ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ACTUALIZACIÓN DE LAS RESERVAS EN BASE A LOS NUEVOS FACTORES DE RECOBRO DEL CAMPO SHUSHUFINDI

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIEROS EN PETRÓLEOS

JOSÉ RUBÉN ENRÍQUEZ PABÓN MARLON RENE FEIJÓO LOAYZA

DIRECTOR: ING. GERARDO BARROS. Msc

Quito, Febrero 2008

DECLARACIÓN

Nosotros, José Rubén Enríquez Pabón y Marlon Rene Feijóo Loayza, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por normatividad institucional vigente.

José Rubén Enríquez Pabón Marlon Rene Feijóo Loayza

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Jose Ruben Enriquez Pabor
y Marlon Rene Feijóo Loayza, bajo mi supervisión.

Ing. Gerardo Barros DIRECTOR DE PROYECTO

AGRADECIMIENTO.

A todos los Ingenieros que conforman el Departamento de Petróleos de la Escuela Politécnica Nacional, por sus conocimientos impartidos durante estos años.

Al Ing. Gerardo Barros por su excelente dirección en el desarrollo este proyecto de titulación.

A PETROPRODUCCIÓN, a todo el personal de los Departamentos de Yacimientos y Archivo Técnico, por su colaboración para que el presente proyecto se lleve a cabo.

A los Ingenieros Jorge Erazo, Edison Herrera y de manera especial a los Ingenieros Carlos Verdesoto y Miguel Ángel Orozco, por compartir su tiempo y conocimientos para la culminación de este proyecto.

A mi familia por el apoyo brindado a lo largo de estos años.

A todos mis amigos que de una u otra manera contribuyeron a la realización de este proyecto.

DEDICATORIA

A mi madre

José Rubén

DEDICATORIA

A mi Madre Betty, a mi Padre Manrique, a mis Hermanos Javier y Fabián y a mi Hermana Cristina; quienes han estado muy cerca aún estando lejos.

Marlon Feijóo

CONTENIDO GENERAL

CAPÍTULO 1

	1
1.1. DESCRIPCIÓN DEL CAMPO	1
1.1.1. ANTECEDENTES	
1.1.2. UBICACIÓN	
1.1.2.1. Coordenadas Geográficas	
1.1.2.2. Coordenadas UTM	
1.2. GEOLOGÍA	_
1.2.1. ESTRUCTURAL	
1.2.2. ESTROCTURAL	
1.2.2.1. Formación Tena	
1.2.2.1.1. Basal Tena	
1.2.2.2. Formación Napo	
1.2.2.2.1. Areniscas "U"	
1.2.2.2.1.1. U superior – G2	
1.2.2.2.1.2. U inferior	
1.2.2.2.2. Areniscas "T"	
1.2.2.2.2.1. T superior	
1.2.2.2.2. T inferior	
1.2.3. TOPES Y BASES	12
DATOS DE PRODUCCIÓN, PARÁMETROS DE FLUIDOS Y PETROFÍSICOS P	ARA LA
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI 2.1. DATOS DE PRODUCCIÓN DEL CAMPO SHUSHIFINDI	CAMPO 13 131
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 13
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 131313
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 13 13 15
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 13 15 17
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 13 15 17 19
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 13 15 17 19 21
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO 13 15 15 17 19 21
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO131517192121
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315171921212223
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315171921212223
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315171921212323
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO131517192121222325
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO13151719212123232525
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO13151719212223252529
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO13151921222325252929
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315192121232525252930
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315172122232525293031
CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL SHUSHUFINDI	CAMPO1315172122232525293031

CAPÍTULO 3

DETERMINACIÓN ACTUALIZACIÓN RESERVAS	DE	LOS	FACTOR	ES I	DE I	RECOBF	RO Y
3.1. MECANISMO							
3.1.1. PRESIÓ 3.1.2. DESPLA	N DE LOS YA ZAMIENTO [DE FLUIDOS	S S EN EL CAI	MPO SHUS	 SHIFINDI		51 55
3.2. CÁLCULO D 3.2.1. RESER\							
	ervas Probad						
	ervas No prol						
	Reservas Pro						
	Reservas Po						
3.2.1.3. Res	ervas Reman	entes					58
3.2.2. CÁLCUL							
3.2.2.1 MET 3.2.3. CÁLCUL	ODO VOLUM	IETRICO					60
	tor de recobro						
	tor de recobro						
3.2.4. ESTIMA							
YACIMIENTOS							
ANÁLISIS COMP. DETERMINACIÓN PRODUCCIÓN							
1991 4.1.1.2. SIM MODELLING 4.1.1.3. SIM 4.1.2. COMPAI	SÍNTESIS HIS IULACIÓN M MULACIÓN I G GROUP LT ULACIÓN MA RACIÓN DE I	STÓRICA DI ATEMÁTICA MATEMÁTIC D) - 1998 ATEMÁTICA RESULTADO	E LA EVALUA: SCIENTIFICA: PETRO	JACIÓN DE FIC SOFTV DPRODUCO 2004	EL FACTOI WARE INT CIÓN – (R DE RE ERCOMI CMG (C	COBRO 71 P: SSI -
4.2. PROYECCIO	NEȘ DE PRO	DDUCCIÓN	DE PETRÓ	LEO			76
4.2.1. PROYE(
4.2.2. PROYE(4.2.3. PROYE(
4.3. DECLINACION AGUA (BSW)							
CAPÍTULO 5							
CONCLUSIONES Y	RECOMEND	ACIONES					80
5.1. CONLUSION	ES						80
5.2. RECOMEND	ACIONES						80
REFERENCIAS BIB	LIOGRÁFIC	AS					83
ABREVIATURAS							85
ANEXOS							86

ÍNDICE DE TABLAS

CAPÍTULO 1	
Tabla 1.1: Coordenadas UTM	3
Tabla 1.2: Espesores totales de reservorios	11
Tabla 1.3: Parámetros principales Campo Shushufindi	11
Tabla 1.4: Topes y Bases	12
CAPÍTULO 2	
Tabla 2.1: Producción histórica anual de fluidos en el campo Shushufindi-Aguarico	14
Tabla 2.2: Producción acumulada de petróleo y agua en Shushufindi, a Nov - 2007	15
Tabla 2.3: Historia de producción de fluidos del yacimiento BT	16
Tabla 2.4: Producción acumulada de petróleo y agua BT. Nov – 2007	16
Tabla 2.5: Producción histórica de fluidos del yacimiento U	17
Tabla 2.6: Producción acumulada de petróleo y agua U. Nov – 2007	18
Tabla 2.7: Historia de producción de la arena T	19
Tabla 2.8: Producción acumulada de petróleo y agua T, Nov – 2007	20
Tabla 2.9: Estado actual de los pozos	21
Tabla 2.10: Producción por Estaciones	22
Tabla 2.11: Producción por Levantamiento Artificial	22
Tabla 2.12: Análisis PVT disponibles Campo Shushufindi Aguarico	23
Tabla 2.13: Propiedades Físicas de los Fluidos del Campo Shushufindi	24
Tabla 2.14: Resultado promedios de las zonas de pago del Campo Shushufindi	50
CAPÍTULO 3	
Tabla 3.1: Porcentaje de recuperación por mecanismo de desplazamiento	532
Tabla 3.2: Historial de presiones de los yacimientos U y T	53
Tabla 3.3: Estimación de reservas de petróleo crudo Campo Shushufindi al 31 de de 2006	
Tabla 3.4: Contactos agua-petróleo de los yacimientos U y T	61
Tabla 3.5: Resultados de la planimetría a los yacimientos U y T	62
Tabla 3.6: Cálculo de área de los yacimientos U y T	62
Tabla 3.7: Área de los yacimientos U y T	62
Tabla 3.8: Pozos del yacimiento Basal Tena	63
Tabla 3.9: Cálculo del área del yacimiento BT	64
Tabla 3.10: Volumen de petróleo original in situ de los yacimientos BT, U y T	64
Tabla 3.11: Parámetros por reservorio para el cálculo del factor de recobro - Ecuación de	ARPS 66
Tabla 3.12: Valores del Factor de Recobro - Ecuación de ARPS	66
Tabla 3.13: Valores del Factor de Recobro - Curvas de Declinación	70
Tabla 3 14: Factor de Recobro nor reservorio para el Campo Shushufind	70

Tabla 3.15: Reservas Probadas y Remanentes actuales	70
CAPÍTULO 4	
Tabla 4.1: Diferentes valores de Factor de Recobro	71
Tabla 4.1: Porosidad de los yacimientos U y T, SSI-1991	72
Tabla 4.2: Resultados de POES y FR - SSI 1991	73
Tabla 4.3: Petróleo original in situ PPR-CMG-1998	73
Tabla 4.4: Factores de Recobro calculados por CORELAB-2004	74
Tabla 4.5: Factores de Recobro calculados y oficiales	74
Tabla 4.6: Proyección estimada a 20 años BT	77
Tabla 4.7: Proyección estimada a 20 años U	77
Tabla 4.8: Proyección estimada a 20 años T	78

ÍNDICE DE FIGURAS

CAPÍTULO 1	
Figura 1.1: Ubicación del Campo Shushufindi	4
Figura 1.2: Columna Estratigráfica del Campo Shushufindi	7
CAPÍTULO 2	
Figura 2.1: Historial de Producción Campo Shushufindi Aguarico	
Figura 2.2: Historial de Producción yacimiento BT	16
Figura 2.3: Historial de Producción yacimiento U	18
Figura 2.4: Historial de Producción yacimiento T	20
Figura 2.5: Menú Input/Output	36
Figura 2.6: Load ASCII file	37
Figura 2.7: ASCII Read	38
Figura 2.8: Triple Combo	38
Figura 2.9: Log Plot Format	39
Figura 2.10: Log Plot Format – Shading	40
Figura 2.11: Edit Zone Tops	40
Figura 2.12: Set Tops	41
Figura 2.13: Interval Loader	41
Figura 2.14: Interval Loader Plot	42
Figura 2.15: Calculate Temperature Gradient	43
Figura 2.16: Menu Interpretation	43
Figura 2.17: Clay Volume Analysis	44
Figura 2.17.1: Clay Volume Analysis	45
Figura 2.18: Porosity and Water Saturation Analysis	46
Figura 2.18.1: Porosity Water Saturation Plot	47
Figura 2.19: Porosity Water Saturation Plot	48
Figura 2.20: Cutoff Parameters	48
Figura 2.21: Cutoff Plot	49
Figura 2.21: Cutoff Results	50
CAPÍTULO 3	
Figura 3.1: Declinación de presión de los yacimientos U y T	53
Figura 3.2: Presión actual del yacimiento U	54
Figura 3.3: Presión actual del yacimiento T	54
Figura 3.4: Curva de Comportamiento de Producción BT	68
Figura 3.5: Curva de Comportamiento de Producción U	69
Figura 3.6: Curva de Comportamiento de Producción T	69

CAPÍTULO 4	
Figura 4.1: Proyección de Producción a 20 años BT	76
Figura 4.2: Proyección de Producción a 20 años U	77
Figura 4.3: Proyección de Producción a 20 años T	78

ÍNDICE DE ANEXOS

CAPÍTULO 1	
Anexo 1.1: Topes y Bases del Campo Shushufindi Aguarico	88
CAPÍTULO 2	
Anexo 2.1: Pozos en producción Campo Shushufindi Aguarico	92
Anexo 2.1.1: Estado actual de los Pozos	
Anexo 2.1.2: Pozos en producción por Estaciones	
Anexo 2.1.3: Pozos cerrados por Estaciones	97
Anexo 2.1.4: Producción por meses a Nov-2007	98
Anexo 2.2: Ubicación de Pozos y Estaciones de Producción del Campo Shushufindi A	
Anexo 2.2.1: Mapa Vial del Campo Shushufindi Aguarico	
Anexo 2.3: Análisis PVT para el Campo Shushufindi	
Anexo 2.3.1: Resultados de BUILDUP para el campo Shushufindi Aguarico	107
Anexo 2.4: Valores promedios de algunas características del crudo del Campo Aguarico.	Shushufindi
Anexo 2.4.1: Valores promedios de análisis físico químico del agua de formacio Shushufindi Aguarico	
Anexo 2.5: Pruebas iniciales de producción, intervalos disparados y resultados del últil	mo W.O.118
Anexo 2.5.1: Pruebas iniciales de producción, intervalos disparados y resultados del	
Anexo 2.6: Cálculo de Rw a partir de la salinidad y temperatura. GEN -9	
Anexo 2.7: Rmf, Temperaturas, Bit Size y Salinidades por pozo	138
Anexo 2.8: Resultados de las reevaluaciones petrofísicas por pozo. (IP)	140
CAPÍTULO 3	
Anexo 3.1: Mapa Estructural en profundidad de U inferior	145
Anexo 3.2: Mapa Estructural en profundidad de T inferior.	146
Anexo 3.3: Factores para 1 del Planímetro en las diferentes escalas	147
CAPÍTULO 4	
Anexo 4.1: Proyección de Producción de Petróleo y agua	149
Anava 12: Provecciones de Producción de Petróleo de los diferentes Estudios	150

RESUMEN

En el proyecto de titulación: "ACTUALIZACIÓN DE LAS RESERVAS EN BASE A LOS NUEVOS FACTORES DE RECOBRO DEL CAMPO SHUSHUFINDI" se ha analizado varios aspectos del área de reservorios, así:

En el Capítulo 1 se detalla la ubicación geográfica, descripción geológica, estructura y estratigrafía de los yacimientos y se determina los topes y bases de los reservorios de interés.

En el Capítulo 2 se realiza la caracterización de los reservorios BT, U y T considerando las propiedades de los fluidos obtenidos por medio de análisis PVT, historiales de producción, estado actual del campo y las propiedades de la roca se obtuvieron de datos de núcleos y mediante la re-evaluación de registros eléctricos de cada pozo, para lo cual se utilizó el programa Interactive Petrophysics TM(IP).

En el Capítulo 3 se determina el mecanismo de desplazamiento de los fluidos, historial de presiones, el cálculo del petróleo original in situ utilizando los resultados de la planimetría y los parámetros obtenidos anteriormente. Para la actualización de las reservas se determinó un nuevo valor de factor de recobro, mediante el método volumétrico y curvas de declinación por ser considerados los métodos más precisos y confiables.

Para determinar la veracidad de los resultados, en el Capítulo 4 se realiza un análisis comparativo con los resultados obtenidos en la última actualización de reservas de PETROPRODUCCIÓN y se determina la futura producción de petróleo.

Finalmente en el Capítulo 5 se presentan las conclusiones y recomendaciones del proyecto.

PRESENTACIÓN

El descubrimiento de yacimientos petrolíferos en el Oriente ecuatoriano provocó diferentes cambios políticos y económicos a nivel nacional, desde entonces gran parte de la economía y desarrollo del país se fundamenta en la explotación de petróleo y en las reservas descubiertas.

Este estudio tiene por objeto la actualización de las reservas del campo Shushufindi Aguarico, la estructura más grande descubierta en el Ecuador, para lo cual se analiza toda la información disponible con el propósito fundamental de pronosticar el comportamiento futuro de los yacimientos BT, U y T a fin de maximizar la recuperación de petróleo desde el punto de vista técnico.

La actualización de las reservas de petróleo es muy importantes para el país por cuanto involucra el control de la producción de los campos, la disponibilidad de reservas y su variación en relación a la producción obtenida; además, permite planificar las estrategias para el transporte del petróleo a través de los oleoductos secundarios y principales y establecer estrategias de explotación del crudo a corto, mediano y largo plazo.

El comportamiento de la producción del campo Shushufindi Aguarico, no es únicamente el efecto de los yacimientos, sino del accionar de toda una empresa.

Es por eso que la Empresa Estatal de Exploración y producción de Petróleos del Ecuador, PETROPRODUCCIÓN, tiene como misión realizar la exploración y explotación de los hidrocarburos de manera sustentable, en armonía con los recursos socio-ambientales, para contribuir al desarrollo económico y al progreso social del Ecuador.

CAPÍTULO 1

DESCRIPCIÓN GEOLÓGICA DEL CAMPO SHUSHUFINDI

1.1. DESCRIPCIÓN DEL CAMPO

1.1.1. ANTECEDENTES

El campo fue descubierto por el consorcio Texaco-Gulf en 1969 con el pozo exploratorio Shushufindi-1, cuya perforación arrancó el 4 de diciembre de 1968, alcanzó una profundidad de 9772 pies, y fue completado oficialmente en enero de 1969. En abril de ese mismo año se completó el pozo exploratorio Aguarico-1.

Esta área explorada desde los años 60, inicio la perforación de pozos de desarrollo en febrero de 1972, la producción oficial del campo arrancó en agosto de 1972, alcanzando su pico en agosto de 1986 con un promedio diario para ese mes de 126.400 barriles de petróleo.¹

Más tarde se comprobó que los yacimientos de los campos Shushufindi y Aguarico son continuos, es decir conforman una misma estructura.

En la fase de desarrollo inicial se calculó que el Petróleo Original en sitio era aproximadamente de 3.500 millones de barriles de petróleo. Las reservas originales del campo se calcularon en 1.589,25 millones de barriles de petróleo.²

Shushufindi Aguarico es la estructura más grande descubierta en el Ecuador, y en la actualidad constituye la reserva remanente de crudo mediano (29 ºAPI) más importante para el país.³

¹ Baby, Patrice. Rivadeneira, Marco. La Cuenca Oriente: Geología y Petróleo. Oct. 2004.

² Corelab, Reporte Final. Estudio de Simulación de Reservorios Campo Shushufindi Aguarico. Feb.2004.

³ Petroproducción. Subgerencia de Operaciones. **Diagnóstico de Producción Área Shushufindi**. Dic. 2006.

El promedio de las presiones iniciales de U y T fue de 3.867 psi y 4.050 psi respectivamente, reportándose a lo largo de los años un descenso prácticamente estable de 60 psi por año.

Los dos yacimientos son yacimientos subsaturados y tienen empuje lateral de agua.

En noviembre de 1984, se implementó un proyecto de recuperación secundaria mediante inyección de agua a los yacimientos U y T con 11 pozos inyectores ubicados en la periferia Oeste del campo, a fin de mantener la presión e incrementar la recuperación final de petróleo.

La inyección total a los dos yacimientos fue de 267'471.224 Bls de agua de los cuales 62'208.277 Bls ingresaron a la arena U y 205'263.444 Bls a la arena T. ⁴

El proyecto de inyección de agua tuvo un efecto pequeño en el mantenimiento de presión, las tasas de producción de fluidos se incrementan sin que la presión disminuya visiblemente; demostrando con esto la acción efectiva y dinámica de los acuíferos y el insignificante efecto de la inyección de agua, por esta razón en 1999 se suspendió la inyección de agua y así ha permanecido desde entonces.

Este campo ha entrado en su etapa de madurez, tras producir como un reloj perfectamente engranado sobre los 100 mil barriles diarios hasta Abril del año 1994.

En Diciembre del 2006 la producción acumulada de petróleo fue de 17'854.393,91 BPPD y la producción promedio diaria hasta el 31 de Octubre del 2007 fue de 44.426 BPPD con 73 pozos activos. ⁵

En la actualidad este campo plantea dos grandes retos, determinar el régimen óptimo de producción en su etapa de depletación final y controlar la producción de

⁵ Petroproducción. (**AS-400**).

⁴ Petroproducción. Ochoa, José. **Estudio Integral de Yac. del Campo Shushufindi Aguarico**. Agosto 2001

3

agua que en los últimos años se ha incrementado, dificultando los procesos de

producción, tanto en las instalaciones, como en los trabajos de operación, debido

a la corrosión de las líneas de flujo, obstrucción por depositación de escala,

incremento en el consumo de químicos, mayor demanda de energía eléctrica y

problemas con el medio ambiente.

1.1.2. UBICACIÓN

El campo Shushufindi Aquarico está ubicado en el eje de la Cuenca Oriente,

forma parte del corredor Sacha Shushufindi, se localiza en la provincia de

Sucumbios, aproximadamente a 250 kilómetros al Este de Quito y 35 kilómetros al

Sur de la frontera con Colombia.

Limita: al Norte con el Campo Libertador, al Sur con el Campo Limoncocha, al

Oeste con el Campo Sacha, al Este con una falla inversa de la subcuenca

cretásica Napo, como se muestra en la Figura 1.1.

1.1.2.1. Coordenadas Geográficas

Geográficamente el Campo Shushufindi se extiende desde los 00º 06 39" a los

00° 17 58" latitud Este, hasta los 76° 36 55" de longitud Oeste.

1.1.2.2. Coordenadas UTM

La Tabla 1.1 muestra las coordenadas UTM:

Tabla 1.1: Coordenadas UTM

	MIN	MAX
Х	300.000 m	325.000 m
Υ	9.964.000 m	10.000.000 m

Fuente: Departamento de Yacimientos. Petroproducción. **Elaborado por**: José R. Enríquez, Marlon Feijóo L.

1LUMBAQUI DIL **ૄૄ૾ૺ૾ૺ૾૾** PUNGARAYAC AGIP MAPA DE UBICACION ANEXO - 1

Figura 1.1: Ubicación del Campo Shushufindi.

Fuente: Departamento de Cartografía. Petroproducción.

1.2. GEOLOGÍA

1.2.1. ESTRUCTURAL

Este campo corresponde a un anticlinal asimétrico que tiene una orientación Norte-Sur, la estructura tiene una longitud aproximada de 30 Km. y un ancho de 7 Km. en dirección Este-Oeste; con un cierre vertical de 370 pies, correspondiéndole un área de 43.200 acres.

Su estructura fue definida con las campañas de sísmica 2D y actualmente se la ha detallado con sísmica 3D obtenida en los años 2002 – 2003.

Los yacimientos U y T del campo Shushufindi Aguarico están definidos como anticlinales de orientación Norte-Sur, limitados en el flanco Este por fallas no completamente sellantes y en las otras direcciones por acuíferos laterales que se extienden regionalmente.

Estos acuíferos son muy activos en los extremos norte y sur del campo en donde desarrollan presiones que actualmente, luego de más de 30 años, son muy parecidas a las originales.

El modelo estructural del sistema de fallas permite determinar la comunicación de los fluidos entre los diferentes estratos porosos y permeables U y T.

Este sistema de fallas constituye una vía de comunicación entre los fluidos.

Los resultados obtenidos de la última interpretación sísmica indican un nuevo sistema de fallamiento asociado con la falla principal del campo, el mismo que es de origen tectónico y parece haber actuado hasta la época geológica en que se depositó la Caliza A.

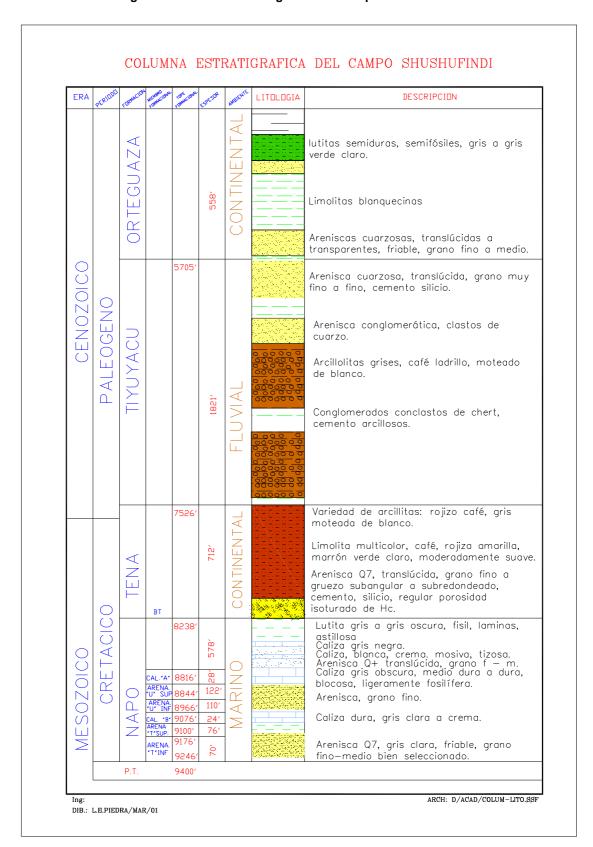
1.2.2. ESTRATIGRAFÍA

La mayoría del petróleo conocido a la fecha en la Cuenca Oriente proviene de reservorios del Cretácico; los reservorios U y T, tienen analogía con reservorios formados a latitudes similares con sedimentaciones semejantes como en el Medio Oriente, Oeste de África y en varias otras localidades

La producción de hidrocarburos en la Cuenca Oriente del Ecuador, en general está asociada a depósitos del Cretácico Inferior a Medio: las Formaciones Hollín y Napo (areniscas T, U y M-1) y depósitos del Cretácico Superior: las areniscas Basal Tena.

El reservorio se encuentra en la era Mesozoico de la edad Cretácico Medio a Cretácico Superior como se observa en la Figura 1.2.

La arena Basal Tena está separada de U-superior por aproximadamente 600 pies de lutitas, roca-no reservorio y la caliza A en su base. Inmediatamente por debajo de U-superior está la unidad de arena U-inferior, la cual está separada de T-superior por una secuencia de lutitas y la caliza B en su base.


La caliza B marca el fin del ciclo de depositación de los sedimentos T, de igual manera, la caliza A marca el fin del ciclo de sedimentación de U. Ambas calizas son el resultado de depositación durante períodos de máxima subida del nivel del mar.

En este campo se tiene como reservorios principales a U inferior y T inferior, y como secundarios U superior, T superior y Basal Tena, clasificación realizada desde el punto de vista de producción de petróleo.

La formación Hollín no es productiva en Shushufindi Aguarico, sin embargo en el pozo exploratorio Condorazo SE-01 perforado en enero del 2006 dio resultados positivos para la formación Hollín superior. (profundidad total 10.340' TVD).⁶

⁶ Subgerencia de Exploración y Desarrollo. **Estudio Final Condorazo SE-1**. 2006.

Figura 1.2: Columna Estratigráfica del Campo Shushufindi.

Fuente: Departamento de Cartografía. Petroproducción

1.2.2.1. Formación Tena

1.2.2.1.1. Basal Tena

Basal Tena es un reservorio que aparece en ciertas áreas del campo con espesores que varían entre 1 a 22 pies, en el sector Sur-Oeste el espesor de dicho reservorio se adelgaza considerablemente pero en Aguarico (Norte) parece mejorar notablemente.

Este reservorio contiene una cantidad importante de petróleo en sitio, 71 millones de barriles de petróleo.⁷ Uno de los problemas más serios de este reservorio es que presenta una estructura grano decreciente.

1.2.2.2. Formación Napo

Los yacimientos U y T son similares tanto en origen como en constitución y están formados por areniscas de grano fino; son regionalmente continuos pero tienen barreras de permeabilidad tanto longitudinales como transversales, que dividen al campo en pequeños subcampos.

1.2.2.2.1. Areniscas "U"

En la sísmica, la arenisca U presenta una mejor definición, lo cual hace posible, interpretar su distribución sobre la mayor parte del campo, la arenisca T no presenta una buena respuesta sísmica.

El área inicial saturada de hidrocarburos para "U" fue de 36.376 acres, su porosidad promedio de 17% y la saturación de agua inicial de 15%.8

La gravedad API en la arena U es de 24 - 30 ºAPI. Algunos pozos localizados al Sur muestran una gravedad de 16 – 20 ºAPI.

⁷ Corelab, Reporte Final. **Estudio de Simulación de Reservorios Campo Shushufindi Aguarico**. Feb.2004.

⁸ Petroproducción. Ochoa, José. Estudio Integral de Yac. del Campo Shushufindi Aguarico. Agosto 2001

Las propiedades de la roca y de los fluidos, son más homogéneos en la arenisca T que en la U. Para T se ha estimado un valor promedio de permeabilidad (K) efectiva al petróleo de 500 md y 300 md para U (análisis de restauración de presión).⁹

El valor de salinidad promedio de los yacimientos U y T varían de 40.000 a 60.000 y 15.000 a 25.000 ppm de cloruro de sodio respectivamente. Cabe indicar que el valor de salinidad a lo largo y ancho de los yacimientos no es el mismo.

Este es otro indicativo de que los yacimientos no son completamente homogéneos ni continuos como se mencionó anteriormente.

1.2.2.2.1.1. *U superior* – *G*2

Esta arenisca se conoce como "G2", en cuanto a producción es un reservorio secundario, el intervalo total U-superior-G2 se distribuye y mantiene un espesor constante sobre todo el campo, la U-superior-G2 comprende el intervalo desde la base de la caliza "A" como tope, hasta la base, que corresponde al tope del reservorio U-inferior.

Debido a la dificultad de separar la producción histórica de petróleo de este yacimiento, en adelante se lo considerará solamente como "U".

Es un reservorio formado como resultado de procesos de depositación en diferentes ambientes geológicos, los sedimentos contienen glauconita y pirita diseminada, los cuales son minerales conductivos y por ende disminuyen de manera significativa la resistividad en los registros eléctricos, por lo cual existe la posibilidad de que este reservorio contenga petróleo en zonas de baja resistividad.

Para este reservorio, se han calculado 367 millones de barriles de petróleo en sitio.¹⁰

⁹ Petroproducción. Ochoa, José. **Estudio Integral de Yac. del Campo Shushufindi Aguarico**. Agosto 2001.

¹⁰ Corelab. Estudio de Simulación de Reservorios Campo Shushufindi Aguarico. Feb.2004.

1.2.2.2.1.2. *U* inferior

De las correlaciones estratigráficas, se ha determinado que está arenisca está presente en el subsuelo de todo el campo.

Sin embargo, de igual manera que la arenisca T-inferior, existen importantes diferencias en cuanto a la calidad de reservorio, en términos de características petrofísicas, facies y consecuentemente como unidades de flujo.

1.2.2.2.2. Areniscas "T"

Las areniscas "T", en todos los registros de pozos analizados en el campo Shushufindi Aguarico, descansan directamente sobre las calizas y lutitas de la Formación Napo Basal, Grupo Napo.

El área inicial saturada de hidrocarburos fue de 38.415 acres, su porosidad promedio de 17%, la saturación de agua inicial de 15% y la gravedad API generalmente varía entre 28 – 32 ºAPI.¹¹

En estas areniscas la permeabilidad es muy alta, las arenas son limpias potentes y continuas; y los fluidos tienen viscosidad baja, la zona con mejores valores de permeabilidad y porosidad se ubica generalmente a la base de la arenisca.

La transmisibilidad del fluido (Kh) es mayor en la arena T, y la movilidad (Kh/u) permite condiciones de flujo más altos en la arenisca T que en la arenisca U.

1.2.2.2.2.1. *T superior*

Es un reservorio con distribución generalmente constante y uniforme sobre todo el campo, este reservorio productivamente es secundario; no existen estadísticas de cuanto ha producido como un reservorio separado debido a que la producción reportada es para todo el reservorio T.

¹¹ Petroproducción. Ochoa, José. Estudio Integral de Yac. del Campo Shushufindi Aguarico. Agosto 2001

La permeabilidad es también muy inferior a T- inferior, con valores por debajo de los 1000 milidarcies en la mayor parte de los pozos.

A partir de las características litológicas y los resultados petrofísicos, la arenisca T-superior presenta un potencial interesante. Por volumetría, se reportan 229 millones de barriles de petróleo en sitio para este reservorio. 12

1.2.2.2.2.2. T inferior

Las correlaciones estratigráficas obtenidas de los registros de los pozos, muestran claramente la continuidad del reservorio T-inferior en el subsuelo de Shushufindi Aguarico, en dirección Sur-Norte y en dirección Oeste-Este.

En la Tabla 1.2 se presentan los espesores totales de cada uno de los reservorios:

Tabla 1.2: Espesores totales de reservorios

RESERVORIO	ESPESOR (pies)
U-superior	60 -140
U-inferior	10 -100
T-superior	60 -145
T-inferior	30 -110

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Los principales parámetros de los yacimientos U y T, se listan en la Tabla 1.3.

Tabla 1.3: Parámetros principales Campo Shushufindi

DESCRIPCION	SHUSHUFINDI	AGUARICO	SSF+AGU
Área Km.²	120	24	144
Tipo de estructura	Anticlinal	Anticlinal	Anticlinal
Ambiente de deposito	Marino	Marino	Marino
Tipo de acuífero	Lateral	Lateral	Lateral
Tipo de roca	Arenisca	Arenisca	Arenisca

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

¹² Corelab. Estudio de Simulación de Reservorios Campo Shushufindi Aguarico. Feb.2004.

1.2.3. TOPES Y BASES

La división en los reservorios U-inferior y T-inferior antes descritas, se ha basado tradicionalmente en criterios litoestratigráficos y hasta cierto punto de producción.

Las principales herramientas utilizadas para la división de los reservorios en el subsuelo son los registros eléctricos, la sísmica y los núcleos.

Se debe aclarar que, a pesar de que es factible identificar el tope y la base de los reservorios principales U y T, es difícil correlacionar y tratar de subdividir los reservorios principales U-inferior y T-inferior, basándose exclusivamente en los registros de pozos, especialmente donde los reservorios muestran arenas de cuarzo limpias, gruesas y constantes (> 20 pies de espesor).

La Tabla 1.4 muestra en forma general la base y tope de los yacimientos BT, U, T.

Tabla 1.4: Topes y Bases

ARENA	TOPE	BASE
BT	8013'	8238'
U	8844'	9076'
Т	9100'	9246'

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

En el Anexo 1.1 se presentan las diferentes profundidades en MD (profundidad medida) de cada una de las formaciones por pozo, del campo Shushufindi Aguarico.

CAPÍTULO 2

DATOS DE PRODUCCIÓN, PARÁMETROS DE FLUIDOS Y PETROFÍSICOS PARA LA CARACTERIZACIÓN DE LAS ARENAS BT, U y T DEL CAMPO SHUSHUFINDI.

2.1. DATOS DE PRODUCCIÓN DEL CAMPO SHUSHIFINDI

2.1.1. HISTORIA DE PRODUCCIÓN DEL CAMPO SHUSHUFINDI AGUARICO

En agosto de 1972 se inicia la producción de petróleo con 10 pozos a una tasa de 10.000 BPPD que hasta diciembre se incrementa a 70.000 BPPD con 20 pozos productores; en marzo de 1973, la tasa subió a 100.000 BPPD con 30 pozos productores. La tasa promedio de petróleo desde 1978 hasta 1994 fue de 100.000 BPPD.

A partir de 1995 la producción de petróleo inicia una declinación continua y un incremento acelerado en la producción de agua. En 1996 la producción es de 87.105 BPPD y 47.000 BAPD.

En 1997 produce 82.000, en 1998 produce 75.000, en 1999 produce 73.800 y en el 2000 produce 72.948 BPPD. Simultáneamente en estos años la producción de agua se incrementa en forma drástica desde 48.400 a 72.000 BAPD.

En el año 2006, la producción promedia diaria fue de 1.411 BPPD para el campo Aguarico y 47.760 BPPD para el campo Shushufindi, dando un total de 49.170 BPPD.

En los 34 años de actividad se han extraído reservas de petróleo de 1.095'662.494 barriles (Dic-2006).¹³

-

¹³ **DNH.** "Estimación de reservas de Petróleo crudo y Gas del País al 31 de Diciembre del 2006".

En la actualidad la producción de agua supera a la de petróleo, convirtiéndose así, en el principal problema del campo, los pozos se inundan rápidamente y disminuye la producción de petróleo, este efecto es provocado por la sobre dimensión del sistema de bombeo eléctrico sumergible que es el más usado, pues permite producir volúmenes altos.

Tabla 2.1: Producción histórica anual de fluidos en el campo Shushufindi-Aguarico

AÑOS PETROLEO AGUA		AGUA	FLUIDO	PORCENTAJE
ANOS	BPD	BPD	BPD	DE AGUA
1972	37.570	562	38.132	1,5
1973	76.577	572	77.149	0,7
1974	82.262	150	82.413	0,2
1975	81.508	178	81.686	0,2
1976	95.464	558	96.022	0,6
1977	90.792	1.322	92.114	1,4
1978	105.993	2.114	108.106	2,0
1979	106.429	4.010	110.440	3,6
1980	102.443	4.821	107.263	4,5
1981	103.631	5.112	108.743	4,7
1982	102.139	8.338	110.476	7,5
1983	105.282	12.268	117.550	10,4
1984	104.563	16.784	121.346	13,8
1985	111.848	17.015	128.863	13,2
1986	116.837	16.362	133.199	12,3
1987	69.886	10.676	80.563	13,3
1988	110.160	24.233	134.393	18,0
1989	100.949	23.728	124.677	19,0
1990	100.056	28.531	128.587	22,2
1991	101.274	36.954	138.228	26,7
1992	99.014	39.618	138.633	28,6
1993	102.191	42.719	144.910	29,5
1994	98.553	49.348	147.901	33,4
1995	90.483	45.008	135.491	33,2
1996	87.105	47.061	134.166	35,1
1997	82.160	48.430	130.590	37,1
1998	75.172	51.820	126.992	40,8
1999	73.817	60.615	134.432	45,1
2000	72.948	72.080	145.028	49,7
2001	66.661	71.178	137.839	51,6
2002	61.604	75.974	137.578	55,2
2003	54.034	86.190	140.224	61,5
2004	55.138	77.217	132.355	58,3
2005	51.850	75.693	127.543	59,3
2006	49.170	78.239	127.409	61,4
Nov-2007	44.733	73.254	117.987	62,1


Fuente: Departamento de Yacimientos. Petroproducción

Tabla 2.2: Producción acumulada de petróleo y agua en Shushufindi, a Nov - 2007

FECHA	ACUMULADO, BBL		
ILCITA	PETROLEO	AGUA	
31-Dic- 2006	1.095'662.494	412'014.562	
Nov-2007	14'761.888	24'173.837	
TOTAL	1.110'424.382	436'188.399	

Fuente: Departamento de Yacimientos. Petroproducción-DNH

Figura 2.1: Historial de Producción Campo Shushufindi Aguarico.

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

2.1.1.1. HISTORIA DE PRODUCCIÓN DE PETRÓLEO DEL YACIMIENTO "BT"

Inicia su producción en marzo de 1997 con el pozo SSF-51. Desde marzo de 1997 hasta octubre de 1999, se mantiene con una tasa de 700 a 800 BPPD sin agua. En noviembre de 1999, se incrementa a 1.100 BPPD e inmediatamente aparece el agua, la tasa de petróleo se vuelve irregular en tanto que el agua se incrementa de 0 a 400 BAPD.

En el futuro, se probará este yacimiento, en los pozos que aparece y que actualmente producen de otras arenas.

