ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA ELECTRICA

DISEÑO DE UN PLAN DE TELEFONÍA INALÁMBRICA PARA LA POBLACIÓN DISPERSA DEL SECTOR RURAL EN LAS PROVINCIAS DE NAPO Y SUCUMBÍOS.

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO EN LA ESPECIALIZACION DE ELECTRONICA Y TELECOMUNICACIONES

PABLO JAVIER MEDINA MONTALVO

Noviembre 1998

Certifico que la presente tesis fue realizada en su totalidad por el señor:

Pablo Javier Medina Montalvo

Ing, Mario Cevallos V

DIRECTOR DE TESIS

DEDICATORIA

Dedico el presente trabajo a mis queridos padres Carlos y Gloria, por su comprensión y su incomparable amor demostrados siempre a lo largo de mi vida. Lo cual se hace extensivo a mi hermano Andrés; abuelos y tíos. Sinceramente jamás lo olvidare.

AGRADECIMIENTO

Mi eterna gratitud a los Ings.
Mario Cevallos y Leonardo
Cajas por su certera dirección en
la realización de la presente tesis.
Cabe anotar mi agradecimiento
a la empresa DIGITEC S.A. en
la persona del Ing. Jaime
Jaramillo por la invalorable
ayuda en la culminación del
presente trabajo.

INDICE

INTRODUCCION

CAPITULO 1:

Sistemas de	Telecomunicaciones	existentes	en	las	Provincias	de Napo,	Orellana	y
Sucumbios	0					-		

1.	Generalidades 1		
2.,	Provincia de Napo 2		
	2.1 Situación Geográfica de la Provincia de Napo 2		
	2.2 Resumen de los índices socioeconómicos de la provincia		4
	2.3 Sistemas de Telecomunicaciones existentes 9		
	2.3.1 Red de Transmisión Vía Radio Analógico y Digital		9
	2.3.2 Sistema de Telefonía Rural DOMSAT	10	
	2.3.3 Centrales Telefónicas existentes 11		
	2.3.4 Redes de Multiacceso Digital 11		
3.	Provincia de Sucumbios 13		
	3.1 Situación Geográfica de la Provincia de Napo 13		
	3.2 Resumen de los índices socioeconómicos de la provincia		16
	3.3 Sistemas de Telecomunicaciones existentes 21		
	3.3.1 Red de Transmisión Vía Radio Analógico y Digital		21
	3.3.2 Sistema de Telefonía Rural DOMSAT	22	
	3.3.3 Centrales Telefónicas existentes 23		
	3.3.4 Redes de Multiacceso Digital 23		
1	Provincia de Orellana 25		

4.1 Situación Geografica	de la Provincia de Napo	25	
4.2 Resumen de los índice	es socioeconómicos de la provi	ncia	27
4.3 Sistemas de Telecomu	inicaciones existentes	31	
4.3.1 Red de Trans	smisión Vía Radio Analógico y	Digital	31
4.3.2 Sistema de T	elefonía Rural DOMSAT	32	
4.3.3 Centrales Te	lefónicas existentes	32	
CAPITULO 2:			
Análisis de los Alternativas Téc	nicas para Telefonía Rural	35	
1. Generalidades 36			
1.1 Tecnología Digital	36		
1.2 Ventajas de las Teleco	omunicaciones Rurales Confiab	les	38
1.3 Comparación de Tecn	ologías para Acceso Múltiple	39	
•			
2. Sistemas Inalámbricos de l	Bucle de Abonado	40	
2.1 Sistemas de Comunica	ocionas Vía Catálita	40	
2.1 Sistemas de Condunca 2.1.1 Satélites Geoe		40	
2.1.1 Satemes Geogram			
•	aja (LEO) y Mediana (MEO) Ó	rhitas	44
2.1.2.1 Sistema I		101140	
	litales VSAT (de Antenas Pequ	eñas)	48
2.2 Sistemas Telefónicos	` `	ŕ	
2.2.1 Telefonía Sin	Hilos (Cordless Telephony)	50	
2.2.1.1 Telefonía	Sin Hilos Analógica	51	
2.2.1.1.1 N	orth American Cordless Teleph	none (CT)	51
2.2.1.1.2 C	Cordless Telephone 0 (CT0)	52	
2.2.1.1.3 C	fordless Telephone 1 (CT1)	52	
2.2.1.1.4 C	ordless Telephone 1 Plus (CT1	+)	53
2.2.1.1.5 S	istema de Telefonía Sin Hilos	Analógica e	n el Japór

2.2.1.2 Telefon	ía Sin Hilos Digital 54	
2.2.1.2.1	Cordless Telephone 2 (CT2)	55
2,2.1.2.2	Cordless Telephone 2 Plus (CT2+)	57
2.2.1.2.3	Cordless Telephone 3 (CT3)	58
2.2.1.2.4	Digital European CordlessTelecommunica	tions (DECT)
	59	
2.2.1.2.5	Personal Handyphone System (PHS)	60
2.2.1.2.6	Personal Access Communication System (PACS)
	62	
2.2.1.2.7	Telefonía Sin Hilos en la banda ISM	63
2.2.2 Sistemas Tr	oncalizados (de Grupos Cerrados)	53
2.2.2.1 Sistema	s de Frecuencia Común/Llamada Selectiva	64
2.2.2.2 Sistema	s Troncalizados Analógicos	55
2.2.2.3 Sistema	s Troncalizados Digitales 65	
2.2.3 Sistemas Inc	alámbricos Punto-Multipunto	56
· 2.2.3.1 Sistema	s de Multiacceso Digital (SMD)	56
2.2.3.1.1	Sistemas de Multiacceso Digital de 30 d	canales (SMD
	30) 68	
2.2.3.1.2	Sistemas de Multiacceso Digital de 60 ca	nales (SR500-
	s) 78	
2.2.3.2 Sistema	s de Bucle de Abonado Inalámbrico Di	gital (S-WLL
Ultraph	one TM) 81	
CAPITULO 3:		
Diseño del Plan de Telefonía	Inalámbrica 96	
1. Estudio de Demanda	97	
1.1. Previsión de la Deman	da 97	
1.2. Población Deficitaria	de Servicio Telefónico en las Provinc	ias de Napo,
Orellana y Sucumbios	98	
1.3. Determinación de la	Densidad Telefónica para la Población I	Dispersa entre

1998 y 2005 101

	1.4. Cálculo del Número de Lír	ieas Prin	cipales		103				
2.	Determinación del Tráfico Tele	fónico p	ara el año	2005		104			
	2.1. Tráfico de Origen por Líne	a Princij	pal		105				
	2.1.1. Proporción de Tráfio	o Origii	nado y Te	erminac	lo por	Categoría	ı de Tr	áfico)
3.	Diseño del Sistema	108							
	3.1. Determinación del Número	de Esta	iciones Ba	ase		108			
	3.2. Cálculo de las Areas de Co	bertura	1	10					
	3.2.1. Criterios Utilizados	para el (Cálculo		111				
	3.2.1.1.Método de los	Mínimo	s Cuadra	ados' p	ara la	Determi	nación	de	la
	Altura Efectiva d	e las An	tenas		111				
	3.2.1.2.Algoritmo de Di	fracción	. 1	12					
	3.2.1.3.Pérdidas por Dif	racción	en Obstác	culos A	islados	S	-	114	
	3.2.1.4.Pérdidas por D	ifracciór	n en Múl	ltiples	Obstác	culos Re	ales (F	Filo	de
	Cuchillo)	116							
	3.2.1.4.1. Método	Epstein -	Peterson	ι		116			
	3.2.1.4.2. Método	Deygout	1	.17					
	3.2.1.5.Pérdidas por Dif	racción	en Arbole	es (Rep	orte O	HLOSS)	1	118	
CA	APITULO 4:								
An	nálisis Económico del Proyecto		121						
1.	Análisis de Costos	122							
	1.1. Costos de Inversión	122							
2.	Análisis Financiero	123							
	2.1. Variables Económicas		124						
	2.1.1 Inversión	124							

2.1.2.	Vida Económica (Vida Util)	124	
2.1.3.	Valores Residuales	125		
2.1.4.	Flujo de Beneficios	125		
2.1.5.	Depreciación y Amortización	ón		125
2.1.6.	Tasa Interna de Retorno (T	TR)		126
2.1.7.	Valor Actual Neto (VAN)		126	
2.2. Renta	2.2. Rentabilidad del Proyecto 126			

CAPITULO 5:

Conclusiones y Recomendaciones 133

Conclusiones 134
 Recomendaciones 136

BIBLIOGRAFIA 137

ANEXOS:

- 1. Registro Oficial N.- 372
- 2. Equipos y Antenas .
- 3. Reportes de: Cobertura, Pérdidas por Difracción (por radiales)

Introducción

Si bien es cierto el estado ecuatoriano a través de los organismos encargados de las telecomunicaciones ha desarrollado proyectos para cubrir el árrea rural, estos se han enfocado a dar soluciones a las poblaciones concentradas y cabeceras parroquiales, existiendo una demanda insatisfecha en toda el área rural y de allí la importancia de esta tesis que partiendo del conocimiento de la situación geográfica y de la realidad geopolítica de las parroquias de Napo, Sucumbios y Orellana lo cual nos llevo a determinar la demanda insatisfecha en el área rural de las provincias antes mencionadas.

Existiendo algunas alternativas tecnológicas, esta tesis realiza un estudio a fin de evaluar cual es la aplicación tecnológica o solución técnica que mas conviene al proyecto que pretende servir, para eso se ha considerado los diferentes medios que mantienen la tecnología de punta, como son: sistemas con uso de satélites MEO y LEO, sistemas VSAT, sistemas inalámbricos, y sistemas de radio multiacceso.

Una vez que se pudo comparar las diferentes soluciones explicadas en el párrafo anterior y en base a la demanda se procedió a realizar el diseño utilizando las herramientas que se disponen para los cálculos de propagación e interferencia, además, en un estudio geográfico se diseño los haces de cobertura para cubrir la mayor cantidad de población posible, con lo cual se puede estimar que el 80% de la población rural de estas provincias contara con servicio telefónico si se llega a implementar este proyecto

Siendo un proyecto de carácter social se evalúo el impacto económico del mismo a fin de determinar su rentabilidad de acuerdo alas tarifas establecidas por la Secretaria Nacional de Telecomunicaciones.

2. Provincia de Napo

2.1 Situación Geográfica de la Provincia de Napo

La provincia de Napo se encuentra en la región nor oriental del Ecuador, teniendo un área aproximada de 12951.6 Km² y una población de 64370 habitantes según el censo de población de 1990; estos valores son aproximados.

Límites

La provincia de Napo limita al norte con la provincia de Sucumbios, al sur con las provincias del Tungurahua y Pastaza; al oriente con la provincia de Orellana y al occidente con las provincias de Cotopaxi y Pichincha.

División Política

Esta dividida en 4 cantones que son los siguientes: Tena, Archidona, El Chaco y Quijos. Su capital provincial es Tena.

Cantón Tena

Consta de las siguientes parroquias rurales: Ahuano, Carlos Julio Arosemena Tola, Chontapunta, Pano, Puerto Misahualli y Puerto Napo. Siendo Tena la cabecera cantonal.

• Cantón Archidona

Tiene como cabecera cantonal a la población de Archidona. Consta de 2 parroquias rurales: Cotundo, San Pablo de Ushpayacu.

Cantón El Chaco

Tiene 5 parroquias rurales que son: Gonzalo Díaz de Pineda, Linares, Oyacachi, Santa Rosa y Sardinas. La cabecera cantonal es El Chaco.

Cantón Quijos

Tiene como cabecera cantonal a Quijos, siendo sus parroquias rurales: Cosanga, Cuyuja, Papallacta, San Francisco Borja (Virgilio Dávila) y Sumaco.

En la figura 1.1 se puede observar de mejor manera la división política y límites de la provincia de Napo.

Provincia de Napo

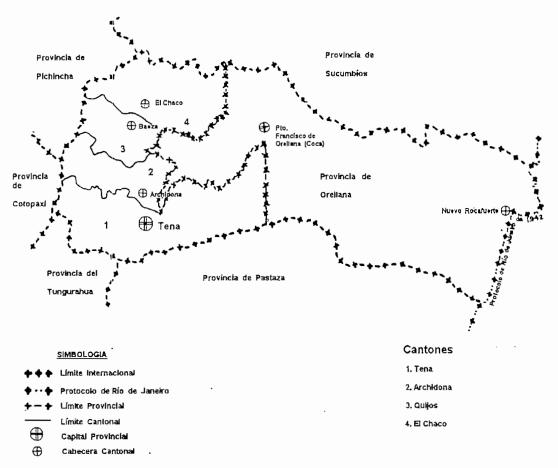


Figura 1.1

2.2 Resumen de los índices socioeconómicos de la provincia.

Población

En la provincia de Napo habitan alrededor de 64370 habitantes, los cuales se reparten en dos sectores urbano y rural cuyo número de habitantes es de 12918 y 51452 respectivamente.

Tiene índices de crecimiento en el ámbito urbano del 7.6 %, y a escala rural del 3.4 % a 1990; se estima que a la fecha la población total provincial será de 84410, los habitantes en el sector urbano crecerán a 27819 habitantes; mientras que para el sector rural se proyecta a un número de 56591 habitantes.*

En el cuadro 1.1 se presenta en resumen la división de la población en la provincia de Napo.

Cantón	Tena	
		de bitantes
Area Urbana Periferia	78 59	
Total Cabeceras Parroquiales Rurales	20	46
Total Resto de la Parroquia	19	911
Total Paπoquias Rurales	21	957
Total Cantonal	35	747

Cantón	Archidona		
		No Habitante	de es
Area Urbana Periferia		2548 3210	
Total Cabeceras Parroquiales		1056	
Rurales Total Resto de la Parroquia		12685	
Total Parroquias Rurales		13741	
Total Cantonal		19499	

Ecuador. Vicepresidencia de la República. INEC. Análisis de los Resultados Definitivos del V Censo de Población y IV de Vivienda 1990. Quito. INEC. 1993.

Cantón	El Chaco		
		No Habita	de ntes
Area Urbana Periferia		1701 523	
Total Cabeceras Parroquiales Rurales		886	
Total Resto de la Parroquia		1335	
Total Parroquias Rurales		2221	
Total Cantonal		4445	

Cantón Q	Quijos
	No de Habitantes
Area Urbana Periferia	796 259
Total Cabeceras Parroquiales Rurales	1630
Total Resto de la Parroquia	1994
Total Parroquias Rurales	3624
Total Cantonal	4679

Cuadro 1.1 Población de la provincia de Napo.

Vivienda

La vivienda es un derecho básico de cualquier familia, es una necesidad vital, ligada a la reproducción de la fuerza de trabajo, y, en gran medida la salud de los individuos que la habitan, depende de las condiciones materiales de las mismas.

De entre las viviendas particulares, el 11,7 % fueron encontradas desocupadas, advirtiéndose que en área rural, el porcentaje se eleva al 13.2 %. Tal situación no debe entenderse como un superávit habitacional sino como un elemento de estudios más profundos.

Cada sociedad ha diseñado su propio tipo de vivienda lo que se relaciona directamente con la necesidad y recurso del medio ambiente natural y social.

Se advierte que en la provincia de Napo existe una preponderancia del tipo de vivienda "casa o villa" que alcanza el 69.5 % seguido en importancia por "rancho" con el 15.9 %, "cuarto(s) en casa de inquilinato" con el 8.2 % y "mediagua" con el 6.0 %. La significativa importancia de la construcción de tipo "rancho", se debe fundamentalmente a las características de la provincia*.

Actividades Económicas

Los pobladores de esta región del oriente ecuatoriano tienen su principal fuente de sustento económico en la agricultura y ganadería; siendo otra la participación en la actividad petrolera.

El medio físico de la provincia de Napo se caracteriza por la presencia imponente de la selva. La vegetación es exuberante y la selva virgen ocupa pisos y fajas con variedad de árboles muy altos. La producción agrícola en esta región tropieza con grandes dificultades, pues se debe vencer a la selva, cortar árboles, hacer caminos y soportar todos los rigores del clima. La extracción del oro y la producción de tabaco y pita fueron quizá las explotaciones más antiguas de la región. En los últimos años se dio un paso para incentivar la producción agrícola y ganadera por la acción estatal

Ecuador. Vicepresidencia de la República. INEC. Análisis de los Resultados Definitivos del V Censo de Población y IV de Vivienda 1990. Quito. INEC. 1993.

que ha distribuido entre los habitantes enormes sumas de dinero en préstamos para ganado y cultivos comerciales de maíz, cacao y café.

La actividad en los campos petroleros es desempeñada por muchas personas ya sea en los yacimientos (pozos de extracción), o en las bases de las empresas que explotan crudo en esta región.

Existe una nueva actividad económica en auge, el turismo ecológico; el cual se desarrolla en hosterías u otros sitios apropiados para tal actividad ya que a no larga distancia de los centros poblados se penetra en la selva amazónica con sus anchos ríos navegables, el paisaje selvático y la variedad de su fauna. La proximidad de diversas parcialidades indígenas permite conocer sus costumbres, así como la vida silvestre y la naturaleza en todo su esplendor, en las partes aún no halladas por el hombre blanco. El turismo ecológico es un recurso poco explotado y que lleva consigo una posibilidad de desarrollo para los pobladores de dicha región.

Sistema Vial

La carretera Quito-Pifo-Papallacta-Baeza es la que conecta la provincia de Pichincha con de Napo. Desde Baeza, la red vial es insuficiente y no está en buenas condiciones. Por los daños que ocurren con frecuencia en las carreteras, el transporte aéreo es fundamental. La provincia está servida por algunas pistas de aterrizaje para operaciones domésticas.

2.3 Sistemas de Telecomunicaciones existentes.

2.3.1 Red de Transmisión Vía Radio Analógico y Digital.

Existe una red de radio analógica que sirve por igual a las provincias de Napo y Orellana; que es el enlace Quito-Coca, cuya descripción se analiza en la inciso 4.3.1 de este capítulo.

Los sistemas de transmisión se dividen en dos tipos de sistemas de radio: de mediana capacidad y de gran capacidad; cuya disposición se puede observar en los siguientes cuadros. No existe ninguna red troncal digital por el momento.

ESTACION	LOCALIDAD	MARCA	TIPO	CONF.	N
					CANAL.
Paushiyacu	Archidona	TELETTRA	UH9/60	1+1	60
Guamani	Condijua	SITELTRA	FM 6-120	1+0	24
Santa Clara	Galeras	NEC	TR5FM 120-1A	1+1	120
Santa Clara	Misahualli	SITELTRA	FM 6-120	1+1	60
Paushiyacu	Tena	NEC	TR5FM 120-1A	1+1	120

Cuadro 1.2 Sistemas de Radio Mediana Capacidad Analógico.

ESTACION	LOCALIDAD	MARCA	TIPO	CONF.	CANAL.	N
						CANAL
Santa Clara	Galeras	SITELTRA	SHF FM 960	1+1	960 + TV	960
Santa Clara	Paushiyacu	SITELTRA	SHF FM 960	1+1	960 + TV	960

Cuadro 1.3 Sistemas de Gran Capacidad Analógico.

Los sistemas de radio monocanales existentes a mayo de 1997 son los siguientes:

PROVINCIA	RED	ESTACION	LOCALIDAD	MARCA
Napo	Oriente	Santa Clara	C. J. Arosemena	TELETTRA
Napo	Valle A.	Condijua	Cosanga	TELETTRA
Napo	Oriente	Tena	Cotundo	PHILIPS
Napo	Valle A.	Condijua	El Chaco	ABC TELEIN
Napo	Valle A.	Condijua	F. Borja	ABC TELEIN
Napo	Valle A.	Condijua	Santa Rosa	ABC TELEIN
Napo	Valle A.	Condijua	Sardinas	ABC TELEIN

Cuadro 1.4 Sistemas de Radio Monocanales.

Entre los sistemas de radio tetracanales analógicos y digitales tenemos:

ESTACION	LOCALIDAD	MARCA		TIPO	N CANALES
		RADIO	MUX		
Santa Clara	Ahuano	NOKIA	NOKIA	Analógico	4

Cuadro 1.5 Sistemas de Radio Tetracanales Analógicos y Digitales.

2.3.2 Sistema de Telefonía Rural DOMSAT.

El sistema de telefonía rural Domsat utiliza como uno de sus principales recursos la comunicación a través del satélite, las estaciones instaladas y funcionando en la provincia de Napo son las siguientes:

LOCALIDAD	ESTACION	VELOCIDAD TX.	NUMERO DE	
	TIPO	(Kbits/s)	CIRCUITOS	
Tena	. 7	2048	120	

Cuadro 1.6 Sistema DOMSAT.

2.3.3 Centrales Telefónicas existentes.

Los sistemas de telefonía local actualizados a agosto de 1998 se pueden apreciar en el cuadro 1.7 Telefonía Local.

2.3.4 Redes de Multiacceso Digital.

Actualmente ANDINATEL S.A. se encuentra ejecutando el proyecto denominado SMD-30 de telefonía rural mediante multiacceso digital para las poblaciones de las provincias de Napo, Orellana y Sucumbíos.

Estos son todos los sistemas de telecomunicaciones presentes en la región ya sean en pleno estado de funcionamiento o en proceso de ejecución. Los datos recogidos se basan en la información presentada por ANDINATEL S.A. en 1998; por lo que a la presente fecha no han sufrido variaciones que sean significativas con respecto al estudio planteado.

			18 2 90	
	C. Utiliz.			
isión	Radio Múltiplex C. Inst. Inst. Util		24	
Transmisión	Radio Inst.		60 24	
	C. Radio Instal. Inst.		60 24 120	
	Medio		Repetid. Repetid. Satélite	
Cap. Enlace LDN	Prim. Centro de	Abon. Servic. Moned. TOTAL Inst. Conexión (CT)	300 Quito (ARM) QTS1 Repetid. 20 Quito (ARM) QTS2 Repetid. 1800 Quito (ARM) QTS2 Satélite	
Cap.	Prim.	Inst.		
	_	TOTAL	197 , 20 1531	
os ales		Moned.	12	
Teléfonos Principales		Servic.	7 2 15	
		Abon.	190 18 1504	
Localidad Cap. Tipo de Central			200 SIEMENS CPR-30 20 ERICSSON ABG-1520 2000 SIEMENS CPR-100	
Cap.	Inst.		20	
Localidad			Archidona Bacza Tena	

Cuadro 1.7 Sistemas de Telefonía Local.

3. Provincia de Sucumbíos

3.1 Situación Geográfica de la Provincia de Sucumbíos

La provincia de Sucumbíos se encuentra al igual que Napo en la región nor oriental del Ecuador, teniendo un área aproximada de 18327.5 Km² y una población de 76952 habitantes según el censo de población de 1990. Sucumbíos anteriormente era parte de la provincia de Napo.

Límites

La provincia de Sucumbíos limita al norte con la República de Colombia, al sur con las provincias de Napo y Orellana; al oriente con la República del Perú y al occidente con las provincias de Carchi, Imbabura y Pichincha.

División Política

Esta dividida en 6 cantones que son los siguientes: Lago Agrio, Gonzalo Pizarro, Putumayo, Shushufindi, Sucumbíos y Cascales. Su capital provincial es Nueva Loja (Lago Agrio).

Cantón Cascales

Su cabecera cantonal es El Dorado de Cascales, teniendo dos parroquias rurales que son: Santa Rosa de Sucumbíos y Sevilla.

En la figura 1.2 se puede observar de mejor manera la división política y límites de la provincia de Sucumbíos.

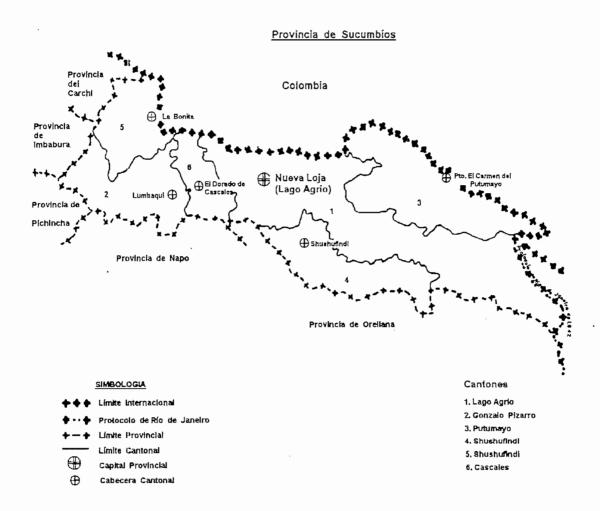


Figura 1.2

3.2 Resumen de los índices socioeconómicos de la provincia.

Población

En la provincia de Sucumbios habitan alrededor de 76952 habitantes, los cuales se reparten en dos sectores urbano y rural cuyo número de habitantes es de 20492 y 56460 respectivamente.

El promedio de hijos por mujer en el sector urbano es de 2.8, y a escala rural de 3.7 a 1990^{*}; siendo el área más densamente poblado el sector de Shushufindi con una densidad poblacional de 7.9 Pob/Km², seguido por Lago Agrio con 5.7 Pob/Km².

En el cuadro 1.8 se presenta en resumen la división de la población en la provincia de Sucumbíos.

Ecuador. Vicepresidencia de la República. INEC. <u>Análisis de los Resultados Definitivos del V Censo de Población y IV de Vivienda 1990</u>. Quito. INEC. 1993.

Cantón	Putumayo	
		No de Habitantes
Area Urbana Periferia		747 1130
Total Cabeceras Parroquiales Rurales		63
Total Resto de la Parroquia		2859
Total Parroquias Rurales		2922
Total Cantonal		4794

Cantón	Sucumbios	
		No de Habitantes
Area Urbana Periferia		296 178
Total Cabeceras Parroquiales Rurales		782
Total Resto de la Parroquia		1195
Total Parroquias Rurales		1977
Total Cantonal		2441

Cantón	Shushufindi
	No de Habitantes
Area Urbana Periferia	4806 6064
Total Cabeceras Parroquiales Rurales	. 767
Total Resto de la Parroquia	7340
Total Parroquias Rurales	8107
Total Cantonal	18977

Cantón	Cascales	
		No de Habitantes
Area Urbana Periferia		709 2250
Total Cabeceras Parroquiales Rurales		424
Total Resto de la Parroquia		1631
Total Parroquias Rurales		2055
Total Cantonal		5014

Cada sociedad ha diseñado su propio tipo de vivienda lo que se relaciona directamente con la necesidad y recurso del medio ambiente natural y social.

Se advierte que en la provincia de Sucumbios existe una preponderancia del tipo de vivienda "casa o villa" que alcanza el 71.2 % seguido en importancia por "rancho o covacha" con el 11.0 %, "cuarto(s) en casa de inquilinato" con el 8.9 % y "mediagua" con el 7.6 %. La significativa importancia de la construcción de tipo "rancho", se debe fundamentalmente a las características de la provincia^{*}.

Actividades Económicas

Los pobladores de esta región del oriente ecuatoriano tienen su principal fuente de sustento económico en la participación en la actividad petrolera.

En 1967 el pozo Lago Agrio (ese entonces provincia de Napo) dio inicio a la producción de petróleo en la Amazonía ecuatoriana, convirtiéndola en la principal región generadora de recursos energéticos y económicos del país. La importancia nacional de la producción hidrocarburífera es decisiva para la economía nacional, pues Ecuador vive de su petróleo. En consecuencia, cuando se interrumpe la explotación petrolera por cualquier causa, como ocurrió en el sismo de 1987, se desencadena una crisis global en la economía ecuatoriana.

Ecuador. Vicepresidencia de la República. INEC. Análisis de los Resultados Definitivos del V Censo de Población v IV de Vivienda 1990. Quito. INEC. 1993.

Las diversas fases de la industria hidrocarburífera: explotación, producción, transporte, almacenamiento e industrialización, han incidido directa e indirectamente sobre aspectos físicos-químicos, biológicos, socioeconómicos y culturales donde aquellas tienen lugar. De igual forma la contaminación del aire y del agua han acarreado no solamente la alteración de la flora y la fauna, sino que han influido negativamente en las formas de vida contrarias a la conservación de su hábitat.

La agricultura y ganadería no se han desarrollado, debido a que la población en su mayoría se han dedicado a la explotación del petróleo. Un aspecto característico de la región es la tupida vegetación, los bosques están formados por árboles de las variadas especies, el clima es húmedo por la persistencia de las lluvias.

Existe una nueva actividad económica en auge, el turismo ecológico; el cual se desarrolla en hosterías u otros sitios apropiados para tal actividad. Siendo un recurso poco explotado y que lleva consigo una posibilidad de desarrollo para los pobladores de dicha región.

Sistema Vial

La provincia dispone de algunas carreteras que comunican las principales localidades, por vía aérea está servida por el aeropuerto de Lago Agrio y otras pistas de aterrizaje para operaciones domésticas.

3.3 Sistemas de Telecomunicaciones existentes.

3.3.1 Red de Transmisión Vía Radio Analógico y Digital.

La provincia de Sucumbios dispone de redes de radio analógica de mediana capacidad; cuya disposición se puede observar en el siguiente cuadro. Al igual que en Napo no existe ninguna red troncal digital por el momento.

ESTACION	LOCALIDAD	MARCA	TIPO	CONF.	N
					CANAL.
Lumbaqui	Lago Agrio	NEC	TR5FM 120-1A	1+1	120
Coca	Lumbaqui	SITELTRA	FM 6-120	1+0	120
Lumbaqui	Shushufindi	FUЛTSU	FM400-10B	1+1	60

Cuadro 1.9 Sistemas de Radio Mediana Capacidad Analógico.

Los sistemas de radio monocanales existentes a mayo de 1998 son los siguientes:

PROVINCIA	RED	ESTACION	LOCALIDAD	MARCA
Sucumbios	Oriente	Lumbaqui Rep.	Cascales	TELETTRA
Sucumbios	Norte A.	El Carmelo	El Playón	TELETTRA
Sucumbios	Oriente	Lago Agrio	Gral, Farfán	JRC
Sucumbios	Norte A.	El Carmelo	La Bonita	JRC
Sucumbios	Oriente	Lumbaqui Rep.	Lumbaqui	TELETTRA
Sucumbios	Oriente	Lago Agrio	Santa Cecilia	ABC TELEIN
Sucumbios	Norte A.	El Carmelo	Sta. Bárbara	JRC

Cuadro 1.10 Sistemas de Radio Monocanales.

Entre los sistemas de radio tetracanales analógicos y digitales tenemos:

ESTACION	LOCALIDAD	MARCA		TIPO	N CANALES
		RADIO	MUX		
Lumbaqui	Lumbaqui	RAD	KILOMUX	Digital	4
Rep.					

Cuadro 1.11 Sistemas de Radio Tetracanales Analógicos y Digitales.

3.3.2 Sistema de Telefonía Rural DOMSAT.

El sistema de telefonía rural Domsat utiliza como uno de sus principales recursos la comunicación a través del satélite, las estaciones instaladas y funcionando en la provincia de Sucumbíos son las siguientes:

LOCALIDAD	ESTACION	VELOCIDAD TX.	NUMERO DE
	TIPO	(Kbits/s)	CIRCUITOS
Cascales	2	128	8
La Bonita	2	128	8
Lago Agrio	7	2048	120
Putumayo	2	128	8
Shushufindi	6	1024	60

Cuadro 1.12 Sistema DOMSAT.

3.3.3 Centrales Telefónicas existentes.

Los sistemas de telefonía local actualizados a agosto de 1998 se pueden apreciar en el cuadro 1.13 Telefonía Local.

3.3.4 Redes de Multiacceso Digital.

Los sistemas de multiacceso digital se encuentran en proceso de ejecución; los sistemas se detallaron en el punto 2.3.4 de este capítulo.

Estos son todos los sistemas de telecomunicaciones presentes en la región ya sean en pleno estado de funcionamiento o en proceso de ejecución. Los datos recogidos se basan en la información presentada por ANDINATEL S.A. en 1998; por lo que a la presente fecha no han sufrido variaciones que sean significativas con respecto al estudio planteado.

Localidad	Cap.	Localidad Cap. Tipo de Central		Teléfonos Principales	so des		Cap.	Cap. Enlace LDN			Transmisión	isión	
	Inst.					•	Prim.	Prim. Centro de	Medio C. Instal		C. Radio Múit Instal. Inst. Inst.	Radio Múltiplex C. Inst. Inst. Utiliz.	C. Utiliz.
			Abon.	Servic.	Moned.	TOTAL	Inst.	Servic, Moned. TOTAL Inst. Conexión (CT)					
Lago Agrio 2 Shushufindi	2400	Lago Agrio 2400 SIEMENS CPR-100 Shushufindi 600 SIEMENS CPR- 60	1842	13	6	1864	3500	3500 Quito (ARM) QTS2 Satélite 1000 Quito (ARM) QTS2 Satélite	Satélite Satélite	120	1 1	1 1	100

Cuadro 1.13 Sistemas de Telefonía Local.

4. Provincia de Orellana

4.1 Situación Geográfica de la Provincia de Orellana

La provincia de Orellana se encuentra en la región nor oriental del Ecuador, teniendo un área aproximada de 18625.5 Km² y una población de 50010 habitantes según el censo de población de 1990; estos valores son aproximados debido a los límites provinciales y cantonales en la promulgación de la ley de creación de ésta provincia.

Limites

La provincia de Orellana limita al norte con la provincia de Sucumbios, al sur con la provincia de Pastaza; al oriente con la República del Perú y al occidente con la provincia de Napo.

División Política

Esta dividida en 4 cantones que son los siguientes: Francisco de Orellana, Archidona, La Joya de los Sachas y Loreto. Su capital provincial es Francisco de Orellana (Coca).

• Cantón Orellana

Su cabecera cantonal es Francisco de Orellana, teniendo 12 parroquias rurales que son las siguientes: Puerto Francisco de Orellana, El Dorado, Dayuma, Inés Arango, Alejandro Labaca, El Edén, García Moreno, La Belleza, San Luis de Armenia, Nuevo Paraíso, San José de Guayusa y Taracoa.

• Cantón Aguarico

Su cabecera cantonal es Nuevo Rocafuerte. Tiene 5 parroquias rurales que son las siguientes: Capitán Augusto Rivadeneira, Cononaco, Santa María de Huririma, Tiputini y Yasuni.

Cantón La Joya de los Sachas

Comprende a la parroquia urbana de La Joya de los Sachas; y a las parroquias rurales de: Enokanqui, Pompeya, San Carlos y San Sebastián del Coca, Rumipamba, Tres de Noviembre, Lago San Pedro y Unión Milagreña.

· Cantón Loreto.

Su parroquia urbana es Loreto; con las parroquias rurales de: Avila, Murialdo, San José de Payamino, San Vicente de Huaticocha y San José de Dahuano.

En la figura 1.3 se puede observar la división política y límites de la provincia de Orellana**; considerando lo siguiente:

- El sector comprendido entre los cursos de los ríos Napo y Tiputini Uno, y el meridiano geográfico 77°00'00", que actualmente forma parte del cantón Tena, pasa a formar parte de la jurisdicción de la cabecera cantonal de Orellana.
- Los sectores comprendidos entre los cursos de los ríos Tihuacuno, Wagrangi, Chontal y Tigüino, y el meridiano geográfico 77°00'00", que actualmente forma parte del cantón Tena, pasa a formar parte de la parroquia Dayuma.
- El sector comprendido entre los cursos de los ríos Tigüino, Shiripuno y Cononaco que actualmente forman parte del cantón Arajuno de la Provincia de Pastaza, se integra a la parroquia de Dayuma.

Ecuador, Ministerio de Gobierno, Registro Oficial, Suplemento, Quito, 30 de Julio de 1998, 8 p.

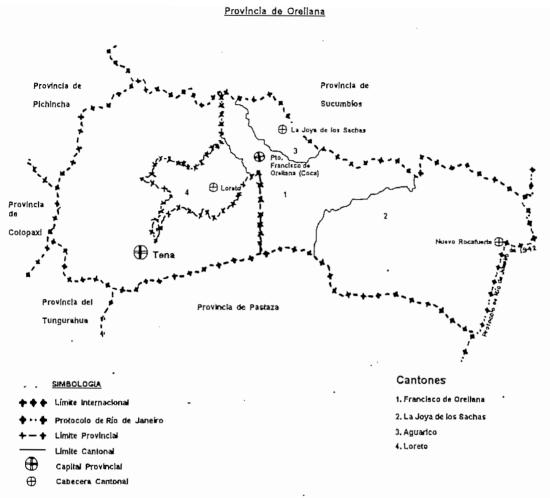


Figura 1.3

4.2 Resumen de los índices socioeconómicos de la provincia.

Población

En la provincia de Orellana habitan alrededor de 50010 habitantes, los cuales se reparten en dos sectores urbano y rural cuyo número de habitantes es de 13173 y 36837 respectivamente.

Tiene índices de crecimiento en el ámbito urbano del 7.6 %, y a escala rural del 3.4 % a 1990; se estima que a la fecha la población total provincial será de 66444, los

habitantes en el sector urbano crecerán a 21065 habitantes; mientras que para el sector rural se proyecta a un número de 45379 habitantes^{*}.

En el cuadro 1.14 se presenta en resumen la división de la población en la provincia de Orellana.

Cantón	Aguarico	
		No de Habitantes
Area Urbana Periferia		387 650
Total Cabeceras Parroquiales Rurales		565
Total Resto de la Parroquia		1548
Total Parroquias Rurales		2113
Total Cantonal		3150

Cantón	Orellana	
		No de Habitantes
Area Urbana Periferia		7805 7394
Total Cabeceras Parroquiales Rurales		0
Total Resto de la Parroquia	•	4475
Total Parroquias Rurales		4475
Total Cantonal		19674

Ecuador. Vicepresidencia de la República. INEC. Análisis de los Resultados Definitivos del V Censo de Población v IV de Vivienda 1990. Quito. INEC. 1993.

Cantón	La Joya de los Sachas	
		No de Habitantes
Area Urbana Periferia		2519 4934
Total Cabeceras Parroquiales Rurales		795
Total Resto de la Parroquia		7945
Total Рагтоquias Rurales		8740
Total Cantonal		16193

La población en el cantón Loreto está proyectada para 1998 a un valor de 9376 habitantes, divididos en 576 habitantes en el sector urbano y 8800 habitantes en el sector rural.

Cuadro 1.14 Población de la provincia de Orellana.

Vivienda

La vivienda es un derecho básico de cualquier familia, es una necesidad vital, ligada a la reproducción de la fuerza de trabajo, y, en gran medida la salud de los individuos que la habitan, depende de las condiciones materiales de las mismas.

De entre las viviendas particulares, el 11,7 % fueron encontradas desocupadas, advirtiéndose que en área rural, el porcentaje se eleva al 13.2 %. Tal situación no debe entenderse como un superávit habitacional sino como un elemento de estudios más profundos.

Cada sociedad ha diseñado su propio tipo de vivienda lo que se relaciona directamente con la necesidad y recurso del medio ambiente natural y social.

Se advierte que en la provincia de Orellana existe una preponderancia del tipo de vivienda "casa o villa" que alcanza el 69.5 % seguido en importancia por "rancho" con el 15.9 %, "cuarto(s) en casa de inquilinato" con el 8.2 % y "mediagua" con el 6.0 %. La significativa importancia de la construcción de tipo "rancho", se debe fundamentalmente a las características de la provincia^{*}.

Actividades Económicas

Los pobladores de esta región del oriente ecuatoriano tienen su principal fuente de sustento económico en la agricultura y ganadería; siendo otra la participación en la actividad petrolera.

La actividad en los campos petroleros es desempeñada por muchas personas ya sea en los yacimientos (pozos de extracción), o en las bases de las empresas que explotan crudo en esta región.

Existe una nueva actividad económica en auge, el turismo ecológico; el cual se desarrolla en hosterías u otros sitios apropiados para tal actividad. Siendo un recurso poco explotado y que lleva consigo una posibilidad de desarrollo para los pobladores de dicha región.

Sistema Vial

La provincia dispone de carreteras que comunican las principales localidades, está servida también por una pista en Francisco de Orellana y otras pistas de aterrizaje para operaciones domésticas.

Ecuador. Vicepresidencia de la República. INEC. <u>Análisis de los Resultados Definitivos del V Censo de Población y IV de Vivienda 1990</u>. Quito. INEC. 1993.

4.3 Sistemas de Telecomunicaciones existentes.

4.3.1 Red de Transmisión Vía Radio Analógico y Digital.

La única red de radio analógica existente que sirve a las provincias de Napo y Orellana es la:

 Quito - Coca con capacidad de 960 canales más un canal de televisión. Que consta de las siguientes de estaciones: Quito, Atacazo, Guango, La Mira, Salvación, Abitahua, Calvario, Santa Clara, Tena, Galeras y Francisco de Orellana (Coca). Este sistema se puede apreciar de mejor manera en la figura 1.4.

Los sistemas de transmisión se dividen en dos tipos de sistemas de radio: de mediana capacidad y de gran capacidad; cuya disposición se puede observar en los siguientes cuadros.

ESTACION	LOCALIDAD	MARCA	TIPO	CONF.	N
					CANAL.
Coca	Sacha	SITELTRA	FM 6-120	1+1	24

Cuadro 1.15 Sistemas de Radio Mediana Capacidad Analógico.

ESTACION	LOCALIDAD	MARCA	TIPO	CONF.	CANAL.	N
						CANAL
Galeras	Coca	SITELTRA	SHF FM 960	1+1	960 + TV	960

Cuadro 1.16 Sistemas de Gran Capacidad Analógico.

No existe ninguna red troncal digital por el momento.

Entre los sistemas de radio tetracanales analógicos y digitales tenemos:

Localidad	Cap.	Localidad Cap. Tipo de Central		Teléfonos Principales	os ales		Cap.	Cap. Enlace LDN			Transmisión	iisión	
	Inst.			•			Prim.	Prim. Centro de	Medio	C. Radio Instal. Inst.	Radio Inst.	Múltiplex Inst.	C. 1)filiz.
			Abon.	Servic	Moned.	TOTAL	Inst.	Abon. Servic Moned. TOTAL Inst. Conexión (CT)					
Coca	1600	1600 SIEMENS CPR-100	1301	20		1321	2500	Quito (ARM) QTS2	Satélite	120	1	1	09
Joya de	300	SAMSUNG SDX-RB	524	10		534	1000	534 1000 Quito (ARM) QTS2 Satélite	Satélite	30	ľ	ı	25
los Sachas Nuevo	112	112 ERICSSON DX1	71	3		74	Directa	74 Directa Quito (ARM) QTS2 Satélite	Satélite	16	ı	1	15
Rocafuerte													
ų											•		

Cuadro 1.19 Sistemas de Telefonía Local.

Care Les		IONATIONAS ATTENTIONAS	ii									· · ·
(3) a (2) y (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)		100 De 10	E. COCA	101: 069								
וטאפאסטן ביירדי		R.O PASHIATEU	0/37/4350r 5	אינה יובה	STEPOJ	1-1) 555						
					FAVATACU DIII. E 3 GALEPAE	th-	2-	jećuno 01 trk 4	TO CASE A DAVI - OF			
			BAESA OHII-CI SACH D EMEZA O CONDISUA			11-12) A/CO-COFA 11-12) A/CO-COFA 11-12) A/CO-COFA 11-12-12-12-12-12-12-12-12-12-12-12-12-1	ã	SWITA CLAPA O / 1. AZ		/	WENCE OF CO	PADRA OIV-EI
		H GUAMANI OYACACH	PAPALLACTA						ABITAHUA X Ra Nerot Masa Kiv E i			
SUBGERENCIA DE TRANSMISION RED ORIENTE ANALOGICA.	Ç	\$ 1 m		380 (1+1)		GUANGO		(1+1)	SALVACION Endos 170 CH RAVOS RIVE DI	(1+1)		
SUBGERENCIA RED ORIENTE	ZA-1-ONO	OUTD NILL-AA CIUZ Lamy ATACAZO SED (1+1)				X LATACUNGA				OUTENER LAMINA	OUND RIV-C+	

CAPITULO 2:

Análisis de las Alternativas Técnicas para Telefonía Rural

1. Generalidades

En este capítulo analizaremos los sistemas inalámbricos para telefonía rural, poniendo énfasis a los sistemas de bucle de abonado inalámbrico entre los cuales se encuentran: Satélite, Celular Analógico y/o Digital, Telefonía Sin Hilos o Inalámbrica (CT2, DECT, etc.), Sistemas Troncalizados (Trunking), WLL (Bucle de abonado inalámbrico); siendo este último un sistema punto - multipunto.

En la actualidad, los abonados de las zonas rurales y distantes requieren de los mismos servicios de telecomunicaciones que disfrutan los abonados de las zonas urbanas y suburbanas.

