ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA ELECTRICA

"ECUALIZACION DIGITAL"

NELSON PATRICIO NUÑEZ

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO ELECTRICO EN LA ESPECIALIZACION DE INGENIERIA ELECTRONICA Y TELECOMUNICACIONES EN LA ESCUELA POLITECNICA NACIONAL

QUITO, ABRIL 1986

٩ ESCUELA POLITICAICA NACIONAL

3. and TV W. M. J. C. Jose

An Serutaria A

Certifico que el presente trabajo ha sido elaborado en su totalidad por el Sr. Nelson Patricio Nuñez.

ESCUELA POLITECA NACIONAL

DEDICATORIA

- A mi madre
- A mis hermanos
- A Dorita

AGRADECIMIENTO

Al Ing. Francois Prygiel por su acertada dirección. A todas las personas que, de una u otra forma contribuyeron con su ayuda para la culmin<u>a</u> ción de este trabajo.

INDICE

Página

CAPITULO I

INTRODUCCION

1.1	Introducción	3
1.2	Objetivo	3
1.3	Descripción de los capítulos	4

CAPITULO II

GENERALIDADES SOBRE TRANSMISION DIGITAL

El sistema de comunicación	8
Transmisión digital	9
Transmisión en banda base	10
El código de línea	1Ż
Los códigos de línea de señales independientes.	13
Los códigos de línea de señales no in-	
dependientes	15
Transmisión por portadora	19
Modulación de amplitud	19
Modulación de frecuencia	21
Modulación de fase	23
Modulación combinada de amplitud y fase	29
Perturbación de la señal	32
	El sistema de comunicación Transmisión digital Transmisión en banda base El código de línea Los códigos de línea de señales independientes. Los códigos de línea de señales no in- dependientes Transmisión por portadora Modulación de amplitud Modulación de frecuencia Modulación de fase Modulación combinada de amplitúd y fase Perturbación de la señal

CAPITULO III

TRANSMISION SOBRE CANAL REAL

3.1	Trasmisión sobre canal real	35
3.1.1	Influencia del filtraje	36
3.1.2	Diagrama del ojo	38
3.1.3	Tipos de soluciones	40

•		Página
3.2	Condiciones de ausencia de interferen-	
	cia intersímbolos	42
3.2.1	Primer criterio de Nyquist	43
3.2.2	Segundo criterio de Nyquist	48
3.2.3	Repartición del filtraje entre filtros	
	de emisión y recepción	52
3.2.4	Caso de transmisión de onda portadora.	57

.

1990 - Alexandria da Santa da

i.

CAPITULO IV

ECUALIZACION DIGITAL

4.1	Generalidades	63
4.2	Esquema de banda base	64
4.3	Ecualización óptima	69
4.3.1	Ecualización óptima lineal	69
4.3.1.1	Caso de la modulación de fase Q-PSK	81
4.3.2	Ecualización no lineal	83
4.3.2.1	Caso de la modulación de fase Q-PSK	92
4.4	Ecualización adaptiva	95
4.4.1	Ecualización adaptiva lineal	96
4.4.1.1	Caso de la modulación de fase 4-PSK	103
4.4.1.2	Ecualización lineal fraccional (FSE)	106
4.4.2	Ecualización adaptiva no lineal	108
4.4.2.1	Caso de la modulación de fase 4-PSK	113

CAPITULO V

APLICACION DE ECUALIZACION ADAPTIVA

5.1	Fuente de información	120
5.2	Canal de transmisión	121
5.3	Filtros de transmisión y recepción	125
5.4	Ecualizadores adaptivos	130
5.5	Potencia del ruido en función de la	
	relación señal al ruido	132
5,6	Diagramas de flujo	133

CAPITULO VI

RESULTADOS DE LA SIMULACION

6.1	Presentación	У	análisis	de	resultados	142
6.2	Conclusiones	ÿ	comentari	los.		173

ANEXOS

Anexo	1	176
Anexo	2	178
Anexo	3	180
Anexo	4	182
Anexo	5	185

Programa:	Manual	de	uso	У	listados		
			•			•	
Bibliografi	ĺa						

Página ,

<u>CAPITULO</u> I

INTRODUCCION

- 1.1 INTRODUCCION
- 1.2 OBJETIVO
- 1.3 DESCRIPCION DE CAPITULOS

<u>CAPITULO I</u>

INTRODUCCION

1.1 INTRODUCCION

Transmisión digital, es una área de las telecomunicaciones que ha sufrido una gran evolución en los últimos años y que en nuestros días tiene un papel muy importante en la misma. Paralelamente a su constante desarrollo, el estudio de técnicas que permitan la transmisión de señales digitales a velocidades cada vez más elevadas, sobre canales donde el ruido, el ancho de banda y las distorsiones afectan de manera importante a la señal, ha surgido como una necesidad.

En un sistema de transmisión digital, la señal emitida es afectada durante el proceso de modulación, filtraje y transmisión de tal modo que la señal en el receptor es una señal contaminada por el ruido y la interferencia intersimbolo.

Entre las técnicas principales para mejorar la transmisión digital, la ecualización digital es la más adaptada y tendrá un papel cada vez más importante en el futuro.

1.2 OBJETIVO

El objetivo del presente trabajo es la obtención de resultados, producto de la aplicación de un ecualizador digital a un sistema de transmisión digital, mediante una simulación por computadora.(IBM 370/138)

En el presente trabajo, se realiza un estudio de las principales bases teóricas concernientes a la transmisión digital, la forma como es afectada la señal digital y las principales técnicas para mejorar la transmi-

à.

sión.

1.3 DESCRIPCION DE LOS CAPITULOS

En el capítulo I, se realiza una introducción general del trabajo, el objetivo del mismo y una breve descripción de los respectivos capítulos que abarca el trabajo.

El capítulo II, abarca generalidades sobre la transmisión digital, transmisión en banda base, transmisión por portadora y las perturbaciones de la señal.

En el capítulo III, se realiza un estudio de la transmisión digital sobre un canal real. La señal digital, afectada ya sea por los códigos de línea o modulaciones, no tiene una densidad espectral limitada, lo que hace necesario el filtraje antes de emitirlas para respetar los planos de frecuencia. Por tanto, aquí, se hace un estudio de la influencia del filtraje y la elección de las características de filtros, así como de la interferencia intersimbolos.

En el capítulo IV, se realiza un estudio de las técnicas para minimizar la influencia del ruido y la interferencia intersimbolos. Se estudian dos técnicas: la ecualización óptima y la ecualización adaptiva. Mientras que el cálculo de los coeficientes del filtro digital del ecualizador óptimo requiere del conocimiento de las características del canal, lo que en la práctica ocurre raramente, la utilización de un ecualizador adaptivo resulta más práctico, en cuanto los coeficientes del filtro digital, se pueden adaptar a las características del canal.

En el capítulo V, se dan las características del sistema considerado para la simulación, a efectos de obtener resultados sobre la aplicación de la ecualiza-

4

ción adaptiva, así como de los diagramas de flujo correspondientes.

Por último en el capítulo VI, se presentan resultados producto de la simulación, análisis de los mismos, conclusiones y comentarios.

Se considera importante incluir anexos y manual de uso donde se pueda dar una orientación al lector sobre la utilización de programas y un listado de los mismos.

CAPITULO II

GENERALIDADES SOBRE TRANSMISION DIGITAL

.

2.1	El sitema de comunicación
2.2	Transmisión digital
2.3	Transmisión en bada þase
2.3.1	El código de línea
2.3.1.1	Los códigos de línea de señales independientes
2.3.1.2	Los códigos de línea de señales no independientes
2.4	Transmisión por portadora
2.4.1	Modulación de amplitud
2.4.2	Modulación de frecuencia
2.4.3	Modulación de fase
2.4.5	Modulación combinada de amplitud y fase
2.5	Perturbación de la señal

CAPITULO II

GENERALIDADES SOBRE TRANSMISION DIGITAL

2.1 EL SISTEMA DE COMUNICACION

La comunicación es el proceso por medio del cuál, la información se transfiere de un punto denominado fuente, a otro que es el destino o usuario. Un sistema de comunicación es la totalidad de mecanismos que proporcionan el enlace para la información entre fuente y destino. Un diagrama de bloques de un sistema de comunicación general se muestra en la figura 2.1.

FIGURA 2.1 Elementos de un sistema de comunicación

El segundo elemento en el sistema, es el transmisor, cuyas funciones principales son:

- Transformar el mensaje en una señal eléctrica que pueda propagarse satisfactoriamente sobre el canal de transmisión.
- 2.- Multiplexar varias fuentes de información sobre el mismo canal de transmisión.
- 3.- Adaptar el mensaje de información en una forma que lo haga inmune (al menos en un grado) de los disturbios aleatorios en el canal de transmi-

sión.

El siguiente elemento en el sistema es el canal de transmisión. Este es el enlace eléctrico entre el transmisor y el receptor, siendo el puente de unión entre la fuente y el destino. Puede ser un par de alambres, un cable coaxial, una fibra óptica, un enlace de radio frecuencia. El distintivo esencial de cualesquiera de dichos canales de transmisión, es que la señal es afectada de una manera aleatoria ya sea por la distorsión, interferencia y el ruido, los cuales se manifiestan como alteraciones de la señal.

El último elemento en el sistema de comunicación es el receptor. El receptor debe procesar la señal contaminada en forma aleatoria, y mejorar la construcción y estimación del mensaje original. Esta estimación debe ser hecha en forma conveniente para uso directo por el destinatario.

2.2 TRANSMISION DIGITAL

Consideremos una fuente de simbolos binarios – α_n – a transmitirse, estos pueden ser datos digitales – bitios a la salida de un computador, caracteres alfanuméricos codificados – o el resultado del muestreo, cuantificación y codificación de mensajes analógicos – voz, imagen.

La transmisión de estos simbolos se hace asociando a la serie α_n una señal eléctrica, cuyas propiedades son función:

1.- De las características del canal de transmisión: ancho de banda, distorsiones, interferencia.

2. Del ruido.

9 ·

3.-

De otras limitaciones: protección contra errores, redundancias para el control de calidad de funcionamiento

Esta señal eléctrica, se denomina señal digital.

En un sistema de comunicación donde se transmite el mensaje en forma contínua, el objetivo principal es la fidelidad de reproducción de las formas de onda en el receptor. Aquí la relación señal al ruido de potencia se usa como un criterio sobre el desempeño del sistema. En contraste con este sistema de transmisión, en un sistema de transmisión digital, el objetivo principal no es la reproducción de la forma de onda con fidelidad, porque las formas de onda posibles son conocidas exactamente y el detalle de la forma de onda realmente no lleva información. El objetivo es determinar, a partir de la onda contaminada receptada, cuál de las ondas finitas han sido transmitidas. Es evidente que la figura de mérito apropiada en un sistema de transmisión digital, no es la relación señal al ruido, sino la probabilidad de error en hacer la decisión en el receptor.

Existen dos clases principales de transmisión: transmisión en banda de base y transmisión por portadora. Se dice que se transmite en banda de base cuando el canal presenta una banda pasante comprendida entre (o, f_c) y transmisión por portadora cuando el canal presenta una banda pasante centrada en una frecuencia f_p .

2.3 TRANSMISION EN BANDA DE BASE

En la transmisión en la banda de base, el soporte de transmisión es un cable. Estos se dividen en dos grandes familias: par de cables simétricos y cables coaxiales.

La transmisión de señales binarias unipolares

(PCM) presenta grandes desventajas, así tenemos: tiene una apreciable componente de corriente contínua que resulta muy dificil de transmitir; son señales sincróniporque todos los pulsos tienen igual duración cas y no existe separación entre ellos, por lo tanto se requiere sincronización en tiempo, en transmisión y recepción, lo cual implica complicaciones de diseño; secuencias largas de l's lógicos decaen en amplitud, debido a la atenuación introducida por el canal de transmisión, lo que hace difícil una decisión sobre el bitio transmitido, 1 lógico o 0 lógico; secuencias largas de 0's lógicos pueden ocasionar un apagado del equipo.

En virtud de las desventajas de transmisión de pulsos binarios unipolares se recurre a los códigos de línea, los mismos que deben cumplir con los siguientes requerimientos:

- 1.- El esquema del código debe ser transparente para todas las señales binarias.
- 2.- La señal codificada debe ser decodificada de manera única en el receptor.
- 3.- No debe tener una componente contínua significativa.
- 4.- Se debe disponer un número significativo de cruces por cero para realizar la extracción de reloj en el receptor.
- 5.- Condiciones de señal inválida deben ser facilmente detectables que indiquen la calidad del enlace establecido.

La selección del código de línea, además de los requerimientos de sincronización, se lo hace en

11

base a otras consideraciones como: el espectro del código de línea y el ancho de banda disponible, particularmente a bajas frecuencias; niveles de ruido e interferencia; tiempo de adquisición de sincronización y requerimientos de implementación.

2.3.1 EL CODIGO DE LINEA

El principio de base de un código de línea, consiste en asociar a cada elemento binario una señal digital de duración T.

Se puede también concebir el agrupamiento de elementos binarios por paquetes de K elementos y asociar a cada paquete una señal seleccionada de un conjunto de 2^K elementos.

En general, es posible asociar a cada elemento binario, varias señales que sigan una cierta ley de codificación. Así tenemos por ejemplo:

> "1" $s_1(t) \delta s_2(t)$ para un par alternado "0" $s_0(t)$

La señal a la salida del codificador, en este caso, toma la forma siguiente:

$$s(t) = \sum_{n=-\infty}^{\infty} s_{i}(n) (t - nT)$$
 (2.1)

donde: $s_i(t)$ es una señal de un conjunto de M señales posibles $(s_1(t), s_2(t), \ldots, s_m(t))$.

La duración de emisión es una señal $s_i(t)$, i ([1, m]) es el período T, donde 1/T se denomina rapidez de modulación.

Existen en general, dos clases de códigos

de línea: códigos de línea de señales independientes y códigos de línea de señales dependientes.

2.3,1.1 LOS CODIGOS DE LINEA DE SEÑALES INDEPENDIENTES

Sea un código de línea definido por la ecuación .

$$s(t) = \sum_{n=-\infty}^{\infty} s_i(n) (t - nT)$$

donde: $s_i(t)$ es una señal perteneciente al conjunto $(s_1(t), s_2(t), \ldots; s_m(t))$. En este tipo de código de línea las señales utilizadas son emitidas en forma independiente.

Ejemplos de este tipo de código de línea son los códigos NRZ, RZ, bifase que se muestran en la figura 2.2.

EL CODIGO SIN RETORNO A CERO NRZ

En este caso, M = 2 y se tiene:

"0"
$$s_{0}(t) = -A t \in [0, T]$$
 (2.2)
= 0 en otro caso
"1" $s_{1}(t) = -s_{0}(t)$

EL CODIGO CON RETORNO A CERO RZ

Para este tipo de código, M = 2 con lo cuál tenemos:

"0"
$$s_0(t) = 0 t \in [0, T]$$
 (2.3)
"1" $s_1(t) = A t \in [0, rT]$ $0 < r \le 1$
= 0 en otro caso

.....

FIGURA 2.2 Códigos de línea de señales independientes a) Código NRZ b) Código RZ c) Código bifase.

En la fiqura 2.3 se muestra una comparación del espectro frecuencial de estos tres tipos de código de línea. Cuando la distancia del canal de transmisión es bastante importante, se hace necesaria la incorporación de repetidores regeneradores de la señal digital. Estos elementos son alimentados generalmente por el cable de transmisión. Por requiere lo tanto se que la componente de corriente contínua sea cero para que no exista distorsión de la señal de información.

' 14

El código bifase satisface con una de las condiciones requeridas, pero en cambio tiene un ancho de banda bastante importante.

2.3.1.2 LOS CODIGOS DE LINEA CON SEÑALES NO INDEPENDIENTES

Hemos anotado anteriormente, que la calidad de una transmisión es definida por la probabilidad de error. Existen códigos de línea que permiten una estimación de la calidad de transmisión, pués poseen ciertas secuencias períodicas o configuraciones prohibidas cuya violación a estas reglas dan una indicación sobre la probabilidad de error.

FIGURA 2.3 Espectro de los códigos NRZ, RZ y bifase.

15

Si para la transmisión de los elementos binarios se utiliza M señales, entonces existe una correlación entre las señales emitidas. estos tipos de códigos se denominan códigos de línea con señales no independientes.

En este tipo de código, la señal emitida S(t) es de la forma:

$$S(t) = \sum_{n=-\infty}^{\infty} \alpha_{i}(n) s(t - nT)$$
 (2.5)

donde $\alpha_{i}(n)$ toma valores dentro del conjunto $(\alpha_{i}, \cdots, \alpha_{j}, \cdots, \alpha_{m})$ y s(t) es una señal de duración (0, T).

Existen varios tipos de este código. A continuación describiremos los códigos AMI y HDB 3, por ser los más ampliamente utilizados.

CODIGO AMI (ALTERNATE MARK INVERSION)

Uno de los métodos más utilizados para evitar el problema de las variaciones de componente contínua en las señales digitales, es la utilización de códigos de línea cuya componente contínua es nula. La primera clase de tales códigos, son los códigos bipolares con niveles +1, 0, -1. El más sencillo de estos es el código AMI o de inversión alternada de 1's. Todos los ceros se representan con el nivel (0), pero los 1's se representan con (+1) y (-1) alternadamente para que la componente contínua sea cero. La duración de los pulsos se hace la mitad del tiempo de un bitio para facilitar la recuperación de la señal de sincronismo para la regeneración de los pulsos, o rectificación de la señal.

De acuerdo a esto, se tiene:

$$s(t) = A \quad t \in [0, T/2]$$
 (2.6)
= 0 $t \in [T/2, T]$
 $\alpha_{i}(n) = \frac{+}{1} \quad \delta \quad 0$

cuya representación gráfica en el tiempo, se muestra en la figura 2.4.a

·FIGURA 2.4

a) Representación de un código de línea AMI

b) Espéctro de frecuencia.

Como podemos apreciar en la figura 2.4.b, el código de línea AMI, tiene una componente contínua nula, y ofrece además una posibilidad de detección de errores por medio de la detección de violación de polaridad, con lo cual cumple con las propiedades requeridas por un código de línea.

CODIGO HDB 3 (HIGH DENSITY BIPOLAR)

A pesar de su utilización extensa, el código AMI tiene una debilidad seria. Secuencias largas de

17

ceros no tiene ninguna componente a la frecuencia de repetición de los pulsos y puede causar una pérdida de sincronismo. Esto puede evitarse sustituyendo secuencias especiales o grupos de ceros.

Como los pulsos normales de datos siempre tienen polaridades alternadas por l's sucesivos, las secuencias especiales pueden distinguirse por tener violaciones de polaridad, es decir de pulsos sucesivos de la misma polaridad. La secuencia sustituída depende de la polaridad del último pulso de datos y de número de l's desde la sustitución anterior.

Las reglas son:

Polaridad de pulso anterior

.

Impar	Par
000-	+00+
000+	-00-

Número de 1's

Así tenemos un ejemplo:

Datos originales Código de línea
> Primera Sustitución

Sustitución con número par de l's después de la última sustitución

Cualquier violación de polaridad que no esté conforme con la regla, indica un error de transmisión y los decodificadores normalmente tienen una salida indicador de errores para facilitar el mantenimiento del sistema.

En la figura 2.5 se indica el espectro frecuencial de este código. Como se puede apreciar, tiene una componente contínua nula, permite detección de errores, lo que hace que este código de línea sea bastante utilizado.

2.4 TRANSMISION POR PORTADORA

La transmisión digital por portadora difiere de la transmisión digital en banda de base, básicamente en dos aspectos importantes. Primero, la información digital debe modular una portadora en alguna manera para producir la señal portadora de la información. Segundo, en un enlace por portadora existe la necesidad de limitar estrictamente las señales para prevenir interferencia dentro de otros canales.

Existen 4 tipos de modulación digital: modulación de amplitud, modulación de frecuencia, modulación de fase y modulación combinada de amplitud y fase.

2.4.1 MODULACION DE AMPLITUD

Históricamente, la forma más simple de modulación para generar y detectar, es la modulación de amplitud. Una ilustración conceptual de modulación de amplitud se muestra en la figura 2,5. La definición matemática está dada por la ecuación 2.7:

$$S(t) = A \sum_{n=-\infty}^{\infty} \alpha_i(n) s(t - nT) \cos w_0 t \qquad (2.7)$$

donde: α_i es un símbolo M-ario y:

$$s(t) = 1 t \in [0, T]$$
$$= 0 en otro caso$$

En el caso que se presente en la figura 2.5, tenenmos que [1,2]

b)

FIGURA 2.5 · Modulación digital de amplitud a) señal digital en banda de base b) señal modulada en amplitud.

La figura 2.5 nos indica que la señal modulada se consigue multiplicando directamente una señal unipolar por la portadora. Señales moduladas en amplitud son usualmente demoduladas con un simple detector de envolvente. Desafortunadamente el desempeño de error de modulación digital de amplitud en general y detección de envolvente en particular es inferior a otras formas de modulación digital y detección.

Cuando se utiliza ciertos tipos de códigos de

línea, como en el caso de un código NRZ con niveles - 1, la demodulación ya no es posible realizar por detección de envolvente, sino mediante una comparación con una referencia sincrónica de portadora, puesto que conceptualmente la modulación de amplitud realiza una multiplicación directa del código de línea con la portadora, obteniéndose como resultado dos señales iguales pero desfasadas en 180°.

2.4.2 MODULACION DE FRECUENCIA

Conceptualmente, en los sistemas de modulación de frecuencia, cada estado de la señal digital es asociado con una frecuencia de la señal modulada. A este tipo de sistemas se les conoce también como sistemas de envolvente constante. Una ilustración conceptual de modulación de frecuencia se muestra en la figura 2.6.

a)

FIGURA 2.6 Modulación digital de frecuencia a) señal digital banda de base b) señal modulada en frecuencia.

En la práctica, este Lipo de modulación puede realizarse mediante la conmutación de osciladores (modu-

lación de frecuencia de base discontínua) o con la utilización de un solo oscilador controlado por tensión (modulación de frecuencia de fase contínua).

- 1.- En el caso de modulación de frecuencia de fase discontínua, veamos como ejemplo, el caso en el cual se utiliza dos frecuencias; como se ilustra en la figura 2.7.
 - Si:
 - $a_1 = "0"$ se emite $S_1(t) = Acos(2 \pi f_1 t + \Theta)$ durante un período T.

 $a_1 = "1"$ se emite $S_2(t) = Acos(2 \Pi f_2 t + \emptyset)$ durante un - período T.

 Θ y \oslash son dos fases constantes y cualesquiera.

FIGURA 2.7 Diagrama de un modulador de frecuencia de fase discontínua.

La señal modulada en frecuencia S(t), en este caso será:

$$S(t) = A\cos(w_{1}t + \Theta) \sum_{n} a_{i}(n)s(t - nT) \qquad (2.8)$$

+
$$\lambda \cos(w_2 t + 0) \sum_{n} [1 - a_1(n)s(t - nT)]$$

 $con s(t) = 1 sit \in [0, T]$ = 0 en otro caso

22

2.-

En los sitemas de modulación de fase contínua, la señal modulada tiene la forma siguiente:

$$S(t) = A \sum_{n} S(t - nT) \cos(2\pi f_0 t + a_n \cdot n\pi t/T + \theta_n)$$
(2.9)

Consideremos el caso cuando $a_n = \frac{+}{1}$ Se tiene: $f_0 + n/2T = f_1$ $f_0 - n/2T = f_2$

 θ_n es una constante sobre el intervalo [nT, (n + 1)T], seleccionada de tal manera que la fase $a_n \cdot n \, \Pi t/T + \theta_n$ sea contínua en todos los instantes nT.

2.4.3 MODULACION DE FASE PSK

La segunda categoría de modulación angular, señales con envolvente constante, se conoce como modulación digital de fase (PSK).

A las M configuraciones de la información digital (M es en general de la forma 2^K) se asocia una fase del conjunto de M fases ($\theta_1, \theta_2, \ldots, \theta_m$). Se habla entonces de modulación por desplazamiento de fase de M estados.

En la práctica, se utiliza principalmente las modulaciones de fase de dos estados (MDP2 ó 2-PSK), de 4 estados (MDP4 ó QPSK) y 8 estados (MDP8 ó 8PSK).

Ejemplos de formas de onda típicas de 2-PSK y Q-PSK se muestran en la figura 2.8, con fases particulares, ya que otras orientaciones de fase son posibles.

NACIONA

b)

FIGURA 2.8 Modulación de fase a) 2-PSK b) Q-PSK

1.-MODULACION Q-PSK

La expresión general para un sistema de modulación multifase es la ecuación 2.10

$$S(t) = A \sum_{n} s(t - nT) \cos(w_{0}t + \phi_{n})$$
 (2.10)

para un sistema Q-PSK, $\phi_n \in [\phi_1, \phi_2, \phi_3, \phi_4]$

si, $\emptyset_n \in [0, \pi/2, \pi, 3\pi/2]$ se indica con cruces, en la figura 2.8.b, las fases correspondientes.

si, $\emptyset_n \in [\pi/4, 3\pi/4, 5\pi/4, 7\pi/4]$ se indica en la misma figura con puntos las fases y señales correspondientes.

Representación de señales en cuadratura, es una forma muy conveniente y poderosa de describir señales PSK, y muchas otras señales moduladas digitalmente. Representación de señales en cuadratura involucra expresar una señal modulada de fase arbitraria, como una combinación lineal de una señal coseno y una señal seno con fase inicial cero. La derivación de ésta representación es proveída por la identidad trigonométrica:

$$\cos(w_c t + \phi) = \cos\phi \cdot \cos \psi_c t - \sin\phi \cdot \sin \psi_c t$$
 (2.11)

Vemos que $\cos \phi$ y sen ϕ son constantes sobre un intervalo de señalización T, y de aquí que representan coeficientes para expresar $\cos(w_{c}t + \phi)$ como una combinación lineal de las señales $\cos w_{c}t$ y sen $w_{c}t$. Puesto que $\cos w_{c}t$ y sen $w_{c}t$ tienen un desfasaje de 90°, una respecto de la otra, entonces son ortogonales, y se dice que están en "cuadratura".

TABLA 2.1 Coeficientes de señales en cuadratura para modulación Q-PSK

COEFICIENTES DE CUADRATURA			
DATOS	Cos w _c t	Sen w _c t	SEÑAL COMPUESTA
0 1	0.707	- 0.707	cos (w_t + π/4)
0 0	- 0.707	- 0.707	cos (w_t + 3 11/4)
1 0	- 0.707	0.707	$\cos (w t - 3 \pi/4)$
1 1	0.707	0.707	cos (wct - 11/4)

En escencia, cos w_ct y sen w_ct representan vectores de base en un diagrama fasorial de dos dimensiones. La tabla 2.1 provee un ejemplo de representación de señales en cuadratura para señales 4-PSK presentada en la figura 2.8.

De acuerdo a la identidad de la ecuación 2.11, la ecuación 2.10 se puede expresar:

$$S(t) = A \sum_{n} s(t - nT) [\cos \phi_{n} \cdot \cos \psi_{0} t - \sin \phi_{n} \cdot \sin \psi_{0} t]$$
(2.12)

Si:

 $\cos \phi_n = a_n / \sqrt{2} \quad \operatorname{con} \quad a_n = \frac{+}{-1}$ $\operatorname{Sen} \phi_n = b_n / \sqrt{2} \quad \operatorname{con} \quad b_n = \frac{+}{-1}$

La ecuación 2.12 finalmente se expresa:

 $S(t) = (A/\sqrt{2}) \sum_{n} s(t - nT) (a_{n} \cdot \cos w_{0}t - b_{n} \cdot \sin w_{0}t)$ (2.13)

2.- PRINCIPIO DEL MODULADOR 4-PSK

Una variedad de técnicas son posibles para implementar moduladores PSK. Algunas técnicas básicas para generar múltiples señales PSK son las siguientes:

- a.- Generación de múltiples fases de una sola portadora y seleccionar entre la fases, dependiendo de los valores del dato.
- b.- Utilizando retrazos controlados, seleccionados a través de arreglos de interruptores para proveer el desviamiento de fase deseado. Retrasos son usualmente usados para generar las señales separadas explicadas en el segundo método.
- c.- Generación de señales PSK como una combinación lineal de señales en cuadratura.

Ninguna de las técnicas anotadas, representan una implementación directa de modulación PSK multifase, como se indica en la ecuación 2.10. Para generar una señal, gobernada por la ecuación 2.10 directamente, una aparato es requerido que produzca desviaciones de fase de portadora en proporción directa a los niveles en la señal banda de base. Excepto en el caso especial de 2-PSK donde un multiplicador puede ser usado para producir desviaciones de fase de $\frac{+}{-}$ 180°, tales aparatos no existen.

Modulación directa por señales banda de base, pueden producir señales PSK si una implementación de señales en cuadratura es usado como se indica en el cuarto método. De acuerdo a la ecuación 2.3 vemos que dos señales banda de base requieren ser establecidas para representar una señal 4-PSK como una combinación lineal de las señales coseno y seno. Un diagrama de bloques de la implementación correspondiente se provee en la figura 2.9. Esta forma particular de modulador es seleccionado porque se muestra los conceptos fundamentales de este tipo de modulación

FIGURA 2.9 Esquema generalizado de un modulador Q-PSK.

3.- PRINCIPIO DEL DEMOLUDADOR Q-PSK

Debido a la envolvente constante, todos los sistemas PSK deben ser detectados con la ayuda de una referencia local. Bajo este principio la figura 2.10, muestra un esquema de un demodulador Q-PSK, donde el tren de Si:

ĩ

$$a = (a_n \cdot \cos w_0 t - b_n \cdot \sin w_0 t) \cdot 2\cos w_0 t$$
$$= 2a_n \cdot \cos^2 w_0 t - 2b_n \cdot \sin w_0 t \cdot \cos w_0 t$$
$$= a_n + a_n \cdot \cos 2w_0 t - b_n \cdot \sin 2w_0 t$$

Mediante el filtro pasabajos, se anulan los términos de doble frecuencia y tenemos solo a_n.

Si:

$$b_n = - (a_n \cdot \cos w_0 t - b_n \cdot \sin w_0 t) \cdot 2 \sin w_0 t$$
$$= b_n - b_n \cdot \cos 2w_0 t - a_n \cdot \sin 2w_0 t$$

De idéntica manera, mediante el filtro pasabajos obtenemos b_n .

FIGURA 2.10 . Esquema del demodulador Q-PSK

Como se indica en la figura 2.10, el demodulador Q-PSK, requiere de dos frecuencias locales. La técnica más común, es de establecer una referencia y la otra se consigue mediante retraso o diferenciación de la primera.

En el sector de recepción, se requiere además la recuperación de reloj, lo que se consigue mediante las transiciones de la señal banda de base, implicando ello que se requiera un número suficiente de transiciones en la señal banda de base para mantener la sincronización.

4.- ESPECTRO DE LA SEÑAL PSK

Con mucho, la forma más fácil de determinar el espectro de una señal PSK es analizar las formas de onda en banda de base aplicadas a los canales en cuadratura. Debido a la ortogonalidad de los dos canales, las señales no son relacionadas y el espectro compuesto es aproximadamente la suma de los espectros (idénticos) individuales. Para una señal en banda de base NRZ, el sistema 4-PSK produce un espectro que sigue la respuesta sen (x)/x, pero traslada¹⁶a la frecuencia portadora.

FIGURA 2.11 Espectro de frecuencia de una señal Q-PSK para una señal banda de base NRZ.

2.4.4 MODULACION COMBINADA DE AMPLITUD Y FASE QAM

29
Modulación de amplitud en cuadratura QAM, puede ser visto como una extensión de modulación multifase PSK, ya que las dos señales en banda de base son generadas independientemente una de otra. Así, dos canales independientes (en cuadratura) son establecidos incluídos la codificación en banda de base y el proceso de detección. En el caso de dos niveles (-1) en cada canal, el sistema es idéntico a Q-PSK y es usulmente referido como tal. En sistemas QAM de alto nivel; sin embargo son distintivamente diferentes de los sistemas PSK de alto nivel. En la figura 2.12 se muestra el diagrama de una señal en un sistema 16-QAM obtenida a partir de 4 niveles en cada canal en cuadratura. Los puntos representan puntos de señal compuesta, mientras que las marcas en los ejes, representan niveles de amplitud en cada canal en cuadratura.

a) Modulación 16-QAM b) Modulación 16-PSK

Como podemos apreciar en la figura 2.12, un sistema QAM no restringe la combinación de niveles, puesto que los niveles en cada canal son seleccionados independientemente. Pero en la práctica existen limitaciones, pués se buscan pares para los cuales la probabilidad de error es mínima.

El espectro de un sistema QAM, es determinado por el espectro de las señales banda de base aplicadas a los canales en cuadratura. Puesto que estas señales tienen la misma estructura básica para las señales banda de base PSK, las formas espectrales QAM son idénticas a las

· 30

formas espectrales PSK con igual número de puntos de señal. Específicamente, 16-QAM tiene la misma fórma espectral que 16-PSK y 64-QAM tiene una forma espectral idénticamente igual a 64-PSK. En la figura 2.13 se muestra una estructura básica de un modulador/demodulador con las formas de onda representativas de un sistema 16-QAM (Ref. No. 1).

FIGURA 2.13 Estructura básica de un modulador/demodulador de un sistema 16-QAM.

La forma general de f(t) está dada por la ecuación 2.14.

 $f(t) = r(t) \cdot \cos(w_0 t + \theta(t)) \qquad (2.14)$ Si x(t) = r(t) \cdot \cos \theta(t) y(t) = r(t) \cdot \sin \theta(t)

Entonces f(t) puede ser considerada como la suma de dos portadoras en cuadratura moduladas respectivamente en amplitud por x(t) y y(t).

31

 $f(t) = x(t) \cdot \cos w_0 t + y(t) \cdot \cos(w_0 t + \pi/2)$ (2.15)

En el demodulador, consideremos la recuperación de x(t).

 $x(t) = 2f(t) \cdot \cos w_0 t$ = $x(t) + x(t) \cdot \cos 2w_0 t - y(t) \cdot \sin 2w_0 t$

Con lo cual se obtiene x(t) filtrando las componentes de doble frecuencia por medio del filtro pasabajos. La señal y(t) se recupera en forma idéntica.

2.5 PERTURBACION DE LA SEÑAL

En sistemas de transmisión digital, la señal transmitida es afectada por el ruído y la interferencia intersímbolo, que se manifiestan como alteraciones de la señal.

En los sistemas prácticos, el ruído blanco no es un parámetro crítico en la transmisión digital, pués se encuentran relaciones señal al ruído elevadas. Por el contrario, es el ruído impulsivo, que se presenta en forma de tensiones elevadas, aunque de muy corta duración, el que representa una fuente primaria de errores en la transmisión de datos.

Interferencia intersímbolo es un parámetro muy importante en transmisión digital. Las principales causas de interferencia intersímbolo son: distorsión de amplitud, distorsión de fase, ancho de banda y sincronización transmisión/receptor.

Mucho del trabajo en el área de la ingeniería de las comunicaciones se ha centrado en combatir estos problemas que afectan la transmisión de datos y se los trata en los posteriores capítulos.

<u>CAPITULO</u> III

TRANSMISION SOBRE CANAL REAL

3.1	Transmisión sobre canal real
3.1.1	Influencia del filtraje
3.1.2	Diagrama del ojo
3.1.3	Tipos de soluciones .
3.2	Condiciones de ausencia de interferencia intersímbolo [.]
3.2.1	Primer criterio de Nyquist
3.2.2	Segundo criterio de Nyquist
3.2.3	Repartición del filtraje entre filtros de
	emisión y recepción
2 2 4	Case de transmisión de ende neutradare

3.2.4 Caso de transmisión de onda portadora

<u>CAPITULO III</u>

TRANSMISION DIGITAL EN UN CANAL REAL

3.1 SOBRE LA TRANSMÍSION EN CANAL REAL

La limitación en ancho de banda es una de las constantes a que se ve sometida la transmisión de señales eléctricas. Las propias características del medio utilizado, o la asignación de tramos de banda entre distintos usuarios o servicios, reducen el ancho de banda disponible para la transmisión.

En otros casos, debido a lo reducido del espectro de la señal, esta restricción relativa al ancho de banda del medio de transmisión disponible, no supone un condicionamiento importante en el diseño del sistema transmisor/receptor y en cambio es el alto nivel del ruido el que limita fundamentalmente la cantidad de información transmitible. En el primer caso se habla de transmisión a través de canales limitados en ancho de banda y en el segundo limitados en potencias. Sin embargo en la transmisión en banda de base, o en canales equivalentes al de banda de base, por la propia naturaleza de la señal (pulsos rectangulares, con una anchura de espectro infinita), la limitación de ancho de banda afecta a la forma de la señal distorsionándola de manera importante.

Supongamos por ejemplo que se pretende transmitir un pulso unidad d(t) por un canal cuya función de transferencia H(f) tiene la caraterística de un paso bajo ideal (figura 3.1)

La forma de onda de la salida es suficientemente conocida y matemáticamente está representada por la función sinc 2wt. La señal d(t) se ha distorsionado prolongándose su duración tanto más cuanto menor sea el ancho de banda w. Si este pulso pertenecería a una secuencia sucesiva de pulsos, sus prolongaciones afectarían a los pulsos anteriores y posteriores que sufrirían una nueva distorsión por esta causa.

3.1.1 INFLUENCIA DEL FILTRAJE

Para analizar este problema en una sistema de transmisión - recepción en banda de base, utilizaremos un modelo lineal representado por el esquema general de bloques de la figura 3.2, modelo que nos va a permitir obtener conclusiones y resultados, válidos en la primera aproximación de lo que ocurre en los sistemás prácticos reales.

Sea x(t) un código de línea

$$x(t) = \sum_{n=-\infty}^{\infty} d_{i}(n)s(t - nT)$$
(3.1)

Donde $d_{i}(n)$ toma sus valores de un conjunto (d_{1}, \ldots, d_{m}) y s(t) es una señal de duración T.

Si se considera un instante t $_{O} \in [0,T]$, x(t $_{O}$) será representativo de la información transmitida en este intervalo de tiempo.

En efecto:

$$x(t_0) = d_1(0).s(t_0)$$

Todos los términos

$$\sum_{n \neq 0} s(t_0 - nT) = 0$$

FIGURA 3.2 Esquema de una sistema de banda de base.

Denominando h(t) a la respuesta impulsiva del conjunto filtro de emisión más canal de transmisión, como se indica en la figura 3.2, la señal y(t) puede escribirse:

$$y(t) = \sum_{n} d_{i}(n).s'(t - nT) + n(t)$$
 (3.2)

Donde s'(t) es el resultado de la convolución de s(t) con h(t)

s'(t) = s(t) * h(t)

La respuesta s'(t) no está ya limitada al intervalo (0,T) como se indica en la figura 3.3.b.

FIGURA 3.3

De este modo, si se considera un instante to co-

.rrespondiente al máximo de s'(t), y(t_o) está constituido de tres términos:

- d_i(0)s'(t_o)

Representativo de la información transmitida durante el intervalo de tiempo (0,T).

n(t_o) . El término de ruido

 - ∑ s'(t_o - nT) Término que ya no es nulo y n≠0
 que se denomina "interferencia intersímbolos"

Este término de interferencia intersímbolos aporta una ambigüedad suplementaria sobre la señal recibida y(t) y que hace aumentar la probabilidad de error.

En general, la interferencia intersímbolo comprende un número finito de términos, es decir:

 $\sum_{n \neq 0} d_{i}(n) \cdot s'(t_{0} - nT) = 0$ $para n \ge L_{1} y n \le -L_{2}$ $L_{1}, L_{2} \in \mathbb{N}$

Para eliminar la incertidumbre en la detección, deberá obligarse a que el término debido a la interferencia intersímbolos, se anule o tome un valor previamente conocido. Se trata por tanto de averiguar qué características debe tener la función de transferencia H(f) para que su respuesta impulsiva h(t) haga que se verifiquen estas condiciones. Este estudio fue realizado por Nyquist en 1.928 y es objeto de estudio en este capítulo.

3.1.2 DJAGRAMA DEL OJO

El diagrama de ojos es un sistema práctico de analizar la interferencia intersímbolos entre símbolos de una señal recibida.

Este diagrama se observa con un osciloscopio, poniendo la señal en el eje vertical, y en el horizontal un barrido de frecuencia 1/T.

En la figura 3.4 se representa una secuencia de pulsos binarios sin interferencia intersímbolos y el diagrama de ojos que se vería en la pantalla del osciloscopio, después de una larga serie de pulsos.