Tabla 2.3: Historia de producción de fluidos del yacimiento BT

AÑOS	PETROLEO BPD	AGUA BPD	FLUIDO BPD	BSW %
1997	704	14	718	1,9
1998	538	22	561	3,9
1999	797	38	835	4,6
2000	924	270	1.194	22,6
2001	768	370	1.138	32,5
2002	714	380	1.093	34,7
2003	563	427	990	43,1
2004	1.658	494	2152	22,9
2005	1.969	536	2505	21,4
2006	1.377	589	1966	29,9
Nov- 2007	1.445	651	2.096	31,05

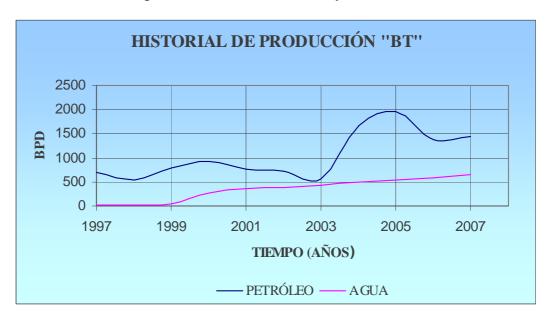

Fuente: Departamento de Yacimientos. Petroproducción

Tabla 2.4: Producción acumulada de petróleo y agua BT. Nov - 2007

FECHA	ACUMULADO PETROLEO BLS	ACUMULADO AGUA BLS
31-Dic-2006	3′654.380	1'146.100
Nov-2007	476.382	214.965
TOTAL	4'130.762	1'361.065

Fuente: Departamento de Yacimientos. Petroproducción-DNH

Figura 2.2: Historial de Producción yacimiento BT.

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

2.1.1.2. HISTORIA DE PRODUCCIÓN DE PETRÓLEO DEL YACIMIENTO "U"

En este yacimiento se observa claramente tres etapas.

- 1. Desarrollo desde 1972 hasta 1978
- Madurez o estabilización, desde 1979 hasta 1987, y
- 3. Decaimiento o agotamiento o inundación, desde 1988 hasta el 2007.

El tiempo de producción, los diferentes contactos agua-petróleo, la variación del grado API, los incrementos esporádicos de producción, la intrusión continua pero limitada del agua, la respuesta prácticamente nula a la potencia de los sistemas de levantamiento artificial, revelan que se trata de un yacimiento sectorizado.

En este yacimiento, ciertas barreras de permeabilidad impiden el ingreso del agua, y esto se refleja en la diferencia de 1800 psi de presión con respecto a la inicial de 3857 psi. La presión es un gran limitante para la producción de fluidos, pero por esta misma razón se ha logrado mantener niveles bajos de BSW.

Tabla 2.5: Producción histórica de fluidos del yacimiento U

AÑOS	PETROLEO BPD	AGUA BPD	FLUIDO BPD	BSW %
1972	17.514	313	17.827	1,8
1973	32.929	318	33.246	1,0
1974	41.211	75	41.286	0,2
1975	40.756	56	40.811	0,1
1976	46.050	372	46.422	0,8
1977	44.532	867	45.399	1,9
1978	50.260	1.434	51.694	2,8
1979	50.154	2.721	52.875	5,1
1980	46.669	2.497	49.165	5,1
1981	50.388	2.745	53.134	5,2
1982	50.278	5.257	55.535	9,5
1983	51.772	6.956	58.728	11,8
1984	50.634	6.776	57.410	11,8
1985	53.566	7.752	61.318	12,6
1986	55.090	8.047	63.136	12,7
1987	32.057	4.970	37.027	13,4
1988	53.166	10.467	63.633	16,4
1989	49.419	10.694	60.113	17,8

1990	47.894	13.002	60.896	21,4
1991	43.727	14.833	58.559	25,3
1992	38.516	14.978	53.494	28,0
1993	38.015	15.149	53.164	28,5
1994	37.195	15.688	52.883	29,7
1995	33.631	14.913	48.544	30,7
1996	32.217	16.023	48.240	33,2
1997	31.889	17.430	49.320	35,3
1998	28.109	17.110	45.219	37,8
1999	27.257	18.616	45.873	40,6
2000	25.428	21.288	46.716	45,6
2001	22.276	22.105	44.382	49,8
2002	19.779	19.409	39.188	49,5
2003	32.926	13.195	46.121	28,6
2004	30.588	12.189	42.777	28,5
2005	27.161	12.218	39.379	31,02
2006	23.196	11.653	34.849	33,44
Nov-2007	19.601	17.698	37.299	47,45

Fuente: Departamento de Yacimientos. Petroproducción

Tabla 2.6: Producción acumulada de petróleo y agua U. Nov - 2007

FECHA	ACUMULADO PETROLEO BLS	ACUMULADO AGUA BLS
31-Dic - 2006	495'030.885	124'872.340
Nov -2007	6'468.146	5'840.273
TOTAL	501'499.031	130'712.613

Fuente: Departamento de Yacimientos. Petroproducción-DNH

Figura 2.3: Historial de Producción yacimiento U.

Fuente: Departamento de Yacimientos. Petroproducción. **Elaborado por:** José R. Enríquez, Marlon Feijóo L.

2.1.1.3. HISTORIA DE PRODUCCIÓN DE PETRÓLEO DEL YACIMIENTO "T"

En este yacimiento también se observa las tres etapas definidas:

- 1. Desarrollo desde 1972 hasta 1978
- 2. Madurez o estabilización, desde 1979 hasta 1993, y
- 3. Decaimiento o agotamiento o inundación, desde 1994 hasta el 2007.

En los 34 años de producción, la presión no es un limitante para la producción, ya que desde 1983 en adelante, la tasa de fluidos se ha incrementado de 60.000 BFPD a 90.000 BFPD, además otros parámetros revelan que es un yacimiento bastante continuo, con pocas barreras, que los acuíferos han actuado activamente y desde hace 4 años inundan aceleradamente la zona de petróleo.

La recuperación de las reservas se ve seriamente limitada por la producción de agua, si se continúa forzando su ingreso con equipos de fondo más potentes, se provocará que sectores de petróleo móvil se aíslen, reduciendo significativamente la tasa diaria de producción y consecuentemente las reservas recuperables.

Tabla 2.7: Historia de producción de la arena T

AÑOS	PETROLEO BPD	AGUA BPD	FLUIDO BPD	BSW %
1972	20.056	249	20.305	1,2
1973	43.648	255	43.903	0,6
1974	41.052	75	41.127	0,2
1975	40.753	122	40.875	0,3
1976	49.414	186	49.600	0,4
1977	46.260	455	46.715	1,0
1978	55.733	679	56.412	1,2
1979	56.275	1.289	57.564	2,2
1980	55.774	2.324	58.098	4,0
1981	53.242	2.367	55.609	4,3
1982	51.861	3.081	54.942	5,6
1983	53.510	5.312	58.822	9,0
1984	53.929	10.008	63.936	15,7
1985	58.282	9.263	67.545	13,7
1986	61.747	8.316	70.063	11,9
1987	37.829	5.706	43.535	13,1

1988	56.994	13.766	70.760	19,5
1989	51.530	13.034	64.564	20,2
1990	52.162	15.529	67.691	22,9
1991	57.548	22.121	79.669	27,8
1992	60.498	24.640	85.138	28,9
1993	64.176	27.571	91.747	30,1
1994	61.358	33.660	95.017	35,4
1995	56.852	30.095	86.947	34,6
1996	54.888	31.038	85.926	36,1
1997	49.683	30.988	80.671	38,4
1998	46.525	34.688	81.212	42,7
1999	45.763	41.960	87.723	47,8
2000	46.596	50.521	97.117	52,0
2001	42.088	47.856	89.944	53,2
2002	38.120	49.454	87.574	56,5
2003	21.569	29.401	50.970	57,7
2004	21.589	30.234	51.823	58,3
2005	22.438	32.756	55.194	59,4
2006	20.305	33.636	53.941	62,4
Nov-2007	23.689	56.541	80.230	70,5

Fuente: Departamento de Yacimientos. Petroproducción

Tabla 2.8: Producción acumulada de petróleo y agua T, Nov - 2007

FECHA	ACUMULADO PETROLEO BLS	ACUMULADO AGUA BLS
31-Dic - 2006	715'861.431	278'802.732
Nov-2007	7'817.360	18'658.600
TOTAL	723'678.791	297'461.332

Fuente: Departamento de Yacimientos. Petroproducción-DNH

Figura 2.4: Historial de Producción yacimiento T.

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

En el Anexo 2.1 se presentan los datos de producción de petróleo y agua del Campo Shushufindi Aguarico al 31de Octubre de 2007.

2.1.2. ESTADO ACTUAL DE LOS POZOS

En el área Shushufindi Aguarico se tienen perforados¹⁴:

Tabla 2.9: Estado actual de los pozos.

ESTADO	No.
PRODUCIENDO	73
CERRADOS	26
ABANDONADOS	12
ESPERANDO S. ABANDONO	2
INYECTORES	8
REINYECTORES	13
TOTAL	134

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

2.1.2.1. ESTACIONES DE PRODUCCIÓN

El campo Shushufindi Aguarico se encuentra conformado por las siguientes Estaciones de Producción:

- Estación Aguarico
- Estación Shushufindi Norte
- Estación Shushufindi Central
- Estación Shushufindi Sur
- Estación Shushufindi Sur-Oeste

En estas estaciones se capta el crudo proveniente de cada uno los pozos, se realiza su respectivo tratamiento y su posterior transportación.

_

¹⁴ 31 de Octubre de 2007.

El Anexo 2.2 muestra la ubicación de los pozos, estaciones de producción y mapa vial del área Shushufindi Aguarico.

La producción por estaciones y métodos se presentan en las Tablas 2.10; 2.11 respectivamente:

Tabla 2.10: Producción por Estaciones

ESTACIONES	BFPD	BPPD	BAPD
AGUARICO	25.56	11.42	14.14
NORTE	30.686	14.839	15.847
CENTRAL	29.921	11.977	17.944
SUR	35.671	11.348	24.323
SUR-OESTE	15.445	5.682	9.763
TOTAL	114.279	44.988	69.291

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

2.1.2.2. PRODUCCIÓN POR SISTEMAS DE LEVANTAMIENTO ARTIFICIAL

Inicialmente el mecanismo de producción fue flujo natural, pero en la actualidad ningún pozo produce bajo este sistema.

Los diferentes tipos de levantamiento artificial que fueron implementados y se encuentran en funcionamiento son gas lift, bombeo hidráulico y en su gran mayoría bombeo electrosumergible.

Tabla 2.11: Producción por Levantamiento Artificial

MÉTODO	Nº DE POZOS	BFPD	BPPD
LEVANTAMIENTO POR GAS LIFT (PPG)	6	6.805	4.487
BOMBEO HIDRAULICO JET(PPH)	5	2.203	1.292
LEVANTAMIENTO POR BOMBA SUMERGIBLE(PPS)	62	105.271	39.209
TOTAL	73	114.279	44.988

Fuente: Departamento de Yacimientos. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

2.2. CARACTERIZACIÓN DE LOS RESERVORIOS

2.2.1. PROPIEDADES DE LOS FLUIDOS PRODUCIDOS

Los fluidos encontrados en los yacimientos petrolíferos son esencialmente mezclas complejas de compuestos de hidrocarburos, que contienen impurezas como nitrógeno, dióxido de carbono y sulfuro de hidrógeno.

Por lo cual la composición del petróleo fiscal es completamente diferente a su composición a condiciones de reservorio; debido principalmente a la liberación de gas en solución a medida que la presión disminuye a las condiciones de superficie.

Para determinar dicha composición se realiza un análisis PVT con muestras obtenidas de las diferentes arenas y determinados pozos. El campo Shushufindi cuenta con análisis PVT de los siguientes pozos:

Tabla 2.12: Análisis PVT disponibles Campo Shushufindi Aguarico

No.	POZO	POZO FORMACION	
1	SHUSHUFINDI – 02A	Т	ene-70
2	SHUSHUFINDI – 03	Т	mar-73
3	SHUSHUFINDI – 27	U	oct-98
4	SHUSHUFINDI – 41	U sup+U inf.	may-74
5	SHUSHUFINDI – 51	BASAL TENA	oct-98
6	SHUSHUFINDI – 63	Т	abr-89
7	SHUSHUFINDI – 68	Т	nov-96
8	SHUSHUFINDI – 82	G-2	nov-94
9	SHUSHUFINDI – 87	U	nov-96
10	SHUSHUFINDI – 88	U sup+U inf.	dic-96

Fuente: Centro de Investigaciones Geológicas. Subgerencia de Exploración y Desarrollo.

Las propiedades PVT juegan un papel importante en la conducta de flujo de los fluidos en los reservorios de petróleo. Por lo tanto, es esencial asegurar la calidad de los datos adquiridos en el laboratorio.

Los resultados de los análisis PVT y BUILDUP de las arenas BT, U y T constan en el Anexo 2.3, los mismos que se revisaron y normalizaron¹⁵ para la Tabla 2.13.

Tabla 2.13: Propiedades Físicas de los Fluidos del Campo Shushufindi

DESCRIPCIÓN	ВТ	U	T
Presión inicial (psi)	2.940	3.867	4.050
Presión de Burbuja (psi)	870	1.170	1.050
Gravedad ^o API	24	27,3	31,1
Factor Volumétrico Boi (bls/BF)	1,1508	1,267	1,217
Factor Volumétrico Bob (bls/BF)	1,1749	1,297	1.2476
Permeabilidad K (md)	321,166	310,174	520,642
Viscosidad inicial del petróleo Uoi (cp)	4,959	2,471	1,081
Viscosidad del petróleo Uob (cp)	3,959	1,924	0,7958
Viscosidad del agua (cp)	0,43	0,47	0,46
Temperatura (°F)	185	215	218
GOR (PCS/bls)	187	307	384
Densidad ρ (gr/cc)	0,8103	0,7663	0,7402
Salinidad del agua ppm (Cl ⁻)	34.750	55.017	13.557

Fuente: Centro de Investigaciones Geológicas. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Cabe mencionar que la variación de la salinidad en el yacimiento U desde el punto de vista geológico, no es consecuencia del agua de inyección.

En el yacimiento T este fenómeno se debe a la comunicación que existe entre los acuíferos de los cuerpos arenosos inferiores que corresponden a la Formación Hollin con la arena T, a través de la falla o por la mala cementación en la parte inferior de los pozos; esto confirma que la falla principal de Shushufindi no es impermeable y permite el paso de fluidos y consecuentemente de presión.

La viscosidad del agua fluctúa entre 0,25 y 0,5 (cp) por lo cual la movilidad del agua es más alta que la del petróleo, esta condición refleja la agresiva producción de agua en el campo.

En el Anexo 2.4 se presentan los valores promedios de las características del crudo y análisis físico químico del agua de formación del Campo Shushufindi.

¹⁵ Yacimiento BT: Parámetros tomados del PVT del pozo SSF-51.

Yacimientos U, T: Normalización de Estudios PVT Campo Shushufindi. CMG-Quito.

2.3. DETERMINACIÓN DE PARÁMETROS PETROFÍSICOS

2.3.1. PROPIEDADES DE LA ROCA

Las características o propiedades físicas de la roca reservorio son aquellas que le permiten almacenar y conducir los fluidos.

Los núcleos o cores son muestras que se toman a diferentes profundidades para ser analizadas en el laboratorio, de estos estudios se obtienen datos de saturación de petróleo S_o , saturación de agua S_w , porosidad ϕ (%), permeabilidad K y presión capilar Pc; dichos datos también se pueden obtener del análisis de registros eléctricos.

2.3.2. REGISTROS ELÉCTRICOS CORRIDOS EN LOS POZOS

Los registros de los pozos representan la única información permanente y siempre disponible en el futuro, por ello la información cuantitativa y cualitativa (porosidad, saturación de fluidos, permeabilidad, arena neta productiva, litología, etc.) obtenida de los mismos son de gran utilidad en ingeniería, producción y geología.

Los registros eléctricos son considerados como métodos indirectos para determinar parámetros que permiten evaluar las formaciones petrolíferas, son métodos rápidos y precisos para conseguir información de las formaciones atravesadas durante la perforación, pues permiten tener una idea clara del yacimiento.

Los registros a hueco abierto son los más comunes pues tienen un contacto directo con la formación arrojando la información más abundante y útil, se corren al finalizar la primera etapa de la perforación o una vez que se ha llegado a la profundidad total programada, y los registros a hueco revestido tomados principalmente para obtener información adicional o según sean los

requerimientos frente a un problema presentado en el pozo dentro de su vida productiva.

Una interpretación completa de los registros eléctricos implica obtener la siguiente información del yacimiento.

- Imagen y determinación de saturación de hidrocarburos.
- Localización de zonas porosas y zonas permeables.
- Determinación de la porosidad.
- Determinación de la permeabilidad.
- Determinación de litología.
- Correlación pozo-pozo.

Para este proyecto se tomó un total de 99 pozos (73 productores, 26 cerrados) que forman la base de datos proporcionada para la reevaluación petrofísica del campo Shushufindi Aguarico.

Se llevó a cabo la evaluación de los pozos cerrados ya que algunos permanecen en este estado debido a la falta de recursos para su reactivación.

Las principales curvas de los registros en los pozos son GR, SP, MNOR, MINV, CALI, DIL, IL, SN, MSFL, RHOB, NPHI y PEF. Hay que mencionar que muchos pozos no cuentan con todos los registros, debido a que fueron tomados en los años 70.

Sin embargo, los Rayos Gamma, Potencial espontáneo, densidad (RHOB), caliper y resistividad profunda son los registros más comunes observados en la mayoría de los pozos.

A continuación se detallan las principales funciones de los registros corridos en los pozos del Campo.

* Registro Inducción, DIL, MSFL

El registro de doble inducción, DIL efectúa mediciones de inducción profunda, media y somera; los instrumentos de microresistividad se utilizan para medir la resistividad de la zona lavada, Rxo y para describir capas permeables.

Los registros de resistividad se emplean solos y en combinación, actualmente se toman registros como: DIL para determinar la resistividad en la formación no invadida (llamada resistividad verdadera Rt), y el perfil Microesférico Focalizado MSFL para determinar la resistividad cerca del pozo (llamada resistividad de zona lavada, Rxo), en donde el filtrado de lodo ha reemplazado en su mayoría a los fluidos originales de los poros.

Esta información es útil para determinar las zonas que tienen presencia de hidrocarburos y estimar la presencia del contacto agua-petróleo (CAP).

* Registro SP, GR, Microlog, Caliper

El SP y GR son registros de fenómenos físicos que ocurren naturalmente en las rocas in situ. La curva SP registra el potencial eléctrico (voltaje) producido por la interacción del agua de formación innata, el fluido de perforación conductivo y ciertas rocas selectivas de iones (lutita)¹⁶.

El registro de GR indica la radioactividad natural de las formaciones que depende de la concentración de potasio, torio y uranio.

El Microlog proporciona las mediciones de resistividad de un volumen muy pequeño de costra de lodo y de formación adyacente al agujero. La comparación de las dos curvas sirve para identificar con facilidad la costra de lodo, lo que señala las formaciones invadidas, y por lo tanto permeables.

¹⁶ Schlumberger, Principios/Aplicaciones de la Interpretación de Registros. 1997.

El Caliper indica claramente que el diámetro real del hueco difiere en gran medida del diámetro de la broca utilizada para la perforación del pozo, en formaciones permeables el diámetro del hueco es reducido por el espesor de la costra de lodo, el mismo que depende de las propiedades del lodo.

Todos estos registros son útiles para identificar zonas permeables.

* Registro Neutrón, Sónico, Densidad

La porosidad de las rocas puede obtenerse a partir del registro sónico, el registro de densidad o el registro de neutrones, algunas veces, una combinación de registros de porosidad puede determinar la composición litológica.

La herramienta sónica mide el tiempo de tránsito por intervalos (t), o el tiempo en microsegundos que requiere una onda acústica para recorrer 1 pie (ó 1 metro) de formación en un camino paralelo al pozo.

La herramienta de densidad responde a la densidad de electrones del material de la formación. El registro neutrónico responde de manera principal a la presencia de átomos de hidrógeno.

* Registros CBL, VDL, CCL

Estos registros proporcionan información sobre la calidad de cemento, adherencia cemento-casing, adherencia cemento-formación y localización de cuellos del casing importante para correlacionar profundidad. Son registros modernos, motivo por el cual se cuenta con un número reducido de ellos, solamente para los pozos que han sido perforados en los últimos años.

Se debe mencionar que algunos pozos cuentan con el perfil PEF (Factor Fotoeléctrico de la Formación) que permite identificar con mayor claridad la litología, areniscas (1-2,4), lutitas (2,5-4,5).

2.3.2.1. REEVALUACIÓN DE REGISTROS ELÉCTRICOS

El propósito de la re-evaluación e interpretación de los registros eléctricos del campo Shushufindi, es cuantificar los parámetros petrofísicos (porosidad, saturación de petróleo, espesor neto, volumen de arcilla y litología) de las principales zonas de interés.

Para la reevaluación de registros eléctricos de los pozos del Campo Shushufindi Aguarico se utilizó el software INTERACTIVE PETROPHYSICSTM (Log analysis software), de la compañía Schlumberger, el cual permite realizar un análisis petrofísico detallado a partir de las curvas de los registros eléctricos.

Para esto el programa permite cargar la información, calcular el volumen de arcilla, porosidad y saturación de agua, determinación de las zonas de pago, sin embargo es importante tener los registros originales como documentos con el fin de poder hacer las correlaciones necesarias en caso de existir dudas en cuanto al comportamiento de las curvas.

En el Anexo 2.5 se encuentran los valores de las pruebas iniciales de producción realizadas en los diferentes intervalos de los yacimientos BT, U, T por pozo; además constan los intervalos disparados y los resultados del último trabajo de reacondicionamiento. El historial de reacondicionamiento se encuentra en la carpeta de cada pozo¹⁷. Esta información es utilizada para corroborar el análisis de las zonas de interés seleccionadas de cada reservorio.

2.3.2.1.1. Cálculo del Volumen de Arcilla (Vsh).

Las formaciones de los campos del Oriente ecuatoriano no son completamente limpias, contienen arcilla, un elemento muy común que afecta a la porosidad, permeabilidad y causa múltiples inconvenientes en la interpretación de registros debido a sus propiedades eléctricas.

-

¹⁷ **Archivo Técnico**. Petroproducción-Quito.

En yacimientos de arenas arcillosas (Vsh > 20%) uno de los parámetros más críticos y más difíciles es calcular exactamente el volumen de arcilla.

La forma en que la arcillosidad afecta los parámetros obtenidos de los registros eléctricos depende de la proporción de arcilla presente, de sus propiedades y de la forma en que se encuentra distribuida en la formación.

Según estudios realizados sobre núcleos, se ha comprobado que el material arcilloso puede encontrarse distribuido en las formaciones de tres maneras:

- a) *Tipo Laminar:* consiste en series de lutitas o arcilla en forma de láminas que se encuentran depositadas entre capas de arenas.
- b) *Tipo Estructural:* la arcilla está presente, como granos en la matriz de la formación o sea formando parte de la arena.
- c) *Tipo Dispersa:* En este tipo, el material arcilloso puede encontrarse en dos formas diferentes:
 - En forma de acumulaciones adheridas a los granos de arenas o revistiendo los mismos.
 - II. Llenando parcialmente los canales porosos más pequeños.

En estudios realizados se ha determinado que la distribución de arcilla existente en los pozos del Campo Shushufindi se presenta en forma laminar, ya que las zonas de interés presentan notables intercalaciones de arcilla durante el análisis de registros.

2.3.2.1.1.1. Efecto de la arcillosidad sobre los diferentes perfiles.

Respecto a la curva del potencial espontáneo (SP), mientras más grande sea la proporción de arcilla más reducida será la desviación o valor del SP respecto al valor de éste en una formación limpia de suficiente espesor.

La curva de Rayos Gamma es considerada de mayor utilidad que la del SP en interpretación de arenas arcillosas siempre y cuando no estén presentes en la misma, minerales radioactivos.

En el caso de registros de resistividad, la arcilla es de menor resistividad que la de una arena, tendiendo por lo tanto a bajar la resistividad de la misma.

Como el perfil de densidad, responde a la densidad electrónica del medio, la presencia de arcilla en una formación produce el aumento de la porosidad efectiva que puede obtenerse del perfil, ya que por lo general, la densidad de la lutita es del orden de 2.2 a 2.65 g/cm³.

El registro neutrónico al responder a todo el hidrógeno contenido en una formación, considera inclusive al hidrógeno del agua intersticial presente en las arcillas, esto significa que es el más afectado, pues la lectura del perfil se encuentra incrementada por la presencia de arcillas en la formación.

Para el caso del perfil sónico la presencia de arcilla aumenta la lectura del registro; pero son pocos los registros sónicos disponibles para este Campo.

2.3.2.1.1.2. Indicadores de arcillosidad

La determinación de la proporción de arcilla existente en una formación (Vsh) es realizada mediante el uso de registros de pozos o combinación de ellos y a los cuales se denominan "indicadores de arcilla". Dentro de ellos se tiene:

- 1. Registro de Rayos Gamma.
- 2. Curva del Potencial Espontáneo SP.
- 3. Registros de Resistividad.
- 4. Perfil Neutrónico.
- 5. Combinación Densidad de Formación Sónico.
- 6. Combinación Densidad de Formación Neutrónico.
- 7. Combinación Neutrónico Sónico.

Cada indicador de arcilla está calibrado de tal manera que presente una buena aproximación del contenido neto de arcilla (Vsh).

El registro Gamma Ray y la combinación Densidad de formación – Neutrónico, son los indicadores de arcillosidad más utilizados, pues se ajustan a las características de las formaciones del Campo. El programa IP¹⁸ considera la siguiente fórmula.

$$Vsh = \frac{GR - GRclean}{GRclay - GRclean}$$
 (Ec. 2.1)

GR: lectura del perfil frente al nivel o arena en estudio.

GRclean: lectura del perfil frente a una formación considerada limpia.

GRclay: lectura del perfil frente a una arcilla o lutita vecina.

Estos cálculos se pueden realizar en forma manual a través de los Crossplots o gráficos de interrelación, que son utilizados para la determinación de porosidad y litología cuando se dispone de por lo menos dos perfiles eléctricos de porosidad.

El método de los Crossplots no es completamente exacto, cada método tiene sus ventajas y desventajas por lo que los procesos computarizados facilitan enormemente el manejo y análisis de los datos optimizando tiempo y dinero.

2.3.2.1.1.3. Cálculo de porosidad total y efectiva.

La porosidad fue derivada principalmente de los registros de densidad y neutrónico. Se asumió una densidad de la matriz de 2.65 gr/cc y la del fluido de 1 gr/cc.

-

¹⁸ Interactive PetrophysicsTM. Schlumberger.

* Porosidad del registro sónico

Está dada por la fórmula:
$$\phi_s = \frac{t_{log} - t_{ma}}{t_f - t_{ma}}$$
 (Ec. 2.2)

Donde: ϕ_s = Porosidad sónica

t_{log} = Tiempo de tránsito del registro

t_{ma} = Tiempo de tránsito de la matriz (55,5 μs/pie)

t_f = Tiempo de tránsito del fluido (189 μs/pie)

* Porosidad del registro de densidad

Está dada por la fórmula:
$$\phi_{\rho} = \frac{\rho_{ma} - \rho_{b}}{\rho_{ma} - \rho_{f}}$$
 (Ec. 2.3)

Donde: ϕ_p = Porosidad por densidad

 ρ_{ma} = Densidad de la matriz (2,65 gr/cc arenisca)

 ρ_b = Lectura del registro

 ρ_f = Densidad del fluido (1 gr/cc)

Porosidad del registro neutrónico

La lectura del registro neutrónico es directa es decir se la expresa en forma de fracción, cabe recordar que el registro neutrónico está calibrado para matriz caliza así que se debe sumar 4% para obtener matriz arenisca.

Porosidad Total: Es la relación que existe entre el volumen poroso y el volumen total de la roca, es decir es la "fracción de la unidad de volumen de la formación ocupada por fluidos, que son: agua adherida a las arcillas, agua libre e hidrocarburos" En la porosidad total se consideran tanto los poros interconectados como aquellos que no lo están.

 19 Cruz, Efraín. Interpretación de registros de pozos a hueco abierto. Schlumberger $2002\,$

-

Porosidad Efectiva: "Es la relación que existe entre el espacio poroso interconectado de tal manera que permite el paso de fluido a través de ella y el volumen total de la roca". Este volumen puede derivarse de la porosidad total al considerarse el volumen de arcilla.

Las siguientes fórmulas permiten el cálculo directo de:

POROSIDAD TOTAL:
$$\phi_T = \sqrt{\frac{{\phi_N}^2 + {\phi_D}^2}{2}}$$
 (Ec. 2.4)

POROSIDAD EFECTIVA:
$$\phi_e = \phi_T (1 - V_{sh})$$
 (Ec. 2.5)

Donde: $\Phi_T = \text{Porosidad total}$

 Φ_e = Porosidad efectiva

 Φ_N = Porosidad neutrónica (obtenida del registro neutrónico)

 Φ_D = Porosidad density (obtenida a partir del registro density)

El programa Interactive Petrophysics calcula la porosidad efectiva promedio considerando la combinación Densidad de formación – Neutrónico.

Para los cálculos de saturación de agua existen muchos modelos desarrollados, siendo el modelo de Archie el más conocido para arenas consolidadas.

Se ha determinado que para arenas de la Cuenca Oriente el modelo que mejor se ajusta es el de Indonesia, pues se adapta a la naturaleza laminada de la distribución de arcilla que afecta directamente los valores de Rt y Sw; mientras que para la evaluación de calizas el modelo que mejor se ajusta es el de Simandoux junto a otras consideraciones y correlaciones especiales.

* Modelo de Archie:

$$S_{w} = \left(\frac{aR_{w}}{\phi_{e}^{m}R_{t}}\right)^{\frac{1}{n}}$$
 (Ec. 2.6)

Donde:

S_w = Saturación de agua

a = Factor de saturación

 ϕ_e = Porosidad efectiva

R_w = Resistividad del agua

m = Exponente de cementación

R_t = Resistividad total de la formación

n = Exponente de saturación

* Modelo de Simandoux:

$$\Delta = \frac{V_{cl}^{2}}{R_{cl}^{2}} + 4 \frac{\phi_{e}^{m}}{1 - V_{cl}} \frac{1}{R_{w}} \frac{1}{R_{w}}$$
 (Ec. 2.7)

$$S_{w} = \frac{\frac{V_{cl}}{R_{cl}} + \sqrt{\Delta}}{2\frac{\phi_{e}^{m}}{1 - V_{cl}} \frac{1}{R_{w}}}$$
 (Ec. 2.8)

Donde:

 Δ = Constante delta

V_{cl} = Volumen de arcillocidad

R_{cl} = Resistividad de la arcilla

* Modelo de Indonesia:

$$S_{w} = \frac{1}{1 - \frac{V_{cl}}{2}} \frac{1}{\sqrt{R_{t}}} \frac{V_{cl}}{\sqrt{R_{cl}}} + \frac{\phi_{e}}{\sqrt{R_{w}}}$$
 (Ec. 2.9)

Donde:

R_t = Resistividad total de la formación

Los valores de Resistividad del agua (R_w) por pozo, fueron determinados a partir de las salinidades del agua de formación a la respectiva temperatura de formación calculada.

Este cálculo se lo puede realizar en forma manual a través de la Carta GEN-9²⁰ (Anexo 2.6).

²⁰ Schlumberger. **Interpretación de registros de pozos a hueco abierto**. 2002

2.4. INTRODUCCIÓN AL MANEJO DE INTERACTIVE $PETROPHYSICS^{TM}$. (IP)

Antes de iniciar el proceso de evaluación de registros eléctricos, se deben tener muy claros los conceptos a utilizarse para obtener resultados satisfactorios y también, tener la base de datos de cada pozo a ser evaluado que se cargará en el programa que en este caso fue proporcionada por PETROPRODUCCIÓN.

El procedimiento para la evaluación de registros eléctricos se describe a continuación:

Paso 1. Se crea una carpeta que contenga tres subcarpetas con los nombres INPUT, OUTPUT y DATABASE en cualquier dirección de la computadora. En la carpeta INPUT se graba la base de datos de cada pozo puesto que al momento de cargar la base de datos desde el programa, este buscará en dicha carpeta.

Paso 2. Se carga la base de datos del pozo que se desea analizar en formato ASCII, para ello vamos a *Input / Output* en la barra de herramientas luego a *Load Data* y hacemos clic en *ASCII Load* como muestra la Figura 2.5. La Figura 2.6 es el resultado del procedimiento anterior.

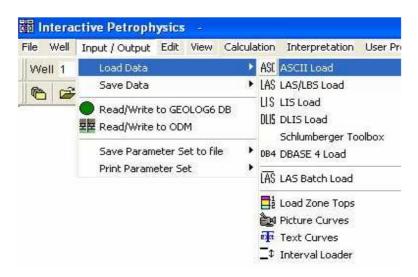


Figura 2.5: Menú Input/Output

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Paso 3. Se elige el pozo que se desea analizar y se hace clic en Abrir.

agua008b

Nombre:

Mis sitios de red

Database : C:\IP\DATEBASE\tesis

🗷 ssfd003u

1: (-1)

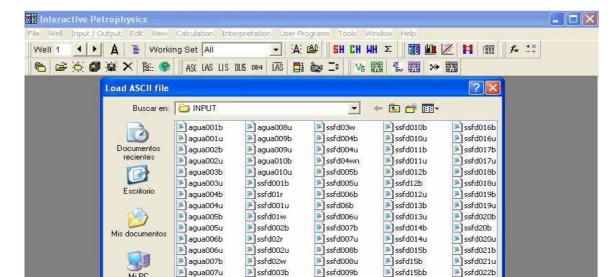


Figura 2.6: Load ASCII file.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

🗷 ssfd009u

🗷 ssfd015u

•

₹

Load ASCII Data

🗷 ssfd22bb

Abrir

Cancelar

Paso 4. En el cuadro de diálogo generado con el Paso 3 se ingresan los datos de: Well Name (nombre del pozo), Top depth (profundidad del tope), Bottom (profundidad de la base), número de fila donde están ubicados (Read curve names from line, Read curve unites from line y Data starts at line que generalmente son: 3, 4 y 5 respectivamente).

En la casilla Null Value se debe insertar el valor -999.250; en la primera celda de la fila Curve Name se debe cambiar DEPT por DEPTH para tener el mismo formato.

Finalmente se hace clic en aceptar y luego se cierra la ventana. (Figura 2.7)

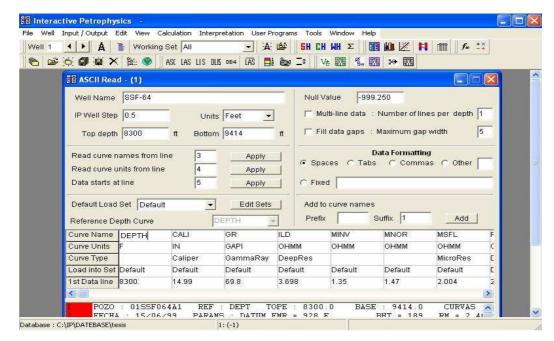


Figura 2.7: ASCII Read.

Paso 5. Posteriormente se debe dar clic en el icono Plot lo cual abre la ventana mostrada en la Figura 2.8. Se escoge la opción File - Program Default Plots y se elige la opción Triple Combo. (Figura 2.8)

Figura 2.8: Triple Combo.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Paso 6. Se carga los registros disponibles en cada pista y se ingresa la escala y color a utilizarse para cada perfil. En la pista 1 se cargan los registros GR, CALI, SP y MINV si se tienen disponibles; en la pista 2 van todos los registros de resistividad y en la pista 3 los registros de porosidad. (Figura 2.9)

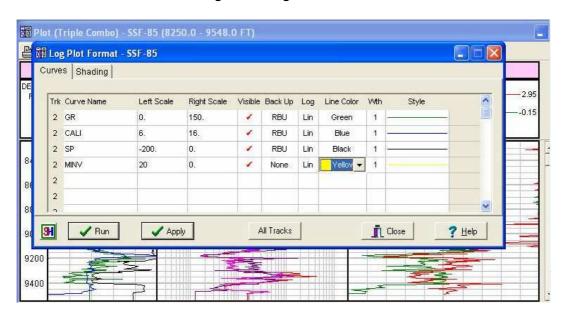


Figura 2.9: Log Plot Format.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Paso 7. En la opción Edit Format- Shading el programa permite identificar las zonas permeables mediante registros como caliper y microresistividad.

El caliper registra la presencia de mud cake o washout²¹, para esto se ingresa el diámetro de la broca (bit size), en su gran mayoría los pozos de este Campo fueron completados con brocas 9 7/8 y 8 3/4 respectivamente.

La condición para identificar una zona permeable a través de microresistividades debe cumplir que la microresistividad normal (MNOR) debe ser mayor a la microresistividad inversa (MINV).

De igual manera se puede utilizar los registros de porosidad para identificar zonas permeables, a través de la condición: registro de densidad sea mayor al neutrónico. (véase Figura 2.10).

-

²¹ mud cake (costra de lodo); washout (derrumbe de las paredes del pozo).

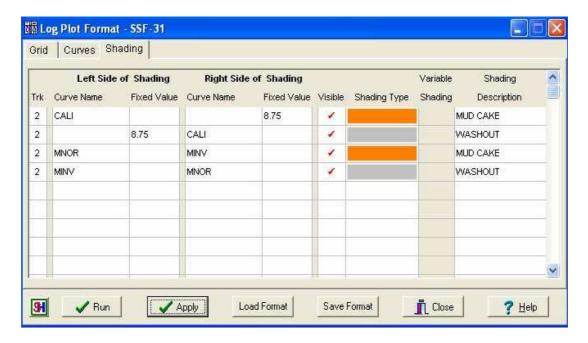


Figura 2.10: Log Plot Format - Shading.

Paso 8. El programa permite ingresar los topes y bases de cada formación, para esto se sigue la secuencia Input/Output - Load Data - Load Zone Tops. En la casilla Zone Set Name se debe escribir un nombre para ser identificado al momento de cargar los topes; las celdas Zone Name, Zone Top y Zone Bottom se las debe llenar con nombre de la arena, profundidad del tope de la arena y profundidad de la base de la arena respectivamente. (véase Figura 2.11)

TOPES

Zone Set Name

Zone Rame

Zone Bottom

W

Tope Set Name

Zone Bottom

P

T 9190

Figura 2.11: Edit Zone Tops.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Paso 9. Para cargar los topes al programa se selecciona en la barra de herramientas Edit Format – Grid - Define. Aparece una ventana llamada Set Tops

for Track Num 1 en la que tenemos que seleccionar en la casilla Set Name el nombre que se llamó a los topes en el paso anterior, luego aplicamos en All Subsequent. (Figura 2.12)

Log Plot Format - SSF-36 Set Tops for Track Num 1 Plot Define Left Set Name : Scale Lines View Set Set Order Color: Clay Volume 0.2 Define Order Porosity / Sw 1 0.2 Define Order Cutoffs 9 Font: 0.2 Define Order 0.2 1 Define Order All Subsequent OK Cancel 0.2 Define Order 1 Define Order Depth Grid Datum Curve Depth Grid Line and number Spacing □ Default DEPTH 10. Medium: Depth number spacing Show Track Headers 94 ✓ Run Load Format Save Format ✓ Apply Close ? Help

Figura 2.12: Set Tops.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R Enríquez, Marlon Feijóo L.

