Francis, Springer, ACM Library, and Science Direct.

Select Primary Studies

Once the search string was applied to digital databases, 180 publications were initially found.

Nevertheless, after eliminating duplicated articles, reading abstracts, reading all the content,

and applying the inclusion and exclusion criteria, only 45 primary studies were selected, as

illustrated in Fig. 3.1.
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FIGURE 6. Search and selection process. 

D. PAPERS BY SCIENTIFIC DATABASE 

After scrutiny of the items found, a total of 45 primary items 

were selected, as detail in Table I. Figure 7 illustrates the 

number of papers by scientific database; as can be observed, 

the most significant number of primary studies (23) were 

found in the Scopus database, followed by the 6 papers found 

in Web of Science, 6 articles found in IEEExplore, and 4 in 

Springerlink and ACM library. In Taylor and Francis 1 paper 

was found, but these were already included within Web of 

Science.  

E. PAPERS BY PUBLICATION TYPE  

Figure 8 illustrates the number of primary studies for each 

type of paper. As can be observed, most of the researchers’ 

contributions are published in conference papers. 

 

 

 

 

F. CONTRIBUTIONS BY COUNTRIES 

The countries that have contributed considerably to the 

solution of phishing problems through deep learning are China 

with 14 papers and India with 12, followed by United States 

with 4, Slovenia and Colombia with 2 respectively. See Figure 

9.  
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Figure 3.1: Search and selection process

Table 3.1 details information regarding each primary study, such as the title, the database

in which they were found, what type of publication are (Conference publication, Journal,

Book series), the quartile assigned in the Scimago Journal & Country Rank (SJR), (NQ=No

quartile) according to SJR, the total number of references, the publication year, and the

country to which the work belongs.
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Table 3.1: Selected primary studies.

No. Title Ref. Database publication

type

SJR

Quar-

tile

Total

Refs.

Year Country

1 Phishing Email Detec-

tion Using Improved

RCNN Model with

Multilevel Vectors and

Attention Mechanism

[25] Scopus Journal Q1 51 2019 China

2 Phishing Website De-

tection Based on Mul-

tidimensional Features

Driven by deep learning

[39] Web

of Sci-

ence

Journal Q1 38 2019 China

3 Evaluating deep learn-

ing approaches to

characterize and clas-

sify malicious URL’s

[40] Web

of Sci-

ence

Journal Q2 27 2018 India

4 Personalized, Browser-

Based Visual Phishing

Detection Based on

deep learning

[41] IEEE

Xplore

Book

Series

Q2 6 2019 Italy

5 Phishing Detection

Method Based on

Borderline-Smote Deep

Belief Network

[42] IEEE

Xplore

Book

Series

Q2 11 2017 China

6 PDRCNN: Precise

Phishing Detection with

Recurrent Convolutional

Neural Networks

[43] Web

of Sci-

ence

Journal Q2 34 2019 China

7 Ensemble one-vs-all

learning technique with

emphatic & rehearsal

training for phishing

email classification

using psychology

[44] Web

of Sci-

ence

Journal Q2 60 2018 United

States

8 Hybrid intelligent phish-

ing website prediction

using deep neural

networks with genetic

algorithm-based feature

selection and weighting

[45] Scopus Journal Q2 50 2019 Saudi

Arabia

9 A deep learning model

with hierarchical LSTMs

and supervised atten-

tion for anti-phishing

[46] Springer

link

Confe-

rence

publica-

tion

Q3 39 2018 Vietnam,

United

States
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10 A platform for automatic

identification of phish-

ing URLs in mobile text

messages

[47] Springer

Link

Journal Q3 15 2018 China

11 A.R.E.S: Automatic

rogue email spotter

crypt coyotes

[48] Springer

Link

Journal Q3 35 2018 India

12 CNN-based malicious

user detection in social

networks

[49] Springer

Link

Journal Q3 23 2018 South

Korea

13 Deep learning-based

phishing E-mail detec-

tion CEN-Deepspam

[19] Scopus Journal Q3 20 2018 India

14 Web phishing detection

using a deep learning

framework

[50] Web

of Sci-

ence

Journal Q3 79 2018 China,

USA

15 Phishing Analysis of

Websites Using Classi-

fication Techniques

[51] IEEE

Xplore

Book

Series

Q3 18 2019 Turkey

16 Phishing Detection Re-

search Based on LSTM

Recurrent Neural Net-

work

[52] Scopus Book

Series

Q3 19 2018 China

17 Deep belief network-

based detection and

categorization of mali-

cious URLs

[34] Scopus Journal Q3 52 2018 India

18 A Deep-Learning-

Driven Light-Weight

Phishing Detection

Sensor

[24] Web

of Sci-

ence

Journal Q3 26 2019 United

King-

dom

19 Comparison of Ensem-

ble Simple Feedforward

Neural Network and

Deep Learning Neural

Network on Phishing

Detection

[53] Scopus Confe-

rence

publica-

tion

Q3 23 2020 Malaysia

20 Parameter Setting for

Deep Neural Networks

Using Swarm Intel-

ligence on Phishing

Websites Classification

[54] Scopus Journal Q3 50 2019 Slovenia

21 Advanced Phishing Fil-

ter Using Autoencoder

and Denoising Autoen-

coder

[55] ACM Li-

brary

Confe-

rence

publica-

tion

NQ 27 2017 Morocco
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22 Hunting Malicious TLS

Certificates with Deep

Neural Networks

[56] ACM Li-

brary

Confe-

rence

publica-

tion

NQ 40 2018 Colombia

23 Swarm Intelligence Ap-

proaches for Parameter

Setting of Deep Learn-

ing Neural Network:

Case Study on Phishing

Websites Classification

[57] ACM Li-

brary

Confe-

rence

publica-

tion

NQ 34 2018 Slovenia

24 LSTM based self-

defending AI chatbot

providing anti-phishing

[58] ACM Li-

brary

Confe-

rence

publica-

tion

NQ 47 2018 India

25 Chrome Extension for

Malicious URLs detec-

tion in Social Media

Applications Using Ar-

tificial Neural Networks

and Long Short Term

Memory Networks

[59] IEEE

Xplore

Confe-

rence

publica-

tion

NQ 16 2018 India

26 Classification of URL

bitstreams using bag of

bytes

[60] IEEE

Xplore

Confe-

rence

publica-

tion

NQ 6 2018 Japan

27 Classifying phishing

URLs using recurrent

neural networks

[30] Scopus Confe-

rence

publica-

tion

NQ 6 2017 Colombia

28 Comparative Study of

the Detection of Mali-

cious URLs Using Shal-

low and Deep Networks

[61] Scopus Confe-

rence

publica-

tion

NQ 18 2018 India

29 Deep Learning for

Phishing Detection

[62] Scopus Confe-

rence

publica-

tion

NQ 22 2018 China

30 Defending Internet of

Things Against Mali-

cious Domain Names

using D-FENS

[63] Scopus Confe-

rence

publica-

tion

NQ 44 2018 United

States

31 Detecting Homoglyph

Attacks with a Siamese

Neural Network

[64] Scopus Confe-

rence

publica-

tion

NQ 26 2018 United

States
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32 Efficient Detection of

Phishing Attacks with

Hybrid Neural Networks

[65] Scopus Confe-

rence

publica-

tion

NQ 19 2019 China

33 Image-Based Phishing

Detection Using Trans-

fer Learning

[20] Scopus Confe-

rence

publica-

tion

NQ 20 2019 Thailand

34 DeepAnti-PhishNet: Ap-

plying deep neural net-

works for phishing email

detection

[66] Scopus Confe-

rence

publica-

tion

NQ 50 2018 India

35 Detecting Malicious

URLs Using a Deep

Learning Approach

Based on Stacked

Denoising Autoencoder

[67] Scopus Book

Series

NQ 32 2019 China

36 Deep learning based-

phishing attack detec-

tion

[68] Scopus Confe-

rence

publica-

tion

NQ 10 2019 India

37 Phishing URL detection

via CNN and attention-

based hierarchical RNN

[69] Scopus Confe-

rence

publica-

tion

NQ 30 2019 China

38 A cognitive support

for identifying phishing

websites using bi-LSTM

and RNN

[70] Scopus Confe-

rence

publica-

tion

NQ 15 2019 India

39 NeuralAS: Deep Word-

Based Spoofed URLs

Detection against

Strong Similar Samples

[71] Scopus Confe-

rence

publica-

tion

NQ 27 2019 China

40 Detecting phishing web-

sites through deep rein-

forcement learning

[72] Scopus Confe-

rence

publica-

tion

NQ 20 2019 United

States

41 Leverage temporal

convolutional network

for the representation

learning of URLs

[73] Scopus Confe-

rence

publica-

tion

NQ 20 2019 China

42 Deep learning frame-

work for cyber threat

situational awareness

based on email and

URL data analysis

[74] Scopus Book

Series

NQ 53 2019 India
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43 TypoWriter: A tool to

prevent typosquatting

[75] IEEE

Xplore

Confe-

rence

publica-

tion

NQ 30 2019 Bangladesh

44 Detecting Phishing Web

sites and Targets Based

on URLs and Web page

Links

[76] IEEE

Xplore

Confe-

rence

publica-

tion

NQ 20 2018 China

45 Deep Q-Learning

and Particle Swarm

Optimization for Bot

Detection in Online

Social Networks

[77] IEEE

Xplore

Confe-

rence

publica-

tion

NQ 19 2019 India

Publications by Scientific Database After scrutiny of the selected publications, Fig. 3.2

illustrates the number of publications by scientific database; as can be observed, the most

significant number of primary studies (23) were found in the Scopus database, followed

by six publications found in Web of Science, six articles found in IEEExplore, and four in

SpringerLink and ACM Library. In Taylor & Francis, one publication was found, but these

were already included within Web of Science.

Figure 3.2: Number of publications by scientific database

Publications by Type The number of primary studies for each publication type is illus-

trated in Fig. 3.3. As can be observed, most of the researchers’ contributions to this topic

have been published in conference proceedings.

References by Publications The level of significant contribution has been analyzed to
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Figure 3.3: Number of publications by publication type

ensure each publication’s quality and depth. This factor is about the number of references

cited in each primary study; this can be seen in Table 3.1, in the TOTAL REFS column. For

instance, the 51 references of the publication [25] is considerably higher than most of the

primary documents.

Publications by Year The analysis of Phishing solution proposals using Deep Learning

was considered since 2017, where three documents were found (see Fig. 3.4); in 2018, 21

documents were found; in 2019, 20 documents were found, and one document was found

in 2020. Although Deep Learning is not new, its use has increased in recent years because

two fundamental facts: (i) an enormous amount of data to analyze and (ii) more exceptional

hardware capabilities. Its use, initially oriented to recognizing images and sounds, now

extends to various fields, such as the early detection of Phishing attacks.

Publications by Country Figure 3.5 illustrates the countries that have contributed con-

siderably to solving Phishing problems through Deep Learning. As can be observed, China

has published 14 publications on the topic, India 12, followed by the United States with four,

Slovenia and Colombia with two, respectively.

3.1.2. Analysis of Primary Studies

Some schemes proposed for automated removal and related vulnerability analysis tech-

niques are discussed briefly in Table 3.2.
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Figure 3.4: Number of publications by publication year

Figure 3.5: Number of publications by country

Table 3.2: Main contribution of each primary study.

Ref. Phishing

objective

Applied technique Main features

[19] E-mail Hiransha et al. compare and reveal how

to distinguish Phishing e-mails from le-

gitimate e-mails. The dataset used had

two types of e-mail texts, one with a

header and the other without one.

This study evaluates the accuracy ob-

tained with different epochs.
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[20] Other Transfer learning is applied to classify

whether the page is similar to a legiti-

mate page. The novel image augmenta-

tion, which consists of sub-image iden-

tification and sub-image random place-

ment, is proposed to prepare data for

training the pre-trained CNN models.

The result revealed that the proposed

method works effectively when a Phish-

ing attack fakes a login page by scaling,

moving, or removing some components.

[24] Website Wei et al. proposed a multi-spatial con-

volutional neural network to enable an

accurate and efficient Phishing detection

sensor. Extensive evaluations were con-

ducted to show the performance of the

proposed method. The true detection

rate of the proposed method can achieve

86.63%.

A Raspberry Pi prototype was also im-

plemented to enable real-time Phish-

ing URL detection. With the proposed

method, the execution time is reduced by

30%, and real-time detection is realized

in a resource-constrained device.

[25] E-mail Fang et al. first analyzed the structure

of the e-mail, which is divided into two

parts, header, and body, and then went

through multilevel embedding. Next,

based on an improved recurrent CNN

model with multilevel vectors and atten-

tion mechanisms, the authors propose a

Phishing e-mail detection model named

THEMIS.

THEMIS is used to simultaneously

model e-mails at the e-mail header, the

e-mail body, the character level, and the

word level.

[30] Website A critical comparative evaluation is car-

ried out. In particular, three techniques

are evaluated: Traditional ML tech-

niques, traditional ML techniques with

Feature Selection, and recurrent neural

networks (RNN).

This study determined that RNN is the

best algorithm with 98.7% over Ran-

dom Forest and Random Forest Classi-

fier with Feature Selection.

[34] Website Selvaganapathy et al. proposed a

methodology for detecting and catego-

rizing malicious URLs using stacked re-

stricted Boltzmann machines for feature

selection with deep neural networks for

binary classification.

The results demonstrate that Deep

Learning-based feature selection and

classification techniques can train the

network quickly and detect reduced false

positives.

[39] Website The authors propose a multidimensional

feature Phishing detection approach

based on a Deep Learning method. Fi-

nally, a quick classification result of Deep

Learning into multidimensional features.

First, character sequence features of the

given URL are extracted and used for

quick classification by Deep Learning,

and this step does not require third-

party assistance or any prior knowledge

about Phishing. Next, they combine URL

statistics, web page code, and text fea-

tures.
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[40] Website The authors compared long short-term

memory (LSTM) and the hybrid ap-

proach of LSTM with CNN.

The hybrid approach produces a bet-

ter result than the pure LSTM approach,

with 99.95% accuracy. This proves the

hybrid approach is more accurate but

very close to pure LSTM.

[41] Other / Im-

ages

The authors intend to research whether

Deep Learning methodologies for image

classification can enable more practical

and effective solutions. The main aim is

Deep Learning, which recognizes false

images in web browsers.

Experimental evaluation of a convolu-

tional neural network resulted in high

ranking accuracy for specific sets of 15

websites.

[42] Website This publication aims to use Borderline-

Smote to solve the imbalanced data

problem in the training of Phishing de-

tection.

In this work, three features of a web

page are used: URL features, page fea-

tures, and image features.

[43] Website Wang et al. propose a model called

PDRCNN, ensuring that this RNN- and

CNN-based algorithm can detect the

URL of a Phishing Website without re-

lying on third-party data and search en-

gines.

The model is very accurate compared to

others. However, the disadvantage is its

training time.

[45] Website The publication of Ali and Ahmed sug-

gests hybrid intelligent Phishing website

prediction approaches, which primarily

focus on applying the enormous poten-

tial of DNNs together with consideration

of genetic algorithm (GA) based feature

selection and weighting methods to the

problem of predicting Phishing websites.

Hence, feature selection can contribute

reducing the number of features and

eliminating irrelevant and redundant fea-

tures.

[46] E-mail Nguyen et al. present a framework with

hierarchical LSTM and attention mech-

anisms to simultaneously model the e-

mails at the word and sentence levels.

Also, it optimizes the training method of

the model in combination with the char-

acteristics of RNN.

The results show that this model reaches

an accuracy of 99.1%, which is higher

than that of other models of neural net-

work algorithms.

[47] Website The authors analyze text messages on

social networks to propose a Phishing

URL recognition model based on neural

networks and Deep Learning.

For this, a layered analysis is proposed,

first using blacklists, second, shallow

ML, and finally, Deep Learning LSTM.

[48] E-mail Vinayakumar et al. aim to show the abil-

ities of word embedding to solve issues

related to cybersecurity use cases. This

work demonstrates the possibilities of

amalgamating techniques from text an-

alytics and Deep Learning for cyberse-

curity use cases.

Furthermore, this work attempts to

use a CNN/RNN/multi-layer perceptron

(MLP) network with Word2vec embed-

ding on Phishing e-mail corpus, where

Word2vec helps capture the synaptic

and semantic similarity of Phishing and

legitimate e-mails in an e-mail corpus.
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[49] Other Hong et al. aimed to discover smish-

ing attacks. To do this, images and

texts of the messages are evaluated to-

gether and then passed on to a CNN.

Hence, users with many posts are clas-

sified as certified users, while those with

few posts are classified as unclassified.

A smishing attack is a phishing attack

on chat messages from social networks,

called social network services (SNS)

messages. An important thing to high-

light in this work is that it is not about

finding the wrong Phishing users but

rather guaranteeing the right users, ac-

cording to their interests, based on the

analysis of text and images of the users’

SNS.