FIGURA 3.4
a) Secuencia binaria sin interferencia intersímbolos

b) Diagrama del ojo.

Si hubiera interferencia entre símbolos, los trazos en el diagrama de ojos ya no se superpondrían, como puede apreciarse en la figura 3.5, donde por claridad solo se han representado unos pocos trazos.

Hasta aquí hemos supuesto que no había ruido en el canal. Sin embargo en un caso real, existe y los trazos serán más difusos.

Del diagrama del ojo se puede extraer mucha información tanto de las características del sistema transmisor, como del método mejor de detección.

FIGURA 3.5
a) Secuencia binaria con interferencia inter símbolos
b)Diagrama del ojo

En la figura 3.6 se ha representado un modelo simplificado del diagrama del ojo, donde con letras se ha señalado los puntos más significativos.

A. Distorsión en los cruces por cero.

. B. Margen de defensa contra el ruido.

C. Margen contra errores en el muestreo.

- D. Distorsión en el instante de muestreo.
- E. Sensibilidad al error en el instante de muestreo.
- F. Instante de muestreo óptimo.
- G. Nivel umbral de decisión.

Si la señal fuera multinivel aparecerían varios ojos como puede verse en la figura 3.7 donde se representa un diagrama de ojos simplificado para un sistema de cuatro niveles.

En general, si el sistema tiene n niveles, aparecerán n - 1 ojos.

3.1.3 TIPOS DE SOLUCIONES

Para combatir la interferencia intersímbolos, dos

FIGURA 3.6 Diagrama del ojo binario.

FIGURA 3.7 Diagrama de ojos de una señal a cuatro niveles.

al instante de decisión.

soluciones son posibles:

Compensar en recepción el efecto del filtraje aportado por el conjunto filtro de transmisión canal de transmisión, utilizando un ecualizador, es decir minimizar la interferencia intersímbolo.
Utilizar un filtro de emisión y un filtro de recepción que anule la interferencia intersímbolo La segunda solución parece más importante puesto que ello neutraliza la interferencia intersímbolo. Su puesta en obra puede ser delicada, es por esto que las dos soluciones revelan interés.

3.2 CONDICIONES DE AUSENCIA DE INTERFERENCIA INTERSIMBOLO

Consideremos un código de línea x(t).

$$x(t) = \sum_{n=-\infty}^{\infty} d_{i}(n).s(t - nT)$$

con s(t) $\neq 0$ $\forall t \in [0,T]$ 0 en otro caso

FIGURA 3.8

Esquema general de un sistema en banda de base sin ruido.

Si h(t) es la respuesta impulsiva del conjunto filtro de emisión - canal de transmisión - filtro de recepción, como se indica en la figura 3.8; la señal y(t) a la salida del filtro de recepción es:

$$y(t) = \sum_{n=-\infty}^{\infty} d_{i}(n) \cdot r(t - nT)$$
 (3.3)

donde

 $r(t) = s(t) \times h(t)$

La ausencia de interferencia intersímbolos se traduce por:

Existe un instante $t_e \in [0,T]$, tal que:

 $r(t_e) \neq 0$ $r(t_e - nT) = 0 \quad \forall n \neq 0$

Realizando un cambio de origen en el tiempo:

 $r(0) \neq 0$ (3.4) $r(nT) = 0 \quad \forall n \neq 0$

Por lo tanto, la señal emitida será perfectamente reconstituida, si r(t) verifica estas condiciones. Para que se cumpla 3.4, veamos que condiciones debe verificar la función de transferencia R(f).

3.2.1 PRIMER CRITERIO DE NYQUIST

Corresponde a un sistema de detección por muestreo ideal en un punto separado to del punto central.

Sea R(f) la transformada de Fourier de r(t).

$$R(f) = \int_{-\infty}^{\infty} r(t) e^{-j2\pi ft} dt \qquad (3.5)$$

con r(t) =
$$\int_{-\infty}^{\infty} R(f) e^{j2\pi ft} df$$
 (3.6)

Denominemos $\widehat{R}(f)$, la función obtenida periodificando R(f) con período 1/T. Entonces $\widehat{R}(f)$ se expresa :

$$\hat{R}(f) = \sum_{n=-\infty}^{\infty} R(f - n/T)$$
 (3.7)

Desarrollando $\hat{R}(f)$ en series de Fourier, tenemos:

$$\hat{R}(f) = \sum_{k=-\infty}^{\infty} C_{k} e^{j2\pi fKT}$$
(3.8)

$$\operatorname{con} C_{K} = T \int_{1/T} \hat{R}(f) e^{-j2 \pi f K T} df \qquad (3.9)$$

Tomando como límites el intervalo (- 1/2T, 1/2T) y reem-

, 43

plazando 3.7 en 3.9

$$C_{k} = T \sum_{n=\infty}^{\infty} \int_{-1/2T}^{1/2T} R(f - n/T) e^{-j2\pi fKT} df$$
 (3.10)

Realizando un cambio de variables en 3.10

$$C_{K} = T \sum_{n=-\infty}^{\infty} \int_{-\frac{1}{2T}}^{\frac{1}{2T} + \frac{n}{T}} R(f) e^{-j2\pi} (f + n/T) KT df$$

= $T \sum_{n=-\infty}^{\infty} \int_{-\frac{1}{2T} + \frac{n}{T}}^{\frac{1}{2T} + \frac{n}{T}} R(f) e^{-j2\pi} fKT df$ (3.11)

La sumatoria de integrales que se repiten periódicamente, nos da una itegral donde f toma valores en el intervalo (- ∞ , ∞). Por lo tanto la ecuación 3.11 se la expresa:

$$C_{K} = T \int_{\infty}^{\infty} R(f) e^{-j2\pi fKT}$$
(3.12)

La expresión r(t) para los instante t = KT, de acuerdo a la ecuación 3.6, toma la forma:

$$r(t)/t = KT = \int_{\infty}^{\infty} R(f) e^{-j2\pi fKT}$$

• Con lo cual el K-ésimo coeficiente del desarrollo en serie de Fourier de R(f), C_k toma el valor

$$C_{K} = T. r(KT)$$
 (3.13)

Valor que nos lleva a la relación de la ecuación 3.14 a partir de las ecuaciones 3.7 y 3.8.

$$\sum_{n=-\infty}^{\infty} R(f - n/T) = \sum_{k=-\infty}^{\infty} T.r(KT) e^{-j2\pi fKT} \quad (3.14)$$

Aplicando[,] las condiciones de ausencia de interferencia intersímbolo (ecuación 3.5) en la ecuación 3.14, nos lleva a la relación de la ecuación 3.15, relación que se conoce como "primer criterio de Nyquist".

$$\sum_{n=-\infty}^{\infty} R(f - n/T) = T.r(0)$$
 (3.15)

Nótese como en la ecuación 3.15 y por tanto la existencia o no de inteferencia intersímbolos depende del instante de muestreo, pués no existirá interferencia solo si se ha calculado en t_o = 0 y en el detector se muestrea en el punto central.

Para tener un concepto más claro sobre las funciones R(f), se puede limitar el dominio de definición de R(f), seleccionando funciones que verifiquen la ecuación 3.15.

1.- En la figura 3.9, se muestra un filtro pasa bajos de función de transferencia $R_0(f)$ y su respuesta en el tiempo $r_0(t)$ dadas por la ecuación 3.16.

$$r_{o}(t) = \frac{Sen(\pi t/T)}{(\pi t/T)} \cdot r(0)$$
 (3.16)

 $R_{O}(f) = T.r_{O}(0) \quad \forall |f| \leq 1/2T$ $= 0 \quad , \quad \text{en otro caso}$

FIGURA 3.9

a) $r_0(t) = sinc 2w_0 t$ b) Filtro pasa bajo ideal.

Si bien este tipo de solución cumple con el pri-

45

mer criterio de Nyquist, la misma no presenta más que un interés teórico, puesto que el filtro ideal es irrealizable en un sistema real. Por consiguiente, el ancho de banda disponible a de ser mayor que la frecuencia de Nyquist F.

2.- Para obtener una respuesta de frecuencia R(f) que sea físicamente realizable, una segunda solución es limitar el intervalo de definición del espectro de frecuencia al intervalo [- 1/T, 1/T]. Por consiguiente, es de mayor interés, tener una respuesta de frecuencia de la forma como se indica en la figura 3.10.a. La misma que está definida por:

$$R(f) = T.r(0); \text{ si } |f| \leq (1/2T)(1 - \alpha); 0 < \alpha \leq 1 \quad (3.17)$$
$$= \frac{Tr(0)}{2}(1 + \beta)(f - 1/2T); \text{ si } \frac{1 - \alpha}{2T} \leq f \leq \frac{1 + \alpha}{2T}$$

y cuya respuesta en el tiempo r(t) está dada por la ecuación 3.18.

$$r(t) = r(0) \frac{\operatorname{Sen}(\pi t/T)}{(\pi t/T)} (\operatorname{Cos} \frac{d \pi t}{T} + i \pi t \int_{-\alpha/2T}^{\alpha/2T} \frac{i2 \pi f_{o}t}{du}$$

De acuerdo a la definición, R(f) presenta una simetría impar alrededor del punto (1/2T, Tr(0)/2), y para un valor de $\alpha = 0$, se tiene el caso del filtro pasa bajo ideal.

Aún esta función tampoco es utilizable, pués un error en el instante de muestreo, conducirá a una interferencia intersímbolo importante.

Analicemos este problema, para el caso del filtro ideal. Si en lugar de muestrear en el instante central t = 0, lo hacemos en un punto t_e = ε próximo a ε l, la ecuación 3.3 será igual a:

$$y(t_e) = \sum_{K} a_n \frac{Sen \pi (\varepsilon - KT) / T}{\pi (\varepsilon - KT) / T}$$
(3.19)

La señal $y(t_e)$, podemos descomponerla en dos términos: una representativa de la señal al instante t_e y otra que representa la interferencia debido a los n pulsos anteriores y posteriores. Entonces:

 $y(t_e) = a_0 \frac{\operatorname{Sen} \pi \varepsilon / T}{\pi \varepsilon / T} + \sum_{K \neq 0} a_K \frac{\operatorname{Sen} \pi (\varepsilon - KT) / T}{\pi (\varepsilon - KT) / T}$

$$= a_0 \frac{\operatorname{Sen} \pi \varepsilon / t}{\pi \varepsilon / \tau} + \sum_{K \neq 0} a_K (-1)^K \frac{\operatorname{Sen} \pi \varepsilon / \tau}{\pi (\varepsilon / \tau - \kappa)}$$
(3.20)

FIGURA 3.10

a) Filtro de respuesta R(f) b) Respuesta en el tiempo.

En la ecuación 3.20, representamos con $y_m(t_e)$, el término de interferencia. Entonces:

$$y_{m}(t_{e}) = \sum_{k \neq 0} a_{K} (-1)^{K} \frac{\operatorname{Sen} \pi E / T}{\frac{\pi E}{T} - K \pi}$$
(3.21)

Supongamos por sencillez, de que se trata de una transmisión binaria en la que a $_{\rm K}$ puede valer 1 $\acute{\rm d}$ -1.

Entonces, el razonamiento es que siempre podremos encontrar un caso peor en el que todos los términos del sumatorio; en la ecuación 3.21, se sumen. Su resultado será:

$$y_{m}(t_{e}) = \frac{\text{Sen } \pi E/T}{\pi} \sum_{l=1}^{k} \left(\frac{1}{|\frac{\xi}{T}-K|} + \frac{1}{\frac{\xi}{T}+K}\right)$$

Luego,

$$y_{m}(t_{e}) = \frac{2 \operatorname{Sen} \pi \epsilon / \pi}{\pi} \sum_{1}^{\kappa} \frac{\kappa}{\kappa^{2} - (\epsilon / \tau)^{2}}$$

Que es una serie divergente, tendiendo a infinito al tender K a infinito, ya que

$$\sum_{k=1}^{k} \frac{K}{K^{2} - (E/T)^{2}} \longrightarrow \sum_{k=1}^{k} \frac{1}{K} \longrightarrow \infty \qquad \text{para } K \to \infty$$

Estos resultados, se traducen en que el diagrama del ojo se cerrará completamente, y no será posible hacer una decisión en el receptor. Esto obliga a buscar un criterio más conveniente, para lo cual veamos el segundo criterio de Nyquist.

3.2.2 SEGUNDO CRITERIO DE NYQUIST

El primer criterio de Nyquist da las condiciones a satisfacer para suprimir la interferencia intersímbolos. Consiste en imponer a la respuesta impulsiva del filtro de puntos de pasaje por cero a los instantes t = $KT^ (K \neq 0)$. Se puede ir más lejos e imponer los puntos situados a los instantes t = KT/2, que define una segunda condición que se denomina el segundo criterio de Nyquist. Por consiguiente, r(t) debe verificar:

$$\mathbf{r}(\mathbf{KT}/2) = \mathbf{0} \quad \forall \quad |\mathbf{K}| \ge 2 \tag{3.22}$$

En la figura 3.11 se muestra una señal que cumple con el segundo criterio de Nyquist.

FIGURA 3.11
Señal r(t) que satisface con el segundo criterio
de Nyquist. Raíces a los instantes t = KT/2, ∀
|K|≥2..

Veamos que condiciones debe cumplir la función de transferencia R(f), la imposición de ésta condición general.

Sea R(f) la transformada de Fourier de r(t).

$$R(f) = \int_{-\infty}^{\infty} r(t) e^{-j2\pi ft} dt$$

$$r(t) = \int_{-\infty}^{\infty} R(f) e^{j2\pi ft} df$$

donde R(f) está definida en el intervalo [- 1/T, 1/T]

Denominemos $\hat{R}(f)$ la función obtenida periodificando R(f) con período 2/T. Entonces R(f) se expresa:

$$\hat{R}(f) = \sum_{n=-\infty}^{\infty} R(f - 2n/T)$$
 (3.23)

Desarrollando la ecuación 3.23, tenemos

$$\hat{R}(f) = \sum_{k=-\infty}^{\infty} C_{K} e^{j2\pi fKT/2}$$

$$con \qquad \mu T$$

$$C_{K} = (T/2) \int_{-1/T}^{\infty} \hat{R}(f) e^{-j2\pi fKT/2} df$$

Desarrollando cálculos similares realizados en el punto 3.2.1, nos conduce a la ecuación 3.24

$$C_{K} = (T/2).r(KT/2)$$
 (3.24)

Luego,
$$\hat{R}(f) = \sum_{k=-\infty}^{\infty} (T/2)r(KT/2) e^{j2\pi fKT/2}$$
 (3.25)

La aplicación del segundo criterio de Nyquist (ecuación 3.22), en la ecuación 3.25, e igualando con 3.23, se tiene que

$$R(f - 2n/T) = (T/2)[r(0) + r(-T/2) e^{-j\pi}fT + r(T/2) e^{j\pi}fT]$$
(3.26)

Que da las condiciones que debe cumplir la función de transferencia R(f), para cumplir con la condición e_x -puesta en la ecuación 3.22.

Si suponemos que el soporte de R(f) está comprendido entre el intervalo [-1/T, 1/T], se puede simplificar la ecuación 3.26, y tenemos:

R(f) = (1/2)T.r(0) [1 +
$$r_{-1} e^{-j\pi fT} + r_{1} e^{j\pi fT}]$$

Donde

 $\begin{array}{l} r_{-1} &= r(-T/2)/r(0) \\ r_{1} &= r(T/2)/r(0) \end{array}$

En el caso particular que $r_{-1} = r_1 = 1/2$, tenemos:

$$R(f) = \frac{Tr(0)}{2} (1 + \cos \pi fT) |f| \le 1/T$$
(3.27)
= 0 En otro caso

Este tipo de filtro cuya respuesta de frecuencia está definida por la ecuación 3.27 es un filtro muy especial y de amplia aplicación práctica, que se denomina respuesta en "coseno sobreelevado", y que se muestra en la figura 3.12.

FIGURA 3.12

Respuesta de frecuencia coseno sobreelevado.

La respuesta en el dominio del tiempo, r(t), será:

$$r(t) = \widehat{f}^{-1} \{ R(f) \}$$

$$= r(0) \frac{\operatorname{Sen}(2 \pi t/T)}{2 \pi t/T} [1 - \frac{1}{2} \frac{t}{t - \frac{T}{2}} - \frac{1}{2} \frac{t}{t + \frac{T}{2}}]$$

$$= r(0) \frac{\operatorname{Sen}(2 \pi t/T)}{2 \pi t/T} \cdot \frac{1}{1 - (2t/T)^2}$$
(3.28)

Como podemos apreciar, en la ecuación 3.28, r(t)decrece como $1/t^3$, por lo que aunque por pérdida de sincronismo no se muestree justo en el punto central, la interferencia no será muy elevada, resultando una serie convergente. Esto se traduce en que el diagrama del ojo tendrá una apertura suficiente para realizar una decisión. esto se ilustra en la figura 3.13, donde se han dibujado diagramas de ojo para distintas respuestas de frecuencias.

FIGURA 3.13

a) Respuestas de frecuencia

b) Diagramas del ojo correspondientes a las distintas respuestas de frecuencias.

En conclusión, se puede transmitir un código de línea sin interferencia intersímbolo, a través de un filtro h(t) de función de transferencia H(f), si:

 $R(f) = S(f) \cdot H(f)$

3.2.3 <u>REPARTICION DE FILTRAJE ENTRE FILTROS DE EMISION</u> Y RECEPCION.

El equipamiento del transmisor y receptor de un sistema digital contiene típicamente varios filtros que limitan el espectro de la señal en un grado u otro. Puesto que la respuesta de frecuencia de todo el sistema debe conformarse a ciertos objetivos de respuesta del pulso en banda de base, en la práctica se encuentra que la composición deseada de la función de filtraje debe ser repartida entre la emisión y la recepción.

Consideremos el sistema de transmisión de la figura 3.14. Existe varias maneras de escoger $G_e(f)$ y $G_r(f)$, filtros de emisión y recepción, respectivamente, la óptima es aquella que maximiza la relación señal al ruido (S/N) antes de realizar el muestreo de la señal en el receptor.

FIGURA 3.14

Esquema de sistema en banda de base.

Examinemos el caso de un código en línea del tipo binario.

 $x(t) = \sum_{\substack{n=-\infty}}^{\infty} d_{i}(n) s(t - nT)$

Con $d_{i}(n) = + A$ i $\in [1, 2]$

Supongamos además que el ruído es centrado, blanco, gaussiano de densidad espectral N_/2

Los filtros $G_e(f)$ y $G_r(f)$ deben en primer lugar, satisfacer con la condición de ausencia de interferencia intersímbolos. Es decir:

 $S(f).G_{e}(f).K(f).G_{r}(f) = R(f)$ (3.29)

El filtro de recepción G_r(f) debe por otra parte minimizar la potencia del ruido antes del muestreador. La probabilidad de error será mínima cuando la relación señal al ruido es máxima en los instantes de muestreo. El objtetivo de dicho filtro es incrementar la componente de señal y reducir la componente de ruido al mismo tiempo.

Consideremos la figura 3.15, donde $G_r(f)$ es la función de transferencia del filtro de receptor $\gamma_o(t)$ es

la componente de la señal y $n_o(t)$ es la componente del ruido. Por lo tanto, deseamos optimizar la razón $y_o^2(t)/n_o^2(t)$ en el instante de hacer la decisión t = t_m .

FIGURA 3.15.

Puesto que n_o(t) es una señal aleatoria, no es posible determinarse exactamente. Por lo tanto <u>de</u>bemos conformarnos con tomar su valor cuadrático medio $n_o^2(t)$. Así, deseamos optimizar la relación S/N dado por:

Puesto que los instantes de decisión son los instantes t = KT, entonces la relación señal al ruido será:

$$\frac{S}{N} = \frac{A^{2} [r (KT)]^{2}}{(N_{0}/2) \int_{-\infty}^{\infty} |G_{r}(f)|^{2} df}$$
(3.30)

Si denominamos E, a la energía emitida por elemento binario.

$$E = A^2 \int_{-\infty}^{\infty} |S(f) \cdot G_e(f)|^2 df \qquad (3.31)$$

Despejando A^2 de la ecuación 3.31 y reemplazando en 3.30, se tiene:

$$\frac{S}{N} = \frac{E[r(KT)]^{2}}{\int_{-\infty}^{\infty} |S(f).G_{e}(f)|^{2} df \int_{-\infty}^{\infty} (N_{o}/2)|G_{r}(f)|^{2} df}$$
(3.32)

De la ecuación 3.29 tenemos que:

$$|S(f).G_{e}(f)|^{2} = |R(f)/k(f).G_{r}(f)|^{2}$$

Por lo tanto la ecuación 3.32 queda:

$$\frac{S}{N} = \frac{E[r(KT)]^2}{(N_0/2) \int_{-\infty}^{\infty} |R(f)/G_r(f).K(f)|^2 df} \int_{-\infty}^{\infty} |G_r(f)|^2 df$$
(3.33)

Maximizar la relación señal al ruido, equivale a minimizar el producto de las dos integrales. Este problema puede resolverse utilizando la desigualdad de Schwartz (Anexo 1)

La desigualdad de Schwartz:

$$\int_{-\infty}^{\infty} a(f) \cdot b(f) df \Big|^{2} \leq \int_{-\infty}^{\infty} |a(f)|^{2} df \cdot \int_{-\infty}^{\infty} |b(f)|^{2} df$$

Existe igualdad si:

$$|a(f).b(f)| = K|b(f)|^2$$

Aplicando la desigualdad de Schwartz en la ecuación 3.33 con:

$$|a(f)| = |G_{r}(f)|$$

$$|b(f)| = |R(f)/G_{r}(f).K(f)|$$

La relación señal al ruido será máxima si:

$$|R(f)/K(f)| = C^{2}|R(f)/G_{r}(f).K(f)|^{2}$$

Es decir:

$$|G_{r}(f)| = C\sqrt{|R(f)/K(f)|}$$
(3.34.a)

$$|G_{e}(f)| = \sqrt{|R(f)/K(f)|} / C|S(f)|$$
 (3.34.b)

Ahora llamemos $S_e(f)$, a la respuesta del conjunto modulador – filtro de emisión.

 $S_e(f) = S(f) \cdot G_e(f)$

La condición de ausencia de interferencia intersímbolos requiere que:

$$S_{\rho}(f) \cdot G_{r}(f) \cdot K(f) = R(f)$$

Reemplazando la última relación en la ecuación 3.34.a, tenemos:

$$|G_{r}(f)| = K|S_{e}(f)|$$
 (3.35)

Existen dos soluciones que cumplen con la ecuación 3.35, las mismas que son:

$$G_{r}(f) = -K e^{j2\pi ft} S_{e}(f)$$
 (3.36.a)

$$G_{r}(f) = -K e^{j2\pi ft} S_{e}^{*}(f)$$
 (3.36.b)

Las dos soluciones son equivalentes con relación al ruido a la salida del muestreador (ecuación 3.30). Es de mayor interés aquella que maximiza la amplitud de la señal a la salida del muestreador.

En la salida del muestreador

 $(s_e(t)*g_r(t))/t = o = K \int_{-\infty}^{\infty} s_e(\theta) s_e(-\theta) d\theta$ en el caso 3.36.a = $K \int_{-\infty}^{\infty} s_e^2(\theta)$ En el caso 3.36.b

> Pero, $\int_{-\infty}^{\infty} s_{e}^{2}(\theta) d\theta \ge \int_{-\infty}^{\infty} s_{e}^{2}(\theta) s_{e}^{2}(-\theta) d\theta$

Entonces la solución requerida es:

$$G_{r}(f) = -K e^{j2\pi f \uparrow} S_{e}^{*}(f)$$
 (3.37)

Los resultados obtenidos, nos dan las condiciones que deben cumplir los filtros utilizados en emisión y recepción para cumplir con la repartición de la función de filtraje.

El estudio analítico realizado hasta aquí, se ha hecho considerando un sistema de transmisión en banda de base. Estos mismos resultados su pueden extender al caso de un sistema de transmisión por portadora.

3.2.4 CASO DE TRANSMISION DE ONDA PORTADORA

Se ha visto en el estudio realizado en el capítulo 2, que la transmisión de onda portadora implica un proceso de modulación y un proceso de demodulación. La cadena de transmisión en este caso se muestra en la figura 3.16.

FIGURA 3.16 Esquema de un sistema de transmisión por onda portadora.

Si llamamos $G_e(f)$ a la respuesta del conjunto filtro de emisión-canal de transmisión, veamos que condiciones deben cumplir tanto el filtro de emisión como el filtro de recepción en este caso.

Sean respectivamente M y M⁻¹ los operadores de modulación y demodulación respectivamente. La ausencia de interferencia intersímbolos implica:

$$M^{-1}[M[S(f)],G_{e}(f),G_{r}(f)] = R(f)$$
 (3.38)

Donde M[S(f)] es la señal modulada.

Consideremos el caso de la modulación 4-PSK, cuyo estudio se realiza en el capítulo 2.4.3. matemáticamente, la señal modulada x(t) esta representada por (ecuación 2.10).

$$\kappa(t) = A \sum_{n=-\infty}^{\infty} s(t - nT) \cos(2\pi f_0 t + \delta_m)$$

Por consiguiente, la señal modulada M[S(f)] puede expresarse como la convolución de los espectros de s(t) y la función $\cos(2\pi f_0 t + \phi_m)$.

Luego,

$$M[S(f)] = S(f) * \mathcal{F}\left\{ (e^{m}/2), e^{j2\pi f_0 t} + (e^{m}/2), e^{-j2\pi f_0 t} \right\}$$
(3.39)

jø_m -jø_m Puesto que e y e son constantes `(ecuación 2.13), llamemos:

$$e^{j \sigma} \frac{m}{2} = K_1$$
$$e^{-j \sigma} \frac{m}{2} = K_2$$

Entonces la señal modulada M[S(f)] será igual:

 $M[S(f)] = S(f) * [K_1 d(f - f_0) + K_2 d(f + f_0)]$ (3.40)

El proceso de demodulación en el sistema 4-PSK, matemáticamente, consiste en la multiplicación de la señal en recepción por 2 $\cos(2\pi f_0 t + \phi_m)$ y en el pasaje de la señal por un filtro pasa bajo de respuesta G(f), para eliminar los términos de doble frecuencia $2f_0$. Si llamamos U(f) la señal a la salida del filtro de recepción.

$$U(f) = M[S(f)] \cdot G_{c}(f) \cdot G_{r}(f)$$

Entonces:

$$M^{-1}[U(f)] = \left\{ U(f) * 2[K_1 d(f - f_0) + k_2 d(f + f_0)] \right\} . G(f)$$
(3.41)

Reemplazando las ecuaciones 3.40 y 3.41 en la ecuación 3.38, tenemos:

$$R(f) = \left\{ [K_1.S(f - f_0) + k_2S(f + f_0)].G_e(f).G_r(f) * 2[K_1 d(f - f_0) + k_2 d(f + f_0)] \right\}.G(f)$$

Desarrollando el producto de convolución.

$$R(f) = 2K_{1}k_{2} S(f) .$$

$$\left\{G_{e}(f - f_{o}) G_{r}(f - f_{o}) + G_{e}(f + f_{o}) G_{r}(f + f_{o})\right\} . G(f)$$

Puesto que G(f) es un filtro pasa bajos para suprimir los términos centrados en 2f_:

$$S(f - 2f_0) G_e(f - f_0) G_r(f - f_0) G(f) = 0$$

 $S(f + 2f_0) G_e(f + f_0) G_r(f + f_0) G(f) = 0$
Además:

$$2K_1K_2 = 2(e^{j \sigma_m}/2).(e^{-j \sigma_m}/2) = 1/2$$

Por lo tanto R(f) será igual:

$$R(f) = S(f) G(f) .$$

$$\left\{ (1/2)G_{e}(f - f_{o}) G_{r}(f - f_{o}) + (1/2)G_{e}(f + f_{o}) G_{r}(f + f_{o}) \right\}$$

$$= S(f) G(f) M^{-1}[G_{e}(f) G_{r}(f)]$$

Donde M^{-1} es un proceso de traslación.

Por consiguiente, los filtros de emisión y recepción deben verificar:

$$M^{-1}[G_{e}(f) \cdot G_{r}(f)] = R(f)/S(f)$$
 (3.41)

En conclusión, se ha realizado un estudio analítico de las condiciones que deben cumplir los filtros utilizados en emisión y recepción de un sistema de transmisión digital, para realizar una comunicación sin interferencia intersímbolos.

<u>CAPITULO IV</u>

F

ECUALIZACION DIGITAL

4.1	Generalidades
4.2	Esquema de banda base
4.3	Ecualización óptima
4.3.1	Ecualización óptima lineal
4.3.1.1	Caso de la modulación de fase 4-PSK
4.3.2	Ecualización óptima no lineal
4.3.2.1	Caso de la modulación de fase 4-PSK
4.4	Ecualización adaptiva
4.4.1	Ecualización adaptiva lineal
4.4.1.1	Caso de la modulación de fase 4-PSK
4.4.1.2	Ecualización adaptiva lineal fraccional
4.4.2	Ecualización adaptiva no lineal
4.4.2.1	Caso de la modulación de fase 4-PSK

ť

たいないないで、こことのないでの

. . 1. 3.0.

<u>CAPITULO</u> IV

ECUALIZACION DIGITAL

4.1 GENERALIDADES

Ritmos de transmisión de datos, por ejemplo en líneas telefónicas, en la última década eran limitados alrededor de 2.400 bits/s. Aunque el margen del ruído en estos sistemas es suficiente para permitir ritmos más elevados, las características no uniformes de transmisión del canal causa lo que podría denominarse un obstáculo o barrera para transmisión de datos a velocidades más elevadas, pués la distorsión de los pulsos de datos, introducida por el canal, resulta en traslapamiento entre pulsos sucesivos transmitidos. La interferencia intersímbolos, es pués, uno de los factores de degradación de sistemas de comunicación digitales. Y viene a ser el factor determinante en el diseño de sistemas con rítmos elevados de transmisión. Para aliviar los efectos de la interferencia intersímbolos es necesario ecualizar el canal.

Una forma común de ecualización ha sido generalmente realizada por el aplanamiento de la característica de amplitud y linealización de la característica de fase usando redes fijas frecuencia-amplitud y fase-frecuencia. Aunque este tipo de ecualización es adecuado para cumplir requerimientos de transmisión de voz, este no provee el control preciso sobre la respuesta de tiempo del canal, el cual es necesario para transmisión de datos.

El diseño de un conjunto transmisor/receptor óptimo fijo, emerge como otra forma de enfrentar el problema de la interferencia intersímbolos. Muchas veces el canal que se utiliza no siempre es el mismo (por ejemplo; en la red telefónica conmutada). En todos ellos, sus características están dentro de unos márgenes prefijados pero son diferentes entre sí. Aún supuesto que el canal sea siempre el mismo, sus caraterísticas varían con el tiempo y con los factores externos. Por consiguiente, cualquier diseño transmisor/receptor fijo proveerá una aproximación de las características previstas, resultando en muchos casos en un inadecuado desempeño [2].

El recurso natural en estas situaciones es investigar el uso de receptores que sean capaces de ajustarse automáticamente de tal manera que se adapte a las condiciones cambiantes del canal. De aquí que estos receptores se concocen frencuentemente como ecualizadores automáticos o ecualizadores adaptivos.

Una multitud de contribuciones en la rama de ecualizadores adaptivos en los últimos 20 años, ha ayudado a unificar muchos conceptos asociados con el proceso adaptativo. Al mismo tiempo, sin embargo, el entendimiento completo ha dado lugar a una gran variedad de estrategias de ecualización, y el tipo mejor de estrategia parece todavía no ha emergido. [4] [5] [6] [7] [8].

En el presente capítulo, se analiza el problema de la ecualización óptima y ecualización adaptativa.

4.2 ESQUEMA DE BANDA BASE

Las transmisiones de datos son realizadas en banda base o por portadora. En el primer caso, se utiliza un código para transmitir la información y en el segundo caso una modulación.

Cualesquiera sea la solución utilizada, se puede modelizar el conjunto modulador, canal de transmisión y demodulador por un esquema equivalente en banda base . :

FIGURA 4.1 Esquema equivalente en banda base.

De acuerdo a la figura 4.1.

- d_n, representa la información a transmitirse, éste es un número discreto real dentro de las transmisiones en banda base y un número discreto complejo en general dentro de las transmisiones por portadora.

$$d_n = a_n + jb_n$$
 $a_n, b_n = -1, -3, -5 \dots$

- s(t) es una respuesta impulsiva que toma en cuenta las características del código o de la modulación utilizada, del canal de transmisión y del filtro de transmisión. Como anteriormente, s(t) es una función real si se transmite en banda base y en general una función compleja si se transmite por portadora.
- El ruído n(t) sigue la misma regla, es decir, éste es un proceso aleatorio real para las transmisiones en banda base y complejo para las transmisiones por portadora.

Para realizar el análisis correspondiente a la determinación del esquema equivalente en banda base, consideremos el caso de una modulación con dos portadoras en cuadratura (4-PSK), como se indica en la figura 4.2.

66

FIGURA 4.2 Esquema general de un sistema 4-PSK.

La fuente de información {d $_{n}$ } , tiene un ritmo f = 2/T y los trenes {a $_{K}$ } y {b $_{K}$ } son dos trenes de impulsos digitales deducidos de {d $_{K}$ } y de ritmo 1/T.

La señal modulada x(t) se escribe:

$$a_{K}(t) = \sum_{\substack{k=-\infty}}^{\infty} a_{K}g(t - KT) \cos 2\pi f_{C}t \qquad (4.1)$$
$$-\sum_{\substack{k=-\infty}}^{\infty} b_{K}g(t - KT) \sin 2\pi f_{C}t$$

Donde:

.

 $g(t) = \begin{vmatrix} 1 & \text{si} & t \in [0,T] \\ 0 & \text{en otro caso} \end{vmatrix}$

El canal de transmisión es modelizado por un filtro cuya respuesta de frecuencia K(f) y que toma en cuenta el filtro de emisión.

Si notamos Q(f) = K(f). $G_r(f)$, Q(f) es un filtro centrado sobre la frecuencia portadora f_c con una banda pasante mucho menor que f_c . La respuesta impulsiva q(t) puede entonces ponerse bajo la forma:

.

$$q(t) = \dot{q}_1(t) \cos 2\pi f_c t - q_2 \sin 2\pi f_c t$$
 (4.2)

Que resulta en una descomposición de la función en cudratura. En efecto, si:

$$q(t) = E(t) \cos(2\pi f_c t + \phi_c)$$

Donde E(t) es una función que introduce una pequeña variación espectral alrededor de f_c, entonces:

 $q(t) = E(t) \cos \phi \cos 2\pi f_c t - E(t) \sin \phi \sin 2\pi f_c t$

У,

 $q_1(t) = E(t) \cos \phi_0$

 $q_2(t) = E(t) \operatorname{sen} \phi_0$

A la salida del filtro de recepción, se obtiene la señal y(t).

$$y(t) = x(t) * q(t) + n_c(t) \cos 2\pi f_c t$$
 (4.3)

 $-n_{s}(t) \operatorname{sen2} \pi f_{c}t$

El desarrollo del producto de convolución x(t) * q(t) (ver Anexo 2), con:

 $s_{1}(t) = (1/2)(g(t) * q_{1}(t))$ $s_{2}(t) = (1/2)(g(t) * q_{2}(t))$

Nos lleva a la expresión:

$$y(t) = \left[\sum_{K} a_{K} s_{1}(t - KT) - \sum_{K} b_{K} s_{2}(t - KT) \right] \cos 2\pi f_{c} t$$

- $\left[\sum_{K} b_{K} s_{1}(t - KT) + \sum_{K} a_{K} s_{2}(t - KT) \right] \sin 2\pi f_{c} t$
+ $n_{c}(t) \cos 2\pi f_{c} t - n_{s}(t) \sin 2\pi f_{c} t$ (4.4)

A la salida del demodulador, tenemos las señales $z_1(t)$ y $z_2(t)$ que representan las partes real e imaginaria de la señal z(t):

- 6 ...

$$z_{1}(t) = n_{c}(t) + \sum_{K} a_{K}s_{1}(t - KT)$$

-
$$\sum_{K} b_{K}s_{2}(t - KT)$$

$$z_{2}(t) = n_{s}(t) + \sum_{K} a_{K}s_{1}(t - KT)$$

+
$$\sum_{K} b_{K}s_{2}(t - KT)$$

$$z(t) = z_1(t) + jz_2(t)$$

Υ,

Realicemos la siguiente notación:

$$s(t) = s_1(t) + js_2(t)$$

 $n(t) = n_0(t) + jn_0(t)$

d_n = a_n + jb_n

Entonces z(t) se puede escribir:

$$z(t) = \sum_{k=0}^{\infty} d_{k} s(t - KT) + n(t)$$
 (4.5)

Por lo tanto; vemos que se puede reemplazar el esquema de la figura 4.2, por un esquema equivalente en banda base, como se muestra en la figura 4.1. Este principio, es de mucha utilidad, puesto que permite una mayor flexibilidad en el análisis matemático de cualesquier sistema de transmisión.

4.3 ECUALIZACION OPTIMA

El estudio de la ecualización óptima lineal y no lineal, se realiza en el presente subcapítulo. Características y estructura del receptor óptimo se desarrolla para el presente caso, como una solución ideal en el diseño de un sistema de transmisión digital [1].

4.3.1 ECUALIZACION LINEAL

La información emitida { d_n } es sometida a dos perturbaciones:

- El ruído aditivo que se puede en general modelizar por un proceso aleatorio estacionario, centrado de densidad espectral ^v_n(f).
- La interferencia intersímbolos cuyo origen es el filtraje aportado por el canal de transmisión.

Consideremos el esquema equivalente en banda base que se muestra en la figura 4.1, donde la salida z(t) es:

$$z(t) = \sum_{k-\infty}^{\infty} d_{K} s(t - KT) + n(t)$$

A un instante nT, z(nT) está constituído de tres términos:

- d_ns(0), que es la información transmitida al instante nT.
- $\sum_{n \neq k} d_{K} s[(n K)T]$, que es el término de interferencia intersímbolos.
- n(nT), el término del ruído al instante nT.

La ecualización consiste en hacer sufrir a la señal z(t) un tratamiento que minimice la influencia del ruido y la interferencia intersímbolos al instante de decisión. Para facilitar la realización, se puede elegir un tratamiento lineal, es decir un proceso de filtraje [1] [2].

FIGURA 4.3 Esquema del receptor lineal.

La determinación del filtro óptimo, requiere la definición de un criterio. El primero que en el cual podemos pensar es aquel que minimice la probabilidad de error (P { $d_n \neq \hat{d}_n$ }). El cálculo no se consigue de una manera sencilla y se prefiere a menudo buscar un filtro que minimice el error cuadrático medio entre la muestra u(nT) (figura 4.3) y la información transmitida d_n .

El error cuadrático medio

$$E = E \{ |u(nT) - d_n|^2 \}$$
(4.6)

El análisis para la determinación del filtro óptimo, se basa entonces en la minimización de este error cuadrático medio E.

Consideremos el esquema de la figura 4.3, donde la entrada z(t) está dada por la ecuación 4.5.

