ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARACTERIZACIÓN FÍSICO-MECÁNICA DE ACERO DE REFUERZO ESTRUCTURAL PARA NIVELES DE DESEMPEÑO DE PREVENCIÓN DE COLAPSO.

ENSAYOS BBT EN VARILLAS DE DIÁMETRO 8MM, 10MM, 12MM.

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERA CIVIL

MEGAN NICOLE SALTOS FLORES

megan.saltos@epn.edu.ec

DIRECTOR: DIEGO ANDRES SOSA CAIZA PH.D.

diego.sosac@epn.edu.ec

DMQ, agosto 2024

CERTIFICACIONES

Yo, MEGAN NICOLE SALTOS FLORES declaro que el trabajo de integración curricula
aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grad
o calificación profesional; y, que he consultado las referencias bibliográficas que s
incluyen en este documento.

Megan Nicole Saltos Flores

Certifico que el presente trabajo de integración curricular fue desarrollado por MEGAN NICOLE SALTOS FLORES, bajo mi supervisión.

DIEGO ANDRÉS SOSA CAIZA PH.D.
DIRECTOR

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

MEGAN NICOLE SALTOS FLORES

DIEGO ANDRÉS SOSA CAIZA PH.D.

DEDICATORIA

Dedicado a mi madre Carina, mi angelito en el cielo que siempre me cuida y guía mi camino. Su amor y recuerdo constante me inspiran a ser una mejor persona y una gran profesional.

A mi padre Marcelo, que siempre me apoyó y creyó en mí, y que con su esfuerzo y dedicación me impulsó a seguir adelante y a esforzarme cada día más para lograr mis objetivos.

A mi hermano Ariel por ser mi mejor amigo y brindarme su apoyo incondicional en todo momento.

A mis tías, que han sido como una segunda madre para mí. Su amor y cariño me han dado la fuerza para seguir adelante a lo largo de este camino.

A mis abuelitos, que con sus enseñanzas y sabiduría han dejado una huella imborrable en mi vida. Su apoyo incondicional y sus valores siempre me han inspirado a ser mejor.

AGRADECIMIENTO

Agradezco a Dios, por darme salud y permitirme haber culminado esta etapa en mi vida. Sin su guía y protección, no habría sido posible.

A mi madre Carina, que desde el cielo sigue guiándome y cuidándome. Con su apoyo y bendición, he logrado cumplir el sueño que siempre quiso para mí. Espero que se sienta orgullosa de mis logros; y aunque no esté físicamente, siempre la recuerdo y la llevo en mi corazón.

A mi padre Marcelo, por ser un ejemplo de superación y un pilar fundamental en mi vida, por enseñarme a luchar por mis sueños y por demostrarme que el esfuerzo siempre tiene su recompensa. Gracias por estar en los buenos y malos momentos, que me han ayudado a formarme y a no rendirme.

A mi hermano Ariel, por siempre darme ánimos e impulsarme a seguir adelante, por darme tu confianza y por acompañarme en las noches y madrugadas a lo largo de este proceso. Tu compañía hizo todo más llevadero.

A mis tías, que siempre me han apoyado y nunca me han dejado sola, por ser como una segunda madre y por darme ese amor incondicional que me ha hecho sentir siempre acompañada. Su constante preocupación y apoyo me han enseñado el verdadero valor de la familia.

A Sambito, mi hijo de cuatro patas, que siempre me da alegría y felicidad. Gracias por acompañarme día y noche y por siempre recibirme con entusiasmo, eres el verdadero reflejo del amor y la lealtad.

A todos los miembros del Centro de Investigación de la Vivienda (CIV), por su apoyo y perseverancia en la realización de los ensayos. Especialmente a la Ingeniera Melissa Herrera, por su paciencia y ayuda en la redacción de este trabajo, y por estar siempre dispuesta a aclarar cualquier duda, incluso en horas de la madrugada.

Agradezco a la Escuela Politécnica Nacional por haberme acogido y formado a lo largo de estos años; y al Ingeniero Diego Sosa, por su guía y preocupación durante este trabajo, por compartir sus conocimientos y por buscar soluciones ante cualquier inconveniente, además, de enseñarnos el valor del trabajo en equipo.

|ÍNDICE DE CONTENIDO

CERTIFICACIONES	l
DECLARACIÓN DE AUTORÍA	
DEDICATORIA	
AGRADECIMIENTO	IV
RESUMEN	XIII
ABSTRACT	XIV
1. INTRODUCCIÓN	1
1.1 Descripción del componente desarrollado	
1.2 Objetivo general	1
1.3 Objetivos específicos	2
1.4 Alcance	2
1.5 Marco teórico	2
1.5.1 Diseño Directo Basado en Desplazamientos (DDBD)	2
1.5.2 Estados límites y Niveles de desempeño	
1.5.3 Ductilidad	
1.5.4 Diagrama Momento – Curvatura	
1.5.5 Modelo de rótula plástica de Priestley	
1.5.6 Acero estructural ecuatoriano	
1.5.6.1 Composición química	
1.5.6.2 Curva Esfuerzo-Deformación	
1.5.7 Pandeo crítico	
1.5.8 Ensayo BBT 1.5.8.1 Falla Dúctil	
1.5.8.2 Falla Frágil (No dúctil)	
1.5.9 Metodología DIC	
2. METODOLOGÍA	
2.1 Ensayo de tracción de varillas	
2.1.1 Descripción del ensayo	
2.1.1.1 Esfuerzo de fluencia	
2.1.1.2 Elongación a la falla	
2.1.2 Preparación de la muestra	
2.2 Ensayo BBT	

	2.2.1	Des	cripción del ensayo	19
	2.2.2	Insti	rumentación	19
	2.2.3	Prep	paración de la muestra	20
	2.2.4	Prod	cedimiento de ensayo	22
	2.2.5	Dete	erminación del punto crítico de pandeo	26
	2.2.6	Rep	etitividad	26
2	2.3 M	letod	lología DIC	27
	2.3.1	Des	cripción de la metodología	27
	2.3.2	Cara	acterísticas generales del DIC	28
	2.3.	2.1	Patrón de moteado	28
	2.3.	2.2	Características del patrón	28
	2.3.	2.3	Tamaño del moteado	29
	2.3.	2.4	Errores comunes al motear las probetas	30
	2.3.3	Insti	rumentación	31
	2.3.4	Prep	paración de la muestra	32
	2.3.5	Prep	paración del ambiente	35
	2.3.6	Ajus	ste de imágenes digitales	37
	2.3.7	Prod	cesamiento de datos	39
	2.3.	7.1	Importación de archivos	39
	2.3.	7.2	Definir escala	40
	2.3.	7.3	Componente de superficie	41
	2.3.	7.4	Inspección de elementos visibles	43
3.	RES	SULT	FADOS, CONCLUSIONES Y RECOMENDACIONES	46
3	3.1 R	esul	tados	46
	3.1.1	Ens	ayos a tracción	46
	3.1.	1.1	Resistencia a la fluencia	46
	3.1.	1.2	Elongación a la falla	47
	3.1.2	Ens	ayo BBT	48
	3.1.	2.1	Determinación del punto crítico de pandeo	48
	3.1.	2.2	Repetitividad	54
	3.1.3	Met	odología DIC	58
	3.1.	3.1	Desplazamiento en "x" y "y" – Varilla 10mm	58
	3.1.	3.2	Desplazamiento en "x" y "y" – Varilla 12mm	63
	3.1.	3.3	Comparación DIC Y BBT	68
	3.1.	3.4	Deformación en sentido "y" – Varilla 10mm	70
	3.1.	3.5	Deformación en sentido "y" – Varilla 12mm	71

	3.2	Conclusiones73
	3.3	Recomendaciones76
4		REFERENCIAS BIBLIOGRÁFICAS77
5		ANEXOS79
		EXO I, II, III. Datos para las gráficas de curvas Fuerza vs Desplazamiento
		EXO IV. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". illa 10mm – Vista lateral80
		EXO V. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Ila 10mm – Vista frontal84
		EXO VI. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Ila 12mm – Vista lateral88
		EXO VII. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". illa 12mm – Vista frontal94

ÍNDICE DE FIGURAS

Figura	1.1 Du	ctilidad de curvatu	ra en secció	n arbitraria	١			5
•		Consideraciones	•				•	
Figura	1.3 Dia	agrama Momento-C	Curvatura					8
Figura	1.4 Mo	delo de rotula plás	tica de Prie	stley				10
Figura	1.5 Cu	rva esfuerzo-defor	mación					12
Figura	1.6 Pa	ndeo crítico en var	illa de refue	rzo				13
Figura	1.7 De	talle falla dúctil						15
Figura	1.8 De	talle falla frágil						15
Figura	2.1 Ma	quina Suzpecar						19
Figura	2.2 Pro	ocesador para adqı	uisición de d	datos				20
Figura	2.3 Eq	uipos de medición.						20
Figura	2.4 Es	quema varilla Ø10r	nm					21
Figura	2.5 (a)	Colocación de ma	rca y (b) Co	rte de varil	la			22
Figura	2.6 Co	locación de la varil	la entre las	mordazas.				22
•	٠,	Medición distancia				•		
Figura	2.8 Co	locación de marca	s para medi	ción				23
Figura	2.9 (a)	Medición distancia	a compres	ión y (b) M	edici	ón distanc	a pandeada	a 24
Figura	2.10 M	ledición distancia fi	nal pandea	da				24
Figura	2.11 D	etalle de rotura de	la varilla					25
Figura	2.12 C	olocación de mem	orete					25
_		Gráfica de curva F		•				
_		ráfica de curva Fue						
Figura	2.15 E	jemplificación alto	contraste					28
Figura	2.16 . E	jemplificación 50%	cobertura					28
Figura	2.17. (a) Ejemplificación	patrón isotr	ópico y (b)	Ejen	nplificaciór	n patrón est	ocástico 29

Figura 2.18 (a) Ejemplificación motas grandes o escasas y (b) Ejemplificación r pequeñas	
Figura 2.19 Moteado recomendado	30
Figura 2.20 Ejemplificación patrones	30
Figura 2.21. Ejemplificación patrones con bajo contraste	30
Figura 2.22 Ejemplificación de manchones dentro de patrón	31
Figura 2.23 Estructuras de perfiles de acero para soporte de celular y lámparas	32
Figura 2.24 Desoxidación de varillas	32
Figura 2.25 (a) Cepillado y (b) Lavado de varillas	33
Figura 2.26 (a) Secado y (b) Cepillado de varillas	33
Figura 2.27 Esquema varilla ø10mm para moteado	34
Figura 2.28 Moteado de varillas	34
Figura 2.29 Colocación de perfiles de acero	35
Figura 2.30 (a) Colocación celular frontal y (b) Colocación celular lateral	36
Figura 2.31 Identificación de varilla a ensayar (DIC)	36
Figura 2.32 Interfaz Lens Buddy	37
Figura 2.33 Selección de paquete de imágenes	38
Figura 2.34 Renombre secuencial de imágenes	39
Figura 2.35 (a) Interfaz Zeis Inspect y (b) Importación de archivos	40
Figura 2.36 Definición de escala	41
Figura 2.37 Componente de superficie	41
Figura 2.38 Calidad de patrón. Facetas	42
Figura 2.39 Selección de los parámetros de facetas	42
Figura 2.40 Trazo de línea referencial	43
Figura 2.41 Distribución de puntos preliminares	44
Figura 2.42 Colocación de puntos reales	44
Figura 2.43 Cambio de nombre de puntos reales	45
Figura 2.44 Selección de desplazamientos y deformaciones	45
Figura 3.1 Gráfica de dispersión para determinación del punto crítico - Varilla 8mm	49
Figura 3.2 Curva Fuerza vs Desplazamiento axial - Varilla 8mm	49
Figura 3.3 Gráfica de dispersión para determinación del punto crítico - Varilla 10mm	51

Figura 3.4 Curva Fuerza vs Desplazamiento axial - Varilla 10mm51
Figura 3.5 Gráfica de dispersión para determinación del punto crítico - Varilla 12mm 53
Figura 3.6 Curva Fuerza vs Desplazamiento axial - Varilla 12mm53
Figura 3.7 Curva Fuerza vs Desplazamiento axial – Repetitividad -Varilla 8mm55
Figura 3.8 Curva Fuerza vs Desplazamiento axial – Repetitividad - Varilla 10mm 56
Figura 3.9 Curva Fuerza vs Desplazamiento axial – Repetitividad - Varilla 12mm 58
Figura 3.10 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 10mm – Vista Lateral
Figura 3.11 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 10mm – Vista Lateral
Figura 3.12 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 10mm – Vista Lateral
Figura 3.13 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 10mm – Vista Frontal
Figura 3.14 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 10mm – Vista Frontal
Figura 3.15 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 10mm – Vista Frontal
Figura 3.16 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 12mm – Vista Lateral
Figura 3.17 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 12mm – Vista Lateral
Figura 3.18 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 12mm – Vista Lateral
Figura 3.19 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 12mm – Vista Frontal
Figura 3.20 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 12mm – Vista Frontal
Figura 3.21 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 12mm – Vista Lateral
Figura 3.22 Puntos de inspección - Varilla 10mm. a) Vista Frontal compresión y b) Vista Lateral tensión
Figura 3.23 Deformaciones a compresión Vista Frontal – Varilla 10mm70
Figura 3.24 Deformaciones a tensión Vista Lateral – Varilla 10mm71

Figura 3.25 Puntos de inspección - Varilla 12mm. a) Vista Frontal compresión y b) \	/ista
Lateral tensión	72
Figura 3.26 Deformaciones a compresión Vista Frontal – Varilla 12mm	72
Figura 3.27 Deformaciones a tensión Vista Lateral – Varilla 12mm	73

ÍNDICE DE TABLAS

Tabla 2.1 Detalle de varillas para fluencia
Tabla 2.2 Detalle varillas para ensayos BBT21
Tabla 3.1 Resistencia a la fluencia
Tabla 3.2 Fluencias mínimas47
Tabla 3.3 Elongación a la falla47
Tabla 3.4 Desplazamientos axiales a compresión y en la falla - Varilla 8mm
Tabla 3.5 Desplazamientos axiales a compresión y en la falla - Varilla 10mm
Tabla 3.6 Desplazamientos axiales a compresión y en la falla - Varilla 12mm
Tabla 3.7 Puntos críticos de las varillas 8mm,10mm y 12mm
Tabla 3.8 Repetitividad - Varilla 8mm
Tabla 3.9 Repetitividad - Varilla 10mm56
Tabla 3.10 Repetitividad - Varilla 12mm
Tabla 3.11 Valores de desplazamiento en los puntos de inspección. Varilla 10mm – Vista Lateral 60
Tabla 3.12 Valores de desplazamiento en los puntos de inspección. Varilla 10mm – Vista Frontal
Tabla 3.13 Valores de desplazamiento en los puntos de inspección. Varilla 12mm – Vista Lateral 64
Tabla 3.14 Valores de desplazamiento en los puntos de inspección. Varilla 12mm – Vista Frontal
Tabla 3.15 Desplazamientos en el punto de pandeo. Varilla 10mm y 12mm - Vista lateral y frontal
Tabla 3.16 Desplazamientos en el punto de pandeo máximo - Varilla 10mm y 12mm 69
Tabla 3.17 Desplazamientos en compresión máxima BBT y DIC - Varilla de 10mm y 12mm

RESUMEN

En la industria de la construcción, la selección de materiales adecuados para el refuerzo estructural es fundamental, especialmente en zonas propensas a sismos donde el diseño sismo resistente es crucial.

En la presente investigación se buscó caracterizar de forma experimental el nivel de desempeño sísmico de varillas de refuerzo en elementos de hormigón armado. El estudio se centró en varillas de diámetros de 8, 10 y 12 mm, evaluando la fractura de varillas pandeadas como el nivel de desempeño.

Los estudios experimentales realizados comprendieron ensayos de tensión de varillas para determinar el esfuerzo de fluencia y ensayos BBT (Ensayo a tensión de varillas pandeadas) que consiste en someter una probeta de varilla de refuerzo a una carga de compresión a partir de un desplazamiento axial impuesto hasta que se produzca el pandeo, para seguido traccionarla hasta la fractura buscando una falla frágil. Adicionalmente, se implementó la metodología DIC (Correlación de imágenes digitales) para la toma de fotografías de alta resolución de la varilla antes y después de su deformación para su posterior procesamiento y comparación con las mediciones manuales.

Los datos obtenidos de los ensayos fueron procesados y analizados en Excel, generando las gráficas de curvas fuerza-desplazamiento axial que permitieron determinar el punto crítico y evaluar la repetitividad para garantizar la identificación de la falla frágil. Además, de la obtención del perfil pandeado, el estudio de deformaciones axiales y desplazamientos de la varilla, a partir de las imágenes digitales tomadas para la metodología DIC.

PALABRAS CLAVE: BBT, DIC, varillas de refuerzo, falla frágil, perfil pandeado, punto crítico, repetitividad.

ABSTRACT

In the construction industry, selecting appropriate materials for structural reinforcement is

fundamental, especially in earthquake-prone areas where seismic-resistant design is

crucial.

This research sought to experimentally characterize the seismic performance level of

reinforcement bars in reinforced concrete elements. The study focused on bars with

diameters of 8, 10, and 12 mm, evaluating the fracture of buckled bars as the performance

level.

The experimental studies conducted included tension tests on bars to determine the yield

stress and BBT (Buckled Bar Tension) tests, which consist of subjecting a reinforcement

bar specimen to a compression load from an imposed axial displacement until buckling

occurs, followed by tensioning it to fracture, seeking a brittle failure. Additionally, the DIC

(Digital Image Correlation) methodology was implemented to take high-resolution

photographs of the bar before and after deformation for subsequent processing and

comparison with manual measurements.

The data obtained from the tests were processed and analyzed in Excel, generating axial

force-displacement curve graphs that allowed for determining the critical point and

evaluating repeatability to ensure the identification of brittle failure. Furthermore, the study

obtained the buckled profile, axial deformations, and displacements of the bar from the

digital images taken for the DIC methodology.

KEYWORDS: BBT, DIC, reinforcing bars, brittle failure, buckled profile, critical point,

repeatability.

XIV

1. INTRODUCCIÓN

1.1 Descripción del componente desarrollado

El componente busca estudiar el nivel de daño correspondiente a la fractura en varillas de acero grado 60 y de diámetro 8mm, 10mm y 12 mm, para la industria del acero ecuatoriano, mediante la implementación del ensayo BBT (Ensayo a tensión de varillas pandeadas) a y la aplicación de la metodología DIC (Correlación de imágenes digitales).

Lo que se espera con este ensayo es encontrar la falla frágil en la varilla de refuerzo al momento de su fractura, para ello, se comprime la varilla hasta alcanzar un desplazamiento impuesto y luego se tracciona hasta su fractura; este desplazamiento dependerá del diámetro y ductilidad de la varilla. Por otro lado, la metodología DIC contribuye con la obtención de las deformaciones y desplazamientos que presenta la varilla desde su estado inicial hasta su compresión en donde se obtiene la deflexión lateral máxima, a partir de los paquetes de imágenes que se ingresan en el programa para cada diámetro.

Las varillas de diámetros 8mm,10mm y 12mm se utilizan comúnmente como acero de refuerzo longitudinal y transversal en elementos estructurales de hormigón armado, tales como, columnas, vigas, losas y muros, donde, es esencial optimizar el espacio disponible para la colocación del refuerzo. Estos elementos deben resistir tanto tensiones como compresiones, especialmente en zonas sísmicas donde las estructuras están sujetas a cargas laterales significativas. Por ello, el ensayo BBT es fundamental para evaluar la resistencia al pandeo de las varillas de refuerzo. La falla por pandeo de estas varillas podría comprometer la integridad estructural, convirtiéndose en un punto crítico de falla en caso de eventos sísmicos o sobrecargas imprevistas

Con estos resultados se determinará la resistencia al pandeo de cada varilla y los límites de diseño seguros para elementos estructurales reforzados con los diámetros estudiados, contribuyendo así a garantizar la seguridad y el rendimiento adecuado de las edificaciones construidas.

1.2 Objetivo general

Caracterizar la deformación a flexión que produce la falla frágil a tensión en varillas pandeadas con diámetros 8mm, 10mm y 12 mm.

1.3 Objetivos específicos

- Establecer protocolos de ensayo estandarizados para varillas de 8 mm, 10 mm y
 mm, que incluyan procedimientos para la preparación, ejecución y análisis de los resultados.
- 2. Realizar ensayos a tensión en varillas pandeadas (BBT) para evaluar su comportamiento frente a la falla frágil.
- Aplicar la metodología de Correlación de Imágenes Digitales (DIC) durante la ejecución de los ensayos BBT para medir los desplazamientos y deformaciones que experimenta la varilla al alcanzar la compresión máxima.
- 4. Analizar la influencia del diámetro de cada varilla en la deformación a flexión que conlleva a la falla frágil en varillas pandeadas.
- 5. Evaluar la ductilidad del acero de refuerzo al medir su capacidad para deformarse plásticamente antes de alcanzar la fractura.
- 6. Analizar la influencia del pandeo de las varillas en su capacidad de soportar cargas a tensión, determinando cómo el pandeo afecta la resistencia y el comportamiento general de las varillas bajo condiciones de carga.

1.4 Alcance

El presente trabajo pretende caracterizar el nivel de desempeño correspondiente a la fractura de varillas pandeadas, a partir de la realización de ensayos BBT en varillas de 8mm,10mm y 12mm, implementando el sistema de medición DIC para medición de perfiles pandeados de varillas, desplazamientos y deformaciones.

1.5 Marco teórico

1.5.1 Diseño Directo Basado en Desplazamientos (DDBD)

El Diseño Directo Basado en Desplazamientos (DDBD) es una metodología innovadora en el campo de la ingeniería sísmica que se desarrolló como una alternativa al diseño basado en fuerzas convencional. Este enfoque, introducido por Priestley et al., (2007), se centra en el control de los desplazamientos de la estructura como parámetro principal de diseño, en lugar de las fuerzas sísmicas. El DDBD busca garantizar un comportamiento específico de la estructura bajo diferentes niveles de intensidad sísmica, controlando indirectamente el nivel de daño al limitar los desplazamientos.

Una característica fundamental del DDBD es que toma en cuenta el comportamiento no lineal de la estructura desde el inicio del proceso de diseño. Esto permite una representación más realista del comportamiento estructural durante eventos sísmicos significativos. El método utiliza un sistema equivalente de un grado de libertad (SDOF) para representar la respuesta de la estructura real, simplificando así el análisis de sistemas más complejos (Sullivan et al., 2003).

El procedimiento del DDBD sigue una serie de pasos bien definidos. Comienza con la definición del desplazamiento de diseño y el perfil de desplazamientos, seguido por la determinación de las propiedades del sistema SDOF equivalente, como la masa y la altura efectivas. Luego, se calcula el amortiguamiento equivalente basado en la ductilidad esperada, se determina el período y la rigidez efectivos, y finalmente se calcula el cortante basal de diseño y se distribuyen las fuerzas a lo largo de la estructura (Sullivan et al., 2003).

1.5.2 Estados límites y Niveles de desempeño

En el diseño sísmico moderno, los conceptos de estados límite y niveles de desempeño son fundamentales, especialmente en el contexto del diseño basado en desempeño. Estos conceptos establecen un marco para evaluar el comportamiento de una estructura bajo diversas intensidades sísmicas, definiendo criterios precisos para el diseño y la evaluación estructural (Vision 2000, 1995).

Los estados límites se refieren a condiciones más allá de las cuales la estructura, o una parte de ella, deja de cumplir los requisitos de diseño especificados. Estos incluyen tanto estados límite de servicio, relacionados con el funcionamiento normal de la estructura, como estados límite últimos, enfocados en la seguridad estructural y la prevención del colapso. Los niveles de desempeño, por su parte, describen el grado de daño esperado en la estructura para un determinado nivel de movimiento sísmico.

Comúnmente, se definen varios niveles de desempeño, que van desde "Totalmente Operacional" hasta "Prevención de Colapso". Estos niveles se asocian con diferentes grados de daño estructural y no estructural, así como con la capacidad de la estructura para mantener su funcionalidad después de un evento sísmico (Vision 2000, 1995). A continuación, se describen los niveles de desempeño típicamente considerados:

Totalmente Operacional: La estructura no presenta daños significativos, y tanto
los sistemas estructurales como no estructurales mantienen sus características
originales. El edificio permanece completamente funcional y seguro para los
ocupantes, con interrupciones mínimas en los servicios no estructurales.

- Ocupación Inmediata: La estructura presenta daños mínimos. Los sistemas estructurales conservan casi toda su resistencia y rigidez originales, con un riesgo muy bajo de lesiones para los ocupantes. Aunque pueden producirse daños menores en componentes no estructurales, los sistemas esenciales siguen siendo funcionales. El edificio puede ser utilizado inmediatamente después del sismo, aunque algunos sistemas secundarios podrían no estar operativos.
- Seguridad de Vida: La estructura sufre daños significativos, pero se mantiene un margen de seguridad contra el colapso parcial o total. Los componentes estructurales principales no colapsan. Pueden ocurrir lesiones, pero el riesgo de lesiones mortales es bajo. La estructura requerirá reparaciones sustanciales antes de ser reocupada, lo que puede no ser económicamente viable.
- Prevención de Colapso: La estructura experimenta daños severos, con una degradación considerable de la rigidez y resistencia del sistema resistente a cargas laterales, aunque aún mantiene cierta capacidad de carga gravitacional. Los componentes no estructurales pueden fallar, pero no se produce el colapso total de la estructura. El riesgo de lesiones es alto y la estructura probablemente no sea reparable ni segura para reocupación.

1.5.3 Ductilidad

La ductilidad es una propiedad esencial en el diseño sismorresistente de estructuras de hormigón armado. Se define como la capacidad de un elemento o estructura para deformarse dentro del rango inelástico bajo múltiples ciclos, sin que se presente una perdida significativa de resistencia y rigidez (Sosa, 2023). Esta característica permite a las estructuras disipar energía durante eventos sísmicos, reduciendo el riesgo de colapso catastrófico.

La ductilidad puede aplicarse a cualquier estado límite, y se puede calcular mediante la siguiente ecuación:

$$Ductilidad = \frac{Estado\ limite\ (LS)}{Fluencia\ equivalente\ (Y)}$$

Ecuación 1.1. Ductilidad

Sin embargo, existen varias formas de definir la ductilidad, entre las cuales se destacan:

• **Ductilidad de deformación:** Se refiere a la capacidad de un material para deformarse plásticamente sin fallar. Se calcula utilizando la ecuación:

$$\mu_e = \frac{\varepsilon_{LS}}{\varepsilon_y}$$

Ecuación 1.2. Ductilidad de deformación

Donde:

 $\varepsilon_{LS} = Deformación en el estado límite$

 $\varepsilon_{\rm v} = {\it Deformaci\'on}\ de\ fluencia$

 Ductilidad de curvatura: Esta forma de ductilidad se refiere a la capacidad de una sección para desarrollar rotaciones inelásticas antes de alcanzar su estado límite.
 Se define mediante la siguiente ecuación:

$$\mu_{\emptyset} = \frac{\emptyset_{LS}}{\emptyset_{V}}$$

Ecuación 1.3. Ductilidad de curvatura

De esta manera, la ductilidad puede ser calculada de manera analítica a través del análisis de una sección arbitraria (Figura 1.1).

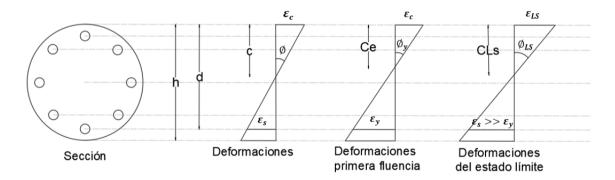


Figura 1.1 Ductilidad de curvatura en sección arbitraria

Elaborado por: Megan Saltos

Se tiene, que la curvatura es la relación entre la deformación unitaria de la fibra más alejada en compresión del hormigón y la altura del eje neutro, calculándose de la siguiente manera:

$$\emptyset = \frac{\varepsilon_c}{c}$$
 ó $\emptyset = \frac{\varepsilon_c}{d-c}$

Ecuación 1.4. Curvatura

 Ductilidad de desplazamiento: Se refiere a la capacidad de una estructura o sistema estructural para experimentar grandes desplazamientos inelásticos. Se calcula de la siguiente manera:

$$\mu_{\Delta} = \frac{\Delta_{LS}}{\Delta_{y}}$$

Ecuación 1.5. Ductilidad de desplazamiento

 Ductilidad debido a derivas de piso: Relacionada con la capacidad de un piso o nivel de la estructura para experimentar deformaciones laterales inelásticas, el cual se lo encuentra en edificaciones. Se calcula como:

$$\mu_{\theta} = \frac{\theta_{LS}}{\theta_{y}}$$

Ecuación 1.6. Ductilidad debido a derivas de piso

1.5.4 Diagrama Momento – Curvatura

El diagrama momento-curvatura $(M-\varphi)$ es esencial en el análisis y diseño de elementos estructurales, especialmente en el contexto de estructuras de hormigón armado. Este diagrama describe la relación entre el momento flector aplicado a una sección de un elemento estructural y la curvatura resultante de dicha sección. La curvatura (φ) se define como la deformación angular por unidad de longitud a lo largo del elemento estructural, mientras que el momento (M) es una medida de la fuerza de torsión aplicada que induce una curvatura en la sección transversal del elemento (Park & Paulay, 1975).

Se puede efectuar el diagrama momento-curvatura mediante un modelo bilineal, a partir de dos puntos esenciales, el primero es el momento producido en la curvatura de primera fluencia y el segundo el momento correspondiente a un estado limite. Sin embargo, se deben tener en cuenta ciertas consideraciones antes de realizar el diagrama, para esto se toma como referencia un esquema de una sección rectangular, como se muestra en la Figura 1.2.

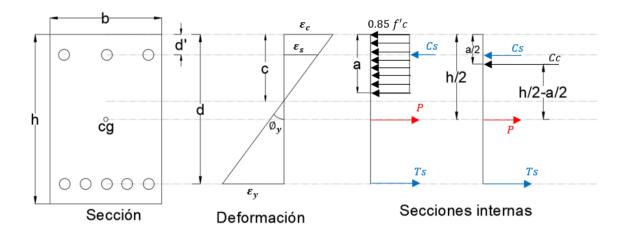


Figura 1.2 Consideraciones Diagrama Momento – Curvatura. Esquema sección rectangular.

Elaborado por: Megan Saltos

Donde:

 $\varepsilon_y = Deformación del acero en la fluencia$

c = Altura del eje neutro

 $\phi_{y}{'} = Curvatura de primera fluencia$

 $a = c * \beta_1$

 $C_S = A_S' * F_S$

 $C_c = 0.85 * f'_c * a * b$

 $T_S = A_S * F_V$

 $P = Carga\ axial\ (positiva\ cuando\ esta\ produciendo\ compresión)$

A partir del esquema (Figura 1.2), se deduce analíticamente la curvatura de primera fluencia.

$$\emptyset_{y}' = \frac{\varepsilon_{c}}{d - c_{e}}$$

Ecuación 1.7. Curvatura de primera fluencia

Se realiza un equilibrio de fuerzas internas, con la que se encuentra el valor de la altura del eje neutro.

$$C_s + C_c = P + T_s$$

Y con esto se efectúa una sumatoria de momentos, en donde se encuentra el momento de primera fluencia.

$${M_y}' = \sum {M_{cg}}$$
 ${M_y}' = {C_c} * \left({\frac{h}{2} - \frac{a}{2}} \right) + {C_s} * \left({\frac{h}{2} - d'} \right) + {T_s} * (d - \frac{h}{2})$

Ecuación 1.8. Momento de primera fluencia

Para ejemplificar, se toma un valor de deformación del hormigón de:

$$\varepsilon_c = 0.004$$

El cual corresponde a un estado límite de serviciabilidad, a partir de este se procede con el cálculo de la curvatura y el momento. Este proceso se debe realizar para diferentes estados limites, logrando adquirir más puntos y por ende generando la curva.