Paso 10. Si se dispone de los intervalos disparados en la formación, se recomienda cargarlos siguiendo la secuencia Input/Output - Load Data - Interval Loader. En la primera celda de la columna Curve 1 escribir el nombre de la arena, en las columnas Top Depth y Bottom Depth Ilenar el tope y la base de los intervalos disparados rspectivamente. No olvidar escribir el número 1 en la columna Curve 1 como se muestra en la Figura 2.13

Interval Loader - SSF-31 Top Depth Bottom Depth Curve 1 Name Units Type Set Default 9110 9116 1 9120 9130 1 9134 9148

Figura 2.13: Interval Loader.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R Enríquez, Marlon Feijóo L.

Interactive Petrophysics - SSF-31 (8977.0 - 9450.0 FT) - [Plot (8) - SSF-31 (8977.0 - 9450.0 FT)] File Well Input / Output Edit View Calculation Interpretation User Programs Log Plot Menu Tools Window Help 🚽 🖟 🐸 🥞 CH WH Σ 📲 🛍 🙋 🙌 🏢 🏂 💢 ASC LAS LIS DLIS DB4 LAS 📑 🏜 🗅 🔯 Vc 📆 🖏 📆 ≫ 📆 Scale 1: 200 Edit For<u>m</u>at Annotations Fit Default GR (GAPI) IL (OHMM) DT (US/F) 150 2000 140 CALI (IN) SN (OHMM) 2000 SP (MV) T (FT) 300 U(FT) MINV (OHMM) MNOR (OHMM) 9100 9400

En la Figura 2.14 se presenta una zona con intervalos disparos.

Figura 2.14: Interval Loader Plot.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R Enríquez, Marlon Feijóo L.

Depth: 9141.0, IL: 42.5, SN: 45.2, T: -999., U: 1.,

1: (32) SSF-31

Database : C:\IP\DATEBASE\tesis

4

Paso 11. En la opción Calculation – Temperature Gradient, (Figura 2.15), se calcula el gradiente de temperatura para cada pozo para esto se tiene como dato la temperatura de fondo BHT (bottom-hole temperature) extraída del encabezado de cada registro.

En la primera fila se escribe la profundidad de superficie que siempre es cero y la temperatura a esa profundidad, en la segunda fila escribir la profundidad del pozo y la temperatura a esa profundidad. (Anexo 2.7)

Interactive Petrophysics - SSF-31 (8977.0 - 9450.0 FT) - [Plot (8) - SSF File Well Input / Output Edit View Calculation Interpretation User Programs Log F Working (f. User Formula Basic Log Analysis Functions Temperature Gradient Scale 1: 200 File Rw from SP 🌃 Calculate Temperature Gradient - SSF-31 Use Points C Use Gradient Depth Temp Gradient 0 70 Deg. / 100 ft 9450 205

Figura 2.15: Calculate Temperature Gradient.

Paso 12. Se calcula el volumen de arcilla presente en la formación (Vsh), Interpretation - Clay Volume; se debe tomar en cuenta dos indicadores de arcillosidad: en prioridad el registro Gamma Ray y la combinación Densidad de formación – Neutrónico. (véanse Figuras 2.16 y 2.17)

Interactive Petrophysics - AGU-01 (9029.0 - 9860.0 FT) - [Plot (Porosity Water Sati File Well Input / Output Edit View Calculation Interpretation User Programs Log Plot Menu Toc Simple Log Interpretation Working Set All ASC LAS LIS Ve Clay Volume Ctrl+Alt+C 뻺 Clay Volume Parameters Edit Scale 1: 600 File Auto update Porosity and Water Saturation S., Porosity and Water Saturation Ctrl+Alt+P Porosity and Water Saturation Parameters Auto update Cutoff and Summation * Cutoff and Summation Ctrl+Alt+X 聞 Cutoff and Summation Parameters Multi Well Cutoff and Summation

Figura 2.16: Menu Interpretation.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R Enríquez, Marlon Feijóo L.

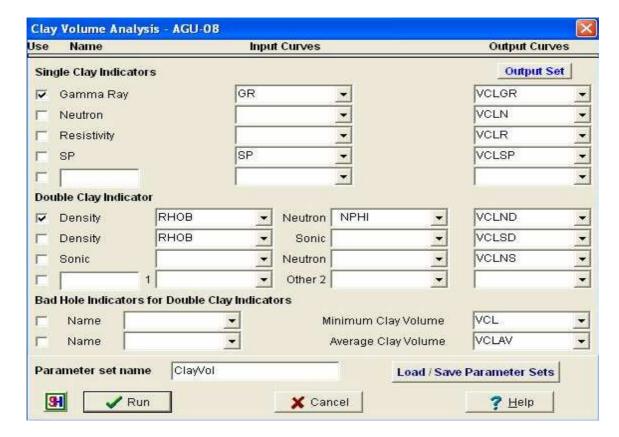


Figura 2.17: Clay Volume Analysis.

Paso 13. La Figura 2.17.1 muestra los resultados del análisis de arcillosidad.

Este punto es de vital importancia debido a que se debe colocar la línea base de lutitas tanto en una zona limpia y libre de arcilla (GRclean) y en una zona que tenga el mayor porcentaje de arcilla (GRsh).

Es recomendable dividir las zonas de interés para ello se hace clic derecho sobre la profundidad deseada en la pista 2, se elige la opción split zone y de inmediato la zona es dividida.

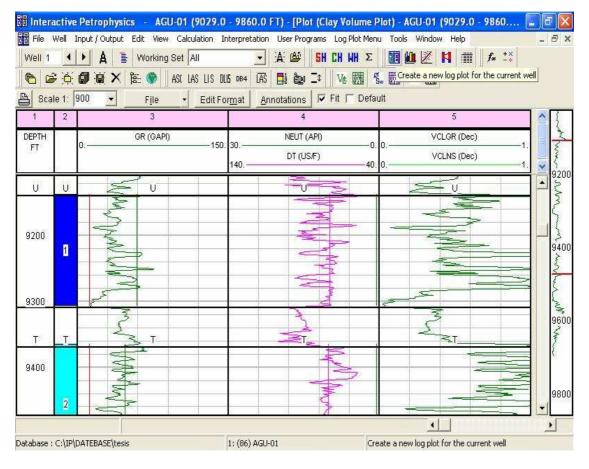


Figura 2.17.1: Clay Volume Analysis.

Paso 14. Una vez realizado el paso 13 se calcula la porosidad y saturación de agua, en la opción Interpretation – Porosity and Water Saturation (Véase Figura 2.18) se debe llenar las casillas de la siguiente forma:

En la casilla Neutron (Limestone): el respectivo registro eléctrico de porosidad neutrónica corrido en el pozo, en Density: el registro eléctrico de densidad, en Sonic: el registro eléctrico sónico, en PEF: el registro eléctrico PEF si se tiene, en RT: el registro eléctrico que representa la resistividad profunda, en Rxo: el registro eléctrico que representa la resistividad profunda, en Rxo: el registro eléctrico que representa la resistividad somera, en Default Porosity Model: elegimos Neutron Density y finalmente en Default Saturation Equation: elegimos Indonesian.

Para el cálculo de la saturación de agua Sw se utilizó la ecuación de Indonesia, un exponente de cementación m = 1.7, el exponente de saturación n = 2 y el factor de saturación a = 1 por considerarse confiables para la evaluación. (Figura 2.18)

Porosity and Water Saturation Analysis - SSF-99 Input Curves | Output Curves | Default Porosity Model NPHI Neutron (Limestone) Neutron Density Density RHOB Multi-Mineral Analysis Defaults Sonic DTLF 3 Minerals PEF PEF C 4 Minerals Name Snd Lm Dol Clay Other AT90 RT MSFL RXO -Lime **EPT TPL** Dol Pass through Porosity Clay Volume Temperature Temp Default Saturation Equation Matrix Density **Dual Water** Archie "m" Dual Water Archie Archie "n" Archie (Phi Total) Waxman Smits Qv Simandoux Mod Simandoux Bad Hole Discriminator Indonesian Non Calculation Flag Juhasz (W&S) Waxman Smits Parameter set name | PhiSw Load / Save Parameter Sets 3 Run X Cancel Help

Figura 2.18: Porosity and Water Saturation Analysis.

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R Enríquez, Marlon Feijóo L.

Paso 15. Luego de culminar el paso 14 se hace clic en Run y de inmediato se presenta la ventana de la Figura 2.18.1 la cual muestra los resultados del análisis de porosidad y saturación.

Se debe tener los conocimientos necesarios para analizar cada una de las curvas y así poder obtener excelentes resultados.

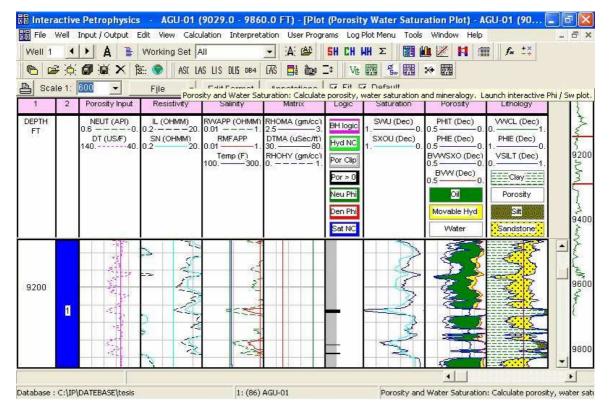


Figura 2.18: Porosity Water Saturation Plot.

Paso 16. Se calcula Rw @ ⁰T de formación, se sigue Calculation – Basic Log Analysis Functions. Se ingresa la ⁰T de formación y la salinidad del agua de formación. Para leer la temperatura de la formación se debe cargar el registro de gradiente de temperatura en alguna pista. Los resultados obtenidos se cargan en la opción Interpretation – Porosity and Water Saturation Parameters. (Figura 2.19).

También se debe ingresar la Rmf (resistividad del lodo) y la temperatura a la que fue leída Rmf. En la misma ventana pero en la pestaña Sw Logic se debe ingresar los parámetro m, n y a.

Paso 17. Los cutoff que se utilizaron fueron de: 10% para la porosidad, 50% para la saturación de agua y 50% para el volumen de arcilla, estos se cargan en Interpretation – Cutoff and Summation. (véase Figura 2.20)

Porosity Water Saturation Parameters : AGU-01 Waters Hydrocarbon Matrix Phi Logic Sw Logic Limits BadHole Den / Neu Sonic Coal Salt Zone Depths | Clay Rmfb Zone Rw Rw Rmf Rw Rwb Rmf Rho Salin # Temp bound Temp bound Temp Sxo zone Sxo zone 0.07905 0.1 60. 1 194. 0.76 102. 0.1 60. 0.17738 197. 0.76 102. 0.1 60. 0.1 60. ✓ Run New zone Delete zone Print P Close Help

Figura 2.19: Porosity Water Saturation Plot.

Figura 2.20: Cutoff Parameters.

iii Cu	Cutoff Parameters : AGU-01									
Zone [Zone Depths Standard Cutoff Res. Results Pay Results									
_	I	I =		[[1	1-	l	
Zone	Min Res	Min Pay	Phi Net	Phi Pay	Phi	Sw Net	Sw Pay	Sw	Vcl Net	Vcl Pay
#	Height	Height	Use	Use	Cutoff	Use	Use	Cutoff	Use	Use
1	0.	0.	1	1	0.08		1	50.	1	✓
2	0.	0.	1	1	0.08		¥	50.	¥	✓
3	0.	0.	1	¥	0.08		¥	50.	1	~
4	0.	0.	1	1	0.08		1	50.	1	1
5	0.	0.	1	1	0.08		¥	50.	¥	1
<										
91	Run New zone Delete zone Print Close Phelp									

Fuente: Interactive Petrophysics. Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Paso 18. Luego de hacer clic en Run en el paso 17 inmediatamente el programa grafica las zonas de pago (cutoff) recomendadas para los disparos que se muestran con rojo, como se presenta en la Figura 2.21.

El color verde indica una arenisca con posibilidades de contener hidrocarburo.

Interactive Petrophysics - AGU-01 (9029.0 - 9860.0 FT) - [Plot (Cutoff Plot) - AGU-01 (9029.0 - 9860.0 FT)] 📰 File Well Input / Output Edit View Calculation Interpretation User Programs Log Plot Menu Tools Window Help Well 1 ◀ ▶ A 📳 Working Set All ▼ A B SH CH WH Σ III M Z III M II f* 💢 Page ASC LAS LIS DLIS DB4 LAS 📑 🖦 🗅 Ve 📠 🖏 🖼 34 📠 Annotations | ₩ Fit □ Default Scale 1: 240 ▼ → Edit For<u>m</u>at F<u>i</u>le 3 PHIE (Dec) SW (Dec) VDCL (Dec) 0.5 0 ResFlag () ResFlag () ResFlag () 10 10. 9250 9600 9300 9800 4 Database : C:\IP\DATEBASE\tesis 1: (86) AGU-01

Figura 2.21: Cutoff Plot.

Paso 19. Los resultados finales de la evaluación se despliegan en la opción, Interpretation – Cutoff and Summation Parameters. (Figura 2.21).

La columna Gross indica el espesor de arena analizado, la segunda columna Net es el espesor neto de la arena saturada con hidrocarburo.

Los términos Net/Gross es el resultado de dividir Net para Gross, Av Phi es la porosidad promedio de la arena, Av Sw es la saturación promedio de agua en la arena y finalmente Av Vcl es el porcentaje de arcillocidad presente en la arena.

Cabe mencionar, que los resultados obtenidos de las zonas de interés seleccionadas dependen estrictamente de los conocimientos técnicos del evaluador más no del programa utilizado para la evaluación.

Cutoff Parameters : AGU-01 Zone Depths | Standard Cutoff | Res. Results | Pay Results | Gross Net Net/Gross Av Phi Av Sw Av VcI Zone interval Res Res Res Res Res 15.00 0.249 1 12.25 0.817 0.162 0.379 2 40.00 22.00 0.550 0,268 0.190 0.343 0.805 0.096 32.00 25.75 0.370 0.151 3 4 4.50 4.25 0.944 0.300 0.180 0.284 70.00 5 67.25 0.961 0.365 0.169 0.161 New zone 31 ✓ Run Delete zone Print P <u>Close</u> ? Help

Figura 2.21: Cutoff Results.

2.5. RESULTADOS

Con los resultados obtenidos de cada una de las evaluaciones de registros eléctricos de los pozos del Campo Shushufindi Aguarico, se han determinado valores promedio de porosidad, saturación de agua, volumen de arcilla y espesores netos saturados para cada una de las formaciones de interés.

Estos valores se presentan en el Anexo 2.8 y su promedio en la Tabla 2.14.:

Tabla 2.14: Resultado promedios de las zonas de pago del Campo Shushufindi

ARENA	PROFUNDIDAD (PIES)	GROSS (PIES)	Ho. (PIES)	POR. (%)	Sw (%)	VcI (%)
BT	8.200	24,23	10,25	18,68	28,73	10.82
U	9.100	159,53	61,76	18,96	21,94	16.01
T	9.300	166,25	59,17	18,08	26,94	11.98

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Los valores obtenidos están dentro de los rangos de los resultados presentados en estudios anteriores, lo cual indica que la reevaluación es correcta.

CAPÍTULO 3

DETERMINACIÓN DE LOS MECANISMOS DE DESPLAZAMIENTO DE FLUIDOS, ACTUALIZACIÓN DE LOS FACTORES DE RECOBRO Y RESERVAS.

3.1. MECANISMOS DE DESPLAZAMIENTO DE FLUIDOS

Con I la finalidad de pronosticar el funcionamiento de un yacimiento petrolífero se necesita como requisito fundamental el conocimiento del volumen de petróleo que originalmente se encuentra en el yacimiento, así como también el conocimiento de la energía disponible para expulsar el petróleo y el gas a los pozos de producción.

Un yacimiento petrolífero está confinado por límites o estratos geológicos impermeables y, en muchos casos, por características geológicas tales como los contactos agua-petróleo y gas petróleo.

Los mecanismos naturales de desplazamiento que influyen en el comportamiento de los reservorios son los siguientes:

- Expansión de roca y fluido
- Gas en solución
- Expansión de capa de gas
- Empuje hidráulico
- Segregación gravitacional

Para determinar el mecanismo de desplazamiento de cada uno de los reservorio se analizó: el historial de presiones y producción de fluidos, pues durante el desarrollo de un reservorio debe considerarse que en su etapa inicial se produce por expansión del sistema (petróleo, agua, roca) debido al diferencial de presión creada con la perforación del pozo productor, posteriormente se tiene un estado en el cual el reservorio empieza a estabilizarse, es entonces donde se puede

determinar cual es el mecanismo de desplazamiento predominante, para lo cual es necesario analizar el comportamiento productivo de los fluidos, ya que en este período el mecanismo de desplazamiento es directamente proporcional con la producción.

En la Tabla 3.1 se encuentran los porcentajes de recuperación estimados por cada tipo de mecanismo de desplazamiento de fluidos.

Tabla 3.1: Porcentaje de recuperación por mecanismo de desplazamiento.

MECANISMO DE DESPLAZAMIENTO	RECUPERACIÓN [%]		
1. Expansión de roca y fluidos	1-10 %	Prom. 3 %	
2. Gas en solución	5-35 %	Prom. 20 %	
3. Expansión de capa de gas	20-40 %	Prom. 25 %	
4. Empuje hidráulico	35-80 %	Prom. 50 %	
5. Segregación gravitacional	40-80 %	Prom. 60 %	

Fuente: GANESH, Thakur. Integrated Waterford Assetment

3.1.1. PRESIÓN DE LOS YACIMIENTOS

En el campo Shushufindi Aguarico la presión inicial de los yacimientos U y T fue de 3.867 psi y 4.050 psi respectivamente. Desde el año 1978 en adelante la presión se ha mantenido prácticamente estable con un descenso promedio de 60 psi por año.

El petróleo de los yacimientos U y T es subsaturado, lo cual significa que mientras se mantenga la presión del yacimiento sobre el punto de burbuja, en el yacimiento sólo existirá líquido y el gas no ejercerá ninguna presión adicional.

La presión inicial de BT fue de 2.940 psi, no se ha reportado un historial de presiones debido a que es un yacimiento nuevo, del cual se desconocen muchas de sus características.

En la Tabla 3.2 se presentan los resultados de las presiones promedio desde el año 1972 hasta el 2007 para los yacimientos U y T.

Tabla 3.2: Historial de presiones de los yacimientos U y T

AÑO	PRESIÓN DE LOS Y	ACIMIENTOS, psi
ANO	U	T
1972	3867	4050
1978	2800	3000
1984	2500	2800
1991	2100	2750
1995	2050	2700
1996	2000	2650
1997	1950	2600
1998	1900	2550
1999	1850	2500
2000	1800	2500
2001	1770	2500
2002	1710	2442
2003	1680	2376
2004	1635	2338
2005	1558	2128
2006	1500	2000
2007	1457	1810

Fuente: Departamento de Yacimientos. Petroproducción.

A continuación en la Figura 3.1 se puede observar la declinación de presión de los yacimientos U y T con respecto al tiempo (años).

DECLINACIÓN DE PRESIÓN, U Y T 5000 4000 PRESIÓN (PSI) - ARENA U ARENA T 3000 Pb "U" (1170 psi) 2000 - Pb "T" (1050 psi) – AÑO 2007 1000 0 1970 1980 1990 2000 2010 TIEMPO (AÑOS)

Figura 3.1: Declinación de presión de los yacimientos U y T.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

La presión promedia actual para el yacimiento U está en el orden de los 1.457 psi y para el yacimiento T en 1.810 psi, como se muestra en las Figuras 3.2 y 3.3.

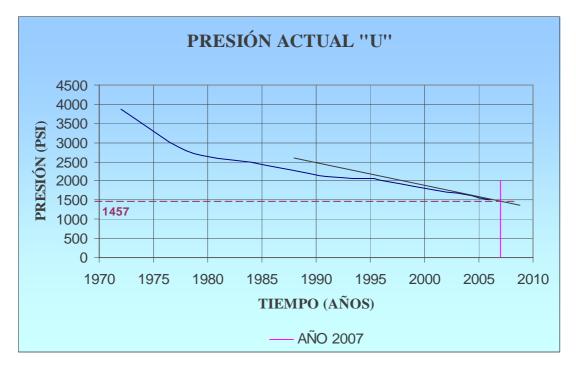


Figura 3.2: Presión actual del yacimiento U.

Elaborado por: José R. Enríquez, Marlon Feijóo L

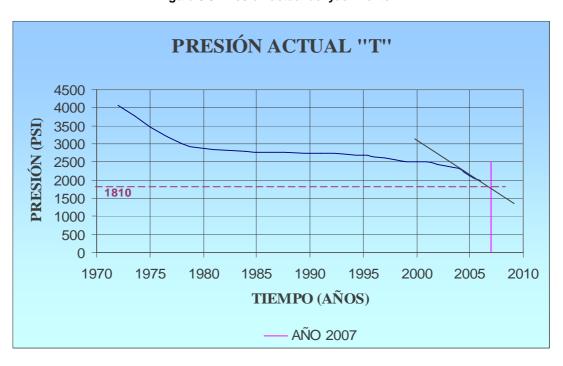


Figura 3.3: Presión actual del yacimiento T.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

3.1.2. DESPLAZAMIENTO DE FLUIDOS EN EL CAMPO SHUSHIFINDI

Los yacimientos U y T del campo Shushufindi Aguarico están rodeados por acuíferos de acción infinita. Esta condición se identificó desde el inicio de la producción del campo y se han realizado varios estudios para conocer su verdadera influencia.

La energía de los yacimientos de Shushufindi Aguarico proviene de tres fuentes:

- Los acuíferos periféricos.
- El gas disuelto en el petróleo.
- ❖ La expansión del sistema, es decir la expansión de petróleo, agua y roca.²²

Este soporte de presión proveniente de los acuíferos periféricos por los flancos Norte, Sur-este y Sur de la estructura, compensan el enorme volumen de producción de fluidos; su acción es capaz de equilibrar el continuo desgaste de presión, evitando que la misma descienda hasta el punto de burbuja.

Con esto se demuestra que la inyección de agua mecanismo de ayuda a la recuperación de petróleo en los yacimientos U y T del campo Shushufindi Aguarico, no sufrió efecto alguno.

La producción de fluidos provoca cambios en los yacimientos, siendo los más significativos: la caída de presión, la disminución del caudal de producción, la intrusión de agua, el ascenso del contacto agua petróleo, y la reducción progresiva del tamaño de los yacimientos.

En el yacimiento T los acuíferos se activaron más rápido que en el yacimiento U, debido a la intensa producción. La intrusión de agua desde las arenas inferiores hacia T, confirma que la falla principal de Shushufindi no es impermeable, permite el paso de fluidos y consecuentemente de presión. Por esta razón este yacimiento ha mantenido altos niveles de producción.

Departamento de Yacimientos, Sección Recuperación Mejorada., Evaluación y Control de Producción de Petróleo e Inyección de agua en los Yacimientos U y T. Julio 1997.

En el caso de un yacimiento con empuje hidrostático donde no ocurre disminución considerable de la presión, la intrusión de agua hacia el yacimiento puede ser paralela a los planos de estratificación de las capas, como ocurre en capas delgadas, altamente inclinadas (empuje hidrostático lateral), o bien hacia arriba, donde la producción de petróleo está situada sobre la zona acuífera (empuje hidrostático de fondo).²³

En conclusión, en el campo Shushufindi Aguarico, la presión se mantiene por encima del punto de burbuja y además existe un incremento continuo en la producción de agua, es evidente que el principal mecanismo de desplazamiento es el empuje lateral de agua.

3.2. CÁLCULO DE RESERVAS

El petróleo es el mayor activo que posee el país y por consiguiente es un recurso estratégico no renovable para el desarrollo del Estado.

La estimación de reservas de petróleo se basa en estudios Geológicos, Geofísicos, Ingeniería de Yacimientos y en la interpretación de datos técnicos disponibles al momento de la estimación.

Generalmente, las estimaciones de reservas de petróleo son revisadas conforme a la nueva interpretación geológica, nuevos parámetros del yacimiento o cuando existe un cambio de las condiciones económicas.

Esto constituye la razón fundamental para definir la fecha a la cual se hacen los respectivos cálculos, ya que los montos estimados de reservas de petróleo tienen el carácter de ser dinámicas.

La actualización de Reservas de Petróleo es muy importante para el país por cuanto involucra el control de la producción de los campos, permite planificar las

²³ Craft y Hawkins. **Ingeniería Aplicada de Yacimientos Petrolíferos.** 1968.

estrategias para el transporte del petróleo a través de los oleoductos secundarios y principales y establecer estrategias de explotación del crudo a corto, mediano y largo plazo.

3.2.1. RESERVAS

La determinación de las reservas se hizo de acuerdo a las definiciones de Society of Petroleum Engineers (SPE) aprobadas en marzo de 1997 y el World Petroleum Congreso (WPC) aprobadas en Octubre de 1996.

"Las reservas son todo el volumen de petróleo que puede ser extraído del yacimiento bajo las condiciones técnicas y económicamente rentables a partir de una determinada fecha en adelante. Todos los cálculos de reservas incluyen cierto grado de incertidumbre.

El grado relativo de incertidumbre puede expresarse clasificando las reservas en dos grupos, reservas probadas y no probadas".

3.2.1.1. Reservas Probadas

Las reservas probadas son aquellos volúmenes de petróleo que mediante el análisis de los datos geológicos y de ingeniería demuestren con certeza razonable como recuperables en años futuros a partir de yacimientos conocidos, bajo las condiciones técnicas y económicas existentes, es decir precios y costos a la fecha en que se realiza la estimación.

Son las reservas que pueden ser recuperadas en las áreas en donde se ha desarrollado el campo.

3.2.1.2. Reservas No probadas

"Las reservas no probadas se basan en datos geológicos y/o de ingeniería similares a los datos usados para calcular reservas probadas pero con

incertidumbre en regulaciones, condiciones económicas, contractuales y técnicas, todo lo cual no permite clasificarlas como probadas". ²⁴

Las reservas no probadas pueden eventualmente clasificarse como reservas probables y reservas posibles.

3.2.1.2.1. Reservas Probables

Las reservas probables se basan en datos geológicos, ingeniería de reservorios y económicos similares a los usados para estimar las reservas probadas; pero los grados de incertidumbre técnica, contractual, económica o de regulación evitan ser clasificadas como probadas.

3.2.1.2.2. Reservas Posibles

Las reservas posibles son aquellas reservas no probadas, las cuales se han determinado con menor grado de certeza mediante análisis geológico-sísmico y de ingeniería que las reservas probables, teniendo un alto grado de incertidumbre. A partir de esto se estima que las reservas posibles tienen menos probabilidad de ser recuperables en comparación con las reservas probables.

3.2.1.3. Reservas Remanentes

Son los volúmenes de petróleo recuperables, cuantificadas a cualquier fecha posterior al inicio de la producción comercial que todavía permanecen en el yacimiento.

En campos desarrollados y con muchos años de producción como Shushufindi-Aguarico, desaparecen las reservas probables y posibles, quedando únicamente las reservas probadas y remanentes.

Verdesoto, Calos. Estimación de Reservas de petróleo crudo y gas del País al 31 de Diciembre de 2006. Petroproducción-DNH.

En la Tabla 3.3 se presenta la estimación oficial de reservas remanentes de petróleo al 31 de Diciembre del 2006 del Campo Shushufindi Aguarico.²⁵

Tabla 3.3: Estimación de reservas de petróleo crudo Campo Shushufindi al 31 de Diciembre del 2006

			RESERVAS (ORIGINALES	Producción	Reservas
	Petróleo	FR			Acumulada	Remanetes
Yac.	In Situ	%	Probadas	Totales	Bls. N.	Bls. N.
1 40.	Bls.N	70	Bls. N.	Bls.N	AI 31/12/06	AI 31/12/06
ВТ	33.333.333	15,00	5.000.000	5.000.000	3.654.380	1.345.620
U	1.549.571.937	52,00	792.123.000	792.123.000	495.030.885	297.092.115
Т	1.494.571.689	53,00	792.123.000	792.123.000	715.861.431	76.261.569
Subtotal	3.077.476.959		1.589.246.000	1.589.246.000	1.214.546.696	374.699.304

Fuente: Departamento de Yacimientos. Petroproducción - DNH.

Las cifras de Reservas Totales Originales son las Reservas Probadas más las Reservas Probables más las Reservas Posibles y; las Reservas Remanentes son el resultado de la diferencia entre Reservas Probadas Originales y la Producción Acumulada a una fecha determinada, definiciones que están de acuerdo con los conceptos manejados internacionalmente en la industria petrolera.

3.2.2. CÁLCULO DEL PETRÓLEO ORIGINAL IN SITU

Los métodos de estimación del petróleo original in situ caen dentro de dos grupos: método volumétrico y método de análisis del comportamiento del yacimiento.

El método volumétrico empleado para calcular el petróleo en el yacimiento se basa en: información obtenida de registros y de análisis de núcleos de donde se determina el volumen total, porosidad y saturación inicial de fluidos.

Las propiedades de roca y fluido, según el Capítulo 2, se determinaron a partir de los registros eléctricos, análisis PVT y/o pruebas de presión. (Buildup).

_

²⁵ **DNH** .Dirección Nacional de Hidrocarburos.

Los métodos de análisis de comportamiento del yacimiento incluyen: balance de materiales, modelos de simulación de reservorios y el análisis de curvas de declinación de producción.

El método de balance de materiales implica el uso de la ley de la conservación de la materia. El reservorio es considerado como un tanque, en el cual la ecuación de balance se aplica para diversas condiciones de presión. La exactitud de este método depende de la estimación correcta tanto de las propiedades de la roca y del fluido así como de la medida de presión del yacimiento.

El análisis de curvas de comportamiento incluye gráficos de: rata de producción vs. tiempo, corte de agua vs. producción acumulada, rata de producción vs. producción acumulada. Esta técnica consiste en extrapolar la curva de comportamiento de producción a futuro, esto requiere que las condiciones de producción pasadas sean bien definidas.

3.2.2.1 MÉTODO VOLUMÉTRICO

El cálculo del POES para el Campo Shushufindi Aguarico se efectuó bajo el Método Volumétrico por ser considerado el más confiable dado a la calidad de los datos obtenidos, situación que no se cumple con el Método de Balance de Materiales ya que para su aplicación se necesita una correcta y exacta información de presión de reservorio y de análisis PVT.

Para la estimación de las reservas de U y T se realizó un recalculo del área de los yacimientos (Anexo 3.1 y 3.2 - Mapas de contornos estructurales al Tope de la formación U inferior y T inferior).

La estimación volumétrica puede ser obtenida, mediante la planimetría de la estructuras. El planímetro es el instrumento que se utiliza para medir una superficie irregular, la misma que se mide por el número de vueltas que ha dado una rueda que tiene el planímetro en su parte inferior.

Para su utilización se recorre el perímetro del área a medir en sentido de las agujas del reloj con la mayor precisión posible, comenzando en cualquier punto y terminando exactamente en el mismo punto en que se comenzó, se maneja una lupa en cuyo centro hay un punto.

Este proceso se debe repetir de 2 a 3 veces, para determinar con exactitud la medida del área.

Para el campo Shushufindi Aguarico se procedió a planimetrar el cierre estructural de los reservorios U y T con los contactos agua-petróleo (CAP) obtenidos de la reevaluación de los registros eléctricos.

Para delimitar la estructura se escogieron los contactos agua petróleo de los pozos que se encuentran en los límites del área Shushufindi Aguarico, definidos en la re-evaluación de registros eléctricos. (Tabla 3.4.)

Tabla 3.4: Contactos agua-petróleo de los yacimientos U y T

POZO	SECTOR	CAP [ft].	
		U	T
AGU-02, AGU- 08	Norte	- 8380	- 8630
SSF-55	Nor-este	- 8380	- 8595
SSF-WIW 3	Nor-oeste	- 8400	- 8630
SSF-37	Centro	- 8440	- 8680
SSF-50	Sur	- 8450	- 8720

Elaborado por: José R. Enríquez, Marlon Feijóo L.

La medida del área planimetrada se debe multiplicar por el respectivo factor del planímetro correspondiente a la escala del mapa utilizado, los factores para las diferentes escalas se detallan en el Anexo 3.3

Para este estudio, se han utilizado mapas estructurales a escala 1: 50.000, por lo cual nuestro factor para 1 del planímetro es igual 25 Km²; se realiza la respectiva conversión de unidades para obtener el área en acres.

Los resultados de las áreas planimetradas se presentan en la Tabla 3.5.

El cálculo del área de los yacimientos U y T se determina en la Tabla 3.6.

Tabla 3.5: Resultados de la planimetría a los yacimientos U y T

MAPA	PLANIMETRIA				
U	AREA 1	3.98	4.01	3.99	
	AREA 2	3.94	3.96	3.97	
	TOTAL	7.92	7.97	7.96	
	PROM	7.95			
T	AREA 1	4.075	4.05	4.075	
	AREA 2	3.94	3.91	3.92	
	TOTAL	8.015	7.96	7.995	
	PROM	7.99			

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Tabla 3.6: Cálculo de área de los yacimientos U y T

ARENA	PLANIMETRO	FACTOR ESCALA	AREA [Km²]	AREA [acres]
U	7.95	25	198.75	49112.1946
T	7.99	25	199.75	49359.2999

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Para comprobar las áreas calculadas anteriormente, se digitalizaron los contornos estructurales de U y T (AutoCAD) y se obtuvo resultados semejantes a los anteriores, por lo que se determinó un área única de cada reservorio mediante el promedio de los resultados obtenidos. Tabla 3.7.

Tabla 3.7: Área de los yacimientos U y T

ARENA	Planímetro	AutoCAD	PROMEDIO
	área [acres]	área [acres]	área [acres]
U	49112.1946	50134.27	49623.23
Т	49359.2999	50285.28	49822.29

Elaborado por: José R. Enríquez, Marlon Feijóo L.

En vista de que el reservorio Basal Tena es discontinuo y está aislado de los reservorios U y T, no se dispone de información estructural confiable para realizar el cierre de su área, sin embargo Basal Tena aparece notablemente en Aguarico y en el flanco Sur-Este; y se adelgaza considerablemente hacia el Sur-Oeste del campo.

Luego de analizar los pozos que presentan este reservorio, se seleccionó: 20 pozos en la zona Norte (Aguarico) y 11 pozos en la zona Sur-Este, los mismos que se presentan en la Tabla 3.8:

Tomando en consideración estos aspectos, se calculó el área del reservorio por medio del radio de drenaje, el mismo que se estimó en 500 m. ²⁶

Es importante señalar que el pozo SSF-99 ubicado en la zona Norte, está muy próximo a la falla principal de la estructura, motivo por el cual se disminuyó su área de drenaje a la mitad debido a la interferencia que existe con la misma.

El área en acres se calcula por:
$$A(acres) = \frac{3.1416 * r^2}{4046.856}$$
. (Ec. 3.1)

Donde: r: radio de drenaje. (m)

Tabla 3.8: Pozos del yacimiento Basal Tena

NODTE	h o [fal]	CUD ECTE	h o [fil]
NORTE	ho[ft]	SUR-ESTE	ho[ft]
AGU-01	13	SSF-13	3.5
AGU-05	10	SSF-20 B	6.5
AGU-06	3.5	SSF-22	4.5
AGU-09	7.5	SSF-23	10.5
AGU-10	3.5	SSF-25	18
SSF-31	5.5	SSF-26	10
SSF-51	9	SSF-42B	9.5
SSF-52B	12	SSF-68	6
SSF-53	6	SSF-75	14.5
SSF-54	6	SSF-91	4.5
SSF-55	7.5	SSF-95	17.5
SSF-57	14.5		
SSF-59	8.5		
SSF-60	6.5		
SSF-63	11		
SSF-70	16.5		
SSF-71	8.75		
SSF-76	13.5		
SSF-99	13		
SSF-107D	9.5		

Elaborado por: José R. Enríquez, Marlon Feijóo L.

-

²⁶ Departamento de Yacimientos. **Petroproducción**

En la Tabla 3.9 se encuentran los resultados obtenidos para el área del reservorio Basal Tena:

Tabla 3.9: Cálculo del área del yacimiento BT

Radio de drenaje	Área	Pozos	Área Total
[mt]	[acres]		[acres]
500	194.0761128	30	5822.28338
SSF-99	97.03805638	1	97.0380564
TOTAL			5919.32144

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Una vez que se han obtenido todos los parámetros necesarios se aplica la fórmula volumétrica²⁷:

$$Ni = \frac{7758 * A * ho * \phi * (1 - Sw)}{Boi}$$
 [BF] (Ec. 3.2)

Donde:

Factor de conversión: $7758 \left[\frac{bls}{acre - pie} \right]$

A: Área (acres).

h_o: Espesor neto (ft)

Φ: Porosidad (%).

Sw: Saturación de agua innata (%).

B_{oi}: Factor volumétrico inicial de petróleo. (bls/BF).

Los volúmenes de petróleo original in situ obtenidos para cada uno de los reservorios se encuentran tabulados en la Tabla 3.10.

Tabla 3.10: Volumen de petróleo original in situ de los yacimientos BT, U y T

YACIMIENTO	Area	Но	So	Ф	Boi	IN SITU
	[acres]	[pies]	[%]	[%]	[bls/BF]	[BF]
BT	5.919,32	10,25	0,7127	0,1868	1,1508	54'453.944,25
U	49.623,23	61,67	0,7806	0,1896	1,267	2.773'313.961,71
Т	49.822,29	59,17	0,7306	0,1808	1,217	2.482'347.315,72
TOTAL						5.310'115.221,69

Elaborado por: José R. Enríquez, Marlon Feijóo L.

²⁷ Craft y Hawkins. **Ingeniería Aplicada de Yacimientos Petrolíferos.** 1968.

3.2.3. CÁLCULO DEL FACTOR DE RECOBRO

El Factor de Recobro es consecuencia directa de la explotación del campo, es decir de la tasa de producción de petróleo, el número de pozos, la presión, los mecanismos de levantamiento artificial, etc., los mismos que deben ser evaluados continuamente en períodos anuales, para actualizar el Factor de Recobro.

3.2.3.1. Factor de recobro (FR) a partir de la Ecuación de ARPS

ARPS desarrolló una ecuación para estimar la eficiencia de la recuperación de los reservorios, la misma que está en función de su mecanismo de desplazamiento; una vez que se ha establecido que dicho mecanismo para los yacimientos BT, U y T del campo Shushufindi Aguarico es principalmente por el empuje lateral de agua, los factores de recobro para cada reservorio se calcularon por la siguiente ecuación²⁸:

$$FR = (41.815) * \left\{ \frac{\phi(1 - S_{wi})}{B_{ob}} \right\}^{0.1611} * \left[\frac{k * \mu_{wi}}{\mu_{ob}} \right]^{0.0979} * (S_{wi})^{0.3722} * \left(\frac{Pi}{Pa} \right)^{0.1741}$$
 (Ec. 3.3)

Donde:

Φ : Porosidad, fracción

Swi: Saturación inicial de agua, fracción

B_{oi}: Factor volumétrico del petróleo al punto de burbuja. bls/BF

K: Permeabilidad, md

μ_{oi}: Viscosidad del petróleo al punto de burbuja. cp

 μ_{wi} : Viscosidad inicial del agua, cp

P_i: Presión inicial, psi

Pa: Presión de abandono, psi

En este proyecto la presión de abandono de cada reservorio se asumió igual al actual valor de presión de burbuja, esto con la finalidad de obtener una máxima recuperación de petróleo.

