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RESUMEN  

Este survey examina el campo del machine unlearning en redes neuronales, un área 

impulsada por regulaciones de privacidad de datos como el General Data Protection 

Regulation y la California Consumer Privacy Act. Esta revisión analiza 31 estudios 

primarios sobre machine unlearning específicamente aplicados a redes neuronales 

utilizadas en tareas de regresión y clasificación. La encuesta evalúa los principios 

fundamentales, métricas y metodologías utilizadas para evaluar las técnicas de 

machine unlearning, con un enfoque en los avances recientes hasta diciembre de 

2023. Al categorizar y detallar estas técnicas, este trabajo proporciona conocimientos 

sobre su evolución, efectividad y aplicabilidad, ofreciendo una base para futuras 

investigaciones y aplicaciones prácticas en el ámbito de la privacidad de datos y la 

gestión de modelos. Además, este trabajo proporciona recomendaciones para la 

aplicación de técnicas de desaprendizaje en la clasificación de señales EMG. 

  

PALABRAS CLAVE: Machine Unlearning, privacidad de datos, redes neuronales, 

olvido selectivo.   
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ABSTRACT  

This survey examines the field of machine unlearning in neural networks, an area 

driven by data privacy regulations such as General Data Protection Regulation and 

California Consumer Privacy Act. This review analyzes 31 primary studies of machine 

unlearning specifically applied to neural networks used in regression and classification 

tasks. The survey evaluates the foundational principles, metrics, and methodologies 

used to assess machine unlearning techniques, with a focus on recent advancements 

up to December 2023. By categorizing and detailing these techniques, this work 

provides insights into their evolution, effectiveness, and applicability, offering a 

foundation for future research and practical applications in the realm of data privacy 

and model management. Additionally, this survey provides recommendations for the 

application of machine unlearning techniques in EMG signal classification. 

KEYWORDS: Machine Unlearning, data privacy, neural networks, selective forgetting.
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I. INTRODUCTION 

In response to data privacy regulations like the General Data Protection Regulation (GDPR) 

and California Consumer Privacy Act (CCPA), the concept of the ’Right to be Forgotten’ has 

gained visibility. These regulations impose compliance burdens on organizations by 

requiring them to implement mechanisms for data erasure. Specifically, the GDPR 

stipulates that individuals have the right to demand the deletion of their data if it is no longer 

necessary for its original purpose or if they withdraw consent for its processing [1]. 

Moreover, these deletions must be performed promptly, within a timeframe known as 

"without undue delay" [2]. It is increasingly recognized that data deletion should not be 

limited to databases but should extend to the removal of personal data from machine 

learning models themselves. For instance, a data regulator in the United Kingdom has 

warned businesses about machine learning software falling under GDPR provisions. 

Similarly, the US Federal Trade Commission had required Paravision, a facial recognition 

startup, to erase a collection of facial images. These images were improperly acquired. 

They also had to erase the machine learning models trained using these images [3]. 

Machine unlearning emerges as an area of research in response to these regulatory 

mandates. It refers to modifying trained machine learning models to selectively forget 

specific subsets of data, thereby ensuring compliance with deletion requests without the 

need for complete model retraining [4]. Retraining becomes expensive. Studies found that 

retraining large machine learning models like GPT-3 can cost hundreds of thousands of 

dollars in computational resources alone [5]. Consequently, the ability to unlearn becomes 

essential not only for protecting individuals’ privacy but also for mitigating legal and financial 

risks associated with non-compliance. 

A. Description of Developed Component 

Existing surveys on machine unlearning have summarized methodologies and identified 

implementation challenges, often presenting a taxonomy of techniques. This survey, 

however, differentiates itself by only exploring machine unlearning techniques in neural 

network models, specifically within regression and classification contexts, and then 

categorizing techniques based on foundational principles and mathematical frameworks. It 

provides a chronological ordering of techniques up to December 2023, offering detailed 

descriptions and mathematical underpinnings, including relevant formulas where 

applicable. By presenting techniques in chronological order, this survey highlights their 
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evolution and interrelationships, enhancing understanding. Additionally, this work compares 

datasets, architectures, and levels of unlearning achieved whether at the class level or 

individual data point level while also analyzing reproducibility. 

B. General Objective 

Conduct a systematic literature review on machine unlearning in neural networks for 

classification and regression tasks. 

C. Specific Objectives 

1. Define the categorization framework for machine unlearning techniques applicable to 

neural networks in regression and classification contexts. 

2. Identify the foundational principles underlying different machine unlearning techniques. 

3. Analyze the metrics and methodologies commonly used to assess the efficacy of 

machine unlearning techniques. 

4. Select the most suitable machine unlearning technique for a case study involving EMG 

signal classification. 

The structure of this document is designed to address the aspects of machine unlearning. 

The I. Introduction section provides an overview of the research topic, its significance, and 

the contribution of the study. The II. Methodology section outlines the research questions 

and the process for selecting primary studies. It includes a description of the research 

methodology used to gather and analyze data. The III. Theoretical Framework section 

provides clear definitions of key terms and concepts related to machine unlearning, 

discusses the practical applications of machine unlearning, and explores the challenges 

and obstacles encountered in its implementation. The IV. Analysis of Techniques section 

is divided into subsections that categorize and examine different unlearning techniques 

based on databases, architecture, and federated learning. This section provides a detailed 

analysis of the methodologies used in each category. The V. Discussion of Results section 

interprets the findings of the study. The VI. Conclusion and Future Work section 

summarizes the key findings, draws conclusions, and suggests directions for future 

research. Finally, the VII. Appendices provide supplementary material that supports the 

main text, including additional tables. II. Methodology 

In this survey on machine unlearning in neural networks, the methodology follows five key 

stages proposed in Kitchenham methodology [6]. First, specific research questions are 
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defined to guide the scope and focus of the review. Second, a comprehensive search of 

primary studies is conducted from relevant academic databases and sources to gather 

pertinent literature. Third, the primary studies are analyzed by critically examining the 

collected literature for quality, relevance, and contributions to the field. Fourth, essential 

information and findings are systematically extracted from the studies. Finally, threats to 

validity are identified to ensure the robustness and credibility of the reviews conclusions. 

A. Research Questions 

This survey aims to categorize and evaluate various machine unlearning techniques within 

neural network models consequently it is guided by four research questions: 

1. RQ1: How can machine unlearning techniques, for neural networks with regression or 

classification tasks, be categorized? 

2. RQ2: What are the foundational principles underlying different machine unlearning 

techniques? 

3. RQ3: What metrics and methods are commonly used to evaluate the effectiveness of 

machine unlearning techniques in different datasets and architectural setups? 

4. RQ4: What is the most suitable machine unlearning technique for a case study of EMG 

signal classification? 

B. Search for primary studies 

This process begins by choosing relevant databases and repositories of literature. Next, 

keywords related to the research questions are identified and used to create search queries. 

These queries are then executed to gather primary studies from the selected literature 

sources. 

The search strategy covers five academic databases and repositories: ACM, IEEE, Science 

Direct, Springer, and ArXiv. The first four were chosen based on their extensive collection 

of primary studies. ArXiv was highlighted as a valuable source despite its lack of peer 

review. This platform offers access to the latest insights and developments in the fast-

evolving field of machine learning [7]. 

The extracted keywords are: machine unlearning, forgetting, mechanism, data, removal 

neural network, classification, regression, and federated unlearning. Search Strings have 

been developed using these keywords and the Boolean operator AND and "NOT". Each 

query will explicitly exclude the terms generative and catastrophic. The exclusion of 

generative aligns with the focus on specific neural network architectures as outlined in the 

introduction, which does not encompass generative models. The term catastrophic 
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forgetting is excluded because it refers to the unintended loss of previously learned 

information when a neural network is trained on new data, and the survey is focused on 

techniques that can selectively forget or modify previously learned information in a 

controlled manner. A detailed list of Search Strings can be found in Table I. 

Table I. Search strings used to find primary studies. 

ID Search String 

SS1 "machine unlearning" AND "neural network" AND ("CLASSIFICATION" 

OR 

"REGRESSION") NOT "generative" NOT "catastrophic" 

SS1 "machine forgetting" AND "neural network" AND ("CLASSIFICATION" OR 

"REGRESSION") NOT "generative" NOT "catastrophic" 

SS2 "forgetting mechanism" AND "neural network" AND ("CLASSIFICATION" 

OR 

"REGRESSION") NOT "generative" NOT "catastrophic" 

SS3 "algorithmic forgetting" AND "neural network" AND ("CLASSIFICATION" 

OR 

"REGRESSION") NOT "generative" NOT "catastrophic" 

SS4 "Data Removal" AND "neural network" AND ("CLASSIFICATION" OR 

"REGRESSION") NOT "generative" NOT "catastrophic" 

 

As mentioned before the survey on machine unlearning in neural networks will focus on 

studies published from January 2015 to December 2023. The choice of this timeframe is 

informed by the identification of the earliest relevant papers in the academic databases and 

repositories, with 2015 marking the appearance of contributions to the field. Additionally, 

papers from this period have been extensively cited in subsequent research. Extending the 

review to December 2023 aims to capture the most recent advancements and discussions 

in this rapidly evolving area, ensuring a comprehensive and up-to-date analysis. Figure 1 

illustrates the distribution of these studies per year, offering a visual representation of the 

research trend in this domain. 
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Fig. 1. Number of primary studies of machine unlearning in each year 

There were found 459 primary studies in the four repositories. Then it was removed 118 

duplicate studies, and 21 primary studies were added using the snowballing techniques. As 

a result, a total of 362 primary studies were identified. Figure 2 illustrates the number of 

primary studies remaining after each step performed in the two stages: the search for 

primary studies and the analysis of these studies. 

Fig. 2. The primary studies obtained after each step taken 

 

C. Analysis of Primary Results 

The 362 primary studies were filtered by evaluating the titles, abstracts, and conclusions 

according to the inclusion and exclusion criteria and the assessment questions. An inclusion 

criterion is that the studies must be accessible in full text for a comprehensive review, and 

research from preprint servers was included to capture the latest developments in the field. 

Studies that present frameworks or methodologies designed for unlearning in machine 

learning were also included. Specific exclusion criteria were applied, such as omitting 

conference abstracts, editorials, and opinion pieces without empirical research data or 

detailed methodologies and avoiding studies that only provided overviews or summaries of 

existing literature. Additionally, studies that were not published in English and studies 

focused on methods related to catastrophic forgetting or unintentional data forgetting were 

excluded. Studies were also excluded if the models were not neural networks or if they were 
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not used for regression and classification tasks. Excluding generative models and the 

concept of catastrophic forgetting aimed to maintain focus on deliberate unlearning 

mechanisms. This selection process ultimately narrowed down the focus to 31 primary 

studies, providing a robust foundation for the review. Table XIII in appendix A gives the title 

of the paper, an identifier, and the name of the proposed technique or a short name of the 

title if no name for the technique was given in the paper. This will facilitate the organization 

and retrieval of relevant information. 

III. Theorical Framework 

This section delves into key concepts essential for understanding machine unlearning 

techniques, explores diverse scenarios where these techniques are applied, and examines 

the obstacles encountered in their implementation. 

A. Definitions 

This subsection begins with a breakdown of symbols used throughout this document. 

Additionally, definitions are provided for concepts such as machine unlearning, exact 

machine unlearning, and approximate machine unlearning, setting the stage for 

understanding. Table II provides a detailed breakdown of the symbols used throughout this 

document for clarity and reference. The notation serves as a guide to understand the 

various elements and entities involved in machine learning and machine unlearning 

processes. 

Table II. Symbols and Descriptions 

Symbol Description Symbol Description 

x Input data sample θ Parameters 

y Predicted output ∇L Gradient of the loss function 

xu Data point to be unlearned H Hypothesis space 

D Entire dataset F Feature space 

Du Subset of dataset to be 

unlearned 

G Task space 

Dr Remaining dataset after 

unlearning 

W Weights 

L Loss function b Bias vector 

α Learning rate ℓ Layer 

z Logits or pre-activation values A Training algorithm 

M Machine learning model trained 

on D 

N Number of samples in the 

dataset 
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N Noise matrix U Unlearning process 

Pθ Distribution of model parameters K Similarity measure 

M0 Unlearned model   

 

Machine Unlearning 

Given a subset Du ⊂ D, which the user has requested to remove, and the remaining dataset 

Dr = D\Du, the goal of machine unlearning is to modify the model so that it behaves as 

approximate or exactly if it were trained only on Dr, excluding Du. An unlearning technique 

is defined as a function applied to a trained model, a training dataset, and an unlearning 

dataset whose objective is to remove the influence of certain data points from the trained 

model. 

The term "machine unlearning" was introduced in “Towards Making Systems Forget with 

Machine Unlearning” [8]. The authors of [8] proposed an unlearning algorithm that 

reformulates the learning process into a summation format. By updating only a small part 

of these summations, their method achieves significantly faster unlearning compared to 

retraining the model from scratch. However, this approach is limited to traditional machine 

learning techniques that can be represented in a summation form. 

Exact Machine Unlearning 

Exact Unlearning ensures that the modified machine learning model behaves as though it 

never encountered the unlearned data subset. This means that after the unlearning 

process, the models predictions, outputs, and behaviors will be statistically identical to those 

produced by a model that was retrained from scratch using the remaining dataset, excluding 

the subset of unlearned data [9]. The goal is to ensure that no identifiable impact or 

knowledge of the unlearned data influences the models performance or outputs, 

maintaining the integrity and confidentiality of the training process. However, one of the 

drawbacks of exact unlearning is its limited applicability. Complex models, due to their 

intricate architectures and numerous parameters, may not allow for such an exact 

replication of the models original state after unlearning. This limitation may necessitate 

alternative approaches, such as approximate unlearning, which might allow for minor 

deviations in behavior. 
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Approximate Machine Unlearning 

This unlearning method ensures that the modified model and a model retrained from scratch 

are approximately indistinguishable in their outputs. Typically, this approximation is 

achieved using differential privacy techniques, such as ε-δ certified unlearning [10]. In this 

context, the ε-δ certified 

unlearning approach bounds the divergence between the output of the unlearned model 

and the retrained model to a defined threshold. Specifically, ε-δ certified unlearning ensures 

that the divergence between the two models remains within a tolerable margin. 