1.1 Tecnología Digital

Hace algunos años, las empresas dedicadas a brindar servicios de telecomunicaciones así como los fabricantes de equipos dedicados a esos propósitos observaron las bondades de los sistemas digitales en comparación con sus equivalentes analógicos.

Los componentes de los sistemas digitales se basan en las tecnologías de circuitos LSI (integración de circuitos a gran escala) y VLSI (integración de circuitos a muy gran escala) que son muchos más robustos y confiables que los componentes analógicos. Además, debido a su tamaño se pueden obtener equipos de menor envergadura.

La tecnología digital brinda la posibilidad de transmitir voz, datos, vídeo por un mismo canal. Por último tienen mayor capacidad de almacenamiento y transmisión de información que cualquier sistema basado en la tecnología analógica.

Las señales presentes en la naturaleza tienen una connotación analógica, pero este tipo de señal posee limitaciones a la hora de ser utilizada en sistemas de telecomunicaciones.

Al transmitir una señal analógica pueden aparecer inconvenientes tales como: complicidad de sistemas de amplificación (ya que la señal debe ser amplificada muchas veces debido a la fuerte atenuación sufrida en el canal de transmisión), sensibilidad a errores por distorsión, elevada perturbación por ruido (ya sean por la atmósfera terrestre, materiales conductores, y radiación producida por cuerpos celestes).

Una señal digital evita estos inconvenientes representando la información analógica por dígitos binarios los cuales se transmiten en una serie de estados digitales como datos binarios. El método más sencillo de lograr una señal digital sobre la base de una forma de onda analógica es muestreando una señal con pulsos de mínimo el doble de la frecuencia de la señal analógica.

Una señal digital es prácticamente inmune a los efectos producidos por la atenuación y ruido, ya que son fácilmente reconocibles debido a que la señal analógica que fue

codificada por niveles discretos de voltaje los cuales son reconocidos al otro extremo del canal de comunicación; por lo que es muy sencillo de detectarlas.

1.2 Ventajas de las Telecomunicaciones Rurales Confiables

Entre las ventajas de las telecomunicaciones rurales confiables tenemos:

Desarrollo comercial e industrial - Las empresas pueden ampliar su área de influencia a los mercados locales y nacionales e incluso lanzarse al mercado mundial. Al poder realizar llamadas telefónicas, transmitir por fax o acceder a bases de datos fácilmente, las empresas locales tienen las mismas ventajas que las situadas en zonas urbanas.

Desarrollo regional - Los gobiernos y las empresas turísticas pueden promocionar mejor sus países o regiones. Al saber que disponen de servicios de telecomunicaciones confiables, los turistas acudirán con mayor facilidad a dichas regiones.

Entrega de información - Se hace posible o se simplifica el flujo de información. Puede transmitirse o recibirse normalmente información, como base de datos, estadísticas y transacciones financieras, mejorando así la calidad, la precisión y rapidez en la toma de decisiones.

Teleeducación - Pueden proporcionarse estudios y capacitación a las zonas más distantes, asegurando así un nivel de educación básico y uniforme en todo el país.

Telemedicina - Los médicos y enfermeras de aldeas distantes pueden consultar a especialistas de hospitales urbanos. También pueden obtenerse expedientes médicos, conocerse los más recientes procedimientos y conseguirse asesoría y capacitación sin necesidad de viajar.

Protección y seguridad - En momentos de necesidad o urgencia, el sistema proporciona a los habitantes comunicaciones vitales para coordinar la intervención de la población y las ayudas.

1.3 Comparación de Tecnologías para Acceso Múltiple

El cuadro 2.1 resume las principales tecnologías de acceso múltiple para sistemas de telecomunicaciones.

Items	CDMA	TDMA	B-TDMA
Capacidad	10 -20	3	6 - 10
Ancho de banda	1.25 MHz	30 KHz	30 KHz
Factor de reutilización de frecuencias	1	7, 4	7, 4
Planeamiento de frecuencias	No	Si	Si
Handoff	Soft	Hard	Hard
Control de potencia	Rápido	Lento	Lento
Consumo de potencia móvil	Bajo	Medio	Medio
Estándar	IS-95/95A	IS-54/135	IS-54 Basado
Velocidad del codificador de voz	8, 13 Kbps	8 Kbps	4 Kbps
Diversidad	Espacio, tiempo, frecuencia	Tiempo, espacio	Tiempo, espacio

	Handoff	Alta	Mejor que AMPS	Nivel TDMA
Calidad	Desvanecimiento	Alta	Mejor que AMPS	Nivel TDMA
	Sobre calidad	Alta	Mejor que AMPS	Menor que TDMA

Cuadro 2.1 Cuadro comparativo de algunas tecnologías para acceso múltiple

2. Sistemas Inalámbricos de Bucle de Abonado

2.1 Sistemas de Comunicaciones Vía Satélite

En las décadas de los 50's y 60's, la gente trato de conseguir sistemas de comunicaciones mediante globos climatológicos metálicos. Desdichadamente, las señales recibidas eran demasiado débiles para cualquier uso práctico. Entonces la Marina de los Estados Unidos de Norteamérica notifico de una clase de globo meteorológico permanente en el cielo - la Luna - y construyó un sistema operacional para cursar comunicaciones de señales a través de ella.

Mas el progreso en el campo de las comunicaciones celestiales tuvo que esperar hasta que el primer satélite de comunicaciones fue lanzado en 1962. La diferencia entre un satélite artificial y un real es que el artificial puede amplificar las señales antes de enviarlas de regreso.

Los satélites de comunicaciones tienen algunas propiedades que los hacen atractivos para muchas aplicaciones. Los satélites de comunicaciones son configurados como un gran repetidor de microondas en el espacio. Contiene una cantidad de Radio

Repetidores Activos ("transpondedores"), cada uno de los cuales recibe una porción del espectro, amplifica la señal entrante, y la difunde con otra frecuencia, evitando la interferencia con la señal de entrada. Los haces de bajada pueden ser distribuidos, cubriendo una franja sustancial de la superficie terrestre, o estrechamente, cubriendo un área de solamente algunos cientos de kilómetros de diámetro.

2.1.1 Satélites Geoestacionarios

De acuerdo con la ley de Kepler, el período de la órbita de un satélite varía como el radio orbital elevado a la 3/2***. Cerca a la superficie terrestre, el período es alrededor de 90 minutos.

A una altitud aproximadamente de 36000 kilómetros sobre la línea ecuatorial, el período del satélite es de 24 horas (exactamente 23 horas 56 minutos 4.09 segundos), tal que se mueve a la misma velocidad que un objeto sobre la Tierra. Con la tecnología actual es posible tener un número de satélites geoestacionarios espaciados 1 grado sobre los 360 grados del plano ecuatorial, para evitar interferencias. Con este espaciamiento de 1 grado, habrá 360 satélites geoestacionarios de comunicaciones en el cielo al mismo tiempo dentro de la misma banda de frecuencia.

Para evitar la confusión o interferencias entre las señales de satélites, hay muchas maneras de asegurar su funcionamiento adecuado tales como: distintos rangos de

Tanenbaum, A.S. Computer Networks. 3ra. Ed. Estados Unidos. Prentice Hall Inc. 1996. 795 p.

frecuencias, distintas polarizaciones de las antenas y orientaciones de los haces a porciones de la Tierra opuestas.

El más general de las distribuciones de frecuencias se muestra en la cuadro 2.2:

Banda	Frecuencias	Enlace de Bajada (GHz)	Enlace de Subida (GHz)	Problemas
С	4/6	3.7 - 4.2	5.925 - 6.425	Interferencia Terrestre
Ku	11/14	11.7 - 12.2	14.0 - 14.5	Lluvia
Ka	20/30	17.7 - 21.7	27.5 - 30.5	Lluvia; Costo del Equipo

Cuadro 2.2 Bandas de frecuencias para enlaces satelitales

Un típico satélite posee entre 12 y 20 transpondedores, cada uno de los cuales tiene un ancho de banda de 30 a 72 MHz. Dos transpondedores pueden usar la misma frecuencia pero con distintas polarizaciones. En los primeros satélites, la división de los transpondedores en canales era estática, dividiendo el ancho de banda en porciones de frecuencia fijas. En nuestros días, la técnica implementada es la reutilización de frecuencias por aislamiento geográfico y por doble polarización.

Los haces pueden ser: globales, regionales y sectoriales; debido a su utilización.

Entre las organizaciones que prestan servicios a escala mundial están:

> INTELSAT

> INMARSAT

> PANAMSAT

Las cuales brindan servicios satelitales fijos como móviles alrededor del mundo. Dichos servicios son: Telefonía, Facsímile, Transferencia de Datos, GPS, IDR, INTELNET, etc.

2.1.1.1 Sistema DOMSAT de ANDINATEL

El sistema DOMSAT implementado por ANDINATEL en la región oriental no es más que una red satelital doméstica que comunica estaciones terrenas remotas con una estación maestra en Quito.

Permite servicios digitales de:

- Canales de voz:
 - ADPCM (16 Kbps)
 - CELP (6.4 Kbps)
- Canales de Facsímile
- Canales de Datos (de manera opcional)

Utiliza técnicas de compresión de datos para optimizar el ancho de banda. Además, permite control y supervisión de la red a través de GMACS.

Tiene diferentes tipos de estaciones remotas según los requerimientos de tráfico las cuales van desde: tipo 1 (4 números remotos), hasta tipo 7 (120 canales de voz).

La aplicación dada por ANDINATEL a este sistema fue dar servicio telefónico a poblaciones concentradas en sitios medianamente inaccesibles por otros medios de transmisión; es decir, no esta enfocado a población dispersa.

La figura 2.1 muestra un típico enlace satelital.

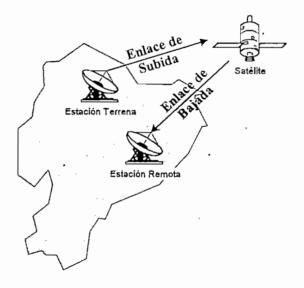


Figura 2.1 Sistema de transmisión satelital

2.1.2 Satélites de Baja (LEO) y Mediana (MEO) Órbitas

Como su nombre lo indica son satélites cuyas órbitas serán menores a lo 36000 Km. Estos satélites permiten una gran cantidad de aplicaciones y brindan los siguientes servicios:

- Voz (en formato digital)
- Facsímile
- Transmisión de Datos
- Posicionamiento Geográfico (GPS)
- Radiomensajería (Paging o Buscapersonas)

Al ser sistemas de última generación utilizan un esquema CDMA (Acceso Múltiple por División de Código) para que las estaciones terrenas puedan acceder al satélite.

Son sistemas compatibles con cualquier sistema de telecomunicaciones convencional; como por ejemplo: redes telefónicas públicas.

En la actualidad se dispone de los siguientes sistemas:

- Odyssey (MEO, altura de órbita: 10370 Km)
- Globalstar (LEO, altura de órbita: 1400 Km)
- Aries (LEO, altura de órbita: 1020 Km)
- Ellipso (MEO)
- CCI Constellation Communication In (MEO)
- Iridium (LEO, altura de órbita: 750 Km)

2.1.2.1 Sistema Iridium

En los primeros 30 años de la era satelital, los satélites de órbitas bajas eran raramente utilizados para comunicaciones porque entraban y salían de vista rápidamente. En 1990, la compañía Motorola rompe un nuevo terreno registrando una nueva aplicación con el consentimiento de la FCC permitiendo lanzar 77 satélites de órbitas bajas para el proyecto Iridium (el elemento 77 de la tabla periódica de los elementos químicos es el Iridio). El plan fue revisado llegando a la conclusión de que se necesitarían solamente 66 satélites, así el proyecto podría ser renombrado Dysprosium (Disprosio elemento 66), pero está posibilidad sonaba demasiado a enfermedad.

La meta de Iridium es proveer servicios de telecomunicaciones a lo ancho del mundo usando equipos portátiles que pudieran ser llevados en la mano, que pudieran comunicarse directamente con los satélites de Iridium. Provee servicios de voz, datos, mensajería, facsímile, y servicios de navegación en cualquier parte de la Tierra.

Iridium utiliza la idea de un radio celular, pero con entrelazados. Normalmente las celdas son fijas, pero los usuarios están en movimiento. Aquí, cada uno de los satélites tiene un número sustancial de haces dirigidos hacia la Tierra; como los satélites se mueven, así ambos las celdas y los usuarios son móviles en este sistema, pero las técnicas de manejo usadas para el radio celular son igualmente aplicables en el caso de que la celda dejara al usuario o el usuario dejara a la celda.

Los satélites serán puestos a una altitud de 750 Km, en órbitas circulares polares. Estos podrían estar formando arreglos de norte a sur como collares, con un satélite cada 32 grados de latitud. Con 6 collares satelitales, el sistema cubrirá enteramente a la Tierra, como sugiere la figura 2.2.

Cada satélite tendrá un máximo de 42 haces, con un total de 1628 celdas sobre la superficie de la Tierra. Las frecuencias pueden ser reutilizadas por dos celdas, como con un radio celular convencional. Cada celda tendrá 174 canales full dúplex, para un total de 283272 canales mundiales.

Los enlaces tanto de subida como de bajada operan en la banda L, a 1.6 GHz, haciendo posible comunicarse con un satélite usando un equipo cuya potencia y batería sean pequeños. Los mensajes recibidos por un satélite pero destinados para un remoto podrá ser relevados entre los satélites en la banda Ka. En el espacio exterior hay suficiente ancho de banda disponible para los enlaces intersatélite. El factor limitante será los segmentos de los enlaces de subida y bajada. Motorola estima que 200 MHz será suficiente para el sistema completo. El costo proyectado al usuario final es de alrededor a los 3 dólares americanos por minuto.

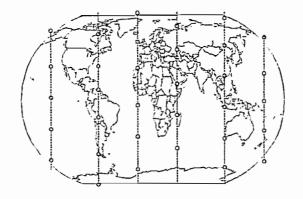


Figura 2.2 Anillos de satélites del sistema Iridium

2.1.3 Sistema Satelitales VSAT (de Antenas Pequeñas)

En el desarrollo de nuevas tecnologías para las telecomunicaciones vía satélite está el incentivo a la creación de microestaciones a un bajo costo, llamadas VSAT's (Very Small Aperture Terminals). Estos diminutos terminales tienen antenas de 1 metro y puede dar una potencia de salida alrededor de 1 W. El enlace de subida es generalmente mejor para velocidades de 19.2 Kbps, pero el enlace de bajada es mucho más rápido, frecuentemente a 512 Kbps. En algunos sistemas VSAT, las microestaciones no disponen de suficiente potencia para comunicarse directamente con otra. Por lo tanto da lugar a una estación terrena especial, llamada "hub", con una antena de alta ganancia; es decir, mayor diámetro de antena necesaria para repartir el tráfico entre VSAT's, tal como se muestra en la figura 2.3. En este modo de operación; uno de los dos, el emisor o el receptor tiene una antena mayor y un amplificador de potencia.

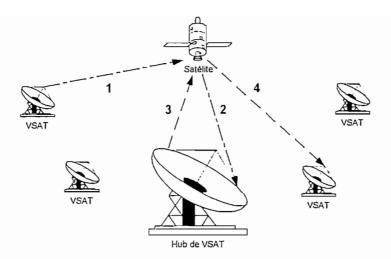


Figura 2.3 Sistema VSAT

Una propiedad importante de los satélites es que son inherentemente medios de difusión. Por lo que no cuesta más enviar un mensaje a miles de estaciones dentro de la huella de un transpondedor que los hace únicos. La encripción de mensajes es esencial cuando se requiere seguridad.

Características:

Tienen la posibilidad de recibir o transmitir de 1 a 8 canales de comunicación; así, como de recibir programas de televisión de manera opcional.

En la actualidad se utiliza los sistemas SCPC (Single Channel per Carrier) (Portadora Monocanal), TDMA (Acceso Múltiple por División de Tiempo) y CDMA (Acceso Múltiple por División de Código) en adición al FDM (Multiplexación por División de Frecuencia).

La SCPC es la técnica de transmisión más importante para rutas de bajo tráfico. Además, puede combinarse con modulación MIC (Modulación por Impulsos Codificados) ó FM (Modulación en Frecuencia), así como la técnica de modulación digital en fase PSK.

2.2 Sistemas Telefónicos Inalámbricos

2.2.1 Telefonía Sin Hilos (Cordless Telephony)

El desarrollo de está tecnología empieza en la década de los 70's y fue diseñada para trabajar con cualquier teléfono casero. El principio de operación fue usar un enlace de radio full dúplex de baja potencia para conectarse a la estación base la cual a su vez conectaba al teléfono. Debido a su creciente popularidad se produjo una saturación del espectro de frecuencias. Utilizaba señalización por tonos y en algunos casos carecía de un control de seguridad por lo que se tenía problemas de intromisiones.

Luego se asignó mayor cantidad del espectro de frecuencias para este servicio y se construyeron equipos cuyas condiciones permitían mejorar el aspecto de seguridad; es decir, el de llamadas que provenían de líneas ilegales.

Existen dos tipos de tecnologías que se utilizan para los sistemas telefónicos sin hilos como son: sistemas analógicos y sistemas digitales.

2.2.1.1 Telefonía Sin Hilos Analógica

Dicha tecnología ha evolucionado al igual que sus estándares entre los cuales tenemos los siguientes (figura 2.4):

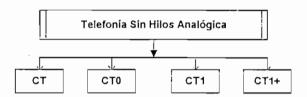


Figura 2.4 Estándares para la telefonía sin hilos analógica

2.2.1.1.1 North American Cordless Telephone (CT)

Este estándar fue introducido en el mercado de las telecomunicaciones a finales de los años 70 en Estados Unidos con las siguientes características:

- Servicio privado y residencial
- Capacidad para 25 pares de frecuencias en la banda de los 46 MHz (para la transmisión de la estación base) y en la banda de los 49 MHz (para la transmisión del microteléfono)
- Ancho de banda de emisión: 20 KHz
- Muy baja potencia efectiva radiada (ERP): 20 μW
- Modulación FM

2.2.1.1.2 Cordless Telephone 0 (CT0)

Llamado también MPT 1132, ésta tecnología se originó en el Reino Unido juntamente con Francia. Esta alternativa es tecnológicamente muy simple por lo que no constituye realmente un estándar; se basa en modulación en frecuencia y caracteriza su funcionamiento en lo siguiente:

- Similitud al estándar analógico norteamericano CT
- ◆ Tiene 8 pares de canales en las bandas de 41.7 MHz (para la transmisión de la estación base) y en la banda de los 47.5 MHz (para la transmisión del microteléfono)
- La calidad de voz es deficiente con un limitado número de canales accesibles por cada microteléfono (2 pares)
- ♦ Uso doméstico limitado
- ♦ No está protegido contra escuchas fraudulentas

Su precio fue relativamente competitivo comparado con otras tecnologías.

2.2.1.1.3 Cordless Telephone 1 (CT1)

El estándar CT1 fue realmente la primera norma ETSI y CEPT para este tipo de aplicaciones, el cual fue definido en 1983. Dicho estándar está orientado a aplicaciones residenciales de telefonía sin hilos. Utiliza a la modulación en

frecuencia para la banda de los 900 MHz, con selección automática del canal libre. Entre sus principales características tenemos:

- Usos residenciales
- Tecnología analógica (Modulación en Frecuencia)
- Técnicas FDMA (Acceso Múltiple por División de Frecuencia), 40 pares de canales full dúplex de 25 KHz cada uno en las bandas de 914-915 MHz y 959-960 MHz para la transmisión de la estación base y del microteléfono respectivamente
- ◆ Selección dinámica de canales (DCS: Dinamic Channel Selection) durante la realización de una llamada
- Baja probabilidad de bloqueo a las llamadas
- Incompatibilidad de equipos entre diferentes fabricantes; pero incluye posibilidad de migración a mejoras futuras, por ejemplo: encriptación como norma de seguridad

La introducción de estos sistemas ha sido limitada debido a su mayor precio respecto al CT0.

2.2.1.1.4 Cordless Telephone 1 Plus (CT1+)

Constituye una mejora al CT1. Fue comercializado en Alemania, Bélgica y Suiza; entre sus principales características tenemos a las siguientes:

- Ofrece 80 pares de canales debido a la adición de nuevas bandas: 885-887 MHz y
 930-932 MHz.
- Provee más canales para aplicaciones de negocios.

Además, se tiene otro tipo de estándar en el Japón que se detalla a continuación.

2.2.1.1.5 Sistema de Telefonía Sin Hilos Analógica en el Japón

Dicho estándar tiene las siguientes características:

- Dispone de 89 pares de canales full dúplex en las bandas de 380 MHz y los 254
 MHz para la transmisión de la estación base y el microteléfono respectivamente.
- Dos canales de control dedicados para facilitar conexiones rápidas y ahorrar el consumo de baterías

2.2.1.2 Telefonía Sin Hilos Digital

Esta tecnología imponía algunas metas para mejorar el servicio como las que siguen:

- Mejorar la calidad de voz
- Aplicaciones potenciales en aumento: "comunicaciones con grado de movilidad"
- Incremento de movilidad gracias a una estructura celular y traslape entre las celdas (handover*)
- Provisión de seguridad contra accesos no autorizados

^{&#}x27;Handover es la transferencia de una llamada a otra estación base o canal libre cuando el usuario se mueve de una celda a otra.

- Diseños para alta densidad de usuarios
- Incremento de robustez contra las interferencias

La figura 2.5 enumera los estándares que serán analizados a continuación:

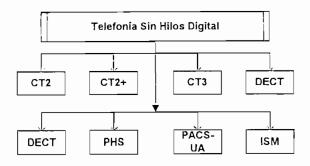


Figura 2.5 Estándares para la telefonía sin hilos digital

2.2.1.2.1 Cordless Telephone 2 (CT2)

El estándar CT2 fue impulsado por el Reino Unido; está tecnología digital funcionaba con FDMA y tenía una aplicación doméstica, por ejemplo: para ser utilizadas en pequeñas centrales sin hilos (wireless PBX), llegando a desarrollarse un servicio público unidireccional (telepunto).

El acceso telepunto consiste en que para el servicio público las estaciones base y repetidores están ubicados en sitios estratégicos, como por ejemplo: a lo largo de las calles, en centros comerciales, zonas industriales, etc., además, suministra varios puntos de acceso a un bajo costo; siendo un servicio limitado a llamadas salientes. Cada lugar no es más que una simple conexión a la PSTN (Public Switching

Telephone Network); con una tarifación inalámbrica; así mismo el diseño del microteléfono tiene un tamaño y peso mínimos.

Entre sus principales características podemos anotar:

- Utiliza el sistema de accesos digital MC/TDD (Multi Carrier/Time Division Duplexing). Por lo tanto existen 40 portadoras, cada una proporciona un canal full dúplex; al existir una banda de frecuencias cada portadora soporta los procesos de transmisión y recepción mediante la técnica de división doble de tiempo (TDD)
- * Tiene dos rangos de frecuencias:
 - 864-868 MHz en el Reino Unido
 - 861-865 MHz para el resto de Europa
- * La banda de frecuencias esta dividida en 40 canales a los que se accede por FDMA. El estándar utiliza selección dinámica de canal), teniendo una capacidad moderada de usuarios
- Usa GFSK (Modulación Digital en Frecuencia de manera Gaussiana) con un BT=0.3
- Digitalización de 32 Kbps por canal de voz, usando ADPCM (Modulación por Impulsos Codificados Adaptiva Diferencial). Con una velocidad total de flujo de datos igual a 72 Kbps
- Un canal dúplex por portadora y duración de trama de 2 mseg
- Potencia promedio de transmisión del microteléfono de 5 mW, con una potencia pico de 10 mW; para un alcance máximo de 200 m

Entre sus principales aplicaciones tenemos a las siguientes:

- Soporta aplicaciones residenciales, PBX inalámbricas y acceso telepunto pero con la limitante de no permitir llamadas entrantes
- Incorpora señales para tarifación lejana. Con la opción de tener un beeper (receptor de mensajes en formato de texto) para superar la limitación de acusación de las llamadas entrantes
- El diseño apunta a proveer un servicio cuyo costo y complicación sean mínimas
 ya que tienen un área de cobertura limitada
- El handover es limitado para velocidades muy bajas; es decir, únicamente para usuarios con velocidades terrestres.

2.2.1.2.2 Cordless Telephone 2 Plus (CT2+)

Llamado también PCI fue propuesto por Northern Telecom del Canadá en 1993 constituyendo una mejora al estándar CT2. Su principal ventaja es la compatibilidad con el estándar CT2 CAI ya que es capaz de identificar a CT2 y conectarse de acuerdo a este estándar. Trabaja en la banda de frecuencias: 944-948 MHz y añade las siguientes características al estándar CT2:

 Usando uno o más de los canales diseñados para señalización pueden proveer mejor handover y agilidad en frecuencia (uso más eficiente de la banda en el espectro asignado)

- La carga de la batería dura mucho más
- Servicio de radiomensajería (paging)
- Registro y grabación de ubicaciones
- Capacidad de tener llamadas públicas entrantes
- Utiliza modulación GFSK

2.2.1.2.3 Cordless Telephone 3 (CT3)

Introducido por la empresa ERICSSON en Suecia es llamado también como DECT900 del cual la empresa lo utiliza como propietario. Basado en el estándar DECT (que se analizará más adelante) pero operando en las bandas de 800 o 1000 MHz. Tanto CT3 como el DECT fueron diseñados para telefonía inalámbrica en áreas de alta densidad cuyos ambientes manejan un alto tráfico que podrían complementar al servicio celular en ambientes urbanos. El estándar CT3 se oriento principalmente para aplicaciones de PBX inalámbricas (WPBX).

Sus principales características son las siguientes:

- Soluciona algunas limitaciones de CT2, en particular lo concerniente a las llamadas entrantes y permite un seguimiento eficaz entre las estaciones base
- Soporta velocidades de hasta 40 Km/h para un handover y seguimiento adecuados
- El handover toma 48 mseg y es solicitada por el terminal a la estación base
- Está basado en la técnica TDMA/TDD

- Soporta 8 canales full dúplex por cada 1 MHz de ancho de banda utilizando 15 portadoras en la banda asignada que da una capacidad neta de 120 canales dúplex. El ancho de banda total utilizado es de 15 MHz
- La voz se digitaliza a 32 Kbps con ADPCM; además la velocidad total es de 640
 Kbps

2.2.1.2.4 Digital European Cordless Telecommunications (DECT)

El estándar DECT fue desarrollado a finales de 1980 y se basa en el CT2 para aplicaciones domésticas.

Es un estándar de acceso digital vía radio para comunicaciones inalámbricas en una o múltiples celdas. Esta basado en la tecnología de acceso TDMA. DECT fue optimado para una cobertura local con alta densidad de usuarios.

Tiene como principales características a las siguientes:

- Opera en las bandas: 1880-1900 MHz y 1910-1930 MHz. Siendo está última la banda oficial en el Ecuador para estos servicios
- Tiene una estructura MC/TDMA/TDD (Multi Carrier/Time Division Multiple Access/Time Division Multiplexing), con el fin de alcanzar una alta densidad de usuarios
- DECT utiliza un espectro de 20 MHz al cual lo divide en 10 portadoras (cada una de 1.78 MHz); las cuales a su vez se subdividen en 24 intervalos de tiempo

utilizando TDMA, de los cuales 12 son usados para la transmisión y 12 para la recepción de tráfico entre los terminales y la estación base en un arreglo por TDD. Se tienen por lo tanto 120 canales de voz

- La trama dura 10 mseg con una velocidad de 1152 Kbps
- DECT brinda al usuario la posibilidad de tener acceso a todos los canales de radio y selecciona el canal disponible de mejor calidad cuando la conexión es requerida; a este proceso se lo denomina CDCS (Selección Continua Dinámica de Canales)
- El seguimiento sólo es posible si se apoya en algún sistema externo que gestione movilidad
- El handover se produce cuando el terminal detecta al canal de mejor calidad (enviado por la misma o por diferente estación base), el terminal conmutará a este nuevo canal. La conmutación es imperceptible para el usuario por lo que recibe el nombre de seamless handover
- Utiliza GMSK (Gaussian Minimum Shift Keying) con BT=0.5
- Digitaliza la voz a 32 Kbps utilizando ADPCM
- Usa encriptamiento de la señal para seguridad de las conversaciones, con autentificación de acceso
- El terminal inalámbrico tiene tamaño de bolsillo y escaso peso

2.2.1.2.5 Personal Handyphone System (PHS)

El concepto de PHS fue desarrollado en el Japón por la NTT (Nippon Telegraph and Telephone Corporation) y fue lanzado al mercado en 1995.

El estándar PHS es una versión simplificada del teléfono celular; sin embargo, ofrece servicios desde la telefonía básica hasta sofisticadas aplicaciones multimedia como por ejemplo: servicios de transmisión de datos a alta velocidad en el acceso a ISDN (Integrated Service Digital Network: Red Digital de Servicios Integrados) e INTERNET.

PHS fue diseñado para usuarios que requieran un razonable grado de movilidad el cual cubre los campos de la telefonía residencial, PBX inalámbricas y es plataforma para los sistemas que ofrecen aplicaciones multimedia.

Sus principales características son:

- Opera en la banda de 1895-1918 MHz, el ancho de banda neto es de 23 MHz
- La técnica de acceso es MC/TDMA/TDD, es decir, se tienen 77 portadoras cada una de 300 KHz. A su vez cada portadora es dividida en el tiempo en 4 canales dúplex.
- Tiene 231 canales en total para su utilización en tráfico
- La trama se transmite a una velocidad de 384 Kbps
- Codifica la voz a 32 Kbps utilizando ADPCM
- Tiene reutilización automática de frecuencias; es decir, CDCS
- Realiza seguimiento y handover imperceptible
- Utiliza modulación $\pi/4$ DQPSK (Differential Quadrature Phase Shift Keying)
- Soporta altas tasas de transmisión de datos

- El estándar PACS soporta grandes volúmenes de tráfico mediante su tecnología de microceldas y su algoritmo llamado QSAFA (Quasi-Static Automatic Frequency Assignament) la cual selecciona automáticamente la mejor frecuencia.
- Realiza seguimiento y handover imperceptible
- La modulación utilizada es la $\pi/4$ DQPSK
- Soporta altas tasas de transmisión de datos
- La movilidad máxima es de 100 Km/h
- Equipos terminales de bolsillo

2.2.1.2.7 Telefonía Sin Hilos en la banda ISM

La FCC (Federal Communications Commissions) de los Estados Unidos emitió el uso sin licencia de SS (Spread Spectrum), mediante radios con potencia de transmisión de hasta 1 W en la banda ISM (para Aplicaciones Industriales, Científicas y Médicas). Las bandas asignadas son 902-928 MHz, 2400-2483.5 MHz y 5725-5850 MHz.

Los teléfonos inalámbricos SS están en la banda de frecuencias 902-928 MHz, están disponibles actualmente para uso doméstico y de negocios con arquitectura diferente a la celular ya que utiliza una sola estación base por microteléfono.

2.2.2 Sistemas Troncalizados (de Grupos Cerrados)

Constituye otro tipo de sistema móvil; en este caso los usuarios no dirigen sus llamadas hacia abonados de las redes públicas, sino que el tráfico se desarrolla mediante llamadas desde y hacia una posición de despacho que controla al grupo, quedando todo el tráfico dentro de los límites del grupo.

Las conexiones son half dúplex (se recibe o transmite pero no simultáneamente), teniendo un tiempo limitado de llamada. Existen tres grandes grupos de sistemas que son: de frecuencia común/llamada selectiva, troncales analógicos y troncales digitales. En la figura 2.6 muestra la concepción de los sistemas troncalizados.

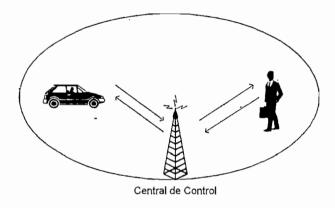


Figura 2.6 Esquema de los sistemas troncalizados

2.2.2.1 Sistemas de Frecuencia Común/Llamada Selectiva

Los sistemas de frecuencia común y llamada selectiva reparten a los usuarios de forma rígida entre los diferentes canales disponibles. Tecnológicamente están obsoletos y en vías de desaparecer excepto para aplicaciones muy concretas.

2.2.2.2 Sistemas Troncalizados Analógicos

Los sistemas troncalizados analógicos siguen las normas del Ministerio de Industria y Comercio del Reino Unido (DTI) estás son las series MPT-13XX la cual ha constituido una especie de estándar en Europa.

Para modular a la voz utilizan modulación en frecuencia y para la información de los canales de control FSK (Modulación Digital en Frecuencia) sobre un esquema de canales de 12.5 KHz y una técnica de acceso gobernada por FDMA. Los protocolos de control permiten la explotación en régimen de competencia.

Pueden construirse una gran gama de sistemas en lo que se refiere al tamaño de los sistemas; desde sistemas "monoemplazamiento" (constituidos por una sola estación base), hasta grandes sistemas nacionales en los las estaciones base se conectan a una compleja red con varios niveles jerárquicos de centros de comunicación.

Los servicios a explotar con este sistema es el de la telefonía tanto pública como privada, así como los servicios de datos y mensajería en diferentes modalidades.

2.2.2.3 Sistemas Troncalizados Digitales

El estándar relacionado con este sistema de telecomunicaciones es el TETRA desarrollado por el ETSI. El TETRA ha previsto dos tipos de sistemas: uno para

aplicaciones mixtas de voz y datos, y otro sólo para datos, por lo tanto optimizado para este tipo de tráfico.

Los sistemas TETRA pueden compartir infraestructuras, inclusive las bandas de frecuencias de los sistemas analógicos; por lo tanto, utiliza canales de 25 KHz modulados con $\pi/4$ DQPSK; teniendo como técnica de acceso a la FDMA/TDMA.

Los servicios disponibles son: telefonía, transmisión de datos y mensajes cortos; así como la posibilidad de uso en "modo directo", el cual permite establecer llamadas hacia otro terminal móvil que no cursen a través del sistema. Tiene alto grado de seguridad contra intromisiones y escuchas no autorizadas.

Los sistemas basados en TETRA permiten configuraciones desde una sola estación base hasta sistemas complejos en redes nacionales, ya sean públicas o privadas.

2.2.3 Sistemas Inalámbricos Punto-Multipunto

2.2.3.1 Sistemas de Multiacceso Digital (SMD)

El SMD es un sistema de comunicaciones digital a través de radio, de tipo punto multipunto. Destinados a proporcionar servicios de telecomunicaciones (especialmente telefonía) desde una central telefónica hacia abonados fijos situados generalmente en: zonas rurales, urbanas margínales, concentraciones residenciales distantes.

Un sistema de multiacceso está constituido por una estación central, la cual sirve como estación base, y una cantidad de estaciones periféricas (remotas); así como de repetidores regenerativos con el fin de extender el rango de cobertura del sistema, proporcionando servicio a abonados distantes. La estructura antes mencionada se aprecia de mejor manera en la figura 2.7.

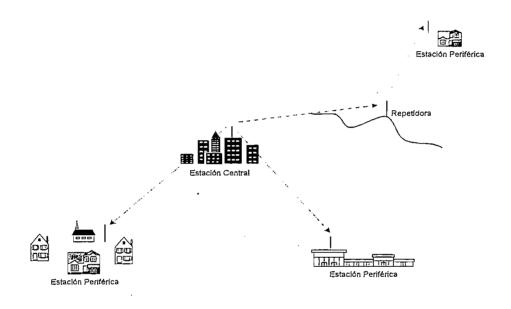


Figura 2.7 Configuración de un sistema de multiacceso

Los sistemas de multiacceso digital tienen la cualidad de minimizar la ocupación espectral para lo cual se debe utilizar TDM para el enlace Centro-Periféricas y TDMA para el enlace Periféricas-Centro.

El sistema debe ser totalmente transparente, es decir, que durante el funcionamiento normal, la central telefónica no puede detectar ninguna diferencia entre los abonados

conectados directamente por el medio tradicional (cable) y aquellos que estén conectados vía un enlace radioeléctrico.

Los sistemas de multiacceso trabajan sobre un mínimo de 30 canales de voz que están en disposición de los suscriptores, cuyo acceso a los canales de comunicaciones debe ser bajo demanda o fijo.

Existen en el mercado sistemas de multiacceso digital que trabajan con 60 canales para cursar tráfico a los abonados entre la estación base y las estaciones periféricas. Estos 60 canales son circuitos dúplex de 64 Kbps y están disponibles para todos los suscriptores sobre la base de asignación bajo demanda (sistema ALOHA).

En los sistemas SMD de 30 canales como en los de 60 canales, la forma de funcionar es similar, pero difieren en la estructura de la trama, por el manejo de mayor número de canales en el mismo tiempo de multitrama.

2.2.3.1.1 Sistemas de Multiacceso Digital de 30 canales (SMD 30)

En el sistema SMD 30 se establecen enlaces bidireccionales entre una estación central y un conjunto de unidades terminales de abonado, aleatoriamente distribuidas dentro de un área. Estas terminales dan servicios de telefonía como de datos a los abonados realizando para el efecto una concentración con el fin de compartir el total de canales disponibles en el sistema. La estación central enlaza con todas las

unidades terminales y realiza la interconexión a la central de conmutación. En la figura 2.8 se detalla un sistema de multiacceso digital.

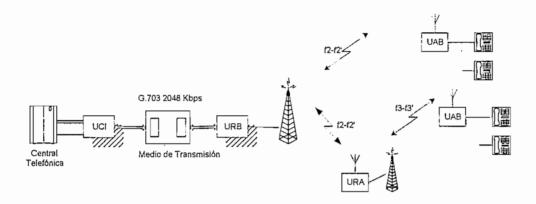


Figura 2.8 Configuración típica del SMD

La información es tratada en todo el sistema de forma enteramente digital. Los mensajes son codificados mediante la técnica PCM (Modulación por Impulsos Codificados) en ambos extremos del enlace, multiplexada y procesada digitalmente; dicho enlace se lo hace vía radio mediante transceptores que emplean modulación QPSK (Quadrature Phase Shift Keying).

Los componentes de la estación central están ubicados en forma general de la siguiente manera:

Unidad Concentradora e Interfaz (UCI)

Es la unidad lógica de concentración de las líneas telefónicas, líneas de transmisión, líneas de datos, etc. Está provista de un sistema que supervisa permanentemente la

existencia de continuidad radioeléctrica en el sistema, permitiendo el mantenimiento local y remoto simultáneamente.

Unidad de Radio Base (URB/UAB)

Las funciones que dentro del sistema de radio realiza la URB son las siguientes:

- Formación y tratamiento de tramas TDM y TDMA
- Emisión TDM y recepción TDMA
- Enlace con la UCI
- Gestión de la señalización en los canales 0 y 16 para el control y supervisión de la comunicación con las UAB's,

Una UAB es la Unidad de Abonados que es un equipo terminal encargado de la concentración de sus abonados a los canales de radio compartidos por el sistema. Mediante el diálogo con la UCI y bajo supervisión de las comunicaciones.

La UAB tiene asignadas a las siguientes funciones:

- Interfaz de línea de abonado
- Concentración/expansión ente abonados y canales
- Formación de las ráfagas a transmitir (TDMA al igual que la recepción y tratamiento de la trama TDM
- Transmisión de ráfagas (TDMA) y recepción continua (TDM)

- El diálogo con la UCI, control de sus abonados, realizando las funciones telefónicas propias (análisis, cifras, supervisión local de la llamada, envío de cómputo al abonado, interconexión de llamadas locales, etc.)
- Funciones de operación y mantenimiento, bajo el control de la UCI
- Es posible su configuración para datos a media o baja velocidad

Unidad Repetidora con Abonados (URA)

Efectúa una función de repetidora regenerativa, aumentado la cobertura radioeléctrica del sistema, para el efecto realiza una traslación de frecuencias radioeléctricas. Además, se comporta como una UAB en su comunicación con la URB (transmisión TDMA y recepción TDM) y como una URB en la comunicación con otras unidades de abonados o repetidores de su radio de cobertura (transmisión TDM y recepción TDMA); por consiguiente, tiene la ventaja de poder utilizar una sola frecuencia para todas la UAB¹s.

La URB transmite continuamente, tomando de cada UAB o URA la información dirigida a sus abonados en conexión, para lo cual se mantiene en sincronismo con la señal emitida por la URB y conoce los canales asignados a sus comunicaciones en curso. Por lo tanto, cada UAB o URA transmite en un determinado período de tiempo (multitrama) una ráfaga por cada canal activo asignado a dicha unidad, con la información procedente de los muestreos de la señal de voz recibidos entre dos ráfagas consecutivas.

Un SMD 30/1.5 (Sistema Multiacceso Digital de 30 canales y 1.5 GHz) tiene configurado internamente en los equipos un bus a 2 Mbps formado por 30 + 2 canales con información codificada en PCM de 64 Kbps; el sistema utiliza la banda de frecuencias de 1.5 GHz.

El sentido de la técnica punto-multipunto es un enlace de tipo continuo, utilizando una sola frecuencia por cada URB o URA.

El sistema SMD 30/1.5 da servicio a sus abonados compartiendo 30 canales de radio, más 2 canales empleados para la señalización asociada a las comunicaciones. Estos 32 canales fisicamente se encuentran en todos los equipos formando el bus interno de 2 Mbps. En plena ocupación, el bus de la UCI contiene información de los 32 canales (para ser transmitida a las UAB/URA y recibida de las UAB/URA). El bus de una determinada UAB/URA contiene la información únicamente de los canales ocupados por sus abonados en conversación.

Cada unidad terminal transmite hacia la URB una ráfaga por cada canal de comunicación ocupada por ella. El total de ráfagas por multitrama es de 32, conteniendo cada una la información almacenada correspondiente al tiempo transcurrido entre la transmisión de dos ráfagas sucesivas asociadas al mismo canal.

Dos ráfagas sucesivas en el tiempo corresponden a dos canales de información pudiendo ser transmitidas por distintas unidades de abonado; esto implica que en el receptor de la URB tendrá que tenerse en cuenta lo siguiente:

- El nivel de campo recibido. Debe compensarse la diferencia de distancias de las distintas UAB's respecto a la URB
- ❖ Dos ráfagas sucesivas no deben solaparse. Debido a las diferencias de tiempo de propagación entre unas unidades y otras, las más cercanas deben efectuar un retardo en la emisión de sus ráfagas respecto a las más distantes. Además, debe establecerse un tiempo de guarda entre dos ráfagas sucesivas durante el cual no hay emisión en sentido TDMA
- Debe recuperarse el reloj de datos para muestrear la información con la fase correcta
- ❖ Debe evitarse el bloqueo del sistema como consecuencia de una pérdida de control en una unidad de abonado que la lleve a transmitir en tiempos no asignados a ella

Bajo estás consideraciones se hace necesario añadir a cada ráfaga un conjunto de bytes adicionales a la información. Treinta y dos ráfagas constituyen un tiempo de multitrama que contiene la información PCM más los bytes añadidos para: preámbulo, referencia y guarda. En la figura 2.9 consta la estructura de la tramas y multitrama para TDMA.

Figura 2.9 Estructura de la ráfaga y multitrama TDMA

El método TDMA consiste en la extensión de la multiplexación por división en el tiempo, para el caso de un sistema multipunto se realiza con un solo para de frecuencias. El método TDMA introduce un retardo adicional en el camino de la señal debido al hecho de transmitir empaquetados una serie de muestras de la señal en el intervalo de tiempo asignado a una ráfaga.

Por lo tanto una muestra de voz tendrá que esperar como máximo; desde que se produce hasta que es transmitida por la UAB; el intervalo de tiempo que existe entre la transmisión de dos ráfagas sucesivas asociadas al mismo canal. Así se establece el concepto de multitrama TDMA que consta de 32 ráfagas.

La transmisión en sentido punto a multipunto se hace mediante TDM; en la cual se establece una multitrama de duración igual a la multitrama TDMA. La duración de la trama TDM es de 125 µseg y contiene a los 32 canales del bus, más otros bytes

para compensar los añadidos a la ráfaga en el otro sentido. Estos bytes son utilizados para enviar a las UAB's información de sincronismo para las tramas y multitramas; los que implica el aumento de la velocidad de transmisión a 2432 Mbps.

La señal TDM es recibida de manera continua en las UAB's, y es utilizada para sincronizar la emisión de las ráfagas que tengan asignadas y no introduce ningún retardo adicional en la comunicación entre la URB y la UAB. La figura 2.10 ilustra de mejor manera lo anteriormente explicado.