²⁸ http://quipu.uni.edu.pe

Hay que reconocer que se corre un gran riesgo al utilizar las presiones de burbuja como presiones de abandono, ya que si se llegara a este valor ocurriría la separación de fases y estaríamos hablando de otro tipo de reservorio, con características totalmente diferentes y en consecuencia requeriría un manejo diferente. En lo posible se debe evitar llegar a dichas presiones.

Los datos para el cálculo del factor de recobro mediante la ecuación de ARPS, se obtuvieron de los análisis PVT, pruebas de restauración de presión (Buildup) y re-evaluación de registros eléctricos, detallados en el Capítulo 2.

Los parámetros utilizados en la ecuación de ARPS se presentan en la Tabla 3.11.

Tabla 3.11: Parámetros por reservorio para el cálculo del factor de recobro - Ecuación de ARPS

VARIABLE	RESERVORIO				
VARIABLE	ВТ	U	T		
Φ (%)	18,86	18,96	18,08		
S _{wi} (%)	28,73	21,94	26,94		
K (md)	321,166	310,174	520,642		
Pi (psi)	2.940	3.867	4.050		
Pb (psi)	870	1.170	1.050		
Pa (psi)	870	1.170	1.050		
Bob (bls/BF)	1,1749	1,297	1,2476		
Uoi (cp)	4,959	2,471	1,081		
Uob (cp)	3,956	1,927	0,7958		
Uwi (cp)	0,43	0,47	0,46		

Fuente: Archivo Técnico - Petroproducción. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Los nuevos factores de recobro para los yacimientos BT, U y T son los siguientes: (Tabla 3.12).

Tabla 3.12: Valores del Factor de Recobro - Ecuación de ARPS

YACIMIENTO	FACTOR DE RECOBRO (%)
BT	32.40
U	31.53
T	39.53

Elaborado por: José R. Enríquez, Marlon Feijóo L.

3.2.3.2. Factor de recobro (FR) a partir de las curvas de declinación de producción

Cuando existen suficientes datos de producción y la producción está declinando, como es el caso del campo Shushufindi Aguarico, las curvas de producción realizadas con estos datos, ya sea de pozos, yacimientos o del campo, pueden ser extendidas (extrapolar los datos) para indicar el comportamiento productivo futuro de los mismos.

El análisis de las curvas de declinación se basa en lo siguiente:

- ❖ Lo que ha sucedido en el pasado será consecuencia para el futuro.
- La mayor parte de los pozos de un campo, muestran una caída de presión constante.
- ❖ El fluido evaluado, el cual es de una sola fase, se produce a partir de intervalos de producción completados y con un comportamiento homogéneo.

Lo más importante en el uso de las curvas de declinación es suponer que todos los factores que influyen en la curva sean válidos a través de la vida productiva del reservorio.

En la práctica, muchos factores influyen en las ratas de producción y consecuentemente, las curvas tienden a declinar, algunos de estos factores son: declinación en la presión de yacimiento, cambios en los métodos de producción, reacondicionamientos, tratamientos de pozos, rupturas en tuberías, condiciones climáticas y de mercado, etc.

Se puede obtener la siguiente información mediante el análisis de las curvas de declinación:

 Reservas de petróleo original y reservas remanentes al momento del análisis.

- 2. Vida productiva remanente del campo, reservorio o pozo.
- 3. Tasas de producción futuras.

También por medio del análisis de las curvas de declinación se puede obtener el Factor de recobro analizando las curvas del comportamiento del Corte de agua (BSW) vs. Producción acumulada de cada reservorio, curvas que se representan en las Figuras 3.4, 3.5 y 3.6 para los yacimientos BT, U y T respectivamente.

Estas curvas se extrapolan hasta un 95% de corte de agua. Este valor es función principalmente del manejo que se pueda dar en superficie al agua de formación.

Figura 3.4: Curva de Comportamiento de Producción BT.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Los valores obtenidos para el cálculo de los factores de recobro por este método se presentan en la Tabla 3.13.

DECLINACIÓN DE PRODUCCIÓN "U" 40 850'000.000 1000000000 PRODUCCIÓN ACUMULADA DE PETRÓLEO (BLS) BSW = 95 %

Figura 3.5: Curva de Comportamiento de Producción U.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Figura 3.6: Curva de Comportamiento de Producción T.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Tabla 3.13: Valores del Factor de Recobro - Curvas de Declinación

FARCTOR DE RECOBRO (%), Curvas de Declinación						
	BT U T					
POES	54,453,944	2,773,313,962	2,482,347,316			
ACUM.	17,500,000	850,000,000	970,000,000			
F.R. (Np/N)	32.14	30.65	39.08			

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Por lo tanto, una vez obtenidos los factores de recobro por dos métodos distintos y observando que la variación entre ellos no es significativa, se determina un valor único para este parámetro. (Tabla 3.14).

Tabla 3.14: Factor de Recobro por reservorio para el Campo Shushufindi

YACIMIENTO	FACTOR DE RECOBRO ACTUAL (%)			
	EC. ARPS CURVAS DE DECLINACIÓN PROMEDIO			
BT	32.40	32.14	32.27	
U	31.53	30.65	31.09	
Т	39.53	39.08	39.30	

Elaborado por: José R. Enríquez, Marlon Feijóo L.

3.2.4. ESTIMACIÓN DE NUEVAS RESERVAS PROBADAS Y REMANENTES PARA LOS YACIMIENTOS BT, U y T.

Las reservas de petróleo son el resultado del volumen de petróleo in situ multiplicado por el factor de recobro, estos valores son dinámicos, y se los busca constantemente con nueva información, el uso de avances tecnológicos y desarrollo del campo.

Las nuevas reservas probadas y remanentes se presentan en la Tabla 3.15.

Tabla 3.15: Reservas Probadas y Remanentes actuales

YAC	IN SITU	FR	R. PROBADAS	ACUMULADO	R. REMANENTES
	[BF]	[%]	[BF]	Nov, 2007 [BF]	[PROBADAS -ACUM] [BF]
ВТ	54,453,944.25	32.27	17,570,473.09	4,130,762.00	13,439,711.09
U	2,773,313,961.71	31.09	862,157,904.60	501,499,031.00	360,658,873.60
T	2,482,347,315.72	39.30	975,645,353.72	723,678,791.00	251,966,562.72
TOTAL	5,310,115,221.69		1,855,373,731.41	1,229,308,584.00	626,065,147.41

Elaborado por: José R. Enríquez, Marlon Feijóo L.

CAPÍTULO 4

ANÁLISIS COMPARATIVO CON LOS RESULTADOS DE PETROPRODUCCIÓN Y DETERMINACIÓN FUTURA DE PRODUCCIÓN.

4.1. ANÁLISIS COMPARATIVO DE RESULTADOS.

4.1.1. BREVE SÍNTESIS HISTÓRICA DE LA EVALUACIÓN DEL FACTOR DE RECOBRO

A grandes rasgos, se consideró inicialmente que los yacimientos U y T tenían características semejantes, y el volumen total de petróleo IN SITU fue de 3.200 millones de barriles. Estos valores se calcularon a través del método volumétrico.

Los trabajos de evaluación, perforación de pozos de desarrollo y estudios de los yacimientos, han permitido determinar a lo largo del tiempo diferentes valores de factor de recobro, que se encuentran tabulados en la Tabla 4.1.:

Tabla 4.1: Diferentes valores de Factor de Recobro

FOTUDIO	4ÑO	FR %		RESERVAS TOTALES	
ESTUDIO	ANO	AÑO U T		MMBLS	
Simulación Matemática Sin inyección de agua Con inyección de agua	1987	19 41	24 48	1354.0	
Simulación Matemática Con inyec. y perforación	1991	53	53	1732.0	
Estudio de FR. Con perforación	1996	33	56	1358.0	
Estudio de F.R.	1997	45	45	1080.0	

Fuente: Departamento de Yacimientos, Sección Recuperación Mejorada, Evaluación y Control de Producción de Petróleo e Inyección de agua en los Yacimientos U y T. Julio 1997.

En el futuro se espera conocer los nuevos valores de POES, Factor de Recobro, reservas totales y reservas remanentes, que se ajusten a la realidad del campo.

Para el campo Shushufindi Aguarico se han realizado diversos estudios, sin embargo los estudios de Simulación Matemática son los más importantes, ya que están integrados por evaluaciones Geofísicas, Geológicas, Petrofísicas y de Ingeniería, los mismos que se han llevado a cabo en los años 1991, 1998 y 2004 respectivamente.

A continuación se describen los aspectos generales de cada uno de ellos:

4.1.1.1. SIMULACIÓN MATEMÁTICA: SCIENTIFIC SOFTWARE INTERCOMP: SSI - 1991.

En Diciembre de 1990 PetroAmazonas contrató a SCIENTIFIC SOFTWARE INTERCOMP la realización de un estudio completo de Ingeniería de Yacimientos para Shushufindi-Aguarico.

Para el cálculo de la saturación de agua Sw se utilizó, un exponente de cementación m = 1.9, el exponente de saturación n = 1.85 y el factor de saturación n = 1.85 y el factor de saturación n = 1.85

Datos de núcleos están disponibles únicamente en las arenas U y T principales y estos datos han sido separados y analizados por yacimiento.

Tabla 4.1: Porosidad de los yacimientos U y T, SSI-1991

ARENA	RANGO (%)	POROSIDAD (%)	No. MUESTRAS
U	10 – 24	19	126
Т	4 - 24	18	146

Fuente: Estudio de Simulación Matemática. SSI – 1991.

Al momento se encuentran vigentes los valores de POES y FR del estudio de simulación matemática del año 1991, que se los toma como oficiales. Tabla 4.2. ²⁹

_

SCIENTIFIC SOFTWARE INTERCOMP. PetroAmazonas. Estudio de Yacimientos Shushufindi Aguarico. Diciembre 1991.

Tabla 4.2: Resultados de POES y FR - SSI 1991

YAC.	IN SITU [BF]	FR [%]	PROBADAS [BF]
BT	33'333.333,00	15	5'000.000,00
U	1.549'571.937,00	52	792'123.000,00
Т	1.494'571.689,00	53	792'123.000,00
TOTAL	3.077'476.959,00		1.589'246.000,00

Fuente: Estudio de Simulación Matemática. SSI - 1991.

4.1.1.2. SIMULACIÓN MATEMÁTICA: PETROPRODUCCIÓN – CMG (COMPUTER MODELLING GROUP LTD) - 1998.

Los objetivos iniciales del proyecto consistieron en hacer una revisión al estudio realizado en 1991. Para el cálculo de la saturación de agua Sw se utilizó, un exponente de cementación m = 2.3, el exponente de saturación n = 2 y el factor de saturación n = 20.62. La Rw de U fue de 0.031 y para T de 0.101 (ohm-m).

El cambio más importante en los resultados de las simulaciones anteriores fue debido a las nuevas posiciones de los CAP, este fue una de las variables de ajuste. Con la variación del CAP se cambia también el volumen de POES.

Los resultados indican que respecto al POES calculado por SSI en el estudio de 1991, el POES se reduce en 27%, es decir que de 3.077'476.959,00 pasa a 2.255'300.000 barriles de petróleo.³⁰

Los valores finales del volumen de petróleo original in situ constan en la Tabla 4.3:

Tabla 4.3: Petróleo original in situ PPR-CMG-1998

INTERVALO	POES (barriles)
G2	32'900.000
U PRINCIPAL	1.137'300.000
T SUPERIOR	6'400.000
T INFERIOR	1.078'700.000
TOTAL	2.255'300.000

Fuente: Estudio de Simulación Matemática. PPR-CMG-1999.

³⁰ Petroproducción – CMG (Computer Modelling Group Ltd). Estudio de Simulación Matemática. Abril 1998

4.1.1.3. SIMULACIÓN MATEMÁTICA: CORELAB - 2004.

Se uso los datos OFM originales (datos de Petroproducción), con los que cuales se realizó estudios separados para las arenas U y T, para 110 pozos productores.

Los cálculos de balance de materiales indican un petróleo original en sitio de 3803 MMBIs para todo el campo, 1480 MMBIs para la arena U inferior y 1642 MMBIs para la arena T inferior.

La Tabla 4.4 presenta los Factores de Recobro calculados por CORELAB³¹:

Tabla 4.4: Factores de Recobro calculados por CORELAB-2004

FACTOR DE RECOBRO	TOTAL
Total Campo F.R. actual	23.54% basado en el total de petróleo in situ.
Total Campo F.R. actual	25.73% basado en los polígonos.
U – superior F.R. actual	2.54%
U – inferior F.R. actual	28.16%
U Factor Recuperación actual	20.291%
T – superior F.R. actual	11.15%
T – inferior F.R. actual	37.77%
T Factor Recuperación actual	33.13%

Fuente: Estudio de Simulación Matemática. CORELAB-2004

4.1.2. COMPARACIÓN DE RESULTADOS

A continuación se presentan los resultados de reservas obtenidos por el Método Volumétrico y las reservas oficiales de PETROPRODUCCIÓN (Tabla 4.5).

Tabla 4.5: Factores de Recobro calculados y oficiales

			CALCULADAS		
YAC.	IN SITU [BF]	FR [%]	PROBADAS [BF]	ACUMULADO Nov, 2007 [BF]	REMANENTES [BF]
ВТ	54,453,944.25	32.27	17,570,473.09	4,130,762.00	13,439,711.09
U	2,773,313,961.71	31.09	862,157,904.60	501,499,031.00	360,658,873.60
T	2,482,347,315.72	39.30	975,645,353.72	723,678,791.00	251,966,562.72
TOTAL	5,310,115,221.69		1,855,373,731.41	1,229,308,584.00	626,065,147.41

³¹ Corelab, Reporte Final. **Estudio de Simulación de Reservorios Campo Shushufindi Aguarico**. Febrero 2004.

	OFICIALES 31/12/2006				
YAC.	IN SITU [BF]	FR [%]	PROBADAS [BF]	ACUMULADA 31 Dic, 2006 [BF]	REMANENTES [BF]
BT	33'333.333,00	15	5'000.000,00	3'654.380	1'345.620,00
U	1.549'571.937,00	52	792'123.000,00	495'030.885	297'092.115,00
Т	1.494'571.689,00	53	792'123.000,00	715'861.431	76'261.569,00
TOTAL	3.077'476.959,00		1.589'246.000,00	1.214'546.696,00	374'699.304,00

YACIMIENTO	RESERVAS REMANENTES [BF]	RESERVAS REM. OFICIALES [BF]	DIFERENCIA [BF]
BT	13,439,711.09	1'345.620,00	12'094.091,09
U	360,658,873.60	297'092.115,00	63'566.758,60
Т	251,966,562.72	76'261.569,00	175,704,993.72
TOTAL	626,065,147.41	374'699.304,00	251,365,843.41

Elaborado por: José R. Enríquez, Marlon Feijóo L.

El volumen original in situ a condiciones actuales calculadas por el método volumétrico están en el orden de los 54'453.944,25 bls para la arena BT, 2.773'313.961,71 bls para U y de 2.482'347.315,72 bls para la arena T.

Los factores de recobro calculados en este estudio son: 32,27% para BT; 31,09% para U y 39,30% para la arena T.

Aunque los factores de recobro calculados disminuyeron. El incremento de las reservas probadas se debe al aumento del POES.

Las reservas probadas calculadas con respecto a las reservas probadas oficiales al 31 de Diciembre del 2006 se incrementan en 266'127.731 bls. Por ende las reservas remanentes también se han incrementado en 251,365,843.41 bls con respecto a las oficiales.

Para un yacimiento con empuje hidráulico lateral la teoría menciona que el porcentaje máximo de factor de recobro es 45%. Los factores de recobro calculados están dentro de este parámetro, con lo que se demuestra que dichos valores son más reales y se ajustan mejor a las condiciones del campo, en comparación a los factores tomados como oficiales por PETROPRODUCCIÓN, los cuales son valores sobredimensionados que deben ser corregidos.

4.2. PROYECCIONES DE PRODUCCIÓN DE PETRÓLEO

Una proyección del género que sea, siempre toma como referencia lo ocurrido en el pasado y desde la realidad presente, asumiendo una serie de supuestos, visualiza el comportamiento del futuro.

La mayoría de los estudios y trabajos de ingeniería de petróleos, de una manera implícita o explícita tienen una proyección de producción, para un pozo, un yacimiento, campo, etc. En este tema se refleja la calidad del trabajo, la utilidad de una proyección de producción es servir de soporte para supuestos y consecuentemente para proyectos de un período.

Para realizar la proyección de producción de los yacimientos se estima un tiempo de 20 años para lo cual se grafica el historial de producción tanto de petróleo como de agua (BPD) vs tiempo (años), como se puede observar en las figuras 4.1, 4.2 y 4.3 para BT, U y T respectivamente.

4.2.1. PROYECCIÓN DE PRODUCCIÓN DEL YACIMIENTO BT

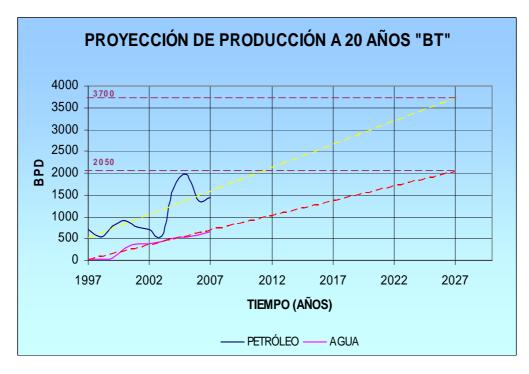
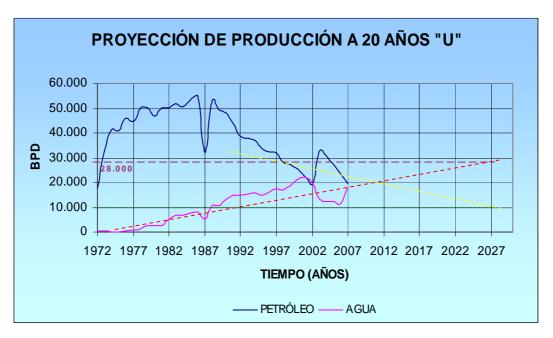


Figura 4.1: Proyección de Producción a 20 años BT.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Las proyecciones estimadas cada 5 años para BT se presentan en la Tabla 4.6.


Tabla 4.6: Proyección estimada a 20 años BT

AÑO	BPPD	BAPD
2012	2100	1010
2017	2650	1350
2022	3190	1700
2027	3700	2050

Elaborado por: José R. Enríquez, Marlon Feijóo L.

4.2.2. PROYECCIÓN DE PRODUCCIÓN DEL YACIMIENTO U

Figura 4.2: Proyección de Producción a 20 años U.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Las proyecciones estimadas cada 5 años para U se presentan en la Tabla 4.7.

Tabla 4.7: Proyección estimada a 20 años U

AÑO	BPPD	BAPD
2012	19000	20500
2017	16000	23000
2022	13600	26000
2027	10000	28000

Elaborado por: José R. Enríquez, Marlon Feijóo L.

4.2.3. PROYECCIÓN DE PRODUCCIÓN DEL YACIMIENTO T

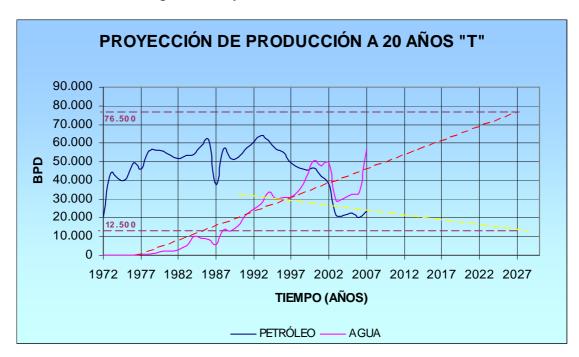

Las proyecciones estimadas cada 5 años para T se presentan en la Tabla 4.8.

Tabla 4.8: Proyección estimada a 20 años T

AÑO	BPPD	BAPD
2012	21000	58000
2017	19000	61000
2022	16000	69000
2027	12500	76500

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Figura 4.3: Proyección de Producción a 20 años T.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

4.3. DECLINACIÓN DE PRODUCCIÓN DE PETRÓLEO E INCREMENTO DEL CORTE DE AGUA (BSW).

La declinación anticipa lo que va a ocurrir, señala el futuro inmediato y lejano, es importante que se tome en consideración los valores que se generan con miras a la planificación de la producción.

La declinación de producción de petróleo del campo se acentúa continuamente como consecuencia de la reducción de los yacimientos por el ingreso del agua, esta declinación es progresiva e inevitable, y es poco lo que se puede hacer para detenerla.

Cada año se analiza lo ocurrido, se considera al petróleo como un fluido independiente del agua y se lo proyecta en el tiempo, se encuentra la declinación y las posibles reservas a ser recuperadas hasta cierto límite económico.

Desde 1991 en el campo se hace evidente los síntomas de la declinación y desde entonces la producción de petróleo disminuye continuamente a pesar de la incorporación de nuevos pozos.

La declinación de producción de petróleo anual del campo Shushufindi Aguarico desde el año 1994 en adelante se mantiene relativamente constante en valores de 5.1%. Este valor incluye:

- Trabajos de reacondicionamiento en los pozos.
- Cambios de zonas productoras, para incrementar la producción.
- Cambios u optimización de sistemas de levantamiento, y
- Perforación de pozos de desarrollo.

El agente que condiciona la producción de petróleo y el volumen de recuperación final es el agua, este fenómeno es más agresivo en el yacimiento T.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1. CONLUSIONES

- Los resultados determinados en este proyecto tanto de porosidad (Φ), saturación inicial de agua (S_{wi}), espesor neto (H_o) e índice de arcilla (Vsh), son muy similares en comparación con estudios realizados anteriormente por los especialistas en esta área de PETROPRODUCCIÓN, por lo que se concluye que la re-evaluación de registros eléctricos ha sido satisfactoria.
- ❖ En este proyecto de titulación, se concluye que las areniscas U y T (Formación Napo), presentan buenos parámetros petrofísicos, es decir son buenos yacimientos que seguirán produciendo. La arenisca BT (Formación Tena), tiene una buena cantidad original de petróleo que en el futuro podría ser un yacimiento recomendado a producir.
- ❖ Los yacimientos del campo Shushufindi Aguarico, a pesar de haber producido desde 1972, siguen siendo yacimientos subsaturados, es decir que su presión está por encima del punto de burbuja, reportando un descenso prácticamente estable de 60 psi por año, debido a que el campo se encuentra rodeado por acuíferos de acción infinita que satisfacen los requerimientos de presión.
- El nuevo cálculo del petróleo original de los yacimientos BT, U y T; se realizó por el Método Volumétrico por considerarse de buenos resultados, debido a que los datos de producción no son muy confiables para utilizar otro Método y comparar los resultados.
- ❖ El volumen original in situ a condiciones actuales calculadas por el método volumétrico están en el orden de los 54'453.944,25 bls para la arena BT, 2.773'313.961,71 bls para U y de 2.482'347.315,72 bls para la arena T.

- Los factores de recobro calculados en este proyecto son: 32,27% para BT; 31,09% para U y 39,30% para la arena T, se concluye que estos valores más reales y se ajustan mejor a las condiciones del campo, en comparación a los factores tomados como oficiales por PETROPRODUCCIÓN, los cuales son valores sobredimensionados que deben ser corregidos.
- ❖ En la Tabla 4.5 se presenta una comparación entre los resultados de reservas obtenidos por el Método Volumétrico y las reservas oficiales de PETROPRODUCCIÓN.
- ❖ En este proyecto de titulación se concluye que las reservas remanentes para el campo Shushufindi Aguarico están en el orden de los 626,065,147.41 [BF].
- ❖ Si el panorama económico mundial lo permite, se puede concluir que la proyección de producción de petróleo de los yacimientos de Shushufindi Aguarico para un lapso de 20 años es favorable, sin embargo se deberá tener un especial control con el manejo del agua, pues constituirá el principal problema del campo, tanto en los yacimientos como en la superficie.

5.2. RECOMENDACIONES

- Se recomienda que los estudios de actualización de reservas sean un proceso continuo con el fin de brindar alternativas de incremento de producción para los campos.
- ❖ Se recomienda realizar un estudio detallado del yacimiento Basal Tena pues presenta un gran potencial y aún se desconocen muchas de sus características.
- ❖ Es aconsejable que antes de iniciar la re-evaluación de los registros eléctricos se debe tener muy claro los conocimientos relacionados con este tema. También se recomienda evaluar varios registros por los métodos convencionales previó el uso del programa Interactive Petrophysics, para así aclarar cualquier duda.
- Se recomienda en lo posible que se tomen los registros eléctricos de los pozos en los que no se dispone de esta información y permitan así un mejor análisis.
- ❖ Se recomienda que en forma general en los futuros pozos a perforarse, se realicen análisis PVT, análisis de núcleos, con la finalidad de obtener una mejor caracterización de los reservorios del campo Shushufindi Aguarico.

REFERENCIAS BIBLIOGRÁFICAS

- PETROAMAZONAS SCIENTIFIC SOFTWARE INTERCOMP. (1991).
 Estudio de Yacimientos Shushufindi Aguarico. Diciembre.
- PETROPRODUCCIÓN SUBGERENCIA DE EXPLORACIÓN Y DESARROLLO (1995). Información General - Campo Shushufindi Aguarico. Marzo.
- 3. DEPARTAMENTO DE YACIMIENTOS SECCIÓN RECUPERACIÓN MEJORADA (1997). Evaluación y Control de Producción de Petróleo e Inyección de agua en los Yacimientos U y T. Julio.
- PETROPRODUCCIÓN CMG (COMPUTER MODELLING GROUP LTD)
 (1998). Estudio de Simulación Matemática. Campo Shushufindi Aguarico.
 Abril.
- PETROPRODUCCIÓN CMG (COMPUTER MODELLING GROUP LTD)
 (1998). Actualización del Estudio de Simulación y Evaluación de la Inyección de agua del campo Shushufindi yacimiento U y T. Junio.
- OCHOA MORENO, JOSÉ. (2001). Petroproducción. Subgerencia de Exploración y Desarrollo. Estudio Integral de Yacimientos "Campo Shushufindi Aguarico". Agosto.
- CORELAB, REPORTE FINAL (2004). Estudio de Simulación de Reservorios Campo Shushufindi Aguarico. Febrero.
- PETROPRODUCCIÓN SUBGERENCIA DE OPERACIONES. (2006).
 Diagnóstico de Producción Área Shushufindi. Diciembre.
- 9. CRAFT B. C Y HAWKINS M. F. (1968).Ingeniería Aplicada de Yacimientos Petrolíferos.

- 10. PIRSON, SYLVAIN J. (1963). Ingeniería de Yacimientos Petrolíferos.
- **11. ZAKI BASSIOUNI, (1996).** Caracterización y Comportamiento de reservorios (Curso dictado para PETROPRODUCCIÓN). Febrero.
- **12. SCHLUMBERGER. (1997).** Principios/Aplicaciones de la Interpretación de Registros.
- **13. SCHLUMBERGER. (2000).** Log interpretation charts.
- **14. HILCHIE DOUGLAS W. (1982).** Applied OpenHole Log Interpretation for Geologist and Engineers.
- **15. BABY, PATRICE. RIVADENEIRA, MARCO. (2004).** La Cuenca Oriente: Geología y Petróleo. Octubre.
- 16. VERDESOTO, CALOS. PETROPRODUCCIÓN DNH. Estimación de Reservas de petróleo crudo y gas del País al 31 de Diciembre de 2006.
- 17. PETROPRODUCCIÓN, SUBGERENCIA DE EXPLORACIÓN Y DESARROLLO. Centro de Investigaciones Geológicas.
- 18. ARCHIVO TÉCNICO, PETROPRODUCCIÓN QUITO: Carpeta de cada pozo campo Shushufindi, ítems: 6 (Reacondicionamientos),7 (Solicitud de Perforación, Sumarios de Perforación y Completación, Diagramas, Programas, Reportes y Correspondencia), 8 (Resultado de Pruebas, Análisis de fluido y gas, Temperatura y Presiones de Fondo).

ABREVIATURAS

API: American Petroleum Institute.

PSI: Pound per square inch.

UTM: Universal Transverse Mercator.

Bls: Barriles

BF: Barriles Fiscales.

BPPD: Barriles de Petróleo por Día.

BAPD: Barriles de Agua por Día.

BFPD: Barriles de Fluido por Día.

BSW: Basic Sediments and water

PCS: Pies Cúbicos Standar.

MD: Measured depth

TVD: Total vertical depth.

BHT: Bottom Hole Temperature.

PVT: Presión Volumen Temperatura.

SP: Spontaneous Potential

GR: Gamma Ray

MNOR Micro Normal

MINV Micro inverso

CALI: Caliper.

SN: Short Normal.

IL: Induction log.

DIL: Dual Induction log.

CBL: Cement Bond log

CCL: Casing Collar Locator

VDL: Variable Density Log

NPHI: Neutron Log.

PEF: Photoelectric factor

MSFL: Microspherically Focused log

RHOB: Bulk density.

Vsh: Volumen de arcilla.

ANEXOS

CAPÍTULO I

Anexo 1.1: Topes y Bases del Campo Shushufindi Aguarico.

POZOS EN PRODUCCION CAMPO SHUSHUFINDI AGUARICO

POZO				ΔREN	NA BT	ΔRF	NA U	ARENA T			
. 525					[ft]		[ft]	MD [ft]			
			TOPE BASE			TOPE BASE		BASE			
1	SSF	1		101 L	BAGE	8.903,00	9.075,00	TOPE 9.145,00	9.313,00		
2	SSF	2				8.834,00	9.005,00	9.104,00	9.300,00		
3	SSF	9				8.830,00	9.025,00	9.093,00	9.269,00		
4	SSF	11				9.042,00	9.025,00	9.285,00	9.209,00		
5	SSF	12	В			9.042,00	9.210,00	9.281,00	9.461,00		
6	SSF	14	ь			8.948,00	9.068,12	9.174,00	9.401,00		
7	SSF	17				9.044,00	9.205,00	9.271,00	9.460,00		
8	SSF	19				8.889,00	9.080,00	9.141,00	9.400,00		
		20	В	0 202 OF	0.200.45						
9	SSF			8.283,95	8.290,45	8.964,00	9.107,50	9.214,00	9.372,00		
10	SSF	22	В	0.000.05	0.070.05	8.982,00	9.150,00	9.220,00	9.410,00		
11	SSF	23		8.260,35	8.270,85	8.965,00	9.124,00	9.203,00	9.389,00		
12	SSF	24		0.000.40	0.000.40	9.054,00	9.242,50	9.338,00	9.530,00		
13	SSF	26		8.282,42	8.292,42	8.971,00	9.150,00	9.240,00	9.417,00		
14	SSF	27				9.132,00	9.264,50	9.385,00	9.574,50		
15	SSF	28				9.006,00	9.065,51	9.231,00	9.333,50		
16	SSF	35				9.158,00	9.336,00	9.433,00	9.604,00		
17	SSF	36				8.950,00	9.065,34	9.190,00	9.249,17		
18	SSF	41				9.152,00	9.223,79	9.422,00	9.484,58		
19	SSF	42	В	8.274,77	8.284,27	8.940,00	9.104,50	9.177,00	9.353,00		
20	SSF	43				8.920,00	9.104,50	9.178,00	9.321,50		
21	SSF	45	В			8.880,00	9.040,00	9.150,00	9.340,00		
22	SSF	46				9.030,00	9.176,50	9.243,00	9.440,00		
23	SSF	49				8.934,00	9.093,50	9.158,00	9.310,00		
24	SSF	52	В	8.388,66	8.435,00	9.071,92	9.240,00	9.277,00	9.443,00		
25	SSF	53		8.404,11	8.410,11	9.050,00	9.156,86	9.280,00	9.342,41		
26	SSF	56				9.042,45	9.205,00	9.270,00	9.435,00		
27	SSF	59		8.360,88	8.369,38	8.991,81	9.147,50	9.218,00	9.380,50		
28	SSF	61				8.945,00	9.105,00	9.210,00	9.402,00		
29	SSF	62	В			8.984,79	9.153,00	9.220,00	9.384,50		
30	SSF	63		8.304,21	8.315,21	8.944,00	9.122,50	9.182,00	9.338,00		
31	SSF	64				8.978,00	9.158,00	9.218,00	9.386,50		
32	SSF	65				8.916,00	9.060,50	9.170,00	9.330,00		
33	SSF	66				8.909,00	9.065,50	9.130,00	9.282,00		
34	SSF	67				8.875,00	9.055,00	9.140,00	9.318,50		
35	SSF	68		8.286,17	8.292,17	8.963,00	9.117,00	9.241,00	9.420,00		
36	SSF	69				9.032,00	9.214,00	9.300,00	9.486,50		
37	SSF	70		8.364,93	8.381,43	9.027,00	9.177,00	9.243,00	9.380,00		
38	SSF	71		8.383,93	8.392,68	9.020,91	9.184,50	9.244,00	9.396,00		
39	SSF	72		8.285,24	8.300,00	8.946,00	9.110,00	9.183,00	9.350,00		
40	SSF	73				8.924,00	9.121,00	9.180,00	9.372,00		
41	SSF	74				8.963,00	9.100,00	9.201,00	9.366,00		
42	SSF	75		8.236,10	8.253,50	8.898,00	9.060,00	9.160,00	9.358,00		
43	SSF	76		8.386,12	8.405,00	9.013,85	9.170,00	9.240,00	9.420,00		
44	SSF	77		8.246,20		8.900,00	9.071,50	9.140,00	9.300,00		

45 SSF 78								1		
47 SSF 80 8.933,00 9.075,50 9.165,00 9.350,00 48 SSF 81 8.956,00 9.150,00 9.214,00 9.390,00 49 SSF 82 8.904,00 9.054,50 9.167,00 9.350,00 50 SSF 83 8.596,21 9.463,00 9.549,28 9.750,00 51 SSF 84 8.984,00 9.150,00 9.216,00 9.407,50 52 SSF 85 8.974,00 9.100,00 9.210,00 9.401,00 53 SSF 86 8.977,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.958,00 9.113,50 9.187,00 9.367,00 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.8973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 <t< td=""><td>45</td><td>SSF</td><td>78</td><td></td><td></td><td></td><td>8.954,00</td><td>9.115,50</td><td>9.184,00</td><td>9.336,00</td></t<>	45	SSF	78				8.954,00	9.115,50	9.184,00	9.336,00
48 SSF 81 8.956,00 9.150,00 9.214,00 9.390,00 49 SSF 82 8.904,00 9.054,50 9.167,00 9.350,00 50 SSF 83 8.596,21 9.463,00 9.549,28 9.750,00 51 SSF 84 8.984,00 9.150,00 9.216,00 9.407,50 52 SSF 85 8.974,00 9.100,00 9.210,00 9.401,00 53 SSF 86 8.974,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.958,00 9.113,50 9.187,00 9.342,50 55 SSF 88 8.977,00 9.137,00 9.214,00 9.353,50 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 91 8.332,21 8.353,00 9.025,00	46	SSF	79		8.255,10	8.280,50	8.948,00	9.143,00	9.234,00	9.402,00
49 SSF 82 83 83 8596,21 9.463,00 9.549,28 9.750,00 50 SSF 84 8.984,00 9.150,00 9.216,00 9.407,50 52 SSF 85 8.974,00 9.100,00 9.210,00 9.401,00 53 SSF 86 8.970,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.970,00 9.113,50 9.187,00 9.342,50 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.144,00 9.353,50 57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.000,00 9.138,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF <td< td=""><td>47</td><td>SSF</td><td>80</td><td></td><td></td><td></td><td>8.933,00</td><td>9.075,50</td><td>9.165,00</td><td>9.350,00</td></td<>	47	SSF	80				8.933,00	9.075,50	9.165,00	9.350,00
50 SSF 83 83 8596,21 9.463,00 9.549,28 9.750,00 51 SSF 84 8984,00 9.150,00 9.216,00 9.407,50 52 SSF 85 85 8974,00 9.100,00 9.210,00 9.401,00 53 SSF 86 8970,00 9.140,00 9.209,00 9.390,00 54 SSF 87 899,00 9.113,50 9.187,00 9.342,50 55 SSF 88 89 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.218,00 8.233,50 8.833,00 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.026,00 9.13,50 9.302,00 9.490,00	48	SSF	81				8.956,00	9.150,00	9.214,00	9.390,00
51 SSF 84 8.984,00 9.150,00 9.216,00 9.407,50 52 SSF 85 86 9.100,00 9.210,00 9.401,00 53 SSF 86 8.970,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.958,00 9.113,50 9.187,00 9.367,00 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.218,00 8.233,50 8.833,00 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50	49	SSF	82				8.904,00	9.054,50	9.167,00	9.350,00
52 SSF 85 86 8.974,00 9.100,00 9.210,00 9.401,00 53 SSF 86 8.970,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.958,00 9.113,50 9.187,00 9.367,00 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.218,00 8.233,50 8.833,00 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 92 8.3353,00 9.025,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.154,50 9.255,00 9.490,00 61 SSF 95 8.316,50 8.340,00 9.538,00 9.694,00 9.756,00	50	SSF	83				8.596,21	9.463,00	9.549,28	9.750,00
53 SSF 86 8.970,00 9.140,00 9.209,00 9.390,00 54 SSF 87 8.958,00 9.113,50 9.187,00 9.342,50 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF	51	SSF	84				8.984,00	9.150,00	9.216,00	9.407,50
54 SSF 87 88 8.958,00 9.113,50 9.187,00 9.342,50 55 SSF 88 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.350,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267	52	SSF	85				8.974,00	9.100,00	9.210,00	9.401,00
55 SSF 88 89 8.977,00 9.137,00 9.206,00 9.367,00 56 SSF 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00	53	SSF	86				8.970,00	9.140,00	9.209,00	9.390,00
56 SSF 89 89 8.973,00 9.143,50 9.214,00 9.353,50 57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9.280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 <td>54</td> <td>SSF</td> <td>87</td> <td></td> <td></td> <td></td> <td>8.958,00</td> <td>9.113,50</td> <td>9.187,00</td> <td>9.342,50</td>	54	SSF	87				8.958,00	9.113,50	9.187,00	9.342,50
57 SSF 90 8.886,51 9.000,00 9.138,00 9.301,50 58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9,280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 68 SSF 106 D 9.306,14 <td>55</td> <td>SSF</td> <td>88</td> <td></td> <td></td> <td></td> <td>8.977,00</td> <td>9.137,00</td> <td>9.206,00</td> <td>9.367,00</td>	55	SSF	88				8.977,00	9.137,00	9.206,00	9.367,00
58 SSF 91 8.218,00 8.233,50 8.833,00 9.003,00 9.082,00 9,280,00 59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D	56	SSF	89				8.973,00	9.143,50	9.214,00	9.353,50
59 SSF 92 8.840,00 9.000,00 9.088,00 9.272,00 60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 10.426,80 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.471,50 9.558,20 9.756,00 68 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 70 SSF 108 D 9.506,30 <	57	SSF	90				8.886,51	9.000,00	9.138,00	9.301,50
60 SSF 94 8.332,21 8.353,00 9.025,00 9.213,50 9.302,00 9.490,00 61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 10.426,80 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.796,00 67 SSF 106 D N.D. N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.552,01 9.720,00 9.789,01 9.960,50 <td>58</td> <td>SSF</td> <td>91</td> <td></td> <td>8.218,00</td> <td>8.233,50</td> <td>8.833,00</td> <td>9.003,00</td> <td>9.082,00</td> <td>9,280,00</td>	58	SSF	91		8.218,00	8.233,50	8.833,00	9.003,00	9.082,00	9,280,00
61 SSF 95 8.310,37 8.327,87 9.026,00 9.154,50 9.255,00 9.436,50 62 SSF 96 H 9.848,62 10.426,80 9.756,00 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.108,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.552,01 9.720,00 9.789,01 9.960,50 72 A	59	SSF	92				8.840,00	9.000,00	9.088,00	9.272,00
62 SSF 96 H 9.848,62 10.426,80 63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.108,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.552,01 9.720,00 9.789,01 9.960,50 71 SSF 111 D 9.552,01 9.720,00 9.370,00 9.550,00	60	SSF	94		8.332,21	8.353,00	9.025,00	9.213,50	9.302,00	9.490,00
63 SSF 98 D 9.450,00 9.538,00 9.694,00 9.756,00 64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.108,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 9.960,50 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	61	SSF	95		8.310,37	8.327,87	9.026,00	9.154,50	9.255,00	9.436,50
64 SSF 99 8.316,50 8.340,00 8.944,00 9.142,50 9.240,00 9.361,00 65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.108,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 9.960,50 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	62	SSF	96	Н			9.848,62		10.426,80	
65 SSF 101 8.376,14 8.425,50 9.104,00 9.267,00 9.370,00 9.550,00 66 SSF 102 H 8.851,00 9.108,00 9.756,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 10.343,00 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	63	SSF	98	D			9.450,00	9.538,00	9.694,00	9.756,00
66 SSF 102 H 8.851,00 9.108,00 67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	64	SSF	99		8.316,50	8.340,00	8.944,00	9.142,50	9.240,00	9.361,00
67 SSF 106 D 9.306,14 9.471,50 9.558,20 9.756,00 68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	65	SSF	101		8.376,14	8.425,50	9.104,00	9.267,00	9.370,00	9.550,00
68 SSF 107 D N.D. 69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 10.343,00 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	66	SSF	102	Н			8.851,00		9.108,00	
69 SSF 108 D 9.506,30 9.670,50 9.798,08 9.850,00 70 SSF 109 D 9.621,00 10.343,00 </td <td>67</td> <td>SSF</td> <td>106</td> <td>D</td> <td></td> <td></td> <td>9.306,14</td> <td>9.471,50</td> <td>9.558,20</td> <td>9.756,00</td>	67	SSF	106	D			9.306,14	9.471,50	9.558,20	9.756,00
70 SSF 109 D 9.621,00 10.343,00 71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	68	SSF	107	D			1	N.D.		
71 SSF 111 D 9.552,01 9.720,00 9.789,01 9.960,50 72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	69	SSF	108	D			9.506,30	9.670,50	9.798,08	9.850,00
72 AGU 1 8.546,09 8.559,09 9.139,00 9.312,50 9.370,00 9.550,00	70	SSF	109	D				9.621,00	10.343,00	
	71	SSF	111	D			9.552,01	9.720,00	9.789,01	9.960,50
73 AGU 3 9.080,00 9.191,77 9.306,00 9.358,05	72	AGU	1		8.546,09	8.559,09	9.139,00	9.312,50	9.370,00	9.550,00
	73	AGU	3				9.080,00	9.191,77	9.306,00	9.358,05