Sean h(t) y v(t): h(t) = s(t) * g(t)v(t) = n(t) * g(t)

La señal u(t) a la salida del filtro g(t) es:

' 70

$$u(t) = \sum_{K} d_{K} h(t - KT) + v(t)$$
 (4.7)

Reemplazando la ecuación 4.7 en 4.6, el error cuadrático medio E, será igual

$$E = E \left\{ \left(\sum_{K} d_{K} h \left[(n - K)T \right] + v(nT) - d_{n} \right) \right\}$$

$$\left(\sum_{P} d_{P} h \left[(n - P)T \right] + v(nT) - d_{n} \right]^{*} \right\} (4.8)$$

Si existe una independencia entre los símbolos d_n e independencia entre símbolos y las muestras del ruído, entonces tenemos:

$$E \left\{ d_{K}d_{n}^{*} \right\} = \sigma_{d}^{2} \cdot \sigma_{Kn} \qquad ((4.9.a))$$

$$E \left\{ d_{K} v(nT)^{*} \right\} = 0 \quad \forall K, \forall n \qquad (4.9.b)$$

$$\sigma_{Kn} = 1 \quad K = n$$

$$0 \quad K \neq n$$

La.aplicación de las relaciones (4.9.a) y (4.9.b) al desarrollo de la ecuación 4.8 nos conduce a la ecuación 4.10.

$$E = \int_{d}^{2} \sum_{\kappa} |h(\kappa T)|^{2} + E \{v(nT) | v(nT)^{*}\} - \int_{d}^{2} h(0)^{*} - \int_{d}^{2} h(0) + \int_{d}^{2} q^{2}$$
(4.10)

La potencia promedio del ruído a la salida del filtro de respuesta G(f) está dado por:

$$E \left\{ v(nT) v(nT)^{*} \right\} = (N_{O}/2) \int_{-\infty}^{\infty} |G(f)|^{2} df \qquad (4.11)$$
$$= (N_{O}/2) \int_{-\infty}^{\infty} |g(t)|^{2} df$$

Por definición del producto de convolución:

$$h(KT) = \int_{-\infty}^{\infty} g(\tau) s(KT - \tau) d\tau \qquad (4.12)$$

Reemplazando las ecuaciones 4.12 y 4.13 en 4.10

$$E = \left(\int_{a}^{2} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\tau) s(KT - \tau) g^{*}(\alpha) s^{*}(KT - \alpha) d\tau d\alpha + \left(N_{0}/2 \right) \int_{-\infty}^{\alpha} |g(t)|^{2} dt - \left(\int_{a}^{2} \int_{-\infty}^{\infty} g(\tau) s(-\tau) d\tau \right) d\tau d\tau d\tau$$

$$- \left(\int_{a}^{2} \int_{-\infty}^{\infty} g^{*}(\tau) s^{*}(-\tau) d\tau + \left(\int_{a}^{2} d\tau \right) \right) d\tau d\tau d\tau d\tau + \left(\int_{a}^{2} d\tau \right) d\tau d\tau d\tau d\tau d\tau$$

$$(4.13)$$

Sea:

$$A(t, d) = \sum_{\kappa = -\infty}^{\infty} s(\kappa T - t) s^{\star}(\kappa T - d) \qquad (4.14.a)$$

$$\left(N_{O}/2\right)\int_{-\infty}^{\infty}\left|g(t)\right|^{2} dt = \left(N_{O}/2\right)\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(t)g^{*}(\alpha) d(t - \alpha)dt d\alpha \qquad (4.14.b)$$

Reemplazando 4.14.a y 4.14.b en 4.13

$$E = \overline{Gd^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [A(t, \alpha) + (N_0/2 \overline{Gd^2}) \overline{d(t - \alpha)}] g(t) g^*(\alpha) dt d\alpha$$

- $\overline{Gd^2} \int_{-\infty}^{\infty} (g(t) s(-t) + g^*(t) s^*(-t)) dt + \overline{Gd^2}$ (4.15)

Se busca minimizar el error – cuadrático – medio, E, para una elección adecuada de g(t). Para el efecto se utiliza el cálculo de las variaciones. Es decir, si llamamos $g_0(t)$, el valor óptimo de g(t) y si g(t) es de la forma:

$$g(t) = g_{\lambda}(t) + \lambda u(t)$$

Entonces g_o(t) debe verificar.

 $(\partial \in \langle \partial \lambda \rangle) = 0$

Aplicando esta condición a la ecuación 4.15 tenemos:

$$\frac{\partial E}{\partial \lambda} \Big|_{\lambda=0} = \left[\vec{r} d^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [A(\tau, \alpha) + (N_0/2 \vec{r} d^2) \vec{d}(\tau - \alpha)] \right] \cdot \left[u(\tau) g_0^{\star}(\alpha) + g_0(\tau) u^{\star}(\alpha) d\tau d\alpha - \vec{r} d^2 \int_{-\infty}^{\infty} (u(\tau) s(-\tau) + u^{\star}(\tau) s^{\star}(-\tau) d\tau \right] = 0$$

$$\frac{\partial E}{\partial \lambda} \Big|_{\lambda=0} = \left[\vec{r} d^2 \int_{-\infty}^{\infty} u(\tau) \left\{ \int_{-\infty}^{\infty} [A(\tau, \alpha) + (N_0/2 \vec{r} d^2) \vec{d}(\tau - \alpha)] \right] \cdot \left[g_0^{\star}(\alpha) d\alpha - s(-\tau) \right] d\tau + \left[\vec{r} d^2 \int_{-\infty}^{\infty} u^{\star}(\alpha) \left\{ \int_{-\infty}^{\infty} [A(\tau, \alpha) + (N_0/2 \vec{r} d^2) \vec{d}(\tau - \alpha)] \right] + (N_0/2 \vec{r} d^2) \vec{d}(\tau - \alpha) \right] g_0(\tau) d\tau - s(-\alpha) \right] d\alpha = 0$$

De aquí tenemos que:

$$\int_{-\infty}^{\infty} [A(\hat{\tau}, \alpha) + (N_0/2 \ \overline{d}^2) \delta(\hat{\tau} - \alpha)] g_0^*(\alpha) d\alpha = s(-\hat{\tau})$$
(4.16.a)

$$\int [A(\tau, \alpha) + (N_0/2 G a^2) \delta(\tau - \alpha)] g_0(\tau) d\tau = s^*(-\alpha)$$
(4.16.b)

Las dos ecuaciones (4.16.a) y (4.16.b) son idénticas puesto que:

$$A(t, \alpha) = A^{\star}(\alpha, t)$$

Reemplazando A(た , . イ) por su valor (ecuación 4.14.a) en la ecuación 4.16.b.

$$\int_{-\infty}^{\infty} \left(\sum_{K=-\infty}^{\infty} s(KT - \hat{\tau}) s^{*}(KT - \alpha) + (N_{0}/2 \Gamma d^{2}) \delta(\hat{\tau} - \alpha) g_{0}(\hat{\tau}) d\hat{\tau} = s^{*}(-\alpha) \right)$$

Si:

$$Z_{K} = \int_{-\infty}^{\infty} g_{0}(t) s(KT - t) d$$

El filtro $g_0(t)$ debe verificar la ecuación 4.17.

$$\sum_{K=-\infty}^{\infty} Z_{K} s^{*} (KT - t) + (N_{O}/2 \ \overline{d}^{2})g_{O}(t) = s^{*}(-t)$$
(4.17)

INTERPRETACION DE LA ECUACION 4.17

Tomemos la transformada de Fourier a los dos miembros de la ecuación 4.17.

 $\sum_{K=\infty}^{\infty} z_{K} e^{-j2 \mathscr{M} f K T} s^{*}(f) + (N_{O}/2 \sigma_{d}^{2}) G_{O}(f) = s^{*}(f) (4.18)$

Donde S(f) es la transformada de Fourier de s(t).

$$S(f) = \int_{-\infty}^{\infty} s(t) e^{-j2\pi ft} dt$$

Entonces:

$$G_{O}(f) = S^{*}(f) \sum_{K \to -\infty}^{\infty} C_{K} e^{-j2\pi} fKT$$
 (41.9)

Con:

$$C_{K} = (\int_{KO} - Z_{K}) 2 \int_{d}^{2} / N_{O}$$

$$\int_{KO} = 1 \quad K = 0$$

$$0 \quad \text{En otro caso}$$

La ecuación 4.19, nos indica entonces que el filtro óptimo de respuesta $g_0(t)$, es la conformación de un filtro de respuesta impulsiva s^{*}(- t), donde el operador (*) nos indica el complejo conjugado y S^{*}(f) es su transformada de Fourier, en cascada con un filtro numérico de coeficientes C_K y de ganancia C_T(f) donde:

$$C_{T}(f) = \sum_{K \to \infty}^{\infty} C_{K} e^{-j2 \pi f K T}$$

De acuerdo a lo expuesto, el esquema del receptor óptimo lineal se muestra en la figura 4.4.

La respuesta en el tiempo del filtro óptimo lineal g_{o(t)}, se obtiene tomando la transformada inversa

FIGURA 4.4

Esquema del receptor óptimo lineal.

de Fourier en la ecuación 4.19. Por lo tanto:

$$g_{O}(t) = \int_{-\infty}^{\infty} G_{O}(f) e^{j2\pi ft} df$$
$$= \sum_{K} C_{K} \int_{-\infty}^{\infty} S^{*}(f) e^{-j2\pi f(KT - t)} df$$

Con lo cual,

$$g_{0}(t) = \sum_{K} C_{K} s^{*}(KT - t)$$
 (4.20)

CALCULO DE LOS COEFICIENTES CK

Procedamos al cálculo de los coeficientes $C_{\rm K}$ de la ecuación 4.20. Para el efecto consideremos la ecuación 4.16.b.

$$\int_{-\infty}^{\infty} [A(t, \alpha) + (N_0/2 \Gamma_d^2) d(t - \alpha)] g_0(t) dt = s^*(-\alpha)$$

Reemplazando A($\hat{\tau}$, \ll) y g₀($\hat{\tau}$) por sus valores (ecuaciones 4.14.a y 4.20) en la expresión anterior tenemos:

$$\int_{-\infty}^{\infty} \sum_{n} s(nT - t) s^{*}(nT - \alpha) \sum_{m} C_{m} s^{*}(mT - t) dt$$

$$+ (N_{0}/2 \ C_{d}^{2}) \sum_{m} C_{m} s^{*}(mT - \alpha) = s^{*}(-\alpha) \qquad (4.21)$$

Introduciendo el coeficiente de correlación f_{m-n} :

$$f_{n-m} = \int_{-\infty}^{\infty} s(nT - t) s^{*}(mT - t) dt$$

La ecuación 4.21 puede escribirse:

$$\sum_{m} \sum_{n} f_{n-m} C_{m} s^{*}(nT - \alpha)$$

$$+ (N_{0}/2 \sigma_{d}^{2}) \sum_{m} C_{m} s^{*}(mT - \alpha) = s^{*}(-\alpha) \cdot (4.22)$$

Tomando la transformada de Fourier de los dos miembros en 4.22.

$$\sum_{m} \sum_{n} f_{n-m} C_{m} e^{-j2\pi fnT} s^{*}(f)$$

+ N₀/2 (d²)
$$\sum_{m} C_{m} e^{-j2\pi fnT} s^{*}(f) = s^{*}(f) (4.23)$$

Notamos:

$$C_{T}(f) = \sum_{m} C_{m} e^{-j2\pi f mT}$$
 (4.24)

$$S_{T}(f) = \sum_{k} f_{K} e^{-j2 \pi f K T}$$
 (4.25)

Puesto que f_{n - m} es una función de correlación que no depende de los valores n y m en particular, sino de su diferencia, entonces la ecuación 4.25 es válida.

La ecuación 4.23, luego se puede escribir:

$$S_{T}(f) C_{T}(f) + (N_{0}/2 G_{d}^{2})C_{T}(f) = 1$$

у,

$$C_{T}(f) = \frac{1}{S_{T}(f) + N_{0}/2 \sigma_{d}^{2}}$$
 (4.26)

 $C_{T}(f)$ es la respuesta de frecuencia del filtro numérico. La respuesta de frecuencia del filtro numérico es períodica. Se puede entonces descomponer en serie de Fourier. Los coeficientes de esta serie de Fourier son precisamente los coeficientes C_m que se expresan en función de $C_m(f)$.

$$C_{\rm m} = T \int_{-1/2T}^{1/2T} C_{\rm T}(f) e^{-j2 \pi f m T} df$$

Nos queda por evaluar $S_{T}(f)$. El valor de $S_{T}(f)$ se puede evaluar a partir de S(f). De la ecuación 4.25.

$$S_{T}(f) = \sum_{K=\infty}^{\infty} f_{K} e^{-j2 \, \widehat{\pi} f K T} \qquad (4.27)$$

Donde,

$$f_{K} = \int_{-\infty}^{\infty} s(KT - t) s^{*}(-t) dt$$

$$Y,$$

$$f_{K} = s^{*}(-t) * s(t) + sKT$$

$$(4.28)$$

S(f) es la transformada de Fourier de la señal muestreada a la frecuencia 1/T a la salida del filtro de respuesta impulsiva s^{*}(- t), acometida por una señal s(t), como se indica en la figura 4.5.

FIGURA 4.5

 $S_{T}(f)$ es entonces periódica como resultado de la transformada de Fourier de una señal muestreada.

$$S_{T}(f) = (1/T) \sum_{n=\infty}^{\infty} F(f - n/T)$$
 (4.29)

Donde F(f) es la transformada de Fourier de f(t), con:

$$f(t) = s(-t) * s(t)$$

y,

$$F(f) = S^{*}(f) \cdot s(f) = |S(f)|^{2}$$

De donde:

$$S_{T}(f) = \sum_{K=-\infty}^{\infty} f_{K} e^{-j2\pi fKT}$$
$$= (1/T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^{2}$$
(4.30)

Reemplazando la ecuación 4.30 en la ecuación 4.26; la respuesta de frecuencia del filtro numérico está determinada por:

$$C_{\rm T}(f) = \frac{1}{(1/T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^2 + N_0/2 \, \text{Gd}^2}$$
(4.31)

y finalmente la respuesta de frecuencia del filtro óptimo lineal, de acuerdo a las ecuaciones 4.19 y 4.31 queda definido por:

$$G_{O}(f) = \frac{S^{*}(f)}{(1/T) \sum_{K=-\infty}^{\infty} |S(f - K/t)|^{2} + N_{O}/2 \ Ga^{2}}$$
(4.32)

Un diagrama de la estructura del ecualizador lineal óptimo se muestra en la figura 4.6.

Una vez que se ha deducido la expresión del filtro $G_0(t)$, procedamos a encontrar la expresión del error cuadrático medio.

FIGURA 4.6 Estructura del ecualizador lineal óptimo.

De acuerdo a la ecuación 4.15, tenemos que:

$$E = \int_{-\infty}^{a^2} \int_{-\infty}^{\infty} [A(\tau, \alpha) + (N_0/2 \int_{a^2}) d(\tau - \alpha)] g_0(\tau) g_0^*(\alpha) d\tau d\alpha$$

- $\int_{-\infty}^{\infty} [g_0(\tau) s(-\tau) + g_0^*(\tau) s^*(-\tau)] d\tau + \int_{-\infty}^{a^2} d\tau d\alpha$

Donde el filtro $g_0(t)$ verifica las ecuaciones 4.16.a y 4.16.b.

$$[A(\ell, \alpha) + (N_0/2 \operatorname{Ga}^2) \operatorname{d}(\ell - \alpha)]g_0^*(\alpha) d\alpha = s(-\ell)$$

$$[A(\ell, \alpha) + (N_0/2 \operatorname{Ga}^2) \operatorname{d}(\ell - \alpha)]g_0(\ell) d\ell = s^*(-\alpha)$$

Por consiguiente:

$$E = \int_{-\infty}^{\infty} d^{2}(1 - \int_{-\infty}^{\infty} s^{*}(-\hat{\tau})g_{0}^{*}(\hat{\tau})d\hat{\tau})$$
(4.33)

Reemplazando g $_{O}(\uparrow)$ por su valor (ecuación 4.20).

$$E = \int d^{2}(1 - \sum_{n=-\infty}^{\infty} C_{n}^{*} \int_{-\infty}^{\infty} s(nT - t) s^{*}(-t) dt)$$
$$= \int d^{2}(1 - \sum_{n=-\infty}^{\infty} C_{n}^{*}f_{n})$$

Según el teorema de Parseval:

$$\sum_{n=-\infty}^{\infty} C_n^* f_n = T \int_{1/T} C_T^* (f) S_T (f) df \qquad (4.34)$$

y reemplazando la ecuación 4.34 en la expresión del error tenemos:

$$E = \int d^{2} (1 - T) \int_{-1/2T}^{1/2T} C_{T}^{*}(f) S_{T}(f) df$$

Reemplazando $C_{T}(f)$ y $S_{T}(f)$ por sus valores (ecuaciones 4.30 y 4.31):

$$E = \sqrt[4]{d^2} (1 - T) \int_{-\frac{1}{2T}}^{\frac{1}{2T}} \frac{(1/T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^2}{(1/T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^2 + N_0/2 \sqrt[4]{d^2}} df$$

Puesto que, $T\int dT = 1$

Entonces el error cuadrático mínimo de un ecualizador óptimo está dado por:

$$E = \int_{-1/2T}^{1/2T} \int_{K=-\infty}^{N_0/2} \int_{K=-\infty}^{2} |S(f - K/T)|^2 + N_0/2 \int_{0}^{2} df \qquad (4.35)$$

En la práctica el diseño del ecualizador óptimo lineal es una quimera inalcanzable debido, entre otras, a las siguientes razones:

- El cálculo de los coeficientes del filtro digital, necesita del conocimiento de las características del canal de transmisión, es decir, específicamente la expresión s(t). Esto en la práctica ocurre raramente.

- Imposibilidad de tener un filtro digital de un número infinito de coeficientes.
- Debido a las caraterísticas cambiantes del canal o debido a la variedad de canales, resulta lógico que no será posible el diseño de un filtro fijo que sea adaptado a la variedad de formas de onda recibidas. Por consiguiente la estructura del ecualizador lineal estará formado por un filtro fijo, un muestreador y un filtro digital con un número finito de coeficientes. El filtro fijo puede ser adaptado a la forma de onda transmitida o diseñado como un compromiso en el cual se considere el promedio de las características del canal o el promedio de las características de la clase de canal en el cual se realiza la aplicación.

4.3.1.1 CASO DE LA MODULACION DE FASE A 4 ESTADOS Q-PSK

Como aplicación de la ecualización óptima lineal, encontremos la estructura del ecualizador en el caso de una modulación de fase a 4 estados.

En el estudio realizado en el punto 4.2 sobre el esquema equivalente en banda base, se vió que la salida del demodulador es:

 $x(t) = \sum_{k=-\infty}^{\infty} d_{K} s(t - KT) + n(t)$

Donde,

$$d_{K} = a_{K} + jb_{K}$$

 $s(t) = s_{1}(t) + js_{2}(t)$
 $n(t) = n_{0}(t) + jn_{0}(t)$

Entonces x(t) puede ponerse bajo la forma de una parte real y de una parte imaginaria, como se indica en la figura 4.7. Por lo tanto:

 $x(t) = x_1(t) + jx_2(t)$.

FIGURA 4.7.

Esquema del receptor Q-PSK.

El filtro de ecualización $g_0(t)$ dado por la ecuación 4.20.

$$g_{0}(t) = \sum_{n=-\infty}^{\infty} C_{n} s^{*}(nT - t) ; C_{n} \in C$$

Además puede répresentarse como una parte real e imaginaria, puesto que C $_n$ y s^{*}(t) son complejos. Por lo tanto:

$$g_{0}(t) = g_{1}(t) + jg_{2}(t)$$

La respuesta del filtro de ecualización óptimo lineal a la señal de entrada x(t), será entonces:

$$x(t) * g_{0}(t) = [x_{1}(t) * g_{1}(t) - x_{2}(t) * g_{2}(t)]$$

+ j[x_{2}(t) * g_{1}(t) + x_{1}(t) * g_{2}(t)]

De acuerdo a la ecuación anterior, la estructura

del ecualizador óptimo lineal se muestra en la figura 4.8.

FIGURA 4.8

Estructura del ecualizador óptimo lineal para un sistema con modulación 4-PSK

4.3.2 ECUALIZACION NO - LINEAL

Para mejorar los resultados de la ecualización se puede enfocar la estimación de la interferencia intersímbolo, luego de la sustracción de las muestras de las colas (poscursores) de los pulsos que interfieren con símbolos subsecuentes o símbolos futuros, antes de tomar la decisión sobre el valor del símbolo emitido. El efecto de las colas de los pulsos (precursores) los cuales ocurren antes de la detección e interfieren con símbolos pasados son minimizados con un ecualizador lineal [3].[6] [8].

Este ecualizador toma el nombre de ecualizador con decisión en la bucle. En inglés, "Decision Feedback Equalizer (DFE)". Un esquema de este ecualizador con decisición en la bucle se ilustra en la figura 4.9.

FIGURA 4.9

Esquema del ecualizador con decisión en la blucle (DFE).

El filtro w(t) es un filtro digital de coeficientes ${\rm A}_{\kappa}.$

$$y(nT) = \sum_{K=-1}^{\infty} A_K \hat{d}_n - K$$

Se busca, como en el caso del ecualizador lineal, los filtros g(t) y w(t) que minimicen el error cuadrático medio \mathcal{E} :

$$E = E \left\{ |e(nT) - d_n|^2 \right\}$$
 (4.36)

Sea:

s(t) * g(t) = h(t)

n(t) * g(t) = v(t)

La salida del filtro g(t) es:

$$u(t) = \sum_{K=-\infty}^{\infty} d_{K} h(t - KT) + v(t)$$

y la señal e(t) a los instantes de muestreo t = nT..

$$e(nT) = \sum_{K=-\infty}^{\infty} d_{K} h(nT - KT) + v(nT)$$
$$- \sum_{K=-1}^{\infty} A_{K} \hat{d}_{n} - K \qquad (4.37)$$

De acuerdo a la ecuación 4.37, el érror cuadrático medio será igual:

$$E = E \left\{ \left[\sum_{K=-\infty}^{\infty} d_{K} h(nT - KT) + v(nT) - \sum_{K=-1}^{\infty} A_{K} \hat{d}_{n} - K - d_{n} \right] \right\} \left[\sum_{p=-\infty}^{\infty} d_{p} h(nT - pT) + v(nT) - \sum_{p=-1}^{\infty} A_{p} \hat{d}_{n} - p - d_{n} \right]^{*} \right] (4.38)$$

Puesto que existe independencia entre los símbolos d_n e independencia entre los símbolos d_n y las muestras de ruído, entonces:

$$E \left\{ d_{K} d_{n}^{*} \right\} = \left(\int_{d}^{2} d_{Kn} \right)^{2}, \quad Kn = 1 \quad K = n$$

$$0 \quad K \neq n$$

$$E \left\{ d_{K} v(nT)^{*} \right\} = 0 \quad \forall K, n$$

Desarrollando la ecuación 4.38, la expresión del error cuadrático se reduce a:

$$E = \left[\int_{d}^{2} \sum_{K=-\infty}^{-1} |h(KT)|^{2} + \left[\int_{d}^{2} \sum_{K=1}^{\infty} |h(KT) - A_{K}|^{2} + \left[\int_{d}^{2} |h(0)| - 1|^{2} + E \left\{ v(nT) + v(nT)^{*} \right\} \right]$$

La potencia promedio del ruído.

$$E\left\{v(nT), v(nT)^{*}\right\} = (N_{0}/2) \int_{-\infty}^{\infty} |g(t)|^{2} dt$$

La elección de los coeficientes A_K es tal que el error cuadrático medio sean minímos, de donde:

$$A_{K} = h(KT) \quad \forall k \in [1, \infty]$$
(4.39)

con lo cual, el error se reduce a:

$$E = \int_{d}^{2} \sum_{K=-\infty}^{-1} |h(KT)|^{2} + \int_{d}^{2} |h(0) - 1|^{2} + (N_{0}/2) \int_{-\infty}^{\infty} |g(t)|^{2} dt \qquad (4.40)$$

La ecuación 4.40 indica que bajo la consideración de que las decisiones pasadas fueron correctas (elección de $A_{K} = h(KT)$), el error cuadrático medio es minimizado por la minimización tanto de los precursores de la respuesta impulsiva h(t) y la potencia del ruído, mientras se mantiene la respuesta impulsiva en el instante de decisión h(0), cerca de la unidad.

El cálculo del valor óptimo de g(t) se obtiene de la misma manera que para él caso de la ecualización lineal. Es decir, si $g_0(t)$ es el valor óptimo de g(t), y si g(t) es de la forma:

 $g(t) = g_{0}(t) + \lambda u(t)$

Entonces el filtro g_o(t) debe verificar

 $\frac{\partial \delta}{\partial \lambda} = 0$

Un desarrollo similar a lo realizado en el caso de la ecualización lineal (ecuaciones 4.11 a 4.17) sobre la expresión del error-cuadrático-medio dado por la ecuación 4.40, nos lleva a la ecuación.

 $\sum_{K=-\infty}^{O} Z_{K} s(KT - t)^{*} + (N_{O}^{2} / 2 \sigma_{d}^{2})g_{O}(t) = s(-t)^{*}$ (4.41)

Donde,

$$Z_{K} = \int_{-\infty}^{\infty} g_{0}(t) s(KT - t) dt$$

De la ecuación 4.41, se obtiene la expresión para el filtro óptimo.

$$g_{0}(t) = \sum_{K=-\infty}^{0} C_{K} s(KT - t)^{*}$$

Donde,

$$C_{K} = (2 \ G_{d}^{2}/N_{o}) (\ G_{Ko} - Z_{K})$$

$$G_{Ko} = 1 \quad k = 0$$

$$0 \quad K \neq 0$$

La ecuación 4.42 define la estructura del filtro óptimo, el mismo que está compuesto de un filtro de respuesta impulsiva s^{*}(- t) seguido de un filtro numérico con un set de coeficientes $\{C_{K}\}_{-\infty}^{\circ}$.

CALCULO DE LOS COEFICIENTES ZK

El cálculo del set de coeficientes { C_K }, implica el conocimiento del set de coeficientes { Z_K }. Ecuaciones lineales que relacionan el set { Z_K } puede obtenerse multiplicando la ecuación 4.41 por s(nT - t) e integrando en el intervalo (- ∞ , ∞), con lo cual se tiene:

$$\sum_{K=-\infty}^{0} Z_{K} \int_{-\infty}^{\infty} s(nT - t) s(KT - t)^{*} dt + (N_{0}/2 \ \mathcal{G}_{d}^{-2}) \int_{-\infty}^{\infty} s(nT - t) g_{0}(t) dt$$
$$= \int_{-\infty}^{\infty} s(nT - t) s(-t)^{*} dt \qquad (4.43)$$

Introduciendo el coeficiente de correlación forma donde:

$$f_{n-m} = \int_{-\infty}^{\infty} s(nT - t) s(mT - t)^{*} dt$$
 (4.44)

La ecuación 4.43, puede escribirse

$$\sum_{K=-\infty}^{0} Z_{K} f_{n-K} + (N_{0}/2 \sigma_{d}^{2}) Z_{n} = f_{n} \quad \forall n \quad [0, -1, -2, -, -]$$

87

(4.42)

que además puede expresarse como:

$$f_n = \sum_{K=-\infty}^{o} M_n - K^Z K$$
 (4.45)

Con,

$$M_{n - K} = f_{n - K} + (N_{0}/2 G_{d}^{2}) \delta_{Kn}$$
 (4.46)
 $\delta_{Kn} = 1 K = n$

El sistema de ecuaciones (4.45) puede ser resuelto mediante técnicas estandarizadas por Wiener - Hopf [3] y cuyos detalles se dan en el Anexo 4.

0 K≠n

La solución en términos de la transformada de Fourier de la secuencia Z_{K} es:

$$Z(f) = \sum_{K=-\infty}^{O} Z_{K} e^{j2\pi fKT}$$
 (4.47)

y como se detalla en el Anexo 4, Z(f) se obtiene mediante:

$$Z(f) = 1 - (N_0/2' G_d^2) \cdot 1/M(f) \cdot r_0'$$
 (4.48)

Donde M(f) es la transformada de Fourier asociada a los coeficientes M $_{\rm n}$ _ K de la ecuación 4.46.

$$M(f) = M^{-}(f) M^{+}(f) = \sum_{K=-\infty}^{\infty} M_{K} e^{j2\pi} fKT = S_{T}(f) + N_{O}/2 G^{2}$$

$$(4.49)$$

Puesto que M(f) puede calcularse explícitamente a partir de la ecuación 4.49, M^+ (f) puede calcularse asociando al logaritmo neperiano de M(f), una serie de Fourier tal que:

8'8

$$\ln M(f) = \sum_{n=-\infty}^{O} r_n^- e^{j2\pi fnT} + \sum_{n=0}^{\infty} r_n^+ e^{j2\pi fnT}$$
(4.50)

con lo cual conocida la secuencia r_n^+ puede calcularse $M^+(f)$ mediante:

$$M^{-}(f) = \exp \left\{ \sum_{n=-\infty}^{0} r_{n}^{-} e^{j2\pi fnT} \right\}$$
(4.51)
$$M^{+}(f) = \exp \left\{ \sum_{n=0}^{\infty} r_{n}^{+} e^{j2\pi fnT} \right\}$$
$$r_{0}^{'} = \exp\{r_{0}\}$$

CALCULO DEL ERROR CUADRATICO MEDIO

Habiendo especificado el receptor óptimo no lineal, procedamos al cálculo del error cuadrático medio.

Se había demostrado en el marco el ecualizador lineal que el error cuadrático medio estaba dado por (ecuación 4.33)

$$E = \int_{-\infty}^{2} (1 - \int_{-\infty}^{\infty} s(-t) g_{0}(t) dt)$$

De acuerdo a la ecuación 4.41

 $\varepsilon = \int_{d}^{2} (1 - Z_{o})$

Donde Z es la componente continua de Z(f), es decir, Z(f) para f = 0. De la ecuación 4.48, tenemos:

$$Z(0) = 1 - (N_0/2 \sigma_d^2) \cdot 1/M(0) r_0'$$

Donde, de las ecuaciones 4.51, tenemos:

 $M(0) = \exp(r_0)$ $r'_0 = \exp(r_0)$ Luego, el error cuadrático medio será igual:

$$E = (N_0/2) \exp(-2r_0)$$
 (4.52)

Integrando la ecuación 4.50 en el intervalo (-1/2T, 1/2T), tenemos:

 $\int_{-1/2T}^{1/2T} \int df = \frac{1}{2\pi} \int_{K=1}^{\infty} r_{K} e^{-j2\pi} fKT + \sum_{K=1}^{\infty} r_{K}^{+} e^{j2\pi} fKT df$

Puesto que la integral de los términos que contienen (e^{+} j² π fKT) se anulan para K \neq 0, se obtiene:

 $\int \frac{1/2T}{\ln M(f)} df = 2r_0/T$

Υ,

$$2r_{0} = T \int \ln M(f) df$$
 (4.53)

Luego, reemplazando 4.53 en 4.52, tenemos:

$$E = (N_0/2) \exp \{ -T \int_{-1/2T}^{1/2T} \ln M(f) df \}$$
(4.54)

De acuerdo a las ecuaciones 4.30 y 4.45

$$M(f) = S_{T}(f) + N_{O}/2 \sigma_{d}^{2} = (1/T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^{2} + N_{O}/2 \sigma_{d}^{2}$$
(4.55)

Luego,

$$E = (N_{O}/2) \exp \{ -\ln (N_{O}/2G_{d}^{2}) - T \int_{-1/2T}^{1/2T} \ln [(2G_{d}^{2}/N_{O}T) \sum_{K=-\infty}^{\infty} |S(f - K/T)|^{2} + 1] df \}$$

Finalmente, el error cuadrático medio del ecualizador será igual:

$$E = \overline{\int_{d}^{2} \exp\left\{-T \int_{-1/2T}^{1/2T} \ln\left[\left[2 \int_{d}^{2} / N_{O}T\right] \sum_{K=-\infty}^{\infty} \left|S(f - K/T)\right|^{2} + 1\right] df\right\}}$$
(4.56)

91

Una comparación entre los dos tipos de ecualización óptima, sería posible a través de las relaciones del error. Para el efecto pongamos la expresión del error del ecualizador lineal dado por la ecuación 4.35, en términos del error del ecualizador no lineal. Mediante la identidad.

$$e^{-\ln x} = 1/x$$

y haciendo que,

$$y(f) = (2 (f_d^2/N_0T)) \cdot \sum_{K=-\infty}^{\infty} |S(f - K/T)|^2$$

Tenemos que:

$$-E_{l} = \int_{d}^{2} T \int_{-1/2T}^{1/2T} \exp\{-\ln(y(f) + i)\} df \qquad (4.57)$$

Comparando las ecuaciones 4.57 y 4.56, vemos que el error cuadrático medio del ecualizador óptimo lineal es igual al error del ecualizador óptimo no lineal, cuando y(f) es una constante, es decir, cuando no existe interferencia intersímbolo.

Cuando existe interferencia intersímbolos, la comparación no resulta evidente, para lo cual invariablemente se acude a simulaciones para una comparación entre los dos sistemas. Para efectos de ilustración se presenta dos gráficos en la cual en la figura No. 3 se dan resultados de una simulación computacional con las características de un canal como se ilustra en la figura No. 2. [3], de donde vemos que el error cuadrático medio del ecualizador no lineal, como se esperaba, es inferior al error cuadrático medio del ecualizador lineal.

Fig. 2-Amplitude-squared characteristic of typical voiceband channel,

Fig. 3-MNE in dB vs binary data rate for channel shown in Fig. 2 without de transmission.

4.3.2.1 CASO DE LA MODULACION DE FASE A 4 ESTADOS . Q-PSK

Como aplicación de la ecualización óptima no lineal, encontremos la estructura del ecualizador en el caso de una modulación de fase a 4 estados.

Un esquema general del DFE, se muestra en la figura 4.10.

FIGURA 4.10 Esquema general del ecualizador con decisión en la bucle.

Para el caso de una modulación de fase a 4 estados, se cumplen las siguientes relaciones.

$$\begin{split} \mathbf{x}(t) &= \sum_{n=-\infty}^{\infty} (\mathbf{a}_{n} + \mathbf{j}\mathbf{b}_{n}) (\mathbf{s}_{1}(t - n\mathbf{T}) + \mathbf{j}\mathbf{s}_{2}(t - n\mathbf{T})) \\ \mathbf{x}'(t) &= \mathbf{x}_{1}(t) + \mathbf{j}\mathbf{x}_{2}(t) \\ \mathbf{u}(t) &= \mathbf{x}(t) * \mathbf{g}_{0}(t) \mod \mathbf{g}_{0}(t) = \mathbf{g}_{1}(t) + \mathbf{j}\mathbf{g}_{2}(t) \\ \mathbf{u}(t) &= [\mathbf{x}_{1}(t) * \mathbf{g}_{1}(t) - \mathbf{x}_{2}(t) * \mathbf{g}_{2}(t)] \\ &+ \mathbf{j}[\mathbf{x}_{1}(t) * \mathbf{g}_{2}(t) + \mathbf{x}_{2}(t) * \mathbf{g}_{1}(t)] \\ &\quad \text{Donde,} \\ \mathbf{u}_{1}(t) &= \mathbf{x}_{1}(t) * \mathbf{g}_{1}(t) - \mathbf{x}_{2}(t) * \mathbf{g}_{2}(t) \\ \mathbf{u}_{2}(t) &= \mathbf{x}_{1}(t) * \mathbf{g}_{2}(t) + \mathbf{x}_{2}(t) * \mathbf{g}_{1}(t) \\ &= \text{El filtro } \mathbf{w}(t), \text{ es un filtro con coeficientes,} \\ \end{split}$$

 $A_{K} = h(KT)$ donde $h(t) = s(t) * g_{0}(t)$

Puesto que h(t) es comlejo, luego los coeficientes ${\rm A}_{\rm k}$ también lo serán.

$$A_{K} = A_{K} + jA_{k}^{2}$$

Luego,

$$y(nT) = \sum_{K=1}^{\infty} A_{K} \hat{d}_{n} - K$$

$$e(nT) = U_{1}(nT) - \sum_{K=1}^{\infty} (A_{K}^{1} \hat{a}_{n} - K - A_{K}^{2} \hat{b}_{n} - K)$$

$$+j \left\{ U_{2}(nT) - \sum_{K=1}^{\infty} (A_{K}^{1} \hat{b}_{n} - K + A_{K}^{2} \hat{a}_{n} - K) \right\} (4.58)$$

La ecuación 4.58 define la estructura del ecualizador con decisión en la bucle para una modulación de fase a 4 estados y la misma se muestra en la figura 4.11.

FIGURA 4.11 Estructura del DFE para el caso Q-PSK.

4.4 ECUALIZACION ADAPTIVA

Mucho del trabajo en esta área se ha concentrado en un procesamiento no recursivo, ajustable de la señal recibida, presumiblemente después que esta ha pasado a través de un filtro pasa bajo, en el caso banda base.

En general, si un filtro digital transforma la señal x(nT) en una salida y(nT), como se indica en la figura 4.12, según:

$$y(nT) = \sum_{i=0}^{K} h_{i} x(nT - iT) - \sum_{j=1}^{m} b_{j} y(nT - jT)$$
 (4.58)

Se dice que el filtro es recursivo cuando al menos un bj es distinto de cero. De lo contrario se dice que es un filtro no recursivo.

FIGURA 4.12 Esquema de un filtro digital recursivo.

El procesamiento no recursivo puede ser representado por un filtro transversal de longitud finita y los parámetros ajustables son los factores de ganancia del filtro h_K [7] [8]. El hecho que la salida del filtro es relacionado linealmente a estos factores de ganancia, tiene un importante soporte en la habilidad para analizar el desempeño de varias estrategias de ecualización. Algunos notables logros han resultado de varias aproxima-

ciones para implementar el filtro transversal ajustado automáticamente. Ayudado por tecnología moderna en circuítos integrados y el uso de circuítos digitales para procesamiento de señales, un número de ecualizadores adaptivos económicamente factibles han sido construídos y su efectividad a velocidades de transmisión de datos cada vez más altos sobre canales altamente dispersivos han sido probados. [4] [5] [6] [7] [8].

4.4.1 ECUALIZACION ADAPTIVA LINEAL

En el estudio de la ecualización óptima lineal, se vió que un ecualizador lineal está constituído por un filtro adaptado a la respuesta del canal, en cascada con un filtro digital donde:

$$g_{O}(t) = \sum_{n=-\infty}^{\infty} C_{n} s(nT - t)^{*}$$

$$x(t) = \sum_{K=-\infty}^{\infty} d_{K} s(t - KT) + n(t)$$

$$x(t) \longrightarrow s^{*}(-t) \longrightarrow Filtro digital \longrightarrow d_{K}$$

FIGURA 4.13 Esquema del ecualizador óptimo lineal.

Si no se conocen las características del canal de transmisión, no se puede determinar $s(-t)^*$, ni los coeficientes C_K del filtro digital. Se utiliza en este caso un ecualizador constitído de un filtro digital en el cual los coeficientes se adapten a las características de ese canal [4] [5].

La estructura general de un ecualizador no recursivo se muestra en la figura 4.14. Nosotros asumimos que el filtro tiene un vector de coeficientes \vec{H}_{K} al instante KT, limitado por razones físicas (2N + 1) coeficientes, definido por:

$$H_{K}^{t} = [h_{N}^{K} \dots h_{O}^{K} \dots h_{N}^{K}]$$
 (4.59)

Usualmente el coeficiente n = 0 se denomina el coeficiente central y su ganancia h_0 será el de mayor valor bajo condiciones de distorsión moderada.

FIGURA 4.14

Esquema general de un ecualizador adaptivo lineal.

Es suficiente considerar solamente señales discretas en el tiempo, con lo cual se realiza un muestreo de la señal de entrada al ecualizador x(t) cada T segundos. Luego la salida U_K de forma mediante la suma de las muestras $x_{K} - j$ presentes en el ecualizador ponderadas por un factor h_j .

De acuerdo a esto, x_{K} denota la señal de entrada y U_K denota la señal de salida del filtro digital y estan caracterizadas por:

$$U_{K} = \sum_{j=-N}^{N} h_{j}^{K} x_{K-j} = H_{K}^{+} \cdot x_{K}$$
(4.60)

Con,

$$\vec{x}_{K}^{t} = (x_{K} - N \cdots x_{K} \cdots x_{K} + N)$$
 (4.61)

Donde \overline{x}_k^{t} es el vector de las muestras presentes en el ecualizador al instante KT, h_j^k el j-ésimo coeficiente del filtro al instante KT. El primer ingrediente en la estrategia de ecualización es la elección de una función, la cual dependa conjuntamente del set de coeficientes del filtro y de la secuencia de error.

$$e_{K} = U_{K} - d_{K}$$

Generalmente se utiliza como función error, la del error-cuadrático-medio. Se trata de minimizar el error-cuadrático-medio entre la secuencia sin interferencia intersímbolos que se busca y la estimada (respuesta del filtro). El error según el criterio definido será:

$$E = E \left\{ |U_{k} - d_{k}|^{2} \right\}$$
 (4.62)

Reemplazando ${\rm U}_{\rm K}$ por su valor, según la ecuación 4.60, resulta:

$$E = E \left\{ \left| \sum_{j=-N}^{N} h_{j}^{K} x_{K-j} - d_{K} \right|^{2} \right\}$$
$$= \sum_{n=-N}^{N} \sum_{i=-N}^{N} h_{n} h_{i} \quad E \left\{ x_{K-n} x_{K-i} \right\}$$
$$- 2 \sum_{i=-N}^{N} h_{i} \quad E \left\{ d_{K} \cdot x_{K-i} \right\} + E \left\{ d_{K}^{2} \right\}$$

Si suponemos por hipótesis que la señal es estacionaria, tanto la covarianza de la señal recibida $E \{ x_{K-n} x_{K-i} \}$ como la correlación cruzada con la señal deseada $E \{ d_{K} x_{K-j} \}$, no depende de los instantes K, K - j, sino de la distancia o diferencia entre ellos, así:

$$E \{ d_{K} x_{K-i} \} = f(i)$$

$$E \{ x_{K-n} x_{K-i} \} = g(n-i)$$

Luego,

$$E = \sum_{n=-N}^{N} \sum_{i=-N}^{N} h_{n} h_{i} g(n-i) - 2 \sum_{i=-N}^{N} h_{i} f(i) + E\{a_{K}^{2}\}$$
(4.63)

Para determinar los coeficientes que minimizan el error cuadrático medio, habrá que establecer para cada uno de ellos, h_i , que en todo instante K^T se verifique:

0 = <u>36</u> i^{4 6}

.Luego,

$$\frac{\partial \varepsilon}{\partial h_i} = \sum_{n=-N}^{N} h_n g(n-i) - f(i) = 0 \qquad (4.64)$$

Lo que nos conducirá a un sistema de (2N + 1)ecuaciones en el que los (2N + 1) coeficientes h_i serán las incógnitas a determinar. Aparentemente el problema está resuelto. Sin embargo en general desconocemos las funciones f(i) y g(n - i) puesto que desconocemos las características estadísticas del canal. Aún en el supuesto que las conociéramos; estas pueden variar en el tiempo.