Sin embargo, al ya conocer los puntos de serviciabilidad y primera fluencia se puede realizar el modelo bilineal como se mencionó con anterioridad, para esto se traza una horizontal con respecto a serviciabilidad y una vertical con respecto a primera fluencia, seguido, se traza una línea desde el origen pasando por primera fluencia y llegando a intersecar con la línea horizontal de serviciabilidad, como se observa en la Figura 1.3.

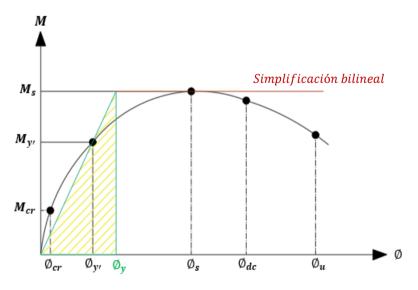


Figura 1.3 Diagrama Momento-Curvatura

Elaborado por: Megan Saltos

El punto obtenido por la intersección corresponde a la curvatura de fluencia equivalente, la cual puede ser expresada mediante una relación de triángulos.

$$\frac{M_y'}{\emptyset_y'} = \frac{M_n}{\emptyset_y}$$

$$\emptyset_{y} = M_{y} * \frac{\emptyset_{y}'}{M_{y}'}$$

Ecuación 1.9. Curvatura de fluencia equivalente

Ahora bien, Priestley et al., (2007) propone usar expresiones simplificadas para determinar la curvatura de fluencia equivalente (\emptyset_y) , las cuales relacionan la deformación unitaria de fluencia del acero y la longitud característica de la sección transversal. Teniendo así, las siguientes ecuaciones:

Sección Rectangular

$$\sigma_y = \frac{2.1 \, \varepsilon_y}{h}$$

Ecuación 1.10. Curvatura de fluencia sección rectangular

Sección Circular

$$\sigma_y = \frac{2.25 \ \varepsilon_y}{D}$$

Ecuación 1.11. Curvatura de fluencia sección circular

Sección de muro

$$\sigma_y = \frac{2 \, \varepsilon_y}{l_w}$$

Ecuación 1.12. Curvatura de fluencia sección de muro

Sección de muro con acero en los extremos

$$\sigma_y = \frac{2.25 \; \varepsilon_y}{l_w}$$

Ecuación 1.13. Curvatura de fluencia sección de muro con acero en los extremos

Viga en T

$$\sigma_y = \frac{1.7 \; \varepsilon_y}{h}$$

Ecuación 1.14. Curvatura de fluencia viga en T

Viga en I

$$\sigma_y = \frac{2.2 \; \varepsilon_y}{h}$$

Ecuación 1.15. Curvatura de fluencia en viga en I

1.5.5 Modelo de rótula plástica de Priestley

El modelo de rótula plástica de Priestley se basa en la premisa de que la deformación inelástica se concentra en regiones específicas de la estructura, conocidas como rótulas plásticas, mientras que el resto de la estructura se comporta de manera elástica (Priestley et al., 2007). Este enfoque se fundamenta en la observación experimental de que las estructuras de hormigón armado reforzado sometidas a cargas sísmicas severas exhiben un comportamiento dúctil, con la formación de rótulas plásticas en los extremos de vigas y columnas. El modelo asume que estas rótulas plásticas tienen una capacidad limitada de deformación inelástica, determinada por factores como la cantidad de refuerzo, el confinamiento del concreto y la geometría de la sección transversal (Paulay & Priestley, 1992). Para comprender de mejor manera, se presenta el siguiente esquema del modelo (Figura 1.4).

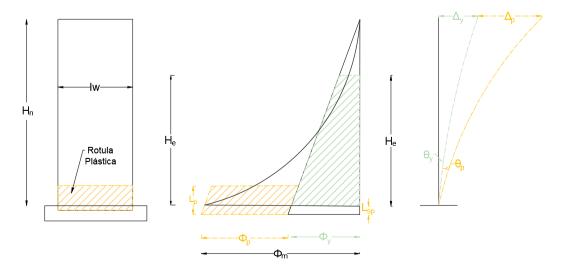


Figura 1.4 Modelo de rotula plástica de Priestley

Elaborado por: Megan Saltos

El modelo simplifica la distribución de la curvatura en una parte elástica mediante una distribución triangular y una parte plástica con una distribución en forma rectangular, la cual representa la rótula plástica en la base del muro.

Para el cálculo de los desplazamientos se consideran las siguientes ecuaciones:

$$L_{sp} = 0.002 * F_{ve} * d_b$$

Ecuación 1.16. Longitud de penetración

$$L_p = K * L + L_{sp} \ge 2 * L_{sp}$$

Ecuación 1.17. Longitud de rotula plástica

Donde K está definida como:

$$K=0.2*\left(\frac{fu}{fy}-1\right)\leq 0.08$$

$$L_{eff} = L + L_{sp}$$

Ecuación 1.18. Longitud efectiva

$$\Delta_{u} = \emptyset_{y} * \frac{L_{eff}^{2}}{3} + L_{p} * \emptyset_{p} * L$$

Ecuación 1.19. Desplazamiento último

1.5.6 Acero estructural ecuatoriano

El acero estructural ecuatoriano se distingue por su alta resistencia y durabilidad, características esenciales para su uso en proyectos de construcción de gran envergadura. Los principales tipos de acero estructural producidos en Ecuador son el acero al carbono y el acero de baja aleación, los cuales son sometidos a estrictos controles de calidad para garantizar que cumplan con las normas técnicas nacionales e internacionales. Además, estos aceros presentan una excelente soldabilidad, lo que facilita su aplicación en distintas estructuras metálicas (Gutiérrez Aguilera, 2023).

1.5.6.1 Composición química

La composición química del acero es un factor determinante en su comportamiento mecánico y su curva esfuerzo-deformación. Los aceros al carbono, ampliamente utilizados en la construcción, tienen un contenido de carbono que varía entre 0.15% y 0.30%, lo que les confiere una alta resistencia a la tracción y una adecuada ductilidad, además, de pequeñas cantidades de otros elementos como silicio, manganeso y fósforo, que mejoran su resistencia, ductilidad y soldabilidad. Esta composición química cuidadosamente controlada permite que el acero estructural ecuatoriano exhiba una curva esfuerzo-deformación característica, con una región elástica lineal seguida de una región plástica donde el material puede deformarse significativamente antes de la fractura (INEN, 1999).

1.5.6.2 Curva Esfuerzo-Deformación

Un aspecto fundamental en el análisis de las propiedades mecánicas del acero es la curva esfuerzo-deformación, que proporciona información sobre la respuesta del material bajo diferentes niveles de esfuerzo. Esta curva es típicamente obtenida a través de ensayos de tracción en donde se refleja el comportamiento elástico inicial del acero. Al alcanzar el límite de fluencia, el acero experimenta un incremento en la deformación sin demandar un mayor esfuerzo, entrando en la fase de plasticidad. Posteriormente, se requiere un esfuerzo adicional para seguir deformando el material (endurecimiento), hasta alcanzar su esfuerzo último. En esta etapa, la resistencia del acero disminuye mientras su diámetro se reduce (estricción), culminando finalmente en la falla del material. (Gutiérrez Aguilera, 2023).

La figura 1.5 representa una curva esfuerzo-deformación tipo de un acero dúctil sometido a tracción, la que puede variar según la velocidad de la carga axial aplicada.

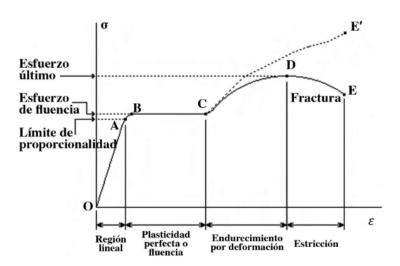


Figura 1.5 Curva esfuerzo-deformación

Fuente: (Gutiérrez Aguilera, 2023)

1.5.7 Pandeo crítico

El pandeo crítico es un fenómeno de inestabilidad estructural que ocurre en elementos sometidos a cargas de compresión, como columnas o varillas de refuerzo. Cuando las varillas de refuerzo experimentan cargas de compresión superiores a un valor crítico, pierden su estabilidad elástica y sufren una deformación lateral excesiva, conocida como pandeo (Chen & Atsuta, 2008). Este comportamiento conduce a una reducción significativa de la capacidad de carga de la varilla y, en consecuencia, a una disminución de la resistencia estructural del elemento.

Este fenómeno es primordial en el diseño de estructuras, ya que la carga crítica de pandeo define el límite máximo de carga que un elemento puede soportar antes de experimentar una falla por inestabilidad. La figura 1.6 ilustra este proceso: una varilla inicialmente recta es sometida a una carga axial de compresión. A medida que la carga aumenta, la varilla alcanza un punto crítico en el que comienza a deformarse lateralmente. Esta deformación lateral excesiva, o pandeo, marca el inicio de la inestabilidad elástica, indicando que la varilla ya no puede soportar cargas adicionales sin experimentar una falla estructural significativa.

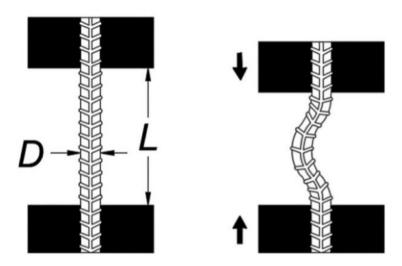


Figura 1.6 Pandeo crítico en varilla de refuerzo

Fuente: (Barcley & Kowalsky, 2019)

El pandeo crítico no solo es relevante para columnas, sino también para varillas de refuerzo en elementos de hormigón armado. En estos casos, el pandeo de las varillas puede ocurrir debido a cargas de compresión inducidas por cargas laterales, como en el caso de cargas sísmicas. La evaluación del pandeo de varillas es esencial, ya que una falla por pandeo puede comprometer la integridad estructural del elemento reforzado (Paulay & Priestley, 1992).

1.5.8 Ensayo BBT

El ensayo a tensión de varillas pandeadas BBT (Bar Buckling Test) desempeña un papel fundamental en la ingeniería estructural al evaluar el comportamiento de las varillas de refuerzo bajo cargas que generan pandeo y tensión simultáneamente. El desarrollo de este método surge como una solución para comprender el comportamiento de las varillas en situaciones de carga extrema, específicamente durante eventos sísmicos (Dhakal & Maekawa, 2002).

La base teórica del ensayo BBT se sustenta en la mecánica de materiales y en la teoría de estabilidad estructural. Si una varilla de acero es sometida a compresión axial, puede fallar por pandeo elástico si es suficientemente esbelta, o por pandeo inelástico si su diseño es más resistente. La importancia del pandeo inelástico en el diseño sísmico radica en que, durante terremotos severos, las varillas de refuerzo en elementos estructurales como columnas pueden experimentar este fenómeno (Bae et al., 2005).

Se ha comprobado que el comportamiento de las varillas de refuerzo después del pandeo afecta considerablemente la respuesta general de las estructuras de concreto reforzado durante sismos (Barcley & Kowalsky, 2019). Este ensayo permite cuantificar dicho comportamiento, sometiendo una varilla a compresión hasta alcanzar una curvatura predefinida que induce el pandeo, seguido de la aplicación de tensión hasta su fractura.

Existen dos tipos de fracturas, la primera es una falla no dúctil o frágil, donde la varilla no soporta altos niveles de esfuerzo y sus fibras se rompen casi simultáneamente, y el segundo es una falla dúctil, donde la varilla soporta mayores esfuerzos mientras se deforma adoptando una forma cónica y alargada antes de la rotura (Valera Bustamante, 2021).

1.5.8.1 Falla Dúctil

La falla dúctil se caracteriza por ocurrir después de que el material ha sido sometido a una deformación plástica significativa, causando la desconexión de sus fibras. Este tipo de fractura se observa en materiales que poseen una zona de deformación plástica considerable (Valera Bustamante, 2021).

Se manifiesta como una elongación sustancial de la varilla pandeada bajo carga de tracción, formando un cuello de botella. Este fenómeno se acompaña de una reducción gradual de la sección transversal y una deformación plástica permanente.

A continuación, se presenta la Figura 1.7 con el detalle de la falla dúctil.

Figura 1.7 Detalle falla dúctil
Fuente: (Barcley & Kowalsky, 2019)

1.5.8.2 Falla Frágil (No dúctil)

La falla frágil o no dúctil, ocurre cuando el material no puede soportar suficiente esfuerzo de tensión y sus fibras se rompen casi simultáneamente sin una deformación significativa. Este tipo de falla es común en materiales no cristalinos, que se encuentran bajo la presencia de temperaturas considerablemente bajas o cuando se aplican esfuerzos muy elevados (Valera Bustamante, 2021).

Por ejemplo, si el pandeo inicial induce concentraciones de esfuerzos severas o defectos en la microestructura del acero se da una falla frágil, como se muestra en la siguiente figura 1.8.

Figura 1.8 Detalle falla frágil
Fuente: (Barcley & Kowalsky, 2019)

1.5.9 Metodología DIC

La Correlación de Imágenes Digitales DIC (Digital Image Correlation) es una técnica avanzada de metrología óptica que ha transformado el campo de la mecánica experimental en las últimas décadas. Su principio básico se fundamenta en el seguimiento de patrones de intensidad en imágenes digitales para medir desplazamientos y deformaciones con alta precisión (Schreier et al., 2009). Estas imágenes generan bloques de pixeles que se comparan individualmente entre sí, registrando las variaciones que experimenta la muestra al ser sometida a diferentes fuerzas externas. El método emplea softwares especializados que permiten obtener resoluciones de subpíxeles de las imágenes digitales para realizar mediciones de alta precisión sobre la deformación de la superficie. La obtención de estas imágenes puede provenir de diversas fuentes, como dispositivos de carga acoplada (CCD por sus siglas en inglés) convencionales o cámaras digitales, así como también videos en alta velocidad, macro y microscópicos (McCormick & Lord, 2010).

Esta técnica ofrece varias ventajas significativas en comparación con los métodos tradicionales, entre las cuales se puede destacar su capacidad para proporcionar información sobre la deformación en un mismo ensayo, la simplicidad de montaje e implementación, y la reducción de errores, los cuales suelen ocurrir en los ensayos con técnicas de contacto debido a los deslizamientos de extensómetros, galgas extensiométricas u otro tipo de sensor de deformación. Sin embargo, la DIC también presenta desventajas, como el elevado costo del equipo, que puede ser restrictivo cuando los recursos son limitados. Además, el tamaño y peso de las cámaras y lentes pueden resultar un desafío, incrementando los costos si se requiere el uso de lentes específicos que no estén disponibles. Los componentes del equipo DIC también pueden ocasionar errores en las mediciones si no se consideran adecuadamente los factores ambientales (Vera Cieza, 2020).

2. METODOLOGÍA

En el presente apartado se detalla los ensayos experimentales realizados en varillas de refuerzo de 8mm, 10mm y 12mm de diámetro.

Estos ensayos se llevaron a cabo en el Laboratorio de Ensayo de Materiales y Suelos Urbanos (Lemsur), en la Máquina Universal marca Suzpecar con capacidad máxima de carga de 50 toneladas, bajo procedimientos del Centro de Investigación de la Vivienda (CIV) de la Escuela Politécnica Nacional.

2.1 Ensayo de tracción de varillas

2.1.1 Descripción del ensayo

El ensayo se realizará de acuerdo con la norma técnica ecuatoriana INEN, (2009): "Ensayo de Tracción para Materiales Metálicos a Temperatura Ambiente". Durante este procedimiento, una probeta se somete a una fuerza axial de tracción proporcional a sus dimensiones mediante una máquina de ensayo de tracción, con el fin de determinar una o más características mecánicas durante su deformación. La probeta se sujeta firmemente por ambos extremos mediante mordazas, una fija y otra móvil. Durante el ensayo, se mide continuamente la carga mientras la mordaza móvil aplica el desplazamiento necesario. La máquina controla la deformación moviendo el cabezal móvil a una velocidad seleccionable.

La celda de carga conectada a la mordaza fija registra y proporciona una señal que representa la carga aplicada, mientras que la máquina grafica el desplazamiento en un eje y la carga en el otro. Al concluir el ensayo, la máquina genera principalmente el diagrama carga-desplazamiento, que es fundamental para analizar el esfuerzo de fluencia y elongación de la probeta ensayada.

2.1.1.1 Esfuerzo de fluencia

El esfuerzo de fluencia es aquel punto en el cual, la deformación plástica se vuelve significativa. En el acero, esto generalmente corresponde al esfuerzo necesario para que las dislocaciones comiencen a deslizarse (Castro Lisintuña, 2018). Es así como, el esfuerzo es un indicador importante que separa los comportamientos elástico y plástico del material.

La curva esfuerzo-deformación tiene una primera parte lineal conocida como zona elástica, donde la varilla se comporta como un resorte: si se elimina la carga en esta zona, la varilla vuelve a su longitud inicial. En la zona elástica, las deformaciones son proporcionales a las cargas aplicadas (Castro Lisintuña, 2018). La curva se muestra en la Figura 1.5.

2.1.1.2 Elongación a la falla

La elongación se refiere a la relación entre las cargas y las deformaciones en el período elástico de proporcionalidad. Esta relación es constante para cada material y permite determinar los alargamientos elásticos que este experimenta en función de las cargas aplicadas (Castro Lisintuña, 2018). Cuando la curva de carga-deformación se desvía de la recta inicial, el material alcanza el punto de fluencia. A partir de este punto, el material comienza a experimentar una deformación permanente, si se elimina la carga, la probeta no recupera su longitud original, sino que queda más larga que al inicio del ensayo, indicando el comienzo de la zona plástica (Castro Lisintuña, 2018). Durante esta fase, la probeta se alarga de manera permanente y uniforme a lo largo de toda su longitud.

En el punto de máxima carga, la probeta revela su punto débil, concentrando la deformación en una zona específica, conocida por formarse un cuello. La formación del cuello es un indicativo de que la deformación se está concentrando en esa área, lo cual provoca que la carga deje de aumentar. A medida que la probeta se adelgaza en la zona del cuello, la carga aplicada se distribuye sobre una menor área, eventualmente llevando a la ruptura del material.

2.1.2 Preparación de la muestra

Para llevar a cabo el ensayo se prepararon cuatro probetas correspondientes a los diámetros de 8 mm, 10 mm y 12 mm, siguiendo estrictamente las especificaciones de la norma INEN, 2009, para garantizar la exactitud y reproducibilidad de los ensayos.

En la siguiente tabla, se detallan las longitudes de corte de cada varilla, las cuales se emplearán en los ensayos de esfuerzo de fluencia, además del código asignado a cada una.

Diámetro	Longitud Total	Código
[mm]	[cm]	[-]
		V08-6227-N1
8	42	V08-6227-N2
		NCIO-6152-P1
		NCIO-6152-P2
		VC10-1357-N1
10	42	VC10-1357-N2
		VC10-P1
		VC10-P2
		VC12-4728-P1
12	46	VC12-4728-P2
		VC12-6319-N1
		VC12-6319-N2

Tabla 2.1 Detalle de varillas para fluencia

Elaborado por: Megan Saltos

Con la longitud ya definida, se marcan las varillas y se procede a cortarlas. Es importante que estas estén libres de defectos visibles y que su superficie esté completamente limpia, sin residuos que puedan comprometer la adherencia de las mordazas durante el ensayo.

Una vez listas las varillas, se realiza el ensayo para determinar los esfuerzos de fluencia, y en base a estos resultados, se lleva a cabo el ensayo de elongación.

2.2 Ensayo BBT

2.2.1 Descripción del ensayo

El ensayo BBT consiste en aplicar una carga axial de manera progresiva a las varillas hasta alcanzar su punto de pandeo crítico y posteriormente, tensionar hasta alcanzar la falla. Durante el ensayo, se registran simultáneamente la fuerza aplicada y los desplazamientos resultantes. Estos datos permiten la construcción de curvas fuerza-desplazamiento, que son esenciales para analizar la respuesta de la varilla. Las curvas proporcionan información sobre la rigidez, la capacidad de carga y el comportamiento estructural en las fases de pandeo y falla.

2.2.2 Instrumentación

Para llevar a cabo el ensayo, es esencial emplear equipos calibrados para garantizar la precisión en la recolección de datos y evitar cualquier tipo de inconveniente. Se utilizó una máquina de pruebas de alta precisión Suzpecar (Figura 2.1), equipada con un sistema de control de carga y desplazamiento. La máquina cuenta con una capacidad de carga de 50 toneladas y mordazas de capacidad nominal de 25 toneladas, diseñadas para limitar el desplazamiento y giro de las varillas durante el ensayo.

Figura 2.1 Maquina Suzpecar Elaborado por: Megan Saltos

Adicional, la máquina está conectada a un sistema de adquisición de datos que registra continuamente la fuerza aplicada y el desplazamiento axial de las varillas, como se observa en la Figura 2.2.

Figura 2.2 Procesador para adquisición de datos

Elaborado por: Megan Saltos

Para garantizar la precisión de las mediciones durante el ensayo de compresión y tracción de las varillas, se empleó un flexómetro con precisión de 1mm para medir la luz libre de la varilla; y un calibrador digital con precisión de 0.01mm para medir la deflexión lateral, la longitud entre mordazas en compresión y la longitud máxima entre mordazas en tracción

Figura 2.3 Equipos de medición Elaborado por: Megan Saltos

2.2.3 Preparación de la muestra

Se prepararon muestra de varillas de acero 8mm,10mm y 12mm de diámetro, cortadas a diferentes longitudes específicas. Las longitudes de cada varilla se determinaron considerando dos veces la longitud de las mordazas, que es de 9 cm cada una, más una extensión adicional de 2cm en cada extremo, desde la base hasta la mordaza en total 4cm y más la luz libre que depende de cada diámetro. Para una mejor compresión, se presenta la Figura 2.4, con el esquema de una varilla de 10mm con luz libre de 10cm.

Varilla Ø10

Figura 2.4 Esquema varilla Ø10mm Elaborado por: Megan Saltos

Espuma Flex

A continuación, se muestra la Tabla 2.2, con las longitudes totales correspondientes a cada varilla.

Diámetro [mm]	Luz libre [cm]	Longitud Total [cm]
8	8	30
10	10	32
12	12	34

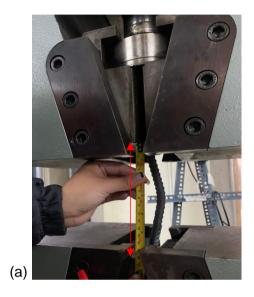
Tabla 2.2 Detalle varillas para ensayos BBT

Elaborado por: Megan Saltos

Se procede a cortar la varilla, para lo cual se marca previamente la longitud ya definida. Seguido, se coloca en una amoladora, asegurándose de utilizar todos los equipos de seguridad necesarios. Una vez cortadas, las varillas se pulen para eliminar cualquier borde filoso y se repite el procedimiento para todas las varillas.

Figura 2.5 (a) Colocación de marca y (b) Corte de varilla Elaborado por: Megan Saltos

Antes del ensayo, cada varilla fue inspeccionada visualmente para detectar posibles defectos superficiales que pudieran influir en los resultados.


2.2.4 Procedimiento de ensayo

• Para realizar el ensayo, se posiciona la varilla entre las mordazas de la maquina con ayuda de una plancha de espuma flex en el centro y una tira de espuma flex en la parte inferior de la mordaza (Figura 2.6). Este procedimiento ayuda a estabilizar la varilla y logra el pandeo en el sentido requerido, sin embargo, se debe verificar que la varilla se encuentre centrada tanto al lado frontal como al lado lateral.

Figura 2.6 Colocación de la varilla entre las mordazas Elaborado por: Megan Saltos

• Al momento del cierre de las mordazas, se mide la luz libre entre mordazas y la deflexión inicial de la varilla (Figura 2.7 (a) y (b)). Se establece un rango de aceptación para la deflexión lateral inicial. En varillas de 8mm la deflexión no deberá ser mayor a 3cm, para 10mm no mayor a 2cm, para 12mm no mayor a 1cm, si se supera estos valores se detiene el ensayo y se coloca otra varilla.

Figura 2.7 (a) Medición distancia libre al cierre de mordazas y (b) Medición deflexión lateral **Elaborado por:** Megan Saltos

• Seguidamente, se marca la varilla donde termina la mordaza para posteriormente medir la distancia final pandeada luego de la tracción de la varilla.

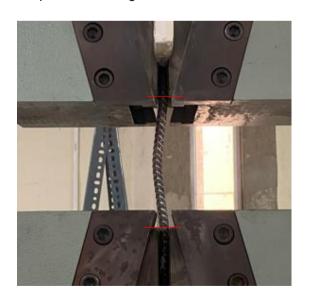


Figura 2.8 Colocación de marcas para medición Elaborado por: Megan Saltos

• La varilla se comprime hasta alcanzar el desplazamiento axial impuesto. Al llegar a este desplazamiento se mide la distancia a compresión de la varilla y la deflexión lateral (distancia pandeada), como se muestra en la Figura 2.9 (a) y (b).

El desplazamiento axial a compresión que se impone empieza con un valor que corresponde a la mitad de la longitud total de la varilla y se va variando en un rango de 10mm hasta llegar al desplazamiento axial de compresión que produzca la falla frágil al momento de tensionar la varilla.

Figura 2.9 (a) Medición distancia a compresión y (b) Medición distancia pandeada

Elaborado por: Megan Saltos

 A continuación, se tracciona la varilla hasta la rotura y se mide la distancia final pandeada desde las marcas realizadas previamente, Figura 2.10.

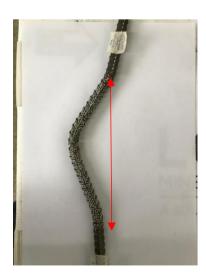


Figura 2.10 Medición distancia final pandeada

Elaborado por: Megan Saltos

• Se observa si la rotura es horizontal o alargada (forma de cuello de botella), proporcionando información sobre la naturaleza de la falla, si esta es horizontal se trata de una falla frágil y si es alargada de una falla dúctil, Figura 2.11.

Figura 2.11 Detalle de rotura de la varilla Elaborado por: Megan Saltos

 Se coloca un membrete con la identificación de cada varilla (Figura 2.12), en el que se registra el día del ensayo, el código de la varilla, el diámetro y numero de probeta ensayado.

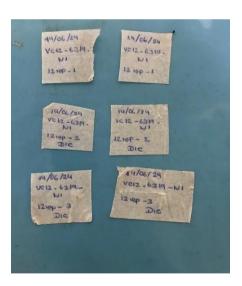


Figura 2.12 Colocación de membrete Elaborado por: Megan Saltos

 Finalmente, los datos obtenidos de la maquina se procesan a un archivo Excel para generar la gráfica de curvas Fuerza vs Desplazamiento axial. Esta grafica permite analizar el desplazamiento que más se aproxima a la falla frágil, lo que es esencial para definir el desplazamiento a utilizar en los ensayos de repetitividad.

2.2.5 Determinación del punto crítico de pandeo

Para determinar el punto crítico de pandeo se debe realizar varios ensayos BBT con diferentes valores de desplazamiento axial en compresión, es decir, diferentes niveles de pandeo. El desplazamiento axial en compresión que produzca la falla frágil al tensionar la varilla (desplazamiento axial en tensión igual o cercano a cero) se considera como punto crítico de pandeo. En la Figura 2.13, se visualiza el punto de falla frágil y punto crítico de pandeo en la gráfica de curva Fuerza axial vs Desplazamiento axial

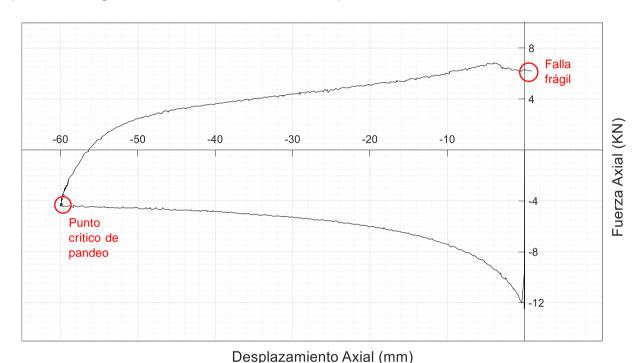
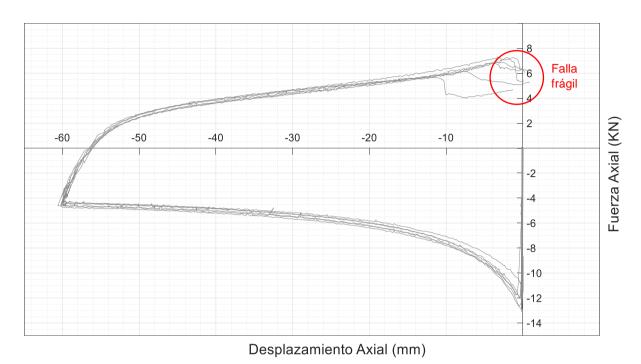


Figura 2.13 Gráfica de curva Fuerza axial vs Desplazamiento axial – Punto crítico de pandeo


Elaborado por: Megan Saltos

2.2.6 Repetitividad

Una vez identificado el desplazamiento crítico, se procede a realizar un mínimo de cuatro repeticiones del ensayo BBT para verificar la consistencia de la falla frágil. Esto implica someter a varias muestras del mismo diámetro a las mismas condiciones de carga, y desplazamiento axial de compresión, registrando los datos de fuerza y desplazamiento.

La repetitividad se evalúa comparando las gráficas Fuerza vs. Desplazamiento de cada ensayo, buscando patrones consistentes que confirmen el comportamiento observado en

el ensayo inicial. La falla frágil se verificará cuando los puntos de fractura en las gráficas se encuentren consistentemente cerca del origen en el eje "x". Para una mejor compresión, se presenta la Figura 2.14, con los ensayos de repetitividad para la varilla de 10mm.

Figura 2.14 Gráfica de curva Fuerza axial vs Desplazamiento axial – Repetitividad – Varilla 10mm

Elaborado por: Megan Saltos

2.3 Metodología DIC

2.3.1 Descripción de la metodología

Como se ha mencionado en apartados previos, la metodología DIC se fundamenta en el análisis de imágenes digitales de alta resolución, para medir desplazamientos y deformaciones mediante el seguimiento de patrones.

Para el presente estudio, se ha utilizado la metodología DIC durante los ensayos BBT capturando imágenes antes y durante la aplicación de carga sobre las diferentes varillas, para obtener el perfil pandeado de cada una, así como, para corroborar los desplazamientos y deformaciones registrados manualmente durante los ensayos. Esta metodología se aplicó únicamente en los ensayos BBT de repetividad.

2.3.2 Características generales del DIC

2.3.2.1 Patrón de moteado

El uso de un patrón de moteado óptimo es uno de los factores más importantes, para mejorar los resultados generales del DIC. Un patrón efectivo debe deformarse junto con la muestra sin influir en su comportamiento, además de ser capaz de resistir las condiciones ambientales durante las pruebas, como variaciones de temperatura, humedad y vibraciones. Es fundamental destacar que la calidad del patrón de moteado impacta directamente en la fiabilidad y efectividad de los resultados del ensayo.

2.3.2.2 Características del patrón

 Alto contraste: El patrón debe consistir en puntos negros sobre un fondo blanco brillante, o viceversa.

Figura 2.15 Ejemplificación alto contraste

Fuente: (Blog - CIMCo, n.d.)