[50] Website/

Images

Yi et al., use a metric learned in strings

rendered as images instead of taking ad-

vantage of the similarity based on swap-

ping and deleting characters in the URL

address.

Later, CNN learns features optimized to

detect the visual similarity of the ren-

dered strings.

[51] Website Aksu et al. compared the following al-

gorithms: feed-forward neural networks,

stacked auto-encoders, support vector

machines, and decision trees.

It is concluded that stacked autoen-

coders gave the best result among

them. The accuracy percentage ob-

tained (84%) is low, but this is related to

the amount of small data entered, which

was 2000.

[52] Website Chen et al. designed a detection system

for Phishing websites using LSTM RNN.

Confusion of URLs is used to identify the

different suspicious parts of the URLs.

[53] E-mail This research used two types of neural

networks: the Feedforward Set Neural

Network (EFFNN) and the Deep Learn-

ing Neural Network (DLNN).

The results showed that EFFNN is

slightly better than DLNN.

[54] Website The authors address the parameter set-

ting problem for a deep neural network

utilizing swarm intelligence algorithms.

In these experiments, authors applied

the proposed method variants to the

classification task for distinguishing be-

tween Phishing and legitimate websites.

The predictive performance of the result-

ing deep neural networks, trained us-

ing the parameter values as optimized

with the help of the proposed swarm

intelligence-based methods, improved

significantly compared to the manually

tuned neural network.

[55] Website A dual filter proposes a phishing detec-

tion architecture: one is for analyzing

the textual content of the e-mail, and the

second is for analyzing the suspect URL.

The algorithm proposed in this publi-

cation aims to accelerate the training

speed by merely corrupting the URL

characteristics through Auto-encoder

and then reconstructing those charac-

teristics through Denoise Auto-encoder.

[56] Other The authors propose a method for iden-

tifying malicious use of web certificates

using deep neural networks. This sys-

tem uses the content of TLS certificates

to successfully identify legitimate certifi-

cates and malicious patterns used by at-

tackers.

An algorithm is proposed to detect when

a Transport Layer Security (TLS) proto-

col has been violated.
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[57] Website The results of utilizing deep neural net-

works heavily depend on setting different

learning parameters. To improve this,

a swarm intelligence-based approach is

proposed for the parameter setting of the

Deep Learning neural network.

Applying the proposed approach to clas-

sifying Phishing websites makes it possi-

ble to improve their detection compared

to existing algorithms.

[58] E-mail It is one of the few aimed at coun-

terattacking spammers. For this, after

the end-user reports possible spam us-

ing a plugin, authors’ servers create a

large group of URLs, employing chat-

bots, which respond automatically to the

spammers.

The objective of the counterattack is to

disable the services of the attackers.

[59] Website A tool is proposed to be deployed as

a Chrome extension to overcome the

problem of malicious URLs victimizing

users. This tool analyses URLs and

classifies them using two different neu-

ral networks, Artificial Neural Networks

(ANN) and LSTM networks, a specific

type of RNN. Later, it was observed

that the training time is considerably less

than that of the existing systems.

It is observed that the training time is

considerably less than that of the exist-

ing systems. It can easily be deployed to

devices with varied hardware specifica-

tions.

[60] Website In this work, a detection method based

on LSTM was implemented. This study

aims to solve the difficulty of other meth-

ods to extract the best features from the

data.

Using the bag of bytes technique, a me-

chanical approach is applied to generate

feature vectors from URL strings. This

publication demonstrates that this pre-

diction method is valid and can solve

problems that traditional methods can-

not.

[61] Website It presents a comparative study among

traditional ML techniques with logistic

regression using bigram, Deep Learn-

ing techniques like CNN, and CNN long

short-term memory (CNN-LSTM) as ar-

chitectures used to detect malicious

URLs.

On comparison, CNN-LSTM gave the

best accuracy of about 98%. In this pub-

lication, the authors claim that character-

level URL embedding with Deep Learn-

ing layers can be a powerful method for

automatic feature extraction.

[62] Website The solution proposed by Yao et al. is

based on the evaluation of the original

logos of the web pages through Deep

Learning. The legitimacy of the URL in

the two-dimensional code is evaluated

using a legal logo embedded in the two-

dimensional code.

This publication uses the Faster R-CNN

method for small-scale identification and

measures its impact on the FlickrLogos-

32 dataset.
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[63] Other Spaulding et al. present a system

called D-FENS (DNS Filtering & Extrac-

tion Network System), which works in

tandem with blacklists and features a live

DNS server and binary classifier to pre-

dict unreported malicious domain names

accurately.

The D-FENS classifier model operates

at the character level and leverages

Deep Learning architectures such as

CNN and LSTM for real-time classifica-

tion, which forgoes the need for feature

engineering typically associated with tra-

ditional ML approaches.

[64] Website/

Images

This publication presents a fundamen-

tally different solution to homoglyph

(name spoofing) attack, this problem us-

ing a Siamese convolutional neural net-

work (CNN). This technique uses strings

rendered as images.

The trained model converts thousands

of potentially targeted processor domain

names to feature vectors. This technique

outperforms similar works, improving its

detection by 13% to 15%.

[65] Website Zhang et al. pass the URL strings

through Autoencoder and then through

CNN. Autoencoder is adopted to recon-

struct features that explicitly enhance the

correlation relationship among the fea-

tures.

It is concluded that a hybrid approach

is more accurate than a traditional ap-

proach.

[66] E-mail Vinayakumar et al. use word embed-

ding and Neural Bag-of-grams with Deep

Learning methods such as CNN, RNN,

LSTM, and MLP to detect Phishing e-

mail, i.e., word embedding is evaluated

with each technique.

It concludes that word embedding with

Deep Learning, specifically LSTM, is ap-

propriate for the anti-phishing task.

[67] Website Yan et al. employed a stacked denoising

auto-encoder (SDA) network to analyze

URLs and extract features automatically.

Logistic regression is implemented to

detect malicious and benign URLs, gen-

erating detection models without manual

feature engineering.

[68] Website Sumathi and Sujatha first obtained the

most popular datasets, such as Ham,

Phishing Corpus, and Phishload. Then,

30 features are obtained from these

datasets to run Traditional ML and Deep

Learning algorithms.

Finally, it is verified that the Deep Learn-

ing technique is much more accurate

than ML.

[69] Website Huang et al. propose using a hybrid ap-

proach framework, which uses a detec-

tion model based on the CNN character

level and a detection model based on the

RNN word level.

This fusion results in a significant im-

provement in the accuracy of Phishing

detection.
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[70] Website This research proposes an intellectual

structure that uses information highlights

joined with semantic content and picture

highlights to identify Phishing sites. The

structure utilizes the ground-breaking

profound learning system of Bidirec-

tional LSTM RNN for Phishing recogni-

tion and consolidates it with Convolu-

tion Networks (CNN) for semantic pic-

ture highlight extraction.

The framework can be rediscovered

from recently identified websites and

tracked in a query database. Moreover,

the area learning put away in the lookup

database will help configuration design-

ers recognize new Phishing systems as

they develop.

[71] Website They propose Neural Anti-Spoofing

(NeuralAS), in which contextual informa-

tion within URL word sequences is used

to detect malicious URLs.

The main idea is to segment URLs into

sequences of words and use two-way

RNN to carry out the detection with high

abstraction characteristics.

[72] Website Chatterjee and Namin introduce a re-

inforcement learning (RL) based frame-

work for automated URL-based Phishing

detection.

This Deep Learning implementation of

the RL algorithm is a complementary ap-

proach to the existing Phishing detection

methodologies to make the system dy-

namic.

[73] Website The authors propose URL2vec to ex-

tract URLs’ structural and lexical fea-

tures and apply the temporal convolu-

tional network for the URL classification

task.

They compare the proposed solution

with CNN, LSTM, and a hybrid CLSTM.

[74] Website The authors propose Deep-Spam-

Phish-Net (DSPN), a Deep Learning-

based Spam and Phishing detection

framework. This framework contains

two sub-modules. The first submodule

detects Spam and Phishing Emails, and

the second submodule detects Spam

and Phishing URLs.

The framework can collect many security

logs and extract optimal features to dis-

tinguish between benign and malignant

activities.

[75] Website Regular users often mistype the URL of

a web page (e.g., gooogle). This error is

known as Typosquatting. Thus, Ahmad

et al. propose the use of a tool called

TypoWriter.

To create this tool, a set of n-grams

is first generated (from original web

pages), which are then used to train and

test them using an RNN algorithm.

[76] Website It is proposed that a different approach

based on Deep Learning be used, called

Deep Forest. For their study, authors

first select two kinds of features: URL-

based and web page-based.

Next, these features are entered into dif-

ferent ML traditional algorithms and the

Deep Forest algorithm for execution.
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[77] Website The idea of using Particle Swarm Opti-

mization (PSO), is to speed up the up-

date of the agents installed in the client

computers, by external bots, and thus,

speed up the early detection of new

Phishing attacks of Social Bots.

Social Bot is a software program that is

widely used on Twitter, the social net-

work, to generate fake accounts, spam

URLs, and spam emails. For this rea-

son, Lingam et al. propose to use an al-

gorithm based on Deep Learning called

DQL-PSO.

3.1.3. Results and Discussion

The following section summarizes the Deep Learning techniques and sub-techniques ap-

plied in the selected publications. Then, we analyze the phishing attacks handled by these

techniques and sub-techniques identified before. Also, we analyze the amount of data used

in each study and the accuracy of the proposed solutions. We summarize the data reposito-

ries used by publications (benign and malign web pages) that would be useful for upcoming

studies. Finally, we present the validity of the research that was conducted.

Synthesis of Techniques and Sub-techniques Applied by Publication

The Deep Learning techniques applied in each publication are detailed in Table 3.3. The

technique most used in primary studies was CNN, which was used 22 times, followed by

RNN, which was used 20 times. On the other hand, SPN was not used. In addition to the

Deep Learning techniques applied in Table 3.3, and considering that these techniques may

have several sub-techniques, it is essential to know which sub-techniques were used. This

can also be seen in Table 3.3. Also, it is highlighted that most primary studies used the

sub-technique LSTM. Sub-techniques ESN, DBM, RMB, GAN, and DRBM are not shown in

Table 3.3 because no primary studies were using these sub-techniques.

34



Table 3.3: Techniques and sub-techniques of Deep Learning applied by article.

publication
Techniques | Sub-Techniques | Data

Accuracy
AE RNN BM DNN CNN SAE DAE SDAE LSTM DBN ReNN (Records)

[19] X 4.583 96.80%

[20] X ND ND

[24] X X 1.523.966 86.63%

[25] X X X X 8.787 99.85%

[30] X X 2.000.000 98.70%

[34] X X X ND ND

[39] X X X 2.010.779 98.99%

[40] X X X 141.8 99.70%

[41] X 1.500 99.00%

[42] X 2.200 96.50%

[43] X X X 500 97.00%

[44] X ND 95.50%

[45] X ND ND

[46] X X ND ND

[47] X 31.087 98.20%

[48] X X 18.778 95.20%

[49] X 16.000 79.93%

[50] X X ND ND

[51] X X ND 84.00%

[52] X X 4.000 99.14%

[53] X X 4.000 99.14%

[54] 159.710 96.65%

[55] X X ND ND

[56] X X 1.000.000 88.64%

[57] X X ND ND

[58] X X ND ND

[59] X X 2.000.000 96.89%

[60] X 121.616 95.17%

[61] X X ND 98.00%

[62] X ND 98.60%

[63] X X X ND 95.00%

[64] X ND 97.68%

[65] X X ND 99.00%

[66] X X X 18.778 99.10%

[67] X 4.000.000 98.52%

[68] X 15.509 92.00%

[69] X X 4.800.000 97.90%

[70] X X X ND 96.40%

[71] X X 347.949 98.40%

[72] X 73.575 90.10%

[73] X X 417.851 95.97%

[74] X X X 1.060.480 99.50%

[75] X X 223.5Gb ND
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[76] X 6.197 93.98%

[77] 454.649 95.00%

TOTAL 3 20 2 6 22 1 1 1 21 3 1

Synthesis of Phishing Attacks by Target

In our research, it has been verified that the two most common ways in which phishers

attempt to attack users are through websites and emails. For this reason, it was possible to

classify the primary studies according to attackers’ target on websites, emails, and others

(see Table 3.2). In the primary studies, proposals that applied a hybrid approach (i.e., they

were oriented to solve problems of a web page, email, or combinations of them) were also

found. As can be seen in Table 3.2, the most significant number of solution proposals focus

on web page features (31), well above the proposals oriented to email features (7), leaving

in last place proposals that use different approaches (7).

Phishing Web Pages The most common attack technique for conducting different types

of attacks is through websites, specifically rogue websites [40]. Through a rogue website,

an attacker can display content not requested by the user, and through deception, the at-

tacker can steal personal information or cause financial fraud. Most documents focused on

solutions to Phishing attacks using web pages, as seen in Table 3.2.

Phishing e-Mails The second most common technique for attacking end-users is through

deceptive e-mails. The purest form of this type of attack is in which the phisher asks for the

user’s sensitive data in exchange for giving him some benefit. Another more elaborated

type of Phishing e-mail attack is one in which a Phishing URL is included in the email body,

thus seeking to redirect the user to a Phishing website (see Table 3.2). Our study found

that nowadays, practically all works that aim to fight e-mail Phishing use e-mail to hook and

redirect users to a Phishing website.

Other Techniques Table 3.2 indicates other techniques besides Phishing web pages

and Phishing emails to face Phishing attacks. In the past, most Phishing attacks were made

purely by email, such as an email in which users received a message that they had won a

lottery prize and that the user had to send confidential information in response to the email

to receive their prize. Now, users familiar with online payment methods and transactions

avoid sending confidential data in emails. However, they are more confident about sending

them through a web page because they are familiar with these electronic transactions. On

the other hand, online programs can now make an identical copy of an original web page in
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seconds. In this way, the primary role that emails play today in Phishing attacks is to offer

a hook through a hyperlink to a Phishing website, making the user believe it is the link to a

legitimate page.

Data and Accuracy by Publication

Table 3.3 depicts that the data used in each publication is variable. It ranges from 1.500

to 4.500.000 records. However, it is known that while more data is used for training in the

application of Deep Learning techniques, the precision in detecting a threat increases.

As a premise, we know that Deep Learning algorithms produce more accurate results

than traditional ML algorithms because the accuracy of Deep Learning algorithms increases

depending on the amount of data entered to train the algorithm. These data entered in

Deep Learning are commonly six digits high. That is why more credit should be given to

the analyzed works that meet at least two conditions: (i) they exceed 98% accuracy, and (ii)

their algorithms have been fed with at least 500,000 records. As a result, we note that the

publications that meet these two properties are [30], [39], [43], [59], [67]. In particular, the

solutions presented in [39], [43] are hybrids, proving that hybrid approaches always produce

greater accuracy.

Data Repositories Used by Publication

For both training and testing Deep Learning techniques in the early detection of Phishing

attacks, a large amount of data is commonly needed, in the order of 106 records. These

data must be from both, malign web pages/emails and benign web pages/emails. Table 3.4

indicates the repositories of data used in each publication. The documents that are not

included were those that did not specify which repository they used for their study.

The most used repository for collecting Phishing URLs was Phishtank, used in 23 of

the 45 studies, while the most used for finding legitimate pages was Alexa in 13 of the 45

studies. Even propietary repositories can be created to collect phishing URLs or emails.

However, this is impractical due to the large number of records required to train and test the

Deep Learning algorithms.

37



Table 3.4: Data repositories used by each publication.

Ref.
Malign web pages Benign web pages Total data
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[20] X ND

[24] X X X 1,523,966

[25] X 8,787

[30] X X 2,000,000

[34] X ND

[39] X X 2,010,779

[40] X X X X X X 141,800

[41] X 1,500

[42] X X 2,200

[43] X X 500,000

[45] X X X X ND

[49] X 16,000

[51] X ND

[52] X 4,000

[53] X 4,000

[54] X X X X X 159,710

[55] X ND

[56] X 1,000,000

[57] X X ND

[58] X ND

[59] X X 2,000,000

[60] X 121,616

[61] X X X ND

[63] X X X X X ND

[65] X X X X ND

[67] X X X 4,000,000

[68] X 15,509

[69] X X X 4,800,000

[71] X X 347,949

[72] X 73,575

[74] X X X X X 1,060,480

[76] X 6,197

Total 22 5 5 2 1 1 2 13 6 6 3 1 2
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3.1.4. Open Challenges and Research Directions

Creating a framework that initially allows detecting if an attack is carried out utilizing web

pages, e-mails, or another approach is encouraged; after doing so, collect the best char-

acteristics, depending on the kind of threat, and deliver these characteristics to the Deep

Learning algorithm that better fits its detection. Multiple studies have been conducted to

detect Phishing, mainly on personal computers and servers; however, currently, the most

used devices are mobile phones running Android or Apple operating systems. Therefore,

other authors are encouraged to make a tool that fits these devices’ hardware and software

characteristics.

