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Abstract -- In this paper, a practically usable dual-mode 

control micro-system based on CPLD and reconfigurable 
FPGA is described. FPGA can be dynamically reconfigured 
under the control of CPLD to implement two models, 
Backpropagation neural network model and its training model, 
both of which are respectively directed to two control modes for 
industrial produce. One mode is neural network performed 
automatic control, the other one as human-interfered 
traditional control. That is, only one single FPGA is 
reconfigured with multifunction. This technique can be widely 
applied into other control fields such as the adaptive control in 
different environments, space-ship control, measuring control 
in rough situation, and even production control. 
 
Key Words: Dynamically Reconfigurable, BP Neural Network, 
real-time, dual-mode (human interfered traditional control and 
neural network performed control) 
 

I.  INTRODUCTION 

Although adaptive and automatic control are widely used 
in industries and scientific field, yet their implementation is 
mainly  built on software program in personal or special 
computer which would enhance the cost of production or 
scientific research and increase the weight and complexity of 
the whole controlling system without any doubt. In this paper, 
FPGA-based dynamically reconfigurable technique is 
described to implement BP neural network, based on which 
dual-mode control is also realized in this simplified artificial 
intelligent control system. Due to high-cost and complex 
technique used in special chip for dynamical reconfiguring 
(please see the introduction in Part II of this paper), a kind of 
simplified but practically realizable and real-time 
reconfigurable FPGA-based intelligent system is necessary 
to design, which plays an equivalent role as the realization of 
dynamically reconfigurable computing. For example, 
real-time reconfigurable FPGA-based automatic control 
micro-equipment system is needed in a myriad of 
environments, first through human interfered traditional 
control to train a Bp neural network and secondly to 
implement automatic control under the instruction of 
completed neural network. 

As followed, this improved reconfigurable dual-mode 
control system is controlled by CLPD with an external 
Flash-RAM for storing bit-streams corresponding to 
different function models implemented inside the 
reconfigurable FPGA. All the merits of this system is 
followed as: 

1) Relatively high-speed operation in function model and 
chip-structure reconfiguration;  

2) small-sized storing space and High-speed calculation; 
3) Dual-mode control based on Neural Network so as to 

reduce the labor burden in control procedure; 
4) Controlled by CPLD instead of MCU so as to enhance 

the parallelity and reconfiguration speed of the whole 
system.  

The implementation of this technique involves BP neural 
network model implementation with VHDL, configuring 
data transmission between the micro-system and computer, 
in which we consider a SPRAM-based reconfigurable FPGA: 
Altera FPGA APEX 20k family and CPLD MAX7000 
family. Thus we also choose Quartus II as CAD software for 
design and simulation. 

 

II. PROSPECTIVE  FEASIBILITY ON TECHNIQUE 
Since Xilinx new PR (partial reconfigurable) FPGA 

(XAPP290) is displayed in 2002, it is totally possible to 
apply the kind of FPGA chips in dynamically reconfigurable 
FPGA-based system, when it is available. PR FPGA is 
composed of two logic parts: Fixed logic and reconfigurable 
logic parts. For this matter, we could possibly configure the 
fixed logic part to simulate the function of controller and 
then design the reconfigurable logic part as BP-NN model 
and its training model. When reconfiguration occurs, the 
fixed part can still operate normally, as in [1]. If this chip is 
applied, it is totally possible that the reconfiguring speed 
would be reduced to less than 20ms. 

 

III. FUNCTION IMPLEMENTATION OF 
FPGA-BASED AND CPLD-CONTORLLED SYSTEM 

Firstly, PPS (Passive Parallel Synchronous) configuring 
mode for single FPGA chip is considered in this improved 
micro-system, which allows FPGA to be reconfigured within 
high speed on real time by CPLD, whose performance is 
totally better than that to be controlled by MCU, because 
more pins and logic resources can be utilized by user than 
those of MCU and MCU never ever can operate parallelingly 
like CPLD. Figure 3.1 shows the structure and signal 
connection of PPS mode, as in [2], [3], [4]. After all chips’ 
powering up, CPLD configures or reconfigures FPGA in 
system with Flash-RAM in which configuring bit-streams 
are stored in advance through serial port from PC to CPLD. 
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                          Fig. 3.1.  PPS Configuring Mode 

 Secondly, the specific architecture of the whole system 
and signal connections are shown in Figure 3.2 to explain the 
system’s operation principles: 

In the beginning, all the FPGA configuring files are stored 
in Flash-RAM through the communication between CPLD 
and PC, when signal “wr_en” is set to “1”. And later the 
micro-system can normally work without the aid of 
computer. 
a.    CPLD sets “wr_en” to ‘0’ and receives original data from 

