ESCUELA POLITECNICA NACIONAL FACULTAD DE INGENIERIA ELECTRICA

"DISENO Y CONSTRUCCION DE UNA MUFLA PARA ESTUDIO DE ENVEJECIMIENTO EN MATERIALES AISLANTES"

HECTOR HORACIO FIALLO SANDOVAL

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO ELECTRICO

A MIS PADRES Y HERMANOS

.

AGRADECIMIENTO

Mi profundo agradecimiento para el señor Ing<u>e</u> niero Paúl Ayora González, por los conocimie<u>n</u> tos impartidos, por sus valiosos consejos y por todo el apoyo brindado; al señor Raúl V<u>a</u> ca por su invalorable colaboración y a todas las personas que prestaron su concurso para que este trabajo llegue a su culminación.

Certifico que el presente trab<u>a</u> jo ha sido realizado en su tot<u>a</u> lidad por el señor Héctor Hor<u>a</u> cio Fiallo Sandoval bajo mi d<u>i</u> rección.

bra-Ing. Paúl Áyo

Director

INDICE

SUMARIO

Pág.

Capitulo I : INTRODUCCION

1.1.	Importancia de tener una mufla especial para el e <u>s</u>	
	tudio de envejecimiento de materiales aislantes	1
1.2.	Estudios realizados sobre el tema	2
1.3.	Alcance del estudio a realizarse	3

Capitulo II : ESTUDIO Y MODELO TERMICO DE LA MUFLA

2.1	Transferencia de calor	6
2.1.1.	Transferencia del calor por conducción	6
2.1.2.	Transferencia del calor por convección	. 10
2.1.2.1.	Cálculo de los coeficientes de transferencia del	
	calor por convección	11
2.1.3.	Transmisión del calor por radiación	13
2.1.3.1.	Cálculo del factor de forma	13
2.1.4.	Acceso visual al interior	21
2.1.5.	Comportamiento térmico de la ventana	21
2.2.	Fuente de energía calórica	24
2.2.1.	Flujo térmico conseguido en una resistencia el <u>éc</u>	
	trica	25
2.3.	Aislamiento térmico	27
2.4.	Energía almacenada y pérdidas térmicas	30
2.4.1.	Consideraciones	. 30

Pág.

34 37 38
34 37 38
37 38
38
39
40
41
42
42
43
44
46
48
51
53
54
54
57

2

Capitulo III: AISLAMIENTO ELECTRICO

Efecto de la temperatura en la capacidad dieléctri

3,.1.

	ca del aire
3.2	. Efecto de la configuración geométrica de la mufla
	en el aislamiento
3.2	a. Modelación Digital
3.2	b. Modelo Analógico
3.2	.c. Bushing de la mufla
3.2	d. Distancia de aislamiento y voltaje de operación
3.3	. Diseño del aislamiento para operar con hasta 30 kV
Cap	tulo IV : DISEÑOS Y PRUEBAS DE FUNCIONAMIENTO
4.1	Diseño térmico
4.1	1. Constante térmica y pérdidas
4.1	2. Potencia de la fuente
4.1	3. Disposición de los calefactores
4.2	Diseño eléctrico
4.2	1. Resistencia de las niquelinas
4.2	2. Evaluación de potencia en las niquelinas
4.2	3. Conductores eléctricos
4.2	4. Protecciones
4.3.	Diseño del control de Temperatura
4.3.	1. Transductor
4.3.	2. Amplificador
4.3.	3. Comparador
4.3.	4. Controlador

Pag.

-

Pág.

4.3.5.	Control de potencia	105
4.3.6.	Salida a displays	106
4.3.7.	Reloj de tiempo real	107
4.4.	Detalles comstructivos y pruebas	108
4.4.1.	Detalles constructivos	108
4.4.2.	Pruebas de funcionamiento	119
4.4.2.1.	Pruebas de calentamiento	119
4.4.2.1.a.	Pruebas en alto voltaje	120
4.4.2.1.b.	Pruebas en bajo voltaje	125
4.4.2.2.	Pruebas eléctricas	125
4.4.2.3.	Pruebas del control de temperatura	131
Capitulo V	: PRUEBAS DE APLICACION EN EL ENVEJECIMIENTO	· .
5.1.	Modelos simples de envejecimiento	135
5.1.1.	Modelo de envejecimiento térmico	135
5.1.2.	Modelo de envejecimiento eléctrico	137
5.2.	Modelo de envejecimiento combinado	139
5.3.	Pruebas en materiales de tipo polimérico	143
5.3.1.	Pruebas de envejecimiento térmico	143
5.3.2.	Prueba de envejecimiento combinado	161
Capítulo Vi	: CONCLUSIONES Y RECOMENDACIONES	165

APENDICE A: Resultados obtenidos en el computador.

