# ESCUELA POLITÉCNICA NACIONAL

# FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

## HERRAMIENTAS COMPUTACIONALES PARA LA REALIZACIÓN DE FLUJOS DE POTENCIA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN Y DISTRIBUCIÓN

## HERRAMIENTA COMPUTACIONAL PARA LA REALIZACIÓN DE FLUJOS DE POTENCIA EN SISTEMAS ELÉCTRICOS DE DISTRIBUCIÓN

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELÉCTRICO

EDGAR SEBASTIAN LLAMUCA SALAZAR

edgar.llamuca@epn.edu.ec

DIRECTOR: Dr. HUGO NEPTALÍ ARCOS MARTÍNEZ

hugo.arcos@epn.edu.ec

DMQ, julio 2024

## CERTIFICACIONES

Yo, EDGAR SEBASTIAN LLAMUCA SALAZAR declaro que el trabajo de integración curricular aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

#### EDGAR SEBASTIAN LLAMUCA SALAZAR

Certifico que el presente trabajo de integración curricular fue desarrollado por EDGAR SEBASTIAN LLAMUCA SALAZAR, bajo mi supervisión.

Dr. HUGO NEPTALÍ ARCOS MARTÍNEZ DIRECTOR

## **DECLARACIÓN DE AUTORÍA**

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

EDGAR SEBASTIAN LLAMUCA SALAZAR

Dr. HUGO NEPTALÍ ARCOS MARTÍNEZ

## DEDICATORIA

A Dios, por darme la fuerza y paciencia para superar cada dificultad presentada a lo largo de mi formación académica.

A mis queridos padres, Edgar y Fanny, mi pilar fundamental, que gracias a su amor y apoyo incondicional me ha sido posible alcanzar este sueño.

A mi hermana Paola, quien ha estado presente en todo este proceso; su cariño y apoyo han sido esenciales para completar esta etapa tan importante de mi vida.

A mis familiares que ya no están pero que desde un inicio me apoyaron y se que desde el cielo estarán festejando este logro.

A todos aquellos que confiaron en mí y me ayudaron a alcanzar esta meta tan anhelada.

## AGRADECIMIENTO

A Dios, por estar siempre presente durante este proceso y otorgarme la paciencia necesaria para lograr completar esta etapa de mi vida.

A mis invaluables padres, Edgar quien para mí es sinónimo de superación y esfuerzo. Me apoyó de todas las maneras posibles a lo largo de mi formación y me enseñó que, con dedicación y esfuerzo todo en la vida se puede alcanzar. Fanny por su amor y paciencia, me ayudó a cumplir uno de mis sueños. Sus consejos y palabras de aliento fueron esenciales durante este proceso, el cual representó un verdadero reto. Este logro es para ellos ya que han sido mi fuente de inspiración para alcanzar mis metas propuestas y me faltaría vida para agradecerles por todo lo que me han dado.

A mi hermana Paola, mi compañera de vida, por sus valiosos consejos y por estar siempre a mi lado cuando la necesitaba.

A mi familia, quienes me supieron apoyar de una u otra manera para lograr este objetivo que me planteé desde el inicio.

A mi director de TIC, Dr. Hugo Arcos, por su gran ayuda durante el desarrollo de este trabajo. Gracias a sus consejos y orientación, pude llevar a cabo este proyecto de la mejor manera y así cumplir uno de mis sueños más anhelados el de ser ingeniero.

A mis amigos quienes fueron participes de esta gran etapa de mi vida agradezco sus consejos, risas y momentos compartidos los cuales llevare en mi corazón ya que hicieron de esta etapa una de las mejores de mi vida.

## ÍNDICE DE CONTENIDO

| CERTIFICACI | ONES                                                             | I     |
|-------------|------------------------------------------------------------------|-------|
| DECLARACIÓ  | N DE AUTORÍA                                                     | II    |
| DEDICATORI  | Α                                                                | . 111 |
| AGRADECIM   | IENTO                                                            | . IV  |
| ÍNDICE DE C | ONTENIDO                                                         | V     |
| RESUMEN     |                                                                  | VII   |
| ABSTRACT    |                                                                  | VIII  |
| 1. Descrip  | ción del componente desarrollado                                 | 9     |
| 1.1. Objet  | tivo general                                                     | 9     |
| 1.2. Objet  | tivos específicos                                                | 9     |
| 1.3. Alcar  | nce                                                              | 10    |
| 1.4. Marc   | o teórico                                                        | 10    |
| 1.4.1.      | Nodelación de componentes de sistemas eléctricos de distribución | 11    |
| 1.4.1.1.    | Líneas de distribución                                           | .11   |
| 1.4.1.2.    | Transformadores                                                  | 15    |
| 1.4.1.3.    | Tipos de carga                                                   | 19    |
| 1.4.2.      | Nétodos de solución de flujos de potencia                        | .19   |
| 1.4.2.1.    | Método Forward and Backward                                      | 20    |
| 1.4.2.2.    | Flujo de carga trifásico lineal para sistemas de distribución    | 24    |
| 2. Metodol  | logía                                                            | 28    |
| 2.1. Imple  | ementación en software del algoritmo Forward and Backward        | 30    |
| 2.1.1. I    | Primer paso: Cálculo de impedancias                              | 31    |
| 2.1.1.1.    | Configuración de líneas aéreas y subterráneas del modelo         | 32    |
| 2.1.1.2.    | Formación de las matrices de impedancias y admitancias           | 33    |
| 2.1.2.      | Segundo paso: Matriz de incidencia de voltajes (BCB)             | 33    |
| 2.1.3.      | Tercer paso: Matriz de incidencia de voltajes                    | 34    |
| 2.1.4. (    | Cuarto paso: Matriz de incidencia de corrientes                  | 35    |
| 2.1.5. (    | Quinto paso: Matriz de potencias                                 | 35    |
| 2.1.6.      | Sexto paso: Corriente de las barras                              | 36    |
| 2.1.7.      | Séptimo paso: Corrientes por cada línea i – j                    | 37    |
| 2.1.8.      | Octavo paso: Voltajes de línea                                   | 38    |
| 2.1.8.1.    | Uso de la matriz delta                                           | 39    |

| 2           | .1.9.              | Noveno paso: Voltajes en las barras iteración n+1            | 40 |
|-------------|--------------------|--------------------------------------------------------------|----|
| 2           | .1.10.             | Décimo paso: Errores en los voltajes de las barras de la red | 41 |
| 2           | .1.11.             | Décimo primer paso: Error máximo entre los resultados        | 41 |
| 2           | .1.12.             | Décimo segundo paso: Cálculo de potencias                    | 41 |
| 2           | .1.13.             | Comparación de resultados con el software comercial          | 42 |
| 2.2<br>dist | . Imp<br>tribuciór | lementación en software algoritmo lineal para sistemas de    | 43 |
| 2           | .2.1.              | Primer paso: Cálculo de impedancias                          | 44 |
| 2           | .2.2.              | Segundo paso: Cálculo de la Y de barra                       | 45 |
| 2           | .2.3.              | Tercer paso: Cálculo de sub matrices                         | 45 |
| 2           | .2.4.              | Cuarto paso: Cálculo de las potencias del modelo ZIP         | 46 |
| 2           | .2.5.              | Quinto paso: Cálculo de matrices A, B y C                    | 47 |
| 2           | .2.6.              | Sexto paso: Cálculo de voltajes                              | 47 |
| 2           | .2.7.              | Séptimo paso: Cálculo de potencias                           | 48 |
| 2           | .2.8.              | Comparación de resultados con software comercial             | 48 |
| 3.          | Result             | ados, Conclusiones y Recomendaciones                         | 49 |
| 3.1         | . Res              | ultados                                                      | 51 |
| 3.2         | . Algo             | pritmo Forward and Backward                                  | 51 |
| 3.3         | . Algo             | pritmo Lineal para sistemas de distribución                  | 52 |
| 3.4         | . Con              | nparación de resultados                                      | 53 |
| 3           | .4.1.              | Método Forward and Backward con CYME                         | 53 |
| 3           | .4.2.              | Método Lineal para redes de distribución con DIgSILENT       | 55 |
| 3           | .4.3.              | Interfaz de métodos                                          | 56 |
|             | 3.4.3.1            | Pantalla principal                                           | 56 |
|             | 3.4.3.2            | Características de la red de estudio                         | 56 |
|             | 3.4.3.3            | Presentación de resultados                                   | 57 |
| 3.5         | . Con              | clusiones                                                    | 58 |
| 3.6         | . Rec              | omendaciones                                                 | 58 |
| 4.          | Refere             | ncias Bibliográficas                                         | 58 |
| 5.          | Anexo              | S                                                            | 59 |

### RESUMEN

El presente trabajo de integración curricular tiene como objetivo el desarrollo de una herramienta computacional para la solución de flujos de potencia en redes de distribución radiales y desbalanceadas, esta herramienta podrá usarse como elemento lúdico para mejorar los procesos de enseñanza en la preparación de futuros ingenieros.

La herramienta computacional contiene métodos de solución de flujos de potencia las cuales utilizan ecuaciones de circuitos eléctricos alternos trifásicos para tener resultados más preciosos o ecuaciones linealizadas las cuales simplifican los cálculos matemáticos y así reducen los tiempos de simulación. Los métodos propuestos son Forward and Backward y Método Lineal, para cuya implementación en software se hace uso de la información del sistema de 13 barras de la IEEE el cual es un sistema desbalanceado con líneas áreas y subterráneas además de otras características particulares. Para la validación de resultados obtenidos a través de estos métodos se procedió a comparar dichos valores con resultados obtenidos con software comerciales los cuales utilicen metodologías de solución similares a las aplicadas que en este caso fueron PowerFactory DIgSILENT y CYME.

Con el propósito de validar los métodos programados se realizan cálculos y simulaciones para una red de prueba de 33 barras desbalanceada, obteniendo resultados similares en los dos casos, debidamente validados por resultados obtenidos en los softwares comerciales antes mencionados. Se implementa una interfaz gráfica para el uso de los programas generados, misma que permite visualizar los resultados de voltajes y ángulos de cada barra además de las potencias en cada ramal, así como sus pérdidas.

**PALABRAS CLAVE:** Herramienta computacional, Flujos de potencia, Redes de distribución radiales, Validación de resultados.

## ABSTRACT

The present work of curricular integration has as objective the development of a computational tool for the solution of power flows in radial and unbalanced distribution networks, this tool can be used as a playful element to improve the teaching processes in the preparation of future engineers.

The computational tool contains power flow solution methods which use three-phase alternating electrical circuit equations to obtain more accurate results or linearized equations which simplify mathematical calculations and thus reduce simulation times. The proposed methods are Forward and Backward and Linear Method, whose software implementation makes use of the information of the IEEE 13-bar system, which is an unbalanced system with overhead and subway lines, in addition to other particular characteristics. For the validation of the results obtained through these methods, we proceeded to compare these values with results obtained with commercial software using similar solution methodologies to those applied, which in this case were PowerFactory DIgSILENT and CYME.

In order to validate the programmed methods, calculations and simulations are performed for a test network of 33 unbalanced busbars, obtaining similar results in both cases, duly validated by results obtained in the aforementioned commercial software. A graphic interface is implemented for the use of the generated programs, which allows visualizing the results of voltages and angles of each bus, as well as the power in each branch and its losses.

**KEYWORDS:** Computational tool, Power flows, Radial distribution networks, Validation of results.

## 1. DESCRIPCIÓN DEL COMPONENTE DESARROLLADO

Al requerirse diferentes estudios en procesos de planificación y operación de sistemas eléctricos de distribución, en los que se requiere simular flujos de potencia desbalanceados, surge la necesidad de disponer de herramientas computacionales que brinden la posibilidad de ser utilizadas en ambientes académicos en los que se facilite el proceso enseñanza – aprendizaje de los métodos de solución de flujos de potencia desbalanceados.

La realización del presente trabajo de integración curricular busca estructurar una herramienta computacional que permita a docentes su utilización como elemento lúdico para enseñanza en un ambiente flexible e interactivo acorde a las necesidades académicas.

La herramienta computacional será desarrollada en ambiente de programación Python, lenguaje de programación de código abierto utilizado en el desarrollo de software y análisis de datos. Se busca sintetizar a través de una interfaz gráfica una herramienta computacional para la solución de flujos de potencia en redes de distribución generalmente radiales y desbalanceadas, permitiendo así tener soluciones coherentes con tiempos de procesamiento adecuados.

## 1.1. Objetivo general

Desarrollar una herramienta computacional para la realización de flujos de potencia de sistemas eléctricos de distribución utilizando métodos de solución AC y DC.

## 1.2. Objetivos específicos

Describir los principales algoritmos existentes en la bibliografía para la solución de flujos de potencia en sistemas eléctricos de distribución.

Programar algoritmos para la solución de flujos de potencia en sistemas de distribución desbalanceados.

Diseñar y estructurar una interfaz en lenguaje de programación de Python que brinde al usuario un ambiente lúdico de aprendizaje de flujos de potencia en sistemas eléctricos de distribución.

Validar la herramienta de software desarrollada, comparando los resultados obtenidos con soluciones de herramientas de software comerciales.

## 1.3. Alcance

El trabajo de integración curricular parte de una revisión bibliográfica de métodos de solución de flujo de potencia de sistemas de distribución. Se realizará una comparación a nivel bibliográfico de las características de los métodos investigados con la finalidad de determinar ventajas y desventajas de cada uno de ellos.

En una segunda fase se procederá a programar una herramienta de software basada en los algoritmos de solución descritos en la fase teórica. La programación se realizará en lenguaje Python.

Se efectuará pruebas a la herramienta computacional desarrollada en base de ejemplos, cuyos resultados serán contrastados haciendo uso de herramientas de software comerciales.

Se realizará la redacción del trabajo de integración curricular, mismo que contendrá información relevante de los algoritmos revisados, así como el desarrollo de la herramienta computacional, análisis de resultados, manual de usuario, conclusiones y recomendaciones, todo esto con el fin de tener un documento formal que sustente el trabajo realizado.

## 1.4. Marco teórico

Los estudios de flujo de potencia en redes de distribución permiten emular la operación del sistema ya sea en condiciones operativas como también en el ámbito de la planificación de corto y largo plazo. El procedimiento de simulación de flujos de potencia se utiliza para obtener las variables de estado de un sistema, módulos y ángulos de voltajes de la red.

En las redes de alto voltaje los factores que alteran el equilibrio de la red son las conexiones de grandes cargas, impedancias propias de la red, hornos de arco, entre otros. Por otra parte, en redes de baja tensión generalmente monofásicas, son desequilibradas por la diferencia que existen entre las cargas individuales presentes en cada fase además de anomalías propias del sistema ya sea por defectos entre fases o roturas de conductores en la red.

El desbalance en redes distribución provoca perdidas por calentamiento, así como la baja eficiencia de las cargas o maquinas conectadas, por lo tanto, surge la necesidad de estudio de las redes de distribución a través de algoritmos los cuales ayuden al cálculo de flujos de potencia [1].

#### 1.4.1. Modelación de componentes de sistemas eléctricos de distribución

Para el estudio de sistemas eléctricos de distribución es necesario la modelación de componentes o equipos que conforman la etapa de distribución como son las líneas de distribución, transformadores y cargas. Al conocer su modelado matemático se puede aplicar diferentes algoritmos para calcular condiciones operativas determinadas fundamentalmente por los resultados de flujos de potencia.

#### 1.4.1.1. Líneas de distribución

Las líneas de distribución eléctrica son parte del sistema de distribución de energía eléctrica, que es una red de cables, transformadores y otros equipos que entregan electricidad desde las subestaciones eléctricas a los usuarios finales, como hogares, empresas e industrias.

Las líneas de distribución eléctrica están diseñadas para transportar electricidad de manera eficiente y segura a lo largo de áreas urbanas, suburbanas y rurales. Estas líneas pueden ser aéreas o subterráneas, y su diseño y configuración puede variar según la ubicación geográfica, la densidad de población, los requisitos de carga y otros factores.

#### Impedancias en líneas aéreas

Las líneas aéreas son el tipo más común de configuración en sistemas de distribución, desde una apreciación básica, se trata de conductores desnudos soportados por aisladores instalados en postes. Una ventaja puede ser el costo de su construcción en comparación con el de redes subterráneas, además de menores tiempos de construcción y un fácil mantenimiento.

Es necesario determinar la impedancia serie de este tipo de líneas, la cual estará compuesta por la resistencia de los conductores y las reactancias inductivas propias y mutuas, producto de los campos magnéticos que rodean a los conductores. Debido a que los sistemas de distribución no son equilibrados, es necesario considerar la impedancia propia y mutua de los conductores, además de tener en cuenta la trayectoria de retorno por el neutro de las corrientes desequilibradas.



Figura 1.1. Configuración general líneas aéreas [2].

En 1926 el Dr. John R. Carson propone un método para calcular las impedancias propias y mutuas para líneas aéreas y subterráneas considerando el retorno por tierra de la corriente. Carson utilizó el método de las imágenes, el cual dice que cada conductor a una distancia dada sobre la tierra tiene un conductor imagen a la misma distancia por debajo de la tierra, en la Figura 1.1 se presenta un modelo típico de líneas aéreas compuesta por su resistencia y reactancia de tipo inductiva.

La impedancia mutua y propia de un conductor se expresan de la siguiente manera:

$$Z_{ii} = r_i + 0.09530 + j0.12134 \cdot \left( \ln \frac{1}{GMR_i} + 7.9302 \right) \Omega/milla$$
(1.1)

$$Z_{ij} = 0.09530 + j0.12134 \cdot \left( \ln \frac{1}{D_{ij}} + 7.9302 \right) \Omega/milla$$
(1.2)

Donde:

 $Z_{ii}$  = Impedancia propia del conductor i.

 $Z_{ij}$  = Impedancia mutua entre los conductores i y j.

 $r_i$  = Resistencia del conductor i, dato dado por tablas.

 $GMR_i$  = Radio medio geométrico del conductor [ft].

 $D_{ij}$  = Distancia entre conductores i y j [ft].

La matriz de impedancias viene dada por:

$$[Z_{abc}] = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix} \Omega/milla$$
(1.3)

La matriz descrita en la ecuación (1.3) es conocida como la matriz de impedancias de fase y es usada como el modelo de impedancias de la línea en el resto de los cálculos a realizar. En el caso de que se tenga un sistema monofásico se tendría que aplicar la reducción de Kron para encontrar la matriz primitiva.

#### Impedancias en líneas subterráneas

La impedancia de las líneas subterráneas para distribución de energía eléctrica depende de varios factores, incluyendo el material de los conductores, la distancia entre los conductores, el tipo de aislamiento, la frecuencia de la corriente eléctrica, entre otros. La impedancia se expresa generalmente en ohmios por unidad de longitud (ohmios por kilómetro, por ejemplo) y puede dividirse en componentes resistivos e inductivos [3].

$$Z_{ij} = r_i + j\omega L \tag{1.4}$$

La fórmula de Carson es una aproximación que se utiliza para calcular la inductancia de una línea de transmisión aérea o subterránea. Para líneas subterráneas, se puede expresar como:

$$L = \frac{\mu}{\pi} \ln\left(\frac{2h}{d}\right) \tag{1.5}$$

Donde:

L= Inductancia por unidad de longitud en henrios por metro (H/m).

 $\mu$  = Es la permeabilidad magnética del material circundante en henrios por metro.

*h*= Es la altura de la línea sobre la superficie del suelo en metros (m).

d = Es el diámetro del conductor en metros (m).

#### Admitancias de líneas aéreas

La admitancia de una línea está compuesta por conductancia y susceptancia, pero usualmente la conductancia es despreciada ya que su valor comparado con la susceptancia es muy pequeño.



Figura 1.2. Campo eléctrico de un conductor cargado [2].