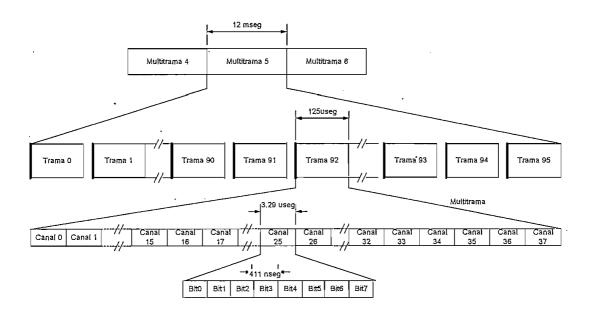


Figura 2.10 Estructura de la trama y multitrama TDM

En el sentido TDM durante una multitrama deben transmitirse los mismo bytes de información más el equivalente a los añadidos en sentido TDMA, que se traducen en un aumento del número de canales por trama ya que la duración de la trama es fija.

El reloj fundamental asociado al PCM y TDM es generado por la UCI y recuperado por las unidades terminales que lo utilizan para reconstruir la señal TDM y para la formación de ráfagas; por esto, el reloj de ráfaga en la URB es de la misma frecuencia que la del reloj TDM, aunque no tenga necesariamente la misma fase.

Para las unidades de abonado dadas las condiciones adversas de infraestructura en el ambiente rural y las características climáticas que pueden encontrarse, deberá disponerse de contenedores herméticos que alojen a los equipos.

Un ejemplo de distribución de las estaciones es el proyecto para la región oriental aprobado por ANDINATEL S.A. que se detalla en el cuadro 2.3.

SISTEMA	ESTACION	TIPO	ABONADOS
	Lago Agrio	UCI	256
Lago Agrio l	Rep. Lumbaqui	URB	
	Jambelí	UAB	64
	Sevilla	UAB	64
	Santa Rosa de Sucumbios	UAB	24
	Gonzalo Pizarro	UAB	32
	Lumbaqui	UAB	40
	Reventador	UAB	32
	Lago Agrio	UCI	256
	Rep. Lumbaqui	URB	
	Rep. San Miguel	URA	32
	Rep. San Pedro de los	URA	32
	Cofanes	0121	32
Lago Agrio 2	Santa Cecilia	UAB	32
5 5	El Eno	UAB	32
	San Lorenzo	UAB	32
	General Farfán	UAB	32
	Siete de Julio	UAB	32
	Llurimagua	UAB	32
	Baeza	UCI/URB	256
•	Rep. Condijua	URA	230
	Rep. Sardinas	URA	16
	Rep. Huila	URA	10
	Rep. Chalpi	URA	
Baeza 1	Cosanga	UAB	16
Dacza i	San Francisco de Borja	UAB	32
	El Chaco	UAB	128
	Santa Rosa de Quijos	UAB	24
	Cuyuja .	UAB	16
	Papallacta	UAB	24
	Puyo	UCI/URB	256
	Rep. Calvario	URA	230
	Rep. Carvario Rep. Abitahua	URA	
	Rep. Santa Clara	URA	
		URA	
	Rep. Km. 26		8
	Rep. Mushullacta Rep. La Esperanza	URA	- 8
	Veracruz	URA	16
		UAB	16
Puyo 1	El Capricho	UAB	8
	C. J. Arosemena Tola	UAB	16
	Santa Clara	UAB	32
	El Triunfo	UAB	16
	Diez de Agosto	UAB	16
	Fátima	UAB	16
	Tarqui	UAB	16
	Madre Tierra	UAB	16
	Sangay	UAB	16
	Rio Negro	UAB	16
	San Francisco	UAB	16
	Canelos	UAB	16
	16 de Agosto	UAB	16
	Río Verde	UAB	16

Cuadro 2.3 Sistema SMD-30 de Multiacceso Digital.

2.2.3.1.2 Sistemas de Multiacceso Digital de 60 canales (SR500-s)

El sistema SR500-s (desarrollado por SRTelecom del Canadá) es un sistema modular de vanguardia concebido para construir redes de acceso inalámbrico fijo, hechas a medida según las necesidades específicas de los proveedores de servicios de telecomunicaciones, en diferentes mercados: telefonía y comunicaciones comerciales e industriales (SCADA).

Tecnología

El SR500-s, a base del TDMA, ofrece a los abonados servicios de telecomunicación como teléfono, facsímile, télex, transmisión de datos y RDSI (Red Digital de Servicios Integrados), mediante radio digital de microondas en las bandas de 1.3 a 2.7 GHz, 3.5 GHz o 10.5 GHz.

El sistema exige sólo un par de radiofrecuencias por cada nodo de la red y proporciona 60 circuitos (canales) de 64 Kbps que pueden ser asignados según demanda o dedicados permanentemente para conectar abonados de hasta 511 estaciones periféricas con una estación central.

Los 60 circuitos permiten un sistema único capaz de atender 670 abonados con un tráfico promedio de 0.07 Erlangs con un grado de servicio del 1 %.

Arquitectura

Un sistema SR500-s, punto-multipunto, puede configurarse para formar redes radiales, en derivación o lineales, tal como lo muestra la figura 2.11; y da una cobertura de 720 Km a partir de la estación central. Eje del sistema, la estación central gestiona todas las funciones del mismo y actúa de interfaz respecto al equipo de conmutación. Habitualmente se instala en la central telefónica.

Las estaciones distantes se instalan cerca de las instalaciones de los abonados (en el interior o exterior) y proporcionan interfaces a los diversos equipos de abonados. Las estaciones distantes constan de diferentes modelos de repetidores regenerativos y estaciones periféricas con capacidad de hasta 256 líneas.

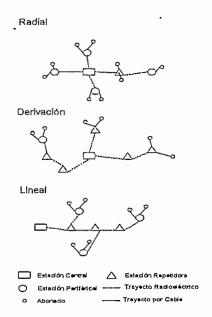


Figura 2.11 Tipos de configuraciones de sistemas SMD

La evolución de los sistemas de telecomunicaciones ha logrado que el sistema SR500-s incorpore una solución de bucle de abonado inalámbrico, el WL500.

El WL500 cumple con el concepto Radio en Casa (RTTH) en el que completa la última etapa del bucle local por medio de radioenlaces. Está solución es especialmente eficaz en regiones en que las grandes distancias y el terreno accidentado hacen que la solución con cable sea cara o poco práctica.

Al igual que el SR500-s, el WL500 emplea radioenlaces TDMA, pero sólo necesita una frecuencia única para la transmisión y recepción de señales. El subsistema funciona, para una longitud de salto de hasta 10 Km en trayectos de visibilidad directa o 5 Km en trayectos sin visibilidad directa. Al instalar dos o más radioestaciones inalámbricas de base (WBS) en la misma estación periférica, la propiedad de asignación dinámica de circuito (canal) garantiza que una terminal inalámbrica (TI) aproveche cualquier circuito RF (radiofrecuencia) disponible.

Entre las principales características del sistema WL500 tenemos:

- > Cobertura de hasta 10 Km
- > Enlaces secundarios integrados mediante el SR500.s
- Codificación de la voz con calidad urbana 32 Kbps, ADPCM)
- > Servicio a 2 hilos y de teléfono monedero (12/16 KHz)
- > Transmisión de datos por medio de bandas de frecuencias vocales y transmisión de facsímile

- > Soporte transparente con respecto a servicios adicionales
- > Asignación dinámica de canal
- > Control automático de alimentación de salida RF

Combinado el SR500-s y el WL500 se logra una solución inalámbrica completa: una red de acceso inalámbrico y un bucle local inalámbrico.

2.2.3.2 Sistemas de Bucle de Abonado Inalámbrico Digital (S-WLL Ultraphone™)

Un sistema de bucle de abonado inalámbrico utiliza una tecnología de radio para proveer acceso a la PSTN en lugar del tradicional alambre de cobre. Además, constituye una plataforma para un rango de servicios con variados grados de movilidad.

Un lazo local realizado con cable puede cubrir completamente la distancia entre todos los suscriptores; mientras que si es realizado inalámbricamente, las unidades de instaladas para cada suscriptor son usadas para transmitir señales desde cualquier lugar dentro de la celda a través de radiofrecuencias.

Con un cable se puede conectar a los suscriptores con la oficina central, lo cual podría causar algunas disputas, como por ejemplo: la utilización de propiedad privada para tender el cable. En los países desarrollados, la instalación de cableados

_

propiedad de InterDigital Communications Corporation

requiere la inversión de un capital significativo y mantenimiento, lo cual no siempre se vuelve atractivo.

Un Lazo Local Inalámbrico (WLL) es una alternativa ideal con respecto a la infraestructura cableada. El WLL provee al suscriptor de una comunicación de voz con calidad de línea cableada y de otros servicios avanzados, utilizando de la tecnología de radio como el "modo de transporte" para la voz, datos y transmisiones multimedios.

Los sistemas WLL ofertan un rango superior de aplicaciones en una variedad de asentamientos, incluyendo sectores urbanos densamente poblados, sectores suburbanos y localidades rurales dispersas. Además, el sistema es de fácil desarrollo, teniendo bajos costos para su construcción y mantenimiento; y con la posibilidad de una rápida expansión de acuerdo a la creciente demanda de suscriptores.

Ventajas del Sistema

Las soluciones Ultraphone proveen de soluciones a las crecientes necesidades de los operadores alrededor del mundo. Sobre todo los problemas presentados por la distancia y la topografía, el sistema provee redes confiables, cuyos niveles de privacidad y seguridad en la transmisión de datos son elevados.

Las oportunidades de la implementación del sistema Ultraphone incluyen:

- Brindar un servicio de telecomunicaciones a áreas carentes de servicio o a áreas imposibles de servir
- Acomodarse al crecimiento presente en áreas servidas como una alternativa al nuevo tendido de cable
- Conversión de líneas multipares a un servicio de un simple par
- Reemplaza al cable existente o deteriorado en donde los costos dedicados al servicio y mantenimiento son elevados
- Provee servicios económicos ante emergencias, o para emplazamientos temporales o en determinadas épocas

Las ventajas de un sistema Ultraphone incluye a las siguientes:

- Total flexibilidad y solución integral a los requerimientos de servicios ya sean nuevos o actualizaciones, permanentes o temporales
- Rápida ejecución de la infraestructura para la red telefónica.
- Provista de tecnología digital la cual minimiza los costos operacionales y de mantenimiento
- Sistema modular para el hardware, el cual conoce las necesidades cubiertas, lo cual reduce los riesgos de una alta inversión inicial
- La tecnología de radio alivia los problemas y obstáculos como son: ríos, montañas y valles a ser atravesados
- Oportunidad para que las compañías telefónicas puedan llegar a usuarios con deseos de servicio, a través de una RCSA (Radio Carrier Service Area)

 Sofisticadas técnicas para la compresión y multiplexación de la voz, provee operadores con capacidad para aumentar redes

Proveer de un servicio inalámbrico a poblaciones necesitadas de telecomunicaciones puede ser todo un reto, especialmente a la luz de las dificultades de obtener espacios de frecuencias en la mayoría de las regiones del mundo. Este es el porqué se hace esencial escoger una solución bastante flexible que pueda contraer suficientemente al espectro y asegure la protección de los servicios existentes.

Ultraphone posee gran flexibilidad en la asignación de frecuencias y debido a que es propietario de las técnicas de procesamiento digital de la señal, es un sistema de lazo local inalámbrico espectralmente eficiente. En efecto puede dar más capacidad de telecomunicaciones por MHz que la mayoría de los sistemas celulares fijos y sistemas de microondas de banda ancha.

Características del Sistema

A continuación se muestra un resumen de las características del sistema Ultraphone:

- Banda de frecuencia: 300 500 MHz
- Típicamente permite 24 canales por sistema; las técnicas para elevar la capacidad del sistema son:
 - Compresión de voz 4:1 (64 Kbps-16 Kbps)
 - Multiplexación 4 llamadas en un canal de 25 KHz

Centrales utilizadas junto al sistema Ultraphone

Las centrales telefónicas que pueden soportar al sistema Ultraphone son las siguientes:

- ❖ ALCATEL E-10 B
- ATT ESS
- ❖ ERICSSON AXE, AXE 10 y AXE APC
- ❖ FUJITSU FETX150
- ❖ INDETEL PC1000
- ❖ GTE GTD5
- ❖ NEC NEAX61
- Northern DMS 10/100
- ❖ REDCOM
- ❖ SIEMENS EWSD
- ❖ STROMBERG CARLSON (STEEPER)

Comparación de la Eficiencia Espectral

El cuadro 2.4 resume la eficiencia espectral de algunos sistemas inalámbricos:

Sistema	Frecuencia	Troncales/MHz
Ultraphone	300-500 MHz	160
Philips IRT 2000	1.4-2.7 GHz	15*
NEC DRMASS	1.4-2.7 GHz	20*
SRT - SR 500	1.4-2.7 GHz	17*
GSM	800-900MHz	40
ETACS	800-900MHz	40
AMPS-D	800-900MHz	48
AMPS	800-900MHz	16

^{*} Este número decrece con cada repetidora.

Cuadro 2.4 Eficiencia espectral de algunos sistemas inalámbricos

Sistema Ultraphone (S-WLL) vs Sistema Celular Fijo

El sistema Ultraphone es mucho mejor en eficiencia espectral que las tecnologías de los celulares fijos por lo siguiente:

- S-WLL soporta 4 llamadas en un canal de 25 KHz más la operación en canales adyacentes
- ❖ La operación de canales adyacentes no es posible con los sistemas celulares
- Más usuarios por MHz

S-WLL permite escoger de mejor manera la frecuencia a utilizar:

- ❖ La banda de 300-500 MHz está mayoritariamente disponible
- ❖ La banda de 800-900 MHz está congestionada y generalmente se utiliza para servicios móviles

- S-WLL puede dar mayor grado de servicio:
- ❖ El sistema S-WLL 110 brinda hasta 132 Erlangs/MHz (con el 1% de tasa por bloqueo)
- ❖ AMPS-D da hasta 36 Erlangs/MHz (con el 1% por bloqueo)
- S-WLL está diseñado para ofrecer un servicio de lazo local:
- Con operación transparente
- Soporta: servicios agregados, facsímile, datos, monederos
- Algunas variantes de suscriptores: MLS (Multi Line Subscriber Station), DLS (Double Line Subscriber), SLS (Single Line Subscriber). En interiores como exteriores

Caso contrario s la tecnología adaptada al celular fijo:

- No es transparente
- Soporta algunas clases de servicios agregados
- Solamente soporta servicio de facsímile en modo analógico
- ❖ No da la posibilidad de monederos
- Son servicios de una línea, no de múltiples usuarios con una sola estación

Sistema Ultraphone (S-WLL) vs Sistema por Microondas de Banda Ancha

El sistema Ultraphone brinda una área de servicio, más que una ruta base:

- El costo de servir a un suscriptor es independiente de su localización sobre el área de cobertura
- ❖ La solución de microondas requiere una plataforma exterior que soporte las estructuras de las antenas
- S-WLL tiene un radio de servicio de 60 Km, las microondas tienen un rango de 25-30 Km, para cubrir una zona igual se necesitan de muchos más equipos de microonda

Ultraphone es un sistema que no necesita línea de vista:

- ❖ Es posible la refracción de las ondas de radio sobre y alrededor de obstáculos
- Las antenas de los suscriptores pueden ser emplazadas bajo el nivel de los árboles, eliminando la necesidad de torres elevadas lo que abarata el costo

S-WLL tiene mayor capacidad de tráfico en la mayoría de los servicios, mientras utiliza menor cantidad de espectro y hardware.

Diagrama del Sistema Ultraphone (S-WLL)

El sistema Ultraphone ofrece un área de servicio básica, utilizando un concepto llamado RCSA. La RCSA puede circunscribir un área con un radio de 60 Km; es

decir, un área de 11000 Km². De las necesidades de abonados se puede conocer que es mucho más útil un área de servicio en vez de una sola línea base, por lo tanto el suscriptor tiene mayor flexibilidad dentro de la RCSA lo cual no constituye un aspecto prohibitivo como lo es si se utiliza cable para llegar al abonado.

Los requerimientos de alta capacidad para aplicaciones urbanas se solventan con múltiples sistemas Ultraphone, dispuestos de manera similar al sistema celular. Cuando es desarrollado de esta manera, el tamaño de la celda (RCSA) se reduce debido a la necesidad de reducir la potencia de salida en los canales RF. Las radiofrecuencias pueden ser reutilizadas entre RCSA's permitiendo una mayor cantidad de suscriptores. La figura 2.12 detalla un ejemplo de RCSA.

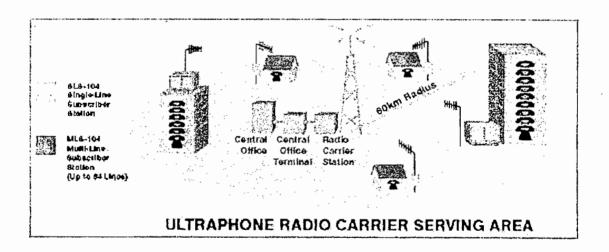


Figura 2.12 Radio Carrier Serving Area

En la figura 2.13 se puede observar una mejor descripción del sistema como tal.

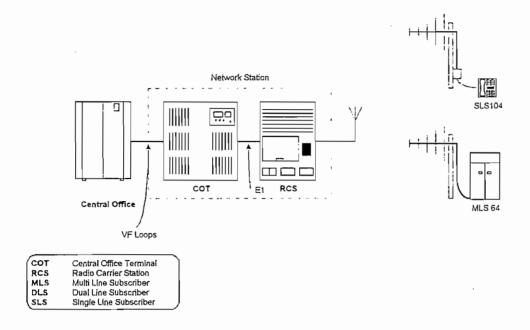


Figura 2.13 Diagrama del sistema Ultraphone

Componentes del Sistema Ultraphone

El sistema Ultraphone tiene dos componentes principales: la Estación de Red (Network Station) y las Estaciones de Suscriptores. La Estación de red consiste de la COT (Central Office Terminal: Terminal de Oficina Central) y la RCS (Radio Carrier Station: Estación de Radio Portadora). Las estaciones de suscriptor localizadas dentro de la RCSA están disponibles en algunas configuraciones para variados sitios de aplicación.

La COT, se basa en un sistema PBX modificado, esta conectado al conmutador de la central telefónica y sobretodo tiene la capacidad de manejar y controlar el sistema Ultraphone. La conexión al MDF (Main Distribution Frame) de la oficina central es en un nivel de lazo VF a dos hilos ya sean: analógicos, o PCM de leyes MU ó A. El

RCS suministra el enlace radial y el manejo de canales entre la COT y las estaciones de suscriptor. La RCS y la COT pueden ser instaladas en el mismo sitio o remotamente, tomando en cuenta un terreno propicio para garantizar la cobertura adecuada de la señal radiada por las Estaciones de Suscriptores; y están conectadas mediante un enlace con interfaz E1 (2.048 Mbps). La conexión entre la RCS y la COT podría realizarse vía cable, fibra óptica o microondas; lo cual se ilustra en la figura 2.14.

El monitoreo e informes del estado de la red son manejados para realizar diagnósticos desde una PC (Personal Computer) conectada a la COT.

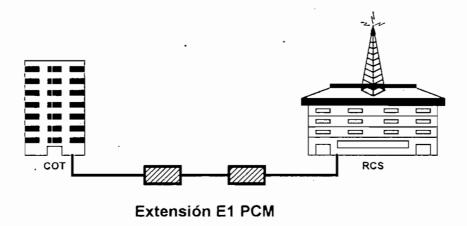


Figura 2.14 RCS remota vía cable o fibra óptica

Las Estaciones de Suscriptores, entregan un interfaz a dos hilos para el CPE (Customer Premise Equipment) para acceder al sistema, el cual consiste de un radio módem, fuente de poder y una antena. Están disponibles en configuraciones de una sola o múltiples líneas, los cuales son convenientes para instalaciones interiores o exteriores.

Un SLS (Single Line Subscriber Unit) tiene las siguientes características:

- Configuraciones para interiores y exteriores
- ♦ Integrada y compacta
- Frecuencia flexible: 300-500 MHz
- Soporta servicios de: telefonía, facsímile del grupo III a 9.6 Kbps, datos a 9.6
 Kbps (módem)
- Interfaz de línea flexible por lo que soporta hasta cinco extensiones
- ♦ Batería de respaldo para 8 horas
- Compatible a fuentes de poder alimentadas con paneles solares

LA DLS (Dual Line Subscriber Unit brinda dos líneas independientes con las características anteriores.

Por último una MLS (Multi Line Subscriber Unit) tiene las siguientes funciones:

- Económicamente bueno ya que soporta la conexión de 64 suscriptores con una sola antena
- Instalación en interiores y exteriores
- ♦ Frecuencias flexibles: 300-500 MHz
- ♦ Soporta servicios de: telefonía, facsímile del grupo III a 9.6 Kbps, datos a 9.6 Kbps (módem)
- Expansión modular, tarjetas Plug in Line

- ♦ Interfaz de línea puede soportar una línea de abonado hasta 10 Km desde el equipo
- ♦ Batería de respaldo hasta por 8 horas

Funcionamiento del Sistema

El servicio a los suscriptores de Ultraphone es íntegramente un sistema de radio digital. Cada suscriptor tiene la usual terminación del lazo analógico en la central de conmutación. Esas terminaciones de lazos analógicos se concentran por medio del estándar El 2.048 Mbps PCM (CCITT Rec. G.703) en grupos troncales dentro de la COT. Los grupos troncales son enrutados hacia la RCS, en donde cada circuito vocal es comprimido individualmente en formato digital a un cuarto de su ancho de banda original utilizando el algoritmo RELP (Residual Excited Linear Predictive). Los canales de voz comprimidos son multiplexados juntos en grupos de cuatro y difundidos a la comunidad de suscriptores en pares de canales estándares de 25 KHz.

Cada suscriptor tiene una completa estación troncalizada de suscriptor la cual recibe y transmite sobre los pares de canales en dos modalidades: FDMA y TDMA. La Estación de Suscriptor puede acceder dinámicamente a cualquier par de canales y a alguno de los 4 circuitos individuales de voz que están multiplexados en cada canal. Cada Estación de Suscriptor comparte un par de canales y un intervalo de tiempo bajo el control de la RPU (Radio Processor Unit) de la COT.

Cuando esta en uso, la Estación de Suscriptor convierte la señal analógica de voz desde el CPE dentro de una señal digital de 14.57 Kbps utilizando el algoritmo RELP. Cuando la señal es modulada para la transmisión, la Estación de Suscriptor la difunde en una pequeña ráfaga, equivalente a la velocidad de 64 Kbps. La longitud de está transmisión es solamente un cuarto de la longitud total de la trama difundida. Para los restantes 3 cuartos, la Estación de Suscriptor transmite remanentes inútiles mientras el canal es usado por las otras Estaciones de Suscriptores. El efecto de una completa multiplexación es, por consiguiente, obtenida en el aire.

En el canal RF de recepción, la Estación de Suscriptor captura esa porción que difunde la Estación de Red la cual contiene la otra mitad de la conversación telefónica. Esta señal es demodulada a la señal digital RELP codificada de 14.57 Kbps y entonces es convertida a la forma de onda analógica para la recepción del abonado oyente.

CAPITULO 3:

Diseño del Plan de Telefonía Inalámbrica

1. Estudio de Demanda

1.1 Previsión de la Demanda

Para tener una idea clara al planificar una red telefónica de cualquier tipo debe disponerse necesariamente de previsiones acerca de la demanda y del tráfico originado por los abonados. Estos datos permitirán que se instale la infraestructura de telecomunicaciones, de acuerdo a los objetivos y previsiones realizadas.

"La previsión del número de abonados es una actividad extremadamente compleja y, en consecuencia, no se puede esperar que llegará a formularse ningún tipo de teoría o método general de previsión que corresponda a todas las necesidades particulares. Más bien se debe utilizar una combinación compleja de métodos sencillos."****

El aspecto primordial de una previsión adecuada es determinar los índices socioeconómicos de la población tales como: demografía, política, fuentes de empleo, contexto político, cultura, etc.

La previsión de la demanda telefónica puede ser: nacional, provincial, por zonas urbanas, por zonas rurales, barrios, etc.

CCITT. Datos de Planificación y Métodos de Previsión. Manual del GAS 10. Vol. 1

En el presente estudio, ya que el objetivo primordial es dar un servicio de telefonía a la población rural en tres provincias; se efectuará un estudio de demanda rural a escala provincial.

1.2 Población Deficitaria de Servicio Telefónico en las Provincias de Napo, Orellana y Sucumbíos

Para tener una idea precisa del número de habitantes que carecen de servicio telefónico, el INEC (Instituto Nacional de Estadísticas y Censos) ha desarrollado los mapas de pobreza en el ámbito nacional. Cabe anotar que los cantones de la provincia de Orellana están incluidos en la provincia de Napo.

Los datos de interés son los siguientes:

POBLACION RURAL SIN TELEFONO EN RELACION A LA PROVINCIA			
PROVINCIA	Población 1995	Población Deficitaria	Déficit vs Población (en %)
Napo (incluida Orellana)	98892	95140	96.2
Sucumbios	85208	79999	93.9

Cuadro 3.1 Población Sin Teléfono por Provincias

Los habitantes del área rural (entiéndase como parroquia rural o periferia) carentes de teléfono en los cantones y parroquias que se encuentran dentro de las áreas de cobertura de mayor interés son:

PROVINCIA	CANTON	PARROQUIA	POBLACIÓN 1995	POBLACION DEFICITARIA	
				TOTAL	En %
Napo	Loreto	San José de Dahuano	2686	2686	100
		Avila	1542	1542	100
_		San José de Payamino	1436	1436	100
	El Chaco	El Chaco	648	648	100
	Quijos	Baeza	408	408	100
	El Chaco	Linares	206	206	100
Sucumbios	Lago Agrio	Dureno	3722	3721	99.97
Napo	Archidona	San Pablo de Ushpayacu	3567	3564	99.92
		Archidona	3475	3470	99.86
Sucumbios	Lago Agrio	El Eno	4298	4291	99.84
	Gonzalo Pizarro	Gonzalo Pizarro	1649	1646	99.82
Napo	Tena	Chontapunta	7574	7559	99.8
	Orellana	Taracoa	2643	2636	99.74
Sucumbios	Lago Agrio	Jambelí	2487	2479	99.68
Napo	Loreto	Puerto Murialdo	1522	1516	99.67
	La Joya de los	Loreto	917	913	99.56
	Sachas	Enokanqui San Vicente de	4655	4623	99.31
	Loreto	Huaticocha	405	402	99.26
	Tena	Pano	3071	3043	99.09
		Carlos J. Arosemena Tola	2913	2883	98.97
Sucumbios	Gonzalo Pizarro	Lumbaqui	1436	1418	98.75
Napo	La Joya de los Sachas	Pompeya	1697	1675	98.7
Sucumbios	Cascales	Sevilla_	3741	3686	98.8
Napo	Tena	Ahuano	4836	4753	98.28
	La Joya de los Sachas	San Carlos	2334	2293	98.24
	Archidona	Cotundo	4905	4817	98.21
	Tena	Puerto Napo	4308	4230	98.19
		Puerto Misahualli	4582	4496	98.1
	El Chaco	Sardinas	434	425	97.93
	La Joya de los .Sachas	La Joya de los Sachas	6116	5980	97.77
Sucumbios	Lago Agrio	General Farfán	4838	4725	97.66
 Nаро	La Joya de los Sachas	San Sebastián del Coca	2148	2097	97.63
	El Chaco	Santa Rosa	1146	1109	96.77
Sucumbios	Shushufindi	Shushufindi	10274	9927	96.62
	Lago Agrio	Tarapoa	4503	4331	96.18
Napo	Tena	Tena	7575	7256	95.79
	Orellana	Dayuma	5900	5640	95.65
Sucumbios	Cascales	El Dorado de Cascales	4743	4509	95.07
	Gonzalo Pizarro	El Reventador	1807	1691	93.58
	Shushufindi	San Pedro de los Cofanes	3023	2813	93.05
		7 de Julio	3583	3268	91.21
_		Limoncocha	3858	3516	91.14
Napo	Quijos	San Francisco de Borja	2267	2043	90.11
Sucumbios	Lago Agrio	Santa Cecilia	3495	3127	89.47
	,	Nueva Loja	9650	8547	88.57

1.3 Determinación de la Densidad Telefónica para la Población Dispersa entre

1998 y 2005

Para determinar la densidad telefónica zonal, para un año cualquiera entre 1990 y el

2010, se utilizará la fórmula 1.1 planteada por ANDINATEL. Está fórmula sirve para

calcular la densidad telefónica rural en el ámbito provincial y tiene tendencia

geométrica*****

$$d_n = d_1 (1 + A)^{n-1990}$$
 (3.1)

donde:

 d_n : es la densidad telefónica en el año \boldsymbol{n}

d₁: es la densidad telefónica en el año 1990

A: tasa de crecimiento

n: año de estudio

La tasa de crecimiento A se encuentra despejando su valor de la ecuación 3.1;

teniendo en cuenta que el n será el año 2010; mediante el siguiente procedimiento:

$$d_{2010} = d_{1990} (1 + A)^{2010 - 1990}$$

$$\log d_{2010} = \log [d_{1990} (1 + A)^{2010 - 1990}]$$

$$\log d_{2010} = \log d_{1990} + (2010 - 1990) \log (1 + A)$$

$$\log (1 + A) = (\log d_{2010} - \log d_{1990}) / (2010 - 1990)$$

Sea:

$$u = log d_{2010} - log d_{1990}$$

entonces:

$$(1 + A) = 10^{u/(2010 - 1990)}$$

y:

$$A = 10^{u/(2010 - 1990)} - 1 \tag{3.2}$$

El dato de densidad en 1990 para la población dispersa es del 0.3 (dato de ANDINATEL) y para el año 2010 será del 2.03.

Por lo tanto el valor de la tasa de crecimiento A será igual a 0.100319321.

De donde:

EMETEL. Documento SGP-022/01, 1987

AÑO	1998	2000	2005
DENSIDAD	0.644	0.780	1.258
DISPERSA	0.044	0.760	1,230

Cuadro 3.4 Densidad Telefónica para la Población Dispersa del Sector Rural

1.4 Cálculo del Número de Líneas Principales

Para calcular el número de líneas principales se aplica la siguiente ecuación:

$$LP = d_n \cdot P / 100$$
 (3.3)

Donde:

LP: número de líneas principales

d_n: densidad telefónica en el año n

P: número de habitantes del sector rural (población dispersa)

Dado que la densidad telefónica en el ámbito nacional para el año 1998 será de aproximadamente 7.0[©] y según los datos proyectados para el mismo año es 7.389[©]; se hace necesario corregir el valor del número de líneas principales. Para esto se introduce un factor de corrección que se halla de la siguiente manera:

$$f_{1998} = 7.389 / 7.0$$

[®] Dato proporcionado por la Sub Gerencia de Planificación de ANDINATEL. 1998

De idéntica forma el factor de corrección será 1.06 para el resto de los años en estudio (este valor es aproximado).

Por lo tanto para la totalidad de habitantes inmersos en las zonas de interés el número de líneas principales necesarias para cubrir la demanda desde el año 1998 hasta el 2005 serán las siguientes:

AÑO .	POBLACION DISPERSA (P) (TOTAL)	DENSIDAD TELEFONICA DISPERSA (d)	FACTOR DE CORRECCION (f)	NUMERO DE LINEAS PRINCIPALES (LP)
1998	. 174313	0.644	1.055	1184
2000	189263	0.780	• 1.06	1565
2005	232490	1.258	1.06	3100

Cuadro 3.5 Número de Líneas Principales

2. Determinación del Tráfico Telefónico para el año 2005

El método de ANDINATEL utiliza como zona elemental de tráfico un cantón basándose en las ecuaciones del CCITT. Por lo tanto se utiliza la clasificación de cantones recomendada por el CCITT y adoptada en nuestro país*****.

El cuadro 3.6 resume la clasificación de los cantones:

TIPO DE CANTON	CLASIFICACION CCITT	CLASIFICACION PARA EL ECUADOR (P = hab. en el·año 2000)
1	Centro Administrativo (Centro Territorial)	P > 1000000
2	Capital (Ciudad)	60000 < P < 1000000
3	Ciudad de Provincias (población mediana importancia)	20000 < P < 60000
4	Pequeña Localidad Industrial (Aldea Agrícola con importante Instalación Industrial)	5000 < P < 20000
5	Pequeña Localidad Rural (Aldea Agrícola)	P < 5000

Cuadro 3.6 Clasificación de los Cantones

Para nuestro caso la mayoría de las poblaciones a servir tendrán una población cercana a los 5000 habitantes; por lo tanto se escogerá un tipo de cantón 4.

2.1 Tráfico de Origen por Línea Principal

El CCITT tiene la siguiente definición para el tráfico de origen:

EMETEL. Documento SGP-022/01, 1987

"Tráfico generado por fuentes situadas dentro de la red considerada, cualquiera que sea su destino."

Para calcular el tráfico de origen total para cantones tipo 4 se utiliza la siguiente ecuación:

$$T_{\text{oTOTAL}} = 0.86 \cdot \text{LP} (0.025 + 0.035 \cdot 0.904^{\text{d}})$$
 (3.4)

Donde:

Tototal: tráfico de origen total

LP: número de líneas principales

d: densidad telefónica en el año de estudio

Como criterio se sobredimensiona el tráfico de origen en un 20 % (valor sugerido por Sub Gerencia de Planificación de ANDINATEL). Por lo tanto el tráfico de origen será:

$$T_{oTOTAL} = 178.62 \text{ Erlangs}$$

2.1.1 Proporción de Tráfico Originado y Terminado por Categoría de Tráfico

La CCITT da las siguientes definiciones: ******

CCITT. Recomendación E.600, Libro Azul, II.3

- Tráfico Entrante: "Tráfico generado por fuentes exteriores a la red considerada y que entra en esta red, cualquiera que sea su destino"
- Tráfico Saliente: "Tráfico que cualquiera haya sido su origen, sale de la red considerada y está destinado a sumideros externos a dicha red"

Las variaciones de las proporciones de tráfico para el año 2005, sobre la base del tráfico de origen, se calculan de manera aproximada según las fórmulas:

$$T_{S \text{ TOTAL}} = (1.31 - 0.099 \text{ ln N}) \cdot T_{\text{oTOTAL}}$$
 (3.5)

$$T_{E \text{ TOTAL}} = (0.47 + 0.0713 \text{ ln N}) \cdot T_{STOTAL}$$
 (3.6)

Donde:

T_{STOTAL}: tráfico saliente de larga distancia total

 $T_{\mbox{\scriptsize ETOTAL}}$: tráfico entrante de larga distancia total

N: número de líneas principales (3100)

 $T_{\circ TOTAL}$: tráfico de origen total

Así:

$$T_{STOTAL} = 91.83$$
 Erlangs

Lasso, L. Memoria sobre el Estudio de Demanda Telefónica 1985 - 2010. Quito IETEL. 1987

 $T_{\text{ETOTAL}} = 95.79 \text{ Erlangs}$

Además, el tráfico total de larga distancia (T_T) es:

$$T_{T} = T_{STOTAL} + T_{ETOTAL}$$
 (3.7)

Por lo tanto:

$$T_T = 187.62$$
 Erlangs

3. Diseño del Sistema

Para poder dar un servicio de telecomunicaciones eficiente a las poblaciones dispersas, se utilizará el sistema de bucle de abonado inalámbrico S-WLL Ultraphone™; siendo sus justificativos los siguientes: no necesita línea de vista para los radioenlaces (pequeñas perdidas por difracción), un área de cobertura lo suficientemente grande, y no importa la existencia de árboles en los alrededores de la estación de abonado.

3.1 Determinación del Número de Estaciones Base

Para calcular el número de estaciones base es primordial conocer la capacidad de cada una de ellas. Es así como según los datos del capítulo anterior, sabemos que

cada sistema UltraphoneTM soporta 896 abonados, un tráfico de 132 Erlangs por MHz de ancho de banda.

También es necesario conocer el número de líneas principales en el año 2005 (límite del estudio), al igual que la cantidad de tráfico de larga distancia total. Datos que sirven para dimensionar adecuadamente al sistema.

De allí que el número de sistemas será:

Número de sistemas =
$$LP / 896$$
 (3.8)

Por lo tanto:

Número de sistemas ≈ 3

Y el ancho de banda (AB) en el espectro asignado será aproximadamente de:

$$AB = T_T / (132 \text{ Erlangs/MHz})$$

$$AB = 1.42 \text{ MHz}$$

3.2 Cálculo de las Areas de Cobertura

Si se necesitan tres sistemas para satisfacer la densidad telefónica en las zonas de interés, es indispensable calcular las áreas de cobertura adecuadas que satisfagan estos requerimientos.

Por la investigación realizada en el área se determinaron las posiciones de las estaciones base (RCS: Radio Carrier Station) en los siguientes puntos geográficos:

ZONA	RCS	LATITUD	LONGITUD	Altura de la Torre (antena)
1	Cordillera Napo - Galeras	00°49'37" S	77°31'37" O	25 m
2	El Cruce	00°10'35.48" S	76°50'00" O	30 m
. 3	Condijua	00°28'50" S	77°54'03" O	20 m

Cuadro 3.7 Ubicación de las RCS's

En los sitios que no se dispone de torre para soportar a la antena será necesario construirla, ampliarla o en otro caso arrendar una torre.

Los abonados dispondrán de postes los que servirán como soportes de antenas, cuyas alturas estarán en el orden de los 5 - 10m.

La antena que se escogió para ser parte de la estación base es la antena omnidireccional de 10 dBd modelo DB640 de la empresa ALLEN TELECOM GROUP, cuyas especificaciones se encuentran en el anexo 2. Por su parte los

abonados dispondrán de una antena direccional yagi de 10 dBd modelos DB436 al DB438 de la misma casa productora (ver anexo 2).

Las unidades de abonado se repartirán de acuerdo a la demanda de líneas telefónicas; ya sean: un sólo abonado o múltiples abonados (ver anexo 2).

3.2.1 Criterios Utilizados para el Cálculo

El programa PATHLOSS II permite evaluar las áreas de cobertura mediante la generación de radiales.

Los radiales (módulos en donde se calcula las perdidas por difracción) se manejan a través de perfiles topográficos ingresados por el usuario; con el concurso de los siguientes datos: frecuencia utilizada, polarización y altura de las antenas, clima, obstáculos, factor de curvatura de la Tierra y otros. Lo que se explica en la figura 3.2.

Para calcular las perdidas por difracción en enlaces punto - multipunto en programa PATHLOSS II utiliza los siguientes criterios o algoritmos:

3.2.1.1 Método de los Mínimos Cuadrados para la Determinación de la Altura Efectiva de las Antenas

El método realiza la construcción de una porción central (alrededor del 80%) en el cual existen dos términos de mínimos cuadrados, este 80% de la porción central del

terreno se encuentra entre una antena y el horizonte. Luego se extiende está línea a los sitios (puntos donde se encuentran las antenas). La altura de la antena será efectivamente definida en la figura 3.1.

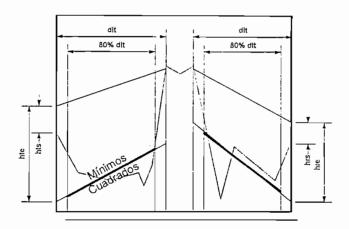


Figura 3.1 Altura Efectiva de las Antenas

La terminología utilizada en la figura 3.1 es la siguiente:

d_{tt}: distancia horizontal al transmisor

d_{lr}: distancia horizontal al receptor

hts: altura de la estructura para la antena transmisora

h_{rs}: altura de la estructura para la antena receptora

hte: altura efectiva de la antena transmisora

h_{re}: altura efectiva de la antena receptora

3.2.1.2 Algoritmo de Difracción

Las pérdidas por difracción consideran los diferentes tipos de obstáculos que interfieren en alguna medida a la primera zona de Fresnel.

El porcentaje de cruce de la primera zona de Fresnel puede ingresarse a la conveniencia del enlace; para nuestro caso será del 60%.

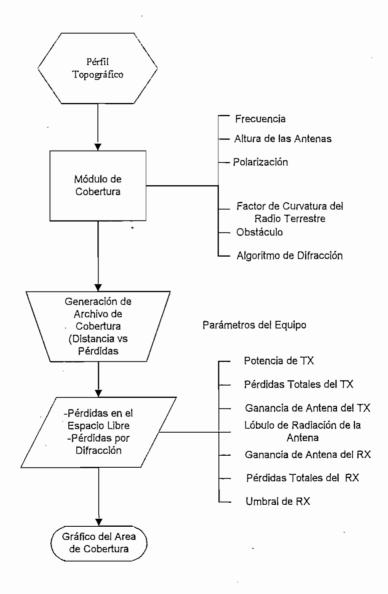


Figura 3.2 Proceso para Calcular las Areas de Cobertura según el Programa PATHLOSS II

3.2.1.3 Pérdidas por Difracción en Obstáculos Aislados

En el caso de un obstáculo filo de cuchillo real (figura 3.3), se deberá tomar en cuenta el radio finito de la obstrucción aproximando a un modelo ideal. De donde las pérdidas totales vienen dadas por:

$$A(V, \rho) = A(V, 0) + A(0, \rho) + U(V, \rho)$$
(3.9)

Donde:

V es una alternativa a la definición de Despeje (C) por la ecuación:

$$V = \sqrt{\frac{2.d.\tan(\alpha_0).\tan(\beta_0)}{\lambda}}$$
 (3.10)

λ: longitud de onda

d: longitud del trayecto

La relación entre V y C está dada por:

$$V = -\frac{C}{F_1}\sqrt{2} \tag{3.11}$$

F₁: Radio de la Primera Zona de Fresnel

Y p es:

$$\rho = 0.676 R^{\frac{2}{3}} f_{MHz}^{\frac{-1}{6}} \sqrt{\frac{d}{d_1 d_2}}$$
(3.12)

Por lo tanto:

$$\begin{cases} A(V,0) = 6.02 + 9.0V + 1.65V^2 & para -0.8 \le V \le 0 \\ A(V,0) = 6.02 + 9.11V - 1.27V^2 & para \ 0 < V \le 2.4 \\ A(V,0) = 12.953 + 20log(V) & para \ V > 2.4 \end{cases}$$

$$(3.14) \left\{ \begin{array}{ll} U(V,\rho) = 11.45 V \rho + 2.19 (V \rho)^2 - 0.206 (V \rho)^3 - 6.02 & \text{para } V \leq 3 \\ U(V,\rho) = 13.47 V \rho + 1.508 (V \rho)^2 - 0.048 (V \rho)^3 - 6.02 & \text{para } 3 < V \leq 5 \\ U(V,\rho) = 20 V \rho - 18.2 & \text{para } V < 5 \end{array} \right.$$

R: Radio de Obstáculo en Km

De allí que V es positivo para trayectos obstruidos, y negativo para enlaces con línea de vista.

Los parámetros de las fórmulas se aprecian en las figuras 3.3 y 3.4.

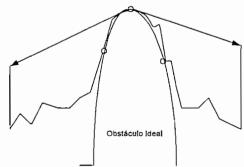


Figura 3.3 Obstáculo Aislado

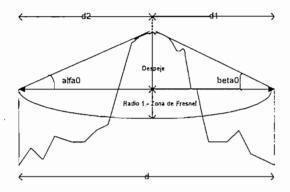


Figura 3.4 Despeje y Primera Zona de Fresnel

3.2.1.4 Pérdidas por Difracción en Múltiples Obstáculos Reales (Filo de Cuchillo)

Un trayecto sobre terreno irregular puede ser analizado como una serie de obstáculos filo de cuchillo. Las pérdidas por difracción totales son el resultado de la suma de las pérdidas individuales que son analizadas como obstáculos aislados dividiendo el trayecto total en tramos.

El programa PATHLOSS dispone de dos métodos para calcular la difracción en obstáculos filo de cuchillo que se describen a continuación:

3.2.1.4.1 Método Epstein - Peterson

Un ejemplo en el que se consideran dos obstáculos está descrito en la figura 3.5. Las pérdidas por difracción de cada obstáculo es calculada en tramos, así la altura del obstáculo B es calculada sobre el perfil que forman los puntos A y C, el obstáculo en

C será considerado en el trayecto de B a D. No existen limitaciones en el número de obstáculos para este método. Las pérdidas totales serán iguales a la suma de las calculadas en los puntos B y C. Se obtienen mejores resultados cuando los obstáculos (individuales) están más separados, ya que esto facilita el cálculo geométrico de las alturas efectivas de dichos obstáculos.

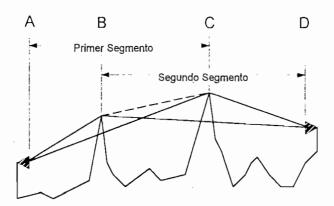


Figura 3.5 Método de Epstein - Peterson para dos Obstáculos

3.2.1.4.2 Método Deygout

Este método tiene un límite, permite analizar un máximo de 2 obstáculos.