However, challenges remain in implementing approximate unlearning effectively. For 

instance, the degree of privacy and tolerance levels can affect the model’s accuracy and 

performance, and ensuring that this balance does not compromise the quality of the 

unlearned model is essential. Additionally, different model architectures and loss functions 

may impact the efficacy and efficiency of the unlearning process, making it imperative to 

tailor these techniques to specific scenarios [11]. 

Differential Privacy 

Differential privacy (DP) is a foundational framework in data privacy that ensures individuals 

are not adversely affected by allowing their data to be used in studies or analyses [12]. It 

provides a promise by data curators to data subjects that their participation in data analysis 

will not result in any negative consequences, regardless of the availability of other datasets 

or information sources. While DP can naturally achieve machine unlearning by ensuring 

that the presence of a sample in the training data cannot be discerned from the model, it 

primarily focuses on protecting the privacy of all samples to some extent. DP imposes a 

subtle bound on the contribution of each sample to the final model, but it cannot completely 

constrain the contribution to zero without rendering the model ineffective for learning from 

the training data. On the other hand, machine unlearning aims to completely cancel the 

contribution of a target sample, effectively removing its influence from the model. 

Consequently, Machine Unlearning (MU) and DP operate on different principles, with MU 

seeking to eliminate specific data contributions entirely. 
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Federated Learning 

Federated Learning operates as a decentralized method in machine learning, where 

numerous clients participate in training a global model without sharing their raw data [13]. 

Each client contributes to the training process with its local dataset. The global model’s 

parameters are updated collaboratively across all clients through iterative rounds of 

communication and computation, where each client computes model updates based on its 

local data and transmits them to a central server. The central server aggregates these 

updates to refine parameters, aiming to improve the global model’s performance while 

preserving the privacy of individual datasets. 

Metrics  

In this part, various metrics used to evaluate machine unlearning techniques will be defined. 

There are two methods to assess a technique: evaluation metrics and verification methods. 

Evaluation metrics serve as theoretical criteria for assessing unlearning efficacy. For 

example: accuracy on forget set or retain set, error rate, relearn time, Anammesis Index 

and distance metric is used for this purpose. Verification methods aim to ensure that one 

cannot easily distinguish between unlearned models and their retrained counterparts. Some 

examples of verification methods are attacks and unlearning cost. In Section VI, "Analysis 

of Techniques," the performance of each technique on these metrics will be presented, 

along with comparisons to other baselines and techniques. 

1. Accuracy on forget set: Accuracy measures the proportion of correctly classified 

instances out of the total instances in a dataset [14]. It is calculated as the number of 

correct predictions divided by the total number of predictions, often expressed as a 

percentage. In machine unlearning techniques, the accuracy is measured on the forget 

set Du and it refers to the model’s performance on the subset of data designated for 

unlearning. The goal of accuracy on Du is to be close to that of the retrained model. 

Ideally, this accuracy should be low [15]. 

2. Accuracy on retain set: Accuracy on the retain set Dr refers to the model’s 

performance on the data subset that remains unchanged after unlearning. The goal of 

accuracy on Dr is to closely match the performance of the original model before 

unlearning. This metric assesses how well the model retains its classification capability 

on the data it was initially trained on [15]. 
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3. Error rate: Error rate is calculated as 1−Accuracy on retain set. It measures the 

proportion of misclassified instances in the data subset that remains unchanged after 

unlearning [16]. 

4. Relearn time: Relearn time measures the model’s retention of information about the 

unlearned data. It serves as a proxy to gauge how quickly the model can regain 

performance on the unlearned data through retraining. If the model achieves 

comparable performance to the source model with minimal retraining epochs, it 

suggests residual information about the unlearned data persists within the model [17]. 

5. Anamnesis Index: Anamnesis Index offers a more detailed evaluation by comparing 

the relearn time of the unlearned model with that of a model trained from scratch on the 

retained data. AIN normalizes the relearn time by considering a margin of α% around 

the original accuracy of the model before unlearning. This metric not only assesses 

how quickly the model relearns but also evaluates the effectiveness of the unlearning 

process [15]. 

6. Distance: Another way to evaluate the effectiveness of an approximate data deletion 

method is by measuring the ℓ2 distance between the estimated model parameters and 

those obtained through complete retraining. When the parameters from the unlearning 

model closely align with the model fully retrained it indicates that both models are likely 

to make similar predictions [18]. 

7. Attacks: The metric evaluates the success of unlearning models based on their ability 

to mitigate membership inference attacks and backdoor infection scenarios. These 

studies involve simulations where adversaries attempt to infiltrate and compromise the 

model’s privacy and integrity. In the next section, further details on these evaluations 

will be discussed in depth. 

8. Unlearning cost (storage and time cost): This refers to the resources, both in terms 

of storage capacity and computational time, required to implement the unlearning 

process effectively. The unlearning cost includes the storage space needed to maintain 

original model parameters, intermediate states during unlearning, and redundant data. 

It also encompasses the time taken to execute the unlearning procedure, which 

involves iterative processes to remove or adjust trained data, 



11 

B. Application 

In addition to ensuring compliance with data protection regulations as discussed in the 

introduction, machine unlearning offers a wide range of applications and benefits. This 

section will explore these broader applications, demonstrating how machine unlearning 

techniques can address various challenges and improve modern machine learning 

practices. 

Prevent Backdoor injection attack 

A backdoor injection attack is a malicious manipulation of a machine learning model’s 

behavior, where an adversary strategically implants a trigger pattern into the training data 

to induce the model to exhibit specific, undesired behaviors upon encountering inputs 

containing the trigger pattern [19]. The attacker aims to modify the model’s decision 

boundary such that inputs augmented with the trigger pattern are classified into a targeted 

label, regardless of their original labels. This attack manipulates the model’s predictions, 

leading to a compromised system vulnerable to adversarial manipulation. Machine 

unlearning aids in backdoor defense by strategically eliminating the influence of specific 

trigger patterns introduced by attackers on the victim model. It achieves this by reversing 

the backdoor injection process and erasing the memorized trigger patterns from the model’s 

learned representations. 

Prevent Membership inference attacks 

Membership inference attacks aim to determine whether a specific data point was part of 

the training data for a machine learning model [20]. This attack exploits the inadvertent 

leakage of information contained within a model’s outputs, enabling adversaries to infer the 

presence or absence of individual data points in the training dataset. Machine unlearning 

techniques, designed to remove or mitigate the influence of certain data points on a model’s 

parameters, can serve as a defense mechanism against membership inference attacks. By 

systematically eliminating the association between sensitive data points and the model’s 

parameters, unlearning disrupts the adversary’s ability to infer membership status 

accurately. 
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Fast model debias 

Bias in machine learning models arises from systematic errors or prejudices in predictions, 

often stemming from skewed or incomplete training data. These biases can lead to unfair 

outcomes, perpetuating social disparities and undermining prediction reliability. To mitigate 

this issue, the paper [21] advocates for the application of machine unlearning techniques 

as a debiasing tool. Unlike previous methods that often require costly human labeling or 

computationally intensive model retraining, machine unlearning offers a more scalable 

solution. The process involves first identifying the most influential harmful samples, followed 

by the application of machine unlearning to effectively remove associated biases. This 

approach addresses the limitations of traditional debiasing mechanisms and enhances 

fairness in models without compromising scalability or accuracy. 

Enhancing Transfer Learning 

Transfer learning, the process of adapting a pre-trained model to a related task, often 

encounters challenges when the source data contains irrelevant or harmful classes for the 

target task. Machine unlearning techniques provide a solution by selectively removing such 

classes, thereby improving transfer learning accuracy. The 1-sparse MU method, proposed 

by [22], demonstrates significant promise in this regard. By integrating sparsity-inducing 

penalties into the unlearning process, this method efficiently removes undesirable data 

classes while preserving crucial information for the target task. The study [22] proves that 

1-sparse MU achieves comparable or superior transfer learning accuracy to traditional 

retraining-based approaches, with the added advantage of computational efficiency, making 

it an appealing choice for large-scale transfer learning tasks. 

Cost and time saving 

Machine unlearning techniques offer a cost-effective alternative to traditional methods of 

handling personal data under regulatory frameworks like the GDPR. When data subjects 

invoke the right to erasure, data controllers often face the challenging task of managing and 

modifying AI models to align with regulatory requirements. Traditional solutions, such as 

retraining AI models using modified data sets, are time-consuming and costly. This process 

often involves extensive research and development costs, delays, and potential instability 

in AI performance, particularly when the system must relearn and adapt to the altered data 

environment [23]. Additionally, maintaining compliance with data privacy regulations can 
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result in significant operational costs, especially in the EU market where strict enforcement 

of privacy rules adds financial burdens not encountered in other global markets. 

C. Challenges 

Machine unlearning faces challenges from both the inherent properties of machine learning 

models and practical implementation issues. 

Stochastic 

The stochastic nature of training in modern machine learning pipelines introduces 

complexities that hinder effective unlearning strategies [4]. This stochasticity arises from 

various factors, including the random sampling of small batches from the dataset during 

training, the unpredictable ordering of batches across epochs, and the parallelization of 

training without explicit synchronization, leading to non-deterministic behavior. Furthermore, 

training is an incremental process where updates depend on prior updates, amplifying the 

impact of stochasticity throughout the learning procedure. This incremental nature, coupled 

with the inherent randomness in learning algorithms such as stochastic gradient descent, 

poses significant challenges in understanding how individual data points influence the 

learned model. 

Streisand Effect 

The misuse of scrubbing procedures can inadvertently amplify the visibility of forgotten 

information, a phenomenon known as the "Streisand effect" [24]. Originating from Barbara 

Streisand’s attempt to restrict online access to her residence, the term refers to the 

unintended consequence of heightened attention resulting from efforts to suppress 

information. 

Data interconnections 

Machine learning models do not simply analyze individual data points in isolation. Instead, 

they collaboratively extract intricate statistical patterns and interdependencies among data 

points [25]. Removing a single point can disrupt these learned patterns and 

interconnections, potentially causing a notable performance decline. 
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IV. Results and discussion 

Analysis of Techniques 

The taxonomy distinguishes between different approaches. One approach focuses on 

modifying the training data and is classified under data reorganization. Another approach 

involves direct adjustments to the model and is categorized as architecture-based 

techniques. There is also a category for federated unlearning, which focuses on client-

specific data removal in decentralized models. Figure 3 summarizes the comprehensive 

taxonomy of machine unlearning techniques. 
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Fig. 3. Proposed taxonomy of machine unlearning techniques 
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In the rest of the section, each technique will be presented in chronological order within its 

corresponding category of either data-based, architecture-based unlearning or federated 

unlearning. And each technique will include a definition outlining its principles and the 

evaluation criteria used to assess its effectiveness. 

Data Based 

In this section, the primary studies propose techniques that seek to unlearn via data 

modification. These unlearning techniques involve the alteration or crafting of specific data 

points to induce misclassification in machine learning models, effectively achieving 

unlearning. 

a) BadNets 

Definition: The paper [26] proposes a perspective on trojan attacks within the framework 

of machine unlearning, providing an approach to manipulate neural network behavior in 

some data point while preserving its normal functionality in the clean data. It initiates with 

the assumption of full access to the target neural network but lacks access to its original 

training or testing data. The attacker orchestrates a trojan trigger, functioning as a catalyst 

to induce specific misbehavior in the network. The trigger of the attack is crafted by 

pinpointing internal neurons strongly linked to the trigger region. The selection process for 

these neurons is grounded in specific equations to quantify neuron-trigger connectivity. 

First, the relationship between the target layer and its preceding layer is established 

through: 

 

This crafted trigger is then used to produce tailored training data points designed to induce 

misclassification in the neural network, with this misbehavior in certain data points this 

technique pretends to achieve machine unlearning. The model is retrained using only these 
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meticulously crafted data points, ensuring it operates normally under typical circumstances 

and misclassifies inputs targeted for unlearning. 

Metrics: The effectiveness of the proposed trojan attack technique is evaluated using three 

metrics. These include the success rate of the trojan trigger in inducing the desired 

misbehavior, the decrease in model accuracy on normal inputs, and the time efficiency of 

the attack process. The success rate is quantified by the accuracy of the trojaned model on 

datasets with and without the trojan trigger. The results indicate that the trojaned behavior 

is successfully triggered (meaning for machine unlearning the data point was forgotten and 

misclassified) in more than 92% of cases, with minimal impact on the model’s performance 

on normal inputs (an average accuracy decrease of less than 3.5%). It demonstrates that 

even for complex models, trigger generation takes less than 13 minutes and retraining times 

are consistently under 4 hours. 

b) Class Clown 

Definition: The technique [27] selectively removes sensitive data points from machine 

learning models without requiring full retraining. It employs intentional label poisoning during 

incremental retraining epochs to modify the model’s behavior around identified sensitive 

data points. This approach aims to alter the model’s decision boundaries near the redacted 

points, thereby reducing their susceptibility to membership inference attacks. The process 

utilizes stochastic gradient descent with mini-batches to balance the influence of poisoned 

gradients and maintain accuracy, using only true class data for retraining. Sequential 

removal of multiple points is managed through a simulated queue of redaction requests. In 

cases where removal impacts task accuracy, a brief additional training phase with new or 

original data helps in recovery while ensuring continued compliance with data privacy 

regulations. 

Metric: The technique achieves significant time savings, being approximately 10 times 

faster than the process of removing sensitive data points and retraining the model. This 

efficiency advantage becomes more pronounced with larger datasets or longer training 

epochs, where this technique remains unaffected in terms of time required. Moreover, the 

approach maintains task accuracy while effectively reducing membership inference 

confidence to ensure that removed points are consistently misclassified as "Out" or not seen 

in training. 
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c) Fast yet effective machine unlearning 

Definition: The error-maximizing noise technique [17] involves the generation of noise 

patterns tailored to induce misclassification in the forget set while preserving the model’s 

performance on the retain set. This technique is formulated as an optimization problem 

aiming to find the N that maximizes the L(M,y) for the forget classes while minimizing the 

magnitude of the noise. The optimization process typically involves techniques such as 

gradient descent or stochastic gradient descent to iteratively update the wnoise of the N until 

convergence. Then the noise matrix N is applied to the forget set during the impair step of 

the unlearning process. Then the repair step in the unlearning process involves fine-tuning 

the model on a retain set to recover its performance on the remaining classes.  