La capacitancia de la línea es el resultado de la diferencia de potencial que existe entre dos conductores, lo cual provoca que los conductores se carguen de forma similar a las placas que se encuentran dentro de un capacitor, esto se produce debido al campo eléctrico que emana hacia el exterior desde el centro del conductor. Para explicar este fenómeno se calcula la diferencia de potencial entre dos puntos P1 y P2 como se muestra en la Figura 1.2., al conocer este potencial se procede a calcular la capacitancia entre los dos puntos.

Al igual que para las impedancias es necesario aplicar el método de conductores y sus imágenes obteniendo las siguientes expresiones:

Los coeficientes de potencial propio y mutuo para líneas áreas vienen dados por:

$$P_{ii} = 11.17689 \cdot \ln \frac{S_{ii}}{RD_i} \ milla/\mu F$$
(1.6)

$$P_{ii} = 11.17689 \cdot \ln \frac{S_{ij}}{D_{ij}} \ milla/\mu F \tag{1.7}$$

Donde:

 $S_{ii}$  = Distancia entre el conductor i y su imagen [ft].

- $S_{ij}$  = Distancia entre el conductor i y la imagen del conductor j [ft].
- $D_{ij}$ = Distancia entre el conductor i y el conductor j [ft].
- $RD_i$  = Radio del conductor [ft].

La matriz de admitancias viene dada por:

$$\begin{bmatrix} P_{primitiva} \end{bmatrix} = \begin{bmatrix} [P_{ij}] & [P_{in}] \\ [P_{nj}] & [P_{nn}] \end{bmatrix}$$
(1.8)

Se asume que el neutro está conectado a tierra por lo cual se emplea la reducción de Kron, obteniendo una matriz 3x3:

$$[P_{abc}] = [P_{ij}] - [P_{in}] \cdot [P_{nn}]^{-1} \cdot [P_{nj}]$$
(1.9)

Al invertir la matriz de coeficientes de potencial ya reducida, se obtiene como resultado la matriz de capacitancias con la misma dimensión.

$$[C_{abc}] = [P_{abc}]^{-1} \tag{1.10}$$

La matriz de admitancias viene dada por:

$$[Y_{abc}] = j \cdot \omega \cdot [C_{abc}] \tag{1.11}$$

#### Admitancias de líneas subterráneas

Para líneas subterráneas existen diferentes tipos de conductores, el que será utilizado para este análisis será el conductor con neutro concéntrico.

El campo eléctrico está restringido por el material aislante, para lo cual se toma la permitividad del polietileno por ser el más común, obteniendo así la admitancia expresada por la siguiente formula:

$$Y_{ag} = \frac{j77.3619}{\ln\frac{R_b}{RD_c} - \frac{1}{k}\ln\frac{k \cdot RD_s}{R_b}} \mu S/milla$$
(1.12)

Donde:

 $R_b$  = Radio del circulo que va desde el conductor hasta el centro de los neutros.

 $RD_c$  = Radio del conductor de fase.

 $RD_s$  = Radio de uno de los neutros concéntricos.

k= Número de neutros concéntricos.

#### 1.4.1.2. Transformadores

Generalmente los transformadores utilizados en distribución son trifásicos ya que resulta ser más conveniente que utilizar 3 transformadores monofásicos. Al tener condiciones de desequilibrio, en las redes de distribución resulta poco apropiado instalar transformadores con tipo de conexión estrella (neutro aterrizado) - estrella (neutro aterrizado) ya que al tener la presencia de un flujo homopolar se tienden a deformar las ondas de voltajes en los dos

lados del transformador. Para solventar este inconveniente se suele realizar una conexión triangulo en alguno de los devanados puesto que este tipo de conexión elimina el flujo homopolar.

Dependiendo de la fuente que se tenga en las subestaciones ya sea que contenga 4 o 3 hilos se procederá al tipo de conexionado de los transformadores de distribución, siendo los esquemas más comunes el triángulo – estrella (neutro aterrizado) para una fuente de 4 hilos y triangulo – triangulo para una fuente de 3 hilos.

En la Figura 1.3. se representa un transformador trifásico que existe entre la fuente y carga, independiente de su tipo de conexión, en el lado de alta se tiene los subíndices A, B, C y N, mientras que en lado de baja se tiene a, b, c y n.



Figura 1.3. Transformador trifásico [2].

Las siguientes ecuaciones serán utilizadas para el modelo del transformador trifásico en algoritmos de cálculos de flujo de potencia en redes de distribución, las cuales son matrices que modelan el transformador y sus conexiones.

#### Ecuaciones para el barrido Forward

$$[VLN_{ABC}] = [a_t] \cdot [VLN_{abc}] + [b_t] \cdot [I\_abc]$$
(1.13)

$$[I_{ABC}] = [c_t] \cdot [VLN_{abc}] + [d_t] \cdot [I\_abc]$$

$$(1.14)$$

Ecuación para el barrido Backward

$$[VLN_{ABC}] = [A_t] \cdot [VLN_{abc}] - [B_t] \cdot [I\_abc]$$
(1.15)

Las ecuaciones dadas de  $[VLN_{ABC}]$  se refieren a la tensión de fase en un sistema conectado en configuración estrella; en el caso de una conexión en triángulo, estas ecuaciones representan la tensión de fase equivalente.

#### Conexión triangulo – estrella (neutro aterrizado).

Este tipo de conexión es el más utilizado en las subestaciones de distribución con 4 hilos en su fuente en estrella. La conexión delta estabiliza el neutro permitiendo la circulación de corriente con la presencia del tercer armónico lo cual puede provocar elevaciones de tensión.



Figura 1.4. Conexión triangulo – estrella tierra [2].

En la Figura 1.4. se indica el desfase que existe entre las corrientes para este tipo de conexión. De acuerdo con la polaridad mostrada, se tiene que la corriente en el lado de alta estará en fase con las corrientes del lado de baja como se muestra en el diagrama de fasores dibujados para las corrientes de secuencia positiva.

Las ecuaciones generalizadas para este tipo de conexión se presentan a continuación las cuales serán utilizadas en las ecuaciones (1.13), (1.14) y (1.15) para los cálculos correspondientes de voltajes y corrientes.

$$\begin{bmatrix} a_t \end{bmatrix} = -\frac{n_t}{3} \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} b_t \end{bmatrix} = \begin{bmatrix} Zt_{abc} \end{bmatrix} = \begin{bmatrix} Zt_a & 0 & 0 \\ 0 & Zt_b & 0 \\ 0 & 0 & Zt_c \end{bmatrix}$$
$$\begin{bmatrix} c_t \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} d_t \end{bmatrix} = \frac{1}{n_t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} A_t \end{bmatrix} = \frac{1}{n_t} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} B_t \end{bmatrix} = \begin{bmatrix} Zt_a & 0 & 0 \\ 0 & Zt_b & 0 \\ 0 & 0 & Zt_c \end{bmatrix}$$

Donde:

 $n_t = rac{V_{LL} \ nominal \ zona \ de \ alta}{V_{LL} \ nominal \ zona \ de \ baja}$ 

Zt = Impedancia de los devanados del transformador.

#### Conexión triángulo - triángulo

Este tipo de conexión se utiliza al proporcionar energía eléctrica a cargas trifásicas las cuales pueden ser de gran capacidad de consumo, en la Figura 1.5. se presenta el modelo generalizado de este tipo de conexión.



Figura 1.5. Conexión triangulo – triangulo [2].

Las ecuaciones generalizadas utilizadas para este tipo de conexión se presentan a continuación y de igual manera serán reemplazadas en las ecuaciones (1.13), (1.14) y (1.15).

$$\begin{bmatrix} a_t \end{bmatrix} = \begin{bmatrix} n_t & -n_t & 0 \\ 0 & n_t & -n_t \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} b_t \end{bmatrix} = \begin{bmatrix} Zt_{abc} \end{bmatrix} = \begin{bmatrix} n_t \cdot Zt_a & 0 & 0 \\ 0 & 0 & -n_t \cdot Zt_a \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} c_t \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} d_t \end{bmatrix} = \frac{1}{n_t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} A_t \end{bmatrix} = \frac{1}{3 \cdot n_t} \begin{bmatrix} 2 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & -2 & 0 \end{bmatrix}$$
$$\begin{bmatrix} B_t \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \cdot Zt_{ab} & 0 & -Zt_{bc} \\ -Zt_{ab} & 0 & 2 \cdot Zt_{bc} \end{bmatrix}$$

Donde:

 $n_t = rac{V_{LL} \ nominal \ zona \ de \ alta}{V_{LL} \ nominal \ zona \ de \ baja}$ 

Zt = Impedancia de los devanados del transformador.

#### 1.4.1.3. Tipos de carga

En redes de distribución pueden existir diferentes tipos de carga según la finalidad de uso que el cliente tenga, ya sea de tipo domiciliario, comercial o industria. Es importante conocer el tipo de carga y su conexionado al momento de modelar líneas de distribución, las cargas pueden estar conectadas a un nodo o estar uniformemente distribuidas en la línea de distribución y pueden ser trifásicas con tipo de conexión estrella o triangulo, o monofásicas las cuales se conectan a línea y tierra o línea a línea según su característica.

En el sistema de distribución las cargas se pueden definir con la potencia compleja que consume (kVA) y su factor de potencia (fp), la potencia activa (kW) y factor de potencia (fp) o por la potencia activa (kW) y potencia reactiva (kVAr) [4].

La modelación de las cargas se puede definir como:

- Potencia constante P y Q.
- Intensidad constante
- Impedancia constante

Todas estas modelaciones se pueden aplicar a conexionados estrella o triangulo.

#### 1.4.2. Métodos de solución de flujos de potencia

El método Forward and Backward es un algoritmo clásico, el cual utiliza barridos hacia adelante y hacia atrás a través de la red eléctrica empleando las leyes de Kirchhoff. El barrido comienza con la etapa Forward desde el ultimo nodo hasta el generador y desde este nuevo al último nodo continuando así de manera iterativa hasta que el error de la fuente y el valor obtenido del nudo no supere un valor preestablecido.

Otro método utilizado para resolver los flujos de potencia en redes de distribución es el método lineal del modelo ZIP de cargas. Este método, comúnmente empleado en ingeniería eléctrica, se emplea para analizar y calcular el flujo de carga en sistemas de energía eléctrica, especialmente cuando se enfrentan a desequilibrios. El modelo ZIP de cargas es una herramienta que describe cómo la corriente requerida por las cargas eléctricas varía en relación con el voltaje en un sistema de potencia. El término "ZIP" hace referencia a tres categorías principales de comportamiento de carga consideradas en este modelo: Impedancia Constante (Z), Impedancia Proporcional a la Tensión (I), e Impedancia Proporcional al Cuadrado de la Tensión (P)

#### 1.4.2.1. Método Forward and Backward

Este método fue desarrollado por W. H. Kersting y R. Berg, se trata de un eficiente algoritmo para la resolución de flujos de potencia para sistemas eléctricos balanceados o desbalanceados. El procedimiento emplea las leyes de Kirchhoff aplicando un barrido hacia adelante y hacia atrás a través de la red, el algoritmo comienza desde el ultimo nodo hasta el nodo generador y de éste de nuevo al último, continuando de esta forma iterativamente hasta que el error entre la tensión de la fuente y el valor obtenido en ese nodo no supere un error establecido [2].

La etapa Backward comienza su barrido en el nodo de referencia o fuente hasta llegar al nodo extremo, al aplicar la segunda ley de Kirchhoff se llega a obtener las caídas de tensión en las líneas, para esta etapa se debe considerar los valores de corrientes obtenidos en la etapa previa (Forward), con lo cual se consigue nuevas tensiones nodales, valores que serán utilizados en el nuevo comienzo de la etapa Forward. Este proceso es iterativo hasta alcanzar la convergencia del sistema. Concluye con la ejecución de un barrido hacia adelante (Forward) para verificar que la diferencia entre el valor de tensión real de la referencia y el valor calculado mediante el algoritmo sea inferior a un margen de error preestablecido [5].

En la Figura 1.6 se presenta el diagrama de flujo del método Forward - Backward.



Figura 1.6. Diagrama de flujo método Forward - Backward.

Para la implementación de la etapa Forward se consideran las siguientes ecuaciones:

$$[VLG_{abc}]_n = [a] \cdot [VLG_{abc}]_m + [b] \cdot [I_{abc}]_m$$
(1.16)

$$[I_{abc}]_n = [c] \cdot [VLG_{abc}]_m + [d] \cdot [I_{abc}]_m$$
(1.17)

Donde:

 $[a] = [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}]$  $[b] = [Z_{abc}]$  $[c] = [Y_{abc}] + \frac{1}{4} \cdot [Y_{abc}] \cdot [Z_{abc}] \cdot [Y_{abc}]$  $[d] = [U] + \frac{1}{2} \cdot [Y_{abc}] \cdot [Z_{abc}]$ 

Las ecuaciones descritas son utilizadas para el cálculo de tensiones y corrientes de un nodo n el cual puede ser referencia o generador a partir de un nodo m ubicada en los extremos. Estas serán utilizadas en el barrido Forward, mismo que empieza la iteración y que supone conocidas las tensiones en los extremos [2].

Cuando el barrido llega hasta el nodo de referencia, comparará el valor obtenido con el real, si se tiene un error alto se procede con el barrido Backward.

El barrido Backward parte de la fuente y termina en los nodos extremos de la red, por lo cual se necesitan ecuaciones para el cálculo de tensiones en el nodo m a partir de un nodo n [2].

$$[VLG_{abc}]_{m} = [A] \cdot [VLG_{abc}]_{n} - [B] \cdot [I_{abc}]_{m}$$
(1.18)

Donde:

 $[A] = [a]^{-1}$ 

$$[B] = [b]^{-1}$$

Las ecuaciones  $[a_i]$ ,  $[b_i]$ ,  $[c_i]$ ,  $[d_i]$ ,  $[A_i]$  y  $[B_i]$  son ecuaciones de transformación, las cuales son desarrolladas con detalle a continuación:

En la siguiente figura se presenta el modelo pi de una línea trifásica, necesario en la implementación de las leyes de Kirchhoff.



Figura 1.7. Modelo Pi red trifásica [2].

Al aplicar la ley de corrientes de Kirchhoff en la Figura 1.7. se tiene que:

$$\begin{bmatrix} Ilinea_{a}\\ Ilinea_{b}\\ Ilinea_{c}\end{bmatrix}_{n} = \begin{bmatrix} I_{a}\\ I_{b}\\ I_{c}\end{bmatrix}_{m} + \frac{1}{2} \cdot \begin{bmatrix} Y_{aa} & Y_{ab} & Y_{ac}\\ Y_{ba} & Y_{bb} & Y_{bc}\\ Y_{ca} & Y_{cb} & Y_{cc} \end{bmatrix} \cdot \begin{bmatrix} V_{ag}\\ V_{bg}\\ V_{cg} \end{bmatrix}_{m}$$
(1.19)

De manera simplificada se tiene:

$$[Ilinea_{abc}]_n = [I_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_m$$
(1.20)

A través de la ley de tensiones de Kirchhoff se tiene:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{n} = \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{m} + \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix} \cdot \begin{bmatrix} Ilinea_{a} \\ Ilinea_{b} \\ Ilinea_{c} \end{bmatrix}_{m}$$
(1.21)

De manera simplificada se tiene:

Reemplazando la ecuación (1.20) en (1.22), se tiene:

$$[VLG_{abc}]_n = [VLG_{abc}]_m + [Z_{abc}] \cdot [Ilinea_{abc}]_m$$
(1.22)

$$[VLG_{abc}]_{n} = [VLG_{abc}]_{m} + [Z_{abc}] \cdot \left\{ [I_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_{m} \right\}$$
(1.23)

Sacando factor común  $[VLG_{abc}]_m$ , se tiene:

$$[VLG_{abc}]_{n} = \left\{ [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + [Z_{abc}] \cdot [I_{abc}]_{m}$$
(1.24)

Donde [U] es la matriz identidad:

$$[U] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Para tener constantes generalizadas se procede a realizar la formula genérica de la ecuación (1.24):

$$[VLG_{abc}]_{n} = [a] \cdot [VLG_{abc}]_{m} + [b] \cdot [I_{abc}]_{m}$$
(1.25)

Donde:

$$[a] = [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}]$$
$$[b] = [Z_{abc}]$$

De igual manera se requiere obtener las constantes generalizadas con respecto a las intensidades, se sigue un proceso similar al ya explicado mediante la ley de Kirchhoff, obteniendo:

$$\begin{bmatrix} I_{a} \\ I_{b} \\ I_{c} \end{bmatrix}_{n} = \begin{bmatrix} Ilinea_{a} \\ Ilinea_{b} \\ Ilinea_{c} \end{bmatrix}_{m} + \frac{1}{2} \cdot \begin{bmatrix} Y_{aa} & Y_{ab} & Y_{ac} \\ Y_{ba} & Y_{bb} & Y_{bc} \\ Y_{ca} & Y_{cb} & Y_{cc} \end{bmatrix} \cdot \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{m}$$
(1.26)
$$[I_{abc}]_{n} = [Ilinea_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_{n}$$
(1.27)

Combinando con la ecuación ya encontrada:

$$[I_{abc}]_n = [I_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_n$$
(1.28)

Reemplazando la ecuación (1.25) en (1.28), se tiene:

$$[I_{abc}]_{n} = [I_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}]$$

$$\cdot \left\{ \left\{ [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + [Z_{abc}]$$

$$\cdot [I_{abc}]_{m} \right\}$$

$$(1.29)$$

Se procede a sacar factor común  $[I_{abc}]_m$  y  $[VLG_{abc}]_m$ , y se obtiene:

$$[I_{abc}]_{n} = \left\{ [Y_{abc}] + \frac{1}{4} \cdot [Y_{abc}] \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + \left\{ [U] + \frac{1}{2} \cdot (1.30) \right\} \cdot [Y_{abc}] \cdot [Z_{abc}]_{m}$$

Se procede a realizar la formula genérica y obtener las contantes generalizadas:

$$[I_{abc}]_n = [c] \cdot [VLG_{abc}]_m + [d] \cdot [I_{abc}]_m$$
(1.31)

Donde:

$$[c] = [Y_{abc}] + \frac{1}{4} \cdot [Y_{abc}] \cdot [Z_{abc}] \cdot [Y_{abc}]$$
$$[d] = [U] + \frac{1}{2} \cdot [Y_{abc}] \cdot [Z_{abc}]$$

Para la demostración de la ecuación que utiliza el barrido Backward, se realiza cuando el error es mayor al propuesto, por lo cual se calcula el valor de tensión en el nodo m a partir del nodo n o de referencia.

$$[VLG_{abc}]_{m} = [A] \cdot [VLG_{abc}]_{n} - [B] \cdot [I_{abc}]_{m}$$
(1.32)

Donde:

 $[A] = [a]^{-1}$ 

 $[B] = [b]^{-1}$ 

#### 1.4.2.2. Flujo de carga trifásico lineal para sistemas de distribución.

El flujo de potencia en corriente continua (DC-power-flow) es una metodología muy utilizada en el análisis de sistemas eléctricos de potencia, sin embargo, esta aproximación lineal no es la más adecuada para sistemas de distribución cuya relación R/X es elevada y dada su condición operativa desequilibrada. En tal sentido el problema de flujos de potencia desbalanceados de sistemas de distribución se aborda utilizando una aproximación lineal en el plano complejo que permite obtener resultados comparables a los de otros métodos. Esta metodología brinda adicionalmente la posibilidad de ser aplicada a sistemas cuya topología no sea necesariamente radial. En esta aproximación lineal los nodos PV no se consideran, pero los generadores de distribución pueden incluirse en los casos en los que el código de red obligue a operar estos generadores con factor de potencia unitario.

Para una mejor compresión del método lineal a utilizar, se presenta el siguiente diagrama de flujo [6].



Figura 1.8. Diagrama de flujo método lineal.

Los voltajes y las corrientes de los nodos están relacionados a través de la matriz de admitancia como se presenta en la siguiente ecuación:

$$\begin{bmatrix} I_S \\ I_N \end{bmatrix} = \begin{bmatrix} Y_{SS} & Y_{SN} \\ Y_{NS} & Y_{NN} \end{bmatrix} \cdot \begin{bmatrix} V_S \\ V_N \end{bmatrix}$$
(1.33)

Donde los subíndices representan:

- S = Nodo Slack.
- N = Conjunto restantes de nodos.

