

Real-time Reconfigurable Micro-system Based on FPGA and CPLD For
Dual-mode PID Control Through Backpropagation Neural Network

Zhuo Ruan 1 Yuzhang Han 2 Jianguo Han 3

1..3Dept. of Electrics Eng. Beijing University of Chemical Technology, P.R China
email : maverick_r_j@msn .com hanjg@mail.buct.edu.cn

2 Dept. of Computer Science, Univ. of Vienna, Austria, email: yuzhanghan@hotmail.com

Abstract -- In this paper, a practically usable dual-mode

control micro-system based on CPLD and reconfigurable
FPGA is described. FPGA can be dynamically reconfigured
under the control of CPLD to implement two models,
Backpropagation neural network model and its training model,
both of which are respectively directed to two control modes for
industrial produce. One mode is neural network performed
automatic control, the other one as human-interfered
traditional control. That is, only one single FPGA is
reconfigured with multifunction. This technique can be widely
applied into other control fields such as the adaptive control in
different environments, space-ship control, measuring control
in rough situation, and even production control.

Key Words: Dynamically Reconfigurable, BP Neural Network,
real-time, dual-mode (human interfered traditional control and
neural network performed control)

I. INTRODUCTION

Although adaptive and automatic control are widely used
in industries and scientific field, yet their implementation is
mainly built on software program in personal or special
computer which would enhance the cost of production or
scientific research and increase the weight and complexity of
the whole controlling system without any doubt. In this paper,
FPGA-based dynamically reconfigurable technique is
described to implement BP neural network, based on which
dual-mode control is also realized in this simplified artificial
intelligent control system. Due to high-cost and complex
technique used in special chip for dynamical reconfiguring
(please see the introduction in Part II of this paper), a kind of
simplified but practically realizable and real-time
reconfigurable FPGA-based intelligent system is necessary
to design, which plays an equivalent role as the realization of
dynamically reconfigurable computing. For example,
real-time reconfigurable FPGA-based automatic control
micro-equipment system is needed in a myriad of
environments, first through human interfered traditional
control to train a Bp neural network and secondly to
implement automatic control under the instruction of
completed neural network.

As followed, this improved reconfigurable dual-mode
control system is controlled by CLPD with an external
Flash-RAM for storing bit-streams corresponding to
different function models implemented inside the
reconfigurable FPGA. All the merits of this system is
followed as:

1) Relatively high-speed operation in function model and
chip-structure reconfiguration;

2) small-sized storing space and High-speed calculation;
3) Dual-mode control based on Neural Network so as to

reduce the labor burden in control procedure;
4) Controlled by CPLD instead of MCU so as to enhance

the parallelity and reconfiguration speed of the whole
system.

The implementation of this technique involves BP neural
network model implementation with VHDL, configuring
data transmission between the micro-system and computer,
in which we consider a SPRAM-based reconfigurable FPGA:
Altera FPGA APEX 20k family and CPLD MAX7000
family. Thus we also choose Quartus II as CAD software for
design and simulation.

II. PROSPECTIVE FEASIBILITY ON TECHNIQUE
Since Xilinx new PR (partial reconfigurable) FPGA

(XAPP290) is displayed in 2002, it is totally possible to
apply the kind of FPGA chips in dynamically reconfigurable
FPGA-based system, when it is available. PR FPGA is
composed of two logic parts: Fixed logic and reconfigurable
logic parts. For this matter, we could possibly configure the
fixed logic part to simulate the function of controller and
then design the reconfigurable logic part as BP-NN model
and its training model. When reconfiguration occurs, the
fixed part can still operate normally, as in [1]. If this chip is
applied, it is totally possible that the reconfiguring speed
would be reduced to less than 20ms.

III. FUNCTION IMPLEMENTATION OF
FPGA-BASED AND CPLD-CONTORLLED SYSTEM

Firstly, PPS (Passive Parallel Synchronous) configuring
mode for single FPGA chip is considered in this improved
micro-system, which allows FPGA to be reconfigured within
high speed on real time by CPLD, whose performance is
totally better than that to be controlled by MCU, because
more pins and logic resources can be utilized by user than
those of MCU and MCU never ever can operate parallelingly
like CPLD. Figure 3.1 shows the structure and signal
connection of PPS mode, as in [2], [3], [4]. After all chips’
powering up, CPLD configures or reconfigures FPGA in
system with Flash-RAM in which configuring bit-streams
are stored in advance through serial port from PC to CPLD.