It would be essential to make an algorithm that adopts the best of the three main tech-

niques of Phishing detection, that is, first, to evaluate if a threat is in a blacklist, second,

to evaluate that threat employing a traditional ML algorithm, and finally, if it is not yet de-

tected, to determine if that threat exists through a Deep Learning algorithm. Although deep

learning surpasses the accuracy of traditional ML algorithms, this technique succumbs to

the training required for this algorithm. Thus, future work is planned to make a model that

accelerates the Deep Learning algorithms’ training time. We also propose implementing an

application to detect and warn the user, almost precisely and quickly simultaneously, if a

page is phishing or not.

Commonly, phishers use domain names generated by Domain Generation Algorithms

(DGAs), but to date, these domains have already been detected by different early detection

tools. For this reason, Peck et al. [92] propose Charbot, a tool that allows the creation

of fraudulent domain names without them being detected. We encourage researchers to

develop a novel tool from domain names generated by d-grams, which will train a CNN

algorithm that can combat these attacks.

We did not find any work that used deep learning and NLP simultaneously to detect

phishing attacks. At that point, we set out to fill this gap in the research, creating a model

that not only allows data to be entered into deep learning algorithms but also exploits the

syntax and semantics of that data.

3.2. Literature Review of Phishing, Deep Learning, and NLP

Before conducting a study on the primary articles, we first conducted a meta-review of SLRs,

literature reviews, and surveys from the last three years in the general field of Phishing
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detection and Deep Learning to identify whether any studies have been identified focusing

on the use of NLP to analyze the textual content of suspicious web pages.

The authors of the SLR [93] conducted an in-depth study on 100 articles to mitigate

Phishing email attacks using NLP mixed with traditional ML or DL algorithms. The study

describes that a high percentage of 38% of articles are oriented toward using the email

body to detect attacks. It is striking that there is not a relevant percentage of detection of

Phishing attacks based on the content of web pages.

Survey [94] comprehensively reviews all aspects surrounding Phishing attacks and their

countermeasures, including DL techniques. It even references three solutions [95]–[97] that

use text analysis of web pages to detect attacks. However, these solutions do not use NLP

to detect Phishing attacks.

Next, once the search for information was conducted in secondary studies where we

could not find articles proposing a solution similar to ours, we decided to do a more in-depth

search, this time only on primary articles. To find articles related to this topic, we used

the methodology proposed by Barbara Kitchenham [38] in a summarized way to perform

an SLR. To follow this methodology, we first designed the research question; next, we ex-

plored the scientific databases in which we entered our search string based on the research

question, applied the inclusion and exclusion criteria, applied the quality criteria, and finally,

extracted the results.

3.2.1. Research Methodology

Research Question

Our main objective is to develop a model that allows us to detect Phishing attacks with

high accuracy based on web pages’ text content without wasting the text’s intrinsic richness

[98]. To achieve this, we used NLP; next, this dataset feeds a DL algorithm that classifies

whether the data entered are from a Phishing or ham page (when a web page is benign or

not Phishing). Based on this, the research question is defined as follows:

• Which primary studies give a solution to detect Phishing attacks using NLP and

DL algorithms?

Scientific Databases

We perform the search in the following scientific databases:
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• Elsevier;

• Scopus;

• Web of Science;

• IEEE Digital Xplore;

• ACM Digital Library;

• Springer Link.

Search String

This review aimed to find all primary studies on Phishing attack detection methods combining

NLP and DL. Thus, the following string was entered into each scientific database:

Phishing and (“Natural Language Processing” or NLP) and (“Deep Learning” or LSTM

or BiLSTM or GRU or BiGRU)

Inclusion and Exclusion Criteria

The years we performed our search were 2017 to 2023 because this is when there has been

the most movement in the DL algorithms and NLP exploitation. We only included articles

in English. Furthermore, we only included primary articles that offer a concrete solution for

detecting Phishing attacks. We searched for articles in Open Access Journals.

Quality Evaluation of Research

For the quality criteria of the search, it was determined that the review would only be per-

formed in primary works that apply the analysis of the text contained in web pages, discard-

ing other methods, such as URL analysis, because they were not our object of study. In

addition, as described above, the review was performed on reputable scientific databases

and considered only articles in Computer Science or similar.

3.2.2. Analysis of Primary Studies

Although the articles [99]–[103] of Table 3.5 implement DL and NLP techniques, all of them

focus their research on analyzing only the content of the URL address of the web pages

instead of the content of the web pages.
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The article of [99] is not oriented toward detecting Phishing on web pages and is not

based on detecting Phishing in the body of emails, but the approach to giving scores to

the words is interesting. This score depends on two rankings obtained from these words,

according to the ranking in which they appear in a Phishing email, Phishing Rank(w), or in

legitimate emails, Legitimate Rank(w). For example, in this study, the following 20 words

obtained the highest score: account 21.45%, it is 15.00%, click 14.11%, mailbox 9.59%,

Cornell 9.58%, link 9.37%, verify 8.83%, customer 8.63%, access 8.50%, reserved 8.03%,

dear 7.85%, log 7.70%, accounts 7.61%, paypal 7.52%, complete 7.37%, service 7.15%,

protecting 6.95%, secure 6.94%, mail 6.70%, and clicking 6.63%. The hierarchical LSTM

algorithm was used in this model.

The authors of [100] performed an algorithm using CNN self-attention. The proposed

algorithm obtained an accuracy of 95.6%, even better than the accuracy obtained by the

hybrid CNN-LSTM approach. In contrast to our proposal, this work did not analyze words,

only URLs.

In [101], the authors used three steps to detect whether a page is Phishing. First, they

extracted the lexical and host-based properties of a website. Second, they combined URL

features, NLP, and host-based properties to train Machine Learning and DL models. NLP

was only applied to the URL to detect if there was a similar word in that URL but not identical

to a known domain. Furthermore, a single DL algorithm, the deep neural network, was used,

resulting in an accuracy of 96.6%. The article did not analyze the content of the web pages.

This study obtained an accuracy of 96.60%, although it did not indicate which DL algorithm

was used.

The work of [102] is interesting because it included NLP and two DL algorithms (LSTM

and CNN) to build a hybrid model to detect Phishing attacks. Still, in contrast to our work,

this one is oriented toward something other than analyzing the web pages’ contents but the

URLs and images of the web pages.

An empirical study was performed in the model proposed by [104] to compare and de-

termine which algorithm is better at detecting Phishing attacks: LSTM, CNN, or LSTM com-

bined with CNN. It was determined that CNN was superior to the others in this experiment.

On the other hand, the web pages’ bodies were not analyzed, but the URLs of each website

were. In this study, NLP was not used for pre-processing.

In [103], the application of NLP in detecting web pages was studied. For this, traditional

ML and DL models were applied. The Deep Learning algorithms used were LSMT, GRU,

and BiRNN. In this study, the analysis was performed only on URLs and not on the text of
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the web pages.

In article [105], the authors proposed a model combining long-term recurrent convolu-

tional and graph convolutional network algorithms to detect Phishing attacks on URL and

HTML content. However, they did not use NLP.

An experiment to detect Phishing attacks using four DL algorithms like ours is [106]. The

authors performed an intensive empirical study to determine which of the four algorithms

detected a web page by its URL. They set multiple parameter values before running each

DL algorithm. This article did not use NLP nor analyze the web pages’ textual content. It

was concluded that no algorithm produced the best measures on all performance metrics.

3.2.3. Results and Discussion

After applying the search string, we identified 28 articles (ten from Web of Science, nine

from Scopus, five from Elsevier, and four from IEEE Explore), eliminating the identical re-

sults between the scientific databases, resulting in twenty articles. From the analysis of the

20 articles, the two main vectors of Phishing attacks that stood out were those carried out

through Phishing emails or web pages. However, this research focuses on the text con-

tained in the web pages; for this reason, 13 articles whose solutions were oriented toward

Phishing emails were not considered. Finally, once the quality, inclusion, and exclusion cri-

teria were applied, the seven articles presented in Table 3.5 were selected as the inputs for

the present study. As we can see, published research in this common area still needs to

be developed.

Table 3.5: Related research.

Article DL NLP Web Page Text

[99] Yes Yes No

[100] Yes Yes No

[101] Yes Yes No

[102] Yes Yes No

[103] Yes Yes No

[105] Yes No Yes

[104] Yes No No

Our model Yes Yes Yes
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3.2.4. Review of latest studies

At the end of our work, we conducted a final literature review to determine how this research

will be positioned in the current state of the art. Thus, applying the research methodology,

inclusion, exclusion, and quality criteria, the solutions similar to ours, which currently mitigate

Phishing attacks through deep learning and NLP, are shown in Table 3.6.

Table 3.6: Latest Studies of Phishing, deep learning, and NLP.

Ref. Title Year

[107] Towards a Hybrid Security Framework for Phishing

Awareness Education and Defense

2024

[108] Uncovering SMS spam in swahili text using deep learning

approaches

2024

[109] Life-long phishing attack detection using continual learning 2023

[110] Cloud-based email phishing attack using machine and

deep learning algorithm

2023

[111] A Deep learning-based innovative technique for phishing

detection in modern security with uniform resource

locators

2023

[112] Attention-based 1D CNN-BILSTM hybrid model enhanced

with FastText word embedding for Korean voice phishing

detection

2023

[113] Hybrid features by combining visual and text information to

improve spam filtering performance

2022

[114] An effective detection approach for phishing websites

using URL and HTML features

2022

The model in [107] combines phishing detection and the generation of phishing content

for user education, using AI and deep learning techniques, which integrates the detection

of phishing attacks and end-user education, using advanced language and deep learning

architectures, improving defense effectiveness.

In [108], the model combines several deep learning architectures (CNN, LSTM, etc.) and

categorizes SMS messages into spam and ham. It shows high accuracy, reducing the need

for manual engineering of characteristics and allowing more autonomous learning, improving
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efficiency and accuracy in classifying SMS messages.

In [113], the main features include a hybrid feature set and the use of an XGBoost clas-

sifier for phishing detection, which is improved by using a hybrid feature set that provides

URL character sequences, hyperlink information, and features based on textual content,

overcoming the limitations of previous URL-only approaches.

In [109], the main features include continuous learning, which allows the model to adapt

to new threats without forgetting previous knowledge. This and advanced embedding tech-

niques reduce performance drops in evolving phishing attack scenarios.

In [110], key features include feature extraction using NLP, multiple classification algo-

rithms (SVM, NB, LSTM), and creating a modified dataset to improve phishing detection.

These improvements improve accuracy and execution time compared to other ranking re-

ports, providing a more robust ranking report.

In [111], the main features include the use of a combination of deep learning techniques

(CNN and LSTM) and the consideration of multiple attributes of URLs to improve the accu-

racy of phishing detection, which is improved by considering user behavior and emerging

threats, providing a more effective phishing detection strategy compared to previous models

that only used textual features.

In [112], the main features include using a hybrid CNN and BiLSTM model, integrating

FastText for embedding, and implementing an attention mechanism to improve generaliza-

tion. This enhances the generalization and robustness of the model by helping to reduce

overfitting compared to previous models that might have had extraordinary performance due

to this issue.

In [113], it includes using three sub-models to extract text and image features and a

classifier model that combines these features to improve spam detection. Combining text

and image features allows for more accurate classification of spam images, overcoming the

limitations of previous methods that only considered text.

Only four of the articles in Table 3.6 [107], [109], [111], and [114] focus on detecting

phishing attacks on web pages, and just one [114] detect attacks in the content of web

pages like ours. On the other hand, articles [109], [110], and [113] focus on detecting these

attacks on emails. The model of article [109] is hybrid; it applies to web pages and emails.

The articles [108] and [112] select different approaches. In [108], the detection is made on

the SMS messages; in [112], the detection is carried out on the voice of an interlocutor on

the telephone line.

Article [114], the most related to our proposal, proposes a phishing attack detection solu-
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tion based on several features, including the HTML content of a web page using embedding

with the GloVe dictionary. The main difference between our proposal and that of [114] is

that in [114], the algorithm is applied to the HTML code and not only to the web page’s text.

That is why it is necessary to conduct a study that evaluates how much the accuracy varies

between feeding an algorithm with HTML code and text. This study is carried out in Chapter

4.

3.3. Chapter Summary

In the first part of this chapter, a Literature Review was carried out to understand how deep

learning is used to combat phishing attacks. In the second part, a Literature Review was

conducted to understand and locate our research on mitigating attacks with NLP and deep

learning.

To carry out the first literature review, information was searched in five scientific digital

databases, which resulted in 180 articles found initially. From these publications, once the

inclusion and exclusion criteria were applied, only 45 primary studies were selected as the

material for our research. It can also be noted that the most significant number of solutions is

aimed at the largest number of attack vectors, the Phishing web pages, followed by Phishing

e-mails.

In the 45 primary studies selected, several Deep Learning techniques are used to detect

Phishing attacks; CNN leads the solutions; this technique is applied 22 times, followed by

RNN, which is applied 20 times. On the other hand, the sub-technique LSTM of RNN is the

sub-technique most used (21 times). To use the studied techniques, and as a characteristic

of Deep Learning, it is necessary to have an enormous amount of data because the higher

the amount of data, the higher the precision of the technique. To this end, it was determined

that the site where most Phishing page information can be used is phishtank.com. On the

other hand, to train the algorithms, an enormous number of benign pages is necessary;

hence, the most commonly used site for these benign pages is alexa.com.

Among the reviewed datasets, phishload.com stands out because it contains the HTML

code of Phishing and benign pages. For this reason, we selected this dataset that also fits

as a supervised and binary algorithm to continue with our research.

The techniques most used in mitigating this type of attack are the Recurrent Neural

Network (RNN) and Convolutional Neural Network (CNN), among other findings. From now

on, we will use Deep Learning algorithms such as RNN and CNN and some of their sub-
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algorithms.

In this first part, we did not find studies that combined deep learning and NLP to mitigate

Phishing attacks; therefore, this path was chosen because the better the data is purified, the

better the model’s accuracy.

In the second part of this chapter, another literature review was carried out to determine

how our research is located in this rapidly growing discipline of artificial intelligence. Thus,

our research is well-placed compared to the current state of the art. Only one article [114]

is similar to the one in this thesis, which complies with phishing detection with deep learning

and NLP in the text obtained from web pages using word embedding.
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Chapter 4

Phishing Detection on HTML Code vs

Text

Contents

4.1 HTML vs Text Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Results of the execution of deep learning algorithms . . . . . . . . . . . . . 54

4.4 Comparison of Deep Learning Algorithms . . . . . . . . . . . . . . . . . . . 54

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

As concluded in the literature review, several proposals use deep learning with HTML

to detect phishing attacks, and almost none perform detection on text obtained from web

pages. On the other hand, it is necessary to determine which deep learning algorithm (DNN,

RNN, CNN, and RCNN) is the best suited to solve this type of detection problem. This is

why this study is conducted to evaluate metrics obtained from HTML and text, combined

with DNN, RNN, CNN, and RCNN.

4.1. HTML vs Text Hypothesis

It was hypothesized in this chapter that it does not matter whether deep learning algorithms

are fed with HTML code or with text obtained from that HTML code; that is, the precision

does not vary significantly between text and HTML code. This hypothesis arose from our

observation of the detection of phishing attacks by email [6], in which a similar study is

48



carried out but focused on the body of the emails. In [6], the body of the email containing

words such as won, money, and credit card, among others, was detected for detection.

The literature reviewed in chapter 3 contains several solutions that apply Deep Learning

to HTML code or text obtained from that HTML code; however, the literature does not do

a comparative study to detect phishing attacks between HTML codes and the text obtained

from web pages. Therefore, this chapter presents a comparative analysis of deep learning

algorithms to determine if it is more effective to detect an attack, either using HTML code or

the text obtained from this code. Hence, the Deep Neural Network (DNN), Recurrent Neural

Network (RNN), Convolutional Neural Network (CNN), and Recurrent Convolutional Neural

Network (RCNN) algorithms were executed, feeding them first with HTML code and then

with text. The average of the metrics obtained with HTML was 85%, and the overall metrics

obtained for text averaged 84%. In conclusion, it is determined with this study that it makes

no difference whether the algorithm is fed with HTML or text because when analyzing with

text, the unnecessary features of HTML are eliminated. Still, simultaneously, the essential

elements of HTML are lost.

4.2. Methodology

The methodology used to make the study of this chapter is divided into three groups: data

collection, data cleaning, and execution of the selected Deep Learning algorithms. Figure

4.1 shows the steps performed to make this study:
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Figure 4.1: Research Methodology to Evaluate HTML code vs Text

4.2.1. Data Collection

Our study aimed to detect attacks on web pages using their content. Thus, we extracted the

data from the three sources shown in Table 4.1.

Table 4.1: Phishing and Ham Datasets.