Podría pensarse en utilizar las salidad de las (2N + 1) etapas retardadoras del filtro, para calcular contínuamente las funciones de correlación y utilizar la ecuación 4.64. En la práctica esto resulta excesivamente complejo, debiendo resolverse un sistema de (2N + 1) ecuaciones.

El cálculo adaptativo mediante este método conlleva mucha complejidad, lo que nos lleva a un segundo ingrediente en la estrategia de la ecualización, el cual es la necesidad de especificar un algoritmo iterativo para el ajustamiento de los coeficientes h_K hacia los valores óptimos, sobre la base de las medidas que puedan hacerse en el receptor.

Al instante KT, el error cuadrático medio $~\Xi$, es una función de $\overrightarrow{H_{K}}$

Si,

$$\Delta E = E(H_{K}) - E(H_{K} + 1)$$
 (4.65)

Donde $\mathcal{E}(\overline{H}_{K})$ se lee como el error asociado al vector de los coeficientes \overline{H} al instante KT y $\mathcal{E}(\overline{H}_{K+1})$, el error asociado al instante (K + 1), se puede buscar \overline{H}_{K+1} , el vector de los coeficientes h_{i} al instante (K + 1) T, tal que $\Delta \mathcal{E}$ sea máximo, es decir, que el error asociado a \overline{H}_{K+1} , sea lo más pequeño posible con relación al error asociado a \overline{H}_{K} .

 $H_{K + 1}$ puede expresarse en función de H_{K} por la relación:

$$\vec{H}_{K + 1} = \vec{H}_{K} + \vec{0}$$
 (4.66)

Donde d es un vector de norma pequeña. Si se cumple esta condición, el error asociado al vector de los coeficientes en el instante (K + 1)T, puede expresarse en función $\mathcal{E}(\overline{H}_{K})$ por medio de ecuaciones diferenciales de primer orden. Luego,

 $\begin{array}{c} \overrightarrow{H}_{K} + 1 \end{array} = \overbrace{(H}_{K} + \overrightarrow{d}) \qquad (4.67) \\ = \overbrace{(H}_{K}) + \overbrace{(H}_{K}) + \overbrace{(H}_{K}) \end{array}$

De las ecuaciones 4.67 y 4.65_r se tiene:

$$\Delta \varepsilon = - d \cdot \frac{\partial \varepsilon}{\partial H_{k}}$$

Por consiguiente, se desea que ΔE sea máximo y positivo, es decir, que $\vec{\sigma}$ sea paralelo a $\partial \vec{E} / \partial \vec{H}_k$ y

de sentido opuesto. Por lo tanto

$$\vec{\int}_{\pm}^{t} - \frac{\mu}{2} \cdot \frac{\vec{\partial} \vec{E}}{\vec{H}_{k}} \qquad ; \quad \mu \ge 0$$

con lo cual llegamos a la expresión:

$$\stackrel{\rightarrow}{H_{K}} + 1 = \stackrel{\rightarrow}{H_{K}} - \frac{\mu}{2} \cdot \frac{\partial \varepsilon}{\partial H_{k}}$$
 (4.68)

Este método, denominado "del descenso más rápido", consiste, como puede verse, en mover el coeficiente en la dirección opuesta a la gradiente del error, afectado por un peso µ positivo que controla la estabilidad, la rapidez y la presición de la convergencia. Nótese que ahora ya no se debe resolver un sistema de (2N + 1) ecuaciones; sino que cada coeficiente se calcula independientemente de los demás, a partir de su gradiente, lo que simplifica su implementación.

Finalmente, el tercer ingrediente de la estrategia de ecualización involucra el método usado por el receptor en la estimación de los valores del gradiente en la ecuación 4.68. Puesto que se desconocen las medias estadísticas $E \{ x_{K-n} \ x_{K-i} \} \ y \ E \{ d_{K} \ x_{K-i} \}$, para el cálculo exacto del error cuadrático medio, dado por la ecuación 4.62, se puede utilizar el valor actual:

$$E = |U_{K} - d_{K}|^{2}$$
(4.69)

como una estimación del error cuadrático medio. Puesto que ΔE dado por la ecuación 4.65, después de un cierto número de iteraciones tiende a ser constante, entonces esta consideración lleva a los mismos resultados.

Reemplazando la ecuación 4.60 en 4.69, se tiene:

$$E(H_{K}) = |H_{K}^{t} X_{K} - a_{K}|^{2}$$
 (4.70)
El cálculo de la derivada de E con relación a un vector complejo se desarrolla en el Anexo 3. Por lo tanto tenemos que:

$$\frac{\partial \vec{E}}{\partial \vec{H}_{k}} = 2 \vec{X}_{K}^{*} (U_{K} - \vec{d}_{K})$$
(4.71)

y reemplazando 4.71 en 4.68, tenemos:

$$H_{K + 1} = H_{K} - \mu X_{K} (U_{K} - d_{K})$$
 (4.72)

Dos modos de adpatación de los coeficientes son posibles. Un modo en el cual durante la transmisión de datos se introducen secuencias predefinidas de datos para la adaptación de los coeficientes. Esto implica que los coeficientes se mantendrán constantes durante la transmisión normal de datos. En este caso la secuencia $\{d_K\}$ será conocida por el ecualizador.

Un segundo modo de adaptación es la adaptación directa. En este caso los coeficientes se adaptan constantemente durante la transmisión normal de datos, y no requiere de secuencias predefinidas. Por lo tanto la secuencia {d_K} no será conocida por el ecualizador, por lo cual se puede reeplazarlo por la secuencia {d_K}.

Si el adaptamiento de los coeficientes, se realiza en el modo directo, entonces los mismos se ajustan de acuerdo a:

$$\dot{H}_{K+1} = \dot{H}_{K} - \mu \dot{X}_{K} (U_{K} - \hat{d}_{K})$$
 (4.73)

La convergencia del algoritmo depende del valor de μ . Existe un valor máximo $\mu_{máx}$, tal que si $\mu > \mu_{máx}$, provoca una divergencia del algoritmo. El valor de este parámetro está dado por [4] [5].

$$0 < \mu < \frac{2}{M.\sigma^2}$$
 (4.74)

Donde,

 $\int c^2 = E \{ x_K^2 \}$

M = 2N + 1; M: número de coeficientes del filtro.

Si bien, los valores de μ dado por la ecuación 4.74 asegura la convergencia del algoritmo, existe un valor de μ que hace que $\overrightarrow{H}_{K + 1}$ converja hacia un mínimo del error cuadrático medio, y que invariablemente ha sido determinado experimentalmente [4] [5].

Un esquema del ecualizador adaptivo lineal se muestra en la figura 4.15.

FIGURA 4.15 Esquema del ecualizador adpativo lineal.

4.4.1.1 CASO DE LA MODULACION DE FASE 4-PSK

 Hemos visto anteriormente que la salida del demodulador, en el caso de una modulación 4-PSK, se puede expresar como dos señales en cuadratura.

$$x(t) = x_1(t) + jx_2(t)$$

El vector X_{K} que la representa las muestras presentes en el filtro digital al instante KT es por consecuencia complejo.

$$\vec{x}_{K} = \vec{x}_{K}^{1} + j\vec{x}_{K}^{2}$$

Esto implica que requerimos dos filtros de ecualización, asociados a cada uno de los canales en cuadratura:

$$\vec{H}_{K} = \vec{H}_{K}^{1} + j\vec{H}_{K}^{2}$$

en consecuencia, la salida del filtro digital, U_k , al instante KT es también complejo.

 $U_{K} = U_{K}^{1} + jU_{K}^{2}$

El vector de los coeficientes del filtro digital al instante (K + 1)T dado por la ecuación 4.3.16.

$$\vec{H}_{K+1} = \vec{H}_{K} - \mu \vec{X}_{K} (U_{K} - \hat{d}_{K})$$

Con,

$$\hat{d}_{K} = \hat{a}_{K} + j \hat{b}_{K}$$

Es complejo y se expresa:

$$\vec{H}_{K+1} + j\vec{H}_{K+1}^{2} = (\vec{H}_{K}^{1} + j\vec{H}_{K}^{2}) - \mu(\vec{x}_{K}^{1} - j\vec{x}_{K}^{2})$$

$$[(\vec{U}_{K}^{1} + j\vec{U}_{K}^{2}) - (\hat{a}_{K} + j\hat{b}_{K})]$$

con lo cual los coeficientes de los filtros, se ajustan de acuerdo a:

$$\vec{H}_{K+1}^{1} = \vec{H}_{K}^{1} - \mu [\vec{x}_{K}^{1} (\vec{U}_{K}^{1} - \hat{a}_{K}) + \vec{x}_{K}^{2} (\vec{U}_{K}^{2} - \hat{b}_{K})]$$

$$\vec{H}_{K+1}^{2} = \vec{H}_{K}^{2} - \mu [\vec{x}_{K}^{1} (U_{K}^{2} - \hat{b}_{K}) - \vec{x}_{K}^{2} (U_{K}^{1} - \hat{a}_{K})]$$
Puesto que U_{K} = (ecuación 4.3.3)
 $U_{K} = \vec{H}_{K}^{t} \cdot \vec{x}_{K}$
Entonces,
 $U_{K} = [(\vec{H}_{K}^{1})^{t} + j(\vec{H}_{K}^{2})^{t}] [\vec{x}_{K}^{1} + j\vec{x}_{K}^{2}]$

105

con lo cual,

$$U_{K}^{1} = (H_{K}^{1})^{t} \cdot \vec{x}_{K}^{1} - (H_{K}^{2})^{t} \cdot \vec{x}_{K}^{2}$$
$$U_{K}^{2} = (H_{K}^{1})^{t} \cdot \vec{x}_{K}^{2} + (H_{K}^{2})^{t} \cdot \vec{x}_{K}^{1}$$

De acuerdo a las relaciones anteriores, la estructura del ecualizador adaptivo lineal, se indica en la figura 4.16.

FIGURA 4.16 Esquema del ecualizador adaptivo lineal para un sistema con modulación de fase 4-PSK. 4.4.1.2 ECUALIZACION LINEAL FRACCIONAL (FSE)

Un ecualizador Lineal Fraccional se muestra en la figura 4.16.a.

Los coeficientes del ecualizador se encuentran espaciados a un intervalo $\hat{\tau}$, el cual es menor que, o una fracción del período del símbolo, T. El espaciamiento entre coeficientes $\hat{\tau}$, es seleccionado típicamente tal que el ancho de banda ocupado por la señal a la entrada del ecualizador es $|f| < 1/2\hat{\tau}$, es decir, muestreo a los instantes espaciados en $\hat{\tau}$, cumple con el teorema del muestreo.

En una implementación análoga no existe otra restricción sobre î, y la salida del ecualizador puede ser muestreada a los instantes KT. En una implementación digital, la señal a la entreada del ecualizador es muestreada a los instantes KT/M, donde M/T es la frecuencia de muestreo, y una salida es producida cada intervalo correspondiente al símbolo (por cada M muestras de entrada).

En general, la respuesta del ecualizador esta dado por:

$$U_{K} = \sum_{i=-N}^{N-1} h_{i} x_{K-i/M}$$

Con M/T : Frecuencia de muestreo.

Los coeficientes del ecualizador lineal fraccional pueden ser actualizados o ajustados una vezarior período del símbolo, basado en el error computado para ese símbolo, de acuerdo a:

$$\vec{H}_{K+1} = \vec{H}_{K} - \mu \vec{X}_{K}^{\star} (U_{K} - d_{K})$$

Donde,

 $H_{k} = [h_{-N} \dots h_{-1} \quad h_{0} \quad h_{1} \dots h_{N-1}]$

$$x(t)$$

$$h_{-N}$$

$$h_{-1}$$

$$h_{0}$$

$$h_{N-1}$$

$$u_{K}$$

FIGURA 4.16.a Ecualizador con espaciamiento fraccional.

Explícitamente, para el caso en que la frecuencia de muestreo es 2/T, el ecualizador Lineal Fraccional se muestra en la figura 4.16.b.

FIGURA 4.16.b Ecualizador Lineal Fraccional con frecuencia de muestreo 2/T.

En el caso del ecualizador, en el cual la señal a la entrada del mismo se muestrea con una frecuencia 1/T, como con secuencia del muestreo, el espectro de la señal se repite periódicamente con período 1/T, lo que

. 107

 $X_{K} = [x_{K+N/M} \dots x_{K+1/M}, x_{K}, x_{K-1/M}, x_{K-(N-1)/M}]$

implica un solapamiento del espectro de la señal. En este caso, el mínimo error cuadrático medio es una función de los instantes de muestreo en en el receptor. En el ecualizador Lineal Fraccional, en virtud de cumplir con el teorema de muestreo, la ecualización se realiza directamente sobre el espectro de la señal, con lo cual se puede compensar de mejor manera, las distorsiones introducidas por el canal, con la característica de menor sensibilidad en los instantes de muestreo.

4.4.2 ECUALIZACION ADAPTIVA NO LINEAL

Un ecualizador no lineal sencillo [1] [6] el cual es particularmente útil para canales con distorsión severa de amplitud, utiliza una decisión en la bucle o realimentación para cancelar la interferencia entre símbolos debido a símbolos ya detectados. En la figura 4.17 se muestra un diagrama de bloques de este ecualizador conocido como "Decisión - Feedback - Ecualizer" (DFE).

FIGURA 4.17 Esquema general del ecualizador no lineal (DFE).

La señal ecualizada es la suma de las salidas de los filtros de coeficientes $h_K y a_K$ respectivamente. El ecualizador de coeficientes h_k es como el ecualizador lineal discutido anteriormente. Decisiones hechas en la señal ecualizada, son realimentadas a través de un segundo ecualizador de coeficientes a_K o ecualizador en la bucle. Sin el conocimiento de las características del canal de transmisión, por lo tanto, se va a utilizar dos filtros digitales adaptivos lineales, cuyos coeficientes deben ser ajustados simultáneamente para minimizar el error cuadrático medio, como en el caso del ecualizador cadaptivo lineal. El procedimiento realizado para este último se presenta para el caso del ecualizador adpativo no lineal.

el error-cuadrático-medio, está dado por la expresión:

$$E = E \{ |U_{K} - Y_{K} - d_{K}|^{2} \} = E \{ |e_{K} - d_{K}|^{2} \} (4.75)$$

Si H_K representa el vector de los coeficientes h_i del filtro digital de entrada, al instante KT, limitado por razones físicas a (2N + 1) coeficientes:

$$H_{K} = [h_{-n}^{K} \dots h_{0}^{K} \dots h_{N}^{K}]$$
 (4.76)

Además, si \vec{x}_{K} representa el vector de las muestras presentes en el filtro de coeficientes al instante KT.

$$X_{K} = [X_{K-N} \dots X_{K} \dots X_{K+N}]$$
 (4.77)

La respuesta ${\rm U}_{\rm K}$ del filtro digital de coeficientes ${\rm h}_{\rm i},$ al instante KT, será:

$$U_{K} = \sum_{I=-N}^{N} h_{i}^{K} x_{K-i}$$

$$= H_{K}^{t} \cdot \tilde{x}_{K}$$

$$(4.78)$$

La salida del filtro digital en la bucle, y_{K} , está dado por:

$$y_{K} = \sum_{i=1}^{M} a_{i}^{K} d_{K-i}$$

$$= \overline{A_{K}}^{t} \cdot \overline{D_{K}}$$

$$(4.79)$$

Donde \overline{A}_{K} representa los coeficientes del filtro en la bucle al instante KT, limitado de igual manera por razones físicas a M coeficientes y \overline{D}_{K} representa los datos presentes en el filtro al instante KT.

$$\overrightarrow{A}_{K} = [a_{M}^{K} \dots a_{1}^{K}]$$

$$\overrightarrow{D}_{K} = [d_{K-M} \dots d_{K-1}]$$

$$(4.80)$$

En el caso de la ecualización adaptiva no lineal, el error al instante KT, es una función de \overrightarrow{H}_{K} y \overrightarrow{A}_{K} . Luego si:

$$\Delta \varepsilon = \varepsilon(\vec{H}_{K}, \vec{A}_{K}) - \varepsilon(\vec{H}_{K+1}, \vec{A}_{K+1})$$
(4.81)

Entonces deseamos encontrar H_{K+1} y A_{K+1} tal que $\Delta \varepsilon$ sea máximo, es decir, el error asociado a los vectores H y A en el instante (K + 1)T, sea lo más pequeño posible con relación al error asociado a H y A en el instante KT.

Siguiendo el procedimiento anterior, \overline{H}_{K+1} y \overline{A}_{K+1} se puede expresar en función de \overline{H}_{K} y \overline{A}_{K} respectivamente mediante las relaciones.

 $H_{K+1} = H_{K} + \vec{0} \qquad (4.82)$ $\vec{A}_{K+1} = \vec{A}_{K} + \vec{\eta}.$

Donde \vec{d} y $\vec{\eta}$ son dos vectores de norma pequeños. Luego, por medio de las ecuaciones 4.82, el error asociado a (H_{K+1}, A_{K+1}) , puede expresarse en función del error asociado a $(\overline{H}_{K}, \overline{A}_{K})$, por medio de ecuaciones diferenciales de primer orden, con lo cual:

$$E(\vec{H}_{K} + \vec{d}, \vec{A}_{K} + \vec{\eta}) = E(\vec{H}_{K}, \vec{A}_{K}) \qquad (4.83)$$

$$+ \vec{d} \cdot \vec{\partial E} + \vec{\eta} \cdot \vec{\partial E} = \vec{A}_{K}$$

Luego, de acuerdo a la ecuación 4.81.

$$\Delta \varepsilon = -\vec{\sigma}^{t} \frac{\partial \varepsilon}{\partial \vec{H}_{k}} - \vec{\eta}^{t} \frac{\partial \varepsilon}{\partial \vec{H}_{k}}$$
(4.84)

Por consiguiente, AE será positivo si d es paralelo y opuesto a $\partial \vec{E} / \partial \vec{H}_k$ y $\vec{\eta}$ con relación a $\partial \vec{E} / \partial \vec{A}_k$. Por lo tanto:

$$\vec{\sigma} = -\frac{\mu}{2} \cdot \frac{\partial \vec{E}}{\partial \vec{H}_{k}} \qquad (4.85)$$

$$\vec{\eta} = -\frac{\lambda}{2} \cdot \frac{\partial \vec{E}}{\partial \vec{A}_{k}}$$

Una estimación posible del error cuadrático medio es:

$$\varepsilon = |v_{K} - y_{K} - d_{K}|^{2}$$

Con U_K y y_K definido por las ecuaciones 4.78 y 4.79. El cálculo del gradiente $\partial \vec{E} / \partial \vec{H}$ y $\partial \vec{E} / \partial \vec{A}$ y (ver Anexo 3), nos lleva a las relaciones:

$$\frac{\partial \vec{E}}{\partial \vec{H}_{k}} = 2\vec{x}_{K}^{*} (U_{K} - Y_{K} - d_{k}) \qquad (4.86)$$

$$\frac{\partial \vec{E}}{\partial \vec{A}_{k}} = -2\vec{D}_{K}^{*} (U_{K} - Y_{K} - d_{k})$$

Luego, los coeficientes del ecualizador adaptivo no lineal, se ajustan de acuerdo a:

$$\vec{H}_{K+1} = \vec{H}_{K} - \mu \vec{X}_{K}^{\star} (e_{K} - d_{K})$$

$$\vec{A}_{K+1} = \vec{A}_{K} + \lambda \vec{D}_{K}^{\star} (e_{K} - d_{K})$$

$$(4.87)$$

Donde los parámetros μ y λ son elegidos lo suficientemente pequeños para asegurar que \vec{H}_{K+1} y \vec{A}_{K+1} converjan hacia un mínimo del error cuadrático medio [6].

Si el adaptamiento de los coeficientes h_i y a_i se realiza en el modo directo, entonces la secuencia $\{ d_K \}$ es reemplazada por la secuencia $\{ \hat{d}_K \}$, con lo cual tenemos:

$$\vec{H}_{K+1} = \vec{H}_{K} - \mu \vec{X}_{K}^{*} (e_{K} - \hat{d}_{K})$$

$$\vec{A}_{K+1} = \vec{A}_{K} + \lambda \vec{D}_{K}^{*} (e_{K} - \hat{d}_{K})$$
(4.88)

Un esquema del ecualizador adaptivo no lineal se muestra en la figura 4.18.

Dado el mismo número de coeficientes en total, alcanza el DFE un menor error cuadrático medio que un ecualizador lineal? no existe una respuesta definitiva sobre esta pregunta. El desenvolvimiento de cada ecualizador es influenciado por las características particulares de cada canal, la precisión en los instantes de muestreo, como el número de coeficientes de ecualizador. Sin embargo, debido a la habilidad del DFE para cancelar la interferencia debido a símbolos pasados, una menor sensibilidad en los instantes de muestreo puede permitirse, a diferencia del ecualizador lineal, donde es muy importante los instantes de muestreo de la señal. - 113

FIGURA 4.18 Esquema del ecualizador adaptivo no lineal (DFE)

4.4.2.1 CASO DE LA MODULACION DE FASE 4-PSK

Puesto que la señal de salida del demodulador, x(t) puede ser representada por dos señales en cuadratura, un razonamiento similar al realizado en el punto 4.4.1.1, en el caso del ecualizador óptimo lineal, el vector de coeficientes \vec{H}_{K} , el vector de las muestras presentes en el filtro \vec{x}_{K} y su respuesta U_{K} del filtro de entrada son complejos, dados por:

$$\vec{x}_{K} = \vec{x}_{K}^{1} + j\vec{x}_{K}^{2}$$

$$\vec{H}_{K} = \vec{H}_{K}^{1} + j\vec{H}_{K}^{2}$$

$$(4.89)$$

у,

$$U_{K} = U_{K}^{1} + jU_{K}^{2}$$

Análogamente, el vector \overrightarrow{A}_{K} de los coeficientes del filtro en la bucle y su respuesta y_K serán complejos y dados por:

$$y_{K} = y_{K}^{1} + jy_{K}^{2}$$

$$\vec{A}_{K} = \vec{A}_{K}^{1} + j\vec{A}_{K}^{2}$$

$$(4.90)$$

Reemplazando las ecuaciones 4.89 y 4.90 en 4.88, llegamos a las relaciones mediante las cuales los coeficientes de los filtros realizan su adaptamiento. Para los filtros de coeficientes h_i :

$$\vec{H}_{K+1} = \vec{H}_{K}^{1} - \mu [\vec{x}_{K}^{1} (U_{K}^{1} - y_{K}^{1} - \hat{a}_{K}) + \vec{x}_{K}^{2} (U_{K}^{2} - y_{K}^{2} - \hat{b}_{K})]$$

$$(4.91)$$

$$\vec{H}_{K+1} = \vec{H}_{K}^{2} - \mu [\vec{x}_{K}^{1} (U_{K}^{2} - y_{K}^{2} - \hat{b}_{K})]$$

$$- \vec{x}_{K}^{2} (U_{K}^{1} - y_{K}^{1} - \hat{a}_{K})]$$

$$V \text{ parallos filtros de coeficientes a...}$$

$$\vec{A}_{K+1} = \vec{A}_{K}^{1} + \lambda [\vec{D}_{K}^{1} (\vec{U}_{K}^{1} - \vec{y}_{K}^{1} - \vec{a}_{K})$$

$$+ \vec{D}_{K}^{2} (\vec{U}_{K}^{2} - \vec{y}_{K}^{2} - \vec{b}_{K})]$$

$$\vec{A}_{K+1} = \vec{A}_{K}^{2} + \lambda [\vec{D}_{K}^{1} (\vec{U}_{K}^{2} - \vec{y}_{K}^{2} - \vec{b}_{K}) - \vec{b}_{K}]$$

$$- \vec{D}_{K}^{2} (\vec{U}_{K}^{1} - \vec{y}_{K}^{1} - \vec{a}_{K})]$$

$$(4.92)$$

De las ecuaciones 4.78 y 4.89.

$$U_{K} = H_{K} \cdot X_{K} = U_{K}^{1} + jU_{K}^{2}$$
(4.93)

Luego,

$$U_{K}^{1} = H_{K}^{1} \vec{x}_{K}^{1} - H_{K}^{2} \vec{x}_{K}^{2}$$
$$U_{K}^{2} = H_{K}^{1} \vec{x}_{K}^{2} + H_{K}^{2} \vec{x}_{K}^{1}$$

Análogamente de las ecuaciones 4.79 y 4.90.

$$y_{K} = \overrightarrow{A}_{K} \cdot \overrightarrow{D}_{K}$$

$$y_{K}^{1} = \overrightarrow{A}_{K}^{1} \cdot \overrightarrow{D}_{K}^{1} - \overrightarrow{A}_{K}^{2} \cdot \overrightarrow{D}_{K}^{2}$$

$$y_{K}^{2} = \overrightarrow{A}_{K}^{1} \cdot \overrightarrow{D}_{K}^{2} + \overrightarrow{A}_{K}^{2} \cdot \overrightarrow{D}_{K}^{1}$$
Además tenemos que:

$$e_{K} = U_{K} - Y_{K}$$

$$= (U_{K}^{1} - Y_{K}^{1}) + j(U_{K}^{2} - Y_{K}^{2})$$
(4.95)

De acuerdo a las relaciones anteriores, la estructura de ecualizador adaptivo no lineal se muestra en la figura 4.19.

FIGURA 4.19 Esquema del ecualizador adaptivo no lineal para un 4-PSK.

REFERENCIAS

- [1] Egalisatión Numérique, Ecole Nationale Superiore des Telecomunication de Bretagne, Documento.
- [2] D. W. Tufts, "Nyquist's Problem The Joint Optimization of Transmiter and Receiver in Pulse Amplitud Modulation", Proc. IEEE, vol. 53, pp. 248 - 260.
- J. Salz, "Optimum Mean Square Decision Feedback Equalization", Bell Syst. Tech. J., vol. 52, pp.
 1.341 - 1.371, Oct. 1.973.
- [4] J. G. Proakis, "An Adaptive Receiver for Digital Signaling Through Channels with Intersimbol Interference", IEE Trans. Inform. Theory, IT -15, pp. 484 - 487, Abril 1.969.
- [5] A. Gersho, "Adaptive Ecualization of Highly Dispersive Channels for Data Transmission", Bell Syst. Tech. J., vol. 48, pp. 55 - 70, Enero 1.969.
- [6] P. Monsen, "Feedback Equalization for Fading Dispersive Channels", IEE Trans. Inform. Theory, IT - 17, pp. 56 - 64, Enero 1.971.
- [7] R. W. Lucky, "Techniques for Adaptive Equalization of Digital Comunications Systems", Bell Systems", Bell Syst. Tech. J., vol. 45,pp. 225 -286, Febrero 1.966.

[8] S. H. Qureshi, "Adaptive Equalization", Proc.
 IEEE, vol. 73, pp. 1.349 - 1.387, Sep. 1.985.

*1*16

APLICACION DE ECUALIZACION ADAPTIVA

5.1	Fuente de Información
5.2	Canal de transmisión
5.3	Filtros de Transmisión y Recepción
5.4	Ecualizadores Adaptivos
5.5	Potencia de Ruido en Función de la Relación Señal
	al Ruido

5.6 Diagramas de Flujo

CAPITULO V

APLICACION DE ECUALIZACION ADAPTIVA

A efectos de obtener resultados sobre la aplicación de la ecualización adaptiva sobre un sistema de transmisión, la simulación de una cadena de transmisión con modulación fase Q-PSK, modelizada por el esquema equivalente en banda base, como se muestra en la figura 5.1, se lleva a efecto.

FIGURA 5.1 Esquema de sistema equivalente en banda base.

La señal x(t) está dada por:

$$x(t) = \sum_{k=-\infty}^{\infty} d_{K} s(t - KT)$$

Donde,

 $d_{K} = a_{K} + jb_{K}$ $a_{K} = \pm 1; b_{K} = \pm 1$

 $s(t) = \begin{vmatrix} 1 & t \in [0,T] \\ 0 & en otro caso \end{vmatrix}$

Transmisión de datos sobre un canal telefónico es considerado. Inicialmente, un canal formado únicamente por los filtros HTX y HRX, cuya salida sea la respuesta de un canal coseno sobreelevado, con repartición óptima de la función de filtraje entre los mismos, es considerado a efectos de tener un sistema de referencia. Si a este sistema de referencia se introducen las características de distorsión de amplitud y fase del canal telefónico, sin modificar las características de los filtros HTx y HRx, interferencia intersímbolos da como resultado, la misma que vamos a combatir incorporando un ecualizador adaptivo en el receptor.

Por lo tanto, un canal fijo es definido, pero cuyas características son desconocidas por el ecualizador.

5.1 FUENTE DE INFORMACION

La fuente de información está constituído por dos secuencias pseudo aleatorias de 256 elementos binarios codificados en código NRZ.

La densidad espectral de este código se indica en la figura 5.2.

Densidad espectral de un código NRZ.

Para efectos de la simulación, consideremos que cada elemento binario es transmitido mediante N muestras en el intervalo [0,T]. Si consideramos además que S(f) \approx 0 para f \geq 4/T, esto nos permite la elección de una frecuencia de muestreo f_m, donde:

 $f_m = 2 \cdot 4/T = 8/T$

Luego, cada secuencia de 256 elementos binarios es representado por 256 T / (T/8) = 2.048 muestras, como se indica en la figura 5.3.

FIGURA 5.3 Código NRZ con 8 muestras representativas de cada elemento binario.

5.2 EL CANAL DE TRANSMISION

Transmisión de datos sobre una línea telefónica de la red pública conmutada es considerada [1].

Existen dos técnicas fundamentales relacionadas con el problema de la transmisión de datos. La primera técnica es usualmente el diseño y construcción de una red completa expresamente para este propósito.

La segunda técnica se refiere a la utilización de redes existentes, como soporte para la transmisión de datos. De esta última técnica, la red telefónica es la más universalmente utilizada para el efecto, ya sea mediante el servicio telefónico conmutado, o bien dedicando permanentemente líneas de abonado y enlaces de infraestructura analógica telefónica.

Los principales parámetros que influyen en la transmisión de datos por canales de calidad telefónica pueden ser ubicados dentro de dos categorías:

- Estacionarios

- Transitorios

Parámetros de tipo estacionario son aquellos que cambian lentamente con el tiempo. Distorisión de amplitud, distorsión de propagación y ruido de fondo son todos fenómenos que varían lentamente durante el tiempo que dura una conección telefónica, sin embargo pueden ser

121

diferentes para cada conexión en particular.

Distorsión de propagación o retardo de grupo aparece como un parámetro crítico en la transmisión de datos, causado por las diferentes frecuencias componentes de una señal que recorren el medio de transmisión a velocidad no uniforme. La principal fuente de distorsión de retardo es el efecto acumulativo de los varios filtros usados en sistemas FDM (Frecuency Division Multiplex), y de aquí que la magnitud de distorsión de retardo es generalmente dependiente del número de etapas de modulación de portadora en la trayectoria, en lugar de la longitud de la trayectoria. En la figura 5.4 se muestra una curva de respuesta típica de distorsión de propagación en función de la frecuencia, debido solamente al equipo de multiplexaje de frecuencia [1].

Otro parámetro que afecta seriamente la transmisión de datos, es la distorsión de amplitud. Idealmente todas las frecuencias en el rango de interés del canal deberían sufrir la misma ganancia o la misma pérdida. Esto es un caso ideal pero inalcanzable en un sistema real. Considerando un operación en conjunto, el deterioro en la respuesta de amplitud es sumada aritméticamente cuando varias secciones son añadidas. Esto es particularmente verdadero para los límites de la banda en vista de la utilización de

122

transformadores y filtros utilizados para reunir especificaciones de corte para baja y altas frecuencias. En la figura 5.5 se muestra un ejemplo típico de respuesta de amplitud a través de un equipo FDM [1].

Ruido de fondo o ruido blanco Gaussiano, aparece debido a varias fuentes, pero es principalmente asociado con ruido térmico y ruido de amplificadores electrónicos, adquirido a medida que la señal atraviesa por las distintas secciones del canal. Intermodulación debido a equipos de multiplexaje contribuye también a la potencia del ruido.

÷

Parámetros de tipo transitorio son abruptos y de carácter aleatorio. Son causados por actividades impulsivas como marcación, conmutación en centrales electromagnéticas, impulsos debido al alumbrado eléctrico. Otros parámetros a destacarse son desviaciones de frecuencia que ocurre en FDM debido a ajustes de frecuencia en osciladores locales. Transmisiones por radio pueden introducir más efectos transitorios debido a desvanecimientos en radio enlaces por microonda, dispersión de propagación, etc..

Si bien todos estos parámetros afectan en un grado u otro a las transmisiones de datos, distorsión de propagación, distorsión de amplitud y ruido impulsivo son considerados las fuentes principales en la detección de errores.

Para efectos de la simulación, distorsión de amplitud y retardo son considerados, los mismos que de acuerdo a las figuras 5.4 y 5.5, se muestran en la figura 5.6, dentro de los límites de distorsión recomendados por el CCITT (REC. M. 102, TOMO IV, LIBRO NARANJA) para circuitos internacionales especializados.

Ruido impulsivo, no se considera en la simulación debido a que el número de bitios a considerar en la misma, por razones de tiempo de computación, será relativamente pequeño para que se justifique su consideración.

De acuerdo a lo expuesto, en el canal de transmisión tiene una función de transferencia C(f) dado por:

$$-j2\pi f t g$$

$$C(f) = A(f) e$$
(5.1)

Donde,

A(f) = |C(f)| coeficiente de transmisión

 $\phi(f) = 2 \pi f \hat{\tau}_q$ retardo de fase

Luego, C(f) está caracterizado por A(f) y $\phi(f)$, dados por:

1.- Para el rango 300 - 400 Hz.

A(f) = 0.005f - 1.0

 $t_{g} = (-2.50368 \log f + 7.95193) \times 10^{-3}$

2.- Para el rango 400 - 1.500 Hz

A(f) = 1

$$\hat{\iota}_{g} = (-2.50368 \log f + 7.95193) \times 10^{-3}$$

3.- Para 1.500 - 2.220 Hz
A(f) = 1.0
 $\hat{\iota}_{g} = 0$
4.- Para 2.200 - 2.700 Hz
A(f) = -0.0001 f + 1.2274
 $\hat{\iota}_{g} = 0$
5.- Para 2.700 - 3.000 Hz
A(f) = -0.0001 f + 1.2274
 $\hat{\iota}_{g} = (5.602747 \log f - 19.225) \times 10^{-3}$
6.- Para 3000 - 3.200 Hz
A(f) = -0.0028125 f + 9.3548
 $\hat{\iota}_{g} = (5.602747 \log f - 19.225) \times 10^{-3}$

De acuerdo a las recomendaciones del CCITT (REC. V. 26 y V. 27) para Modems de 2.400 bits/s y 4.800 bits/s, la frecuencia portadora es de 1.800 Hz.

5.3 FILTROS DE TRANSMISION Y RECEPCION

Filtros de transmisión y recepción, bajo la consideración de requerimientos de un sistema de referencia es considerado.

Sistemas prácticos son típicamente diseñados para producir a la salida, una respuesta deseada. De entre estos, la más usual debida a su rápido decrecimiento con el tiempo y a verificar a la vez el primero y segundo criterio de Nyquist (este último en el caso de $\propto = 1$) es la del coseno sobreelevado [2].

a) Distorsión de Amplitud

b) Distorsión de Propagación

FIGURA 5.6

Distorsión de amplitud y propagación para un ejemplo de canal telefónico [1], dentro de los límites de distorsión recomendados por el CCITT (REC. M. 102) para circuitos internacionales de líneas especializadas.

126

La respuesta de frecuencia está dado por:

$$y(f) = \begin{cases} 1 & 0 \leq f \leq f_{C}(1 - \alpha) \\ (1/2)\{1 - \operatorname{sen}[\frac{\pi T}{\alpha} (f - f_{C})]\}; f_{C}(1 - \alpha) \leq f \leq f_{C}(1 + \alpha) \\ 0 & f > f_{C}(1 + \alpha) \end{cases}$$

Donde 1/T es la velocidad de modulación y α es un parámetro conocido como exceso de ancho de banda relativo al de Nyquist (figura 5.7) con:

 $\propto = (f - f_C) / f_C \qquad 0 < \propto \leq 1$

La respuesta en el tiempo es:

$$y(t) = \frac{sen (\pi t/T)}{\pi t/T} \cdot \frac{cos (\alpha \pi t/T)}{1 - (2 \alpha t/T)^2}$$
(5.4)

Si \propto = 0, el espectro definido por la ecuación 5.3, es exactamente igual al mínimo ancho de banda teórico 1/2T para una velocidad de modulación 1/T. A medida que \propto se incrementa de 0 a 1, el espectro se incrementa en un 100%. Espectros'de frecuencia de un canal coseno sobreelevado se muestra en la figura 5.7 para varios valores de \propto .

Excesos de ancho de banda del 30% o más son usualmente utilizados por diversas razones. Primeramente, si $\alpha = 0$, se requiere de filtros ideales irrealizables. Segundo, como se muestra en la figura 5.8, la respuesta en el tiempo para valores pequeños de α , muestra colas considerables. Pequeños errores en los tiempos de muestreo en el receptor, pueden causar degradaciones importantes debido a la interferencia intersímbolos. Tercero, pequeñas variaciones en la precisión de la velocidad de modulación puede causar interferencia intersímbolos.

· 127

FIGURA 5.7

Espectros coseno-sobreelevado.

Debe ser enfatizado que la ecuación 5.3 define el espectro deseado a la salida del canal (la entrada al circuito de decisión). Por consiguiente la respuesta deseada resulta de la combinación del espectro del pulso de entrada y la respuesta del canal. Si x(t) es el pulso de entrada al canal, definido por:

$$x(t) = \begin{vmatrix} 1 & t \in [0,T] \\ 0 & en otro caso \end{vmatrix}$$
(5.5)

La respuesta de frecuencia correspondiente a x(t) es:

$$X(f) = (T) \frac{sen(\pi fT)}{(\pi fT)}$$
 (5.6)

La función de transferencia del canal para producir una salida en coseno sobreelevado está determinado por:

$$H(f) = y(f) / X(f)$$
 (5.7)

La respuesta de frecuencia del canal dado por la ecuación 5.7 se muestra en la figura 5.9 para los mismos valores de \propto .

FIGURA 5.9 Función de transferencia del canal.

La función de filtraje del canal es usualmente repartido entre el transmisor y receptor. Tanto el transmisor como el receptor pueden estar formados por varios filtros, pero algunos de ellos generalmente cumplen su fución específica sin relación a la función de filtraje del canal. Entonces consideramos que la función del filtraje es repartido entre un filtro en el transmisor y un filtro en la recepción.

Luego, y(f) será obtenida:

 $y(f) = HTX(f) \cdot HRX(f) \cdot X(f)$

(5.8)

Donde,

X(f) = espectro de la señal de entrada HTX(f) = respuesta del filtro de transmisión HRX(f) = respuesta del filtro de emisión

Para una repartición óptima del filtraje (ver capítulo 3.2.4) los filtros de transmisión y recepción

deben cumplir.

$$HRX(f) = |y(f)|^{1/2}$$
(5.9)
$$HTX(f) = |y(f)|^{1/2} / X(f)$$

Las funciones de filtraje de los filtros de transmisión y recepción se muestran en la figura 5.10 cuando el sistema es excitado por una señal definido por la ecuación 5.5.