Cada corriente de nodo se encuentra relacionada con el voltaje de acuerdo con el modelo ZIP. El modelo ZIP de corriente de carga es una herramienta fundamental en el análisis de sistemas eléctricos, ya que explica cómo cambia la corriente requerida por las cargas según la variación del voltaje en una red eléctrica. Este enfoque considera tres elementos clave de las cargas que influyen en la corriente total y cómo estos elementos se relacionan con la tensión del sistema. Las letras "ZIP" representan las tres categorías de

comportamiento de carga contempladas: impedancia constante (Z), impedancia proporcional a la tensión (I) e impedancia proporcional al cuadrado de la tensión (P) [6].

La ecuación 1.34 describe el modelo ZIP donde se realizan ciertas modificaciones a través de constantes con el fin de aproximar dicha ecuación como se explicará más adelante.

$$I_{k} = \frac{S_{Pk}^{*}}{V_{k}^{*}} + h \cdot S_{Ik}^{*} + h^{2} \cdot S_{Zk}^{*} \cdot V_{k}$$
(1.34)

Donde:

- $h = 1/V_{nom}$
- $I_k = Corriente \ en \ el \ punto \ k \ del \ sistema.$
- $S_{Pk}^* = Representa$  la potencia activa y reactiva consumida o generada en el punto k.
- $V_k^* = Voltaje \ complejo \ conjugado \ en \ el \ punto \ k.$
- $S_{Ik}^* = Representa$  la potencia que varía linealmente con el voltaje en el punto k.
- $S_{Zk}^* = Representa la parte de la potencia que permanece constante independientemente del voltaje en k.$

En términos generales, el modelo ZIP de corriente de carga se describe como lineal respecto al voltaje  $V_k$ , a excepción de la componente de potencia  $S_P$ . Las componentes  $S_I$  y  $S_Z$  están afectadas por un factor h, el cual varía en función del voltaje nominal del sistema, generando así una relación lineal entre estas componentes y el voltaje  $V_k$ . A pesar de que el modelo ZIP simplifica el comportamiento de las cargas eléctricas de manera lineal, la componente de potencia  $S_P$  no sigue esta misma relación con el voltaje  $V_k$ , pues se considera constante sin importar las fluctuaciones en el voltaje de conexión  $V_k$ , esto resulta en una relación no lineal entre  $S_P$  y  $V_k$ , marcando una distinción clave en comparación con las otras componentes del modelo ZIP [6].

La aproximación lineal se desarrolla sobre los números complejos y no sobre los reales como en las formulaciones convencionales de flujo de carga.

La función  $f(\Delta V) = 1/(1 - \Delta V)$  es analizada para todo  $||\Delta V|| < 1$ , donde su serie de Taylor alrededor de cero es:

$$\frac{1}{1 - \Delta V} = \sum_{n=0}^{\infty} (\Delta V)^n, \qquad \left| |\Delta V| \right| < 1$$
(1.35)

Despreciando los términos de orden superior y definiendo  $V = 1 - \Delta V$  se obtiene la forma lineal de la siguiente manera:

$$\frac{1}{V} = \frac{1}{1 - \Delta V} \approx 1 + \Delta V = 2 - V \tag{1.36}$$

Esta aproximación lineal es útil para simplificar el análisis de sistemas eléctricos, especialmente en situaciones donde las variaciones son pequeñas y se puede considerar que  $|\Delta V|$ <1. La aproximación lineal facilita el cálculo y la comprensión del comportamiento del sistema sin perder demasiada precisión en las estimaciones [6].

Al incluir la aproximación encontrada en el modelo ZIP, previamente descrito, se tiene la siguiente ecuación:

$$I_{k} = h \cdot S_{Pk}^{*} \cdot (2 - h \cdot V_{k}^{*}) + h \cdot S_{Ik}^{*} + h^{2} \cdot S_{Zk}^{*} \cdot V_{k}$$
(1.37)

Usando (1.33) y reorganizando algunos términos, se obtiene una formulación lineal:

$$A + B \cdot V_N^* + C \cdot V_N = 0 \tag{1.38}$$

Donde:

$$A = Y_{NS} \cdot V_S - 2h \cdot S_{PN}^* - h \cdot S_{IN}^*$$
$$B = h^2 \cdot diag(S_{PN}^*)$$
$$C = Y_{NN} - h^2 \cdot diag(S_{ZN}^*)$$

La ecuación (1.38) debe ser resuelta en representación rectangular de la siguiente manera.

$$\begin{bmatrix} -A_r \\ -A_i \end{bmatrix} = \begin{bmatrix} B_r + C_r & B_i - C_i \\ B_i + C_i & -B_r + C_r \end{bmatrix} \cdot \begin{bmatrix} V_r \\ V_i \end{bmatrix}$$
(1.39)

Donde los subíndices:

r = Parte real.

Esta representación es una forma conveniente de resolver la ecuación (1.38) en términos de partes real e imaginaria de los voltajes complejos de los nodos del sistema. La matriz en el lado derecho de la ecuación contiene términos que relacionan las partes real e imaginaria de los voltajes con *B* y *C*, mientras que la matriz del lado izquierdo de la ecuación contiene términos relacionados con *A*.

La metodología propuesta es adaptable para aplicarse en sistemas de distribución de energía trifásicos que presentan desequilibrio. En este caso, se necesita una matriz de admitancia trifásica. Las tensiones  $V_N$  representan las tensiones fase-neutro. En la ecuación (1.33), el subíndice *S* indica tres nodos correspondientes a cada una de las fases. Aunque el tamaño del problema se incrementa al considerar sistemas trifásicos, la aproximación sigue siendo precisa, como se establece en la ecuación (1.38). Es importante destacar que, en sistemas trifásicos, los ángulos no necesariamente son cercanos a cero, donde la validez de la ecuación (1.35) se basa, por ende, se hace necesario definir una constante de rotación para cada nodo, donde  $\phi_k = \{0, -2\pi/3, 2\pi/3\}$  según la fase correspondiente [6].

## 2. METODOLOGÍA

Con el fin de comprender de mejor manera la implementación en software de los algoritmos propuestos para la solución de flujos de potencia en redes radiales de distribución ya sean balanceadas o desbalanceadas, se utiliza el modelo radial de 13 barras de IEEE donde se parametriza los modelos de sus líneas aéreas y subterráneas las cuales pueden ser monofásicas, bifásicas y trifásicas; transformadores, cargas y capacitores. En el **Anexo 1** se presenta el modelo de 13 barras a mejor detalle.

Una vez calculado el flujo de potencia se procederá a validar los resultados obtenidos comparándolos con aquellos que se obtengan mediante el uso de software de tipo comercial. Para el algoritmo Forward and Backward el software comercial más conveniente para la validación de resultados es el CYME puesto que utiliza ecuaciones de corriente AC, por otra parte, los resultados obtenidos con el algoritmo lineal serán contrastados con el software DIgSILENT PowerFactory ya que utiliza un modelo lineal sin iteraciones para el cálculo de flujos de potencia trifásicos desbalanceados.

Para una mejor visualización de los resultados obtenidos serán presentados a través de una interfaz de Python en la cual se visualizará los valores obtenidos a través de los métodos propuestos, cabe mencionar que esta interfaz contará con una su respectiva guía para su correcto funcionamiento.



Figura 2.1. Red de prueba IEEE 13 Node Feeder [7].

El modelo implementado contiene líneas aéreas con normas ID-500, ID-505 e ID-510, las cuales son espaciamientos normalizados por IEEE para redes de prueba para las siguientes configuraciones:

- 3 fases 4 Hilos
- 2 fases- 3 Hilos
- 1 fase 2 Hilos

Para líneas subterráneas se utilizó las normas ID-515 e ID-520 las cuales son espaciamientos para este tipo de líneas normalizados por IEEE para líneas subterráneas de prueba para las siguientes configuraciones:

- 3 fases 3 Hilos
- 1 fase 2 Hilos

En la tabla 2.1. se presentan datos de la barra slack, valores que serán tomados como referencia para la primera iteración.

|                       | V                | oltajes fases | [pu]   | Á        | ngulos fases [ | °]       |
|-----------------------|------------------|---------------|--------|----------|----------------|----------|
| Nombre de<br>la barra | mbre de Va Vb Vc |               | Vc     | Ángulo a | Ángulo b       | Ángulo c |
| 632                   | 1.021            | 1.042         | 1.0174 | -2.49    | -121.72        | 117.83   |

Tabla 2.1. Datos de la barra slack [7].

El sistema IEEE 13 Node Feeder utiliza diferentes tipos de conductores, lo que resulta en diferentes impedancias y admitancias de las líneas que componen la red, cabe recalcar que el tipo de conductor podrá ser modificado de acuerdo con la necesidad del usuario, a continuación, se presenta la lista de conductores utilizados y sus características.

| Calibre del<br>conductor<br>(AWG o<br>kcmil) | Tipo de conductor:<br>AA= De Aluminio;<br>ACSR= De Aluminio<br>Reforzado y;<br>CU= Cobre. | Resistencia a<br>60 Hz y 50 °C<br>(ohm/milla) | Diámetro<br>exterior del<br>conductor<br>(pulgadas) | RMG Radio<br>Medio<br>Geométrico<br>(pies) | Capacidad<br>del<br>conductor a<br>50 °C<br>(Amperios) |
|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| 1000                                         | AA                                                                                        | 0,105                                         | 1,15                                                | 0,0368                                     | 698                                                    |
| 556,5                                        | ACSR                                                                                      | 0,1859                                        | 0,927                                               | 0,0313                                     | 730                                                    |
| 500                                          | AA                                                                                        | 0,206                                         | 0,813                                               | 0,026                                      | 483                                                    |
| 336,4                                        | ACSR                                                                                      | 0,306                                         | 0,721                                               | 0,0244                                     | 530                                                    |
| 250                                          | AA                                                                                        | 0,41                                          | 0,567                                               | 0,0171                                     | 329                                                    |
| 4/0                                          | ACSR                                                                                      | 0,592                                         | 0,563                                               | 0,00814                                    | 340                                                    |
| 2/0                                          | AA                                                                                        | 0,769                                         | 0,414                                               | 0,0125                                     | 230                                                    |
| 1/0                                          | ACSR                                                                                      | 1,12                                          | 0,398                                               | 0,00446                                    | 230                                                    |
| 1/0                                          | AA                                                                                        | 0,97                                          | 0,368                                               | 0,0111                                     | 310                                                    |
| 2                                            | AA                                                                                        | 1,54                                          | 0,292                                               | 0,00883                                    | 156                                                    |
| 2                                            | ACSR                                                                                      | 1,69                                          | 0,316                                               | 0,00418                                    | 180                                                    |
| 4                                            | ACSR                                                                                      | 2,55                                          | 0,257                                               | 0,00452                                    | 140                                                    |
| 10                                           | CU                                                                                        | 5,903                                         | 0,102                                               | 0,00331                                    | 80                                                     |
| 12                                           | CU                                                                                        | 9,375                                         | 0,081                                               | 0,00262                                    | 75                                                     |
| 14                                           | CU                                                                                        | 14.872                                        | 0.064                                               | 0.00208                                    | 20                                                     |

Tabla 2.2. Tipos de conductores utilizados en la red de prueba [7].

# 2.1. Implementación en software del algoritmo Forward and Backward.

Como aplicación para programación se realiza un flujo de potencia en el modelo de red de 13 barras previamente descrito, para dicha red ejemplo se describirá paso a paso la aplicación del algoritmo Forward and Backward con el fin de determinar la validez del método aplicado.

En la Figura 2.2 se presenta un diagrama de flujo que detalla el procedimiento a seguir para la implementación de este algoritmo.



Figura 2.2. Diagrama de flujo algoritmo Forward and Backward.

Al ser la primera iteración se tiene como condiciones iniciales que los voltajes de todas las barras del sistema radial son iguales al dato de la barra de referencia, barra identificada con el número 632.

Los datos de la red requieren estar en por unidad por lo cual se tiene que la potencia base es de 100 MVA y el voltaje base 4.16 kV, por lo tanto, los demás parámetros serán calculado bajo las mismas bases.

#### 2.1.1. Primer paso: Cálculo de impedancias

Las entradas, datos y parámetros del sistema eléctrico de distribución bajo análisis, corresponden básicamente a líneas aéreas y subterráneas, en base a los cuales se realiza el cálculo de impedancias y se estructuran las correspondientes matrices.

#### 2.1.1.1. Configuración de líneas aéreas y subterráneas del modelo.

En función de las diferentes configuraciones y espaciamientos; y, considerando el tipo de conductor, se procede a detallar la información de líneas, los tramos de línea y demás elementos del sistema a prueba.

| Tipo de línea | Configuración  | Fases | Conductor<br>(calibre) | Neutro<br>(calibre) | ld espaciamiento |
|---------------|----------------|-------|------------------------|---------------------|------------------|
| Subterránea   | 606            | ABCN  | 250                    | N/A                 | 515              |
| Subterránea   | erránea 607 AN |       | 1/0 1/0                |                     | 520              |
| Aérea         | 601            | BACN  | 556,5                  | 4/0                 | 500              |
| Aérea         | 602            | CABN  | 4/0                    | 4/0                 | 500              |
| Aérea         | 603 CBN        |       | 1/0                    | 1/0                 | 505              |
| Aérea         | 604            | ACN   | 1/0                    | 1/0                 | 505              |
| Aérea         | 605            | CN    | 1/0                    | 1/0                 | 510              |

Tabla 2.3. Configuración de líneas de la red de prueba [7].

| Tabla 2.4. Tramos | de líneas | de la red d | e prueba [7] |  |
|-------------------|-----------|-------------|--------------|--|
|-------------------|-----------|-------------|--------------|--|

| Nodo A | Nodo B | Distancia<br>(pies) | Configuración |
|--------|--------|---------------------|---------------|
| 632    | 645    | 500                 | 603           |
| 632    | 633    | 500                 | 602           |
| 633    | 634    | 0                   | XFM-1         |
| 645    | 646    | 300                 | 603           |
| 650    | 632    | 2000                | 601           |
| 684    | 652    | 800                 | 607           |
| 632    | 671    | 2000                | 601           |
| 671    | 684    | 300                 | 604           |
| 671    | 680    | 1000                | 601           |
| 671    | 692    | 0                   | Switch        |
| 692    | 675    | 500                 | 606           |

Tabla 2.5. Transformadores fuente y de distribución [7].

| Transformador | kVA  | kV en alta | kV en baja | <b>R</b> -(p.u.) | <b>X</b> -(p.u.) |
|---------------|------|------------|------------|------------------|------------------|
| Subestación   | 5000 | 115-D      | 4,16 Y     | 1                | 8                |
| XFM-1         | 500  | 4,16-GR. W | 0,48-Gr. W | 1,1              | 2                |

Tabla 2.6. Cargas en las barras del sistema [7].

| Nodos | Carga | Fase A<br>(kW; kVAr) | Fase <mark>B</mark><br>(kW; kVAr) | Fase C<br>(kW; kVAr) |
|-------|-------|----------------------|-----------------------------------|----------------------|
| 634   | Y-PQ  | 160; 110             | 120; 90                           | 120; 90              |
| 645   | Y-PQ  | 0; 0                 | 170; 125                          | 0; 0                 |
| 646   | D-Z   | 0; 0                 | 230; 132                          | 0; 0                 |
| 652   | Y-Z   | 128; 86              | 0; 0                              | 0; 0                 |
| 671   | D-PQ  | 425; 244             | 476,5; 273                        | 620,5; 410           |
| 675   | Y-PQ  | 485; 190             | 68; <mark>6</mark> 0              | 290; 212             |
| 692   | D-I   | 0; 0                 | 0; 0                              | 170; 151             |
|       | Total | 1158; 606            | 973; 627                          | 1135; 753            |

#### 2.1.1.2. Formación de las matrices de impedancias y admitancias.

Se estructuran las matrices de impedancias y admitancias de las líneas, para el efecto se considera su configuración en cada tramo ya sea monofásica, bifásica o trifásica, aplicando las ecuaciones presentadas en el capítulo 1. En las filas de la Tabla 2.6 se representan los valores de impedancia y admitancia de cada fase presente en cada tramo.

| Nodo<br>Salida | Nodo<br>Llegada | Configuración | In                  |                  | Admitancia Y[ABC] |       |             |             |             |            |
|----------------|-----------------|---------------|---------------------|------------------|-------------------|-------|-------------|-------------|-------------|------------|
| 632            | 645             | CBN           | A                   | В                | С                 |       | A           | В           | С           |            |
| 002            | 0.10            | 02.1          |                     |                  |                   |       |             |             |             |            |
|                |                 |               |                     | 1,329 + j1,347   | 0,2066 + j0,4591  | Ω/mi  |             | 0 + j4,713  | 0 - j0,9005 | µS/mi      |
|                |                 |               |                     | 0,2066 + j0,4591 | 1,324 + j1,357    |       |             | 0 - j0,9005 | 0 + j4,669  |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 000            | 000             |               |                     | p                | C                 |       | ٨           | в           | C           |            |
| 632            | 633             | CABN          | $0.7526 \pm i1.181$ | 0.158 ± 10.4236  | 0 1559 ± 10 5017  |       | 0 + 15,703  | 0 - j1,082  | 0 - j1,692  |            |
|                |                 |               | 0,158 + 10,4226     | 0,7475 + 11 109  | 0,1535 + 10,2840  | 0/==i | 0 - j1,082  | 0 + j5,183  | 0 - j0,6592 | μS/mi      |
|                |                 |               | 0,156 + 30,4250     | 0,7475 + 30,2840 | 0,1333 + 30,3849  | 52/mi | 0 - j1,692  | 0 - j0,6592 | 0 + j5,428  |            |
|                |                 |               | 0,1339 + 10,3017    | 0,1333 + 10,3849 | 0,7433 + 31,211   |       |             |             |             |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 645            | 646             | CBN           | А                   | В                | С                 |       | A           | В           | С           | _          |
|                |                 |               |                     |                  |                   |       |             | 0.1170      | 0.10.0005   | _          |
|                |                 |               |                     | 1,329 + j1,347   | 0,2066 + j0,4591  | Ω/mi  |             | 0 + )4,/13  | 0 - 30,9005 | µS/mi      |
|                |                 |               |                     | 0,2066 + j0,4591 | 1,324 + j1,357    |       |             | 0 - 10,9005 | 0 + 14,005  |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 684            | 652             | AN            | Α                   | В                | C                 |       | А           | В           | С           | . <u>.</u> |
| 001            | 002             |               | 1,343 + j0,5124     | 0 + j0           | 0 + j0            |       | 0 + j88,99  | 0 + j0      | 0 + j0      |            |
|                |                 |               | 0 + j0              | 0 + j0           | 0 + j0            | Ω/mi  | 0 + j0      | 0 + j0      | 0 + j0      | µS/mi      |
|                |                 |               | 0 + j0              | 0 + j0           | 0 + j0            |       | 0 + j0      | 0 + j0      | 0 + j0      |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 632            | 671             | BACN          | A                   | В                | C                 |       | A           | В           | С           |            |
| 002            | 0/1             | DAON          | 0,3466 + j1,019     | 0,1559 + j0,5017 | 0,158 + j0,4236   |       | 0 + j6,304  | 0 - j1,997  | 0 - j1,26   |            |
|                |                 |               | 0,1559 + j0,5017    | 0,3375 + j1,049  | 0,1535 + j0,3849  | Ω/mi  | 0 - j1,997  | 0 + j5,964  | 0 - j0,7422 | µS/mi      |
|                |                 |               | 0,158 + j0,4236     | 0,1535 + j0,3849 | 0,3415 + j1,036   |       | 0 - j1,26   | 0 - j0,7422 | 0 + j5,643  |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 671            | 694             |               | Δ.                  | В                | C                 |       | A           | В           | с           | -          |
| 0/1            | 004             | ACN           | 1.324 + 11.357      |                  | 0.2066 + 10.4591  |       | 0 + j4,669  |             | 0 - j0,9005 |            |
|                |                 |               |                     |                  |                   | Ω/mi  |             |             | 1           | μS/mi      |
|                |                 |               | 0,2066 + j0,4591    |                  | 1,329 + j1,347    | -,    | 0 - j0,9005 |             | 0 + j4,713  |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 674            | 690             | DACN          | Α                   | в                | С                 |       | A           | в           | с           |            |
| 671            | 680             | BACN          | 0,3466 + j1,019     | 0,1559 + j0,5017 | 0,158 + j0,4236   |       | 0 + j6,304  | 0 - j1,997  | 0 - j1,26   |            |
|                |                 |               | 0,1559 + j0,5017    | 0,3375 + j1,049  | 0,1535 + j0,3849  | Ω/mi  | 0 - j1,997  | 0 + j5,964  | 0 - j0,7422 | µS/mi      |
|                |                 |               | 0,158 + j0,4236     | 0,1535 + j0,3849 | 0,3415 + j1,036   |       | 0 - j1,26   | 0 - j0,7422 | 0 + j5,643  |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |
| 074            |                 |               |                     | 0.11             |                   |       |             | 0 14 1      |             |            |
| 671            | 692             |               |                     | Switch           |                   |       |             | Switch      | ר           |            |
| 602            | 675             | ABCN          | A                   | В                | С                 |       | A           | В           | С           |            |
| 032            | 015             | ADON          | 0,7982 + j0,4463    | 0,3078 + j0,0171 | 0,3078 + j0,0171  |       | 0 + j96,89  | 0 + j0      | 0 + j0      | ]          |
|                |                 |               | 0,3078 + j0,0171    | 0,7891 + j0,4041 | 0,3078 + j0,0171  | Ω/mi  | 0 + j0      | 0 + j96,89  | 0 + j0      | µS/mi      |
|                |                 |               |                     | 0,3078 + j0,0171 | 0,7982 + j0,4463  |       | 0 + j0      | 0 + j0      | 0 + j96,89  |            |
|                |                 |               | -                   |                  |                   |       |             |             |             |            |
|                |                 |               |                     |                  |                   |       |             |             |             |            |

| Tabla 2.7. Impedancias y | admitancias | del sistema. |
|--------------------------|-------------|--------------|
|--------------------------|-------------|--------------|

## 2.1.2. Segundo paso: Matriz de incidencia de voltajes (BCB).

Esta matriz define la manera en que están conectas las líneas y los nodos de acuerdo con la topología de la red. Se relaciona los voltajes de rama con los voltajes de nodos de acuerdo con la siguiente ecuación:

$$[V_{i-j}] = [V_i] - [V_j]$$
(2.1)

Donde:

 $[V_{i-j}]$  = Voltaje de línea donde i y j representa el nodo de envío y recepción respectivamente.