 50% cobertura: Un patrón efectivo debe presentar una distribución equilibrada de blanco y negro en su superficie. Por ejemplo, si las motas tienen un tamaño de 5 píxeles, deberían estar separadas aproximadamente por la misma distancia de 5 píxeles entre sí.

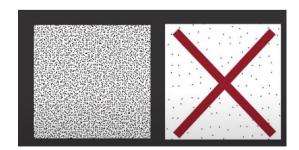
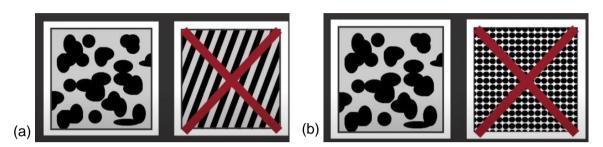
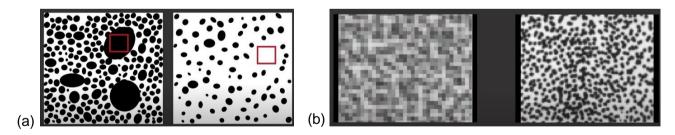



Figura 2.16. Ejemplificación 50% cobertura

Fuente: (Blog - CIMCo, n.d.)

• **Isotrópico y estocástico**: El patrón moteado debe ser completamente aleatorio y no mostrar ninguna orientación específica. Es importante evitar patrones demasiado regulares que puedan causar coincidencias falsas, las cuales podrían surgir si se utilizan patrones repetitivos o predecibles.


Figura 2.17. (a) Ejemplificación patrón isotrópico y (b) Ejemplificación patrón estocástico

Fuente: (Blog - CIMCo, n.d.)

2.3.2.3 Tamaño del moteado

El moteado depende de varios factores, como el tamaño de la muestra, especificaciones de la cámara y condiciones de la investigación.

Cuando las motas del patrón son demasiado grandes o están muy dispersas, ciertas áreas pueden aparecer completamente negras o blancas, lo que afecta negativamente la correlación ya que cada punto en esa región tendrá una coincidencia perfecta. Aumentar el tamaño del subconjunto puede mitigar este problema, pero a expensas de reducir la resolución espacial.

Figura 2.18 (a) Ejemplificación motas grandes o escasas y (b) Ejemplificación motas pequeñas **Fuente:** (*Blog – CIMCo*, n.d.)

Por otro lado, si las motas del patrón son demasiado pequeñas, la cámara puede no captar suficiente información, lo cual se conoce como aliasing. Para evitar el riesgo de aliasing y maximizar al mismo tiempo la resolución espacial, se recomienda aplicar motas de entre 3 a 5 píxeles de tamaño. Sin embargo, a menudo algunas motas pueden terminar siendo

más pequeñas, en el rango de 1 a 2 píxeles, especialmente cuando los métodos de aplicación son difíciles de controlar.

Fuente: (*Blog – CIMCo*, n.d.)

2.3.2.4 Errores comunes al motear las probetas

Utilizar patrones repetitivos

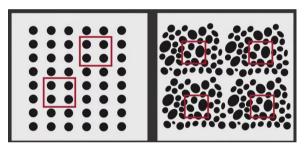


Figura 2.20 Ejemplificación patrones

Fuente: Fuente: (Blog – CIMCo, n.d.)

• Patrones con bajos contrastes

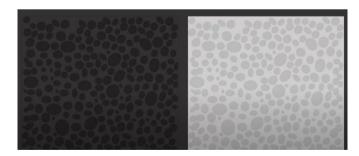


Figura 2.21. Ejemplificación patrones con bajo contraste

Fuente: (Blog - CIMCo, n.d.)

Manchones dentro del patrón

Figura 2.22 Ejemplificación de manchones dentro de patrón

Fuente: (Blog - CIMCo, n.d.)

Es fundamental evitar estos errores mediante la selección cuidadosa y la aplicación precisa del patrón de moteado, garantizando así resultados más precisos y confiables en el análisis DIC.

2.3.3 Instrumentación

Para implementar la metodología DIC, se requiere una instrumentación específica que asegure la precisión y calidad de los datos recolectados. El primer componente son celulares con cámaras de alta resolución, mismas que deben estar configuradas para ajustar el enfoque y la velocidad de obturación, permitiendo así la obtención de imágenes nítidas en diferentes condiciones de iluminación y movimiento.

La iluminación desempeña un papel vital en la claridad y contraste de las imágenes capturadas. Se utilizan lámparas con luces LED de alta intensidad y baja temperatura, dispuestas estratégicamente alrededor del área de prueba para eliminar sombras y garantizar una iluminación uniforme sobre las varillas.

Los celulares y lámparas se montan sobre estructuras de perfiles de acero que actúan como soportes ajustables y estabilizadores para mantener una posición fija y evitar cualquier vibración que pueda comprometer la calidad de las imágenes. Estos perfiles están unidos mediante pernos, lo que facilita el montaje y desmontaje de este, como se muestra en la Figura 2.23.

Figura 2.23 Estructuras de perfiles de acero para soporte de celular y lámparas Elaborado por: Megan Saltos

2.3.4 Preparación de la muestra

Una vez cortadas las varillas como se describió en la sección 2.2.3, se procede a sumergirlas en acido removedor de pintura durante al menos 30 minutos (Figura 2.24). Esto se debe a que poseen un recubrimiento para prevenir la oxidación, el cual se desprende al ser colocadas en la mordaza, afectando el moteado. La eliminación completa de este recubrimiento es esencial para garantizar la correcta aplicación de la metodología DIC.

Figura 2.24 Desoxidación de varillas **Elaborado por:** Megan Saltos

Transcurrido el tiempo establecido, se retiran cuidadosamente las varillas y se procede a cepillarlas para eliminar cualquier residuo del recubrimiento (Figura 2.25 (a)). Seguidamente, se lavan con abundante agua para asegurar que no queden restos del ácido en su superficie, como se observa en la Figura 2.25 (b).

Figura 2.25 (a) Cepillado y (b) Lavado de varillas Elaborado por: Megan Saltos

Después del lavado, se dejan secar al aire libre hasta que adquieren un ligero tono amarillento, indicativo de la eliminación completa del recubrimiento inicial (Figura 2.26 (a)). Finalmente, se realiza un cepillado adicional para eliminar este color amarillento y cualquier residuo remanente (Figura 2.26 (b)), garantizando así una superficie completamente limpia y adecuada para la aplicación del moteado.

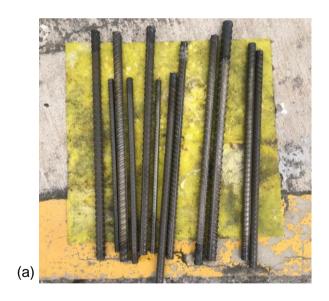


Figura 2.26 (a) Secado y (b) Cepillado de varillas Elaborado por: Megan Saltos

Con las varillas preparadas, se procede a definir la zona que será moteada. Esta zona corresponde a la longitud libre entre mordazas, calculada restando la longitud de las mordazas de la longitud total de la varilla. La longitud de las mordazas se obtiene a partir

de los ensayos BBT. Para una mejor compresión, se presenta la Figura 2.27, con el esquema de una varilla de 10mm.



Figura 2.27 Esquema varilla ø10mm para moteado

Elaborado por: Megan Saltos

Con la zona definida, se procede a realizar el moteado de las varillas. Este proceso consiste en aplicar puntos blancos, distribuidos aleatoriamente por la superficie de la varilla, utilizando un marcador Sharpie (Figura 2.28) Estos puntos permiten al software rastrear con precisión las deformaciones a nivel microscópico. Es crucial que el moteado se aplique de manera uniforme y cubra toda la zona previamente definida, asegurando así que el software tenga suficientes puntos de referencia para un análisis preciso.

Figura 2.28 Moteado de varillas Elaborado por: Megan Saltos

2.3.5 Preparación del ambiente

Una vez preparadas las varillas, se procede con la instalación de los equipos necesarios para la captura de imágenes. Para ello, se colocan las estructuras de perfiles de acero: una en el frente y otra en el lateral de la máquina de ensayo, como se muestra en la Figura 2.29. Estás estructuras deben tener una altura igual o mayor a la mordaza superior de la máquina.

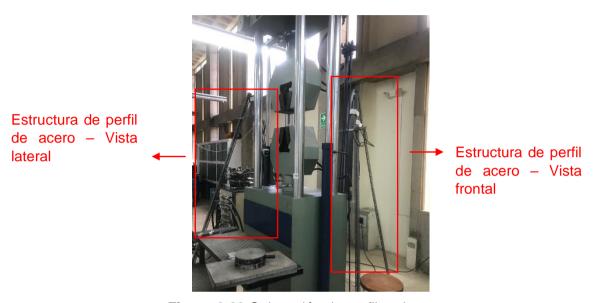


Figura 2.29 Colocación de perfiles de acero

Elaborado por: Megan Saltos

Con los perfiles instalados, se monta un celular en cada estructura de acero, posicionada perpendicularmente a la varilla para asegurar una visualización clara de la deformación. La iluminación es un factor crítico, por lo que se emplean lámparas cuidadosamente posicionadas. Para el celular ubicado frontalmente, la lámpara se coloca en la parte superior del celular, con un ángulo de 10 grados (Figura 2.30 (a)), mientras que, para el celular ubicado lateralmente, la lámpara se posiciona junto al celular, con un ángulo entre 2 a 5 grados (Figura 2.30 (b)). Esta disposición asegura una iluminación uniforme y minimiza las variaciones de luz que podrían afectar la calidad de las imágenes.

Figura 2.30 (a) Colocación celular frontal y (b) Colocación celular lateral Elaborado por: Megan Saltos

Se coloca una identificación de la varilla a ensayar en una parte visible de la mordaza, como se ve en la Figura 2.31. Esto asegura que, al procesar los datos se pueda identificar fácilmente a que varilla corresponden.

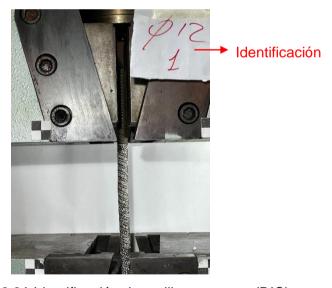


Figura 2.31 Identificación de varilla a ensayar (DIC)

Elaborado por: Megan Saltos

Con las muestras y el ambiente debidamente preparados, se procede a iniciar el ensayo. Este comienza en el momento en que se empiezan a tomar fotografías, las cuales se detendrán al alcanzar la compresión máxima. El ensayo continuará hasta la fractura de la varilla, siguiendo el mismo procedimiento establecido en los ensayos BBT.

2.3.6 Ajuste de imágenes digitales

Dado que las imágenes son el dato principal para determinar desplazamientos y deformaciones mediante la metodología DIC, es fundamental emplear programas que optimicen la calidad, tamaño, nomenclatura y tipo de las imágenes. Esto es esencial para asegurar un procesamiento de datos preciso y eficiente en el software seleccionado (Cabrera & Quintana, 2022). Por ello, se emplearán dos aplicaciones: Lens Buddy y PowerRename.

Lens Buddy se empleará para la captura de fotografías digitales durante cada ensayo, ya que permite configurar el intervalo de tiempo entre cada foto y agruparlas en un solo paquete. Esta aplicación es particularmente útil en entornos de prueba, ya que ofrece funcionalidades como la configuración de intervalos de tiempo precisos, ajustes de resolución y opciones de almacenamiento automático. En nuestro caso, se configuró para que las fotografías se tomarán cada 2 segundos, Figura 2.32.

Figura 2.32 Interfaz Lens Buddy Elaborado por: Megan Saltos

Es importante mencionar que algunos paquetes de imágenes pueden requerir edición para asegurar que el software las procese correctamente, ajustando aspectos como la exposición y el contraste para maximizar la claridad de los datos.

Por otro lado, PowerRename facilitará el renombrado y la organización de las imágenes capturadas, facilitando así su identificación y gestión durante el análisis. Las imágenes deben estar numeradas secuencialmente para que el software pueda procesarlas de

acuerdo con el desarrollo del ensayo. Para esto, se selecciona el paquete de imágenes, como se muestra en la Figura 2.33.

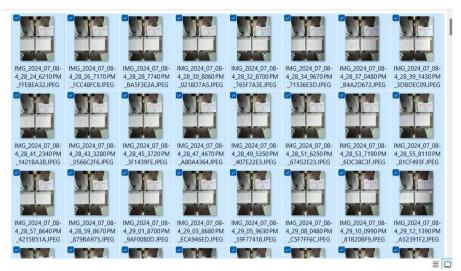


Figura 2.33 Selección de paquete de imágenes

Elaborado por: Megan Saltos

Y se procede a cambiar el nombre de todas las imágenes, para este caso se optó por un nombre seguido de un número, empezando desde 1, Figura 2.34.

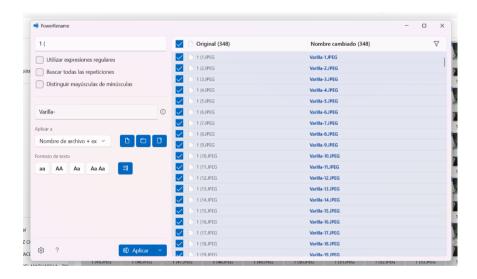
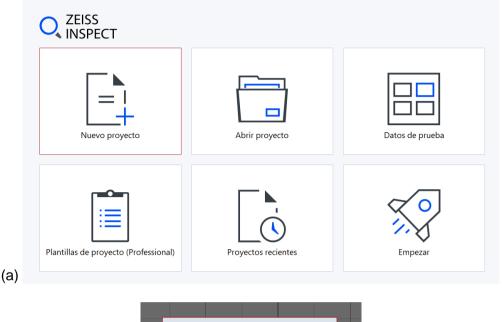


Figura 2.34 Renombre secuencial de imágenes

Elaborado por: Megan Saltos


Es importante verificar que el formato sea '.JPEG', ya que este es el aceptado por el programa DIC, asegurando que las imágenes puedan ser fácilmente importadas y analizadas sin problemas de compatibilidad. El formato '.JPEG' se elige debido a su balance entre compresión y calidad de imagen, permitiendo un almacenamiento eficiente y una resolución adecuada para el análisis de deformaciones.

2.3.7 Procesamiento de datos

Dado que se desea obtener el perfil pandeado de la varilla, es necesario analizar su desplazamiento y deformación en 3D. Por ello, se procesarán las imágenes desde la vista frontal y lateral de la varilla para posteriormente combinar la información de ambos lados y obtener una resultante que refleje con precisión los valores reales de deformación y desplazamiento.

2.3.7.1 Importación de archivos

Zeis Inspect Correlate dispone de una interfaz amigable que facilita la importación de imágenes y videos. Para poder comenzar, es necesario crear un nuevo proyecto desde la interfaz inicial que brinda el programa al momento de su apertura (Figura 2.35 (a)). Una vez abierto, se importa las imágenes como imagen de deformación (Figura 2.35 (b)), mismas que deben estar previamente renombradas. En el caso de los videos, estos se importan y el programa los descompone automáticamente en imágenes secuenciales en una línea de tiempo, la cual debe ser ajustada por el usuario para garantizar un análisis preciso.

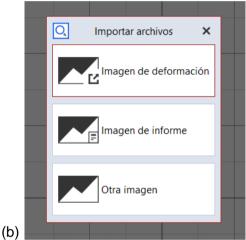


Figura 2.35 (a) Interfaz Zeis Inspect y (b) Importación de archivos Elaborado por: Megan Saltos

2.3.7.2 Definir escala

Para escalar las imágenes, se pueden utilizar puntos de control colocados estratégicamente en la superficie donde se tomarán las fotos. Estos puntos son referencias visuales físicas que permiten establecer distancias con precisión y ser localizados fácilmente en todas las fotos. Sin embargo, también se puede medir directamente el ancho de la muestra, como se observa en la Figura 2.36. Esta distancia se registra en milímetros, permitiendo automáticamente relacionar las coordenadas de los píxeles con la longitud real de la muestra.

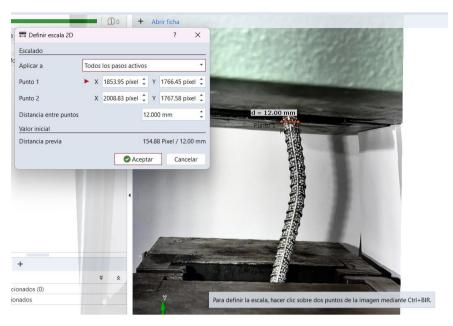


Figura 2.36 Definición de escala

Elaborado por: Megan Saltos

2.3.7.3 Componente de superficie

Para facilitar el análisis de las imágenes, el programa genera automáticamente un componente de superficie para la identificación de patrones, detectando una serie de puntos para su análisis. Esta superficie puede crearse en áreas específicas de interés, permitiendo reducir los puntos de análisis innecesarios y concentrar el estudio en regiones específicas de la muestra, Figura 2.37.

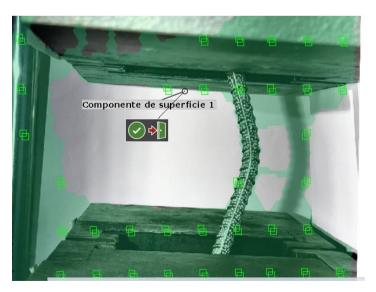


Figura 2.37 Componente de superficie

Durante la creación de este componente, el software emplea la estructura del patrón estocástico para identificar facetas cuadradas en las imágenes adquiridas. Estas facetas deben contener al menos tres puntos de patrón para ser consideradas válidas (Figura 2.38). A partir de cada faceta válida calculada, se genera un punto de medición que se integra automáticamente en un único componente de superficie.

Figura 2.38 Calidad de patrón. Facetas Elaborado por: Megan Saltos

En la siguiente Figura 2.39, se observan facetas de 54 x 54 píxeles, separadas por una distancia de 34 píxeles. La elección del tamaño de la faceta y la distancia entre puntos dependerá de la precisión requerida para el análisis, el tiempo de cálculo necesario y las dimensiones de la muestra analizada. Un tamaño de faceta más pequeño y una distancia entre puntos más corta pueden mejorar la resolución y la exactitud de las mediciones, pero también incrementarán el tiempo de procesamiento computacional.

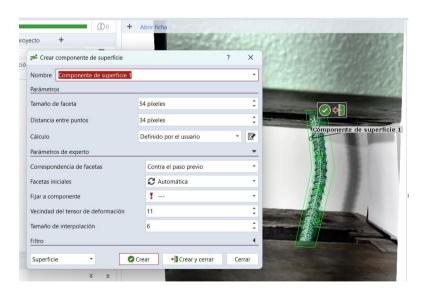


Figura 2.39 Selección de los parámetros de facetas

Elaborado por: Megan Saltos

Finalmente, creamos y cerramos el cuadro del componente de superficie, lo que permite al software calcular automáticamente dicho componente para todas las etapas disponibles.

Una vez creado, se debe evaluar la calidad del patrón de manchas, mientras la región de interés se mantenga con un color uniforme verde y no presente zonas de color amarillo, anaranjado o rojo, esta se puede considerar como una región en el cual el patrón de mancha esta correctamente aplicado (Moposita & Pozo, 2021).

2.3.7.4 Inspección de elementos visibles

Con el área de trabajo definida, se procede a marcar uno o varios puntos en la superficie de interés de la varilla para obtener la información que de ellos se registra. Dado que es esencial analizar tanto la vista frontal como la vista lateral, estos puntos deben estar ubicados en las mismas posiciones para ambos lados.

Primero, se comienza con el lado lateral, donde se traza una línea desde el inicio de la mordaza superior hasta la inferior (Figura 2.40), obteniendo la distancia total entre ellas y usándola como referencia para colocar los puntos.

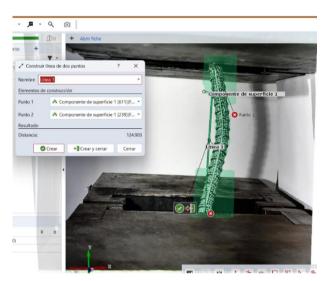


Figura 2.40 Trazo de línea referencial

Elaborado por: Megan Saltos

Con la línea establecida, se distribuyen los puntos según el número deseado; en este caso, se colocarán 7 puntos distribuidos equitativamente cada 9.52% de la distancia tota, como se muestra en la (Figura 2.41). Esta distribución asegura que los puntos de medición estén uniformemente espaciados.

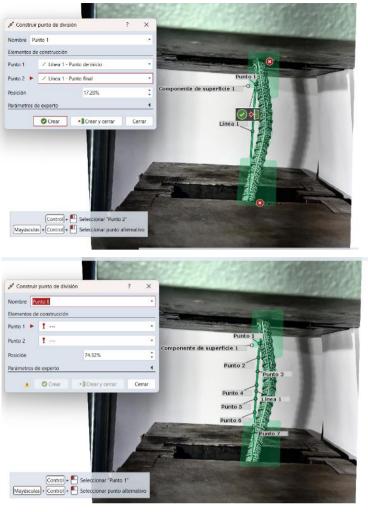


Figura 2.41 Distribución de puntos preliminares

Elaborado por: Megan Saltos

Después de definir la ubicación de los puntos, se borra la línea inicial y se colocan los puntos reales a la misma altura que los predefinidos. Estos puntos se generan mediante el comando "inspección de puntos" (Figura 2.42), garantizando una correcta alineación.

Figura 2.42 Colocación de puntos reales

Una vez establecidos los puntos reales, se eliminan los puntos preliminares y se renombran a estos según su nueva posición (Figura 2.43). Este paso es importante para mantener un registro preciso de las posiciones de los puntos de interés.

Figura 2.43 Cambio de nombre de puntos reales

Elaborado por: Megan Saltos

Con los puntos ya definidos, se seleccionan los ejes del plano 2D en los que la varilla se verá afectada. Para el análisis del desplazamiento, los ejes de estudio son los ejes "x" y "y", mientras que, para el análisis de la deformación, el eje de estudio es el eje "y", como se muestra en la Figura 2.44. Esta selección permite una evaluación detallada de cómo la varilla se deforma y desplaza bajo las cargas aplicadas.

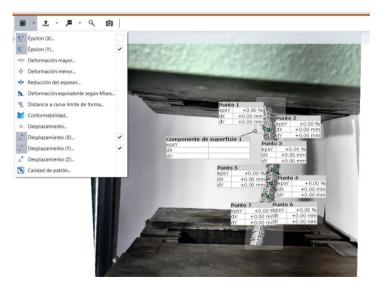


Figura 2.44 Selección de desplazamientos y deformaciones

Finalmente, se exporta una tabla que detalla los desplazamientos y deformaciones para cada punto en todos los pasos disponibles, junto con las gráficas de curva desplazamiento vs. tiempo. Este proceso se repite para la vista frontal y lateral de la varilla, proporcionando una visión completa y detallada del comportamiento de la varilla bajo condiciones de carga específicas.

3. RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

3.1 Resultados

En este apartado se detallan los resultados obtenidos de los ensayos a tracción, los cuales permiten seleccionar la varilla que se usará para los ensayos BBT. Además, se analiza la gráfica de curvas fuerza vs desplazamiento axial de cada diámetro para identificar la falla frágil, y las gráficas de desplazamiento vs tiempo para obtener el perfil pandeado. Finalmente, se realiza una comparación entre los resultados obtenidos del ensayo BBT y la metodología DIC en cuanto a la compresión máxima de pandeo.

3.1.1 Ensayos a tracción

3.1.1.1 Resistencia a la fluencia

A continuación, se presenta la Tabla 3.1, con la resistencia a la fluencia obtenida para cada lote de cuatro varillas correspondiente a los diámetros de 8mm,10mm y 12mm.

Diámetro [mm]	Código [-]	Fluencia (KN)	MPa (N/mm2)
	V08-6227-N1	22.07	439
8	V08-6227-N2	22.38	445
	NCIO-6152-P1	26.98	537
	NCIO-6152-P2	27.28	543
	VC10-1357-N1	35.1	447
10	VC10-1357-N2	35.9	457
	VC10-P1	41.29	526
	VC10-P2	41.38	527
	VC12-4728-P1	51.71	457
12	VC12-4728-P2	51.75	458
	VC12-6319-N1	49.13	434
	VC12-6319-N2	49.56	438

Tabla 3.1 Resistencia a la fluencia

Se observa que, las varillas de un mismo diámetro presentan diferencias significativas en sus fluencias, las cuales varían en un rango de 420 MPa a 520 MPa.

Para minimizar la variabilidad en los resultados, se opta por seleccionar las varillas con las fluencias mínimas para cada diámetro, como se muestra en la Tabla 3.2. De esta manera, se trabajará con una resistencia a la fluencia cercana a los 420 MPa.

Diámetro [mm]	Código [-]	Fluencia (KN)	MPa (N/mm2)
8	V08-6227-N1	22.07	439
10	VC10-1357-N1	35.1	447
12	VC12-6319-N1	49.13	434

Tabla 3.2 Fluencias mínimas

Elaborado por: Megan Saltos

A partir de esta selección, se llevarán a cabo los ensayos de elongación y, posteriormente, los ensayos BBT.

3.1.1.2 Elongación a la falla

Una vez realizado el ensayo, se registraron los datos de desplazamiento axial a la falla correspondiente a cada diámetro. A partir del cual, se calculó el alargamiento porcentual, dividiendo el desplazamiento axial a la falla por la longitud entre mordazas, como se muestra en la tabla 3.3.

Diámetro [mm]	Desplazamiento axial a la falla [mm]	Longitud entre mordazas [mm]	Elongación [%]
8	24.16	1.05	23%
10	27.88	1.35	21%
12	34.82	1.62	21%

Tabla 3.3 Elongación a la falla

Elaborado por: Megan Saltos

Los resultados muestran que la varilla de 8 mm presenta una elongación porcentual del 23%, en comparación con las de 10 mm y 12 mm, que tienen una elongación del 21%. Esto indica que, aunque las varillas de mayor diámetro pueden soportar una mayor carga antes de la fractura, las varillas de menor diámetro tienden a deformarse más antes de romperse.

Al comparar estos resultados con lo establecido en el catálogo del fabricante, que establece una elongación mínima del 14% para diámetros menores a 20mm, se corrobora que todas las varillas ensayadas superan este umbral, validando así la aceptabilidad de las varillas en función de sus propiedades de elongación

3.1.2 Ensayo BBT

3.1.2.1 Determinación del punto crítico de pandeo

Varilla de 8mm

Para determinar el punto crítico de pandeo en las varillas de 8mm, se ensayaron inicialmente un total de 12 muestras, sin embargo, debido a la presencia de valores atípicos se descartaron algunos resultados, tomando finalmente el resultado de 8 varillas, como se muestra en la Tabla 3.4.

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
8mm - 1	-70	-26.57
8mm - 2	-68	-13.48
8mm - 3	-65	-1.47
8mm - 4	-64	-8.57
8mm - 5	-60	-1.98
8mm - 6	-55	-1.52
8mm - 7	-50	1.1
8mm - 8	-48	6.6

Tabla 3.4 Desplazamientos axiales a compresión y en la falla - Varilla 8mm

Elaborado por: Megan Saltos

Con base en los resultados obtenidos, se identificó que la falla frágil ocurrió en el ensayo 8mm-7, ya que presentó el desplazamiento axial a la falla más cercano a cero, con un valor de 1.1, a partir del cual, se determinó que el punto crítico corresponde a un desplazamiento de **-50mm**.

Para confirmar esta identificación, se realizó la siguiente grafica de dispersión (Figura 3.1), que relaciona el desplazamiento axial en compresión (desplazamiento asumido) con el desplazamiento axial en la fractura (desplazamiento a la falla). En esta gráfica, se corrobora

que el punto crítico corresponde al ensayo 8mm-7, ya que su falla frágil es el valor más cercano al origen en el eje "x".

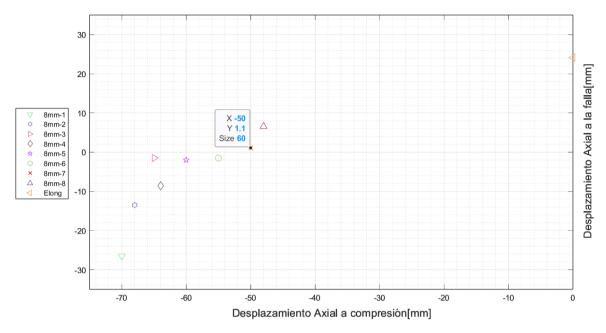


Figura 3.1 Gráfica de dispersión para determinación del punto crítico - Varilla 8mm Elaborado por: Megan Saltos

Una vez hecha la comprobación, se realizó la gráfica de curva fuerza axial vs desplazamiento axial (Figura 3.2), en donde el punto crítico de pandeo se identifica con la curva de color negro. El detalle de los resultdos se presenta en el Anexo I.

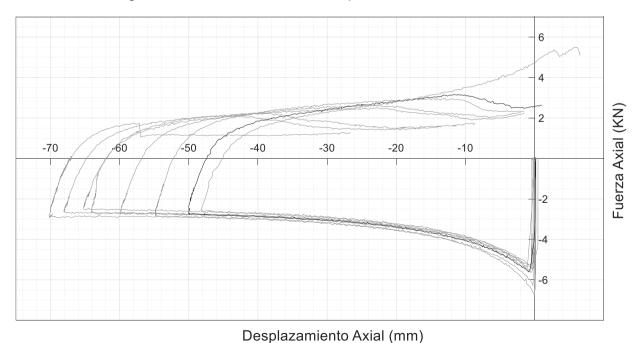


Figura 3.2 Curva Fuerza vs Desplazamiento axial - Varilla 8mm

En la gráfica se observa que, a partir del desplazamiento crítico de **-50mm**, las varillas tienden a fracturarse de manera frágil, debido a que un mayor desplazamiento a compresión induce un pandeo más significativo, lo que impide que la varilla se alargue durante la tracción, resultando en una falla frágil.

Varilla de 10mm

En el caso de las varillas de 10mm, se ensayaron inicialmente un total de 8 varillas. Sin embargo, debido a la presencia de un valor atípico, se descartó una muestra, quedando finalmente los datos de 7 varillas, como se detalla en la Tabla 3.5.

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
10mm - 1	-69	-29.38
10mm - 2	-65	-6.67
10mm - 3	-63	-1.23
10mm - 4	-60	0.27
10mm - 5	-50	3.85
10mm - 6	-45	6.64

Tabla 3.5 Desplazamientos axiales a compresión y en la falla - Varilla 10mm **Elaborado por:** Megan Saltos

Se observa que, la falla frágil se produjo en el ensayo 10mm-4, el cual presentó el desplazamiento axial a la falla más cercano a cero, con un valor de 0.27mm. Este valor nos ayuda a identificar el punto crítico de pandeo, mismo que corresponde a un desplazamiento de **-60mm.**

Para confirmar esta observación, se realizó el gráfico de dispersión Desplazamiento Axial a compresión vs Desplazamiento Axial a la falla (Figura 3.3), en la cual se verifica que el ensayo 10mm-4 corresponde al punto crítico, ya que su valor de falla frágil es el más cercano al origen en el eje "x".