Metrics: The proposed method demonstrates superior performance in unlearning specific 

classes compared to baseline methods, such as FineTune and NegGrad. It effectively 

reduces the accuracy on the forget set to near zero while maintaining high accuracy on the 

retained set. The method also shows comparable weight distance to retraining, suggesting 

effective modification of network weights without overfitting to noise. 

d) Mnemonic code 

Definition: The Learning with Selective Forgetting technique [28] proposes to forget 

specified classes while preserving others selectively. The core of this technique involves 

the use of mnemonic codes, which are unique, synthetic signals assigned to each class. 

These mnemonic codes are generated as random pixel value images for each class and 

are embedded into training samples to create augmented samples. The embedding process 

for a sample xi
k of class c in task k involves generating the augmented sample x˜i

k as follows: 

 x˜ik k,c (3) 

where λ is a random variable in [0,1] and ξk,c is the mnemonic code for class c. 

The model is trained using a total loss function that consists of four terms: classification 

loss, mnemonic loss, selective forgetting loss, and a regularization term. The classification 

loss would be softmax cross entropy or additive margin softmax. The mnemonic loss ties 

each mnemonic code to the corresponding class using the augmented samples. The 

selective forgetting loss ensures that only classes in the preservation set are remembered. 
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The regularization term LR prevents catastrophic forgetting using adapted versions of 

existing regularization methods: Learning without Forgetting, Elastic Weight Consolidation, 

and Memory Aware Synapses. After training, only the mnemonic codes for the preservation 

set classes are retained. The mnemonic codes for the classes in the deletion set are 

discarded to ensure they are forgotten. 

Metric: Across datasets, the technique achieves an average accuracy of approximately 

0.90 for preservation sets, which is notably higher compared to [27], [17] ranging from 0.80 

to 0.85. It demonstrates robustness across varying ratios of classes in deletion sets, 

showcasing consistent performance across different task complexities and dataset 

compositions. 

Architecture Based 

Architecture-based unlearning techniques leverage modifications in the model architecture 

to facilitate the unlearning process. These techniques can be further categorized into 

modular unlearning, gradient ascent, teacher-student models, and scrubbing weights, each 

focusing on restructuring or modifying the model’s architecture to facilitate targeted data 

removal while preserving overall model performance. 

a) Modular unlearning 

 These methods focus on enhancing model adaptability by facilitating selective data 

removal without the need for model retraining. Each technique introduces unique strategies 

tailored to mitigate the impact of removing specific data points from trained models. Through 

innovative partitioning and isolation strategies, these approaches aim to preserve model 

accuracy while minimizing computational overhead associated with traditional retraining 

methods. The subcategory modular unlearning will contain specific notation, please refer to 

Table III for symbols and definitions. 

Table III. Specific Notation for SISA Approach 

Symbol Description 

S Number of shards 

R Number of slices per shard 

K Number of unlearning requests 
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1/S Fraction of the data used for 

training 

Di Shard i 

Di,j Slice j of shard i 

G Enconding matrix 

Di Dataset block i 

d block index 

i. SISA Original 

Definition: SISA [29] accommodates unlearning requests by facilitating targeted model 

updates based on the removal of specific data points. At its core, SISA leverages the 

division of the dataset into shards, each representing a distinct subset of the data. Within 

each shard, the data is further partitioned into slices, allowing for incremental training over 

successive portions of the dataset. The training process occurs independently for each 

model, ensuring isolation between models and preventing the exchange of information or 

updates. This isolation preserves the influence of each shard on its corresponding model, 

enhancing model specificity and reducing interference from unrelated data points. During 

inference, predictions from models are aggregated, typically employing strategies like 

majority voting or averaging, to generate a final prediction. 

The primary study [29] discusses the difficulty of measuring time experimentally due to 

hardware and software variances. So the study proposes to measure unlearning time 

indirectly through the number of samples needed for retraining. This is based on the 

assumption that there is a linear relationship between the number of samples and the 

retraining time, which the authors validated experimentally. 

Metric: SISA training achieves a desired speed-up for a fixed number of unlearning 

requests, requiring retraining of only 0.003% of the total dataset size. The study compares 

SISA to retrain approaches such as "k baseline" and "1/S baseline". The former baseline 

involves retraining the entire model after every K unlearning request, while the later 

baseline trains on a fraction (1/S) of the data and retrains only when the unlearning point 

falls into this set. SISA training aims to strike a balance between these approaches by 

selectively updating model parameters based on unlearning requests while minimizing 

retraining time and preserving accuracy. The efficacy of SISA training exhibits variability 

contingent upon dataset characteristics and task intricacy. Instances characterized by 
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imbalanced class distributions or substantial noise levels pose challenges for SISA training, 

potentially leading to diminished model accuracy. Furthermore, this approach requires 

significant storage capacity. 

ii. Adaptive Machine Unlearning. 

Definition: The SISA algorithm is known for its robustness against non-adaptive deletion 

sequences. This means SISA relies on the implicit assumption that the points that are 

deleted are independent of the randomness used to train the models. Paper [30] proposes 

an extension of SISA to handle adaptive deletion requests. These are requests that change 

dynamically based on user observations or changes in the underlying model. The authors 

of [30] suggest that by obscuring the internal state of the algorithm using techniques from 

differential privacy [12], such guarantees can be achieved. The paper leverages the 

principles of differential privacy to design the enhanced version of the SISA algorithm. 

Specifically, it ensures that the algorithm’s behavior remains indistinguishable under various 

scenarios induced by adaptive deletion requests. Consequently, it furnishes data deletion 

guarantees that withstand adversaries with knowledge of the internal state of the machine 

learning algorithm. 

Metric: The evaluation focuses on deletion guarantees. These guarantees measure how 

well the model maintains accuracy, parameter stability, and information security after 

selective data removal. These guarantees are represented by metrics such as α, which 

measures accuracy loss post-deletion; β, indicating changes in model parameters; and γ, 

assessing residual information leakage about deleted data. Additionally, the paper employs 

differential privacy metrics ε and δ to quantify the level of privacy protection against 

analyses of model outputs and update sequences. Compared to Standard SISA, the 

proposed technique improves privacy guarantees by 15% on α, 10% on β, and 12% on γ. 

Compared to the naive approach, it shows improvements of 20% on α, 18% on β, and 15% 

on γ. 

iii. No matter how you slice it. 

Definition: The paper [16] highlights the tendency of SISA to exacerbate performance 

disparities between majority and minority classes. They investigate the impact of various 

imbalance ratios (1:10, 1:100, 1:1000) and different methods to mitigate class imbalance 

(random over-sampling, random under-sampling, cost-sensitive learning, focal loss, label 

distribution aware margin) on SISA, monolith baseline, and Rus to 1/sqrt(S). The authors 

suggest that the RUS baseline, which involves down-sampling the dataset to a shard size 
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of 1/sqrt(S), consistently outperforms SISA and the monolith baseline. Its advantage 

becomes more pronounced as the imbalance ratio increases while maintaining the same 

average-case retraining speedup for unlearning requests. Furthermore, they conduct 

experiments with different numbers of slices (3, 6, 12 slices) and shards (monolith, 5, 10, 

20 shards) to further explore this relationship. The results indicate that the number of shards 

influences model performance, whereas varying the number of slices has a lesser impact. 

In this paper, it is also mentioned that certain groups of the population (upper-class young 

people) are more likely to be aware of privacy rights and hence more probable to request 

data deletion. Consequently, the authors recognized the importance of distribution-aware 

sharding, which involves sorting samples based on their likelihood of being forgotten, to 

optimize the unlearning process. 

Metric: This paper uses error rates as the primary metric to evaluate the technique, 

particularly focusing on the disparity in performance between majority and minority classes. 

The evaluation compares the SISA technique to a baseline involving random under-

sampling (RUS) to a shard size of S1. The paper reports that the RUS baseline consistently 

outperforms SISA in terms of minority class error rates, with the performance gap increasing 

as the imbalance ratio rises. For example, with an imbalance ratio of 1:1000, the RUS 

baseline shows a lower error rate for minority classes compared to SISA, while preserving 

the same average-case retraining speedup for unlearning requests. 

The findings suggest that minority class performance suffers when the unlearning likelihood 

is higher, as these samples are relegated to later slices and receive less attention during 

training. Conversely, minority class performance improves when associated with a lower-

than-average unlearning likelihood. This is because samples with lower unlearning 

likelihoods are prioritized during training, allowing the model to learn their features more 

effectively. 

iv. Coded machine unlearning. 

Definition: The framework [31] proposes to preprocess the training dataset. This process 

involves generating an encoding matrix G using the RandMatrix function. Each entry gij of 

G represents whether the samples from the i-th shard contribute to the j-th coded shard. 

Then each coded shard is sent to a weak learner that trains on this subset of data, and 

finally the master node aggregates the models. The unlearning algorithm operates on the 
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encoded dataset but uses information about the original unencoded samples to identify the 

relevant shards and update the model accordingly. 

The encoding matrix G is used to map between the original and encoded representations 

of the dataset. This method enables more efficient unlearning while exhibiting a better trade-

off in terms of the performance in terms of MSE versus unlearning cost. The protocol is 

designed to handle large-scale datasets efficiently, making it scalable to real-world 

applications with extensive data volumes. 

Metric: This technique compares against retraining from scratch. The technique 

demonstrates an average improvement of 15% in accuracy. Computational efficiency is 

enhanced by reducing training time by 30% due to encoded shards and parallelized weak 

learner training. Moreover, the unlearning cost is reduced significantly, achieving a 75% 

decrease. 

v DeepObliviate 

Definition: In comparison to previous techniques, DEEPOBLIVIATE [32] divides the 

dataset only into uniform blocks and trains models independently on each block. Model 

parameters Pi are saved after training each block Di to quantify the influence to model 

parameters of unlearned data, called "residual memory". DEEPOBLIVIATE first computes 

the original update vector 

 Vk = Pk −Pk−1, (4) 

representing the change in model parameters from block Dk−1 to Dk. Subsequently, when 

retraining without xu, it computes the retrained update vector 

 V0k , (5) 

where 
P

0k and 
P

0k−1 are the parameter vectors after retraining on Dk and Dk−1 without xu. The 

quantification of residual memory ∆k between these vectors, given by 

 , (6) 
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measures the influence of xu on model parameters. This approach leverages these 

differences to decide the point t at which the residual influence of xu becomes negligible and 

stop retraining. Following these calculations, the technique constructs the M0 with 

parameters initialized to Pd−1, representing the state of the model parameters up to block 

Dd−1 before the block that contains the data to be unlearned Dd is processed. M0 is then 

retrained on the dataset {D0d,...,Dd+t}, where D0d excludes xu. To integrate the effects of the 

remaining blocks {Dd+t+1,...,DB} into M0, the authors employ model stitching, where M0 is 

adjusted as follows: M0 . Here Md+t signifies the model state after training 

up to block Dd+t, where the residual memory of xd is considered negligible. 

Metric: Under the same experimental conditions, DEEPOBLIVIATE achieves superior 

results compared to SISA , including a 5.8% increase in accuracy, 1.01x faster retraining, 

and a 32.5x faster prediction speed, all while maintaining equivalent storage requirements 

across the datasets evaluated. 

vi ARCANE 

Definition: Instead of uniformly dividing the dataset D, ARCANE [33] partitions it based on 

class labels. This means that each subset Di contains instances belonging exclusively to a 

single class i. This approach ensures that models trained on each Di can focus specifically 

on learning and distinguishing features relevant to that particular class. ARCANE employs 

information theory principles, such as entropy calculations to identify instances belonging 

to class i while treating all other instances as anomalies. After individual one-class 

classifiers make their predictions, the final output is the class with the lowest anomaly score. 

This score indicates the highest confidence that the sample belongs to that class. ARCANE 

aligns to SISA to ensure a fair comparison between this two methods in the following way: 

ARCANE’s parameter m = 20 (block number) was aligned with R (slice number) in SISA. 

The number of sub-models in ARCANE was equivalent to shard in SISA. 

Metric: ARCANE demonstrated faster retraining times than SISA. ARCANE also 

maintained competitive accuracy levels and excelled in handling unbalanced training data. 

In contrast, SISA requires balanced data shards. 

b) Gradient ascent 
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Gradient ascent techniques in machine unlearning represent a strategic reversal of the 

traditional gradient descent process used in training machine learning models. Instead of 

minimizing the loss function, these methods aim to increase it, effectively removing the 

influence of specific data points or patterns from the model. This section reviews several 

notable techniques that utilize gradient ascent to achieve unlearning, examining their 

methodologies and effectiveness. The subcategory gradient ascent will contain specific 

notation, please refer to Table IV for symbols and definitions. 

Table IV. Specific Notation for Gradient Ascent Approach 

Symbol Description 

e, E epoch 

b, B batch 

s Sensitive 

Data 

η Learning 

rate 

i. Amnesiac Machine unlearning 

Definition: The paper [34] proposes "Amnesiac Unlearning". Amnesiac unlearning seeks 

to precisely remove the impact of sensitive data from a neural network by reversing specific 

parameter updates made during the training process. The methodology involves tracking 

parameter updates ∆θe,b for each batch in each epoch during training. Batches bS that 

contain sensitive data are identified, and a list of these parameter updates ∆θsb is 

maintained. To perform unlearning, the model parameters are adjusted by removing the 

influence of these specific updates. Mathematically, let the initial model parameters be θinitial 

and the parameters after training for E epochs, each consisting of B batches, are given by: 
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Metric: This paper evaluates the proposed amnesiac unlearning technique using three 

metrics: accuracy, model inversion attacks, and membership inference attacks. This 

technique is compared against naive retraining. For test accuracy, amnesiac unlearning 

quickly reduces accuracy on data that is intended to be unlearned, unlike naive retraining, 

which maintains high accuracy for several epochs. In model inversion attacks, naive 

retraining fails to prevent information leakage, while amnesiac unlearning significantly 

obscures sensitive information. In membership inference attacks, naive retraining shows 

only a gradual reduction in recall, remaining effective for 2 epochs, whereas amnesiac 

unlearning reduces recall to near zero immediately. 

ii. Unrolling SGD 

Definition: Paper [35] introduces a method to reverse the effect of a specific data point xu 

on the model by adding back the gradients associated with xu. The process begins with the 

model computing predictions for the target data point xu through a forward pass, generating 

output logits based on the input data point. Once the forward pass is complete, the gradient 

of the loss function with respect to the model weights W is computed through 

backpropagation. This gradient, denoted as ∂
∂
W

L , represents the sensitivity of the models 

predictions to changes in the weights. 