 $[V_i]$  = Voltaje en el nodo de envió.

 $[V_i]$  = Voltaje en el nodo de recepción.

A continuación, se presenta un ejemplo de cómo formar la ecuación y su matriz de incidencia.

$$[V_{632-645}] = [V_{632}] - [V_{645}]$$

$$[V_{645-646}] = [V_{645}] - [V_{646}]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(2.2)$$

Se estructura la matriz de incidencia, donde los espacios vacíos se llena con ceros y la primera columna corresponde a la barra slack del sistema que en este caso es la 632.

|      | Número de nodos |    |    |    |    |    |    |    |    |    |    |
|------|-----------------|----|----|----|----|----|----|----|----|----|----|
|      | 1               | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|      | 0               | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| as   | 1               | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| íne  | 0               | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  |
| de l | 0               | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | -1 | 0  |
| ero  | 1               | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  |
| ,m   | 0               | 0  | 0  | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  |
| ź    | 0               | 0  | 0  | 0  | 0  | 0  | 1  | 0  | -1 | 0  | 0  |
|      | 0               | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | -1 | 0  |
|      | 0               | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1 |

Tabla 2.8. Matriz de incidencia de voltajes completa.

En base a esta matriz, se puede plantear de manera general la fórmula matemática llamada matriz de incidencia de nodos "BCB".

$$[V_{i-j}] = [BCB_{\#lineas\ x\ \#barras})] * [V_j]$$
(2.3)

#### 2.1.3. Tercer paso: Matriz de incidencia de voltajes

Se tiene que la matriz de incidencia de nodos de voltajes está relacionada con la barra slack descrita en el paso anterior (ver Tabla 2.8) por lo tanto, al eliminar la columna de voltajes referidos a la barra salck, se obtiene una matriz cuadrada que para este caso sería de 10x10 la cual será utilizada para futuros cálculos tomando el nombre de BCBV\_abc.

| Número de nodos |    |    |    |    |    |    |    |    |    |    |  |
|-----------------|----|----|----|----|----|----|----|----|----|----|--|
|                 | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|                 | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| as              | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| íne             | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  |  |
| de l            | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | -1 | 0  |  |
| 010             | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  |  |
| Ĩ               | 0  | 0  | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  |  |
| ž               | 0  | 0  | 0  | 0  | 0  | 1  | 0  | -1 | 0  | 0  |  |
|                 | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | -1 | 0  |  |
|                 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1 |  |

Tabla 2.9. Matriz de incidencia de voltaje.

#### 2.1.4. Cuarto paso: Matriz de incidencia de corrientes

Al tener la matriz de incidencia obtenida en el tercer paso se procede a aplicar la siguiente ecuación y obtener la matriz de incidencia de corrientes BIBC:

$$[BIBC] = [BCBV]^T \tag{2.4}$$

Los elementos de las matrices encontradas en los dos pasos anteriores equivalen a lo siguiente:

[1] = Matriz identidad 3x3, considera las 3 fases.

[0] = Matriz de cero 3x3, considera las 3 fases.

[-1] = Matriz identidad negativa 3x3, considera las 3 fases.

|          | Número de nodos |    |    |    |    |    |    |    |    |    |  |
|----------|-----------------|----|----|----|----|----|----|----|----|----|--|
|          | -1              | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| SE       | 0               | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|          | 0               | 0  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| íne      | 0               | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  |  |
| ero de l | 0               | 0  | 0  | 0  | -1 | 0  | 0  | 0  | 0  | 0  |  |
|          | 0               | 0  | 0  | 0  | 0  | -1 | 1  | 1  | 1  | 0  |  |
| Ĩ        | 0               | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  | 0  |  |
| ž        | 0               | 0  | 0  | 0  | 0  | 0  | 0  | -1 | 0  | 0  |  |
|          | 0               | 0  | 0  | 0  | 1  | 0  | 0  | 0  | -1 | 1  |  |
|          | 0               | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 |  |

Tabla 2.10. Matriz de incidencia de corriente.

#### 2.1.5. Quinto paso: Matriz de potencias.

La ecuación 2.5 relaciona los datos de carga, generación y capacitancia en cada barra y por cada fase, la cual determina la potencia total inyectada en cada nodo del sistema.

$$S_{i} = P_{i} + jQ_{i} = \sum_{n=1}^{n_{i}} (Pg_{i,n} + jQg_{i,n}) - (Pl_{i,n} + jQl_{i,n}) + jQc_{k,n}$$
(2.5)

Cabe recalcar que las potencias están en valores reales, por tal motivo debe ser cambiado al sistema por unidad considerando la potencia base de 100 MVA.

| S_633_a | = | (0.0+0.0j)                                     |
|---------|---|------------------------------------------------|
| S_633_b | = | (0.0+0.0j)                                     |
| S_633_c | = | (0.0+0.0j)                                     |
| S_634_a | = | (0.0016+0.0011j)                               |
| S_634_b | = | (0.00120000000000001+0.000900000000000001j)    |
| S_634_c | = | (0.00120000000000001+0.000900000000000001j)    |
| S_645_a | = | (0.0+0.0j)                                     |
| S_645_b | = | (0.00170000000000001+0.00125j)                 |
| S_645_c | = | (0.0+0.0j)                                     |
| S_646_a | = | (0.0+0.0j)                                     |
| S_646_b | = | (0.0023000000000000004+0.0013200000000000002j) |
| S_646_c | = | (0.0+0.0j)                                     |
| S_652_a | = | (0.00128+0.000860000000000001j)                |
| S_652_b | = | (0.0+0.0j)                                     |
| S_652_c | = | (0.0+0.0j)                                     |
| S_671_a | = | (0.00427+0.002440000000000003j)                |
| S_671_b | = | (0.004765+0.002730000000000002j)               |
| S_671_c | = | (0.00620500000000004+0.0041j)                  |
| S_675_a | = | (0.00485-0.0041j)                              |
| S_675_b | = | (0.00068-0.0054j)                              |
| S_675_c | = | (0.002900000000000002-0.00388j)                |
| S_680_a | = | (0.0+0.0j)                                     |
| S_680_b | = | (0.0+0.0j)                                     |
| S_680_c | = | (0.0+0.0j)                                     |
| S_684_a | = | (0.0+0.0j)                                     |
| S_684_b | = | (0.0+0.0j)                                     |
| S_684_c | = | (0.0+0.0j)                                     |
| S_611_a | = | (0.0+0.0j)                                     |
| S_611_b | = | (0.0+0.0j)                                     |
| S_611_c | = | (0.00170000000000001-0.0002j)                  |

Tabla 2.11. Potencias calculadas.

#### 2.1.6. Sexto paso: Corriente de las barras.

En el proceso iterativo inicial, se considera que los voltajes en cada barra son iguales al de la barra slack para cada según lo establecido en el archivo de lectura de datos. Por lo tanto al aplicar la siguiente ecuación se logra la obtención de las corrientes deseadas.

$$(I_k)_{abc} = \left[\frac{(P_{i,k} + jQ_{i,k})}{V_{i,k}e^{j\theta_{i,k}}}\right]_{abc}^*$$
(2.6)

Con la ecuación 2.6 se determina el aporte de corriente de cada nodo a la carga total, donde abc son las diferentes fases del circuito, en el caso de no tener alguna fase esta tomará el valor de cero.

| Tabla 2.12. | Corrientes en | los nodos. |
|-------------|---------------|------------|
|-------------|---------------|------------|

| I_633_a | = | (0.0-0.0j)                                      | pu |
|---------|---|-------------------------------------------------|----|
| I_633_b | = | (-0.0+0.0j)                                     | pu |
| I_633_c | = | (0.0+0.0j)                                      | pu |
| I_634_a | = | (0.0015452599434758372-0.0011982260403475718j)  | pu |
| I_634_b | = | (-0.0013713955748988554-0.0005239196081739589j) | pu |
| I_634_c | = | (0.0002493832294082806+0.0014863949271402782j)  | pu |
| I_645_a | = | (0.0-0.0j)                                      | pu |
| I_645_b | = | (-0.001906213495611233-0.0007616599803057679j)  | pu |
| I_645_c | = | (0.0+0.0j)                                      | pu |
| I_646_a | = | (0.0-0.0j)                                      | pu |
| I_646_b | = | (-0.0022842978493363892-0.0012239411240895029j) | pu |
| I_646_c | = | (0.0+0.0j)                                      | pu |
| I_652_a | = | (0.0011800347378016548-0.0009790357956462787j)  | pu |
| I_652_b | = | (-0.0+0.0j)                                     | pu |
| l_652_c | = | (0.0+0.0j)                                      | pu |
| l_671_a | = | (0.00394712456759489-0.002823969087668805j)     | pu |
| l_671_b | = | (-0.004552597823527316-0.0024220949690826736j)  | pu |
| l_671_c | = | (0.001058957443490396+0.007494576672448782j)    | pu |
| I_675_a | = | (0.00521522680925215+0.0035099731227531046j)    | pu |
| l_675_b | = | (0.003917761627715314-0.0032486016229080717j)   | pu |
| l_675_c | = | (-0.0048271224223500435+0.0009853802596463247j) | pu |
| I_680_a | = | (0.0-0.0j)                                      | pu |
| I_680_b | = | (-0.0+0.0j)                                     | pu |
| I_680_c | = | (0.0+0.0j)                                      | pu |
| I_684_a | = | (0.0-0.0j)                                      | pu |
| I_684_b | = | (-0.0+0.0j)                                     | pu |
| I_684_c | = | (0.0+0.0j)                                      | pu |
| l_611_a | = | (0.0-0.0j)                                      | pu |
| l_611_b | = | (-0.0+0.0j)                                     | pu |
| l 611 c | = | (-0.0009234976916722112+0.0014855859229086807j) | pu |

#### 2.1.7. Séptimo paso: Corrientes por cada línea i – j.

Al ya tener las corrientes en las barras o nodos, es necesario determinar las corrientes de línea mediante la matriz de incidencia de corriente BIBC, aplicando la siguiente ecuación:

$$\left[I_{linea\ i-j}\right]_{abc} = \left[BIBC\right]^{-1} * \left[I_j\right]_{abc}$$
(2.7)

Tabla 2.13. Corrientes en las líneas de la red.

| I_632_633_a | = | (0.0015452621911167532-0.0011982064234514623j)  | pu |
|-------------|---|-------------------------------------------------|----|
| l_632_633_b | = | (-0.0013713815875225873-0.0005239295040865813j) | pu |

| I_632_633_c | = | (0.0002493681371489183+0.0014863842081487245j)   | pu |
|-------------|---|--------------------------------------------------|----|
| l_633_634_a | = | (0.0015452599434922346-0.0011982260400616427j)   | pu |
| I_633_634_b | = | (-0.0013713955746495407-0.0005239196083310916j)  | pu |
| I_633_634_c | = | (0.0002493832291533041+0.0014863949270084176j)   | pu |
| I_632_645_a | = | (0.0+0.0j)                                       | pu |
| l_632_645_b | = | (-0.004190497898798666-0.0019856069237884646j)   | pu |
| l_632_645_c | = | (-1.3651959246126469e-08-4.714853243267945e-09j) | pu |
| I_645_646_a | = | (0.0+0.0j)                                       | pu |
| l_645_646_b | = | (-0.002284289815518969-0.0012239446050433137j)   | pu |
| I_645_646_c | = | (-8.194144952863457e-09-2.8316056576270004e-09j) | pu |
| I_684_652_a | = | (0.0011800741632583887-0.0009786466598571864j)   | pu |
| l_684_652_b | = | (0.0+0.0j)                                       | pu |
| l_684_652_c | = | (0.0+0.0j)                                       | pu |
| l_632_671_a | = | (0.010342385765867922-0.000292944210474826j)     | pu |
| l_632_671_b | = | (-0.0006347725617455643-0.0056707520805852904j)  | pu |
| l_632_671_c | = | (-0.004691726066076114+0.00996550760339582j)     | pu |
| l_671_675_a | = | (0.005215255999750148+0.0035102388720765977j)    | pu |
| l_671_675_b | = | (0.003918000340883675-0.0032487536309902384j)    | pu |
| l_671_675_c | = | (-0.00482735778147702+0.0009852693185028855j)    | pu |
| l_671_680_a | = | (-1.7438923447902584e-10+4.377504701317558e-08j) | pu |
| l_671_680_b | = | (3.181703485471514e-08-2.774430015689931e-08j)   | pu |
| l_671_680_c | = | (-3.169777499966289e-08-1.762580469378447e-08j)  | pu |
| l_671_684_a | = | (0.0011800368344874227-0.0009790274847145985j)   | pu |
| l_671_684_b | = | (0.0+0.0j)                                       | pu |
| l_671_684_c | = | (-0.0009235046857771729+0.00148558120400916j)    | pu |
| l_684_611_a | = | (0.0+0.0j)                                       | pu |
| l_684_611_b | = | (0.0+0.0j)                                       | pu |
| I_684_611_c | = | (-0.0009235042516080598+0.0014855828420698473j)  | pu |

Se obtiene las corrientes de línea del sistema de 13 nodos y se procede a multiplicar por -1 para obtener una matriz positiva.

#### 2.1.8. Octavo paso: Voltajes de línea.

El tener las matrices de corriente de línea e impedancia de línea, se puede calcular la caída de voltaje en el sistema a través de la siguiente ecuación:

$$\left[V_{linea\,i-j}\right]_{abc} = \left[Z_{abc}\right] * \left[I_{linea\,i-j}\right]_{abc}$$
(2.8)

Tabla 2.13. Voltajes de línea de la red.

| V_632_633_a | = | (0.0030812512098184934+0.0010130201335483483j)   | pu |
|-------------|---|--------------------------------------------------|----|
| V_632_633_b | = | (-0.00029450959617739086-0.0020447362405316086j) | pu |
| V_632_633_c | = | (-0.0012829595576717206+0.0022775402710622085j)  | pu |

| V_633_634_a | = | (0.02457672354507727+0.010635202211412384j)     | pu |
|-------------|---|-------------------------------------------------|----|
| V_633_634_b | = | (-0.002763660271648459-0.019914310504846145j)   | pu |
| V_633_634_c | = | (-0.016190807039948407+0.012802190174219985j)   | pu |
| V_632_645_a | = | (0.0+0.0j)                                      | pu |
| V_632_645_b | = | (-0.0047541715929269-0.013600256048323356j)     | pu |
| V_632_645_c | = | (7.522459548727823e-05-0.00383170230639246j)    | pu |
| V_645_646_a | = | (0.0+0.0j)                                      | pu |
| V_645_646_b | = | (-0.0013670950734850729-0.004633566245147255j)  | pu |
| V_645_646_c | = | (8.861919278145634e-05-0.0012820330592096469j)  | pu |
| V_684_652_a | = | (0.005478279528763178-0.001862673826036014j)    | pu |
| V_684_652_b | = | (0.0+0.0j)                                      | pu |
| V_684_652_c | = | (0.0+0.0j)                                      | pu |
| V_632_671_a | = | (0.010934023981690615+0.05785070113336325j)     | pu |
| V_632_671_b | = | (0.019253205167356627+0.015023658781470953j)    | pu |
| V_632_671_c | = | (-0.05299545405164944+0.011604173218263878j)    | pu |
| V_671_675_a | = | (0.0038660027349293495+0.007251316272495145j)   | pu |
| V_671_675_b | = | (0.007300312426455793+0.0006730988027022185j)   | pu |
| V_671_675_c | = | (-0.002439728150921525-0.0018572285048773143j)  | pu |
| V_671_680_a | = | (-7.642767429219603e-08+3.418817108777547e-08j) | pu |
| V_671_680_b | = | (6.480477458743625e-08+5.190637665063525e-08j)  | pu |
| V_671_680_c | = | (1.4477692976825798e-08-7.875831608848939e-08j) | pu |
| V_671_684_a | = | (0.001987417062443449+0.00018526793740057494j)  | pu |
| V_671_684_b | = | (0.0+0.0j)                                      | pu |
| V_671_684_c | = | (-0.002497549178401138+0.0010542761014798487j)  | pu |
| V_684_611_a | = | (0.0+0.0j)                                      | pu |
| V_684_611_b | = | (0.0+0.0j)                                      | pu |
| V_684_611_c | = | (-0.0031807997886586815+0.0007192378228829178j) | pu |

En base a los voltajes de línea de la red, se calculan los voltajes de barras de la nueva iteración. Considerando que la matriz de incidencia BCBV de las tres fases no cuenta con la columna de la barra slack o de referencia, se debe realizar el procedimiento adicional indicado a continuación.

#### 2.1.8.1. Uso de la matriz delta

Al ser un sistema radial todas las líneas que salen de la barra slack fueron eliminadas para formar una matriz de incidencia cuadrada y así realizar los diferentes cálculos que se ha venido efectuando, sin embargo, es necesario tener en cuenta la barra slack para la obtener los voltajes de línea de todas las líneas que tienen en común la barra slack.