0-7803-9419-4/05/$20.00 ©2005 IEEE

CONFI_DONE

DATA_Config[7:0]
MAX7000

nCONFIG

Flash-RAM

10K

1K

CPLD

nCE0 N.C.nCE

APEX 20k Device

PC

nSTATUS

DATA_in[7:0]

R2
Altera

serial port

W
R
_
E
N

VCC
ADDR VCC

R1

VCC

DCLK

DATA_OUT[7:0]

MSEL1
MSEL0

 Fig. 3.1. PPS Configuring Mode

 Secondly, the specific architecture of the whole system
and signal connections are shown in Figure 3.2 to explain the
system’s operation principles:

In the beginning, all the FPGA configuring files are stored
in Flash-RAM through the communication between CPLD
and PC, when signal “wr_en” is set to “1”. And later the
micro-system can normally work without the aid of
computer.
a. CPLD sets “wr_en” to ‘0’ and receives original data from

A/D, all of which are obtained from human-interfered
traditional controlled network.

b. Flash-RAM used by CPLD to configure FPGA as BP
neural network training model with the aid of special
signals.

c. After “en_tr” is released to “1”, one group of input data
is sent to FPGA. When that “flag_in” is set to “1” is
detected, CPLD resets “en_tr” to end data sending.

d. CPLD then repeats step c till N.N training is finished
with a large number of groups of original data.

e. “flag_end” and “empty” signal from CPLD are referred
as handshake signal and control FPGA to output neural
network weight values, all of which is to be stored in
empty space of Flash-RAM through CPLD, when
“wr_en” is released to “1”.

f. “int_sig” is to be set to “1”, if weights transmission is
ended. Then CPLD starts to reconfigure FPGA as BP
neural network model and clears “wr_en” to “0”.

g. Next “en_0” is set to “1” by CPLD, which indicates that
CPLD enables Flash_RAM to send weight values and
parameters back to FPGA.

h. Detecting “ flag_0” is set to “1”, CPLD starts sending
digital controlling values to FPGA, also setting en_1 to
“1”. Having finished it, “flag_1” is set to “1” by FPGA
and then FPGA starts automatic or non-human control
stably through the output controlling vector from itself
based on completed neural network model when “en_2”
is set to “1” .

i. FPGA would repeat step g and h till the state of
controlled objective is changed by external setting and
then the system would restart neural network training in
the interference of human so as to reduce controlling
error.

Note to Figure 3.1.2:
1) Some control logic circuits connecting A/D with CPLD

in the block graph above are omitted, since these are not
the main point of this paper. Also we define “bus_1” to
transmit both address and data in different times, while
“bus_2” is referred to send or receive only data.

2) The parallel configuring data ports of FPGA can be
used as common data ports for weights and threshold
values transmission, after FPGA is successfully
reconfigured.

3) Due to the pins fixed on PCB, the signal such as “en_tr”
and “en_0”, “flag_0”and “flag_in” in different function
models should share the same pins, when
reconfiguration occurs.

ADDR[0..7]
Serial
port

Enable data input

Input II

(Buffer or I/O)

DATA_IN[7:0]

Configuring Signal[0..3]

FLAG_end/flag_1

en_2ADDR[0..7]/DATA[0..7]

MAX7000

DATA

Input V

D
A
T
A
_
I
N

Input I

CPLD

PC

Input III

DATA[0..7]

FLAG_in/flag_0

Input IV

well_done

A/D Group

INT_sig/flag_2

Configuring
 Data[7:0]

WR_EN

C
o
n
t
r
o
l
l
i
n
g

V
e
c
t
o
r
s

f
o
r

C
o
n
t
r
o
l
l
e
d

O
b
j
e
c
t
i
v
e

DATA

W
E
I
G
H
T
S
_
O
U
T

en_tr/en_0

empty/en_1

BUS_1
Enable

Flash_RAM

CLK

FPGA

DATA[7:0]

Analog signals

APEX 20K

Fig. 3.2 System Architecture

 IV. BACKPROPAGATION NEURAL NETWORK
ALGORITHMS IMPLETMENTATION

The FPGA-based system implements two functions
respectively, one as operating BP neural network training
model on line and the other operating BP neural network
model mentioned above.

As discussed, Fig. 4.1 shows the structure of this BP
neural network, including one input layer, one hidden layer
both with four dots and one output layer with only one dot, as
in [5].

