Please use this identifier to cite or link to this item: http://bibdigital.epn.edu.ec/handle/15000/21306
Title: Estudio comparativo de los algoritmos de filtrado adaptativo (lms,nlms,rls) para la eliminación del ruido audible externo en tiempo real
Authors: Zapata Herrera, Paulo Andrés
Keywords: ELECTRÓNICA
ALGORITMOS ADAPTATIVOS
RUIDO
Issue Date: 12-May-2020
Publisher: Quito, 2020.
Citation: Zapata Herrera, P. A. (2020). Estudio comparativo de los algoritmos de filtrado adaptativo (lms,nlms,rls) para la eliminación del ruido audible externo en tiempo real. 66 hojas. Quito : EPN.
Abstract: Adaptive filtering is an algorithm that is applied to a signal of interest contaminated by another undesirable signal and whose purpose is to recover said signal of interest, eliminating that contaminating signal. This is achieved through the use of digital filters whose coefficients or weights are automatically reset by means of Adaptation Algorithms that achieve that in each iteration the error existing between the original signal and the recovered signal is reduced more and more. This work shows a study of the Least Mean Square (LMS), Normalized Least Mean Square (NLMS) and Recursive Least Square (RLS) Adaptive Algorithms in order to select the best of these for real-time application. Also a study of the mathematical formulations of these algorithms that allow their simulation both in time are analyzed Deferred as in real time. After this analysis and implementation, it was determined that the best of the algorithms, in terms of computational load and total error of the samples, is the NLMS. Consequently, it was implemented in real time by Simulink. Although these algorithms can be used in countless applications, the application implemented in this work has to do with the case of Disc Jockeys (DJ) located in the noisy atmosphere of a party, where this DJ tries to listen in his headphones only the next song to be played, eliminating that noisy signal.
Description: El filtrado adaptativo es un algoritmo que se aplica a una señal de interés contaminada por otra señal indeseable y cuyo fin es recuperar dicha señal de interés, eliminando aquella señal contaminante. Esto se logra mediante el uso de filtros digitales cuyos coeficientes o pesos son reajustados automáticamente mediante Algoritmos de Adaptación que logran que en cada iteración se reduzca cada vez más el error existente entre la señal original y la señal recuperada. El presente trabajo muestra un estudio de los Algoritmos Adaptativos Least Mean Square (LMS), Normalized Least Mean Square (NLMS) y Recursive Least Square (RLS) con el fin de seleccionar al mejor de estos para su aplicación en tiempo real. Además, se realiza un estudio de las formulaciones matemáticas de dichos algoritmos que permita su simulación tanto en tiempo diferido como en tiempo real. Luego de este análisis e implementación, se determinó que el mejor de los algoritmos, en términos de carga computacional y error total de las muestras, es el NLMS. En consecuencia, se procedió a su implementación en tiempo real haciendo en Simulink. Si bien estos algoritmos pueden ser empleados en un sinnúmero de aplicaciones, la aplicación implementada en este trabajo, tiene que ver con el caso de los Disc Jockeys (DJ) situado dentro del ambiente ruidoso de una fiesta, donde este DJ trata de escuchar en sus audífonos únicamente la siguiente canción a reproducir, eliminando dicha señal ruidosa.
URI: http://bibdigital.epn.edu.ec/handle/15000/21306
Appears in Collections:Tesis Electrónica y Telecomunicaciones (IET)

Files in This Item:
File Description SizeFormat 
CD 10824.pdf1,82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.