Dataset Phishing Ham URL HTML

Phishtank [78] 7,983 0 Yes No

Phishload [115] 9,312 1,176 Yes Yes

Malicious URL [116] 90,000 90,000 Yes No

As our study in this chapter aimed at detecting attacks on web pages using only their

content, it was necessary to implement algorithms to obtain the HTML code from the URL

and, next, only the text from that HTML. The data was obtained from the three different

sources shown in Table X, so it was necessary to convert the URL formats (domain.com) to

a single ISO format (http://domain.com). Therefore, data in ISO format can now be parsed

by Python. The procedure used can be seen in Figure 4.2.
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Figure 4.2: Steps in data collection.

Check for the existence of URLs

One of the characteristics of the webpages created to carry out phishing attacks is that they

disappear after a short time. For this reason, it was necessary to carry out an algorithm

to check if these pages were still active, keep only those active websites, and delete the

others. It should be noted that this process took the longest execution time on the server,

even though this server is up to 60 times faster than a personal computer. Thus, one of the

processes that could take up to 100 days on our personal computer was carried out on the

server in only two days.

URL to HTML

Since the Phishtank and Malicious_URL records did not have their HTML content, it was

necessary to create an algorithm to obtain this code. An example of this result is shown in

Figure 4.3.

Figure 4.3: Example of HTML code obtained from a webpage.
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HTML to text

The text was extracted once each web page’s HTML code was obtained. More than 12,000

records were obtained, of which about 6,000 are Phishing and 6,000 are Ham. This text

obtained is not yet valid for input to the Deep Learning algorithms, so preprocessing is

carried out in preprocessing.

4.2.2. Preprocessing

Up to this point, the text obtained from each web page has already been achieved; however,

analyzing it with our Deep Learning algorithms still needs to be more helpful because they

still contain pages in English with unwanted or non-alphabetic characters. Putting all the text

in English is necessary, so we continue with the preprocessing steps described in Figure

4.4.

Figure 4.4: Steps in the preprocessing.

Text only in English

Our study is also based on detecting attacks utilizing the text on the webpage, so it was

necessary to carry out an algorithm to keep only those records whose text is only in English.

Only about 10,000 records remained between Phishing and Ham, thus maintaining the data

balance between the two classes. See Figure 4.5 with a non-English page.
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Figure 4.5: Text record from a non-English page.

Delete junk characters

With the previous step, many characters not used in our algorithm were deleted; however,

some junk characters could still affect performance. Also, in this step, the numbers in the

text were deleted. So far, the text is clean, but in upper and lower case; however, it is

necessary to transform all text to upper case to prevent the algorithms from treating the

exact words differently, for example, play, Play, and PLAY. The upper function was used to

transform all the text to the upper case. It’s crucial to delete the Stop Words or empty words,

which are words without meaning, such as articles, pronouns, prepositions, and others.

However, we’ve decided strategically to filter out these words later when implementing the

deep learning algorithms. This decision reflects our careful planning and foresight in the

process. Until now, the text has already been clean and ready to be entered into deep

learning algorithms. See Figure 4.6.

Figure 4.6: Example of a text record ready for input to deep learning algorithms.
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4.3. Results of the execution of deep learning algorithms

Once the text was cleaned, the Deep Learning algorithms were run on this data. The

columns that were entered for the execution of each of the algorithms were:

• html_Content: It has stored HTML code obtained from each URL.

• text_html_cleaned: It has stored all the clean and pre-processed text.

• isPhish: Indicates whether that record corresponds to a Phishing page.

The Deep Learning algorithms chosen to enter and execute the data were the following:

1. Deep Neural Network (DNN)

2. Recurrent Neural Network (RNN)

3. Convolutional Neural Network (CNN)

4. Recurrent Convolutional Neural Networks (RCNN)

These algorithms are similar to those used in the paper [117], in which a selection problem

is solved with 20 classes. Our solution is focused on two classes (Phishing or Ham). First,

each algorithm was run with HTML code and then with clean text to determine which of

them, HTML or text, obtained the best results.

4.4. Comparison of Deep Learning Algorithms

Table 4.2 shows the values obtained when running each algorithm with HTML code. It can

be seen that DNN, CNN, and RCNN give similar results of 86% in all their metrics, while

RNN was the worst performer with 82%.

Table 4.2: Precision, recall, F1-score, and accuracy values obtained with each Deep Learn-

ing algorithm on HTML code.

DNN RNN CNN RCNN AVERAGE

Precision HTML 0.86 0.82 0.86 0.86 0.85

Recall HTML 0.86 0.82 0.86 0.86 0.85

F1-score HTML 0.86 0.82 0.86 0.86 0.85

Accuracy HTML 0.86 0.82 0.86 0.86 0.85
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Table 4.3 shows the values obtained when running each of the four algorithms with text

only. DNN, RNN, CNN, and RCNN give similar results at 84%; however, CNN generally

lowers the percentage, while RCNN raises the Precision metric.

Table 4.3: Precision, recall, F1-score, and accuracy values obtained with each Deep Learn-

ing algorithm on text.

DNN RNN CNN RCNN AVERAGE

Precision Text 0.84 0.84 0.84 0.85 0.84

Recall Text 0.84 0.84 0.83 0.84 0.84

F1-score Text 0.84 0.84 0.83 0.84 0.84

Accuracy Text 0.84 0.84 0.83 0.84 0.84

Based on the averages obtained from 4.2 and 4.3, the best average is obtained with

HTML, 85%, over text, 84%. In other words, it cannot be determined that when running

the algorithms with either HTML or text, one is better than the other because the percentage

difference of one point is slight. In general, when running the same algorithms with the same

data, the variation of percentages is low.

4.5. Chapter Summary

Several investigations detect phishing attacks based on the content of web pages; However,

most of these investigations use Deep Learning algorithms applied only to the HTML code of

the web pages and not to the clear text obtained from the HTML code. For this reason, in this

chapter, we presented the results of a comparative study to determine if it is more accurate

to analyze the HTML code or the text obtained from that HTML code. We evaluated the

accuracy between HTML and text input of four Deep Learning algorithms: Deep Neural

Network (DNN), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN),

and Recurrent Convolutional Neural Networks (RCNN).

When obtaining clear text from the HTML code, a trade-off is made between remov-

ing irrelevant features and losing relevant features in the process. While the text obtained

removes many irrelevant features, it also results in the loss of some relevant ones. For in-

stance, a deleted link that always points to an external Phishing page is a relevant feature

that could potentially be lost. This link would be crucial for determining whether a page is

Phishing. Therefore, from the results of the execution of the four algorithms, it can be con-

cluded that whether we input HTML code or clear text obtained from that code into any Deep
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Learning algorithm is irrelevant.

Nevertheless, one key benefit of using clean text instead of HTML code in training and

testing Deep Learning algorithms is the significant reduction in database size. Our algorithm,

which inputs a clean dataset with text, allows for faster training and testing; this is because

the database size is reduced from 600 Mbytes in HTML code to 30 Mbytes in clean text,

improving algorithm performance efficiency.

In this particular comparative study, the Deep Learning algorithms were fed directly with

text obtained from the HTML code. In the following chapters, we present our proposed

model developed to analyze the text semantically and syntactically before it is fed into the

algorithms to improve the accuracy and precision of Phishing detection. In this way, we will

take advantage of the richness of grammatical structures and the meaning of words.
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Chapter 5

Materials and Methods
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5.1. Proposed Model Based on NLP and DL

This research proposes a model based on NLP and DL to pre-analyze the text entered

into the DL algorithm. For this purpose, our model comprises four phases from the HTML

code: word parsing, data pre-processing, feature representation, and feature extraction, as

illustrated in Figure 5.1.

Figure 5.1: Phishing attack detection—overview of the proposed model
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Thus, with our method, first, by word parsing, the input text is divided into words, and

the relationships between these words are obtained; then, by pre-processing with NLP, two

phases are used: data pre-processing and feature representation, by which the most impor-

tant words to be analyzed are obtained, in addition to the importance of the meaning of the

order in which the words are entered. Finally, by DL, the essential features of the input text

are obtained automatically, and the algorithm is trained. The final goal of the model is to

obtain greater precision in detecting phishing attacks.

An essential contribution of our model is that before these data are entered into the DL

algorithms, they go through a word embedding process, specifically Keras Embedding and

GloVe. As an additional contribution, four DL algorithms were evaluated to determine which

best fit our model.

The phishing detection problem is a binary classification task because the algorithm can

only result in two options: phishing or ham. Thus, a dataset with 10,373 rows and two

columns was obtained after processing. Therefore, the first column contains clean text, i.e.,

text without characters that negatively affect the accuracy of the experiment. The second

column indicates whether that row is phishing or not. For practical purposes, phishing = 1

and ham = 0. Each of the stages and sub-stages of the model is described in the following

subsections.

5.1.1. Word Parsing

From the Phishload database [115], we obtained 10,373 records of HTML code from phish-

ing and ham pages. However, if we enter all that text to be analyzed by our selected DL

algorithms, the results will be less accurate. For example, let us examine the following set

of words found in the vast majority of HTML code of phishing pages: “DOCTYPE HTML

PUBLIC”. The algorithms will detect that these features are an essential indicator to decide

that a page is phishing when it is not. For this reason, in our model, we first cleaned the text

using the Regular Expressions and four Natural Language Toolkit (NLTK) tools. In Figure

5.2, the reader can see all the steps followed in word parsing.
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Figure 5.2: Word parsing sub-processes

Regular Expressions

Initially, the text obtained from the web pages still contains objects such as strings, num-

bers, characters, and so on, which are unnecessary for the analysis. Therefore, we first

transformed all letters to lowercase to continue our analysis. Then, by regular expressions,

we removed URL addresses, mentions with @ or #, HTML tags, digits, and all junk charac-

ters that need to be deleted.

Split Method

The split method is a string method that is used to split a string into a list of smaller sub-

strings. The method takes a separator as an argument and divides the string based on the

occurrence of that separator. If we execute the following code with a known phishing string:

text = “congratulations you are the brand new Bill Gates lottery winner send us your

account number to transfer the money to you”,

words = text.split()

print(words)
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Then, the result will be as follows:

[‘congratulations’, ‘you’, ‘are’, ‘the’, ‘brand’, ‘new’, ‘bill’, ‘gates’, ‘lottery’, ‘winner’, ‘send’,

‘us’, ‘your’, ‘account’, ‘number’, ‘to’, ‘transfer’, ‘the’, ‘money’, ‘to’, ‘you’]

Stopwords Method

Now, we cleaned the text of stopwords or empty words that do not have any meaning for our

analysis because they can appear in phishing and ham text. For example, the words the, or,

and, that, this, and of are deleted from the text.

Let us analyze the string obtained in the previous step with the following code:

stop_words = set(stopwords.words(’english’))

words = [‘congratulations’, ‘you’, ‘are’, ‘the’, ‘brand’, ‘new’, ‘bill’, ‘gates’, ‘lottery’, ‘win-

ner’, ‘send’, ‘us’, ‘your’, ‘account’, ‘number’, ‘to’, ‘transfer’, ‘the’, ‘money’, ‘to’, ‘you’]

filtered_words = [word for word in words if word.casefold() not in stop_words]

print(filtered_words)

When stopwords Method is executed on the example text, the following words are deleted:

‘you’, ‘are’, ‘the’, ‘your’ and ‘to’

Hence, the set of words that stays are:

[‘congratulations’, ‘brand’, ‘new’, ‘bill’, ‘gates’, ‘lottery’, ‘winner’, ‘send’, ‘us’, ‘account’,

‘number’, ‘transfer’, ‘money’, ‘you’]

Pos_Tag Method

The pos_tag method is used for Parts-Of-Speech (POS) tagging words in a text. POS

tagging is the process of assigning a part of speech, such as a noun, verb, adjective, and so

on, to each word in a text. Let us execute the following commands on the string obtained in

the previous step:

tokens = [‘congratulations’, ‘brand’, ‘new’, ‘bill’, ‘gates’, ‘lottery’, ‘winner’, ‘send’, ‘us’,

‘account’, ‘number’, ‘transfer’, ‘money’, ‘you’]

pos_tags = pos_tag(tokens)

print(pos_tags)
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This results in the following duos:

[(‘congratulations’, ‘NNP’), (‘brand’, ‘NN’), (‘new’, ‘JJ’), (‘bill’, ‘NNP’), (‘gates’, ‘NNP’),

(‘lottery’, ‘NNP’), (‘winner.’, ‘NN’), (‘send’, ‘NNP’), (‘us’, ‘PRP’), (‘account’, ‘VBP’), (‘num-

ber’, ‘NN’), (‘transfer’, ‘NN’), (‘money’, ‘NN’), (‘you’, ‘NN’)]

These duos indicate which part of each sentence constitutes each word. However, for

our syntactic and semantic analysis, we only considered words that are nouns (start with N:

NN, NNP), verbs (start with V: VBP), adjectives (start with J: JJ), and adverbs (start with R).

For this reason, the pair (‘us’, ‘PRP’) was eliminated, leaving only the following pairs:

[(‘congratulations’, ‘NNP’), (‘brand’, ‘NN’), (‘new’, ‘JJ’), (‘bill’, ‘NNP’), (‘gates’, ‘NNP’),

(‘lottery’, ‘NNP’), (‘winner.’, ‘NN‘), (‘send’, ‘NNP’), (‘account’, ‘VBP’), (‘number’, ‘NN’),

(‘transfer’, ‘NN’), (‘money’, ‘NN’), (‘you’, ‘NN’)]

Lemmatize Method

The lemmatization process involves reducing words to their base or root form, which can

be helpful in NLP. The base or root form of a word is called its lemma. The NLTK library

provides a WordNetLemmatizer class that can be used for lemmatization. As an example,

let us execute the following code:

words = [“cats”, “running”, “ate”]

lemmas = [lemmatizer.lemmatize(word, pos=’v’) for word in words]

print(lemmas)

Which produces the following output:

“cat”, “run”, “eat”

It can be observed that the words cats, running, and eating are lemmatized to their base

forms “cat”, “run”, and “eat”, respectively. By lemmatizing words, we can reduce the number

of unique words in a text corpus, improving the accuracy and efficiency of many natural

language processing tasks.

5.1.2. Data Pre-Processing

Once all the content of the web pages has been word parsed, it is still necessary to pre-

process the data to obtain data that is ready to be entered into the feature representation
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using Keras Embedding with GloVe. For this purpose, three consecutive steps were fol-

lowed, as shown in Figure 5.3: tokenization, encoding, and padding.

Figure 5.3: Data pre-processing sub-processes

Tokenization

Tokenization is a necessary process for any task involving NLP. It consists mainly of vector-

izing each word of text obtained previously, resulting in a sequence of meaningful words. In

our case, we used the texts_to_sequences tokenization method to transform the input string

into a sequence of integers. Let us run the following tokenization commands on the above

string example:

words = “congratulations brand new bill gates lottery winner send account number

transfer money you”

tokens = word_tokenize(words)

print(tokens)

This split each word of the input string:

[’congratulations’, ’brand’, ’new’, ’bill’, ’gates’, ’lottery’, ’winner’, ’send’, ’account’, ’num-

ber’, ’transfer’, ’money’, ’you’]
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Encoding

To encode the words in the text string, we used the texts_to_sequences function, which

incrementally assigns an integer to each word as it appears. This way, we convert the text

data into a numeric format that the DL models can process. There are other encoding

techniques, such as one-hot or TF-IDF. However, we decided to use texts_to_sequences

because we wanted to highlight, later in this section, how Keras Word Embedding works

with GloVe. The following code shows how texts_to_sequences works:

words = “congratulations brand new bill gates lottery winner send account number

transfer money you”

word_encoded = tokenizer.texts_to_sequences(words)

print(word_encoded)

This produces one integer for each word:

[85, 105, 177, 2521, 19, 2118, 317, 678, 85, 654, 812, 645, 145], dtype=int32

Padding

By padding, we determine the maximum length maxlen the string entered into the DL al-

gorithm must have. If the words on the website are longer than maxlen, this string will be

truncated until the length is maxlen. On the other hand, if the length of the website is less

than maxlen, then the spaces in which there are no words will be filled by a PAD tag until the

length maxlen is obtained. Let us analyze the following code:

maxlen = 200

tokens = [85, 105, 177, 2521, 19, 2118, 317, 678, 85, 654, 812, 645, 145]

word_sequences = pad_sequences(tokens, padding = ‘post’, maxlen = maxlen)

print(word_sequences)

It will produce the following sequence until all spaces to the right of the sequence are

filled with zeros. If the sequence is more than 200, then the sequence will be truncated to

200:

word_sequences = [85, 105, 177, 2521, 19, 2118, 317, 678, 85, 654, 812, 645, 145,

0, 0, 0, 0, 0, . . . . . . , 0]
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5.1.3. Feature Representation with Keras Embedding and GloVe

Keras Embedding Layer with pre-trained GloVe word embeddings works by mapping each

word in the input stream to a pre-trained vector representation, which is learned based on

the distributional properties of words in a large text corpus. The main idea of our model

is to obtain the semantic and syntactic importance of the text of the web pages before the

DL algorithms parse it. Hence, we used Keras Embedding with the pre-trained GloVe word

embeddings dataset [37]. Figure 5.4 shows an example of how, from a list of words or their

coded values, with the use of Keras Embedding and GloVe, a matrix is obtained in which

values are stored that indicate the relationship that would exist between a word (of those

used in our example) of a row with that of a column, considering that a value close to zero

indicates that there is practically no relationship. In contrast, a value close to one indicates

a high relationship. For example, if in the matrix of Figure 5.4, we analyze the word gates,

we see that it has a high probability that it is related to a thing (0.7) or that it is related to a

human being (0.8), but it has a very low probability that it is a verb (0).