El parámetro V se calcula para los 2 obstáculos localizados en los puntos B y C sobre todo el trayecto, es decir, la distancia entre los puntos A y D. El mayor obstáculo tendrá el valor de V más alto.

Para observar de mejor manera lo explicado anteriormente se puede analizar la figura 3.6; en donde el mayor obstáculo se encuentra en el punto C, por lo tanto las pérdidas

por difracción sobre este obstáculo se calculan en el trayecto entre A y D (trayecto total). El segundo obstáculo localizado en B, causa pérdidas que son calculadas sobre el trayecto entre A y C.

La exactitud del método se incrementa a medida que los obstáculos estén más próximos.

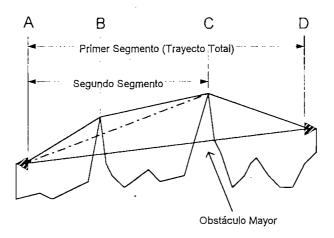


Figura 3.6 Método Deygout para dos Obstáculos

3.2.1.5 Pérdidas por Difracción en Arboles (Reporte OHLOSS)

La pérdida que causa un árbol se calcula de la siguiente manera:

Pérdidas por difracción en obstáculos filo de cuchillo medidas sobre la copa del árbol menos las pérdidas por difracción por obstáculos fijos filo de cuchillo medidas en la base del árbol. En otras palabras se considera la distribución del árbol aparte de las pérdidas en el perfil. El parámetro V es igual a:

$$V = 0.082 \sqrt{\frac{h^2 \cdot f_{MHz}}{d}}$$
 (3.15)

donde:

h: altura del árbol

f: frecuencia en MHz

d: distancia desde el transmisor al árbol

 Pérdidas de onda lateral viajando a través de la cima de los árboles, la que se calcula a partir de la siguiente expresión:

$$L_1 = 6 + (dB_{lat} + 6) \left(1 - e^{-\frac{h}{10}}\right)$$
 (3.16)

$$\begin{cases} &\text{si } \sigma < 0.0002 & \text{dB}_{\text{lat}} = 30 \\ &\text{si } \sigma < 0.00001 & \text{dB}_{\text{lat}} = 12 \\ &\text{caso contrario} & \text{dB}_{\text{lat}} = 40 \end{cases}$$

donde:

σ: conductividad (depende del tipo de árbol y humedad: para nuestro caso es un bosque húmedo lluvioso, por lo tanto será igual a 4.0e-4)

h: altura del árbol.

 Atenuación a través de los árboles para pantallas gruesas y polarización vertical de la antena esta dada por la siguiente expresión:

$$\gamma = 1637.\sigma + 0.334. \exp\left(-\frac{90}{f_{MHz}}\right). \log\left(1 + \frac{f_{MHz}}{100}\right)$$

$$L_{\star} = \gamma.d_{p} + \text{Profund. efectiva}$$

$$\text{Profund. efectiva} = \sqrt{d_{p}^{2} + \left(7.\log(f_{MHz})\right)^{2}}$$

donde:

La: atenuación a través de los árboles

d₀: profundidad del trayecto a través de los árboles

Todos los reportes y áreas de cobertura se encuentran en el anexo 3.

CAPITULO 4:

Análisis Económico del Proyecto

1. Análisis de Costos

1.1 Costos de Inversión

Dentro de los costos de inversión se encuentran los siguientes:

- Costo neto de equipamiento: costo del equipo de las estaciones base y abonados, antenas, etc.
- Costos de infraestructura: inversión en torres, puestas a tierra, alojamiento de los equipos, accesorios adicionales al sistema, etc.
- Costos de instalación y puesta en servicio; es una inversión adicional que representa la instalación de los equipos y su puesta en operación, así como pruebas para entregas parciales o completas del sistema.

Todos los costos han sido reunidos en el cuadro 4.1, en el cual se presenta en detalle los costos por cada sistema. El precio de los componentes está dado en dólares CIF, es decir, están incluidos los valores de transporte desde el país de origen (en el caso de bienes extranjeros) hasta nuestro país; lo cual constituye la mayor parte de la inversión.

DESCRIPCION	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL
UNIDAD CENTRAL (COT)	3.0	120,000.0	360,000.0
UNIDAD DE ABONADO (SLS)	3,100.0	1,200.0	3,720,000.0
ENLACE DE RADIO	3.0	54,000.0	162,000.0
ANTENAS OMNI DB640	2.0	0.000,1	2,000.0
ANTENA SECTORIAL 33°	1.0	800.0	0.008
ANTENA YAGUI DB436-8	3,100.0	170.0	527,000.0
RADIOS BASE (RCS)	3.0	30,000.0	90,000.0
EQUIPOS DE PRUEBA	1.0	120,000.0	120,000.0
TORRES AUTOSOPORTADAS de 25 - 30m	4.0	15,000.0	60,000.0
MASTIL de 10m	3,100.0	400.0	1,240,000.0
INSTALACION Y PUESTA EN OPERACIÓN	1.0	600,000.0	600,000.0
INFRAESTRUCTURA	1.0	100,000.0	100,000.0
CAPACITACION	1.0	15,000.0	15,000.0
TOTAL	1. J. 1.		6,996,800.0

Cuadro 4.1 Costos de Inversión

2. Análisis Financiero

El contexto financiero, y en particular, las fuentes de capital para un proyecto pueden ser muy variadas según sea el marco regulatorio en el que se pondrá en servicio la red. Sin embargo, se debe señalar que en la financiación de un proyecto juegan esencialmente el equilibrio de dos factores: el relacionado con el retorno y el ligado al riesgo.

A mayor riesgo, condiciones de retorno más exigentes.

En cuanto a tarifas, los niveles deben ser lo suficientemente elevados para que la relación ingresos/costos sea mayor que 1.

2.1 Variables Económicas

Para tener un amplio horizonte económico de un proyecto es necesario tener las siguientes estimaciones:

2.1.1 Inversión

Inversión significa formación de capital, desde el punto de vista económico, se entiende por capital al conjunto de bienes que sirven para producir otros bienes (labores productivas).

El término inversión se refiere a las erogaciones o flujos negativos que ocurren al comienzo de la vida económica del proyecto y que representan desembolsos de efectivo para la adquisición de activos de capital, tales como terrenos, edificios, maquinaria y equipos. Deben incluirse los costos de transporte e instalación.

2.1.2 Vida Económica (Vida Util)

Es el período de tiempo en el cual una inversión permanece económicamente superior a la inversión alternativa para desempeñar el mismo fin; es decir, el período durante el cual la inversión no se vuelve obsoleta. La vida económica del proyecto es el horizonte de tiempo que se adopta para su evaluación.

2.1.3 Valores Residuales

Al finalizar la vida útil de un proyecto, se deben anotar como flujos positivos los valores positivos de los activos productivos depreciables y no depreciables, incluyendo la recuperación del capital de trabajo.

2.1.4 Flujo de Beneficios

Los proyectos de inversión reflejan un compromiso de asignar recursos inicialmente con la esperanza de obtener beneficios durante el desarrollo de su vida económica.

2.1.5 Depreciación y Amortización

La depreciación es la pérdida de su valor de un activo físico (edificios, maquinaria, equipos), como consecuencia del uso. Para prevenir la necesidad de reemplazo de un determinado activo al fin de su vida útil, cada año se traspasa una pare de las utilidades de una empresa a un fondo especial llamado fondo de depreciación.

Un documento que produce intereses está amortizado cuando todas las obligaciones contraídas (tanto capital como intereses) son liquidadas mediante una serie de pagos (generalmente iguales) hechos a intervalos iguales de tiempo.

2.1.6 Tasa Interna de Retorno (TIR)

La TIR de un proyecto es la tasa de descuento que hace que el actual de los flujos de beneficio (positivos) sea igual al valor actual de los flujos de inversión (negativos). En otras palabras podemos decir que la TIR es la tasa que descuenta todos los flujos asociados con un proyecto a un valor exactamente cero.

2.1.7 Valor Actual Neto (VAN)

El VAN es el valor presente de una inversión a partir de la tasa de interés y una serie de pagos futuros (flujos negativos) e ingresos (flujos positivos), los cuales no necesariamente son iguales.

El riesgo de un proyecto es obtener tasas de retorno que no cumplan con los objetivos propuestos. Sin embargo, debe considerarse que en un proyecto rural existen mayores riesgos debidos a las condiciones de financiación y retorno de ingresos.

2.2 Rentabilidad del Proyecto

Para determinar si un proyecto es rentable se deben tener en cuenta los valores de la TIR y el VAN.

El cálculo de la TIR y VAN implica evaluar el total de ingresos y egresos del proyecto; para ello se obtendrá valores de costos de operación y mantenimiento del sistema.

Los costos de operación son los siguientes:

	NUMERO	SUELDO	SUELDO	BENEFICIOS	REMUNERACION
DENOMINACION	DE	MENSUAL	ANUAL	SOCIALES	ANUAL
	PERSONAL	(USS)	(USS)	(USS)	(USS)
ADMINISTRADORES	1	\$2,500.00	\$30,000.00	\$12,000.00	\$42,000.00
EJECUTIVOS	0	\$2,000.00	\$0.00	\$0.00	\$0.00
INGENIEROS	1	\$1,500.00	\$18,000.00	\$7,200.00	\$25,200.00
TECNOLOGOS	4	\$600.00	\$28,800.00	\$11,520.00	S40,320.00
VENDEDORES	2	00.0082	\$19,200.00	\$7,680.00	\$26,880.00
CHOFERES	2	\$100.00	\$2,400.00	\$960.00	\$3,360.00
SECRETARIA	1	\$200.00	\$2,400.00	\$960.00	\$3,360.00
CONSERJE	1	\$80.00	\$960,00	\$384.00	\$1,344.00
				TOTAL	\$142,464.00

Cuadro 4.2 Remuneración del Personal para el Sistema de Telefonía Inalámbrica

Los beneficios sociales son el 40% de la remuneración anual de cada empleado.

Luego, será necesario determinar el costo que tiene la operación del sistema por minuto a lo largo de la vida útil del proyecto (normalmente se consideran 10 años). Para lo cual se necesitan las siguientes relaciones:

N.- de minutos anuales = N.- de abonados x Tráfico por Abonado x 365 x 24 x 60

Tráfico por abonado = 187.62/3100 = 0.06

Salario por minuto = Remuneración Anual + viáticos / N.- de minutos anuales

El cuadro 4.3 presenta los valores calculados:

			NUMERO	NUMERO	SALARIO POR
AÑO	REMUNERACION	VIATICOS	DE ABONADOS	MINUTOS	МІМИТО
				ANUALES	
0	142,464	85,478.4	1	31536	0.0
1	156,710	94,026.2	1000	7952667	0.03153
2	172,381	103,428.9	1525	12127817	0.02274
3	189,620	113,771.8	1758	13983440	0.02170
4	208,582	125,148.9	1992	15839062	0.02107
5	229,440	137,663.8	3100	24653268	0.01489
6	252,384	151,430.2	3100	24653268	0.01638
7	277,622	166,573.2	3100	24653268	0.01802
8	305,384	183,230,5	3100	24653268	0.01982
9	335,923	201,553.6	, 3100	24653268	0.02180
10	369,515	221,709.0	3100	24653268	0.02398

Cuadro 4.3 Proyección de Salarios durante la Vida Util del Proyecto

El cuadro 4.4 contiene los costos de operación del sistema, los cuales han sido evaluados mediante la función "PAGO" del programa Microsoft Excel. Para lo cual utilizaremos una tasa de interés igual a 8.5 % para agosto de 1998 (fuente Banco Central del Ecuador); en dólares y se utiliza en la mayoría de transacciones mundiales.

DESCRIPCION	VALOR DE LA	VALOR	NUMERO DE
	INVERSION	PRESENTE	AÑOS
OFICINA	\$2,000.00	\$24,000.00	1
VEHICULOS	\$100,000.00	\$30,528.79	4
MUEBLES	\$8,000.00	\$1,219.26	10
EQUIPO DE PRUEBA	\$160,000.00	\$35,137.13	6
GASTOS DE OPERAC	ION ANUAL	\$90,885.18	

Cuadro 4.4 Valor Presente de los Gastos de Operación

Donde las tasas de interés son:

LIBOR 5.53% PRIME 8.50%

Finalmente, en los cuadros 4.5 y 4.6 se calcula los valores: TIR y VAN; para lo cual consideraremos lo siguiente:

- ♦ Se ha previsto invertir un 75% en la fase inicial debido a la flexibilidad de inversión que presenta el sistema. Esta inversión irá decayendo a medida que transcurren los años de operación
- Se considera un valor de 104000 dólares para arrendamiento de frecuencias e imprevistos
- ◆ La unidad sobre la cual se determinarán los costos por unidad producida constituye en minuto de operación.
- ◆ El flujo neto de caja constituye las operaciones de carácter financiero que permiten cuantificar los rendimientos económicos en función de la inversión dada, y es igual a:

Flujo Neto de Caja = (Ingresos - Costos) - Inversión - Depreciación

 Finalmente La TIR el VAN se calculan sobre este flujo de caja, utilizando las fórmulas incluidas en el programa Microsoft Excel.

Para que un proyecto sea rentable se debe esperar una tasa interna de retorno mayor al 20%. Además, el VAN debe ser positivo y lo más alto posible. Lo cual permite una variación de la tarifa desde los 15 hasta los 19 centavos de dólar por minuto.

$\overline{}$
×
(,,
$\overline{}$

CUADRO 4.5.

	COSTOS DEL SISTEMA DE	ISTEMA DE TE	COSTOS DEL SISTEMA DE TELEFONIA INALAMBRICA Calculo del costo minimo por canal para cada ano de ejecucion del protecto(Tomo im 1000 m 100	SRICA DE EJECUCION DEL	PROYECTO(Total k	i coilar ion en délaire)					
PARAMETROS DE REYERENCIA	INSTALACION			VIDA UTIL DEL SISTEMA EN AÑOS	MA EN AÑOS						
	0	-	2	1	7	3	9	7	*	ه	10
INVERSION TOTAL	09.0089669	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
INVERSION ANUAL EN %	75.0	10.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRIENDO DE FRECUENCIAS	104000.0	104000.0	104000.0	104000.0	104000.0	104000.0	104000.0	104000.0	10,000,0	104000.0	104000.0
NUMERO DE ABONADOS AL AÑO	-	0001	1323	1758	1992	3100	3100	3100	0011	00 IT	0011
NUMERO DE MINUTOS AÑO		7932667	12127817	13983440	13839062	24653268	24653268	24653268	24653268	24653268	24653268
COSTO DE OPERACION POR MINUTO	3.30	0.0302	0,0198	0.0172	0.0132	0,0097	0.0097	0.0097	0.0097	0.0097	1,000.0
SALARIOS POR MINUTO	0.00	0.0315	0.0227	0.0217	0.0211	0,0149	0.0164	0.0180	0.0198	0,0218	0.0210
PRECIO POR MINUTO DE LLAMADA		0.19	61.0	0.19	0.19	0.19	61.0	0.19	61.0	61.0	0.19
DEPRECIACION LINEAL	0.1	0.1	0.1	0.1	0.1	0.1	D.1	0.1	0.1	0.1	0.1
FLUJO DE CAJA											
				·							
INVERSION EN EL SISTEMA	5247600.00	00.089669	349840.00	349840.00	349840.00	-					
INCRESOS	00'0	1,520,362.83	16.682,818,5	2,673,304.64	3,028,033.96	4,713,124.76	37.12,124.76	4,713,124.76	4,713,124.76	אל אבו,נוק,	4,713,124.76
costos	3.30	H91,061.42	\$316,138.08	11,617,719,11	\$574,058.24	\$607,431.29	564,111.64	\$681,523.03	5728,942.55	\$777,804.03	58.11,551.66
INGRESO BRUTO	.1.30	\$1,029,298.41	\$1,802,415.23	52,129,585,53	\$2,433,997.72	54,105,693,47	1,068,981.12	14,028,601.74	13,984,182.21	1,915,320.73	11.675,188,13
(-) DEPRECIACION	324760,00	\$194,728.00	\$394,728.00	\$594,728.00	\$394,728.00	\$524,728.00	\$394,728.00	\$394,728.00	\$594,728.00	\$594,778.00	1354,728.00
UTILIDAD NETA	-324763.30	\$434,570,41	\$1,207,687.23	51,534,857.53	\$1,839,269.72	17.596,012,63	\$3,474,255.12	\$3,433,873.74	11,389,454.21	11,340,592.73	11,286,843.11
II, UIO DE CAJA	-5247603.30	\$329,618.41	\$1,452,575.23	\$1,779,745.53	\$2,194,157,72	84,185,693,47	\$4,068,983,12	\$4,028,601,74	11,984,182,21	13,935,320,73	11,272,1 88,23
RENTABILIDAD		62.0	0.32	75.0	19.0	0.74	0.74	1.0	27.0	0.71	0.70
FLUXO DE CAJA (ACTUALIZACION 5 %)	-5247603.30	329618.41	1383404.98	1617950,48	1813929.67	3365322.52	3178893.06	3006419.21	2825461.14	1659000.19	2564240,71
FASA INTERNA DE RETORNO		VAN									
DEL PROVECTO (54)	30.10	,	\$11,411,850.86								Ţ
	-										

┰	

	COSTOS DEL SISTEMA DE	ISTEMA DE TE	TELEFONIA INALANIBRICA	BRICA							
	CALCULO DEL CO	STO MINIMO POR C	CALCULO DEL COSTO MINIMO POR CANAL PARA CADA AÑO DE EJECUCION DEL PROYECTO(Todos los costos sun no dábana).	DE ERCUCION DEL I	PROYECTO(Todos le	e costos son en délares).					
PARAMETROS DE REFERENCIA	INSTALACION			VIDA UTIL DEL SISTEMA EN AROS	IA EN AROS					,	
	٥	~	2		•	7	9	1	8	6	10
INVERSION TOTAL	09.0989669	D'O	0.0		0.0	0.0	0'0	0.0	0.0	0.0	0.0
INVERSION ANUAL IN %	75.0	10.0	2.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRIENDO DE FRECUENCIAS	104000,0	104000.0	104000.0	104000.0	104000.0	104000.0	101000.0	104000.0	104000.0	104000.0	104000.0
NUMERO DE ABONADOS AL AÑO		1000	1525	1758	1992	00 E	0016	3100	3100	815	3100
NUMERO DE MINUTOS AÑO	٥	7931667	71872121	13981440	15839062	24653268	24653268	24653768	24633268	24633268	14653268
COSTO DE OPERACION POR MINUTO	3.30	0.0302	0.0198	0.0172	0.0152	0.0097	0,0097	1,0097	T-600.D	0.0097	0.0097
SALARIOS POR MINUTO	0.00	0.0315	0,0227	0.0217	0.0211	0.0149	0.0164	0,0180	0.0198	0.0218	0.0140
PRECIO POR MINUTO DE LLAMADA		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
DEPRECIACION LINEAL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
FLUJO DE CAJA					\ \					,	
INVERSION EN EL SISTEMA	3247600.00	00'089669	349810.00	349840.00	349840.00						
INGRESOS	08.0	90'006'761'1	1,819,172,60	2,097,513.95	2,375,859,30	3,697,990.20	3,697,990.20	3,697,990,20	3,697,990.20	3,697,990.20	3,697,990.20
COSTOS	00.0	5491,064.42	\$516,138.08	\$343,719.11	\$374,038.24	\$607,431.29	\$644,141.64	\$684,523.03	\$728,942.35	1777,801.03	\$811,531.66
INGRESO BRUTO	3,30	\$701,833.65	\$1,303,034.52	\$1,533,796.84	\$1,801,801.08	19,090,538.91	\$3,033,848.56	51,013,467.17	\$2,969,047.65	12,920,186,17	\$2,866,438.54
(•) DEPRECIACION	324760.00	\$594,728.00	\$154,728.00	\$594,728.00	\$394,728.00	\$394,778.00	\$594,728.00	\$594,728.00	1594,728.00	\$ 194,728.00	132,728.00
UTILIDAD NETA	-524763.30	\$107,107.65	\$708,306.52	\$939,068.84	\$1,207,073,05	\$2,493,830.91	\$2,439,120.36	52,418,739.17	\$2,374,319.65	\$2,125,458 17	\$2,271,710.54
FLWO DE CAJA	-5247603.30	\$2,155.65	\$953,194.52	\$1,203,956.84	\$1,451,961.05	13,090,558.91	53,053,848,54	53,013,467,17	\$2,969,847,65	\$2,926,184.17	\$2,866,438,54
RENTABILDAD		60'0	620	97'0	0.51	. 0.67	99'0	0.65	0.64	169.0	19'0
FLUJO DE CAJA (ACTUALIZACION 5 %)	-5247603.30	2155,65	907804.30	1894506.21	1251690.56	2533245.01	2385819,19	2248856,10	2105707.55	17,8496,76	1849315.19
TASA INTERNA DE RETORNO		VAN									
DEL PROYECTO (%)	20.97	-	\$6,819,327.01								

Luego de los cálculos realizados se tiene una TIR entre el 20.97% y 30.10%, por lo que el proyecto es totalmente rentable.

Además, debería de revisarse el plan tarifario de ANDINATEL para esta clase de servicio.

CAPITULO 5:

Conclusiones y Recomendaciones

1. Conclusiones

- En un inicio la tesis comprendía a las provincias de Napo y Sucumbios, pero se extendió a la provincia de Orellana; creada por el Congreso Nacional durante el desarrollo está.
- ◆ Existe actualmente una necesidad de servicio telefónico en las poblaciones rurales de las provincias de Napo, Sucumbios y Orellana ya que normalmente las fincas y otros asentamientos poblacionales se encuentran dispersos a lo largo de las vías de comunicación y no cuentan con ningún servicio de telecomunicaciones, ni siquiera existen proyectos o estudios tendientes a solucionar esta demanda, de allí la importancia de esta tesis.
- ◆ La capacidad de las centrales telefónicas, así como su atrasada tecnología impiden una cobertura total de los posibles usuarios repartidos a lo largo de la periferia de poblaciones importantes en el aspecto económico tales como Lago Agrio, Francisco de Orellana y Tena.
- No se ha considerado a los sistemas celulares como una solución aplicable en vista de la baja densidad poblacional por kilometro cuadrado, ya que las celdas son de reducido tamaño y esto implicaría costos elevados ya que se requiere una gran cantidad de celdas para cubrir el área de interés

- ◆ Los sistemas de multiacceso si bien son una solución factible, estos están diseñados para servir a poblaciones concentradas, si bien en la actualidad estos sistemas tienen la solución par el bucle de abonado inalámbrico o solución de la última milla, estos sistemas por el rango de frecuencia utilizado cubren radio entre 5 a 10 Km con y sin línea de vista respectivamente, lo cual encarece cualquier solución que se piense dar con este equipo para el área rural propiamente dicha.
- ◆ De las conclusiones anteriores se desprende que la solución mas aplicable es la de los sistemas inalámbricos de bucle de abonado, los que trabajan en un rango de frecuencias entre los 300 y 500 MHz cuya propagación se realiza a través de la troposfera sin la necesidad de tener línea de vista.
- Las condiciones de perdida por difracción son aceptables y se cubre una área aproximada de 11000 kilómetros cuadrados con una sola celda, ya que la calidad de los equipos tiene un umbral de recepción bajo, lo cual permite establecer comunicaciones con niveles de bajos de señal recibida.
- ◆ La posibilidad de tener torres pequeñas se fundamenta en el hecho de que para los rangos de frecuencia que utilizan estos equipos las perdidas por absorción de las onda electromagnéticas al atravesar obstáculos, como son los árboles no implican valores que podrían impedir el correcto funcionamiento o reducir la cobertura total del sistema.

- Según los cálculos realizados de la TIR y VAN el proyecto es totalmente factible
 debido a que la recuperación de los valores invertidos se realiza en pocos años.
- ◆ El estudio realizado implica inversiones del orden de los 7 millones de dólares, los cuales deberán ser financiados con créditos externos a tasas de interés preferencial, lo que significa créditos de gobierno a gobierno que están disponibles actualmente para este tipo de proyecto.

2. Recomendaciones

- Las necesidades de telecomunicaciones de las poblaciones hacen que la implementación de este proyecto sea inmediata, además dentro del contrato de concesión a Andinatel dado por la SENATEL se obliga a dar servicio mediante radio a las poblaciones que están cubiertas por este sistema dentro de las provincias incluidas en las zonas de interés.
- Es primordial el cambio de todas las centrales telefónicas de la región, dado obsolescencia ya que no tienen ninguna de las facilidades que se requieren para la gestión, monitoreo y control de las redes telefónicas actuales.
- Se recomienda que se realicen estudios integrales para dar solución a todas la poblaciones, incluidos cabeceras parroquiales dentro del Ecuador
- El pliego tarifario deberá ser revisado a fin de ajustarse a los costos actuales y a los métodos de trabajo efectivos que se requieren para que las empresas estatales puedan competir con las privadas en la actualidad.

•	La imposibilidad de acceder a los sitios de las estacione base hacen que sea
	primordial la construcción de caminos de acceso adecuados, asi como
	infraestructura necesaria.
	,

BIBLIOGRAFIA:

- ALLEN TELECOM GROUP DECIBEL PRODUCTS. <u>Decibel Products</u>. USA.
 1996. 236p.
- CCITT. <u>Datos de Planificación y Métodos de Previsión</u>. Manual del GAS 10.
 Vol. 1.
- 3. CCITT. Recomendación E.600. Libro Azul. II.3.
- 4. EMETEL. Documento SGP-022/01. 1987
- 5. Hore, Kanti. Propagación de Ondas de Radio. EPN. Quito. 1980.
- HUGHES NETWORK SYSTEMS. <u>Personal Access Communications (PACS)</u>.
 USA. 1996. 22p.
- Ecuador. Vicepresidencia de la República. INEC. <u>Análisis de los Resultados</u>
 <u>Definitivos del V Censo de Población y IV de Vivienda 1990</u>. Quito. INEC.
 1993.
- 8. Ecuador. Vicepresidencia de la República. INEC. <u>Necesidades Básicas</u>

 <u>Insatisfechas (Mapas de Pobreza)</u>. Quito. INEC. 1996.
- 9. INTERDIGITAL COMMUNICATIONS CORPORATION. <u>Wireless Local Loop ULTRAPHONE Overview</u>. USA. 1998.
- Lasso, L. <u>Memoria sobre el Estudio de Demanda Telefónica 1985 2010</u>. IETEL
 Quito. 1987.
- 11. Rappaport, T. <u>Wireless Communications. Principles and Practice</u>. IEEE Press Prentice Hall. USA. 1996. 641p.
- 12. SINCLAIR. <u>Catalog 1996</u>. USA. 1996.

- 13. Tanenbaum, A.S. <u>Computer Networks</u>. 3ra. Ed. Estados Unidos. Prentice Hall Inc. 1996. 795 p.
- 14. TELECOM ENG. <u>PATHLOSS II User's Program Manual</u>. Contract Telecommunication. Canadá. 1993.
- SRTelecom, <u>Guía de Planificación de Sistemas SMD</u>. SRTelecom. Canadá.
 1993. Vol. 1.

ANEXO N.- 1:

Registro Oficial N.- 372

Administración del Sr. Dr. Fabián Alarcón Rivera Presidente Constitucional Interino de la República

Año II -- Quito, Jueves 30 de Julio de 1998

EDMUNDO ARIZALA ANDRADE DIRECTOR ENCARGADO

Teléfonos: Dirección 282-564 Suscripción anual: s/. 378.000 Distribución (Almacén): 583-227 Impreso en la Editora Nacional 4.500 ejemplares 8 páginas Valor s/. 1.100

UPLEMEN

SUMARIO:

Págs.

No. 118

FUNCION LEGISLATIVA

LEYES:

118

Reformas a la Constitución Politica de la

	Republica	1		
119	Ley de creación de la provincia de Orellana	2		
	FUNCION EJECUTIVA			
DECRETO:				
1655	Expídese el Reglamento para la aplicación de la Ley Reformatoria al Código Tributario, en lo atinente al Fondo de Estabilización Petrolera	6		
	ORDENANZAS MUNICIPALES:			
-	Cantón Balzar: Que reglamenta el pago de dietas a los concejales del llustre Municipio	7		
	Cantón Santa Cruz: Que reforma a la Ordenanza que reglamenta la prestación del servicio del camal municipal y la determinación y recaudación de la tasa de			

rastro

EL CONGRESO NACIONAL

Considerando:

Ouc es necesario dotar al país de mecanismos jurídicos que posibiliten una mayor gobernabilidad de sus instituciones, fijando los períodos de duración de los dignatarios de la Función Legislativa;

Que la elección de los dignatarios del Congreso Nacional debe responder a la voluntad popular expresada en las urnas, con el propósito de fortalecer el sistema democrático;

Que es indispensable viabilizar los períodos de duración de las dignidades del Parlamento Nacional, con el propósito de que la institucionalidad democrática retorne a la normalidad que la nación exige; y,

En ejercicio de sus facultades constitucionales y legales, expide las signientes:

REFORMAS A LA CONSTITUCION POLÍTICA DE LA REPUBLICA

Art. 1.- A continuación del artículo 81 de la Constitución Política de la República, agrégase el siguiente:

"Art. 81-A El Congreso Nacional se instalará en Quito, sin necesidad de convocatoria, el 5 de enero del año en que seposesione el Presidente de la República y, sesionará en forma ordinaria y permanente, con dos recesos al año, de un mes cada uno. Las sesiones del Congreso serán públicas. Excepcionalmente podrá constituirse en sesión reservada, con sujeción a la ley.

Congreso Nacional elegirá cada dos años un presidente y vicepresidentes. Para los primeros dos años, elegirá a su idente de entre los diputados pertenecientes al partido o imiento que tenga la mayor representación legislativa y a rimer vicepresidente del partido o movimiento que tenga gunda mayoría, elegidas por el pueblo democráticamente, las elecciones immediatas anteriores, realizadas para ormar el Congreso Nacional. El bloque del partido o imiento político designará al respectivo candidato en cada

egundo vicepresidente será elegido de entre los diputados pertenezcan a los partidos o movimientos minoritarios. empeñarán tales funciones durante dos años.

los siguientes dos años, el presidente y primer presidente se elegirán de entre los partidos o movimientos electoralmente hayan obtenido la segunda y la primera oría, respectivamente y en su orden.

- Sustitúyase el inciso primero y el literal a) del artículo de la Constitución Política de la República, por los
- 82.- El Congreso Nacional tendrá los siguientes deberes

Nombrar a su presidente y vicepresidentes de la forma señalada en el artículo 81-A".

3.- Agréguese la siguiente disposición transitoria:

diputados se reunirán sin necesidad de convocatoria el 1 gosto de 1998, y elegirán presidente y dos vicepresidentes Congreso Nacional, en la forma prevista en el artículo 81uienes durarán en el ejercicio de sus funciones hasta to del año 2.000."

- as en la ciudad de San Francisco de Quito, Distrito, ropolitano, en la Sala de Sesiones del Congreso Nacional Ecuador, a los veintiún días del mes de julio de mil cientos noventa y ocho.
- Dr. Heinz Moeller Freire, Pesidente del Congreso onal.
- Dr. Jaime Dávila de la Rosa, Secretario General del greso Nacional (E).
- cio Nacional, en Quito, a veinte y ocho de julio de mil cientos noventa y ocho.

iúlguese:

- abián Alarcón Rivera, Presidente Constitucional Interino República.
- el copia del original.- Lo Certifico:
- Dr. Rómulo García Sosa, Secretario General de la inistración Pública, (E).

No. 119

EL CONGRESO NACIONAL

Considerando:

Que la extensión territorial de la provincia del Napo y su falta de infraestructura vial y de comunicaciones han motivado un lento y desigual desarrollo cantonal;

Que las ciudades y pueblos asentados en el medio Napo se han fortalecido social y económicamente durante los últimos años, manteniendo altos índices de crecimiento, propiciando la creación de un importante polo de desarrollo regional, nacional y claramente orientado hacia los demás países de la cuenca amazónica;

Que el medio Napo es un territorio fronterizo donde el Estado tiene la obligación de intervenir, creando estructuras político administrativas que permitan regular soberanamente el intercambio internacional y demás relaciones establecidas en la frontera;

Que la riqueza petrolera y las reservas naturales y de biósfera obligan a un ordenamiento jurisdiccional de este territorio para que la presencia y autoridad del Estado adquieran pleno ejercicio a través de sus representantes legítimos;

Que los cantones Orellana, La Joya de los Sachas, Aguarico y Loreto han expresado su voluntad de conformar una nueva jurisdicción territorial, poniendo para ello las bases sociales, políticas y económicas que tal aspiración demanda; y,

En uso de sus atribuciones constitucionales y legales, expide la siguiente:

LEY DE CREACION DE LA PROVINCIA DE ORELLANA

- Art. I.- Créase la provincia de Orellana como unidad territorial administrativa de los cantones Orellana, Aguarico, Joya de los Sachas y Loreto.
- Art. 2.- Declárase como capital de la nueva provincia a la ciudad de Francisco de Orellana.
- Art. 3.- La jurisdicción político administrativa de la provincia de Orellana comprenderá los cantones de:

Francisco de Orellana, con sus parroquias: Puerto Francisco de Orellana, El Dorado, Dayuma, Inés Arango, Alejandro, Labaca, El Edén, García Moreno, La Belleza, San Luis de Armenia, Nuevo Paraíso, San José de Guayusa y Taracoa;

Aguarico con sus parroquias: Nuevo Rocasuerte, Capitán Augusto Rivadencira, Cononaco, Santa María de Huiririma, Tiputini y Yasuni;

La Joya de los Sachas, con sus parroquias: La Joya de los Sachas, Enokanki, Pompeya, San Carlos y Sebastián del Coca, Rumipamba, Tres de Noviembre, Lago San Pedro y Unión Milagreña;

Loreto, con sus parroquias: Loreto, Avila, Murialdo, San José de Payamino, San Vicente de Huaticocha y San José de Dahuano.

Art. 4.- Los limites de la provincia de Orellana son:

AL NORTE (DE ESTE A OESTE) .- Del punto No. 1, de coordenadas geográficas 0°01'42" de latitud Sur y 77°16'24" de longitud Occidental, ubicado en la afluencia del estero Yacu en el rio Coca; el curso del rio Coca, aguas abajo, hasta el punto No. 2, de coordenadas geográficas 0°05'49" de latitud Sur y 77°09'45" de longitud Occidental, ubicado a la misma longitud geográfica de la afluencia del río Cáscales en el río Aguarico; de este punto, un meridiano geográfico hacia el Norte, hasta su intersección con el curso del río Eno en el punto No. 3, de coordenadas geográficas 0°04'51" de latitud Sur y 77°09'45" de longitud Occidental; de esta intersección el curso del río Eno, aguas abajo, hasta el punto No. 4, de coordenadas geográficas 0°03'23" de latitud Sur y 76°55'55" de longitud Occidental, situado a la misma longitud geográfica de la confluencia de los formadores del río Conambo; de este punto, el meridiano geográfico hacia el Sur, hasta la confluencia de los formadores del río Conambo en el punto No. 5, de coordenadas geográficas 0°04'56" de latitud Sur y 76°55'55" de longitud Occidental; de dicha confluencia, el curso del rio Conambo, aguas abajo, hasta el punto No. 6, de coordenadas geográficas 0°04'53" de latitud Sur y 76°54'10" de longitud Occidental, situado a la misma longitud geográfica de los origenes del Estero No. 1, afluente del río Jivino Verde; de este punto, un meridiano geográfico hacia el Sur, hasta los origenes del Estero No. 1, en el punto No. 7, de coordenadas geográficas ()°05'18" de latitud Sur y 76°54'10" de longitud Occidental; de dichos orígenes, el curso del Estero No. 1, aguas abajo, hasta su afluencia en el río Jivino Verde en el punto No. 8, de coordenadas geográficas 0°06'44" de latitud Sur y 76°53'27" de longitud Occidental; de esta afluencia, el curso del río Jivino Verde, aguas abajo, que pasa por la afluencia del rio Jivino Azul en el punto No. 9, de coordenadas geográficas 0°15'38" de latitud Sur y 76°45'41" de longitud Occidental, hasta su confluencia con el río Jivino Rojo, formadores del río Jivino, en el punto No, 10 de coordenadas geográficas 0°18'27" de latitud Sur y 76°44'32" de longitud Occidental; de dicha confluencia, el curso del río Jivino, aguas abajo, hasta su afluencia en el río Napo, punto No. 11, de coordenadas geográficas 0°25'47" de latitud sur y 76°36'36" de longitud Occidental; de esta afluencia, el thalweg del río Napo, aguas abajo, hasta la afluencia del Estero No. 2, en el punto No. 12, de coordenadas geográficas 0°33'21" de latitud Sur y 75°55'41" de longitud Occidental; de esta afluencia, el curso del Estero No. 2, aguas arriba, hastala confluencia de sus formadores en el punto No. 13, de coordenadas geográficas 0°32'02" de latitud Sur y 75°56'36" de longitud Occidental; de esta confluencia una alineación al Noroeste, hasta alcanzar la confluencia de los formadores de la quebrada Juanillas en el punto No, 14, de coordenadas geográficas 0°24'45" de latitud Sur y 75°56'59" de longitud Occidental; de la última confluencia referida, el curso de la quebrada Juanillas, aguas abajo, hasta su afluencia en el río Aguarico en el punto No. 15, de coordenadas geográficas 0°28'43" de latitud Sur y 75°36'36" de longitud Occidental, de dicha afluencia, el curso del río Aguarico, aguas abajo, hasta la afluencia del río Lagartococha.

AL ESTE.- Los limites internacionales del Ecuador.

AL OESTE.- (NORTE – SUR).- Del punto No. 1, ubicado en la afluencia del estero Yacu en el río Coca; de coordenadas geográficas 0°01'42" de latitud Sur y 77°16'24" de longitud Occidental; el curso del estero Yacu, aguas arriba, hasta sus nacientes en el punto No. 16, de coordenadas geográficas 0°03'59" de latitud Sur y 77°17'52" de longitud Occidental;

de dichas nacientes, una alineación al Suroeste, hasta los origenes del estero Oso en el punto No. 17 de coordenadas geográficas 0°04'05" de latitud Sur y 77º18'00" de longitud Occidental; de estos origenes el curso del estero Oso, aguas abajo, hasta su asluencia en el estero Grande Yacu, en el punto No. 18, de coordenadas geográficas 0°04'36" de latitud Sur y 77°17'33" de longitud Occidental; de esta afluencia una alineación al Sureste, hasta las nacientes del río Supayacu en el punto No. 19, de coordenadas geográficas 0°05'02" de latitud Sur y 77°17'32" de longitud Occidental; de este punto continúa por el curso del rio Supayacu, aguas abajo, hasta la afluencia del estero Supayacu Chico en el punto No. 20, de coordenadas geográficas 0°08'02" de latitud Sur y 77°16'35" de longitud Occidental; de dicha afluencia, sigue por el curso del estero Supayacu Chico, aguas arriba, hasta la afluencia del estero Tigrillo en el punto No. 21, de coordenadas geográficas 0°08'52" de latitud Sur y 77°17'44" de longitud Occidental; de este punto, continúa por el curso del estero Tigrillo, aguas arriba, hasta sus orígenes en el punto No. 22, de coordenadas geográficas 0°09'11" de latitud Sur y 77°17'30" de longitud occidental; de estos orígenes una alineación al Sureste, hasta las nacientes del estero Puni, en el punto No. 23, de coordenadas geográficas 0°09'21" de latitud Sur y 77°17'43" de longitud Occidental; de estas nacientes. sigue por el curso del estero Puni, aguas abajo, hasta su asluencia en el río Punino, en el punto No. 24, de coordenadas geográficas 0°11'50" de latitud Sur y 77°17'45" de longitud Occidental, de dicha afluencia continúa por el curso del río Punino, aguas abajo, hasta la afluencia del estero Chico en el punto No. 25, de coordenadas geográficas 0°14'07" de latitud Sur y 77°15'30" de longitud Occidental; de esta afluencia, el curso del estero Chico, aguas arriba, hasta la confluencia de sus formadores Oriental y Occidental en el punto No. 26, de coordenadas geográficas 0°14'31" de latitud Sur y 77°15'39" de longitud Occidental: de este punto, sigue por el curso del formador Oriental del estero Chico, aguas arriba, hasta sus origenes en el punto No. 27, de coordenadas geográficas 0°14'42" de latitud Sur y 77°15'48" de longitud Occidental; de estos orígenes una alineación al Suroeste, hasta las nacientes del estero Palmar, en el punto No. 28, de coordenadas geográficas 0°15'10" de latitud Sur y 77°15'46" de longitud Occidental; de este punto, continúa por el curso del estero Palmar, aguas abajo, hasta su afluencia en el río Biguno, en el punto No. 29, de coordenadas geográficas 0°15'23" de latitud Sur y 77°16'21" de longitud Occidental; de esta afluencia sigue por el curso del río Biguno, aguas abajo, hasta la afluencia del estero Biguno Chico, en el punto No. 30 de coordenadas geográficas 0°16'04" de latitud Sur y 77°15'18" de longitud Occidental; de dicha affuencia continúa por el curso del estero Biguno Chico, aguas arriba, hasta la afluencia del estero Bigunito, en el punto No,. 31, de coordenadas geográficas 0°16'53" de latitud Sur y 77°15'34" de longitud Occidental; de dicha afluencia, el curso del estero Bigunito, aguas arriba, hasta la confluencia de sus formadores Oriental y Occidental, en el punto No., 32, de coordenas geográficas 0°17'33" de latitud Sur y 7°15'17" de longitud Occidental; de este punto, continúa por el formador Occidental del estero Bigunito, aguas arriba, hasta sus origenes en el punto No. 33, de coordenadas geográficas 0°18'02" de latitud Sur y 77°15'18" de longitud Occidental; de estos orígenes, una alineación al Sureste, hasta las nacientes del estero Real en el punto No. 34, de coordenadas geográficas 0°18'13" de latitud Sur y 77°15'16" de longitud Occidental; de dichas nacientes, sigue el curso del estero Real, aguas abajo, hasta la afluencia en el estero Paushi en el punto No. 35, de coordenadas geográficas 0°18'25" de latitud Sur y 77°15'54" de longitud Occidental; de este punto, continúa por el curso del estero Paushi, aguas abajo, hasta su afluencia en el estero l'aushiyacu Chico en el punto No. 36, de

coordenadas geográficas 0°19'42" de latitud Sur y 77°16'27" de longitud Occidental; de dicha afluencia, el curso del estero Paushiyacu Chico, aguas abajo, hasta la afluencia de la quebrada Florida en el punto No. 37, de coordenadas geográficas 0°20'15" de latitud Sur y 77°16'32" de longitud Occidental; de dicha afluencia, el curso de la quebrada Florida, aguas arriba, hasta sus orígenes, en el punto No. 38 de coordenadas geográficas 0°20'10" de latitud Sur y 77°17'29" de longitud Occidental; de estos orígenes, una alineación al Suroeste hasta la afluencia del río Shapano en el rio Paushiyacu, punto No. 39 de coordenadas geográficas 0°20'35" de latitud Sur y 77°17'59" de longitud Occidental; de la última afluencia anotada, continúa por el curso del río Shapano, aguas arriba, hasta la afluencia del estero Shapano Chico en el punto No. 40, de coordenadas geográficas 0°20'54" de latitud Sur y 77°18'26" de longitud Occidental; de dicha afluencia, sigue por el curso del río Shapano Chico aguas arriba, hasta sus nacientes ubicadas en el punto No., 41, de coordenadas geográficas 0°21'46" de latitud Sur y 77°19'08" de longitud Occidental; de estas nacientes, una alineación al Suroeste, hasta la Cima de la Loma sin nombre de cota 645 m., punto No. 42, de coordenadas 0°22'01" de latitud Sur y 77°19'19" de longitud Occidental: de dicha Cima, un paralelo geográfico al Oeste, hasta intersecar el curso del río Tiquino en el punto No. 43, de coordenadas geográficas 0°22'01" de latitud Sur y 77°19'54" de longitud Occidental; de esta intersección, continúa por el curso del río Tiquino, aguas abajo, hasta su afluencia en el río Payamino en el punto No. 44, de coordenadas geográficas 0°25'06" de latitud Sur y 77°19'28" de longitud Occidental; de esta afluencia sigue por el curso del río Payamino, aguas arriba, hasta la afluencia del río Bigal en el punto No. 45, de coordenadas geográficas 0°25'00" de latitud Sur y 77°21'11" de longitud Occidental; de este punto, continúa por el río Bigal, aguas arriba, hasta sus nacientes localizadas en el punto No. 46; de coordenadas geográficas 0°27'26" de latitud Sur y 77°32'24" de longitud Occidental; de dichas nacientes, una alineación al Noroeste, hasta la cima del cerro Bigal de cota 2.015 m., punto No. 47, de coordenadas geográficas 0°26'58" de latitud Sur y 77°32'42" de longitud Occidental; de este punto; una alineación al Suroeste, hasta los origenes de la quebrada Molino Chico en el punto No. 48, de coordenadas geográficas 0°27'01" de latitud Sur y 77°07'14" de longitud Occidental; de estos orígenes, continúa por el curso de la última quebrada referida, aguas abajo, hasta su afluencia en el río Molino en el punto No. 49, de coordenadas geográficas 0°27'34" de latitud Sur y 77°34'10" de longitud Occidental; de dicha alluencia, sigue por el último río referido, aguas abajo, hasta su afluencia, en el río Suno en el punto 50, de coordenadas geográficas 0°28'56" de latitud Sur 77°33'55" de longitud Occidental; de esta afluencia, continúa por el curso del rio Suno, aguas abajo, hasta la afluencia del río Suno Chico en el punto Nº 51 de coordenadas geográficas 0°29'30" de latitud Sur y 77°33'28" de longitud Occidental; de este punto, sigue por el curso del río Suno Chico, aguas arriba, hasta sus origenes en el punto Nº 52, de coordenadas geográficas 0°31'51" de latitud Sur y 77°37' 03" de longitud Occidental; de dichos origenes, una alineación al Suroeste, hasta el cráter del volcán Sumaco de cota 3.732 m., ubicado en el punto Nº 53, de coordenadas geográficas 0°32'17" de latitud Sur y 77°37'32" de longitud Occidental; de dicho cráter, continúa por la línea de cumbre que, separa las cuencas hidrográficas de los rios Pucuno y Huataracu al Oeste y Chacayacu al Este, y que pasa por las lomas sin nombres de costas: 2.870 m., 2.525 m., 1.765 m., 1.625 m. y 1.644 m., hasta alcanzar la cima de la loma sin nombre de cota 1,542 m... en el punto Nº 54, de coordenadas geográficas 0°39'37" de latitud Sur y 77°31'29" de longitud Occidental; de esta cima,

una alineación al Sureste, hasta las nacientes del río Huataracu

Chico en el punto Nº 55, de coordenadas geográficas 0°39'42" de latitud Sur y 77°31'28 de longitud Occidental; de estas nacientes, sigue por el curso del río señalado, aguas abajo, hasta su afluencia en el río Huataracu en el punto Nº 56, de coordenadas geográficas 0°41'54" de latitud Sur y 77°29'41" de longitud Occidental; de esta afluencia, continúa por el curso del río Huataracu, aguas arriba, hasta la afluencia de la quebrada Pasourcu en el punto Nº 57, de coordenadas geográficas 0°43'38" de latitud Sur y 77°31'02" de longitud Occidental; de dicha afluencia, sigue el curso de la quebrada referida, aguas arriba, hasta sus nacientes localizadas en el punto Nº 58, de coordenadas geográficas 0°44'29" de latitud Sur y 77°31'21" de longitud Occidental; de estas nacientes, continúa por el ramal orográfico que sigue una dirección Suroeste y que pasa por la loma sin nombres de cota 1.148 m., y por los origenes de los tributarios septentrionales del río Pucuno, hasta alcanzar la cima de la loma sin nombre de cota 1.171 m., en el punto Nº 59, de coordenadas geográficas 0°47'30" de latitud Sur y 77°32'24" de longitud Occidental; de esta cima, una alineación al Sureste, hasta la afluencia de la quebrada Galeras en el río Pucuno, en el punto Nº 60, de coordenadas geográficas 0°47'50" de latitud Sur y 77°31'57" de longitud Occidental; de esta afluencia, continúa por el curso de la quebrada referida, aguas arriba, hasta sus nacientes en el punto Nº 61, de coordenadas geográficas 0°49'00" de latitud Sur y 77°31'24" de longitud Occidental; de estas nacientes, sigue por la linea de cumbre de la Cordillera Galcras, que pasa por las lomas sin nombre de cotas: 1.695 m., 1.589 m. y 1.469 m., continuando por su prolongación al Suroeste, que separa las cuencas hidrográficas de los ríos Pusuno al Este y Bueno al Oeste, hasta el punto Nº 62, de coordenadas geográficas 0°54'24" de latitud Sur y 77°35'10" de longitud Occidental, ubicado al Norte y a la misma longitud geográfica de los orígenes del formador occidental del río Bucno; del punto Nº 62, un meridiano geográfico al Sur, hasta las nacientes del formador occidental del río Bueno en el punto Nº 63.