To perform the unlearning process, the computed gradient adjustment is then added back 

to the current weights Wt. This adjustment aims to exclude the influence of xu from the 

models’ predictions. The learning rate, batch size, and the number of epochs are employed 

to update the model weights accordingly: 

 

This iterative process allows the model to adapt and effectively unlearn the effect of xu 

without necessitating complete retraining from scratch. 

Metric: This paper introduces a new metric, called unlearning error. The unlearning error is 

defined as the Euclidean distance between the model weights after training for t steps and 

the initial model weights. 
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The unlearning error specifically examines the impact of a data point xu on the final weights 

of the model when training begins at initial weights W0. It is defined to approximate the 

verification error. Verification error involves comparing the terminal weights of a naively 

retrained model with the weights of an approximately unlearned model to assess the degree 

of unlearning. The calculation of verification errors can be resource-intensive due to the 

need for retraining a model from scratch. The paper compares the cost-effectiveness of 

their approximate unlearning method with SISA, the cheapest exact unlearning method. 

They find that their method, which only requires computing a single gradient, is more 

efficient and less storage-intensive than [29]. 

iii. BAERASER 

Definition The BAERASER framework [19] introduces a machine unlearning process 

designed to forget data that triggers backdoor attacks on machine learning models. It begins 

with trigger pattern recovery, where a max-entropy staircase approximator is utilized to 

generate and identify potential trigger patterns within the victim model. Once the trigger 

patterns have been identified, the machine unlearning process is initiated to erase these 

patterns from the model’s memory. This process uses gradient ascent optimization to adjust 

the model parameters, effectively reversing the influence of the backdoor attack. The 

optimization is formulated as:  

 

The loss function for machine unlearning incorporates both the cross-entropy loss and a 

penalty mechanism to prevent over-unlearning. The loss function is defined as: 

 

Here, LCE denotes the cross-entropy loss function, (xc,yc) represents the clean validation 

data, and (xu,yu) represents the trigger pattern data aimed to be forgotten. The parameters 

α and β are coefficients that balance the degrees of unlearning and penalty, respectively. 

The weights Wx for each parameter dimension are computed to correlate the penalty with 

the model’s performance on the validation data. 
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Metric: The BAERASER unlearning technique is evaluated using Attack Success Rate 

(ASR) and model accuracy (Acc) as primary metrics. ASR measures the percentage of 

poisoned data misclassified into the attackers desired target label, while Acc gauges the 

overall accuracy of the model on clean data. BAERASERs performance is compared to 

three existing backdoor defense methods: Fine-Pruning, Fine-Tuning, and Neural Attention 

Distillation. Experimental results show that BAERASER outperforms these baselines. 

BAERASER reduces ASR from nearly 100% to about 10% across various datasets, 

indicating a marked improvement in backdoor defense effectiveness. Additionally, 

BAERASER maintains less than a 10% drop in Acc, demonstrating its ability to minimize 

accuracy loss while significantly lowering ASR. 

iv. Forsaken 

Definition: At the core of Forsaken [36] lies the mask gradient generator G. Given the 

current model parameters θ and predictions on the samples marked for forgetting, G 

generates mask gradients δ that indicate the necessary adjustments to the model 

parameters to facilitate forgetting. These mask gradients serve as directional cues, guiding 

the model’s updates to selectively remove the specified information associated with the 

forgotten samples while ensuring minimal disruption to the model’s performance on other 

tasks. 

The unlearning process in Forsaken unfolds iteratively, over a series of steps aimed at 

refining the model’s behavior. Once the mask gradients are generated, they are used to 

update the model parameters θ, nudging the model towards a state where the specified 

information becomes less influential in its predictions. To quantify the discrepancy between 

the model’s predictions for the forgotten samples and a predefined distribution of non-

member data, Forsaken employs KL divergence DKL as a measure of dissimilarity. By 

minimizing the DKL loss, the model’s behavior on the forgotten samples gradually aligns with 

that of non-member data, effectively "forgetting" the specified information. To prevent 

overfitting during the unlearning process, Forsaken incorporates RL1 into the optimization 

objective. This regularization term penalizes large parameter values, promoting smoother 

updates to the model parameters and guarding against drastic changes that could 

compromise the model’s performance. 

Metric: In addition to standard performance metrics such as accuracy, precision, recall, and 

F1score, the paper introduces a metric known as the forgetting rate. It provides a 

quantitative measure of the rate at which samples transition from being classified as 
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members of the training set to non-members after the unlearning process. A higher 

forgetting rate indicates a more effective unlearning method, as it signifies a greater 

reduction in the model’s reliance on memorized information. Experimental results show that 

Forsaken achieves a significantly higher forgetting rate compared to existing techniques 

(SISA, Full retraining and SMU), indicating its ability to selectively forget specific 

information. 

b) Teacher-Student 

The teacher-student framework is widely used in machine unlearning methods, where a 

well-trained teacher model guides a student model to shed specific knowledge. Initially, the 

teacher model, pre-trained on the complete dataset, and the student model, initialized either 

randomly or with the teacher’s parameters, are established. Additional models like 

generators may be used to create synthetic data. Tailored loss functions, such as Kullback-

Leibler divergence and cross-entropy loss, are then defined to guide the unlearning process. 

The student model undergoes training or fine-tuning with these loss functions to either retain 

or remove specific knowledge, ensuring alignment with the unlearning objectives. The 

subcategory teacher-student will contain specific notation, please refer to Table V for 

symbols and definitions. 

Table V. Specific Notation for Teacher Student Approach 

Symbol Description 

KL Kullback-Leibler (KL) divergence 

θ random weights 

JS JensenShannon divergence 

yˆi predicted probability distribution for the i-th 

data point 

i. Bad teaching 

Definition: The proposed unlearning method [37] utilizes a teacher-student framework with 

two types of teachers: competent and incompetent. The competent teacher Ts(x;θ) has 

learned from the complete dataset D, while the incompetent teacher Td(x;ϕ) is a smaller 

model initialized with random weights. The student model S(x;θ) is initialized with the same 

parameters as the competent teacher. The unlearning objective aims to minimize the 

Kullback-Leibler (KL) divergence between the student's predictions and those of the 
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incompetent teacher for forget samples. It also seeks to minimize the divergence between 

the student and the competent teacher for retain samples. Mathematically, this objective is 

expressed as:  

 

where lu is the unlearning label. 

Metric: Compared to Amnesiac Unlearning [34], Bad teaching achieves lower activation 

distance and maintains higher accuracy on forget sets across various datasets. Amnesiac 

Unlearning damages forget set performance significantly, indicating the Streisand effect, 

while Bad teaching does not. In addition to traditional metrics this techinque introduces a 

metric called the Zero Retrain Forgetting Metric (ZRF). ZRF measures the randomness in 

the model’s prediction by comparing them with the incompetent teacher’s predictions. The 

ZRF score improves after unlearning with the technique, indicating effective forgetting 

without needing a reference retrained model. For example, the ZRF score of the model 

increases from 0.87 to 0.99 after unlearning. Furthermore, the JS-Divergence between the 

predictions of the unlearned model and the retrained model is low, indicating that the output 

distribution of the unlearned model is very close to the model retrained from scratch. 

Additionally, the probability of a successful membership inference attack on the forgotten 

set decreases significantly after unlearning. For instance, in the case of forgetting rocket 

images, the attack probability drops from 0.982 to 0.002, indicating improved privacy. 

ii. Gated Knowledge Transfer 

Definition: The Gated Knowledge Transfer [15] process begins with the initialization of 

three components: the teacher model MT, the student model MS(x;θ), and the generator 

G(z;ϕ). The teacher model is the pre-trained model from which knowledge is to be 

transferred. The student model MS(x;θ), with the same architecture as the teacher, starts 

with random initialization. The generator G(z;ϕ) also begins with random parameters and is 

responsible for creating pseudo samples from noise vectors. 

Once initialized, the generator produces pseudo samples by transforming noise vectors z 

∼ N(0,I). These pseudo samples serve as synthetic data points that will facilitate knowledge 

transfer from the teacher model to the student model. A band-pass filter is applied to ensure 
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that the pseudo samples do not convey information about the forgotten classes. This filter 

checks the teachers predicted probabilities and allows a pseudo sample to pass only if the 

predicted probability for each forget class is less than a threshold ε. 

The generator is then updated to maximize the KL-divergence between the teacher’s and 

student’s output distributions for the filtered pseudo samples. This encourages the 

generator to produce samples that highlight the differences between the teacher and 

student models’ behavior. Simultaneously, the student model is updated to minimize a 

combined loss function. This loss function comprises the KL-divergence between the 

teacher and student models’ outputs and an attention loss. The attention difference serves 

as a mechanism to encourage the student model to focus on the same features as the 

teacher model, thus facilitating effective knowledge transfer. 

The generator and student model are updated iteratively. The generator aims to create 

pseudo samples that maximize the divergence between the teacher and student, while the 

student seeks to minimize this divergence and learn effectively from the teacher’s 

knowledge, except the forgotten classes. This iterative process continues until the models 

converge, achieving effective zero-shot machine unlearning by ensuring the student model 

retains knowledge of the retained classes while forgetting the specified classes. 

Metric: The Gated Knowledge Transfer (GKT) technique proposed in this paper was 

evaluated against several established methods, including Fisher Forgetting (FF) [9], 

Amnesiac Unlearning (AU) [34], and the Retrain Baseline (RB). The GKT method achieved 

a significantly lower Anamnesis Index (AIN) value, this metric is calculated based on the 

speed of relearning (how quickly the model can regain knowledge). For example, the GKT 

method’s AIN was 0.1 compared to 0.3 for FF and 0.25 for AU. In terms of accuracy on the 

forget set, the GKT method consistently achieved near 0% accuracy, indicating that the 

target information was forgotten. On the retained set, the GKT method maintained high 

accuracy, achieving 82% showing competitive performance while ensuring unlearning. 

iii. Efficient two-stage model 

Definition: The proposed technique [38] begins by computing the model output for each 

data point within a specified subset. It then identifies pairs of classes with the largest 

divergence or discrepancy in their output probabilities. During the training phase, data 

points in the designated subset are intentionally mislabeled with classes that are most 

different from their true labels. Training persists until the models accuracy on subset P 



32 

descends below random prediction thresholds. Following the neutralization phase, the 

subsequent stage involves knowledge distillation (KD), where the teacher-student 

relationship is established. Here, the knowledge from the original teacher model is distilled 

into the student model M´. KD facilitates the emulation of information from the teacher 

model by softening label probabilities within M´. The soft label knowledge distillation loss is 

represented by the equation: 

 

 

Metric: The proposed method is evaluated using accuracy as the primary performance 

metric. It compares the performance of three models: the original model, the retrained 

model using the proposed technique, and a scratch model. The student model achieves 

65.25% accuracy compared to the model retrained from scratch which reaches 64.43% 

accuracy on the remaining data, showcasing an improvement of 0.82. 

iv. Towards Unbounded Machine Unlearning 

Definition: This paper [39] proposes the SCRUB method, where the original model, 

referred to as the teacher model, is trained on the full dataset. The student model, starts 

with the weights of the teacher model. This methodology also uses the KL-divergence 

between the output distributions of the teacher and student models. The optimization 

objective for the student model is formulated to minimize the following function: 
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where α and γ are hyperparameters, d is a distance function, Nr is the number of examples 

in the retain set, and Nf is the number of examples in the forget set. The student model 

undergoes an alternating optimization process. Training alternates between updating the 

student model on the forget set (max-step) and the retain set (min-step). Additional min-

steps are performed at the end of the sequence to ensure the retain set performance is 

restored. Training stops when the forget set error has increased sufficiently without harming 

the retain set error. 

SCRUB+R extends SCRUB by incorporating a ’rewinding’ procedure to address 

vulnerabilities to membership inference attacks (MIAs). A reference point for the forget error 

is established by constructing a validation set that has the same distribution as the forget 

set. SCRUB is then trained while storing model checkpoints at each epoch. At the end of 

training, the validation set error is measured to serve as the reference point for the desired 

forget set error. The rewinding procedure involves rewinding to the checkpoint where the 

forget error is closest to the validation set error, ensuring that the forget set error is ’just high 

enough’ to prevent MIAs. 

Metric: In this study, the evaluation of the SCRUB and SCRUB+ unlearning methods is 

conducted using three distinct sets of forget-quality metrics tailored to specific applications: 

Removing Biases (RB), Resolving Confusion (RC), and User Privacy (UP). The methods 

are compared against state-of-the-art approaches, including Retrain, [9], [40], [37]. Across 

the RB scenarios, SCRUB demonstrates robust performance, achieving an average forget 

error of 78.4%, outperforming the next best method ( [37] ) by 15.6%. In RC scenarios, 

SCRUB exhibits a average reduction in interclass confusion error of 63.2%, surpassing its 

closest competitor (retain baseline) by 12.8%. Notably, in UP scenarios, SCRUB+ 

showcases improvements, with a 45.9% decrease in membership inference attacks 

compared to the strongest baseline ( [37] ). 

v. Lightweight machine unlearning 



34 

Definition: The technique [41] introduces a reference model M0 that acts as a teacher. M0 

is trained on a subset Ds of the remaining dataset Dr, ensuring that it does not include Du in 

its training set. The unlearning process hinges on aligning the output distributions of M0 

(P(ω,x)) and Minitial (P(θ,x)) for Du. The Kullback-Leibler (KL) divergence serves as the 

metric to quantify the difference between these distributions, aiming to minimize their 

discrepancy: 

 

Here, λ represents a penalty coefficient. This objective function guides the iterative 

adjustment of Minitial’s parameters across T iterations. During each iteration, M0 computes 

P(ω,x) for Df, while Minitial computes P(θ,x). The parameters of Minitial are then updated 

to minimize the loss function, gradually aligning its output distribution with that of M0 for Df. 

Metric: This paper demonstrates that after unlearning, the technique achieves accuracy 

close to the retraining baseline. In terms of defending against membership attacks, the 

paper shows that its unlearning method performs comparably to retraining. For backdoor 

attacks, the unlearning method successfully reduces the model’s accuracy on data 

previously influenced by the backdoor. The technique significantly reduces time costs 

compared to retraining. 

vi. Deep Regression Unlearning 

Definition: The Blindspot Unlearning technique [42] is a method devised for the selective 

removal of information from deep regression models. It operates through a collaborative 

optimization process involving two distinct models: the Original Fully Trained Model and the 

Blindspot Model. The Blindspot Model is initialized randomly and exposed partially to 

samples solely from the retain set. It functions as a reference for output distribution and 

activation closeness comparisons with the Original Fully Trained Model. The optimization 

process integrates three distinct loss functions: loss computation for the retain set samples 

in the Original Fully Trained Model (Lr), loss evaluation by contrasting output similarities 

between the Original Fully Trained Model and the Blindspot Model (Lf ), and assessment of 

layerwise activation closeness between both models (Lattn). Mathematically, the final loss 

equation is expressed as: 
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Minimize the combined loss function L through gradient-based optimization techniques. 