Figure 5.4: Feature representation

When using pre-trained GloVe word embeddings with the Keras Embedding Layer, the

pre-trained embeddings are loaded into memory as a dictionary in which each word is as-

sociated with a pre-trained vector representation. An embedding matrix is then created for

the vocabulary by looking up the pre-trained vectors for each word. This embedding matrix

is used to initialize the weights of the Keras Embedding Layer. In our study, we created the

following Keras Embedding Layer with GloVe:
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embedding_layer = Embedding(vocab_size, output_dim = 100, weights = [embed-

ding_matrix], trainable = False)(deep_inputs)

where:

vocab_size = 144,236.

embedding_dim = 100.

weights = embedding_matrix obtained with the dataset glove.6B.100d.txt.

trainable = False, because it was already initialized with glove.6B.100d.txt.

(deep_inputs). This means that the input will be of type 2D and is expected to be a

matrix of integers where each row represents a sequence of tokens.

5.1.4. DL Algorithms Execution

The final step to test our model’s accuracy and mean accuracy is to input the resulting Keras

embedding data into each DL algorithm, with which our model is trained and tested. As

additional work in our research, we decided to use four DL algorithms: LSTM, BiLSTM, GRU,

and BiGRU, to determine which algorithm best fits our model, for which we developed the

respective code for each one in Python. Each algorithm setup is presented in the following

sections.

The four DL algorithms that we have decided to use are variants of RNN, considering

that these algorithms have a memory, which makes them particularly suitable for processing

data series with a temporal order or structure, such as words in a text. According to [40],

the two outstanding RNN algorithms for dealing with time series are LSTM with 100% and

GRU with 99.99%, respectively, in evaluating the Receiver Operating Characteristic (ROC)

curve on phishing URLs. That is why we decided to study these algorithms, LSTM and

GRU, but on text. We also checked their respective bi-directional approaches, BiLSTM and

BiGRU. Thus, to evaluate our model and determine which of the four algorithms is the best

for detecting phishing attacks, based on the content of the websites, we will use LSTM, Bi-

LSTM, GRU, and BiGRU.

The main idea of using these algorithms is to take advantage of the intrinsic richness in

the composition of sentences and the text itself. We consider their semantic and syntactic

meaning, i.e., not to use only local feature representations but to go beyond that, using

non-spatial features, such as time series. In addition, we mainly use BiLSTM and BiGRU

because these algorithms reward and adjust in both forward and backward directions. This

way, the analyzed text’s semantic and syntactic meaning can be obtained more accurately.
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Also, because our issue is a binary classification problem, we use binary_cross_entropy as

an optimizer. Also, since our dataset was unbalanced, we used K-fold cross-validation.

5.2. Experimental Setup

Once the model has pre-processed the dataset, the DL algorithm will remain to run on the

data obtained. However, our work also aimed to determine which DL algorithm best fits the

data obtained from our model. For this reason, we decided to experiment with four different

DL algorithms: LSTM, BiLSTM, GRU, and BiGRU. This section details the hardware, soft-

ware, and dataset used and the configuration of the four selected DL algorithms.

5.2.1. Hardware and Software Environment

To execute our experiment, we used a RIG server with Python 3.5.2 on Jupyter Notebook

6.0.2 and the libraries Keras, NLTK, NumPy, pandas, request, sci-kit learn, and TensorFlow.

Table 5.1 presents the RIG features of each component of the hardware environment.

Table 5.1: RIG features.

Component Model

Processor AMD Ryzen Threadrippe 2920X

RAM 16 GB Crucial Ballistix DDR4-3000

Video card 16 GB Phantom Gaming X Radeon VII

SSD 500 GB Crucial SSD M.2 NVMe

HD 3 TB Western Digital HDD Purple

Mainboard ASUS ROG Zenith Extreme Alpha

5.2.2. Dataset

We used the freely available dataset Phishload [115], which was then decompressed into a

SQL-like file, opened in HeidySQL, and exported to a CSV format, which is more Python-

friendly.

This dataset is composed of three tables, of which we used the website table, from which

we extracted two columns:

• htmlContent column, which contains the HTML code of all the web pages.
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• isPhish column, which indicates whether a website is phishing or ham.

This dataset comprises 10,488 rows, but after deleting the rows containing null fields,

the dataset was reduced to 10,373 in total, of which 9198 phishing rows and 1176 ham rows

were obtained in the end. While the dataset is unbalanced, we used performance measure-

ments for unbalanced data in the evaluation process [118]. Hence, during the execution and

to demonstrate the experiment’s validity, we used the K-fold cross-validation technique with

K=5, considering that the dataset was divided into 80% for training and 20% for testing.

5.2.3. DL Algorithms Setup

According to [3], RNN and CNN are the most used DL algorithms for phishing attack detec-

tion. Still, RNN has a different characteristic from CNN since it is developed for time-series

data [119]. RNN has directional connections that allow it to compute the next step, build-

ing on previous steps [120]. Thus, RNN is widely used in NLP and fits our study very well

because our analysis is oriented to the sequence of words obtained from web pages. A

disadvantage of a simple RNN is that it cannot easily find meaningful connections that go

beyond 10-time steps [99]. There are RNN-derived algorithms that can solve this problem.

Therefore, we have decided to use the following four RNN algorithms for our study: LSTM,

BiLSTM, GRU, and BiGRU.

LSTM

This is a variation of the RNN [121]. Unlike a simple RNN algorithm, which can perform

computations based on a few word sequences, LSTM can calculate based on recent and

non-recent words. In other words, it can determine the importance of the data with more

than 1000 time steps between them [99]. Figure 5.5 shows the LSTM algorithm setup.
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input input:
[(none, 200)] [(none, 200)]

InputLayer output:

embedding input:
(none, 200) (none, 200, 100)

Embedding output:

lstm input:
(none, 200, 10... (none, 200, 128)

LSTM output:

dense input:
(none, 128) (none, 2)

Dense output:

Figure 5.5: LSTM algorithm setup

BiLSTM

This is the RNN layer, a sequence-processing model with two LSTMs: a forward LSTM and a

reverse LSTM. By this back-and-forth process, BiLSTM increases the amount of information

available to the network, further improving the context of a study such as ours, where it is

essential to know which word precedes and follows another word [122]. Figure 5.6 shows

the BiLSTM algorithm setup.
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input input:
[(none, 200)] [(none, 200)]

InputLayer output:

embedding input:
(none, 200) (none, 200, 100)

Embedding output:

spatial_dropout input:
(none, 200, 100) (none, 200, 100)

SpatialDropout output:

bidirectional input:
(none, 200, 100) (none, 256)

Bidirectional output:

dense input:
(none, 256) (none, 2)

Dense output:

Figure 5.6: BiLSTM algorithm setup

GRU

This type of RNN is like an LSTM network but with a forget gate. It also has fewer parameters

than LSTM because it does not have an output gate. The performance of GRU networks is

similar to that of LSTM when it comes to NLP [123]. Figure 5.7 shows the GRU algorithm

setup.
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input input:
[(none, 200)] [(none, 200)]

InputLayer output:

embedding input:
(none, 200) (none, 200, 100)

Embedding output:

spatial_dropout input:
(none, 200, 100) (none, 200, 100)

SpatialDropout output:

gru input:
(none, 200, 100) (none, 200, 128)

GRU output:

dense input:
(none, 128) (none, 2)

Dense output:

conv1d input:
(none, 200, 128) (none, 198, 64)

Conv1D output:

global_average_pooling_1D input:
(none, 198, 64) (none, 64)

GlobalAveragePooling1D output:

global_max_pooling_1D input:
(none, 64) (none, 64)

GlobalAveragePooling1D output:

concatenate input:
(none, 64) (none, 128)

Concatenate output:

Figure 5.7: GRU algorithm setup

BiGRU

A GRU network employs recurrence to store and retrieve information for long periods, but in

practice, its performance could be better because the network only accesses past informa-

tion [124]. Thus, to solve this information access problem, BiGRU has a future layer in which
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the data sequence is in the opposite direction. Therefore, this network uses two hidden

layers to extract past and future information. These hidden layers are then connected into

a single output layer [125]. These characteristics enable the bidirectional structure to assist

the RNN in extracting more information and, consequently, improve the performance of the

learning process. Figure 5.8 shows the BiGRU algorithm setup.

input input:
[(none, 200)] [(none, 200)]

InputLayer output:

embedding input:
(none, 200) (none, 200, 100)

Embedding output:

spatial_drooput input:
(none, 200, 100) (none, 200, 100)

SpatialDropout output:

bidirectional input:
(none, 200, 100) (none, 200, 256)

Bidirectional output:

dense input:
(none, 128) (none, 2)

Dense output:

conv1d input:
(none, 200, 256) (none, 198, 64)

Conv1D output:

global_average_pooling_1D input:
(none, 198, 64) (none, 64)

GlobalAveragePooling1D output:

global_max_pooling_1D input:
(none, 64) (none, 64)

GlobalAveragePooling1D output:

concatenate input:
(none, 64) (none, 128)

Concatenate output:

Figure 5.8: BiGRU algorithm setup
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5.2.4. Performance Metrics

We adopted commonly used quality metrics to compare the correctness of the classification

of the detection model. We used the following terms for determining the quality of the clas-

sification models [126]:

• True Positive (TP): the number of data items correctly classified to the positive class.

• True Negative (TN): the number of data items correctly classified to the negative class.

• False Positive (FP): the number of data items wrongly classified to the positive class.

• False Negative (FN): the number of data items wrongly classified to the negative class.

When dealing with unbalanced data, choosing appropriate evaluation metrics that con-

sider the class distribution in the dataset is important. We used the following metrics:

• Precision: Precision measures the proportion of true positives among the predicted

positives. This metric helps minimize false positives or when the positive class is rare.

Precision =TP/(TP + FP) (1)

• Recall: Recall measures the proportion of true positives among the total number of

actual positives. This metric is useful when minimizing false negatives or when the

positive class is important.

Recall =TP/(TP + FN) (2)

• F1-score: the F1-score is the harmonic mean of the precision and recall and is a good

metric to use when there is an uneven distribution of classes in the dataset.

F1-Score =2× ((Precision × Recall)/(Precision + Recall)) (3)

• Micro avg: calculates the overall average precision score over all classes, weighting

each instance by its weight.

• Weighted avg: calculates the score by averaging the results for each class, weighting

each result by the number of instances of that class in the dataset.
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• K-fold cross-validation: Since the data are not balanced, we used the K-fold cross-

validation technique to calculate the mean accuracy. This technique is also helpful in

avoiding overfitting the training data. This technique is a suitable metric for determining

which of the four DL algorithms performs best.

5.3. Chapter Summary

This chapter determined the methods, materials, and tools to develop a model to detect

Phishing attacks. This model must use Deep Learning and natural language processing on

text obtained from web pages. Thus, in the first section of the chapter, each step followed in

the data preprocessing was determined, including using the GloVe dictionary. It is agreed to

run the experiment’s LSTM, BiLSTM, GRU, and BiGRU algorithms. This chapter’s second

section determined the initial hyper-parameters configuration to run the experiments with

the four selected algorithms: LSTM, BiLSTM, GRU, and BiGRU. Next, a default configuration

was established that will be refined in Chapter 8. The metrics used are Precision, Recall, F1-

score, micro average, and Weighted average. The K-fold cross-validation was used because

the data were not balanced. In the next Chapter, the experiment is carried out.
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6.1. Results

6.1.1. Results of Test loss, test AUC, training loss, and training

AUC.

Table 6.1 shows the test loss, test AUC, training loss, and training AUC obtained with each

DL algorithm and each L. It was observed that GRU and BiGRU always gave better test ac-

curacy than the other algorithms. BiLSTM showed values close to GRU or BiGRU; however,

LSTM gave the worst results.

Table 6.1: Test loss, test AUC, training loss, and training AUC with L = 1000, 500, and 200.

Algorithm L Test Loss Test AUC Train Loss Train AUC

LSTM 1000 0.27 0.92 0.27 0.93

BiLSTM 1000 0.17 0.98 0.12 0.99

GRU 1000 0.14 0.99 0.09 0.99

BiGRU 1000 0.15 0.96 0.07 1

LSTM 500 0.23 0.95 0.23 0.95

BiLSTM 500 0.17 0.98 0.12 0.99

GRU 500 0.14 0.99 0.09 0.96

BiGRU 500 0.14 0.99 0.07 1

LSTM 200 0.19 0.97 0.18 0.97

BiLSTM 200 0.19 0.98 0.10 0.99

GRU 200 0.16 0.98 0.09 0.99

BiGRU 200 0.17 0.98 0.07 1

6.1.2. Area Under the ROC Curve (AUC).

Although the AUC is not as appropriate to define the accuracy of an algorithm, it is important

to compare the performance of the four DL algorithms. Table 6.2 shows the AUC calculated

with each length L. Our model is of binary type since only two classes are evaluated (if the

AUC is close to 0, indicating ham; or if the AUC is close to 1, indicating phishing). It was

observed that GRU and BiGRU gave better results than LSTM and BiLSTM. Even at L = 200,
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GRU scored better. In addition, we also controlled the execution time of each DL algorithm

in our model and observed that GRU was the one that was trained the fastest because it

was trained in 240 seconds.

Table 6.2: Area Under the ROC Curve (AUC) with L = 1000, 500, and 200.

Algorithm L AUC = 0 AUC = 1 Time

(Ham) (Phishing) (s)

LSTM 1000 0.74 0.72 1480

BiLSTM 1000 0.94 0.94 1660

GRU 1000 0.96 0.96 1320

BiGRU 1000 0.96 0.96 1860

LSTM 500 0.81 0.80 700

BiLSTM 500 0.94 0.94 800

GRU 500 0.96 0.96 600

BiGRU 500 0.96 0.96 840

LSTM 200 0.91 0.91 300

BiLSTM 200 0.94 0.94 320

GRU 200 0.96 0.96 240

BiGRU 200 0.95 0.95 320

6.1.3. Micro avg, weighted avg, and F1-score.

Table 6.3 shows the computed micro average and weighted average metrics. In the three

runs of the experiment with L = 1000, 500, and 200, it was again observed that GRU and

BiGRU prevailed over LSTM and BiLSTM. The weighted average is the most appropriate

metric for unbalanced binary data. Still, even for those, GRU was considered equal to Bi-

GRU. To continue our experiment with F1-Score, we have used L = 200 only because it

represents 58.02% of our dataset. We do not use values below 200 words because the

metrics decrease considerably.
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Table 6.3: Micro avg, weighted avg, and F1-score.

Algorithm L Micro Avg Weighted Avg F1-Score

LSTM 1000 0.91 0.88

BiLSTM 1000 0.98 0.96

GRU 1000 0.99 0.98

BiGRU 1000 0.99 0.98

LSTM 500 0.94 0.92

BiLSTM 500 0.98 0.97

GRU 500 0.99 0.98

BiGRU 500 0.99 0.98

LSTM 200 0.97 0.95 0.93

BiLSTM 200 0.98 0.96 0.74

GRU 200 0.98 0.97 0.94

BiGRU 200 0.98 0.97 0.94

6.1.4. Mean accuracy in percent with K-fold cross-validation with

K = 1 to K = 5.

To define which DL algorithms worked best with the data embedded with GloVe, we executed

the four algorithms using the K-fold cross-validation technique, where K = 5 and shuffle =

true. Hence, the results obtained in each K-fold and the mean accuracy obtained in each

algorithm can be seen in Table 6.4.

Table 6.4: Mean accuracy in percent with K-fold cross-validation with K = 1 to K = 5.

Algorithm K = 1 K = 2 K = 3 K = 4 K = 5 Mean

LSTM 94.12 95.76 96.48 98.36 98.84 96.71

BiLSTM 94.26 95.95 97.96 98.75 99.08 97.20

GRU 95.03 95.90 98.26 98.41 99.28 97.29

BiGRU 95.22 96.53 98.55 98.84 98.84 97.39
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6.2. Discussion

Based on what was stated in the previous section, we present the graphical analysis per-

formed when executing each algorithm with an inserted Length (L) of 200 words. As seen

in Figures 6.1 to 6.4, the four models worked well because they were generalizing correctly.