POZOS CERRADOSCAMPO SHUSHUFINDI AGUARICO

POZO				AREN	IA BT	ARE	NA U	ARENA T			
				MD	[ft]	MD	[ft]	MD [ft]			
				TOPE	BASE	TOPE	BASE	TOPE	BASE		
1	SSF	3				8.995,00	9.152,00	9.223,00	9.274,39		
2	SSF	6	В			8.870,00	9.026,00	9.142,00	9.335,00		
3	SSF	7				8.876,00	9.056,50	9.148,98	9.371,00		
4	SSF	15	Α			8.904,00	9.090,00	9.150,00	9.320,00		
5	SSF	15	В			9.050,00	9.231,00	9.294,00	9.450,00		
6	SSF	16				9.041,00	9.230,00	9.293,00	9.462,00		
7	SSF	22	Α	8.269,34	8.273,84	8.984,00	9.400,00	9.200,00	9.130,00		
8	SSF	25		8.261,12	8.279,12	8.938,00	9.104,50	9.203,08	9.383,00		
9	SSF	29		8.350,00	8.368,50	9.080,00	9.174,50	9.288,00	9.452,00		
10	SSF	30				9.118,00	9.280,00	9.350,00	9.534,50		
11	SSF	31		8.343,56	8.349,06	9.006,00	9.160,00	9.240,00	9.393,00		
12	SSF	42	Α			8.939,00	9.059,32	9.177,00	9.250,17		
13	SSF	44				9.003,00	9.200,00	9.270,00	9.437,00		
14	SSF	51		8.400,28	8.414,00	9.060,00	9.220,00	9.286,00	9.444,50		
15	SSF	54		8.373,31	8.388,00	9.017,58	9.183,00	9.247,00	9.403,00		

16	SSF	57		8.415,21		9.061,02	9.200,50	9.268,00	9.430,00
17	SSF	58				9.094,43	9.250,00	9.312,00	9.494,50
18	SSF	60		8.366,82	8.373,32	8.966,37	9.132,00	9.194,00	9.370,00
19	SSF	105				9.194,00	9.380,00	9.452,00	9.641,50
20	SSF	110	D			9.766,00	9860,5	10.003,00	10.117,50
21	AGU	2				9.138,00	9.316,00	9.383,00	9.526,00
22	AGU	5		8.369,72	8.379,72	9.050,00	9.180,00	9.236,00	9.402,00
23	AGU	8				9.195,50	9.280,00	9.419,50	9.503,00
24	AGU	9		8.370,14	8.377,64	9.079,50	9.174,50	9.282,00	9.393,50
25	AGU	10		8.408,52	8.412,02	9.139,50	9.202,50	9.368,50	9.421,00
26	CDZ	1	SE			9.336,89	9.486,82	9.600,02	9.665,72

MD: Profundidad medida. N.D: No disponible

Fuente: Departamento de Yacimientos. Petroproducción. **Elaborado por:** José R. Enríquez, Marlon Feijóo L.

CAPÍTULO II

Anexo 2.1: Pozos en producción Campo Shushufindi Aguarico.

POZOS EN PRODUCCION CAMPO SHUSHUFINDI AGUARICO

	POZO			FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	1		2007/10/05	PP	S	UT	2007/10/15	3808	685	3123	82	30
2	SSF	2		2007/05/06	PP	S	U	2007/10/19	2694	431	2263	84	24
3	SSF	9		2007/04/27	PP	G	UT	2007/10/14	840	378	462	55	31
4	SSF	11		2007/08/19	PP	S	U	2007/10/11	363	160	203	56	22
5	SSF	12	В	2006/11/10	PP	S	Т	2007/10/22	2930	820	2110	72	30
6	SSF	14		2007/10/14	PP	S	Т	2007/10/22	792	222	570	72	32
7	SSF	17		2007/03/18	PP	S	Т	2007/10/22	1459	292	1167	80	31
8	SSF	19		2007/07/10	PP	S	UT	2007/10/11	578	156	422	73	30
9	SSF	20	В	2007/07/16	PP	S	U	2007/10/11	724	246	478	66	26
10	SSF	22	В	2007/06/02	PP	S	UT	2007/10/19	3359	537	2822	84	25
11	SSF	23		2007/05/12	PP	S	TD	2007/10/08	3791	834	2957	78	27
12	SSF	24		2007/07/03	PP	S	Т	2007/10/12	1735	451	1284	74	27
13	SSF	26		2007/04/27	PP	G	TD	2007/10/21	771	463	308	40	31
14	SSF	27		2006/03/08	PP	S	U	2007/10/06	614	516	98	16	18
15	SSF	28		2007/04/26	PP	S	UT	2007/10/15	1820	400	1420	78	26
16	SSF	35		2007/10/18	PP	S	U	2007/10/06	775	434	341	44	18
17	SSF	36		2007/08/18	PP	S	U	2007/10/22	920	878	42	4.6	24
18	SSF	41		2007/04/09	PP	S	U	2007/10/18	845	372	473	56	17
19	SSF	42	В	2007/09/26	PP	S	TS	2007/10/27	1224	588	636	52	30
20	SSF	43		2006/11/26	PP	S	UT	2007/10/04	2470	1729	741	30	28
21	SSF	45	В	2007/10/03	PP	S	Т	2007/10/12	2819	1720	1099	39	30
22	SSF	46		2007/03/17	PP	HJ	U	2007/10/19	211	198	13	6.2	24
23	SSF	49		2007/09/10	PP	HJ	U	2007/10/06	166	153	13	7.7	26.9
24	SSF	52	В	2006/04/20	PP	S	BT	2007/10/09	627	527	100	16	26
25	SSF	53		2007/10/18	PP	S	U	2007/10/19	638	434	204	32	24
26	SSF	56		2006/11/10	PP	S	Т	2007/10/18	1227	491	736	60	28
27	SSF	59		2007/06/24	PP	S	US	2007/10/11	449	448	1	0.2	28
28	SSF	61		2007/02/16	PP	S	Т	2007/10/10	1208	362	846	70	32
29	SSF	62	В	2007/10/18	PP	S	U	2007/10/24	1077	969	108	10	26
30	SSF	63		2007/10/08	PP	S	U	2007/10/10	661	453	208	31.5	26
31	SSF	64		2007/06/29	PP	S	US	2007/10/11	644	618	26	4	32.5
32	SSF	65		2007/08/17	PP	S	US	2007/10/10	456	447	9	2	30
33	SSF	66		2007/08/02	PP	G	U	2007/10/04	1030	1022	8	0.8	26
34	SSF	67		2007/05/06	PP	S	Т	2007/10/24	4986	878	4108	82.4	31
35	SSF	68		2006/11/10	PP	S	TS	2007/10/19	3540	920	2620	74	26
36	SSF	69		2007/05/05	PP	S	U	2007/10/09	1155	531	624	54	16
37	SSF	70		2007/10/18	PP	S	UT	2007/10/26	2322	882	1440	62	24
38	SSF	71		2007/08/25	PP	S	Т	2007/10/17	3440	1032	2408	70	25
39	SSF	72		2006/11/10	PP	S	Т	2007/10/25	380	243	137	36	30
40	SSF	73		2007/05/22	PP	S	U	2007/10/11	2508	1442	1066	42.5	27
41	SSF	74		2006/05/22	PP	S	Т	2007/10/17	3236	647	2589	80	24
42	SSF	75		2007/10/18	PP	S	Т	2007/10/11	2394	599	1795	75	30
43	SSF	76		2007/10/07	PP	S	Т	2007/10/14	4523	905	3618	80	29
44	SSF	77		2006/11/10	PP	G	UT	2007/10/06	1698	985	713	42	28
45	SSF	78		2007/05/24	PP	S	U	2007/10/17	778	768	10	1.3	28
46	SSF	79	Ш	2007/08/28	PP	S	U	2007/10/15	1212	1115	97	8	24
47	SSF	80		2007/05/25	PP	S	TD	2007/10/12	2970	505	2465	83	29
48	SSF	81		2007/02/06	PP	S	TD	2007/10/22	3707	630	3077	83	28
49	SSF	82		2007/10/18	PP	S	UD	2007/10/20	3010	2318	692	23	29
50	SSF	83		2007/07/22	PP	S	U	2007/10/15	649	550	99	15.3	26
51	SSF	84		2007/05/17	PP	S	U	2007/10/19	1003	191	812	81	29
52	SSF	85		2007/08/26	PP	S	TS	2007/10/19	3015	784	2231	74	28

	PC	ZO		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
53	SSF	86		2007/01/17	PP	S	U	2007/10/25	610	403	207	34	25
54	SSF	87		2006/11/10	PP	G	Т	2007/10/04	1410	620	790	56	31
55	SSF	88		2007/07/16	PP	S	Т	2007/10/09	1239	372	867	70	29
56	SSF	89		2007/05/10	PP	S	U	2007/10/30	519	467	52	10	29
57	SSF	90		2007/03/11	PP	S	U	2007/10/16	720	245	475	66	27
58	SSF	91		2007/10/18	PP	S	U	2007/10/10	1254	740	514	41	29
59	SSF	92		2007/09/13	PP	S	TD	2007/10/22	4068	610	3458	85	31
60	SSF	94		2007/10/16	PP	S	UD	2007/10/31	3696	554	3142	85	18
61	SSF	95		2006/11/10	PP	G	TS	2007/10/25	1056	1019	37	3.5	23
62	SSF	96	Н	2007/10/28	PP	S	US	2007/10/29	556	489	67	12	26
63	SSF	98	D	2007/04/27	PP	S	Т	2007/10/30	1020	408	612	60	30
64	SSF	99		2007/02/08	PP	HJ	TS	2007/10/21	364	235	129	35.5	32.7
65	SSF	101		2007/10/12	PP	S	UI	2007/10/24	575	196	379	66	20
66	SSF	102	Н	2005/07/09	PP	S	UD	2007/10/07	977	782	195	20	28
67	SSF	106	D	2007/09/21	PP	S	UI	2007/10/25	678	231	447	66	31.4
68	SSF	107	D	2007/10/18	PP	S	BT	2007/10/09	482	477	5	1	21
69	SSF	108	D	2007/10/26	PP	HJ	UI	2007/10/28	240	204	36	15	31.4
70	SSF	109	D	2007/07/30	PP	S	TI	2007/10/02	1123	674	449	40	31
71	SSF	111	D	2007/10/05	PP	S	Т	2007/10/22	885	761	124	14	29
72	AGU	1		2006/12/03	PP	HJ	U	2007/10/05	1222	502	720	58.9	24.1
73	AGU	3		2006/12/07	PP	S	U	2007/10/25	1334	640	694	52	24

TOTAL PP * 114279 44988 69291

POZOS CERRADOS CAMPO SHUSHUFINDI AGUARICO

	Р	ozo		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	3		2006/04/25	СР	HP	U	2003/12/02	145	25	120	82.8	29.4
2	SSF	6	В	2007/10/30	СР	S	Т	22/10/2007	2309	369	1940	84	26
3	SSF	7		2007/05/28	CP	HJ	G2	2006/07/29	1656	66	1590	96	27.4
4	SSF	15	Α	2006/08/15	CP	G	U	2006/08/14	154	62	92	60	29
5	SSF	15	В	1998/10/25	CP	HJ	Т	1998/10/22	408	22	386	94.6	30.5
6	SSF	16		1988/12/20	CP	S	U	1988/12/19	490	245	245	50	27
7	SSF	22	Α	2004/09/05	CP	G	UT	2004/09/02	445	156	289	65	22
8	SSF	25		2007/09/04	CP		TY	1997/02/17	864	105	759	87.8	27.4
9	SSF	29		1998/04/02	CP	S	Т	1997/02/17					
10	SSF	30		2006/11/12	CP	S	U	2006/11/05	973	185	788	81	20
11	SSF	31		2006/05/31	CP	HJ	U	2006/05/04	96	15	81	84	22.3
12	SSF	42	Α	2007/03/06	CP		TY	2006/05/04					
13	SSF	44		2006/10/17	CP	G	U	2006/10/09	80	34	46	58	21
14	SSF	51		2007/10/27	CP	S	BT	21/10/2007	372	93	279	75	23
15	SSF	54		2007/10/18	PP	S	BT	31/10/2007	635	311	324	51	22
16	SSF	57		2006/05/04	CP	S	U	2000/05/11	260	83	177	68	26
17	SSF	58		2007/10/04	CP		TY	2000/05/11					
18	SSF	60		2007/09/03	CP	S	Т	2007/09/02	153	5	148	97	26
19	SSF	105		2005/07/29	CP	HJ	UT	2004/12/09	192	139	53	27.5	24.8
20	SSF	110	D	2007/10/24	CP	S	UI	01/10/2007	433	217	216	50	27.5
21	AGU	2		1990/05/16	CP		U	1990/05/05	501	125	376	75	17
22	AGU	5		1985/05/28	CP	G	UT	1985/05/13	1191	596	595	50	22
23	AGU	8		2006/07/10	CP	HJ	U	2004/10/17	360	94	266	74	14
24	AGU	9		2006/05/28	CP	S	U	2006/05/08	1362	163	1199	88	27
25	AGU	10		2007/10/21	CP	S	U	11/10/2007	1072	177	895	83.5	24
26	CDZ	1	SE	2006/08/13	CP	S	US	2006/08/04	1146	229	917	80	28.5

TOTAL CP** 3516

^{* 31} de Octubre de 2007.

^{** 31} de Octubre de 2007.

Anexo 2.1.1: Estado actual de los Pozos.

POZOS REINYECTORES

	PC	zo		FECHA	EST	AREN	
1	AGU	4		2004/12/02	PR	TY	POZO REINYECTOR
2	AGU	6		2006/01/01	PR	Т	POZO REINYECTOR
3	SSF	1	R	2007/04/28	PR	TY	POZO REINYECTOR
4	SSF	2	R	2007/03/31	PR	TY	POZO REINYECTOR
5	SSF	5		2005/09/11	PR	TY	POZO REINYECTOR
6	SSF	13		1999/11/28	PR	TY	POZO REINYECTOR
7	SSF	20		2007/03/02	PR	TY	POZO REINYECTOR
8	SSF	21		2007/10/30	PR	TY	POZO REINYECTOR
9	SSF	33		2007/05/28	PR	TY	POZO REINYECTOR
10	SSF	38		2007/09/16	PR	ОТ	POZO REINYECTOR
11	SSF	47	R	2007/09/03	PR	TY	POZO REINYECTOR
12	SSF	50		2006/02/24	PR	TY	POZO REINYECTOR
13	SSF	93		2007/10/31	PR	TY	POZO REINYECTOR

POZOS INYECTORES

	PC	ZO		FECHA	EST	AREN	
1	SSS	1	I	1984/12/21	PI	UT	POZO INYECTOR
2	SSF	2	Ι	1988/05/08	PI	UT	POZO INYECTOR
3	SSF	3	Ι	1983/07/20	PI	UT	POZO INYECTOR
4	SSF	4	Ι	1983/09/30	PI	UT	POZO INYECTOR
5	SSF	4	Α	1984/12/07	PI	U	POZO INYECTOR
6	SSF	18		1987/06/26	PI	U	POZO INYECTOR
7	SSF	32		2002/07/05	PI	T	POZO INYECTOR
8	SSF	40		1986/01/09	PI	U	POZO INYECTOR

POZOS ABANDONADOS

	PC	zo		FECHA	EST	AREN	
1	SSF	6	Α	2007/07/14	CA	UT	POZO ABANDONADO
2	SSF	8		2004/09/01	CA	Т	POZO ABANDONADO
3	SSF	10		2005/01/03	CA	J	POZO ABANDONADO
4	SSF	12		2000/10/08	CA	Т	POZO ABANDONADO
5	SSF	45	Α	2007/09/12	CA	TY	POZO ABANDONADO
6	SSF	34		1983/09/22	CA	UT	POZO ABANDONADO
7	SSF	37		1991/05/23	CA	J	POZO ABANDONADO
8	SSF	39		1987/06/24	CA		POZO ABANDONADO
9	SSF	52		2003/04/14	CA	Т	POZO ABANDONADO
10	SSF	55		1983/06/01	CA	UT	POZO ABANDONADO
11	SSF	62		2003/08/29	CA	J	POZO ABANDONADO
12	SSF	97	D	2006/10/05	CA		POZO ABANDONADO

POZOS ESPERANDO SER ABANDONADOS

	PC	ozo		FECHA	EST	AREN	
1	AGU	AGU 7		2005/05/26	CS	TY	ABANDONO TEMPORAL
2	SSF	48		2007/10/25	CS	US	ABANDONO TEMPORAL

Fuente: Departamento de Yacimientos. Petroproducción. (AS-400) **Elaborado por:** José R. Enríquez, Marlon Feijóo L.

Anexo 2.1.2: Pozos en producción por Estaciones.

ESTACION AGUARICO

	P	ozo	FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	AGU 1		2006/12/03	PP	HJ	U	2007/10/05	1222	502	720	58.9	24.1
2	AGU	3	2006/12/07	PP	S	U	2007/10/25	1334	640	694	52	24

TOTAL ESTACION 2556 1142 1414

ESTACION CENTRAL

	P	ozo		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	9		2007/04/27	PP	G	UT	2007/10/14	840	378	462	55	31
2	SSF	11		2007/08/19	PP	S	J	2007/10/11	363	160	203	56	22
3	SSF	12	В	2006/11/10	PP	S	Т	2007/10/22	2930	820	2110	72	30
4	SSF	17		2007/03/18	PP	S	Т	2007/10/22	1459	292	1167	80	31
5	SSF	19		2007/07/10	PP	S	UT	2007/10/11	578	156	422	73	30
6	SSF	42	В	2007/09/26	PP	S	TS	2007/10/27	1224	588	636	52	30
7	SSF	43		2006/11/26	PP	S	UT	2007/10/04	2470	1729	741	30	28
8	SSF	65		2007/08/17	PP	S	US	2007/10/10	456	447	9	2	30
9	SSF	72		2006/11/10	PP	S	Т	2007/10/25	380	243	137	36	30
10	SSF	73		2007/05/22	PP	S	J	2007/10/11	2508	1442	1066	42.5	27
11	SSF	74		2006/05/22	PP	S	Т	2007/10/17	3236	647	2589	80	24
12	SSF	77		2006/11/10	PP	G	UT	2007/10/06	1698	985	713	42	28
13	SSF	80		2007/05/25	PP	S	TD	2007/10/12	2970	505	2465	83	29
14	SSF	81		2007/02/06	PP	S	TD	2007/10/22	3707	630	3077	83	28
15	SSF	83		2007/07/22	PP	S	U	2007/10/15	649	550	99	15.3	26
16	SSF	84		2007/05/17	PP	S	J	2007/10/19	1003	191	812	81	29
17	SSF	89		2007/05/10	PP	S	J	2007/10/30	519	467	52	10	29
18	SSF	90		2007/03/11	PP	S	J	2007/10/16	720	245	475	66	27
19	SSF	96	Н	2007/10/28	PP	S	US	2007/10/29	556	489	67	12	26
20	SSF	102	Н	2005/07/09	PP	S	UD	2007/10/07	977	782	195	20	28
21	SSF	106	D	2007/09/21	PP	S	UI	2007/10/25	678	231	447	66	31.4

TOTAL ESTACION 29921 11977 17944

ESTACION NORTE

	P	ozo		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	1		2007/10/05	PP	S	UT	2007/10/15	3808	685	3123	82	30
2	SSF	14		2007/10/14	PP	S	T	2007/10/22	792	222	570	72	32
3	SSF	36		2007/08/18	PP	S	U	2007/10/22	920	878	42	4.6	24
4	SSF	46		2007/03/17	PP	HJ	U	2007/10/19	211	198	13	6.2	24
5	SSF	49		2007/09/10	PP	HJ	IJ	2007/10/06	166	153	13	7.7	26.9
6	SSF	52	В	2006/04/20	PP	S	BT	2007/10/09	627	527	100	16	26
7	SSF	53		2007/10/18	PP	S	U	2007/10/19	638	434	204	32	24
8	SSF	56		2006/11/10	PP	S	Т	2007/10/18	1227	491	736	60	28
9	SSF	59		2007/06/24	PP	S	US	2007/10/11	449	448	1	0.2	28
10	SSF	62	В	2007/10/18	PP	S	U	2007/10/24	1077	969	108	10	26
11	SSF	63		2007/10/08	PP	S	U	2007/10/10	661	453	208	31.5	26
12	SSF	64		2007/06/29	PP	S	US	2007/10/11	644	618	26	4	32.5
13	SSF	66		2007/08/02	PP	G	U	2007/10/04	1030	1022	8	0.8	26
14	SSF	70		2007/10/18	PP	S	UT	2007/10/26	2322	882	1440	62	24
15	SSF	71		2007/08/25	PP	S	Т	2007/10/17	3440	1032	2408	70	25

	P	ozo		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
16	SSF	76		2007/10/07	PP	S	Т	2007/10/14	4523	905	3618	80	29
17	SSF	78		2007/05/24	PP	S	J	2007/10/17	778	768	10	1.3	28
18	SSF	86		2007/01/17	PP	S	J	2007/10/25	610	403	207	34	25
19	SSF	87		2006/11/10	PP	G	Т	2007/10/04	1410	620	790	56	31
20	SSF	88		2007/07/16	PP	S	Т	2007/10/09	1239	372	867	70	29
21	SSF	98	D	2007/04/27	PP	S	Т	2007/10/30	1020	408	612	60	30
22	SSF	99		2007/02/08	PP	HJ	TS	2007/10/21	364	235	129	35.5	32.7
23	SSF	107	D	2007/10/18	PP	S	BT	2007/10/09	482	477	5	1	21
24	SSF	108	D	2007/10/26	PP	HJ	IJ	2007/10/28	240	204	36	15	31.4
25	SSF	109	D	2007/07/30	PP	S	TI	2007/10/02	1123	674	449	40	31
26	SSF	111	D	2007/10/05	PP	S	Т	2007/10/22	885	761	124	14	29

TOTAL ESTACION 30686 14839 15847

ESTACION SUROESTE

	P	ozo	FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	24	2007/07/03	PP	S	Т	2007/10/12	1735	451	1284	74	27
2	SSF	26	2007/04/27	PP	G	TD	2007/10/21	771	463	308	40	31
3	SSF	27	2006/03/08	PP	S	J	2007/10/06	614	516	98	16	18
4	SSF	35	2007/10/18	PP	S	U	2007/10/06	775	434	341	44	18
5	SSF	41	2007/04/09	PP	S	J	2007/10/18	845	372	473	56	17
6	SSF	61	2007/02/16	PP	S	Т	2007/10/10	1208	362	846	70	32
7	SSF	69	2007/05/05	PP	S	J	2007/10/09	1155	531	624	54	16
8	SSF	85	2007/08/26	PP	S	TS	2007/10/19	3015	784	2231	74	28
9	SSF	94	2007/10/16	PP	S	UD	2007/10/31	3696	554	3142	85	18
10	SSF	95	2006/11/10	PP	G	TS	2007/10/25	1056	1019	37	3.5	23
11	SSF	101	2007/10/12	PP	S	UI	2007/10/24	575	196	379	66	20

TOTAL ESTACION 15445 5682 9763

ESTACION SUR

	P	ozo		FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	SSF	2		2007/05/06	PP	S	U	2007/10/19	2694	431	2263	84	24
2	SSF	20	В	2007/07/16	PP	S	J	2007/10/11	724	246	478	66	26
3	SSF	22	В	2007/06/02	PP	S	UT	2007/10/19	3359	537	2822	84	25
4	SSF	23		2007/05/12	PP	S	TD	2007/10/08	3791	834	2957	78	27
5	SSF	28		2007/04/26	PP	S	UT	2007/10/15	1820	400	1420	78	26
6	SSF	45	В	2007/10/03	PP	S	Т	2007/10/12	2819	1720	1099	39	30
7	SSF	67		2007/05/06	PP	S	Т	2007/10/24	4986	878	4108	82.4	31
8	SSF	68		2006/11/10	PP	S	TS	2007/10/19	3540	920	2620	74	26
9	SSF	75		2007/10/18	PP	S	Т	2007/10/11	2394	599	1795	75	30
10	SSF	79		2007/08/28	PP	S	J	2007/10/15	1212	1115	97	8	24
11	SSF	82		2007/10/18	PP	S	UD	2007/10/20	3010	2318	692	23	29
12	SSF	91		2007/10/18	PP	S	U	2007/10/10	1254	740	514	41	29
13	SSF	92		2007/09/13	PP	S	TD	2007/10/22	4068	610	3458	85	31

TOTAL ESTACION 35671 11348 24323

TOTAL PP 114279 44988 69291

Fuente: Departamento de Yacimientos. Petroproducción. (AS-400)

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Anexo 2.1.3: Pozos cerrados por Estaciones

ESTACION AGUARICO

	Р	ozo	FECHA	EST	MET	AREN	FECHA	BFPD	BPPD	BAPD	BSW	API
1	AGU	2	1990/05/16	СР		J	1990/05/05	501	125	376	75	17
2	AGU	5	1985/05/28	СР	G	UT	1985/05/13	1191	596	595	50	22
3	AGU	8	2006/07/10	СР	IJ	J	2004/10/17	360	94	266	74	14
4	AGU	9	2006/05/28	СР	S	U	2006/05/08	1362	163	1199	88	27
5	AGU	10	2007/10/21	CP	S	U	11/10/2007	1072	177	895	83.5	24

1155

ESTACION CENTRAL

1	SSF	16		1988/12/20	СР	S	U	1988/12/19	490	245	245	50	27
2	SSF	44		2006/10/17	СР	G	J	2006/10/09	80	34	46	58	21
3	SSF	105		2005/07/29	СР	HJ	UT	2004/12/09	192	139	53	27.5	24.8
4	SSF	110	D	2007/10/24	СР	S	UI	01/10/2007	433	217	216	50	27.5

635

ESTACION NORTE

1	SSF	3		2006/04/25	СР	HP	U	2003/12/02	145	25	120	82.8	29.4
2	SSF	15	Α	2006/08/15	СР	G	J	2006/08/14	154	62	92	60	29
3	SSF	15	В	1998/10/25	СР	HJ	Т	1998/10/22	408	22	386	94.6	30.5
4	SSF	31		2006/05/31	CP	HJ	U	2006/05/04	96	15	81	84	22.3
5	SSF	51		2007/10/27	CP	S	BT	21/10/2007	372	93	279	75	23
6	SSF	54		2007/10/18	PP	S	BT	31/10/2007	635	311	324	51	22
7	SSF	57		2006/05/04	СР	S	J	2000/05/11	260	83	177	68	26
8	SSF	58		2007/10/04	СР		TY	2000/05/11					
9	SSF	60		2007/09/03	СР	S	Т	2007/09/02	153	5	148	97	26

616

ESTACION SUROESTE

1	SSF	25		2007/09/04	СР	TY	1997/02/17	864	105	759	87.8	27.4
2	SSF	42	Α	2007/03/06	СР	TY	2006/05/04					

105

ESTACION SUR

1	SSF	6	В	2007/10/30	СР	S	Т	22/10/2007	2309	369	1940	84	26
2	SSF	7		2007/05/28	СР	IJ	G2	2006/07/29	1656	66	1590	96	27.4
3	SSF	22	Α	2004/09/05	СР	G	UT	2004/09/02	445	156	289	65	22
4	SSF	29		1998/04/02	СР	S	Т	1997/02/17					
5	SSF	30		2006/11/12	СР	S	U	2006/11/05	973	185	788	81	20
6	CDZ	1	SE	2006/08/13	СР	S	US	2006/08/04	1146	229	917	80	28.5

1005

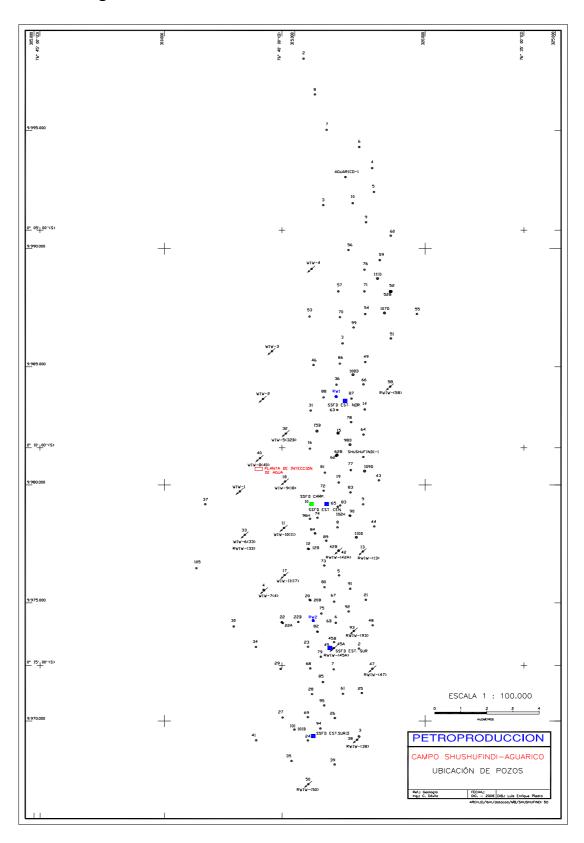
TOTAL CP 3516

Fuente: Departamento de Yacimientos. Petroproducción. (AS-400)

Elaborado por: José R. Enríquez, Marlon Feijóo L.

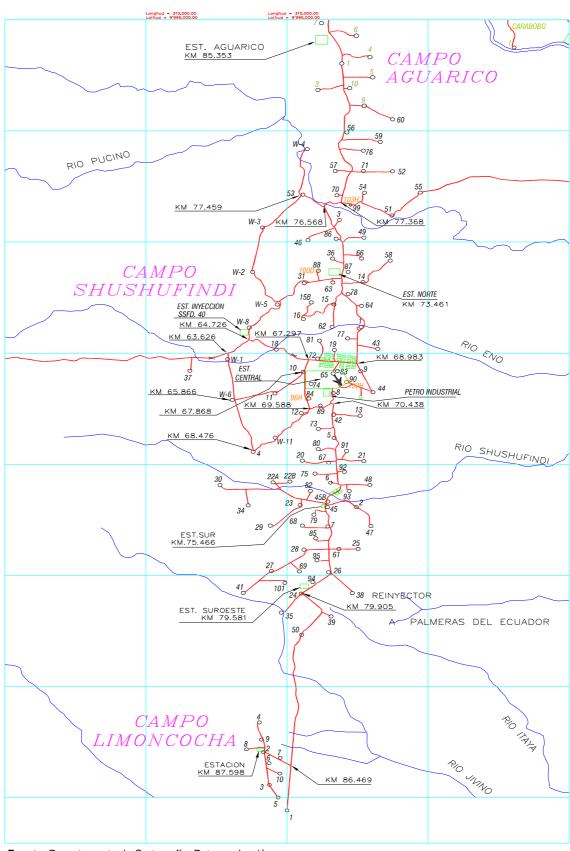
Anexo 2.1.4: Producción por meses a Nov-2007.