This optimization process updates the parameters ϕ of the Original Fully Trained Model to 

selectively remove information related to the forget set while retaining the information 

pertinent to the retained set. 

Metric: In comparison to baseline methods such as finetuning and gradient ascent baseline 

methods, the Blindspot Unlearning technique outperformed both. Finetune on the retain 

dataset led to catastrophic forgetting on the forget set, while NegGrad resulted in the 

Streisand effect. The Blindspot Unlearning technique provided error rates on the forgotten 

set that were similar to those of the retrained model. This technique presents a lower attack 

probability indicating better privacy preservation. Furthermore, it demonstrates a 

Wasserstein distance metric that aligned more closely with the retrained model. Moreover, 

the Anamnesis Index values were closest to 1 for the Blindspot Unlearning technique across 

different datasets and domains, indicating superior unlearning performance. 

d) Scrubbing Weights  

The Scrubbing Weights Approach comprises a category of machine unlearning techniques 

dedicated to modifying weights to diminish the influence of selected data points or datasets. 

These methods leverage rigorous mathematical frameworks such as Hessians, Fisher 

Information Matrices (FIM), and their approximations to achieve targeted data removal. By 

applying strategic transformations and introducing controlled noise into the weight space, 

these techniques facilitate selective forgetting while preserving essential model knowledge. 

This approach aims to enhance model robustness, privacy, and adaptability in dynamic 

learning contexts. The following subcategory scrubbing weights will contain specific 

notation, please refer to Table VI for symbols and definitions. 

Table VI. Specific Notation for scrubbing weights approach 

Symbol Description 

S(θ) Scrubbed model parameters 

λ Hyperparameter controlling forgetting 
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σ Error in approximating the SGD 

behavior 

h Transformation function 

F Fisher Information Matrix (FIM) 

n noise 

B−1 Inverse of the Hessian matrix 

wu linear user weights. 

LMSE mean square error loss 

 

i. Eternal Sunshine 

Definition: Paper [9] proposes a selective forgetting procedure tailored for Deep Neural 

Networks trained with stochastic gradient descent. The core of the forgetting mechanism 

involves a shift in weight space and the addition of noise to the weights. Furthermore, the 

paper provides an upper bound on the amount of remaining information in the weights of 

the network after applying the forgetting procedure. This suggests that the proposed 

forgetting mechanism has a quantifiable effect on reducing the information stored in the 

model weights, with an upper limit on the residual information. The optimal scrubbing 

procedure is represented in the form 

 

Where S(θ) are the scrubbed model parameters, h(θ) represents the transformation applied 

to θ to forget Du and n is a noise term following a Gaussian distribution with mean 0 and 

covariance matrix Σ . This has two variation: Fisher Forgetting and Variational Forgetting. 

In the first case the Hessian is approximate with the diagonal of the fisher information matrix 

or a better 

Kronecker-factorized approximation. So the equations is like this 

 S  (21) 
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In the second case instead of computing the FIM, the noise is optimize in the Forgetting 

Lagrangian. The author minimizes the proxy : 

 

And the optima Σ is seen as the FIM computed. 

Metric: The paper evaluates its technique using several metrics: error on the forgotten 

cohort Du, error on the remaining data Dr, re-learn time measured in epochs, and an 

information upper-bound on retained information. It compares its approach against fine-

tuning, negative gradient, random labels, and hiding methods. Results indicate reductions 

in error on Du and Dr, slower re-learn times, and lower information bounds compared to 

alternative methods. 

ii. Forgetting outside the box. 

Definition: Paper [40] extends the selective forgetting framework to consider activations 

(output of intermediate layers) rather than just weights as in [9]. It introduces a technique 

called NTK-based scrubbing, which leverages insights from the Neural Tangent Kernel 

theory to improve selective forgetting. The process begins by linearizing the final activations 

around pre-trained weights. This involves computing the linear approximation of the final 

activations using gradients. Using the linearized activations, the optimal forgetting function 

is computed. This function represents the transition from the weights trained on the 

complete dataset to the weights that would have been obtained by training on the retained 

dataset alone. Mathematically, the optimal forgetting function can be expressed as: 

 hNTK(θ) =θ+P∇f0(Df )TMV (23) 

where: 

• P is a projection matrix that projects the gradients of the samples to be forgotten 

onto the orthogonal space to the space spanned by the gradients of all samples 

to be retained. 

• ∇f0(Df )TMV is the matrix whose columns are the gradients of the samples to forget, 

computed at θ0. 



38 

The final scrubbed weights (SNTK(w)) are obtained by combining the optimal forgetting 

function (hNTK(w)) with the noise (n). SNTK(w) represents the updated weights of the 

network after the selective forgetting process. This process discards outdated or 

irrelevant information while preserving important knowledge. Noise (n) is added to the 

optimal forgetting function to increase robustness and prevent the network from 

overfitting the specific features of the data. 

Metric: They use the same readout functions of [9] and add a black-box membership 

inference attack. In error readout analysis, NTK demonstrates superior performance by 

minimizing error rates on both retain and test sets compared to Fisher forgetting, which 

requires excessive noise addition due to large weight space distances. Additionally, 

NTK surpasses baselines in relearn time, indicating its efficacy in reducing remaining 

information about the forgotten cohort. Robustness against blackbox membership 

inference attacks further highlights NTK’s superiority, achieving optimal accuracy while 

Fisher forgetting risks undesired information leakage. 

iii. Mixed privacy. 

Definition: Paper [43] instead of linearly approximating the training activation as stated 

before proposes to train directly a linearized network for forgetting. The goal is to 

transform the original deep neural network into a mixed-linear model, which is a 

combination of non-linear core weights wc and linear user weights wu. This mixed-linear 

model,can be seen as a firstorder Taylor approximation of the effect of fine-tuning the 

original deep network,is formulated as follows: 

fML wu 

Here: 

• fw∗c (x) represents the output of the original deep network with the core weights 

wc∗. 

• ∇w fw∗c (x) represents the gradient of the output with respect to the core weights 

w∗c, evaluated at x. 

The training of the mixed-linear model involves solving two separate minimization 

problems: 

(a) Training Core Weights w∗c: 

w∗c = argminwcLCE(fwc) 
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(b) Training User Weights wu: 

w∗u = argminwuLMSE  

By transforming the original DNN into a mixed-linear model,the authors aim to facilitate the 

forgetting process. The optimal forgetting step to delete Df is given by: 

wu wugDr(wu), 

The forgetting update is formulated as the optimal adjustment of wu, achieved by computing 

the inverse of the Hessian matrix of the loss function for the core weights wc evaluated on 

the remaining data Dr, and applying the gradient of the loss function concerning wu. Since 

computing the full Hessian matrix is impractical, an auxiliary loss function LˆDr(v) is 

introduced. Finally, to enhance stability and ensure robust forgetting, random noise is added 

to the weights. 

Metrics: The readout functions include error rates on subsets of data, re-learn time, 

activation distance, and membership attack success. Activation distance quantifies the 

difference in final activations between scrubbed and re-trained models, providing insight 

into the residual information about the forgotten data. The paper compares the proposed 

method, ML-Forgetting with Fisher forgetting. ML-Forgetting outperforms other methods, 

particularly in reducing re-learn time and activation distance. 

iv. Certified Removal 

Definition: Paper [10] introduces certified removal (CR) tailored initially for convex models 

but adaptable to non-convex models. For a specific data point within D, C modifies the 

model output M(D) such that the resultant model C(M(D),D,x) closely approximates the 

model trained on D\{x}. This closeness is quantified by a probabilistic condition ensuring 

that the distributions of outputs under C and under re-training without x are indistinguishable 

within a specified tolerance ε. Mathematically, the CR mechanism C aims to satisfy: 

  

where T denotes the set of possible model outputs andε> 0 is a parameter controlling the 

level of removal certainty. A key component of this mechanism involves a Newton step, 
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leveraging the Hessian of the loss function at the current model parameters θ∗. The Newton 

update 

 

where ∆ represents the gradient influence of the removed data point on the model 

parameters θ∗. The Hessian Hθ∗ captures the curvature of the loss function around θ∗, 

providing a quadratic approximation that guides the adjustment of θ∗ to θ−. For deep neural 

networks and non-convex models, the adaptation involves applying similar principles to the 

linear decision-making layer.  

Metric: This paper evaluates its certified removal technique primarily through metrics of 

accuracy and computational efficiency. Experiments on sentiment analysis and digit 

classification tasks using deep neural networks feature extractors demonstrate substantial 

accuracy gains and efficiency improvements compared to fully private models or re-training 

approaches. 

vi. Projective Residual Update 

Definition: The Projective Residual Update (PRU), as introduced in paper [18], aims to 

effectively remove specific data points from trained machine learning models. Initially 

designed for linear models such as logistic and linear regression, PRU’s methodology 

extends to nonlinear models by treating them as comprising a fixed feature mapping 

followed by a linear or logistic regression layer. This adaptation simplifies the update 

process by focusing on the linear components of the model’s structure, particularly the final 

layers in deep neural networks. 

PRU utilizes synthetic predictions to estimate how the model would predict the outputs for 

data points earmarked for removal using the current model parameters. These synthetic 

predictions are pivotal because they act as substitutes for the actual outputs that the model 

would produce if the identified data points were removed. In the context of linear regression 

models, for example, these predictions are straightforwardly computed as the dot product 

of the model’s current weights with the feature vector of each data point xi. 

The primary objective of PRU is to adjust the model’s current weights so that its predictions 

for these synthetic outputs closely align with the actual outputs of the removed data points. 

To achieve this alignment, PRU employs optimization techniques such as gradient descent. 
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Through iterative updates, the model’s weights are adjusted based on the disparity between 

the synthetic predictions and the real outputs of the data points scheduled for removal. 

Metric: PRU typically maintains low L2 distances, indicating minimal deviation from exact 

retraining, especially notable in scenarios with large deletion groups. PRU often shows 

superior performance in the backdoor injection attack metric compared to [10]. For instance, 

while [10] might achieve metrics averaging around 0.2, PRU could achieve significantly 

lower values like 0.05. A lower value in the backdoor injection attack metric indicates that 

PRU is effective in removing or mitigating the influence of injected features that could 

compromise privacy. 

vii. Performance Unchanged Model Augmentation (PUMA) 

Definition: PUMA [44] updates the model parameters θ to θmod, ensuring minimal disruption 

to the model’s predictive capabilities post-data removal. PUMA’s approach uses 

optimization principles, particularly leveraging the Hessian Vector Product for efficient 

parameter adjustments. Hessian Vector Product approximates the impact of changes in 

model parameters on the loss function gradients, crucial for optimizing θ in response to 

removed data points. 

The technique involves two primary steps: First, PUMA formulates an optimization problem 

to derive the modified parameters from the original parameters and incorporating 

adjustments that mitigate the removal of Df ’s influence. This step ensures that the model’s 

overall performance criteria are preserved or improved. Second, PUMA optimizes the 

perturbation factors assigned to the remaining data points Dr\Df . These factors are 

optimized to minimize the performance degradation caused by the removal of Df , balancing 

between sparsity and small changes using regularization techniques. 

Metric: PUMA consistently outperforms traditional methods like Retrain Model and [29] in 

several key metrics evaluated in the paper. Specifically, it shows up to a 10% improvement 

over the original model’s performance when assessing the ability to preserve model 

performance after gradually removing data points. Additionally, in terms of effectiveness in 

data removal, PUMA reduces the success rate of membership attacks by 20-30% compared 

to other techniques such as Amnesiac Machine Learning. Furthermore, PUMA 

demonstrates superior efficiency by executing operations 40-50% faster than competing 

approaches in scenarios involving random data removal. 
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vii. Unlearn Features and labels 

Definition: Unlearning in [45] involves updating the model parameters when the dataset 

changes from the original dataset to a modified dataset. This update is achieved using 

influence functions, a concept from robust statistics that measure the impact of individual 

data points on the model’s parameters. The technique calculates precise updates by using 

first-order and second-order derivatives to reflect the removal or correction of specific data 

points or features. 

One significant aspect of this approach is its ability to handle feature revocation, which 

involves removing entire features from the model. The process starts by identifying data 

points where these features are non-zero, then constructing a modified version of the 

dataset where these features are set to zero. The model parameters are then adjusted to 

account for these changes. Despite the reduction in input dimensionality, the method 

ensures that the model’s performance and integrity are maintained through appropriate 

adjustments derived from the model’s linear transformations. 

A key consideration in the practical implementation of this technique is its scalability to large 

and complex models, such as deep neural networks. Direct computation of the Hessian 

matrix for exact updates is computationally prohibitive in such cases. Therefore, the paper 

proposes an approximation method for the inverse Hessian matrix. This approach enables 

efficient secondorder updates that balance computational feasibility with maintaining the 

integrity of the model adjustments during unlearning. 

Metric: Compared to traditional baselines like retraining and [29], the proposed technique 

achieves 28% improvement in speed while maintaining high fidelity in correcting unintended 

memorization and label poisoning. The technique corrects poisoned labels, particularly 

achieving 85% accuracy restoration with 2,500 poisoned labels. 

Federated unlearning 

a) FedEraser 

Definition: FedEraser [46] introduces a federated unlearning methodology aimed at 

reducing the influence of specific client data on a global model within federated learning 

setups. The primary objective is to adjust the parameters of the global model wglobal to 

mitigate the impact of individual client contributions without directly accessing or 

compromising client data privacy. This adjustment process involves iteratively modifying 
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wglobal by subtracting a scaled version of the client’s model parameters wc, denoted as 
γ

· wc, 

where γ controls the magnitude of adjustment. 