LA(Input Layer)

output

input

input

LB(Middle Layer)

input

LC(Output Layer)

input

Fig. 4.1 Bp Architecture

A. BP Neural Network Model
The output functions of LB layer and LC layer are

respectively expressed as in (1), (2),
4

1
(r ir i

i
b f W a T

=

= • +∑)r

)j

 [r=1,2,3,4] (1)

4

1

(j rj r
r

c f V b θ
=

= • +∑ [j=1] (2)

Here, we define ()f as Sigmoid function, expressed in (3),
/(1 exp())M N X+ − i (3)

N and M both are constant, as in [6].

B. BP Neural Network Training Model
Based on the thought of back allocation of final error, BP

neural network can be trained and adjusted through these
formulas as followed as in [6]:

a. Give the initial values to , , , irW rjV rT jθ at

random.
b. Start operation with each group of original data

(1 2 3 4(, , ,)kA a a a a ,), according to the
following steps.

kc

S1. Input and calculate them from LA to LC,
expressed in (4), (5),

kA

4

1

(r ir i
i

b f W a T
=

= • +∑)r

)j

 [r=1,2,3,4] (4)

4

1

(j rj r
r

c f V b θ
=

= • +∑ [j=1] (5)

S2. Calculate the error between output value jc

and measuring data , expressed in (6), kc
(1) ()k

j j j jd c c c= − • • − c

jd

 (6)

if considering M and N to be 1.
S3. Error back-allocation in LB Layer, expressed
in (7),

1
(1) ()r r r rj

j
e b b V

=

= − • • •∑ (7)

if considering M and N to be 1.
S4. Weights and threshold values (,rjV jθ)

adjustment between LB layer and LC layer,
express in (8), (9),

1rj rj r jV V b dα == + • • (8)

1j j jdθ θ α == + • [0 1]α< < (9)

if considering M and N to be 1.
S5. Weights and threshold values (,)
adjustment between LB layer and LA layer,
expressed in (10), (11),

irW rT

ir ir i rW W a eβ= + • • (10)

r r reT T β= + • 1] [0 β< < (11)
if considering M and N to be 1.

c. Repeat the steps until jd is small enough or equal

to Zero.
In accord with the bit-length of data in the system, firstly

we define M= =102.4, N= and change ‘1’ in
(6), (7) with 127 and also amplified the range of

102 /10 82 −1
α and

β to the integers between 0 and 127. With these changes
FPGA can easily operate integer-calculation instead of
real-number calculation. Next, ROM in the EAB (Embedded
Block) of FPGA is adopted to store all the discrete value of
the Sigmoid function mentioned above, which can be

generated to “*. MIF” files through C or MATLAB language,
see Fig. 4.2. In such case, only to input the address (that is
the X value of Sigmoid function) of the embedded ROM, the
output of ROM can be used as Y value of sigmoid function.
More important, this way not only saves a lot logic resource
from the implementation of linearized sigmoid function, but
also effectively takes the advantage of EAB resource inside
FPGA.
Note:
Quartus II can easily compile “*.MIF” files into configuring
files for FPGA as the initial values for EAB ROM. That is,
when FPGA has been reconfigured, its EAB ROM can be
automatically filled with the initial values stored in the
“*.MIF” files.

16

+0
0

0

2

ADDR from 0 to
511 directed to
the X value of
Sigmoid Function
from -511 to -1

1

126

8 bits as unsigned decimal number in
the blank

0

2

ADDR from 512
to 1023
directed to the
X value of
Sigmoid
Function from 0
to 511

1

4

127

24

+2

0

2

0

1

4

127

32

0

2

0

1

4

127

40

0
0

1

4

127

48

1016

0
1

5

127

2
56

0
1

5

127

0

2

+1

64

0

0

1

5

0

3

1008

+3ADDR
0

0

5

0

3

127

+4

0

6

0

1
3

127

+5

0

6

0
0

1

3

127

+6

0

0

0

1

3

127

+7
0

0

1

3

127

6

0

0

1

3

127

1

126

8
0

0

2

4

127

1

126

Fig. 4.2 “*. MIF” file’s Format in Quartus II

V. RESOURCE AND TIMING ANALYSIS OF
FPGA-BASED FUNCTION IMPLEMENTATION

A. Resource Analysis of FPGA
In this real-time reconfigurable system,

EP20K200FC484-2XV device (Family APEX 20k) is
selected and this device includes 8320 logic cells and 10588
registers which is sufficient to implement BP neural network
model or its training model. If we use two FPGA chips to
implement this system, BP neural network model will cost
about 3092 logic cells and 73% of its embedded memory,
while its training model will cost 6700 logic cells and 73% of
its embedded memory. That is, the usage of reconfigurable
FPGA-based system saves approximately 3700 logic cells, if
the two models mentioned above would turns into one model
and it is implemented in only one APEX II chip (it includes
about 16600 logic cells) or in the other case this system
could save exactly one chip of EP20K200FC484-2XV
device, if the two function models are implemented with two
FPGA chips. In sum, the practical plan of reconfigurable
FPGA-based and dual-mode control system takes good use
of FPGA internal logic cell resource and EAB. The resource
usage information can be easily informed, if Quartus II is
chose to design FPGA and CPLD.