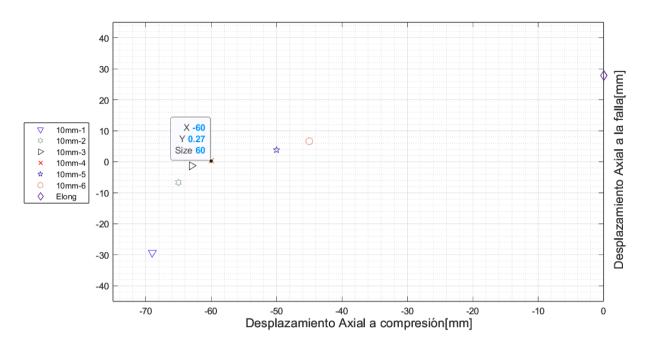
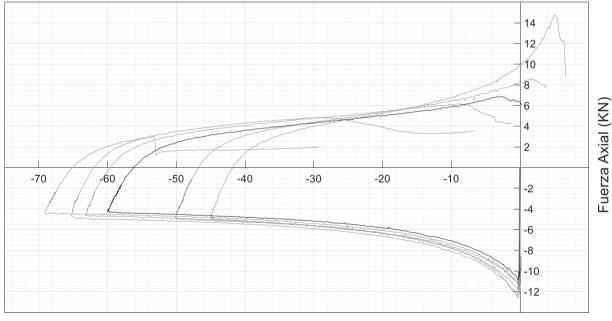



Figura 3.3 Gráfica de dispersión para determinación del punto crítico - Varilla 10mm

Elaborado por: Megan Saltos

Adicionalmente, se generó una gráfica de curva fuerza axial vs desplazamiento axial (Figura 3.4), en la cual se identifica de color negro a la curva correspondiente al punto crítico de pandeo. El detalle de los resultdos se indica en el Anexo II.

Desplazamiento Axial (mm)

Figura 3.4 Curva Fuerza vs Desplazamiento axial - Varilla 10mm

Elaborado por: Megan Saltos

La gráfica muestra que, desde el desplazamiento crítico de -60 mm, las varillas de 10mm tienden a fracturarse de manera frágil. Por el contrario, las varillas que presentan un menor desplazamiento a compresión experimentan un menor pandeo, lo que permite que, al momento de traccionar la varilla, esta se alargue y se produzca una falla dúctil.

Varilla de 12mm

Para las varillas de 12 mm, se ensayaron inicialmente 14 muestras. No obstante, se descartaron 4 debido a la presencia de valores atípicos, quedando finalmente los resultados de 10 varillas, como se detalla en la Tabla 3.6.

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
12mm - 1	-75.02	-1.81
12mm - 2	-75.01	-2.66
12mm - 3	-71.98	-3.54
12mm - 4	-71.11	-3.9
12mm - 5	-70.53	-11.18
12mm - 6	-70.04	-0.56
12mm - 7	-67.73	2.99
12mm - 8	-64.99	3.12
12mm - 9	-63.02	2.79
12mm - 10	-60.01	2.22

Tabla 3.6 Desplazamientos axiales a compresión y en la falla - Varilla 12mm

Elaborado por: Megan Saltos

De los resultados obtenidos, se identificó que la falla frágil se dio en el ensayo 12mm-6, ya que presentó el desplazamiento axial a la falla más cercano a cero, con un valor de - 0.56mm. Este resultado permitió determinar que el punto crítico de pandeo corresponde a un desplazamiento de compresión de -70 mm.

Para corroborar esta identificación, se generó la gráfica de dispersión Desplazamiento Axial a compresión vs Desplazamiento Axial a la falla (Figura 3.5). En esta gráfica se verifica que el ensayo 12mm-6 representa el punto crítico, pues su valor de falla frágil es el más cercano al origen en el eje "x".

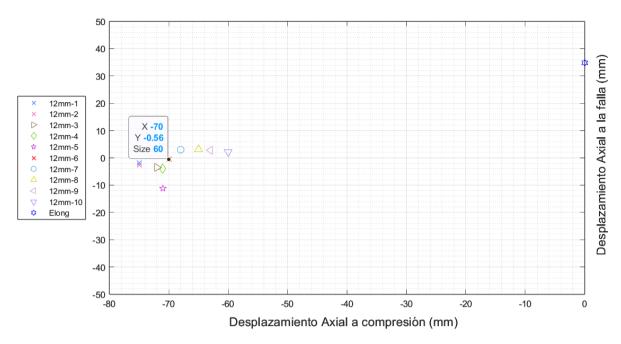


Figura 3.5 Gráfica de dispersión para determinación del punto crítico - Varilla 12mm

Elaborado por: Megan Saltos

Adicionalmente, se generó la gráfica de curva fuerza axial vs desplazamiento axial (Figura 3.6), en la cual se identifica con una curva negra el punto crítico de pandeo. El detalle de los resultdos se presenta en el Anexo III.

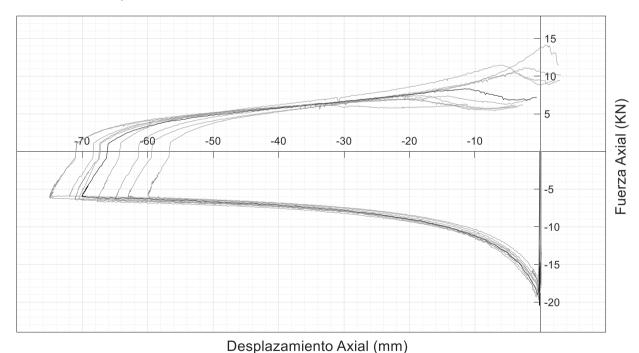


Figura 3.6 Curva Fuerza vs Desplazamiento axial - Varilla 12mm

Elaborado por: Megan Saltos

La gráfica muestra que, a partir del desplazamiento crítico de **-70 mm**, las varillas de 12 mm tienden a fracturarse de manera frágil, presentando un comportamiento similar al de las varillas de 8 mm y 10 mm. Si el desplazamiento a compresión es mayor, el pandeo será más significativo, lo que conlleva a una falla frágil. En cambio, si el desplazamiento es menor, no se produce un pandeo considerable, resultando en una falla dúctil.

3.1.2.2 Repetitividad

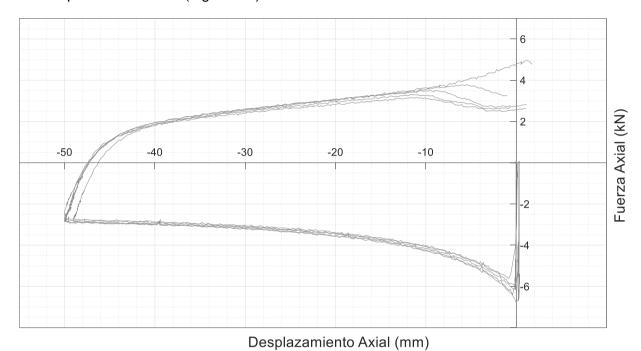
A continuación, se presenta la Tabla 3.7, que detallan los desplazamientos críticos de pandeo, obtenidos para cada diámetro ensayado, con los cuales se evaluó repetitividad.

Diámetro [mm]	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
8	-50	1.1
10	-60	0.27
12	-70	-0.56

Tabla 3.7 Puntos críticos de las varillas 8mm,10mm y 12mm

Elaborado por: Megan Saltos

• 8mm


Para la varilla de 8mm, se llevaron a cabo 4 ensayos adicionales bajo las mismas condiciones de carga, con un desplazamiento axial a compresión de -50mm, con la finalidad de comprobar la falla frágil. Los resultados se presentan en la Tabla 3.8.

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
8mm - 7	-50	1.1
8mm - rept -1	-50	1.74
8mm – rept - 2	-50	1.13
8mm – rept - 3	-50	-0.98
8mm – rept - 4	-50	-0.61

Tabla 3.8 Repetitividad - Varilla 8mm

Se observa que, aunque todos los ensayos se realizaron con un desplazamiento crítico de -50 mm, presentan una ligera variabilidad en los desplazamientos axiales a la falla. No obstante, todos los valores están cercanos a cero, por lo que presentan una falla frágil.

Para una mejor visualización de los resultados, se generó la gráfica de curvas fuerza axial vs. Desplazamiento axial (Figura 3.7). El detalle de los resultdos se muestra en el Anexo I.

Figura 3.7 Curva Fuerza vs Desplazamiento axial – Repetitividad -Varilla 8mm **Elaborado por**: Megan Saltos

La gráfica confirma que en todos los ensayos se presenta una falla frágil al alcanzar el desplazamiento axial a compresión de -50 mm, confirmando así que este desplazamiento corresponde al punto crítico de pandeo para las varillas de 8 mm.

• 10mm

Para la varilla de 10 mm, se realizaron 5 ensayos adicionales con un desplazamiento crítico establecido en -60 mm. Estos ensayos se realizaron con el objetivo de verificar la aparición de la falla frágil bajo condiciones controladas. Los resultados obtenidos se resumen en la Tabla 3.9:

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
10mm - 4	-60	0.27
10mm - rept -1	-60	0.14
10mm – rept - 2	-60	0.89
10mm – rept - 3	-60	-1.27
10mm – rept - 4	-60	-0.09
10mm – rept - 5	-60	0.96

Tabla 3.9 Repetitividad - Varilla 10mm

Elaborado por: Megan Saltos

Los resultados muestran que, aunque todos los ensayos se realizaron con un desplazamiento crítico de -60 mm, existe una variación en los desplazamientos axiales a la falla, que van desde -1.27 mm hasta 0.14 mm. Sin embargo, todos los valores se encuentran cercanos a cero, indicando una falla frágil.

Para una comprensión más clara, se generó la gráfica de curvas Fuerza axial vs. Desplazamiento axial (Figura 3.8), la cual proporciona una representación visual de cómo responden las varillas bajo el desplazamiento crítico de pandeo de -60 mm. El detalle de los resultdos se presenta en el Anexo II.

Figura 3.8 Curva Fuerza vs Desplazamiento axial – Repetitividad - Varilla 10mm

En la gráfica, se puede apreciar que, aunque hay una variabilidad en los desplazamientos axiales a la falla, la tendencia general confirma que las varillas tienden a experimentar una falla frágil al alcanzar el desplazamiento crítico de -60 mm.

12mm

Para evaluar la repetitividad en las varillas de 12 mm, se realizaron inicialmente cuatro ensayos adicionales. Sin embargo, debido a un valor atípico en uno de los ensayos, solo se consideraron los resultados de tres varillas. Los datos obtenidos se presentan en la Tabla 3.10.

Ensayo	Desplazamiento axial a compresión [mm]	Desplazamiento axial a la falla [mm]
12mm - 6	-70	-0.56
12mm - rept -1	-70	-2.81
12mm – rept - 2	-70	-0.12
12mm – rept - 3	-70	0.50

Tabla 3.10 Repetitividad - Varilla 12mm

Elaborado por: Megan Saltos

Los resultados de estos ensayos muestran una variabilidad en los desplazamientos axiales a la falla, que van desde -2.81 mm hasta 0.50 mm. No obstante, como los valores están cercanos a cero sugieren predominantemente una falla frágil.

Para una mejor comprensión de los resultados, se generó una gráfica de curvas Fuerza axial vs. Desplazamiento axial (Figura 3.9), que proporciona una representación visual clara de cómo responden las varillas de 12 mm al desplazamiento crítico de -70 mm. El detalle de los resultdos se muestra en el Anexo III.

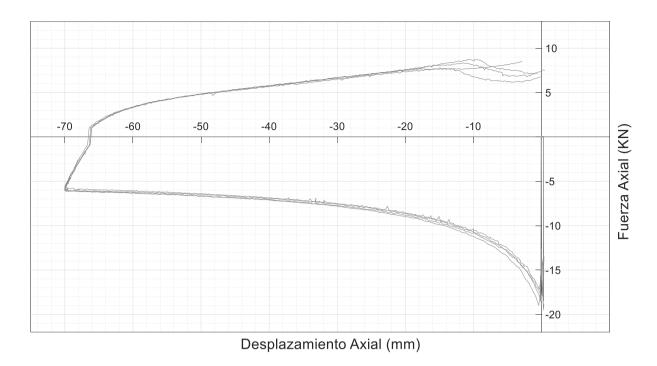


Figura 3.9 Curva Fuerza vs Desplazamiento axial – Repetitividad - Varilla 12mm

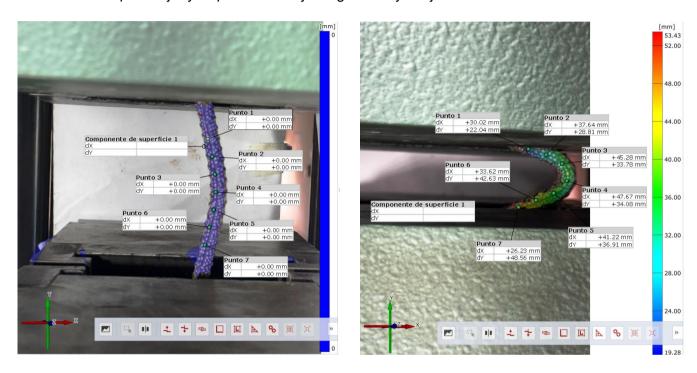
Elaborado por: Megan Saltos

La gráfica confirma que, pese a la variabilidad observada, los ensayos muestran una tendencia a la falla frágil, validando que el desplazamiento crítico de pandeo es de -70 mm es representativo para las varillas de este diámetro.

3.1.3 Metodología DIC

El proceso de imágenes para la metodología DIC, no pudo aplicarse a la varilla de 8mm, debido a que al llegar al desplazamiento axial a compresión de -50mm (punto crítico), la luz libre entre mordazas era muy reducida, dificultando que las cámaras enfocaran correctamente el moteado de la varilla. Por ende, el proceso de las imágenes se realizó únicamente en las varillas de 10mm y 12mm con sus respectivos puntos críticos.

3.1.3.1 Desplazamiento en "x" y "y" – Varilla 10mm


Para el análisis de resultados del desplazamiento se debe considerar algunos aspectos:

En el caso del desplazamiento en "x", se analizará el punto de máximo pandeo tanto en la vista frontal como en la lateral. Utilizando estos datos, se aplicará el teorema de Pitágoras para obtener la resultante entre estos desplazamientos, y así poder corroborar este resultado con lo medido en el ensayo BBT. Esta consideración es necesaria debido a que la varilla se deforma en una vista 3D, mientras que el programa proporciona únicamente una vista 2D, dificultando la obtención del valor exacto sin esta corrección.

Para el desplazamiento en "y", se considerará el punto más cercano a la parte inferior de la mordaza, dado que solo esta mordaza se desplaza durante el ensayo, mientras que la mordaza superior permanece fija.

Vista Lateral

A continuación, se presenta la Figura 3.10, con los desplazamientos en "x" y "y" en el estado inicial y final de la varilla, a partir de los puntos de inspección seleccionados. Se debe tener en cuenta que el eje "y" representa el eje longitudinal y el eje "x" el transversal.

Figura 3.10 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 10mm – Vista Lateral

Elaborado por: Megan Saltos

Con los puntos seleccionados, se generó la Tabla 3.11 con los valores de desplazamiento final en los puntos de inspección, obtenidos en el paso 134.

Elemento	Desplazamiento "x" [mm]	Desplazamiento "y" [mm]
Punto 1	30.02	22.04
Punto 2	37.64	28.81
Punto 3	45.28	33.78
Punto 4	47.67	34.08
Punto 5	41.22	36.91
Punto 6	33.62	42.63
Punto 7	26.23	48.56

Tabla 3.11 Valores de desplazamiento en los puntos de inspección. Varilla 10mm – Vista Lateral **Elaborado por:** Megan Saltos

Se observa que los máximos desplazamientos ocurren en la zona central para el eje "x" y en la zona inferior para el eje "y". En el eje "x", el punto de máximo pandeo es el punto 4, con un desplazamiento de 47.67 mm desde su posición inicial. En el eje "y", el mayor desplazamiento corresponde al punto 7, con un desplazamiento de 48.56 mm al aplicar una compresión de 60 mm.

Para visualizar de manera más clara el comportamiento de la varilla a lo largo del ensayo, se presenta la gráfica de curvas Desplazamiento vs. Tiempo para el desplazamiento en sentido "x" (Figura 3.11) y para el desplazamiento en sentido "y" (Figura 3.12). El detalle de los resultdos se muestra en el Anexo IV.

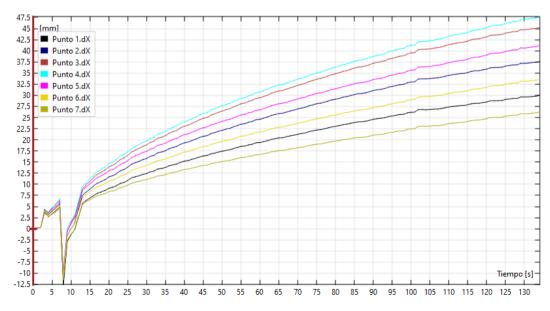
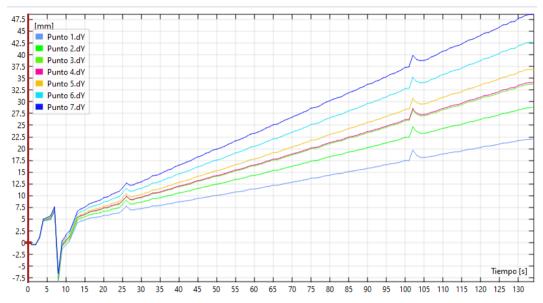
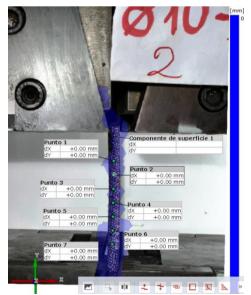
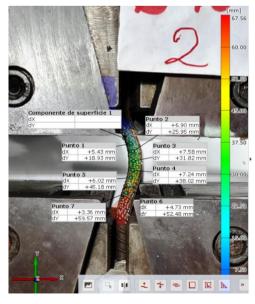


Figura 3.11 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 10mm – Vista Lateral Elaborado por: Megan Saltos


Figura 3.12 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 10mm – Vista Lateral Elaborado por: Megan Saltos

Las curvas muestran una tendencia paralela a lo largo de todo su recorrido para todos los puntos de inspección, tanto en el desplazamiento en "x" como en el "y", a excepción de pequeños tramos de tiempo en los cuales se tiene desviaciones que generan picos; esto se debe a un movimiento brusco de la cámara al momento de enfocarla. Sin embargo, estos datos podrían ser depurados para así tener curvas totalmente uniformes.

Vista Frontal

La Figura 3.13 ilustra los desplazamientos en los sentidos "x" y "y" en el estado inicial y final de la varilla, según los puntos de inspección seleccionados. Es importante notar que, el eje "x" representa la dirección transversal, mientras que el eje "y" indica la dirección longitudinal.

Figura 3.13 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 10mm – Vista Frontal **Elaborado por:** Megan Saltos

La Tabla 3.12 presenta los valores finales de desplazamiento en los puntos de inspección tras el ensayo.

Elemento	Desplazamiento "x" [mm]	Desplazamiento "y" [mm]
Punto 1	5.43	18.93
Punto 2	6.90	25.95
Punto 3	7.58	31.82
Punto 4	7.24	38.02
Punto 5	6.02	45.18
Punto 6	4.73	52.48
Punto 7	3.36	59.57

Tabla 3.12 Valores de desplazamiento en los puntos de inspección. Varilla 10mm – Vista Frontal **Elaborado por:** Megan Saltos

Los resultados indican que, en la dirección "x", el mayor desplazamiento se registra en el Punto 3, con un valor de 7.58 mm, mientras que en la dirección "y", el desplazamiento máximo ocurre en el Punto 7, con un valor de 59.57 mm. Esto sugiere que los máximos desplazamientos en "x" y "y" se producen en la región central y en el borde inferior de la varilla, respectivamente. Para una representación más detallada del comportamiento de la varilla durante el ensayo, se generó la gráfica de curvas Desplazamiento vs. Tiempo para el desplazamiento en sentido "x" (Figura 3.14) y para el desplazamiento en sentido "y" (Figura 3.15). El detalle de los resultdos se presenta en el Anexo V.

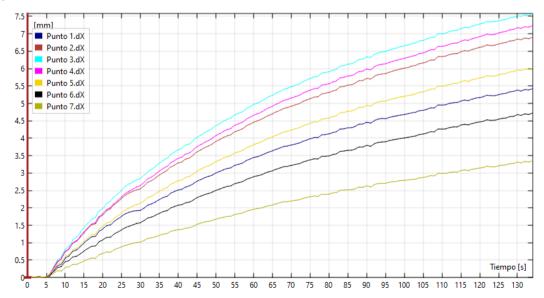


Figura 3.14 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 10mm – Vista Frontal Elaborado por: Megan Saltos

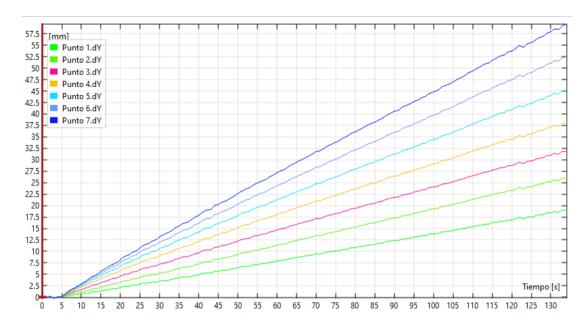


Figura 3.15 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 10mm – Vista Frontal Elaborado por: Megan Saltos

Las gráficas evidencian un comportamiento uniforme y paralelo a lo largo de todo el ensayo para los distintos puntos de inspección, lo que indica que no hubo problemas relacionados con la iluminación ni movimientos bruscos de la cámara.

3.1.3.2 Desplazamiento en "x" y "y" - Varilla 12mm

Para la varilla de 12mm, se aplican las mismas consideraciones que para la varilla de 8mm en cuanto al análisis de los desplazamientos en "x" y en "y".

Vista Lateral

A continuación, se presenta La Figura 3.16, la cual muestra los desplazamientos en las direcciones "x" y "y" en el estado inicial y final de la varilla de 12 mm, a partir de los puntos de inspección seleccionados. En esta vista, el eje "x" representa la dirección transversal, mientras que el eje "y" indica la dirección longitudinal.

Figura 3.16 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 12mm – Vista Lateral

Elaborado por: Megan Saltos

En la Tabla 3.13 se detallan los valores finales de desplazamiento en los puntos de inspección después del ensayo, mismos que se obtuvieron en el paso 160.

Elemento	Desplazamiento "x" [mm]	Desplazamiento "y" [mm]
Punto 1	30.29	16.99
Punto 2	39.30	23.32
Punto 3	48.52	29.02
Punto 4	56.48	32.21
Punto 5	55.75	32.51
Punto 6	48.19	38.32
Punto 7	39.78	45.89

Tabla 3.13 Valores de desplazamiento en los puntos de inspección. Varilla 12mm – Vista Lateral

Elaborado por: Megan Saltos

Del análisis de los resultados, se observa que el punto de mayor desplazamiento en la dirección "x" corresponde al Punto 4, con un valor de 56.48 mm, mientras que en la dirección "y", el mayor desplazamiento se registra en el Punto 7 con 45.89 mm. Este patrón

indica que la máxima deformación en la dirección transversal se encuentra hacia el centro de la varilla, y en la dirección longitudinal, hacia los extremos.

Para visualizar estos resultados, se elaboraron las gráficas de curvas desplazamiento en "x" y "y" vs tiempo (Figura 3.17 y Figura 3.18), las cuales ofrecen una representación detallada del comportamiento de la varilla a lo largo del ensayo. El detalle de los resultdos se muestra en el Anexo VI.

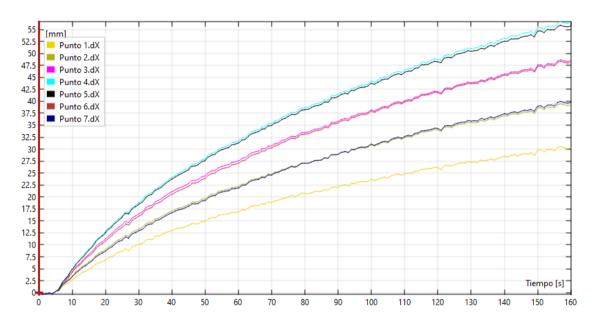


Figura 3.17 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 12mm – Vista Lateral Elaborado por: Megan Saltos

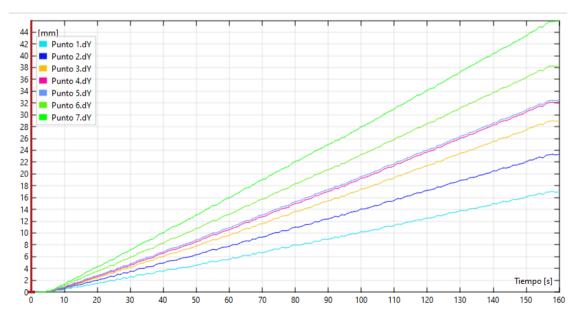


Figura 3.18 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 12mm – Vista Lateral Elaborado por: Megan Saltos

Las gráficas presentan resultados visualmente claros, con una tendencia uniforme en los desplazamientos para los diferentes puntos de inspección, lo que sugiere un comportamiento consistente a lo largo del ensayo. Adicionalmente, no se observan desviaciones significativas ni picos, lo que indica que no hubo problemas con la iluminación o movimientos bruscos de la cámara durante el ensayo.

Vista Frontal

Para la varilla de 12 mm, se presentan la Figura 3.19, con los desplazamientos en los ejes "x" y "y" en los estados inicial y final, obtenidos a partir de los puntos de inspección seleccionados.

Figura 3.19 Desplazamiento en sentido "x" y "y" del estado inicial y final. Varilla 12mm – Vista Frontal

Elaborado por: Megan Saltos

A continuación, se generó la Tabla 3.14 con los valores de desplazamiento final en los puntos de inspección, los cuales también se obtuvieron en el paso 160.

Elemento	Desplazamiento "x" [mm]	Desplazamiento "y" [mm]
Punto 1	-0.29	28.68
Punto 2	0.67	35.55
Punto 3	1.47	41.62
Punto 4	2.11	47.08
Punto 5	1.86	52.89
Punto 6	1.18	59.57
Punto 7	0.01	66.89

Tabla 3.14 Valores de desplazamiento en los puntos de inspección. Varilla 12mm – Vista Frontal

Elaborado por: Megan Saltos

Se observa que, el mayor desplazamiento en la dirección "x" se registra en el Punto 4, con un valor de 2.11 mm. En la dirección "y", el desplazamiento máximo se presenta en el Punto 7, alcanzando 66.89 mm, lo que indica que los desplazamientos máximos en "x" y "y" se producen en la región central y en el borde inferior de la varilla, respectivamente.

Para una comprensión más detallada de estos resultados, se generó la gráfica de Desplazamiento vs Tiempo para el eje "x" (Figura 3.20) y para el eje "y" (Figura 3.21) frente al tiempo. El detalle de los resultados se presenta en el Anexo VII.

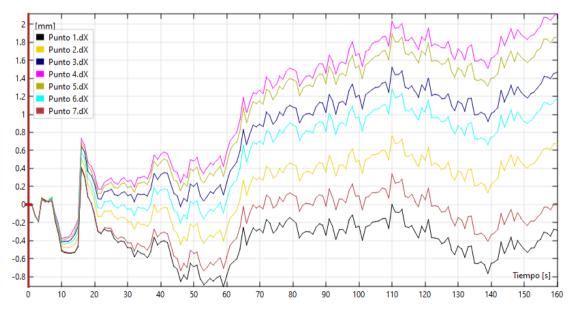


Figura 3.20 Curva Desplazamiento vs Tiempo en sentido "x". Varilla 12mm – Vista Frontal Elaborado por: Megan Saltos

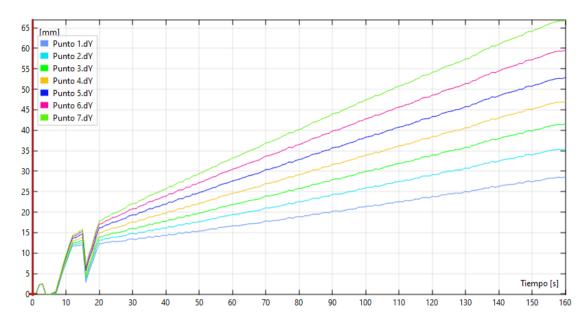


Figura 3.21 Curva Desplazamiento vs Tiempo en sentido "y". Varilla 12mm – Vista Lateral Elaborado por: Megan Saltos

La gráfica de desplazamiento en el eje "y" frente al tiempo muestra una tendencia casi uniforme y paralela para todos los puntos de inspección. Sin embargo, entre los 10 y 20 segundos se observa una pequeña desviación que genera un pico en la curva, lo cual se debe a un movimiento brusco de la cámara durante el proceso de enfoque. Por otro lado, la gráfica de desplazamiento en el eje "x" no presenta una tendencia clara y muestra múltiples desviaciones a lo largo del ensayo, formando picos consecutivos. Esto se debe a un cambio brusco en la iluminación, provocando la pérdida de subconjuntos de píxeles durante el trayecto. No obstante, con un procesamiento adicional de los datos, es posible eliminar estas variaciones para obtener curvas más uniformes y precisas.

3.1.3.3 Comparación DIC Y BBT

A continuación, se presenta la Tabla 3.15 con los desplazamientos registrados tanto en la vista lateral como en la frontal.

Diámetro [mm]	Desplazamiento en el punto de pandeo [mm] - Vista Lateral	Desplazamiento en el punto de pandeo [mm] - Vista Frontal
10	47.67	7.58
12	56.48	2.11

Tabla 3.15 Desplazamientos en el punto de pandeo. Varilla 10mm y 12mm - Vista lateral y frontal

Elaborado por: Megan Saltos

Se aplicó el teorema de Pitágoras a los desplazamientos obtenidos en cada vista. Es importante considerar que estos desplazamientos fueron medidos desde la mitad de la varilla. Por lo tanto, se debe añadir al resultado el diámetro correspondiente de la varilla para obtener una medición precisa desde el extremo de la misma. Los resultados ajustados se presentan en la Tabla 3.16.

Diámetro [mm]	Desplazamiento en el punto de pandeo [mm]
10	58.27
12	68.52

Tabla 3.16 Desplazamientos en el punto de pandeo máximo - Varilla 10mm y 12mm **Elaborado por:** Megan Saltos

Los desplazamientos obtenidos en los ensayos BBT fueron medidos con un calibrador para garantizar una mayor exactitud, como se explicó en el apartado 2.2.4. A continuación, se realiza la comparación de resultados obtenidos por ambos métodos, como se muestra en la Tabla 3.17.

Diámetro [mm]	Desplazamiento en compresión máxima [cm] - DIC	Desplazamiento en compresión máxima [cm] - BBT
10	58.3	58.9
12	68.5	68.9

Tabla 3.17 Desplazamientos en compresión máxima BBT y DIC - Varilla de 10mm y 12mm **Elaborado por:** Megan Saltos

Se observa que los desplazamientos medidos por ambos métodos son muy similares. Para la varilla de 10 mm, el desplazamiento en compresión máxima medido con DIC es de 58.3 mm, mientras que con BBT es de 58.9 mm. Esto representa un porcentaje de error del 1.02%, lo cual es aceptable y sugiere una buena concordancia entre ambos métodos. Para la varilla de 12 mm, el desplazamiento en compresión máxima medido con DIC es de 68.5 mm, y con BBT es de 68.9 mm, con un porcentaje de error del 0.58%, indicando también una alta correlación y precisión en los resultados.

3.1.3.4 Deformación en sentido "y" - Varilla 10mm

Para analizar la deformación en el sentido "y", se evaluarán tanto la compresión como la tensión de la varilla en su estado final, tomando la vista que mejor revele estos aspectos. Para esto, se seleccionaron cinco puntos de inspección en la vista frontal para evaluar la compresión (Figura 3.22 (a)) y cinco puntos en la vista lateral para evaluar la tensión (Figura 3.22 (b)).