	AG	UARICO		
YACIMIENTO	FECHA	PETRÓLEO	GAS	AGUA
Total del mes de:	01/2007	5.437	533	14.699
Total del mes de:	02/2007	427	27	1.155
ARENA T	5.864	560	15.854	
Total del mes de:	01/2007	35.517	7.939	43.609
Total del mes de:	02/2007	32.968	7.174	41.118
Total del mes de:	03/2007	35.829	7.799	44.711
Total del mes de:	04/2007	34.891	7.079	43.354
Total del mes de:	05/2007	34.764	7.527	43.823
Total del mes de:	06/2007	33.742	7.668	41.040
Total del mes de:	07/2007	35.971	8.500	46.380
Total del mes de:	08/2007	45.229	8.817	57.994
Total del mes de:	09/2007	44.155	7.701	58.429
Total del mes de:	10/2007	37.579	9.111	59.159
Total del mes de:	11/2007	37.545	8.400	68.681
	1,7=22	37.500		
ARENA U		445.690	87.714	548.297
			G	0.0.20.
	SHUS	SHUFINDI		
YACIMIENTO	FECHA	PETRÓLEO	GAS	AGUA
Total del mes de:	01/2007	24.523	2.660	760
Total del mes de:	02/2007	26.548	2.313	619
Total del mes de:	03/2007	28.391	2.991	668
Total del mes de:	04/2007	24.393	2.232	583
Total del mes de:	05/2007	24.831	4.737	534
Total del mes de:	06/2007	23.816	1.843	507
Total del mes de:	07/2007	32.819	0	787
Total del mes de:	08/2007	41.926	0	1.032
Total del mes de:	09/2007	46.216	5.510	1.100
Total del mes de:	10/2007	31.889	3.638	800
Total del mes de:	11/2007	34.110	4.103	900
ARENA G2	339.464	30.026	8.290	
Total del mes de:	01/2007	430.308	178.952	868.457
Total del mes de:	02/2007	387.102	158.517	804.229
Total del mes de:	03/2007	413.151	172.767	888.76
Total del mes de:	04/2007	415.641	151.429	913.934
Total del mes de:	05/2007	411.161	159.265	890.229
Total del mes de:	06/2007	387.589	149.580	908.963
Total del mes de:	07/2007	415.649	134.716	965.010
Total del mes de:	08/2007	358.808	90.382	790.115
Total del mes de:	09/2007	326.349	107.519	738.843
Total del mes de:	10/2007	330.708	79.550	791.265
Total del mes de:	11/2007	322.976	128.223	718.963
ARENA T	4.199.442	1.510.901	9.278.768	21200
Total del mes de:	01/2007	359.658	73.310	245.559
Total del mes de:	02/2007	328.619	84.553	223.049
Total del mes de:	03/2007	362.906	80.993	248.077


YACIMIENTO	FECHA	PETRÓLEO	GAS	AGUA
Total del mes de:	04/2007	336.022	72.817	237.961
Total del mes de:	05/2007	338.504	64.125	222.173
Total del mes de:	06/2007	343.613	68.844	253.167
Total del mes de:	07/2007	349.728	74.670	252.203
Total del mes de:	08/2007	366.135	82.962	247.664
Total del mes de:	09/2007	387.505	87.742	242.501
Total del mes de:	10/2007	374.231	60.993	245.009
Total del mes de:	11/2007	343.955	60.463	241.001
ARENA U	3.890.875	811.470	2.658.365	
Total del mes de:	01/2007	41.373	1.952	12.692
Total del mes de:	02/2007	37.411	2.985	11.641
Total del mes de:	03/2007	38.986	2.422	10.637
Total del mes de:	04/2007	45.560	2.566	21.038
Total del mes de:	05/2007	49.151	3.428	21.506
Total del mes de:	06/2007	47.143	3.228	20.981
Total del mes de:	07/2007	48.897	3.154	21.274
Total del mes de:	08/2007	50.188	3.139	22.873
Total del mes de:	09/2007	43.130	2.159	19.083
Total del mes de:	10/2007	39.830	1.380	20.801
Total del mes de:	11/2007	34.713	1.358	32.440
BASAL TENA	476.382	27.771	214.964	
Total del mes de:	01/2007	22.531	4.364	12.132
Total del mes de:	02/2007	19.111	3.761	10.290
Total del mes de:	03/2007	18.731	4.028	10.086
Total del mes de:	04/2007	16.506	3.087	8.888
Total del mes de:	05/2007	17.604	3.205	9.479
Total del mes de:	06/2007	15.396	2.587	8.290
Total del mes de:	07/2007	10.133	1.390	5.456
Total del mes de:	08/2007	19.099	3.748	12.732
Total del mes de:	09/2007	21.225	4.313	14.150
Total del mes de:	10/2007	19.408	4.369	12.939
Total del mes de:	11/2007	15.498	3.484	10.332
T INFERIOR	195.242	38.337	114.775	
Total del mes de:	01/2007	98.767	82.606	151.305
Total del mes de:	02/2007	83.786	25.278	133.115
Total del mes de:	03/2007	91.449	20.940	145.604
Total del mes de:	04/2007	94.475	18.486	145.121
Total del mes de:	05/2007	96.810	17.261	148.961
Total del mes de:	06/2007	95.909	17.116	147.383
Total del mes de:	07/2007	96.316	18.245	151.407
Total del mes de:	08/2007	95.168	25.221	149.404
Total del mes de:	09/2007	97.315	23.771	166.511
Total del mes de:	10/2007	108.045	15.593	171.530
Total del mes de:	11/2007	112.628	18.874	167.229
T SUPERIOR	1.070.667	283.391	1.677.571	
Total del mes de:	01/2007	107.164	49.814	353.549
Total del mes de:	02/2007	95.817	49.456	296.831
Total del mes de:	03/2007	107.057	41.440	329.079
Total del mes de:	04/2007	109.970	45.210	343.893
Total del mes de:	05/2007	111.800	44.593	345.510

YACIMIENTO	FECHA	PETRÓLEO	GAS	AGUA
Total del mes de:	06/2007	113.152	66.779	360.068
Total del mes de:	07/2007	113.328	41.969	361.608
Total del mes de:	08/2007	113.982	47.104	366.389
Total del mes de:	09/2007	88.826	23.575	315.411
Total del mes de:	10/2007	90.406	31.802	367.622
Total del mes de:	11/2007	92.110	28.787	335.456
TS+TI	1.143.612	470.530	3.775.417	
Total del mes de:	01/2007	42.867	6.349	24.696
Total del mes de:	02/2007	30.207	4.296	30.549
Total del mes de:	03/2007	35.340	5.015	43.591
Total del mes de:	04/2007	21.969	469	40.954
Total del mes de:	05/2007	31.427	2.564	33.724
Total del mes de:	06/2007	26.048	1.847	27.837
Total del mes de:	07/2007	24.616	2.043	19.787
Total del mes de:	08/2007	28.520	1.814	21.794
Total del mes de:	09/2007	16.286	911	21.742
Total del mes de:	10/2007	18.866	395	29.525
Total del mes de:	11/2007	22.423	1.209	45.642
U INFERIOR	298.569	26.912	339.841	
Total del mes de:	10/2007	22.840	2.752	1.684
Total del mes de:	11/2007	27.171	2.231	2.204
U SUPERIOR	50.011	4.983	3.887	
Total del mes de:	08/2007	2.866	172	717
Total del mes de:	09/2007	7.334	396	1.834
Total del mes de:	10/2007	4.629	333	5.891
Total del mes de:	11/2007	4.611	231	5.868
U+G2	19.440	1.133	14.310	
Total del mes de:	01/2007	142.793	68.428	222.170
Total del mes de:	02/2007	122.638	53.502	181.580
Total del mes de:	03/2007	145.994	68.073	225.417
Total del mes de:	04/2007	147.344	75.454	213.179
Total del mes de:	05/2007	149.896	64.823	201.302
Total del mes de:	06/2007	145.587	45.117	216.979
Total del mes de:	07/2007	146.280	68.377	227.264
Total del mes de:	08/2007	148.343	71.933	243.001
Total del mes de:	09/2007	144.233	52.247	231.355
Total del mes de:	10/2007	167.756	67.888	316.778
Total del mes de:	11/2007	158.733	65.909	318.664
U+T	1.619.597	701.750	2.597.690	
Total del mes de:	01/2007	67.790	19.893	286.050
Total del mes de:	02/2007	59.972	0	276.599
Total del mes de:	03/2007	51.828	17.118	241.695
Total del mes de:	04/2007	58.175	31.450	294.077
Total del mes de:	05/2007	63.880	39.587	291.009
Total del mes de:	06/2007	64.710	30.626	301.965
Total del mes de:	07/2007	64.363	30.447	300.357
Total del mes de:	08/2007	65.618	43.246	306.206
Total del mes de:	09/2007	19.495	8.361	88.809
U+T+G2	515.831	220.730	2.386.767	
Total del mes de:	01/2007	42.695	4.797	115.210

YACIMIENTO	FECHA	PETRÓLEO	GAS	AGUA
Total del mes de:	02/2007	37.926	7.370	94.504
Total del mes de:	03/2007	39.696	7.685	102.848
Total del mes de:	04/2007	35.489	6.577	75.839
Total del mes de:	05/2007	39.370	6.406	106.893
Total del mes de:	06/2007	38.800	6.608	99.009
Total del mes de:	07/2007	32.744	5.703	65.684
Total del mes de:	08/2007	39.753	5.739	94.287
Total del mes de:	09/2007	40.350	6.652	100.241
Total del mes de:	10/2007	83.336	6.292	108.361
Total del mes de:	11/2007	98.546	42.370	116.166
US+UI	528.704	106.199	1.079.042	


Fuente: Departamento de Yacimientos. Petroproducción. **Elaborado por:** José R. Enríquez, Marlon Feijóo L.

Anexo 2.2: Ubicación de Pozos y Estaciones de Producción del Campo Shushufindi Aguarico

Fuente: Departamento de Cartografía. Petroproducción

Anexo 2.2.1: Mapa Vial del Campo Shushufindi Aguarico.

Fuente: Departamento de Cartografía. Petroproducción.

Anexo 2.3: Análisis PVT para el Campo Shushufindi.

POZO	ARENA	Pi [psi]			Pb [[psi]	T ⁰ [F]	
		2940			870		185	
SSF- 51	ВТ	Boi Uoi API		GOR	Bob	Densidad	Uob	
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]
		1.1508	4.959	24	187	1.1749	0.8103	3.956

POZO	ARENA		Pi [psi]			psi]	Tº [F]		
		3172		960		220			
							<u> </u>		
SSF- 27	U	Boi	Uoi	API	GOR	Bob	Densidad	Uob	
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]	
		1.1602	11.533	18	141	1.1831	0.8317	6.799	

POZO	ARENA	Pi [psi]			Pb [psi]		Tº [F]	
		3867			69	95	215	
						ı		Г
SSF- 41	Us+Ui	Boi	Boi Uoi A		GOR	Bob	Densidad	Uob
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]
		1.2664	13.8	32	214	1.302	0.7389	10

POZO	ARENA	I	Pi [psi]			psi]	Tº [F]		
			2737		11-	40	217		
SSF- 82	G2	Boi	Uoi	API	GOR	Bob Densidad	Uob		
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]	
		1.2705	2.402	31	320	1.3097	0.7396		

POZO	ARENA		Pi [psi]		Pb [psi]	T º [F]		
			N.R		12	40	220		
			Uoi API GOR Bob Densidad L						
SSF- 87	U	Boi	Uoi	API	GOR	240 220	Uob		
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]	
		1.2722	2.44	28	319	1.308	0.7417	1.81	

Fuente: Centro de Investigaciones Geológicas. Área de Yacimientos. Petroproducción.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

POZO	ARENA		Pi [psi]			psi]	Tº [F]		
			N.R		119	90	218		
SSF- 88	Us+Ui	Boi	Uoi		Densidad	Uob			
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]	
		1.2044	2.57	28	263	1.2345	0.7797	1.93	

POZO	ARENA		Pi [psi]		Pb [psi]	Tº [F]		
			N.R		97	' 0	221		
SSF- 68	Т	Boi	Uoi	API	GOR	Bob	Densidad	Uob	
		[by/bn]	[cp]		[pc/bbl]	[by/bn]	[gr/cc]	[cp]	
		1.2674	3.24	32	304	1.2831	0.7402	2.72	

BUILDUP

POZO	AREN	FECHA	Pi [psi]	Pb [psi]	API	K [md]	Bw [by/bn]	Uw [cp]
SSF- 2	U	13/12/1998	4191	N.R	24	52	1.0092	0.47
	Т	09/12/1998	3929	N.R	24	126	1.0093	0.47

POZO	AREN	FECHA	Pi [psi]	Pb [psi]	API	K [md]	Bw [by/bn]	Uw [cp]
SSF- 3	Т	25/12/1997	3215	N.R	29.4	267	1.011	0.46

POZO	AREN	FECHA	Pi [psi]	Pb [psi]	API	K [md]	Bo [by/bn]	Uw [cp]
SSF- 63	Т	19/09/1998	3133	1010	30.5	289	1.011	0.23
	Т	04/09/1998	2656	1010	30.5	263	1.1327	0.23

POZO	AREN	FECHA	Pi [psi]	Pb [psi]	API	K [md]	Bw [by/bn]	Uw [cp]
SSF- 77	U	08/08/1998	1874	N.R	27	211	1.0447	0.23

Fuente: Archivo Técnico. Petroproducción. Quito. Elaborado por: José R. Enríquez, Marlon Feijóo L.

BUILDUP

POZO	FECHA	AREN	INTERVALOS	Pb [psi]	Tº [F]	API	Ф [%]	K [md]	Bo [by/bn]	Bw [by/bn]	Uo [cp]	Ct [psi-1]
SSF- 3	18/01/2002	U	9109' - 9117'	1010	232	29	18	470	1.0886	1.04895	3.12	1.223 e-5
			9125' - 9150'									

POZO	FECHA	AREN	INTERVALOS	Pb [psi]	Tº [F]	API	Ф [%]	K [md]	Bo [by/bn]	Bw [by/bn]	Uo [cp]	Ct [psi-1]
	01/012/2002	U	9103' - 9115'	1010	219	28	17	99	1.14089	1.04131	1.41099	1.058 e-5
SSF- 23			9115' - 9118'									
	01/012/2002	T	9304' - 9338'	1053	224	28	18	562	1.22152	1.04438	1.12751	1.1992 e-5
			9350' - 9380'									

POZO	FECHA	AREN	INTERVALOS	Pb [psi]	Tº [F]	API	Ф [%]	K [md]	Bo [by/bn]	Bw [by/bn]	Uo [cp]	Ct [psi-1]
SSF- 44	22/01/2002	U	9084' - 9110'	1010	215	29	17	276	1.1536	1.0415	1.096	1.415 e-5
			9128' - 9148'									

POZO	FECHA	AREN	INTERVALOS	Pb [psi]	Tº [F]	API	Ф [%]	K [md]	Bo [by/bn]	Bw [by/bn]	Uo [cp]	Ct [psi-1]
SSF- 48	01/12/2001	G2	8835' - 8846'	1140	220	30	18	550	1.15718	1.04246	1.072	1.0111 e-5

Fuente: Archivo Técnico. Petroproducción. Quito.

Elaborado por: José R. Enríquez, Marlon Feijóo L.

Anexo 2.3.1: Resultados de BUILDUP para el campo Shushufindi Aguarico.

					RESU	ILTADOS	S DE LA I	NTERPR	ETACIO	N			PRUI	EBA DE	B'UP		INTER	VALOS E	VALUA	DOS
POZO	FECHA	ZONA	Pr	Pwf	Pb	K	IP _A	IP _I	DA	ÑO	Increm.	Qt	BSW	Qo	Qw	API	DESDE	HASTA	TO	TAL
1 020	1 2011/	2011/1				.``	A		St	Svf	(S = 0)	۵.	50	40	<u> </u>		DEODE	11/101/1		
			psi	psi	psi	md	b/d/psi	b/d/psi			b/d	b/d	%	b/d	b/d	0	pies	pies	pies	pies
																	8926	8936	10	
																	8990	9030	40	
SSF-01	31-ene-97	U+T	2323	2057	1053	580	4.93	32.44	46.72	44.09	1435	1776	43.9	996	780	29	9010	9040	30	125
																	9232	9247	15	1
																	9255	9285	30	
SSF-02	40 04		0000	0007	4040	000	2.74	0.07	15	45	0000	1008	00	000	005	00	8907	8930	23	53
55F-02	18-mar-04	U	2803	2397	1010	900	2.74	3.27	15	15	6339	1008	68	323	685	29	8934	8964	30	53
SSF-02	24-sep-02	U	2811	2265	1010	265	1.92		>20	20	828	973	65.7	334	639	29	8907	8930	23	53
331-02	24-36p-02	U	2011	2200	1010	200	1.92		720	20	020	973	05.7	334	000	29	8934	8964	30	33
SSF-02	22-jun-97	G2	2950	2475	1140	1375	1.91	2.32	6	6	160	911	28.3	653	258	21	8851	8863	12	12
SSF-03	18-ene-02	U	1713	1341	1010	470	2.49	3.63	3.31	3.31	222	708	60	283	425	21	9109	9117	8	33
																	9125 9174	9150 9179	25 5	
SSF-05	16-feb-98	Т	2582	2345	1053	276	2.56	7.97	43.5	43.5	102	614	66.9	203	411	30.5	9174	9256	ა 8	13
																	9240	9260	20	
SSF-6B	21-sep-01	Т	1939	1667	1100	122	4.85	13.66	11.6	10.2	851	1320	76	317	1003	32	9268	9280	12	32
		_															9166	9172	6	
SSF-07	22-mar-04	Т	2390	2151	1053	2168	6.02		>20	>20	1439	1440	88	173	1267	32	9255	9290	35	41
005.07		_	0007	0400	4050	000	0.74	40.40	440	440		4470		005	0.44		9166	9172	6	
SSF-07	02-sep-02	Т	2307	2109	1053	838	9.71	10.18	14.2	14.2	54	1176	80	235	941	30	9255	9290	35	41
																	8969	8974	5	
																	8974	8994	20	
SSF-08	23-may-94	U+T	2332	1875	1053	249	2.62	8.8	17.73	15.8	92	1200	42	696	504	28.2	8994	9002	8	77
001 00	20 may 04	0.,	2002	1070	1000	240	2.02	0.0	17.70	10.0	02	1200	72	000	004	20.2	9008	9018	10	. ' '
																	9023	9040	17	.,
																	9236	9253	17	

																	9150	9156	6	
SSF-09	03-jun-00	Т	2045	1123	2109	83	0.9	3.4	18.5	18.5	605	870	28	626	244	30	9160	9185	25	51
																	9190	9210	20	
																	8912	8926	14	
005.00	05 ' 00		4000	4457	4050	445	0.5	0.0	47.0	47.0	44.4	040	00	400	474	00	8936	8960	24	70
SSF-09	05-jun-00	U	1389	1157	1053	115	2.5	8.6	17.9	17.9	414	610	28	439	171	29	8968	8980	12	70
																	8992	9012	20	
																	9088	9098	10	
SSF-10	31-ago-01	U	1730	1483	1300	118	2.97	5.38	3.3	3.3	333	744	20	595	149	28	9107	9113	6	46
																	9116	9146	30	
																	9370	9380	10	
SSF-10	22-mar-99	Т	2605	2208	1053	94	2.63	5.12	8.5	8.5	247	1080	75	270	810	28.7	9380	9390	10	26
																	9393	9399	6	
																	9340	9346	6	
SSF-11	06-oct-03	Т	1987	1033	1053	80	0.58	0.68	1.8		74	528	3	512	16	30	9372	9378	6	21
																	9382	9391	9	
																	9362	9372	10	
SSF-12	07-jun-99	Т	2532	2432	1053	670	19	19	6.9	6.9	2090	2018	46	1090	928	31	9382	9422	40	70
																	9432	9452	20	
SSF-12B	31-dic-00	Ti	2347	2227	1100	464	7.5	11.6		3.2	200	792	9	721	71	30	9364	9378	14	30
33F-12B	31-00-00	- 11	2347	2221	1100	464	7.5	11.0		3.2	386	792	9	121	71	30	9384	9400	16	30
SSF-13	02-dic-97	U	2216	1011	1010	50	0.29	4.3	27.5	25	15	360	37	227	133	28	8916	8926	10	14
331-13	02-410-97	O	2210	1011	1010	30	0.29	4.5	21.5	23	13	300	51	221	133	20	8929	8933	4	14
																	9032	9036	4	
																	9040	9048	8	
																	9066	9072	6	
SSF-14	08-nov-00	U+T	1909	1553	1053						0	576	64	207	369	28	9081	9099	18	60
																	9228	9232	4	
																	9246	9254	8	
																	9262	9274	12	
																	9228	9232	4	
SSF-14	11-nov-00	Т	1970	1685							0			0	0		9246	9254	8	24
																	9262	9274	12	

																	8924	8933	9	1
SSF-15A	13-nov-02	G2+U	1477	1321	1053	887	10.78	15.91	8	8	309	960	61	374	586	31	8999	9003	4	28
33F-13A	13-1104-02	G2+0	14//	1321	1055	007	10.76	15.91	0	0	309	900	01	3/4	300	31				20
005.454	07 00	+	0000	0404	4050	04.04	0.40	4.00	44.00	44.0	4.40	005	00		000	0.4	9010	9025	15	05
SSF-15A	07-ene-00	T	2206	2101	1053	91.34	2.42	4.89	11.28	11.3	143	285	80	57	228	31	9238	9263	25	25
SSF-15B	21-nov-96	G2	1411	663		74	0.2	0.82	23.76	2.41	19	240	22	187	53	30	9074	9084	10	10
SSF-16	27-nov-88	U	2385	1886	1260	187.65	2.26	2.88	1.72	1.72	14	1128	45	620	508	26.5	9154	9162	8	23
																	9165	9180	15	
SSF-17	08-dic-03	Т	2233	1751	1053	845	2.24	2.27	>20		889	1080	32	734	346	22	9400	9420	20	20
																	8964	8992	28	
																	9002	9026	24	
																	9032	9054	22	
SSF-19	09-dic-02	U+T	2186	1708	1053	62.2	1.54	9.35	26.44	26.4	460	552	70	166	386	30	9210	9220	10	127
																	9226	9235	9	
																	9248	9256	8	
																	9264	9290	26	
																	9018	9024	6	
																	9048	9076	28	
SSF-20A	06-ene-03	U+T	2213	1993	1053	395	6.34	51.42	>20	20	1262	1440	74	374	1066	30	9086	9104	18	88
																	9292	9318	26	
																	9318	9328	10	
SSF-20B	29-jun-02	U	2383	1817	1010	69	1.077	1.843	5.35		281	720	14	619	101	29	9080	9094	14	14
	-																9063	9073	10	
																	9106	9121	15	
SSF-22A	27-may-01	U+T	2681	2337	1010	39.69	1.76	3.3	4.45	4.45	266	672	60	269	403	28	9284	9300	16	74
																	9315	9331	16	
																	9337	9354	17	
005.00	04.6-1-00	T:	0000	4005	4050	004	5.00	0.5	40	40	700	4000	74	040	000	00	9304	9338	34	5 4
SSF-23	24-feb-03	Ts+i	2239	1925	1053	394	5.33	2.5	13	13	720	1200	74	312	888	28	9350	9370	20	54
SSF-23	05-feb-02	U	2865	1998	1010	59	0.89	1.16	1.56	1.56	175	744	38	461	283	28	9103	9115	12	15
55F-23	05-1eb-02	U	2865	1998	1010	59	0.89	1.16	1.56	1.56	1/5	744	38	461	283	28	9115	9118	3	15
																	9304	9338	34	
SSF-23	08-feb-02	U+T	2924	1931	1053	95	1	1.56	7	7	304	864	39	527	337	28	9350	9370	20	69
001-23	00 100 02	0.1	2024	1331	1000	33	'	1.50	'	'	304	004	55	521	337	20	9103	9115	12	00
																	9115	9118	3	

			1					1		1		1								
SSF-24	25-ago-00	Т	2650	1999	1053	308	1.46	8.97	40.1	40.1	794	960	70	288	672	28	9416	9428	12	20
	-																9436	9444	8	
											_						9020	9034	14	l l
SSF-25	24-mar-91	U	3436	1988							0	1440	85	216	1224	28	9048	9080	32	56
																	9086	9096	10	
SSF-26	11-abr-95	Ts+Ti	1844	1164	1035	117	1.21	2.76	9.21		451	889	23	685	204	31	9320	9334	14	30
																	9354	9370	16	
SSF-27	16-abr-95	U	3322	1722		81	0.48	0.5	0.38		36	768	25	576	192	15	9242	9257	15	15
																	9080	9108	28	
SSF-28	21-jul-01	U+T	3166	2285	1100	70.12	1.32	2.31	5.56		545	1368	60	547	821	31	9340	9360	20	20
																	9308	9322	14	
SSF-29	15-ene-91	Т	2959	2228		345	3.20	9.22	19.63		1552	2337	58	982	1355	30	9392	9410	18	18
SSF-30	24-ene-01	TS	2440	1373	1050	29.13	0.29	1.29	14.28		245	336	55	151	185	31	9437	9460	23	23
																	9110	9115	5	
SSF-31	31-dic-94	UT	2599	1402		91	0.82	4.8	39.35	34.9	814	924	82	166	758	25	9120	9130	10	31
33F-31	31-410-94	UI	2099	1402		91	0.62	4.0	39.33	34.9	014	924	02	100	736	23	9328	9336	8	31
																	9362	9370	8	
SSF-31	13-oct-92	Т	2748	2074		66	2.07	5.78	39.74	1.73	1192	1392	63	515	877	26	9328	9354	26	26
																	9110	9116	6	
SSF-31	18-feb-91	U	1581	615		173	0.57	1.38	15.7	14.23	328	552	17.9	453	99	29	9120	9130	10	20
																	9134	9138	4	
																	9260	9280	20	
005.05	00 1:1 00		0005	0005							0				0		9292	9296	4	40
SSF-35	29-jul-00	UT	3065	2335							0			0	0		9320	9324	4	42
																	9536	9550	14	
SSF-36	06-nov-98	U	1613	1301		619	1.93	8.34	38.42	33.22	496	600	17	498	102	28.5	9066	9094	28	28
SSF-36	20-feb-04	U	1512	1213	1010	505	2.71	8	19.6		458	696	4	668	28	28	9066	9094	28	28
205 425		=0															9032	9040	8	
SSF-42B	13-ene-02	U+TS	2249	2026	1100	172	4.42	29.03	20.07	4.79	833	984	88	118	866	31	9062	9072	10	18
SSF-42B	23-oct-00	TS	2243	1966		709	4.89	13.1	13.13		773	1272	53	598		31	9273	9288	15	15
																	9000	9015	15	
SSF-43	16-may-88	U	2106			917	4.06	31.16	43.29		31	1632	0.7	1621	11		9026	9051	25	79
																	9061	9100	39	
	1							l .				ı						1 0.00		

												I					9084	9110	26	
SSF-44	22-ene-02	U	1586	1325	1010	276	2.73	3.83	1.33		0	713	44	399	314	29	9128	9148	20	46
																	9219	9227	8	
																	9233	9249	16	
SSF-45B	03-jun-99	TS	2325	2011	1053	202	3.76	5.23	2.5		0	1272	60	509	763	31	9253	9274	21	56
																	9283	9294	11	
SSF-46	20-feb-99	Т	2873	2569	1053	382	3.5	4.26		5.5	0	1114	72.3	309	805	24.6	9358	9386	28	28
SSF-48	05-dic-01	G2	2363	2028	1140	550	2.86	45.14	6.5	0.0	1018	960	62	365	595	30	8835	8846	11	11
331 -40	03-410-01	02	2303	2020	1140	330	2.00	43.14	0.5		1010	300	02	303	333	30	9024	9030	6	
SSF-49	27-mar-04	U	1483	1182	970	43.53	1.42	1.04	0.36		111	312	51	153	159	26	9050	9060	10	16
SSF-51	02-dic-00	ВТ	1772	1398	1010	346	2.36	2.41	0.06		13	632	46	341	291	26	9402	9410	8	8
	02 0.0 00																9176	9206	30	
SSF-52	09-sep-92	U+T	2582	2066		278	4.76	30.45	40.91		2071	2455	48	1277	1178	30	9391	9436	45	75
																	8416	8424	8	
SSF-52B	22-oct-04	ВТ	1531	1208	900	662	2.45		3.18	2.97	57	792	0.8	786	6	23.5				8
																	9194	9204	10	
SSF-52B	08-oct-04	Ui	2417	968	1010	70	0.33	0.4	0.8	0.8	88	480	57	206	274	25.84				10
SSF-52B	26-sep-04	Ti	2697	1217	1010	26.5	0.18	0.33	12.3	12.3	176	480	45	264	216	20.3	9416	9426	10	
																	9156	9160	4	
SSF-53	20-oct-98	U	1588	1220	1010	745	1.95	3.39		6	0	720	8	662	58	29	9166	9172	6	31
																	9186	9207	21	<u> </u>
SSF-54	12-jul-04	ВТ	1910	1541	807	1200	2.4	3.27	4.2	4.2	235	888	35	577	311	22	8374	8384	10	10
																	9114	9138	24	
SSF-54	11-oct-03	U	1826	1383	1010	68	0.53	0.96	17	17	153	336	50	168	168	27.6	9148	9178	30	54
																	9114	9138	24	
SSF-54	05-ago-02	U	2074	1621	1010	60	1.33	2.83	8.5		319	603	15	513	90	30	9148	9178	30	54
																	9362	9368	6	
																	9378	9384	6	
SSF-56	26-jun-98	Т	3535	4159	1053	32	1.84	1.76		0.6	0	1152	65	403	749	28	9388	9396	8	30
																	9410	9420	10	
SSF-57	24-ene-88	U	2797	1021		90	0.16	0.38	9.84		163	288	30	202	86		00	0.23	0	0
2	30	_							1							l				

				1		1	1	1												
																	9090	9094	4	
SSF-59	30-jul-02	U	2981	1136	1010	50	0.35	0.46	1.38		158	648	4	622	26	22.4	9097	9113	16	28
																	9122	9130	8	
SSF-61	07-nov-01	Т	2351	1592	1053	470	1.28	88	20		957	972	30	680	292	31	9315	9332	17	17
SSF-62	21-nov-01	U	1358	1259	1010	272	7.03	16.6	8		394	696	59	285	411	29	9056	9086	30	47
																	9098	9115	17	
SSF-62 B	25-ago-04	U	1420	1350	1003	384	14.57	14.87	4.71	3.57	350	1056	2	1035	21	24.4	9073	9125	52	52
																	9274	9282	8	
SSF-63	15-feb-02	Т	2097	1846	1053	92	2.48	3.32	2.81		0	624	70	187	437	31	9292	9301	9	17
																	9308	9316	8	
																	9014	9016	2	
																	9023	9028	5	
SSF-63	09-ago-04	U	1422	1233	987	370	2.28	2.42	8.3	2.31	0	600	0.6	596	4	24.9	9035	9038	3	60
																	9048	9080	32	
																	9090	9110	20	
SSF-64	16-jun-01	U	939	665							0			0	0		9086	9098	12	34
	, ,													_	_		9132	9154	22	
SSF-65	15-may-96	U	3341	1319							0	887	16	745	142	26	9014	9028	14	32
	,																9038	9056	18	
SSF-66	09-abr-00	U	1369	545		82.4	0.55	1.13	6.81		235	464	0.5	462	2	28	9016	9039	23	33
																	9049	9059	10	
		_															9240	9247	7	
SSF-67	16-dic-02	Т	2094	1960	1053	610	14.5	25	6.8		827	1944	70	583	1361	26	9251	9278	27	58
050.00							0.10	2.22	- · · -			1000					9286	9310	24	
SFS-68	09-sep-95	TS	3384	2708		275	2.48	3.22	21.45		382	1680	5	1596	84	32	9330	9344	14	14
SSF-69	31-oct-02	U	2880	1608	1050	37.2	0.75	1.13	5		317	960	24	730	230	29	9141	9172	31	
																	9143	9173	30	
SSF-70	16-jun-01	U+T	2162	1268	1050	19.23	3.63	2.24	2.65		1368	3291	30	2304	987	30	9294	9314	20	90
																	9330	9370	40	<u> </u>
																	9135	9150	15	
SSF-71	28-sep-00	U+T	2858	2426	1100	202	3.15	13.9	25		1055	1368	33	917	451	31	9156	9180	24	76
																	9356	9393	37	

SSF-72	24-feb-99	U	1579	1252	1010	456	2.03	2.9	4.5		0	744	61	290	454	25	9045	9050	5	14
																	9097	9106	9	<u> </u>
SSF-72	05-mar-99	Т	2439	1248	1053	43	0.68	108	0.06		0	840	87	109	731	31	9286	9297	11	16
002	00 11101	·					0.00		0.00			0.0	· ·				9299	9304	5	
																	9006	9018	12	
SSF-73	05-ago-99	U	2244	1301	1010	109	1.17	3.63	6		0	1128	6	1060	68	28	9020	9040	20	52
																	9056	9076	20	
SSF-73	07-oct-96	Т	2445	1232			5.8	16.9	22.81	17.74	1317	1680	38	1042	638	31	9290	9301	11	23
																	9315 9051	9327 9055	12 4	
SSF-74	28-jun-97	U	2524	1856	1010	168	1.65	5.12	4		0	1102	41	650	452	28	9059	9061	2	16
331-74	20-jun-97	U	2324	1030	1010	100	1.05	5.12	4		U	1102	41	030	432	20	9074	9084	10	10
																	9282	9302	20	
SSF-74	06-abr-02	Т	2352	1715	1053	410	3.07	8.43	16.5		881	1392	76	334	1058	31	9310	9302	10	30
																	9244	9254	10	
SSF-75	14-feb-01	Т	2196	2042	1053	334	5.9		7.5		0	912	50	456	456	29	9266	9290	24	42
																	9300	9308	8	_
SSF-76	07-abr-01	Т	2733	2366	1053	159	3.8		24		882	1464	86	205	1259	31	9342	9372	30	30
																	8999	9014	15	
SSF-77	08-ago-98	G2+U	1754	1455	1010	211	4.26	3.86	0.5		0	1786	34	1179	607	27	9020	9034	14	29
																	9041	9066	25	
SSF-77	18-jun-97	Т	2258	1277	1053	55	2.04	1.46	2.6		959	1440	30	1008	432	31	9241	9266	25	25
																	8999	9014	15	
																	9020	9034	14	
SSF-77	07-may-03	U+T	2081	1412	1053	22	1.82	4.92	9.8	9.8	604	960	41	566	394	28	9041	9066	25	79
																	9241	9266	25	
SSF-77	10-may-03	Т	2182	1412	1053	180	1.74	3.05	7	7	433	1008	38	625	383	28	9241	9266	25	25
																	9038	9044	6	
SSF-78	03-sep-00	U+T	1210								0			0	0		9055	9070	15	51
																	9075	9105	30	
																	9288	9296	8	
SSF-78	02-jun-00	Т	2010	1147	1053	260	5.8		2.2		0	4993	40	2996	1997	30	9300	9320	20	28
	l				l			l	1			1		1	l					1

																	9038	9044	6	
SSF-78	24-ene-04	U	1475	1157	1010	261	3.09	6.32	12		417	816	8	751	65	27	9055	9070	15	51
																	9075	9105	30	
SSF-79	10-may-92	U	3059	1690	1010			3.24	17.8		0	1329	0.3	1325	4	28	9064	9080	16	16
SSF-79	02-mar-03	Т	2196	1958	1053	1202	6.2	16	15.5		899	1488	78	327	1161	29	9336	9370	34	34
SSF-79	10-may-04	Т		1945							0						9336	9370	34	34
SSF-80	15-may-02	Ts+i	2144	1964	1053	650	0.49		> 20		72	1488	94	89	1399	30	9252	9268	16	58
001 00	10 may 02	1011	2177	1004	1000	000	0.40		- 20		12	1400	0-1	00	1000	- 00	9278	9320	42	
																	9058	9064	6	
SSF-86	02-ene-05	U	1406	1330	1010						0	720	0.3	718	2	30	9070	9080	10	46
																	9100	9120	20	
																	9070 9120	9080 9126	10 6	
SSF-87	01-jun-00	Т	2171	1575	1100			3.53			0			0	0		3120	3120	0	0
SSF-89	18-sep-02	U	2152	1214	1010	47.9	0.92	1.7	9.9		397	864	15	734	130	29	9080	9100	20	20
SSF-89	08-sep-98	T	2610	2218	920	848	3.24	5.53	23		0	1272	19	1030	242	29	9306	9316	10	10
SSF-91	14-sep-00	T	2161	1893	1053	246	5.5	0.00	16.3		1210	1488	73	402	1086	30	9180	9210	30	30
00. 01	1100000	•	2101	1000	1000	2.10	0.0		10.0		1210	1 100		102	1000	- 00	9114	9120	6	- 00
SSF-90	26-dic-96	Us+i	1894	1362	1010		1.56	3.21	8.47		420	816	40	490	326	29	9132	9140	8	45
00. 00	20 0.0 00	0011	1001	1002	1010		1.00	0.21	0.17		120	0.10	10	100	020	20	9151	9182	31	.0
																	8916	8920	4	
																	8931	8952	21	
SSF-92	24-ene-00	U+Ts+i	2257	1477	1053	671	1.4		20		0	1128	15	959	169	32	9180	9191	11	48
																	9198	9210	12	
																			6	
CCE 04	00 : 04	11=::	2000	0545	4040	70	0.77		40		4407	4500	77	252	4400	00	9114	9120		45
SSF-94	28-jun-01	Us+i	3099	2545	1010	79	2.77		12		1127	1536	77	353	1183	26	9132	9140	8	45
005.00	00 1 05		0007	0507	1010		0.40	7.00	40.0	0.07		4000	- 10	1050	400		9151	9182	31	
SSF-93	30-jun-95	U	2967	2527	1010		3.19	7.02	10.2	8.87	99	1392	10	1253	139	29	8920	8928	8	8
SSF-95	23-abr-96	Ts	2357	1849	1053		1.97	2.78	11.15	4.97	429	1392	5	1322	70	30	9320	9328	8	18
000	0				40						95-	10		25-			9333	9343	10	
SSF-96H	05-jun-03	Ui —	2714	1459	1300	250	2.15	3.12	21.5	21.5	372	1200	20	960	240	20.3	10094	10126	32	32
SSF-96H	19-mar-02	T	1410	1272	1053	190	7.66	5.76	2.78		881	2184	73	590	1594	30	10962	11930	968	968

																9092	9102	10	
SSF-99	15 obr 00	U+T	1174	1061	1010	198	3.1		3	0	353	0.3	352	1	29	9110	9118	8	46
55F-99	15-abr-00	0+1	11/4	1061	1010	196	3.1		3	0	353	0.3	352	1	29	9292	9304	12	46
																9314	9330	16	
SSF-99	26-nov-03	ВТ	2112	1382	807	292	1.47	1.83	1.9	210	1080	12	950	130	24	8320	8340	20	20
SSF-101	25-feb-03	G-2	3146	1935	1140	485	1.1	2.68	9.2	0	1320	35	858	462	23	8390	8420	30	42
33F-101	25-160-03	G-2	3140	1935	1140	465	1.1	2.00	9.2	U	1320	33	000	402	23	9130	9142	12	42
CCE 404	05 04	U+T	2040	0004	4050	400	0.40		4.7	400	4000	70	287	700	24	9224	9238	14	26
SSF-101	05-mar-01	0+1	2818	2334	1053	103	2.12		1.7	488	1026	72	287	739	24	9496	9508	12	26
SSF-101	24-ene-04	Ui	3157	1997	1053	810	0.662		9.94		768	28	553	215	17	9246	9254	8	8
SSF-102 H	26-may-03	Ui	1498	1310	1050	435	3.84	8.74	10.5	246	720	16	605	115	28	9938	10002	64	64
005 400 11	00 : 00		4.407	1000	1010	040	0.00	4.40	4.40	404	0.40	40	700	404	00.5	8932	8945	13	-00
SSF-102 H	02-jun-03	Us+Ui	1487	1320	1010	319	3.22	4.12	4.16	184	840	12	739	101	26.5	8962	8985	23	23
																9324	9336	12	
SSF-105	10-sep-02	Т	2033	443	1051	28	0.21	0.22	0.48	0	336	44	188	148	25	9533	9553	20	42
																9558	9568	10	
A C L L 04	40 04		2422	2042	4040	400	0.0		0.0	550	000		440	405	22	9276	9286	10	40
AGU-01	12-may-01	U	3133	2013	1010	103	0.8		6.2	552	898	54	413	485	23	9290	9298	8	18
AGU-03	27-may-98	U	3357	2315	1010		1.24	2.88	14.22	202	1344	44	753	591	26	9198	9220	22	22
AGU-03	08-abr-96	Т	3331	1725	1053		0.78		> 20	30	1247	3	1210	37	28	9422	9432	10	10

Fuente: Departamento de Yacimientos. Petroproducción.

Anexo 2.4: Valores promedios de algunas características del crudo del Campo Shushufindi Aguarico.

AGU SSF-SW SSF-S SSF-N SSF-C

PROPIEDAD	MÉTODO	UNIDAD	VALOR	VALOR	VALOR	VALOR	VALOR
Gravedad API 60/60年	ASTM D 1298	%PI	29.9	25.3	31.3	29.7	32.2
Gravedad Específica 60/60年	ASTM D 287	g/cm3	0.8767	0.9024	0.8692	0.8778	0.8644
Gravedad API seco 60/60°F			29.9	25.3	31.4	29.7	32. 2
Viscosidad: 26,7℃ - 80℉	ASTM D 445	CSt	18.5	57.8	11.4	19.6	17.1
Carbón Conradson %Peso	ASTM D 189	%Peso					
Agua por Destilación %Vol	ASTM D 4006	%Vol	0.050	0.150	0.250	0.050	0.050
Sedimentos por Extracción %Peso	ASTM D 473	%Peso	0.016	0.049	0.015	0.022	0.015
Sedimentos por Extracción %Vol	ASTM D 473	%Vol	0.008	0.023	0.007	0.010	0.007
Agua y Sedimentos %Vol	ASTM D 4007	%Vol	0.058	0.173	0.257	0.060	0.057
BSW	ASTM D 96	%Vol	0.058	0.173	0.257	0.060	0.057
Azufre total %Peso	ASTM D 4294	%Peso	0.7	1.28	0.74	0.76	0.87
Contenido de sal, PTB	ASTM D 3230	PTB	6.7	14.5	24.1	7.4	5.7
Metales, ppm	IMP QA 006	Ppm					
Níquel		Ppm	32	67	22	36	34
Vanadio		Ppm	62	220	54	86	74

Fuente: Subgerencia de Operaciones. Petroproducción.