Consequently, each model’s training accuracies’ values were close to their respective vali-

dation accuracies’ values.

6.2.1. NLP-LSTM

As can be seen in Figure 6.1, the test accuracy (97%) and training accuracy (97%) obtained

with LSTM were acceptable. Again, it can be seen that the validation accuracy line advanced

very close to the training accuracy; However, at Epoch 10, there was a drop in accuracy

to less than 95%. This drop may be due to an overfitting problem. Among the four DL

algorithms, LSTM was the worst performer.

Figure 6.1: LSTM accuracy
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6.2.2. NLP-BiLSTM

Figure 6.2 shows that the training accuracy (98%) and validation accuracy (99%) obtained

with BiLSTM outperformed those obtained with LSTM. Although there was also a decay at

Epoch 10, this decayed slightly (to 97%). At the end of the run, at Epoch 17, there was a

decrease in the validation accuracy, indicating possible overfitting.

Figure 6.2: BiLSTM accuracy

6.2.3. NLP-GRU

Figure 6.3 shows that the training accuracy (98%) and validation accuracy (99%) improve

considerably. Negative slopes are not observed in the two lines but are constant growth.

In addition, although the validation accuracy declined a little at the end of the processing,

compared to the validation accuracy, this decline was minimal, remaining close to the training

accuracy line. Additionally, the processing time was 240 s, thus surpassing the processing

time of LSTM with 300 s and BiLSTM with 320 s.
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Figure 6.3: GRU accuracy

6.2.4. NLP-BiGRU

Figure 6.4 shows that the NLP-BiGRU combination was the one that gave the best results

for the training accuracy (100%). However, the validation accuracy obtained (98%) did not

vary concerning BiLSTM (98%) and GRU (98%). On the other hand, the time to achieve its

training execution was 320s, i.e., 33% more than the time GRU processed.
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Figure 6.4: BiGRU accuracy

6.2.5. Graphical Comparison of the Four Models

Figure 6.5 compares the accuracy obtained for each epoch in the four models. It can be

seen that LSTM behaved the worst, even showing erratic behavior, with negative slopes in

several periods, highlighting a very pronounced negative slope at Epoch 10, with an accu-

racy below 95%. The BiLSTM model gave better results than LSTM. Although the training

accuracy improved notably, according to Figure 6.2, the same did not occur with the valida-

tion accuracy, which had a negative slope at Epoch 10 and a pronounced negative slope

at the end of Epoch 20. GRU and BiGRU gave better results in training than those offered

by LSTM and BiLSTM since it was observed that, in both of them, an accuracy that con-

stantly increased from the first epoch was obtained. Analyzing GRU versus BiGRU, it was

observed that BiGRU gave better results, obtaining in the last Epoch 20 100% for its training

accuracy, over the 99% obtained in GRU. Even in Figure 6.6, it can be seen that the model

with the lowest loss was BiGRU, followed by GRU. On the other hand, of the four algorithms

analyzed, the one that performed worst was LSTM.
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Figure 6.5: Accuracy comparison of the four algorithms

Figure 6.6: Loss comparison of the four algorithms

To define which DL algorithms worked best with the data embedded with GloVe, we

executed the four algorithms using the K-fold cross-validation technique, where K = 5 and

shuffle = true. The execution results in Table 6.4 indicate that our model is acceptable, as all

four algorithms performed with a mean accuracy above 96.70%. The DL algorithm with the

best results was the BiGRU algorithm, with 97.39%.

6.3. Chapter Summary

Based on the materials and methods of the previous chapter, experiments were carried

out in this chapter to obtain a model to detect a phishing attack with Deep Learning and

82



natural language processing with GloVe. Thus, in the first section of this chapter, the results

of the metrics obtained in the execution of the model with the LSTM, BiLSTM, GRU, and

BiGRU algorithms are shown, with 1,000, 500, and 200 words. In the second section, the

results obtained in the execution of the models with the four Deep Learning algorithms are

discussed.

This experiment determined that the algorithm that produced the best results was BiGRU,

with up to 100% accuracy obtained in epoch 20. However, due to the unbalanced data,

the algorithms were evaluated with k-fold cross-validation with k=5, which resulted in all

four algorithms reaching a mean accuracy of 96.70%, with BIGRU reaching an accuracy of

97.39%. Based on the results obtained, in the following chapter, BiGRU will be used as the

algorithm for which the tuning will be carried out and on which an extension will be made to

install in the Chrome browser.
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The previous chapter proposed a model to detect phishing attacks through deep learn-

ing and NLP. In addition, it was determined that the Deep Learning algorithm that provides

the most remarkable accuracy for detecting this type of attack on the text of web pages is
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BiGRU; however, a fine-tuning of the hyper-parameters of the BiGRU algorithm and the NLP

parameters still needs to be performed. Thus, this section’s first objective is to determine

the optimal hyper-parameters to detect phishing attacks with high accuracy and little com-

putational expense. Once the model has been optimized by adjusting hyper-parameters,

the second objective of this chapter is to develop an extension that can be installed in the

Chrome browser. This extension allows the end user to determine in a friendly way whether

a page is Phishing. Hence, this section is composed of two parts. The first part shows

the results obtained in the model tuning and determines the optimal hyper-parameters for

this tuning. The second part develops the steps to make the extension based on the tuned

algorithm and shows how it works.

7.1. Hyper-Parameters to Fine-Tune the NLP and DL Phishing

Attack Detection Application

The entire tuning experiment was performed in Jupyter Notebook and can be reproduced

with the code shared in the following GitHub link:

https://github.com/debenavides/NDLP-hyper-parameter-tuning/

In the comments of the shared code above, each hyper-parameter and the values used

are shown. The tuning was performed on the model proposed in the study [2] because it

meets the assumptions of predicting a phishing attack using NLP and DL on the text obtained

from the body of the web pages. Before starting, it should be mentioned that in the study [2]

several aspects were analyzed, detailed as follows, and will be the basis of our experiment.

It was determined in [2] that the algorithm that gave the best results for this type of problem

was BiGRU, surpassing the mean accuracy of LSTM, BiLSTM, and GRU. This research

offers a high-accuracy, lightweight model that can be installed on an ordinary computer or

mobile device. Our tuning aims to offer a lightweight application without sacrificing accuracy.

The steps to perform the tuning of the hyper-parameters are shown in Figure 7.1
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Figure 7.1: Steps to determine the optimal hyper-parameters of NDLP Phishing.

There are three main strategies to determine the hyper-parameters of machine learning

algorithms: grid search, random search, and manual search. For our study, we followed

the manual search method [127]. Although Grid Search and Random Search could obtain

higher hyper-parameter resolution, the computational cost is very high. Furthermore, ac-

cording to [128], most hyper-parameters that are analyzed will not cause the accuracy of the

analyzed algorithm to increase significantly. Therefore, we have adopted the manual hyper-

parameter search approach based on expert knowledge, intuition, and experience. Table

7.1 shows the hyper-parameters with each value evaluated.

Table 7.1: hyper-parameters to evaluate.

hyper-parameter Values

Number of words 100 200 500 1000

BiGRU neurons 32 64 128 256

Dimension of GloVe - 50 100 200

Number of epochs - 5 10 20

Batch size 32 64 128 256

Dropout value - 0.1 0.5 0.7

BiGRU layers - - 1 2
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7.1.1. Number of words to enter the algorithm

Analyzing our dataset, as shown in Figure 7.2, three red lines are drawn, corresponding to

L = 200, L = 500, and L = 1000 words per website, in which 9.78% of 10,373 websites had

more than 1000 words. For this reason, only a max length L of 1000 words and below was

taken for the NLP analysis. Thus, three values of L were defined to analyze which value

works best: L = 1000 represents 90.22% of the data; L = 500, which is 81.33% of the data;

L = 200, which means 58.02% of the data.

Figure 7.2: Word length distribution over the entire dataset

Due to the different text lengths L obtained from each web page analyzed, the four al-

gorithms were run with three different values of L (200, 500, and 1000) to test which of the

lengths L of words performed better. The testing results of the algorithms were presented in

the article [2] with four text inputs of 100, 200, 500, and 1000 words, and it was determined

that the optimal number of words to be entered was 200.

7.1.2. Number of Neurons in the BiGRU Layer

Based on the experiment [2], in which 128 neurons were used in the BiGRU layer, we eval-

uated the mean accuracy obtained with 32, 64, 128, and 256 neurons in the current study.

The results obtained can be seen in Table 7.2.
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Table 7.2 shows that the K-fold mean accuracy obtained with 32 neurons significantly

differs from that obtained with 64, 128, and 256 neurons. This difference is because the

mean accuracy curve tends to stabilize while the neurons increase. On the other hand, with

256 neurons, the mean accuracy rises slightly but with a high computational cost, which

means that 32 and 256 neurons are discarded; henceforth, experiments are performed only

with 64 and 128 neurons.

Table 7.2: BiGRU neurons.
BiGRU

neurons

K-fold mean

accuracy

32 0.9680

64 0.9713

128 0.9737

256 0.9757

7.1.3. Dimension of the GloVe Embedding Dictionary

The following tuning step was determining the best dimension of the GloVe dictionary [37],

considering that we have GloVe dimensions of 50, 100, 200, and 300. The results of the

tests with vectors of 50, 100, and 200 dimensions are shown in Table 7.3.

Table 7.3: GloVe dimensions.
BiGRU

neurons

GloVe

Dimension

K-fold mean

accuracy

64 50 0.9685

64 100 0.9703

64 200 0.9749

128 50 0.9681

128 100 0.9736

128 200 0.9758

As shown in Table 7.3, the algorithms’ performance was evaluated with 50, 100, and

200 dimensions of the GloVe dictionary (300 was unnecessary), with 64 and 128 BiGRU

neurons. The value obtained with 100 and 200 GloVe dimensions does not vary significantly

from that obtained with a 50-dimensional vector. This may be because the model is relatively
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simple. Since a lightweight model is required as a premise, a size of 50 GloVe dimensions

is adopted as the optimal value.

7.1.4. Number of Epochs

So far, ten epochs have been used for testing. The model is evaluated with 5, 10, and 20

epochs to improve the mean accuracy. The results of the model execution with the different

epochs are shown in Table 7.4.

Table 7.4: Epochs.

Epochs
BiGRU

neurons

GloVe

Dimension

Elapsed

time (min)

K-fold

mean

accuracy

5 64 50 0:12 0.9905

10 64 50 0:23 0.9896

20 64 50 0:46 0.9844

Table 7.4 shows that the accuracy decreases as the epochs increase, possibly due to

overfitting. Even with five epochs, a mean accuracy of 0.9905 is obtained. From there, five

epochs are adopted for the model.

7.1.5. Batch Size

A larger batch size can lead to greater generalization; however, this requires more memory

capacity and longer training time, so different batch size values of 32, 64, 128, and 256 are

analyzed. See the results in Table 7.5.

Table 7.5: Batch size.

Batch

size
Epochs

BiGRU

neurons

GloVe

Dimension

Elapsed

time (min)

K-fold

mean

accuracy

32 5 64 50 0:51 0.9851

64 5 64 50 0:26 0.9896

128 5 64 50 0:13 0.9844

256 5 64 50 0:09 0.9611
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Table 7.5 shows that the mean accuracy value obtained for batch size = 256 is consider-

ably lower than the other values. In addition, the value obtained with batch size = 64 offers

better values than the other batch size values.

7.1.6. Dropout Value

It is essential to obtain an adequate dropout size to reduce overfitting without affecting per-

formance and speed [129]; for this, an evaluation is performed at low, medium, and high

dropout values. The values obtained with dropouts 0.1, 0.5, and 0.7 can be seen in Table

7.6.

Table 7.6: Dropout size.

Dropout
Batch

size
Epochs

BiGRU

neurons

GloVe

Dimension

Elapsed

time (min)

K-fold

mean

accuracy

0.1 64 5 64 50 0:12 0.9635

0.5 64 5 64 50 0:12 0.9454

0.7 64 5 64 50 0:11 0.9384

Table 7.6 shows that the elapsed time in the execution with the three dropout values

analyzed practically remains unchanged; however, the mean accuracy obtained with the 0.1

dropouts is better than that obtained with the other two dropout values.

7.1.7. Number of BiGRU Layers

After finding the optimal hyper-parameters for one BiGRU layer, we added a layer to test for

improved accuracy. The results for one and two layers of BiGRU are presented in Table 10.

Table 7.7: BiGRU layers.

BiGRU

layers
Dropout

Batch

size
Epochs

BiGRU

neurons

GloVe

dimension

Elapsed

time (min)

K-fold

mean

Accuracy

1 0.1 64 5 64 50 0:11 0.9635

2 0.1 64 5 64 50 0:19 0.9454

Based on the results shown in Table 7.7, we found that increasing the number of layers in
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our DL model did not improve the mean accuracy. Furthermore, the training time increased

by seven minutes compared to the previous model. We concluded that adding more layers

to the model is unnecessary and may lead to increased complexity, longer processing times,

and decreased accuracy. This decrease may be because the data handled by our model is

not necessarily very complex.

7.1.8. Tuned Hyper-Parameters

After tuning the model, Table 7.8 shows the values of the hyper-parameters obtained in our

proposal.

Table 7.8: Tuned hyper-parameters for the NDLP application.

BiGRU

layers
Dropout

Batch

size
Epochs

BiGRU

neurons

GloVe

Dimension

Our tuned

model

NDLP

1 0.1 64 5 64 50

7.2. Application Based on the Fine-Tuned Attack Detection Model

using NLP and DL

In this section, we present the Google extension developed to implement the fine-tuned

model.

7.2.1. Coding and Testing

The code files used to develop the Google extension are at the following link from the GitHub

site:

https://github.com/debenavides/NDLP-Phishing/

The content of each code file in the shared repository is described below.
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Preprocessed_dataset.csv

This dataset stores the 9761 valid rows obtained, of which 8589 are phishing rows and 1172

are from ham. This dataset contains three columns: context, which contains the text ob-

tained from each web page, and the categorical columns, phishing and ham, which indicate

whether it is a phishing web page or not. This data is ready to be entered into the NLP and

DL algorithm.

NDLP Phishing Tuned Model.ipynb

This file contains the model already tuned with optimized parameters. In this model, the

variations of all the hyper-parameters analyzed have been made. The experiment was

performed on the Preprocessed_dataset.csv file data. Finally, the already trained model

NDLP_model.h5 is generated and saved in the model.

NDLP_model.h5

This file is the saved model of the NDLP Phishing Tuned Model.ipynb, which is then sent to

production to detect a new phishing page.

One Web Page analysis.ipynb

This code contains two parts. In the first part, the HTML text obtained from a new web

page is cleaned, and in the second part, a prediction is made, calling the trained model

NDLP_model.h5.

Ext_NDLP.zip

This folder contains all the Chrome extension files. Before running this extension, it must be

added to the Chrome browser. This folder includes the code to pre-process the web page

and the fine-tuned NDLP_model to analyze the pre-processed text.

7.2.2. Google Chrome extension

Figure 7.3 shows how the developed extension works internally. The browser extension

is configured using the manifest.json file, which acts as a configuration map defining es-
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sential properties such as name, version, and required permissions. The popup inter-

face, popup.html, provides a simple user interface with a button that, when activated by

the popup.js script, sends a message to the content script content.js to start capturing text

on the current web page. The content.js script runs in the web page context and uses the

browser API to capture the page text using document.body.innerText. Then, the fetch func-

tion sends an HTTP request to the Flask server with the captured text as JSON data.

Figure 7.3: Design of the proposed application NDLP phishing

On the server side, Flask is used. Flask is a server and an environment to load and run

trained DL models. The deploy.py script configures a Flask server and defines routes, in-

cluding the POST /processText path. When it receives a request on this route, it invokes the

process_text function, which performs processing operations on the text. The process_text

function is responsible for processing the received text and performing specific operations

such as cleaning, tokenization, and 200-word selection. Once the above process is com-

plete, a phishing DL model NDLP Phishing.h5 will be used to make the prediction. Once

the Flask server has processed the text and made the prediction, it sends the result back to

the client. The content.js script on the client side receives the server’s response, including

the prediction result. Based on the prediction result, the script displays an alert to the user

in the browser interface. This comprehensive interaction flow between the client and the

server ensures that the browser extension can capture, process, and evaluate the text of the

current web page, allowing a response to potential phishing attempts.
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7.2.3. NDLP Execution

To use this application, we open the web page to be analyzed in the Google Chrome browser,

then click the extension icon shown in Figure 7.4. The interface in Figure 7.5 will appear.