En estas funciones de transferencia, si consideramos que el filtro de transmisión HTX, no considera las características de la línea de transmisión, entonces obtendremos el sistema de referencia.

5.4

ECUALIZADORES ADAPTIVOS

A la salida del filtro de recepción, la señal es muestreada a los instantes KT, muestras que ingresan al ecualizador adaptivo. En la figura 5.11 se muestra el ecualizador adaptivo lineal, para el caso de tres coeficientes.

$$U_{K} = \sum_{i=-1}^{I} h_{i}^{K} x_{K-i}$$

Donde h_i y x_{K - i} son complejos. Los coeficientes del filtro se ajustan de acuerdo a la ecuación 4.3.16-4.3.16-4.3.16

$$\overrightarrow{H}_{K+1} = \overrightarrow{H}_{K} - \cancel{M} \overrightarrow{X}_{K} (U_{K} - d_{K})$$

La tasa de errores se calculan separadamente para

cada uno de los trenes { a_K } y { b_K }.

Para el caso del ecualizador adaptivo no lineal, el esquema se muestra en la figura 5.12.

FIGURA 5.11 Esquema del ecualizador adaptivo lineal.

FIGURA 5.12 Esquema del ecualizador adaptivo no lineal.

131

Las respuestas de los filtros U_K y y_K están dados

$$U_{K} = \sum_{i=-1}^{I} h_{i}^{K} x_{K-i}$$
$$y_{K} = \sum_{i=-1}^{I} a_{i}^{K} \hat{a}_{K-i}$$

por:

Los coeficientes $\{h_i\}$ y $\{a_i\}$ se ajustan de acuerdo a las ecuaciones 4.4.14

$$\vec{H}_{K+1} = \vec{H}_{K} - \mu \vec{X}_{K} (e_{K} - \hat{d}_{K})$$
$$\vec{A}_{K+1} = \vec{A}_{K} + \lambda \vec{D}_{K} (e_{K} - \hat{d}_{K})$$

De igual manera que para el caso de la ecualización lineal, la tasa de errores se calculan separadamente para los dos trenes $\{a_K\} y \{b_K\}$.

5.5 POTENCIA DEL EN FUNCION DE LA RELACION SEÑAL RUIDO

Una expresión que relaciona la potencia del ruido Gaussiano, de densidad espectral $N_{\rm O}/2$, es encontrado en función de la relación energía por bitio transmitido a la potencia de ruido $(E_{\rm b}/N_{\rm O})$.

Si,

 E_{b} = energía por elemento binario transmitido $N_0/2$ = densidad especial del ruido

P = potencia de la señal (normalizada a 2 en el caso de la simulación) que lleva dos elementos binarios, a_K + j^{bK}.

Entonces:

, 132

$$\int_{ruido}^{2} = (N_{o}/2) f_{m} = (N_{o}/2) \cdot (8/T) = 4N_{o}/T$$

$$N_{o} = E_{b} / (E_{b} / N_{o}) = (PT/2) / (E_{b} / N_{o})$$

ъ

Luego, para una relación señal al ruido E/N_{O} , dado, se puede inyectar una potencia de ruido.

$$\int_{\text{ruido}}^{2} = (4/\text{T}) \cdot (\text{PT}/2) / x = 4/x$$

Donde,

 $x = E_b / N_o$

5.6 DIAGRAMAS DE FLUJO

Para efectos de una mejor ilustración y comprensión, dos diagramas de flujos generales son presentados: un diagrama de flujo donde se considera la cadena de transmisión sin ecualización y un diagrama de flujo donde se considera el algoritmo de ecualización.

Puesto que tanto en el programa como en el manual de uso del programa se detallan las características de los mismos, a continuación se dan las características generales.

La fuente de información es generada mediante una subrutina de biblioteca que genera datos aleatorios con distribución uniforme con valores entre cero y uno (subrutina Randu) y las secuencias de l's y - 1's son generados con decisión sobre el punto central de la distribución. Dos secuencias independientes de 256 elementos binarios representados cada uno por 2.048 muestras (8 muestras por pulso) son caracterizados por un vector complejo representativo de los dos trenes $\{a_n\}$ y $\{b_n\}$ en cuadradura.

La transformada de Fourier utilizada, es la

transformada rápida de Fourier (FFT) con su correspondiente transformada inversa, para 2.048 puntos, cuya transformada de Fourier devuelve en el mismo vector de entrada cuya transformada se desea obtener. En el Anexo A.5 se indica gráficamente la transformada de Fourier para un tren NRZ, y que se ilustra en la figura 5.13.

FIGURA 5.13 Transformada de Fourier de un tren NRZ, de acuerdo a la transformada rápida de Fourier FFT.

Las funciones del filtraje y canal de transmisión se los asocia punto a punto al espectro de la señal, de acuerdo a la figura 5.13, donde el paso unitario es igual a D/256, donde D es la velocidad de modulación.

Ruido Gaussiano, es generado mediante una subrutina de biblioteca (Subrutina Gauss) dados la media y la desviación standar.

Para el sistema de transmisión sin ecualización, en el receptor las señales se muestrean a los instantes (t_o + KT), donde t_o es elegido de acuerdo a los diagramas del ojo, en los instantes donde la abertura del ojo es máxima, y se realiza una decisión sobre el bitio transmitido. Para el caso de la ecualización, los valores de las muestras ingresan directamente al ecualizador.

'134

En el caso de la ecualización lineal, puesto que su respuesta $U_{\rm K}$ se calcula de acuerdo.

$$U_{K}^{1} = \sum_{i=-N}^{N} h_{K-i}^{1} x_{K+i}^{1} - \sum_{i=-N}^{N} h_{K-i}^{2} x_{K+i}^{2} \qquad (i \in D^{c})^{1}$$
$$U_{K}^{2} = \sum_{i=-N}^{N} h_{K-i}^{1} = x_{K+i}^{2} + \sum_{i=-N}^{N} h_{K-i}^{2} x_{K+i}^{1}$$

Entonces la incialización de los vectores $H^1_K\ y$ $H^2_\kappa,$ para el caso de tres coeficientes.

$$\vec{H}_{K}^{1} = [0 \ 1 \ 0]$$

 $\vec{H}_{K}^{2} = [0 \ 0 \ 0]$

Con lo cual en la primera iteración, no existe ecualización.

Para el caso de la ecualización no lineal, tanto los datos presentes en el ecualizador en la bucle, como sus coeficientes, se inicializan a cero, con lo cual se considera que en la primera iteración, tampoco existe ecualización.

En el diagrama de flujo No. 2, las líneas punteadas indican que en el caso de la ecualización lineal, este es el proceso a seguir, implementado mediante opciones en el programa. oragi o ma 11-1

Sistemo de transmisión sin ecualización

. 137

REFERENCIAS

- [1] Roger L. Freeman, "Telecomunication Transmission Handbook", pp. 370 - 382.
- [2] John Bellamy, "Digital Telephony", pp. 304 307, pp. 480 - 485.

<u>CAPITULO.VI</u>

RESULTADOS DE LA SIMULACION

 \langle

6.1 Presentación y análisis de resultados

6.2 Conclusiones y comentarios

CAPITULO VI

RESULTADOS DE LA SIMULACION

6.1 PRESENTACION Y ANALISIS DE RESULTADOS

Resultados de la simulación del sistema cuyas características se detallan en el capítulo V se reportan en el presente capítulo. Aunque la probabilidad de error se destaca como la figura de mérito entre el sistema sin ecualización y con ecualización adaptiva, resultados compelementarios se presentan con el objetivo, tanto para una visualización del problema que se enfrenta, como para un mejor entendimiento del problema de la ecualización adaptiva.

Las diferentes técnicas de ecualización adaptiva estudiadas en el presente trabajo, han sido consideradas a efectos de mejorar los resultados obtenidos del sistema sin ecualización, así como a destacar las características propias de cada una de ellas.

6.1.1 SISTEMA SIN ECUALIZACION

Sistemas prácticos de transmisión de datos por la real telefónica conmutada utilizan modulación de fase Q-PSK⁰⁷ritmos de transmisión de 2.400 bits/s y 8-PSK para 4.800 bits/s, con velocidades de modulación de 1.200 y 1.600 baudios respectivamente. Ritmos de transmisión de 9.600 bits/s con una velocidad de modulación de 2400 baudios con modulación combinada de amplitud y fase son alcanzados, aunque en este último caso, la transmisión se realiza en líneas arrendadas con acondicionamiento de la línea y con técnicas de ecualización adaptiva. Con la explicación previa, a efectos de la simulación, modulación de fase Q-PSK se considera para velocidades de modulación de 1.200 a 2.400 baudios a fin de visualizar el comportamiento de estas técnicas de ecualización; bajo condiciones de mayor distorsión.

El ancho de banda del canal telefónico (300 -3.400 Hz) generalmente no est disponible en su totalidad debido a las características de distorsión. El CCITT recomienda utilizar un ancho de banda tal que la distorsión de propagación sea menor a la duración del símbolo. De acuerdo a esto, para una velocidad de modulación de 1.200 baudios, los filtros de transmisión y recepción pueden ser diseñados con un exceso de ancho de banda \propto , menores o iguales a 0.66, para un ancho de banda de la señal entre 800 y 2.800 Hz con una frecuencia portadora de 1.800 Hz. En la tabla No. 1, se dan las características de ancho de banda; exceso de ancho de banda, para cada una de las distintas velocidades de modulación consideradas, cuya elección se basa en el criterio de introducir un cierto grado de distorsión para bajas velocidades de modulación y a la vez mantener el espectro de la señal dentro del ancho de banda del canal telefónico.

•	TABLA No. 1	
<u>j</u>	,	
Velocidad de modulación	Exceso de ancho	Ancho de banda
[Baudios]	de banda 🛛 🗠	[Hz]
1.200	0.8	720 - 2.880
1.400	0.6	680 - 2.920
1.600	0.4	680 - 2.920
1.800	0.25	675 - 2.925
2.000	0.2	600 - 3.000
2.200	0.15	535 - 3.065
2.400	0.125	435 - 2.965

Con las condiciones iniciales de la tabla No.1, se procede a encontrar la probabilidad de error en fun-

143

ción de la relación (E_b / N_o) para 1.200 baudios, para cuyo efecto se realiza el tratamiento de 2.400 bitios y cuyos resultados se ilustran en le figura 6.1.

El ruido blanco o de fondo, no representa un parámetro crítico en sistemas telefónicos. Por tal razón para efectos de llevar a cabo la ecualización, de la figura 6.1 se toma una relación $(E_b / N_o) = 12$ dB, cuyo valor representa un umbral donde, si bien existe una influencia del ruido, la probabilidad de error es preponderantemente una función de las características del canal.

Con las características anteriormente anotadas, se procede a la presentación de los resultados correspondientes.

En la figura 6.2.b se presenta el diagrama del ojo de la respuesta de un canal coseno sobreelevado con un exceso de ancho de banda \propto = 0.8, sin las características del canal telefónico, para cada uno de los canales en cuadratura, cuando la excitación es una señal NRZ, cuyo diagrama del ojo se presenta en la figura 6.2.a. Estos diagramas del ojo son superposiciones de secuencias de 3 símbolos consecutivos y en la cual se han realizado 80 superposiciones. Obsérvese que bajo condiciones de un enlace físico ideal, es decir, si todos los componentes de la señal se atenuaron uniformemente y se propagarían con la misma velocidad, una réplica de este diagrama afectada por una constante de atenuación y atrasadas en un tiempo to, que sería el tiempo que toma a la señal en atravezar el canal de transmisión, se obtendría después del receptor.

Cuando se introducen las características del canal telefónico, los diagramas del ojo para velocidades de modulación de 1.200 a 1.800 baudios se presentan en las figuras 6.3 a 6.6. Obsérvese en las figuras 6.3.b a 6.6.b, como la apertura del ojo se cierra cada vez que aumenta la velocidad de modulación, lo que se refleja en un aumento de la probabilidad de error. Una vez que el "ojo" se cierra, decisiones con una probabilidad de error igual a 1/2 se llevan a efecto. Estos diagramas tienen la importancia de mostrarnos el problema que estamos en frentando, además de cumplir con el verdadero propósito de los diagramas del ojo, el cual es mostrarnos los instantes dentro del período de la señal en que se debe realizar la decisión sobre el bitio transmitido. Estos diagramas representan 80 superposiciones de secuencias de 3 símbolos consecutivos para uno de los canales en cuadratura.

6.1.2 ECUALIZACION ADAPTIVA LINEAL

Ecualización adaptiva lineal con frecuencia de muestreo 1/T en el receptor se lleva a efecto inicialmente.

El proceso de ecualización se lleva a efecto con la búsqueda del parámetro μ , que controla la convergencia del vector de coeficientes H y que hace que el mismo converja hacia un mínimo del error-cuadrático-medio.

En las figuras 6.7 y 6.8 se ilustra este proceso, donde se destacan las características de convergencia de la parte real e imaginaria del coeficiente central de un filtro con 7 coeficientes para distintos valores de μ , y su evolución para 2000iteraciones con una velocidad de modulación de 1.800 baudios (cada iteración se lleva a efecto por cada muestra de la señal que ingresa al ecualizador).

Como podemos apreciar en estas figuras, un número pequeño de iteraciones es requerido para que los coeficientes alcancen un estado permanente en su evolución. Efectivamente, aproximadamente 150 iteraciones se requieren para un valor de $\mu = 0.01$ y 100 iteraciones para $\mu = 0.03$. Podemos observar qsue un pequeño peso μ , conduce a una mayor aproximación a los valores óptimos de los coeficientes, a costa de disminuir la velocidad de convergencia, lo cual también podemos apreciarlo en la figura 6.11, donde se ilustra la probabilidad de error

145

en función del número de bitios tratados para estos dos valores de μ . Los picos de la figura 6.8 son debido a que las pequeñas variaciones necesarias para compensar la influencia del ruido son excesivamente amplificadas por el peso utilizado. En la práctica el valor de μ es seleccionado para rápida convergencia en el período de adaptamiento y luego reducido para el estado permanente de transmisión de datos.

Cabe destacarse que la duración de aprendizaje (número de iteraciones requerido para que los coeficientes alcancen su estado permanente de evolución) es considerablemente pequeño, debido a las características fijas del canal de transmisión. Para canales cuyas características varían con el tiempo, como sucede en transmisión sobre canales de radio frecuencia, la duración de aprendizaje es mayor, constituyéndose en un parámetro muy importante a considerar.

Descrito el proceso de selección del parámetro de convergencia y tomando como punto de partida una velocidad de modulación de 1.800 baudios, el número de coeficientes que nos conduzca a la mínima probabilidad de error es buscado, mediante el tratamiento de un número suficiente de bitios, sobre el cual la probabilidad de error permanece aproximadamente constante como se ilustra en la figura 6.12. En la figura 6.13 podemos apreciar que un número mayor a 7 coeficientes no aporta mejores resultados a la probabilidad de error, con lo cual se toma este valor como límite para posteriores resultados.

Finalmente, tomando la primera secuencia de 256 bitios como período de adaptamiento, la probabilidad de error en función de la velocidad de modulación, para 7 coeficientes y 5.888 bitios tratados, se ilustra en la figura 6.14, donde:

Probabilidad de error = a/b

Υ,

a: número de bitios erróneos después del proceso de adaptación. Las siguientes características podemos destacar a la luz de estos resultados:

- Si bien para una velocidad de modulación de 1.200 baudios, una probabilidad de error igual a cero se tiene para el número de bitios tratados este no representa un valor absoluto. El verdadero significado es que podemos esperar una probabilidad de error en el orden de 10⁻⁵ ó menor.
- Una buena performance de esta técnica de ecualización para canales con un alto grado de disto<u>r</u> sión.
- Sensibilidad a los instantes de muestreo como puede apreciarse en la figura 6.17.
- Para 1.200 baudios, con 3 coeficientes se llega a los mismos resultados, pero con la característica que una duración de aprendizaje mucho menor es requerida como se ilustra en la figura 6.9 y 6.10.
- Para 1.400 y 1.600 baudiós, un filtro con 5 coecientes conduce a los mismos resultados. Para una velocidad de modulación mayor a 1.800 baudios, al aumentar el número de coeficientes no existe una disminución de la probabilidad de error.
- En las figuras 6.2.c a 6.6.c, se puede observar que la aumentar la velocidad de modulación existe una mayor variación en la respuesta del ecualizador. Una cierta analogía podemos observar con los diagramas del ojo sin ecualización, donde la apertura del diagrama del ojo es menor frente a grado mayor de distorsión. La apertura del "ojo" del diagrama para el caso de 1.800 baudios, figura 6.6.c, es un indicativo que aún es posible la ecualización con un mayor grado de distorsión, como efectivamente lo indican las curvas de

*~

probabilidad de error en la figura 6.14.

Una relación que resulta una guía práctica para la selección del parámetro de convergencia es:

$$\mu = 0.2 / M. \sigma_x^2$$

donde:

M : número de coeficientes del filtro.

$$\int_{x}^{2} = E \{ x_{K}^{2} \}$$

Una fina variación bajo este punto, se puede realizar para encontrar el valor de μ , que conduzca a una rápida convergencia.

6.1.3 ECUALIZACION ADAPTIVA NO LINEAL

Resultados sobre la aplicación de ecualización adaptiva no lineal se ilustran en la figura 6.15. Las características principales a destacarse, resultado de la simulación son los siguientes:

- Tomando como base 7 coeficientes para el filtro de entrada, un número mayor a 3 coeficientes en el filtro en la bucle conduce a los mismos resultados.
- La elección de los parámetros para el filtro de entrada sigue el mismo criterio que para el caso de la ecualización lineal.
- La mínima probabilidad de error es alcanzada para un valor del parámetro de convergencia del vector de coeficientes A_K , λ , aproximadamente igual a μ / 10, relación que resulta una guía práctica para la elección de este parámetro. En efecto, un valor de λ en el rango de 0.003 -0.001 conduce a los mismos resultados, mientras que un valor de λ en el orden de μ , lleva a una probabilidad de error de 1/2.

Las características de convergencia del vector de coeficientes del filtro en la bucle, sigue las mismas características que el vector de coeficientes de entrada. Es decir, un mayor peso

 λ (menor que μ) produce una rápida convergencia del vector de coeficientes $A_{\rm K}$, mientras que un menor peso λ hace que los coeficientes se aproximen a los valores óptimos a costa de una mayor duración de aprendizaje, la misma que de manera general es mayor que para el filtro de entrada. Específicamente, para λ = 0.0025, aproximadamente 400 iteraciones se requieren para alcanzar su estado permanente de evolución. El rango de valores que toman los coeficientes a i está comprendido entre -0.1 y 0.1.

Si bien podemos apreciar, no existe una mejora significativa en la probabilidad de error respecto de la ecualización lineal, debemos enfatizar que su performance es aproximadamente igual al de la ecualización lineal para esta aplicación en particular, lo cual no nos permite generalizar sobre el desempeño de las dos técnicas de ecualización.

6.1.4 ECUALIZACION LINEAL FRACCIONAL

Ecualización adaptiva fraccional para dos frecuencias de muestreo; 2/T y 8/T, se llevó a efecto.

Para el caso en que la señal a la entrada del ecualizador se muestrea a la frecuencia 2/T, una salida es generada cada dos muestras que ingresan al mismo, y los coeficientes son actualizados una vez por período T, basado en el error computado para ese símbolo.

En la figura 6.16 se ilustran los resultados computados para esta técnica de ecualización. Aunque pruebas para 6, 10 y 14 coeficientes se llevaron a cabo, los resultados más significativos fueron encontrados para 14 coeficientes. Estos resultados fueron computados para

un valor de μ = 0.02 para velocidades de modulación de 1.200 a 1.800 baudios y μ = 0.01 sobre los 1.800 baudios.

Una característica importante de esta técnica de ecualización que podemos destacar; es una menor sensibilidad a los instantes de muestreo, frente a la técnica de ecualización con frecuencia de muestreo 1/T. Esto podemos apreciarlo en las figuras 6.17 y 6.18, donde se ilustra la probabilidad de error para dos instantes de decisión para estas dos técnicas de ecualización. Pero esta característica se mantiene para velocidades de modulación menores o iguales a 1.800 baudios. Para velocidades de modulación mayores donde existe un alto grado de interferencia intersímbolos, la probabilidad de error es función de los instantes de muestreo.

Para el siguiente caso, en el cual la señal es muestreada con una frecuencia 8/T, una salida es generada cada 8 muestras de la señal de período T, que ingresan al ecualizador, y los coeficientes son actualizados una vez por período T, basado en el error computado para ese símbolo. Esta técnica de ecualización puede verse desde el punto de vista de reconstitución del pulso a partir . de sus muestras, mediante el mismo criterio de ecualización de minimización del error-cuadrático-medio.

Los resultados computados para 8 coeficientes con un valor de μ = 0.02 para velocidades de modulación igual o menores a 2.000 baudios y un valor de μ = 0.01 para 2.200 baudios, se ilustran en la figura 6.19.

Una característica importante podemos apreciar de las técnicas de ecualización lineal, en base a las curvas de probabilidad de error en función de la velocidad de modulación (figuras 6.14, 6.16 y 6.19). Una mejora en la performance de ecualización se consigue con ecualización lineal fraccional, respecto de la técnica con frecuencia de muestreo 1/T, para velocidades de modulación menores a 1.800 baudios, mientras que un deterioro se observa sobre esta velocidad de modulación. Esto puede explicarse con referencia a los diagramas del ojo. Obsérvese el diagrama del ojo para el caso de una velocidad de modulación de 1.200 baudios, figura 6.3. Si tomamos un número mayor de muestras tal que las muestras que se encuentran dentro de la apertura del ojo son preponderantes sobre las muestras que se encuentran fuera de ella, nos conduce a una mayor probabilidad de decisiones correctas. Pero para el caso en que las muestras fuera de la apertura del diagrama del ojo son preponderantes que las muestras dentro de ella, aumenta la incertidumbre sobre decisiones correctas. Esta es la razón que muestreo con una frecuencia 1/T, donde la apertura del ojo es máxima, conduce a una menor probabilidad de error, para velocidades mayores a 1.800 baudios.

En cuanto a las propiedades de convergencia, existen características similares a la técnica de ecualización con frecuencia de muestreo 1/T, pues para el caso de muestreo con frecuencia 2/T y 14 coeficientes en el filtro, la duración de aprendizaje es de aproximadamente 150 iteraciones. Para el filtro con 8 coeficientes y una frecuencia de muestreo 8/T, 100 iteraciones aproximadamente requeridas para que los coeficientes alcancen su estado permanente en su evolución.

6.1.5 ECUALIZACION FRACCIONAL NO LINEAL

Resultados de ecualización fraccional no lineal con una frecuencia de muestreo 8/T, 8 coeficientes en el filtro de entrada y 3 coeficientes en el filtro en la bucle se ilustran en la figura 6.20, los cuales fueron computados con los siguientes parámetros: para velocidades de modulación de 1.200 a 2.000 baudios, un valor de μ = 0.02 y para 2.200 baudios, μ = 0.01. Para todos los casos, un valor del parámetro λ = 0.0025.

Ecualización fraccional no lineal aparece como una técnica interesante de ecualización como nos muestran los resultados. Aunque una mejor performance en la ecualización podemos observar respecto de las técnicas anteriores, el tiempo de procesamiento en el ecualizador, particularmente para velocidades de transmisión elevadas, puede surgir como un factor limitante en su utilización, pues el proceso de ecualización debe realizarse en un tiempo menor a T/8, antes que las nuevas muestras ingresen al ecualizador.

En la práctica, ecualización fraccional con frecuencia de muestreo igual a 2/T se lleva a efecto, con lo cual, a pesar de los resultados, ecualización con frecuencia de muestreo mayores a 2/T, puede resultar solo de interés teórico.

							-2						-2-				L.J.,-	<u> - ご</u> -				`	₹			12		
		\sim	N.N.	ν.	Λ.,	Δ.	1.			١.١		١.,	١.		1.1.		!	11.1.		1 :	: 1	1.1	1., 1	11.		1	1.1.	
	27177			المنعد	x.			1.26						د اد. ا		4.4.4	<u>, , , , , , , , , , , , , , , , , , , </u>	1		77	1	i mht	الديب		4.1.1	Y	11	LL
								1	1				.		·					111	1.						1	
									1.11																			. 18 1
																							i:					
		: [•			:.::	• • •			i• . : .			::::	1° -				::::		•		·			· :[.:		ſ	1	
		:	••••••	::	···· !		:		:-:					1 11							1						<u>n</u> .	····· ··· ·
	: ·	i				· · · · ·			j.* :		·			1.1	•		.:.			: 1	1			1	1.1		<u>.</u>	
			-1								-: [·					+ 2		• ••••• •••••
	• • •	•] .•	·											1 1	. i . i .					1			••• ••				à. :	c .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. I. '																			1			- 11	: "		z :	1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		:						1									<u>.</u>				1	<u> </u>	:::		i		· · · · · ·	··· · · · · · · · · · · · · · · · · ·
		1.		l: :	11:1	· ·		1 - 11	!::.	:			: :::								1. 1	1	: . :	: :/		1 1	α.	•
		••••••••		l	÷	·				• : : : :	-::-	••••														:	u.:	o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•] ::				1	3.1	i	:::						1.1										1.11.1		· / ·	
									· · · ·															•• 1:		+-%	· · · · ·	E
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																		1 .			11.1			:] .		1.1.1	; ;	e : !
0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00															. 1									-		1	1	-
	<u></u>	_		<u></u>	<u> </u>											<u> </u>			1					·			1	·····
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				****		••••						••••								:{:			: : : : .	: ·			1 .	S
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-1			· · · ·	****									• • • • •							• • • • •		- 1. •			· ; · · · · · · · · ·	
							•														1		::::	. (F		α.	1. I	
0.18 0.13 0.13 0.13 0.03 0.03 0.03 0.03 0.03																			. 1			1		-1-:		† <u> </u>		
0.18 0.19 0.12 0.13 0.13 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15		.: :::		:::::	::::		:		!l	:::::	:l	::::			:!				1.1		1.11.	11.1					1.1. <u>.</u>	
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1					11.1	::I		1	1			·. · .	1					1. 1.	1		1			• [1	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								<u></u>							·						1			: [] .			·····	
0.00 0.10 0.12						·	: : :				.:::					•••••					1: .		· · · ·	1:			1	
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1					-::										:::*1					:::::	1-1-1			1::	·• ··	· :-::		i
0.018 0.016 0.016 0.008 0.016 0.016 0.009 0.006 0.016 0.009 0.006 0.016 0.009 0.006 0.016 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.009 0.006 0.006 0.000 0.006 0.006 0.000 0.006 0.006 0.000 0.006 0.006 0.000 0.006 0.006 0.000 0.006 0.006	·	::l: :	· · ·			11		1		·				: :· !	i	:		·		1.1.1	· · · · · · · · · · · · · · · · · · ·	· · · ·	: ::::	11		9	1:	Q
0 0										· ;				:					1.		1			1 .		T T	1	1.1.1.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					11	1.11	••••				!								·		1. 1			1 1				
Probabilidad de orror Probabilidad de orror						1	: :.]						1.11				1.11		1.	· · · ·	·: :	· . !		1 .			·	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-++					·			÷	•					:	÷				<u></u>			-			· · · · ·	Z
0.18 0.18 0.09 0.00	:.:!.::	::t			:I	i. 1	. : : 1	1.11			:	:	1				• • •	• • • • •	. .		1 : 1		1.1				1	
0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0											••••		··		••••								•••••		··. ·	1:	1	0
0.00 0.00		1:		:1												••••	÷.,		1							4		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											. 1											1	1	1		Т — Г		
0.18 0.18 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00	_ I	.						<u>.</u>		::::	!			1						: . :	ł:	. !	·:	.'	÷		1. i	
0.18 0.18 0.18 0.12 0.12 0.12 0.12 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.12 0.00	.: 1: 1		. .			••••	:	1	· :		·	:					::	11		.i. :	· . · `		1	:	:	1 1 1		
0 lB 0 lB											÷;			r							·		·	• • • • •	• • • • • • •		;;-; ·-··	C
0.18 0.18 0.12 0.12 0.12 0.03		: I 😳	1				:::·			· •	: •••							· · · · · · · · · ·	1.	::-::	1	. 1		11		· ·	. : :	•
0.18 0.18 0.18 0.12 0.00		1			- <u></u> i	11						• • • • •	• • • •						. <u>;</u>		† · · · •	· · · ·	: 1			· ·	•••••••	-
0.18 0.18 0.12 0.12 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0		1						Est.	<u></u> !		انت.	_:			: 1				1.		1		·			L N	·	
0.18 0.18 0.18 0.12 0.00		1.1				• :		1.11								•		1 1 1 1 1	1	:! :.	1	• • • •				-		
0.00 0.15 0.15 0.15 0.15 0.00		1		:		•••		r			···.]	• • • • •			· · · ·]					- <u>-</u>			1		·· . ·	· ····	· · · ·	φ
0.18 0.18 0.12 0.15 0.12 0.15 0.12 0.00 0.12 0.00 0.12 0.00		· • • • •		•			. 1		: . I		·: . I										1.1	• . •		. :	÷ .	. ·	, ·	► ¹¹ .
0.18 0.18 0.18 0.18 0.18 0.12 0.00 0.12 0.00 0.00 0.12 0.12 0.00 0.12 0.00 0.12 0.12 0.00 0.12 0.00 0.12 0.00					·									r							17.1		-1-					
0.08 0.18 0.018 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05	: <u>.</u>				: 1						!										1		. [.:			1 ···	֥	0
0.018 0.					: T						. :1			1							1		11	-			• • • •	- 1
0.00 0.18 0.016 0.00 0.18 0.000 0.00				<u>.</u>					:i					·					-				1		· · · ·	+	.	
0.18 0.18 0.09 0.09 0.09 0.09 0.00 0.09 0.00						. : · I	: : 1	-			:: I					. '			·:•••				1 :			1 -		e .
0.15 0.15 0.15 0.15 0.00 0.00 0.00 0.00				••••	•••••	•••••					:						•••					: 1	· .•	·· i	:		· · · ·	· - 0
0.16 0.16 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.05		:1:			·	. :					•				<u> </u>				1		1	/	:	- 1			<u>.</u>	·
0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.											. 1										1.	· /:				1		
0.00 0.12 0.00				: .:		• • • •	- 1				;								1.		1. :	1.	• • •	;				9 6
0.0 0.18 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.12 0.05 0.04 0.12 0.12 0.05 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.12 0.03 0.12 0.12 0.03 0.12 0.03 0.03 0.12 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.2 0.00 0.2 0.00 0.2 0.2				:		· · ;				:.	. 1	. ''				• • :			1.			1:	•	1				0 -
0.18 0.18 0.12 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03		-1-:-										-:-		••••							**** ;	/:	•••• <u>·</u>	; -		+ ∞	· •	<u>د</u> م
0.18 0.12 0.12 0.03			·		1	. :														:	: /.		:				÷.	
0.18 0.12 0.12 0.12 0.12 0.03 0.04 0.04 0.04 0.05		1				:		1 1				· · •				1.					1/	•	•••••	. :	• •		· ·	+- 1
0.03 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.12 0.05 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.05 0.12 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.12 0.05 0.05 0.12 0.05		_1			!								·								:/	!	:			· ·	·	
0.18 0.12 0.15 0.12 0.12 0.09 0.09 0.09 0.09 0.09 0.00 0.09 0.00		1	11		· • •	•	.	÷ •	· .	• •			:		1	:		1 · ·	. ·	· · · /	/ :				·			5 10
0.18 0.18 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	••••			÷!		· ' :	•• .• 1	-: :;			·· •	••••	•. ••		:	••••				1	i · ;		• •	· ·	٠.	· ·	:	0 0
0.18 0.18 0.18 0.18 0.18 0.18 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.04 0.05		.1				. :		1 . 1	: ;.;		: ;		: :	÷ .	· · ·	1			1	/	÷ •	:		:				
0.18 0.18 0.15 0.03 0.03 0.03 0.03 0.03 0.02 4 4 4 6.1 716URA 6.1 716URA 6.1 716URA 6.1 716URA 6.1 716URA 6.1					1		- · · ;	1				1	:. * :::							1:				• • • •		† º	:	· • ;
0.18 0.18 0.05			11. 1.		:I	۰.		ł	::. I			· · :				i :	· ·		:/	; .	÷	:						
0.0 0.12 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					. 1			!			. 1		• • •						/.		. '		-					
0.18 0.18 0.15 0.09 0.12 0.09 0.12 0.09 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.00 0.00 0.15 0.00 0.15 0.00 0.00 0.15 0.00 0.00 0.15 0.000 0.00	••••				··· -	····;	·		· ·				'	· · •	• • *	·		/	••••		,'-	:	• • •					<u>ل</u> م
θ 0.18 0.18 Probabilidad 0.03 Probabilidad 0.03 Probabilidad	· . }	1	•		i	. :	1	:	: 1	:				:		1	••	. /.	1	1	1	:		•				° 0
Probabilidad de etror Probabilidad de etror	•••••••••••••••••••••••••••••••••••••••	1		••••	••••	. :	· · ·	1	: 11		1	•		: · ·		í.	: /	/	1	••	:	ं :		·		· ·		õ.
Probabilidad da orror Probabilidad da orror Probabilidad da orror Probabilidad da Probabilidad da Probabilidad da Probabilidad da Probabilidad da Probabilidad da											:.*					i	<i>.</i>							:		1. 4		~ ~
Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad					•		- 1	: '			:		:						1									· · ·
0.18 0.18 0.18 0.12 0.09 0.12 0.09 0.12 0.00 0.03 0.0 0.0 0.0 0.0 0.0 0				÷	. i						:		:						-	- :	: :	:		:			:	5
Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad		1.				• •							•		. i				i		: '							- :
Probabilidad Probabilidad Probabilidad Probabilida Probabilida Probabilida Probabilida	· · • • •	·· [·		· · · ·	•	•••			•••	· · .		• ••	:·- ·		• • • • •			i	••••••••	•••••	: : :		• • •	•	· · ·	· [·		υ <u></u>
Probabilidad Probabilidad Probabilidad Probabilidad Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida Probabilida		1				. •	•		. 1	:	i			•						.:						· ·		0 0
Probabilita Probabilita Probabilita Probabilita Probabilita Probabilita		1				1	1.1	!	!						. 1				1		: :			:			9	o G
Probabilidad de error Probabilidad de error Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad Probabilidad						i					!		:	1	••••					.:	:					1 01		= <u> </u>
Probablitadada e error Probablitadada Probablitada	:				1				· · .		1			:			:		. i			: ;		•		·	· •	
	+	·			·· · }	••••	• • •	1 .	•••	••••	·i	•	••	1		• • •	•••		• • •	••	ŀ . !	:	:				<u>a</u>	
		1 .			i				·		:							•	1.								5	• ~
		1.						[• • •						•••					9 0
		. :		:	!			;	; · .					· ·		i. ,			• {	Ξ.	I	:		. :			; 0	0 3 .
	••••••				;			1						į				:			:	•		:			-	
	•••••••••••••••••••••••••••••••••••••••	,			+			t						ł		I		t	-+-		+					10	L . (- C)
			: 00		:		2		•	:	2			1	00			• . •	9			М.		·	C	>	· .	· i
	·····			÷.,	• •		•	;		•			:	1					0		•	0					÷ .	•
		1	•		1		0	i			0		.	1.	0			: •	0			0			.: C			
Brobabilidad da orror			. 0						•••					· ·		: '		1		• •								1
			0					ŧ	•	:																		
	······································		0					5 J			: מם		:	י ח ח	ים	11	a n	an	à		•]	;	¦.				
	······································		0	•			<u>،</u> د	۰ ۱			q q			ро	Ρl	11	ς υ	ιop	Ы				:					·
	······································		0	•			<u>،</u>	. r o	סנ :		o p			р р 	Ρl	.11	q υ	ιορ 	d I				! .		•			

:

.154

DIAGRAMA DEL OJO Filt. HTX-Ruido-Filt. HRX

FIGURA 6.2

- a) Diagrama del ojo de una señal NRZ, con niveles de señal $\stackrel{+}{-}$ 1.
- b) Diagrama sobreelevado cuando la exicitación es una señal NRZ.

 a) Diagrama del ojo con las características del canal telefónico.

b) Escala ampliada del diagrama de la figura a.

c) Diagrama del ojo con ecualización lineal.

- a) Diagrama del ojo con las características del canal telefónico
- b) Escala ampliada del diagrama de la figura a.
- c) Diagrama del ojo con ecualización lineal.

- a) Diagrama del ojo con las características del canal telefónico
- b) Escala ampliada del diagrama de la figura a.

c) Diagrama del ojo con ecualización lineal.

- a) Diagrama del ojo con las características del canal telefónico
- b) Escala ampliada del diagrama de la figura a.

c) Diagrama del ojo con ecualización lineal.

· convergencia

Ecualización adaptiva lineal. Convergencia y evolución de la parte real del coeficiente central distintos valores del parámetro de h_o , para

Rango de variación del coeficiente ceneje y: tral h .

eje x:

Número de iteraciones.

159.

11

b)

FIGURA 6.8

ŗ.

Ecualización adaptiva lineal.

- a) Rango de variación y evolución de la parte real del coeficiente central ${\bf h}_{\rm o}$.
- b) Rango de variación y evolución de la parte imaginaria del coeficiente central ${\rm h}_{_{\rm O}}$.

0

-.25

t

FIGURA 6.9 Ecualización adaptiva lineal. Rango de variación y evolución de la parte real del vector de coefi∹ cientes H_K .

Ecualización adaptiva lineal. Rango de variación y evolución de la parte imaginaria del vector de coeficientes ${\rm H}_{\rm K}$.

. . .