AL SUR (OESTE A ESTE).- Del punto Nº 63, de coordenadas geográficas 0°54'36" de latitud 'Sur y 77°35'10" de longitud Occidental, ubicado en las nacientes del formador aguas abajo, hasta su confluencia con el formador oriental, en el punto Nº 64 de coordenadas geográficas 0°55'41" de latitud Sur y 77°34'23" de longitud Occidental, de dicha confluencia, el curso del río Bueno, aguas abajo, hasta su afluencia en el río Suno, en el punto Nº 65; de dicha afluencia, continúa por el curso del río Suno, aguas abajo, hasta su afluencia en el río Napo, aguas arriba, hasta la afluencia del río Huachiyacu en el punto Nº 67, de coordenadas geográficas 0°49'59" de latitud Sur y 77°11'25" de longitud Occidental; de este punto continúa por el curso del último río referido, aguas arriba hasta la confluencia de sus formadores Septentrional y Meridional, en el punto Nº 68 de coordenadas geográficas 0°52'06" de latitud Sur y 77°09'54" de longitud Occidental; de dicha confluencia, sigue por el curso del formador Septentrional señalado, aguas arriba, hasta sus orígenes en el punto Nº 69 de coordenadas geográficas 0°52'16" de latitud Sur y 77°08'28" de longitud Occidental; de estos orígenes una alineación al sureste hasta los orígenes del río Tiputini Uno en el punto Nº 70, de coordenadas geográficas 0°53'34" de latitud Sur y 77°08'26" de longitud Occidental; de dichos origenes, el curso del río Tiputini Uno, aguas abajo, hasta la afluencia del río Tihuacuno en el punto Nº 71, de coordenadas geográficas 0°55'11" de latitud Sur y 77°01'44" de longitud Occidental; de dicha afluencia, el curso del río Tihuacuno, aguas arriba, hasta alcanzar el punto Nº 72, de coordenadas geográficas 0°56'55" de longitud Sur y 77°04'13" de longitud Occidental, ubicado a la misma longitud geográfica de las nacientes del estero

Wagrani del Norte; de este punto, un meridiano geográfico al Sur hasta las nacientes del estero Wagrani del Norte, en el

punto Nº 73 de coordenadas geográficas 0°58'03" de latitud

Sur y 77°04'13" de longitud Occidental; de dichas nacientes,

sigue por el curso del estero Wagrani del Norte, aguas abajo, hasta su afluencia en el río Wagrani en el punto Nº 74, de coordenadas geográficas 0°58'49" de latitud Sur y 77°03'17" de longitud Occidental; de esta afluencia continúa por el curso del rio Wagrani, aguas abajo, hasta la afluencia del estero Wagrani Chico en el punto Nº 75 de coordenadas geográficas 0°59'09" de latitud Sur y 77°01'47" de longitud Occidental; de este punto, sigue por el curso del estero Wagrani Chico, aguas arriba, hasta la confluencia de sus formadores en el punto Nº 76, de coordenadas geográficas 0°59'32" de latitud Sur y 77°03'01" de longitud Occidental; de esta confluencia, una alineación al Suroeste, hasta las nacientes del estero Chonta en el punto Nº 77, de coordenadas geográficas 0°59'42" de latitud Sur y 77°03'02" de longitud Occidental; de dichas nacientes, el curso del estero Chonta, aguas abajo, hasta su afluencia en el río Shiripuno en el punto Nº 78, de coordenadas geográficas 1°00'13" de latitud Sur y 77°02'56" de longitud Occidental, de este punto continúa por el curso del río Shiripuno, aguas arriba, hasta la asluencia del río El Chontal en el punto Nº 79, de coordenadas geográficas 1°00'17" de latitud Sur y 77°03'33" de longitud Occidental; de dicha afluencia, sigue por el curso del río El Chontal, aguas arriba, hasta el punto Nº 80 de coordenadas geográficas 1°01'13" de latitud Sur y 77°05'22" de longitud Occidental, ubicado a la misma longitud geográfica de las nacientes del estero Chico; de este punto, un meridiano geográfico al Sur hasta las nacientes del Estero Chico en el punto Nº 81, de coordenadas geográficas 1°01'36" de latitud Sur y 77°05'22" de longitúd Occidental; de dichas nacientes, sigue por el curso del estero Chico, aguas abajo, hasta su asluencia en el río Nº 3 en el punto Nº 82, de coordenadas geográficas 1°02'01" de latitud Sur y 77°05'21" de longitud Occidental; de dicha afluencia continúa por el curso del río Nº 3, en un corto tramo, aguas abajo, hasta el punto Nº 83 de coordenadas geográficas 1°02'06" de la latitud Sur y 77°05'09" de longitud Occidental; de este punto, un meridiano geográfico al Sur, hasta las nacientes del estero Shiridona en el punto Nº 84, de coordenadas geográficas 1°02'30" de latitud Sur y 77°05'09" de longitud Occidental; de dichas nacientes, el curso del último estero referido, aguas abajo, hasta su afluencia en el río Quewere, en el punto Nº 85 de coordenadas geográficas 1°03'36" de latitud sur y 77°04'21" de longitud Occidental; de esta afluencia sigue por el curso del río Quewere aguas abajo, hasta la afluencia en el río Tiguino, en el punto Nº 86, de coordenadas geográficas 1°05'13" de latitud Sur y 77°03'31" de longitud Occidental; de dicha afluencia, continúa por el curso del río Tiguino, aguas abajo, hasta la afluencia del estero Golondrina en el punto Nº 87 de coordenadas geográficas 1°09'24" de latitud Sur y 76°49'58" de longitud Occidental; de esta afluencia, sigue el curso del último estero citado, aguas arriba, hasta sus origenes en el punto Nº 88, de coordenadas geográficas 1°07'58" de latitud Sur y 76°49'54" de longitud Occidental; de estos origenes, una alineación al Noreste, hasta las nacientes del estero Cocha en el punto Nº 89 de coordenadas geográficas 1°06'56" de latitud Sur y 76°49'45" de longitud Occidental; de estas nacientes, el curso del estero Cocha, aguas abajo, hasta su asluencia en el río Shiripuno en el punto Nº 90, de coordenadas geográficas 1°05'30" de latitud Sur y 76°46'49" de longitud Occidental; de dicha afluencia continúa por el curso del río Shiripuno, aguas abajo, hasta la afluencia del río Quinguen en el punto Nº 91, de coordenadas geográficas 1°05'44" de latitud Sur y 76°43'23" de longitud Occidental; de esta afluencia, sigue por el curso del río Quingu, aguas arriba, hasta la confluencia de sus formadores Septentrional y Meridional en el punto Nº 92, de coordenadas geográficas

1°04'31" de latitud Sur y 76°41'17" de longitud Occidental; de dicha confluencia sigue el curso del formador Septentrional, aguas arriba, hasta sus orígenes ubicados en el punto Nº 93, de coordenadas geográficas 1°03'55" de latitud Sur y 76°39'57" de longitud Occidental; de dichos origenes una alineación al Noroeste hasta las nacientes del estero Culebra en el punto Nº 94, de coordenadas geográficas 1°03'12" de latitud Sur y 76°39'04" de longitud Occidental; de estas nacientes, continúa por el curso del estero Culebra, aguas abajo, hasta su afluencia en el río Cononaco Chico en el punto Nº 95, de coordenadas geográficas 1°03'21" de latitud Sur y 76°38'00" de longitud Occidental; de esta afluencia sigue por el curso del rio Cononaco Chico, aguas abajo, hasta su afluencia en el río Cononaco en el punto Nº 96 de coordenadas geográficas 1°03'19" de latitud Sur y 76°31'18" de longitud Occidental; de este punto, continúa por el curso del río Cononaco, aguas abajo, hasta los límites internacionales del Ecuador.

El sector comprendido entre los cursos de los rios Napo y Tiputini Uno, y el meridiano geográfico 77°00'00", que actualmente forma parte del cantón Tena, pasa a formar parte de la jurisdicción de la cabecera cantonal de Orellana.

Los sectores comprendidos entre los cursos de los rios: Tihuacuno, Wagrani, Chontal y Tigüino, y el meridiano geográfico 77°00'00", que actualmente forman parte del cantón Tena, pasan a formar parte de la parroquia Dayuma.

El sector comprendido entre los cursos de los ríos Tigüino, Shiripuno y Cononaco, que actualmente forman parte del cantón Arajuno de la provincia de Pastaza, se integra a la parroquia Dayuma.

Art. 5.- Además de las asignaciones que corresponden a las provincias por lo dispuesto en las leyes y reglamentaciones vigentes, asignese por una sola vez al Consejo Provincial de Orellana un aporte de s/. 5.000'000.000 (circo mil millones de sucres), con aplicación al Presupuesto del Gobierno Central.

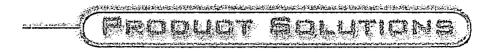
DISPOSICIONES TRANSITORIAS

PRIMERA.- La administración de la provincia de Orellana estará a cargo de las autoridades de la provincia de Napo, hasta que se designen y elijan las autoridades de la nueva provincia.

SEGUNDA.- El Tribunal Supremo Electoral, convocará a elecciones para funcionarios de elección popular de la nueva provincia, en el tiempo que determina la Ley de Elecciones.

DISPOSICION FINAL-La presente Ley entrará en vigencia a partir de su publicación en el Registro Oficial.

Dada, en la ciudad de San Francisco de Quito, Distrito Metropolitano, en la sala de sesiones del Congreso Nacional del Ecuador, a los veinte días del mes de julio de mil novecientos noventa y ocho.


- f.) Dr. Heinz Moeller Freile, Presidente del Congreso Nacional.
- f.) Dr. Jaime Dávila de la Rosa, Secretario General del Congreso Nacional, (E).

Palacio Nacional, en Quito, a veinte y ocho de julio de mil novecientos noventa y ocho.

ANEXO N.- 2:

Equipos y Antenas

lemer Digital

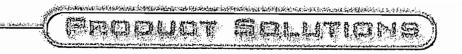
Transportable Digital Wireless System

Intro | Overview | Specifications

In emergency situations, communications quality directly affects the success of any given response effort. The UltraPhone 200, housed in rugged transportable cases, has been designed specifically for transportability and rapid installation. Service can be established in a matter of hours, facilitating fast emergency response.

The UltraPhone 200 is ideal for temporary service in a wide variety of non-emergency applications. Its transportable design and fast deployment capabilities make the system perfect for providing telephone service to seasonal resorts, construction sites, special events such as conventions, fairs, or concerts and offshore facilities. When communication capabilities are no longer required, the system can easily be moved to provide service at another location.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 104 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>


Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? Click here.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

Last site update: 4/9/98

hope Digital

Transportable Digital Wireless System

Intro | Overview | Specifications

The UltraPhone 200, a private digital radio system, quickly restores or establishes both fixed and mobile telephone service to include voice, facsimile and data capabilities to emergency response teams or residential and business customers. Using the same spectrum efficient, digital radio design of other InterDigital systems, the UltraPhone 200 can provide immediate telephone coverage over an 11,000 square mile (30,000 square kilometer) area.

UltraPhone 200 Applications

In emergency situations, communications quality directly affects the success of any given response effort. The UltraPhone 200, housed in rugged transportable cases, has been designed specifically for transportability and rapid installation. Service can be established in a matter of hours, facilitating fast emergency response.

The UltraPhone 200 is ideal for temporary service in a wide variety of non-emergency applications. Its transportable design and fast deployment capabilities make the system perfect for providing telephone service to seasonal resorts, construction sites, special events such as conventions, fairs, or concerts and off-shore facilities. When communication capabilities are no longer required, the system can easily be moved to provide service at another location.

The System

The UltraPhone 200 consists of two basic components: the Network Station and the Transportable Subscriber Station. Both components are enclosed in transportable cases, simplifying shipping and installation.

The Network Station consist of the Central Office Terminal (COT), which connects to a telephone switch, and the Radio Carrier Station (RCS), which provides the radio communication link to the subscriber units. The subscriber unit is a complete digital radio transceiver which connects with standard telephone sets and other customer premise equipment. The transportable subscriber station includes a low-voltage (24 VDC) power supply, backup batteries and a directional antenna.

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

better Digital

Transportable Digital Wireless System

Intro | Overview | Specifications

Single Party Lines

90 maximum

Radio Channels

4 maximum

T1 Spans

2 maximum

Voice/data Trunks per RF Channel 4 maximum

Voice/data Trunks

15 maximum

Range (0.999 availability)

37.5 miles at 16 DPSK (free space

loss)

Network Station

-44 to -56 VDC

COT (at -48 VDC)

600 watts

RCS (at -48 VDC)

1200 watts

System Loss (COT to Subscriber

3 dB +/- 1 dB

Station, 1004 Hz)

Max. Allowable Loop Current

55 mA

Address Signaling

Dial pulse and DTMF

Transmit Frequency -- RCS

454.025 to 454.650 MHz

Transmit Frequency -- Subscribers 459.025 to 459.650 MHz

Channel Spacing

25 KHz

FCC Channel Bandwidth

20 KHz

RF Modulation

Multi-level differential phase shift

keying (2-ary, 4-ary, 16ary DPSK)

RF Multiplexing Technique	Narrowband Time Division
,	Multiple Access (TDMA)

EMI/RFI (emission and immunity) Type accepted per FCC part 22

(H). Certified per FCC part 15. DOC Certified, CCITT Equivalent,

RSP 100, Issue 6

Network Station Frame Dimensions (Approx.)	H x W x D (In.) Weight
COT	$60 \times 30.5 \times 21.5 \ 175 \ lbs.$
COT RPU	60 x 30.5 x 21.5 220 lbs.
RCS	$60 \times 30.5 \times 21.5 250$ lbs.
BBPA Frame	$60 \times 30.5 \times 21.5 180$ lbs.
Floor Loading	150 lb/sq. ft. (723 Kg/sq. m.)

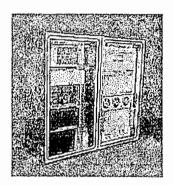
<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 104 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

her Digital



Transportable System

Intro | Overview | Specifications

A modular, completely transportable wireless local loop system, the UltraPhone 210 meets the need for high quality telephone service in emergency or temporary situations. Using the same spectrum efficient, digital radio design of other InterDigital® systems, the UltraPhone 210 can provide immediate telephone coverage throughout a serving radius of 60 kms (37.5 miles). The UltraPhone 210 quickly restores telephone service in the event of natural disasters such as hurricanes, fires, earthquakes and flooding. It is also the ideal solution for one-time or short-term events.

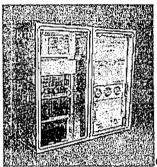
<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 104 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

muer Digital



Transportable System

Intro | Overview | Specifications

UltraPhone 210 Advantages

Completely Transportable

The UltraPhone 210 Network Station consists of a Central Office Terminal (COT) and a Radio Carrier Station (RCS). Both the COT and RCS are housed in transportable cases to simplify shipping, transport and installation. Due to the system's ease of mobility, it can be installed wherever your communication needs require.

Rapid Installation

The UltraPhone 210 is specifically designed for simplified on-site installation. Along with connectorized cabling and plug-in modules, the COT and RCS are shipped already mounted in racks thereby providing for an extremely rapid installation.

Fully Recoverable & Reusable

When wireless communication capabilities are no longer required, the COT and RCS racks are quickly disassembled and secured in the transportable cases. The system can then be easily moved to provide service at another location.

UltraPhone 210 Applications

Emergency

In times of disaster, the availability of high quality phone service has a direct effect on a successful response effort. The UltraPhone 210 can quickly restore phone service in a matter of hours, providing

communications for emergency personnel, disaster teams or government agencies. The UltraPhone 210 is ideal for restoring telecommunications in the event of natural disasters.

Temporary & Seasonal

The UltraPhone 210 is ideal for temporary service in a wide variety of non-emergency applications. Its transportable design and fast deployment capabilities make the system perfect for providing short term communications to construction sites, concerts, fairs or conventions.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 103 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

linter Digital

Transportable System

Intro | Overview | Specifications

UltraPhone 210 Technical Overview

The UltraPhone 210 System consists of two basic components: the Network Station, composed of the COT and RCS, and the Subscriber Station. Two-wire analog loops link the COT with the central office switching system while the RCS is connected to the COT via an E1 path. The RCS transmits and receives digital RF signals to and from the subscriber units. It can be co-located with the COT or remotely located to take advantage of the terrain for optimum RF signal coverage.

The Subscriber Station connects to a standard telephone handset via a two-wire analog loop. A complete subscriber station includes a digital radio transceiver, low-voltage power supply, back-up batteries and a directional antenna.

Vilgorianiana (27/2002) = alifernica:

Line Capacity

128 two-wire circuits per

system, maximum

Radio Channels

2 maximum per system

E1 PCM Spans (CCITT Rec. 1 maximum per system

G.703)

Voice/data Trunks per RF

4 maximum per system

Channel

Voice/date Trunks per

7 maximum per system

System

Serving Area (0.999

60 km at 16 DPSK (free

availability)

space loss)

System Loss (COT to

2.5 dB +-1.0 dB

Subscriber Station, 1004 Hz)

VF Line Impedance

600 ohms

Address Signaling

Dial Pulse and DTMF

Speech Compression 4:1 (64 kbps to 16 kbps

Residual Excited Linear Predictive (RELP) Coding

VF Data Transmission 300, 1200, 2400, 4800, 9600

bps and Group 3 Facsimile

Operating Frequency Range Any 2 MHz band of

frequencies within 300 - 500

MHz

25 KHz Channel Spacing

Occupied Channel

20 KHz

Bandwidth

RF Modulation Multi-level differential phase

shift keying (2-ary, 4-ary, 16-

ary DPSK)

RF Multiplexing Technique Combined Time Division

Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA)

Peak Power Output (antenna +33 dBm per RF channel,

port)

maximum

Max. Receiver Input Signal -40 dBm

COT -48 VDC, 500 Watts,

maximum

RCS -48 VDC, 625 Watts,

maximum

-4° to +39°C (+25° to Operating Temperature

+102°F)

Storage Temperature -40° to +50°C (-40° to

 $+122^{\circ}F)$

Humidity 20% to 80% relative

humidity, noncondensing

Frame Dimension (Approx. in mm [in.])	HxWxD
COT Frame	1549.4 [61] x 774.7 [30.5] x 558.8 [22]
RCS Frame	1549.4 [61] x 774.7 [30.5] x 558.8 [22]
COT Weight	123.8Kg (273lbs)
RCS Weight	130.2Kg (287lbs)

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 103 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

hover Digital'

Wireless Digital Loop Carrier® System

Intro | Overview | Specifications

The UltraPhone 100 is the telephone system of choice for many applications. Its spectrum-efficient Time Division Multiple Access (TDMA), digital wireless technology offers advantages over copper cable, microwave and other types of phone systems.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 104 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

hour Digital

Wireless Digital Loop Carrier® System

Intro | Overview | Specifications

The UltraPhone 100 provides call privacy and the rapid introduction or restoration of voice, data and facsimile communications to business and residential customers. The virtual elimination of outside wire and cable plant requirements is another advantage.

Radio Carrier Serving Area (RCSA): An UltraPhone® Exclusive

The UltraPhone® RCSA is an 11,000 square mile area within which a single system can satisfy the telecommunications needs of urban, suburban and rural customers. In general, customers located within the RCSA can be provided with high-quality, digital telephone service. Thus, customers' needs can be met on a wide area basis, eliminating line-route restrictions that can make wire and cable cost-prohibitive.

Superior System Advantages

Spectrum Efficient High Capacity narrowband digital radio provides great flexibility in frequency assignment and far more traffic capacity per MHz than wideband microwave systems. UltraPhone's unique ability to provide four radio trunks every 25 kHz and to operate on adjacent RF channels allows 320 full duplex voice circuits in just 4 MHz of spectrum.

Subscriber and Network Transparency provides a transparent link between subscriber telephone sets and the telephone central office. Calls are placed, received, logged and billed mjust as in conventional wireline systems.

Wide Area Omnidirectional Coverage provides transmission capability to a radius of over 37.5 miles.

Reduced Lifecycle Costs are achieved since radio bridges the gap between the central offoce and subscriber stations thereby reducing the maintenance costs and planning time/costs normally associated with copper cable.

System Description

The UltraPhone 100 replaces or augments standard cable based loop access technologies. It uses radio-based local subscriber loops that connect with standard telephone switches.

Network Station

Central Office Terminal (COT) Radio Carrier Station (RCS)

The COT connects to a telephone The RCS provides the radio switch through a two-wire analog communications link to the loop.

subscriber units.

The COT and RCS communicate over a standard 1.544 mb/s T1 interface, so the RCS can be co-located with the COT or remotely located to take advantage of terrain for optimum radio signal coverage.

Subscriber Station

Subscriber Unit

analog loop and emulates the

Power Supply

The Subscriber unit connects to a The unit is powered with an standard telephone via a two-wire AC/DC power supply or it may be solar powered. Battery back-up is telephone switch loop connection, available to provide reserve power for eight hours during AC power outages.

Subsciber units can be installed indoors as well as outdoors. The unit can be mounted outdoors on utility poles or structure walls. The subscriber ubit transmits and receives from the RCS via a directional antenna which is typically mounted on a pole or rooftop.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104</u> Single Line | SLIS 104 Single Line | SLS 103 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service

> Questions, comments, requests? E-mail us at sales@interdigital.com. Need to contact us by mail, telephone or fax? Click here.

> > Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

heter Digital

Wireless Digital Loop Carrier® System

Intro | Overview | Specifications

System Operations

Service to UltraPhone subscriber stations is provided by the fully trunked digital radio system. The analog loop terminations that the telephone switch are concentrated to standard 1.544 mb/s trunk groups in the COT. The trunk groups are routed to the RCS where the individual voice circuits are digitally compressed to one-quarter of their former bandwidth. The compressed voice circuits are then multiplexed together in groups of four and broadcast on a standard 25 kHz paired RF channels.

The UltraPhone system operates simultaneously in both Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) modes. Subscriber units can dynamically access any RF channel in the system and any of the four individual voice trunks on each channel. This gives any individual subscriber line access to any of the radio trunks available in the system.

UltraPhone® 100 Specifications

Single Party Lines

564 maximum

Radio Channels

24 maximum

T1 Spans

6 maximum

Voice/data Trunks per RF

4 maximum

Channel

Voice/data Trunks

95 maximum

Range (0.999 availability)

37.5 miles at 16 DPSK (free

space loss)

Network Station

-44 to -56 VDC

COT (at -48 VDC) (180

566 watts

lines)

RCS (at -48 VDC)

966 watts

Subscriber Station (STD AC 115/230 VAC +/- 15%, 50/60

power)

Subscriber Station (solar

power)

21-30 VDC, 18W idle, 50W

transmit

System Loss (COT to

3 dB +/- 1 dB

Subscriber Station, 1004 Hz)

Max. Allowable Loop

55 mA

Current

Address Signaling

Dial pulse and DTMF

Transmit Frequency -- RCS 454.025 to 454.650 MHz

Transmit Frequency --

459.025 to 459.650 MHz

Subscribers

Channel Spacing 25 KHz

FCC Channel Bandwidth

20 KHz

RF Modulation

Multi-level differential phase

shift keying (2-ary, 4-ary,

16ary DPSK)

RF Multiplexing Technique Narrowband Time Division

Multiple Access (TDMA)

EMI/RFI (emission and

immunity)

Type accepted per FCC part 22 (H). Certified per FCC

part 15. DOC Certified, RSP

100, Issue 6

Physical Specifications

Network Station Frame Dimensions (Approx.)

 $\mathbf{H} \times \mathbf{W} \times \mathbf{D}$ (In.)

COT CE Frame

 $84 \times 24 \times 15$

RCS Primary Frame

84 x 26 x 15

BBPA Frame

 $84 \times 24 \times 18$

Subscriber Station Dimensions/Weights (Approx.) HxWxD(In.) Weight

Subscriber Unit Enclosure

11 x 14 x 6 15 lb.

Power Supply/Charger

 $12 \times 12 \times 8.539$ lb.

(external, without batteries)

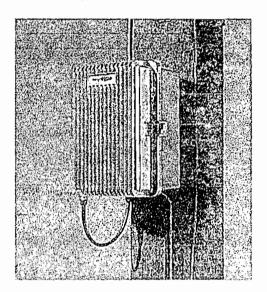
<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 103 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents @ 1998 InterDigital Communications Corporation. All rights reserved.

leger Digital'



Subscriber Station

Intro | Overview | Specifications

The SLS-104A Single Line Subscriber Station is a digital radio transceiver which interfaces standard telephone equipment with the UltraPhone® system. Operating within the Radio Carrier Serving Area, it provides the flexibility to link rural or other remote users into public telephone networks, for full telecommunication access.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line |</u>

SLIS 104 Single Line |

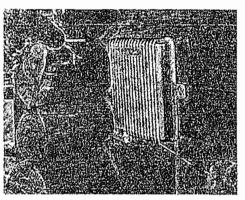
SLS 103 Single Line | <u>UltraPhone 210</u> | <u>UltraPhone 200</u> | <u>Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents @ 1998 InterDigital Communications Corporation. All rights reserved.

have Digital'



Subscriber Station

Intro | Overview | Specifications

SLS-104A Advantages

Spectrum-Efficient Technology
Operating in mixed Frequency
Division Multiple Access (FDMA)
and Time Division Multiple
Access (TDMA) modes, the SLS104A can dynamically access any
of the RF channel pairs in a
Network Station and any of the
four individual voice circuits
multiplexed on each channel. In
addition to high quality voice
communications, the SLS-104A is
capable of supporting facsimile
and data communications.

Simple Installation

Consisting of a simple integrated weather-tight assembly weighing less then 13 kg, the SLS-104A can be configured for applications facilitating outdoor or indoor installation. It operates from 120/240 VAC or 12 VDC. In addition to AC/DC power supply, the unit can be solar powered. The SLS-104A also employs a single yagi antenna for reception/transmission of subscriber traffic.

UltraPhone SLS-104 - 100% Digital Solution

- Digital communication provides inherent privacy of speech. By its very nature, all UltraPhone communications are protected from accidental or deliberate eavesdropping.
- The SLS-104A supports a variety of customer premise equipment accommodating DTMF and pulse dialing.
- It allows operators to deliver "WIRELINE" quality voice to rural and remote subscribers unserved using traditional means.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line |</u>

SLIS 104 Single Line |

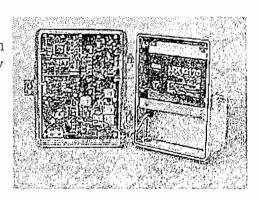
SLS 103 Single Line | <u>UltraPhone 210</u> | <u>UltraPhone 200</u> | <u>Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

ligital description



Subscriber Station

Intro | Overview | Specifications

Technical Overview

The SLS-104A Subscriber Station consists of an integrated assembly which contains all subscriber unit electronics including the radio, baseband/modem, power supply circuits and battery, which provides an 8 hour back-up. The unit requires only three external connections; a power feed, a tip and ring line and antenna cable.

Versatile Line Interface

The SLS-104A telephone loop interface supports most two-wire loop start line equipment. In addition, circuit data transmission and Group III facsimile are supported up to 9.6 kbps. An optional CCITT compliant international coin line interface can support pay phones and debit card phones by providing special signaling such as voltage reversal, as well as 12 KHz and 16 KHz user selectable metering pulses. The SLS-104A is capable of supporting a loop resistance interface of 500 ohms and provides a minimum of 4 ringer equivalents (REN). The ringing frequency is programmable from 17 Hz to 50 Hz, with a repetition rate synchronous with the central office.

SIEMONES TRANSPORTE

Wester Wittellica

Loop Current 27 mA min. -32 VDC

Maximum Loop Resistance 500 ohms max (including telephone

set)

Address Signalling DTMF and Pulse Dialing

Operating Frequency Range Any 2 MHz band of frequency

within 300 - 500 MHz

RF Output Power (peak) 1.25 watt (31 dBm +/- 1 dBm) per

RF channel (minimum)

Channel Spacing 25 kHz

Minimum Duplex Spacing 10 MHz

Receiver Sensitivity -97 dBm 16 DPSK, -111 dBm 4

DPSK for 10-4 BER

dagwayakan dagaraw

A.C Voltage 95 to 265 Vac, 47 to 63 Hz

DC Voltage 11 to 15 Vdc

AC Power Consumption 20 watts average

Battery Reserve Time 8 hours

Battery Life Expectancy 5 years at full float service

Battery Recharge Time 24 hours (at least 90% capacity),

after 2 hours of recharge from a totally discharged state, batteries will supply 1.5 hours of reserve

Borgivolais Carloll Velatola agregate

Operating Temperature -20° to +50° C (-40°C with Arctic

option)

Humidity 5% to 100% relative humidity

Altitude up to 15,000 feet

Physical Dimensions (Outdoor): Height x Width x Depth

SLS-104 Subscriber Unit $34 \text{ cm } \times 30 \times 8$

with Power/Battery Unit 34 cm x 30 x 19

Weight:

Subscriber Unit 3.6 kg

Subscriber Unit with 12.7 kg Power/Battery Unit

<u>UltraPhone 110</u> | <u>UltraPhone 100</u> | <u>MLS 64 Multiple Line</u> | <u>SLS 104</u> Single Line |

SLIS 104 Single Line |

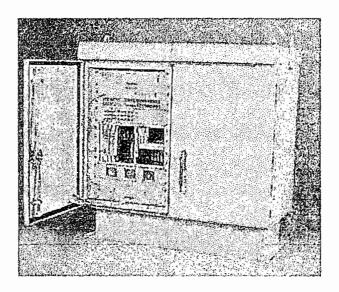
SLS 103 Single Line | <u>UltraPhone 210</u> | <u>UltraPhone 200</u> | <u>Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

me Digital



(PRODUCT SCLUTICHS)

Subscriber Station

Intro | Overview | Specifications

The MLS-64 Multiple Line Subscriber Station is InterDigital's solution to economically serving high-density populations of subscribers within the Radio Carrier Serving Area (RCSA). It provides the capability to serve up to 64 closely situated subscribers through one electronics enclosure and using just one antenna. This multichannel digital radio transceiver transparently integrates standard telephone handsets with the UltraPhone® Network Station, offering users a full range of digital voice, data and facsimile transmission services.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line |</u>

SLIS 104 Single Line |

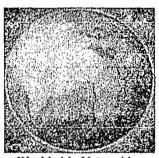
SLS 103 Single Line | <u>UltraPhone 210</u> | <u>UltraPhone 200</u> | <u>Field Service</u>

Questions, comments, requests? E-mail us at <u>sales'@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents @ 1998 InterDigital Communications Corporation, All rights reserved.

MerDigital'


Subscriber Station

Intro | Overview | Specifications

MLS-64 Advantages

Highly Cost-Effective

Cost savings are achieved by the sharing of all common functions. When compared with providing individual services to a similar number of subscribers, the clustering of subscriber lines reduces installation costs, maintenance requirements, and power consumption. This means operators realize significant cost per line savings.

Worldwide Networking

Interconnected to the public switched network at the CO, an UltraPhone system can provide subscribers access to national and international networks for voice, facsimile and modem communications, including the Internet.

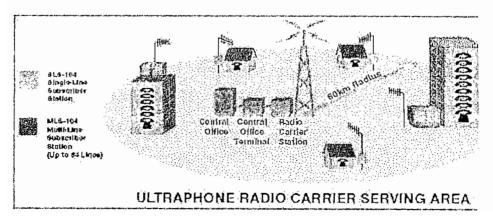
Consolidated Equipment

The MLS-64 and antenna replace up to 64 individual subscriber stations and antennas with a single unit capable of being installed indoors or outdoors. It provides a central, easily-accessible point for maintenance and modification for all subscribers in the cluster.

Simple Expansion

The modular design of the MLS-64 means that new subscriber lines, up to the maximum of 64, can be quickly added and rapidly brought into operation. This provides full flexibility in providing initial service to a community of users, and also in planning for future expansion.

Flexible by Design


The MLS-64 is flexible in frequency assignment, as it can be supplied to operate in any 2 Mhz band between 300 and 500 Mhz. This broad frequency range provides operators with the flexibility to deploy an UltraPhone system where other wireless systems may not.

Integrated Alarms

The MLS-64 incorporates alarms which monitor all of the system's functions, providing current status of all critical components. In addition, security alarms remotely report if the unit is being accessed or tampered without proper authorization.

Applications

Its capacity and modular design make it ideal for housing developments, hotels, apartment blocks and industrial parks, since new subscriber lines can be quickly added as the need arises. In urban areas, installation of the MLS-64 can quickly expand a formerly shared line to serve individual user needs, and obviate the need for each user in a cluster to have separate subscriber stations and antennas. The compact dimensions and ease of installation of the MLS-64 are also suited to temporary applications, such as oil and mining operations, construction sites and trade fairs and exhibitions.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line | SLIS 104 Single Line | SLIS 103 Single Line | UltraPhone 210 | UltraPhone 200 | Field Service</u>

Questions, comments, requests? E-mail us at <u>sales@interdigital.com</u>. Need to contact us by mail, telephone or fax? <u>Click here</u>.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

limber Digital'

Subscriber Station

Intro | Overview | Specifications

Technical Overview

The MLS-64 Subscriber Station consists of a weatherproof housing, plug-in subscriber line cards, common RF equipment, power supply and an optional back-up battery assembly. The back-up battery assembly is housed in a separate enclosure and mounted beside the MLS-64; it will nominally provide eight hours operation from a full charge.

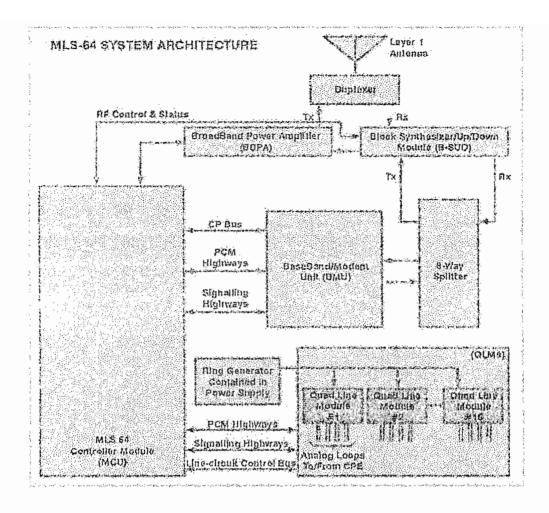
The MLS-64 enclosure is typically mounted on a pad, and is accessible from both sides for ease of maintenance; the doors have tamper-proof clasps and pressure sensitive door alarms to prevent unauthorised access. All system electronics are accessed from one side, and the VF and cabling equipment from the other. For additional security and convenience, all external power and cable connections enter from beneath the enclosure.

Versatile Line Interface

The MLS-64 line interface supports most two-wire loop start line equipment. In addition, circuit data transmission and Group III facsimile are supported upto 9.6 kbps. An optional CCITT compliant international coin line interface can support payphones and debit card phones by providing special signalling such as voltage reversal, as well as 12 KHz and 16 KHz user selectable metering pulses. The MLS-64 is capable of supporting a loop resistance interface of 1250 ohms and provides a minimum of 5 ringer equivalents (REN). In addition, the line interface can support drop lines up to 10 kilometres. This is very convenient when serving large numbers of users from a single site. Ringing frequency can be set from 17 Hz to 50 Hz, with a repetition rate synchronous with the central office.

Modular in Design - High in Performance

Internally, the MLS-64 comprises a power supply and amplifier, 8-way splitter panel, card cage assembly, fan assembly and duplexer, together with RF and VF connection components.


The card cage assembly contains up to six Baseband/Modem Units (BMU), one MLS-64 Controller Unit (MCU) and up to sixteen Quad Line Modules (QLM); these are all interconnected to the MLS-64 backplane assembly. There are four different types of PCM busses used on the MLS-64 backplane assembly for communication between system sub assemblies - Multiple PCM-32 Voice Busses; Multiple Signalling PCM-32 Busses; BMU Control Bus; QLM Control Bus.

The MCU controls overall operations of the MLS-64 via the Signalling and Control PCM busses and reports status over the Radio Control Channel to the Network Station. The BMU performs the data compression/expansion and digital modulation/demodulation of signals to/from the network station. The QLM provides the subscriber line interface circuitry, analog digital and digital to analog conversion and loopback test capability.

Sophisticated Radio Frequency Capability

The RF common equipment consists of an 8-way hybrid signal combiner/divider, Block Synthesizer Up/Down converter (BSUD), Broadband Power Amplifier (BBPA) and Duplexer.

The BSUD provides block up conversion for up to 6 IF inputs and block down conversion from the Duplexer for distribution to the BMUs. The BBPA amplifies the transmission for broadcast to the UltraPhone network station. The Duplexer provides isolation of over 90 dB between transmit and receive frequency band for simultaneous transmission/reception over one antenna.

Single Party 2-Wire Lines 64 maximum

Radio Channels 6 maximum per system

Voice/data Trunks per RF Channel 4 maximum

Voice/data Trunks per System 23 maximum

Traffic Capacity (fully populated) .15 Erlangs per subscriber with a

.01% Grade of Service (16 DPSK

operation)

VF Loss $3db \pm 1.0dB$

Maximum Loop Resistance 1250 ohms max (including

telephone set)

Address Signalling DTMF and Pulse Dialing

elf-Storaditeations

Operating Frequency Range Any 2 MHz band of frequency

within 300 - 500 MHz

RF Output Power (peak) 1.0 watt (30 dBm) per RF channel

Channel Spacing 25 KHz

Receiver Sensitivity -99 dBm 16 DPSK, -111 dBm 4

DPSK for 10-4 BER

AC Voltage $115 \pm 20\% \text{ Vrms or } 230 \pm 20\%$

Vrms, 40 to 60 Hz

DC Operating Voltage -42 to -59 Vdc

Average AC Power Consumption 400 watts

Battery Reserve Time 8 hours

Battery Life Expectancy 10 years at full float service

Battery Recharge Time 24 hours (at least 90% capacity),

after 2 hours of recharge from a totally discharged state, batteries will supply 1.5 hours of reserve

Auxiliary Power Single 120 VAC 15 amp ground-

fault protected duplex receptacle is provided inside the housing (115 V

option only)

l A contraviació espellos aprolles de condu

Operating Temperature -20° to +50° C (-40°C with Arctic

option)

Humidity 5% to 100% relative humidity, non

condensing

Altitude up to 15,000 feet

Physical Dimensions (Approx.): Height x Width x Depth (cm)

Line Unit 122 cm x 58 x 76

Battery Unit 122 cm x 58 x 76

Weight:

Line Unit 111 kg

Battery Unit 229 kg

Base 55 kg

RF Protection 10KA with 20 microjoules (IEEE

8/20 waveform)

Transmission Line Protection Gas tube modules

Specifications subject to change without notice. All contents ©1998 InterDigital Communications Corporation. All rights reserved.

<u>UltraPhone 110 | UltraPhone 100 | MLS 64 Multiple Line | SLS 104 Single Line |</u>

SLIS 104 Single Line |

SLS 103 Single Line | <u>UltraPhone 210</u> | <u>UltraPhone 200</u> | <u>Field Service</u>

Questions, comments, requests? E-mail us at *sales@interdigital.com*. Need to contact us by mail, telephone or fax? Click here.

Specifications subject to change without notice.

All contents © 1998 InterDigital Communications Corporation. All rights reserved.

Last site update: 4/9/98

InverDigital'

Wireless Digital Loop Carrier® System

Intro | Overview | Specifications

rumeen anavoluud saasii ja jiraas

(UltraPhone 110A)

Line Capacity

896 maximum

Radio Channels

24 maximum per system

E1 PCM Spans (CCITT Rec.