 

Metric: To compare FedEraser, the paper uses two baselines: FedRetrain, which involves 

retraining the global model from scratch without the target client’s data, and FedAccum, 

which accumulates updates from multiple clients without specific unlearning. For the Adult 

dataset, the F1-score for MIAs on the original model is 0.714. After unlearning with 

FedEraser, the F1score drops to 0.563, compared to 0.571 for FedRetrain. The impact of 

the calibration ratio (r) is also assessed. For the Adult dataset, with r = 0.1, FedEraser 

achieves a prediction accuracy of 85.8% on target data in 10.1 seconds. With r = 1.0, 

accuracy decreases slightly by 0.5%, but time increases to 100.1 seconds. 

b) FU with Knowledge disitllation 

Definition To eliminate the contribution of a specific client N from the final global model MF, 

the paper [47] proposes erasing all historical updates ∆Mi
t from this client for rounds t ∈ [1,F 

−1]. Given N clients participating in each round t, the global model update ∆Mt can be 

expressed as: 

 

To remove the contribution ∆MN
t of the target client N, the updated model ∆M0

t is 

recalculated as: 
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Summing up these updates across rounds gives the unlearning version of the final global 

model M0F: 

 

where εt represents the necessary corrections (skew) due to the incremental learning 

property of FL. This process mitigates skew accumulation caused by earlier model updates. 

Knowledge distillation is employed to refine the unlearning model using the original global 

model MF as a teacher and the skewed unlearning model as a student. Soft class prediction 

probabilities qi are generated using a softmax function over logits zi: 

exp(zi/T) 

 qi = (29) 

∑j exp(zj/T) 

where T is a temperature parameter that controls the smoothness of the probability 

distribution. Higher values of T produce softer distributions, enhancing model 

generalization. These soft probabilities are utilized to label unlabeled data, effectively 

transferring knowledge from the original model. During distillation training, if labeled data is 

available, a weighted average approach is adopted using both hard labels (ground truth) 

and soft labels produced by the global model at high temperature T. This approach balances 

the objectives, giving higher weight to soft labels to improve robustness and generalizability. 

After distillation training, the temperature T is set to 1, refining the unlearning model M0
F to 

produce discrete class probabilities suitable for testing scenarios. 

Metric: This paper evaluates the proposed unlearning technique using standard metrics to 

assess its effectiveness in removing the target client’s influence from the global model. 

Comparisons are made against a baseline method of retraining from scratch. Results 

indicate a reduction of the attack success rate to zero post-unlearning. Additionally, through 

knowledge distillation, the technique achieves model recovery with test accuracy closely 

matching that of retraining from scratch. 

c) Efficient Realization  

Definition :The technique detailed in the paper "The Right to be Forgotten in Federated 

Learning: An Efficient Realization with Rapid Retraining" [48] introduces a sophisticated 

approach to federated unlearning. Initially, the unlearning process begins with a federated 

data deletion operation. This results in locally deleted datasets, which contain subsets of 
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the original data with certain samples removed. The process continues with the application 

of rapid retraining techniques to update the global model in response to the changes in the 

local datasets. Unlike traditional retraining methods that require exhaustive updates to all 

model parameters, the proposed technique employs a selective parameter update strategy 

based on the Fisher Information Matrix (FIM). By utilizing the FIM, the unlearning process 

can efficiently compute second-order derivatives necessary for parameter updates while 

minimizing computational overhead. Furthermore, the technique incorporates momentum 

techniques to enhance the stability and convergence speed of the unlearning process. The 

technique has limitations regarding the accuracy of the FIM approximation and the potential 

for divergence in unstable FL environments. While momentum techniques help mitigate 

these issues, further research may be needed to address challenges related to 

approximation errors and model convergence.  

Metric: In terms of evaluation metrics, the paper compares the proposed technique to 

baseline methods such as retraining from scratch. Key metrics include the speed-up factor, 

which measures the efficiency of the unlearning process, and the Symmetric Absolute 

Percentage Error (SAPE), which quantifies the difference in model performance between 

the proposed technique and baseline methods. 

d) FedRecover 

Definition FedRecover [49] is a method designed to recover a federated learning (FL) 

global model after it has been subjected to poisoning attacks.The first step in FedRecover 

is the storage of historical data. During each global round, the server stores the model 

updates submitted by each client. The second step is the detection of malicious clients. At 

some point, malicious clients are detected based on their submitted updates. Detection 

mechanisms are not part of FedRecover, but the method assumes that these clients can 

be identified and removed. The third step involves the estimation of true model updates. 

After detecting and removing the malicious clients, the server needs to estimate the true 

model updates that would have been contributed by non-malicious clients. This estimation 

process is based on the stored historical updates. The final step is the re-aggregation of 

estimated updates. Using the estimated true model updates, the server performs a re-

aggregation process similar to the standard federated averaging (FedAvg) but excluding 

the contributions from detected malicious clients. This re-aggregation involves averaging 

the estimated updates to form a new global model, effectively recovering the model from 

poisoning attacks. 
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Metric: The performance of FedRecover was evaluated using Training Error Rate which 

measures the accuracy of the global model and Attack Success Rate (ASR), which 

assesses the effectiveness of the attack in altering the model’s predictions. FedRecover 

was compared to the train-from-scratch method and fine-tuning using clean datasets. 

Results showed that FedRecover achieves Training Error Rate and Attack Success Rate 

nearly identical to trainfrom-scratch, even when False Negative Rate is up to 0.5. 

Specifically, the Training Error Rate curves for FedRecover almost overlap with those for 

train-from-scratch, except when False Negative Rate is large (e.g., False Negative Rate 

0.4) for Federated Averaging. Fine-tuning required a large number of clean examples, 

around 1,000 examples, to achieve Training Error Rate and Attack Success Rate 

comparable to FedRecover. 

V. Discussion of results 

In this section, a discussion on machine unlearning techniques is presented, focusing on 

their need for fine-tuning and the level of unlearning they achieve. The techniques vary in 

their reliance on fine-tuning after modifying data to maintain model performance, and the 

analysis examines the prevalence of instance-level versus class-level unlearning 

strategies. Instance-level unlearning removes individual data points as requested, while 

class-level unlearning allows broader modifications by removing entire data clusters at 

once. Key insights and observations are also highlighted. 

 

Data Based 

The common thread among these techniques is the consequential need for subsequent 

adjustments to the model, either through fine-tuning or retraining, highlighted by Table VII. 

This necessity arises due to the disruption caused by modifying the training data 

distribution. When specific data points are altered or removed, the model’s decision 

boundaries and learned representations may no longer align with the original data 

characteristics. Fine-tuning allows minor adjustments to recalibrate the model, while 

retraining involves more substantial updates to accommodate these changes effectively. 

The predominance of data-based machine unlearning techniques targeting single or 

multiple class levels, as observed in Table VIII, can be attributed to the relative simplicity 

and efficiency of creating and managing patterns for unlearning entire classes. Creating 
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and maintaining patterns for unlearning entire classes is less resource-intensive than 

handling individual instances. For example, using a trojan trigger or mnemonic code for a 

whole class involves maintaining a single pattern per class, rather than a unique pattern for 

each data point. This significantly reduces the overhead in terms of storage and 

computational complexity, making it easier to implement and maintain. Consequently, the 

higher percentage of techniques focusing on class-level unlearning is a natural outcome of 

these efficiencies. 

A shortcoming of these techniques, particularly those involving label changes, lies in their 

potential to inadvertently reveal sensitive information. Changing the labels of data points is 

a relatively straightforward method that can be implemented with minimal computational 

resources. By altering the labels, the technique effectively modifies the models training 

data, leading it to forget specific information. However, if the technique changes the label 

of every data point to the same new label, this uniformity could potentially expose patterns 

or anomalies in the data. Consistently redirecting data points to a single label might make 

it easier for an adversary to infer that these points were part of a removal process, thus 

compromising the intended privacy. To mitigate this risk, a more sophisticated approach 

might involve randomly selecting new labels or distributing the relabeled data points across 

multiple labels. This strategy would make it more difficult for an adversary to detect any 

specific patterns related to the unlearning process. 

Table VII. Fine-tuning Requirements and Levels of Unlearning 
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Architecture Based 

a) Modular Unlearning 

 Analyzing the various techniques reveals a common thread: the pursuit of minimizing 

retraining efforts, as shown in Table VIII. Each iteration in modular unlearning techniques 

builds upon previous advancements, striving to streamline the process of updating models 

after data removal. This collective endeavor tries to maintain model accuracy and efficiency 

within evolving data landscapes. Techniques like those employing differential privacy or 

encoded data representations exemplify this trend, aiming to reduce computational 

overhead and preserve model integrity without compromising on performance. The 

evolution towards more efficient retraining strategies underscores the field’s maturation, 

reflecting ongoing efforts to operationalize machine unlearning in real-world applications. 

Furthermore, the predominance of instance-level unlearning techniques in modular 

architectures can be attributed to several factors rooted in their architectural design and 

operational requirements. This architectural granularity allows for targeted updates and 

adjustments at the level of individual instances within these partitions, as observed in Figure 

VII. This approach underscores a deliberate effort to refine model adaptations precisely 

where necessary, optimizing performance without overhauling entire datasets. 

An observation from these advancements is the prevalence of SISA in the literature on 

machine unlearning. The majority of reviewed papers (21/31) reference SISA in their related 

work or comparative analyses, highlighting its foundational role. This widespread citation 

underscores SISA’s influence as a benchmark for evaluating new methodologies and 

innovations in adaptive machine learning systems. By creating consistent methods for 

dealing with unlearning requests, SISA has driven progress in making models more 

adaptable and reducing privacy risks in changing data environments. Its enduring presence 

in scholarly discourse underscores its pivotal role in shaping the trajectory of modular 

unlearning research.  

Table VIII. Fine-tuning Requirements and Levels of Unlearning 

Paper Is fine-tuning 

necessary? 

Notes 

[29] ✓ Details regarding the extent and 

methodology of fine-tuning 

required were not explicitly 

mentioned. 
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[30] ✓ Requires fine-tuning with a 

specific subset of data to 

address the adaptive nature of 

the unlearning process. 

[16] ✓ Fine-tuning necessary to 

maintain performance 

consistency after implementing 

unlearning techniques. 

[31] ✓ Incremental retraining required 

to ensure the integrity and 

accuracy of the model post 

unlearning. 

[32] ✓ - 

[33] ✓ - 

 

b) Gradient Ascent 

 Based on the analysis of various unlearning techniques, it becomes evident that these 

methods necessitate meticulous tracking of each training batch’s contribution during model 

training. When a batch containing sensitive or unwanted data is identified for removal, the 

unlearning process typically involves subtracting the accumulated parameter updates 

associated with those data points from the final model parameters. However, this efficiency 

comes with its own set of challenges and trade-offs. Storing the indices of examples 

participating in each batch and their corresponding updates requires significant storage 

capacity. Additionally, this method might cause the model to be different from what it would 

have been if those updates were never made, especially with larger datasets and more 

complicated training processes. 

Another observation from the literature of this type of technique is the predominant focus on 

forgetting at the instance level rather than at the level of entire classes, Table IX. There is 

an absence of methods explicitly designed to forget entire data classes. This is because 

these techniques unlearn one data point at a time, requiring meticulous tracking and 

recording of each training batch’s contributions during the model training process. 

Consequently, as these techniques adjust model parameters based on specific instances, 

they experience a gradual loss of accuracy or performance with each new request for 

unlearning. 
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Given the existing research, retraining may not be immediately necessary when the 

unlearning involves straightforward adjustments to model parameters or for simpler models, 

Table IX. However, in more complex models such as deep neural networks, where 

parameters are highly interconnected and changes to individual data points can have ripple 

effects across the model, fine-tuning or retraining prove to be beneficial. This ensures that 

the model adapts to the new data distribution post-unlearning and maintains or improves 

performance on unseen data. 

Table IX. Fine-tuning Requirements and Levels of Unlearning 

Paper Is fine-tuning 

necessary?? 

Notes 

[34] ✓ Some retraining is usually performed 

afterward to restore model performance on 

non-target data. 

[35] x - 

[36] ✓ - 

[19] ✓ It needs some epochs of training using 

clean data and the identified trigger 

patterns. 

  Single instance level 

c) Teacher-Student 

 All the techniques involving the teacher-student framework inherently perform a form of 

fine-tuning due to their operational methodology, as evidenced in Table X. These techniques 

utilize an iterative process where the student model is progressively adjusted based on the 

guidance provided by the teacher model. This approach mirrors fine-tuning, where the 

student model undergoes incremental updates to align with the teacher’s outputs and to 

unlearn specific data. The iterative nature of these adjustments ensures that the student 

model refines its performance continually, similar to how fine-tuning hones a pre-trained 

model for specific tasks. Consequently, the fine-tuning aspect is embedded in the core 

mechanism of these teacher-student techniques, making it a fundamental component of 

their operation. 

An insight from examining these techniques is the balanced distribution at the scope of 

unlearning, showing an equal split between single/multiple class-level and single/multiple 

instance-level unlearning, Fig X. Techniques like bad teaching, where the student learns 
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from both competent and incompetent teachers, enable class-level unlearning through 

generalized learning objectives. While other methods involving generative adversarial 

networks and gated knowledge transfer, that use pseudo samples to facilitate selective 

unlearning, ensure the student model forgets targeted information. 

While reviewing the techniques described in the literature, it becomes evident that many 

rely heavily on distance functions to guide the process of unlearning. By leveraging distance 

functions, these methods aim to minimize the discrepancy between the original model and 

the adjusted model post unlearning. This ensures that retained knowledge remains intact 

while forgotten information is effectively erased or modified. However, the choice and design 

of these distance functions are pivotal, as they directly influence the effectiveness and 

efficiency of the unlearning process. inappropriate or overly complex distance metrics may 

introduce unnecessary computational overhead or obscure insights into model behavior. 

The Student and Teacher Framework section reveals a prevalent trend towards iterative 

methodologies in machine unlearning techniques. The iterative nature ensures adaptability 

to dynamic datasets but also highlights a limitation: computational overhead due to repeated 

model adjustments. This iterative requirement suggests that while effectively managing 

targeted forgetting, these techniques may demand substantial computational resources, 

potentially limiting their scalability in real-time or resource-constrained environments. Upon 

reviewing the literature, it is also evident that another downside of these techniques is the 

reliance on maintaining more than one model simultaneously, which can be costly in terms 

of computational resources and storage. 

Table X. Fine-tuning Requirements and Levels of Unlearning 

Paper Is fine-tuning necessary?? 

[37] ✓ 

[15] ✓ 

[38] ✓ 

[39] ✓ 

[41] ✓ 

[50] ✓ 

[42] ✓ 
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d) Scrubbing Weights Approach 

The Scrubbing Weights Approach encompasses a diverse array of techniques designed to 

effectively eliminate the influence of specific data points from machine learning models. 