B. Timing analysis on FPGA-reconfiguring Procedure and
BP Operation

1) Reconfiguring Procedure
PPS configuring mode using CPLD is utilized in the

system mentioned above, which can offer more stable data
stream than PS (passive serial) mode and thereby reduce the
error that happens during configuring and reconfiguring
procedures. In addition, when FPGA is within user-mode,
the weights and threshold values is to be stored in the
Flash-ROM and also is to output to FPGA when it is
reconfigured. Thus the choice of synchronous
one-byte-output Flash-ROM will be more efficient in the
system operation than synchronous one-bit-output
Flash-ROM.

PPS timing waveform is shown in Figure 5.2.1, according
to which the time needed by FPGA reconfiguration can be
estimated, as in [3], [4] and also the time estimation of
address output and other operation within CPLD, please see
the formula expressed in (12) and its instruction.

2 &/2 (1) 8POR CFG CF CK DCLK DLCK M E ST T T T T T V T T= + + + + − + +i i (12)

PORT (Time for powering up and resetting) takes about
60~80ms for powering and resetting on inside FPGA;

30DCLKf MHz= (Maximum 33.3MHz);

V is defined as bit volume of configuring file (*.rbf). In
both BP neural network model and its training model, V is
equal to 208KB;

&E ST (Time for error/status checking) takes about 1 to
3.4ms;

2CFG CF CKT T+ costs 61us (See hardware parameters);

MT , as the cost of CPLD during the reconfiguring procedure,
is defined as “0”;
From the analysis above, the minimum value of T has been
estimated to be 116.7~136.7ms, relatively short time for
reconfiguration and even shorter than that of PS mode, so
called real-time reconfiguration.
Note to the calculation of MT :
Different from MCU, CPLD can totally work on a myriad of
tasks with any internal or external interruption, called
high-speed parallelity. For this matter, CPLD can
reconfigure FPGA, check the feed-back signal from FPGA
and operate other function of this system at the same time.
And thus, MT is considered to be Zero. That is,
reconfiguration procedure is free of any other interference
and interruptions.

2) BP and Its Training Operations

The general rule for global clock signal definition of
FPGA is that its frequency should be higher than the
maximum delay between register and register; otherwise the
error will happen in the data-transmitting procedure. So
timing analysis inside FPGA from QuartusII Software is
shown below:
a. In BP neural network model, to best test the system,

standard CLK signal with T=90ns (>81.912ns, the
maximum register-register delay) is input to FPGA.
Thus, soft sensing with just one group of data takes

about 8~12ns.
b. When FPGA is configured as BP neural network

training model, the same timing analysis is adopted, and
therefore CLK signal with T=130 ns (>125ns, the
maximum register-register delay) is input to FPGA. In
such case, neural network training with single one group
of data costs about 16~20ns.

In sum, the period of standard CLK should be changed
when reconfiguration occurs in these two various models. In
our design, the simple method of frequency division is used
to implement it with VHDL.

Fig. 5.2.1 Reconfiguring Timing Wave of PPS Mode

VI. DUAL-MODE DISCRETE PID CONTROL AND
ITS APPLICATION

 Discrete PID control method is wildly used in industrial
controlling procedure. Now, its implementation counted on
the reconfigurable FPGA-based system mentioned above is
displayed in this section. Firstly please see the discrete PID
model in Figure 6.1, as in [7] and also expressed in formula
(13) and the expression of the increment of control vector in
(14),

i=1

X(k)
K Y(k)

P3

Y(k)

P2

P1

E(k)

E(k)
u(k)

Controlled
Objective

 Fig. 6.1 Block Graphic of Discrete PID

1 2 3
1

() () () [() (1)]
k

i
u k p e k p e k p e k e k

=

= + + −∑ − (13)

() () (1)u k u k u kΔ = − − (14)
Deducted from (13) and (14), Formula (15) as the
mathematic model is utilized to implement PID control based
on BP neural network,

1 2 3() (1) [() (1)] () [() 2 (1) (2)]uk uk p ek ek pek p ek ek ek= − + − − + + − − + − (15)
 In the implementation of this model, the system controls
the producing procedure under the human’s interference,
when working in the first mode of dual-mode control. At the
same time, according to Formula (15), e(k), e(k-1), e(k-2),
measurable disturbing parameter and u(k) as five input of BP
training model are all used to train a BP neural network.
Once the training procedure has been completed, FPGA

should be reconfigured to establish BP neural network and
control production automatically, that is the second mode of
dual-mode control. Of course, if external environment
influences the controlling error to be amplified, the
automatically controlling mode can be cancelled
immediately, so then the micro-system re-operates
reconfiguration and trains the neural network again. The
whole procedure is shown with flow-chart in Figure 6.2.