A/D, all of which are obtained from human-interfered 
traditional controlled network. 

b.   Flash-RAM used by CPLD to configure FPGA as BP 
neural network training model with the aid of special 
signals.  

c. After “en_tr” is released to “1”, one group of input data 
is sent to     FPGA. When that “flag_in” is set to “1” is 
detected,  CPLD resets “en_tr” to end data sending. 

d. CPLD then repeats step c till N.N training is finished 
with a large number of groups of original data. 

e. “flag_end” and “empty” signal from CPLD are referred 
as handshake signal and control FPGA to output neural 
network weight values, all of which is to be stored in 
empty space of Flash-RAM through CPLD, when 
“wr_en” is released to “1”. 

f. “int_sig” is to be set to “1”, if weights transmission is 
ended. Then CPLD starts to reconfigure FPGA as BP 
neural network model and clears “wr_en” to “0”. 

g. Next “en_0” is set to “1” by CPLD, which indicates that 
CPLD enables Flash_RAM to send weight values and 
parameters back to FPGA.  

h. Detecting “ flag_0” is set to “1”, CPLD starts sending 
digital controlling values to FPGA, also setting en_1 to 
“1”. Having finished it, “flag_1” is set to “1” by FPGA 
and then FPGA starts automatic or non-human control 
stably through the output controlling vector from itself 
based on completed neural network model when “en_2” 
is set to “1” . 

i. FPGA would repeat step g and h till the state of 
controlled objective is changed by external setting and 
then  the system would restart neural network training in 
the interference of human so as to reduce controlling 
error. 

Note to Figure 3.1.2: 
1) Some control logic circuits connecting A/D with CPLD 

in the block graph above are omitted, since these are not 
the main point of this paper. Also we define “bus_1” to 
transmit both address and data in different times, while 
“bus_2” is referred to send or receive only data.  

2) The parallel configuring data ports of  FPGA can be 
used as common data ports for weights and threshold 
values transmission, after FPGA is successfully 
reconfigured. 

3) Due to the pins fixed on PCB, the signal such as “en_tr” 
and “en_0”, “flag_0”and “flag_in” in different function 
models should share the same pins, when 
reconfiguration occurs.  
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Fig. 3.2 System Architecture  

 

  IV.   BACKPROPAGATION NEURAL NETWORK 
ALGORITHMS IMPLETMENTATION 

The FPGA-based system implements two functions 
respectively, one as operating BP neural network training 
model on line and the other operating BP neural network 
model mentioned above.  

As discussed, Fig. 4.1 shows the structure of this BP 
neural network, including one input layer, one hidden layer 
both with four dots and one output layer with only one dot, as 
in [5]. 
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Fig. 4.1 Bp Architecture 

A.   BP Neural Network Model  
The output functions of LB layer and LC layer are 

respectively expressed as in (1), (2),  
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Here, we define ()f  as Sigmoid function, expressed in (3), 
/(1 exp( ))M N X+ − i                                                   (3) 

N and M both are constant, as in [6]. 

B.   BP Neural Network Training Model 
Based on the thought of back allocation of final error, BP 

neural network can be trained and adjusted through these 
formulas as followed as in [6]: 

a. Give the initial values to , , , irW rjV rT jθ  at 

random. 
b. Start operation with each group of original data 

( 1 2 3 4( , , , )kA a a a a , ), according to the 
following steps. 

kc

S1. Input  and calculate them from LA to LC, 
expressed in (4), (5), 
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S2. Calculate the error between output value jc  

and measuring data , expressed in (6),   kc
(1 ) ( )k

j j j jd c c c= − • • − c

jd

                         (6) 

if considering  M and N to be 1. 
S3. Error back-allocation in LB Layer, expressed 
in (7),  

1
(1 ) ( )r r r rj

j
e b b V

=

= − • • •∑                      (7) 

if considering  M and N to be 1. 
S4. Weights and threshold values ( ,rjV jθ ) 

adjustment between LB layer and LC layer, 
express in (8), (9),  

1rj rj r jV V b dα == + • •                                   (8) 

1j j jdθ θ α == + •         [0 1]α< <               (9) 

if considering  M and N to be 1. 
S5. Weights and threshold values ( , ) 
adjustment between LB layer and LA layer, 
expressed in (10), (11), 

irW rT

ir ir i rW W a eβ= + • •                                     (10) 

r r reT T β= + • 1] [0 β< <                        (11) 
if considering  M and N to be 1.  