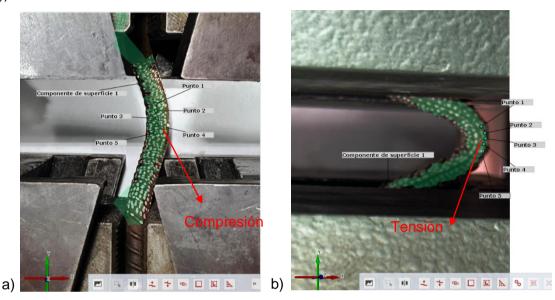


Figura 3.22 Puntos de inspección - Varilla 10mm. a) Vista Frontal compresión y b) Vista Lateral tensión Elaborado por: Megan Saltos

Una vez seleccionados los puntos, se aplicó la deformación para cada vista, obteniéndose los resultados de deformación a compresión (Figura 3.23) y a tensión (Figura 3.24).

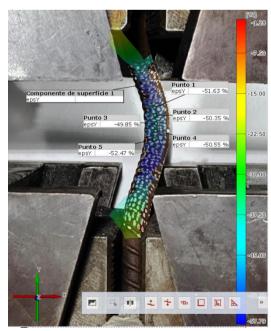


Figura 3.23 Deformaciones a compresión Vista Frontal – Varilla 10mm

Elaborado por: Megan Saltos

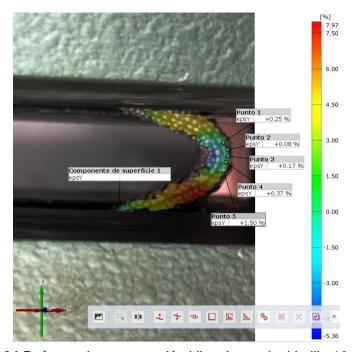


Figura 3.24 Deformaciones a tensión Vista Lateral – Varilla 10mm

Elaborado por: Megan Saltos

En las gráficas se observa que las mayores deformaciones se concentran en la zona central. En la Figura 3.23, el valor de la compresión (valores negativos) se encuentra en un rango del 49% al 52%, lo que indica que cuando se alcanza una deformación superior al 52%, este lado de la varilla falla por compresión. Por otro lado, en la Figura 3.24, la tensión (valores positivos) varía entre 0.05% y 1%.

Estos resultados son consistentes con la literatura. Según Restrepo-Posada, (1992), la deformación por compresión en el borde de la barra de refuerzo crece más rápidamente que en el resto de la sección. Además, afirma que el borde cóncavo de una barra pandeada (el borde con la mayor deformación por compresión) podría alcanzar una deformación por compresión promedio del 40% o más.

Con base en esto, se corrobora que los valores de compresión observados están alrededor del 40%, confirmando la validez de los resultados obtenidos.

3.1.3.5 Deformación en sentido "y" – Varilla 12mm

Para analizar la deformación en el sentido "y" en la varilla de 12 mm, se seguirá el mismo procedimiento utilizado para la varilla de 10 mm, tomando los puntos de inspección en la vista frontal para evaluar la compresión (Figura 3.25 (a)) y cinco puntos en la vista lateral para evaluar la tensión (Figura 3.25 (b)).

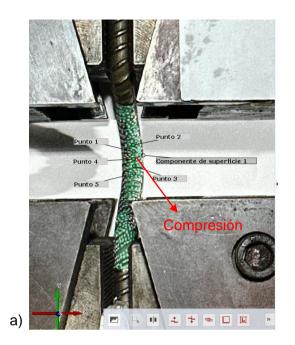


Figura 3.25 Puntos de inspección - Varilla 12mm. a) Vista Frontal compresión y b) Vista Lateral tensión Elaborado por: Megan Saltos

Una vez seleccionados los puntos de inspección, se calculó la deformación para cada vista, obteniendo la deformación por compresión en la Figura 3.26 y la deformación por tensión en la Figura 3.27.

Figura 3.26 Deformaciones a compresión Vista Frontal – Varilla 12mm

Elaborado por: Megan Saltos

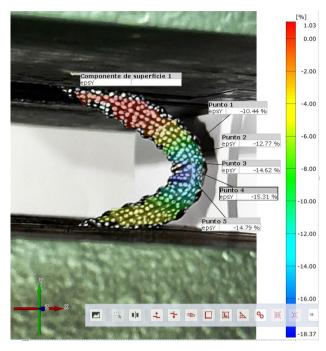


Figura 3.27 Deformaciones a tensión Vista Lateral – Varilla 12mm

Elaborado por: Megan Saltos

En las gráficas se observa que las mayores deformaciones se concentran en la zona central. En la Figura 3.26, los valores de compresión (valores negativos) en la vista frontal se sitúan en un rango del 46% al 52%, indicando que cuando la deformación supera el 52%, este lado de la varilla falla por compresión. En la Figura 3.27, los valores de tensión (valores negativos) en la vista lateral oscilan entre el 10% y el 15%. Aunque estos valores deberían ser positivos debido a la naturaleza de la tensión, la falta de una vista precisa de la deformación provoca esta discrepancia. No obstante, considerando lo mencionado en el apartado 3.1.3.4, se acepta que los valores de compresión estén alrededor del 46%, confirmando así que los resultados son correctos.

Además, tanto en la vista lateral como en la frontal, se observan zonas en color rojo. Esto se debe a que estas áreas se comportan como brazos rígidos debido a sus pequeñas deformaciones, concentrando las mayores deformaciones en la mitad de la varilla.

3.2 Conclusiones

 El ensayo BBT (Ensayo a tensión de varillas pandeadas) ha demostrado ser un método eficaz para evaluar la resistencia al pandeo y la falla frágil de varillas de refuerzo de diámetros 8 mm, 10 mm y 12 mm, esenciales en la construcción sismorresistente.

- La metodología de Correlación de Imágenes Digitales (DIC) demostró ser altamente efectiva para medir con precisión los desplazamientos y deformaciones en las varillas durante los ensayos BBT, proporcionando datos detallados sobre el comportamiento mecánico de las varillas bajo cargas incrementales.
- Las varillas de menor diámetro, específicamente las de 8 mm, mostraron una mayor elongación porcentual antes de la fractura en comparación con las varillas de 10 mm y 12 mm. Esto sugiere que las varillas de menor diámetro tienen una mayor capacidad de deformación, lo cual es un factor crítico en aplicaciones donde se requiere ductilidad.
- La repetitividad de los ensayos BBT fue verificada mediante la comparación de las curvas Fuerza vs. Desplazamiento para múltiples muestras del mismo diámetro.
 Los resultados consistentes en los puntos de fractura confirman la fiabilidad del ensayo BBT para evaluar la falla frágil en varillas de refuerzo
- En los ensayos de repetitividad, aunque se aplicó el mismo desplazamiento axial en compresión, los desplazamientos axiales a la falla presentaron pequeñas variaciones en los resultados. Estas discrepancias pueden atribuirse a pequeños deslizamientos de la varilla durante el ensayo o a variaciones en las propiedades del material, como las irregularidades del corrugado.
- Se logró determinar con éxito los puntos críticos de pandeo para cada diámetro de varilla: -50 mm para varillas de 8 mm, -60 mm para varillas de 10 mm, y -70 mm para varillas de 12 mm. Estos valores representan los desplazamientos axiales a compresión que producen una falla frágil al tensionar la varilla, proporcionando información crucial para el diseño y análisis estructural.
- Los resultados obtenidos mediante DIC mostraron una alta correlación con las mediciones manuales realizadas durante los ensayos BBT, con porcentajes de error del 1.02% para varillas de 10 mm y 0.58% para varillas de 12 mm.
- El diámetro de las varillas influye significativamente en la deformación a flexión y en la resistencia al pandeo, destacando la importancia de considerar este factor en el diseño estructural.
- A partir de la gráfica de dispersión, se concluyó que el punto de falla frágil (valor cercano a cero) divide claramente las zonas de comportamiento del material. Los puntos ubicados sobre la línea en el lado derecho (parte positiva) corresponden a

la zona frágil, mientras que los puntos situados debajo de la línea en el lado izquierdo (parte negativa) indican la zona dúctil.

- La correcta alineación de las varillas en la máquina de ensayos, utilizando planchas para este caso planchas de espuma flex, fue esencial para obtener resultados fiables. Esto garantizó que el pandeo ocurriera en la dirección esperada, evitando que las varillas toparan con la mordaza al momento de la compresión
- El análisis DIC reveló patrones de deformación consistentes en las varillas. Las mayores deformaciones se concentraron en la zona central de las varillas, tanto en compresión como en tensión. Los valores de deformación por compresión observados (alrededor del 40-52%) son coherentes con los reportados en la literatura, validando la precisión de las mediciones realizadas.
- Se identificó que la falla por compresión ocurre cuando la deformación supera el 52% en el lado cóncavo de la varilla pandeada.
- A través de los resultados finales y el uso de Zeis Correlate, se validó la correcta aplicación del patrón de moteado en las varillas de acero de refuerzo, concluyendo que el moteado realizado a mano con marcador es eficiente, siempre y cuando se aplique de manera adecuada.
- Se comprobó que una configuración adecuada del tamaño de subconjuntos (subset size) y del tamaño de paso (step size) es esencial para obtener resultados óptimos y precisos. En el presente estudio, los valores óptimos para estos parámetros fueron de 50 píxeles para el tamaño de subconjuntos y 41 píxeles para el tamaño de paso, siendo aplicables a ambos diámetros de varilla.
- Se observó que las zonas cercanas a los extremos de las varillas se comportan como brazos rígidos, experimentando deformaciones mínimas. Este fenómeno concentra las mayores deformaciones en la mitad de la varilla, lo cual es esencial para entender el mecanismo de falla por pandeo.
- Se verificó que el programa Zeis Correlate, en su versión gratuita, es una herramienta accesible y de alta calidad para la evaluación mediante DIC. Su interfaz intuitiva, el rápido tiempo de procesamiento y baja tasa de errores demuestran su idoneidad para la investigación. Sin embargo, se sugiere considerar el uso de la versión profesional para acceder a funcionalidades adicionales.

3.3 Recomendaciones

- Se recomienda desarrollar un protocolo estandarizado para el proceso de moteado de las varillas. Esto ayudaría a mejorar la consistencia en la aplicación del patrón aleatorio y garantizaría una mejor calidad de los datos obtenidos a través de la metodología DIC.
- Para abordar las inconsistencias observadas en los datos debido a cambios en la iluminación, se sugiere implementar un sistema de iluminación más estable y controlado. Utilizar luces LED de alta intensidad con difusores permitirá una iluminación uniforme y constante durante todo el ensayo, reduciendo las variaciones que afectan la calidad de las imágenes.
- Se aconseja realizar un estudio paramétrico para examinar cómo la longitud de la varilla influye en el punto crítico de pandeo. Esto implicaría repetir los ensayos BBT con varillas de distintas longitudes para cada diámetro, manteniendo otros parámetros constantes. Este análisis permitirá comprender mejor la relación entre la esbeltez de la varilla y su comportamiento de pandeo.
- Se recomienda investigar cómo la velocidad de aplicación de carga afecta el comportamiento de pandeo de las varillas. Realizar ensayos BBT a diferentes velocidades de carga para cada diámetro de varilla podría revelar si existen efectos dinámicos significativos que influyan en el punto crítico de pandeo.
- Dado que no se pudo aplicar la metodología DIC a la varilla de 8mm debido a limitaciones en el enfoque de la cámara, se recomienda explorar técnicas alternativas de captura de imagen o considerar el uso de equipos ópticos de mayor resolución. Esto permitiría extender el análisis DIC a varillas de menor diámetro, proporcionando una visión más completa del comportamiento de pandeo en todo el rango de tamaños de varilla.
- Se recomienda investigar cómo las condiciones ambientales, como la temperatura y la humedad, afectan el comportamiento de pandeo de las varillas. Este estudio contribuirá a entender mejor cómo estas variables influyen en los resultados y en la precisión de los ensayos.

4. REFERENCIAS BIBLIOGRÁFICAS

- Bae, S., Mieses, A. M., & Bayrak, O. (2005). Inelastic Buckling of Reinforcing Bars. Journal of Structural Engineering, 131(2), 314–321. https://doi.org/10.1061/(asce)0733-9445(2005)131:2(314)
- Barcley, L., & Kowalsky, M. (2019). Critical bending strain of reinforcing steel and the buckled bar tension test. *ACI Materials Journal*, *116*(3), 53–61. https://doi.org/10.14359/51715583
- Blog CIMCo. (n.d.). Retrieved July 28, 2024, from https://www.cimco.mx/post-series/blog/
- Cabrera, A., & Quintana, M. (2022). Validación teórico-experimental de la metodología digital image correlation (DIC) para la determinación de desplazamientos y deformaciones en distintos tipos de ensayos cuasi estáticos y dinámicos. *Escuela Politécnica Nacional. Quito*, 196.
- Castro Lisintuña, C. D. (2018). Caracterización de las probetas soldadas por fricción mediante pruebas de tracción y torsión para materiales: Acero AISI 1018, Acero AISI 1045, Aluminio Y Bronce SAE 40 de 10mm de diámetro.
- Chen, W.-F., & Atsuta, T. (2008). Theory of beam-columns. Volume 1, In-plane behavior and design. J. Ross Pub.
- Dhakal, R. P., & Maekawa, K. (2002). Modeling for Postyield Buckling of Reinforcement. *Journal of Structural Engineering*, 128(9), 1139–1147. https://doi.org/10.1061/(asce)0733-9445(2002)128:9(1139)
- Gutiérrez Aguilera, P. A. (2023). *Características del acero como material estructural*. https://doi.org/10.16925/gcnc.73
- INEN, I. E. de N. (1999). Norma Técnica Ecuatoriana NTE INEN 2215: Perfiles de acero laminados en caliente. Requisitos.
- INEN, I. E. de N. (2009). Norma Técnica Ecuatoriana NTE INEN 109:2009: Ensayo de Tracción para Materiales Metálicos a Temperatura Ambiente.
- McCormick, N., & Lord, J. (2010). Digital Image Correlation. *Materials Today*, *13*(12), 52–54. https://doi.org/10.1016/S1369-7021(10)70235-2
- Moposita, R., & Pozo, I. (2021). Implementación de una estación didáctica para la predicción de los factores de concentración de esfuerzos usando correlación de imágenes digitales (DIC). *Universidad Politécnica Salesiana*.
- Park, R., & Paulay, T. (1975). *Reinforced concrete Structures* (John Wiley & Sons.). http://www.loc.gov/catdir/toc/onix03/74028156.html
- Paulay, T., & Priestley, M. J. N. (1992). Seismic design of reinforced concrete and masonry buildings.
- Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). *Displacement-Based Seismic Design of Structures*. *Press*.
- Restrepo-Posada, J. I. (1992). Seismic Behaviour of Connections Between Precast Concrete Elements. Department of Civil Engineering vol. PhD Disser.

- Schreier, H., Orteu, J. J., & Sutton, M. A. (2009). Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. *Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications*, 1–321. https://doi.org/10.1007/978-0-387-78747-3/COVER
- Sosa, D. (2023). Notas de Clase DTIC Diseño Basado en Desempeño (DBD). Escuela Politécnica Nacional.
- Sullivan, T. J., Calvi, G. M., Priestley, M. J. N., & Kowalsky, M. J. (2003). The limitations and performances of different displacement base design methods. *Journal of Earthquake Engineering*, 201–241.
- Valera Bustamante, J. R. (2021). Confiabilidad de los modelos de fibras en la predicción del pandeo de varillas. *Carrera de Ingeniería Civil. Universidad de Las Fuerzas Armadas ESPE. Matriz Sangolquí*.
- Vera Cieza, D. A. (2020). La técnica de correlación de imágenes digitales aplicada a ensayos de materiales.
- Vision 2000. (1995). Perfomance Based Seismic Engineering of buildings. *California Office of Emergency Services (OES), Structural Engineers Association of California*.

5. ANEXOS

ANEXO I, II, III. Datos para las gráficas de curvas Fuerza vs Desplazamiento axial.

A continuación, se adjunta el siguiente enlace con los datos correspondientes para realizar las gráficas de curvas fuerza axial vs desplazamiento axial, los cuales permiten la determinación del punto crítico de pandeo y repetitividad en varillas de 8mm,10mm y 12mm.

https://drive.google.com/drive/folders/1Hrl3mcMQThZhyYTrVynHMofCwjCRvBr2?usp=sh aring

ANEXO IV. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Varilla 10mm – Vista lateral

SENTIDO "X"

Tiempo [s]	Punto 1.dX [mm]	Punto 2.dX [mm]	Punto 3.dX [mm]	Punto 4.dX [mm]	Punto 5.dX [mm]	Punto 6.dX [mm]	•
0	0	0	0	0	0	0	0
1	0.1648	0.1599	0.1588	0.1577	0.1660	0.1733	0.1783
2	0.3124	0.3369	0.3570	0.3641	0.3562	0.3387	0.3119
3	3.5564	3.9095	4.2225	4.4002	4.3635	4.2309	4.0832
4	2.7464	3.1852	3.5730	3.7198	3.4972	3.1325	2.7612
5	3.4206	4.0290	4.5660	4.7475	4.4135	3.8764	3.3282
6	4.0479	4.8240	5.5111	5.7291	5.2740	4.5638	3.8441
7	4.7904	5.6931	6.4821	6.7127	6.1305	5.2527	4.3599
8	-12.5679	-11.3165	-10.1571	-9.6252	-10.0067	-10.7153	-11.4405
9	-2.9754	-1.6830	-0.5260	-0.0820	-0.7064	-1.7070	-2.7109
10 11	-1.3908	0.0435 1.3106	1.3284	1.7973	1.0741	-0.0696	-1.2286 -0.1793
12	-0.2404		2.6982 5.7923	3.1994	2.3769	1.1052	
13	2.6718 5.5545	4.3244 7.3545	8.9575	6.3077 9.4960	5.3962 8.4607	3.9945 6.8947	2.5911 5.3202
14	6.3540	8.2688	9.9672	10.5299	9.4109	7.7307	6.0403
15	6.9686	8.9938	10.7928	11.3840	10.1786	8.3784	6.5760
16	7.4602	9.5970	11.4902	12.1033	10.1786	8.3784 8.9042	6.9865
17	7.4602 7.9449	10.1987	12.2018	12.1033	11.4552	9.4271	7.3902
18	8.2423	10.5827	12.6631	13.3227	11.8662	9.7474	7.6238
19	8.6037	11.0343	13.2033	13.8831	12.3549	10.1402	7.9252
20	9.1314	11.6885	13.9707	14.6717	13.0503	10.7112	8.3669
21	9.3218	11.9440	14.2845	15.0063	13.3248	10.9161	8.5131
22	9.6550	12.3754	14.8154	15.5650	13.7954	11.2803	8.7745
23	10.1234	12.9419	15.4601	16.2238	14.3877	11.7841	9.1808
24	10.4258	13.3225	15.9147	16.6961	14.7904	12.1001	9.4183
25	10.9136	13.8921	16.5544	17.3487	15.3633	12.5803	9.8092
26	11.4653	14.5367	17.2788	18.0855	16.0164	13.1321	10.2536
27	11.6755	14.8362	17.6660	18.5012	16.3753	13.4192	10.4657
28	11.8777	15.1225	18.0273	18.8811	16.6874	13.6543	10.6213
29	12.2016	15.5281	18.5104	19.3817	17.1209	14.0051	10.8861
30	12.4457	15.8426	18.8928	19.7771	17.4551	14.2679	11.0734
31	12.8220	16.3130	19.4467	20.3515	17.9568	14.6710	11.3895
32	12.9803	16.5115	19.6969	20.6112	18.1704	14.8419	11.5118
33	13.4091	17.0441	20.3222	21.2583	18.7297	15.2982	11.8649
34	13.5606	17.2604	20.5959	21.5476	18.9668	15.4680	11.9788
35	13.8222	17.5861	20.9865	21.9512	19.3114	15.7494	12.1888
36	14.1875	18.0369	21.5144	22.5001	19.7894	16.1423	12.4958
37	14.3745	18.2749	21.8036	22.8008	20.0393	16.3382	12.6367
38	14.5374	18.4891	22.0674	23.0760	20.2653	16.5144	12.7650
39	14.9049	18.9587	22.6428	23.6697	20.7755	16.9135	13.0628
40	15.1862	19.3018	23.0345	24.0724	21.1313	17.2183	13.3084
41	15.3648	19.5365	23.3319	24.3807	21.3823	17.4052	13.4332
42	15.5987	19.8201	23.6656	24.7281	21.6828	17.6618	13.6324
43	15.8178	20.1111	24.0245	25.1017	21.9940	17.8992	13.8029
44	16.1180	20.4851	24.4571	25.5554	22.3868	18.2188	14.0544
45 46	16.3512	20.7717	24.8005	25.9071	22.6885	18.4669	14.2464
46 47	16.4876 16.8321	20.9695 21.3855	25.0596 25.5439	26.1821 26.6839	22.9035 23.3353	18.6203 18.9828	14.3372 14.6293
47	16.8321	21.3855	25.5439 25.7782	26.9272	23.5394	19.1376	14.6293
49	17.2074	21.8657	26.1315	27.2934	23.8500	19.3912	14.9352
50	17.4246	22.1316	26.4442	27.6178	24.1237	19.6135	15.1083
51	17.6316	22.4023	26.7800	27.9690	24.4207	19.8426	15.2756
52	17.7750	22.5914	27.0086	28.2032	24.6137	20.0013	15.3852
53	18.0302	22.9125	27.3984	28.6101	24.9556	20.2733	15.5947
54	18.2279	23.1462	27.6775	28.8994	25.2060	20.4819	15.7585
55	18.5159	23.4991	28.0844	29.3184	25.5711	20.7894	16.0059
56	18.6187	23.6503	28.2865	29.5311	25.7376	20.9048	16.0776
57	18.8756	23.9595	28.6532	29.9148	26.0647	21.1782	16.2934
58	19.0025	24.1346	28.8737	30.1389	26.2489	21.3159	16.3816
59	19.3120	24.4945	29.2762	30.5546	26.6152	21.6365	16.6563
60	19.3823	24.6142	29.4458	30.7375	26.7490	21.7293	16.6969
	•						

61	19.6061	24.8847	29.7624	31.0637	27.0338	21.9615	16.8910
62	19.8106	25.1396	30.0742	31.3870	27.3062	22.1827	17.0518
63	20.0948	25.4699	30.4525	31.7735	27.6495	22.4795	17.3022
64	20.2284	25.6614	30.6981	32.0279	27.8534	22.6273	17.3930
65	20.4287	25.8978	30.9740	32.3138	28.0997	22.8349	17.5624
66	20.4964	25.9972	31.1140	32.4586	28.2101	22.9088	17.6057
67	20.6973	26.2476	31.4051	32.7642	28.4693	23.1205	17.7735
68	20.8844	26.4710	31.6711	33.0406	28.7013	23.3176	17.9364
69	21.0237	26.6546	31.9029	33.2790	28.8983	23.4690	18.0405
70	21.2173	26.9090	32.2057	33.5979	29.1632	23.6775	18.1966
71	21.4089	27.1330	32.4686	33.8684	29.3996	23.8763	18.3560
72	21.5675	27.3304	32.7099	34.1171	29.6057	24.0499	18.4939
73	21.8462	27.6546	33.0812	34.5022	29.9480	24.3412	18.7349
74	21.9861	27.8344	33.2935	34.7216	30.1304	24.4867	18.8482
75	22.1830	28.0810	33.5965	35.0357	30.3906	24.6964	19.0046
76	22.2840	28.2156	33.7703	35.2163	30.5368	24.7988	19.0747
77	22.4912	28.4731				25.0273	
			34.0711	35.5259	30.8045		19.2561
78	22.6691	28.6804	34.3200	35.7841	31.0223	25.2085	19.4031
79	22.8811	28.9457	34.6351	36.1109	31.3009	25.4386	19.5913
80	22.9992	29.0870	34.8001	36.2867	31.4481	25.5599	19.6867
81	23.1827	29.3130	35.0803	36.5736	31.6879	25.7563	19.8324
82	23.4247	29.6007	35.4062	36.9048	31.9811	26.0073	20.0513
83	23.5288	29.7295	35.5717	37.0772	32.1224	26.1192	20.1298
84	23.6852	29.9372	35.8324	37.3506	32.3439	26.2902	20.2510
85	23.8776	30.1576	36.0758	37.6030	32.5707	26.4900	20.4321
86	24.0239	30.3502	36.3259	37.8600	32.7739	26.6448	20.5392
87	24.0662	30.4188	36.4232	37.9652	32.8480	26.6890	20.5585
88	24.1987	30.5828	36.6288	38.1808	33.0223	26.8283	20.6628
89	24.3736	30.7965	36.8764	38.4340	33.2421	27.0174	20.8209
90	24.5855	31.0456	37.1740	38.7436	33.5064	27.2427	21.0019
91	24.7389	31.2308	37.3900	38.9689	33.7021	27.4045	21.1380
92	24.8409	31.3605	37.5629	39.1499	33.8504	27.5178	21.2189
93	24.9873	31.5438	37.7799	39.3797	34.0424	27.6832	21.3587
94	25.2257	31.8438	38.1398	39.7602	34.3719	27.9472	21.5667
95	25.3427	31.9629	38.2789	39.9059	34.5008	28.0718	21.6738
96	25.5038	32.1655	38.5270	40.1721	34.7245	28.2539	21.8275
97	25.6719	32.3644	38.7583	40.4167	34.9414	28.4436	21.9817
98	25.7407	32.4605	38.8949	40.5689	35.0565	28.5225	22.0409
99	26.0521	32.8152	39.2987	40.9913	35.4399	28.8654	22.3393
100	26.1646	32.9717	39.5034	41.2183	35.6229	29.0071	22.4461
101	26.2249	33.0418	39.5794	41.3029	35.7020	29.0773	22.5096
		33.6540			36.2961		
102	26.7861		40.2571	41.9822		29.6021	22.9700
103	26.7993	33.7032	40.3493	42.1106	36.4127	29.7010	23.0554
104	26.7554	33.6872	40.3620	42.1367	36.4143	29.6780	23.0123
105	26.8035	33.7453	40.4277	42.2133	36.4823	29.7391	23.0719
106	26.8934	33.8561	40.5714	42.3724	36.6183	29.8471	23.1569
107	26.9117	33.9384	40.7264	42.5615	36.7428	29.9062	23.1599
108	27.0368	34.0821	40.9003	42.7498	36.9076	30.0449	23.2747
109	27.2053	34.2723	41.1171	42.9809	37.1184	30.2381	23.4444
					37.3432	30.4223	23.5934
110	27.3580	34.4644	41.3591	43.2486			
111	27.4798	34.6075	41.5270	43.4280	37.5068	30.5588	23.7106
112	27.5839	34.7465	41.7103	43.6330	37.6742	30.6946	23.8168
113	27.6922	34.8859	41.8869	43.8217	37.8390	30.8268	23.9226
114	27.7205	34.9286	41.9571	43.9141	37.9022	30.8629	23.9451
115	27.8743	35.1128	42.1717	44.1502	38.1133	31.0510	24.1010
116	28.0896	35.3614	42.4657	44.4618	38.3938	31.2938	24.3126
117	28.1920	35.5049	42.6465	44.6689	38.5652	31.4277	24.4157
	28.2074	35.5348		44.7461			
118			42.7051		38.6231	31.4561	24.4374
119	28.3954	35.7551	42.9598	45.0169	38.8706	31.6789	24.6170
120	28.4802	35.8652	43.1050	45.1860	39.0119	31.7839	24.7128
121	28.7324	36.1512	43.4275	45.5376	39.3313	32.0765	24.9736
122	28.7950	36.2387	43.5455	45.6764	39.4394	32.1675	25.0430
123	28.7871	36.2534	43.6002	45.7456	39.4800	32.1748	25.0273
124	28.8544	36.3349	43.7025	45.8675	39.5954	32.2696	25.0968
125	29.0720	36.5750	43.9737	46.1583	39.8658	32.5206	25.3243
126	29.1582	36.6743	44.1106	46.3210	39.9973	32.6165	25.4000
127	29.2895	36.8196	44.2825	46.4982		32.7623	
					40.1639		25.5225
128	29.3138	36.8559	44.3470	46.5981	40.2420	32.8077	25.5450
129	29.6314	37.2005	44.7505	47.0407	40.6714	33.1635	25.8540
130	29.6309	37.1608	44.6999	46.9983	40.6007	33.1164	25.8268
131	29.6245	37.2511	44.8198	47.1395	40.7144	33.2030	25.8785
132	29.7180	37.3458	44.9569	47.3019	40.8537	33.3208	25.9811
133	29.7953	37.4106	45.0177	47.3690	40.9207	33.3790	26.0528
134	30.0250	37.6386	45.2822	47.6728	41.2204	33.6153	26.2305
					,		

SENTIDO "Y"