APENDICE B: Planos de la mufla.

APENDICE C: Pruebas para determinar los coeficientes de variación de la resistencia con la temperatura.

5

APENDICE D: Manual de operación.

APENDICE E: Evaluación de costos.

APENDICE F: Resultados de las pruebas de funcionamiento.

APENDICE G: Resultados de las pruebas de envejecimiento.

BIBLIOGRAFIA.

CAPITULO I

1

INTRODUCCION

1.1. IMPORTANCIA DE TENER UNA MUFLA ESPECIAL PARA EL ESTUDIO DE ENV<u>E</u> JECIMIENTO DE MATERIALES AISLANTES

Al ser una de las tareas fundamentales de la Universidad la investi gación y el desarrollo de tecnologías que permitan al país reducir la dependencia del extranjero, en la Escuela Politécnica Nacional y más específicamente en la Facultad de Ingeniería Eléctrica, se ha venido desarrollando investigaciones tendientes a satisfacer las n<u>e</u> cesidades tecnológicas y científicas de esta área.

En el área de Transmisión y Distribución de la mencionada Facultad se ha venido realizando continuas investigaciones en los campos del diseño, construcción y obtención de equipos y materiales

Dentro de las investigaciones de materiales se ha desarrollado en forma conjunta con la Facultad de Ingeniería Química materiales con base polimérica, materiales con base de cemento, etc. con miras a utilizarlos luego en la fabricación de aisladores eléctricos.

A los materiales obtenidos se los ha sometido a un conjunto de pru<u>e</u> bas de corto tiempo, para establecer sus caracteristicas tanto fís<u>i</u> cas como químicas. Siendo algunas de estas: Permitividad, Resiste<u>n</u> cia mecánica, Resistencia al fuego, voltaje de perforación, "tracking" o erosión, etc. Pero como es conocido el aislamiento debe ser hecho con un material que debe tener la capacidad de mantener sus características por un largo período de tiempo (10 - 15 años), lo cual es imposible probar sin tener un equipo de envejecimiento.

De aquí nace la necesidad de diseñar y construir una mufla especial para el estudio de envejecimiento de dieléctricos. El calificativo especial se la da debido a que no será una mufla común, esto es un horno de temperatura controlada muy precisamente , sino que adicionalmente permitirá el ingreso a su interior de un electrodo de alta tensión, consiguiéndose con esto aplicar a los materiales esfuerzos debidos a temperatura, voltaje o ambos y así determinar su comportamiento a través del tiempo.

Lo indicado claramente explica la importancia de tener una mufla especial para el estudio de envejecimiento, ya que sin la presencia de este equipo no se pueden continuar las investigaciones que se han realizado hasta ahora y que han dado muy buenos resultados.

1.2. ESTUDIOS REALIZADOS SOBRE EL TEMA

Dentro de la Politécnica Nacional se han realizado algunas investiga ciones en el campo de la transferencia de calor y la construcción de equipos para utilizar esta forma de energía.

Así en la Facultad de Ingenieria Mecánica se han desarrollado algunos proyectos de investigación dentro de este campo, los mismos que han sido culminados exítosamente y como resultado de aquello se ti<u>e</u> nen equipos como: Horno de fundición por arco, Tesís E.P.N., 1986 Horno solar para cocción de alimentos, Tesis E.P.N. 1985, etc. Pero como estos equipos son diseñados con una finalidad diferente a la que nos ocupa y al no ser de temperatura controlada en forma muy exacta, no se pueden llamar muflas.

En la Facultad de Ingeniería Química existe el antecedente en la re construcción de una mufla para secado, la misma que tiene un rango de operación de 300 °C con un sistema de calefacción por convección – forzada, este trabajo se realizo en 1983, en esta Facultad se tienen y operan muflas en el estudio e investigaciones propias de la especialización.

En la Facultad de Ingeniería Eléctrica se han venido realizando investigaciones en el desarrollo de sistemas de conversión de energía calórica y sobre ïos efectos de la energía calórica en el comportamiento de algunos materiales (ESTUDIO TEORICO EXPERIMENTAL SOBRE DI<u>E</u> LECTRICOS, TESIS EPN, 1968), dentro de los mecanismos de conversión de energía se estan investigando las del tipo no convencional, por ejemplo el de inducción.

1.3. ALCANCE DEL ESTUDIO A REALIZARSE

El estudio propuesto tiene el objetivo de construir una mufla especial para el estudio del envejecimiento de materiales aislantes.