Figure 7.4: NDLP extension icon

Figure 7.5: NDLP Message to check if the web page is a phishing attack attempt

When the user clicks on the interface in Figure 7.5, the NDLP program is executed, which

analyzes the text of the web page and reports in Figure 7.6 and Figure 7.7 the percentage

of probability that the page under analysis is phishing or not.
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Figure 7.6: NDLP execution

Figure 7.7: Message showing the percentage of a web page being phishing or not

7.2.4. Discussion

Although articles [130], [131], [132], [133], [134], [135], [136], [137], and [138] address

the problem of detecting a Phishing attack through DL and NLP, none develops an ap-

plication as in our proposal. In addition, articles that detect Phishing attacks using DL

and NLP on web pages were also searched, but only the article [2] was found. In con-

trast, the others were oriented only to Phishing emails or Social Networks, leaving much

to be investigated in the content of web pages. For this reason, the model proposed by

the article [2] was taken as the starting point of our study, which detects phishing attacks

using DL and NLP on the text contained in web pages. To compare the starting algo-

rithm of the [2] article model with our proposed tuned algorithm, NDLP, we recreated the

experiment of [2] on a personal computer. We ran it with our proposed tuned algorithm.

(https://github.com/debenavides/NDLP_Comparative). Table 12 shows how our proposal

configures the hyper-parameters of [2] and our proposal.
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Table 7.9: Tuned hyper-parameters for the NDLP application.

BiGRU

layers
Dropout

Batch

size
Epochs

BiGRU

neurons

GloVe

Dimension

Elapsed

time

(min)

K-fold

mean

accuracy

[2] 1 0.1 128 10 128 100
5h

32min
0.9682

Our tuned

NDLP

model

1 0.1 64 5 64 50
0h

26min
0.9855

After running the experiment, Table 7.9 shows that in the model proposed by [2], a

96.82% mean accuracy was obtained. In comparison with our tuned proposal, a 0.9855

mean accuracy was obtained. Thus, our tuned algorithm exceeds 1.7% of the algorithm

proposed in [2] in a processing time of 12 times less.

Figure 7.8 shows the behavior of the two algorithms: the non-tuned one with ten epochs

and the tuned one with five epochs. Also, in Figure 7.8, it can be observed that the non-

tuned algorithm starts to fall after epoch 7, reaching even below 99.86%, while the tuned

algorithm reaches epoch five up to 99.90%.

Figure 7.8: Comparison between the accuracy of the algorithms of the proposed model [2]

and our refined NDLP
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Table 7.9 shows that after our experiments, the hyper-parameters that did not change

based on those initially had in the [2] model were BiGRU layers and Dropout. Also, Table 7.9

shows a decrease in the hyper-parameters batch size, epochs, BiGRU neurons, and GloVe

dimensions, established at 0.9855. Thus, it can be determined that the values obtained with

the tuned hyper-parameters only decrease the mean accuracy of the proposal from [2] to our

proposal by 1%. On the other hand, the training time with our proposal is four times faster

than the proposal [2]. Therefore, we have accepted the hyper-parameters displayed in Table

7.8 for our model as the foundation for the application developed as part of this research.

With our proposal, we intend to fill the research gap by creating an application capable of

detecting phishing attacks on web pages using the latest State-of-the-art technologies, DL,

and NLP-GloVe. In addition, our application can capture only the text content of any web

page, preprocessing it with NLP-GloVe and analyzing it with DL, predicting with a mean

accuracy of over 99.00% whether a page is not phishing. The prediction is made using

the previously obtained NDLP Phishing.h5 model; this application was installed through a

Google Chrome extension and it is very intuitive.

7.3. Chapter Summary

In Chapter 7, it was determined that the algorithm that best fits our model is the BiGRU deep

learning algorithm. However, in that chapter, they did not adjust the hyper-parameters to ob-

tain an application that consumes little computational expense and a better mean accuracy.

Due to this, in the first section of this chapter, the hyper-parameter adjustment is carried

out to obtain a robust and lightweight model. The reproduction of the experiment can be

carried out based on the code shared in the link: https://github.com/debenavides/NDLP-

hyper-parameter-tuning/.

On the other hand, in the second section of this chapter, an extension is designed and

implemented that uses the developed model to detect phishing attacks on the text of web

pages. This extension is called NDLP phishing (to refer to the fact that NLP and DL are

used), and it detects these phishing attacks. The reproduction application’s source code

can be downloaded from the link: https://github.com/debenavides/NDLP-Phishing/.

97



Chapter 8

Conclusions and Future Work

Contents

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1. Conclusions

Phishing is a Social Engineering cyber attack in which attackers obtain confidential informa-

tion from end users, mainly to defraud them. There are hardware, software, and awareness

measures to confront this type of attack, but it is enough for an end user to fall for the de-

ception and thus open and enter their information through a malicious web page. Therefore,

the main objective of this thesis was to develop a model to help end users detect Phishing

attacks in a relatively simple but highly accurate way.

Thus, this research proposes an innovative phishing-detection model to detect Phishing

attacks using Deep Learning and Natural Processing Language. For this, first, we conducted

a literature review. Then, we evaluated the personality traits and behaviors of victims of this

type of attack. After that, we determined what types of data from the content of the web

pages, HTML code or clear text, are more accurate for detecting phishing attacks. In the

main part of our work, a detection model was proposed to determine which Deep Learning

algorithm is most effective for phishing detection. Finally, the algorithm was fine-tuned and

implemented as a Chrome browser extension.

This research used Barbara Kithchham’s systematic literature review methodology to

carry out the literature review [38]. According to the literature review, there still is a research

gap in web page text analysis using Deep Learning and Natural Language Processing. Al-
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though we found several articles on combating phishing with NLP and DL, most were ori-

ented toward combating phishing emails, not web pages. As for tackling web pages, most

studies were oriented toward working on URLs and not on the text of the web pages. Some

articles were found that used Deep Learning to detect these attacks on the text of web

pages. Still, however, they did not use Natural Language Processing to pre-process the text

entered into the algorithms and thus take advantage of its rich semantics. The emphasis on

web pages was predominantly on URL analysis, neglecting the text within the web pages.

Furthermore, we found no evidence of these models being implemented in web browsers,

highlighting the novelty of our approach.

A preliminary study was presented in A Comparative Study of Deep Learning Algorithms

in the Detection of Phishing Attacks Based on HTML and Text Obtained from Web Pages.

In this study, it was determined that if we execute the Deep Learning algorithm either with

HTML or with text, it does not produce a greater difference in accuracy in the application of

an algorithm. For this experiment, Deep Neural Network, Recurrent Neural Network, Con-

volutional Neural Network, and Recurrent Convolutional Neural Network algorithms were

executed on the content of a large text dataset with HTML code and text. The average of the

metrics obtained with HTML was 85%, and the overall metrics obtained with text averaged

84%.

The main objective of this work was to create a model for detecting phishing attacks

using Deep Learning (DL) and Natural Language Processing (NLP). We made the phishing-

detection model using the Keras Embedding Layer with the GloVe dictionary to take ad-

vantage of the semantic and syntactic features of the web page text. Our proposed model

used automatic features of the text contained in web pages, applying word-level embedding

methods to represent these features in vector form. These vectors were then input to the

LSTM, BiLSTM, GRU, and BiGRU algorithms to identify phishing pages. After the experi-

ment, it can be determined that BiGRU was the DL algorithm that performed better with the

data previously analyzed with NLP than the other three DL algorithms, LSTM, BiLSTM, and

GRU. On the other hand, BiLSTM gave the worst results, even below expected. The validity

of our model was demonstrated using the K-fold cross-validation technique, which yielded

a mean accuracy of LSTM 96.71%, BiLSTM 97.20%, GRU 97.29%, and the best, BiGRU

97.39%.

After implementing the model, our objective was to fine-tune it. Thus, we tested the

model with three text lengths L obtained from web pages: L = 200, L = 500, and L = 1000;

however, the results were similar, so it was determined that 200 was the optimal size for this
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analysis. To fine-tune our algorithm, we tested different values of BiGRU layers, dropout,

batch size, epochs, neurons per layer, and GloVe dictionary dimension. Hence, we refined

the initial model based on the text of the web pages, and 98.55% of mean accuracy was

obtained, with batch size = 64, five epochs, 64 neurons, and GloVe dimension = 50. That is

1.7% more than the initial solution proposed in [2] and 12 times faster for training and test

response.

The complementary objective of this research was to develop an end-user-friendly appli-

cation that can efficiently detect phishing attacks using NLP and DL on the text contained in

the body of web pages to take advantage of the semantic and syntactic content of the text.

To do this, we have developed a user-friendly extension for Google Chrome. This extension,

built on the base of our refined model, not only detects phishing attacks by analyzing the

text of web pages using NLP and applying the BiGRU algorithm but also ensures a secure

browsing experience. It does this without introducing technical complexities, making it easy

for all users, regardless of their technical proficiency. This seamless integration of advanced

technology into everyday browsing is a significant step towards safer Internet use.

Also, to highlight the justification of this study, we made two works, shown in the annexes.

First, in the study A Framework Based on Personality Traits to Identify Vulnerabilities to So-

cial Engineering Attacks, it was determined that the end users who have the most significant

tendency to be victims of phishing attacks are those who have the following traits: Open-

ness (28.8%), Agreeableness (27.9%), Conscientiousness (20.2%), Neuroticism (11.5%),

and Extraversion (11.5%). The Five-Factor Personality Model [139] was used to determine

each respondent’s personality. Next, in Analysis of vulnerabilities associated with Social

Engineering attacks based on user behavior, a study was carried out at a higher educa-

tion institution, specifically on teachers, administrative staff, and student population. It was

determined that the group of students is more prone to receive attacks from Social Engi-

neering due to their overconfidence and lack of experience. On the contrary, teachers and

administrative staff are least likely to receive attacks from Social Engineering when handling

confidential information and being aware of the dangers of losing any information. The four

risk parameters of study [140] used to evaluate each respondent’s risk where risk behavior,

conservative behavior, exposure to offense, and perception of risk.

A significant limitation in the timely delivery of this work was the requirement for scientific

publications, which either took a long time to be accepted and published or were never

reviewed by the journals. In the particular case of this research, in one year, there has yet to

be a response from one of the manuscripts. Finally, when experimenting with large amounts
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of data, Deep Learning algorithms, and natural processing language, it is necessary to have

robust hardware equipment. In our case, the RIG server used in this work was between

twelve and forty times faster than a personal computer.

8.2. Future Work

This research was based on refining the BiGRU DL algorithm, which performs text analysis

by NLP using embedding with the GloVe dictionary over text; however, initially developed

for NLP tasks, Transformer algorithms have revolutionized the DL field. Thus, we plan to

create an algorithm that detects phishing attacks based on the four most used Transformer

algorithms. In this future work on applying various Transformer algorithms to detect phishing

attacks, we will also make an extension that can be installed in addition to the Chrome

browser in Mozilla Firefox, Edge, and Opera browsers.

We also plan to evaluate our model with other word embedding mechanisms, such as

Fast Text, Word2Vec, or BERT, to evaluate their performance in the NLP domain. In addition,

to improve the performance of DL algorithms, we plan to implement an attention-based DL

architecture, which can differentiate which parts are more critical than others, depending on

the context.

While in this research, we obtained acceptable results to face phishing attacks with NLP

execution and DL algorithms, in the future, we plan to conduct a comparative study in which

we can tune the parameters of both the embedding layer and DL algorithm layers for better

results. An algorithm that detects these attacks is also required, using ensemble methods of

at least two DL algorithms on various levels, such as URL, third-party information, and web

content.

In future research, we plan to develop a model that considers users’ personality traits

and behavior to warn them when they are very likely to be the victim of a social engineering

attack. This model will incorporate data from browsing history, text typed on social networks,

and click and typing patterns.

Our model works well with the current training and test data and generalizes well for new

attacks not yet seen; however, the continuous evolution of attacks requires the model to be

constantly updated. For this reason, a module will be created to retrain the model with new

attacks and update the application so that it does not lose its high accuracy.

The model was trained and evaluated with a single data set; however, different data

sets are planned to evaluate the model. In addition, these new datasets will be merged
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into a single dataset to retrain the model and re-measure its metrics. On the other hand,

this work used unbalanced data, which is why k-fold cross-validation was used, resulting in

an acceptable mean accuracy. Future experiments will use data augmentation and other

techniques to balance the binary classification data and other more effective metrics for

unbalanced data.
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Appendix A

Phishing, Personality Traits, and

User Behavior

A.1. Personality Traits Vulnerable to Social Engineering Attacks

Some personalities are more prone to attacks than others because the attackers take advan-

tage of the personality traits of their victims, such as friendliness, ignorance of basic security

measures, naivety, or overconfidence. In this section, we propose a Framework based on

personality traits, allowing us to know which people are more vulnerable than others. Faced

with this scenario, the main aim of this study is to develop a tool that will determine which

people are most vulnerable to social engineering attacks. The methodological process con-

sisted of first determining the most common traits of users related to vulnerability. Then, the

personality traits of a surveyed group were determined. Finally, the most vulnerable traits

matched the respondents’ personality traits. The personality traits in which our research was

framed are known as the Five-Factor Model of personality. The methodology used for this

study is explained in Figure A.1.
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Figure A.1: Model for defining user vulnerability by personality trait.

A.1.1. Determination of the Most Important Personality Traits to

be Vulnerable

Once the 36 publications were obtained as a result of the literature review of this research,

the total reading of each was carried out. Hence, we extracted the main personality traits

evaluated in these articles. Then, these personality traits were framed within the charac-

teristics of the personality of the Five-Factor Model (FFM). They were also assigned colors

to identify each personality trait, high or low. See A.2. At this point, we decided to give a

high or low scale to each FFM property because, based on our study, a person with high

openness is much more at risk than a person without openness.
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Figure A.2: Five-Factor Model with high and low scales and colors.

A.1.2. Surveying to Determine Personality Traits

Parallel to the previous steps, 146 people were surveyed to determine their personality traits,

considering the Five-Factor personality model. Table A.1 lists the survey questions.
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Table A.1: Distribution of survey questions for each FFM factor of personality.
1. Do you like to talk a lot? 22. Are you generally confident?

2. Do you tend to find fault with others? 23. Do you tend to be lazy?

3. Do you do a thorough job? 24. Are you emotionally stable?

4. Are you depressed or sad? 25. Are you creative and invent new things?

5. It is original; do you come up with

new ideas? 26. Are you assertive, self-confident?

6. Is it reserved? 27. Can you be cold and distant?

7. Are you helpful and disinterested in

others? 28. Do you persevere until you finish a task?

8. Can it be somewhat sloppy? 29. Can you be moody?

9. Are you relaxed, or do you handle

stress well? 30. Do you value artistic and aesthetic

experiences?

10. Are you curious about many different

things? 31. Are you sometimes shy or inhibited?

11. Are you full of energy? 32. Are you considerate and kind to almost

everyone?

12. Do you fight or argue with others? 33. Do you do things efficiently?

13. Are you a reliable worker? 34. Do you stay calm in stressful situations?

14. Are you usually tense? 35. Do you prefer routine work?

15. Are you resourceful and a deep thinker? 36. Are you sociable?

16. Do you have a lot of enthusiasm? 37. Are you sometimes rude to others?

17. Do you have a compassionate nature

towards others? 38. Do you make plans and follow them?

18. Do you tend to be disorganized? 39. Do you get nervous easily?

19. Do you worry a lot? 40. Do you like to reflect and play with ideas?

20. Do you have an active imagination? 41. Do you have few artistic interests?

21. Do you tend to be quiet? 42. Do you like to cooperate with others?

A.1.3. Determination of the Personality Traits of Survey Respon-

dents

After the survey, which 146 people from a higher education institution answered, the person-

ality traits of each were determined. See Table A.2 with three examples of surveyed people.
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Table A.2: Three examples of survey results to determine personality traits.
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1 Low Low Low Medium Medium

2 Low Medium Medium Low High

3 Low High Medium Low High

A.1.4. High, Medium, and Low Risk in Each FFM Trait

According to [141] and [142], high, medium, and low values are established for each be-

havioral trait in FFM. See Table A.3. In addition, based on the results obtained from the

interpretation of the analyzed publications, we have assigned them a red, yellow, and green

signal according to the level of risk that this trait implies: high, medium, or low.
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Table A.3: Traffic lights of high, medium, and low scales.

FFM Low Medium High

E
xt

ra
ve

rs
io

n

People with low scores

can be described as in-

troverts; therefore, it is

more difficult to get infor-

mation from them.

People with average

scores can be some-

what reserved but tend

to generate conversation

if their attention is cap-

tured.

High-scoring people

are comfortable in large

groups and tend to be

enthusiastic, energetic,

and highly talkative

A
gr

ee
ab

le
ne

ss

This type of person is

usually critical, is not

condescending and ex-

presses hostility towards

others.

They usually do not try

to please anyone, but

if necessary, they would

be willing to help others,

always being alert.

These people are likelier

to help and trust others

because they always as-

sume the best in others.

C
on

sc
ie

nt
io

us
ne

ss In this trait, those are

likelier to not stick to

plans and follow their

own rules without mea-

suring consequences.