4 maximum per system

G.703)

Voice/data Trunks per RF Channel 4 maximum per system

Voice/date Trunks per System

95 maximum per system

Serving Area (0.999 availability)

60 km at 16 DPSK (free space loss)

System Loss (COT to Subscriber

Station, 1004 Hz)

3 dB +/-1.0 dB, Programmable

600 or 900 ohms, Resistive

VF Line Impedance
Address Signaling

DTMF and Pulse Dialing

Speech Compression

4:1 (64 KBPS to 16 kbps RELP)

Residual Excited Linear Predictive

Coding

VF Data Transmission

300, 1200, 2400, 4800, 9600 bps

and Group 3 Facsimile

Operating Frequency Range

Any 2 MHz band of frequencies within 300 - 500 MHz (Minimum

TX/RX offset 10 MHz)

Channel Spacing

25 KHz

Occupied Channel Bandwidth

20 KHz

RF Modulation Multi-level differential phase shift

keying (2-ary, 4-ary, 16-ary DPSK)

RF Multiplexing Technique Combined Time Division Multiple

Access (TDMA) and Frequency Division Multiple Access (FDMA)

Spectral Efficiency 3.2b/s per Hz at 16 DPSK (160 RF

trunks per MHz)

COT -41 to -60 VDC, 1100 Watts,

maximum

RCS -42 to -60 VDC, 2700 Watts,

maximum

Operating Temperature 4° to 39°C

Humidity

20% to 80% relative humidity,

noncondensing

Frame Dimension (Approx.) Height x Width x Depth

COT Frame 213 cm x 52.0 x 38

RCS Channel Frame 213 cm x 67.1×47

BBPA Frame 213 cm x 67.1×38

Specifications subject to change without notice. All contents ©1998 InterDigital Communications Corporation. All rights reserved.

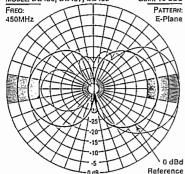
DB436, DB437 DIRECTIONAL YAGI ANTENNAS 10 dB GAIN, 406-512 MHz

ese three heavy duty Yagis give highly ectional coverage and good front-tock ratios.

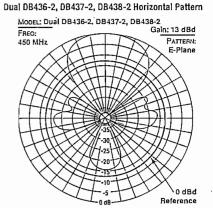

Sturdy Construction - All three are made of high strength welded aluminum alloys. DB437 and DB438 have a gold anodized finish. On DB438 the connector is an N-Female boom mounted, while the others have N-Male pigtails.

Stacked Arrays - Two antennas provide 13 dB gain and four antennas 16 dB gain. Polarization can be vertical or horizontal, and the antennas can be mounted side-by-side or vertically. One wavelength of vertical separation is recommended.

Bi-directional Pattern - Antennas can be mounted on opposite sides of the tower if desired.


Lightning Resistant - Protection provided by direct ground.

dering Information - Use model imber for correct frequency. Mounting amps are included. Order DB5009 for de-by-side mounting, DB5018 for quad. her size clamps can be special ordered. cample: DB436-A for 406-420 MHz. der jumper cable separately, if desired.


Gain	Order	Order .
10 dB	1 ea. DB436, DB437, or	1 ea. DB438 Antenna
13 dB	2 ea. DB436, DB437, or 1 ea. 14436/7-2 Dual Harness	2 ea. DB438 Antenna 1 ea. 14438-2 Dual Harness
16 dB	4 ea. DB436, DB437, or 2 ea. 14436/7-2 Dual Harness 1 ea. 14436/7-4 Quad Harness	4 ea. DB438 1 ea. 15438-4 complete one piece Ouad Harness

DB436, DB437, DB438 Vertical Pattern MODEL: DB436, DB437, DB438 Gain: 10 dBd

MODEL: DB436, DB437, DB438 Gain: 10 dBd FRED: 450 MHz 450 MHz

DB436, DB437, DB438 Horizontal Pattern

Electrical Data

requency Ranges – MHz A = 406-420, B = 425-445, C = 450-470, D = 470-494, E = 488-512

Bandwidth – MHz Same as above VSWR 1.5 to 1 or less Nominal impedance – ohms 50

Forward gain (over half-wave dipole) – dB 10

Polarization Vertical or horizontal

Maximum power input – watts 250

Vertical beamwidth (half power) 44°

Horizontal beamwidth (half power) 60°

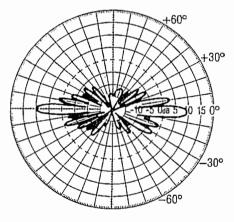
Front-to-back ratio – dB 16 Lightning protection Direct ground

Standard Termination: Captive Type N-Female on DB438. DB436 and DB437 have Type N-Male. If UHF connector is required, an adapter is provided.

Can be shipped by UPS.

Mechanical Data				
Support boom (aluminum) — in. (mm) Elements Mounting brackets	1 (25.4) OD with .083 (2.108) wall Aluminum Galvanized steel			
Maximum exposed area (flat plate equivalent) — ft² (m²) Lateral thrust at 100 mph (161 km/hr) — lbf (N)	.45 (.042) single, .90 (.084)-2, 1.8 (.167)-4 18 (80.7) single, 36 (160.1)-2, 72 (320.3)-4			
Wind rating: Survival without ice — mph (km/hr) Survival with .5" (12.7 mm) radial ice — mph (km/hr)	125 (201) 90 (145)			
Dimensions (HxL) – in. (mm) 14.5 (368.3)x35 (889) single, 4	40 (101.6)x35 (889)-2, 90 (2,286)x35 (889)-4			
Net weight – Ibs. (kg)	7 (3.18) single, 15 (6.8)-2, 30 (13.61)-4			
Shipping weight – lbs. (kg)	9 (4.08) single, 18 (8.16)-2, 40 (18.14)-4			
Mounting clamps	Stainless steel V-bolts			

DB640 HEAVY DUTY OMNI ANTENNA BROAD BAND, 10 dBd GAIN, 406-512 MHz


Featuring high gain and broad bandwidth, the DB640 has its radiators enclosed in a Horizon Blue™ radome made of strong, lightweight Aeroglas® fiberglass, a Decibel exclusive for antennas. Aeroglas is also used for helicopter blades, Olympic vaulters' poles and racing sailboat masts.

- Broad Response 20 to 32 MHz bandwidths fulfill frequency needs for UHF conventional, paging and radiotelephone systems.
- High Gain 10 dBd for excellent coverage.
- Sturdy Construction In addition to the strong radome, the antenna has a 3.25" (82.6 mm)
 OD weather-resistant, gold iridited support pipe made of 6061-T6 aluminum alloy.
- Engineered to Last All metals used in radiator, feed and matching systems are copper or brass, which minimizes galvanic reaction and reduces intermodulation.
- Lightning Resistant A DC ground is provided.
- Moisture Resistant The bottom cap has a moisture-sealed bulkhead N-female connector, and a drain plug at the top and bottom provides for drainage in upright or inverted positions.
- Ready to Install DB5087 No-Torsion Mount and Vapor-Wrap® are provided for easy installation.

Ordering Information - Use model number for correct frequency. Clamps are included. Outrigger model 550045-616 10' (3048 mm) is optional. Order jumper cable separately, if desired.

Frequency	Ranges Available
DB640-A	406-436 MHz
DB640-B	425-455 MHz
DB640-C	450-482 MHz
DB640-D	480-512 MHz

DB640 Typical Vertical Radiation Pattern

Electrical Data				
Frequency Range - MHz	See table			
Bandwidth – MHz	See table			
Gain – dB	10			
Beamwidth "E" Plane (half power)	6°			
Beamwidth "H" Plane (half power)	Omni			
Maximum power input – watts	600			
VSWR	1:5 to 1 or better			
Lightning protection	Direct ground			
Termination	Type N-Female (fixed)			

国际	
	102
	1000 1000 1000 1000 1000 1000 1000 100
	自 总列系中域。17.7%。全部
	"但我们到这代的,你是是
Carlotte Control of the Control of t	
	② 化型管理等等等的可以定
Tall March	
國際的學樣的自由的	1 18 18 18 18 18 18 18 18 18 18 18 18 18
医原位性 经购用专业的	图 传统中的"全身全"。17 次第
	March 65 No. 18
[발문생활하다] (독년 11]	医延迟性 经经济交换
[1] 名字[2] (2) (5) (5) (6)	[1] (1) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
图 网络万里哥克萨乌尔	2 等的人的人似乎是你必要有
를 잃다. (Probability)	
Profession 27 April 20 April 20 S	
ALL TOWN AND A STORY A	Harris de Carlos
	불하라가 되는 있는 사람들이
	医自己的 "加速放射经济
第7人提供"Salada \$100°年,	
发展的数据的 医多位性	
	B EBANGER
ACCOUNT OF THE	
E 894E F 655	
N. 安定福祉的发展	1
化加热线线 拉拉斯 拉	
	No the second of the same
	量化化 化双氯酚酸钠
Dispersion of the Section 1	
	Yes
DB640	
	和 15.74%点点流
Omnidirectional	
Antenna	· 图 日初日次、 验证等
	翻 下元分。"分享"的数
	A CONTRACTOR OF STATE
	MP A
	是日本社会学的 学生
DSR&MANACARE NO SERVE	
The Contract of the Contract o	The state of the s

Mechanical Data					
Lateral thrust at 100 mph (161 km/hr) - lbf (N)	110 (489.3)				
Overall length – ft. (m) Radome length – ft. (m) Mounting pipe length – in. (mm)	18.9 (5.8) 16.7 (5.09) 26 (660.4)				
Maximum exposed area (flat plate equivalent) - ft2 (m	2.75 (.225)				
Rated wind velocity – mph (kph)	160 (257)				
Radome Radiators Support pipe	Aeroglas® Fiberglass Brass 6061-T6 Aluminum				
Net weight – lbs. (kg) Shipping weight (w/mount) – lbs. (kg)*	35 (15.9) 47 (21.3)				
Mount	DB5087 No-Torsion				

*Mount shipped separately.

DB691H65E UHF DIRECTIONAL PANEL ANTENNAS **DB692H65E** 6.5 or 9 dBd GAIN, 410-430 or 450-470 MHz

New for UHF frequencies, these 19.3" (490 mm) wide panel antennas offer excellent gain, horizontal radiation coverage of 65° at 3 dB points and a VSWR of 1.4 to 1 or better. Two models are available, both for 410-430 or 450-470 MHz.

- DB691H65E Measures 22.3" (565 mm) high, 4.34" (110 mm) deep, and provides 6.5 dBd or 8.6 dBi gain, 60° vertical beamwidth and 20 dB front-to-back ratio.
- DB692H65E With 40.5" (1030 mm) in height and 4.34" (110 mm) in depth, it provides 9 dBd or 11.1 dBi gain, 30° vertical beamwidth and 20 dB front-to-back ratio.
- · Power Input To 500 watts.
- Polarization Vertical.
- Sturdy Construction Made with passivated aluminum back panel, iridited aluminum radiating elements, and high impact, weather and UV resistant ABS plastic radomes.
- Reliable Each antenna is tested for power rating compliance and the absence of intermodulation generators.

Ordering Information - Use model number for correct frequency and specify options. 7/16 DIN connector is standard. For optional N-Female, remove "E" from model number. DB380 Mount and VAPOR-WRAP® are included. For mechanical downtilt order DB5083 Brackets. Mast clamps for 1.6 to 3.5 inches (40-89 mm) should be ordered separately.

incon	allical Data
) — in. (mm) 490)x22.3(565)x4.34(110) 90)x40.5(1030)x4.34(110)
Radome Radiating elements Back panel Mounting hardware	ABS Iridited aluminum Passivated aluminum Galvanized steel
Color	Gray
	(12.7

Mechanical Data

 Maximum exposed area – ft² (m²)

 DB691H65E
 3 (.28)

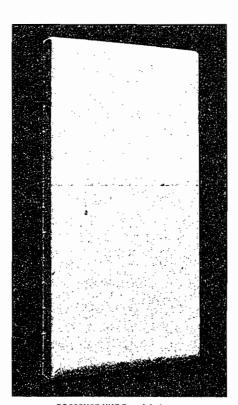
 DB692H65E
 5.4 (.51)

 Lateral thrust at 100 mph (161 km/hr) – lbf (N)

 DB691H65E
 120 (533.8)

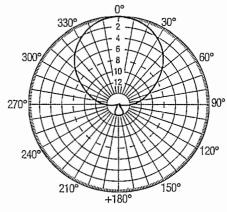
 DB692H65E
 216 (960.8)

 Maximum wind speed – mph (kph) 125 (200)

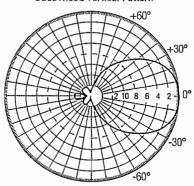

DB691H65E 7.7 (3.5) DB692H65E 13.3 (6.1) Shipping weight – lbs. (kg) DB691H65E 16.6 (7.6) DB692H65E 24.7 (11.2)

Net weight → lbs. (kg)

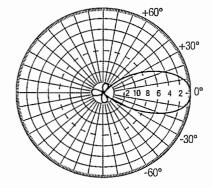
Mounting - Optional flat wall mounts, downtilt brackets, and mast claps available - inches (mm) 1.6-3,5 (40-89)

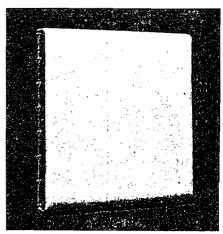

Electrical Data				
Frequency Ranges - MHz	-A = 410-430			
	-C = 450-470			
VSWR	1.4 to 1			
Maximum power input – w	atts 500			
Gain - dBd/dBi				
DB691H65E	6.5/8.6			
DB692H65E	9/11.1			
Horizontal beamwidth	65°			
Vertical beamwidth ± 3°				
DB691H65E	60°			
DB692H65E	30°			
Polarization	Vertical			
Front-to-back ratio - dB				
DB691H65E	16			
DB692H65E	20			
Termination	7/16 DIN connector			
	N-Female optional			

Optional Prefabricated 7/16 DIN and N Connector/Cable Assemblies available in various sizes and lengths.



DB692H65 UHF Panel Antenna


DB691H65E and DB692H65E Horizontal Pattern



DB691H65E Vertical Pattern

DB692H65E Vertical Pattern

DB691H65 UHF Panel Antenna

HF Corner Reflector

406-960 MHz

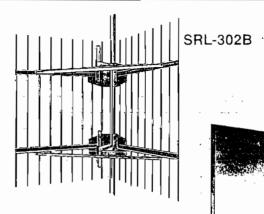
he SRL-302A is a rugged corner reflector which covers the entire D6-470 or 450-512 MHz range. Because of its broad band peration, it is an excellent antenna for multicoupling serveral stems or for use with widely spaced duplex frequencies. High ower rated and/or heavier-duty models are also available. The RL-302A is a single feed version of the SRL-302B illustrated.

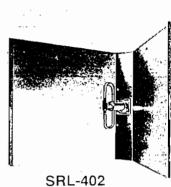
SRL-302B

he SRL-302B combines the features of the SRL-302A with a dual ipole feed for higher gain which may be needed in certain system pplications. Higher power rated and/or heavier-duty models are

SRL-402

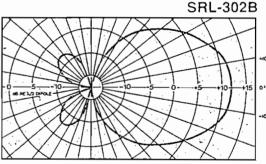
his compact, rugged antenna is ideally suited to various equirements because of its low VSWR and uniform gain over its 00 MHz bandwidth. The antenna consests of a folded dipole, rhich is maintained at DC ground potential for lightning protection, nd a specially designed aluminum reflector. The antenna provides nominal 10 dBd gain.

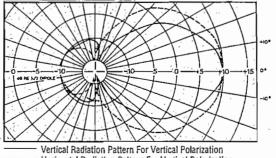

Electrical						
Specifications		SRL-302A	SRL-302B	SRL-402		
Frequency Range:	MHz	406-470 d	r 450-512	800-960		
Nominal Gain:	dBd	9.5	12	10		
Bandwidth, 1.5 : 1 VSWR:	MHz	406-470 d	r 450-512	100		
Horizontal Beamwidth (half power points):	Deg.	60	40	52		
Vertical Beamwidth (half power points):	Deg.	45	34	30		
Front to Back Ratio:	dB	20	25	30		
Power Rating:	watts		100			
Polarization		Vertical or Horizontal				
Pattern		Directional				
Lightning Protection		DC Ground				
Termination		Type "N" Male				
	- FD - L					


Note: (1) VSWR is referenced to 50 ohms.

(3) Horizontal and vertical beamwidths are given for vertical polarization.

lechanical				
pecifications	S	SRL-302A	SRL-302B	SRL-402
Height:	in. (mm)	30 (762)	48 (1219)	24 (610)
Width:	in. (mm)	50 (1	270)	48 (1219)
Depth:	in. (mm)	23 (584)	18 (457)
Weight:	lbs. (kg)	30 (13.6)	38 (17.2)	23 (10.5)
Rated Wind Velocity:	mph (km/h)	125	(201) _	100 (161)
orsional Moment:	ft. lbs. (N·m)	135 (183)	265 (359)	94 (127)
Projected Area: (flat plate equivale	nt): ft.² (m²)	3.48 (0.32)	5.18 (0.48)	5.38 (0.49)
Rated Wind Velocity wit 12.7 mm) radial ice:	th 0.5 in. mph (km/h)	85 (137)		
forizontal Thrust at rativing velocity and ice los		202 (91.8)	316 (143.6)	167 (75.9)
Mounting Information			ded to mount antenna) O.D. support pipe.*	Two clamps are provided to mount antenna on 0.88 in. (22.4 mm) to 2.88 in. (73.2 mm) 0.0. support pipe.


additional mounting hardware required to mount SRL-302B for horizontal polarization.


SRL-302A

Horizontal Radiation Pattern For Vertical Polarization

Vertical Radiation Pattern For Vertical Polarization

Horizontal Radiation Pattern For Vertical Polarization

The Sinclair policy of continuing development may result in improvement or change to this product

⁽²⁾ Specify frequency when ordering. Standard bands for SRt-402 are 800-900 or 896-960 MHz.

ANEXO N.- 3:

Reportes de: Cobertura, Pérdidas por Difracción (por radiales)

0 10 20 30 40 50 60 70 80 Kilometers (1:700000)

> Latitude : 000 49 37.0 S Longitude : 077 31 37.0 W

Elevation: 1695.0 meters

Fixed Antenna Height: 25.0 meters
Fixed Antenna Gain: 10.0 dBd
Fixed Antenna Pattern: OMNI.PAT

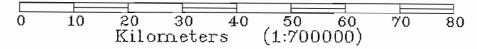
Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power: 3.0 dBw
Transmitter Losses: -2.5 dB

Receiver Sensitivity : -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz Diffraction Algorithm: Pathloss


LEGEND: Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -99.00 Greater than -110.00 Greater than -111.00

Ų

Latitude : 000 49 37.0 S Longitude : 077 31 37.0 W

Elevation: 1695.0 meters

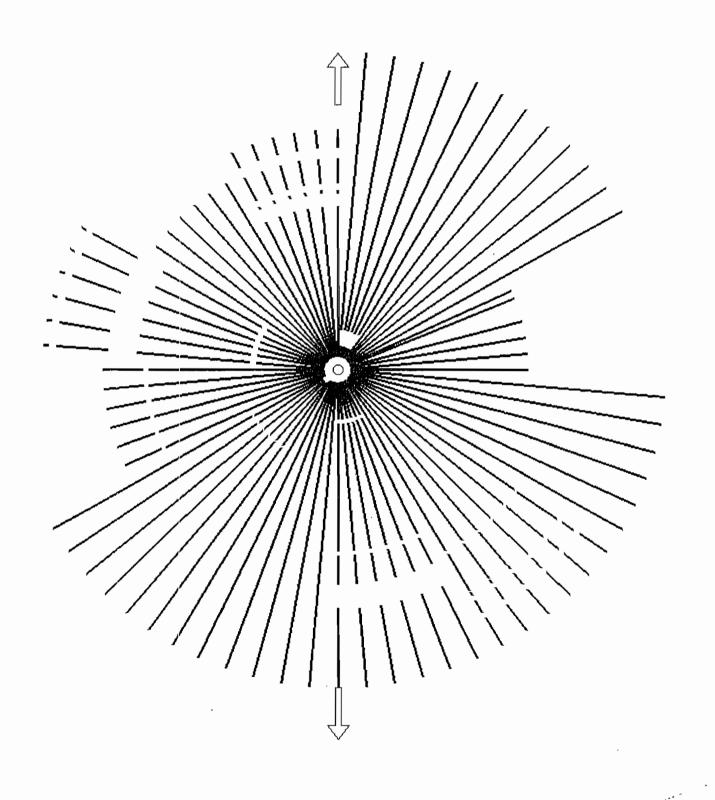
Fixed Antenna Height: 25.0 meters

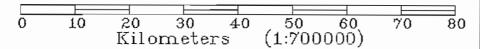
Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg

Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power: 3.0 dBw
Transmitter Losses: -2.5 dB
Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB


Frequency: 400.0 MHz Diffraction Algorithm: Pathloss


LEGEND: Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00 Greater than -111.00

. . .

Latitude : 000 49 37.0 S Longitude : 077 31 37.0 W

Elevation: 1695.0 meters

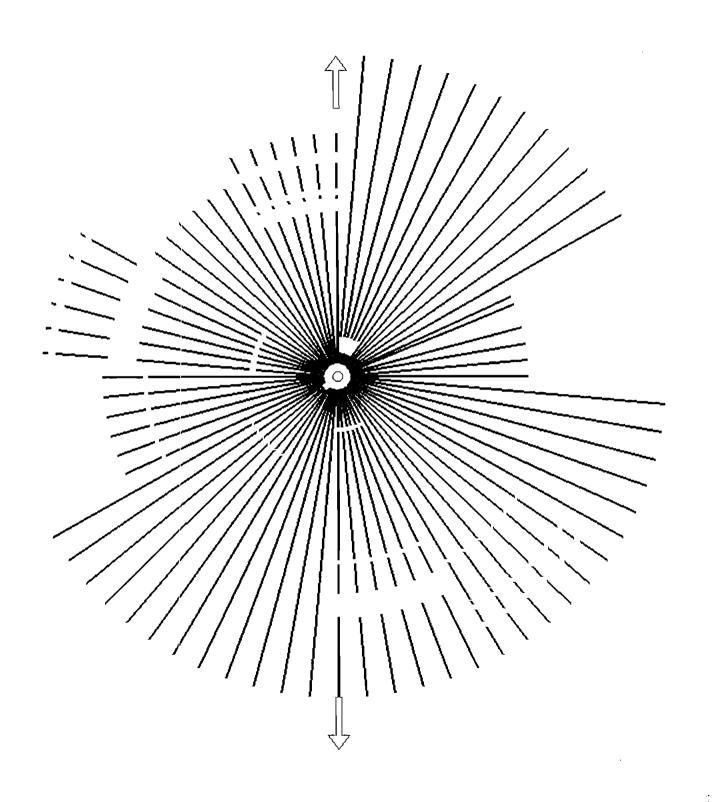
Fixed Antenna Height: 25.0 meters

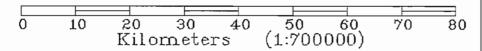
Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain : 10.0 dBd Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB


Frequency: 400.0 MHz


Diffraction Algorithm : Pathloss

LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00 Greater than -111.00

Latitude : 000 49 37.0 S Longitude : 077 31 37.0 W

Elevation: 1695.0 meters

Fixed Antenna Height: 25.0 meters

Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

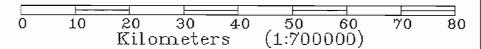
Mobile Antenna Height : 5.0 meters Mobile Antenna Gain : 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz


Diffraction Algorithm: Pathloss

LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00

Greater than -111.00

Latitude : 000 49 37.0 S

Longitude: 077 31 37.0 W

Elevation: 1695.0 meters

Fixed Antenna Height : 25.0 meters

Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg

Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd Transmit Power: 3.0 dBw

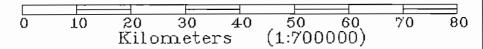
Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss


LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00

Greater than -111.00

I,I,I,I

Latitude : 000 49 37.0 S Longitude : 077 31 37.0 W

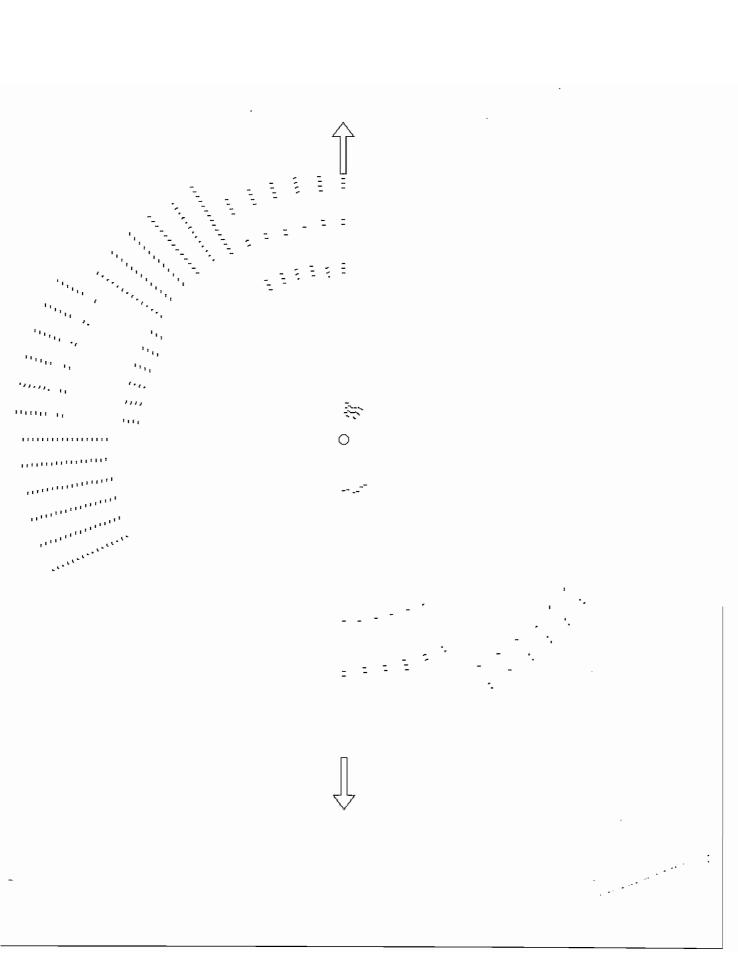
Elevation: 1695.0 meters

Fixed Antenna Height: 25.0 meters

Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB


Receiver Sensitivity : -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00 Greater than -111.00

0 10 20 30 40 50 60 70 80 Kilometers (1:700000)

> Latitude : 000 10 35.4 S Longitude : 076 50 00.0 W

Elevation: 280.0 meters

Fixed Antenna Height: 30.0 meters

Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg

Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

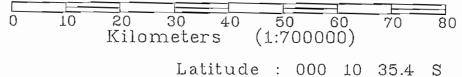
Receiver Sensitivity : -141.0 dBw

Receiver Losses : 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss

LEGEND : Receive Signal (dBm)


Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00 Greater than -111.00

El Cruce

Longitude: 076 50 00.0 W

Elevation: 280.0 meters

Fixed Antenna Height: 30.0 meters
Fixed Antenna Gain: 10.0 dBd
Fixed Antenna Pattern: OMNI.PAT

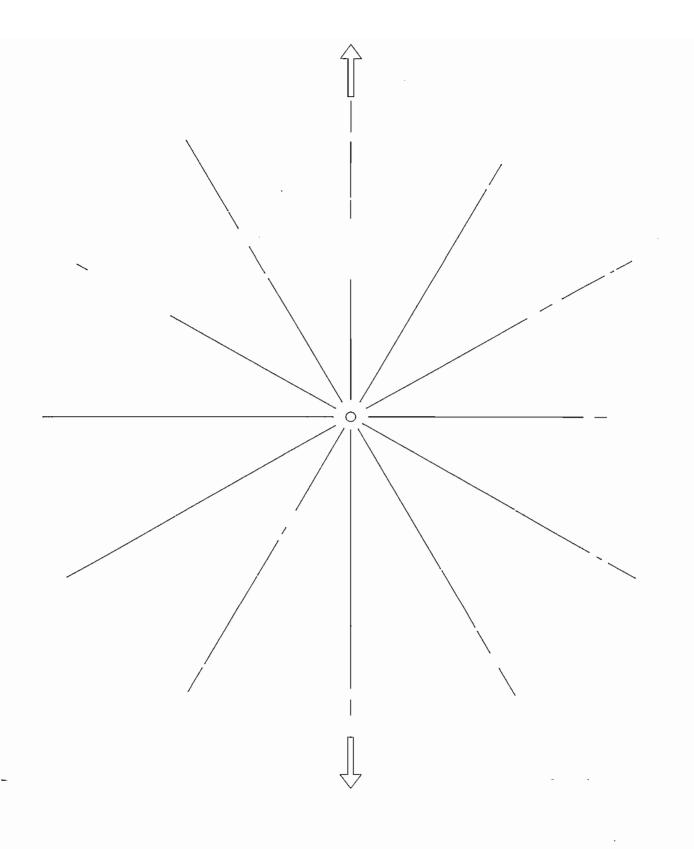
Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd

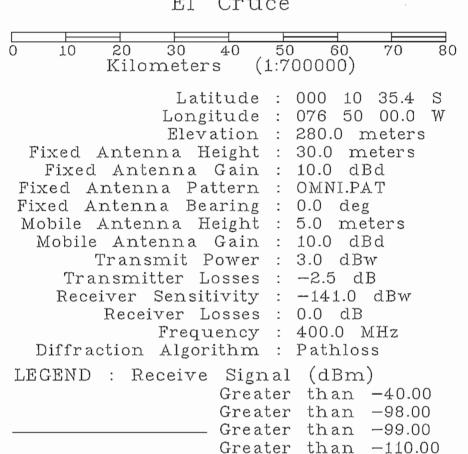
Transmit Power: 3.0 dBw Transmitter Losses: -2.5 dB

Receiver Sensitivity : -141.0 dBw

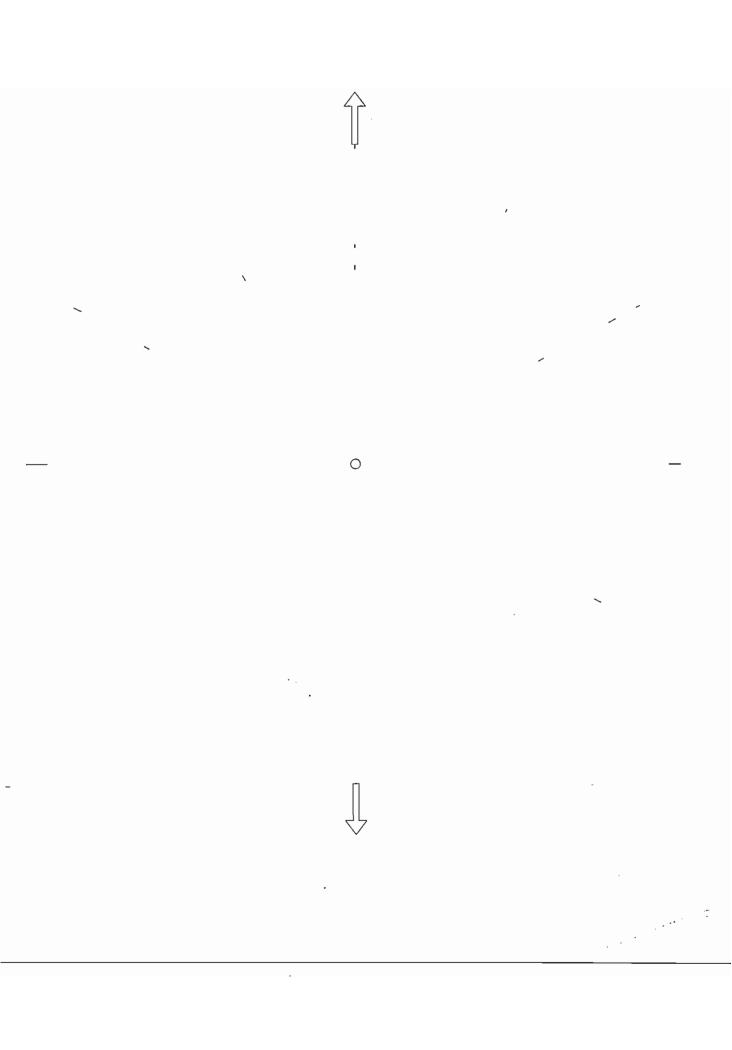
Receiver Losses : 0.0 dB


Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss


LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00


Greater than -111.00

E1Cruce

Greater than -111.00 Less than -111.00

El Cruce

Latitude : 000 10 35.4 S Longitude : 076 50 00.0 W

Elevation: 280.0 meters

Fixed Antenna Height: 30.0 meters

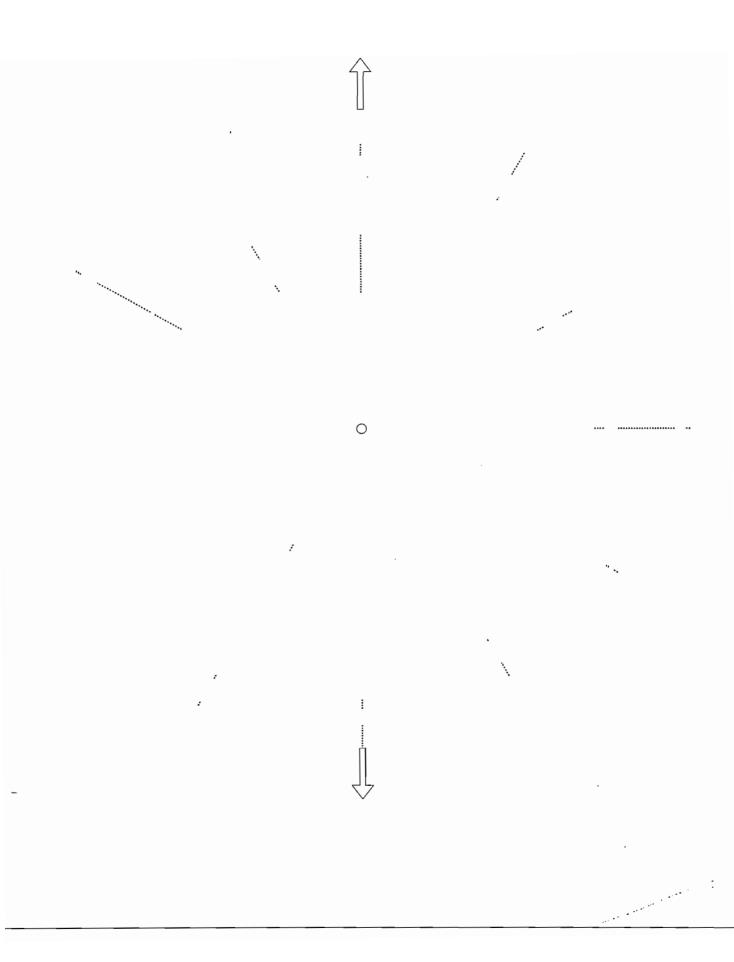
Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg

Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

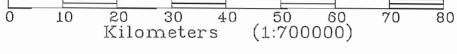
Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity : -141.0 dBw

Receiver Losses : 0.0 dB


Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss


LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00

Greater than -111.00

El Cruce

Latitude : 000 10 35.4 S Longitude : 076 50 00.0 W

Elevation: 280.0 meters

Fixed Antenna Height: 30.0 meters

Fixed Antenna Gain : 10.0 dBd Fixed Antenna Pattern : OMNI.PAT Fixed Antenna Bearing : 0.0 deg

Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power: 3.0 dBw
Transmitter Losses: -2.5 dB

Receiver Sensitivity : -141.0 dBw

Receiver Losses : 0.0 dB

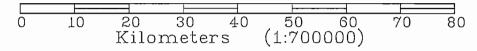
Frequency: 400.0 MHz

Diffraction Algorithm: Pathloss

LEGEND: Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00

-111.00


Less than -111.00

Greater than

El Cruce

Latitude: 000 10 35.4 S Longitude: 076 50 00.0 W

Elevation: 280.0 meters

Fixed Antenna Height: 30.0 meters

Fixed Antenna Gain: 10.0 dBd Fixed Antenna Pattern: OMNI.PAT Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd Transmit Power: 3.0 dBw

Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses : 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss

LEGEND : Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00 Greater than -110.00 Greater than -111.00

Condijua

			-				
0	10	20 Kilom	30 Leters	40 (1:6	50 00000)	60	70

Latitude: 000 28 50.0 S Longitude: 077 54 03.0 W

Elevation: 2532.0 meters

Fixed Antenna Height: 20.0 meters

Fixed Antenna Gain: 10.0 dBd

Fixed Antenna Pattern : PANELSRT.PAT

Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw

Transmitter Losses: -2.5 dB

Receiver Sensitivity: -141.0 dBw

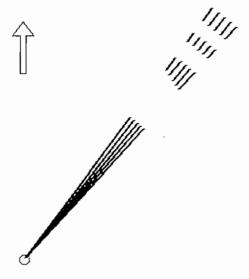
Receiver Losses: 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm: Pathloss

LEGEND : Receive Signal (dBm)

Greater than -40.00


Greater than -98.00

Greater than -99.00

arcater than 55.00

Greater than -110.00

Greater than -111.00

Condijua

0 10 20 30 40 50 60 70 Kilometers (1:600000)

> Latitude : 000 28 50.0 S Longitude : 077 54 03.0 W

Elevation : 2532.0 meters

Fixed Antenna Height: 20.0 meters Fixed Antenna Gain: 10.0 dBd

Fixed Antenna Pattern : PANELSRT.PAT

Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters

Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz

Diffraction Algorithm: Pathloss

LEGEND : Receive Signal (dBm)

Greater than -40.00

Greater than -98.00

Greater than -99.00

Greater than -110.00 Greater than -111.00

0

Condijua

10 50 $\overline{20}$ 30 60 70 (1:600000)Kilometers Latitude: 000 28 50.0 077 54 03.0 W Longitude : Elevation: 2532.0 meters Fixed Antenna Height: 20.0 meters Fixed Antenna Gain : 10.0 dB d Fixed Antenna Pattern : PANELSRT.PAT Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters Mobile Antenna Gain : 10.0 dBd Transmit Power : 3.0 dBw Transmitter Losses: -2.5 dB Receiver Sensitivity: -141.0 dBw 0.0 dB Receiver Losses : Frequency: 400.0 MHz Diffraction Algorithm : Pathloss Signal (dBm) LEGEND : Receive Greater than -40.00Greater than -98.00Greater than -99.00

Greater

Greater

than

Less than -111.00

-110.00

than -111.00

Condijua

0

0 10 20 30 40 50 60 70 Kilometers (1:600000)

> Latitude : 000 28 50.0 S Longitude : 077 54 03.0 W

Elevation: 2532.0 meters

Fixed Antenna Height: 20.0 meters Fixed Antenna Gain: 10.0 dBd

Fixed Antenna Pattern : PANELSRT.PAT

Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity : -141.0 dBw

Receiver Losses: 0.0 dB

Frequency: 400.0 MHz Diffraction Algorithm: Pathloss

LEGEND: Receive Signal (dBm)

Greater than -40.00

Greater than -98.00 Greater than -99.00

Greater than -110.00

Greater than -111.00 Less than -111.00

Condijua

0 10 20 30 40 50 60 70 Kilometers (1:600000)

> Latitude: 000 28 50.0 S Longitude: 077 54 03.0 W

Elevation: 2532.0 meters

Fixed Antenna Height: 20.0 meters Fixed Antenna Gain: 10.0 dBd

Fixed Antenna Pattern: PANELSRT.PAT

Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd

Transmit Power : 3.0 dBw Transmitter Losses : -2.5 dB

Receiver Sensitivity: -141.0 dBw

Receiver Losses: 0.0 dB

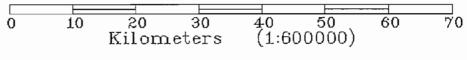
Frequency: 400.0 MHz

Diffraction Algorithm : Pathloss

LEGEND: Receive Signal (dBm)

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00 Greater than -111.00


.... Less than -111.00

0

0

Condijua

Latitude : 000 28 50.0 S Longitude : 077 54 03.0 W

Elevation: 2532.0 meters

Fixed Antenna Height: 20.0 meters Fixed Antenna Gain: 10.0 dBd

Fixed Antenna Pattern : PANELSRT.PAT

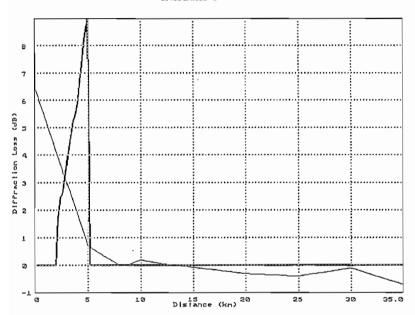
Fixed Antenna Bearing: 0.0 deg Mobile Antenna Height: 5.0 meters Mobile Antenna Gain: 10.0 dBd Transmit Power: 3.0 dBw

Transmit Power: 3.0 dBw
Transmitter Losses: -2.5 dB
Receiver Sensitivity: -141.0 dBw

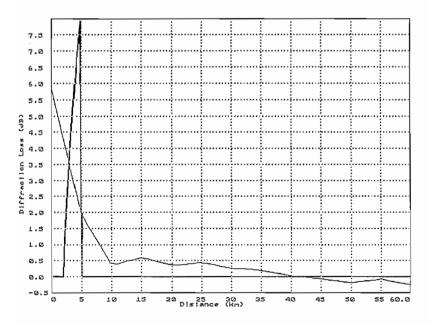
Receiver Losses: 0.0 dB

Frequency: 400.0 MHz Diffraction Algorithm: Pathloss

LEGEND : Receive Signal (dBm)

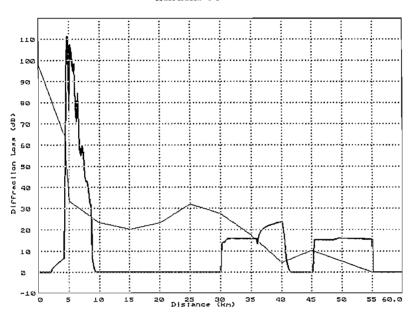

Greater than -40.00 Greater than -98.00 Greater than -99.00

Greater than -110.00 Greater than -111.00

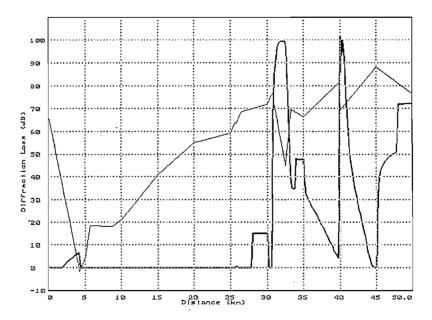

Less than -111.00

Area de Cobertura # 1: Estación Base: Cordillera Napo-Galeras

Radial 0°



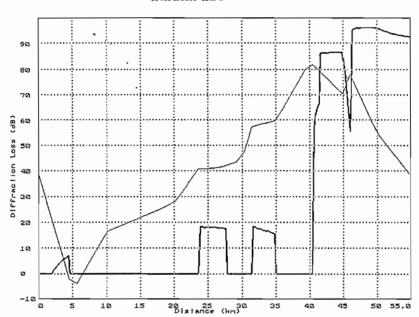
Radial 30°



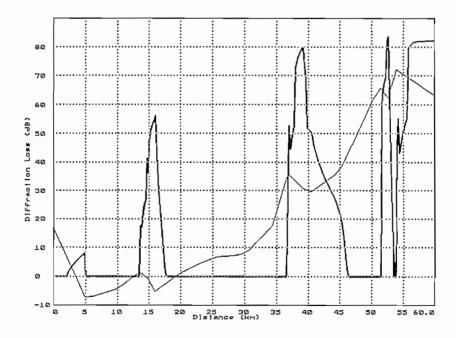
Area de Cobertura # 1: Estación Base: Cordillera Napo-Galeras

Radial 60°

Radial 90°

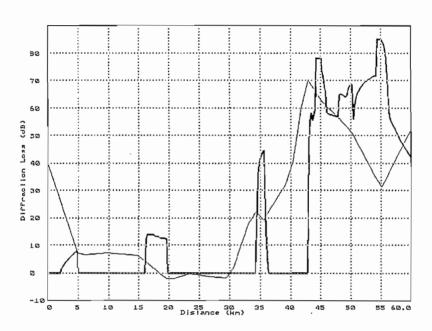


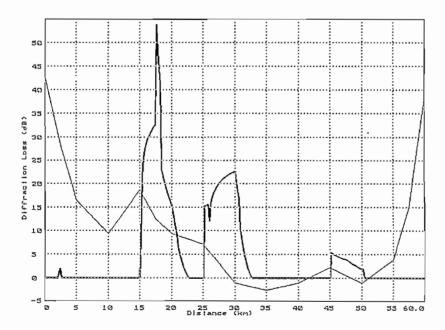
PATHLOSS


Area de Cobertura # 1:

Estación Base: Cordillera Napo-Galeras

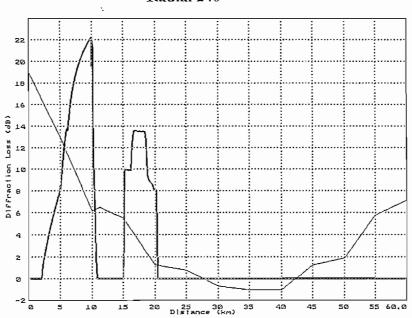
Radial 120°

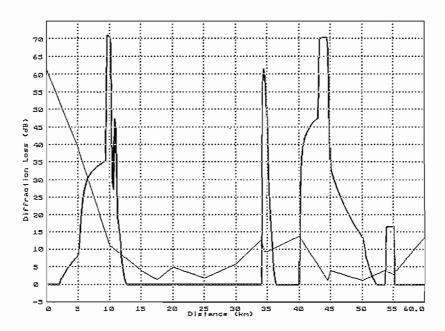

Radial 150°


Area de Cobertura # 1:

Estación Base: Cordillera Napo-Galeras

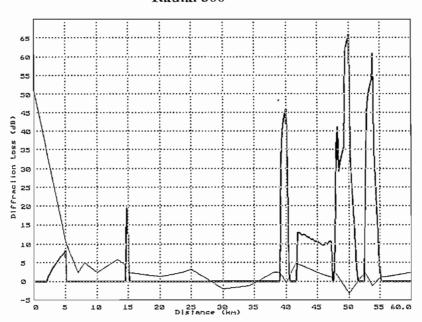
Radial 180°

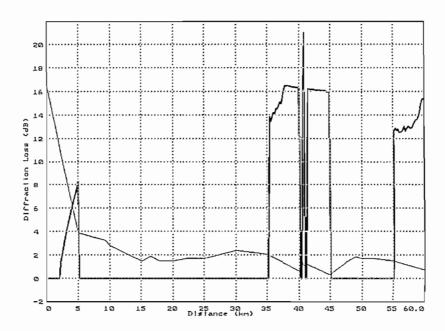

Radial 210°


Area de Cobertura # 1:

Estación Base: Cordillera Napo-Galeras

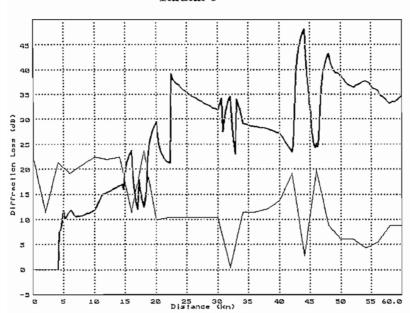
Radial 240°


Radial 270°

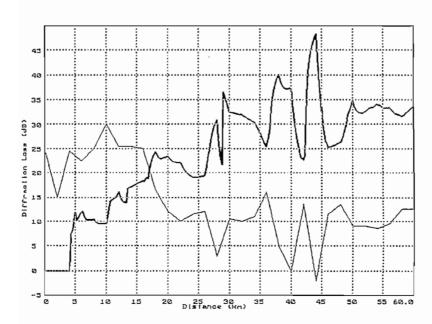

Area de Cobertura # 1:

Estación Base: Cordillera Napo-Galeras

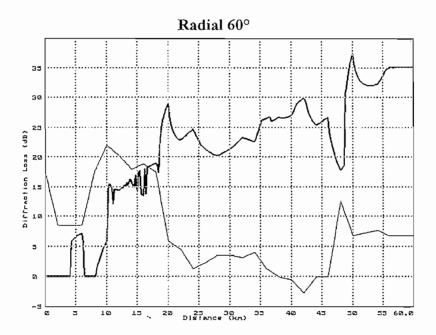
Radial 300°

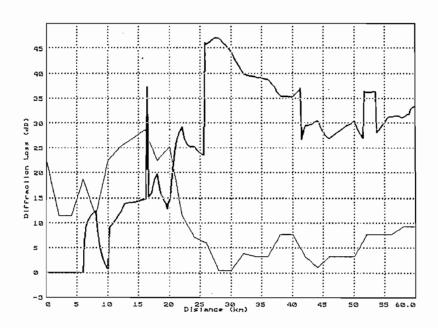


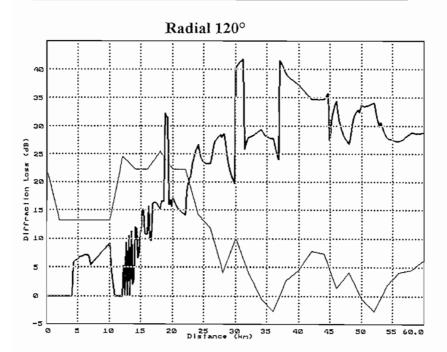
Radial 330°

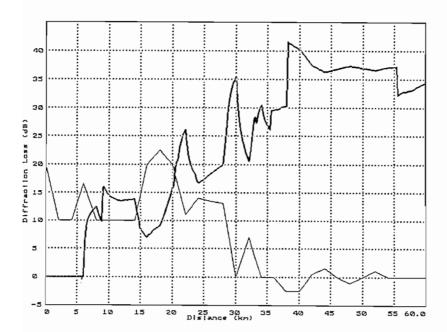


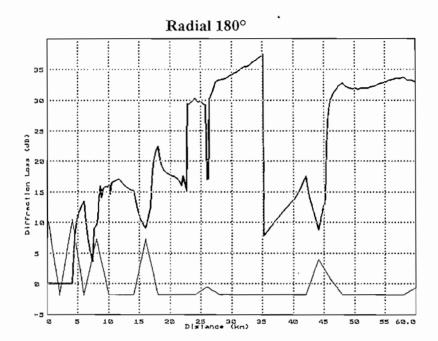
Area de Cobertura # 2: Estación Base: El Cruce

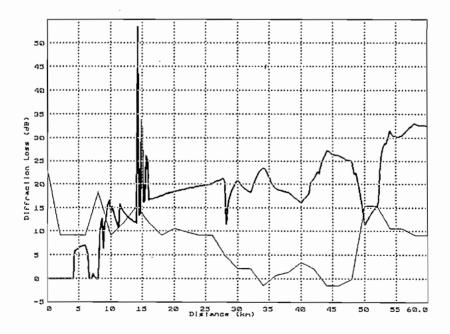

Radial 0°


Radial 30°


Area de Cobertura # 2: Estación Base: El Cruce


Radial 90°


Area de Cobertura # 2: Estación Base: El Cruce


Radial 150°

Area de Cobertura # 2: Estación Base: El Cruce

Radial 210°

Area de Cobertura # 2: Estación Base: El Cruce

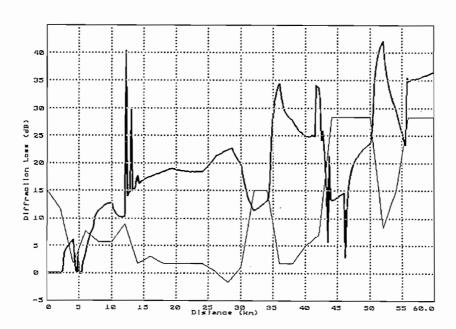
Radial 240°

80

70

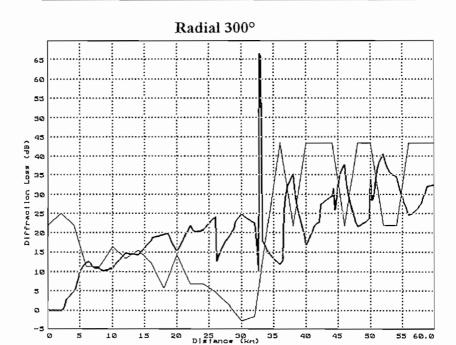
60

90

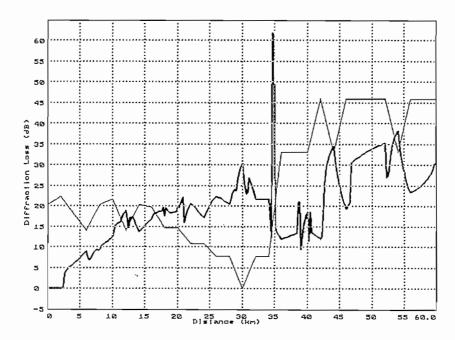

90

10

Radial 270°


25 30 Distance (km) 55 60.0

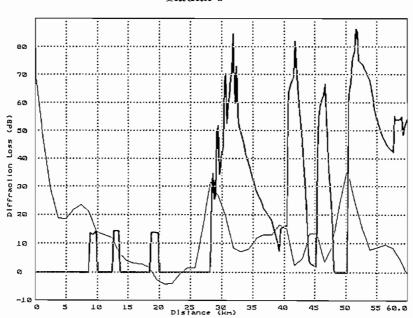
10



PATHLOSS

Area de Cobertura # 2: Estación Base: El Cruce

Radial 330°



PATHLOSS

Area de Cobertura # 3:

Estación Base: Cerro Condijua

Radial 0°

Diffraction Loss Report - pablola.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordil	lera Galeras Punto 1					
Latitude	000 49 37.00 S 000 49 37.00 S					
Longitude	077 31 37.00 W 077 12 45.03 W					
Bearing (deg)	90.002 269.998					
Antenna Height (m)	25.00 5.00					
Path Length (km)	35.00					
Frequency (MHz)	400.00					
Earth Radius Factor (K)	1.33					
Polarization	Vertical					
Tree Type	Wet Rain Forest					
Ground Type	Average					
Total Diffraction Loss (dB)	0.00					
Free Space Loss (dB)	115.39					
Total Loss (dB)	115.39					

. . .

Coordille	era Galeras	Punto 1		
Latitude 00	00 49 37.00 S	000 49 37.00 S	Frequency (MH2)	400.0
Longitude 07	77 31 37.00 W	077 12 45.03 W	Distance (km)	35.0
Bearing (deg)	90.002	269.998	Polarization	Vertical
Elevation (m)	1695.0	260.0	K	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)			•	-
Effective Antenna Height (m)	46.3	5.0	Ground Type	Average
Diffraction Loss (dB)	0.0			
Scatter Loss (dB)	N/A	Combined Loss	(dB) 0.0	
Median Loss L(0.5) (dB)	0.0			
Free Space Loss (dB)	115.4			
Atmospheric Absorption Loss (dB)	0.1	Total Loss	(dB) 115.5	

Path is Line of Sight

Ground El	evations.	- AMSL St	ructure &	Antenna H	leight - A	.GL					
DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	12.14	411.8	0.0	787.0	24.29	324.6	0.0	370.5
0.71	1529.9	0.0	159.0	12.86	405.3	0.0	763.5	25.00	322.0	0.0	344.0
1.43	1365.2	0.0	292.6	1 3.57	398.8	0.0	740.0	25.71	330.3	0.0	306.7
2.14	1200.1	0.0	426.7	14.29	392.3	0.0	716.4	26.43	338.6	0.0	269.4
2.86	1034.9	0.0	560.9	15.00	385.7	0.0	693.1	27.14	346.9	0.0	232.2
3.57	869.8	0.0	695.1	15.71	379.2	0.0	669.7	27.86	355.1	0.0	195.1
4.29	705.1	0.0	828.9	16.43	372.7	0.0	646.4	28.57	363.4	0.0	158.0
5.00	540.0	0.0	963.3	17.14	366.1	0.0	623.2	29.29	371.7	0.0	121.0
5.71	506.6	0.0	966.0	17.86	359.6	0.0	600.1	30.00	380.0	0.0	84.0
6.43	473.2	0.0	968.7	18.57	353.1	0.0	577.0	30.71	362.8	0.0	72.6
7.14	439.8	0.0	971.6	19.29.	346.5	0.0	553.9	31.43	345.7	0.0	61.1
7.86	406.4	0.0	974.5	20.00	.340.0	0.0	530.9	32.14	328.6	0.0	49.8
8.57	397.6	0.0	952.8	20.71	337.4	0.0	504.1	32.86	311.4	0.0	38.5
9.29	418.8	0.0	901.2	21.43	334.9	0.0	477.2	33.57	294.3	0.0	27.3
10.00	440.0	0.0	849.6	22.14	332.3	0.0	450.4	34.29	277.2	0.0	16.1
10.71	428.6	0.0	830.7	22.86	329.7	0.0	423.8	35.00	260.0	0.0	0.0
11.43	418.4	0.0	810.7	23.57	327.1	0.0	397.1				

Diffraction Loss Report - pablo2a.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

Coordi]	Punto 2					
Latitude	000	49	37.0	00 S	000	33	26.74 S
Longitude	077	31	37.0	W 00	077	03	32.65 W
Bearing (deg)		(60.22	25		:	240.220
Antenna Height (m)			25.0				5.00
Path Length (km)					60.	0 0	
Frequency (MHz)	400.00						
Earth Radius Factor (K)					1.3	33	
Polarization	Vertical						
Tree Type	Wet Rain Forest						
Ground Type				I	vera	ge	
Total Diffraction Loss (dB)					0.	0 0	
Free Space Loss (dB)					120.	07	
Total Loss (dB)					120.	07	

Coordille	ra Galeras	Punto 2		
Latitude 00	0 49 37.00 S	000 33 26.74 S	Frequency (MHz)	400.0
Longitude 07	7 31 37.00 W	077 03 32.65 W	Distance (km)	60.0
Bearing (deg)	60.225	240.220	Polarization	Vertical
Elevation (m)	1695.0	260.0	K	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)	10.0	10.0		
Effective Antenna Height (m)	0.0	0.0	Ground Type	Average
Antenna Gain (dBi)	10.0	10.0		
. Diffraction Loss (dB)	0.0			
Scatter Loss (dB)	N/A	Combined Loss	(dB) 0.0	
Median Loss L(0.5) (dB)	0.0			
Free Space Loss (dB)	120.1			
Atmospheric Absorption Loss (dB)	0.2	Total Loss	(dB) 120.2	

Path is Line of Sight

Ground El	evations	- AMSL St	ructure &	Antenna H	(eight - A	.GL					
DIST (km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	20.82	403.3	0.0	764.0	41.63	316.8	0.0	348.6
1.22	1466.0	0.0	220.1	22.04	408.2	0.0	728.1	42.86	311.4	0.0	326.1
2.45	1237.0	0.0	415.3	23.26	413.1	0.0	692.5	44.08	306.0	0.0	303.7
3.67	1008.1	0.0	610.7	24.49	418.0	0.0	657.0	45.31	300.3	0.0	281.9
4.90	779.1	0.0	806.3	25.71	414.3	0.0	630.3	46.53	293.4	0.0	261.3
6.12	679.2	0.0	873.0	26.94	404.5	. 0.0	609.8	47.76	286.6	0.0	241.0
7.35	591.0	0.0	928.1	28.16	394.7	0.0	589.6	48.98	279.7	0.0	220.8
8.57	502.9	0.0	983.4	29.39	384.9	0.0	569.5	50.20	275.1	0.0	198.6
9.80	414.7	0.0	1038.8	30.61	377.9	0.0	546.8	51.43	281.4	0.0	165.5
11.02	412.2	0.0	1008.8	31.84	373.8	0.0	521.4	52.65	287.8	0.0	132.6
12.24	426.9	0.0	961.7	33.06	369.6	0.0	496.3	53.88	294.2	0.0	99.9
13.47	441.6	0.0	914.9	34.29	365.4	0.0	471.3	55.10	299.2	0.0	68.7
14.69	456.3	0.0	868.2	35.51	359.0	0.0	448.7	56.33	289.4	0.0	52.5
15.92	449.0	0.0	843.7	36.74	349.5	0.0	429.4	57.55	279.6	0.0	36.5
17.14	434.3	0.0	826.8	37.96	339.9	0.0	410.3	58.78	269.8	0.0	20.7
18.37	419.6	0.0	810.0	39.18	330.4	0.0	391.4	60.00	260.0	0.0	0.0
19.59	404.9	0.0	793.4	40.41	322.2	0.0	371.3				

The second se

Diffraction Loss Report - pablo3a.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordil	llera Galeras Punto 3
Longitude	60.00 400.00 1.33 Vertical Wet Rain Forest
Total Diffraction Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 120.07 120.07

Coordille	ra Galeras	Punto 3		
Latitude 00	0 49 37.00 S	000 21 36.46 S	Frequency (MHz)	400.0
Longitude 07	7 31 37.00 W	077 15 26.74 W	Distance (km)	60.0
Bearing (deg)	30.169	210.166	Polarization	Vertical
Elevation (m)	1695.0	340.0	K	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)	10.0	10.0		
Effective Antenna Height (m)	0.0	0.0	Ground Type	Average
Antenna Gain (dBi)	10.0	10.0		
Diffraction Loss (dB)	0.0			
Scatter Loss (dB)	N/A	Combined Loss	(dB) 0.0	
Median Loss L(0.5) (dB)	0.0			
Free Space Loss (dB)	120.1			
Atmospheric Absorption Loss (dB)	0.2	Total Loss	(dB) 120.2	

Path is Line of Sight

Ground Elevations - AMSL Structure & Antenna Height - AGL

DIST (km)	GND (m)	OBST (m)	CLR (m)	DIST (km)	GND (m)	OBST (m)	CLR (m)	DIST (km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	15.10	620.0	0.0	714.1	41.25	420.0	0.0	309.2
4.25	1224.0	0.0	384.7	15.20	620.0	0.0	711.6	45.00	480.0	0.0	169.0
5.00	800.0	0.0	789.2	20.00	660.0	0.0	554.6	50.00	409.0	0.0	135.7
10.00	660.0	0.0	801.4	25.00	780.0	0.0	315.6	55.00	340.0	0.0	103.4
10.20	660.0	0.0	796.4	30.00	720.0	0.0	259.5	60.00	340.0	0.0	-0.0
10.21	660.0	0.0	796.1	35.00	580.0	0.0	286.4				
15 00	620.0	0.0	716.5	40.00	400 0	0 0	356.3				

Diffraction Loss Report - pablo4a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2
Foreground Loss : Included

Coordil	llera Galeras Punto 4
Longitude Bearing (deg) Antenna Height (m) Effective Antenna Height (m)	000 49 37.00 S 000 22 40.14 S 077 31 37.00 W 077 31 37.00 W 0.000
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 71.97 0.00 118.49 118.49

. . . .

	Bearin	g (deg)		0.000	18	0.000	1	Polarizat	ion Ve	rtical				
	Elevat	ion (m)		1695.0	1	820.0			к 1.	33				
	Antenna	Height	:	25.0		5.0	Cl:	imate Reg	ion Eq	uatorial				
	Antenna Gai	n (dBi)		10.0		10.0								
Effectiv	e Antenna Hei	.ght (m)		850.5		5.0		Ground T	ype Av	erage				
	Antenna Gai	n (dBi)		10.0		10.0								
H	orizon Distan	ce (km)		45.0		5.0								
H	orizon Elevat	ion (m)		1990.0	1	990.0								
	Horizon Angl	e (deg)		0.192		1.873								
					٠.									
	Diffraction	Loss ((dB) 95.	9										
	Scatter	Loss ((dB) 72.	0	Combined	l Loss	(dB)	72.0						
	Median Loss L	(0.5)	(dB) 71.	9										
	Free Space	Loss ((dB) 118.	5										
Atmospher	ic Absorption	Loss ((dB) 0.	1	Total	Loss	(gp)	190.5						
Percent o	£ I	oss Exc	eeds											
all hours	(P=0.5)		(P=0.95											
50.0000	71.9 dB		66.1 d											
80.0000	71.4 dB		65.5 d		is blocked	-		acle(s)						
90.0000	71.1 dB		65.3 d		has a com	on hor	rizon							
99.0000	70.3 dB		64.4 d											
99.9000	69.7 dB		63.8 d											
99.9900	69.3 dB		63.2 d											
99.9950	69.2 dB		63.1 d											
99.9975	69.0 dB	1	63.0 d	В										
	evations - AM				_	GL								
DIST (km)		(m) T		OIST (km)		OBST	(m)	CLR (m)	DIST(k	m) GND (m) OBS	(m)	CLR (1	m)
0.00	1695.0	0.0	0.0	20.00			0.0	206.7	32.	50 1378	.0	0.0	376	- 8
4.25	720.0	0.0	997.5	25.00			0.0	155.7	33.	25 1725	.0	0.0	32	.1
5.00	800.0	0.0	917.3	25.62	1645.0		0.0	92.1	35.	00 1680	.0	0.0	82	.6
5.75	1005.0	0.0	712.1	25.75			0.0	97.3	39.	85 1892	.0	0.0	-112	.1
8.75	1000.0	0.0	717.1	26.45			0.0	27.9	40.	00 1720	.0	0.0	60	.5
10.00	1040.0	0.0	677.5	30.00	1760.0		0.0	-12.3	45.	00 1990	.0	0.0	-188	. 7
15.00	1320.0	0.0	400.6	30.75	1825.0		0.0	-75.3	50.	00 1820	.0	0.0	0	.0

Coordillera Galeras Punto 4

Latitude 000 49 37.00 S 000 22 40.14 S Frequency (MHz) 400.0 Longitude 077 31 37.00 W 077 31 37.00 W Distance (km) 50.0

Diffraction Loss Report - pablo5a.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

Coordi	llera Galeras	Punto 5
	000 49 37.00 S 000 077 31 37.00 W 077 329.813 25.00 1475.73 3042.75 40.41 1.739 55. 400. 1. Vertic Wet Rain Fore Avera	46 31.39 W 149.815 5.00 88.64 2928.15 8.98 7.852 00 00 33 al
1 Isolated Obstacle		
Location (km) Profile Segment (km) Radius (km) Clearance /Fl Diffraction Loss (dB)	46. 0.00 2. -16. 91.	55.00 96 83
2 Isolated Obstacle Location (km)	, 40.	43
Profile Segment (km) Radius (km) Clearance /Fl Diffraction Loss (dB)	0.00 12. -4. 54.	46.02 02 53
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	146. 92. 92. 119. 211.	55 55 32

		Coord	illera Ga	leras	Punt	:0 5							
		Latitude	000 49	37.00 S	000 23 49	9.02 S	Frequ	ency (MH	z) 400.0				
		Longitude	077 31	37.00 W	077 46 31	L.39 W	Dis	tance (k	m) 55.0				
	Bear	ing (deg)		329.813	1.4	19.815	Po	larizati	on Verti	cal			
	Elev	ration (m)		1695.0	3	L680.0			K 1.33				
	Anten	na Height		25.0		5.0	Clim	ate Regi	on Equat	orial			
	Antenna G	ain (dBi)		10.0		10.0							
Effective	e Antenna H	Reight (m)		1475.7		88.6	G	round Ty	pe Avera	ge			
	Antenna G	ain (dBi)		10.0		10.0							
н	orizon Dist	ance (km)		40.4		9.0							
н	orizon Elev	ration (m)		3042.8	2	2928.1							
	Horizon An	gle (deg)		1.739		7.852							
	Diffracti	on Loss (dB) 146.	5									
		er Loss (Combined	i Loss	(dB)	92.6					
,	Median Loss			5									
		ce Loss (
Atmospher	ic Absorpti				Tota]	L Loss	(dB)	212.0					
			,	_			, ,						
Percent o	£	Loss Exc	eeds		,								
all hours			(P=0.95)									
50.0000	92.5		86.7 d										
80.0000	92.2		86.3 d		is blocked	hv 2 d	ohetar	le(s)					
90.0000	92.0		86.1 d		has separa	-		10(0)					
99.0000	91.4		85.5 di		is los bet								
99.9000	91.0		85.1 d		20 200 200	200011							·
99.9900	90.6		84.7 d										
99.9950	90.6		84.6 d										
99.9975	90.5		84.5 di										
33.3373	70.5	u b	04.5 4	ь									
Ground El	evations -	AMSI. Str	ucture &)	Antenna :	Height - A	AGT.							
DIST(km)				DIST(km)		OBST	(m) C	LR (m)	DIST (km)	GND (m)	OBST	(m)	CIT.D (m)
0.00	1695.0	0.0	0.0	19.08	1325.3		0.0	342.2	38.16	2817.2	OBSI	0.0	CLR (m) -1159.3
1.12	1381.8	0.0	333.9	20.20	1381.3		0.0	284.5	39.29	2979.4		0.0	-1320.8
2.24	1068.7	0.0	642.9	21.33	1509.4		0.0	154.8	40.41	3042.8		0.0	~1383.2
3.37	755.5	0.0	952.1	22.45	1637.5		0.0	25.2	41.53	2954.1		0.0	-1293.4
4.49	442.3	0.0	1261.5	23.57	1765.6			-104.2	42.65	2865.4		0.0	-1293.4
5.61	388.2	0.0	1312.0	24.69	1770.9			-110.6	43.78	2776.7			-1113.5
6.74	549.8	0.0	1146.8	25.82	1777.1			-117.9	44.90	2688.1		0.0	
7.86	711.4	0.0	981.8	26.94	1792.4			-134.0	46.02	2928.1			-1023.3
		0.0	816.9									0.0	-1261.7
8.98 10.10	873.1 1023.3	0.0	663.6	28.06 29.18	1818.0 1853.9			-160.3	47.14	2724.2		0.0	~1056.0
11.22	1023.3	0.0	624.8	30.31	1977.0			-196.8	48.26	2520.2		0.0	~850.1
12.35	1095.1	0.0	586.1	31.43				~320.3 -623.6	49.39	2316.3		0.0	-644.0
		0.0			2280.0			-623.6	50.51	2151.4		0.0	-476.9
13.47 14.59	1131.0 1166.9	0.0	547.5 509.1	32.55	2305.1			-648.9	51.63	2033.6		0.0	-356.7
15.71		0.0		33.67	2330.3			-674.0	52.76	1915.7		0.0	-236.3
16.84	1205.4	0.0	468.2	34.80	2355.4			-698.9	53.88	1797.9		0.0	-115.7
	1245.4		426.1	35.92	2492.7			-835.9	55.00	1680.0		0.0	0.0
17.96	1285.3	0.0	384.1	37.04	2655.0	C	0.0	-997.7					

Diffraction Loss Report - pablo6a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordillera Gale:	ras Punto 6
Path Length (km) Frequency (MHz) Earth Radius Factor (K) Polarization	.00 W 077 59 37.53 W 831 119.836 .00 5.00 5.00 .03 5.00 .47 3593.47
1 Isolated Obstacle Location (km) Profile Segment (km) 0 Radius (km) Clearance /F1 Diffraction Loss (dB) 2 Irregular Terrain	53.88 .00 60.00 10.54 -7.61 74.26
Profile Segment (km) 53	.88 60.00 .00 5.01 .0.01 Average 37.95
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	112.21 81.99 81.99 120.07 202.06

		_			Pr							
				Galeras	Punt		Pws	minner /Mt	!~\			
					000 33 26							
		_			077 59 37			istance (k		1		
		aring (deg		299.831		19.836	ŀ	POLARIZACI	on Verti	Jai		
		evation (m	-	1695.0		3280.0	03 4	: n - n	K 1.33			
		enna Heigh		25.0		5.0	CI	imate Regi	lon Equat	orial		
		Gain (dBi		10.0		10.0		5				
Effective		Height (m		1301.0		5.0		Ground Ty	pe Avera	ge		
		Gain (dBi		10.0		10.0						
		stance (km		53.9		6.1						
н		evation (m		3593.5		3593.5						
	Horizon /	Angle (deg	1)	1.810		2.864						
	Diffraci	tion Loss	(dB) 1:	12.2								
		tter Loss		32.0	Combine	PPOJ 5	(ab)	82.0				
		ss L(0.5)		32.0	00,102110		(/					
'		pace Loss		20.1								
3 tmaanhaw		tion Loss		0.2	Tota	l Loss	(dB)	202.2				
Acmospher	ic whatth	CTON DOSS	(UB)	0.2	1000.	2 1033	(GD)	20212				
Percent o	£	Loss Ex	ceeds									
all hours	(P=	0.5)	(P=0	.95)								
50.0000	82.	o dB	76.	l dB								
80.0000	81.	4 dB	75.	6 dB Path	is blocke	d by 1	obst	acle(s)				
90.0000	81.	l dB	75.	dB Path	has a com	mon hor	rizon					
99.0000	80.	3 dB	74.	4 dB								
99.9000		7 dB	73.	7 dB								
99.9900		2 dB		l dB								
99.9950		1 dB) dB								
99.9975		0 dB	72.	9 dB								
Ground El	evations	- AMSL St	ructure	& Antenna	Height - 1	AGL						
DIST(km)	GND (m)	OBST (m)	CLR (m	DIST(kn	ı) GND (m)	OBST	(m)	CLR (m)	DIST (km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.	20.8	1209.4		0.0	1005.6	41.63	2215.5	0.0	545.5
1.22	1495.4	0.0	252.	3 22.0	1253.5		0.0	992.2	42.86	2282.6	0.0	512.1
2.45	1295.8	0.0	479.	B 23.2	26 1297.6		0.0	979.0	44.08	2349.7	0.0	478.8
3.67	1096.2	0.0	707.	4 24.4	19 1341.6		0.0	966.0	45.31	2449.0	0.0	413.6
4.90	896.6	20.0	915.	2 25.7	1365.7		0.0	973.1	46.53	2644.9	0.0	251.9
6.12	906.9	0.0	953.	3 26.9	1375.5		0.0	994.7	47.76	2840.8	0.0	90.4
7.35	936.3	0.0	952.	5 28.1	6 1385.3		0.0	1016.5	48.98	3036.7	0.0	-70.9
- 8.57	965.7	0.0	951.	9 29.3	39 1395.1		0.0	1038.5	50.20	3232.7	. 0.0	-232.1
9.80	995.1	20.0	931.	5 30.6	1445.5		0.0	1020.0	51.43	3371.4	0.0	-335.9
11.02	1054.9	0.0	920.	8 31.8	1536.4		0.0	961.2	52.65	3249.0	0.0	-178.4
12.24	1120.7	0.0	884.	3 33.0	1627.4		0.0	902.5	53.88	3593.5	0.0	-487.6
13.47	1186.6	0.0	847.	9 34.2	29 1733.3		0.0	829.1	55.10	3530.8	0.0	-389.4
14.69	1117.1	0.0	947.	0 35.9	2044.9		0.0	550.2	56.33	3468.1	0.0	-291.1
15.92	967.8	0.0	1126.	2 36.7	74 2364.6		0.0	263.3	57.55	3405.4	0.0	-192.6
17.14	1031.4	0.0	1092.	5 37.	2275.1		0.0	385.8	50.78	3342.7	0.0	-93.9
18.37	1095.1	0.0	1059.	0 39.3	LB 2185.6		0.0	508.4	60.00	3280.0	0.0	0.0
19.59	1158.8	0.0	1025.	7 40.4	11 2148.4		0.0	579.0				

James 1

Diffraction Loss Report - pablo7a.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

Coordi	llera Galeras Punto 7
Longitude	2362.86 2362.86 42.86 17.14
Frequency (MHz) Earth Radius Factor (K) Polarization Tree Type Ground Type	400.00 1.33 Vertical Wet Rain Forest Average
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 70.86 0.00 120.07 120.07

			lillera Ga		Punto								
					000 49 37			mency (MH					
		Longitude	077 31	37.00 W	078 03 57			stance (k					
	Веа	aring (deg)		269.996		0.004	E	Polarizati		al			
	Ele	evation (m)		1695.0	1:	980.0			K 1.33				
	Ante	enna Height	:	25.0		5.0	Cli	lmate Regi	on Equato	orial			
		Gain (dBi)		10.0		10.0							
Effective	e Antenna	Height (m)		915.1		540.4		Ground Ty	pe Avera	je			
	Antenna	Gain (dBi)		10.0		10.0							
H	orizon Dis	stance (km)		42.9		17.1							
H		evation (m)		2362.9	2	362.9							
	Horizon A	Angle (deg)		0.715		1.205							
		tion Loss				_	(35)	42.0					
		tter Loss			Combined	Loss	(dB)	41.9					
1		ss L(0.5)											
		pace Loss				_							
Atmospher	ic Absorp	tion Loss	(dB) 0	. 2	Total	Loss	(dB)	162.1					
	_												
Percent o		Loss Exc		- \									
all hours	-	0.5)	(P=0.9										
50.0000		9 dB	36.0			h 7	obat:	-alo/a)					
80.0000		5 dB	35.6		is blocked	-							
90.0000		3 dB	35.4		nas a comm	on nor	izon						
99.0000		7 dB	34.8										
99.9000		3 dB	34.4										
99.9900		0 dB	34.0										
99.9950		9 dB	33.9		•								
99.9975	39.1	B dB	33.8	aB									
Ground El	evations	- AMSL St	ructure &	Antenna :	ieiaht - A	Gr.							
DIST (km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST	(m)	CLR (m)	DIST(km)	GND (m)	OBST	(m)	CLR (m)
0.00	1695.0	0.0	0.0	20.82	772.8		0.0	991.1	41.63	2115.9		0.0	-257.0
- 1.22	1515.0	0.0	206.2	22.04	792.1		0.0	976.0	42.86			0.0	-496.8
2.45	1335.0	0.0	387.5	23.26	811.4		0.0	961.1	44.08			0.0	-396.4
. 3.67	1155.0	0.0	569.0	24.49	807.8		0.0	969.2	45.31	2185.3		0.0	-304.4
4.90	975.0	0.0	750.8	25.71	796.6		0.0	985.1	46.53	2126.5		0.0	-237.9
6.12	964.5	0.0	763.1	26.94	790.7		0.0	995.9	47.76	2067.8		0.0	-171.2
7.35	969.4	0.0	760.3	28.16	784.8		0.0	1006.8	48.98	2009.0		0.0	-104-4
8.57	974.3	0.0	757.6	29.39	778.9		0.0	1017.9	50.20	1941.2		0.0	-28.4
9.80	979.2	0.0	755.1	30.61	863.4		0.0	938.9	51.43	1828.6		0.0	92.6
11.02	974.7	0.0	762.2	31.84	1038.2		0.0	769.7	52.65	1715.9		0.0	213.9
12.24	968.3	0.0	771.3	33.06	1213.0		0.0	600.6	53.88	1603.3		0.0	335.3
13.47	962.0	0.0	780.7	34.29	1305.0		0.0	514.6	55.10	1509.8		0.0	437.7
14.69	955.6	0.0	790.1	35.51	1240.8		0.0	584.9	56.33	1627.3		0.0	329.3
15.92	918.4	0.0	830.7	36.74	1338.8		0.0	493.2	57.55	1744.9		0.0	221.0
17.14	870.9	0.0	881.6	37.96	1436.7		0.0	401.7	58.78	1862.4		0.0	112.9
18.37	823.3	0.0	932.8	39.18	1534.7		0.0	310.4	60.00	1980.0		0.0	0.0
19.59	775.8	0.0	984.1	40.41	1729.0		0.0	122.9					
				32.3=									

Diffraction Loss Report - pablo8a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordil	lera Galeras Punto	8
Longitude	60.00 400.00 1.33	3 W 69
Tree Type Ground Type	Vertical Wet Rain Forest Average	
Total Diffraction Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 120.07 120.07	

		Punto 8	era Galeras	Coordille
400.0	Frequency (MHz)	001 05 47.26 S	00 49 37.00 S	Latitude 00
60.0	Distance (km)	077 59 37.53 W	77 31 37.00 W	Longitude 07
Vertical	Polarization	60.169	240.161	Bearing (deg)
1.33	К	1600.0	1695.0	Elevation (m)
Equatorial	Climate Region	5.0	25.0	Antenna Height
		10.0	10.0	Antenna Gain (dBi)
Average	Ground Type	30.0	590.6	Effective Antenna Height (m)
		10.0	10.0	Antenna Gain (dBi)
			0.0	Diffraction Loss (dB)
	(dB) 0.0	Combined Loss	N/A	Scatter Loss (dB)
			0.0	Median Loss L(0.5) (dB)
			120.1	Free Space Loss (dB)
	(dB) 120.2	Total Loss	0.2	Atmospheric Absorption Loss (dB)

Path is Line of Sight

Ground El	evations	- AMSL St	ructure &	Antenna H	leight - A	GL					
DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST (km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	20.00	860.0	0.0	774.6	50.00	600.0	0.0	994.7
2.50	1320.0	0.0	386.8	25.00	803.0	0.0	817.6	55.00	720.0	0.0	878.4
5.00	1040.0	0.0	654.2	30.00	600.0	0.0	1009.5	57.50	1000.0	0.0	601.3
10.00	860.0	0.0	811.4	35.00	560.0	0.0	1041.4	60.00	1600.0	0.0	0.0
15.00	1093.0	0.0	558.5	40.00	600.0	0.0	996.3				
17.50	940.0	0.0	702.7	45.00	680.0	0.0	914.0				

Diffraction Loss Report - pablo9a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordi	3	Punto 9						
Latitude	000	49	37.	00	S	.001	17	37.54 S
Longitude	077	31	37.	00	W	077	47	47.26 W
Bearing (deg)		23	10.1	62				30.167
Antenna Height (m)			25.					5.00
Path Length (km)						60.0	0.0	
Frequency (MHz)						400.0	0.0	
Earth Radius Factor (K)						1.3	33	
Polarization					Ve	ertica	al	
Tree Type		V	Vet :	Rai	.n	Fores	st	
Ground Type					7	vera	qе	
4.4						•		
Total Diffraction Loss (dB)						0.0	0 C	
Free Space Loss (dB)						120.	07	
Total Loss (dB)						120.	07	

Coordillera Galeras	Punto 9		
Latitude 000 49 37.00 S	001 17 37.54 S	Frequency (MHz)	400.0
Longitude 077 31 37.00 W	077 47 47.26 W	Distance (km)	60.0
Bearing (deg) 210.162	30.167	Polarization	Vertical
Elevation (m) 1695.0	960.0	K	1.33
Antenna Height 25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi) 10.0	10.0		
Effective Antenna Height (m) 590.6	30.0	Ground Type	Average
Antenna Gain (dBi) 10.0	10.0		
Diffraction Loss (dB) 0.0			
Scatter Loss (dB) N/A	Combined Loss	(dB) 0.0	
Median Loss L(0.5) (dB) 0.0			
Free Space Loss (dB) 120.1			
Atmospheric Absorption Loss (dB) 0.2	Total Loss	(dB) 120.2	

Path is Line of Sight

G:	round El	evations	- AMSL St	ructure &	Antenna H	leight - A	GL					
D.	IST (km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
	0.00	1695.0	0.0	0.0	20.00	600.0	0.0	821.3	45.00	600.0	0.0	514.0
_	5.00	1320.0	0.0	320.9	25.00	574.0	0.0	779.9	50.00	640.0	0.0	421.4
	10.00	900.0	0.0	664.7	30.00	480.0	0.0	809.5	55.00	880.0	0.0	131.7
	11.25	920.0	0.0	626.2	35.00	460.0	0.0	768.1	60.00	960.0	0.0	0.0
	15.00	860.0	0.0	631.5	40.00	460.0	0.0	709.6				

Diffraction Loss Report - pablo10a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordil	llera Galeras Pi	Punto 10		
	000 49 37.00 S 001 21 077 31 37.00 W 077 31 180.000 25.00 60.00 400.00 1.33			
Polarization Tree Type Ground Type	Vertical Wet Rain Forest Average			
Total Diffraction Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 120.07 120.07			

Coordillera G	aleras	Punto 10		
. Latitude 000 49	37.00 S 001	21 57.52 S	Frequency (MHz)	400.0
Longitude 077 31	37.00 W 077	31 37.00 W	Distance (km)	60.0
Bearing (deg)	180.000	-0.000	Polarization	Vertical
Elevation (m)	1695.0	620.0	К	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)	10.0	10.0		
Effective Antenna Height (m)	893.1	52.2	Ground Type	Average
Antenna Gain (dBi)	10.0	10.0		
Diffraction Loss (dB) 0	.0			
Scatter Loss (dB) N	/A Co	ombined Loss	(dB) 0.0	
Median Loss L(0.5) (dB) 0	.0			
Free Space Loss (dB) 120	.1			
Atmospheric Absorption Loss (dB) 0	.2	Total Loss	(dB) 120.2	

Path is Line of Sight

Ground El	evations	- AMSL St	ructure &	Antenna H	leight - A	GL					
DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	25.10	353.0	0.0	857.4	45.00	400.0	0.0	459.0
5.00	1200.0	0.0	412.6	30.00	440.0	0.0	679.5	50.00	340.0	0.0	438.1
10.00	560.0	0.0	948.1	34.00	600.0	0.0	447.5	53.50	400.0	0.0	323.2
15.00	400.0	0.0	1006.5	34.50	520.0	0.0	518.6	55.00	380.0	0.0	320.1
17.50	344.0	0.0	1012.9	35.00	520.0	0.0	509.8	60.00	620.0	0.0	0.0
20.00	420.0	0.0	887.9	40.00	620.0	0.0	322.9				
25.00	353 0	0.0	859 3	44 50	340 0	0.0	E27 2				

Diffraction Loss Report - pablo11a.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

. Coordil	llera Galeras Punto 11
Latitude	000 49 37.00 S 001 17 37.54 S
Longitude	077 31 37.00 W 077 15 26.74 W
Bearing (deg)	149.838 329.833
Antenna Height (m)	25.00 5.00
Path Length (km)	60.00
Frequency (MHz)	400.00
Earth Radius Factor (K)	1.33
Polarization	Vertical
Tree Type	Wet Rain Forest
Ground Type	Average
~~	
Total Diffraction Loss (dB)	0.00
Free Space Loss (dB)	120.07
Total Loss (dB)	120.07

Coordille	ra Galeras	Punto 11		
Latitude 00	0 49 37.00 S	001 17 37.54 S	Frequency (MHz)	400.0
Longitude 07	7 31 37.00 W	077 15 26.74 W	Distance (km)	60.0
Bearing (deg)	149.838	329.833	Polarization	Vertical
Elevation (m)	1695.0	400.0	К	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)	10.0	10.0		
Effective Antenna Height (m)	1271.4	53.6	Ground Type	Average
Antenna Gain (dBi)	10.0	10.0		
Diffraction Loss (dB)	0.0			
Scatter Loss (dB)	N/A	Combined Loss	(dB) 0.0	
Median Loss L(0.5) (dB)	0.0			
Free Space Loss (dB)	120.1			
Atmospheric Absorption Loss (dB)	0.2	Total Loss	(dB) 120.2	

Path is Line of Sight

Ground Elevations	-	AMSL	Structure	&	Antenna	Height	-	AGL	
-------------------	---	------	-----------	---	---------	--------	---	-----	--

DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	23.50	400.0	0.0	754.5	45.00	400.0	0.0	294.0
5.00	620.0	0.0	974.2	25.00	420.0	0.0	700.6	47.25	360.0	0.0	289.0
7.00	400.0	0.0	1144.8	30.00	280.0	0.0	729.5	47.75	400.0	0.0	239.1
8.00	470.0	0.0	1050.2	34.00	300.0	0.0	622.8	50.00	249.0	0.0	345.7
10.00	400.0	0.0	1071.4	35.00	320.0	0.0	581.4	52.50	400.0	0.0	146.2
13.25	490.0	0.0	903.2	38.00	400.0	0.0	438.0	53.75	300.0	0.0	222.2
14.50	445.0	0.0	918.4	39.00	400.0	0.0	417.1	55.00	360.0	0.0	138.4
15.00	400.0	0.0	951.5	40.00	325.0	0.0	471.3	60.00	400.0	0.0	-0.0
20.00	369.0	0.0	865.6	41.50	463.0	0.0	302.3				

Diffraction Loss Report - pablo12a.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

Coordil	llera Galeras	Punto 12						
Latitude	000 49 37.00 S 00	1 05 47.26 S						
Longitude	077 31 37.00 W 07	7 03 36.46 W						
Bearing (deg)	119.839	299.831						
Antenna Height (m)		5.00						
Path Length (km)	60	.00						
Frequency (MHz)	400.00							
Earth Radius Factor (K)	1	.33						
Polarization	Verti							
Tree Type	Wet Rain Forest							
Ground Type								
71		5-						
Total Diffraction Loss (dB)	0	.00						
Free Space Loss (dB)	120.07							
Total Loss (dB)	120	.07						

Coordille	ra Galeras	Punto 12		
Latitude 00	0 49 37.00 S	001 05 47.26 S	Frequency (MHz)	400.0
Longitude 07	7 31 37.00 W	077 03 36.46 W	Distance (km)	60.0
Bearing (deg)	119.839	299.831	Polarization	Vertical
Elevation (m)	1695.0	250.0	К	1.33
Antenna Height	25.0	5.0	Climate Region	Equatorial
Antenna Gain (dBi)	10.0	10.0		
Effective Antenna Height (m)	1224.2	12.3	Ground Type	Average
Antenna Gain (dBi)	10.0	10.0		
Diffraction Loss (dB)	15.4			
Scatter Loss (dB)	N/A	Combined Loss	(dB) 15.4	
Median Loss L(0.5) (dB)	15.4			
Free Space Loss (dB)	120.1			
Atmospheric Absorption Loss (dB)	0.2	Total Loss	(dB) 135.6	