Tiempo [s]	Punto 1.dY [mm]	Punto 2.dY [mm]	Punto 3.dY [mm]	Punto 4.dY [mm]	Punto 5.dY [mm]	Punto 6.dY [mm]	Punto 7.dY [mm]
0	0	0	0	0	0	0	0
1	-0.4382	-0.4375	-0.4370	-0.4315	-0.4274	-0.4226	-0.4224
2	-0.4363	-0.4282	-0.4218	-0.4135	-0.4150	-0.4077	-0.3999
3	0.8656	0.9249	0.9755	0.9843	0.9870	1.0374	1.0800
4	4.6175	4.6926	4.7557	4.7823	4.8165	4.9248	5.0371
5	4.7789	4.9011	4.9918	5.0167	5.0764	5.2204	5.3871
6	4.9160	5.0945	5.2156	5.2529	5.3443	5.5577	5.7823
7	6.5913	6.7891	6.9308	6.9653	7.0681	7.3251	7.6069
8	-8.3494	-7.8539	-7.4927	-7.2965	-7.1177	-6.8258	-6.5344
9	-1.3331	-0.9006	-0.5697	-0.4477	-0.2698	0.0699	0.4406
10	-0.3738	0.1042	0.4552	0.5773	0.7753	1.1752	1.6000
11	0.3007	0.8250	1.2025	1.3243	1.5403	1.9943	2.4680
12	2.3103	2.8324	3.2179	3.3077	3.5138	3.9981	4.5045
13	4.1809	4.7597	5.1702	5.2500	5.4759	6.0070	6.5705
14	4.6051	5.2214	5.6596	5.7410	5.9843	6.5657	7.1763
15	4.8409	5.5042	5.9734	6.0538	6.3217	6.9364	7.6034
16	5.1623	5.8718	6.3774	6.4569	6.7468	7.4234	8.1440
17	5.3176	6.0763	6.6071	6.6968	7.0014	7.7161	8.4833
18	5.3926	6.1917	6.7481	6.8362	7.1652	7.9306	8.7413
19	5.5179	6.3690	6.9610	7.0598	7.3935	8.1885	9.0384
20	5.8171	6.7256	7.3519	7.4507	7.8191	8.6806	9.5965
21	5.8062	6.7474	7.4034	7.5011	7.8898	8.7985	9.7579
22	6.0615	7.0721	7.7673	7.8692	8.2719	9.2199	10.2143
23	6.1798	7.2260	7.9555	8.0560	8.4793	9.4802	10.5302
24	6.3109	7.4027	8.1685	8.2705	8.7169	9.7630	10.8708
25	6.9938	8.1245	8.9152	9.0097	9.4712	10.5643	11.7075
26	7.7702	8.9460	9.7637	9.8596	10.3394	11.4735	12.6720
27	7.0115	8.2522	9.1145	9.2125	9.7339	10.9349	12.1976
28	6.9690	8.2482	9.1417	9.2410	9.7787	11.0184	12.3144
29	7.1599	8.4990	9.4234	9.5324	10.0819	11.3687	12.7136
30	7.2438	8.6214	9.5844	9.6860	10.2606	11.5811	12.9638
31 32	7.4361	8.8820 9.0025	9.8951 10.0245	10.0013	10.5949	11.9591	13.3987 13.6247
33	7.5269 7.8091	9.3615	10.4285	10.1370 10.5443	10.7452 11.1909	12.1537 12.6777	14.2136
34	7.8232	9.4074	10.5084	10.6223	11.1909	12.7984	14.3682
35	7.8232	9.5708	10.7024	10.8213	11.5056	13.0677	14.6832
36	8.0973	9.7971	10.9780	11.0970	11.8048	13.4200	15.0920
37	8.2583	9.9957	11.1986	11.3228	12.0569	13.7275	15.4531
38	8.3063	10.0836	11.3195	11.4474	12.1955	13.8970	15.6511
39	8.5348	10.3869	11.6644	11.7967	12.5807	14.3432	16.1573
40	8.6918	10.5944	11.9143	12.0519	12.8461	14.6471	16.5039
41	8.8059	10.7512	12.0987	12.2393	13.0624	14.9124	16.8267
42	8.9379	10.9215	12.2977	12.4373	13.2879	15.1953	17.1572
43	8.9931	11.0343	12.4472	12.5938	13.4584	15.3951	17.3887
44	9.2209	11.3259	12.7925	12.9372	13.8227	15.7964	17.8387
45	9.4219	11.5699	13.0628	13.2067	14.1245	16.1640	18.2565
46	9.5102	11.7026	13.2327	13.3760	14.3196	16.4031	18.5480
47	9.6754	11.9287	13.5042	13.6532	14.6283	16.7743	18.9911
48	9.7564	12.0479	13.6477	13.7966	14.7934	16.9694	19.2156
49	9.9694	12.3172	13.9598	14.1184	15.1394	17.3724	19.6709
50	10.0730	12.4591	14.1269	14.2863	15.3174	17.5843	19.9192
51	10.1574	12.5925	14.2946	14.4518	15.5075	17.8173	20.1946
52	10.3279	12.8042	14.5399	14.6993	15.7749	18.1208	20.5331
53	10.4746	13.0125	14.7846	14.9521	16.0549	18.4566	20.9273
54	10.5988	13.1911	15.0023	15.1697	16.2829	18.7120	21.2130
55	10.8007	13.4503	15.3064	15.4761	16.6235	19.1123	21.6705
56	10.8731	13.5641	15.4487	15.6229	16.8035	19.3411	21.9564
57	10.9859	13.7490	15.6840	15.8578	17.0545	19.6282	22.2805
58	11.1852	13.9790	15.9366	16.1095	17.3303	19.9524	22.6502
59	11.3868	14.2315	16.2261	16.4002	17.6481	20.3214	23.0813
60	11.4343	14.3257	16.3544	16.5323	17.7966	20.5063	23.2874
61	11.5704	14.5123	16.5785	16.7549	18.0372	20.7785	23.5946
62	11.7023	14.6902	16.7939	16.9705	18.2857	21.0869	23.9633
63	11.9128	14.9606	17.1022	17.2842	18.6170	21.4492	24.3631
64	12.0008	15.0926	17.2712	17.4588	18.8108	21.6815	24.6340

65	12.2213	15.3801	17.6031	17.7907	19.1717	22.0925	25.0980
66	12.2159	15.3956	17.6327	17.8281	19.2326	22.1958	25.2437
67	12.4146	15.6574	17.9436	18.1388	19.5769	22.5879	25.6853
68	12.5702	15.8580	18.1789	18.3738	19.8340	22.8974	26.0483
69	12.7115	16.0537	18.4138	18.6073	20.0827	23.1731	26.3485
70	12.8494	16.2485	18.6540	18.8502	20.3423	23.4637	26.6754
71	13.0233	16.4664	18.9091	19.0996	20.6248	23.8041	27.0665
72	13.1741	16.6668	19.1390	19.3431	20.8892	24.1148	27.4314
73	13.3298	16.8832	19.4028	19.6049	21.1726	24.4326	27.7805
74	13.4389	17.0339	19.5875	19.7894	21.3728	24.6667	28.0460
75	13.7041	17.3613	19.9509	20.1562	21.7879	25.1529	28.6038
76	13.7631	17.4513	20.0622	20.2628	21.9019	25.2847	28.7629
77	13.8743	17.5985	20.2465	20.4455	22.0974	25.5148	29.0321
78	14.0695	17.8614	20.5486	20.7561	22.4404	25.9065	29.4722
79	14.2459	18.0847	20.8136	21.0211	22.7348	26.2566	29.8789
80	14.3450	18.2664	21.0580	21.2765	23.0037	26.5455	30.1860
81	14.5441	18.4885	21.2888	21.5046	23.2616	26.8631	30.5639
82	14.6940	18.6961	21.5331	21.7456	23.5140	27.1427	30.8672
83	14.7478	18.7939	21.6601	21.8824	23.6655	27.3187	31.0828
84	14.9681	19.0634	21.9704	22.1865	24.0030	27.7130	31.5262
85	15.1193	19.2778	22.2348	22.4553	24.2800	28.0173	31.8564
86	15.2461	19.4409	22.4173	22.6433	24.5032	28.3057	32.2083
87	15.3796			22.8415	24.7346		
		19.6117	22.6140			28.5816	32.5310
88	15.5599	19.8571	22.9169	23.1518	25.0727	28.9776	32.9850
89	15.6167	19.9680	23.0785	23.3184	25.2516	29.1774	33.2163
90	15.8360	20.2511	23.3940	23.6385	25.6057	29.5914	33.6849
91	15.9299	20.3871	23.5689	23.8075	25.7777	29.7764	33.8843
92	16.1454	20.6516	23.8616	24.1013	26.1103	30.1732	34.3381
93	16.2463	20.7958	24.0425	24.2866	26.3116	30.4013	34.5977
94	16.4953	21.0761	24.3463	24.5783	26.6291	30.7774	35.0271
95	16.5720	21.2084	24.5199	24.7587	26.8190	30.9899	35.2723
96	16.7712	21.4752	24.8420	25.0892	27.1840	31.4216	35.7661
97	16.8774	21.6425	25.0553	25.3079	27.4096	31.6670	36.0343
98	17.0369	21.8516	25.3065	25.5619	27.7018	32.0129	36.4387
99	17.2695	22.1344	25.6219	25.8610	28.0118	32.3535	36.7987
100	17.4868	22.4015	25.9345	26.1827	28.3585	32.7546	37.2670
101	17.4584	22.4366	26.0235	26.2875	28.4745	32.8916	37.4298
102	19.6649	24.6780	28.2811	28.5368	30.7466	35.2252	39.8241
103	18.5667	23.6503	27.3257	27.5845	29.8076	34.3107	38.9430
104	18.1433	23.2585	26.9528	27.2178	29.4776	34.0417	38.7362
105	18.1371	23.2839	27.0037	27.2648	29.5332	34.1021	38.7959
106	18.2125	23.4005	27.1501	27.4171	29.6957	34.2889	39.0173
107	18.3848	23.6590	27.4927	27.7708	30.0832	34.7518	39.5528
108	18.5111	23.8357	27.7009	27.9843	30.3273	35.0425	39.9008
109	18.7436	24.1214	28.0213	28.2988	30.6728	35.4437	40.3479
110	18.8808	24.3158	28.2707	28.5600	30.9494	35.7664	40.7232
111	18.9708	24.4636	28.4646	28.7567	31.1596	35.9928	40.9670
112	19.1919	24.7375	28.7789	29.0823	31.5179	36.4147	41.4519
113	19.3121	24.9133	29.0085	29.3124	31.7624	36.6922	41.7653
114	19.3473	24.9861	29.1052	29.4137	31.8885	36.8594	41.9789
115	19.5157	25.2022	29.3674	29.6713	32.1467	37.1425	42.2861
116	19.7006	25.4621	29.6862	29.9930	32.4926	37.5309	42.7214
	19.8767	25.7006	29.9828	30.2988	32.8159	37.9077	43.1402
117							
118	19.9594	25.8171	30.1246	30.4432	32.9831	38.1110	43.3834
119	20.1423	26.0724	30.4457	30.7691	33.3285	38.4935	43.8009
120	20.2782	26.2414	30.6375	30.9612	33.5474	38.7623	44.1279
121	20.4966	26.5395	30.9930	31.3018	33.8993	39.1627	44.5589
122	20.5494	26.6133	31.0951	31.4083	34.0109	39.3124	44.7383
123	20.6749	26.8123	31.3596	31.6957	34.3276	39.6778	45.1573
124	20.8313	27.0086	31.5821	31.9206	34.5847	39.9752	45.4960
125	21.0071	27.2506	31.8663	32.1908	34.8745	40.3139	45.8849
126	21.1906	27.5118	32.1835	32.5258	35.2198	40.7165	46.3394
127	21.2267	27.5896	32.3015	32.6452	35.3399	40.8493	46.4853
128	21.4085	27.8434	32.6018	32.9518	35.6867	41.2537	46.9611
129	21.5557	28.0137	32.8080	33.0894	35.8225	41.3903	47.1342
130	21.7419	28.3054	33.1687	33.5214	36.3032	41.9578	47.7585
131	21.7987	28.4128	33.3244	33.6806	36.4675	42.1356	47.9766
132	21.9367	28.6301	33.5904	33.9544	36.7815	42.5051	48.4011
133	22.0029	28.7234	33.6950	34.0616	36.8997	42.6283	48.5433
134	22.0380	28.8129	33.7807	34.0763	36.9099	42.6339	48.5583

ANEXO V. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Varilla 10mm – Vista frontal

SENTIDO "X"

Tiempo [s]	Punto 1.dX [mm]	Punto 2.dX [mm]	Punto 3.dX [mm]	Punto 4.dX [mm]	Punto 5.dX [mm]	Punto 6.dX [mm]	Punto 7.dX [mm]
0	0	0	0	0	0	0	0
1	0.0203	0.0181	0.0127	0.0116	0.0065	0.0033	0.0027
2	0.0063	0.0047	0.0033	0.0067	0.0043	0.0028	0.0006
3	0.0288	0.0224	0.0119	0.0074	0.0043	-0.0046	-0.0040
4	0.0011	0.0057	0.0050	0.0045	0.0045	-0.0001	-0.0011
5	-0.0030	0.0133	0.0195	0.0257	0.0212	0.0124	0.0044
6	0.0438	0.0906	0.1144	0.1170	0.0989	0.0724	0.0477
7	0.1896	0.2733	0.3115	0.2956	0.2412	0.1779	0.1182
8	0.3373	0.4553	0.5063	0.4703	0.3855	0.2906	0.1939
9	0.3921	0.5377	0.5979	0.5514	0.4370	0.3141	0.1905
10	0.5546	0.7320	0.8063	0.7467	0.6030	0.4491	0.2917
11	0.6137	0.8081	0.8961	0.8234	0.6590	0.4818	0.3054
12	0.7450	0.9755	1.0766	0.9879	0.7944	0.5836	0.3726
13	0.7917	1.0407	1.1583	1.0604	0.8394	0.6131	0.3807
14	0.8973	1.1678	1.2990	1.1901	0.9403	0.6881	0.4290
15	0.9894	1.2838	1.4250	1.3062	1.0349	0.7608	0.4767
16	1.0781	1.3997	1.5543	1.4232	1.1314	0.8279	0.5222
17	1.1615	1.5061	1.6718	1.5315	1.2179	0.8916	0.5581
18	1.1836	1.5444	1.7147	1.5698	1.2455	0.9072	0.5595
19	1.3373	1.7304	1.9095	1.7558	1.4077	1.0387	0.6640
20	1.3958	1.8061	1.9905	1.8326	1.4690	1.0812	0.6917
21	1.4831	1.9206	2.1211	1.9484	1.5620	1.1481	0.7327
22	1.5159	1.9706	2.1865	2.0018	1.5960	1.1633	0.7290
23	1.6216	2.0942	2.3177	2.1299	1.7073	1.2587	0.8054
24	1.6926	2.1852	2.4153	2.2250	1.7832	1.3134	0.8425
25	1.7640	2.2771	2.5188	2.3207	1.8640	1.3746	0.8868
26	1.8263	2.3580	2.6133	2.4071	1.9330	1.4293	0.9189
27	1.8770	2.4292	2.6909	2.4807	1.9974	1.4743	0.9537
28 29	1.9104 1.9200	2.4859 2.5216	2.7594	2.5499 2.6052	2.0565 2.1011	1.5201	0.9869 1.0083
30	1.9280	2.5505	2.8104 2.8505	2.6440	2.1307	1.5561 1.5764	1.0194
31	1.9280	2.6323	2.9412	2.7295	2.2050	1.6348	1.0638
32	2.0812	2.7385	3.0568	2.8412	2.2979	1.7111	1.1223
33	2.1244	2.7932	3.1182	2.8996	2.3459	1.7441	1.1454
34	2.1740	2.8648	3.1987	2.9767	2.4094	1.7915	1.1745
35	2.2350	2.9389	3.2801	3.0512	2.4699	1.8391	1.2069
36	2.2931	3.0086	3.3571	3.1265	2.5324	1.8909	1.2470
37	2.3343	3.0676	3.4221	3.1887	2.5836	1.9225	1.2661
38	2.4311	3.1790	3.5472	3.3057	2.6842	2.0060	1.3302
39	2.4704	3.2296	3.6035	3.3580	2.7270	2.0390	1.3534
40	2.5124	3.2888	3.6647	3.4187	2.7786	2.0760	1.3747
41	2.5335	3.3187	3.7097	3.4566	2.8004	2.0913	1.3780
42	2.5998	3.4034	3.8033	3.5452	2.8775	2.1468	1.4179
43	2.6413	3.4427	3.8448	3.5860	2.9089	2.1732	1.4370
44	2.6951	3.5209	3.9370	3.6700	2.9785	2.2266	1.4693
45	2.7607	3.6028	4.0263	3.7519	3.0535	2.2900	1.5246
46	2.8141	3.6674	4.0907	3.8203	3.1120	2.3397	1.5635
47	2.8724	3.7354	4.1694	3.8898	3.1745	2.3867	1.5981
48	2.9075	3.7824	4.2226	3.9407	3.2149	2.4151	1.6162
49	2.9409	3.8319	4.2794	3.9967	3.2585	2.4523	1.6387
50	2.9988	3.9032	4.3569	4.0726	3.3228	2.4995	1.6724
51	3.0483	3.9636	4.4209	4.1331	3.3764	2.5410	1.7063
52	3.0998	4.0289	4.4973	4.2039	3.4349	2.5885	1.7357
53	3.1352	4.0735	4.5494	4.2528	3.4776	2.6196	1.7565
54	3.1524	4.1022	4.5822	4.2827	3.4989	2.6320	1.7596
55	3.2161	4.1802	4.6651	4.3668	3.5693	2.6926	1.8089
56	3.2524	4.2263	4.7168	4.4154	3.6099	2.7237	1.8310
57	3.2909	4.2757	4.7665	4.4676	3.6553	2.7573	1.8569
58	3.3575	4.3517	4.8495	4.5429	3.7192	2.8148	1.9010
59	3.3971	4.3995	4.9011	4.5960	3.7638	2.8510	1.9293
60	3.4442	4.4552	4.9654	4.6549	3.8130	2.8902	1.9576

C1	0.4710	4 4000	E 0110	4 7000	2.0544	0.0004	1 0010
61	3.4713	4.4988	5.0118	4.7026	3.8544	2.9224	1.9810
62	3.5156	4.5502	5.0720	4.7571	3.8984	2.9531	1.9985
63	3.5566	4.6016	5.1281	4.8152	3.9496	2.9976	2.0344
64	3.5994	4.6546	5.1880	4.8705	3.9969	3.0347	2.0617
65	3.6351	4.6967	5.2338	4.9142	4.0326	3.0616	2.0808
66	3.6835	4.7571	5.3001	4.9794	4.0887	3.1107	2.1182
67	3.7260	4.8092	5.3539	5.0351	4.1388	3.1512	2.1513
68	3.7650	4.8594	5.4091	5.0885	4.1833	3.1859	2.1807
69	3.7766	4.8780	5.4321	5.1107	4.1951	3.1915	2.1776
70	3.8066	4.9198	5.4792	5.1563	4.2365	3.2202	2.1981
71	3.8349	4.9623	5.5204	5.1959	4.2739	3.2500	2.2184
72	3.8629	4.9938	5.5605	5.2314	4.3029	3.2699	2.2342
73	3.9088	5.0520	5.6197	5.2907	4.3543	3.3120	2.2700
74	3.9401	5.0916	5.6637	5.3340	4.3892	3.3445	2.2941
75	3.9853	5.1370	5.7162	5.3801	4.4291	3.3790	2.3218
76	4.0209	5.1837	5.7665	5.4268	4.4689	3.4116	2.3428
77	4.0200	5.1924	5.7825	5.4392	4.4734	3.4074	2.3322
78	4.0986	5.2755	5.8680	5.5257	4.5523	3.4793	2.3952
79	4.1042	5.2888	5.8866	5.5386	4.5590	3.4802	2.3886
80	4.1274	5.3154	5.9097	5.5665	4.5824	3.4942	2.3954
81	4.1671	5.3619	5.9555	5.6200	4.6277	3.5352	2.4331
82	4.1876	5.3897	5.9858	5.6487	4.6519	3.5518	2.4401
83	4.2632	5.4744	6.0670	5.7305	4.7297	3.6209	2.5028
84	4.2723	5.4888	6.0877	5.7517	4.7444	3.6327	2.5101
85	4.2987	5.5239	6.1255	5.7864	4.7720	3.6521	2.5203
86	4.3062	5.5399	6.1440	5.8024	4.7840	3.6592	2.5231
87	4.3440	5.5866	6.1951	5.8536	4.8260	3.6934	2.5534
88	4.4019	5.6503	6.2597	5.9146	4.8835	3.7467	2.5973
89	4.4077	5.6568	6.2747	5.9273	4.8870	3.7474	2.5921
90	4.4553	5.7163	6.3341	5.9862	4.9402	3.7936	2.6300
91	4.4364	5.7035	6.3257	5.9729	4.9266	3.7729	2.6042
92	4.5058	5.7773	6.4023	6.0519	4.9956	3.8395	2.6674
93	4.5466	5.8231	6.4530	6.0980	5.0410	3.8769	2.6980
94	4.5680	5.8456	6.4761	6.1240	5.0612	3.8930	2.7065
95	4.5627	5.8604	6.4966	6.1413	5.0735	3.9014	2.7089
96	4.6021	5.9004	6.5374	6.1824	5.1085	3.9377	2.7398
97	4.6262	5.9322	6.5683	6.2143	5.1365	3.9552	2.7527
98	4.6417	5.9586	6.5919	6.2373	5.1529	3.9705	2.7633
99	4.6669	5.9907	6.6335	6.2717	5.1875	3.9960	2.7839
100	4.6848	6.0166	6.6601	6.3004	5.2058	4.0099	2.7913
101	4.7085	6.0413	6.6853	6.3277	5.2254	4.0284	2.8065
102	4.7317	6.0741	6.7193	6.3579	5.2500	4.0506	2.8179
103	4.7450	6.0902	6.7373	6.3763	5.2684	4.0641	2.8239
104	4.7915	6.1421	6.7929	6.4310	5.3172	4.1068	2.8631
105	4.8055	6.1659	6.8136	6.4536	5.3362	4.1243	2.8767
106	4.8332	6.2008	6.8519	6.4929	5.3686	4.1503	2.8958
107	4.8714	6.2442	6.8945	6.5388	5.4086	4.1856	2.9279
108	4.8703	6.2494	6.9036	6.5451	5.4122	4.1848	2.9228
109	4.9545	6.3418	6.9986	6.6365	5.4980	4.2636	2.9889
110	4.9547	6.3477	7.0024	6.6422	5.5003	4.2663	2.9905
111	4.9635	6.3609	7.0208	6.6581	5.5091	4.2699	2.9897
112	5.0010	6.4024	7.0645	6.6978	5.5465	4.3053	3.0177
113	5.0197	6.4252	7.0909	6.7271	5.5708	4.3258	3.0332
114	5.0293	6.4333	7.1010	6.7379	5.5761	4.3284	3.0306
115	5.0722	6.4877	7.1551	6.7912	5.6273	4.3820	3.0771
116	5.0983	6.5204	7.1855	6.8255	5.6537	4.4001	3.0937
117	5.0792	6.5049	7.1710	6.8114	5.6332	4.3848	3.0725
118	5.1241	6.5489	7.2213	6.8573	5.6806	4.4234	3.1079
119	5.1581	6.5843	7.2571	6.8887	5.7102	4.4525	3.1301
120	5.1723	6.6141	7.2831	6.9232	5.7363	4.4711	3.1465
121	5.1951	6.6367	7.3083	6.9488	5.7549	4.4880	3.1605
122	5.2354	6.6786	7.3504	6.9922	5.7989	4.5301	3.1970
123	5.2242	6.6625	7.3405	6.9757	5.7823	4.5125	3.1812
124	5.2250	6.6745	7.3529	6.9873	5.7882	4.5205	3.1813
125	5.2550	6.7102	7.3748	7.0272	5.8279	4.5503	3.2115
126	5.2791	6.7350	7.3972	7.0524	5.8470	4.5720	3.2269
127	5.2910	6.7487	7.4120	7.0688	5.8589	4.5808	3.2344
128	5.3319	6.7930	7.4586	7.1131	5.9030	4.6207	3.2680
129	5.3500	6.8078	7.4755	7.1306	5.9174	4.6337	3.2783
130	5.3868	6.8550	7.5311	7.1799	5.9670	4.6844	3.3232
131	5.3563	6.8299	7.5052	7.1579	5.9450	4.6570	3.2935
132	5.3979	6.8758	7.5418	7.1987	5.9846	4.6981	3.3317
133	5.3909	6.8629	7.5345	7.1941	5.9787	4.6873	3.3207
134	5.4252	6.9050	7.5787	7.2390	6.0197	4.7269	3.3570
104	J.42JZ	0.0000	7.0707	7.2000	0.010/	7.7203	0.0070

SENTIDO "Y"

Tiempo [s]	Punto 1.dY [mm]	Punto 2.dY [mm]	Punto 3.dY [mm]	Punto 4.dY [mm]	Punto 5.dY [mm]	Punto 6.dY [mm]	Punto 7.dY [mm]
0	0	0	0	0	0	0	0
1	-0.1106	-0.1048	-0.0977	-0.0932	-0.0892	-0.0895	-0.0864
2	0.1292	0.1374	0.1431	0.1494	0.1531	0.1543	0.1593
3	-0.1607	-0.1620	-0.1650	-0.1656	-0.1692	-0.1714	-0.1750
4	0.0602	0.0687	0.0691	0.0780	0.0800	0.0824	0.0825
5	-0.0078	0.0425	0.0754	0.1111	0.1400	0.1573	0.1702
6	0.2974	0.4342	0.5509	0.6636	0.7529	0.8147	0.8505
7	0.3644	0.5982	0.8406	1.0644	1.2189	1.3314	1.4051
8	0.4637	0.7730	1.1193	1.4451	1.6602	1.8191	1.9289
9	0.6144	0.9951	1.4360	1.8441 2.1233	2.1149	2.3167	2.4657
10 11	0.6172 0.8294	1.0819 1.3430	1.6203 1.9464	2.1233	2.4600 2.8879	2.7132 3.1800	2.9085 3.4016
12	0.8294	1.5199	2.2295	2.8969	3.3515	3.7045	3.9856
13	1.2059	1.8734	2.6567	3.3798	3.8816	4.2777	4.5942
14	1.1460	1.9064	2.7842	3.6049	4.1826	4.6433	5.0190
15	1.4213	2.2482	3.2007	4.0996	4.7325	5.2427	5.6667
16	1.4803	2.3809	3.4122	4.3895	5.0908	5.6532	6.1249
17	1.6140	2.5854	3.6981	4.7489	5.5054	6.1283	6.6492
18	1.8864	2.8968	4.0501	5.1424	5.9364	6.5904	7.1402
19	1.8738	2.9677	4.2117	5.3958	6.2672	6.9934	7.6031
20	2.1619	3.3075	4.6126	5.8522	6.7719	7.5415	8.1949
21	2.3358	3.5633	4.9495	6.2717	7.2689	8.1084	8.8194
22	2.3401	3.6376	5.0935	6.4791	7.5341	8.4220	9.1936
23	2.6351	3.9904	5.5095	6.9535	8.0610	9.0062	9.8246
24	2.5934	4.0118	5.5906	7.1003	8.2679	9.2637	10.1326
25	2.8806	4.3581	6.0035	7.5738	8.7978	9.8489	10.7707
26 27	3.0700 3.0838	4.6147 4.6775	6.3214 6.4333	7.9574 8.1277	9.2478 9.4726	10.3553 10.6314	11.3365 11.6514
28	3.3111	4.9587	6.7748	8.5313	9.9325	11.1555	12.2387
29	3.2282	4.9445	6.8222	8.6467	10.1221	11.4125	12.5545
30	3.5416	5.3018	7.2265	9.1104	10.6465	11.9954	13.1981
31	3.5727	5.3985	7.3795	9.3245	10.9223	12.3322	13.5849
32	3.6323	5.5316	7.5808	9.5890	11.2530	12.7303	14.0452
33	3.8627	5.7994	7.8864	9.9385	11.6454	13.1593	14.5183
34	4.1100	6.1120	8.2592	10.3703	12.1398	13.7158	15.1328
35	4.1780	6.2382	8.4399	10.6071	12.4317	14.0646	15.5324
36	4.4376	6.5491	8.7907	11.0040	12.8786	14.5595	16.0716
37	4.3805	6.5498	8.8439	11.1074	13.0422	14.7803	16.3458
38	4.5168	6.7665	9.1243	11.4676	13.4709	15.2841	16.9227
39	4.8084	7.1022	9.5047	11.8840	13.9324	15.7950	17.4737
40 41	4.8122 5.1939	7.1664 7.6053	9.6174 10.1022	12.0473 12.5842	14.1531 14.7434	16.0708 16.7198	17.8048 18.5068
42	5.2776	7.7580	10.3206	12.8629	15.0973	17.1431	19.0032
43	5.2429	7.7564	10.3396	12.9156	15.1783	17.2517	19.1407
44	5.6613	8.2550	10.9080	13.5516	15.8891	18.0461	20.0137
45	5.6000	8.2387	10.9272	13.6147	16.0024	18.2047	20.2178
46	5.8837	8.5657	11.2913	14.0199	16.4509	18.6987	20.7591
47	5.8585	8.6022	11.3736	14.1546	16.6474	18.9525	21.0662
48	6.0983	8.8852	11.7024	14.5284	17.0726	19.4302	21.6006
49	6.2452	9.0862	11.9492	14.8191	17.4148	19.8246	22.0420
50	6.3761	9.2796	12.1982	15.1255	17.7940	20.2753	22.5595
51	6.6825	9.6385	12.5895	15.5624	18.2813	20.8148	23.1562
52	6.7446	9.7767	12.7931	15.8216	18.6129	21.2189	23.6235
53 54	6.7465 7.1242	9.8251 10.2458	12.8788 13.3335	15.9502 16.4426	18.7889 19.3316	21.4437 22.0394	23.9002 24.5415
54 55	7.1242	10.2458	13.3335	16.5905	19.5361	22.0394	24.8716
56	7.1065	10.5256	13.6984	16.8989	19.8899	22.7107	25.3231
57	7.3566	10.6371	13.8467	17.0925	20.1356	23.0071	25.6736
58	7.5820	10.9164	14.1763	17.4678	20.5679	23.5020	26.2270
59	7.6692	11.0569	14.3529	17.6824	20.8380	23.8255	26.6048
60	7.8712	11.3119	14.6488	18.0276	21.2303	24.2738	27.1050
61	8.0433	11.5393	14.9226	18.3414	21.6008	24.7055	27.5961
62	8.0912	11.6437	15.0676	18.5402	21.8643	25.0233	27.9782
63	8.3879	11.9873	15.4507	18.9617	22.3353	25.5560	28.5631
64	8.4567	12.1230	15.6262	19.1883	22.6262	25.9069	28.9827

65	8.6293	12.3401	15.8822	19.4804	22.9639	26.2957	29.4158
66	8.8139	12.5777	16.1589	19.8001	23.3392	26.7271	29.9024
	8.9894				23.6951		30.3763
67		12.8003	16.4278	20.1087		27.1406	
68	9.0455	12.9130	16.5752	20.3069	23.9588	27.4600	30.7562
69	9.1962	13.1076	16.8074	20.5761	24.2791	27.8387	31.1894
70	9.4592	13.4276	17.1697	20.9875	24.7414	28.3605	31.7693
71	9.4121	13.4256	17.1992	21.0507	24.8600	28.5274	31.9862
72	9.7034	13.7539	17.5617	21.4556	25.3139	29.0350	32.5468
73	9.8803	13.9958	17.8455	21.7824	25.7008	29.4856	33.0583
74	9.9272	14.0841	17.9698	21.9465	25.9054	29.7426	33.3645
75	10.0770	14.2890	18.2121	22.2302	26.2494	30.1415	33.8268
76	10.1880	14.4497	18.4112	22.4767	26.5523	30.5031	34.2473
77	10.4610	14.7751	18.7759	22.8840	27.0086	31.0171	34.8172
78	10.4875	14.8592	18.8962	23.0544	27.2416	31.3158	35.1805
79	10.7795	15.1965	19.2732	23.4625	27.6974	31.8281	35.7405
80	10.8047	15.2790	19.3853	23.6229	27.9238	32.1095	36.0883
81	11.0406	15.5554	19.7025	23.9725	28.3109	32.5524	36.5779
82		15.6964	19.8755		28.5988	32.8989	36.9903
	11.1234			24.1973			
83	11.3147	15.9336	20.1513	24.5099	28.9623	33.3211	37.4662
84	11.4401	16.1002	20.3498	24.7419	29.2370	33.6421	37.8366
85	11.5042	16.2147	20.4993	24.9366	29.4964	33.9611	38.2239
86	11.7809	16.5330	20.8509	25.3151	29.9115	34.4277	38.7264
87	11.8050	16.6181	20.9682	25.4824	30.1454	34.7200	39.0941
88	12.0897	16.9536	21.3452	25.8932	30.6014	35.2368	39.6596
89	12.2505	17.1599	21.5929	26.1773	30.9384	35.6270	40.1108
90	12.3441	17.3137	21.7838	26.4165	31.2486	36.0064	40.5680
91	12.3795	17.3955	21.8846	26.5550	31.4360	36.2428	40.8496
92	12.7248	17.7826	22.3234	27.0274	31.9579	36.8266	41.4956
93	12.7464	17.8565	22.4215	27.1733	32.1572	37.0755	41.8044
94	12.8469	18.0058	22.6081	27.3891	32.4253	37.4060	42.1851
95	13.1264	18.3344	22.9707	27.7933	32.8741	37.9121	42.7402
96	13.2408	18.4776	23.1360	27.9861	33.1184	38.1993	43.0779
97	13.4224	18.7172	23.4210	28.3047	33.4946	38.6351	43.5765
98	13.3990	18.7347	23.4717	28.3953	33.6303	38.8298	43.8209
99	13.7956	19.1805	23.9434	28.9021	34.1944	39.4453	44.4978
100	13.8119	19.2569	24.0672	29.0709	34.4199	39.7392	44.8590
101	13.8944	19.3780	24.2099	29.2390	34.6351	39.9951	45.1548
102	14.2012	19.7437	24.6140	29.6935	35.1486	40.5867	45.8193
103	14.2680	19.8596	24.7651	29.8824	35.3941	40.8881	46.1840
104	14.3543	19.9859	24.9171	30.0619	35.6177	41.1583	46.4986
105	14.6163	20.2900	25.2576	30.4307	36.0282	41.6226	47.0145
106	14.7121	20.4558	25.4686	30.6990	36.3795	42.0600	47.5371
107	14.8660	20.6422	25.6746	30.9253	36.6393	42.3547	47.8667
108	15.0184	20.8489	25.9201	31.2132	36.9837	42.7603	48.3396
109	15.1939	21.1088	26.2358	31.5950	37.4643	43.3484	49.0330
110	15.4553	21.3937	26.5415	31.9151	37.8043	43.7175	49.4218
111	15.5283	21.5299	26.7181	32.1433	38.1084	44.1005	49.8879
112	15.7194	21.7584	26.9719	32.4273	38.4342	44.4744	50.3069
113	15.9035	21.9993	27.2489	32.7418	38.8127	44.9115	50.8122
114	15.9388	22.0764	27.3571	32.8832	39.0017	45.1600	51.1105
115	16.2882	22.4756	27.7928	33.3495	39.5232	45.7440	51.7604
116	16.2779	22.5257	27.8829	33.4924	39.7401	46.0373	52.1314
117	16.5518	22.8362	28.2199	33.8493	40.1256	46.4638	52.5967
118	16.5580	22.8837	28.2890	33.9579	40.2920	46.6883	52.8681
119	16.8776	23.2597	28.7115	34.4185	40.8111	47.2851	53.5452
120	16.8246	23.2520	28.7317	34.4717	40.9214	47.4492	53.7607
121	17.1075	23.5808	29.0905	34.8667	41.3667	47.9524	54.3264
122	17.3889	23.9175	29.4630	35.2768	41.8275	48.4813	54.9167
123	17.1475	23.6631	29.2017	35.0159	41.5628	48.1964	54.6210
124	17.5310	24.1052	29.6822	35.5335	42.1496	48.8624	55.3647
125	17.5016	24.1156	29.7258	35.6069	42.2774	49.0449	55.5996
126	17.7574	24.4205	30.0605	35.9703	42.6796	49.5075	56.1152
127	17.9527	24.6579	30.3296	36.2846	43.0636	49.9531	56.6290
128	18.0188	24.7675	30.4663	36.4521	43.2786	50.2254	56.9509
129	18.3693	25.1796	30.9248	36.9510	43.8424	50.8601	57.6552
130	18.3655	25.2143	30.9834	37.0503	44.0044	51.0878	57.9515
131	18.6883	25.5817	31.3803	37.4859	44.4933	51.6416	58.5644
132	18.5076	25.4202	31.2311	37.3417	44.3639	51.5289	58.4701
133	18.9797	25.9630	31.8207	37.9813	45.0820	52.3246	59.3537
134	18.9284	25.9452	31.8247	38.0248	45.1784	52.4839	59.5676
104	10.0204	20.0402	01.0247	00.0240	70.1/04	UZ.+UUU	00.0070