#### Tabla 2.14. Matriz delta.

| V_632_633_a - V_632_a | = | (-1.0159166253563459+0.04621620092482055j) | pu |
|-----------------------|---|--------------------------------------------|----|
| V_632_633_b - V_632_b | = | (0.5475563801024926+0.8843092577462817j)   | pu |
| V_632_633_c - V_632_c | = | (0.47336317303510506-0.8968275363549794j)  | pu |

|             |   | V_633_634_a           | = | (0.02457672354507727+0.010635202211412384j)     | pu |
|-------------|---|-----------------------|---|-------------------------------------------------|----|
|             |   | V_633_634_b           | = | (-0.002763660271648459-0.019914310504846145j)   | pu |
|             |   | V_633_634_c           | = | (-0.016190807039948407+0.012802190174219985j)   | pu |
|             |   | V_632_645_a - V_632_a | = | (-0.0+0.0j)                                     | pu |
|             |   | V_632_645_b - V_632_b | = | (0.5430967181057431+0.8727537379384899j)        | pu |
|             |   | V_632_645_c - V_632_c | = | (0.474721357188264-0.9029367789324341j)         | pu |
|             |   | V_645_646_a           | = | (0.0+0.0j)                                      | pu |
|             |   | V_645_646_b           | = | (-0.0013670950734850729-0.004633566245147255j)  | pu |
|             |   | V_645_646_c           | = | (8.861919278145634e-05-0.0012820330592096469j)  | pu |
|             |   | V_684_652_a           | = | (0.005478279528763178-0.001862673826036014j)    | pu |
|             |   | V_684_652_b           | = | (0.0+0.0j)                                      | pu |
| [delta_abc] | = | V_684_652_c           | = | (0.0+0.0j)                                      | pu |
|             |   | V_632_671_a - V_632_a | = | (-1.0080638525844736+0.10305388192463545j)      | pu |
|             |   | V_632_671_b - V_632_b | = | (0.5671040948660266+0.9013776527682842j)        | pu |
|             |   | V_632_671_c - V_632_c | = | (0.4216506785411273-0.8875009034077777j)        | pu |
|             |   | V_671_675_a           | = | (0.0038660027349293495+0.007251316272495145j)   | pu |
|             |   | V_671_675_b           | = | (0.007300312426455793+0.0006730988027022185j)   | pu |
|             |   | V_671_675_c           | = | (-0.002439728150921525-0.0018572285048773143j)  | pu |
|             |   | V_671_680_a           | = | (-7.642767429219603e-08+3.418817108777547e-08j) | pu |
|             |   | V_671_680_b           | = | (6.480477458743625e-08+5.190637665063525e-08j)  | pu |
|             |   | V_671_680_c           | = | (1.4477692976825798e-08-7.875831608848939e-08j) | pu |
|             |   | V_671_684_a           | = | (0.001987417062443449+0.00018526793740057494j)  | pu |
|             |   | V_671_684_b           | = | (0.0+0.0j)                                      | pu |
|             |   | V_671_684_c           | = | (-0.002497549178401138+0.0010542761014798487j)  | pu |
|             |   | V_684_611_a           | = | (0.0+0.0j)                                      | pu |
|             |   | V_684_611_b           | = | (0.0+0.0j)                                      | pu |
|             |   | V_684_611_c           | = | (-0.0031807997886586815+0.0007192378228829178j) | pu |
|             |   |                       |   |                                                 |    |

Esta matriz toma en cuenta los elementos que están conectados a la barra slack, los cuales son recalculados en el vector delta como se presenta en la Tabla 2.14. En este punto ya es posible proceder con el cálculo de los voltajes de barra utilizando la matriz de incidencia BCBV que toma en cuenta las tres fases.

#### 2.1.9. Noveno paso: Voltajes en las barras iteración n+1.

Al tener los voltajes de línea y disponer de la matriz de incidencia de voltaje, explicada en pasos previos, se procede a determinar los voltajes en las barras aplicando la siguiente ecuación:

$$[V_j]_{abc} = [BCBV]^{-1} * [V_{linea\ i-j}]_{abc}$$
 (2.9)

| Barra | Magnitud [pu] | Ángulo | Magnitud [pu] | Ángulo | Magnitud [pu] | Ángulo |
|-------|---------------|--------|---------------|--------|---------------|--------|
|       | Fase A        |        | Fase          | e B    | Fase          | e C    |

Tabla 2.15. Voltajes de las barras segunda iteración.

| 632 | 1.02     | -2.54    | 1.042   | -121.72  | 1.0167   | 117.83  |
|-----|----------|----------|---------|----------|----------|---------|
| 633 | 1.01697  | -2.60471 | 1.04011 | -121.765 | 1.01409  | 117.826 |
| 634 | 0.992969 | -3.28221 | 1.02175 | -122.222 | 0.995242 | 117.346 |
| 645 | 0        | 0        | 1.02794 | -121.893 | 1.02013  | 117.733 |
| 646 | 0        | 0        | 1.02328 | -121.965 | 1.0213   | 117.704 |
| 652 | 1.00572  | -5.78523 | 0       | 0        | 0        | 0       |
| 671 | 1.01332  | -5.83704 | 1.06494 | -122.176 | 0.982572 | 115.412 |
| 675 | 1.01024  | -6.26847 | 1.06941 | -122.488 | 0.983207 | 115.237 |
| 680 | 1.01332  | -5.83704 | 1.06494 | -122.176 | 0.982572 | 115.412 |
| 684 | 1.01136  | -5.85893 | 0       | 0        | 0.980549 | 115.307 |
| 611 | 0        | 0        | 0       | 0        | 0.978543 | 115.157 |

#### 2.1.10. Décimo paso: Errores en los voltajes de las barras de la red.

Al tener los nuevos voltajes de las barras es necesario calcular el error entre la iteración n y n+1 para lo cual se aplica la siguiente ecuación:

$$\Delta V_{abc} = \max \left( V_j^{(0)} - V_j^{(1)} \right)_{abc}$$
(2.10)

Con esto se obtiene una matriz con la diferencia entre la iteración n y la n+1 para luego ser comparadas con valor de tolerancia especificado.

#### 2.1.11. Décimo primer paso: Error máximo entre los resultados.

Para este paso se requiere el valor máximo calculado en la iteración n+1 y el valor de tolerancia ingresado como dato. Para tener convergencia en el cálculo, el error debe ser menor a 0.0001, caso contrario se debe realizar una nueva iteración regresando al sexto paso.

#### 2.1.12. Décimo segundo paso: Cálculo de potencias.

Una vez que se llega a la convergencia, se procede a calcular las potencias activa y reactiva de envío y recepción en la red estudiada. A continuación, y para efectos comparativos, se han seleccionado los ramales más relevantes de la red de prueba para la verificación de resultados, considerando el uso del software comercial CYME (ver Tabla 2.16).

|        | FLUJO POR RAMAS POTENCIA ACTIVA [kW] |         |          |         |          |        |         |  |  |  |
|--------|--------------------------------------|---------|----------|---------|----------|--------|---------|--|--|--|
|        | Fase A                               |         |          |         |          |        |         |  |  |  |
| В      | Barra F/B CYME %Error                |         |          |         |          |        |         |  |  |  |
| Salida | Llegada                              | Salida  | Llegada  | Salida  | Llegada  | Salida | Llegada |  |  |  |
| 632    | 633                                  | 162.880 | -162.520 | 162.100 | 161.650  | 0.481  | 0.538   |  |  |  |
| 633    | 634                                  | 162.520 | -160.000 | 161.600 | -160.000 | 0.569  | 0.000   |  |  |  |
| 684    | 652                                  | 128.830 | -128.000 | 124.000 | -124.000 | 3.895  | 3.226   |  |  |  |

Tabla 2.16. Potencia activa de ramales.

| 632    | 671     | 1055.210 | -1045.600 | 1067.000 | -1039.660 | 1.105  | 0.571   |
|--------|---------|----------|-----------|----------|-----------|--------|---------|
| 671    | 684     | 129.040  | -128.830  | 124.690  | -124.500  | 3.489  | 3.478   |
| 684    | 611     | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |
|        |         |          | Fas       | se B     |           |        |         |
| В      | arra    | F        | 7B        | C        | (ME       | %      | Error   |
| Salida | Llegada | Salida   | Llegada   | Salida   | Llegada   | Salida | Llegada |
| 632    | 633     | 121.570  | -121.420  | 121.940  | -121.710  | 0.303  | 0.238   |
| 633    | 634     | 121.420  | -120.000  | 121.700  | -120.000  | 0.230  | 0.000   |
| 684    | 652     | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |
| 632    | 671     | 537.410  | -547.150  | 525.020  | -464.740  | 2.360  | 17.732  |
| 671    | 684     | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |
| 684    | 611     | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |
|        |         |          | Fas       | se C     |           |        |         |
| Barra  |         | F        | 7B        | CY       | (ME       | %      | Error   |
| Salida | Llegada | Salida   | Llegada   | Salida   | Llegada   | Salida | Llegada |
| 632    | 633     | 121.810  | -121.500  | 122.230  | -122.080  | 0.344  | 0.475   |
| 633    | 634     | 121.500  | -120.000  | 122.100  | -120.000  | 0.491  | 0.000   |
| 684    | 652     | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |
| 632    | 671     | 1118.690 | -1082.270 | 1104.600 | -957.270  | 1.276  | 13.058  |
| 671    | 684     | 170.780  | -170.400  | 166.330  | -165.940  | 2.675  | 2.688   |
| 684    | 611     | 170.400  | -170.000  | 165.940  | -165.580  | 2.688  | 2.669   |

En la Tabla 2.16 se presentan las potencias obtenidas mediante el algoritmo programado y con el uso del software comercial, se observan bajos errores porcentuales al comparar los resultados de potencias activas, esto se debe a que al ser un algoritmo iterativo presenta un grado de error o tolerancia que puede ser modificado ajustando de esta forma la exactitud de los resultados.

#### 2.1.13. Comparación de resultados con el software comercial.

Para la validación del algoritmo implementado se procede a realizar una comparación de resultados con el software comercial CYME el cual utiliza ecuaciones de corriente alterna para la solución de flujos de potencia en sistemas desbalanceados, obteniendo los siguientes resultados.

| Barra | Magnitud [pu] | Ángulo | Magnitud [pu] | Ángulo   | Magnitud [pu] | Ángulo  |
|-------|---------------|--------|---------------|----------|---------------|---------|
|       | Fase          | e A    | Fase          | e B      | Fase C        |         |
| 632   | 1.021         | -2.490 | 1.042         | -121.720 | 1.017         | 117.830 |
| 633   | 1.018         | -2.560 | 1.040         | -121.770 | 1.015         | 117.820 |
| 634   | 0.994         | -3.230 | 1.022         | -122.220 | 0.996         | 117.340 |
| 645   | 0.000         | 0.000  | 1.033         | -121.900 | 1.015         | 117.850 |
| 646   | 0.000         | 0.000  | 1.031         | -121.980 | 1.013         | 117.900 |
| 652   | 0.982         | -5.250 | 0.000         | 0.000    | 0.000         | 0.000   |
| 671   | 0.990         | -5.300 | 1.053         | -122.340 | 0.978         | 116.020 |

Tabla 2.17. Voltajes de las barras obtenidos desde CYME- CYMDIST.

| 675 | 0.984 | -5.550 | 1.055 | -122.520 | 0.976 | 116.050 |
|-----|-------|--------|-------|----------|-------|---------|
| 680 | 0.990 | -5.300 | 1.053 | -122.340 | 0.978 | 116.020 |
| 684 | 0.988 | -5.330 | 0.000 | 0.000    | 0.976 | 115.920 |
| 611 | 0.000 | 0.000  | 0.000 | 0.000    | 0.974 | 115.770 |

|       | %Error       |            |              |            |              |            |  |  |  |  |  |
|-------|--------------|------------|--------------|------------|--------------|------------|--|--|--|--|--|
| Parra | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] |  |  |  |  |  |
| Dalla | Fase         | A          | Fase         | В          | Fase C       |            |  |  |  |  |  |
| 632   | 0.0979       | 2.0080     | 0.0000       | 0.0000     | 0.0295       | 0.0000     |  |  |  |  |  |
| 633   | 0.1012       | 1.7465     | 0.0106       | 0.0041     | 0.0897       | 0.0051     |  |  |  |  |  |
| 634   | 0.1037       | 1.6164     | 0.0245       | 0.0016     | 0.0761       | 0.0051     |  |  |  |  |  |
| 645   | 0.000        | 0.0000     | 0.4898       | 0.0057     | 0.5054       | 0.0993     |  |  |  |  |  |
| 646   | 0.000        | 0.0000     | 0.7488       | 0.0123     | 0.8193       | 0.1662     |  |  |  |  |  |
| 652   | 2.4155       | 10.1949    | 0.0000       | 0.0000     | 0.0000       | 0.0000     |  |  |  |  |  |
| 671   | 2.3556       | 10.1328    | 1.1339       | 0.1341     | 0.4675       | 0.5240     |  |  |  |  |  |
| 675   | 2.6667       | 12.9454    | 1.3659       | 0.0261     | 0.7384       | 0.7006     |  |  |  |  |  |
| 680   | 2.3556       | 10.1328    | 1.1339       | 0.1341     | 0.4675       | 0.5240     |  |  |  |  |  |
| 684   | 2.3644       | 9.9236     | 0.0000       | 0.0000     | 0.4661       | 0.5288     |  |  |  |  |  |
| 611   | 0.0000       | 0.0000     | 0.0000       | 0.0000     | 0.4664       | 0.5295     |  |  |  |  |  |

Tabla 2.18.Errores porcentuales.

En la Tabla 2.18 se presenta los resultados de la comparación entre el algoritmo implementado y el software CYME donde se observa que existe un bajo error porcentual al comparar los voltajes, en magnitud y ángulo de las distintas fases, esto valida el algoritmo implementado el cual podría ser utilizado en redes de prueba más complejas.

# 2.2. Implementación en software algoritmo lineal para sistemas de distribución.

Para este método también se utilizará el modelo IEEE 13 barras el cual fue explicado a detalle previamente y se contrastarán los resultados obtenidos con el software DIgSILENT PowerFactory, esto considerando que dicho software comercial utiliza un método no iterativo para la solución de este tipo de flujos de potencia.



Figura 2.3. Diagrama de flujo algoritmo lineal para sistemas de distribución.

#### 2.2.1. Primer paso: Cálculo de impedancias.

Como primer paso se procede a transformar los valores de impedancia y admitancia al sistema por unidad utilizando el voltaje y potencia base, además, al tener los parámetros y configuraciones de las líneas se puede obtener matrices 3x3 las cuales relacionan magnitudes de las tres fases, en el caso de no existir una fase, la fila y columna tomará el valor de cero.

| Nodo   | Nodo    | Configuración | Impedancia Z[ABC] |                    |                  |         | Admitancia Y[ABC] |            |             |             |       |
|--------|---------|---------------|-------------------|--------------------|------------------|---------|-------------------|------------|-------------|-------------|-------|
| Salida | Llegada |               |                   |                    |                  |         |                   |            |             |             |       |
| 632    | 645     | CBN           | A                 | В                  | С                | 1       |                   | А          | В           | с           | 1     |
|        |         |               |                   |                    |                  |         |                   |            | 0 + 14 712  | 0. 10.0005  |       |
|        |         |               |                   | 1,329 + j1,347     | 0,2066 + 30,4591 | Ω/mi    |                   |            | 0 + 14,713  | 0 - 10,9003 | µ5/mi |
|        |         |               |                   | 0,2066 + j0,4591   | 1,324 + j1,357   |         |                   |            | 0 - j0,9005 | 0 + j4,669  |       |
|        |         |               |                   |                    |                  |         |                   |            |             |             |       |
| 632    | 633     | CABN          | A                 | В                  | С                |         |                   | Α          | В           | С           |       |
|        |         | -             | 0,7526 + j1,181   | 0,158 + j0,4236    | 0,1559 + j0,501  | 17      |                   | 0 + j5,703 | 0 - j1,082  | 0 - j1,692  |       |
|        |         |               | 0,158 + j0,4236   | 0,7475 + j1,198    | 0,1535 + j0,384  | 19 Q/mi |                   | 0 - j1,082 | 0 + j5,183  | 0 - j0,6592 | µS/mi |
|        |         |               | 0 1559 + 10 5017  | 0 1535 + 10 3849   | 0 7435 + 11 21   | 1       |                   | 0 - j1,692 | 0 - j0,6592 | 0 + j5,428  |       |
|        |         |               | 0/1000 / 10/001/  | 0,1000 - 10,000 10 | 0,7 100 - 11,21  | -       |                   |            |             |             |       |
|        |         |               |                   |                    |                  |         |                   |            |             |             |       |
| 645    | 646     | СВМ           | A                 | В                  | С                |         | _                 | Α          | В           | С           |       |
|        |         |               |                   |                    |                  |         |                   |            |             |             |       |
|        |         |               |                   | 1,329 + j1,347     | 0,2066 + j0,4591 | Ω/mi    |                   |            | 0 + j4,713  | 0 - j0,9005 | µS/mi |
|        |         |               |                   | 0,2066 + j0,4591   | 1,324 + j1,357   | 1       |                   |            | 0 - j0,9005 | 0 + j4,669  |       |
|        |         |               |                   |                    |                  |         |                   |            |             |             |       |
|        |         |               |                   |                    |                  |         |                   |            |             |             |       |

**Tabla 2.19.** Impedancias y admitancias del sistema a prueba.

| 694 | 650 |      | А                | В                | С                |       | A           | В           | С           |       |
|-----|-----|------|------------------|------------------|------------------|-------|-------------|-------------|-------------|-------|
| 004 | 052 | AN   | 1,343 + j0,5124  | 0 + j0           | 0 + j0           | 1     | 0 + j88,99  | 0 + j0      | 0 + j0      | 1     |
|     |     |      | 0 + i0           | 0 + 10           | 0 + i0           | O/mi  | 0 + j0      | 0 + j0      | 0 + j0      | µS/mi |
|     |     |      | 0 + 50           | 0 + 10           | 0 + 10           | 34111 | 0 + j0      | 0 + j0      | 0 + j0      |       |
|     |     |      | 0 + 10           | 0 + 10           | 0+10             |       |             |             |             | 1     |
|     |     |      |                  |                  |                  |       |             |             |             |       |
| 632 | 671 | BACN | A                | В                | С                |       | A           | В           | С           | _     |
|     |     | _    | 0,3466 + j1,019  | 0,1559 + j0,5017 | 0,158 + j0,4236  |       | 0 + j6,304  | 0 - j1,997  | 0 - j1,26   |       |
|     |     |      | 0,1559 + j0,5017 | 0,3375 + j1,049  | 0,1535 + j0,3849 | Ω/mi  | 0 - j1,997  | 0 + j5,964  | 0 - j0,7422 | μS/mi |
|     |     |      | 0,158 + j0,4236  | 0,1535 + j0,3849 | 0,3415 + j1,036  | 1     | 0 - j1,26   | 0 - j0,7422 | 0 + j5,643  |       |
|     |     |      |                  |                  |                  |       |             |             |             |       |
|     |     |      |                  |                  |                  |       |             |             |             |       |
| 671 | 684 | ACN  | Α                | В                | С                |       | A           | В           | С           |       |
|     |     |      | 1,324 + j1,357   |                  | 0,2066 + j0,4591 |       | 0 + j4,669  |             | 0 - j0,9005 |       |
|     |     |      |                  |                  |                  | Ω/mi  |             |             |             | µS/mi |
|     |     |      | 0,2066 + j0,4591 |                  | 1,329 + j1,347   |       | 0 - 10,9005 |             | 0 + j4,713  |       |
|     |     |      |                  |                  |                  |       |             |             |             |       |
| 671 | 690 | BACN | Α                | В                | С                |       | A           | В           | С           |       |
| 071 | 000 | DACN | 0,3466 + j1,019  | 0,1559 + j0,5017 | 0,158 + j0,4236  | 1     | 0 + j6,304  | 0 - j1,997  | 0 - j1,26   | 1     |
|     |     |      | 0.1559 + i0.5017 | 0.3375 + j1.049  | 0.1535 + i0.3849 | O/mi  | 0 - j1,997  | 0 + j5,964  | 0 - j0,7422 | µS/mi |
|     |     |      | 0 158 + 10 4236  | 0 1535 + 10 3849 | 0 3415 + 11 036  | 3.,   | 0 - j1,26   | 0 - j0,7422 | 0 + j5,643  |       |
|     |     |      | 0,150 1 30,1250  | 0,1555 1 10,5015 | 0,5115 - 11,050  |       |             |             |             |       |
|     |     |      |                  |                  |                  |       |             |             |             |       |
| 671 | 692 |      |                  | Switch           | 1                |       |             | Switc       | h           |       |
| _   |     |      |                  |                  |                  |       |             |             |             |       |
| 602 | 675 |      | Α                | В                | С                |       | А           | В           | С           |       |
| 032 | 075 | ADON | 0,7982 + j0,4463 | 0,3078 + j0,0171 | 0,3078 + j0,0171 | 1     | 0 + j96,89  | 0 + j0      | 0 + j0      |       |
|     |     |      | 0,3078 + j0,0171 | 0,7891 + j0,4041 | 0,3078 + j0,0171 | Ω/mi  | 0 + j0      | 0 + j96,89  | 0 + j0      | µS/mi |
|     |     |      | 0,3078 + j0,0171 | 0,3078 + j0,0171 | 0,7982 + j0,4463 |       | 0 + j0      | 0 + j0      | 0 + j96,89  |       |
|     |     |      |                  |                  |                  | 1     |             |             |             |       |
|     |     |      |                  |                  |                  |       |             |             |             |       |