People with established

values who can be

trusted are not exempt

from making small, care-

less mistakes.

Honesty, trust, strong

self-orientation, and

self-responsibility are

the main characteristics

of these people.

N
eu

ro
tic

is
m These people tend to be

more emotionally stable

and better meditate on

all their actions.

They tend to remain

calm, but the more it

forces them, the more

quickly they reach their

breaking point.

The higher someone’s

score on this trait, the

more they tend to worry

and make hasty deci-

sions.

O
pe

nn
es

s

Favor conservative val-

ues. They are judges in

conventional terms and

uncomfortable with com-

plexities. It could be

wrong not to be aware of

new attack methods.

People were willing to

accept new experiences

without losing conserva-

tive values.

They are open to new

ideas and experiences

and accept different be-

liefs.
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A.1.5. Identification of Most Vulnerable Individuals or Groups

Once two things were obtained separately: (1) on the one hand, the essential characteristics

in the literature framed in the FFM; (2) on the other, the personality traits of the respondents,

also framed in the FFM; a match was performed to determine which people are the most

vulnerable to Social Engineering attacks.

A.1.6. Survey Results to Determine Personality Traits of Users

Parallel to defining the most important personality traits, we surveyed university personnel

to determine the respondents’ personality traits. The sample taken is 146 out of the 800

university community members. This way, a score was determined for each respondent in

each FFM factor. For instance, in Table A.4, we show the first nine results out of the 146

respondents.

Table A.4: Numerical results of the survey carried out framed in FFM.
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1 17 18 23 31 34

2 21 33 35 22 47

3 22 37 33 23 47

4 26 31 31 25 33

5 24 30 36 22 32

6 32 39 28 29 31

7 36 37 37 11 45

8 18 26 23 21 30

9 23 31 28 19 25

This study even determined that people with higher openness and agreeableness are

likelier to be victims than those with low conscientiousness. In other words, determining low,

medium, or high values in each FFM and each respondent can define whether this person is
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more vulnerable than another person. Then, based on the values obtained from the survey

of nine respondents in Table A.4, we created Table A.5, in which, as a traffic light, the risk of

each respondent is indicated, highlighting in red the high-risk characteristics, in yellow those

of medium risk and green those of low risk.

Table A.5: Traffic lights of the survey carried out framed in FFM.
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1 Low Low Low Medium Medium

2 Low Medium Medium Low High

3 Low High Medium Low High

4 Medium Medium Medium Medium Medium

5 Medium Medium High Low Medium

6 High High Medium Medium Medium

7 High High High Low High

8 Low Low Low Low Medium

9 Low Medium Medium Low Low

A.1.7. Determination of People Vulnerable to Social Engineering

a Attacks

Table A.5 shows the example of nine people to whom the survey was carried out. It can

be seen that the person who is most vulnerable to being a victim of a Phishing attack is

the site person because he has three characteristics in red (Extraversion, Agreeableness,

and Openness), while person five has four characteristics in green (Agreeableness, Con-

scientiousness, Neuroticism, and Openness). Following the previous example, the other

respondents can be evaluated, too.
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A.2. Vulnerable Behavior of People to Social Engineering At-

tacks

Certain personality traits, such as those studied in the previous section, cause certain be-

haviors that can lead us to be victims of a Phishing attack. Although our personality traits

are intrinsic and we cannot control them, we can regulate people’s behavior. By regulating

this behavior, we can warn people before they commit an action that leads them to be a

victim of a Phishing attack. In this section, a study is carried out on the behavior of people

that makes them victims of attacks.

There are undoubtedly behaviors that make some people more exposed to Social Engi-

neering attacks than others. For this reason, we conducted a study of teachers, administra-

tors, and students in a higher education institution to determine the relationships between

specific users and the Social Engineering attacks of which they are victims.

This study was carried out through a survey of 153 people, who, according to their re-

sponses, were evaluated to determine their level of the following behavioral Likert scales:

Risky Behavior Scale (RBS), Conservative Behavior Scale (CBS), Exposure to Offence

Scale (EOS), and Risk Perception Scale (RPS).

Next, the following four hypotheses were proposed:

• H1: There is no significant difference between the scales RBS, CBS, EOS, and RPS

concerning their average.

• H2: There is no significant difference between the surveyed groups (teachers, admin-

istrators, and students) concerning their average.

• H3: The exposure to more hours/day that users have when using the Internet affects

the average of the scales RBS, CBS, EOS, RPS.

• H4: There is a significant correlation between the averages of the scales RBS, CBS,

EOS, and RPS.

A.2.1. RBS

This scale refers to the behavior of users in the face of risk towards Information Systems.

The questions that were asked to the participants to know their score on this scale were the

following:
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• Do you use WhatsApp, Telegram, Messenger or similar chat programs?

• Do you use Meet, Teams, Zoom, or similar meeting programs?

• Do you use email?

• Do you use your Corporate or Institutional email address for your personal business?

• Do you use online banking?

• Do you make purchases or payments on the Internet?

• Do you use websites that provide services to citizens electronically (i.e., check identity

• number, payment of basic services, etc.)?

• Do you play video games online?

• Do you watch videos or movies online?

• When necessary, do you share your personal information on the Internet (i.e., first

name, last name, date of birth, email, address, etc.)?

• Do you transfer confidential files on WhatsApp, Telegram or Messenger?

• Do you use online banking in places where there is access to the public Internet?

• Do you share your passwords with other people?

• Do you save your passwords by writing them in diaries or places that can be easily

found?

• Do you open emails from strangers or download the attachments of those emails?

A.2.2. CBS

The objective of this scale is to measure the user’s actions when using an Information Sys-

tem. The questions that were asked to the participants to know their score on this scale

were the following:

• Do you use the original licensed software on your computer?

• Do you use programs like virus detection, spyware, etc?

• Do you delete temporary internet files and history before leaving a computer?
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• Do you use long and complicated passwords that cannot be easily guessed for your

Internet accounts and personal files?

• Do you use an electronic signature?

• Do you have a password to access your computer?

• Do you pay attention to the websites you visit, checking if they have the HTTPS lock in

the address bar?

• Do you often change your passwords?

• Are you aware that others may use your personal information illegally?

A.2.3. EOS

This scale aims to measure the exposure that users have to any cybersecurity threat. The

questions that were asked to the participants to know their score on this scale were the

following:

• Have you had problems due to computer viruses?

• Have you experienced financial loss because of online shopping?

• Have you had problems sharing your personal information on the Internet?

• Have you received any notification of using your username and password on the Inter-

net without your authorization?

• Have the files on your computer ever been stolen or deleted?

• Have you found fake accounts that use your confidential data or user profile?

• Do you use any entity that preserves your credit card details in online purchases, such

as PayPal?

A.2.4. RPS

This scale measures the degree of risk or danger a user captures using information tech-

nologies. Of the following items, the participants were asked to indicate the degree of danger

that they perceive:
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• Computer virus.

• Lack of antivirus.

• Spyware (Keylogger, Screen logger, Trojan, etc.).

• File sharing programs (Google Drive, Dropbox, Mega, etc.).

• Chat programs (WhatsApp, Telegram, and Messenger.).

• Junk, spam, or junk email.

• Online games.

• USB or external memories.

• Macros in Microsoft Office applications (Word, Excel, etc.).

• Use of pirated programs.

• Download materials such as music, photos, or movies without paying anything.

• Open emails with advertising content.

• Use of online banking.

• Share information with strangers online.

• Online purchases.

• Using Wireless Wi-Fi.

• Downloading and using free or unlicensed programs.

• Delivery of identity card or driver’s license number to security personnel at the entrance

of a building.

A.2.5. Demographics

In addition, it was necessary to collect demographic information from the respondents. For

this, the following questions were presented to the participants:

• Select your age range.

• Select your gender.
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• Have you ever had training or experience in Internet Security?

• What is your average time of Internet use per day?

• Choose your occupation.

• What is your level of education?

• Choose the department, study, or work area to which you belong.

• How do you access the Internet from outside your workplace?

• Choose your department or study area.

• Choose the level you are at in your career.

• Enter your position within the Institution.

A.2.6. Results and Discussion

After completing the surveys, their responses were evaluated to answer the hypotheses

raised. Below are the results obtained with their respective decisions:

Hypothesis H1: There is no significant difference between the scales RBS,

CBS, EOS, and RPS concerning their average.

Regarding H1, it can be verified that there is a significant difference between the scales,

which is why H1 is discarded. To contrast H1, we used the analysis of variance or ANOVA

between scales. This ANOVA analysis allows us to identify the significant difference in the

results obtained in the developed survey. To develop the ANOVA analysis between the

scales RBS, CBS, EOS, RPS, the Significance Level α = 0.05 was used so that if the value

of P (Probability) is less than that of α, H1 is rejected. Therefore, it is shown that there is a

significant difference between the scales, as can be seen in Table A.6.

Table A.6: ANOVA calculation between scales.
Source of variations Sum of Squares Degree of Freedom Mean Square Error Error Probability

Between groups 13.81 3 4.60 7.39 0.00

Within groups 28.63 46 0.62

Total 42.44 49 0.87

Table A.6 shows a significant difference between the scales analyzed with ANOVA. For

this reason, it is necessary to complement the analysis by developing a Tukey test to identify
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the scales that create this difference. Table A.7 shows the results of the scales compared to

identify where the difference is created.

Table A.7: Tukey test between scales.

Group 1 Group 2 Media Standard Error P-value

RBS CBS 0.15486 0,23244 0.965

RBS EOS 0.9226 0.25280 0.061

RBS RPS 0.66612 0.19167 0.080

CBS EOS 0.76740 0.28113 0.229

CBS RPS 0.82098 0.22774 0.065

EOS RPS 1.58839 0.24849 0.000

Based on Table A.7 and the relationship between EOS and RPS, it can be observed

that RPS positively influences EOS. In conclusion, users will be less exposed to Social

Engineering attacks as they perceive risk better.

Hypothesis H2: There is no significant difference between the surveyed groups

concerning their average.

In contrast to H1, in H2, the data were grouped between the three surveyed groups (i.e.,

teachers, administrators, and students) and the indicated scales. Table 13 shows the results

obtained by ANOVA. By obtaining the value of P = 0.004 in the case of the CBS scale and

of P = 0.021 in the case of the RPS scale, it is shown that there is a significant difference

between the surveyed groups. According to the differences found, it was determined that the

group of teachers has substantial differences between the group of administrative personnel

and the group of students.
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Table A.8: ANOVA calculation between academics, administrative staff, and students.

Scales

RBS Between groups 0.11 2 0.06 0.23 0.79

Within groups 36.31 150 0.24 - -

Total 36.43 152 0.24 - -

CBS Between groups 2.53 2 1.26 5.61 0.004

Within groups 33.79 150 0.23 - -

Total 36.32 152 0.24 - -

EOS Between groups 0.08 2 0.04 0.69 0.50

Within groups 9.04 150 0.06 - -

Total 9.13 152 0.06 - -

RPS Between groups 1.83 2 0.91 3.94 0.021

Within groups 34.78 150 0.23 - -

Total 36.61 152 0.24 - -

In addition, the Tukey test was used between the scales and the groups to identify the

group or groups that generate this difference. We find that the group of teachers generates

the difference in both the CBS A.9 and the RPS scale A.10.

Table A.9: Tukey test between the groups (teachers, administrative staff, and students) and

the CBS scale.
Group 1 Group 2 Media Standard Error P-value

Academic Administrative 0.38536 0.14949 0.165

Academic Student 0.39949 0.08448 0.002

Administrative Student 0.01413 0.13027 0.996

Table A.10: Tukey test between the groups (teachers, administrative staff, and students) and

the RPS scale.
Group 1 Group 2 Media Standard Error P-value

Academic Administrative 0.01278 0.151668 0.998

Academic Student 0.29214 0.085712 0.044

Administrative Student 0.30493 0.132167 0.235

Based on the previous analysis, there is a significant difference in the mean obtained

(from 1 to 5) between the groups surveyed. Thus, teachers behave more conservatively on
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the CBS scale in risky situations. Their mean is 3.067. On the RPS scale, the teachers

obtained a mean of 3.780. Therefore, it is concluded that they have a better perception of

risk when using the Internet or IT devices than the other groups surveyed.

Hypothesis H3: Exposure to more hours per day that users have when using

the Internet affects the average of the scales RBS, CBS, EOS, RPS.

In contrast, H3 respondents were grouped into three ranges according to the time they use

the Internet (i.e., 1 to 5 hours/day, 6 to 10 hours/day, and 11 or more hours/day). Table A.11

shows the ANOVA analysis, in which it can be identified if there is a significant difference

in the case of the RBS scale with a value of P = 0.003. Therefore, there is a substantial

difference between the participants’ Internet use times. For this reason, H3 is rejected, and

the alternative hypothesis is accepted, establishing that the surveyed users’ Internet use

affects the average of the proposed scales.

Table A.11: Results of the ANOVA of time of Internet use.
Scales

RBS Between groups 2.68 2 1.34 5.95 0.003

Within groups 33.75 150 0.22 - -

Total 36.43 152 0.24 - -

CBS Between groups 0.12 2 0.59 0.24 0.78

Within groups 36.20 150 0.24 - -

Total 36.32 152 0.24 - -

EOS Between groups 0.10 2 0.05 0.85 0.43

Within groups 9.03 150 0.06 - -

Total 9.12 152 0.06 - -

RPS Between groups 0.66 2 0.33 1.37 0.26

Within groups 35.95 150 0.24 - -

Total 36.61 152 0.24 - -

To identify in which group this difference is generated, the Tukey test was applied be-

tween the groups that use the Internet in the three ranges (i.e., 1 to 5 hours/day, 6 to 10

hours/day, and 11 or more hours/day). The results obtained with the development of the

Tukey test within the RBS scale reveal that the respondents in the 11 or more hours/day

group are more exposed. In addition, they are more tolerant of risk situations than the
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groups that use less time on the Internet, with a mean = 3.01268 on the RBS scale. See

Table A.12.

Table A.12: Pearson correlation between the behavior scales.
Group 1 Group 2 Media Std err P-value

1-5 hours/day 6-10 hours/day 0.14 0.12 0.691

1-5 hours/day 11 or more hours/day 0.38 0.12 0.063

6-10 hours/day 11 or more hours/day 0.24 0.06 0.006

In conclusion, based on the analysis of the results obtained, it is shown that on the RBS

scale, respondents in the group of 11 or more hours/day, with a mean = 3.012 on the RBS

scale, are more exposed and are more permissive in risk situations, compared to groups

that use the Internet for less time.

Hypothesis H4: There is a significant correlation between the averages of the

scales RBS, CBS, EOS, and RPS.

In this study, the existing Pearson correlation between the scales was analyzed to test

whether or not there is a correlation. The correlation is positive if the value obtained when

comparing the scales is greater than zero and less than one or negative if the value obtained

by comparing the scales is less than zero and greater than minus one. Table A.13 repre-

sents the data obtained by comparing the scales using Pearson’s correlation.

Table A.13: Pearson correlation between the behavior scales.
Scales RBS CBS EOS RPS

RBS 1 0.17554 0.00705 0.23947

CBS 0.17554 1 -0.20972 0.381002

EOS 0.00705 -0.20972 1 -0.12996

RPS 0.23947 0.381002 -0.12996 1

Table A.13 shows the highest positive correlation when comparing the CBS and RPS

scales, obtaining an r = 0.38. This means that if the CBS average increases, so will the

RPS average. In other words, if conservative behavior increases in a user, they will have

a better perception of risk when using the Internet or IT devices. On the other hand, the

negative correlations obtained when developing the Pearson correlation occurred between
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the CBS and EOS scales with r = -0.20 and between the EOS and RPS scales with r =

-0.12. Hence, this indicates that if the average of CBS increases, the average of the EOS

scale will decrease. In conclusion, if conservative behavior increases in a user, they will be

less exposed to possible risks when using the Internet or IT devices. By doing the same

analysis with the case of the EOS and RPS scales, if a user’s exposure to offenses or risks

increases, their perception of risk will decrease.

A.3. Annex Summary

In the first section, a framework was proposed to determine which people are more likely

than others to be victims of a Phishing attack. This determination is achieved by evaluating

each user characteristic as it fits the personality scale of the Five-Factor Model. Although the

first section evaluates personality traits, these traits go hand in hand with people’s behavior.

Therefore, in the second section, people’s behaviors and making them vulnerable to Social

Engineering attacks were evaluated on a psychological scale. These results are useful in

determining which people or groups of an organization are most likely to be victims of social

engineering. This information is useful for monitoring or organizing training targeting these

user groups.

Finally, based on the study in the first section of this chapter, it was determined that

people with high Extraversion, Agreeableness, Openness, and low Conscientiousness are

at a high risk of being victims of a social engineering attack. On the other hand, in the

second section, it was determined that people who spend more time in front of a computer

and are more permissive of risky behaviors are more vulnerable to these attacks.
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