ANEXO VI. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Varilla 12mm – Vista lateral

SENTIDO "X"

Tiempo [s]	Punto 1.dX [mm]	Punto 2.dX [mm]	Punto 3.dX [mm]	Punto 4.dX [mm]	Punto 5.dX [mm]	Punto 6.dX [mm]	Punto 7.dX [mm]
0	0	0	0	0	0	0	0
1	-0.3513	-0.3603	-0.3660	-0.3795	-0.3863	-0.3940	-0.3962
2	-0.2289	-0.2265	-0.2228	-0.2267	-0.2284	-0.2277	-0.2295
3	-0.0790	-0.0751	-0.0738	-0.0820	-0.0911	-0.1044	-0.1037
4	-0.2326	-0.2158	-0.1989	-0.2011	-0.2018	-0.2059	-0.2157
5	0.2953	0.3060	0.3139	0.3004	0.3014	0.2956	0.2861
6	0.4302	0.5760	0.7313	0.8047	0.7830	0.6684	0.5236
7	1.2814	1.5889	1.9038	2.0905	2.0548	1.8079	1.5108
8	1.6960	2.1859	2.6681	2.9818	2.9134	2.5268	2.0600
9	2.0767	2.7628	3.4481	3.8989	3.8119	3.2802	2.6179
10	2.7128	3.5712	4.4228	4.9831	4.8694	4.2054	3.3934
11	3.2493	4.2750	5.2864	5.9622	5.8240	5.0387	4.0651
12	3.6272	4.7666	5.8963	6.6547	6.5043	5.6174	4.5320
13	4.1532	5.4098	6.6629	7.5030	7.3406	6.3726	5.1736
14	4.4467	5.9040	7.3453	8.3230	8.1364	7.0110	5.6266
15	4.9526	6.5278	8.0930	9.1620	8.9611	7.7392	6.2403
16	5.2411	6.9522	8.6563	9.8239	9.6134	8.2956	6.6765
17	5.8137	7.6720	9.5105	10.7763	10.5499	9.1177	7.3581
18	6.1951	8.1618	10.1143	11.4684	11.2304	9.7129	7.8451
19	6.4996	8.5705	10.6217	12.0572	11.8197	10.2277	8.2639
20	6.8504	9.0770	11.2736	12.8138	12.5575	10.8410	8.7329
21	7.3682	9.6836	11.9559	13.5646	13.2930	11.5020	9.3045
22	7.5329	9.9751	12.3804	14.0921	13.8110	11.9309	9.6170
23	8.0044	10.5539	13.0659	14.8612	14.5696	12.6018	10.1786
24	8.4352	11.0736	13.6836	15.5518	15.2580	13.2202	10.7093
25	8.6576	11.3923	14.0908	16.0274	15.7254	13.6108	11.0102
26	9.1866	12.0303	14.8518	16.8786	16.5690	14.3584	11.6491
27	8.7547	11.7059	14.6456	16.7605	16.4480	14.1533	11.3356
28	9.5503	12.5739	15.5699	17.7423	17.4239	15.0870	12.2032
29	9.8025	12.9322	16.0355	18.2903	17.9663	15.5468	12.5606
30	10.1487	13.3488	16.5268	18.8476	18.5178	16.0334	12.9771
31	10.2830	13.5686	16.8447	19.2337	18.9018	16.3455	13.2063
32	10.8990	14.2909	17.6621	20.1385	19.7954	17.1517	13.9140
33	11.1420	14.6136	18.0696	20.6131	20.2686	17.5596	14.2404
34	11.1791	14.7324	18.2825	20.9032	20.5525	17.7864	14.3865
35	11.7959	15.4433	19.0647	21.7539	21.4011	18.5569	15.0724
36	11.8877	15.6312	19.3562	22.1194	21.7552	18.8327	15.2543
37	12.1314	15.9235	19.6953	22.5037	22.1401	19.1759	15.5466
38	12.4641	16.3416	20.2094	23.0952	22.7244	19.6792	15.9637
39	12.7693	16.7272	20.6656	23.6007	23.2375	20.1554	16.3750
40	13.0182	17.0646	21.1019	24.1197	23.7417	20.5658	16.6831
41	13.3229	17.4347	21.5334	24.6160	24.2425	21.0174	17.0812
42	13.4851	17.6631	21.8455	24.9864	24.6025	21.3266	17.3209
43	13.5327	17.7887	22.0556	25.2641	24.8840	21.5343	17.4458
44	13.7586	18.0918	22.4135	25.6794	25.2843	21.8716	17.7115
45	14.0514	18.3882	22.7354	26.0070	25.6276	22.2216	18.0608
46	14.4900	18.9686	23.4429	26.8312	26.4262	22.8842	18.5814
47	14.3732	18.9010	23.4373	26.8832	26.4814	22.8947	18.5419
48	14.4091	19.0197	23.6407	27.1513	26.7398	23.0762	18.6333
49	14.8547	19.5188	24.2025	27.7625	27.3527	23.6367	19.1346
50	14.9232	19.6342	24.3681	27.9835	27.5790	23.8305	19.2916
51	15.4784	20.2895	25.1152	28.8046	28.3911	24.5653	19.9363
52	15.7206	20.5986	25.4832	29.2253	28.8059	24.9294	20.2360
53	15.6424	20.5705	25.5222	29.3322	28.9175	24.9907	20.2505
54	16.1257	21.0917	26.0717	29.9198	29.4964	25.5415	20.7653
55	16.3082	21.3265	26.3843	30.2851	29.8669	25.8688	21.0320
56	16.4193	21.5095	26.6216	30.5789	30.1566	26.0923	21.1982
57	16.4792	21.6192	26.7794	30.7897	30.3590	26.2483	21.2973
58	16.8046	22.0233	27.2618	31.3380	30.9083	26.7418	21.7135

59	16.7492	22.0054	27.2976	31.4231	30.9971	26.7917	21.7292
60	16.8315	22.1734	27.5408	31.7322	31.2903	27.0250	21.8856
61	17.3173	22.6867	28.0869	32.3003	31.8713	27.5936	22.4244
62	17.3071	22.7309	28.2225	32.5193	32.0801	27.7234	22.4896
63	17.7238	23.2346	28.7870	33.1357	32.6999	28.2832	22.9797
64	18.0298	23.5981	29.2100	33.6181	33.1726	28.7072	23.3443
65	18.1419	23.7553	29.4080	33.8566	33.4175	28.9266	23.5271
66	18.2262	23.8928	29.5968	34.0923	33.6593	29.1201	23.6737
67	18.5852	24.3098	30.0750	34.6306	34.1921	29.6019	24.0970
68	18.4464	24.2117	30.0456	34.6428	34.2129	29.5908	24.0344
69	18.9451	24.7625	30.6320	35.2800	34.8476	30.1828	24.5919
70	18.8337	24.7123	30.6509	35.3553	34.9230	30.2051	24.5490
71	19.2158	25.1430	31.1278	35.8764	35.4473	30.6844	24.9918
72	19.3611	25.3199	31.3314	36.1144	35.6915	30.9291	25.2079
73	19.6372	25.6932	31.7935	36.6484	36.2094	31.3567	25.5446
74	19.7246	25.7977	31.9155	36.8085	36.3766	31.5030	25.6830
75 76	19.9572	26.0987	32.2863	37.2472	36.8085	31.8818	25.9990
76	20.2589	26.4429	32.6726	37.6719	37.2360	32.2713	26.3463
77 78	20.0933 20.3625	26.3153 26.6300	32.6098	37.6482	37.2149	32.2149 32.5580	26.2420 26.5613
78	20.3625	27.0589	32.9459 33.4298	38.0304 38.5647	37.5915 38.1232	33.0448	26.9979
80	20.7429	27.0828	33.4950	38.6625	38.2250	33.1227	27.0528
81	20.7014	27.0925	33.5605	38.7927	38.3521	33.1227	27.0328
82	20.7014	27.3748	33.9000	39.1802	38.7382	33.5380	27.3510
83	21.1401	27.6292	34.1825	39.4941	39.0512	33.8290	27.6192
84	21.1066	27.6191	34.2116	39.5547	39.1259	33.8819	27.6417
85	21.1572	27.7394	34.3969	39.7981	39.3487	34.0386	27.7213
86	21.5276	28.1490	34.8344	40.2763	39.8347	34.4996	28.1609
87	21.3985	28.0516	34.7896	40.2864	39.8435	34.4647	28.0898
88	22.0822	28.8341	35.6310	41.1697	40.7276	35.2949	28.8457
89	22.0359	28.7751	35.5800	41.1434	40.7072	35.2781	28.8348
90	22.0191	28.8596	35.7656	41.4033	40.9605	35.4290	28.8922
91	22.4105	29.2829	36.2172	41.8949	41.4432	35.8876	29.3285
92	22.5474	29.4582	36.4292	42.1442	41.6862	36.1017	29.5080
93	22.3371	29.2664	36.2619	41.9949	41.5433	35.9380	29.3324
94	22.9235	29.9035	36.9383	42.7115	42.2610	36.6244	29.9718
95	22.8214	29.8419	36.9191	42.7326	42.2736	36.5970	29.9018
96	23.1192	30.1765	37.3107	43.1644	42.7009	36.9858	30.2450
97	23.2453	30.3305	37.4936	43.3866	42.9279	37.1860	30.4173
98	23.1859	30.2861	37.4968	43.4222	42.9705	37.2151	30.4094
99	23.2837	30.4457	37.7138	43.6858	43.2309	37.4190	30.5733
100	23.6962	30.9046	38.2041	44.2229	43.7645	37.9122	31.0297
101	23.4349	30.6418	37.9729	43.9935	43.5441	37.7013	30.8028
102 103	23.6799	30.9703	38.3574 38.7913	44.4595 44.9394	43.9963 44.4739	38.0835 38.5046	31.1198 31.5002
103	24.0086 24.1537	31.3571 31.5117	38.9513	45.1143	44.6488	38.6802	31.6684
104	23.9477	31.3415	38.8707	45.1143	44.6294	38.5960	31.5141
106	24.3910	31.8281	39.3549	45.6106	45.1388	39.0885	32.0097
107	24.6400	32.1249	39.7056	46.0105	45.5293	39.4344	32.3015
108	24.7909	32.3008	39.9068	46.2421	45.7631	39.6494	32.5037
109	24.5457	32.0665	39.6962	46.0640	45.5915	39.4626	32.2984
110	24.8179	32.4169	40.1049	46.5389	46.0541	39.8579	32.6234
111	24.9997	32.6090	40.3157	46.7559	46.2740	40.0773	32.8405
112	24.9274	32.5604	40.3132	46.8110	46.3329	40.0806	32.8084
113	25.3736	33.0628	40.8541	47.3833	46.8932	40.6175	33.3028
114	25.4547	33.1544	40.9585	47.4967	47.0121	40.7373	33.4254
115	25.8073	33.5827	41.4897	48.1311	47.6191	41.2332	33.8320
116	25.7876	33.5752	41.4871	48.1329	47.6246	41.2481	33.8437
117	25.8908	33.6725	41.5792	48.2121	47.7282	41.3695	33.9786
118	25.9901	33.8648	41.8864	48.6284	48.1087	41.6321	34.1382
119	26.2050	34.0989	42.1250	48.8741	48.3597	41.8881	34.3858
120	26.1325	33.9965	41.9981	48.7204	48.2260	41.7917	34.3224

101	l of 7004	22 0014	44 7070	40 0010	40.4005	44 5574	24 0005
121	25.7384	33.6914	41.7876	48.6213	48.1005	41.5571	34.0005
122	26.5623	34.5695	42.7113	49.5803	49.0549	42.4678	34.8598
123	26.6051	34.6371	42.8186	49.7233	49.1922	42.5801	34.9462
124	26.4618	34.5145	42.7107	49.6451	49.1189	42.4825	34.8384
125	26.7612	34.8790	43.1393	50.1303	49.5891	42.8937	35.1842
126	26.9611	35.1114	43.4041	50.4192	49.8763	43.1571	35.4124
127	27.1274	35.2686	43.5441	50.5485	50.0126	43.3162	35.5962
128	27.1199	35.3318	43.6984	50.7897	50.2365	43.4526	35.6591
129	27.4140	35.6345	44.0198	51.1323	50.5725	43.7716	35.9627
130	27.2405	35.4796	43.8755	50.9968	50.4424	43.6386	35.8283
131	27.3415	35.5800	43.9812	51.1106	50.5620	43.7561	35.9428
132	27.2232	35.5353	44.0113	51.2174	50.6467	43.7557	35.8741
133	27.7126	35.9980	44.4244	51.5900	51.0364	44.2079	36.3698
134	27.5459	35.8315	44.3004	51.5302	50.9601	44.0817	36.2226
135	27.7081	36.1187	44.6898	51.9966	51.4053	44.4322	36.4698
136	27.9686	36.3842	44.9744	52.2986	51.7064	44.7138	36.7393
137	27.7341	36.1417	44.7411	52.0768	51.4873	44.4987	36.5228
138	28.0235	36.5100	45.1867	52.6051	51.9930	44.9134	36.8668
139	28.2934	36.8123	45.5275	52.9853	52.3639	45.2481	37.1590
140	28.5209	37.0330	45.7259	53.1651	52.5459	45.4620	37.4005
141	28.3337	36.9159	45.6753	53.1758	52.5414	45.3976	37.2608
142	28.6521	37.2708	46.0842	53.6234	52.9830	45.7934	37.6068
143	28.8040	37.3943	46.1543	53.6751	53.0409	45.8937	37.7665
144	28.6257	37.2789	46.1302	53.7362	53.0785	45.8420	37.6377
145	28.9190	37.5791	46.4392	54.0521	53.4000	46.1501	37.9436
146	29.1086	37.7788	46.6389	54.2486	53.5960	46.3569	38.1539
147	28.9907	37.7026	46.6230	54.2973	53.6225	46.3264	38.0692
148	29.1733	37.9069	46.8525	54.5536	53.8807	46.5533	38.2812
149	28.7194	37.4486	46.3823	54.0866	53.4195	46.1027	37.8476
150	29.7887	38.5881	47.5892	55.3379	54.6563	47.2841	38.9540
151	29.8936	38.6817	47.6633	55.3979	54.7238	47.3850	39.0877
152	29.4479	38.2521	47.2816	55.0758	54.3808	46.9859	38.6705
153	29.9212	38.7964	47.8668	55.6918	54.9873	47.5548	39.1903
154	29.9309	38.7748	47.8259	55.6518	54.9529	47.5431	39.2266
155	29.7155	38.6433	47.7778	55.6633	54.9482	47.4567	39.0705
156	30.3331	39.2738	48.4351	56.3447	55.6251	48.1174	39.7254
157	30.5303	39.4876	48.6750	56.6139	55.8879	48.3568	39.9658
158	30.3261	39.2952	48.4603	56.3749	55.6492	48.1515	39.7590
159	30.1108	39.1142	48.3459	56.3170	55.5779	48.0089	39.6022
160	30.2923	39.3003	48.5210	56.4842	55.7515	48.1928	39.7829

SENTIDO "Y"

Tiomno [c]	Punto 1.dY [mm]	Dunto 2 dV [mm]	Dunto 2 dV [mm]	Dunto A dV [mm]	Dunto 5 dV [mm]	Punto 6.dY [mm]	Punto 7 dV [mm]
Tiempo [s]	Punto 1.dy [mm]	Punto 2.dY [mm] 0	Punto 3.dY [mm] 0	Punto 4.dY [mm] 0	Punto 5.dY [mm] 0	Punto 6.dY [mm]	Punto 7.dY [mm] 0
1	0.0946	0.0656	0.0532	0.0335	0.0124	-0.0117	-0.0211
2	0.0927	0.0867	0.0688	0.0560	0.0547	0.0407	0.0491
3	0.0597	0.0465	0.0324	0.0076	-0.0051	-0.0386	-0.0392
4	0.0125	0.0230	0.0216	0.0299	0.0455	0.0587	0.0762
5 6	0.2186 0.0948	0.1929 0.1390	0.1705	0.1484	0.1319	0.0986 0.2310	0.0888 0.2812
7	0.1802	0.1390	0.1563 0.2572	0.1683 0.2774	0.1991 0.3215	0.2310	0.4827
8	0.3784	0.4507	0.4906	0.5086	0.5593	0.6644	0.7910
9	0.3200	0.4634	0.5628	0.6265	0.7204	0.9244	1.1258
10	0.4353	0.5915	0.6930	0.7502	0.8470	1.0883	1.3262
11	0.6843	0.8895	1.0091	1.0745	1.1802	1.4610	1.7474
12	0.6030	0.8429	1.0040	1.0888	1.2068	1.5199	1.8530
13	0.8761	1.1298	1.3032	1.3872	1.5128	1.8661	2.2384
14 15	0.8467 0.8971	1.1769 1.2608	1.3969 1.5172	1.5099 1.6493	1.6538 1.7982	2.0855 2.2673	2.5376 2.7603
16	1.0711	1.4714	1.7603	1.9197	2.0901	2.6254	3.1889
17	1.1667	1.6160	1.9328	2.0916	2.2608	2.8319	3.4445
18	1.2096	1.6953	2.0471	2.2247	2.3982	3.0074	3.6622
19	1.3839	1.8996	2.2799	2.4707	2.6720	3.3332	4.0437
20	1.4395	2.0057	2.4186	2.6251	2.8317	3.5359	4.3136
21	1.6396	2.2075	2.6337	2.8306	3.0079	3.7021	4.4731
22	1.6261	2.2492	2.7350	2.9717	3.1759	3.9556	4.8209
23 24	1.7732	2.4231 2.6670	2.9215	3.1511 3.4317	3.3395	4.1488 4.4686	5.0486 5.4121
25	1.9856 1.9233	2.6476	3.1915 3.2138	3.4783	3.6191 3.6732	4.5537	5.5488
26	2.2317	2.9827	3.5789	3.8476	4.0507	4.9654	6.0074
27	2.1166	2.9528	3.6148	3.9293	4.1549	5.1448	6.2678
28	2.4265	3.2437	3.9180	4.2162	4.4252	5.4315	6.5698
29	2.3619	3.2418	3.9547	4.2791	4.5063	5.5716	6.7837
30	2.6200	3.5371	4.2742	4.6143	4.8385	5.9282	7.1673
31	2.5431	3.5265	4.3254	4.7036	4.9584	6.1124	7.4265
32	2.8643	3.8480	4.6635	5.0367	5.2652	6.4329	7.7764
33 34	2.9419 2.9086	3.9780 4.0090	4.8344 4.9270	5.2232 5.3543	5.4603 5.6246	6.6759 6.9103	8.0760 8.3962
35	3.1552	4.2759	5.2070	5.6308	5.8768	7.1729	8.6776
36	3.1411	4.3106	5.2758	5.7153	5.9663	7.3043	8.8675
37	3.1649	4.3642	5.3605	5.8172	6.0703	7.4364	9.0259
38	3.4568	4.6933	5.7181	6.1802	6.4285	7.8173	9.4543
39	3.5677	4.8549	5.9172	6.4079	6.6673	8.1129	9.8172
40	3.5513	4.9101	6.0351	6.5559	6.8144	8.2936	10.0385
41	3.7935	5.1738	6.3193	6.8537	7.1236	8.6573	10.4701
42 43	3.8893 3.8305	5.3140 5.3241	6.5017 6.5746	7.0617 7.1665	7.3397 7.4637	8.9166 9.1052	10.7882 11.0478
44	3.8856	5.3892	6.6541	7.2543	7.5376	9.2054	11.1919
45	4.1254	5.6393	6.9070	7.5051	7.7975	9.4860	11.5069
46	4.2129	5.8089	7.1384	7.7725	8.0397	9.7581	11.8201
47	4.2040	5.8577	7.2388	7.9102	8.2143	10.0131	12.1695
48	4.2759	5.9628	7.3733	8.0535	8.3457	10.1776	12.3730
49	4.3852	6.1056	7.5541	8.2548	8.5490	10.4032	12.6333
50 51	4.5579	6.3190 6.4566	7.8057 7.9796	8.5242 8.7106	8.8403	10.7572	13.0668 13.2999
52	4.6494 4.8709	6.7299	8.2971	9.0486	9.0128 9.3357	10.9486 11.2857	13.6410
53	4.8412	6.7634	8.3849	9.1759	9.4966	11.5275	13.9927
54	5.0970	7.0160	8.6317	9.4216	9.7170	11.7597	14.2291
55	5.2136	7.2023	8.8654	9.6862	9.9978	12.0937	14.6328
56	5.1255	7.1585	8.8630	9.7071	10.0171	12.1450	14.7281
57	5.3483	7.4039	9.1364	9.9934	10.2954	12.4464	15.0568
58	5.4913	7.6014	9.3861	10.2647	10.5698	12.7764	15.4582
59	5.4435	7.6104	9.4424	10.3675	10.7054	12.9706	15.7393
60 61	5.5524 5.8099	7.7565 8.0270	9.6145 9.9089	10.5438 10.8444	10.8664 11.1562	13.1572 13.4579	15.9597 16.2814
62	5.7388	8.0369	10.0017	10.9874	11.1302	13.7038	16.6207
63	5.9094	8.2316	10.2141	11.2075	11.5325	13.9388	16.8887
64	6.1201	8.4782	10.5041	11.5189	11.8270	14.2510	17.2287
65	6.2653	8.6552	10.7167	11.7570	12.0722	14.5416	17.5715

66	6.1990	8.6403	10.7396	11.8055	12.1377	14.6463	17.7313
67	6.5011	8.9672	11.0989	12.1747	12.4902	15.0251	18.1454
68	6.4162	8.9579	11.1473	12.2669	12.6053	15.1912	18.3807
69	6.7224	9.2729	11.4863	12.6116	12.9375	15.5441	18.7632
70	6.6707	9.2804	11.5504	12.7105	13.0462	15.7002	18.9840
71	6.7801	9.4151	11.7076	12.8745	13.2018	15.8723	19.1888
72	7.0413	9.7128	12.0291	13.2148	13.5553	16.2884	19.6735
72	7.1232	9.8759	12.2502	13.4606	13.7787	16.5052	19.8928
74	7.2986	10.0481	12.4470	13.6675	13.9929	16.7788	20.2401
75	7.2451	10.0635	12.5165	13.7822	14.1156	16.9480	20.4691
76	7.5448	10.3796	12.8546	14.1267	14.4463	17.3020	20.8453
77	7.4830	10.3957	12.9318	14.2383	14.5802	17.4895	21.1071
78	7.5446	10.4720	13.0279	14.3521	14.6825	17.6170	21.2654
79	7.8717	10.8258	13.4185	14.7507	15.0703	18.0316	21.7162
80	7.9904	10.9954	13.6258	14.9811	15.3112	18.3183	22.0709
81	7.9463	10.9989	13.6817	15.0805	15.4243	18.4770	22.3017
82	8.0429	11.1588	13.8888	15.3066	15.6498	18.7462	22.6009
83	8.2787	11.4225	14.1811	15.6178	15.9575	19.0731	22.9668
84	8.2385	11.4375	14.2473	15.7258	16.0906	19.2762	23.2496
85	8.2935	11.5342	14.3714	15.8615	16.2087	19.4113	23.4176
86	8.6111	11.8847	14.7577	16.2709	16.6114	19.8437	23.8858
87	8.5773	11.9024	14.8384	16.3906	16.7564	20.0488	24.1712
88	8.8698	12.2134	15.1581	16.6918	17.0083	20.2816	24.3874
89	8.9803	12.3489	15.3179	16.8735	17.2084	20.5488	24.7392
90	8.9253	12.3623	15.4020	17.0002	17.3331	20.7026	24.9447
91	9.0768	12.5407	15.5988	17.2065	17.5317	20.9334	25.2048
92	9.3337	12.8301	15.9257	17.5525	17.8706	21.2999	25.6157
93	9.2147	12.7532	15.8875	17.5385	17.8814	21.3606	25.7375
94	9.5339	13.1161	16.2842	17.9476	18.2668	21.7481	26.1339
95	9.4312	13.0370	16.2257	17.9085	18.2347	21.7599	26.1997
96	9.6735	13.3249	16.5533	18.2546	18.5670	22.1136	26.5797
97	9.8469	13.5373	16.8044	18.5336	18.8503	22.4459	26.9730
98	9.9050	13.6486	16.9653	18.7339	19.0738	22.7289	27.3262
99	9.9453	13.7417	17.0996	18.8932	19.2281	22.9095	27.5529
100	10.2347	14.0608	17.4480	19.2564	19.5786	23.2862	27.9599
101	10.2038	14.0660	17.4982	19.3314	19.6725	23.4344	28.1660
102	10.2941	14.2295	17.7032	19.5772	19.9204	23.7178	28.5105
103	10.4454	14.4221	17.9458	19.8437	20.1809	24.0001	28.8318
104	10.6044	14.6147	18.1655	20.0797	20.4148	24.2548	29.1052
105	10.5646	14.6336	18.2472	20.1945	20.5555	24.4666	29.4032
106	10.7468	14.8258	18.4611	20.4263	20.7687	24.7033	29.6744
107	11.0396	15.1755	18.8582	20.8417	21.1762	25.1352	30.1404
108	11.1722	15.3453	19.0623	21.0735	21.4106	25.4133	30.4798
109	11.1020	15.3332	19.1042	21.1552	21.5118	25.5835	30.7179
110	11.2421	15.5097	19.3129 19.6404	21.3778	21.7227	25.8051	30.9780
111 112	11.4965 11.4584	15.7980 15.8093	19.7008	21.7268 21.8259	22.0745 22.1898	26.1911 26.3569	31.4081 31.6399
113	11.7072	16.1005	20.0254	22.1627	22.4949	26.6584	31.9423
114 115	11.8571 11.8626	16.2821 16.3362	20.2448 20.3580	22.3953 22.5560	22.7524 22.8891	26.9756 27.1187	32.3312 32.5068
116	12.0615	16.5866	20.6418	22.8541	23.1860	27.4590	32.8852
117	12.2221	16.7808	20.8633	23.0897	23.4420	27.7821	33.2940
117	12.2036	16.8245	20.8033	23.2424	23.5769	27.7821	33.4406
119	12.4324	17.0948	21.2804	23.5607	23.8922	28.2706	33.8426
120	12.5198	17.2120	21.3993	23.6963	24.0525	28.5139	34.1736
121	12.5197	17.2787	21.5404	23.8797	24.2352	28.7178	34.4191 34.5645
122	12.6713 12.9675	17.4441 17.7035	21.7093	24.0430	24.3615	28.8502	34.5645 35.1103
123	12.9675 12.9033	17.7935 17.7931	22.1122	24.4761	24.7974	29.3343	35.1103 35.3384
124		17.7821	22.1474	24.5474	24.8930	29.4886	35.3284
125	13.0612	17.9794	22.3751	24.7862	25.1110	29.7199	35.5931
126	13.2022	18.1776	22.6304	25.0801	25.3941	30.0141	35.9053
127	13.4327	18.4058	22.8576	25.3008	25.6238	30.2983	36.2456
128	13.4623	18.5199	23.0557	25.5479 25.7470	25.8756	30.6162	36.6503 36.8378
129 130	13.6016 13.8073	18.6835 18.9259	23.2385 23.5143	25.7470 26.0425	26.0609 26.3711	30.8024 31.1673	36.8378 37.2678
130	13.8073	18.9259 18.9729	23.5143	26.0425 26.1711	26.5286	31.4004	37.2678 37.5771
101	10.0000	10.3723	20.0102	20.1/11	20.0200	31.4004	37.3771

132	13.8028	19.0383	23.7458	26.3520	26.7099	31.6018	37.8310
133	14.1037	19.3498	24.0644	26.6738	27.0233	31.9420	38.2004
134	14.1743	19.4292	24.1775	26.8093	27.1742	32.1669	38.5202
135	14.1971	19.5515	24.3859	27.0580	27.4110	32.4224	38.8061
136	14.3861	19.7751	24.6409	27.3264	27.6680	32.6879	39.0803
137	14.4382	19.8671	24.7855	27.5055	27.8770	32.9675	39.4400
138	14.5925	20.0749	25.0339	27.7790	28.1219	33.2378	39.7559
139	14.7097	20.2305	25.2358	28.0096	28.3298	33.4262	39.9434
140	14.9939	20.5404	25.5542	28.3236	28.6482	33.8152	40.3953
141	14.8957	20.4900	25.5397	28.3366	28.6789	33.8918	40.5379
142	15.1237	20.7968	25.9247	28.7582	29.0799	34.2965	40.9462
143	15.3466	21.0054	26.1316	28.9646	29.2951	34.5704	41.2893
144	15.2808	21.0044	26.1853	29.0575	29.3996	34.7285	41.5203
145	15.4204	21.1747	26.3948	29.2945	29.6293	34.9693	41.7860
146	15.7024	21.4833	26.7207	29.6210	29.9570	35.3475	42.2164
147	15.6395	21.4785	26.7693	29.7076	30.0478	35.4837	42.4042
148	15.7784	21.6656	27.0088	29.9810	30.3130	35.7716	42.7332
149	15.9014	21.8198	27.1842	30.1708	30.5286	36.0620	43.1071
150	16.1375	22.1021	27.5098	30.5094	30.8218	36.3402	43.3814
151	16.3469	22.3476	27.7812	30.7839	31.1185	36.7062	43.8386
152	16.3378	22.3679	27.8354	30.8736	31.2143	36.8513	44.0619
153	16.4690	22.5918	28.1216	31.1878	31.5090	37.1397	44.3600
154	16.6843	22.8342	28.3807	31.4668	31.8029	37.5109	44.8610
155	16.5421	22.7451	28.3394	31.4520	31.7815	37.4950	44.8745
156	16.9185	23.1517	28.7675	31.8889	32.1970	37.9467	45.4027
157	16.9410	23.2342	28.8968	32.0552	32.3801	38.1936	45.7490
158	17.0467	23.3240	28.9796	32.1319	32.4424	38.2459	45.7679
159	16.8993	23.2269	28.9101	32.0955	32.4120	38.2362	45.8238
160	16.9889	23.3242	29.0203	32.2111	32.5139	38.3221	45.8856