#### 2.2.2. Segundo paso: Cálculo de la Y de barra.

Al tener los parámetros de impedancias y admitancias de las líneas, se procede a construir la matriz Y de barra con los parámetros que tengan relación en cada uno de los nodos según las siguientes ecuaciones:

Elementos de la diagonal:

$$Y_{ii} = \sum_{k \in N_i} y_{ik} + y_{shunt,i}$$
(2.11)

Elementos fuera de la diagonal

$$Y_{ij} = -y_{ij}$$
 (2.12)

Obteniendo la siguiente matriz de 30x30, la cual se puede visualizar de manera detallada en el **Anexo 2.** 

$$Y_{barra} = \begin{bmatrix} Y_{11} & \cdots & Y_{130} \\ \vdots & \ddots & \vdots \\ Y_{301} & \cdots & Y_{3030} \end{bmatrix}_{30x30}$$

#### 2.2.3. Tercer paso: Cálculo de sub matrices.

Al tener la Y de barra es necesario obtener las sub matrices  $Y_{NS} y Y_{NN}$  presentadas en la ecuación 1.33 y que serán utilizadas para los cálculos futuros. Estas matrices se presentan en en el **Anexo 3.** 

$$Y_{NS} = \begin{bmatrix} Y_{11} & \cdots & Y_{13} \\ \vdots & \ddots & \vdots \\ Y_{23 \ 1} & \cdots & Y_{23 \ 3} \end{bmatrix}$$
$$Y_{NN} = \begin{bmatrix} Y_{11} & \cdots & Y_{1 \ 23} \\ \vdots & \ddots & \vdots \\ Y_{23 \ 1} & \cdots & Y_{23 \ 23} \end{bmatrix}$$

Las matrices  $Y_{NS}$  y  $Y_{NN}$  se extraen de la matriz de admitancia del sistema Ybus.

Donde:

 $Y_{NS}$ : Es una submatriz de Ybus que contiene las admitancias entre los nodos que no son de referencia (kN) y el nodo de referencia (kS).

 $Y_{NN}$ : Es una submatriz de Ybus que contiene las admitancias entre los nodos que no son de referencia entre sí.

Por lo tanto,  $Y_{NS}$  y  $Y_{NN}$  son partes específicas de la matriz de admitancia Ybus, necesarias para los cálculos de flujo de carga en sistemas eléctricos. La matriz  $Y_{NS}$  se utiliza para considerar la interacción entre el nodo de referencia con los demás nodos, mientras que  $Y_{NN}$  se utiliza para considerar las interacciones entre los nodos, sin considerar el nodo de referencia o slack. Estas consideraciones son esenciales en el análisis y la solución de los flujos de potencia en redes de distribución eléctrica mediante el método propuesto.

#### 2.2.4. Cuarto paso: Cálculo de las potencias del modelo ZIP.

La ecuación 1.37 presenta el modelo ZIP linealizado, el cual utiliza potencias especificadas y cuya representación se realiza según las siguientes matrices.

$$S_{PK} = \begin{bmatrix} S_{11} & \cdots & Y_{1 \ 23} \\ \vdots & \ddots & \vdots \\ S_{23 \ 1} & \cdots & Y_{23 \ 23} \end{bmatrix}$$
$$S_{IK} = \begin{bmatrix} S_{11} & \cdots & S_{1 \ 23} \\ \vdots & \ddots & \vdots \\ S_{23 \ 1} & \cdots & S_{23 \ 23} \end{bmatrix}$$
$$S_{ZK} = \begin{bmatrix} S_{11} & \cdots & S_{1 \ 23} \\ \vdots & \ddots & \vdots \\ S_{23 \ 1} & \cdots & S_{23 \ 23} \end{bmatrix}$$

Donde las matrices  $S_{PK}$  contienen valores de cargas con modelos de potencia constante,  $S_{IK}$  contienen valores de cargas con modelos de corriente constante y las matrices  $S_{ZK}$  contienen valores de cargas con modelos de impedancia constante. La dimensión de 23x23 se debe a la topología de la red y su configuración de fases.

#### 2.2.5. Quinto paso: Cálculo de matrices A, B y C.

Al tener los datos de potencia e impedancias se procede a calcular la ecuación 1.38, obteniendo lo siguiente:

$$A = \begin{bmatrix} A_{11} \\ \vdots \\ A_{231} \end{bmatrix}$$
$$B = \begin{bmatrix} B_{11} & \cdots & B_{123} \\ \vdots & \ddots & \vdots \\ B_{231} & \cdots & B_{2323} \end{bmatrix}$$
$$C = \begin{bmatrix} C_{11} & \cdots & C_{123} \\ \vdots & \ddots & \vdots \\ C_{231} & \cdots & C_{2323} \end{bmatrix}$$

Las matrices A, B y C son componentes fundamentales en el cálculo del flujo de potencia en sistemas eléctricos de distribución. Estas matrices modelan la interacción entre las fuentes de potencia, las cargas y las características de la red eléctrica, así como su relación con las tensiones del sistema. Esto permite realizar un análisis detallado y preciso del comportamiento del sistema bajo diversas condiciones operativas y configuraciones de carga. Además, las matrices A, B y C se utilizan en la formulación del flujo de potencia lineal para resolver el sistema de ecuaciones que describe las tensiones en los nodos (sin incluir el nodo slack) del sistema de distribución eléctrico. Las matrices A,B y C serán presentadas en el **Anexo 4.** 

#### 2.2.6. Sexto paso: Cálculo de voltajes.

Al tener las matrices A, B y C se procede a dividirlas en su parte real e imaginaria para el cálculo del voltaje como se muestra en la ecuación 1.39, obteniendo lo siguiente:

| Downo | Magnitud [pu] | Ángulo   | Magnitud [pu] | Ángulo   | Magnitud [pu] | Ángulo  |  |
|-------|---------------|----------|---------------|----------|---------------|---------|--|
| Balla | Fas           | e A      | Fase          | e B      | Fase C        |         |  |
| 632   | 1.02          | -2.54    | 1.042         | -121.72  | 1.0167        | 117.83  |  |
| 633   | 1.01697       | -2.60479 | 1.04011       | -121.765 | 1.01409       | 117.826 |  |
| 634   | 0.992968      | -3.28261 | 1.02176       | -122.222 | 0.995242      | 117.346 |  |
| 645   | 0             | 0        | 1.03134       | -121.929 | 1.01615       | 117.855 |  |
| 646   | 0             | 0        | 1.02645       | -122.004 | 1.01739       | 117.825 |  |
| 652   | 0.991903      | -5.47192 | 0             | 0        | 0             | 0       |  |
| 671   | 0.999625      | -5.52491 | 1.05046       | -122.084 | 0.965845      | 115.731 |  |
| 675   | 0.993628      | -5.79072 | 1.05271       | -122.245 | 0.963956      | 115.734 |  |
| 680   | 0.999625      | -5.52492 | 1.05046       | -122.084 | 0.965845      | 115.731 |  |
| 684   | 0.997636      | -5.54756 | 0             | 0        | 0.963794      | 115.622 |  |
| 611   | 0             | 0        | 0             | 0        | 0.96176       | 115.466 |  |

Tabla 2.20. Voltajes de las barras de la red de prueba.

#### 2.2.7. Séptimo paso: Cálculo de potencias.

Al tener los voltajes en cada barra, y la información de la matriz Y de barra se procede al cálculo de corrientes de línea para luego utilizarlas en el cálculo de potencia activa en los ramales de la red. Los resultados, de los principales ramales del sistema a prueba, se comparan con aquellos obtenidos en el software comercial DigSilent.

|        | FLUJO POR RAMAS POTENCIA ACTIVA [kW] |          |           |          |           |        |         |  |  |  |  |
|--------|--------------------------------------|----------|-----------|----------|-----------|--------|---------|--|--|--|--|
|        |                                      |          | Fas       | se A     |           |        |         |  |  |  |  |
| В      | arra                                 | M.L      | ineal     | DlgS     | ILENT     | %      | Error   |  |  |  |  |
| Salida | Llegada                              | Salida   | Llegada   | Salida   | Llegada   | Salida | Llegada |  |  |  |  |
| 632    | 633                                  | 162.880  | -162.520  | 162.100  | 161.650   | 0.481  | 0.538   |  |  |  |  |
| 633    | 634                                  | 162.520  | -160.000  | 161.600  | -160.000  | 0.569  | 0.000   |  |  |  |  |
| 684    | 652                                  | 128.850  | -128.000  | 124.000  | -124.000  | 3.911  | 3.226   |  |  |  |  |
| 632    | 671                                  | 1046.730 | -1044.040 | 1067.000 | -1039.660 | 1.900  | 0.421   |  |  |  |  |
| 671    | 684                                  | 129.080  | -128.850  | 124.690  | -124.500  | 3.521  | 3.494   |  |  |  |  |
| 684    | 611                                  | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |  |  |  |  |
|        |                                      |          | Fas       | se B     |           |        |         |  |  |  |  |
| В      | arra                                 | M.L      | %         | Error    |           |        |         |  |  |  |  |
| Salida | Llegada                              | Salida   | Llegada   | Salida   | Llegada   | Salida | Llegada |  |  |  |  |
| 632    | 633                                  | 121.570  | -121.420  | 121.940  | -121.710  | 0.303  | 0.238   |  |  |  |  |
| 633    | 634                                  | 121.420  | -120.000  | 121.700  | -120.000  | 0.230  | 0.000   |  |  |  |  |
| 684    | 652                                  | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |  |  |  |  |
| 632    | 671                                  | 539.510  | -544.750  | 525.020  | -464.740  | 2.760  | 17.216  |  |  |  |  |
| 671    | 684                                  | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |  |  |  |  |
| 684    | 611                                  | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |  |  |  |  |
|        |                                      |          | Fas       | se C     |           |        |         |  |  |  |  |
| Barra  |                                      | M.L      | ineal     | DlgS     | ILENT     | %      | Error   |  |  |  |  |
| Salida | Llegada                              | Salida   | Llegada   | Salida   | Llegada   | Salida | Llegada |  |  |  |  |
| 632    | 633                                  | 121.810  | -121.500  | 122.230  | -122.080  | 0.344  | 0.475   |  |  |  |  |
| 633    | 634                                  | 121.500  | -120.000  | 122.100  | -120.000  | 0.491  | 0.000   |  |  |  |  |
| 684    | 652                                  | 0.000    | 0.000     | 0.000    | 0.000     | 0.000  | 0.000   |  |  |  |  |
| 632    | 671                                  | 1122.560 | -1081.880 | 1104.600 | -957.270  | 1.626  | 13.017  |  |  |  |  |
| 671    | 684                                  | 170.810  | -170.410  | 166.330  | -165.940  | 2.693  | 2.694   |  |  |  |  |
| 684    | 611                                  | 170.410  | -170.000  | 165.940  | -165.580  | 2.694  | 2.669   |  |  |  |  |

Tabla 2.21. Potencia activa de ramales.

#### 2.2.8. Comparación de resultados con software comercial.

Al tener los voltajes de cada barra se procede a compararlos con los valores resultantes del software DigSILENT PowerFactory (ver Tabla 2.22). Estos valores son comparables ya que DIgSILENT utiliza un método no iterativo lineal para la solución de flujos de potencia en redes radiales desbalanceadas.

 Tabla 2.22.
 Voltajes de las barras obtenidos desde DigSILENT PowerFactory.

| Dorro | Magnitud [pu] | Ángulo | Magnitud [pu] | Ángulo  | Magnitud [pu] | Ángulo |  |
|-------|---------------|--------|---------------|---------|---------------|--------|--|
| Ddlld | Fase          | e A    | Fase          | e B     | Fase C        |        |  |
| 632   | 1.021         | -2.48  | 1.0419        | -121.72 | 1.0176        | 117.82 |  |
| 633   | 1.018         | -2.55  | 1.04          | -121.77 | 1.015         | 117.82 |  |
| 634   | 0.9941        | -3.22  | 1.0216        | -122.22 | 0.9962        | 117.33 |  |
| 645   | 0             | 0      | 1.0328        | -121.9  | 1.0156        | 117.85 |  |
| 646   | 0             | 0      | 1.031         | -121.98 | 1.0135        | 117.9  |  |
| 652   | 0.982         | -5.23  | 0             | 0       | 0             | 0      |  |
| 671   | 0.99          | -5.29  | 1.0529        | -122.34 | 0.978         | 116.02 |  |
| 675   | 0.9832        | -5.65  | 1.0573        | -122.51 | 0.9756        | 116.12 |  |
| 680   | 0.99          | -5.29  | 1.0529        | -122.34 | 0.978         | 116.02 |  |
| 684   | 0.988         | -5.31  | 0             | 0       | 0.9759        | 115.92 |  |
| 611   | 0             | 0      | 0             | 0       | 0.974         | 115.77 |  |

Tabla 2.23. Errores porcentuales.

|       | %Error       |            |              |            |              |            |  |  |  |  |  |
|-------|--------------|------------|--------------|------------|--------------|------------|--|--|--|--|--|
| Dorro | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] |  |  |  |  |  |
| Fas   |              | A          | Fase         | В          | Fase         | С          |  |  |  |  |  |
| 632   | 0.0979       | 2.4194     | 0.0096       | 0.0000     | 0.0884       | 0.0085     |  |  |  |  |  |
| 633   | 0.1012       | 2.1486     | 0.0106       | 0.0041     | 0.0897       | 0.0051     |  |  |  |  |  |
| 634   | 0.1139       | 1.9444     | 0.0157       | 0.0016     | 0.0962       | 0.0136     |  |  |  |  |  |
| 645   | 0.0000       | 0.0000     | 0.1414       | 0.0238     | 0.0542       | 0.0042     |  |  |  |  |  |
| 646   | 0.0000       | 0.0000     | 0.4413       | 0.0197     | 0.3838       | 0.0636     |  |  |  |  |  |
| 652   | 1.0085       | 4.6256     | 0.0000       | 0.0000     | 0.0000       | 0.0000     |  |  |  |  |  |
| 671   | 0.9722       | 4.4406     | 0.2317       | 0.2093     | 1.2428       | 0.2491     |  |  |  |  |  |
| 675   | 1.0606       | 2.4906     | 0.4341       | 0.2163     | 1.1935       | 0.3324     |  |  |  |  |  |
| 680   | 0.9722       | 4.4408     | 0.2317       | 0.2093     | 1.2428       | 0.2491     |  |  |  |  |  |
| 684   | 0.9753       | 4.4738     | 0.0000       | 0.0000     | 1.2405       | 0.2571     |  |  |  |  |  |
| 611   | 0.0000       | 0.0000     | 0.0000       | 0.0000     | 1.2567       | 0.2626     |  |  |  |  |  |

En la Tabla 2.23 se presentan los errores porcentuales de la comparación, observándose un bajo error porcentual, aspecto que valida el algoritmo implementado, pudiéndose utilizarlo en redes de prueba más complejas.

### 3. RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

La red Feeder de 33 nodos de IEEE es una red de distribución tipo radial la cual combina líneas aéreas y subterráneas con sus respectivas impedancias y admitancias además de contar con 32 cargas trifásicas distribuidas a lo largo del sistema. Este sistema será puesto a prueba en condiciones desbalanceadas para validar los resultados obtenidos de los

métodos aplicados. A continuación, se presenta el diagrama unifilar de la red de 33 nodos, en el **Anexo 5** se presenta el detalle de la información de la red de prueba.



Figura 3.1. Red de prueba IEEE 33 Node Feeder [7].

La barra de referencia o slack presenta un voltaje de 12.66 kV en todas sus fases, los datos en por unidad de esta barra se presenta en la Tabla 3.1.

|                       | Vo | ltajes fases [p | ou] | Áı       | ngulos fases [ | °]       |
|-----------------------|----|-----------------|-----|----------|----------------|----------|
| Nombre de<br>la barra | Va | Vb              | Vc  | Angulo a | Angulo b       | Angulo c |
| 1                     | 1  | 1               | 1   | 0        | -120           | 120      |

Tabla 3.1. Tabla de valores impedancias de las líneas.

La topología de la red y las impedancias de las líneas aéreas y subterráneas se presentan en la Tabla 3.2:

Ramales Resistencia Reactancia R33 X11 X22 Inicio Fin R11 R22 X33 1 2 0.09283 0.09283 0.09283 0.04802 0.04802 0.04802 2 3 0.49634 0.49634 0.49634 0.25280 0.25280 0.25280 3 4 0.36848 0.36848 0.36848 0.18766 0.18766 0.18766 4 0.38368 0.38368 0.38368 0.19542 0.19542 0.19542 5 5 6 0.82455 0.82455 0.82455 0.71180 0.71180 0.71180 0.62300 0.62300 0.62300 6 7 0.18847 0.18847 0.18847 7 0.71622 0.71622 0.71622 0.23669 0.23669 8 0.23669 8 1.03699 1.03699 1.03699 0.74502 0.74502 0.74502 9 9 10 1.04705 | 1.04705 | 1.04705 | 0.74502 | 0.74502 | 0.74502 10 0.19793 0.19793 0.19793 0.06544 0.06544 0.06544 11

 Tabla 3.2.
 Tabla de valores impedancias de las líneas.

| 11 | 12 | 0.37694 | 0.37694 | 0.37694 | 0.12464 | 0.12464 | 0.12464 |
|----|----|---------|---------|---------|---------|---------|---------|
| 12 | 13 | 1.47796 | 1.47796 | 1.47796 | 1.16283 | 1.16283 | 1.16283 |
| 13 | 14 | 0.54527 | 0.54527 | 0.54527 | 0.71774 | 0.71774 | 0.71774 |
| 14 | 15 | 0.59501 | 0.59501 | 0.59501 | 0.52957 | 0.52957 | 0.52957 |
| 15 | 16 | 0.75136 | 0.75136 | 0.75136 | 0.54870 | 0.54870 | 0.54870 |
| 16 | 17 | 1.29774 | 1.29774 | 1.29774 | 1.73267 | 1.73267 | 1.73267 |
| 17 | 18 | 0.73696 | 0.73696 | 0.73696 | 0.57789 | 0.57789 | 0.57789 |
| 2  | 19 | 0.16511 | 0.16511 | 0.16511 | 0.15756 | 0.15756 | 0.15756 |
| 19 | 20 | 1.51440 | 1.51440 | 1.51440 | 1.36459 | 1.36459 | 1.36459 |
| 20 | 21 | 0.41228 | 0.41228 | 0.41228 | 0.48164 | 0.48164 | 0.48164 |
| 21 | 22 | 0.71371 | 0.71371 | 0.71371 | 0.94366 | 0.94366 | 0.94366 |
| 3  | 23 | 0.45426 | 0.45426 | 0.45426 | 0.31039 | 0.31039 | 0.31039 |
| 23 | 24 | 0.90409 | 0.90409 | 0.90409 | 0.71391 | 0.71391 | 0.71391 |
| 24 | 25 | 0.90208 | 0.90208 | 0.90208 | 0.70586 | 0.70586 | 0.70586 |
| 6  | 26 | 0.20438 | 0.20438 | 0.20438 | 0.10410 | 0.10410 | 0.10410 |
| 26 | 27 | 0.28613 | 0.28613 | 0.28613 | 0.14568 | 0.14568 | 0.14568 |
| 27 | 28 | 1.06618 | 1.06618 | 1.06618 | 0.94003 | 0.94003 | 0.94003 |
| 28 | 29 | 0.80965 | 0.80965 | 0.80965 | 0.70535 | 0.70535 | 0.70535 |
| 29 | 30 | 0.51094 | 0.51094 | 0.51094 | 0.26025 | 0.26025 | 0.26025 |
| 30 | 31 | 0.98101 | 0.98101 | 0.98101 | 0.96953 | 0.96953 | 0.96953 |
| 31 | 32 | 0.31261 | 0.31261 | 0.31261 | 0.36435 | 0.36435 | 0.36435 |
| 32 | 33 | 0.34331 | 0.34331 | 0.34331 | 0.53380 | 0.53380 | 0.53380 |

Los datos de cargas del sistema se presentan en el Anexo 6.