6								16	3 '?			5			
ليلينيديل	، د. ډيکن	<i>بدر</i> د. ک	بې د / ډ /. ن	م م ماريخ م	بالنغ فأن	hurst	د بابد	والمراجليم	بالم لد	ني أولانيا.	، با مار با الم	أينبلين	بديليدين		
	-														
													0		L .
													+		
															ť
										T			0		ť
													0.		
		····											E		10 d
				 						ייין איין די רי די			z	147	ים ים. ה - יייי
										1 1.				Ū.	: : : : : : : : : : : : : : : : : : :
												••••		• • •	 д Ор
										· · · · · · ·					Pr 6
	-									:				,	
) <u> </u>				•	·	512(⊢⊐
					•	c c	<u>,</u>	·. · · · · · · · · · · · · · · · · · ·			:	·· :	•		
						1	• • • • •							• •	
						=	<u>`</u>	<u></u>			i				е
					-					: .			: • ·	ß	s s T G
							,			.i. i			· · · ·	409	ם א ה ת
	1					5		-	.		• •	. : .			. o
								<u>,</u>	.						
				<u>.</u>					: [σ.
						с С	, c	» ».	[• : •	: ····	•	:	· ·	72	
				<u> </u>		~	 					· ••	· · · · -	-0 10	e n o
								Ľ	·			••••			
						¦ :	Ľ			.	:				a, re a, m
									$\sum_{i=1}^{n}$	· · · ·	••••••	•		ĺ	о г т г
	•								: \					4 8	с° С
					1		· · · · ·	· /·		•	:	•••	-	507	° –
				: .				·/.·	: /		• • •				0 q e
						1	! .:	/	1		· · ·				i ne
							/	:	. /	.	. :		:		- 0 -
						1			/ .	•				24	= <u>-</u> <u>-</u>
							/ .	- /						0	6. cic
			· • •			/		. / .							0 N N D
						1.		/.				• : •	: .		<u>е :</u>
				· · · · · · · · · · · · · · · · · · ·	1		/					• •••			D D D L
	: 			+	······································	• • •	,.∵• ∔	: 			: · :	· ·		· ;	— о о – ш с
	0			17		· .	2	, ,			; ; ;		4		
		 				···.				·· ·· ~		· · · · ·		· ·	
			ا ا م	0 0	op t	o p i l	I Q D	Prob	:		· · · · · ·			-	
			1	1	•			1		1		•••	1, 1, 1,		

·	<u>}</u>							,				· •·· • • • • • • • • • •						·		-
در. آ	دديد	اروز	يذدرا	77		he ka ha	in loin	بالمعاد في	الدربية ل	بارابان	والمدلجة والمسال	a day	ويلددون	يد. بديار	البابيد المسار	مهد مذ	إحدار أناب		حاود أحلح	
		::[:,																		
		•		Í					· · · · ·											
1	· · · · · ·						· · ·	•••••						1			···· · · ·			15
N	;.:		!	. : . :]	· [. · •		· ·					· · · · · ·		[
								•						ł. :			•			
·····		- T- T-										1				<u>^``</u>	••••			: 71
	••• i:'	· • • • • • •	;	• •	••••	•					1	j· · į ·				<u>-</u>			· • • • •	
											· · · · · · · · · · · · · · · · · · ·	ļ			******					42
	. ig.		Ę.,		ŀ	· · · · · · · · · · · · · · · · · · ·				l		ľ				∍.	-	· · · · · · ·		
	•••••		1			•••••					1::					υ	••••			:1
					• . • •		!									5	···• ; •••	···· <u>‹</u>		
		- -	1	••••			1 . . .				1							1 . u:	• •	
				• • • •							1	1	la Herita					-		
			+						<u> </u>		• [• • • • • • • • • •	† – † – †	.	<u>∔</u> .:		₽ ·. •	• *****	c - z		- 22
																		ミーマ	• • • •	-
		1	i -							: :		· · · ·	· . · · ·		z	2.	4	<u>م ن</u> :		1
					Ī					· · ·									• •	
	•••••			÷		· • • • • •		•••••	м н	\$	••••						<u>.</u>	• • • • · ·	:	٠j
		· [::	<u> </u>						0		<u>.</u> M	: <u>12</u>		4						
						· · · · · · · · · · · · · · · · · · ·				:	! 0.					· · · ·	• •	· · · ·	•	3.4
			.	-					П	• • •	·. 0	. "		1	••••	∷ <u>`</u>	: '	P		
<u> </u>			<u></u>					.	; ⊇	<u>, i - </u>	<u> </u>	; <u></u> ⊐~ .		····	••••••••••••••••••••••••••••••••••••••	.	• • • •	-, ⊃		
				· .		· · · · · · · · · · · · · · · · · · ·				!; ; `	1		· ·	1	· · · · · · · · · · ·	.	· · · · ·			1
1							1			·		-		i			0	•		i
					;;Ì				υ	•••••	; •o ·-	; v, ·	•	···· ····	•••••••	+	.	o		
Y		: 	.		`. ≓İ	.:::					÷.	. 1		:	• •• •• ••		ŝ	. 00 00	:	i
)====	·	.							່ ຍ ເ		. Ф			.	:				•	
				,								· ···					•	:		1.
	•	• • • • • • •	-	•••••		•	in fig			;	. 	. E		· · · · ·		.			••	
				·	<u> </u>						e e	e .		: 	.		• • -	·	•••••	
		·			i. 1						. ŭ	ů Ú			•			_		1
È.		· • • · · ·	1		F .:		1			· •	•			:	••••		0			i
				_ :				- ;	;			····		• • ; •	··· ·· ·· <u>;</u> -	·	0	. 0	•••••	
			:	-	::!} !	• • •					· ()		.				4	L t	-	1
			• • • •			•			! : [•	i i	ミモー						ŝ		
]				::		•_`• _• • _			T	\mathbf{N}^{+}	n de c					•		. o	-	-
				<u> </u>							:: I 🔨		<u>بالد</u>	, · ·	· · ·	· .		÷ Ē		:
					. 1		i (11)	11.		۰ 								: T		
		. 🖅							;		: •					:	•			
		31		1.		•••	i , <u>i</u> , <u>i</u> , <u>i</u>			<u>:</u>	•••••	4	· ·			•	ŝ			
		<u> </u>		<u> </u>					<u>.</u>		· · · · ·		··/ ···	· · · · ·		:	0 ·	• •		•
			<u>.</u>	ŧ		· • •	1		•	:•.	•	1 . 1	1:	•	•	•	й			
		· · · ·				· · · ·		•		: [:		•				D		:
		•••				. : :		То	· . · · · · · · · · · · ·		• • • • • •	:· · [·	1 • • •	• • •		••		··· · 0		
				[- <u>-</u>		:	:	:		: . :				- 9		
					: I	•		0				: []				.]		5		
												11						9 9		· · ·
	•	<u></u>		ļ. :.	• • •	• • • •		· ·	::	:	÷	- 11	••		• • :	·	ω	ل م		
						. .	1			* . .		:			, . <u>.</u> .	· +	40			. ·
		: []	; .	:	. !	•	· ·	e		<u>:</u>	•	. []	: .		•		ы К	-		
		1		1				:		:	.'	· -	•			:		0		
	ļ .		•••••	.		•••••	1	Ľ.	•••••	:	• • •	··//	• • •	: • ••	· · · · ·	·		U U		•
		!	; 	Ì	:	:: ·.		S	į	• L	· .	41		•	. :					
		•		;	: 1		:		:	:								0		
···· · · · · ·	••••	•••• •		i i		·· ··· ·	····	; ₁	;	÷	•	11	•	• •	• • •			9		
• •		1.	· · ·	[.] .	:	• •••		1	1	:	· · /	'/	· .				4	یے 		:
			•	.	!	 .				.	: ./	1.			. :	1	Ň	1 2		
	:			ŀ	:		: 1			· /	· /)	/	• :	ł	. ÷		0			
	• •	.; .		• • · ·		•• •	:			:/	: //			·	• •	·:		o, ה		•
··••			••••		- 1		[.	! • •••		:/	. //	••••••		· · · ·	-					. ,
		į.	•	:	1		! .			1 .	11 .	• • • •				.				
	!	ľ	: .					•	! /	/	1/	• . <i>•</i>	• :	1				ч <u>н</u>		:
	÷ ··· :	··· [••• •	••••	Ì		•••	ir -		11	· · · ·	1 .		: :	·····		·			•	÷
				í .	•			•	į		; ;		<u>.</u>	÷ •	•					-
	•			•			• •	:	1	; 		· · ·	· ·				•	<u>່</u> ແ ພ		.: •
							:		1	· N			с Ч			4			:	4
			÷ ⊂) ·	:	•	·	· .•		:: 'c	;;;;,,` ⊃	ŧ.	. 'r		•	' 0		:		1
.	 1	 . .								÷			· · · ·	<u>.</u>	· · · ·			• • • • •		1.
	į.	İ				•	:	:	: :	•	•	<u>†</u> .	: :		i	: :			••	,
	1	!	:	Ì	ું ગ	011	0 0	PI	ppi	II (P	doho	ł.						· ·		3
· · : ·		·· j · ·		i				· ·	: ·	•	1			• • •		••	. •	:		· • •
		.	:	i		•		•		. :	· • •	11	1 20				•	• • • •		1
										•										

		***					- 2															·				
ī.v.i	111	, 1,		χ_{i}		44	<u>л,</u>			$\lambda :$	Å.		1.1.1	1.	1.1		1.1.1	1.1	i			. 1.1	1. 1.1			
					Ţ		i.	1.			1										- I		:			
			 		1.	1							.: .i	::: : [·	:		····					••••	· · · · ·			
		- 	ļ	ļ:	÷		<u>.</u>				• • • •							 .			÷		ບ			
		· .	1	1 :	1	·:·		1 :	!	·	.	•	1 :			. 1	·		1				5	1		: :
						1 -	;	···						- T					: - :				e.	ŀ		
	•••••						÷				·			[.				ļ					o			
				. :		L.	1. 1		•			i	1	: I.					1	·			<u>.</u>			•
		·		ŀ	1. · · ·	1.:	1							1	. 1:			F	:				õ			v
			-	·	<u></u>		<u>.</u>	1: :		• :								ļ.,			i-		o	• • • • •		· · -
						1	<u>.</u>	i:						1		.]			I.		1		υ			N.
					÷.		::	ł		: ::			. :-		1	:]	÷ ;	· · · ·	· .].	•••	. 1	•.•	Ψ	:	. 0	P
		1			1.		<u> </u>	1		r			1	11					÷-ا	· · · · · ·	·	•		+·= ··		5
				÷.,	.		.	1: .	•	:				1.	: ÷	!			. [.	:			Ч.			Ľ.
				:		1.1.1	1		ı [.]				.	• •		: [· • · ·	· F.		. :		e Ev		. 0	Ь
				: •.		1	••••	1.11	17.1				T			÷.		 .		••••			-		.	Ű
							ļ., .						ļ::			•.•i].				z,		;, >	υ
<u></u>		1					<u> </u>	1				· · · .	1 1	·••	• • •	÷.]	: :	. i	·		• •		4			-0
		1				l				:			1	·i·		7			÷.							
		1:1:1	• •	••••	• • •	·: ·	. · ·			••••	1.		•	· • }-	••••	·		1-1.1		•	•	••:•	••• •		··· c	- P
			<u> </u>				<u> </u>	1					L		<u>.</u>	!									. ⊃	. 0
		:				1	. •	i: .·:					:	:	:				1				•			1
	::::::	1	÷. 1	: -						• • •				·	••••				·		·;		•••		0	e,
		L		·••			·	I	· · ·							-1								- m		đ
	÷	1.1.1		:			••••	1	• • •	• •					:			: :							. a	
				•										· · · ·								1	-		•	u U
		+									•			· - +-		÷		<u>.</u>	· ·	• • • •	• •	·			· • · · • •	
				·_• :		l:		i					:												N I	e e
	··· .	-				1		1						!		!									÷	. 0
T:1				•••			· · · · ·	i		·			. •	•••••						• •			• •		· _	201
			:;	• *	-					•					• •	•		•								5
	·	<u> </u>						I .					: 1			_										. d
								1						-					1 ¹					,	 ()	e U
	••••••		: ::;	-	••••	••••	••		• ••	• • • •		•••••	· ···	•	:	۰:	•								õ	σ
		L										<u>.</u>			i	;				· · .	• ·			- ~ .	. 0	10
: <u>i</u> . ··.	.:			3	: •		:	[···]		1	• •		1	1				:								0
. j	•••	1			•••		••	r					· · ·	1.	• •:	•:	-		1	•					<u>ہ</u>	p
						- · · -		I								!			,	• • •					. 0	÷
	1							i	•			••••••	i!				: •	· ·								D L
												i .'	:	1		•	: . ·	1 : ·:							L	+
			;				:							-	:	••••	• • • • • •		1	• • • •	• •	•			. F	
			:1	:							÷ .				·				1.				\$		-5	0
					•.	•	.'				: .			. 1		- !		:	1				3.		C	:-
				• • • • •	••••			r -	• •	• •			1	· .	••••	••••	· · · · · · ·		1.	• •	:	• ••••	••		-	-: م
÷ 1.		-	••••			•••	•	•			: .:.							•	1 :			• •			с С	
1.:				:				· · ·						. :				. /				•			. 0	88
														:	··	- 1		1	•				-	- 27	_	8
	•••••	:	• • •	••••	•••	٠.	••	• • •	· •				· ·	. :	•:•	.:		: /		•						S
<u> </u>		Į			i			•				.	· 	j.		.		./							0 C	-
	:	. :			· I				· .			· · .		1		:		/							2	ŝ
1			··· [•••			• • • •				• • •			• •	•		. /	,							4	0
			••••	• •		• • •	· · ·	;					· · · ·	· · • · ·	• `	•••	/	·							C	P
·		: :	!					;		•			: :				1.						•		Ð	2
			1				:	•					:		•	· ,	/									0 m
	•••••			·	•••	••••		:			:	• •	• • •		•••	/.		••••		•					L	-
1	:											• ·	: .		/										- L	00
	:		:						i				•	/											L 01	ω
			••••	• •		•		:	• • •	•••			: · ·		•	•	• •						-	- m		-
•••	:	· · · ·	•	· · ·	• • •	·		:			:	•• • •	÷ 1												e	e
					: :							•	i	i.				• • •							v	0
			1					1				:	•	•										ļ		
1.	:		:	- :	••••		• •	•••		•	• · ·		• •••		•	,	•	: ·						•	6 9	C
· · · ·	المعرف	. :	•	••••							• -• •		L .				• • •									.0
		•	;					1				: .	: :		•		•	1	:							U
								1					i .				11	-				•			A D	0
· · · ·			····			••••	• • •	• • • •	·• •	••.		• •• ••		1	;.	••••	•••••	: •	••••	•	••••	· • •				5
		;														:		:	:	:	:					0
, '			1		1			1					: .	:		:					:		•			E
-					1			!				<u> </u>	!			+		ł					.+		<u> </u>	
	1		0						7		:	:	1.		·	:	•.	1	· ·		•		1			,
	: ;							1	0			:	1	0			•	:	0				0		:	
	; !							;						. :				1	1	;	:					
	: 1		1			0.	i li e	Ð	9	р.	. 1	, p p p i	110	рa	0.	הנ		÷ .	::		• :					:
	:			:				• •		·					• • • •	Ξ,	••••	1	. :	• •	.:					. :
			-										í. '	:		:		1 . *	•				•			

		е, -						8	; ·					·								- :			- 61			
بديا	44	4	Υ.	11	4.1	41.	1.1				لددلم	1.	بابار ا	إرار	بدار	<u>نار</u>		<u> دايد ا</u>	ياريا. المار		<u>h</u>	L.	سبابلنا	الغدادة	lii i	L		
			::																									
	1	• •	- :												، :										1.			• •
			•				1	ľ							.									los		••••	:. 0	•
																			1			••••		pno		!	11.	. ,
				.:			1			:															0	 	d . D	
							i :				<u> </u>				I									0	2	:	, o	
						÷								<u> </u>	<u> </u>		<u>.</u>											
											2					•:-	·.··										L O D	
												+-							-							1. 1	0	`
		-					[-].										· · ·								Q	1	112	
							τŀ								 		\								22		۰'n.	•
								-						ļ			-	\backslash			<u> </u>						ы. Ш	
1								17				-	1	-			 .	. \ .										
																		\			[]]			-0	•
																											0	
				<u>.</u>			: -		:	: · · .		1:	<u> </u>	l: 			: :	:\	:						000	 	μ	
										_ _					:				:	•					. 50		100	•
						<u></u>	; ;			-0-	· • ÷ · • ÷ · • •	<u> </u>		ļ.,								••••			• • • •	• • • •		
		:	_	-	-		<u> </u>	.	<u>.</u>	20	· :		· · ·		:		• :•	•				:	•••••			:	de	-
			-		-		ļ	-			• • • • •			T.					• •••			: .:			• • • • • •	•	•	-
					-	-	ļ	1.			• ••			.		• •	i	• • • •				•••			0.		0	
						<u></u>						· • • • •					• •		 -		• · •••··- •	•••			8	:	p [0	
										ີ - ເມ	· · : ·		:						$\left \cdot \right $			• • •	•			; .	0	
			_			-	 	÷						1					÷ \	· · · -							с С	•
								1	·	i							•			/			:			: ·	-	•;
																				: \	\ \					• •	_	
								<u>:</u> (:\ `				00		e	
							:		$\left\langle \cdot \right\rangle$			•							1.		: \	:		;	- 9		0	ĺ
-								<u>.</u>	$\left \cdot \right $				_	ļ			_		<u>.</u>	· .`	\	\-:			.	, .	ч о	•
		•	• :			·		į. :		\ [:] /			•	••				:				/.	•	:			i c	•
						÷				. \.										••••		•••	\ ·.		l		f u i	
	:			•		····			1	- \	 		·:	÷	.	•	·	•	• •	: .	-	· ·	\backslash	•	0		c	
- -				• • •							\	•						••••		: :		:	\	• •	40		¢	
			:			!	i:	••••	[··· ·		\.	:	••••					. :	: 1	• .•		:					0 Г	
			•••	• ••		1 - 1-	; ;			···· •				:	• •••	· - ·				:		•••	• •	\backslash			1	
			•••				1	: '	1			/	·	: ···	• ••				:	•••	:	-		\backslash			e	
		-	:					•				:/	• •						:								e D	
						•				•		\	١						:	•		-		• \	00	**	-	
														:		:			:.						12	21.0	o D	
		. ·	• • • •		;		ļ							.	<u>.</u>				·	• •	: 	:	•			θ	ъ	
		: 		•···			- :		• .		• •		•						;	•		-	:			A S	н. Г. с	
•							ļ						••• •		·· ··	• • •	•••		· · ·				• •		÷ .	5	b o	•
•••	•			: .	l	• ••				; .		1	· .		· ·	, .			i	:						5	01	
-					ļ		<u> </u>		··		 		~··	<u> </u>								-+		ł	1	., 11	٩	
	. !	0			•	:	:	. 'c	2			•		2				Ľ,	2		:	:	`o	0.0		:		
				:	·			;	1	•••		:	.: -	;			•		• • • •		• ••	1	•••		•	:		
	:				1	1					1011	1	οp		o p p	: :	qn	, Lop) ;,	•		.		:		; .		
1					1		1		i			1	:	1					1 .	•	1	1	·		1 .	!		

.

				iii							<u>e</u>			S		10,		
ليدار	بدرد	بندرددم	د المند ا	71717	1. j. j	بذبذب	ابديد	471177	<u>, 1</u> 11.	بابابد	ulu.	ين أبيانها	<i> ببا</i> بل	بلبنبليا	ببلبد	بلبنيابذ	اجتم المنبا	
								L			-							
															s	· · · · · · · ·		
												 						
														l	D C C		, P	
l						· · · · · · · · · · · · · · · · · · ·	ļ							· · · · · · ·	· • :	- 40		
					1		·	ļ., I., .	1		<u> </u>				<u>.</u>	N.		
	ļ						· · · · ·	<u> </u>							· · · · · · · · · · · · · · · · · · ·		. I 	
									< T				<u> </u>					
					<u> </u>	1	ļ		<u> </u>			L	 				s s	
	.								\mathbf{N}		:						v	
					<u> </u>	<u></u>				\\	·				. :	0.	<u>.</u>	
									.	λ	<u>\</u>					N	s 0	
					<u> </u>	1	!				·./						τ. 	
							!			<u>.</u>	\							
1					به				<u>.</u>		\sum					: : 	.	
					pnq		· · · · ·		÷.		$\frac{1}{i}$						· ·	
				C							.]]			·		l		
					: .						· li					Ñ.,	. ф	-
				P		· · · · · · · · · · · · · · · · · · ·		· · · · · ·										
	•						i .			· ·	. 1	i :.					. ω ω	
				0 					<u>.</u>					<u>.</u>				
					Ξ	· • ··· • • • • •			<u>!</u> . :		:						· .	
				5				· · ·							· 	00	L L	:
<u>.</u>					<u> </u>	· · ·					`	<u>(</u> . 1		· · · ·		<u>8</u>	2	
·					· · · ·			• • • • • • • •				.\ .!					. 0	
				ۍ ا	Φ.	** * . 			<u>.</u>	: ; ·	•		·				9	• ທ
				· · · · · ·	່ທ່.	· · ·					: ::: .:		• • • • •				د ا	0
			o ::: 0	:: . •	. <u>.</u>	· · · · ·			1		•	<u> </u>					. э л	
			e l	0		: ·:·.	<u>.</u> :	· · · · ·	1	<u>.</u>	· •		\mathbf{X}		_	8	E	D.
			<u> </u>		: . .				1.				: \	. :		- 0		56
				o	0 0	: 			:		•. 						ני ק	2
			· · · 0	:	• • .	:		1		;	:		: :\					-
		•			,ω			; ; ; ;	•								0	P
				_			· · .		:	:	•						с С	
													:			00	e T	e
			e e	=		•		. · ·						./	-	4	C I	D
·			<u> </u>				· · · · · ·		· ·		:		: .	\	\		ъ Г	312
	•				:		. :		•			•			\backslash		t.	Ľ,
• :								· ·				.					с С	ш ц
				202	l l		:										0	с. D
•••			=			:										8	5	-
			2							·	•			••	-	20	, e,	e
			. ш		1 · · ·												 U	φ
																	V D	0
			1														л н Н н	δ.
																	0 5	·- · ·
• • •													:	· · ·			ι u	e 0.
	<u> </u>				1	1				1	.m			4	0			
				. 'o		1	0		:		: '0			<u>'o</u>	0.0		;	
	:								-	1								
		•		1011	6 G	p	bobi	a p []	qo.	9			•					
								i .	•	. :	:							
					٠.	• •	:		•.	•	•	• • • •						

			\$							· · ·		ŝ	;				- 5	·				2	- 	· • · • • •					
	ىل	ذر	17	ذكره	11/1	14	د. دلنه	:	14	.infalia	Liter	hur	المرا	Line	إلمانهم		ربان	أدبنا	4.1.1			لبلنا	دالميله	بلدار	ومستعا		بلبه	4	1-
			÷	·		:: :			! ·			:::. ! `										•							
					·	-		• : : •					•																_
			;;; ; ;			÷			÷							·							· •					-1:::	5
		<u>.</u> .																						••••••		<u>#</u> ,			ļ
		•	. i .		1.4	. :	. . .			::											1.	· .						<u> </u>	12
	1					1							ŀ			. •				1.			Ċ	5.	t .		<u>ب</u> ني		
		÷ŀ		÷		÷†•					••••						÷.						•			1	o <u>;</u>	:;	
	<u></u>	4							<u></u>						· · • • •									····		i	Ę		3
	1		÷.,	·		÷1.				· · · · ·					i									Ϊ.		i	۹		1
						÷ŀ	•	l. : <u>.</u>		. : :				· .									· · ·					::	~
			: :																					; :		1	0		17
	-					-				:			· · ·									• • • •		· • · · · · · · · · · · · · · · · · · ·		; ; ; ;	•• _: , ,	:	i
	<u> </u>							<u> </u>	<u>.</u>									<u></u>		: <u>.</u>									
		•				Ľľ										.		:.			•••••		E	. .	i;	-		:	;
		1																					- 2		বি :	:	о л		
		<u>-</u>		: T							•••••				· · · · ·	• .			" <u> </u>	- [- <u></u>		·		- <u>-</u>	÷. •	υ		
	<u>.</u>	:: .				<u>.</u> .							·]•		.: .:	:			·		·	;· •·	: ;	•••••	ω ·		<u> </u>	• • • •	;
	::::	·: .			<u> </u>	<u> </u>																	. : .	:					3
						: [1											1				•	•			с С		•
													••••				•		1:	1	:	. •	:	• •		• •	۵		
	:::::	4						<u> </u>									·			- <u></u>			• • • • •	-		;	0., ,	:	-
Probabilido de recente de muestre 1,1 de la de de de de de de de de de de de de de									:::: :::											•			. :			:	۵.		
					:: :].	:												:			:		:		0		_	'n	
		Ť				-		 						•••••	•	;		· · · ·	· · · ·	:						• •			• :
Probabilido d'arrente de muestreo 1/1 Figura 6.17 Probabilido d'arrente de muestreo 1/1 Figura 6.17 Figura	<u> </u>							 				ļ		••••••		•		•••	.	• • •	· · ·	· .		-	.		· .	0	
Probabilitado de vertos Probabilitado de vertos	·	<u> </u>						ľ	;			<u> </u>	!							:		···· · ··	···· ·	-		•	<u> </u>	0	
Probabilitado de version de mustreo de mustr				· •:1				1.	:				• :	•				:		;			•	-			- 1	a	•••
Probabilitade 4 10 10 2 1 2 2 40 8 10 10 2 4 2 2 48 3372 40 9 10 10 2 4 2 2 48 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				·		- I		1		· · ·		1.	· ;	· • :	•			•	· :	:			•						
		-						<u></u>									• •	: ;		÷	· ••• · ·	••••	·		· •	·:- ·/	0 0	2.	
Probabilitadore de recenta de muest Figura 6.17 Figura											 								· .		:	:		:	6		<u>د</u> (o.	
Probabilitide Probab				: ;				•••	: .			· · ·	: !				•			•••					_ o		+ -	-	
		:1							:			1						•							- 0		0		••
				::		·	· · · · · · · · · · · · · · · · · · ·		•			! ·· •	: ;;	· : .					1.	••••	•	. <i>'</i>	•	-			ລູ	-	
p p p p p p p p p p p p p p		<u>.</u>	<u>:::;</u>	.1								·			• •					·	···- • •				.		٤.	-	
					· •		•		• • •			· · ·			:		•			:	:	•	:					s -	
Probabilitie Pr					. !	. 1		1	•			1 .:		:			· · .	:••:									e	υ	·
0 <td>:::::</td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>;;</td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>• •• •</td> <td>•••••</td> <td> </td> <td></td> <td>σ</td> <td>e O</td> <td></td>	:::::			<u>.</u>								;;					:						• •• •	•••••			σ	e O	
Probabilidad Pr		4					•	·	· · ; · ·		:		:.:[·		· :	•••	• • •	• • • •				•.				:		σ	
Probabilida Proba		::	•					<u> </u>	<u>.</u>							. <u>.</u> .				. 					12		Ð		÷.,
Problem Provide Provid	::		: :::				•••••	1 1	: ·:.		• • •	· · •	i		:	: '				:		:			n N		 0	e	: "
Pool 2 instant of the first of								1		· · ·		· · ·								:			•••				¢	0	
		-							•••••	<u>.</u>	.			···· ·	· · · · •	••••		·· :	· •••	:	· · · •		••	-			e T		:
Production in the second secon		:.]		• • •					•		<u>.</u>						: -	- 1				: .					υ	s o	
Probabala de lo 1.0 Probabala de lo 1.1 Probabala de lo 1.1 Probabala de lo 1.1 Probabala de lo 1.1 Figura 6.17 Ecuolización lineol con fr		-	-	· ·					:				. :														0	Ě	
						1						i						· [·		÷.,	<u>-</u>	
			···]	•	1		•••••	i	: •	1	· · ·			:	• •	•••	:		·						00			•	
Probabilida Proba		_					·	į	·••••	i			•••				••	·	. •		•			-	+ 0		с с	5	
Proba da bilida					· · ·			÷.,					:	•				1							0		U U	σ	
Probabilida Proba		i					:.	:						:	•			1.											
Probabilida de 10 ⁻¹ Probabilida de 11 ⁻¹ Figura 6.17 Fistoria			•••••					•	••••		:	:		•••]		•	: ·	1	••	•							_	ιn.	
Probabilida Proba			• •	: •		: . ! .	·	••••	• • • •				•				. 1					:					0	e	
n n n n n <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>· • · · ·</td> <td></td> <td>. /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>e .</td> <td>-</td> <td></td>															· • · · ·		. /										e .	-	
Probabilida de erro Probabilida de erro Probab	1	1	:					-				1.	:	· / ·			/											0	
		Ĩ	•••••	χ.					•		1	1 .		/	:	. ,	/			:					4		-	-	
Probabilidad da %rro Probabilidad da %rro Probabilidad 6 Probabilidad 6 Probabili		•••	• • • • •	• • • • •				1		·		¦	!	· /•• ·	••••••	• /		·· •	• •	·:	٠.	•			†õ		-	ດ ເສ	
Probabilidad da %rrot Probabilidad da %rrot						•			.		····			1	;-	/	:			:		:			-		-0	-	
		i						1			i			/ :	:/		i			!			:			9	÷.		
	.,	-	-	·		1		-	:			ļ .	/:		1					:			:			-	Ū,	N	
						•••		1	• • • • •		1	1.		· · · /	/	••••	1		:	· [· ·	• •		1			. R	Ň		1
0 0 0 0 0 0 0 0 0 0 0 0 0 0							· •••	· [····	. e .			1.		/		, . . .		•••••	• •••	i	••••				· ·	; Þ	- 0		• • •
0 0 0 0 0 0 0 0 0 0 0 0 0 0			•			1.	·		;				. i			.	¦	- 1	:		•••				· ·	U i	5	<u>د</u>	:
		:											1		-		-		•	1		i .				, LL	ω	а.	÷ .
		•••				-				i	1				· · ·		†	. !	ъ			!	-	4					:
	•••					0		1	•••	1 17			·i	: · · · ·	;	: •		••••	• • •	0	: ·			'	>	:	· :		1
Γιούα αιά αιά αιά						. <u>-</u> ,	;	ļ.		1		·····	-	, . ^c	<u>.</u>			· · · ·								;	••••	•••	1
ριοραριμασή ασ θιτος		••••				!		i	÷	1 .	:	:		:	:	:	ŀ.		. 1		:		ĺ			.		:	
with the first finite interview of a statement of the second statement in the statement in the second second se				·		-	-) 0	11	₽ D	P P	p p	ЧĻ	ld D	qo	ЪЧ				1	:.	1	ł						1
			: :		• • •		-	1		1 1			1		1	: ••	i.				• • • • • • •	1		••••	· · · · · · · ·	1 1	1	••••	1-
	et i i i	••• 1	•	•	·	• •		.												-				•					

I

	(1)					· · · · · · · · ·			ı?'			-				~				
111	1 serie	1.2.1	بددد	بالدلمط	لاملامانه	المد	Jul	المعارلا	sur	سلالعليا	Lille	لندلد		لمنابيك	المنايل	با بندا بد	11111	يأي لي ال	<u>lulu</u>	<u>ء انام ا</u>
	[·]. :			• . •	1.	· - ::	! :				111 IJ	11.1				: .:::l::	•			: : : : :
					· · · · ·	::• <u></u> [···:														
			<u> </u>	<u></u>	:	<u></u>			1.1.1.1	1:1:1				<u></u>						
		· · ;	÷.,				· · · · ·						::::							
							-1 .				*									
										• ••••••										
										1		1 . :						↑		
																	. v			
				!	1.1.1		- · ·			: ::.[::				••••				. : · .		
				••••																e l
																	_ م ز			_
												1								
					1															
																	. Š		1.	
																				∇
					1												2			σ :
							:[::								1		9			O
		-															5			<u> </u>
																	2	4		·
			1		1							1						+ . <u></u>		م
		1			1							1						. Φ .		о ·
										1		1	1		1.1.1					д
					1			1		-	-			i					.	v.
									· · · ·										1.1.	~ 0
÷÷÷		1							+					t H ···		•••••••••••				<u>"</u> . — ;
									: : : : :	1: :::	<u>: : : : : :</u>				<u>.</u>		1			
i							1			:1			1							0
1					1						-			•• •	i:	· · · · · · ·		· .:	• • • •	, m
		:									. 1 ::::::::::::::::::::::::::::::::::::					: .		0		~ -
		-			1				1	THE	1	1					• • •	t <u>∽</u>		
		: :				<u> </u>			1				:::l	. II .				<u>،</u> ک		00
						: [1.										•	0 00
<u></u>						· [: •		<u> </u>						• • • • • •				· · · · ·		e —
					1				1	1	1				:	•				L.
		1	}						-1			1							•••••	vi i
	 					<u>. </u>			1						. <u></u> :			i	•	° с.
			::::[::::::::::::::::::::::::::::::::::::::	·		.1: : :::	1	· [. · ·]		. 11	1. I.					2.0
		+						l:::	+			·	1.1	·	· · · · ·			9		E
		11.			1	i ji i	: . 1	·	Fra a. S	: ···: : :	: • • • •	: :	1			: :	• `	n		. ഗ
					1		1	1.1.	1	1		1.1.1		.			:	10	•	
												10.1		, II	· ·:.	• • • •		· ₽		
::::::						1.1					1	·	i			:			:	0 -
								r	1	1	1		÷	[]]					• • •	• • •
									1	1		.1					·		•	n ·
							111	1 :: 1 :	1		1.1.1	1				•••				e
						- 									· :		·······		· · · ·	συ
:		: .:::			1						1		· .	: 11	• :					с o
		-			1									11				10		D S
::.:·		.1:***			1	1							;					+ 5 …	••••	υo
		1							1					11			· · ·	ň	:	e +
					1				-				••••	H:	•••••••••••••••••••••••••••••••••••••••	•••	1	1	:	
						•				1				11					:	-
		.1				: 1								11					:	ŝ
											· · · · · · · · · · · · · · · · · · ·		··• ·	11		•	· • · · ·			c
		1							1	1 .		1.	•	11	•	:				0 0
								1		1				1	· · · · ·	• • • • • • • • • • • • • •				0
1									1	1	·		1	1.	.:		. :			
#:::		: ·· :		· ! . !	1	: 1 :	:::::		1 ::!	· · · · ·		1 . :		1	·			8		0 5
													- 11	• • ••	· ·	•: •••	•	t 5		1 e
1.11		1 ·			1		·:••			1 .		÷ .	Π			•		5 5		c
		:[:::	: · I		1							·: · :	\prod						•	S o
													11		•• •		· · .			• +
	· L ·	· . · ·	· ·			·						: /	' '			:	·			L S
	• • • • • • • •	:		• • • • •		:		••••••••••••••••••••••••••••••••••••••	1			1	/ :			: .	: .			- <u>c</u>
									.1			: //						1		
		: .										://								о
i					· • • •	·· ;··.	: · ·				• •••	11.		·.	: :			-		c N
	111	· · · · ·		:	1 1	1		•		1	· ·	//						5		<u> </u>
		1.						[/	7						Τo	8	-
		1									. //				·· ;	: •				E L
· · ·		1.				- i *					1 //	:		•	: .	:			φ	`o 0
							· · · · · · · · ·				···//	1.11	•••••		•••			1	•	5 0
					1					1 1	11 .	• • • • •			÷		: :	1	đ	0
· · .		· .				· · [·				1 /	1.	; ;		4			1		. œ	L 12
						••••				//		· • • • •		•••••	· · · · ·	• • • • • •		• ••	; 5	0 0
	· · · · ·	· · :			1			[· · · ·							1				. U	<u>э</u> г
					1	1						1						•		0 2
				· · · · ·	· — ·			<u> </u>	· ····	· · · ·	-i	-i				1	+		: "L	പ്ര
					1 1	• .	·		:	1 0	:	÷.,		m,			4		1 1	
· · · ·		• • • • •	0		1	·· ·	·· 'o		1	: 1	d :	1		1			1 10	· · ·		
	I I		·		i.		-		A		≍	· .			≤.				i	
	1	1	:		1 :	÷	:	1 .1	1		1 :				1 .					
· 1		1.	· 1		LOL	σĹ	8	p i	וקסים	1100	ç o p	d	·					1 -	· ··•	
		1																j		
						1.11							-	1	1 1			-		
		•	•		1 . 1		·			· · ·	· · · ·				· · ·	1 1		1	· ·	1

	02							·	0				······		<u></u>		۱۰ <u>۶</u>		<u>.</u>	•
لبليا	ببيدن	بببرد	بليلا	بل ل	إيذ	بالمبارية	بببلبب	يذردنه	بيبيد	بالمبران	Pitti'r	hiriti	بابلباب	11.1.1	بليدبه	والمليليل	البلسليل	بنيابنه	hilling	1- 73
			-·										-							
																				9
		-					_									(s				
			<u> </u>	<u></u>	• •										<u> </u>				<u> </u>	12
.			ŀ													1 0	· .			1
																<u>е</u>	00	: :	: ···	-
					2											0	24			-:
									<u> </u>											. ·
											1							τ	J	-1
										$\left \right\rangle$	1								•	
							\mathbb{N}											ι	а с	
						T											0		<u> </u>	
		1										1							- 	17
										-	·[`	\							<u> </u>	1
							1	<u> </u>				-\							=	Ξ,
										-	-	$\left(\right) $!- :		: :	· .	
		-						<u>,</u>	$\frac{1}{1}$			<u> </u>							u · ·-	1
													. · · · .	•	• .: •••		0.	· · ·	5	
									<u> </u> \	<u></u>		· \ .	·!	· · · · · · · · · · · · · · · · · · ·			- <u>0</u> ·	· ···		· •
		-						.				···· · /	• • • •	• •	·				u u	:
									<u> </u>			·	•	· • • • • • • • • • • • • • • • • • • •	: . .	;		· .	5 1	
												:	• • • •			:		- 0	ה ט	
<u></u>				<u> </u>									·			:		. τ		• ,
				ļ.,	. e	e			<u>.</u>		: : : : : : : : : : : : : : : : : : :	$\langle \cdot \rangle$								
			<u></u>	<u>.</u>						<u>.</u>							ŏ	с т		
			<u>.</u>		Ū							<u>.</u>	·/		:	:	<u> </u>	c -	- -	-
	<u> </u>		.		1				1				. / .	•		, 				
									··· ·	· · · · ·				`		:		-	,	
						<u></u>	, • •			. (* -) .:	1		: \	<u>`</u> .		•			n	
		1				. 00							\							
				ļ				•						$\sum_{i=1}^{n}$			0	 -	-	
									1								9			
					-	: 00										` .		α	2	
					0	0									· · • • ·•	\sim		a v	Ď.	-
		1.			Le E			•			1			······	\backslash	`.		u.	,	
					s.	ب م	••••••	••••		 l' -: '	1		1		\backslash	/			• v	
					, u U				1		•			<		I	0	. c	, o	
		1	:		E	·· ···· ⊏	• • • • • • • • • • •	.		· • • • • • • • • • • • • • • •	• • • • •			• • •		-	40			
		1			e.		••••		• • • •	· · · · · · ·	•		• · · ·			`	-			
		+						····			†			•• •	•	\backslash		2	29	
•••••	••••••		:		0	·: : · o		• • • • • •				• ••		:.		. \		- -	2 01	
••••••••			•		о С		· •· •			•••••••••••••••••••••••••••••••••••••••			:	•				с т	ים נו	
	· <i>·</i>		•		C U G	c u e		• •	• •	.			:	:		. \	0	c	סימ	
				!	e i	···: •	• • •: ••				· · · · · · ·	••••••	· • ··· · • ·		• • • • •	<u>ن</u> : ک	Ň	<u>6</u>		
•••••••				· ···	Ľ.	ū				:			•	• • •			=	9 0		
	ļ													;	·	. .				
·····	.	[.:.:	·					· · · · ·	· · · ·				· · ··	; ;	• • •	;		A A A	, it .	
					I.;						· • • • • • • • • • • • • • • • • • • •							5	<u> </u>	
•••••			· · · · · ·										!		• • •			5	Ľ,	
		÷	:				14		; ; †		! : 	, 		:. 	I	:		ιц	0	
		;					.		N		į.: .	'n.	: .	• • •	4	. 0				
•							,.			2					<u>0</u>					-
·																:				
					را ا			P 11	1b.	-111 d D	9 0 J 0				<u>.</u>					
		÷					:			j .						· ,				
		•••		- •	•••				• • •		· · · · · · · · · · · · · · · · · · ·									

1 1 1

.

	2	<u> </u>			"									2			
ليل	414	171	Lile	المدار	Stelli	Lilla	Hurry	Turn	أنابارك	Lille .	ت ارد ز	يد و الجنادي	المنتظر	خابيل	العلمانة	عاملين	اعانيك
				.													
							**		1							<u>۱</u>	
		···	• •••••			1		:: <i>-</i>		kii:]					· · · ·		
						<u> </u>		Ľ						<u> </u>	P		
															5		
					1			ГГ.							ല	Q	
<u></u>					<u></u>								<u> </u>				•
				[<u></u> `											0	N	0
							1.		····.		:::::						
						<u> </u>			1								
			<u>.</u>			$\sum \dots$								l			
				1		l:X:	··· · :	l. .	\sim				[s :
														1			0.00
111							X	1 : : : : :	1					i	[]	0	···· • ···
				<u> </u>									<u> </u>		L	0	
							\mathbb{A}									2	
					0	e	···· \ .		1								· · · · · ·
					0	<u>0</u>	<u></u> \										·····
		i. ili.		<u>. </u>		م :	<u> </u>	X	1				<	1			
								$\langle \cdot \rangle$			•		1				÷
					· · · · · ·	<u> </u>			1				·/·				
										h			`•	ų			
! :!:	1.11	H. H						<u>. :</u> \			<u>.</u>		1.	<u>\</u>		Lõ	
		•				· · · · ·			· ·							[0 · ·	0
					hi i i	 L	-	····	\sim		•••••			· · · · /			·
			<u></u>		=	<u> </u>			<u></u>								ā
			::::::		· · · ·	=			$ = \rangle$						\backslash		
					1 - 1 -					\mathbf{N}							
<u>.</u>					<u> </u>	- o											ω
										N							
					e e	e							÷.*		· \	8	2
		;;;;		1			·								2	ω	
<u>.</u>						· •	·· i			••• • • ••••		, in the second	. :		·. ·		0
.	::: : :					• •	<u>.</u>		1.					· · · ·			. ⊢ –
				j	⊂	- c						···					
				ۍ ۱		<u>.</u>	·····						×		· · ·	:	
		<u></u>		· · · · ·		<u></u>			L			<u>.</u>		· · · · · -			
					e	e						· · · · .	\cdot	•			5 °
					· · · ·	: 0 -										0	
														$\langle \cdot \cdot \rangle$		1 9	· • თ
				e		m				.				: . `\	• •	-	e ne
			: <u>.</u>		:			· · · ·		· . ·			· ·			. '	· ε ^ν
				1		i :: :						· · · · ·			. / .		•
				00		- :. .: `.				ļ:: iļ	· · · · · · · ·	•·· .		: · ·	· ·\		e er
		ŀ	: : : : :	.: ::	. e	:											<u>.</u> ح
					<u> </u>								: :.		\		D
		÷:†-'			· ···: · ·			:	parties,	· · · · · ·			••••		\	0	o
													<u> </u>	· ··· · /		0	p
· ·		.:·[`.			c	·		. :								4	6 1
:					1.11												n c
<u></u>	<u>.</u>		: -	L		···· ···			· · · · · · · · · · · · · · · · · · ·	j	·			• • • •			U 1
	·· .				, °		:		1								e u
											•	:	:				-
÷••••			.	0	0				1.		•••••	• • ••	•••• ••		•••	· ·	e
				112			· · · · · · · · · · · · · · · · · · ·	· ·		::	•- •	· ·		:			0
			÷ .	0	0	:		:	1.1.	:	:					0	° °
			• • • • • • • • • • • • • • • • • • • •	5	່ ງ				1	:	;			• • • • • •	· ·	N	··
			• • • •	і ^ш	i : •• 🖬		••••••••	• ••	1	***	• <u>•</u> • •		: .:			-	
						ļ									:		ω
		• • •		.	i i		•	: :	1.1					;			: 0 0
					s s star f	1				1		• • • • •		1			A N C
			<u>.</u>	ا بي ا	l				·	····-	· •		····	÷ • • • • •	••••	• • •	· " " "
		1	:								:	:	: :				.0 .7
		·· •									· · ·						- 0 c
•••	-	-+-		1	t	<u> </u>		<u> </u>		1	<u> </u>	!	1	ł	ł	1	. և և ⊃
				i: .	· ·			. N			с н .	: .	• •	4	. 0		
					, 'o	5		· 'c	2	: .	. 0		•	0	Ö	, .	
		1		1	· · · · ·		1		1		1 :						1
			• ! •		1011	1 :	20	; p	1110 0	901	ł .		• •				
					1						; ,					.	i
								1	· · :	: :	; · .	i		1			: :
ł.,		· 1							1 .								