^oAPI ^{60/60}, GOR y Salinidades promedio por arena

ARENA	°API 60/60	GOR (SCF/BBL)	ppm CI-
BT	18.4	300	34750
G2	27.6	331	81116
Т	29.6	549	13557
Ti	31.0	556	4150
Ts	30.4	436	13742
U	27.0	415	55017
Ui	28.0	198	54300
Us	22.5	450	

Fuente: Subgerencia de Operaciones. Petroproducción.

Anexo 2.4.1: Valores promedios de análisis físico químico del agua de formación del Área Shushufindi Aguarico

		DUREZA TOTAL	DUREZA Ca	DUREZA Mg	ALCALIN.	HIERRO	SULFAT.	CONDUCT.
Punto de Inye	ección	ppm	ppm	Ppm	ppm	ppm	ppm	μ mhos-cm
		CaCO ₃	CaCO₃	CaCO₃	CaCO₃	Fe	SO ₄ ²⁻	
	WASH TANK	13700	11400	2300	780	49.0	275.0	110000
ESTACION SUROESTE	POZO 38	13300	10700	2600	680	51.0	275.0	110000
	POZO 5O	13200	9900	3300	750	47.0	270.0	11000
	WASH TANK	5800	4900	900	790	21.0	200.0	53000
ESTACION SUR	POZO 45A	6300	5000	1300	780	16.0	175.0	54000
	POZO 47	7000	5700	1300	790	19.0	180.0	53000
	POZO 93	6000	4200	1800	770	13.0	213.0	52000
	WASH TANK	3600	2800	800	910	21.0	210.0	37000
ESTACION CENTRAL	POZO 13	3500	3000	500	930	17.0	222.0	37000
	POZO 42A	4000	3200	800	970	16.0	200.0	38000
ESTACION NORTE	WASH TANK	5300	4200	1100	740	20.0	225.0	50000
2577,01011 1101(12	POZO 58	5200	4300	900	750	20.0	189.0	50000
ESTACION AGUARICO	WASH TANK	12700	10100	2600	770	22.0	263.0	60000
	POZO 07	9900	6900	3000	730	26.0	237.0	63000

Fuente: Subgerencia de Operaciones. Petroproducción.

Anexo 2.5: Pruebas iniciales de producción, intervalos disparados y resultados del último W.O.

POZOS PRODUCTORES CAMPO SHUSHUFINDI AGURICO

PRUEBAS INCIALES

ULTIMAS PRUEBAS

	PO	zo	FECHA	BPPD	BSW	API	ZONA	MÉTODO	INTE	RVALO DISPARADO	FECHA	BPPD	BSW	API	ZONA	MÉTODO		INTERVALO DISPARADO
1	AGU	1	18/02/1976	2732	0.8		U	PPF	U	9276' - 9294' (18'	05/10/2007	502	58.9	24	U	PPH	G2	9153' - 9165' (12')
											20/06/2003 WO#16						U	9276' - 9286' (10') 9290' - 9298' (8')
2	AGU	3	31/08/1973	2620	0.2		UT	PPF	C "A"	9014' - 9080' (66'	••••••	640	52	24	U	PPS	C "A"	9014'-9080' (66')
									U T	9198' - 9236' (38' 9422' - 9432' (10'	08/12/2006						U T	9198' - 9220' (22') 9422' - 9432' (10')
											WO#25							5
3	SSF	1	11/01/1969	2621	0		Т	PPF	U	9040' - 9070' (30')	15/10/2007	685	82	30	UT	PPS	G2	8926' - 8936' (10')
									Т	9265' - 9290' (25')							U	8990' - 9030' (40')
											12/02/2003							9040' - 9070' (30')
										5	WO#11				ā	ā		9232'-9247' (15')
					ļ												Т	9255'-9270' (15')
																		9270'-9285' (15')

4	SSF	2	10/06/1969	0	100	Н	PPF	Н	9373'-9777' (4')	19/10/2007	431	84	24	U	PPS		
									9394'-9400' (6')							U	8907'- 8930' (23')
									9402'-9260' (6')								8934'- 8964' (30')
			11/06/1969	423	3	Т	PPF	Т	9215'-9245' (30')								
									9255'-9275' (20')	08/01/2006							
			13/06/1969	570	0.2	U	PPF	U	8907'-8929' (20')	WO#18							
									8936'-8976' (40')								
			14/06/1969	528	0.2	 G2	PPF	G2	8851'-8863' (12')								
									8968' - 9018' (50')								8912' - 8926' (14')
5	SSF	9	05/12/1977	3618	0	UT	PPG	U	8936' - 8960' (24')	14/10/2007	378	55	31	UT	PPG	U	8936' - 8960' (24')
									8912' - 8932' (20')								8968' - 8980' (12')
																	8992' - 9012' (20')
									9226' - 9262' (36')								
								Т	9190' - 9210' (20')								9150' - 9156' (6')
									9160' - 9185' (25')	19/02/2004						Ts	9160' - 9185' (25')
									9150' - 9156 (6')	WO#11							9190' - 9210' (20')
																Ti	9226' - 9256' (30')
6	SSF	11	19/08/1972	4134	1.6	 UT	PPF	U	9166'- 9176' (10')	11/10/2007	160	56	22	U	PPS		
																G2	9050' - 9080' (30')
									9340'- 9346' (6')								
									9372'- 9378' (6')							U	9166' - 9176' (10')
								Т	9382'- 9391' (9')	19/08/2007			<u></u>				
								<u>.</u>	9403'- 9414' (11')	WO#10			ļ				
									9419'- 9434' (15')								
7	SSF	12P	29/12/2000	720	9	 Т	PPH	Т	9364' - 9378' (14')	22/10/2007	820	72	30	Т	PPS	Т	9364'- 9378' (14')
	ЗЭГ	120	Z3/1Z/ZUUU	120	9	 I	FFN	l I	9384' - 9400' (16')	ZZ/10/Z00 <i>1</i>	0ZU	1∠	JU	I	FFO	I	9364'- 9378' (14') 9384'- 9400' (16')
		: 				 		<u></u>	3304 - 3400 (10)	23/06/2006							3304-3400 (10)
		<u> </u>						<u> </u>		WO#04			<u> </u>				
		<u></u>				 		ļ		WU#U4			ļļ				ļ

8	SSF	14	20/11/1972	3678	0	UT	PPG	G2	8967'- 8973' (6')	22/10/2007	222	72	32	Т	PPS	G2	8967' - 8973' (6')
								U	9032'- 9036' (4')								9032' - 9036' (4')
									9040'- 9048' (8')				<u></u>			U	9040' - 9048' (8')
								<u> </u>	9066'- 9072' (6')				<u></u>				9066' - 9072' (6')
						 			9081'- 9099' (18')								9081' - 9099' (18')
									9228'- 9232' (4')	14/02/2004							9228' - 9232' (4')
									9246'- 9254' (8')	WO#18						Т	9246' - 9254' (8')
								Т	9262'- 9274' (12')								9262' - 9274' (12')
									9293'- 9301' (8')								
									9307'- 9326' (19')								
9	SSF	17	12/06/1974	3384	0.1	UT	PPG		9156' - 9168' (12')	22/10/2007	292	80	31	Т	PPS	I T	9400' - 9420' (20')
					}*************************************			U	9172' - 9184' (12')								
									9192' - 9202' (10')								
										28/09/2005							
									9337' - 9345' (8')	WO#10							
									9356' - 9360' (4')				A			e.	
								Т	9370' - 9402' (32')								
									9412' - 9432' (20')								
									9442' - 9448' (6')								
10	SSF	19	07/12/1973	5880	0.2	UT	PPG		8964' - 8968' (4')	11/10/2007	156	73	30	UT	PPS		8964-8992 (28')
									8972' - 8980' (8')							U	9002-9026 (24')
								U	8984' - 8992' (8')								9032-9054 (22')
									9002' - 9018 (16')								
									9020' - 9026 (6')								9210-9220 (10')
									9032' - 9066' (34')							Т	9226-9235 (9')
																	9248-9256 (8')
																	9264-9290 (26')
									9210' - 9220' (10')								
									9226' - 9238' (12')	23/07/2006							
								Т	9248' - 9256' (8')	WO#15							
									9264' - 9274' (10')								
									9284' - 9300' (16')								

11	SSF	20B	26/06/2002	43	91		Т	PPH	Т	9332' - 9370' (38') 11/10/2007	246	66	26	U	PPS		
																	U	9080'- 9094' (14')
			30/06/2002	619	14		U	PPH	U	9080' - 9094' (14') 13/10/2005							
											WO#2							
40	SSF	220	20/02/4094	2572	0.0	29.5	UT	PPG	U	00001 04061 (26)	19/10/2007	537	84	25	UT	PPS	U	0000' 0106' (26')
12	ЗЗГ	ZZD	30/03/1981	2372	0.6	29.5	UI	FFG		9080' - 9106' (26' 9120' - 9140' (20'		331	04	20	UI	FFO	U	9080'-9106' (26') 9120'-9130' (10')
_									<u> </u>	9120 - 9140 (20)							9120-9130 (10)
		<u> </u>	4						Т	9324' - 9328' (4')	••••••••••••••••••••••••••••••••••••						Т	9324'-9328' (4')
										9331' - 9343' (12	······································	ļ						9331'-9343' (12')
									_	9348' - 9400' (52')							9348'-9372' (24')
																		9372'-9400' (28')
13	SSF	23	23/05/1973	1842	0.3	30.5	UT	PPG	U	9103' - 9118' (15) 08/10/2007	834	78	27	TD	PPS		
																	Т	9304' - 9338'(34')
		ļ							Т	9304' - 9338' (34	················			ļ				9350' - 9370'(20')
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					9350' - 9380' (30') WO#14							
14	SSF	24							G2	9074' - 9094' (20	0') 12/10/2007	451	74	27	Т	PPS	G2	9074'- 9094' (20')
										9144' - 9154' (10	D')						U	9135'- 9154' (19')
									U	9160' - 9170' (10	D')	ļ		ļ				9160'- 9170' (10')
										9176' - 9200' (24	makami							
									ļ	9202' - 9238' (36	6') WO#13						Т	9416'- 9428' (12')
									-					-				9436' - 9444' (8')
										9418' - 9430' (12	••••••••••••••••••••••••••••••••			ļ				
		<u> </u>				ļ			T		3')	<u> </u>		ļ				
										9448' - 9492' (44								
		i I								9504' - 9516' (12	<u>2')</u>							

15	SSF	26	26/11/1975	2910	0		U+T	PPG		8993' - 9005' (12')	21/10/2007	463	40	31	TD	PPG	G2	8993'-9004' (11')
										9047' - 9062' (15')							U	9080'-9095' (15')
									U -	00001 04451 (051)							то.	00001 00041 (4.41)
									G2	9080' - 9115' (35')							TS T:	9320'-9334' (14')
		ļ								9126' - 9140' (14')							Ti	9354'-9370' (16')
										9304' - 9310' (6')	09/09/2005							
	*************	i							Ì	9320' - 9335' (15')	WO#8							
									Т	9354' - 9390' (36')								
										9402' - 9412' (10')								
16	SSF	27	10/09/1973	960	0.2		U+T	PPG	U	9242' - 9257' (15')	06/10/2007	516	16	18	U	PPS	U	9242'- 9257' (15')
	************								Т	9498' - 9518' (20')	03/06/2004							
										9542' - 9564' (22')	WO#12							
17	SSF	28	10/09/1976	2624	0.5	33	U+T	PPF	U	9080' - 9116' (36')	15/10/2007	400	78	26	UT	PPS	U	9080' - 9108' (28')
									Т	9308' - 9322' (14')	22/07/2005						Т	9308' - 9322' (14')
		ļ							<u> </u>	9340' - 9394' (54')	WO#18							9340' - 9360' (20')
	**************	Å								9406' - 9414' (8')								
18	SSF	35	08/12/1977	1352	0.4		U+T	PPF	U	9260' - 9280' (20')	06/10/2007	434	44	18	U	PPS	U	9260' - 9280' (20')
	**************	 								9292' - 9296' (4')								9292' - 9296' (4')
										9536' - 9550' (14')	01/09/2005						Т	9536' - 9550' (14')
									Т	9560' - 9570' (10')	WO#24							
										9582' - 9588' (6')								
19	SSF	36		3240	0	32.1	U+T	PPF	U	9080' - 9094' (14')	22/10/2007	878	4.6	24	U	PPS	U	9066' -9094' (28')
									Т	9304' - 9330' (26')	24/02/2004							
											WO#17							
20	SSF	41	24/05/1973	1000	1.6	20.8	UT	PPF	U	9262' - 9278' (16')	18/10/2007	372	56	17	U	PPS	U	9262' - 9278' (16')
		ļ							ļ									9296' - 9310' (14')
		<u> </u>							Т	9528' - 9566' (38')	25/03/2006							
											WO#22							

21	SSF	42B	09/05/1985	2098	8	31	Т	PPH		9022' - 9026' (4')	27/10/2007	588	52	30	TS	PPS	Ts	9273' - 9288' (15')
			12/05/1985	1429	14.5	30.2	U	PPH	U	9032' - 9040' (8')								
										9062' - 9072' (10')								
										9080' - 9085' (5')	05/08/2004							
											WO#13							
									Т	9273' - 9288' (15')								
22	SSF	42	23/01/1974	2200	0.5	1	UT	PPF		9000' - 9015' (15')	04/10/2007	1729	20	28	UT	PPS		0000' 0045' (45')
22	ээг	43	23/01/1974	2300	0.5		UI	PPF		i	04/10/2007	1729	30	20	UI	PPS		9000' - 9015' (15')
					ļ				U	9026' - 9051' (25')				J			U	9026' - 9051' (25')
										9061' - 9100' (39')	26/11/2006							9061' - 9100' (39')
			<u> </u>			ļ				0070 0000 (441)	ş							00741 00001 (01)
									Т	9272' - 9283' (11')	WO#8						Т	9274' - 9282' (8')
22	CCE	450	40/00/4000	4047	0.0	00		DDE	<u> </u>	9298' - 9314' (16')	40/40/0007	4700		00		DDO	1	
23	SSF	436	10/06/1986	1317	0.2	32	Т	PPF	Т	9219'- 9227' (8')	12/10/2007	1720	39	30	Т	PPS		0040 0007 (0)
									<u> </u>	9233'- 9249' (16')							Т	9219' - 9227' (8')
									ļ	9252'- 9274' (22')	07/44/0000							9233' - 9249' (16')
			40/00/4000	700					<u> </u>	9283'- 9294' (11')	27/11/2003 WO#7							9252' - 9264' (12')
			12/09/1986	729	0.2	29	U	PPF	U	8965'- 8978' (13')	WO#/							9264' - 9274' (10') 9283' - 9294' (11')
									U	8980'- 8990' (10')								9263 - 9294 (11)
24	SSF	46	03/12/1974	560	0		U+T		U	9144'- 9168' (24')	10/10/2007	100	6.0	24	U	PPH	U	0144' 0169' (24')
24	ЗЭГ	40	03/12/19/4	960	U		U+1		T	<u> </u>	19/10/2007 01/01/2003	198	6.2		U	РРП	U	9144'- 9168' (24')
									<u> </u>	9356'- 9401' (45')	WO#19							02501 02001 (201)
25	SSF	40	27/04/1974	4000	0.7	32.5	U+T	PPF		00041 00001 / CI)	<u> </u>	450		27		PPH	T U	9358'- 9386' (28')
23	ээг	49	27/04/1974	1808	0.7	32.5	U+1	PPF	U	9024'- 9030' (6')	06/10/2007	153	7.7	21	U	РРП	U	9024' - 9030' (6')
					ļ				<u> </u>	9050'- 9076' (26)	16/03/2004			ļ				9050' - 9060' (10')
									Т	9260'- 9302' (42')	WO#16						Т	9260' - 9272' (12')
26	SSF	52B		71.1	0.0	24			BT		1	F07	16	26	рт	PPS	BT	
20	ээг	32B		714	0.8	24			ВΙ	8416' - 8424' (8')	09/10/2007	527	16	26	BT	PPS	DI	8416'-8424' (8')
		\$		206	57				Ui	9194'- 9204' (10')								
		<u></u>							<u> </u>	9222'- 9226' (4')								
											17/01/2005							
				0	100				Ts	9356' - 9366' (10')	WO#1							
		<u></u>		199	54	28.6			Ti	9416'- 9426' (10')				<u> </u>				
										9450'- 9454' (4')	: : : :							
										9156' - 9160' (4')								

27	SSF	53	28/06/1975	988	0		Т	PPF	U	9166' - 9172 (6')	19/10/2007	434	32	24	U	PPS		9156' - 9160' (4')
										9186' - 9207' (21')							U	9166' - 9172' (6')
											01/09/2005							9186' - 9207' (21')
									Т	9387' - 9420' (33')	WO#17							
28	SSF	56	31/07/1977	2507	0.9		UT	PPF	U	9138' - 9148' (10')	18/10/2007	491	60	28	Т	PPS	U+G2	9060' - 9070 (10')
										9168' - 9198' (30')								9141' - 9148' (7')
																		9176' - 9192' (16')
	***************									9362' - 9368' (6')								,
	***************************************)				Т	9378' - 9384' (6')	• • • • • • • • • • • • • • • • • • •					9 - -		9362' - 9368' (6')
										9388' - 9420' (32')	09/12/2005						Т	9378' - 9384' (6')
											WO#17							9388' - 9396' (8')
										<u> </u>								9410' - 9420' (10')
29	SSF	59	•• •• •• •• •• •• •• •• •• •• •• •• ••	1433	0.6		G2	PPF	G2	9008' - 9024' (16')	11/10/2007	448	0.2	28	US	PPS	G2	9008'-9024' (16')
ĺ	**************						U		U	9104' - 9113' (9')							U	9090'-9094' (4')
							Т			9122' - 9130' (8')	18/01/2007							9097'-9113' (16')
											WO#23							9122'-9130' (8')
									Т	9320' - 9350' (30')							Т	9320'-9350' (30')
30	SSF	61	02/12/1977	1655	1.2		U+T	PPG	U	9049' - 9070' (21')	10/10/2007	362	70	32	Т	PPS		
										9078' - 9098' (20')							Т	9315' - 9332' (17')
											25/09/2006							
									Т	9306' - 9358' (52')	WO#13							
										9368' - 9392' (24')								
31	SSF	62B	17/08/2004	187	48		Т	PPH	U	9073'-9125' (52')	24/10/2007	969	10	26	U	PPS	U	9073'-9125' (52')
		ļ	01/09/2004	1049	0.7	25	U	PPH						ļ				
		ļ			ļ					9235' - 9252'				ļ				
		ļ			ļ	ļ			T	9272' - 9310'	05/09/2004			ļ		9		
		ļ				ļ			ļ	9325' - 9340'	CYP							
										9360' - 9364'								

32	SSF	63	17/08/1985	2439	3	31	UT	PPG		9014' - 9016' (2')	10/10/2007	453	31.5	26	U	PPS		9014'-9016' (2')
										9023' - 9028' (5')								9023'-9028' (5')
									U	9035' - 9038' (3')							U	9035'-9038' (3')
										9048' - 9080' (32')								9048'-9080' (32')
		<u></u>	<u>j</u>			<u></u>			<u> </u>	9090' - 9110' (20')				<u> </u>				9090'-9110' (20')
											24/08/2004							
										9274' - 9282' (8')	WO#6							9274'-9282' (8')
									Т	9292' - 9301' (9')							Т	9292'-9301' (9')
										9308' - 9321' (13')								9308'-9316' (8')
33	SSF	64	31/12/1985	998	1		Т	PPF	G2	9002' - 9020' (18')	11/10/2007	618	4	33	US	PPS	G2	9002' - 9020' (18')
			19/04/1994	408	50		U	PPH										
		·	22/04/1994	970	6.5		G2	PPH	U	9086' - 9098' (12")				ļ				
		.3			<u> </u>					9132' - 9154' (22')	01/07/2006	<u></u>	<u> </u>					
)						WO#7							
									Т	9320' - 9330' (10')								
										9350' - 9360' (10')								
34	SSF	65	03/09/1985	1277	0.1	32	Т	PPF	G2	8934' - 8938' (4')	10/10/2007	447	2	30	US	PPS	G2	8934'-8938' (4')
			07/09/1985	2664	0	30	U	PPH		8949' - 8953' (4')								8949'-8953' (4')
			08/09/1985	1923	0.1	31	G2	PPH										
					<u></u>				U	9014' - 9028' (14')	06/05/2004						U	9014'-9028' (14')
										9038' - 9056' (18")	WO#10							9038'-9056' (18')
										5								
									Т	9290' - 9322' (32')								
35	SSF	66	/02/1986	1109	73		Т	PPH	U	9016' - 9039' (23')	04/10/2007	1022	0.8	26	U	PPG	U	9016' - 9039' (23')
			/03/1986	1018	1.4		U	PPH		9049' - 9059' (10')								9049' - 9059' (10')
									Т	9248' - 9253' (5')	18/06/2000							
										9256' - 9268' (12')	WO#4							
36	SSF	67	19/07/1986	1224	1	33	Т	PPG	Т	9240' - 9247' (7')	24/10/2007	878	82.4	31	Т	PPS		
<u></u>					! ! !				<u> </u>	9251' - 9278' (27')		<u> </u>	<u> </u>				Т	9240' -9247' (7')
										9286' - 9310' (24')								9251' - 9278' (27')
		ļ	21/07/1986	802	0.5	29	U	PPG		<u></u>								9268' - 9310' (14')
		<u> </u>				<u> </u>			U	8974' - 8978' (4')	15/06/2005							
			n:							8984' - 9013' (29')	WO#10							
Ĩ										9021' - 9027' (6')								

37	SSF	68							Т	9390'- 9413' (23')	19/10/2007	920	74	26	TS	PPS	G2	8978 - 9001 (23)
										9330'- 9370' (40')								
																	U	9080 - 9102 (22)
			•						U	9080'- 9110' (30')	13/01/2004							
											WO#13						Т	9330 - 9344 (14)
									G2	8978'- 9006' (28')								
00	005		04/00/4000	4040		-00	T	DDO		0.40.41 0.4401 (4.01)	00/40/0007	504		40		DD0		
38	SSF	69	04/08/1988	1610	50	28	Ts+i	PPG	T	9434' - 9446' (12')	09/10/2007	531	54	16	U	PPS		0444104701 (041)
			40/00/4000	4500	00	٥٢		PPG		9468´ - 9480' (12')	05/04/0000			ļ			U	9141'-9172' (31')
			10/08/1988	1530	0.3	25	U	PPG	U	9141' - 9172' (31')	05/01/2006							
										9184' - 9208´ (24')	WO#14							
39	SSF	70		822	0.4			PPH	U	9146' - 9173' (27')	26/10/2007	882	62	24	UT	PPS	U	9146'-9173' (27')
			•	2319	0.4			PPH	T	9294' - 9314' (20')	16/02/2007						T	9294'-9314' (20')
										9330' - 9370' (40')	WO#11							9330'-9370' (40')
40	SSF	71	/12/1990	2275	0.2		Т	PPH		9135' - 9150' (15')	17/10/2007	1032	70	25	Т	PPS	U	9135'- 9150' (15')
			/12/1990	1344	2		U	PPH	U	9156' - 9180' (24')	•							9156'- 9180' (24')
											25/03/2007							
									Т	9356' - 9393' (37')	WO#9						Т	9356'- 9393' (37')
41	SSF	72	24/08/1991	1663	1		Т	PPH	U	9045' - 9050' (5')	25/10/2007	243	36	30	Т	PPS	U	9045'-9050' (5')
										9097' - 9106' (9')								9097'-9106' (9')
											15/09/2005							
									Т	9286' - 9297' (11')	WO#7						Т	9286'-9297' (11')
										9299' - 9304' (5')								9299'-9304' (5')
42	SSF	73	14/01/1991	2399	2		Т	PPH		9006' - 9018' (12')	11/10/2007	1066	42.5	27	U	PPS		9006' - 9018' (12')
			17/01/1991	1458	2		U	PPH	U	9020' - 9040' (20')							U	9020' - 9040' (20')
			•••••••••••••••••••••••••••••••••••••••			\$0.000.000.000 				9056' - 9076' (20')	<u></u>							9056' - 9066' (10')
			•							9078' - 9090' (12')	**************************************							9066' - 9076' (10')
											06/05/2005							
									Т	9290' - 9305' (15')	WO#9							
										9315' - 9338' (23')								

43	SSF	74	02/07/1991	1863	0.5	33	Т	PPH	G2	8993' - 9001' (8')	17/10/2007	647	80	24	Т	PPS	G2	8993' - 9001' (8')
			05/07/1991	778	10	28.5	U	PPH										
			09/07/1991	1529	2	24.5	G2	PPH		9051' - 9055' (4')								9051' - 9055' (4')
									U	9059' - 9061' (2')							U	9059' - 9061' (2')
		<u></u>								9074' - 9084' (10')	22/02/2004			<u> </u>				9074' - 9084' (10')
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						WO#3							
			<u>.</u>						Т	9310' - 9340' (30')							Т	9282'- 9302' (20')
																		9310' - 9320' (10')
44	SSF	75	20/05/1991	1436	12	28.8	T	PPH	T	9244'- 9254' (10')	11/10/2007	599	75	30	T	PPS		
			20,00,1001	1400	12				'	9266'- 9290' (24')	11/10/2001	000		- 00		110	Т	9244'-9254' (10')
						<u> </u>				9300'- 9324' (24')								9266'-9290' (24')
											06/06/2006							9290'- 9294' (4')
		å !	23/05/1991	422	78		U	PPH	U	9000'- 9008' (8')	WO#11					5		9300'-9308' (8')
										<u></u>								
_			24/05/1991	496	6		G2	PPH	G2	8909'- 8918' (9')								
45	SSF	76	/09/1991	3011	2.5		Т	PPH	T	9342' - 9372' (30')	14/10/2007	905	80	29	Т	PPS	Т	9342'-9372' (30')
											00/44/0000			1				
			-								20/11/2006			ļ				
						<u> </u>					WO#8							
46	SSF	77	28/05/1992	2009	10	31	Т	PPH	G2	8999' - 9014' (15')	06/10/2007	985	42	28	UT	PPG	G2	8918' - 9828' (10')
										8918' - 8928' (10')								
		ļ				ļ								ļļ				8996' - 9014' (18')
																	U	9020' - 9034' (14')
			-						U	9041' - 9066' (25')								9041' - 9066' (25')
			ļ			ļ			ļ	9020' - 9034' (14')	19/05/2003			ļ				
		ļ				ļ			ļ <u>.</u>		WO#2						Т	9241' - 9266' (25')
									Т	9241' - 9281' (40')								
47	SSF	78								9038' - 9044' (6')	17/10/2007	768	1.3	28	U	PPS	U	9038'-9044' (6')
				497	10				U	9055' - 9070' (15')								9055'-9070' (15')
										9075' - 9105' (30')	10/02/2004							9075'-9105' (30')
											WO#10							
				684	23				Т	9300' - 9320' (20')								

48	SSF	79	03/05/1993	1229	20	Т	PPH	Т	9336' – 9370' (34')	15/10/2007	1115	8	24	U	PPS		
			03/05/1993	1313	4	U	PPH									Т	9336'- 9360' (24')
								U	9064' – 9080' (16')	26/03/2005							9360' - 9370' (10')
										WO#8							
49	SSF	80	24/01/1993	2224	1.4	 T	PPH	U	9054' - 9064' (10')	12/10/2007	505	83	29	TD	PPS	U	9054'- 9064' (10')
			•••••••••••••••••••••••••••••••••••••••			 			#								
		Ì						Т	9290' - 9320' (30')	12/02/2006			Ì			Ts	9252' - 9268' (16')
									₫ 	WO#8						Ti	9278' - 9304' (26')
50	SSF	81		1434	28	T		U	9074' - 9116' (42')	22/10/2007	630	83	28	TD	PPS	U	9074' - 9116' (42')
				600	0.5	U											
								Т	9320' - 9338' (18')	10/09/2001						Т	9320' - 9338' (18')
									9364' - 9380' (16')	WO#4							9364' - 9380' (16')
51	SSF	82	24/06/1993	2704	0.3	 T	PPH	Т	9284' - 9320' (36')	20/10/2007	2318	23	29	UD	PPS	G2	8926' - 8945' (19')
			29/06/1993	2156	0.2	U	PPH	U	8996' - 9027' (31')							U	8996' - 9027' (31')
			02/07/1993	2619	0.8	G2	PPH	G2	8926' - 8945' (19')	15/01/2006						Т	9284'- 9320' - (36')
										WO#8							
52	SSF	83	09/04/1996	717	17	 U	PPH	U	9378' - 9392' (14')	15/10/2007	550	15.3	26	U	PPS		9363' - 9378'
									9400' - 9414' (14')	22/07/2007						U	9378' - 9392'
										WO#4							9400' - 9414'
53	SSF	84	14/08/1993	2400	1	Т	PPH		9071' - 9082' (11')	19/10/2007	191	81	29	U	PPS		
			17/08/1993	2099	0.6	U	PPH	U	9086' - 9106' (20')								9071' - 9082' (11')
									9122' - 9146' (24')	18/11/2005						U	9086' - 9106' (20')
										WO#10							9122' - 9134' (12')
								Т	9322' - 9360' (38')								
									9370' - 9404' (34')								
54	SSF	85	01/06/1994	1482	5	 Ti	PPH	Ti	9368' - 9388' (20')	19/10/2007	784	74	28	TS	PPS		
						 										Ts	9281' - 9286' (5')
<u> </u>		<u> </u>	08/06/1994	1536	3	 Ts	PPH	Ts	9314' - 9346' (32')	28/07/2004	.		ļ			<u> </u>	9300' - 9308' (8')
										WO#3						1	9314' - 9330' (16')

55	SSF	86	05/05/1994	1004	0.4	23.5	U	PPH	U	9100'-9137'(37')	25/10/2007	403	34	25	U	PPS		9058' - 9064' (6')
																		9070' - 9080' (10')
											19/01/2005						U	9086' - 9096' (10')
											WO#6							9100' - 9120' (20')
																		9120' - 9126' (6')
56	SSF	87	05/06/1994	1004	0.4		U	PPH	U	9076' - 9109' (33')	04/10/2007	620	56	31	Т	PPG	U	9076'- 9109' (33')
											10/04/2005						Т	9278' - 9285' (7')
											WO#2							9302' - 9309' (7')
57	SSF	88	17/04/1997	277	45		Ui	PPH	Us	9064' - 9080' (16')	09/10/2007	372	70	29	Т	PPS	Us	9064'- 9080' (16')
			20/04/1997	468	35		Us	PPH										
			21/04/1997	908	3		Us+i	PPH	Ui	9102' - 9128' (26')							Ui	9102' - 9128' (26')
											29/04/2003							
											WO#5			ļ			Т	9278' - 9289' (11')
																		9294' - 9306' (12')
58	SSF	89	12/04/1995	1268	6	31.6	Т	PPH	Ui	9116'- 9138' (22')	30/10/2007	467	10	29	U	PPS	U	9080' - 9100' (20')
			12/04/1995	1560	3	25.2	U	PPH			15/03/2004							
									Т	9306'- 9326' (20')	WO#7							
59	SSF	90	04/08/1995	215	30		U	PPH	U	8973' - 8980' (7')	16/10/2007	245	66	27	U	PPS	U	8973'-8980' (7')
			11/08/1995	1225	12		Т	PPH		8984' - 8990' (6')								8984'-8990' (6')
											15/12/2006							
									Т	9233' - 9243' (10')	WO#9							
60	SSF	91	15/05/1995	1949	5		Т	PPH	Т	9180' - 9210' (30')	10/10/2007	740	41	29	U	PPS		
																	U	8912' - 8924' (12')
											17/10/2006							8930' -8934' (4')
										<u> </u>	WO#8							8940' - 8948' (8')
61	SSF	92		1529	2	29.7	Us	PPH	Us	8916'-8920' (4')	22/10/2007	610	85	31	TD	PPS		
										8931'-8952' (21')							Ts	9180' - 9191' (11')
		<u></u>	j	1948	1	33.8	Ts+i+b	PPH	Ts	9180'-9191' (11')	j			<u> </u>				
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						11/05/2005						Ti	9198' - 9210' (12')
				1650	2	34	Ts+i	PPH	Ti	9198'-9210' (12')	WO#8							

62	SSF	94	15/04/1995	359	35		Us	PPH	Us	9114' - 9120' (6')	31/10/2007	554	85	18	UD	PPS		
										9132' - 9140' (8')							Us	9114' - 9120' (6')
			11/04/1995	1642	10		Ui	PPH	Ui	9151' - 9182' (31')	30/11/2006							9132' - 9140' (8')
											WO#17						Ui	9151' - 9182' (31')
63	SSF	95	22/04/1996	919	34		Ts	PPH	Ts	9320' - 9328' (8')	25/10/2007	1019	3.5	23	TS	PPG		
	************					İ			<u> </u>	9333' - 9343' (10')							Ts	9320´ - 9328´ (8´)
					,						02/12/2001							9333´ - 9343´ (10´)
											WO#3							
64	SSF	96H	17/03/2002	590	73		Т	PPH			29/10/2007	489	12	26	US	PPS	US	9940'-9960' (20')
		ļ									18/05/2006			<u> </u>				10000'-10027'(27')
											WO#3							*MD
65	SSF	98D	31/03/2006	940	15		Ti	PPS	Ti	9709.5'-9729.5' (20')	30/10/2007	408	60	30	T	PPS	U	9455,5'-9483,5' (28')
									ļ					ļ				9505,5'-9530,5' (30')
									U	9455.5'-9483.5' (28')				ļ				
	************									9500.5'-9530.5' (30')	Ç						Ti	9709.5'-9729,5' (20')
66	SSF	99	03/07/1998	0	100		Т	PPH			CYP 21/10/2007	235	35.5	33	TS	PPH	BT	8320' - 8340' (20')
00	ээг	99	09/07/1998	797	19		U	PPH	U	9092' - 9102' (10')	21/10/2007	233	33.5	- 33	13	FFN	ы	0320 - 0340 (20)
			09/07/1996	191	19		U	FFN		9110' - 9118' (8')							U	9092' -9102' (10')
									_	9110 - 9110 (0)	15/03/2006						U	9110' - 9118' (8')
									Т	9292' - 9304' (12')	WO#3							3110 - 3110 (0)
		<u> </u>							<u> </u>	9314' - 9330' (16')				İ			Ts	9256' - 9270' (14')
										` '								` /
67	SSF	101	23/01/1999	1110	33		Ti	PPH	Ti	9496' - 9508' (12')	24/10/2007	196	66	20	Ui	PPS		
																	Ui	9246'-9254' (8')
			26/01/1999	689	30		Ui	PPH	Ui	9224' - 9238' (14')								
											04/04/2005							
			30/01/1999	766	45		G2	PPH	G2	9130' - 9142' (12')	WO#3							
			02/02/1999	0	100		вт	PPH	BT	8390' - 8420' (30')								
68	SSF	102H	11/12/2001	419	79	İ	Т	PPH			07/10/2007	782	20	28	UD	PPS	Us	9867'- 9924' (57')
											09/07/2005						Ui	9938'- 10002'(64')
											WO#3							*MD

69	SSF	106D	19/07/2006	1043	2	Ui	PPS	Ui	9396' – 9406' (10')	25/10/2007	231	66	31	Ui	PPS	Ui	9396' -9406' (10')
										15/09/2006							
										CYP							*MD
70	SSF	107D		322	33			ВТ	8980' - 9008' (28')	09/10/2007	477	1	21	BT	PPS	BT	8980' -9008' (28')
				91	90			Ui	9796' - 9822' (26')								*MD
									9950'- 9966' (16')								
				0	100			Ts	9973' - 10000' (27')	28/04/2006							
									10012'-10024' (12')	WO#1							
									10032'-10038' (6')								
				187	81			Ti	10050' - 10060' (10')								
71	SSF	108D	10/05/2006	0	100	HS	PPH	HS	9960' - 9968' (8')	28/10/2007	204	15	31	Ui	PPH	Ui	9628' -9648' (20')
			20/05/2006	142	26	TS	PPH										
			10/05/2006	169	63	Ui	PPH	TS	9752' - 9776' (24')								*MD
									9788' - 9798' (10')	06/06/2006							
									9808' - 9822' (14')	CYP							
								Ui	9628' - 9648' (20')								
72	SSF	109D	21/04/2006	666	25	 Ti	PPH	Ti	10374-10414 (40')	02/10/2007	674	40	31	Ti	PPS	Ti	10374'- 10414' (40')
						 			9752' - 9776' (24')								*MD
						 J		Ts	9788' - 9798' (10'	29/05/2006							
									9808' - 9822' (14')	WO#1							
								Ui	9628' - 9648' (20')								
73	SSF	111D	05/10/2005	1075	20	 Ui+T	PPH	Т	9834'-9854' (20')	22/10/2007	761	14	29	Т	PPS	Ui	9643' - 9647' (4')
						 			9868'-9878'(10')				ļ				9654' - 9668' (14')
						 			9890'-9896' (6')	<u>.</u>							9688' - 9698' (10')
						 			9900'-9916' (16')								
																	9834' - 9854' (20')
						 			9643'-9647' (4')	17/06/2006			ļ			Т	9868' - 9878' (10')
						 		Ui	9654'-9668' (14')	WO#1							9890'- 9896' (6')
						 ļ			9688'-9698' (10')								9900' - 9916' (16')
																	*MD

*MD: Profundidad medida.

Fuente: Archivo Técnico. Petroproducción. Quito. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Anexo 2.5.1: Pruebas iniciales de producción, intervalos disparados y resultados del último W.O.