c. Repeat the steps until jd is small enough or equal 

to Zero. 
In accord with the bit-length of data in the system, firstly 

we define M= =102.4, N=  and change ‘1’ in 
(6), (7) with 127 and also amplified the range of 

102 /10 82 −1
α  and 

β to the integers between 0 and 127. With these changes 
FPGA can easily operate integer-calculation instead of 
real-number calculation. Next, ROM in the EAB (Embedded 
Block) of FPGA is adopted to store all the discrete value of 
the Sigmoid function mentioned above, which can be 

generated to “*. MIF” files through C or MATLAB language, 
see Fig. 4.2. In such case, only  to input the address  (that is 
the X value of Sigmoid function) of  the embedded ROM, the 
output of ROM can be used as Y value of sigmoid function. 
More important, this way not only saves a lot logic resource 
from the implementation of linearized sigmoid function, but 
also effectively takes the advantage of EAB resource inside 
FPGA. 
Note: 
Quartus II can easily compile “*.MIF” files into configuring 
files for FPGA as the initial values for EAB ROM. That is, 
when FPGA has been reconfigured, its EAB ROM can be 
automatically filled with the initial values stored in the 
“*.MIF” files.  

16

+0
0

0

2

ADDR from 0 to
511 directed to
the X value of
Sigmoid Function
from -511 to -1

1

126

8 bits as unsigned decimal number in
the blank

0

2

ADDR from 512
to 1023
directed to the
X value of
Sigmoid
Function from 0
to 511

1

4

127

24

+2

0

2

0

1

4

127

32

0

2

0

1

4

127

40

0
0

1

4

127

48

1016

0
1

5

127

2
56

0
1

5

127

0

2

+1

64

0

0

1

5

0

3

1008

+3ADDR
0

0

5

0

3

127

+4

0

6

0

1
3

127

+5

0

6

0
0

1

3

127

+6

0

0

0

1

3

127

+7
0

0

1

3

127

6

0

0

1

3

127

1

126

8
0

0

2

4

127

1

126

 
Fig. 4.2   “*. MIF” file’s Format in Quartus II 

 

V.   RESOURCE AND TIMING ANALYSIS OF 
FPGA-BASED FUNCTION IMPLEMENTATION 

A.   Resource Analysis of FPGA  
In this real-time reconfigurable system, 

EP20K200FC484-2XV device (Family APEX 20k) is 
selected and this device includes 8320 logic cells and 10588 
registers which is sufficient to implement BP neural network 
model or its training model. If we use two FPGA chips to 
implement this system, BP neural network model will cost 
about 3092 logic cells and 73% of its embedded memory, 
while its training model will cost 6700 logic cells and 73% of 
its embedded memory. That is, the usage of reconfigurable 
FPGA-based system saves approximately 3700 logic cells, if 
the two models mentioned above would turns into one model 
and it is implemented in only one APEX II chip (it includes 
about 16600 logic cells) or in the other case  this system 
could save exactly one chip of EP20K200FC484-2XV 
device, if the two function models are implemented with two 
FPGA chips. In sum, the practical plan of reconfigurable 
FPGA-based and dual-mode control system takes good use 
of FPGA internal logic cell resource and EAB. The resource 
usage information can be easily informed, if Quartus II is 
chose to design FPGA and CPLD. 

 



 
 

 

B.   Timing analysis on FPGA-reconfiguring Procedure and 
BP Operation 

1) Reconfiguring Procedure 
PPS configuring mode using CPLD is utilized in the 

system mentioned above, which can offer more stable data 
stream than PS (passive serial) mode and thereby reduce the 
error that happens during configuring and reconfiguring 
procedures. In addition, when FPGA is within user-mode, 
the weights and threshold values is to be stored in the 
Flash-ROM and also is to output to FPGA when it is 
reconfigured. Thus the choice of synchronous 
one-byte-output Flash-ROM will be more efficient in the 
system operation than synchronous one-bit-output 
Flash-ROM.  

PPS timing waveform is shown in Figure 5.2.1, according 
to which the time needed by FPGA reconfiguration can be 
estimated, as in [3], [4] and also the time estimation of 
address output and other operation within CPLD, please see 
the formula expressed in (12) and its instruction.  