:

6.2 CONCLUSIONES Y COMENTARIOS

Los resultados obtenidos producto de la simulación, nos permite ver la importancia del estudio de la ecualización digital, particularmente en el campo de la ecualización adaptiva.

Entre las características principales que podemos observar es un período de adaptación considerablemente pequeño par canales más o menos fijos; cada ecualizador es particularmente influenciado para las características del canal, el número de coeficientes e instantes de muestreo, y un buen desenvolvimiento de la ecualización ante un alto grado de distorsión.

La tendencia actual de implementación de ecualizadores adaptivos por medio de microprocesadores, por la flexibilidad que estos permiten, un mayor número de coeficientes puede considerarse a fin de asegurar una buena perfomance de la ecualización. Naturalmente que su número no podrá incrementarse indefinidamente, puesto que ello implica un mayor tiempo de procesamiento en el ecualizado y una mayor duración en alcanzar el estado óptimo de funcionamiento (duración de aprendizaje), parámetros muy importantes а considerarse en una implementación práctica.

Si bien una aplicación, como un algoritmo de ecualización en particular se han considerado en el presente trabajo, comprenderá el lector la dificultad del tratamiento de cada una de las posibles aplicaciones, así como de las diferentes técnicas de ecualización que existen en la actualidad, con lo cual abierta queda la posibilidad de continuar con el estudio de este interesa<u>n</u> te campo que constituye la ecualización digital.

Conciente de que una simulación no refleja total-

173
mente la realidad, sin embargo tiene la virtud de permitirnos una idea de los resultados que se puedan obtener, además de adquirir las bases teóricas para transmitir un esquema que sirva como guía, a la vez una fuente de motivación para posteriores estudios como de posibles aplicaciones prácticas.

Este ha sido en definitiva el objetivo con el cual ha sido elaborado este documento.

Sec. 73.841

ANEXOS

ANEXO 1

LA DESIGUALDAD DE SCHWARTZ

Si $F_1(W)$ y $F_2(W)$ son functiones complejas de W, entonces la desigualdad de Schwarz dice que:

$$| \int_{-\infty}^{\infty} F_{1}(W)F_{2}(W)dW |^{2} \leq \{ \int_{-\infty}^{\infty} |F_{1}(W)|^{2}dW \} .$$
$$\{ \int_{-\infty}^{\infty} |F_{2}(W)|^{2}dW \}$$

Demostración: Sea

$$\phi(W) = \frac{F_{2}^{\star}(W)}{\left\{\int_{-\infty}^{\infty} |F_{2}(W)|^{2} dW\right\}^{1/2}}$$
(I.1)

$$\propto = \int_{-\infty}^{\infty} F_1(W) \phi^*(W) dW$$
 (I.2)

entonces, puesto que

$$[F_{1}(W) - \alpha \phi(W)][F_{1}^{*}(W) - \alpha^{*} \phi^{*}(W)]$$
(I.3)

$$= |F_1(W) - \alpha \phi(W)|^2 \ge 0$$

Obtenemos

$$\int_{-\infty}^{\infty} |F_1|^2 dW + \propto^2 \int_{-\infty}^{\infty} |\phi|^2 dW \qquad (I.4)$$
$$- \propto \int_{-\infty}^{\infty} \phi F_1^* dW - \propto^* \int_{-\infty}^{\infty} \phi^* F_1 dW \ge 0$$

Pero de (I.1)

 $\int_{-\infty}^{\infty} |\phi|^2 \, \mathrm{d}W = 1$

y de (I.2) deducimos

$$\int_{-\infty}^{\infty} \phi F_1^* dW = \alpha^*$$

En consecuencia, (I.4) se transforma en:

$$\int_{-\infty}^{\infty} |F_1|^2 dW + |\alpha|^2 - \alpha \alpha^* - \alpha^* \alpha \ge 0$$
$$\int_{-\infty}^{\infty} |F_1(W)|^2 dW - |\alpha^2| \ge 0 \qquad (I.5)$$

Sustituyendo las ecuaciones (1) y (2) en (5)

$$\int_{-\infty}^{\infty} |F_{1}(W)|^{2} dW \ge \frac{|\int_{-\infty}^{\infty} F_{1}(W)F_{2}(W) dW|^{2}}{\int_{-\infty}^{\infty} |F_{2}(W)|^{2} dW}$$

Nótese que la desigualdad de (I.5) se vuelve iguladad si y solo si:

$$\int_{-\infty}^{\infty} |\mathbf{F}_{1}(\mathbf{W})|^{2} d\mathbf{W} = |\alpha|^{2}$$

ANEXO 2

DESARROLLO DE LA ECUACION 4.3

El producto de convolución x(t) * q(t) con:

$$s_1(t) = (1/2)[g(t) * q_1(t)]$$

$$s_{2}(t) = (1/2)[g(t) * q_{2}(t)]$$

Es igual,

$$x(t) * q(t) = \left\{ \sum_{K} a_{K} g(t - KT) \cos 2\pi f_{C} t - \sum_{K} b_{K} g(t - KT) \sin 2\pi f_{C} t \right\} * \left\{ q_{1}(t) \cos 2\pi f_{C} t - q_{2}(t) \sin 2\pi f_{C} t \right\}$$

Para efectos de desarrollo, introduscamos las funciones F_i , i = 1,2,3,4.

Donde,

$$F_{1}(t) = \left\{ \sum_{k=-\infty}^{\infty} a_{K} g(t - KT) \cos 2\pi f_{c} t \right\} * \left\{ q_{1}(t) \cos 2\pi f_{c} t \right\}$$

$$F_{2}(t) = \left\{ -\sum_{K} b_{K} g(t - KT) \sin 2\pi f_{c} t \right\} * \left\{ q_{1}(t) \cos 2\pi f_{c} t \right\}$$

$$F_{3}(t) = \left\{ \sum_{K} b_{K} g(t - KT) \operatorname{sen} 2\pi f_{c} t \right\} * \left\{ q_{2}(t) \operatorname{sen} 2\pi f_{c} t \right\}$$
$$F_{4}(t) = \left\{ -\sum_{K} a_{n} g(t - KT) \cos 2\pi f_{c} t \right\} * \left\{ q_{2}(t) \operatorname{sen} 2\pi f_{c} t \right\}$$

Desarrollando $F_{i}(t)$, Tenemos:

$$F_{1}(t) = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} a_{k} g(t - KT - \hat{\tau}) \cos 2\pi f_{c}(t - \hat{\tau}) d\tau$$

$$q_{1}(\hat{\tau}) \cos 2\pi f_{c} \hat{\tau} d\tau$$

່ ໃ

Para efectos de simplificación de $F_1(t)$, consideremos el intervalo de integración de un período, por definición de la función g(t).

$$F_{1}(t) = \sum_{k=-\infty}^{\infty} a_{K} \int_{t-kT}^{t-(k+1)T} g(t - KT - \hat{\tau}) q_{1}(\hat{\tau}) ,$$

$$(\cos 2 \pi f_{C}^{2} + \cos 2 \pi f_{C}(t - 2\hat{\tau}) / 2) d\hat{\tau}$$

La función $\cos 2\pi f_c(t - 2\hat{\tau})$, es una función periódica de período 2T, con lo cual:

$$F_{1}(t) = (\cos 2 \pi f_{c} t / 2) \sum_{k=-\infty}^{\infty} a_{K} \int_{-\infty}^{\infty} g(t - KT - t)q_{1}(t) dt$$
$$= \sum_{k=-\infty}^{\infty} a_{K} s_{1}(t - KT) \cos 2 \pi f_{c} t$$

De idéntica manera al desarrollo anterior, tenemos:

$$F_{2}(t) = -\sum_{k=-\infty}^{\infty} b_{K} s_{1}(t - KT) \operatorname{sen2} \pi f_{c}t$$

$$F_{3}(t) = \frac{1}{t} \sum_{k} b_{K} s_{2}(t - KT) \cos 2\pi f_{c}t$$

$$F_{4}(t) = -\sum_{k} a_{n} s_{2}(t - KT) \operatorname{sen2} \pi f_{c}t$$

Por lo tanto el producto de Convolución x(t) * q(t) queda:

$$\mathbf{x}(t) * \mathbf{q}(t) = \left[\sum_{\mathbf{k}} \mathbf{a}_{\mathbf{K}} \mathbf{s}_{1}(t-\mathbf{KT}) - \sum_{\mathbf{k}} \mathbf{b}_{\mathbf{K}} \mathbf{s}_{2}(t-\mathbf{KT}) \cos 2\pi \mathbf{f}_{\mathbf{C}} t \right]$$
$$\# \left[+ \sum_{\mathbf{k}} \mathbf{b}_{\mathbf{K}} \mathbf{s}_{1}(t-\mathbf{KT}) \# - \sum_{\mathbf{k}} \mathbf{a}_{\mathbf{K}} \mathbf{s}_{2}(t-\mathbf{KT}) \right] \operatorname{sen} 2\pi \mathbf{f}_{\mathbf{C}} t$$

Derivación del error cuadrático medio con rela-
ción al vector
$$\overline{H}_{K}$$
.

$$E = |U_{K} - d_{K}|^{2} = |\overrightarrow{H}_{K}^{\dagger} \cdot \overrightarrow{x}_{K} - d_{K}|^{2}$$
Es de la forma:
 $| \alpha z - \beta|^{2}$ con $\alpha, z/\beta \in C$
Haciendo que:
 $z = x + iy$
 $\alpha = a + ib$
 $\beta = c + id$
Se define la derivada de $|\alpha z - \beta|^{2}$ con relación
a \overline{z} por:
 $\frac{\partial E}{\partial x} + i \frac{\partial E}{\partial y}$
 $E = |a_{X} - yb + i(a_{Y} + xb) - c - id|^{2}$
 $= (ax - yb - c)^{2} + (a_{Y} + xb - d)^{2}$
 $\frac{\partial E}{\partial x} + i \frac{\partial E}{\partial y} = 2a(ax - yb - c) + 2b(a_{Y} + xb - d)$
 $+ i[-2b(ax - yb - c) + 2a(a_{Y} + xb - d)]$

= 2(ax - yb - c)(a - ib) + 2i(ay + xb - d).

. (a - ib)

180

ANEXO 3

<u>36</u> + 1 <u>36</u>	181 = 2(a - ib)[ax - yb - c + i(ay + xb - d)]
Por l _∂E_ ∂x	\circ tanto, $\pm i \frac{\partial E}{\partial y} = 2 \propto^{*} (\alpha Z - \beta)$
· ·	
a constanta a magnatina e o constantana, an	

į

ANEXO 4

SOLUCION DE ECUACIONES CON TECNICAS DE WIENER - HOPF

Deseamos resolver el set de ecuaciones.

$$R_{K} = \sum_{n=-\infty}^{\circ} M_{n-K} S_{n}, \qquad K = 0, -1, -2, \dots, -\infty$$
(4.1)
Donde,

$$\{ R_{K} \}_{-\infty}^{\infty} \quad y M_{n-K} = R_{n-K} + N_{O}^{1} \cdot \int_{n-K} \text{ son dados con:}$$

$$N_{O}^{1} = N_{O} / 2 G_{d}^{2}$$

$$\int_{n-K} = \begin{array}{c} 1 & n = K \\ 0 & n \neq K \end{array}$$

Puesto que la secuencia $\{M_n\}_{\infty}^{\infty}$ es una secuencia de correlación con coeficientes de Fourier positivas, ésta puede ser representada como una convolución discreta de una secuencia $\{M_n^-\}_{\infty}^{\circ}$ y una secuencia $\{M_n^+\}_{\infty}^{\infty}$, es decir:

$$M_{n} = \sum_{j=0}^{\infty} M_{j} M_{n-j} \forall n \qquad (4.2)$$

Sea la secuencia $\left\{ \, x_n^{} \, \right\}_{\infty}^{\infty}$ la misma que puede ser determinada a partir de:

$$R_{K} = \sum_{j=0}^{\infty} M_{j}^{\dagger} x_{K-j} \quad \forall n \qquad (4.3)$$

Sustituyendo (4.2) y (4.3) en (4.1), tenemos:

$$\sum_{j=0}^{\infty} M_{j}^{+} x_{K-j} - \sum_{n=-\infty}^{0} S_{n} M_{n-K-j}^{-} = 0 \qquad (4.4)$$

Luego una solución de:

182

$$x_{K} = \sum_{n=-\infty}^{o} S_{n} M_{n-K} \quad K \le 0$$
 (4.5)

Es también una solución de (4.4).

Asociemos a la secuencia { x $_n$ } $_\infty^\infty$ una transformada de Fourier tal que:

$$X(\theta) = \sum_{n=-\infty}^{\infty} x_n e^{in\theta}$$
 (4.6)

Tomando la transformada de Fourier en (4.3):

$$R(\theta) = M^{T}(\theta) X(\theta) \qquad (4.7)$$

Además tomando la transformada de Fourier en (4.5)

$$X(\theta) = S(\theta) M(\theta)$$
(4.8)

donde $x^{-}(\theta)$ se obtiene a partir de (4.7) como

$$\mathbf{X}^{-}(\theta) = [\mathbf{R}\theta) / \mathbf{M}^{+}(\theta)]$$
 (4.9)

donde [.]_ significa "una proyección solo para enteros" . Para obtener esta proyección, se expande [.] en series de Fourier en $|_{-\infty}^{\infty}$ y se retiene solo la parte de la serie. que contiene coeficientes negativos / positivos.

Entonces la solución deseada es:

$$S^{-}(\theta) = (1 / M^{-}(\theta)) [R(\theta / M^{+}(\theta)]$$

$$(4.10)$$

Puesto que $M(\theta) = M^{+}(\theta) M^{-}(\theta) \gamma M(\theta) = R(\theta) + N_{O}^{1}$, entonces es posible calcular explicitamente:

$$[R(\theta) / M^{+}(\theta)] = M^{-}(\theta) + N_{0}^{1} / r_{0}^{1}$$
(4.11)

donde r_0^1 es el coeficiente dc de $M^+(\theta)$

183

La solución final de S (θ) es entonces:

$$S^{-}(\theta) = 1 - N_{0}^{1} / M^{-}(\theta) r_{0}^{1}$$
 (4.12)

Un método para el cálculo de $M^{+}(\theta)$ a partir de una función conocida $M(\theta)$ es el que se desarrolla a continuación. Puesto que $M\theta$) > 0, para $0 \le \theta \le 2\pi$, entonces su logaritmo neperiano puede ser expandido en serie de Fourier como:

$$\operatorname{Ln} M(\theta) = \sum_{n=-\infty}^{0} r_{n} e^{in\theta} + \sum_{n=0}^{\infty} r_{n}^{+} e^{in\theta} \qquad (4.13).$$

Entonces, conociendo la secuencia $\{\ r_n^{\ +}\}_{-\infty}^{\infty}$, $M^+_-(\theta)$ se calcula mediante:

y,

$$M^{+}(\theta) = \exp \left\{ \sum_{n=0}^{\infty} r_{n}^{+} e^{in\theta} \right\}$$
(4.14)

$$M(\theta) = \exp \left\{ \sum_{n=-\infty}^{\infty} r_n e^{in\theta} \right\}$$
(4.15)

ANEXO 5

ESPECTRO DE FRECUENCIA DE UN TREN NRZ

El espectro de frecuencia de un tren NRZ para una representación de una secuencia de 256 bitios mediante 2.048 muestras, 8 muestras por pulso, utilizando la Transformada Rápida de Fourier FFT, se ilustra en la figura V.1. Particularmente para la presente simulación, resulta muy útil su visualización para una correcta aplicación de los procesos de filtraje, aunque de mucha utilidad puede resultar para otras aplicaciones.

PROGRAMA: MANUAL DE USO, LISTADOS

.1

2

FILE: ECUA

****** ECUALIZACIUN ADAPTIVA ***

LA JIILIZACION DEL PRESENTE PROGRAMA REQUIERE DE UN PREVIO CONOCIMIENTO DEL SISTEMA IBM 370/138, PUESTO QUE LA COMUNICACIÓN ENTRADA/SALIDA DE DATLS SE REALIZA MEDIANTE UN TERMINAL DEL SISTEMA.

LA ESTRUCTURA DEL MISMO, SE LO HA REALIZADO DE TAL MANERA QUE EL PROGRAMA PUEDA SER UTILIZADO PARA SIMULACIONES CON OTRAS CARACTERISTICAS, TANTO DE LAS FUNCIONES DE FILTRAJE ASI COMO DE LAS CARACTERISTICAS DEL CANAL DE TRANSMISION. EFECTIVAMENTE, TODAS ESTAS FUNCIONES SE LOS HA IMPLEMENTADO MEDIANTE SUBRUTINAS QUE ADEMAS FACILITAN UNA MEJOR COMPRENSION DEL PRUGRA-MA, CONSTITUYENDOSE EL ALGORITMO DE ECUALIZACION EN EL PROGRAMA PRINCIPAL.

🚬 LAS VARIABLES UTILIZADAS, SE HA TRATADO EN LO PO-SEAN LAS MISMAS UTILIZADAS EN LA TEORIA, Y AQUELLAS VARIABLES AUXILIARES JTILIZADAS PARA EFECTOS DE LLEVAR ... A CABO EL DESARROLLO DEL PROGRAMA SE DETALLAN A CUNTI-NUACION.

> LISTA DE VARIABLES DEL PROGRAMA *****

XQ3,XQ4: LA DETECCIUN DE LA SENIAL SE REALIZA EN EL RECEPTOR MEDIANTE UNA SUBRUTINA -DECIS-. EN ESTOS VECTURES INGRESAN LAS NUESTRAS, PRODUC-TO DE LA DETECCIÓN Y QUE LUEGG INGRESAN AL ECUALIZADOR.

HK1, HK2: VECTORES QUE REPRESENTAN LA PARTE REAL E IMA-GINARIA, RESPECTIVAMENTE, DEL VECTOR DE COE-FICIENTES HK.

AK1, AK2: VECTORES QUE REPRESENTAN LA PARTE REAL E IMA-GINARIA, RESPECTIVAMENTE, DEL VECTOR DE COE-FICIENTES AK.

XK1,XK2: REPRESENTAN LA MEMORIA DEL ECUALIZADOR DE COEFICIENTES HK.

FILE:	ECUA	ECUA A	VM/SP RELEA	ASE 3.1 EXPRE	ESS PUT8401+	SLU3C
	DK1,0K2:	REPRESENTAL	N LA MENORIA Es ak.	DEL ECUÁLI	IZADOR DE	
	XR1,XR2:	EN ESTOS VI	ECTURIES SE	GUARDAN LAS	S ULTIMAS	
		(NCH-M)/2 P	IJESTRAS DE (CADA SECUENCE	IA DE 256	
		ESTINADOS S	SE CALCULAN	A LA VEZ QUE	E INGRESAN	
		LAS PRIMER	AS (NCH-M)/	2 MUESTRAS	DE LA SI-	
		DE MUESTRA	S POR PULSU.	5111US. M ES	EL NUMERU	
		***	***	*****	≮- ≮	
.		LISTA VARIA	ABLES DEL ARI	CHIVO FT10F0		
•		*******	* * * * * * * * * * * * * * * *	~~~ <i>~~~~~~~~~~~</i>	F F -	•
	N 4	DE LA SECU	ENCIA DE 256	BITIOS. PARA	A EL CASO	: ۱
		DE LA SIMU	LALIUN SU VAL	LOR ES IGUA	AL A 2048,	
·		R EP R ES E NT A	FIVAS DE 8 MI	JESTRAS PCR 1	OLSG.	
	17:	SEMILLA DE	ENTRADA PARA	A LA SUBRUTI	NA RANDU.	•
••••••	КОРТЗ:	ESTA OPCIO	N PERMITE VI	SUALIZAR POR	PANTALLA	
		LA EVOLUCIO	DN DE LOS CON	EFICIENTES DI	EL ECUALI-	
• • • •		MOS, COMO	UN METODO PAI	RA ENCONTRAR	LUS PARA-	. : .
		METROS MU	Y LAMBDA.	OFFICIENTE C. I		
		0: EJECJC	LUN NORMAL DI	EL PROGRAMA		.
		1: SE VIS	JALIZA LOS CI	DEFICIENTES	4K	
• • ··						•
			·			
		• •				
		•				
	•		•			
					• .	
)
					· · ·	i
		-		· · ·		

.[.] .

۰.

	ESCHELA PULLITENICA NACIONAL
	FACULTAD DE INGENIERIA ELECTRICA
i.	ESPECIALIZATION ELECTRONICA Y TELECOMUNICACIONES
Ç	- PRD科UCIUN 1984
С	TESIS DE GRADU: "ECUALIZACIÓN DIGITAL"
	REALIZADU PUR: NELSUN PATRICIG NUNEZ
<u> </u>	DIKIGIDU PUK: ING. FRANCOIS PRYGIEL
с 	APETCACTON DE LCOALTZACTON ADAPTIVA - PROGRAMA PARA EL CALCOM
C	SION DIGITAL SIN FLUALIZACION Y CON FCUALIZACIAN. IN FL CASE
C	DE ECJALIZACIÓN SE INCLUYEN LOS ALGURITMOS PARA ECUALIZACIÓN
£ · ·	ADAPTIVA LINEAL Y ECUALIZACION ADAPTIVA NO LINEAL.
;	·
	DIMENSION HK1(15), HK2(15), XK1(15), XK2(15), XK1(7), XK2(7)
	DIMENSIUM AK1(5), $AK2(5)$, $JK1(5)$, $DK2(5)$
	DIMENSIUN XQI12501;XQ2(250);XQ3(2048);XQ4(2048) COMPLEY Y. (2048)
	$\frac{1}{10}$
10	FORMAT(T20, 'INGRESE LPUIUN DE PRUGRAMA', /, TLO, 'SIN ECUALIZACION-
· · · · · · · · · · ·	*> 0 CUN ECUALIZALIUN> 1')
	READ(5, *) I OPPR.
	IF(IOPPR-0)25,25,15
15	
20	FURMAILIZU, INGRESE UPULUN DE EUDALIZAULUN IJJILU, EUUALIZAULUN L *NEAL
-	READISED ECONCIENCIENT NO LINEAL
25	PRINT*,'> INGRESE FREQUENCIA CENTRAL: FO=?'
	READ(5,*)FO
	PRINT*, '> INGRESE VELOCIDAD DE MODULACION: D=3'
	READ(5,*)∪
	PRINT*, '> M/1: FRELUENCIA DE MUESTREG N=2'
•	
	PRINT +
	PRINT*: $()$ EXCESD OF ANALY DE BANDA ALEA=?
	READ(5,*)ALFA
	PRINT*,> NUMERU DE BITS A TRAJAKSE NUBIT=?'
	READ(5,*)NUBLT
	PRINT*, '> INSTANLES DE DECISION EN EL RECEPTOR LN1=?'
	READ(5,*)LNI
10	
40 50	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
20	READ(5.*)NCA
60	PRINT +, '> NUMERU DE LUEFICIENTES DEL FILIKU H: NCH=?'
	READ(5,*)NCH
	IF(1ECUP-υ) 30, 50, 70
70	PRINT*,> PARAMETRU DE CUNVERGENCIA FILIRU A: LAMUDA=?'
~~~	READ(51*), AMODA DRINT & 1
80	EFAD(5.4)MU
85	$READ(10,*) \land IY_{K} UPI_{J} = \partial^{1} \mathcal{A}$
0.2	
	When a group is a second