POZOS CERRADOS CAMPO SHUSHUFINDI AGUARICO

PRUEBAS INCIALES

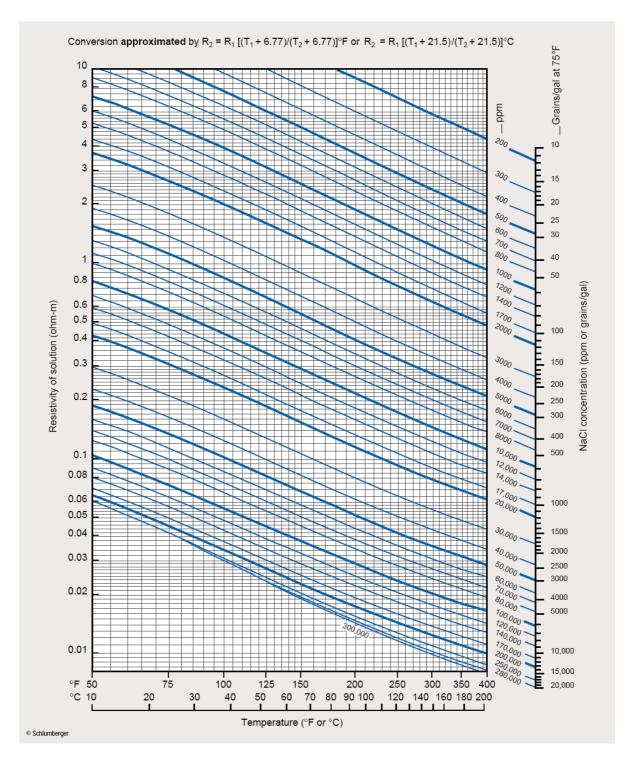
ULTIMA PRODUCCION

	РО	zo	FECHA	BPPD	BSW	API	ZONA	MÉTODO	INT	ERVALO DISPARADO	FECHA	BPPD	BSW	API	ZONA	MÉTODO	INTERVALO DISPARADO
1	AGU	2	25/06/1972	706	0.2		U	PPF		9250' - 9256' (06')	05/05/1990	125	75	17	U	PPS	
									U	9260' - 9275' (15')							
										9285' - 9290' (05')							
2	AGU	5	03/11/1973	2070	0.2	30	U	PPF	5		13/05/1985	596	50	22	UT	PPG	
			31/10/1973	1230	0.2	33.1	Т	PPF									
3	AGU	8	03/10/1973	288	6		Т	PPF	Т	9422' - 9439' (17')	17/10/2004	94	74	14	U	PPS	
			15/11/1973	479	12	1	U	PPF	U	9199' - 9220' (21'							
										9230' - 9243' (13')						
4	AGU	9	01/04/1977	2054	0.4		UT	PPF	U	9124'- 9138' (14')	08/05/2006	163	88	27	U	PPS	
		,								9148'- 9168' (20')							
									Т	9364'- 9392' (28')							
5	AGU	10	25/02/1980	2385	0.6		Т	PPF	Т	9372' - 9389' (17')	11/10/2007	177	83.5	24	U	PPS	
										9396' - 9417' (21')							
6	SSF	3	31/01/1970	523	0.3	ļ	U	PPF	U	9109' - 9117' (8')	02/12/2003	25	82.8	29.4	U	PPH	
	ļ					ļ				9125' - 9140 (15')	<u></u>						
										9141' - 9150' (9')			1				

7	SSF	6B	03/02/1981	5921	0.4	G2UT	PPG	G2	8894' - 8902' (8')	22/10/2007	369	84	26	Т	PPS		
								U	8970' - 8988' (18')								
							***************************************	Т	9240' - 9260' (20')				ļ				
									9268' - 9280' (12')								
									9296' - 9320' (24')								
8	SSF	7						G2	8902'- 8918' (16')	29/07/2006	66	96	27	G2	PPH		
									8922'- 8932' (10')								
								U	8980'- 8988' (8')								
									8996'- 9004' (8')								
									9014'- 9034' (20')								
									9040'- 9052' (8')								
							***************************************	Т	9176'- 9180' (4')								
									9194'- 9200' (6')								
									9209'- 9214' (5')								
									9228'- 9238' (10')								
			<u></u>						9254'- 9294' (40')			ļ					
									9300'- 9306' (6')								
									9319'- 9344' (25')								
									9354'- 9366' (12')								
9	SSF	15A	18/10/1972	2362	2.1	UT+G2	PPF	U	9064'-9078' (14')	14/08/2006	62	60	29	GU	PPG		
									9042'-9054' (12')								
					1				9012'-9032' (20')								
							***************************************		9000'-9006' (6')								
	<u></u>						***************************************	Т	9300'-9312' (12')				\$				
	(1111111111111111111111111111111111111		9	\$0000000000000000000000000000000000000					9272'-9288' (6')			4					
	(<u> </u>	5	Î				9260'-9262' (2')			f					
									9229'-9233' (4')	ĺ							
									9216'-9220' (4')			•					
10	SSF	15B	10/04/1981	1533	0	Т	PPG	Т	9396' - 9430' (34')	22/10/1998	22	94.6	30.5	Т	PPH		

11	SSF	16	15/03/1973	4768	8.0	UT	PPG	U	9154' - 9162' (8')	19/12/1988	245	50	27	U	PPS		
									9165' - 9180' (15')								
									9197' - 9224 (27')								
	<u> </u> 					 		T	9401' - 9420' (19')			<u></u>	<u> </u>			<u> </u>	
									9430' - 9445' (15')								
12	SSF	22A						U	9063' – 9073' (10')	02/09/2004	156	65	22	UT	PPG	1	
						 			9106' – 9121' (15')								
						 		T	9284' – 9300' (16')								
									9316' – 9331' (15')			·					
									9337' – 9352' (15')			İ					
									9364' – 9368' (4')								
				<u> </u>		 			9370' – 9380'	(10')						-	
13	SSF	25						U	8958' - 8970' (12')	17/02/1997	105	87.8	27.4	U	PPH		
									9018' - 9034' (16')	İ	•••••	1					
									9048' - 9066' (18')								
									9076' - 9096' (20')								
								Т	9270' - 9276' (6')								
									9282' - 9300 (18')								
									9312' - 9328' (16')			ļ					
									9344' - 9356' (12')								
									9366' - 9372' (6')								
14	SSF	29							* NO HAY DA	TOS							
15	SSF	30						Т	9438' - 9460' (22')	05/11/2006	185	81	20	U	PPS		
									9470' - 9476' (6')		•••••	1					
									9486' - 9510' (24')		•••••	1					
									9522' - 9528' (6')			1			\$		
16	SSF	31	05/07/1975	2600	1.6	U+T	PPF	U	9110' - 9116' (6')	04/05/2006	15	84	22.3	Т	PPH		
									9120' - 9130' (10')								
									9134' - 9148' (14')								
		<u></u>				 							<u> </u>				
		 				 		T	9328' - 9336' (8')								
	į.		<u> </u>						9344' - 9384' (40')			<u> </u>	<u> </u>				

17	SSF	42A	26/12/1973	7964	0.2		U+T	PPG	U	9060' - 9071' (11')								
										9081' - 9096' (15')								
											* NO HAY [DATOS						
									Т	9278' - 9292' (14')								
										9302' - 9322' (20')								
										9334' - 9344' (10')								
18	SSF	44	12/03/1974	2820	0.3		UT	PPG	U	9084' - 9110' (26')	09/10/2006	34	58	21	U	PPG		
										9128' - 9148' (20')				ļ				
										9164' - 9186' (22')			ļ	ļ				
									Т	9372' - 9422' (50')			į					
19	SSF	51	10/08/1974	1290	0.2	31.2	T	PPF	U	9172' - 9212' (40')	21/10/2007	93	75	23	BT	PPS		
									Τ	9398' - 9410' (12')								
										9420'- 9428' (8')								
														ļ				
20	SSF	54	08/07/1977	1142	0	ļ	U+T	PPF	U	9148' - 9178' (30')	29/10/2007	311	51	22	BT	PPS	_	
										9114' - 9138' (24')								
									Τ	9354' - 9376' (22')								
						1	_			0.4001 0.4401 (01)								
21	SSF	57	08/08/1976	1073	0		T	PPF	T	9408' - 9416' (8')	11/05/2000	83	68	26	U	PPS		
						<u> </u>				9392' - 9400' (8')				<u> </u>				
22	CCE	F0							U	9378' - 9386' (8')								
22	SSF	58							U	9222' - 9240' (18')	* NO HAY [ATOS		ļ				
			01/11/1975	776	1.3	30	Т	PPF	T	9430' - 9453' (23')	I NO HAT I	JATOS	ļ					
			01/11/19/3	770	1.3	30	I	FFF		9430 - 9433 (23)								
23	SSF	60		252	75		U	HP	U	9100' - 9130' (30')	02/09/2007	5	97	26	Т	PPS		
				671	0.7		T	PPF	Т	9337' - 9343' (6')			ļ				-	
				· · · · · · · · · · · · · · · · · · ·	<u>.</u>	.4				9252' - 9262' (10')				<u>.</u>		\$	mē.	
24	SSF	105		37	69	29	Т	PPH	U	9324′- 9336′ (12′)	09/12/2004	139	27.5	24.8	UT	PPH		
				0	100		U	PPH	Т	9584´- 9588' (4')				<u> </u>			-	
										9533´- 9540´ (7´)		•••••		ļ			-	
						.4				9544´- 9552´ (8´)				d		<u>\$</u>		
		9000000000000000				180000000000000000000000000000000000000				9558´- 9568´ (10´)				**************************************				


25	SSF	110D	13/05/2006	0	100		Ti	PPH	Ti	10065'-10084' (19')	01/10/2007	217	50	27.5	Ui	PPS	
			20/05/2006	46	95		Ts	PPH	Ts	10020' – 10055' (35')							
			04/07/2006	288	40		Ui	PPH	Ui	9799' – 9811' (12')							
			04/07/2006	0	100		Us	PPH		9821' – 9832' (11')							
26	CDZ	1	21/02/2006	699	38	27.1	HS	PPH	HS	9866´- 9884' (18') 9858'- 9866´ (8')	04/08/2006	229	80	28.5	US	PPS	
										9844'- 9852´ (8')							
			26/02/2006	0	100		Ti	PPH	Ti	9740´- 9752' (12')							
										9698´- 9726´ (28´)							
			21/03/2006	0	100		TS	PPH	TS	9650´- 9668´ (38´)							
										9618'- 9640' (22')							
			22/03/2006	0	100	<u>.</u>	Ui	PPH	Ui	9514´- 9518´ (4´)				<u></u>			
										9494'- 9502' (8')							
										9458'- 9480' (22')							
			05/04/2006	504	58	31.4	US	PPH	US	9392´- 9396´ (4´)							
										9362'- 9374' (12')							

Fuente: Archivo Técnico. Petroproducción. Quito. Elaborado por: José R. Enríquez, Marlon Feijóo L.

Anexo 2.6: Cálculo de Rw a partir de la salinidad y temperatura. GEN -9.

Resistivity of NaCl Solutions

Gen-9

Fuente: Schlumberger. Interpretación de registros de pozos a hueco abierto. 2002

Anexo 2.7: Rmf, Temperaturas, Bit Size y Salinidades por pozo.

POZOS EN PRODUCCION CAMPO SHUSHUFINDI AGUARICO

	Р	ozo		Rmf	Т°	внт∘	Bit Size	Salinidades (ppm Cl)
1	SSF	1		0.71	75	202	8 3/4	8850
2	SSF	2		0.89	82	207	8 3/4	45000
3	SSF	9		1.32	83	191	8 3/4	12500
4	SSF	11		1.28	81	201	8 3/4	24750
5	SSF	12	В	0.922	75	197	8 1/2	8750
6	SSF	14		1.76	85	196	8 3/4	12.000
7	SSF	17		2.1	90	196	8 3/4	10350
8	SSF	19		1.2	100	197	8 3/4	10750
9	SSF	20	В	1.466	75	198	9 7/8	45000
10	SSF	22	В	1.92	84	210	9 7/8	46500
11	SSF	23		1.68	88	194	8 1/2	10000
12	SSF	24		1.15	124	190	8 3/4	4400
13	SSF	26		1.05	85	198	8 3/4	15500
14	SSF	27		1.21	88	199	8 3/4	42250
15	SSF	28		0.84	125	200	8 3/4	84000
16	SSF	35		1.38	75	194	9 7/8	69000
17	SSF	36		1	83	182	9 7/8	
18	SSF	41		0.73	80	187	8 3/4	56500
19	SSF	42	В	1.29	80	192	9 7/8	10150
20	SSF	43		1	118	204	8 3/4	60000
21	SSF	45	В	1.74	69	184	9 3/8	5600
22	SSF	46		1.6	90	195	8 3/4	7500
23	SSF	49		1.32	90	191	9 7/8	12750
24	SSF	52	В	0.47	70	205	9 7/8	30000
25	SSF	53		1.92	75	186	9 7/8	56300
26	SSF	56		3.43	80	185	9 7/8	8450
27	SSF	59		1.25	84	183	9 7/8	10.000
28	SSF	61		2.47	80	182	9 7/8	3750
29	SSF	62	В	0.307	75	198	9 7/8	39000
30	SSF	63		1.7	80	197	9 7/8	38000
31	SSF	64		2.5	78	189	9 7/8	14.800
32	SSF	65		1.2	82	192	9 7/8	53750
33	SSF	66		1.9	92	185	9 7/8	
34	SSF	67		2.2	74	198	9 7/8	6850
35	SSF	68		0.63	82	197	9 7/8	68500
36	SSF	69		1.81	77	182	9 7/8	67000
37	SSF	70		1.31	75	186	9 7/8	24500
38	SSF	71		1.71	85	186	9 7/8	14750
39	SSF	72		1.86	72	190	9 7/8	9850
40	SSF	73		1.5	80	194	9 7/8	49000
41	SSF	74		1.2	73	194	9 7/8	10000
42	SSF	75		1.75	75	185	9 7/8	2450
43	SSF	76		1.24	87	184	9 7/8	12500
44	SSF	77		1.82	76	210	9 7/8	9750
45	SSF	78		1.45	86	200	9 7/8	
46	SSF	79		1.7	75	185	9 7/8	7900
47	SSF	80		1.44	85	190	9 7/8	4000
48	SSF	81		1.55	75	186	9 7/8	6750
49	SSF	82		1.73	75	195	9 7/8	9300
50	SSF	83		0.884	70	200	6 7/8	66250
51	SSF	84		1.5	64	205	9 7/8	6600
52	SSF	85		1.24	85	202	9 7/8	4750

	Р	ozo		Rmf	Т°	внт⁰	Bit Size	Salinidades
53	SSF	86		1.72	76.6	202	9 7/8	58500
54	SSF	87		1.3	79	195	9 7/8	15500
55	SSF	88		1.74	81.5	209	9 7/8	9500
56	SSF	89		1.97	84	204	9 7/8	20400
57	SSF	90		2.49	76	190	9 7/8	49500
58	SSF	91		2.73	75.3	210	9 7/8	56000
59	SSF	92		2.96	74.6	195	9 7/8	5500
60	SSF	94		1.48	86	200	9 7/8	48300
61	SSF	95		1.92	74	202	9 7/8	
62	SSF	96	Н	0.688	181	152	7	6500
63	SSF	98	D	2.646	75	182	9.625	4000
64	SSF	99		1.389	78	193	9 7/8	33250
65	SSF	101		1.344	77	191	9 7/8	57750
66	SSF	102	Η	0.88	110	196	7	6000
67	SSF	106	D	1.869	75	201	8 1/2	
68	SSF	107	D				8 1/2	13650
69	SSF	108	D	0.156	75	170	9.625	61250
70	SSF	109	D	2.493	75	188.71	9.625	18250
71	SSF	111	D	1.066	75	220	8 1/2	22750
72	AGU	1		0.76	102	203	8 3/4	62600
73	AGU	3		1.38	92	191	8 3/4	64100

POZOS CERRADOSCAMPO SHUSHUFINDI-AGUARICO

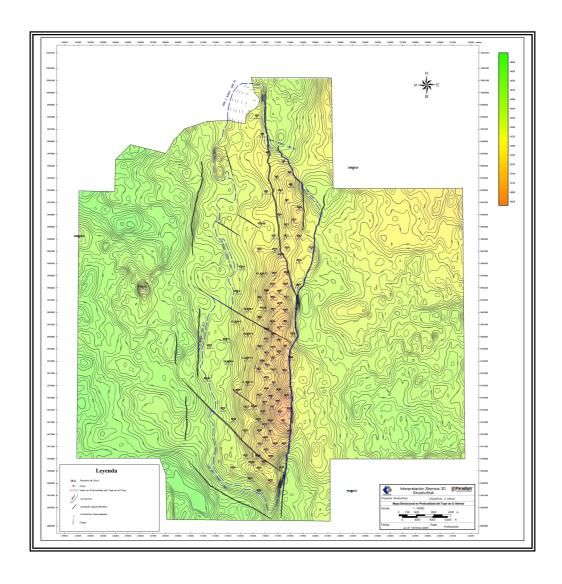
	Р	ozo		Rmf	Τº	внт∘	Bit Size	Salinidades
1	SSF	3		1.08	90	200	8 3/4	70.500
2	SSF	6	В	2.36	76	198	9 7/8	5000
3	SSF	7		2.05	83	196	8 3/4	47250
4	SSF	15	Α	1	100	195	8 3/4	6650
5	SSF	15	В	1	100	196	9 7/8	
6	SSF	16		0.82	80	188	8 3/4	
7	SSF	22	Α	2	110	198	8 3/4	
8	SSF	25		1.44	77	207	8 3/4	
9	SSF	29		0.62	95	192	8 3/4	12.600
10	SSF	30		1.35	100	199	8 3/4	58500
11	SSF	31		2.25	95	205	8 3/4	4850
12	SSF	42	Α	1.25	120	192	9 7/8	
13	SSF	44		1.52	78	198	9 7/8	64500
14	SSF	51		1.08	84	200	9 7/8	29500
15	SSF	54		1.61	78	188	9 7/8	15000
16	SSF	57		1.35	92	187	9 7/8	14.000
17	SSF	58		0.93	80	199	9 7/8	
18	SSF	60		2.6	86	183	9 7/8	8000
19	SSF	105		1.373	77	198	9 7/8	
20	SSF	110	D	3.115	75	190	9.625	61900
21	AGU	2		0.79	90	192	8 3/4	
22	AGU	5		1.65	97	192	8 3/4	
23	AGU	8		1.51	117	192	8 3/4	
24	AGU	9		2	84	194	8 3/4	6750
25	AGU	10		1.42	86	210	9 7/8	8250
26	CDZ	1	SE					59000

Fuente: Archivo Técnico. Petroproducción. Quito. Elaborado por: José R. Enríquez, Marlon Feijóo L.

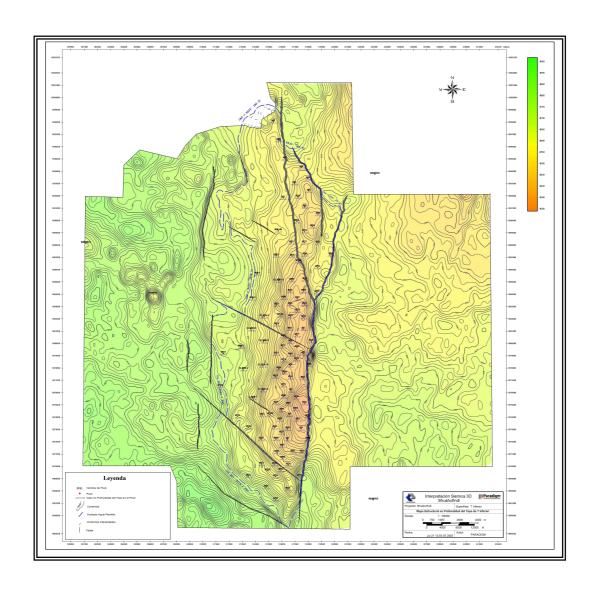
Anexo 2.8: Resultados de las reevaluaciones petrofísicas por pozo. (IP)

POZO	ZONA	Gross	Net Pay	Av Phi	Av Sw	Av Vcl	Phi*H	Phi*So*H
		[ft]	[ft]	[%]	[%]	[%]	[ft]	[ft]
AGU-01	U	113.5	83	0.184	0.222	0.081	15.272	11.882
	Т	141.5	49	0.163	0.207	0.042	7.987	6.334
AGU-02	U	178	52.25	0.181	0.233	0.107	9.457	7.254
	Т	144.5	0	0	1	0	0.000	0.000
AGU-03	U	164.5	47.5	0.179	0.266	0.188	8.503	6.241
	Т	161	7	0.197	0.18	0.459	1.379	1.131
AGU-05	U	175.5	64	0.202	0.102	0.254	12.928	11.609
	Т	182.5	36	0.188	0.155	0.232	6.768	5.719
AGU-08	U	90.5	60.5	0.155	0.201	0.173	9.378	7.493
	Т	83	23.5	0.152	0.391	0.168	3.572	2.175
AGU-09	U	94.5	43.5	0.135	0.174	0.135	5.873	4.851
	Т	112	25.5	0.135	0.319	0.152	3.443	2.344
AGU-10	U	210.5	47.5	0.165	0.164	0	7.838	6.552
	Т	186	35	0.161	0.322	0	5.635	3.821
SSF-01	U	172.5	78.5	0.183	0.114	0.172	14.366	12.728
	Т	169	41	0.209	0.204	0.194	8.569	6.821
SSF-02	U	171.5	80.75	0	0.107	0.137	0.000	0.000
	Т	196	64.5	0	0.115	0.122	0.000	0.000
SSF-03	U				N.D.			
	Т				N.D.			1
SSF-6B	U	155.5	71.5	0.176	0.098	0.087	12.584	11.351
	Т	192.5	63.5	0.182	0.125	0.106	11.557	10.112
SSF-07	U	180.5	74.5	0.185	0.117	0.293	13.783	12.170
	Т	222	119	0.172	0.198	0.102	20.468	16.415
SSF-09	U	195.5	110.5	0.2	0.09	0.057	22.100	20.111
	Т	179	94.75	0.165	0.242	0.144	15.634	11.850
SSF-11	U	161.5	61.25	0.18	0.221	0.196	11.025	8.588
	Т	194.5	58	0.16	0.319	0.092	9.280	6.320
SSF-12B	U	176.5	57.5	0.178	0.23	0.137	10.235	7.881
	Т	180.5	40.75	0.193	0.288	0.08	7.865	5.600
SSF-14	U	155	49	0.216	0.207	0.261	10.584	8.393
	Т	157	33.75	0.168	0.351	0.199	5.670	3.680
SSF-15A	U	186.5	65.5	0.205	0.145	0.058	13.428	11.481
	Т	170	87.5	0.195	0.227	0.101	17.063	13.189
SSF-15B	U	157.25	77.25	0.192	0.239	0.12	14.832	11.287
	Т	146.5	59.5	0.164	0.309	0.092	9.758	6.743
SSF-16	U	189	82.25	0.192	0.226	0.174	15.792	12.223
	Т	169	58	0.171	0.244	0.096	9.918	7.498
SSF-17	U	161.5	45.25	0.241	0.176	0.076	10.905	8.986
	Т	189	82	0.172	0.201	0.042	14.104	11.269
SSF-19	U	130	76	0.204	0.181	0.023	15.504	12.698
	Т	170	48	0.209	0.304	0.007	10.032	6.982
SSF-20B	U	143	62	0.22	0.24	0.244	13.640	10.366
	T	157.5	99.5	0.205	0.26	0.109	20.398	15.094
SSF-22A	U	145.5	65	0.257	0.211	0.174	16.705	13.180
	Т	199.5	77.25	0.153	0.294	0.116	11.819	8.344

	1			1			1	1
SSF-22B	U	168	56.25	0.185	0.159	0.012	10.406	8.752
	Т	190	75.5	0.197	0.175	0.001	14.874	12.271
SSF-23	U	159.5	28.5	0.191	0.196	0.096	5.444	4.377
	Т	186	67.5	0.132	0.312	0.063	8.910	6.130
SSF-24	U	190	127.5	0.17	0.183	0.181	21.675	17.708
	Т	190	97.75	0.179	0.218	0.099	17.497	13.683
SSF-25	U	167	86.75	0.211	0.156	0.133	18.304	15.449
	Т	180	74.75	0.195	0.218	0.145	14.576	11.399
SSF-26	U	179	91.75	0.237	0.184	0.112	21.745	17.744
	Т	187	87.25	0.204	0.277	0.162	17.799	12.869
SSF-27	U	132.5	15.5	0.232	0.254	0.248	3.596	2.683
	Т	190	72.75	0.187	0.278	0.134	13.604	9.822
SSF-28	U				N.D.			
	Т			T	N.D.		1	
SSF-29	BT	18.5	9.75	0.208	0.305	0.152	2.028	1.409
	U	94.5	3.5	0.216	0.322	0.298	0.756	0.513
	Т	164.5	51.5	0.176	0.278	0.022	9.064	6.544
SSF-30	U	162.5	44.5	0.206	0.319	0.27	9.167	6.243
	Т	184	102	0.172	0.261	0.112	17.544	12.965
SSF-31	U	154.5	13.5	0.136	0.355	0.202	1.836	1.184
	Т	153	28.5	0.118	0.298	0.058	3.363	2.361
SSF-35	U	178	69.75	0.196	0.233	0.106	13.671	10.486
	Т	171.5	50	0.198	0.342	0.11	9.900	6.514
SSF-36	U	172.5	57	0.185	0.246	0.256	10.545	7.951
	Т	148	28.7	0.186	0.303	0.15	5.338	3.721
SSF-42B	U	165	63.75	0.211	0.216	0.217	13.451	10.546
	Т	176	79	0.196	0.276	0.152	15.484	11.210
SSF-43	U	180.5	93	0.206	0.192	0.114	19.158	15.480
	Т	144	44.25	0.209	0.327	0.15	9.248	6.224
SSF-44	U	196.5	92	0.187	0.207	0.169	17.204	13.643
	Т	166.5	66.25	0.198	0.301	0.153	13.118	9.169
SSF-45B	U	160	86.5	0.198	0.202	0.201	17.127	13.667
	Т	190.5	105.5	0.198	0.278	0.119	20.889	15.082
SSF-46	U	146.5	32	0.219	0.273	0.237	7.008	5.095
	Т	197.5	69.5	0.173	0.296	0.103	12.024	8.465
SSF-49	U	160	44.5	0.184	0.227	0.22	8.188	6.329
	Т	152	55.75	0.191	0.298	0.183	10.648	7.475
SSF-51	BT	17	9.5	0.196	0.185	0.096	1.862	1.518
	U	140	30	0.187	0.137	0.236	5.610	4.841
	T	158.5	36	0.19	0.301	0.115	6.840	4.781
SSF-52B	BT	47	11	0.165	0.151	0.125	1.815	1.541
	U	169.5	31	0.182	0.308	0.184	5.642	3.904
	Т	16.5	64	0.173	0.243	0.037	11.072	8.382
SSF-53	U	N.D.						
	T		_		N.D.			_
SSF-54	BT	15	11.75	0.212	0.211	0.036	2.491	1.965
	U	166	85.75	0.177	0.228	0.183	15.178	11.717
	Т	156	45	0.135	0.347	0.133	6.075	3.967
SSF-55	BT	17	7.5	0.145	0.36	0.069	1.088	0.696
SSF-56	U	162	74.25	0.189	0.251	0.195	14.033	10.511
	Т	165	62	0.167	0.238	0.107	10.354	7.890


	ı			Ī			I	
SSF-57	U	140	26	0.234	0.26	0.256	6.084	4.502
	Т	161.5	28.5	0.172	0.324	0.052	4.902	3.314
SSF-58	U	155.5	77.25	0.179	0.257	0.138	13.828	10.274
	Т	183	40.5	0.175	0.326	0.21	7.088	4.777
SSF-59	U	156	52.5	0.189	0.24	0.175	9.923	7.541
	Т	163	39	0.15	0.274	0.098	5.850	4.247
SSF-60	U	162	39	0.205	0.305	0.266	7.995	5.557
	Т	120.25	91.75	0.227	0.279	0.181	20.827	15.016
SSF-61	U	160	81.5	0.185	0.228	0.156	15.078	11.640
	Т	192	93.25	0.195	0.191	0.051	18.184	14.711
SSF-62B	U	168.5	105.5	0.175	0.112	0.084	18.463	16.395
	Т	164.5	77.5	0.187	0.188	0.104	14.493	11.768
SSF-63	U	179.5	95.75	0.201	0.185	0.169	19.246	15.685
	Т	156	25.75	0.175	0.307	0.15	4.506	3.123
SSF-64	U	180	51.25	0.198	0.192	0.175	10.148	8.199
	Т	168	50	0.174	0.229	0.143	8.700	6.708
SSF-65	U	144	51.5	0.193	0.221	0.208	9.940	7.743
	Т	160.5	44	0.19	0.234	0.111	8.360	6.404
SSF-66	U	156.5	53.5	0.189	0.21	0.223	10.112	7.988
	Т	152	19	0.18	0.326	0.307	3.420	2.305
SSF-67	U	180	108.25	0.219	0.233	0.134	23.707	18.183
	Т	179	73	0.184	0.278	0.163	13.432	9.698
SSF-68	U	154.5	78.5	0.184	0.218	0.149	14.444	11.295
	Т	179	86.5	0.18	0.23	0.135	15.570	11.989
SSF-69	U	182.5	111	0.19	0.22	0.166	21.090	16.450
	Т	187	36.5	0.195	0.328	0.129	7.118	4.783
SSF-70	U	150.5	27.5	0.227	0.188	0.038	6.243	5.069
	Т	137.5	61.5	0.179	0.262	0.106	11.009	8.124
SSF-72	ВТ	15.5	2.5	0.121	0.407	0.088	0.303	0.179
	U	164	8.5	0.188	0.311	0.303	1.598	1.101
	T	167	36.5	0.196	0.318	0.154	7.154	4.879
SSF-73	U	197	111.5	0.205	0.197	0.127	22.858	18.355
	T	192	81.25	0.181	0.252	0.121	14.706	11.000
SSF-74	U	137	38	0.185	0.241	0.136	7.030	5.336
		165.5	52.25	0.194	0.22	0.115	10.137	7.906
SSF-75	BT	17.5	14.5	0.272	0.341	0.049	3.944	2.599
	U	162	17.25	0.208	0.307	0.251	3.588	2.486
005.70	Т	198.5	103.5	0.185	0.164	0.157	19.148	16.007
SSF-76	BT	19.5	13.5	0.234	0.285	0.116	3.159	2.259
	U	156.5	15.75	0.206	0.282	0.216	3.245	2.330
99E 77	Т	180.5	81.75	0.192	0.227	0.051	15.696	12.133
SSF-77	11	161	70 F		N.D.	0.006	12.620	10.449
SSF-78	U T	161	70.5	0.179	0.172	0.096	12.620	
SSF-79	BT	151.5	35 9	0.162 0.144	0.25	0.15	5.670	4.253
331-13	U	26.5 195.5	35	0.144	0.349	0.163 0.162	1.296 6.790	0.844 5.201
	T		44.5					
SSF-80	U	168.5		0.215	0.227	0.112	9.568	7.396
33F-00	T	142.5	21.75	0.195	0.238	0.216	4.241	3.232
205 51		185	97 52.75	0.185	0.201	0.056	17.945	14.338
SSF-81	U	193.5	52.75	0.208	0.193	0.147	10.972	8.854 5.235
	Т	175.5	45.5	0.177	0.35	0.14	8.054	5.235

_		1		T	1		T		
SSF-82	U	151	76.5	0.194	0.214	0.177	14.841	11.665	
	Т	183.5	67	0.219	0.179	0.264	14.673	12.047	
SSF-83	U	102.5	55.75	0.18	0.185	0.086	10.035	8.179	
	Т	N.D.							
SSF-84	U	166.5	65.5	0.211	0.182	0.152	13.821	11.305	
	Т	191	87	0.188	0.201	0.093	16.356	13.068	
SSF-85	U	126	35.25	0.181	0.263	0.135	6.380	4.702	
	Т	191	87.5	0.189	0.223	0.059	16.538	12.850	
SSF-86	U	170	80.25	0.194	0.22	0.099	15.569	12.143	
	Т	181.5	11	0.199	0.381	0.112	2.189	1.355	
SSF-87	U	155.5	41.75	0.175	0.257	0.102	7.306	5.429	
	Т	155.5	30.25	0.171	0.333	0.168	5.173	3.450	
SSF-88	J	159.5	59.75	0.177	0.219	0.188	10.576	8.260	
	Т	160.5	40.5	0.183	0.3	0.086	7.412	5.188	
SSF-89	J	170	58.25	0.201	0.184	0.136	11.708	9.554	
	Т	139.5	45	0.183	0.211	0.122	8.235	6.497	
SSF-90	J	113	14	0.18	0.243	0.095	2.520	1.908	
	Т	163	24.5	0.179	0.341	0.085	4.386	2.890	
SSF-91	J	170	55	0.156	0.218	0.205	8.580	6.710	
	Т	198	63.25	0.205	0.213	0.106	12.966	10.204	
SSF-92	U	160	57	0.176	0.257	0.157	10.032	7.454	
	Т	184	71.25	0.176	0.206	0.086	12.540	9.957	
SSF-94	BT	21.5	9.5	0.222	0.394	0.124	2.109	1.278	
	U	188	82.75	0.2	0.214	0.142	16.550	13.008	
	Т	188	29.75	0.197	0.331	0.116	5.861	3.921	
SSF-95	U	128.5	22.75	0.213	0.286	0.197	4.846	3.460	
	Т	181.5	51.25	0.171	0.357	0.12	8.764	5.635	
SSF-96H	U				N.D.				
SSF-98D	U	88	37.5	0.197	0.402	0.069	7.388	4.418	
	Т	62	47	0.175	0.385	0.076	8.225	5.058	
SSF-99	BT	23.5	13	0.165	0.289	0.129	2.145	1.525	
	U	198.5	52	0.179	0.277	0.244	9.308	6.730	
	Т	120.5	41.25	0.161	0.339	0.071	6.641	4.390	
SSF-101	BT	50	35	0.203	0.247	0.086	7.105	5.350	
	U	163.5	71	0.183	0.217	0.11	12.993	10.174	
	Т	180.5	23.5	0.194	0.253	0.105	4.559	3.406	
SSF-102H	U			1	N.D.				
SSF-105	U	186	33.25	0.172	0.396	0.038	5.719	3.454	
	Т	190	63	0.173	0.342	0.096	10.899	7.172	
SSF-106D	U	165.5	41.5	0.177	0.176	0.114	7.346	6.053	
	Т	198	75.25	0.185	0.249	0.059	13.921	10.455	
SSF-107D					N.D.				
SSF-108D	U	164.5	29.5	0.16	0.159	0.068	4.720	3.970	
SSF-109D	Т	65	42.5	0.164	0.267	0.094	6.970	5.109	
SSF-110D	U	94.5	80.25	0.172	0.228	0.063	13.803	10.656	
	Т	114.5	58.5	0.175	0.385	0.078	10.238	6.296	
SSF-111D	ВТ	26.5	11.5	0.142	0.211	0.174	1.633	1.288	
	U	167.5	57.25	0.149	0.234	0.183	8.530	6.534	
N D: No dies	Т	172	59	0.16	0.295	0.108	9.440	6.655	


N.D: No disponible. Elaborado por: José R. Enríquez, Marlon Feijóo L.

CAPÍTULO III

Anexo 3.1: Mapa Estructural en profundidad de U inferior.

Anexo 3.2: Mapa Estructural en profundidad de T inferior.

Anexo 3.3: Factores para 1 del Planímetro en las diferentes escalas.

ESCALA	FACTOR	PLANÍMETRO
1: 25.000	6,25 Km ²	1
1: 50.000	25 Km ²	1
1: 75.000	56,25 Km ²	1
1: 100.000 100 Km ²		1
1:200.000	400 Km ²	1
1:250.000	625 Km ²	1
1:500.000	2.500 Km ²	1
1:1'000.000 10.000 Km ²		1
1:100	10.000 m ²	1

Fuente: Departamento de Cartografía. Petroproducción. **Elaborado por:** José R. Enríquez, Marlon Feijóo L.

CAPÍTULO IV

Anexo 4.1: Proyección de Producción de Petróleo y agua.

CAMPO SHUSHUFINDI AGUARICO

DESDE 1.994 HASTA 2.104

FECHA	PETROLEO	AGUA	BSW	RAP	PETROLEO
	BLS	BLS	%		ACUM
jun-94	98172	48048	32,9	0,49	73669
dic-94	93704	48682	34,2	0,52	754093
jun-95	90444	49801	35,5	0,55	770599
dic-95	87297	50897	36,8	0,58	786531
jun-96	84260	51995	38,2	0,62	801908
dic-96	81328	53054	39,5	0,65	816751
jun-97	78498	54100	40,8	0,69	831076
dic-97	75767	55137	42,1	0,73	844904
jun-98	73131	56190	43,5	0,77	858251
dic-98	70587	57218	44,8	0,81	871133
jun-99	68131	58248	46,1	0,85	883566
dic-99	65761	59283	47,4	0,90	895568
jun-00	63473	60352	48,7	0,95	907152
dic-00	61264	61411	50,1	1,00	918332
jun-01	59133	62489	51,4	1,06	929124
dic-01	57075	63617	52,7	1,11	939540
jun-02	55090	64748	54,0	1,18	949594
dic-02	53173	65915	55,4	1,24	959298
jun-03	51323	67124	56,7	1,31	968664
dic-03	49537	68408	58,0	1,38	977705
jun-04	47814	69722	59,3	1,46	986431
dic-04	46150	71101	60,6	1,54	994853
jun-05	44544	72554	62,0	1,63	1002983
dic-05	42995	74125	63,3	1,72	1010829
jun-06	41499	75762	64,6	1,83	1018403
dic-06	40055	77512	65,9	1,94	1025713
jun-07	38661	79425	67,3	2,05	1032768
dic-07	37316	81450	68,6	2,18	1039579
jun-08	36018	83643	69,9	2,32	1046152
dic-08	34765	86030	71,2	2,47	1052496
jun-09	33555	88686	72,6	2,64	1058620
dic-09	32388	91561	73,9	2,83	1064531
jun-10	31261	94740	75,2	3,03	1070236
dic-10	30173	98728	76,5	3,26	1075743
jun-11	29124	102300	77,8	3,51	1081058
dic-11	28110	106776	79,2	3,80	1086188
jun-12	27132	111864	80,5	4,12	1091140
dic-12	26188	117703	81,8	4,49	1095919
jun-13	25277	124557	83,1	4,93	1100532
dic-13	24398	132500	84,5	5,43	1104984
abr-13	23668	142774	85,8	6,03	1107866

Fuente: Evaluación y Control de Producción de petróleo e Inyección de Agua en los yacimientos U y T. PPR- 1997.

Anexo 4.2: Proyecciones de Producción de Petróleo de los diferentes Estudios.

PROYECCI	ONES DE PRODUCCION D	E PETRÓLEO DE I	OS DIFERENT	ES ESTUDIOS
AÑO	PETROAMAZONAS SSI- 1991	PROYECCIÓN 1997	PPR-CMG 1997	PROYECCION 2000
1991	100000			
1992	100000			
1993	100000			
1994	100000			
1995	100000			
1996	100000			
1997	100000	82272	80958	
1998	100000	78981	77938	
1999	100000	75822	78474	
2000	100000	72789	75121	
2001	100000	69877	71435	66300
2002	100000	66384	68121	69500
2003	100000	63064	64804	68700
2004		59911	61283	65200
2005	92044	56916	58174	59200
2006		54070	54986	53700
2007		50826	52004	50900
2008		47776	48922	48300
2009		44910	46206	43700
2010	69323	42215	43324	41400
2011			40890	39300
2012			38626	37200
2013			36594	35300
2014			34676	33500
2015	54019		32496	31700
2020			24028	24300
2024	36156			19600
% ERROR	0.10%	1.92%	4.32%	

Nota: el promedio del error es considerado de los años marcados con negritas.

Fuente: Petroproducción, Ochoa José. Estudio Integral de Yacimientos del Campo "Shushufindi-Aguarico". 2001