EN1
Au
to
ma
ti
ca
l
Co
nt
ro
l

Th
ro
ug
h
Bp
 N
eu
ra
l

Ne
tw
or
k

Begin

Tr
ad
it
io
na
l
Co
nt
ro
l

Un
de
r
th
e
Hu
ma
n

Ad
ju
sm
en
t

Co
nt
ro
ll
ed
 O
bj
ec
ti
ve
 o
r
Pr
od
uc
in
g
Ne
tw
or
k

Five Digital Values Output From Controlling system:
e(k),e(k-1),e(k-2),Disterbing Parameter,u(k)

SWITCH

SWITCH

Controlling
Vector U(k)
output

EN2

Di
gi
ta
l
Va
lu
e
ou
tp
utDisen

No

CPLD Reconfigures FPGA
In System for BP Neural
Network Model

CPLD Configures FPGA In
System for BP Neural
Network Training

Disen

EN1

Di
gi
ta
l
Va
lu
e
ou
tp
ut

Yes

Training End?

Digital Values :
e(k),e(k-1),e(k-2),Disterbing
Parameter

Fig. 6.2 Dual-mode Control Procedure

VII. CONCLUSIONS
 In this improved real-time micro-system described above,
FPGA is reconfigured in system by CPLD which can greatly
enhance the parallelity of the system and reconfiguring speed
in the dual-mode control procedure, compared with MCU-
and FPGA-based real-time reconfigurable system. On the
other hand, dual-mode control implementation on BP neural
network is a good way to convert all the controlling
information into weights and threshold values and stored in
BP neural network on real time so that the controlled
network or objective can be adjusted automatically and the
labor burden could also be largely reduced. Once the external
disturbing parameter is largely amplified, the neural-network
training can be restarted again so as to adjust controlling
precision. Of course, in our future work, a more effective
neural network model will be design or sought and finally
realized on this real-time micro-system. For sure, some new
algorithm of artificial neural network will solve some
problems in our current design, such as slow-speed
convergence, partial limited efficiency.

VIII. REFERENCES
[1] XILINX Corp., “Partial Reconfiguration--New for 4.2i”, 2002

[2] Altera Corp. “APEX 10K Programmable logic Device Family Data

Sheet”, 2004

[3] Altera Corp. “Configuration Handbook”, 2004

[4] Altera Corp. “Configuration Element Data Sheet” , 2000

[5] Michael. A. Abibe, “The Handbook of Brian Theory and

Neural-Network, Page 144”, 2003

[6] Zengliang liu, “Fuzzy Logic and Neural Network”. B.U.A.A Press,

1996

[7] Guofang Zhang, Shusheng Gu, Mingshun Wang, “Computer-based

control system”, Press of Metallurgy Industry, 2004

[8] Paul Hasler and Jeff Dugger, “analog VLSI Implementations of Neural

Networks”, The Handbook of Brain Theory and Neural Network, 2003

[9] Dan Hammerstrom, “Digital VLSI for Neural Networks”, The

Handbook of Brain Theory and Neural Network, 2003

	I. INTRODUCTION
	II. PROSPECTIVE FEASIBILITY ON TECHNIQUE
	III. FUNCTION IMPLEMENTATION OF FPGA-BASED AND CPLD-CONTORLLED SYSTEM
	 IV. BACKPROPAGATION NEURAL NETWORK ALGORITHMS IMPLETMENTATION
	A. BP Neural Network Model
	B. BP Neural Network Training Model
	V. RESOURCE AND TIMING ANALYSIS OF FPGA-BASED FUNCTION IMPLEMENTATION
	A. Resource Analysis of FPGA
	B. Timing analysis on FPGA-reconfiguring Procedure and BP Operation
	VI. DUAL-MODE DISCRETE PID CONTROL AND ITS APPLICATION
	VII. CONCLUSIONS
	VIII. REFERENCES