ANEXO VII. Datos para la curva Desplazamiento vs Tiempo en sentido "x" y "y". Varilla 12mm – Vista frontal

SENTIDO "X"

Tiempo [s]	Punto 1.dX [mm]	Punto 2.dX [mm]	Punto 3.dX [mm]	Punto 4.dX [mm]	Punto 5.dX [mm]	Punto 6.dX [mm]	Punto 7.dX [mm]
0	0	0	0	0	0	0	0
1	-0.0042	-0.0081	-0.0049	-0.0040	0.0012	0.0012	-0.0030
2	-0.1316	-0.1305	-0.1259	-0.1261	-0.1292	-0.1221	-0.1261
3	-0.1893	-0.1910	-0.1907	-0.1872	-0.1883	-0.1906	-0.1874
4	0.0646	0.0790	0.0654	0.0512	0.0587	0.0538	0.0518
5	0.0422	0.0513	0.0459	0.0275	0.0384	0.0371	0.0348
6	0.0263	0.0346	0.0346	0.0364	0.0430	0.0390	0.0298
7	0.0482	0.0579	0.0724	0.0716	0.0813	0.0830	0.0433
8	-0.1663	-0.1485	-0.1166	-0.0945	-0.0994	-0.1155	-0.1527
9	-0.3144	-0.2822	-0.2397	-0.2131	-0.2327	-0.2489	-0.3053
10	-0.5151	-0.4693	-0.4153	-0.3805	-0.4021	-0.4328	-0.5026
11	-0.5339	-0.4765	-0.4098	-0.3684	-0.3882	-0.4379	-0.5250
12	-0.5412	-0.4777	-0.4073	-0.3563	-0.3711	-0.4284	-0.5344
13	-0.5400	-0.4657	-0.3837	-0.3227	-0.3512	-0.4113	-0.5340
14	-0.5304	-0.4377	-0.3371	-0.2593	-0.3005	-0.3821	-0.5261
15	-0.4668	-0.3622	-0.2460	-0.1695	-0.2017	-0.2990	-0.4520
16	0.4017	0.5128	0.6519	0.7326	0.6956	0.5843	0.4116
17	0.3093	0.4324	0.5822	0.6598	0.6242	0.5138	0.3149
18	0.0799	0.2166	0.3695	0.4698	0.4287	0.2903	0.0806
19	0.0099	0.1547	0.3220	0.4262	0.3710	0.2348	0.0124
20	-0.1274	0.0380	0.2218	0.3308	0.2749	0.1227	-0.1125
21	-0.2987	-0.1316	0.0632	0.1728	0.1194	-0.0365	-0.2907
22	-0.3234	-0.1338	0.0604	0.1700	0.1262	-0.0410	-0.3138
23	-0.2744	-0.0735	0.1392	0.2465	0.2067	0.0295	-0.2555
24	-0.2929	-0.0776	0.1501	0.2702	0.2242	0.0326	-0.2623
25	-0.2942	-0.0678	0.1702	0.2960	0.2484	0.0456	-0.2644
26 27	-0.3808	-0.1363 -0.1615	0.1085 0.0985	0.2433 0.2233	0.1870 0.1803	-0.0187	-0.3407
27	-0.4193 -0.4041	-0.1398	0.1237	0.2233	0.1803	-0.0385 -0.0079	-0.3785 -0.3568
29	-0.4141	-0.1467	0.1394	0.2959	0.2385	-0.0079	-0.3722
30	-0.4786	-0.1898	0.1394	0.2554	0.1836	-0.0548	-0.4252
31	-0.4806	-0.1883	0.1091	0.2672	0.2052	-0.0454	-0.4261
32	-0.5802	-0.2733	0.0294	0.1948	0.1374	-0.1229	-0.5199
33	-0.5156	-0.1952	0.1168	0.2958	0.2332	-0.0309	-0.4340
34	-0.5422	-0.2227	0.1079	0.2994	0.2403	-0.0415	-0.4600
35	-0.5509	-0.2217	0.1144	0.3132	0.2509	-0.0403	-0.4678
36	-0.5887	-0.2404	0.0958	0.2882	0.2225	-0.0659	-0.5064
37	-0.5211	-0.1815	0.1708	0.3779	0.3079	0.0059	-0.4425
38	-0.3658	0.0000	0.3428	0.5477	0.4797	0.1838	-0.2751
39	-0.4467	-0.0859	0.2789	0.5000	0.4246	0.1131	-0.3588
40	-0.4137	-0.0499	0.3325	0.5580	0.4754	0.1611	-0.3177
41	-0.4001	-0.0323	0.3557	0.5840	0.5068	0.1772	-0.3053
42	-0.4202	-0.0387	0.3460	0.5676	0.4907	0.1676	-0.3226
43	-0.5522	-0.1597	0.2316	0.4751	0.3850	0.0496	-0.4481
44	-0.6890	-0.2857	0.1205	0.3719	0.2671	-0.0672	-0.5751
45	-0.7208	-0.3206	0.0931	0.3530	0.2583	-0.0901	-0.6022
46	-0.8556	-0.4455	-0.0256	0.2410	0.1508	-0.2051	-0.7351
47	-0.7805	-0.3555	0.0639	0.3344	0.2425	-0.1167	-0.6501
48	-0.8289	-0.4013	0.0331	0.2971	0.2033	-0.1579	-0.6993
49	-0.6505	-0.2144	0.2290	0.4972	0.3953	0.0345	-0.5100
50	-0.6902	-0.2477	0.2006	0.4850	0.3766	0.0091	-0.5474
51	-0.6734	-0.2152	0.2357	0.5219	0.4138	0.0394	-0.5286
52	-0.8288	-0.3674	0.0976	0.3991	0.2880	-0.0912	-0.6651
53	-0.8892	-0.4328	0.0403	0.3419	0.2422	-0.1559	-0.7344
54	-0.8577	-0.3877	0.0906	0.4049	0.2937	-0.0975	-0.6948
55	-0.8221	-0.3427	0.1435	0.4621	0.3506	-0.0533	-0.6432
56	-0.8499	-0.3590	0.1233	0.4417	0.3217	-0.0709	-0.6712
57	-0.8159	-0.3218	0.1777	0.4892	0.3807	-0.0235	-0.6325
58	-0.7930	-0.2836	0.2186	0.5384	0.4255	0.0229	-0.5916

59	-0.9124	-0.4062	0.1074	0.4235	0.3127	-0.0932	-0.7089
60	-0.7915	-0.2754	0.2500	0.5790	0.4596	0.0490	-0.5814
61	-0.6752	-0.1543	0.3717	0.7061	0.5982	0.1808	-0.4582
62	-0.6393	-0.1155	0.4227	0.7571	0.6629	0.2303	-0.4105
63	-0.6066	-0.0605	0.4756	0.8033	0.6882	0.2695	-0.3779
64	-0.4927	0.0538	0.5989	0.9456	0.8244	0.4032	-0.2533
65	-0.2545	0.2683	0.8323	1.1875	1.0758	0.6533	-0.0229
66	-0.4518	0.0988	0.6638	1.0202	0.9065	0.4676	-0.2095
67	-0.3431	0.2162	0.7812	1.1430	1.0366	0.5941	-0.0956
68	-0.2565	0.3046	0.8815	1.2413	1.1401	0.6913	-0.0047
69	-0.2923	0.2731	0.8623	1.2301	1.1192	0.6703	-0.0384
70	-0.2745	0.2968	0.8889	1.2660	1.1488	0.7005	-0.0181
71	-0.3109	0.2702	0.8671	1.2337	1.1146	0.6694	-0.0477
72	-0.1692	0.4201	1.0273	1.4141	1.2747	0.8168	0.1011
73	-0.2084	0.3888	0.9898	1.3758	1.2555	0.7971	0.0708
74	-0.3166	0.2953	0.8909	1.2880	1.1608	0.6865	-0.0367
75	-0.2792	0.3198	0.9379	1.3290	1.2135	0.7380	-0.0082
76	-0.2049	0.4016	1.0274	1.4279	1.3129	0.8289	0.0831
77	-0.2515	0.3532	0.9908	1.3910	1.2804	0.7928	0.0328
78	-0.1867	0.4295	1.0723	1.4708	1.3511	0.8590	0.1055
79	-0.1487	0.4607	1.0996	1.5099	1.3964	0.9062	0.1291
80	-0.1769	0.4394	1.0797	1.4978	1.3814	0.8793	0.1066
81	-0.2105	0.4292	1.0671	1.4724	1.3641	0.8596	0.0883
82	-0.3713	0.2607	0.9073	1.3134	1.2069	0.7089	-0.0772
83	-0.3209	0.3328	0.9760	1.3776	1.2860	0.7765	-0.0097
84	-0.3012	0.3637	1.0026	1.4236	1.3144	0.8168	0.0122
85	-0.3034	0.3623	1.0079	1.4266	1.3220	0.8091	0.0070
86	-0.3316	0.3365	0.9887	1.3994	1.3060	0.7928	-0.0111
87	-0.2495	0.4217	1.0875	1.4999	1.4051	0.8903	0.0765
88	-0.2123	0.4683	1.1329	1.5612	1.4435	0.9225	0.1110
89	-0.2280	0.4551	1.1273	1.5599	1.4446	0.9109	0.0957
90	-0.3409	0.3612	1.0213	1.4571	1.3404	0.8103	-0.0199
91	-0.1589	0.5421	1.2198	1.6543	1.5304	1.0095	0.1737
92	-0.2409	0.4527	1.1460	1.5865	1.4637	0.9240	0.0797
93	-0.3857	0.3164	1.0001	1.4480	1.3339	0.7742	-0.0577
94	-0.2793	0.4302	1.1308	1.5638	1.4368	0.8945	0.0604
95	-0.2772	0.4418	1.1456	1.5851	1.4585	0.9137	0.0589
96	-0.3208	0.3950	1.1040	1.5617	1.4276	0.8732	0.0233
97	-0.1728	0.5500	1.2608	1.7150	1.5825	1.0196	0.1576
98	-0.1728	0.6177	1.3340	1.8033	1.6549	1.0190	0.1376
99	-0.2531	0.4733	1.1924	1.6537	1.5155	0.9616	0.0929
100 101	-0.2391 -0.3967	0.4921	1.2132 1.0594	1.6744	1.5426 1.3934	0.9686	0.0976 -0.0585
		0.3452		1.5307		0.8133	0.0762
102 103	-0.2504	0.4980	1.2136	1.6942	1.5461	0.9668	0.0762
	-0.2356	0.5151	1.2439	1.7152	1.5728	0.9971	
104	-0.1966	0.5522	1.2724	1.7811	1.6068	1.0347	0.1307
105	-0.1896	0.5539	1.2972	1.8030	1.6453	1.0555	0.1312
106	-0.1810	0.5695	1.3056	1.8154	1.6551	1.0662	0.1396
107	-0.1580	0.6001	1.3467	1.8587	1.7011	1.1014	0.1828
108	-0.1542	0.5969	1.3584	1.8655	1.7087	1.1084	0.1694
109	-0.2669	0.4960	1.2439	1.7577	1.6061	1.0020	0.0692
110	0.0016	0.7601	1.5214	2.0337	1.8912	1.2762	0.3389
111	-0.0846	0.6752	1.4396	1.9547	1.8046	1.1831	0.2387
112	-0.0905	0.6849	1.4437	1.9619	1.8056	1.2001	0.2468
113	-0.0527	0.7273	1.4833	2.0062	1.8566	1.2340	0.2818
114	-0.2443	0.5388	1.2985	1.8197	1.6739	1.0456	0.0878
115	-0.2584	0.5317	1.2820	1.8194	1.6580	1.0347	0.0745
116	-0.2357	0.5542	1.3154	1.8519	1.6911	1.0651	0.1100
117	-0.3036	0.4832	1.2524	1.7929	1.6304	1.0002	0.0322
118	-0.3687	0.4200	1.1877	1.7213	1.5708	0.9389	-0.0244
119	-0.2405	0.5492	1.3256	1.8602	1.7036	1.0741	0.1093
120	-0.3048	0.4902	1.2664	1.8229	1.6597	1.0246	0.0507

121	-0.1663	0.6366	1.4020	1.9588	1.7922	1.1598	0.1831
122	-0.3682	0.4301	1.2073	1.7556	1.5882	0.9603	-0.0213
123	-0.3721	0.4564	1.2217	1.7797	1.5980	0.9621	-0.0128
124	-0.3802	0.4449	1.2150	1.7676	1.5891	0.9666	-0.0209
125	-0.4348	0.3879	1.1730	1.7412	1.5564	0.9183	-0.0826
126	-0.4158	0.4023	1.1768	1.7356	1.5636	0.9271	-0.0782
127	-0.3682	0.4670	1.2273	1.8105	1.6244	0.9755	-0.0227
128	-0.5069	0.3271	1.0981	1.6716	1.4841	0.8422	-0.1612
129	-0.5560	0.2723	1.0417	1.6093	1.4119	0.7849	-0.2372
130	-0.4591	0.3717	1.1464	1.7242	1.5172	0.8769	-0.1430
131	-0.4882	0.3560	1.1221	1.6943	1.4904	0.8470	-0.1700
132	-0.5869	0.2590	1.0339	1.6037	1.4152	0.7670	-0.2659
133	-0.4687	0.3816	1.1744	1.7448	1.5406	0.8957	-0.1356
134	-0.4602	0.3917	1.1788	1.7730	1.5685	0.9104	-0.1276
135	-0.6515	0.2090	0.9940	1.5930	1.3886	0.7269	-0.3274
136	-0.6562	0.2123	0.9975	1.5916	1.3752	0.7243	-0.3336
137	-0.6378	0.2411	1.0221	1.6097	1.3855	0.7367	-0.3179
138	-0.6654	0.2189	1.0038	1.5887	1.3682	0.7229	-0.3461
139	-0.7645	0.1316	0.9216	1.5127	1.3133	0.6642	-0.4066
140	-0.6514	0.2273	1.0123	1.6255	1.4020	0.7439	-0.3343
141	-0.6399	0.2558	1.0318	1.6445	1.4072	0.7675	-0.3134
142	-0.6129	0.2947	1.0713	1.6784	1.4481	0.8037	-0.2708
143	-0.4162	0.4781	1.2650	1.8629	1.6350	0.9873	-0.0991
144	-0.5429	0.3746	1.1364	1.7625	1.5169	0.8576	-0.2218
145	-0.4607	0.4656	1.2203	1.8519	1.6150	0.9547	-0.1398
146	-0.3619	0.5495	1.3236	1.9499	1.6991	1.0508	-0.0564
147	-0.4964	0.4271	1.2178	1.8403	1.5844	0.9289	-0.1842
148	-0.4001	0.5300	1.3046	1.9382	1.6874	1.0255	-0.0929
149	-0.4474	0.4724	1.2480	1.8869	1.6407	0.9685	-0.1518
150	-0.4950	0.4242	1.2138	1.8599	1.6066	0.9201	-0.1952
151	-0.5274	0.4050	1.1843	1.8316	1.5763	0.9012	-0.2340
152	-0.4850	0.4428	1.2318	1.8707	1.6176	0.9326	-0.1847
153	-0.4791	0.4565	1.2471	1.8860	1.6354	0.9654	-0.1828
154	-0.4070	0.5077	1.2896	1.9448	1.7129	1.0231	-0.1347
155	-0.3845	0.5605	1.3367	1.9799	1.7338	1.0568	-0.1012
156	-0.3067	0.6167	1.4210	2.0768	1.8351	1.1323	-0.0285
157	-0.3175	0.6250	1.4155	2.0723	1.8329	1.1236	-0.0295
158	-0.3494	0.6118	1.3973	2.0465	1.7962	1.1061	-0.0544
159	-0.2754	0.6758	1.4541	2.0953	1.8537	1.1478	0.0078
160	-0.2859	0.6671	1.4692	2.1135	1.8579	1.1820	0.0115

SENTIDO "Y"

Tiempo [s]	Punto 1.dY [mm]	Punto 2.dY [mm]	Punto 3.dY [mm]	Punto 4.dY [mm]	Punto 5.dY [mm]	Punto 6.dY [mm]	Punto 7.dY [mm]
0	0	0	0	0	0	0	0
1	-0.0226	-0.0311	-0.0391	-0.0533	-0.0572	-0.0708	-0.0703
2	2.1944	2.1969	2.1976	2.1951	2.1966	2.1935	2.1905
3	2.4380	2.4468	2.4566	2.4526	2.4657	2.4671	2.4777
4	-0.1618	-0.1374	-0.1329	-0.1294	-0.1038	-0.1096	-0.1000
5	-0.1411	-0.1146	-0.1095	-0.1098	-0.0826	-0.0937	-0.0813
6	0.0250	0.0725	0.1142	0.1690	0.2375	0.2704	0.3053
7	0.0806	0.1811	0.2771	0.4111	0.5730	0.6644	0.7608
8 9	2.6110 5.2536	2.7681 5.4851	2.9202 5.7053	3.1456 6.0279	3.4014 6.3885	3.5809 6.6534	3.7134 6.8505
10	7.5898	7.8615	8.1337	8.5196	8.9526	9.2800	9.5166
11	9.8290	10.1450	10.4778	10.9473	11.4701	11.8732	12.1548
12	11.7452	12.1172	12.4922	13.0189	13.6123	14.0569	14.3918
13	11.7881	12.2150	12.6254	13.2116	13.8662	14.3751	14.7386
14	11.9202	12.4054	12.8816	13.5585	14.3064	14.8866	15.3190
15	12.0297	12.5621	13.0885	13.8250	14.6457	15.2826	15.7639
16	2.9367	3.5354	4.1137	4.9181	5.8195	6.5227	7.0608
17	5.5707	6.2484	6.8954	7.7729	8.7581	9.5327	10.1377
18	7.7323	8.4285	9.1044	10.0259	11.0509	11.8651	12.4940
19	10.3021	11.0658	11.7971	12.7836	13.8795	14.7491	15.4398
20	12.3161	13.1413	13.9327	14.9856	16.1540	17.0914	17.8455
21	12.3529	13.2151	14.0359	15.1231	16.3328	17.3102	18.1048
22	12.6056	13.5294	14.3907	15.5253	16.8101	17.8399	18.6775
23	12.6206	13.5900	14.5037	15.6901	17.0364	18.1183	19.0117
24	12.8508	13.8811	14.8480	16.1031	17.5060	18.6537	19.6046
25	12.8103	13.8837	14.8919	16.1997	17.6583	18.8576	19.8592
26	12.8779	14.0315	15.0912	16.4523	17.9820	19.2495	20.3010
27	12.9471	14.1662	15.2901	16.7061	18.3038	19.6369	20.7558
28	13.0438	14.2903	15.4440	16.9072	18.5531	19.9222	21.0835
29	13.3880	14.6778	15.8828	17.3772	19.0615	20.4830	21.6878
30	13.4666	14.8091	16.0354	17.5836	19.3190	20.7752	22.0212
31 32	13.3067	14.7018	15.9863 16.4202	17.5825	19.3761	20.8921	22.1907 22.7956
32	13.6771 13.5833	15.1095 15.0721	16.4202 16.4564	18.0515 18.1497	19.8945 20.0530	21.4585 21.6777	23.0742
34	13.6814	15.0721	16.6436	18.3871	20.3398	22.0135	23.4810
35	14.0062	15.5832	17.0381	18.8066	20.7911	22.5119	24.0022
36	13.8337	15.4820	16.9960	18.8141	20.8698	22.6416	24.1962
37	14.1572	15.8133	17.3335	19.1784	21.2419	23.0354	24.6082
38	14.0561	15.7969	17.3836	19.2887	21.4232	23.2838	24.9341
39	14.3652	16.1210	17.7419	19.6663	21.8302	23.7259	25.4077
40	14.2747	16.0959	17.7663	19.7359	21.9584	23.9092	25.6555
41	14.6431	16.5068	18.2194	20.2217	22.4789	24.4805	26.2700
42	14.4416	16.3554	18.0895	20.1347	22.4408	24.4719	26.2973
43	14.5840	16.5632	18.3669	20.4685	22.8334	24.9240	26.8154
44	14.9203	16.9132	18.7440	20.8686	23.2527	25.3831	27.3060
45	14.8059	16.8497	18.7163	20.8741	23.3004	25.4709	27.4448
46	15.1371	17.2306	19.1471	21.3456	23.8134	26.0392	28.0709
47	14.9843	17.1252	19.0824	21.3267	23.8439	26.1193	28.1931
48	15.3518	17.5376	19.5277	21.8160	24.3730	26.6905	28.8145
49 50	15.2055 15.3510	17.4391	19.4768	21.7944	24.3989	26.7693 27.1608	28.9372
50 51	15.3510 15.4590	17.6429 17.7955	19.7280 19.9140	22.0904 22.3084	24.7317 24.9897	27.1608 27.4522	29.3807 29.7151
52	15.4590	18.0134	20.1865	22.6307	25.3535	27.4522	30.2065
53	15.8297	18.2387	20.4371	22.8946	25.6391	28.1878	30.5402
54	15.9522	18.4157	20.6575	23.1573	25.9456	28.5555	30.9593
55	15.8662	18.3902	20.6718	23.2163	26.0486	28.6943	31.1606
56	16.2166	18.7719	21.0815	23.6588	26.5200	29.2001	31.7033
57	16.3167	18.9249	21.2880	23.9038	26.8116	29.5491	32.1132
58	16.3933	19.0479	21.4407	24.0876	27.0260	29.8060	32.4139
59	16.5531	19.2474	21.6804	24.3624	27.3366	30.1581	32.8016
60	16.6619	19.4072	21.8946	24.6161	27.6392	30.5119	33.2138
61	16.7084	19.4986	22.0130	24.7582	27.8214	30.7346	33.4760
62	16.6785	19.5222	22.1126	24.8904	27.9973	30.9535	33.7556
63	16.8511	19.7430	22.3444	25.1796	28.3202	31.3266	34.1880
64	16.9627	19.8899	22.5283	25.3957	28.5641	31.6044	34.5092
65	17.1683	20.1332	22.8291	25.7029	28.9080	31.9938	34.9425

66	17.1847	20.2090	22.9458	25.8701	29.1168	32.2555	35.2680
67	17.2725	20.3339	23.1055	26.0606	29.3457	32.5215	35.5784
68	17.3215	20.4276	23.2283	26.2211	29.5323	32.7379	35.8420
69	17.5050	20.6672	23.5164	26.5469	29.8984	33.1619	36.3217
70	17.8623	21.0537	23.9298	26.9830	30.3567	33.6540	36.8449
71	17.7782	21.0267	23.9447	27.0382	30.4620	33.7984	37.0473
72	17.9099	21.2073	24.1602	27.3030	30.7510	34.1300	37.4252
73	17.9536	21.2938	24.2904	27.4590	30.9500	34.3683	37.7144
74	18.0399	21.4374	24.4774	27.6696	31.1865	34.6556	38.0467
75	18.2638	21.6967	24.7918	28.0124	31.5703	35.0853	38.5354
76	18.2941	21.7705	24.8933	28.1535	31.7411	35.2941	38.7920
77	18.6747	22.1771	25.3356	28.6116	32.2176	35.8019	39.3340
78	18.5082	22.0532	25.2424	28.5509	32.1974	35.8151	39.3906
79	18.8514	22.4269	25.6496	28.9815	32.6494	36.3023	39.9187
80	18.9083	22.5286	25.8026	29.1592	32.8575	36.5467	40.2127
81	18.8677	22.5611	25.8551	29.2665	33.0127	36.7488	40.4671
82	19.1375	22.8515	26.1813	29.5944	33.3620	37.1302	40.8864
83	19.1396	22.9198	26.3069	29.7854	33.6029	37.4327	41.2507
84	19.4594	23.2936	26.7165	30.2126	34.0699	37.9400	41.8190
85	19.4968	23.3659	26.8262	30.3628	34.2432	38.1501	42.0599
86	19.5179	23.4388	26.9475	30.5226	34.4459	38.4032	42.3786
87	19.8334	23.7855	27.3262	30.9174	34.8545	38.8430	42.8469
88	19.9206	23.9055	27.4727	31.1013	35.0635	39.0866	43.1284
89	19.8446	23.8815	27.4973	31.1538	35.1567	39.2218	43.3329
90	20.1992	24.3006	27.9391	31.6329	35.6644	39.7765	43.9290
91	20.2912	24.4130	28.0853	31.7920	35.8492	39.9938	44.1806
92	20.2207	24.3848	28.1151	31.8551	35.9513	40.1466	44.3964
93							
	20.3081	24.5550	28.3526	32.1468	36.3019	40.5634	44.9010
94	20.5220	24.7908	28.6054	32.4179	36.5952	40.8778	45.2440
95	20.6985	25.0071	28.8499	32.6763	36.8683	41.1816	45.5858
96	20.6948	25.0427	28.9272	32.7943	37.0200	41.3766	45.8307
97	20.8295	25.2225	29.1480	33.0286	37.2868	41.6881	46.1850
98	21.2043	25.6264	29.5756	33.4973	37.7730	42.2025	46.7334
99	21.2179	25.6919	29.6887	33.6297	37.9451	42.4217	47.0110
100	21.4083	25.9304	29.9630	33.9442	38.2876	42.8060	47.4362
101	21.5066	26.0572	30.1107	34.1104	38.4734	43.0193	47.6894
102	21.4536	26.0547	30.1619	34.2075	38.6040	43.1955	47.9279
103	21.7430	26.3923	30.5439	34.6141	39.0332	43.6684	48.4491
104	21.5985	26.2855	30.4591	34.5492	38.9957	43.6673	48.4905
105	21.8045	26.5219	30.7408	34.8637	39.3349	44.0399	48.9112
106	22.1204	26.8834	31.1303	35.2682	39.7589	44.4911	49.3995
107	22.2012	27.0076	31.3019	35.4763	39.9975	44.7773	49.7474
108	22.2008	27.0515	31.3868	35.5900	40.1478	44.9699	49.9786
109	22.4539	27.3432	31.7122	35.9377	40.5159	45.3784	50.4425
110	22.5419	27.4678	31.8712	36.1177	40.7235	45.6183	50.7185
111	22.5476	27.5236	31.9712	36.2589	40.8996	45.8354	50.9935
112	22.8247	27.8314	32.3056	36.6078	41.2672	46.2426	51.4352
113	22.7712	27.8218	32.3343	36.6616	41.3505	46.3667	51.6048
114	22.9244	28.0159	32.5697	36.9341	41.6584	46.7084	52.0070
115	23.2140	28.3317	32.9059	37.2772	42.0170	47.0873	52.4125
116	23.1567	28.3349	32.9569	37.3720	42.1532	47.2760	52.6625
117	23.5331	28.7532	33.4182	37.8578	42.6602	47.8244	53.2681
118	23.5973	28.8427	33.5215	37.9775	42.8018	47.9865	53.4546
119	23.5421	28.8333	33.5635	38.0525	42.9091	48.1428	53.6687
120	23.8591	29.1926	33.9605	38.4715	43.3470	48.6213	54.1874
121	23.7442	29.1314	33.9284	38.4646	43.3707	48.6811	54.2980
122	23.8576	29.2736	34.1076	38.6694	43.6078	48.9521	54.6093
123	24.2120	29.6807	34.5436	39.1213	44.0797	49.4540	55.1534
123	24.2120	29.7805	34.6786	39.1213 39.2914	44.0797	49.7060	55.4593
125	24.4596	30.0068	34.9398	39.5630	44.5603	50.0134	55.7788
126	24.4730	30.0498	35.0192	39.6754	44.7108	50.2134	56.0365
127	24.6734	30.2827	35.2713	39.9556	45.0074	50.5246	56.3965
128	24.5811	30.2460	35.2821	39.9945	45.0846	50.6547	56.5811
129	24.7060	30.4120	35.4752	40.2196	45.3421	50.9492	56.9165
130	25.0068	30.7443	35.8336	40.5916	45.7293	51.3704	57.3806
131	24.9403	30.7175	35.8389	40.6253	45.7923	51.4631	57.5181

132	25.3085	31.1386	36.3065	41.1226	46.3185	52.0446	58.1532
133	25.3586	31.2176	36.4118	41.2481	46.4599	52.2118	58.3635
134	25.5554	31.4952	36.7689	41.6570	46.9147	52.7370	58.9858
135	25.6599	31.6444	36.9822	41.8927	47.1801	53.0575	59.3585
136	25.9018	31.9207	37.2632	42.2036	47.5016	53.4102	59.7488
137	25.8850	31.9606	37.3463	42.3124	47.6409	53.5991	59.9882
138	26.2592	32.3672	37.7805	42.7677	48.1265	54.1100	60.5464
139	26.0496	32.2005	37.6644	42.6856	48.0793	54.1113	60.5977
140	26.3133	32.4903	37.9890	43.0198	48.4277	54.4953	61.0115
141	26.5098	32.7274	38.2470	43.3072	48.7253	54.8207	61.3755
142	26.5906	32.8580	38.4197	43.5150	48.9737	55.1255	61.7506
143	26.7163	33.0109	38.5843	43.6919	49.1592	55.3272	61.9689
144	26.7676	33.1112	38.7177	43.8640	49.3642	55.5744	62.2808
145	26.8764	33.2514	38.9119	44.0675	49.5899	55.8440	62.5777
146	27.1951	33.5896	39.2608	44.4350	49.9782	56.2474	63.0161
147	27.0681	33.5190	39.2280	44.4388	50.0063	56.3206	63.1454
148	27.4569	33.9520	39.7131	44.9322	50.5332	56.8789	63.7602
149	27.5814	34.1121	39.8892	45.1424	50.7537	57.1386	64.0577
150	27.4012	33.9774	39.7957	45.0901	50.7272	57.1591	64.1327
151	27.6199	34.2414	40.0956	45.4030	51.0598	57.5237	64.5427
152	27.7050	34.3522	40.2370	45.5582	51.2409	57.7362	64.7882
153	27.8577	34.5587	40.4774	45.8401	51.5525	58.0796	65.1982
154	28.1301	34.8439	40.8076	46.1824	51.9103	58.4816	65.6396
155	28.2776	35.0268	40.9977	46.3762	52.1269	58.7144	65.9109
156	28.2847	35.0771	41.1034	46.5210	52.2918	58.9161	66.1597
157	28.3744	35.2143	41.2762	46.7175	52.5167	59.1821	66.4728
158	28.5140	35.3598	41.4011	46.8512	52.6461	59.3086	66.6035
159	28.4220	35.2732	41.3470	46.8106	52.6181	59.3100	66.6225
160	28.6849	35.5468	41.6231	47.0791	52.8900	59.5739	66.8891