#### 3.1. Resultados

Los resultados que se presentan son valores de voltaje del caso desbalanceado con su respectiva comparación de los métodos aplicados y con resultados de softwares comerciales, esto se realiza con el fin de validar los métodos aplicados.

## 3.2. Algoritmo Forward and Backward

Este método utiliza un algoritmo iterativo en el que se consideran ecuaciones de circuitos alternos para el cálculo del flujo de potencia, el procedimiento de resolución fue presentado en el capítulo metodológico llegando a obtener los resultados presentados en la Tabla 3.3.

| Parra | Magnitud [pu] | Angulo | Magnitud [pu] | Angulo    | Magnitud [pu] | Angulo   |  |
|-------|---------------|--------|---------------|-----------|---------------|----------|--|
| Ddild | Fase A        |        | Fas           | e B       | Fase C        |          |  |
| 1     | 1             | 0      | 1             | -120      | 1             | 120      |  |
| 2     | 0.9975        | 0.0059 | 0.997         | -119.9901 | 0.9974        | 120.0081 |  |
| 3     | 0.9867        | 0.0495 | 0.9823        | -119.9275 | 0.9856        | 120.067  |  |
| 4     | 0.9793        | 0.0896 | 0.9744        | -119.8761 | 0.9788        | 120.1148 |  |

Tabla 3.3. Voltajes en barras de la red de prueba caso desbalanceado.

| 5  | 0.972  | 0.1292  | 0.9665 | -119.8246 | 0.9722 | 120.1626 |
|----|--------|---------|--------|-----------|--------|----------|
| 6  | 0.9536 | -0.0366 | 0.9471 | -119.9749 | 0.9557 | 120.0474 |
| 7  | 0.9504 | -0.2607 | 0.9427 | -120.2946 | 0.9522 | 119.801  |
| 8  | 0.9447 | -0.228  | 0.936  | -120.2702 | 0.9471 | 119.8231 |
| 9  | 0.9371 | -0.3316 | 0.9267 | -120.4236 | 0.9406 | 119.72   |
| 10 | 0.93   | -0.4256 | 0.9199 | -120.5238 | 0.9345 | 119.6265 |
| 11 | 0.929  | -0.4194 | 0.9189 | -120.5193 | 0.9335 | 119.6297 |
| 12 | 0.927  | -0.4099 | 0.9171 | -120.5131 | 0.9319 | 119.6336 |
| 13 | 0.9191 | -0.5532 | 0.9116 | -120.5899 | 0.9254 | 119.4955 |
| 14 | 0.916  | -0.6704 | 0.9096 | -120.6568 | 0.9227 | 119.3821 |
| 15 | 0.9148 | -0.703  | 0.9085 | -120.6869 | 0.9208 | 119.319  |
| 16 | 0.9136 | -0.7211 | 0.9075 | -120.703  | 0.9194 | 119.2958 |
| 17 | 0.9115 | -0.7993 | 0.9062 | -120.7482 | 0.9174 | 119.2186 |
| 18 | 0.9109 | -0.809  | 0.9056 | -120.7581 | 0.9167 | 119.209  |
| 19 | 0.9969 | -0.0098 | 0.9966 | -119.9983 | 0.9968 | 119.9924 |
| 20 | 0.9918 | -0.1173 | 0.9942 | -120.0432 | 0.9923 | 119.8833 |
| 21 | 0.9911 | -0.1368 | 0.9939 | -120.0529 | 0.9913 | 119.8488 |
| 22 | 0.9905 | -0.1574 | 0.9932 | -120.0733 | 0.9907 | 119.8283 |
| 23 | 0.9862 | 0.0374  | 0.9787 | -119.9587 | 0.9832 | 120.0436 |
| 24 | 0.9852 | 0.0079  | 0.972  | -120.0481 | 0.9783 | 119.9738 |
| 25 | 0.9842 | -0.0211 | 0.9686 | -120.0922 | 0.9749 | 119.9303 |
| 26 | 0.9515 | -0.0091 | 0.9454 | -119.9361 | 0.9542 | 120.0811 |
| 27 | 0.9487 | 0.0301  | 0.943  | -119.8815 | 0.9523 | 120.1291 |
| 28 | 0.938  | 0.0853  | 0.9326 | -119.7911 | 0.943  | 120.2073 |
| 29 | 0.9304 | 0.1415  | 0.9251 | -119.7077 | 0.9365 | 120.2805 |
| 30 | 0.927  | 0.243   | 0.9215 | -119.6016 | 0.9337 | 120.3815 |
| 31 | 0.9233 | 0.1584  | 0.9173 | -119.6867 | 0.9313 | 120.3262 |
| 32 | 0.9225 | 0.136   | 0.9164 | -119.7099 | 0.9306 | 120.3075 |
| 33 | 0.9224 | 0.1306  | 0.9161 | -119.7177 | 0.9306 | 120.3075 |

## 3.3. Algoritmo Lineal para sistemas de distribución

El algoritmo lineal no es un proceso iterativo y utiliza la linealización de ecuaciones de circuitos eléctricos con el fin de reducir la complejidad y los tiempos de resolución, este método puede ser aplicado a redes robustas y obtener resultados en menores tiempos, se debe considerar que es una aproximación y por tanto se plantea un cierto porcentaje de error. En la Tabla 3.4 se presentan los valores de voltaje de la red a prueba.

| Parra | Magnitud [pu] | Angulo | Magnitud [pu] | Angulo    | Magnitud [pu] | Angulo  |
|-------|---------------|--------|---------------|-----------|---------------|---------|
| Ddlld | Fase          | eΑ     | Fase          | e B       | Fase          | e C     |
| 1     | 1             | 0      | 1             | -120      | 1             | 120     |
| 2     | 0.9976        | 0.0057 | 0.9971        | -119.9902 | 0.9974        | 120.008 |

Tabla 3.4. Voltajes en barras de la red de prueba caso desbalanceado.

| 3  | 0.9868 | 0.0487  | 0.9824 | -119.9284 | 0.9857 | 120.0663 |
|----|--------|---------|--------|-----------|--------|----------|
| 4  | 0.9794 | 0.0883  | 0.9746 | -119.8777 | 0.979  | 120.1137 |
| 5  | 0.9721 | 0.1275  | 0.9668 | -119.8267 | 0.9723 | 120.1611 |
| 6  | 0.9539 | -0.0378 | 0.9475 | -119.9764 | 0.956  | 120.0463 |
| 7  | 0.9507 | -0.2608 | 0.9432 | -120.2942 | 0.9525 | 119.801  |
| 8  | 0.9451 | -0.2288 | 0.9365 | -120.2705 | 0.9475 | 119.8226 |
| 9  | 0.9375 | -0.3323 | 0.9273 | -120.4236 | 0.9409 | 119.7197 |
| 10 | 0.9305 | -0.4263 | 0.9206 | -120.5236 | 0.9349 | 119.6262 |
| 11 | 0.9294 | -0.4202 | 0.9195 | -120.5193 | 0.934  | 119.6293 |
| 12 | 0.9275 | -0.411  | 0.9177 | -120.5134 | 0.9323 | 119.633  |
| 13 | 0.9196 | -0.5541 | 0.9123 | -120.5901 | 0.9259 | 119.4952 |
| 14 | 0.9166 | -0.6707 | 0.9104 | -120.6566 | 0.9232 | 119.3823 |
| 15 | 0.9154 | -0.7032 | 0.9093 | -120.6865 | 0.9213 | 119.3194 |
| 16 | 0.9142 | -0.7213 | 0.9083 | -120.7026 | 0.9199 | 119.2962 |
| 17 | 0.9121 | -0.799  | 0.907  | -120.7475 | 0.9179 | 119.2194 |
| 18 | 0.9115 | -0.8087 | 0.9064 | -120.7573 | 0.9173 | 119.2098 |
| 19 | 0.9969 | -0.0099 | 0.9967 | -119.9984 | 0.9968 | 119.9923 |
| 20 | 0.9918 | -0.1174 | 0.9943 | -120.0433 | 0.9923 | 119.8832 |
| 21 | 0.9911 | -0.1369 | 0.9939 | -120.053  | 0.9913 | 119.8487 |
| 22 | 0.9905 | -0.1575 | 0.9933 | -120.0734 | 0.9907 | 119.8282 |
| 23 | 0.9863 | 0.0366  | 0.9788 | -119.9596 | 0.9833 | 120.0429 |
| 24 | 0.9853 | 0.0072  | 0.9721 | -120.049  | 0.9784 | 119.9732 |
| 25 | 0.9843 | -0.0219 | 0.9688 | -120.093  | 0.975  | 119.9297 |
| 26 | 0.9518 | -0.0105 | 0.9458 | -119.9378 | 0.9545 | 120.0799 |
| 27 | 0.949  | 0.0285  | 0.9435 | -119.8835 | 0.9525 | 120.1278 |
| 28 | 0.9384 | 0.0837  | 0.9331 | -119.7931 | 0.9434 | 120.206  |
| 29 | 0.9308 | 0.1397  | 0.9257 | -119.7099 | 0.9369 | 120.279  |
| 30 | 0.9275 | 0.2407  | 0.9221 | -119.6043 | 0.9341 | 120.3797 |
| 31 | 0.9237 | 0.1568  | 0.9179 | -119.6885 | 0.9317 | 120.3248 |
| 32 | 0.923  | 0.1346  | 0.917  | -119.7115 | 0.931  | 120.3063 |
| 33 | 0.9229 | 0.1292  | 0.9167 | -119.7192 | 0.931  | 120.3063 |

## 3.4. Comparación de resultados

Con el propósito de validar los resultados obtenidos a través de los algoritmos Forward and Backward y Método Lineal se procede a realizar una comparación con softwares comerciales que utilicen una metodología de resolución similar y así garantizar que estos métodos de resolución sirvan para redes más robustas o complejas.

#### 3.4.1. Método Forward and Backward con CYME

En la Tabla 3.5. se presenta los errores porcentuales de la comparación entre el método Forward and Backward y el software CYME el cual utiliza ecuaciones de corriente alterna para el cálculo de flujos de potencia.

| Parra | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] | Magnitud [%] | Angulo [%] |
|-------|--------------|------------|--------------|------------|--------------|------------|
| Ddild | Fas          | se A       | Fas          | ie B       | Fas          | e C        |
| 1     | 0.000        | 0.000      | 0.000        | 0.000      | 0.000        | 0.000      |
| 2     | 0.050        | 41.000     | 0.000        | 0.000      | 0.040        | 0.002      |
| 3     | 0.030        | 1.000      | 0.031        | 0.040      | 0.061        | 0.011      |
| 4     | 0.031        | 0.444      | 0.062        | 0.055      | 0.020        | 0.004      |
| 5     | 0.000        | 0.615      | 0.052        | 0.062      | 0.021        | 0.010      |
| 6     | 0.042        | 8.500      | 0.011        | 0.113      | 0.073        | 0.056      |
| 7     | 0.063        | 0.269      | 0.032        | 0.162      | 0.126        | 0.043      |
| 8     | 0.032        | 0.870      | 0.000        | 0.183      | 0.116        | 0.044      |
| 9     | 0.096        | 0.485      | 0.032        | 0.244      | 0.064        | 0.059      |
| 10    | 0.107        | 1.333      | 0.119        | 0.261      | 0.054        | 0.072      |
| 11    | 0.000        | 2.293      | 0.011        | 0.257      | 0.054        | 0.075      |
| 12    | 0.108        | 0.024      | 0.098        | 0.260      | 0.097        | 0.078      |
| 13    | 0.098        | 0.582      | 0.044        | 0.224      | 0.043        | 0.097      |
| 14    | 0.109        | 1.576      | 0.044        | 0.188      | 0.076        | 0.102      |
| 15    | 0.022        | 0.429      | 0.055        | 0.163      | 0.087        | 0.083      |
| 16    | 0.044        | 1.563      | 0.055        | 0.160      | 0.044        | 0.080      |
| 17    | 0.055        | 1.177      | 0.088        | 0.131      | 0.044        | 0.074      |
| 18    | 0.121        | 1.125      | 0.044        | 0.131      | 0.076        | 0.075      |
| 19    | 0.010        | 2.000      | 0.040        | 0.001      | 0.020        | 0.002      |
| 20    | 0.020        | 2.250      | 0.020        | 0.056      | 0.030        | 0.003      |
| 21    | 0.010        | 2.286      | 0.010        | 0.072      | 0.030        | 0.001      |
| 22    | 0.050        | 1.625      | 0.020        | 0.072      | 0.030        | 0.001      |
| 23    | 0.020        | 6.500      | 0.031        | 0.057      | 0.020        | 0.039      |
| 24    | 0.020        | 21.000     | 0.000        | 0.090      | 0.031        | 0.113      |
| 25    | 0.020        | 5.500      | 0.041        | 0.094      | 0.010        | 0.158      |
| 26    | 0.053        | 9.000      | 0.063        | 0.114      | 0.126        | 0.059      |
| 27    | 0.032        | 0.333      | 0.000        | 0.110      | 0.137        | 0.074      |
| 28    | 0.106        | 5.222      | 0.043        | 0.126      | 0.106        | 0.106      |
| 29    | 0.064        | 1.071      | 0.097        | 0.140      | 0.053        | 0.134      |
| 30    | 0.108        | 1.250      | 0.054        | 0.144      | 0.075        | 0.143      |
| 31    | 0.076        | 1.000      | 0.076        | 0.190      | 0.140        | 0.172      |
| 32    | 0.054        | 2.857      | 0.065        | 0.192      | 0.065        | 0.173      |
| 33    | 0.065        | 0.462      | 0.098        | 0.199      | 0.065        | 0.181      |

 Tabla 3.5. Errores porcentuales de voltajes.

Los errores encontrados son bajos lo cual demuestra que el método funciona de manera adecuada en sistemas más robustos que contengan diferentes características ya sea en impedancias de líneas o cargas desbalanceadas.

#### 3.4.2. Método Lineal para redes de distribución con DIgSILENT

De la misma manera se procede a comparar el método lineal con el software comercial DIgSILENT ya que ambos utilizan métodos simplificados para la resolución de flujos de potencia, en la Tabla 3.6 se presentan los errores porcentuales de voltajes del sistema a prueba.

| Barra | Magnitud<br>[%] | Angulo [%] | Magnitud<br>[%] | Angulo [%] | Magnitud<br>[%] | Angulo [%] |
|-------|-----------------|------------|-----------------|------------|-----------------|------------|
|       | Fas             | se A       | Fas             | se B       | Fas             | e C        |
| 1     | 0.319           | 0.000      | 0.158           | 0.219      | 0.476           | 0.045      |
| 2     | 0.304           | 75.439     | 0.167           | 0.227      | 0.493           | 0.051      |
| 3     | 0.220           | 2.669      | 0.303           | 0.288      | 0.658           | 0.091      |
| 4     | 0.222           | 1.925      | 0.273           | 0.299      | 0.734           | 0.106      |
| 5     | 0.222           | 1.961      | 0.248           | 0.311      | 0.803           | 0.122      |
| 6     | 0.262           | 5.820      | 0.182           | 0.344      | 1.015           | 0.141      |
| 7     | 0.251           | 0.307      | 0.236           | 0.344      | 1.094           | 0.123      |
| 8     | 0.212           | 0.524      | 0.214           | 0.348      | 1.195           | 0.150      |
| 9     | 0.207           | 0.692      | 0.186           | 0.359      | 1.365           | 0.170      |
| 10    | 0.187           | 1.478      | 0.021           | 0.358      | 1.421           | 0.179      |
| 11    | 0.180           | 2.427      | 0.004           | 0.354      | 1.430           | 0.181      |
| 12    | 0.159           | 0.243      | 0.047           | 0.347      | 1.435           | 0.186      |
| 13    | 0.151           | 0.740      | 0.438           | 0.351      | 1.366           | 0.196      |
| 14    | 0.152           | 1.595      | 0.626           | 0.376      | 1.310           | 0.204      |
| 15    | 0.063           | 0.455      | 0.730           | 0.384      | 1.254           | 0.206      |
| 16    | 0.006           | 1.567      | 0.851           | 0.387      | 1.229           | 0.203      |
| 17    | 0.013           | 1.126      | 0.909           | 0.389      | 1.179           | 0.205      |
| 18    | 0.012           | 1.076      | 0.911           | 0.390      | 1.181           | 0.206      |
| 19    | 0.316           | 1.010      | 0.149           | 0.226      | 0.478           | 0.055      |
| 20    | 0.419           | 2.215      | 0.011           | 0.216      | 0.316           | 0.082      |
| 21    | 0.419           | 2.264      | 0.029           | 0.215      | 0.264           | 0.094      |
| 22    | 0.415           | 1.587      | 0.032           | 0.215      | 0.267           | 0.094      |
| 23    | 0.119           | 9.290      | 0.473           | 0.323      | 0.722           | 0.105      |
| 24    | 0.102           | 38.889     | 0.802           | 0.378      | 0.825           | 0.123      |
| 25    | 0.226           | 8.676      | 0.930           | 0.404      | 0.819           | 0.123      |
| 26    | 0.295           | 4.762      | 0.159           | 0.344      | 1.027           | 0.144      |
| 27    | 0.340           | 5.263      | 0.126           | 0.345      | 1.047           | 0.151      |
| 28    | 0.429           | 7.527      | 0.102           | 0.359      | 1.123           | 0.175      |
| 29    | 0.499           | 0.215      | 0.079           | 0.371      | 1.176           | 0.194      |
| 30    | 0.524           | 0.291      | 0.092           | 0.377      | 1.218           | 0.208      |
| 31    | 0.618           | 2.041      | 0.122           | 0.384      | 1.331           | 0.222      |
| 32    | 0.617           | 4.012      | 0.129           | 0.386      | 1.344           | 0.224      |
| 33    | 0.625           | 0.619      | 0.142           | 0.388      | 1.363           | 0.225      |

Tabla 3.6. Errores porcentuales de voltajes.

Se tiene que los errores son relativamente bajos al compararlos lo cual indica que el método es aceptable y puede ser aplicado a otros sistemas más grandes y complejos.

#### 3.4.3. Interfaz de métodos.

Con la finalidad de tener una presentación de resultados agradable para el usurario se programó una interfaz gráfica en Python la cual indica los casos de estudio realizados en el presente trabajo, y dando como resultados los voltajes, ángulos de las barras además de las potencias de los ramales.