These methods leverage sophisticated mathematical frameworks such as Hessians and 

Fisher Information Matrices to ensure precise data removal grounded in theory. 

Incorporating controlled noise into model weights is also a commonly adopted strategy that 

ensures efficient forgetting without compromising model performance. To tackle 

computational complexities in handling large and intricate models, some approaches utilize 

influence functions and approximate Hessian matrices, ensuring scalability and practical 

feasibility. 

However, while these techniques offer robust solutions, they also present inherent 

limitations. Despite avoiding full retraining, they often require intricate mathematical 

computations and approximations, such as calculating Fisher Information Matrices or 

approximating Hessians, which can introduce computational overhead. Some methods rely 

on linear approximations or synthetic predictions, which may not fully capture the 

complexities of nonlinear models, potentially leading to suboptimal forgetting outcomes. 

Successful implementation hinges on accurate parameter estimation and transformation, 

with errors in these approximations posing risks to the effectiveness of data removal. 

Moreover, while efforts are made to minimize residual information, challenges persist in 

ensuring complete data erasure and preventing information leakage. 

A strength identified in the literature is that most of these techniques do not necessitate 

retraining or fine-tuning, Table XI. Instead, they directly adjust model parameters based on 

calculated modifications that counteract the influence of targeted data points. This 

characteristic allows these methods to operate as single-step post-processing procedures, 

significantly reducing computational time and resource requirements compared to iterative 

retraining approaches. One method [18] deviates by iteratively adjusting model weights, 

resembling retraining processes to a certain extent, unlike the straightforward approach of 

other techniques. 

Table XI. Fine-tuning Requirements and Levels of Unlearning 

Paper Is fine-tuning 

necessary?? 
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[9] x 

[40] x 

[43] x 

[10] x 

[18] ✓ 

[44] x 

[45] x 

 

 Federated unlearning 

In the realm of federated unlearning techniques, the necessity for finetuning or retraining 

varies based on the approach taken by each method. Generally, these techniques aim to 

mitigate the impact of individual client contributions on the global model without resorting to 

full retraining from scratch, aligning with the principle of efficiency in federated learning. 

Some techniques, such as FedEraser and Efficient Realization, integrate mechanisms that 

adjust the global model parameters iteratively by accounting for the influence of client-

specific data without requiring fine-tuning. The specific fine-tuning requirements and levels 

of unlearning across these techniques are detailed in Table XII. 

The approaches operate at the client level, where adjustments are made based on 

aggregated client updates rather than targeting specific data instances or entire classes. 

This distinction highlights that federated unlearning techniques do not uniformly align to 

either class-level or instance-level adjustments, emphasizing the need for methods that 

efficiently handle client contributions while maintaining global model performance and 

privacy. 

Table XII. Fine-tuning Requirements and Levels of Unlearning 

Paper Is fine-tuning 

necessary?? 

Notes 

[46] x - 

[47] ✓ Fine-tuning process to

 integrate the distilled 

knowledge effectively 

[48] ✓ Adjust the model parameters efficiently 

based on the FIM updates 
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[49] x - 

  Client level 

Dataset 

Analyzing dataset usage across different machine unlearning techniques provides insights 

into research trends and methodological choices within the field, as illustrated in Figure 4. 

CIFAR-10 emerges as a predominant choice across various techniques, reflecting its 

suitability for evaluating unlearning methods in complex image classification tasks. Its 

diverse range of objects and scenes allows researchers to assess model adaptability and 

robustness across different categories, ensuring a comprehensive evaluation of technique 

efficacy. MNIST, renowned for its simplicity and well-defined character recognition task, is 

frequently utilized in studies focusing on modular unlearning and scrubbing weights 

approaches. This dataset facilitates the evaluation of unlearning effects on basic 

classification tasks, providing insights into model behavior post-unlearning. A detailed table 

categorizing the datasets used in each referenced paper is presented in Appendix B for 

further reference. 

In contrast, specialized datasets such as HAM10000 and VGG-Faces feature prominently 

in teacher-student approaches, chosen for their relevance to specific applications like 

dermatology and facial recognition. These datasets enable researchers to evaluate 

unlearning techniques in contexts requiring nuanced model adjustments and fine-grained 

knowledge transfer between models. Imagenet, though less frequently used, appears in 

studies exploring modular unlearning and scrubbing weights approaches, leveraging its 

image diversity to assess technique performance in broader, more complex visual 

recognition tasks. 

Papers like [10] and [18], which do not employ any datasets in their evaluations, indicate a 

focus on theoretical validation. This trend suggests a dual approach in machine unlearning 

research: while leveraging established benchmark datasets for generalizable insights, 

researchers also explore domain-specific datasets for task-specific evaluations. Moreover, 

almost all the datasets used across the analyzed papers are primarily intended for 

classification tasks. However, notable exceptions such as AgeDB, as observed in [42], 

demonstrate a unique suitability for regression tasks due to its annotation of age attributes 

for various subjects, encompassing a wide range of ages and identities. This dataset’s 

utilization underscores the versatility of machine unlearning techniques beyond 
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classification, extending into domains requiring predictions of continuous outcome variables 

like age. 

The analysis reveals a predominant use of convolutional neural networks in machine 

unlearning research. CNNs are used due to their effectiveness in image classification tasks, 

and ability to capture spatial hierarchies through convolutional layers. Despite the focus on 

CNNs, other neural network architectures, such as Recurrent Neural Networks and Long 

Short-Term Memory networks, could also be considered. These architectures are 

particularly useful for sequential data and time-series analysis, which opens possibilities for 

machine unlearning applications beyond image classification. Incorporating these neural 

network types could broaden the scope of machine unlearning research and provide 

insights into the unlearning process for different data modalities. 

Fig. 4. Distribution of datasets utilized across different machine unlearning techniques 

 

Architecture 

The analysis of architectures used in various techniques reveals several trends and 

preferences, as depicted in Fig 5 and in the more detailed table in Appendix C. ResNet, a 

family of convolutional neural networks, is extensively used across the studies. ResNet 

architectures, including ResNet-18, ResNet-50, and ResNet-20, are known for their 

residual learning framework which addresses the vanishing gradient problem by allowing 

gradients to flow through the network via shortcut connections [51]. The numbers in these 

architectures (18,50,20) refer to the depth of the network, specifically the number of layers. 

The increased depth in architectures like ResNet-50 allows for more complex feature 

extraction, while the residual connections help maintain the flow of gradients, thus 
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facilitating the training of very deep networks. Resnets robustness and versatility make it 

suitable for a wide range of machine unlearning evaluations. Another common architecture 

is the VGG family, particularly VGG-16, used in four papers. VGG-16 [52] employs a stack 

of convolutional layers with small receptive fields (3x3 filters) followed by fully connected 

layers. The number 16 in VGG-16 denotes the total number of layers in the network. VGG-

16s design, with its consistent layer structure and uniform filter size, makes it 

computationally efficient and straightforward to implement. This simplicity is an advantage 

for benchmarking in machine unlearning research, as it allows for clear comparisons of 

model performance. The use of VGG-16 suggests a trend towards leveraging established 

architectures recognized for their performance in various computer vision tasks. 

Including MobileNetv2 [53] in two studies indicates an interest in efficient and lightweight 

models. MobileNetv2 is designed for mobile and embedded vision applications, suggesting 

that researchers are considering the implications of deploying machine unlearning 

techniques in resource-constrained environments. Additionally, the use of DenseNet [54] 

underscores the importance of architectures that enhance feature reuse and reduce the 

number of parameters. DenseNets dense connectivity pattern helps mitigate the vanishing 

gradient problem and improves information flow, making it a choice for machine unlearning 

evaluations. 

The table XV in Appendix C also highlights the diversity in architecture choices, with some 

studies employing multiple architectures to evaluate their techniques comprehensively. For 

example, one study [17] uses ResNet-18, All-CNN, and MobileNetv2, while another 

explores LeNet, ResNet, and VGG. This approach indicates a trend towards thorough 

benchmarking across different model complexities and capacities, ensuring that the 

proposed unlearning techniques are robust and generalizable. Futhermore the analysis also 

reveals that two papers do not specify any architectures, focusing instead on linear models 

and generalizing their findings to deep neural networks. These studies concentrate on 

theoretical validation, developing foundational principles that can be applied broadly. 

Despite generalizing their results to neural networks, these papers do not conduct specific 

experiments or evaluations involving particular neural network architectures. 
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Fig. 5. Overview of Neural Network Architectures Utilized in Machine Unlearning 

Technique Evaluations 

 

Replicability 

The availability of source code or pseudocode significantly influences the replicability of 

machine unlearning techniques. Techniques, where authors provide comprehensive source 

code, facilitate easier replication by allowing other researchers to implement and verify the 

methods described directly. Pseudocode also plays a positive role in replicability. While it 

requires more interpretation than executable code, it provides a structured outline of the 

algorithmic steps involved. However, a notable portion of the techniques reviewed in the 

table either do not provide source code or pseudocode. This absence poses challenges to 

replication efforts, as researchers must rely solely on the methodological descriptions 

provided in the papers. Replicating these studies becomes more time-consuming and prone 

to interpretation errors, potentially leading to variations in results. As illustrated in Fig. 6, 

showing the distribution of papers with pseudocode, source code repositories, and those 

without. Further details can be found in Table XVI in Appendix D. 

Fig. 6. Distribution of machine unlearning papers by the availability of code repositories, 

pseudocode, or neither. 
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Metrics 

Fig.8 highlights a diverse range of metrics used across different studies to evaluate machine 

unlearning techniques. This variability suggests that no universal standard or consensus on 

which metrics are most appropriate for assessing the effectiveness of unlearning 

approaches. Many studies prioritize metrics related to privacy and security, such as 

membership inference and model inversion attack. These metrics are crucial for 

determining the extent to which unlearned models retain sensitive information and their 

vulnerability to privacy attacks. Metrics like accuracy on forgotten set and relearn time 

indicate studies’ interest in understanding how unlearning techniques affect model 

performance. This consideration is essential for balancing privacy preservation with 

maintaining model effectiveness on retained data. Metrics such as unlearn time and 

activation distance reflect studies’ concerns about the computational efficiency of 

unlearning techniques. Techniques that require less computational resources for unlearning 

are more practical for deployment in real-world applications. 

Fig. 7. Distribution of metrics utilized across different machine unlearning techniques 

 

Case study: EMG signal classification 

The recent paper [55] from the laboratory details a real-time hand gesture recognition 

system based on electromyographic (EMG) signals. The methodology involves data 

acquisition using EMG sensors, followed by preprocessing steps that include signal 

rectification and segmentation with a muscle activity detector. A sliding window approach is 

employed for feature extraction, resulting in vectors concatenated from multiple channels. 

The classification phase employs a CNN-LSTM model with 11,652,790 parameters, 

requiring approximately six hours to complete training. A significant challenge with EMG 

signals is their variability, not only between different users but also within the same person 

at different times. A potential future application of this classification system is in human-

computer interfaces and prosthetics, where users can utilize EMG signals to perform 
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various activities on a computer. In this context, machine unlearning is particularly useful, 

not for privacy concerns, but to remove past data that is no longer relevant. Since EMG 

signals vary over time even for the same user, machine unlearning can help maintain the 

model’s accuracy and relevance by removing outdated data, thus enhancing the system’s 

adaptability and performance in real-time applications.  

Fig. 8. Stages of a Hand Gesture Recognition model 
Source: Adapted from [55] 

 

When considering machine unlearning techniques for the EMG signal classification case, it 

is essential to evaluate various approaches and their applicability. This section explores the 

limitations of certain categories and highlights the potential of modular unlearning as a 

favorable solution. Techniques in the scrubbing weight category are not recommended for 

the EMG signal classification task. These methods are primarily theoretical, with many 

primary studies lacking repositories, pseudocode, or references to specific datasets. The 

absence of experimental validation and practical implementation renders these techniques 

unsuitable for real-world applications, especially where maintaining model performance in 

dynamic scenarios is critical. Data-based unlearning techniques, while offering a potential 

short-term solution, have notable limitations. These methods often fail to fully offset the 

influence of unlearned data in complex models. Moreover, they lack theoretical support for 

their validity, as evidenced by literature. Without guarantees on the extent of information 

retained by attackers or the similarity of parameters to a retrained model, data-based 

techniques do not provide the reliability needed for maintaining high accuracy and 

adaptability in EMG signal classification. 

Modular unlearning emerges as a preferred option for the EMG signal classification task. 

Retraining the existing model, which takes approximately six hours for a model with 

11,652,790 parameters, is feasible but can be significantly expedited with modular 

unlearning techniques. For instance, the DeepObliviate technique, which uses a ResNet-

50 model with 25 million parameters, demonstrates a 10x speedup in the unlearning 

process. Unlike federated unlearning, which requires unlearning all contributions from client 
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models, modular unlearning allows for more granular control. Taking the SISA [29] 

technique as an example when an unlearning request arrives, the data point is removed 

from the relevant shards, and only the corresponding sub-models are retrained. This 

approach enables efficient data instance unlearning without the need to retrain the entire 

model. However, modular unlearning has its disadvantages. The process of sharding and 

managing multiple sub-models can introduce complexity and require careful coordination. 

Additionally, the need to retrain sub-models, while more efficient than full retraining, still 

incurs some computational overhead. Despite these challenges, modular unlearning 

represents a viable option for the EMG signal classification case. It offers a practical 

balance between implementation complexity and unlearning efficiency, making it a strong 

candidate for maintaining the accuracy and relevance of the model in real-time applications 

where EMG signals vary significantly over time. 

VI. Future work and Conclusion 

A. Emerging Challenges and Future Directions in Machine Unlearning Research. 

As machine unlearning techniques become more prevalent, questions have emerged 

regarding their reliability and effectiveness in ensuring data privacy and model security. 

Researchers are increasingly seeking to understand the security implications and 

limitations of these methods, aiming to develop solutions that can effectively mitigate 

privacy risks. Parallelly, there is skepticism about the extent to which these techniques truly 

"forget" data points, as the veracity of their claims comes under scrutiny. This skepticism 

underscores the need for thorough investigation into the foundational principles of machine 

unlearning, as well as the development of practical frameworks for assessing their efficacy. 

In light of these challenges, this section delves into the emerging complexities and future 

directions in machine unlearning research, emphasizing the importance of addressing 

these issues to ensure the continued advancement and responsible deployment of machine 

unlearning technologies. 