2 &/2 ( 1) 8POR CFG CF CK DCLK DLCK M E ST T T T T T V T T= + + + + − + +i i             (12) 

PORT (Time for powering up and resetting) takes about 
60~80ms for powering and resetting on inside FPGA; 

30DCLKf MHz= (Maximum 33.3MHz); 

V is defined as  bit volume of configuring file (*.rbf). In 
both BP neural network model and its training model, V is 
equal to 208KB; 

&E ST  (Time for error/status checking) takes about 1 to 
3.4ms; 

2CFG CF CKT T+  costs 61us (See hardware parameters); 

MT , as the cost of CPLD during the reconfiguring procedure, 
is defined as “0”; 
From the analysis above, the minimum value of T has been 
estimated to be 116.7~136.7ms, relatively short time for 
reconfiguration and even shorter than that of PS mode, so 
called real-time reconfiguration. 
Note to the calculation of MT : 
Different from MCU, CPLD can totally work on a myriad of 
tasks with any internal or external interruption, called 
high-speed parallelity. For this matter, CPLD can 
reconfigure FPGA, check the feed-back signal from FPGA 
and operate other function of this system at the same time. 
And thus, MT  is considered to be Zero. That is, 
reconfiguration procedure is free of any other interference 
and interruptions. 
 
2) BP and Its Training Operations 

The general rule for global clock signal definition of 
FPGA is that its frequency should be higher than the 
maximum delay between register and register; otherwise the 
error will happen in the data-transmitting procedure. So 
timing analysis inside FPGA from QuartusII Software is 
shown below: 
a. In BP neural network model, to best test the system, 

standard CLK signal with T=90ns (>81.912ns, the 
maximum register-register delay) is input to FPGA. 
Thus, soft sensing with just one group of data takes 

about 8~12ns.  
b. When FPGA is configured as BP neural network 

training model, the same timing analysis is adopted, and 
therefore CLK signal with T=130 ns (>125ns, the 
maximum register-register delay) is input to FPGA. In 
such case, neural network training with single one group 
of data costs about 16~20ns.  

In sum, the period of standard CLK should be changed 
when reconfiguration occurs in these two various models. In 
our design, the simple method of frequency division is used 
to implement it with VHDL. 

 
Fig. 5.2.1  Reconfiguring Timing  Wave of PPS Mode 

VI.   DUAL-MODE DISCRETE PID CONTROL AND 
ITS APPLICATION 

   Discrete PID control method is wildly used in industrial 
controlling procedure. Now, its implementation counted on 
the reconfigurable FPGA-based system mentioned above is 
displayed in this section. Firstly please see the discrete PID 
model in Figure 6.1, as in [7] and also expressed in formula 
(13) and the expression of the increment of control vector in 
(14), 
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                         Fig. 6.1 Block Graphic of Discrete PID  

1 2 3
1

( ) ( ) ( ) [ ( ) ( 1)]
k

i
u k p e k p e k p e k e k

=

= + + −∑ −     (13) 

( ) ( ) ( 1)u k u k u kΔ = − −                                             (14) 
Deducted from (13) and (14), Formula (15) as the 
mathematic model is utilized to implement PID control based 
on BP neural network, 

1 2 3( ) ( 1) [ ( ) ( 1)] ( ) [ ( ) 2 ( 1) ( 2)]uk uk p ek ek pek p ek ek ek= − + − − + + − − + −   (15) 
   In the implementation of this model, the system controls 
the producing procedure under the human’s interference, 
when working in the first mode of dual-mode control. At the 
same time, according to Formula (15), e(k), e(k-1), e(k-2), 
measurable disturbing parameter and u(k) as five input of BP 
training model are all used to train a BP neural network. 
Once the training procedure has been completed, FPGA 

 



 
 

 

should be reconfigured to establish BP neural network and 
control production automatically, that is the second mode of 
dual-mode control. Of course, if external environment 
influences the controlling error to be amplified, the 
automatically controlling mode can be cancelled 
immediately, so then the micro-system re-operates 
reconfiguration and trains the neural network again. The 
whole procedure is shown with flow-chart in Figure 6.2. 
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Fig. 6.2 Dual-mode Control Procedure 

VII.  CONCLUSIONS 
   In this improved real-time micro-system described above, 
FPGA is reconfigured in system by CPLD which can greatly 
enhance the parallelity of the system and reconfiguring speed 
in the dual-mode control procedure, compared with MCU- 
and FPGA-based real-time reconfigurable system. On the 
other hand, dual-mode control implementation on BP neural 
network is a good way to convert all the controlling 
information into weights and threshold values and stored in 
BP neural network on real time so that the controlled 
network or objective can be adjusted automatically and the 
labor burden could also be largely reduced. Once the external 
disturbing parameter is largely amplified, the neural-network 
training can be restarted again so as to adjust controlling 
precision. Of course, in our future work, a more effective 
neural network model will be design or sought and finally 
realized on this real-time micro-system. For sure, some new 
algorithm of artificial neural network will solve some 
problems in our current design, such as slow-speed 
convergence, partial limited efficiency.     
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