#### 3.4.3.1. Pantalla principal

En la Figura 3.2. se presenta la pantalla principal de la interfaz en la cual se puede seleccionar el caso de estudio ya sea el de 13 o 33 barras como también el método con el cual será calculado el flujo de potencia.



Figura 3.2. Pantalla principal de la interfaz.

#### 3.4.3.2. Características de la red de estudio.

Para tener una mejor presentación del caso de estudio en la Figura 3.3 se presenta los datos de la red o caso de estudio donde se puede observar resistencias, inductancias y admitancias de las líneas de transmisión, su topología y los valores de cargas conectados a las diferentes barras.

| er Flow                                              |                                                                               |                                                                            |                                                                                                                     |                                                                                |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               | - |
|------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---|
|                                                      | HERRAMIENTA CO                                                                | F<br>VPUTACIONAL PA                                                        | ESCUELA PO<br>ACULTAD DE INGEF<br>CARRE<br>RA LA REALIZACIÓF                                                        | DLITÉCNICA M<br>NIERÍA ELÉCTRICA<br>RA DE ELECTRICID<br>N DE FLUJOS DE PO      | IACIONAL<br>y electrónica<br>ad<br>itencia en sistem                           | 1AS ELÉCTRICOS DE                                                                                                               | DISTRIBUCIÓN                                                                   |                                                                                                                               |   |
|                                                      | Diagrama Unifilar                                                             |                                                                            |                                                                                                                     |                                                                                |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               |   |
| ← Sistema 13 Barras IEEE ← Sistema de 33 Barras IEEE | :<br>-+::F                                                                    |                                                                            |                                                                                                                     | <u></u>                                                                        |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               |   |
| de Solución<br>Método B&F                            |                                                                               |                                                                            |                                                                                                                     | <i></i>                                                                        |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               |   |
|                                                      | Conf R Conf X                                                                 | Conf B To                                                                  |                                                                                                                     |                                                                                |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               |   |
|                                                      | Datos del Sistema                                                             |                                                                            | pologia Carga                                                                                                       | 5                                                                              |                                                                                |                                                                                                                                 |                                                                                |                                                                                                                               |   |
| Método Lineal                                        | Datos del Sistema<br>Barra<br>1<br>2<br>3<br>4                                | LIN=1,TR=0                                                                 | R11 [ohm]<br>0.092825<br>0.496344<br>0.368482<br>0.383685<br>0.923455                                               | R12 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0                                          | R13 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0                                          | R22 [ohm]<br>0.092825<br>0.496344<br>0.368482<br>0.383685<br>0.93455                                                            | R23 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | R33 [ohm]<br>0.092825<br>0.496344<br>0.366462<br>0.333665                                                                     |   |
| Método Lineal                                        | Datos del Sistema<br>Barra<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | UN=1,TR=0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R11 [ohm]<br>0.092825<br>0.496344<br>0.38685<br>0.824555<br>0.18847<br>0.716225<br>1.036986<br>1.047054<br>0.197933 | R12 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | R13 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | R22 [ohm]<br>0.092825<br>0.496344<br>0.368482<br>0.83685<br>0.824555<br>0.18847<br>0.716225<br>1.036986<br>1.047054<br>0.197933 | R23 [ohm]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | R33 [ohm]<br>0.092825<br>0.495344<br>0.383482<br>0.82455<br>0.82455<br>0.82455<br>0.716223<br>1.08966<br>1.047054<br>0.197933 |   |

Figura 3.3. Pantalla de datos de la red.

#### 3.4.3.3. Presentación de resultados.

Finalmente se procede a seleccionar Calcular y Mostrar Resultados lo cual presenta los resultados obtenidos de voltajes y potencias de cada fase como se muestra en la figura Figura 3.4.

|                                          |                                                                                                                                  | Resultado                                                                                                                                                                                                                                               | s del Cálcul                                                                                                                                      | o del flujo de                                                                                                                                           | Potencia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                     |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                     |
| esumen                                   | Voltajes, Generad                                                                                                                | ción y Demandi                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                     |
|                                          | Barra                                                                                                                            | V (pu                                                                                                                                                                                                                                                   | ] δ[g                                                                                                                                             | grad] P                                                                                                                                                  | G [kW]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QG [kVAr]                                                                                                                                                                          | PD [kW]                                                                                                                                   | QD [kVAr]                                                                                                                                           |
| so de Estudio: Sistema de 33 barras IEEE | 1.0                                                                                                                              | 1.0                                                                                                                                                                                                                                                     |                                                                                                                                                   | 0.0 10                                                                                                                                                   | 091.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 623.26                                                                                                                                                                             | 0.0                                                                                                                                       | 0.0                                                                                                                                                 |
|                                          | 2.0                                                                                                                              | 0.998                                                                                                                                                                                                                                                   | 0.                                                                                                                                                | .006                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 33.333                                                                                                                                    | 20.0                                                                                                                                                |
|                                          | 3.0                                                                                                                              | 0.987                                                                                                                                                                                                                                                   | 0.                                                                                                                                                | .049                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 30.0                                                                                                                                      | 13.333                                                                                                                                              |
| odo de solución: Método Lineal           | 4.0                                                                                                                              | 0.979                                                                                                                                                                                                                                                   | 0.                                                                                                                                                | .088                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 40.0                                                                                                                                      | 26.667                                                                                                                                              |
|                                          | 5.0                                                                                                                              | 0.972                                                                                                                                                                                                                                                   | 0.                                                                                                                                                | .127                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 0.0                                                                                                                                       | 0.0                                                                                                                                                 |
|                                          | 6.0                                                                                                                              | 0.954                                                                                                                                                                                                                                                   | -0                                                                                                                                                | 0.038                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 20.0                                                                                                                                      | 6.667                                                                                                                                               |
|                                          | 7.0                                                                                                                              | 0.951                                                                                                                                                                                                                                                   | -0                                                                                                                                                | .261                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 0.0                                                                                                                                       | 0.0                                                                                                                                                 |
|                                          | 8.0                                                                                                                              | 0.945                                                                                                                                                                                                                                                   | -0                                                                                                                                                | .229                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 66.666                                                                                                                                    | 33.333                                                                                                                                              |
|                                          | 9.0                                                                                                                              | 0.938                                                                                                                                                                                                                                                   | -0                                                                                                                                                | .332                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 20.0                                                                                                                                      | 6.666                                                                                                                                               |
|                                          | 10.0                                                                                                                             | 0.931                                                                                                                                                                                                                                                   | -0                                                                                                                                                | .426                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 19.999                                                                                                                                    | 6.666                                                                                                                                               |
|                                          | 11.0                                                                                                                             | 0.929                                                                                                                                                                                                                                                   |                                                                                                                                                   | 0.42                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 15.0                                                                                                                                      | 10.0                                                                                                                                                |
|                                          | 12.0                                                                                                                             | 0.928                                                                                                                                                                                                                                                   | -0                                                                                                                                                | .411                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 19.999                                                                                                                                    | 11.666                                                                                                                                              |
|                                          | 13.0                                                                                                                             | 0.92                                                                                                                                                                                                                                                    | -0                                                                                                                                                | 0.554                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 19.999                                                                                                                                    | 11.666                                                                                                                                              |
|                                          | 14.0                                                                                                                             | 0.017                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    | 100.0                                                                                                                                     | 10.0                                                                                                                                                |
|                                          | - Potencias y Pérd                                                                                                               | idar                                                                                                                                                                                                                                                    | -0                                                                                                                                                | 1.6/1                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 100.0                                                                                                                                     | 40.0                                                                                                                                                |
|                                          | Potencias y Pérd                                                                                                                 | idas                                                                                                                                                                                                                                                    | -0                                                                                                                                                | .6/1                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                | 100.0                                                                                                                                     | 40.0                                                                                                                                                |
|                                          | Potencias y Pérd<br>Desde                                                                                                        | idas<br>Hasta                                                                                                                                                                                                                                           | P envío [kW]                                                                                                                                      | Q envío [kVAr]                                                                                                                                           | P recibo [kW]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q recibo [kVAr]                                                                                                                                                                    | P Pérd [kW]                                                                                                                               | Q Pérd [kVAr]                                                                                                                                       |
|                                          | Potencias y Pérd<br>Desde<br>1.0                                                                                                 | idas<br>Hasta<br>2.0                                                                                                                                                                                                                                    | P envío [kW]<br>1091.104                                                                                                                          | Q envío [kVAr]<br>623.26                                                                                                                                 | P recibo [kW]<br>-1088.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q recibo [kVAr]<br>-621.85                                                                                                                                                         | P Pérd [kW]<br>2.722                                                                                                                      | 40.0<br>Q Pérd [kVAr]<br>1.41                                                                                                                       |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0                                                                                          | idas<br>Hasta<br>2.0<br>3.0                                                                                                                                                                                                                             | P envio [kW]<br>1091.104<br>893.605                                                                                                               | Q envío [kVAr]<br>623.26<br>535.859                                                                                                                      | P recibo [kW]<br>-1088.381<br>-883.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q recibo [kVAr]<br>-621.85<br>-530.733                                                                                                                                             | P Pérd [kW]<br>2.722<br>10.05                                                                                                             | 40.0<br>Q Pérd [kVAr]<br>1.41<br>5.126                                                                                                              |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0                                                                                   | idas<br>Hasta<br>2.0<br>3.0<br>4.0                                                                                                                                                                                                                      | P envío [kW]<br>1091.104<br>893.605<br>801.492                                                                                                    | Q envío [kVAr]<br>623.26<br>535.859<br>506.899                                                                                                           | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q recibo [kVAr]<br>-621.85<br>-530.733<br>-503.669                                                                                                                                 | P Pérd [kW]<br>2.722<br>10.05<br>6.323                                                                                                    | Q Pérd [kVAr]<br>1,41<br>5,126<br>3,229                                                                                                             |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0                                                                            | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0                                                                                                                                                                                                               | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851                                                                                         | Q envío [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831                                                                                                | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q recibo [kVAr]<br>-621.85<br>-530.733<br>-503.669<br>-473.798                                                                                                                     | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937                                                                                           | Q Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033                                                                                                    |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0                                                                     | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0                                                                                                                                                                                                        | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914                                                                              | Q envío (kVAr)<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798                                                                                     | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q recibo [kVAr]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761                                                                                                         | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753                                                                                 | Q Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037                                                                                          |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0                                                       | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0                                                                                                                                                                                                 | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722                                                                   | Q envío [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>155.235                                                                          | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q recibo [k//Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361                                                                                            | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565                                                                        | Q Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874                                                                                 |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0                                                       | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0                                                                                                                                                                                          | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722<br>349.158                                                        | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>155.235<br>153.361                                                               | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q recibo [kV/Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361<br>-152.647                                                                                | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565<br>2.153                                                               | Q Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714                                                                        |
|                                          | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0                                                | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0                                                                                                                                                                                   | P envio (kW)<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722<br>349.158<br>279.866                                             | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>155.235<br>153.361<br>118.926                                                    | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005<br>-277.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q recibo [kV/Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361<br>-152.647<br>-117.48                                                                     | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565<br>2.153<br>2.01                                                       | Q Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714<br>1.446                                                               |
| V Fore A                                 | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0                                         | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0                                                                                                                                                                           | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722<br>349.158<br>279.866<br>257.716                                  | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>155.235<br>153.361<br>118.926<br>110.73                                          | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005<br>-277.856<br>-255.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q recibo [k//Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-152.647<br>-117.48<br>-109.478                                                                     | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565<br>2.153<br>2.01<br>1.756                                              | Q Perd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714<br>1.446<br>1.252                                                      |
| V Fare A                                 | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0                                 | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0                                                                                                                                                                          | P envio (kW)<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722<br>349.158<br>279.866<br>257.716<br>235.937                       | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>155.235<br>153.361<br>118.926<br>110.73<br>102.806                               | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005<br>-277.856<br>-255.96<br>-255.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q recibo [k//Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-152.647<br>-117.48<br>-109.478<br>-102.712                                                         | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565<br>2.153<br>2.01<br>1.756<br>0.284                                     | Q Pérd [kV/Ar]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714<br>1.446<br>1.252<br>0.094                                            |
| V Fase A                                 | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0                         | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0                                                                                                                                                           | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.722<br>349.158<br>279.865<br>257.716<br>235.937<br>220.621<br>279.052 | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.798<br>475.235<br>153.361<br>118.926<br>110.73<br>102.806<br>92.694                     | P recibo [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005<br>-277.856<br>-255.96<br>-255.563<br>-225.563<br>-225.563<br>-225.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q recibo [kVAr]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361<br>-152.647<br>-117.48<br>-109.478<br>-102.712<br>-92.539                                   | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>2.056<br>2.153<br>2.01<br>1.756<br>0.284<br>0.469                            | Q. Pérd [kVAr]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714<br>1.446<br>1.252<br>0.094<br>0.155<br>1.20                           |
| V Fase A<br>V Fase B                     | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0                 | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>13.0                                                                                                                                                   | P envio [kW/]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>349.158<br>279.866<br>257.716<br>235.7716<br>220.621<br>200.01           | Q envío (kVAr)<br>623.26<br>533.859<br>506.899<br>476.831<br>475.738<br>155.235<br>153.361<br>118.926<br>110.73<br>102.806<br>92.694<br>80.722<br>57.704 | P recibo (kW)<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.105<br>-277.856<br>-255.96<br>-255.96<br>-255.96<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-225.95<br>-255.95<br>-255.95<br>-255.95 | Q recibo [kVA]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361<br>-152.647<br>-117.48<br>-109.478<br>-109.478<br>-109.478<br>-102.712<br>-92.539<br>-79.539 | P Pérd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>2.01<br>1.756<br>2.201<br>1.756<br>0.469<br>1.503<br>0.469                   | 4000<br>Q Pérd [k/Ar]<br>1.41<br>5.126<br>3.229<br>3.033<br>11.037<br>1.874<br>0.714<br>1.446<br>1.252<br>0.094<br>0.155<br>1.183<br>0.552          |
| V Fase A<br>V Fase B                     | Potencias y Pérd<br>Desde<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>12.0<br>13.0<br>14.0 | idas<br>Hasta<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>11.0<br>11.0<br>11.0<br>11.0<br>13.0<br>14.0<br>5.0<br>14.0<br>5.0<br>14.0<br>5.0<br>14.0<br>5.0<br>14.0<br>5.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10. | P envio [kW]<br>1091.104<br>893.605<br>801.492<br>754.851<br>748.914<br>249.158<br>279.865<br>235.977<br>220.621<br>235.937<br>220.011<br>178.466 | Q envio [kVAr]<br>623.26<br>535.859<br>506.899<br>476.831<br>473.796<br>1155.235<br>1153.361<br>110.236<br>92.694<br>80.722<br>67.794<br>37200           | P recibe [kW]<br>-1088.381<br>-883.554<br>-795.169<br>-748.914<br>-736.161<br>-349.158<br>-347.005<br>-275.856<br>-255.653<br>-225.653<br>-220.151<br>-198.507<br>-178.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q recibo [kV/Ar]<br>-621.85<br>-530.733<br>-503.669<br>-473.798<br>-462.761<br>-153.361<br>-152.647<br>-117.48<br>-109.478<br>-102.712<br>-92.539<br>-67.212<br>-70.539            | P Perd [kW]<br>2.722<br>10.05<br>6.323<br>5.937<br>12.753<br>0.565<br>2.153<br>2.01<br>1.756<br>0.284<br>0.469<br>1.503<br>0.443<br>0.443 | 4000<br>Q Pérd [kVAr]<br>1,41<br>5,126<br>3,229<br>3,033<br>11,037<br>1,874<br>0,714<br>1,486<br>1,252<br>0,094<br>0,155<br>1,183<br>0,582<br>0,994 |

Figura 3.4. Presentación de resultados.

En esta ventana se puede seleccionar la fase que se desee analizar mostrando así los voltajes y ángulos de cada barra además de las potencias de demanda y la de los ramales para saber las pérdidas que tiene cada una de ellas.

## 3.5. Conclusiones

Los métodos implementados en software en este trabajo, son altamente aplicables en el ámbito académico, ya que simplifican y facilitan los procesos de aprendizaje y enseñanza relacionados con la solución de flujos de potencia en redes de distribución radiales. Estos métodos pueden ser integrados en currículos educativos para ayudar a los estudiantes a comprender y resolver problemas complejos de manera más eficiente, contribuyendo así a una formación más sólida en ingeniería eléctrica.

Como resultado del proceso de investigación se encontró que existen diferentes softwares comerciales que utilizan diferentes metodologías para la solución de flujos de potencia en redes de distribución desbalanceada ya sea utilizando ecuaciones de circuitos eléctricos alternos o la linealización de dichas ecuaciones con el fin de obtener resultados más cercanos a la realidad o tener una simulación rápida.

Se comprobó que los métodos implementados en este trabajo de integración curricular sirven para el cálculo de flujos de potencia en redes de distribución radiales desbalanceadas puesto que los valores obtenidos fueron comparables con software comerciales dependiendo de su metodología de resolución.

## 3.6. Recomendaciones

Tener conocimientos del lenguaje de programación Python para la mejor compresión de los métodos utilizados puesto que utiliza diferentes librerías las mismas que deberán ser instaladas de manera adecuada para el correcto funcionamiento de los programas.

## 4. REFERENCIAS BIBLIOGRÁFICAS

[1] H. KerstingW y L. MendiveD, «An application of ladder network theory to the solution of three-phase radial load-flow problems.», 1976. Accedido: 2 de enero de 2024. [En línea]. Disponible en: https://www.semanticscholar.org/paper/An-application-of-ladder-network-theory-to-the-of-KerstingW-MendiveD/4747d9c5fd741dbfdb8a957b9be516687f3fc573

[2] L. Pravos García, «Análisis de flujos de carga para el análisis de redes de distribución. Implementación del algoritmo "Fordward and Backward"». Accedido: 2 de enero de 2024. [En línea]. Disponible en: https://oa.upm.es/47864/  [3] L. M. Pumisacho Galarza, «Modelación y simulación de líneas de transmisión considerando multiples fases y el efecto de retorno por tierra», bachelorThesis, 2019.
 Accedido: 26 de febrero de 2024. [En línea]. Disponible en: http://dspace.ups.edu.ec/handle/123456789/18030

[4] S. González Castro, «Estudio e implementación de modelos de carga en sistemas eléctricos de distribución». Accedido: 26 de febrero de 2024. [En línea]. Disponible en: https://oa.upm.es/52757/

[5] X. A. Guano Sinchiguano, «Desarrollo de un modelo matemático para análisis de flujos de carga en redes eléctricas de distribución desequilibradas de bajo voltaje, aplicando la metodología "forward and backward".», masterThesis, 2023. Accedido: 16 de julio de 2024. [En línea]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/23693

[6] A. Garces, «A Linear Three-Phase Load Flow for Power Distribution Systems», *IEEE Transactions on Power Systems*, vol. 31, n.º 1, pp. 827-828, ene. 2016, doi: 10.1109/TPWRS.2015.2394296.

[7] «Resources – IEEE PES Test Feeder». Accedido: 11 de junio de 2024. [En línea]. Disponible en: https://cmte.ieee.org/pes-testfeeders/resources/

## 5. ANEXOS

#### Anexo 1

Sistema de 13 barras



Anexo 2

#### Y barra del método lineal

Presentado en archivo digital en formato Excel.

#### Anexo 3

#### Sub matrices del método lineal

#### Matriz Y<sub>NS</sub>

Presentado en archivo digital en formato Excel.

#### Matriz $Y_{NN}$

Presentado en archivo digital en formato Excel.

#### Anexo 4

#### Matriz A

Presentado en archivo digital en formato Excel.

#### Matriz B

Presentado en archivo digital en formato Excel.

#### Matriz C

Presentado en archivo digital en formato Excel.

#### Anexo 5

## Sistema de 33 barras



Created with DIgSILENT PowerFactory Education Licence

#### Anexo 6

## Cargas del sistema de 33 barras.

Presentado en archivo digital en formato Excel.