```
FORTRAN AI VM/SP'RELEASE 3.1 EXPRESS PUT8401+ SLU301
 -ILE: ECUAL
             WRITE(3,90)
  - 90 FORMATITIO, "IDENTIFICION DE USUARIO:
                                           NELSON P. NUNEZ")
    WRITE(3,92)D
   92 FORMATITIU, VELOCIDAD DE MUDULACION: D=1,16%,F10.3)
  WRITE (3, 43) SN
   93 FORMAT(TIU, RELACION SENIAL AL RUIDD: S/N=',14X,F10.3)
      WRITE(3,94)NCH
   ...94 FORMAT(T10, NUMERO DE LUEFICIENTES DEL FILTRO H: NCH=',[6]
     WRITE(3,90)MU
   96 FORMATITIO, PARAMETRU DE CONVERGENCIA FILTRO H:
                                                      MU=',F12.6)
 98 WRITE(3,100)NCA
  100 FORMAT(TIU, NUMERO DE CUEFICIENTES DEL FILTRO A: NCA=', 14)
 _____WRITE(3,104)LAMBDA ____
   104 FORMAT(TIU, 'PARAMETRU DE CUNVERGENCIA FILIRO A: LAMBDA=', FI0.6)
   106 WRITE(3, 108)ALFA
----- 108 FORMAT (T10, 'EXCESC DE ANCHU-DE BANDA: ALFA=', 15X, F10.6)
      FC1=F0-(1.0+ALFA)*0/2.0
      FC 2=F0+(1.0+ALFA) +0/2.)
  ----- ERRTA=0.0
      ERRTB=0.0
      NUB=NUBIT/256
 IF(IOPPR-0)136,136,110
 110 NCH1=(NCH-M)/2
     NCH2=NCH1+M
    --- NCH4=(NCH - M)/(2*M)
 C
 С
          INICIALIZACIÓN DE LUS VECTORES HK1, HK2
       .. . . . . .
      DO 130 I=1,NCH
      1F(1.GT.NLH1.AND.1.LE.NLH2)66 TO 120
    --- HK1(I)=0.0
      HK2(I)=0.0
      GO TO 130
HK2(I)=0.0
  130 CONTINUE
  IF(IECOP-0)136,136,132
  132 DO 135 I=1,NCA
      AK1(I)=0.0
      AK2(I)=0.0
      DK1(I)=0.0
      DK2(I)=0.0
   135 CONTINUE
 С
 C,
          TRATAMIENTO DE TRANSMISIÓN Y ECUALIZACIÓN
 С
   136 DO 380 L=1,NUB
      CALL FUENTE(XW,XQ1,XW2,N,1Y)
      CALL FFI(XQ,11)
      CALL HIX(XG.D,ALFA)
      CALL CANAL3(FO, D, XQ)
      CALL INFFI(XQ,N)
      CALL RUIDUIXU, EN, N)
      CALL FFT(XQ,11)
```

FILE: ECUAL FURTRAN AL VM/SP RELEASE 3.1 EXPRESS PU18401+ SLUG -CALL HRX(XQ,D,ALFA) --- -- CALL INFFI(XQ,N) IF(IOPPR+0)138,138,139 138 CALL ERRUK(XQ,XQL,XQZ,ERRTA,ERRTB,N,LNL) -----GO TO 376 -----139 CALL DECISIXU, XQ3, XQ4, N, LN1, M) ۰C -- C-----COMIENZA EL TRAJAMIENTU DE-ECUALIZACION ····-----. С 110 = 0---- K1=256*M · ----K3=(NCH-M) DD 370 KU=1,K1,M ---- I10= I10·+·1···· K2=K0+M-1 IF(L-1)140,140,150 С INGRESAN PRIMEROS XX AL ECUALIZADOR ċ 145 DD 147 I=K0,K2 XK1(I)=XQ3(I) ----XK2(I)=XQ4(I) -----147 CONTINUE GD TO 370 C INGRESA NJEVU XK AL ECUALIZADOR С. ..... 150 [1=NCH-M DO 155 I=K0,K2 · I1=I1+1 -----XK1(I1)=XQ3(I) XK2[[1]=XQ4(]) 155 CONTINUE .. **..** C CALCULÚ DE UK,YK,EK С .....UK1=0.0 UK2=0.0 - DO 180 J=1,NCH ... UK1=UK1+(hK1(J)*XK1(J))-(HK2(J)*XK2[J)) UK2=UK2+(HK1(J)*XK2(J))+(HK2(J)*XK1(J))180 CONTINUE _____IF([ECOP-0])184,184,181. 181 YK1=0.0 YK2=0.0 DO 182 J=1,NCA YK1=YK1+(AK1(J)*OK1(J))-(AK2(J)*OK2(J)) YK2=YK2+(AK1(J)*DK2(J))+(AK2(J)*OK1(J)) 182 CONTINUE EK1=UK1−YK1 EK2=UK2-YK2 GO TO 136 C CALCULU DE LOS VALURES ESTIMADOS AK , BK Y ERRUR С

	F	T	1	c	٠	5	$\sim$	11	۸	1
۱.	Ŀ.	r	1	С	٠	C.	C,	υ	А	L

-- -- -- -

	•		•			
C					·-	•
184	EK1=UK1				<i></i>	
	FK2=UK2					
186	IE(EK1-0, 0)(200, 210, 21)	0				
100						-
190	1F(EK2-0.01220,240,24					
2,00	$AK = -1 \cdot 0$	·				.7
· ·	GO TO 190	•				·
210	AK=1.0					· ·• ·• ·· ;
<b>`</b>	GO TO 190	•	•			
220	$BK = -1 \cdot 0$	•				·
	GO TO 250					
240						
240						
250	IF(110-NUH4)200,200,3			·		
	ERRTA=ERRTA+ABS(TART)	110J-AKI/FLUAT12	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		·····
	ERRTB=ERRT6+ABS(1XR24	(11J)-BK)/FLOAT(2	2))			, <b>;</b>
	GO TO 340		"		•	
300	I11=I10-NCH4	·····				:
	ERRTA=ERRTA+ABS((XUI)	111)-AK)/FLUAT(2	())			
	ERRTB=ERRTE+ABS((XJ2)	111)-BK)/ELDAT (2	2))			
_ C						
r	CALC: U D DE COFETI	LENTES HY A. M	INSTANTE	(K+1)T	: `	:
c			LAUSIANTE			
5 720		•		<b>`</b> .'		
	PRI-ERI-AR					
,	PKZ=EKZ-BK		•			•
	DU 350 K=1,NCH	· · ·				
	$HK1(K) = HK1(K) - MU \approx (XK)$	.{K]*PK1+XK2(K)*F	PK2)			
	HK2(K)=HK2(K)-MU*(XK)	.(<)*PK2-XK2(K)*P	°К1) –		• .	•.
350	CONTINUE					1.
. C .		· · · · · · · ·		•		
	IF(KOPT3-0)900,1010,1	010				1
900	L1 = (NUBIT - 512)/256					
	IE(1-11) 4001,1001,100	10			•	
1000	WRITE(3,351)(HK)(K), K	= E - M (1H )	- 10		•	
1001	HOTTC/C > 5 1) (HV1(V) V		بالمعرف أ			
1001			1.1			
	FURMAL (FIU.6)	•• • •				
6		_			•	2.1
1010	IF(IECUP-0)356,356,35					
352	DO 355 K=1,NCA .				•	
	AK1(K)=AK1(K)+LAMBDA≠	*(UK1(K)*PK1+DK2(	K)*PK2)			
	AK2(K)=AK2(K)+LAMBDA*	· [ UK1 ( K )*P K2-DK21	(K)≠PK1)			• •
355	CONTINUE .					<b>1</b> .
C					6 1 1 1 1 1	9.5
	IF(KOPT3-01356.356.80					
800	11 = (NUBTT - 512)/256	_				, l
	IE(1-111103 1003 100					- (**) 1.
1000			• .			•
1002	WRITE(J:JJJJI)(ARI(R):R					1.
1003	WRITE(0,351)[ANI(N],K		. •			
C					•	ĩ
Ç	DESPLAZAMIENTO DE	E LUS XK EN LA ME	MORIA DEL	ECUAL1	ZADOR	
С		· · · · · ·				~-
356	K4=M+1 ·	```				-1
	00 360 K=K4,NLH					
	1=K-M					
	•					•
	XK1(J) = XK1(K)					
	XK1(J) = XK1(K) $XK2(J) = XK2(K)$	•				
	XK1(J)=XK1(K) XK2(J)=XK2(K)		•			•
	XK1(J)=XK1(K) XK2(J)=XK2(K)	· · · ·			•	• • •••
	XK1(J)=XK1(K) XK2(J)=XK2(K)		•		•	• ••• •••
	XK1(J)=XK1(K) XK2(J)=XK2(K)		•		•	
	XK1(J)=XK1(K) XK2(J)=XK2(K)		•		•	

FILE: ECUAL FORTRAN A1 VM/SP RELEASE 3.1 EXPRESS PU18401+ SUU301 and a second of the second second second second second second second second second second second second second 360 CONTINUE 362 DO 365 K=2,NCA J=K-1 ----- DK1(J)=DK1(K) -----、DK2(J)=DK∠(K) 365 CUNTINUE ---- DK1(NCA)=AK DK2(NCA)=BK 370 CONTINUE -----J=256-NCH4 -----• • • DÜ 375 K=1,NCH4 XR1(K)=XJ1(J+K) ----- XR2(K)=XQ2(J+K) 375 CONTINUE 376 NBTR=256*L ______ C . GALCULO DE PROBABILIDAD DE ERROR PARCIAL С -----PERRT A=ERRTA/ { 256, 0*+LUAT (L) } ---------PERRTE=ERKTB/(256.0*FLUATIL)) . WRITE(6,378)NOTR, PERKIA, PERRTB 378 FORMAT(T5, 'NBTR=', 15, 125, 'PA=', F12, 10, T45, 'PB=', F12, 10) ESH TATE 2 380 CONTINUE SALIDA DE RESULÍADUS EN TERMINAL C С 430 FORMAT (IHI, 30X, 'R E S U L T A D O S', /, 31X, 19(***), //) -- WRITE(6,435)F0,FC1,FC2,D,EN,NUBIT,PERRTA,FERKTB,LN1,ALFA *&DB:',19X,2F12.2,/,10X,'vELLCIDAD DE MODULACIUN:',15X,F12.2, */,10X, RELACION SENIAL AL RUIDO: 1,14X, F12.2, ------ */,10X,'NUMERU DE BITS JRAJADUS:',12X,112,/,10X,'PROBABILIDAD DE E ≭ROR TREN A:',18X,F12.1∪,/,10X,'PROBABILIDAD DE ERROR TREN B:', *18X, F12.10,/,10X, 'INSTANJE DE DECISION: ',25X,12,/,10X, 'EXCESO DE ..... *ANCHO DE BANDA: 15X, F12.4) IF(IOPPR-0)550,550,440 440 IF (IECLP-U)464,464,450 450 WRITE(6,400)NCA,LAMUJA 460 FORMAT(10X, 'NUMERO DE CUEFICIENTES DEL FILTRO A: ,7X,14,/,10X, * PARAMETRU LAMBUA: ',20% ,F12.8) ____ 464 WRITE(6,408)NCH,NU - 468 FORMAT(lox, NUMERG DE LUEFICIENTES DEL FILTRU H: 1,7x,14,/,10x, * PARAMETRU MU: 1,32x, 12.6) 550 STOP EN D

C		DE GENERACIUN SISTEMA DE IRAN A SUBRUTINA DE GTORIUS CON DIS -1'S, SE GENERA DISTRIBUCION-	DE TREN DE SMISION. L BIBLIUTEC TRIBUCION CGN DECIS	DATUS A GENE A — KAN UN IFLR IGN SC	AK+JBK Raliun S UU-, Que Me, Y LA BRE EL P	, QUE IN E REALIZ GENERA SECJENC UNTU CEN	I— ZA I A I—
			M TV)	···- · ·	····	• .	ئے پیسمہ در مدینہ در
	COMPLEX Xu(204	8)					.*
	KI=0	2567,XQ2(256)·	ga an gang nanan da dadi an ining n				
	IX=IY DO 180 I=1,M,8	· · ·				<b>.</b>	
	K=I+7			·			
	CALL RANDU (IX	IY,YFL)	•				
	IX=IY IF(YFL-0.5)11(	0,120,120					
	XR E=-1.0		•••••			• •	* 1.
. 120	XRE=1.0	ĩ			: • · ·		
··- 130	CALL RANDUIIX. IX=IY	IY,YFL)					•
. 140	IF(YFL-0,5)140 XIM=-1.0	,150,150					
. 170	GO TO 160			•			
· 150	Х1М=1.0 XQ1(K1) <i>=</i> XкЕ		<b>-</b> .				1
	XQ2(K1)=X1K						
170	-XQ(J)=CMPLXIXA	(E,XIM) -					
170	CONTINUE						
· · · ·	RETURN - END	• • • • •					
•	,			•			· · ·
•	•••••••	• • • • •	I	·	•		
	ر. مراجع کو اور کو اور کو اور کو اور کو اور کو کو کو کو کو کو کو کو کو کو کو کو کو						
	•						
•	· · · · ·	·· · · ···				•	
					. •		-  - - - - - - - - - - - - - - - - - -
	i sa sa sa sa sa sa sa sa sa sa sa sa sa	··· · ·	·				13
		·					£
		·					
	· ·	• • • •					1
		1					
			•				.: :
						•	-
			•				
		·			-		
		•					

FILE: HTX	FORTKAN AL VN	1/SP RELEASE	3.1 EXPRI	ESS Pu18401+ SLU
			•	
÷. ••• FI	LTRU TRANSMISUR LE	IN CARACTERI	STICA LOSE	INU SUBREELEVADO
SUBROU	TINE HTXIXQ, D, ALFA	A) ·	· · ·	
COMPLE	X XU(2048) ···			
₽AF=D/	256.0	•		
FC=D/2	.0			······································
F2=FC*	(L. U+ALFA)			
T=1.0/	D			······································
F=PAF*	(1-1)	_		
	1)630,630,540			·····
630 Y≓P1≭P 635⊴HE≔CMP	₩1/31N(P1₩F₩1) LX(Y,0.0)			
XQ(1)=	XQ(1)*HF			
~ XQ(205	0—1)=XQ(2050−1)≉H£ 570	-		
640-1F(F-F.	2)650,650,660	•		a fails in the
650 Y=0.5*	(1. U-SIN(P1*7*(F-) (V)*P1*F*T/V/N(P)*	-C)/ALFA))		S. March
GO·TO	635			1. 1.
660 XQ(1)=	CMPLX(0.0,0.0)	11		
670 ·CONTIN	UE		1	?
XQ(102	5)=LMPLX(0.0,0.0)	•		
RETURN EMD			1.3.2	
		•		·
			S	•
			· (53)	
				۰ · · ·
	· · · · · · · · · ·	<b>.</b>		
		· · · · · · · · · · · · · · · · · · ·		
			<b></b> .	., .,
همانه ور و و		<b></b>		· · · ····
	•			
	· ·· ·· ·· ·			
		· •		
				•
	•			
				•
	•			
•	•			

•

ł

÷

C	SUBRUTINA CON LAS CARACTERISTICAS DEL CANAL TEL CONSIDERADO.	EFUNICO	
•			
	COMPLEX XC42048).HE	-	
	PAE=0/256_0	• .	
	PI=3.14159265		
	F1=300.0		
	F2=400.0		
	F3=1500.0		
	F4=2200.0		
·	F5=27 C0.0		
	F6=3000.0	•	
	F67=3200.0	· .	
	DO 570 I=2,1024		
<u>.</u>	.F7=F0+PAF*(I-1)		
	IF (F7-F4)570,570,510		
510	1F(F7-F5)520,520,530		1
520	A=-0.0001034×F7+1.2274	Stall Street	43
	HF=CMPLX(A,0.0)		
	XQ(I)=XQ(1)*HF	•	
	GO TO 570		
530	IF(F7-F6)540,540,550		
540	A=-0,0001034*F7+1,2274		
545	TAD=(5.602747*ALUG10(F7)-19.225)*0.001	•	
	TEIA=2.0*PI*(F7*TAU-1FIX(F7*TAO))		
•	$X = A \approx COS(TETA)$		
	$Y = A \times S I N (I \ge J A)$		
550			
550			
280	AU.0020123*F7+9.3548	•	
570			
580	$\frac{1}{1}$		
200	$E7 = E0 - DAE \pm (I - 1)$		
	1 = 10 [FAL = (1 = 1) 1 = 10 [FAL = (1 = 1)]		
610	1 = (12 - 17) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107) + (107		
620	$\Delta = 1.0$		
625	$TAB = (-2, 5) 368 \times 41 D(1) ((F7) + 7, 95) 93) \times 0.001$	100000	- ī
	$TETA=2 \cdot () \neq P I \neq (E7 \neq T \land (P) + (E7 \neq T \land (P)))$	11 (1) [5]	Ц
	X=A*CGS(TEIA)		
	$Y = A \neq S IN(J \perp TA)$		
	HF = CMPL X (X, -Y)		
	XQ(2050-1) = XU(2050-1) + HF	•	
	GU TO 670	·	
630	IF (F1-F7) 040, 640, 630	•	
. 640	A=0.005*F7-1.0		
	GO TO 625	•	
670	CONTINUE		
680	RETURN		
	END		
	· .		

VM/SP RELEASE 3.1 EXPRESS PU18401+ SLU301 FORTRAN A1 FILE: HRX . FILTRU RECEPTOR CUN CARACTERISTICA COSENO SOBREELEVADO SUBROUTINE HRX (XQ, D, ALFA) - COMPLEX X 12048) ------PI=3.141593 SPAF=D/256.0 FC=D/2.0  $F1 = FC * (1 \cdot U - AL FA)$  $F2 = FC \approx (1 \cdot U + ALFA)$ -T=1.0/D DO 670 I=2,1024 F=PAF + (I-1) --- IF(F-F1)6/0,670,640 ----640 IF(F-F2)650,650,660 650 Y=0.5*(1.U-SIN(P1*T*(F-FL)/ALFA)) ROUNTED) HE=CMPLX(Y,0.0) ___XQ(I)≔XQ(I)≄HF -XQ(2050-I) = XQ(2050-I) + HFGO TO 670  $660 \times Q(I) = CMPLX(0.0, 0.0)$ ----- XQ(2050-I)=CMPLX(0.0.0.0)----670 CONTINUE XQ(1025)=LMPLX(0.0,0.0) ----RETURN · END 1 J - 2 . . 

PROGRAMA DE MUESTREJ DE LA SENIAL EN EL RECEPTUR, PARA C ECUALIZADUR PSE (FRAUTIUNALLY SPACED CLUALIZERS), LA FADALE LNI DA EL PRIME INSTANTE UN ENULSTRAS INGRES AL ECUALIZADUR AL USU MISTANTES ITO HISTANTE VENUSTRAS INGRES AL ECUALIZADUR AL USU MISTANTES ITO HISTANTES ITO COMPLEX Xu(2048) DIMENSION X03(2048),Xu4(2048) J=0 I4=87M DO 320 I=LNI,N,I4 J=11 XQ3(J)=REALIXG(I)) XQ4(J)=ALAGIXL(I)) 320 CONTINUE RETURN END SUBRUTINA DE GENLRACIUN DE RUIDO GAUSSIANO RUIDO FORTRAN AL VY/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENLRACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS- ESTA SUBRUTINA RECUERC CEL VALUE MEDIU; L DESVIACIÓN STANDAN, Y UNA SEMILLA. SUBROUTINE RUIDO(XJ,CN,N) COMPLEX XU(2048),XRD IX2=573528759 S=SET(14.0.0/1104*(EN/10.01)) MEND CALL GAUSSIXI,SA,MV2) XRD=CMPLAY,XU(2048),XRD IX2=5735(X4,V),VZ XQ(11=XU(1)+XRD IX2=5735(X4,V),VZ XQ(11=XU(1)+XRD IX2=5735(X4,V),VZ XQ(11=XU(1)+XRD IX2=5735(X4,VZ) XRD=CMPLAY,XD IX1=2-1)*XZ XQ(11=XU(1)+XRD IX2=5735(X4,VZ) XRD=CMPLAY,XD IX1=2-1)*XZ XQ(11=XU(1)+XRD IX1=1) XQ(11=XU(1)+XRD IX2=5735(X4,VZ) XRD=CMPLAY,XD IX1=2-1)*XZ XQ(11=XU(1)+XRD IX1=2-1)*XZ XQ(11=XU(1)+XRD IX1=2-1)*XZ XQ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(11=XU(1)+XRD IX1=1) XZ(1	FILE: DECIS	FURTRAN AL VATSP F		
PROGRAMA DE MUESTREJ DE LA-SENIAL EN EL RECEPTUR. PARA GEUALIZADUR PSE (PRACTIUNALLY SPACED CUGALIZENS), LA V RIABLE LAI DA EL PXIMEN INSTANTE DE UNCSTRED DE LA SENI 				
<pre>PROGRAMA DE MUESIREJ DE LA SENIAL EN EL RECEPTOR, PARA C ECUALIZADUR FS (PRATTUNKALLY SPACED CUALIZERS), LA V RIABLE LNI DA EL PRATHE NISTANTE DE MUESIREJ DE LA SENI </pre>				
<pre>C ECUALIZADUR PSE (PRACHIONALLY SPACED ECUALIZERS), EAV F ATAGEE LNI DA EL PRIMER INSTANTE DE MECSTRAS INGRES. E CUIVALE AL INSTANTE + TO. LAS SIGUIENTES MUESTRAS INGRES. AL ECUALIZADUR A LUS INSTANTES (TO + KI/M), K=1,2, COMPLEX X (2048) DIMENSIUN XQ3(2048), Xu4(2048) J=0 I4=8/M DO 320 J=LN1, N, I4 J=J+1 XQ3(J)=REALIXQ(II)) XQ4(J)=ALMAG(XL(I)) = 20 - CONTINUE RETURN END SUDRUTINA DE GENERACIUM DE RUIDO GAUSSIANÚ RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUDAUTINA DE BIB TECA - GAUSS- ESTA SUGRAJIAR RECUIERE CEL VALUM MEDIU, L DESVIACIÓN STANDAK, Y-UNA SEMILLA. SUBRUTINE RIIDO(XJ, EN, N) COMPLEX Xu(2048), XRU COMPLEX Xu(2048), XRU XUEROUTINE RIIDO(XJ, EN, N) COMPLEX Xu(2048), XRU COMPLEX Xu(2048), XRU XUEROUTINE RIIDO(XJ, EN, N) COMPLEX Xu(2048), XRU XUEROUTINE RIIDO(XJ, EN, N) COMPLEX Xu(2048), XRU X1=32572520759 S=SCRT(4. U/IIO++(EN/IO.UJ)) AM=0.0 DO 710 [=1, N CALL GAUSS(XIX,S, AM, VL) CALL CAUSS(XIX,S, AM, VL) CAUSACIUMA END COMTINUE RETURN END</pre>	GPRL	IGRAMA DE MUESTREJ DE L	A SENIAL EN EL R	ECEPIGR. PARA EL
RIABLE LNI DA EL PAINEN INSTANTE DE MUESTRAD LA SENDIENTES MUESTRAD INGRES. C AL ECUALIZADOR A LOS INSTANTES (TO + KI/M), K=1,2, SUBROUTINE DECIS(Xu,Xu3,Xu3,XU4,N,LNI;M) COMPLEX Xu(2048) DIMENSIUN XQ3(2048),Xu4(2048) J=0 I4=8/M DO 320 I=LN1,N,I4 XQ3(J)=REAL(XCII) XQ4(J)=AIAAGIX(IJ) =320 CONTINUE RETURN END SUBRUTINA DE GENERACILON DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERACIC MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUERT CEL VALUE MEDIU; L SUBRUTINE RJIDO SUBRIAN, Y-UNA SEMILLA. SUBRUTINE RJIDO(XJ,EN,N) COMPLEX Xu(2049),XR0 IX1=325729739 IX2=573525759 S=SQRT(4.U/(10*(EN/10.G))) CALL GAUSS(IX1,S,AM,VI) CALL CAUSS(IX1,S,AM,VI) CAUSS(IX1,S,AM,VI) CAUSS(IX1,S,AM,VI) CAUSS(IX1,S,AM,VI) CAUSS(I	G ECU	ALIZADUR ESE (EKALITU	NALLY SPACED LCU	ALIZERS), LA VA-
EQUIVALE AL INSTANTE 10. LAS SIGUIENTES MUESTRAS INGRES. AL ECUALIZADDR A LLS ANSTANTES (TO + KI/M), K=1,2, SUBROUTINE DECIS(X_4,X_43,X_44,N,LN1,M) COMPLEX X_4(2048) DIMENSIUN XQ3(2048),X_44(2048) J=0 I4=8/M DO 320 I=LN1,N,I4 J=0+1 XQ3(J)=REAL(XC(I1)) XQ4(J)=AlAAG(X_(I1)) =320 CONTINUE RETURN END SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS- ESTA SUBRUITANA RECUIERL CEL VALUE MEDIU; L DESVIACIÓN STANDAR, Y-UNA SEMILLA. SUBROUTINE RJIDU(XJ,CN,N) COMPLEX X(4048),XR0 IX1=325729739 S=SORT(4. U/1104*(EN/10.0))) 'AM=0.0 DO 710 I=LN CALL GAUSSI(X1,S,AM,V1) CALL GAUSSI(X1,S,AM,V1) CALL GAUSSI(X1,S,SM,V1) CALL GAUSSI(X1,SM,V1) CALL GAUSSI(X1,SM,V1) CALL GAUSSI(X1,SM,V1) CALL GAUSSI(X1,SM,V1) CALL GAUSSI(X1,SM,V1) CALL GAUSSI(X1,SM,V1) CAUS CAUS CAUS CAUS CAUS CAUS CAUS CAUS	C RIA	BLE LNI DA EL PRIMER	INSTANTE DE MUEST	KEU DE LA SENIAL.
C         AL ELDALIZADOR A LOS INSIANTES TIO + RITAN; K=1,2,           SUBROUTINE DECIS (Xu,Xu3,Xu4,N,LNI;K) COMPLEX Xu(2048) J=0         Jenessian           J=0         I4=8/M DO 320 I=LN1,N,I4           J=1         XQ3(J)=REAL(XC(I)) XQ4(J)=AIAG(XL(I))           320-CONTINUE         RETURN END           RETURN END         SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERADO MEDIANTEL A SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIENTEL A SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIENTEL A SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIENTEL A SUBRUTINA MEDIU, L ODESVIACIÓN STANDAR, Y-UNA SEMILLA.           SUBRUTINE RUIDO(INTELIZ, CN,N) COMPLEX Xu(2048), XRU         IX1=325729739 IX2=573520 F159 S=SORT(4.U/110**(EN/10.U))) CALL GAUSS(IXI,S,AM,VI) CALL GAUSS(IXI,S,AM,	· · · · · · E QU	IVALE AL INSTANTE TO.	LAS SIGUIENTES M	UESTRAS INGRESAN
<pre>SUBROUTINE DECIS (Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,Xu,X</pre>	C · AL	ECUALIZADUR A LUS ANST	IANTES (TO + KI/M	), K=1,2,
SUBROUTINE DECISIX4, x, y,	•		•	
COMPLEX XU(2048) DIMENSIUN X3(2048),XU4(2048) J=0 I4=G/M. DO 320 I=LN1,N,I4 J=J+1 XQ3(J)=REAL(XQII)) XQ4(J)=ALMAG(XL(II)) =320 CONTINUE RETURN END ILE: RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIAMU ES GENERADO MEDIANTE LA SUGRUTINA DE BIB TECA - GAUSS- ESTA SUBRUTINA RECUIERE CEL VALUE MEDIU; LO 	SUBROUT	INE DECISIX4,X43,X44,1	N.LN1,M) ······	
DIMENSION X03(2048),X44(2048) J=0 I4=8/M D0 320 I=LN1,N,I4 J=J+1 XQ3(J)=REALIXQII) XQ4(J)=ALMAGIX(II) =320 CONTINUE RETURN END ILE: RUIDO FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANU RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS- ESTA SUBRUINA RECUIERE CEL VALUE MEDIU; LA DESVIACIÓN STANDAR, Y-UNA SEMILLA. SUBROUTINE RJIDD(X2,EN,N) COMPLEX X4(2048),XR0 IX1=25725735 IX2=57352b759 S=SQRI(4,U/ILU**(EN/I0.U))) AM=0.0 D0 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1)	COMPLEX	Xu(2048)		
J=0         I4=d/M.         D0 320 I=LN1,N,I4         J=J+1         XQ4(J)=ALMAG(X4(II))         320 CONTINUE         RETURN         END         ILE: RUIDO       FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU.         SUBRUT INA DE- GEMERACIUN DE RUIDO GAUSSIANU         RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB.         TECA - GAUSS ESTA SUBRUTINA RECUERE CEL VALUE MEDIU, L	DIMENSI	UN XQ3(2048),XQ4(2048)	) _	_
I4=8/M D0 320 I=LN1,N,T4 J=J+1 XQ3(J)=REALIXQ(I)) XQ4(J)=AIMAG(X(I)) =320 CONTINUE RETURN END ILE: RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENLRAUIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS- ESTA SUBRUINA RECUIERE CEL VALUE MEDID) D -DESVIACIÓN STANDAR, Y-UNA SEMILLA. SUBROUTINE RJIDO(XJ,EN,N) COMPLEX XQ(2048),XR0 IX1=325729739 IX2=573525759 S=SQRI(4, U/(I)U+*(EN/I0.U))) M=COMPLA(XI,V,V) CALL GAUSS (IX1,S,AM,V1) CALL GAUSS (IX2,S,AN,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2) XR0CMPLA(VI,V2	<b>J</b> =0	······································		
DO 320 I=LNI,NIA 	I4=8/M		· .	
J=J+1 XQ4(J)=REALIXC(I)) XQ4(J)=AIMAGIXC(I)) =320 CONTINUE RETURN END ILE: RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENLRACIUM DE RUIDO GAUSSIANO RUIDO GAUSSIANJ ES GENERADO MEDIANTE LA SUBRUTINA DE BIB. TECA - GAUSS ESTA SUBRUINA RECUIERE DEL VALUE MEDIU; LO DESVIACIÓN STANDAE, Y UNA SEMILLA. SUBROUTINE RJIDO(XJ,EN,N) COMPLEX XU(204B),RRO IX1=325725739 S=SQRT(4.U/IIU**(EN/IU.U)) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1	DO 320	I = LN1, N, I4		,
X03(J)=REALIXQ(I)) X04(J)=AIAAG(X(I)) =320 CONTINUE RETURN END ILE: RUIDO FGRTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU. SUBRUTINA DE GENLRACIUN DE RUIDO GAUSSIANÓ RUIDO GAUSSIANO ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS- ESTA SUBRUJINA RECUIERE CEL VALUE MEDIU; L -DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RJIDU(X2, CN, N) COMPLEX X3(2048), XR0 IX1=2573525759 S=SQR7(4.0/110+(EN/10.0)) AM=0.0 DO 710 I=1 N CALL GAUSS(IX1,S, AM, V1) CALL GAUS(IX1,S, AM, V1) CALL GAUS(IX1,S, AM, V2) XRD=CMPLX[V1,V2] XQ(I)=XQ(I)+XR0 IX1=(-1)+IX2 IX2=573526759 S=SQR7(4.0/10+XEN/V2) RD=CMPLX[V1,V2] RD=CMPLX[V1,V2] RD(M) FROM END RETURN END RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU. SUBROUTINE RJIDU(X2,CN,N) COMPLEX X3(2048), XR0 IX1=(-1)+XR0 FROM END RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU. FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FROM FRO	J=J+1			
XQ4(J)=AlAAG(X([]) =320-CONTINUE RETURN END ILE: RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENLRACIUN DE RUIDO GAUSSIANU RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIERE LEL VALUE MEDIU; LA DESVIACIÚN STANDAR, Y-UNA SEMILLA. SUBROUTINE RJIDU(XJ,[N,N) COMPLEX XU(2U48),XR0 IX1=325729739 IX2=573520759 S=SQRI(4.U/ILU**(EN/IU.U))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,VI) CALL GAUS(IX1,S,AM,VI) CALL GAUSS(IX1,S,AM,VI) CALL GAUS	XQ3(J)=	REAL(XQ(I))		
320 CONTINUE RETURN END ILE: RUIDD FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENLRACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE DIB TECA - GAUSS ESTA SUBRUINA REQUIERC CEL VALUE MEDIU; L -DESVIACION STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(X2,CN,N) COMPLEX X2(2048),XR0 IX1=25725739 S=SQT1(4.U/IIU**(EN/IU.U))) AM=0.0 DO 710 1=1,N CALL GAUSS(IX1,S,AM,VI) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XRD=CMPLX(V1,V2) TX1=(-1)*IX2 TO CONTINUE RETURN END 2.001411 X257352 S=SQMI(4.U/IIU**(EN/IU.U)) AM=0.0 CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) CALL GAUSS(IX2,S,AM,V2) CALL GAUSS(IX2,S,AM,V2	XQ4(J)=	AIMAG(X((I))		
RETURN END ILE: RUIDO FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACI UN DE RUIDO GAUSSIANO RUIDO GAUSSIANO ES GENERADO MEDIANTE LA SUGRUTINA DE BIB TECA - GAUSS ESTA SUBRUIINA REQUIERT CEL VALUK MEDIU; L DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(X2,CN,N) COMPLEX X4(2048),XR0 IX1=325729739 IX2=573526759 S=550RT(4.0/1104*(EN/10.0))) AM=0.0 DO 710 [=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XQII)=XQI(1)+XKD IX1=(-1)*1X1 IX2=(-1)*1X2 710 CONTINUE RETURN END END	-320 - CONTINU	Ε		
END ILE: RUIDD FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERALIUN DE RUIDD GAUSSIANO RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBKUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA REQUIERE CEL VALUE MEDIU; L DESVIACION STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDDIX2, [N,N] COMPLEX XX(2048), XRO IX1=325729739 IX2=57352b759 S=S0RT(4. U/ILU*(EN/IU.U))) AM=0.0 DD 710 1=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XQ(I)+XRD IX1=(-1)+IX2 710 CONTINUE RETURN END END END END	RETURN		÷.	در ب <del>ست</del> ر
ILE: RUIDD FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERALIUN DE RUIDO GAUSSIANU RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB. TECA - GAUSS ESTA SUBRUTINA REQUIERE DEL VALUE MEDIU; L DESVIACIÚN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(X2, EN,N) COMPLEX X0 (20 48), XR0 IX 1=325725739 S=SQRT (4.0/110**(EN/10.0))) AM=0.0 DO 710 I=1,N CALL GAUSS (IX1,S,AM,V1) CALL GAUSS (IX1,S,AM,V1) CALL GAUSS (IX1,S,AM,V1) CALL GAUSS (IX1,S,AM,V2) XR0=CMPLAX (V1,V2) XQ(I)=XU(1)*XR0 IX1=(-1)*IX2 710 CONTINUE RETURN END	END			· · · · · · · · · · · · · · · · · · ·
ILE: RUIDD FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE: GENERALIUN DE RUIDO GAUSSIANO RUIDO GAUSSIAMO ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA REQUIERE DEL VALUE MEDIO; L -DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(X2, EN,N) COMPLEX X0(2048), XRO IX1=325729739 IX2=573526759 S=SQRI(4.0/110**(EN/10.0))) AM=0.0 DO 710 1=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XQ(1)=XQ(1)+XKD IX1=(-1)*IX2 710 CONTINUE RETURN END SUBROUTINE RETURN END			• • • •	
ILE: RUIDD FORTRAN AL VY/SP RELEASE 3.1 EXPRESS PUT6401+ SLU. SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDU GAUSSIANU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA REQUIERE DEL VALUE MEDIU; LA DESVIACIÚN STANDAR, Y UNA SEMILLA. SUBROUTINE RJIDO(X2, [N,N) COMPLEX XQ(2048),XR0 IX1=325729739 IX2=573526759 S=SORI(4.0/110**(EN/10.0))) AM=0.0 DO 710 1=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX1,S,AM,V2) XQ(1)=XU(1)+XRD IX1=(-1)*IX2. 710 CONTINUE RETURN END				
ILE: RUIDO FORTRAN AL V4/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIANO ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIERE CEL VALUE MEDIO; L -DESVIACION STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(XJ,EN,N) COMPLEX XU(2048),XR0 IX1=3257252739 S=SQRI(4.U/IIU**(EN/IU.U))) AM=0.0 DO 710 I=1,N CALL GAUSS(IXI,S,AM,VI) CALL GAUSS(IXI,S,AM,VI) CALL GAUSS(IXI,S,AM,VI) CALL GAUS(IXI,S,AM,VI) CALL GAUS(I				
ILE: RUIDD FORTRAN AL V4/5P RELEASE 3.1 EXPRESS PUT6401+ SLU. SUBRUTINA DE GENERACIEN DE RUIDO GAUSSIANO RUIDO GAUSSIANO ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA REQUIERE CEL VALUE MEDIO; L DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(XJ,EN,N) COMPLEX XU(2048),XR0 IX1=325729739 IX2=57352b759 S=SQRT(4.0/110**(EN/10.0))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)*XED IX1=(-1)*IX1 IX2=(-1)*IX2 RETURN END CALL RETURN END				
ILE: RUIDO FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU SUBRUTINA DE GENERACIUN DE RUIDO GAUSSIANO RUIDO GAUSSIAMU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA REQUIERE CEL VALUE MEDIU; L DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(X2,EN,N) COMPLEX XQ(2048),XR0 IX1=3257259739 S=SQRT(4.0/110**(EN/10.0))) AM=0.0 DO 710 I=I,N CALL GAUSS(IX1,S,AM,VI) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XRD=CMPLX(V1,V2) TX1=(-1)*1X1 IX2=(-1)*1X2. 710 CONTINUE RETURN END AMADAN END				
ILE: RUIDO FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PUT6401+ SLU. SUBRUT INA DE GENLRACIUM DE RUIDO GAUSSIANO RUIDO GAUSSIAMU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIERE DEL VALUE MEDIU; LI DESVIACIÓN STANDAR, Y UNA SEMILLA. SUBROUTINE RUIDO(XJ,EN,N) COMPLEX XU(2048),XRD IX1=325729739 S=SQRT(4.0/110**(EN/10.0))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,VI) CALL GAUSS(IX2,S,AN,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(1)+XED IX1=(-1)*IX2 TIX=(-1)*IX2. 710 CONTINUE RETURN END SUBROUTINE RETURN END				
RUIDÜ GAUSSIARU ES GENERADO MEDIANTE LA SUBRUTINA DE BIB TECA - GAUSS ESTA SUBRUTINA RECUIERE DEL VALUK MEDIU; L DESVIACIÚN STANDAK, Y UNA SEMILLA. SUBROUTINE RUIDU(X2, CN, N) COMPLEX XQ(2048), XRU IX1=325729739 IX2=57352b759 S=SQRI(4. U/II0**(EN/IU.U))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,VI) CALL GAUSS(IX2,S,AM,VI) CALL GAUS			ELEASE 3.1 EXPRES	
TECA - GAUS S ESTA SUBRUTINA REQUIERE LA SUBRUTINA DE BIB        DESVIACIÚN STANDAR, Y UNA SEMILLA.         SUBROUTINE RJIDO(XJ,EN,N)        COMPLEX XJ(2048),XR0         IX1=325729739         IX2=573528759         S=SQRT(4.0/110**(EN/10.0)))         AM=0.0         D0 710 1=1,N         CALL GAUSS(IX1,S,AM,VI)         RETURN         RETURN         RETURN         END		UTINA DE GENERALIEN DI	F RULDO GAUSSIANO	
DESVIACIÚN STANDAK, Y UNA SEMILLA. SUBROUTINE RJIDU(XJ,EN,N) COMPLEX XU(2048),XRD IX1=325729739 IX2=57352b759 S=SQRI(4.u/(10**(EN/10.U))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)+XKD IX1=(-1)*IX2 710 CONTINUE RETURN END 20(0) 141 157 257 257 257 257 257 257 257 2		UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL	E RUIDO GAUSSIANU	
SUBROUTINE RJIDO(XJ,EN,N) COMPLEX XV(2048),XRJ IX1=325725739 S=SQRT(4.0/(10**(EN/10.0))) AM=0.0 D0 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XV(I)+XKD - IX1=(-1)*IX1 IX2=(-1)*IX2 710 CONTINUE RETURN END SOLUTION END SUBROUTINE RETURN END SOLUTION SUBROUTINE RETURN END SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUT	SUBR RUIC • TECA	UTINA DE GENERALIUN DI DU GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUIJ	E RUIDO GAUSSIANO OG MEDIANTE LA SU INA RECUIERF (F)	brutina de Bibli
SUBRUULINE RJIDO(XJ,EN,N) COMPLEX XU(2048),XRD IX1=325729739 IX2=57352b759 S=SQRT(4.u/(10**(EN/10.0))) AM=0.0 D0 710 I=1,N CALL GAUSS(IX1,S,AM,VI) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)+XKD IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END (0)(0)(1) (2)(0)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (3)(1)(1) (4)(1)(1) (4)(1)(1) (5)(1)(1) (5)(1)(1)(1) (5)(1)(1)(1) (5)(1)(1)(1) (5)(1)(1)(1)(1) (5)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	SUBR RUIC TECA	UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL GAUSS-• ESTA SUBRUID IACIÚN STANDAR, Y-UNA S	E RUIDO GAUSSIANU DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII VALUK MEDIU, LA
COMPLEX Xu(2048),XRD IX1=325729739 IX2=57352b759 S=SQRT(4.u/110**(EN/10.u))) AM=0.0 D0 710 1=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=Xu(1)+XRD IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END END CALL GAUSS(IX2,S,AM,V2) CALL GAUSS(IX2,S,AM,V2) XQ(I)=Xu(1)+XRD (X) (X) (X) (X) (X) (X) (X) (X)	SUBR RUIC TECA DESV	UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL A GAUSS- ESTA SUBRUIJ IACIÚN STANDAR, Y-UNA S	E RUIDO GAUSSIANU DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
1 X 1=325729739 1 X 2=573526759 S=SQRT (4. u / (1 U ** (EN / 1 U. U ) )) AM=0.0 DD 710 I=1,N 	SUBROUT I	UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL A - GAUSS- ESTA SUBRUID IACIÚN STANDAR, Y-UNA S NE RUIDO(X2, [N, N)	E RUIDO GAUSSIANU DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
I X2=57352b759 	SUBROUT I	UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL A - GAUSS- ESTA SUBRUID IACIÚN STANDAR, Y-UNA S NE RUIDO(X2,EN,N) Xu(2048),XRD	E RUIDO GAUSSIANO DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
S=SQRT(4. U/(10**(EN/10.0))) AM=0.0 DO 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)+XKD IX1=(-1)*IX1 IX2=(-1)*IX2 710 CONTINUE RETURN END END END END END END END EN	SUBROUT I COMPL EX IX 1=3257	UTINA DE GENERALIUN DI DE GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUID IACIEN STANDAR, Y-UNA S NE RUIDO(X2, [N, N) X2(2048), XRD	E RUIDO GAUSSIANO DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
AM=0.0 D0 710 1=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)+XKD IX1=(-1)*IX1 IX2=(-1)*IX2 710 CONTINUE RETURN END (1) (1) (1) (1) (1) (1) (1) (1)	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735	UTINA DE GENERALIUN DE GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUID IACIÚN STANDAR, Y-UNA S NE RUIDUIXJ, [N,N) XU(2048), XRD 29739 25759	E RUIDO GAUSSIANÚ DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
DO 710 I=1,N CALL GAUSS(IX1,S,AM,V1) CALL GAUSS(IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XU(I)+XKD- IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END ())())()()()()()()()()()()()()()()()()	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=S QRI(4	UTINA DE GENERALIUN DE GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUID IACIÚN STANDAR, Y'UNA S NE RUIDU(XJ,EN,N) XU(2048),XRD 29739 25759 • U/(10**(EN/10.01))	E RUIDO GAUSSIANU DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII VALUK MEDIU, LA
CALL GAUSS (IX1, S, AM, V1) CALL GAUSS (IX2, S, AM, V2) XRD=CMPLX(V1, V2) XQ(I)=XU(I)+XKD IX1=(-1)*IX1 IX2=(-1)*IX2 710 CONTINUE RETURN END END ()())()()()()()()()()()()()()()()()()(	SUBROUT I SUBROUT I SUBROUT I COMPL EX IX1=3257 IX2=5735 S=S QRI (4 AM=0.0	UTINA DE GENERALIUN DE GAUSSIANU ES GENERAL GAUSS ESTA SUBRUIJ IACIÚN STANDAR, Y'UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 25759 -U/(10**(EN/10.01))	E RUIDO GAUSSIANÚ OG MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLII Valuk Mediu, la
CALL GAUSS (IX2,S,AM,V2) XRD=CMPLX(V1,V2) XQ(I)=XQ(I)+XKD- IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END END Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Con	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 DO 710 I	UTINA DE GENERALIUN DE GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUIJ IACIÚN STANDAR, Y'UNA S NE RUIDOIXJ, EN, N) XU(2048), XRD 29739 20759 . U/(10**(EN/10.0))) =1, N	E RUIDO GAUSSIANÚ OG MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
XRD=CMPLX(V1,V2) XQ(I)=XQ(I)+XkD IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END (0)()()()()()()()()()()()()()()()()()()	SUBROUT I TECA TECA SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 DO 710 I CALL GAU	UTINA DE GENERACIUN DE GAUSSIANU ES GENERAL - GAUSS- ESTA SUBRUIJ IACIÚN STANDAR, Y'UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 20759 .U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI)	E RUIDO GAUSSIANÚ DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
XQ(I)=XQ(I)+XkD- IX1=(-1)*IX1 IX2=(-1)*IX2. 710 CONTINUE RETURN END (0)())()()()()()()()()()()()()()()()()(	SUBROUT I SUBROUT I SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRT (4 AM=0.0 D0 710 I CALL GAU CALL GAU	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAL - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y'UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
$I X1 = \{-1\} * I X1 I X2 = (-1) * I X2.$ 710 CONTINUE RETURN END (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	SUBROUT I SUBROUT I SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRT (4 AM=0.0 D0 710 I CALL GAU CALL GAU XRD=CMPL	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAL - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y'UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD  29739 20759 . U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,V1)  SS(IX2,S,AM,V2) X(V1,V2)	E RUIDO GAUSSIANÚ DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
IX 2=(-1)*IX2. 710 CONTINUE RETURN END (0)(U)(U)(U)(U)(U)(U)(U)(U)(U)(U)(U)(U)(U)	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 D0 710 I CALL GAU CALL GAU XRD=CMPL XQ(I)=XU	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAL - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y'UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 20759 .U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI) SS(IX1,S,AM,VI) 	E RUIDO GAUSSIANÚ DO MEDIANTE LA SU INA RECUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
710 CONTINUE RETURN END CST TST	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 D0 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XU IX1=(-1)	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 20759 . U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI) SS(IX2,S,AM,V2) X(V1,V2) (1)+XRD	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
RETURN END	SUBR RUIC TECA SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 D0 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(1)=XU IX1=(-1) IX2=(-1)	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	GRUTINA DE BIBLIN Valuk Mediu, la
	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 D0 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XU IX1=(-1) IX2=(-1)	UTINA DE GENERACIUN DE GAUSSIANU ES GENERAE - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 20759 . U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI) SS(IX2,S,AM,V2) X(V1,V2) (1)+XRD	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	GRUTINA DE BIBLIN VALUR MEDIU, LA
	SUBR RUIC TECA SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRT(4 AM=0.0 D0 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(1)=XU IX1=(-1) IX2=(-1) 710 CONTINUE RETURN	UTINA DE GENERACIUN DE GAUSSIANU ES GENERAE - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y UNA S NE RUIDO(XJ,EN,N) XU(2048),XRD 29739 20759 . U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI) SS(IX2,S,AM,V2) X(V1,V2) (1)+XRD	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	LAUTINA DE BIBLI VALUK MEDIU, LA
	SUBR RUIC TECA SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI (4 AM=0.0 D0 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE - GAUSS ESTA SUBRUIJ I ACIÚN STANDAR, Y UNA S NE RUIDO(XJ,EN,N) XU(2048),XR0 29739 20759 . U/(10**(EN/10.0))) =1,N SS(IX1,S,AM,VI) SS(IX2,S,AM,V2) X(V1,V2) (1)+XRD	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	SKUTINA DE BIBLIN VALUK MEDIU, LA
	SUBR RUIC TECA SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRA DE BIBLIN VALUK MEDIU, LA
	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 DO 710 I CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRA DE BIBLIN VALUE MEDIU, LA
	SUBR RUIC TECA DESV SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRA DE BIBLIN VALUK MEDIU, LA
	SUBR RUIC TECA DESV SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANO OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRA DE BIBLIN VALUK MEDIU, LA
	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRT(4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRA DE BIBLIN VALUK MEDIU, LA
	SUBR RUIC TECA DESV SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRI (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ OG MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRAUL SLUSU
	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRT(4 AM=0.0 DO 710 I CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRAUL SLUSU
	SUBR RUIC TECA DESV SUBROUTI COMPLEX IX1=3257 IX2=5735 S=SQRI(4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRAUL SLUSU
	SUBR RUIC TECA DESV SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRT (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DE DU GAUSSIANU ES GENERAE 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRAULE SLUGU VALUK MEDIU, LA
	SUBR RUIC TECA DESV SUBROUT I COMPLEX IX1=3257 IX2=5735 S=SQRT (4 AM=0.0 DO 710 I CALL GAU CALL GAU CALL GAU XRD=CMPL XQ(I)=XQ IX1=(-1) IX2=(-1) 710 CONTINUE RETURN END	UT INA DE GENERACIUN DI DU GAUSSIANU ES GENERAL 	E RUIDO GAUSSIANÓ DO MEDIANTE LA SU INA REQUIERE CEL SEMILLA.	S FUIRAULE SLUSU

•

C	·	
· C·		· FT- ····
C		•
	SUBREUTINE FFT(XQ)NEX)	
•	PI=3.141592653589793	
	N=2**NEX	•
	NV 2=N/2	
	NMI=N-1	
	IF(1.6E.J)G0 TU 5	······································
	T = XQ(J)	
<b></b>	-XQ(J)=XQ(1)	
	XQ(I)=T	
5	K=NV2	
0		
	K=K/2	
···· ··· ···	-GO TO 6	· · · · · · · · · · · · · · · · · · ·
. 7	J=J+K	
	DO 20 L=1, NEX	
	1 F1=1 F/2	
•	U=CMPLX(1.0,0.0)	
	-W=CMPLX(CUS(PI/FLCAT(LE1)),-SIN(PI/FLOAT(LE1)))	
	DO 20 J=1,LEL	
	DO 10 I=J, N, LE	
	$IP = I + LEI \qquad is a state of the line $	•.
	XO(IP) = XC(I) - T	•
	XQ(1)=XQ(1)+1	
20	U=U≠W	
	RETURN	
		•
EUE:	INFET FORTRAN AL WMANP RELEASE 3 1 EXOPESS PUTSAO	
1 122 -		1, 200
·		
c	SUBRUTINA DE LA TRANSFURMADA INVERSA DE FUURIER	
С		
· • • • • • • • • • • • • • • • • • • •	SUBROUTINE INFFT( Xu, M)	•
	DO = 200 I = 1, M	•
500	CUNTINUE	
	CALL FFF(XC,1L)	
••••	DD 550 I=1,M	
	XQ(I) = CONJG(XQ(I))	
	XUIII=XUII)/FLUAI(M)	
550		
5 50	CONTINUE	
5 50	CCNTINUE RETURN END	

	• • •
FILE: ERROR FORTRAN AL VM/SP RELEASE 3.1 EXPRES	SS PUT8401+ SLU301
C PROGRAMA DE CALCULU DEL ERROR SIN ECUALIZA C EL VALOR DE LNI DA EL INSTANTE DENTRO DEL C HACE LA DECISION SUBRE EL BITIU TRANSMITIU	ACIUN PERIUDU DUNDE SE
SUBROUTINE EKROR(XQ,XQ1,XQ2,ERRTA,ERRTB,N,LN1) COMPLEX XQ(2048) DIMENSION XQ1(256),XQ2(256),XQ3(256),XQ4(256)	· · · · · · · · · · · · · · · · · · ·
J=0 DO 370 I=LN1,N,8 	
<pre></pre>	
310 XQ3(J)=-1.0 GO TO 330 	
330 IF(RIM-0.0)340,350,350 340 XQ4(J)=-1.0 	LE CAR
360 ERRTA=ERRTA+ABS((XJ1(J)-XJ3(J))/FLGAT(2)) ERRTB=ERRTB+ADS((XJ2(J)-XJ4(J))/FLGAT(2)) 370 CONTINUE	
END END	
	•
· · · · · · · · · · · · · · · · · · ·	
•··• · · · · · · · · · · · · · · · · ·	A PERP.
	4
	· · ·
	• • •
	اـــــــــــــــــــــــــــــــــــــ

, , ,

FILE: RANDU FORTRAN AL VM/SP RELEASE 3.1 EXPRESS PU184C1+ SLUBO _____ . ------GENERACIUN DE NUMERUS ALEATORIOS CON DISTRIBUCIUN UNIFORME -- (-- -SUBRUTINA DE EIULIJTELA PARA SISTEMA IEM 370/138-. C SUBROUTINE RANEU(IX, IY, YEL)-----LF(1Y)5,6,6 -5 IY=IY+2147483647+1 ------6 YFL=IY ' YFL=YFL*0.4656613E-9 --- RETURN ------· · · · • END FORTRAN A1 VM/SP RELEASE 3.1 EXPRESS PUT8401+ SLU301 ILE: GAUSS ---------GENERACIÓN DE NUMEROS ALEATORIOS CON DISTRIBULIÓN NORMAL C SUBRUT INA DE BIBLIDIECA PARA SISTEMA IBM 370/138 SUBROUTINE-GAUSS(IX,S,AM,V) A=0.0 DO 50 I=1,12 - CALL RANDU (IX, IY, Y) -- -IX=IY 50 A = A + Y-----V=(A-6.0)*S+AM RETURN END

#### BIBLIOGRAFIA

A. Glavieux, "Trașmission Numérique", E. N. S. T. Br., 1.983.

Égalisation Numérique, E. N. S. T. Br., Documento, 1.983.

G. Sebek, J. C. Paccaud, M. Lantrua, "La Transmission de Donnes", E. N. S. T. Br.

D. W. Tufts, "Nyquist's Problem - The Joint Optimization of Transmitter and Receiver in Pulse Amplitud Modulation", Proc. IEE, vol. 53, pp. 248 - 260, Marzo 1.965

J. Salz, "Optimum Mean - Square Decision Feedback Equalization", Bell Syst. Tech. J., vol. 52, pp. 1.341 - 1.371, Octubre 1.973.

- J. G. Proakis, "An Adaptive Receiver for Digital Signaling Trough Channels with Intersymbol Interference", IEE Trans. Inform. Theory, IT - 15, pp. 484 - 497, Abril 1.969.
- A. Gersho, "Adaptive Ecualization of Highly Dispersive Channels for Data Transmission", Bell Syst. Tech. J., vol. 48, pp. 55 70, Enero 1.969.
- P. Monsen, "Feedback Equalization for Fading Dispersive Channels", IEE Trans. Inform. Theory,
   IT 17, pp. 56 64, Enero 1.971.

R. W. Lucky, "Automatic Equalization for Digital Comunications", Bell Syst. Tech. J., vol. 44, pp. 547 - 588, Abril 1.965.

R. W. Lucky, "Techniques for Adaptive Equalization of Digital Comunication Systems", Bell Syst. Tech. J., vol. 45, pp. 255 - 286, Febrero 1.966.

S. H. Qureshi, "Adaptive Equalization", Proc. IEEE, vol. 73, pp. 1.349 - 1.387, Sept. 1.985.

Roger L. Freeman, "Telecomunication Transmission Handbook", John Wiley, New Fork, 1.979.

John Bellamy, "Digital Telephony", John Wiley, New Fork, 1.982.