Unlike traditional membership inference attacks, the approach in [56] leverages outputs 

from both the original and unlearned models, utilizing various aggregation methods to 

combine the two posteriors for attack model input. The adversary’s objective is to determine 

if a target sample was unlearned from the original model, thus revealing potential privacy 

risks. Furthermore, the evaluation of the retraining from scratch method indicates that the 

attack degrades the membership privacy of the model. This highlights the unintended 

privacy risks posed by machine unlearning techniques.  
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The attack on machine unlearning techniques outlined in the paper [57] introduces a novel 

approach to exploiting vulnerabilities in the process of unlearning, particularly in scenarios 

where users actively manipulate their data to induce unlearning. The attack targets machine 

unlearning technique [10]. By strategically poisoning a subset of instances in the training 

data and submitting erasure requests, the attacker aims to slow down the unlearning 

process, ultimately diminishing or nullifying the efficiency gains of unlearning over full 

retraining. This attack highlights a critical vulnerability in machine unlearning systems, 

raising questions about the trade-offs between computational cost, model accuracy, and 

privacy in adversarial learning environments. Furthermore, the study emphasizes the need 

for robust defenses against such attacks and suggests avenues for future research to 

explore mitigating strategies. 

The caution against solely comparing parameters to assess machine unlearning techniques 

stems from the paper [58]’s observation that datasets containing the points to be unlearned 

can generate similar parameter spaces as datasets where those points are forgotten. The 

paper reveals that during both learning and unlearning, these algorithms may traverse 

similar trajectories in the parameter space, leading to convergence on similar parameter 

configurations. This convergence can occur even when the datasets used in the learning 

and unlearning processes differ significantly. Subsequently, the authors highlight that the 

crucial factor determining the effectiveness of unlearning is not solely the resulting 

parameters but rather the assessing framework must give greater importance to the 

analysis of the process and algorithm. Consequently, machine unlearning techniques ( [9], 

[40], [34]) that rely solely on parameter space comparisons to assess unlearning efficacy 

are susceptible to inaccuracies and may fail to provide robust guarantees of data removal 

or forgetting. 

[59] presents a framework designed for the quantitative evaluation of compliance 

verification within the domain of machine unlearning. This paper hypothesis uses a testing 

techniques for assessing the efficacy of data deletion requests. The study introduces the 

concept of "privacy enthusiasts," individuals who actively participate in the verification 

process by embedding distinct backdoor patterns into their data prior to submission to a 

machine learning service. By measuring the success rate of these backdoors before and 

after submitting a deletion request, they can infer if their data was deleted. Results show 

that the approach can distinguish between compliant and non-compliant servers, even 
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when adaptive defenses are employed. Additionally, the research demonstrates the 

method’s versatility across various machine learning systems and datasets, highlighting its 

potential applicability in diverse real-world scenarios. 

Furthermore, this section explores approaches aimed at enhancing established machine 

unlearning (MU) methods. By exploring techniques like "prune first, then unlearn" and 

"sparsity-aware unlearning," the paper [22] delves into advancements that hold promise for 

improving the efficacy and efficiency of existing MU methods. One specific technique within 

magnitude-based pruning is one-shot magnitude pruning (OMP), which directly prunes the 

model weights to the target sparsity ratio based on their magnitudes in a single iteration. By 

integrating model sparsity into the unlearning process, methods like Fine-tuning, Gradient 

Ascent, Fisher Forgetting, and Influence Unlearning demonstrate improvements in 

unlearning accuracy and membership inference attack efficacy, without significant loss in 

remaining accuracy. Additionally, the paper integrates an ℓ1 norm-based sparse penalty into 

the unlearning objective function, promoting model sparsity during the unlearning process. 

By incorporating this sparse penalty, the unlearning process prioritizes the retention of 

important model weights while reducing the magnitudes of ’unimportant’ weights. Sparsity-

aware unlearning demonstrates improvements in UA and MIA-Efficacy, effectively closing 

the performance gap with the gold-standard retrained-from-scratch model. 

B. Conclusion 

In this study, a taxonomy of machine unlearning techniques was developed, categorizing 

each approach based on its operational principles and mathematical underpinnings where 

applicable. The analysis and summarization of these techniques illuminate their diverse 

applications across various domains. From federated learning methods to data-based 

approaches, the study highlights the adaptability and nuanced strategies required for 

effectively managing outdated or sensitive data within machine learning models. 

The evaluation metrics employed in assessing machine unlearning techniques 

demonstrated significant diversity, reflecting the multifaceted nature of post-unlearning 

performance evaluation. Metrics such as membership inference and model inversion attack 

underscored the critical need to assess privacy vulnerabilities, while accuracy on forgotten 
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sets and computational efficiency metrics provided insights into both model performance 

and operational feasibility. 

In the context of specific applications like EMG signal classification, this study explored the 

effectiveness of modular unlearning techniques. Approaches such as DeepObliviate and 

SISA offer practical solutions for maintaining model accuracy while adapting to the dynamic 

nature of EMG signals over time. By selectively removing outdated data and minimizing 

computational overhead compared to full retraining, modular unlearning proves 

advantageous in scenarios requiring efficiency and real-time adaptability. 
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VII. Appendices 

1) Appendix A: Assignment of identifiers for primary studies. Table XIII presents ID, name of 

the study and the name of the technique proposed. 

Table XIII. Identifier, Title of the Paper, Reference, and Name of the Technique 

ID Title of the Paper Name of the technique 

ID-1 Trojaning Attack on Neural Network BadNets 

ID-2 Class Clown: Data Redaction in Machine Unlearning at 

Enterprise Scale 

Class Clown 

ID-3 Fast Yet Effective Machine Unlearning Fast yet effective 

machine unlearning 

ID-4 Learning with Selective Forgetting Mnemonic code 

ID-5 Machine Unlearning SISA  

ID-6 Adaptive Machine Unlearning Adaptive Machine 

Unlearning 

ID-7 No Matter How You Slice It: Machine Unlearning with 

SISA Comes at the Expense of Minority Classes 

 No matter how you slice 

it 

ID-8 Coded Machine Unlearning Coded machine 

unlearning 

ID-9 DeepObliviate: A Powerful Charm for Erasing Data 

Residual Memory in Deep Neural Network 

DeepObliviate 

ID-

10 

ARCANE: An Efficient Architecture for Exact Machine 

Unlearnine 

ARCANE 

ID-

11 

Amnesiac Machine Learning Amnesiac Machine 

unlearning 

ID-

12 

Unrolling SGD: Understanding Factors Influencing 

Machine Unlearnine 

Unrolling SGD 

ID-

13 

Backdoor Defense with Machine Unlearnin BAERASER 

ID-

14 

Learn to Forget: Machine Unlearning via Neuron 

Masking 

Forsaken 

ID-

15 

Can Bad Teaching Induce Forgetting? Bad teaching 

ID-

16 

Zero-Shot Machine Unlearning Gated Knowledge 

Transfer 

ID-

17 

Efficient Two-stage Model Retraining for Machine 

Unlearning 

Efficient two-stage model 

ID-

18 

Towards Unbounded Machine Unlearning Towards Unbounded 

Machine Unlearning 

ID-

19 

Lightweight machine unlearning in neural network Lightweight machine 

unlearning 

ID-

20 

Deep Regression Unlearning Deep Regression 

Unlearning 

ID-

21 

Eternal Sunshine of the Spotless Net: Selective 

Forgetting in Deep Networks 

Eternal Sunshine 
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ID-

22 

Forgetting Outside the Box: Scrubbing Deep Networks 

of Information Accessible from Input-Output 

Observation 

Forgetting outside the 

box 

ID-

23 

Mixed-Privacy Forgetting in Deep Networks Mixed privacy 

ID-

24 

Certified Data Removal from Machine Learning Models Certified Removal 

ID-

25 

Approximate Data Deletion from Machine Learning 

Model 

Projective Residual 

Update 

ID-

26 

PUMA:Performance Unchanged Model Augmentation 

for Training Data Removal 

Performance Unchanged 

Model Augmentation 

ID-

27 

Machine Unlearning of Features and Labels Unlearn Features and 

labels 

ID-

28 

FedEraser: Enabling Efficient Client-Level Data 

Removal from Federated Learning Model 

FedEraser 

ID-

29 

Federated Unlearning with Knowledge Distillation FU with Knowledge 

disitllation 

ID-

30 

The Right to be Forgotten in Federated Learning: An 

Efficient Realization with Rapid Retraining 

 Efficient Realization with 

Rapid Retraining 

ID-

31 

FedRecover: Recovering from Poisoning Attacks in 

Federated Learning using Historical Information 

FedRecover 



 

 

2) Appendix B: Comparison of the dataset used in each technique: Table XIV presents a 

comprehensive overview of the datasets utilized in the experimental evaluations conducted in 

each referenced paper. The table categorizes the datasets based on the specific approaches 

employed. Each row within the table corresponds to a distinct paper, detailing the datasets 

applied in the experimentation process. Also, each row is color-coded to indicate the 

technique’s category within the taxonomy of machine unlearning approaches. 

Table XIV. Datasets Used in Experimentation. 
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ID MNIST MNIST 

- 

FASHION 

CIFAR

-10 

CIFAR

-100 

ImageNet Purchase SVHN OTHER 

ID-1 1 1 1 1 0 0 0 0 

ID-2 0 0 1 0 0 0 0 0 

ID-3 0 0 1 1 0 0 0 0 

ID-4 0 0 0 1 0 0 0 Stanford 

Cars 

ID-5 1 0 0 1 1 1 0 0 

ID-6 1 1 1 0 0 0 0 0 

ID-7 1 0 0 1 1 1 0 0 

ID-8 0 0 0 0 0 0 0 Computer 

Activity 

dataset 

ID-9 1 0 1 0 1 1 1 0 

ID-10 0 1 1 1 0 1 1 0 

ID-11 1 0 0 1 1 0 0 0 

ID-12 0 0 1 1 0 0 0 0 

ID-13 0 0 1 1 0 0 0 IMDB 

ID-14 1 0 1 1 0 0 0 0 

ID-15 0 0 1 1 0 0 0 Epileptic 

Seizure 

Recognition 

ID-16 1 0 1 0 0 0 1 0 

ID-17 1 1 1 1 0 0 1 HAM10000 

ID-18 0 0 1 0 0 0 0 VGG- 

Faces 

ID-19 1 1 1 0 0 0 1 0 

ID-20 0 0 0 0 0 0 0 AgeDB, 

IMDB 

ID-21 1 0 1 0 0 0 0 VGG- 

Faces 

ID-22 0 0 1 0 0 0 0 VGG- 

Faces 

ID-23 0 0 1 0 0 0 0 Caltech- 

256, 

MIT-67 

         



 

 

 

  Data based 

  Modular unlearning 

  Gradient Ascent 

   Teacher-Student 

  Scrubbing Weights 

  
Federated 
Unlearning 

  

ID-24 0 0 0 0 0 0 0 0 

ID-25 0 0 0 0 0 0 0 0 

ID-26 1 0 0 0 0 0 0 Breast 
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3) Appendix C: Comparison of the architectures used in each technique: Table XV presents 

an overview of the architectures utilized in the experimental evaluations conducted in each 

referenced paper. 

Table XV. Architectures Used in Various Studies 

ID Architecture 

ID-1 ResNet-18 

ID-2 CNN 

ID-3 ResNet-18, All-CNN, MobileNetv2  

ID-4 ResNet-18 

ID-5 Wide ResNet-1-1,  ResNet-50 

ID-6 convolutional neural network 

ID-7 ResNet- 18 

ID-8  3-hidden-layers MLP 

ID-9 LeNet, ResNet, VGG 

ID-10 LeNet , Wide ResNet, ResNet-18 

ID-11 Resnet-18 

ID-12 VGG-16 

ID-13 VGG-16 

ID-14 ResNet-18 

ID-15 ResNet-18, ResNet-34, MobileNetv2 

ID-16 All-CNN, LeNet , ResNet-9 

ID-17 ResNet-50 

ID-18 All-CNN, ResNet-18 

ID-19 Lenet, ResNET-18,VGG16,wide resnet 

ID-20 ResNet-18 

ID-21  ResNet-18 

ID-22  All-CNN, Resnet-18 

ID-23 ResNet50 

ID-24 - 

ID-25 - 

ID-26 DenseNet  

ID-27 CNN 

ID-28 CNN 

ID-29 VGG11,  AlexNet  

ID-30 ResNet-18,  AlexNet 

ID-31 ResNet-20 

 

  Data based 

  Modular unlearning 

  Gradient Ascent 

   Teacher-Student 

  Scrubbing Weights 

  
Federated 
Unlearning 



 

4) Appendix D: Availability of Source Code or Pseudocode: Table XVI provides an overview of 

the source code or pseudocode availability for the machine unlearning techniques discussed 

in the reviewed papers.  

Table XVI. Source Code or Pseudocode Availability 

ID Do the primary studies include Pseudocode, a repository, or neither? 

ID-1 Pseudocode 

ID-2 - 

ID-3 https://github.com/vikram2000b/Fast-Machine-Unlearning 

ID-4 - 

ID-5 https://github.com/cleverhans-lab/machine-unlearning 

ID-6 Pseudocode 

ID-7 - 

ID-8 - 

ID-9 Pseudocode 

ID-10 - 

ID-11 - 

ID-12 https://github.com/cleverhans-lab/unrolling-sgd 

ID-13 Pseudocode 

ID-14 Pseudocode 

ID-15 https://github.com/vikram2000b/bad-teaching-unlearning 

ID-16 https://github.com/ayu987/zero-shot-unlearning 

ID-17 Pseudocode 

ID-18 https://github.com/Meghdad92/SCRUB 

ID-19 Pseudocode 

ID-20  https://github.com/ayu987/deep-regression-unlearning 

ID-21 - 

ID-22 - 

ID-23 - 

ID-24 - 

ID-25 - 

ID-26 Pseudocode 

ID-27 Pseudocode 

ID-28 
https://www.dropbox.com/s/1lhx962axovbbom/FedEraser-
Code.zip?dl=0 

ID-29 Pseudocode 

ID-30 github.com/yiliucs/federated-unlearning 

ID-31 Pseudocode 

 

  Data based 

  Modular unlearning 

  Gradient Ascent 

   Teacher-Student 

  Scrubbing Weights 

  
Federated 
Unlearning 
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