Path is Line of Sight

Ground Elevations - AMSL Structure & Antenna Height - AGL

DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	1695.0	0.0	0.0	20.10	320.0	0.0	862.0	44.85	220.0	0.0	364.9
5.00	540.0	0.0	1041.7	22.25	340.0	0.0	787.3	45.00	220.0	0.0	361.5
9.25	478.0	0.0	988.5	25.00	340.0	0.0	718.1	47.50	311.0	0.0	214.3
10.00	440.0	0.0	1006.4	30.00	400.0	0.0	534.5	49.00	352.0	0.0	139.9
15.00	320.0	0.0	994.0	35.00	370.0	0.0	443.9	50.00	340.0	0.0	129.7
15.15	320.0	0.0	990.1	40.00	240.0	0.0	456.3	51.75	340.0	0.0	91.3
16.50	360.0	0.0	914.9	40.50	300.0	0.0	384.7	55.00	320.0	0.0	40.9
17.75	320.0	0.0	922.5	40.75	280.0	0.0	398.9	60.00	250.0	0.0	-0.0
17.95	320.0	0.0	917.3	41.00	300.0	0.0	373.1				
20.00	320.0	0.0	864.6	44.75	220.0	0.0	367.2				

Diffraction Loss Report - punto0.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

]	El	Cruce]	Punto 0
Latitude Longitude							
Bearing (deg)							269.999
Antenna Height (m)			30.00				5.00
Effective Antenna Height (m)			37.14				10.44
Horizon Elevation (m)		2	82.00				275.00
Horizon Distance (km)			18.00				14.00
Horizon Angle (deg)		_	0.150				0.014
Path Length (km)					60.0	0.0	
Frequency (MHz)					400.0	0 0	
Earth Radius Factor (K)					1.3	33	
Polarization				Ve	rtica	al	
Tree Type		W	et Rai	in 1	Fores	st	
Ground Type				Α̈́	vera	ge	
Total Diffraction Loss (dB)					0.0	00	
Scatter Loss (dB)					41.8	33	
Combined Loss (dB)					0.0	0.0	
Free Space Loss (dB)				2	L20.0	07	
Total Loss (dB)					L20.0	7	

Но	Ele Ante	tance (km vation (m	e 000 10 e 076 50)) t t)	35.48 S 00.00 W 90.001 280.0 30.0 37.1 18.0 282.0 -0.150	076 17 44 26	.48 S	D.	quency (ME istance (k Polarizati imate Regi Ground Ty	m) 60.0 on Verti K 1.33 on Equat	cal orial		
	Scat edian Los	ace Loss	(dB) 41 (dB) 34 (dB) 120		Combined Total		, ,	34.6 154.4				
Percent of all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9975		dB dB dB dB dB dB dB	(P=0.9 28.4 26.3 25.1	dB dB Path : dB Path : dB Path : dB dB dB	nas separa	ite hor	izons	3				
Ground Ele DIST(km) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 - 14.00 16.00 18.00 20.00	Evations - GND (m) 280.0 260.0 278.0 274.0 277.0 280.0 279.0 280.0 260.0 282.0 257.0	AMSL Str OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ructure & CLR (m) 0.0 41.5 15.5 11.9 -7.8 -12.9 -19.6 -4.8 -31.5 -10.7	Antenna I DIST(km) 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 40.00 42.00		OBST	(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -15.5 -18.8 -21.7 -24.1 -26.0 -9.4 -30.3 -30.8 -31.9 -34.4 -43.5	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 244.0 275.0 255.0 250.0 250.0 247.0 249.0 255.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -12.1 -41.2 -18.9 -11.1 -7.8 -1.1 1.2 -0.2 0.0

Diffraction Loss Report - punto1.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

	El	Cruce		Punto 1
				05 30.26 N
	076 50	00.00	₩ 076	22 03.82 W
Bearing (deg)		60.220		240.219
Antenna Height (m)		30.00		5.00
Effective Antenna Height (m)		47.02		6.85
Horizon Elevation (m)		290.00		257.00
Horizon Distance (km)		10.00		12.00
Horizon Angle (deg)		-0.148		-0.055
Path Length (km)			60.	00
Frequency (MHz)			400.	00
Earth Radius Factor (K)			1.	33
Polarization			Vertic	al
Tree Type		Wet Ra:	in Fore	est
Ground Type			Avera	ge
Total Diffraction Loss (dB)			0.	00
Scatter Loss (dB)			38.	04
Combined Loss (dB)			0.	00
Free Space Loss (dB)			120.	07
Total Loss (dB)			120.	07

		El	Cruce	Punt	0 1						
	Latitude			000 05 30	.26 N	Free	quency (ME	(z) 400.0)		
	Longitude			076 22 03			stance (k	,			
Be	earing (deg)		60.220		0.219		Polarizati	,	cal		
	evation (m)		280.0		255.0			K 1.33			
	enna Height		30.0		5.0	Cli	imate Regi		orial		
	Gain (dBi)							1			
Effective Antenna			47.0		6.9		Ground Ty	pe Avera	ge		
	stance (km)		10.0		12.0		1	•	•		
	evation (m)		290.0		257.0						
	Angle (deg)		-0.148		0.055						
	2 (27										
Diffra	ction Loss (dB) 36	.0								
	atter Loss (Combined	Loss	(dB)	33.9				
	oss L(0.5) (,				17					
	Space Loss (
Atmospheric Absorp	•	•	.2	Total	Loss	(dB)	153.8				
	(. ,					
Percent of	Loss Exc	eeds									
	=0.5)	(P=0.9	5)								
	.6 ďB			is LOS for	flat	eartl	n				
	.6 dB ·	25.6	dB Path	is blocked	by 4	obsta	acle(s)				
	.6 dB			nas separa							
99.0000 27	.6 dB	20.8	dB Path .	is blocked	betwe	een ho	orizons				
99.9000 25	. 4 dB	18.0	đВ								
	.6 dB	15.5									
99.9950 23	.3 dB	15.0	dB								
	.8 dB	14.3									
Ground Elevations	- AMSL Str	ucture &	Antenna 1	Height - A	GL						
DIST(km) GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST	(m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00 280.0	0.0	0.0	22.00	250.0		0.0	- 7.5	44.00	226.0	0.0	5.9
2.00 260.0	0.0	41.5	24.00	253.0		0.0	-13.8	46.00	253.0	0.0	-19.2
4.00 279.0	0.0	14.5	26.00	254.0		0.0	-17.7	48.00	257.0	0.0	-20.9
6.00 275.0	0.0	10.9	28.00	236.0		0.0	-2.1	50.00	248.0	0.0	-9.1
8.00 280.0	0.0	-1.1	30.00	251.0		0.0	-19.0	52.00	248.0	0.0	-5.8
10.00 290.0	0.0	-17.8	32.00	250.0		0.0	-19.4	54.00	247.0	0.0	-1.1
12.00 281.0	0.0	-14. 9	34.00	252.0		0.0	-22.3	56.00	249.0	0.0	1.2
14.00 281.0	0.0	-20.6	36.00	262.0		0.0	-32.8	58.00	255.0	0.0	-0.2
16.00 280.0	0.0	-24.8	38.00	240.0		0.0	-10.9	60.00	255.0	0.0	0.0
18.00 263.0	0.0	-12.5	40.00	230.0		0.0	-0.4				
20.00 254.0	0.0	-7.7	42.00	257.0		0.0	-26.5				
	0.0										

:

Diffraction Loss Report - punto2.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss: Included

	El Cruce	Punto 2
Longitude Bearing (deg) Antenna Height (m) Effective Antenna Height (m)	000 10 35.48 S 000 1 076 50 00.00 W 076 3 30.199 30.00 56.23 290.00 10.00 -0.148 60.00 400.00 1.33	7 18.69 N 3 52.23 W 210.200 5.00 5.34 269.00 12.00 -0.002
Polarization Tree Type Ground Type	Vertical Wet Rain Forest Average	
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 41.08 0.00 120.07 120.07	

Но	Bear Elev	eight (m) ance (km) ation (m)	000 10 076 50			.69 N	Di P Cli	mate Regi	m) 60.0 on Vertic K 1.33	orial		
	ledian Loss	er Loss (L(0.5) (ce Loss (dB) 41 dB) 34 dB) 120	.1 .8	Combined Total	Loss	, ,	35.2 155.1				
Percent of all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9975	(P=0. 34.8 32.9 31.9 29.0 26.9 25.1 24.8 24.3	dB dB dB dB dB dB dB	(P=0.99 29.0 (27.0 (25.8 (dB Path idB Path idB Path idB Path idB BdB dB	s LOS for s blocked as separa s blocked	by 3 te hor	obsta izons	ncle(s) S				
Ground Ele DIST(km) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00	evations - GND (m) C 280.0 260.0 260.0 260.0 280.0 290.0 286.0 281.0 283.0 280.0 254.0		CLR (m) 0.0 41.5 33.6 26.0 -1.0 -17.6 -19.7 -20.3 -27.5 -29.2 -7.4	Antenna E DIST(km) 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 40.00 42.00	GND (m) 251.0 244.0 246.0 249.0 249.0 248.0 250.0 244.0 241.0 240.0 235.0	OBST	(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -8.2 -4.4 -9.2 -14.6 -16.5 -16.9 -19.8 -14.2 -11.2 -9.7 -3.8	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 241.0 241.0 269.0 256.0 257.0 258.0 256.0 256.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -8.4 -6.5 -32.1 -16.3 -13.9 -11.2 -4.9 -0.2 0.0

Diffraction Loss Report - punto3.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

	El	Cruce		Punto 3
				0 21 38.00 N
	076 50	00.00	W 07	6 49 59.98 W
Bearing (deg)		0.001		180.001
Antenna Height (m)		30.00		5.00
Effective Antenna Height (m)		57.65		5.00
Horizon Elevation (m)		291.00		253.00
Horizon Distance (km)		16.00		8.00
Horizon Angle (deg)	-	-0.122		-0.084
Path Length (km)			60	.00
Frequency (MHz)			400	.00
Earth Radius Factor (K)			1	.33
Polarization			Verti	cal
Tree Type	1	Wet Rai	in For	est
Ground Type			Aver	age
Total Diffraction Loss (dB)			0	.00
Scatter Loss (dB)				.84
Combined Loss (dB)				.00
Free Space Loss (dB)			120	
Total Loss (dB)			120	

H	El Ant Antenna e Antenna orizon Di orizon El	Latitud Longitud aring (deg evation (m enna Heigh Gain (dBi Height (m stance (km evation (m Angle (deg	e 000 10 e 076 50)) t))	Cruce 35.48 S 00.00 W 0.001 280.0 30.0 57.7 16.0 291.0 -0.122	076 49 59 18	.00 N	D)	imate Regi	•	cal orial		
	Sca Median Lo Free S	tion Loss tter Loss ss L(0.5) pace Loss tion Loss	(dB) 37 (dB) 33 (dB) 120	.8 .0	Combined			33.4 153.2				
vemospher	ic moorb	CTON POSS	(111)	• 2	10041	пово	(00)	133.2				
Percent o all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9950 99.9975	(P= 33. 31. 30. 27. 25. 23. 23.	Loss Ex 0.5) 0 dB 1 dB 1 dB 2 dB 1 dB 3 dB 0 dB 5 dB	(P=0.9 27.2 25.2 24.0	dB Path dB Path dB Path dB Path dB dB dB	is LOS for is blocked has separa is blocked	by 4 te hor	obsta cizons	acle(s) s				
Ground El	evations	- AMSL st	ructure &	Antenna 1	Height - A	GL						
DIST(km) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00	GND (m) 280.0 260.0 260.0 273.0 260.0 280.0 285.0 288.0 291.0 280.0 285.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CLR (m) 0.0 41.5 33.6 13.0 19.0 -7.6 -18.7 -27.3 -35.5 -29.2 -38.4	DIST(km) 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00	GND (n) 260.0 252.0 250.0 240.0 240.0 245.0 245.0 253.0 253.0		(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -17.2 -12.4 -13.2 -5.6 -7.5 -14.9 -14.8 -15.2 -23.2 -22.7 -13.8	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 241.0 245.0 245.0 245.0 253.0 253.0 253.0 256.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -8.4 -10.5 -8.1 -5.3 -9.9 -6.2 -1.9 -0.2 0.0

i de la companya de l

Diffraction Loss Report - punto4.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

El Cruce Punto 4
000 10 35.48 S 000 17 18.69 N
076 50 00.00 W 077 06 07.74 W
329.801 149.801
30.00 5.00
59.82 11.79
287.00 247.00
18.00 16.00
-0.134 -0.065
60.00
400.00
1.33
Vertical
Wet Rain Forest
Average
0.00
38.34
0.00
120.07
120.07

Effective A Hor Hor	Lo: Bearin	n (dBi) ght (m) ce (km) ion (m)	e 000 10 e 076 50	Cruce 35.48 S 00.00 W 329.801 280.0 30.0 59.8 18.0 287.0 -0.134		.69 N	D.	imate Reg		cal		
	Diffraction Scatter dian Loss L Free Space Absorption	Loss ((0.5) (Loss (dB) 38 dB) 28 dB) 120	.3 .5	Combined Total			28.8				
Percent of all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9975	(P=0.5) 28.5 dB 26.8 dB 25.8 dB 23.2 dB 21.3 dB 19.7 dB 19.4 dB 18.9 dB		(P=0.9 22.6 20.8 19.8	dB Path: dB Path: dB Path: dB Path: dB dB dB	is LOS for is blocked nas separa is blocked	by 3 te hor	obsta izons	acle(s) s				
Ground Eleva DIST(km) G 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00			CLR (m) 0.0 41.2 32.8 24.9 17.5 10.6 -20.9 -21.9 -27.4 -39.5 -37.1		GND (m) 280.0 262.0 257.0 240.0 253.0 240.0 230.0 225.0 237.0 241.0	OBST	(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -41.2 -26.8 -25.0 -10.7 -26.0 -14.7 -6.0 -1.8 -14.2 -18.1 -24.5	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 247.0 234.0 240.0 230.0 225.0 235.0 240.0 241.0 245.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -22.4 -7.9 -11.9 0.6 8.5 1.9 0.8 4.2 0.0

Diffraction Loss Report - punto5.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

	El Cruce Pu	into 5
Longitude	000 10 35.48 S 000 05 3 076 50 00.00 W 077 17 5 299.781 11	
Antenna Height (m) Effective Antenna Height (m)	30.00 49.59	5.00 5.27
Horizon Elevation (m) Horizon Distance (km)	18.00	8.00
Horizon Angle (deg) Path Length (km) Frequency (MHz)	-0.140 60.00 400.00	0.048
Earth Radius Factor (K) Polarization Tree Type	1.33 Vertical Wet Rain Forest	
Ground Type	wet kain rolest Average	
Total Diffraction Loss (dB) Scatter Loss (dB)	0.00 38.95	
Combined Loss (dB) Free Space Loss (dB)	0.00 120.07	
Total Loss (dB)	120.07	

	E] Ant Antenna e Antenna	Latitud Longitud earing (deg Levation (m Lenna Heigh a Gain (dBi a Height (m	e 000 10 e 076 50)) t)	Cruce 35.48 S 00.00 W 299.781 280.0 30.0 49.6 18.0).26 N	D:	imate Reg		ical corial		
		evation (m		285.0		242.0						
	Horizon	Angle (deg)	-0.140	-	0.048						
	Sca Median Lo Free S	etion Loss etter Loss ess L(0.5) epace Loss etion Loss	(dB) 38 (dB) 33 (dB) 120	.9 .9	Combined Total			34.3 154.1				
Percent o	of.	Loss Ex	ceeds									
all hours		:0.5)	(P=0.9	5)								
50.0000		9 dB		•	is LOS for	flat	earth	า				
80.0000		9 dB	26.0		is blocked							
90.0000		9 dB	24.8		nas separa							
99.0000		9 dB			is blocked							
99.9000		7 dB	18.2									
99.9900		9 dB	15.7									
99.9950		5 dB	15.2									
99.9975		0 dB	14.6									
Ground El	evations	- AMSL St	ructure &	Antenna 1	Height - A	.GL						
DIST(km)	GND (m)	OBST (m)	CLR (m)	DIST(km)	GND (m)	OBST	(m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	280.0	0.0	0.0	22.00	262.0		0.0	-25.0	44.00	243.0	0.0	-22.1
2.00	260.0	0.0	41.0	24.00	268.0		0.0	-34.8	46.00	240.0	0.0	-17.7
4.00	260.0	0.0	32.5	26.00			0.0	-37.2	48.00	238.0	0.0	-13.9
6.00	273.0	0.0	11.4	28.00			0.0	-39.1	50.00	240.0	0.0	-13.6
8.00	260.0	0.0	16.9	30.00			0.0	-15.5	52.00	242.0	0.0	-12.8
10.00	260.0	0.0	9.7	32.00			0.0	-31.4	54.00	240.0	0.0	-7.6
12.00	260.0	0.0	3.1	34.00	240.0		0.0	-18.8		240.0	0.0	-3.8
14.00	260.0	0.0	-3.1	36.00	240.0		0.0	-19.8	58.00	240.0	0.0	0.3
16.00	280.0	0.0	-28.8	38.00			0.0	-15.4	60.00	240.0	0.0	0.0
18.00	285.0	0.0	-39.0	40.00	235.0		0.0	-15.4				
20.00	280.0	0.0	-38.7	42.00	241.0		0.0	-21.0				

... i

Diffraction Loss Report - punto6.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2
Foreground Loss : Included

		El	Cruce			I	Punto 6	
Latitude Longitude Bearing (deg) Antenna Height (m) Effective Antenna Height (m) Horizon Elevation (m) Horizon Distance (km) Horizon Angle (deg) Path Length (km) Frequency (MHz) Earth Radius Factor (K) Polarization Tree Type	076	50 26		W Vei	60.0 400.0 1.3	22 00 00 33 al		
Ground Type				λ	/erac	ge		
Total Diffraction Loss (dB) Scatter Loss (dB)					0.0			
Combined Loss (dB)					0.0			
Free Space Loss (dB)				1	120.0			
Total Loss (dB)				1	120.0	07		

Н	Bear Elev	Longitude ring (deg) ration (m) nna Height Gain (dBi) Height (m) tance (km)	e 000 10 e 076 50	Cruce 35.48 S 00.00 W 269.999 280.0 30.0 38.1 16.0 274.0 -0.183		.48 S	D.	imate Regi		cal orial		
	Median Loss	ter Loss (s L(0.5) (ace Loss (dB) 36 dB) 32 dB) 120	.2	Combined Total		. ,	32.8 152.7				
Percent of all hours 50.0000 80.0000 90.0000 99.9000 99.9900 99.9950 99.9975		dB dB dB dB dB dB dB	(P=0.9 26.6 24.4 23.2	dB Path dB Path dB Path dB Path dB dB dB	is LOS for is blocked has separa is blocked	by 3 te hor	obsta izons	acle(s)	•			
Ground El DIST(km) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00	evations - GND (m) 0 280.0 260.0 279.0 260.0 274.0 260.0 260.0 274.0 260.0 260.0		CLR (m) 0.0 41.7 15.0 26.6 5.8 13.4 7.5 2.1 -16.9 -7.4 -11.4	Antenna I DIST(km) 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 40.00 42.00	GND (m) 260.0 260.0 262.0 260.0 260.0 260.0 260.0 260.0	OBST	(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -15.0 -18.0 -22.6 -22.8 -24.5 -25.7 -26.4 -26.6 -26.4 -25.7 -24.6	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 269.0 264.0 260.0 260.0 260.0 260.0 260.0 260.0 260.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -32.0 -24.9 -18.3 -15.3 -11.7 -7.8 -3.3 1.6 0.0

:

Diffraction Loss Report - punto7.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles : 2

Foreground Loss : Included

	El Cruce Punto 7
Longitude	000 10 35.48 S 000 26 45.21 S 076 50 00.00 W 077 17 56.14 W 240.115 60.118 30.00 5.00 46.09 6.24 260.00 269.00 26.00 8.00 -0.198 0.002
Path Length (km) Frequency (MHz) Earth Radius Factor (K) Polarization Tree Type Ground Type	60.00 400.00 1.33 Vertical Wet Rain Forest Average
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 38.49 0.00 120.07 120.07

	ngitude 076 g (deg) ion (m) Height n (dBi) ght (m) ce (km) ion (m)	El Cruce 0 10 35.48 5 50 00.00 240.1 280 30 46 26 260 -0.1	S 000 26 4 W 077 17 5 5 0 0 1 0 0	6.14 W I 60.118 260.0	equency (MHz Distance (km Polarization I Limate Region Ground Type) 60.0 n Vertical K 1.33 n Equatorial		
Diffraction Scatter Median Loss L Free Space Atmospheric Absorption	Loss (dB) (0.5) (dB) Loss (dB)	33.8 38.5 32.1 120.1 0.2		d Loss (dB)				
Percent of all hours (P=0.5) 50.0000 32.1 dB 80.0000 29.1 dB 99.0000 26.1 dB 99.9000 23.9 dB 99.9900 22.1 dB 99.9950 21.7 dB 99.9975 21.2 dB	26 24 23 19 16 13	.2 dB Pa	ch is LOS fo ch is blocke ch has separ ch is los be	d by 2 obstate horizon	tacle(s) ns			
Ground Elevations - AM. DIST(km) GND (m) OBS' 0.00 280.0 2.00 260.0 4.00 260.0 8.00 273.0 10.00 260.0 12.00 264.0 14.00 269.0 16.00 264.0 18.00 260.0 20.00 262.0	0.0 CLR (0.0 CLR (0.0 33 0.0 26 0.0 6 0.0 13 0.0 3 0.0 7 0.0 -7	m) DIST() 0.0 22 0.7 24 0.8 26 0.4 28 0.5 30 0.1 32 0.1 34 0.4 36 0.4 38 0.0 40	-	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CLR (m) D16.7 -18.8 -21.5 -17.7 -15.5 -16.7 -12.5 -15.8 -16.7 -19.1 -16.0	IST(km) GND (m 44.00 245. 46.00 247. 50.00 269. 52.00 269. 54.00 262. 56.00 262. 58.00 260. 60.00 260.	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	CLR (m) -9.4 -7.4 -6.9 -25.9 -22.5 -11.6 -7.2 -0.3 0.0

Diffraction Loss Report - punto8.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

	El Cruce	Punto 8
	30.00	
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 36.60 0.00 120.07 120.07	

-				Cruce	Punt							
					000 38 33		Fre	guency (M	Hz) 400.	0		
		Longitude	076 50	00.00 W	077 06 07	.74 W	Di	istance (1	km) 60.0			
	Bear	cing (deg)		210.138	3	0.140	I	Polarizat	ion Vert	ical		
		/ation (m)		280.0		300.0			K 1.33			
	Anter	nna Height		30.0		5.0	Cli	imate Reg.	ion Equa	torial		
	Antenna G	Gain (dBi)										
Effectiv	e Antenna B	Height (m)		55.9		5.0		Ground Ty	ype Aver	age		
	orizon Dist			44.0		8.0						
H	orizon Elev			300.0		300.0						
	Horizon An	ngle (deg)		-0.161	-	0.063						
	n: ffwaati	on Togg /	งยา รว	2								
		on Loss (Combined	Taga	/ d p \	26 5				
l ,		er Loss (•		Combined	LOSS	(ab)	36.5				
1	Median Loss											
ltmaanhar		ace Loss (.1 .2	motal.	Loca	/ dp /	156.4				
Achospher	ic Absorpti	נסוו ויסצי (ub) u	• 4	Total	. горр	(ub)	130.4				
Percent o	f	Loss Exc	eeds									
all hours	(P=0.	.5)	(P=0.9)	5)								
50.0000	36.2	dB	30.3	dB Path	is LOS for	flat	earth	h				
80.0000	34.2	dB	28.3	dB Path	is blocked	by 2	obsta	acle(s)				
90.0000	33.2	dB	27.1	dB Path	has separa	te hor	cizons	3				
99.0000	30.3	dB	23.6	dB Path	is los bet	ween l	norizo	ons				
99.9000	28.1	dB	20.7	dB								
99.9900	26.4	dB	18.3	dB								
99.9950	26.0	dB	17.8	dB								
99.9975	25.6	dB	17.2	dB								
	evations -						1	orn /\	D.T.O.T. / 1 \	aun (-)	00am /-1	arn /1
DIST(km)			CLR (m)		GND (m)	OBST		CLR (m)	DIST(km)	, ,	OBST (m)	CLR (m)
0.00	280.0	0.0	0.0	22.00			0.0	233.0	44.00		0.0	-35.1
2.00	280.0	0.0	23.0	24.00			0.0	8.2	46.00		0.0	-21.7
4.00	270.0	0.0	26.5	26.00			0.0	6.8	48.00		0.0	-7.9
6.00	267.0	0.0	23.4	28.00			0.0	9.9	50.00		0.0	-13.6
8.00	260.0	0.0	24.9	30.00			0.0	9.5	52.00 54.00		0.0	-18.8
10.00 12.00	260.0 271.0	0.0	19.7 4.1	32.00 34.00			0.0	9.6 10.2	56.00		0.0	6.4 2.2
14.00	263.0	0.0	7.9	36.00			0.0	-8.8	58.00		0.0	-1.7
16.00	263.0	0.0	4.2	38.00			0.0	9.6	60.00		0.0	0.0
18.00	261.0	0.0	3.0	40.00			0.0	-30.4	00.00	200.0	0.0	0.0
20.00	261.0	0.0	0.3	40.00			0.0	-28.0				
20.00	Z01.U	0.0	0.3	42.00	230.0		0.0	-20.0				

Diffraction Loss Report - punto9.pl2 Pathloss

Effective Antenna Height Method : Least Squares Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles: 2
Foreground Loss: Included

	El Cruce Punto 9
Longitude Bearing (deg) Antenna Height (m) Effective Antenna Height (m)	000 10 35.48 S 000 42 52.96 S 076 50 00.00 W 076 49 59.98 W 179.999 359.999 30.00 5.00 46.32 5.00 300.00 44.00 10.00
Horizon Angle (deg) Path Length (km) Frequency (MHz) Earth Radius Factor (K) Polarization Tree Type Ground Type	-0.161 -0.062 60.00 400.00 1.33 Vertical Wet Rain Forest Average
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 36.63 0.00 120.07 120.07

H	Ele Ante Antenna e Antenna orizon Dis orizon Ele	Latitude Longitude aring (deg) evation (m) enna Height Gain (dBi) Height (m) stance (km) evation (m)	e 000 10 e 076 50	Cruce 35.48 S 00.00 W 179.999 280.0 30.0 46.3 44.0 300.0 -0.161		.96 S	Di F Cli	imate Reg	•	cal orial		
	Scat Median Los Free Sp	tion Loss (tter Loss (ss L(0.5) (pace Loss (tion Loss (dB) 36 (dB) 36 (dB) 120	.1 .6 .1 .1	Combined Total			36.5 156.3				
Percent o all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9950 99.9975		L dB L dB O dB O dB O dB O dB O dB	(P=0.9 30.2 28.1 26.9	dB Path dB Path dB Path dB dB dB dB	is LOS for is blocked has separa is blocked	by 1 te hor	obsta izons	acle(s)				
Ground El DIST(km) 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00		OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CLR (m) 0.0 28.0 36.5 21.4 18.9 13.7 4.1 10.9 5.2 4.0 1.3	Antenna DIST(km) 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 40.00 42.00	GND (m) 260.0 260.0 258.0 255.0 259.0 280.0 280.0 260.0 265.0	OBST	(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -1.0 -2.8 -2.2 -0.1 -4.5 -25.4 -24.8 -3.8 -2.4 -5.4 -6.0	DIST(km) 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00	GND (m) 300.0 300.0 300.0 270.0 280.0 300.0 300.0	OBST (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CLR (m) -35.1 -31.7 -27.9 -23.6 11.2 6.4 -7.8 -1.7 0.0

Diffraction Loss Report - punto10.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2
Foreground Loss : Included

		El	Cruce			Ρι	unto 10	
Latitude	000	10	35.48	S	000	38	33.65 S	
Longitude	076	50	00.00	W	076	33	52.23 W	•
Bearing (deg)		14	19.862				329.860	
Antenna Height (m)			30.00				5.00	
Effective Antenna Height (m)			30.92				5.00	
Horizon Elevation (m)		3	300.00				300.00	
Horizon Distance (km)			36.00				10.00	
Horizon Angle (deg)		-	-0.137				-0.062	
Path Length (km)					60.0	0.0		
Frequency (MHz)					400.0	0.0		
Earth Radius Factor (K)					1.3	33		
Polarization				۷e	rtica	al		
Tree Type		V	Vet Ra:	in	Fores	st		
Ground Type				A	vera	ge		
					•			
Total Diffraction Loss (dB)					0.0	0 C		
Scatter Loss (dB)					38.2	27		
Combined Loss (dB)					0.0	00		
Free Space Loss (dB)					120.0	07		
Total Loss (dB)					120.0	07		

			El	Cruce	Punto	10						
		Latitude			000 38 33		Free	quency (M	Hz) 400.)		
	I	Longitude			076 33 52			istance (1	,			
		ing (deg)		149.862		9.860		•	ion Vert	ical		
		ation (m)		280.0		300.0		1	K 1.33			
		na Height		30.0		5.0	c1	imate Red	ion Equa	torial		
	Antenna Ga											
Effectiv	e Antenna He			30.9		5.0		Ground T	ype Aver	age		
	orizon Dista			36.0		10.0		01041,4 1	110 11,02	~90		
	orizon Eleva			300.0		300.0						
п	Horizon And			-0.137		0.062						
	HOTTEON WIG	gre (deg)		0.131		0.002						
	Diffraction	on Loss (dB) 33	.7								
		er Loss (•		Combined	Loss	(dB)	32.4				
	Median Loss		•				1 /					
-		ce Loss (
Atmospher	ic Absorption			.2	Total	Loss	(dB)	152.1				
пешоориог	10 imbolpol	on Book 1					\/					
Percent o	f	Loss Exc	eeds									
all hours		5)	(P=0.99	5)								
50.0000	31.9				is LOS for	flat	eartl	h				
80.0000	29.7		23.7	iB Path :	is blocked	by 3	obst	acle(s)				
90.0000	28.5				nas separa							
99.0000	25.1				is blocked							
99.9000	22.6		14.8	iB								
99.9900	20.6		12.0									
99.9950	20.2		11.4									
99.9975	19.7		10.6									
22.227												
Ground El	evations - 1	AMSL Str	ucture &	Antenna 1	Height - A	.GL						
DIST(km)	GND (m) Ol	BST (m)	CLR (m)	DIST(km)	GND (m)	OBST	(m)	CLR (m)	DIST(km)	GND (m)	OBST (m)	CLR (m)
0.00	280.0	0.0	0.0	22.00			0.0	-7.0	44.00	300.0	0.0	-35.1
2.00	283.0	0.0	20.0	24.00	266.0		0.0	-8.8	46.00	280.0	0.0	-11.7
4.00	280.0	0.0	16.5	26.00	264.0		0.0	-8.2	48.00	300.0	0.0	-27.9
6.00	270.0	0.0	20.4	28.00			0.0	-6.1	50.00		0.0	-23.6
8.00	270.0	0.0	14.9	30.00			0.0	- 2.5	52.00		0.0	1.2
10.00	275.0	0.0	4.7	32.00			0.0	-3.4	54.00		0.0	6.4
12.00	272.0	0.0	3.1	34.00			0.0	-24.8	56.00		0.0	-7.8
14.00	274.0	0.0	-3.1	36.00			0.0	-43.8	58.00		0.0	-1.7
16.00	271.0	0.0	-3.8	38.00			0.0	-22.4	60.00		0.0	0.0
18.00	265.0	0.0	-1.0	40.00			0.0	-40.4				
20.00	273.0	0.0	-11.7	42.00	300.0		0.0	-38.0				
	- ·							•				

Diffraction Loss Report - puntol1.pl2 Pathloss

Effective Antenna Height Method : Least Squares

Multiple Knife Edge Method : Deygout Include Obstacle Radius : All Obstacles

Maximum Number of Obstacles: 2
Foreground Loss: Included

	E	Cruce		P	unto 11
Latitude Longitude					
Bearing (deg)	2	19.884			299.881
Antenna Height (m)		30.00			5.00
		35.19			5.00
Horizon Elevation (m)		320.00			320.00
Horizon Distance (km)		42.00			9.40
Horizon Angle (deg)		-0.128			-0.062
Path Length (km)				0.00	
Frequency (MHz)				0.00	
Earth Radius Factor (K)				1.33	
Polarization			Vert		
Tree Type		Wet Ra:			
Ground Type			Ave:	rage	
Total Diffraction Loss (dB)				0.00	
Scatter Loss (dB)			3	8.87	
Combined Loss (dB)				0.00	
Free Space Loss (dB)			12	0.07	
Total Loss (dB)			12	0.07	

À	Latitud Longitud Bearing (dec Elevation (n Antenna Heigh ntenna Gain (dB	de 000 10 de 076 50 g) n)			.21 S	D)					
Effective A	ntenna Height (1	a)	35.2		5.0		Ground Ty	ype Avera	ge		
	zon Distance (kr		42.0		9.4						
	zon Elevation (1		320.0		320.0						
Но	rizon Angle (dec	3)	-0.128	-	0.062						
Med	iffraction Loss Scatter Loss lan Loss L(0.5) Free Space Loss	(dB) 38 (dB) 30	.9 .0	Combined	Loss	(dB)	30.4				
	Absorption Loss	, ,	.2	Total	Loss	(dB)	150.2				
Percent of all hours 50.0000 80.0000 90.0000 99.0000 99.9000 99.9950 99.9975	Loss E: (P=0.5) 30.0 dB 27.8 dB 26.7 dB 23.4 dB 21.0 dB 19.0 dB 18.6 dB	(P=0.9 24.1 21.9 20.6 16.5 13.3 10.6 10.0 9.3	dB Path idB Path idB Path idB Path idB dB dB dB	is LOS for is blocked nas separa is los bet	by 2 te hor ween h	obsta izons	acle(s) s				
	tions - AMSL S			-			/ /		/ /		()
	ID (m) OBST (m)	CLR (m)	DIST(km) 22.00	GND (m) 265.0	OBST		CLR (m) 1.3	DIST(km) 44.00	GND (m) 300.0	OBST (m)	CLR (m)
0.00 2.00	280.0 0.0 283.0 0.0	0.0 20.7	24.00			0.0	0.2	46.00	320.0	0.0	-20.4 -36.4
	276.0 0.0	21.8	26.00			0.0	4.5	48.00	320.0	0.0	-31.9
	270.0 0.0	22.4	28.00	260.0		0.0	4.3	50.00	320.0	0.0	-26.9
	280.0 0.0	7.5	30.00	248.0		0.0	16.5	52.00	320.0	0.0	-21.5
	282.0 0.0	1.1	32.00	260.0		0.0	5.3	54.00	300.0	0.0	4.4
12.00	270.0 0.0		34.00	260.0		0.0	6.5	56.00	320.0	0.0	-9.2
14.00	280.0 0.0		36.00	300.0		0.0	-31.8	58.00	320.0	0.0	-2.3
	279.0 0.0		38.00			0.0	-29.7	60.00	320.0	0.0	0.0
18.00	271.0 0.0	-1.0	40.00			0.0	-27.1				
20.00	271.0 0.0	-3.1	42.00	320.0		0.0	-44.0				

. . .

Diffraction Loss Report - condil.pl2 Pathloss

Effective Antenna Height Method : Least Squares
Multiple Knife Edge Method : Deygout
Include Obstacle Radius : All Obstacles
Maximum Number of Obstacles : 2

Foreground Loss : Included

	Condijua El Reve	entador
Longitude Bearing (deg) Antenna Height (m) Effective Antenna Height (m)	20.00 860.02	
Total Diffraction Loss (dB) Scatter Loss (dB) Combined Loss (dB) Free Space Loss (dB) Total Loss (dB)	0.00 75.21 0.00 120.07 120.07	

	2	ni namantadan					
	Condijua	El Reventador					
		S 000 03 47.03					
_		W 077 34 42.58					
Bearing (deg)	37.86			tion Vertica	11		
Elevation (m)	2532.			K 1.33			
Antenna Height	20.		-	gion Equator	ial		
Antenna Gain (dBi)	10.						
Effective Antenna Height (m)	860.	0 5.	0 Ground 7	Type Average	1		
Antenna Gain (dBi)	10.	0 10.	0				
Horizon Distance (km)	50.	2 1.	2				
Horizon Elevation (m)	2048.	7 1600.	2				
Horizon Angle (deg)	-0.74	3 3.51	2				
Diffraction Loss (d	iB) 54.7						
Scatter Loss (d	iB) 75.2	Combined Los	s (dB) 54.6				
Median Loss L(0.5) (d	dB) 54.6						
Free Space Loss (d	dB) 120.1						
Atmospheric Absorption Loss (d	B) 0.2	Total Los	s (dB) 174.8				
Percent of Loss Exce	eeds						
all hours (P=0.5)	(P=0.95)						
50.0000 54.6 dB	48.8 dB						
80.0000 53.9 dB	48.1 dB Pat	h is blocked by	2 obstacle(s)				
90.0000 53.6 dB	47.7 dB Pat	h has separate h	orizons				
⁻ 99.0000 52.6 dB	46.6 dB Pat	h is los between	horizons				
99.9000 51.8 dB	45.7 dB						
99.9900 51.2 dB	45.0 dB						
99.9950 51.1 dB	44.9 dB						
99.9975 50.9 dB	44.7 dB						
Ground Elevations - AMSL Stru	icture & Antenn	a Height - AGL					
DIST(km) GND (m) OBST (m)	CLR (m) DIST(k	m) GND (m) OBS	T (m) CLR (m)	DIST(km) G	MD (m)	OBST (m)	CLR (m)
0.00 2532.0 0.0	0.0 20.	82 1480.0	0.0 667.7	41.63	1572.3	0.0	222.0
1.22 2206.3 0.0	320.5 22.	04 1481.6	0.0 643.9	42.86	1605.7	0.0	169.5
2.45 1946.1 0.0	555.7 23.	26 1530.6	0.0 572.9	44.0B	1726.5	0.0	29.6
3.67 1799.2 0.0	677.8 24.	49 1560.0	0.0 521.6	45.31	1726.5	0.0	10.8
4.90 1795.9 0.0	656.4 25.	71 1560.0	0.0 500.0	46.53	1591.8	0.0	126.8
6.12 1842.4 0.0	585.4 26.	94 1761.4	0.0 277.1	47.76	1665.3	0.0	34.9
7.35 1866.9 0.0	536.5 28.	16 1980.1	0.0 37.1	48.98	1874.4	0.0	-192.6
8.57 1834.3 0.0	545.1 29.	39 1913.4	0.0 82.7	50.20	2048.7	0.0	-385.0
9.80 1736.3 0.0	619.1 30.	61 1806.5	0.0 168.6	51.43	1879.1	0.0	-233.4
11.02 1720.0 0.0	611.6 31.	84 1659.6	0.0 294.7	52.65	1747.8	0.0	-119.8
12.24 1705.3 0.0	602.7 33.	06 1640.0	0.0 293.7	53.88	1649.8	0.0	-39.4
13.47 1631.8 0.0	652.7 34.	29 1651.4	0.0 261.8	55.10	1662.0	0.0	-69.1
14.69 1593.1 0.0	668.3 35.	51 1700.4	0.0 192.6	56.33	1675.3	0.0	-99.6
15.92 1580.8 0.0	657.4 36.	74 1720.0	0.0 152.9	57.55	1657.5	0.0	-98.9
17.14 1580.0 0.0	635.3 37.	96 1720.0	0.0 133.0	58.78	1600.2	0.0	-58.5
18.37 1561.6 0.0	631.0 39.	18 1770.3	0.0 63.0	60.00	1520.0	0.0	0.0
19.59 1500.4 0.0	669.7 40.	41 1746.8	0.0 66.9				

Explicación de los resultados presentados en los anexos:

- 1. AREAS DE COBERTURA
- 2. PERDIDAS POR DIFRACCION VS DISTANCIA
- 3. REPORTES DE INTERFERENCIAS (OHLOSS)

1. AREAS DE COBERTURA.

Los gráficos obtenidos representan el nivel de señal recibida a lo largo de los radiales. Estos niveles pueden ser:

- ♦ Señal Recibida (microvoltios)
- Señal Recibida (dBm)
- Señal Recibida (dBW)
- Margen sobre el Umbral de Recepción (dB)
- ♦ Intensidad de Campo Eléctrico (microvoltios/metro)

Para el presente trabajo se escogió como criterio la Señal Recibida en dBm. Por lo tanto los gráficos representan los niveles de señal recibida a lo largo de los radiales en dBm.

Para poder observar mejor los niveles de señal recibida se fijo los siguientes valores: -40, -98, -99, -110 y -111 dBm. Se escogió estos niveles debido a las características de las estaciones de suscriptores dadas en el manual(ver anexo 2).

Por ejemplo para el gráfico del área de cobertura, cuya estación base se encuentra en el sitio denominado El Cruce para un nivel de señal de -98 dBm se pueden observar tramos en los cuales no existe señal recibida mayor que este nivel. En la siguiente figura, el nivel de señal referencial se fijo en -99dBm, en este caso interesaba solamente los sitios en los cuales la señal estará entre -99 y -98dBm ya que para niveles mayores de -98dBm habían sido localizados en la figura anterior. Por lo tanto para saber los sitios en los cuales la señal será mayor que -99 dBm se deben superponer ambos gráficos. De igual manera para los niveles de -110 y -111 dBm.

Lo explicado en el párrafo anterior se cumple para los sitios El Cruce y Condijua.

En el caso de la estación base localizada en la Cordillera Napo-Galeras se representa la totalidad de los tramos en los cuales la señal recibida es mayor que la referencia.

También existen gráficos en los que se representan los tramos en los cuales la señal recibida será mas baja que el menor de los niveles de referencia.


Utilizamos estas dos formas de representación para observar las diferencias de una manera mucho más clara.

2. PERDIDAS POR DIFRACCION VS DISTANCIA

Los gráficos presentan los resultados de calcular los valores combinados de las pérdidas por difracción y las pérdidas por dispersión troposférica a lo largo del trayecto seguido por la señal a través del perfil topográfico utilizando el algoritmo de difracción seleccionado.

Las líneas de menor intensidad y grosor representan el perfil topográfico; caso contrario, las líneas de mayor intensidad muestran los valores de pérdidas en cada punto del trayecto.

Por ejemplo, analizaremos el gráfico del radial a 0° del área de cobertura 1:

En el punto donde se encuentra la antena de la estación base las pérdidas serán de 0 dB; dichas pérdidas irán subiendo hasta un limite de 9 dB a una distancia de 5 Km desde la estación base. Luego se mantendrán en 0 dB para el resto del trayecto.

3. REPORTES DE INTERFERENCIAS (OHLOSS)

Los reportes OHLOSS presentan los resultados de calcular las pérdidas totales a través del trayecto de los radiales.

La terminología es la siguiente:

- Pérdidas por Difracción
- Pérdidas por Dispersión Troposférica (Scatter Loss): depende de la frecuencia y es relativa a la pérdida en el espacio libre.
- Pérdidas del Medio de Transmisión (Median Loss): se obtiene aplicando un factor de ajuste climático a las pérdidas combinadas.
- Pérdidas de Espacio Libre
- Pérdidas por Absorción Atmosférica
- Pérdidas por Arboles (Clutter Loss)
- Pérdidas Totales

La distribución de pérdidas acumulativas representa la probable distribución de pérdidas acumuladas.

Por ejemplo: para una aplicación de interferencia

Percent of	Loss Exceeds					
all hours	(P=0.5)	(P=0.95)				
50.0000	44.0 dB	38.2 dB				
80.0000	37.3 dB	30.4 dB				
90.0000	33.9 dB	25.6 dB				
99.9900	10.3 dB	-4.5 dB				
99.9950	9.1 dB	-5.0 dB				
99.9975	7.5 dB	-5.4 dB				

Los valores de pérdidas en la columna P=0.5, representa el valor promedio de las pérdidas esperadas como función del tiempo. Los valores de la columna P=0.95 están ajustados para un valor de 95% de confiabilidad. Los valores de 50% para P=0.5 son los mismos para aplicaciones de interferencia o transmisión.

Otro término importante es el CLR (libramiento), que es el libramiento absoluto medido desde la cima de una obstrucción a la línea entre las antenas. Se incluye los efectos del factor de curvatura de la tierra.

Las constantes se encuentran calculadas en el manual del usuario del programa PATHLOSS.