Para alcanzar este propósito se realizara el análisis de los diferen tes fenómenos que se verán involucrados en un equipo de este tipo.

La mufla que interesa construir deberá tener un sistema de conver-

sión de energía electrica en energía calórica, un sistema que permita el ingreso al interior de la mufla con alto voltaje y un sistema de control de la temperatura muy preciso.

En la concepción de la mufla por tanto se hara el analisis de fenóme nos involucrados con la transferencia de calor, tales como: conducción, convección y radiación, debiendo por tanto en este campo plantear las ecuaciones que servirán para obtener un modelo matemático del comportamiento de la mufla y en base a éste realizar el diseño del sistema térmico.

En la búsqueda de un mecanismo de conversión de energía eléctrica en energía calórica se escogerá el que presente las mejores condiciones referentes a costo, eficiencia y durabilidad, haciendo luego el dis<u>e</u> ño de la disposición de los elementos caloríficos en el interior de la mufla.

En lo que al ingreso del alto voltaje se refiere, se ha creido conveniente hacer el estudio de los fenómenos de campo eléctrico que permi tan llegar al interior de la cámara con hasta 30 kV y que adicionalmente se tenga un diseño tal que permita trabajar en pruebas con mat<u>e</u> riales aislantes sin la presencia de microdescargas con un voltaje que se definirá en pruebas de este tipo dentro de este estudio.

Para poder realizar envejecimiento, a más del alto voltaje, es necesa rio afectar a las muestras en estudio con temperatura, para lo cual se ha previsto diseñar la mufla de tal forma que se pueda alcanzar una temperatura máxima de 300°C con un error de \pm 2°C. Esto hace que

para controlar la temperatura, se tenga que analizar algunas formas de detección y control que permita finalmente satisfacer estas cond<u>i</u> ciones.

Con los diseños concluídos se procederá a la construcción del equipo el mismo que deberá ser sometido a pruebas prototipo.

Pues bien, como toda actividad humana es llevada en la búsqueda de alcanzar un objetivo y el objetivo de este trabajo es el de tener el equipo para estudiar el envejecimiento de materiales, se probará su bondad realizando el envejecimiento de un material polimérico. Tentativamente se planteará algún modelo del envejecimiento logrado. <u>A</u> dicionalmente se dejerá planteado algunos criterios que permitan ev<u>a</u> luar mediante el análisis de la variación de alguna característica cuantificable del material el grado de envejecimiento de dicho mat<u>e</u> rial.

CAPITULO II

ESTUDIO Y MODELO TERMICO DE LA MUFLA

2.1. TRANSFERENCIA DE CALOR

Generalidades.-

En todo sistema térmico se dan tres procesos de transferencia de calor: CONDUCCION, CONVECCION y RADIACION.

Debido a la precisión que se desea alcanzar con la mufla, no se puede despreciar ninguno de estos procesos por pequeña que sea su particip<u>a</u> ción en el comportamiento de la mufla.

2.1.1. Transferencia del calor por conducción

La transferencia del calor por conducción, es aplicable para cuerpos sólidos, aunque también se la puede analizar en medios gaseosos, con la restricción que el fluido esté en completo reposo. Para desarrollar las ecuaciones que rigen la conducción del calor se parte de la primera ley de Fick, la misma que surge de la difusión de partículas entre dos medios. ⁽¹⁾

Por tanto tendremos:

$$qc = -k A \left(-\frac{dT}{dx}\right)$$
 (2.1)

Donde:

qc = flujo de calor por conducción | W |

k = conductividad térmica del medio | W/m °C |

A = área perpendicular al flujo de calor | m | *

 $\frac{dT}{dx}$ = gradiente de temperatura | °C/m |

En la mufla el fenómeno de conducción será importante para evaluar las pérdidas de calor, las mismas que se dan a través de las paredes, los bordes y las esquinas.

Bajo estas consideraciones y sabiendo que las paredes deberán estar aisladas térmicamente, se puede hacer asumpciones que simplifiquen el análisis y al mismo tiempo no introduzcan errores de consideración.

Estas asumpciones son:

- a) Las paredes estarán constituídas de material homogéneo e isotrópi co.
- b) Las paredes son superficies isotérmicas, permitiendo así un flujo perpendicular a cada una de ellas.

Por tanto el sistema en cada pared es el que se indica en la figura 2.1.

Fig. 2.1. Flujo térmico entre dos superficies a diferente temperatura separadas por un material de espesor D.

D = espesor de la pared |m|qc = flujo calórico |W|T₁ = temperatura interior |°C|T₂ = temperatura exterior |°C|

Cuando se alcanza la condición de equilibrio térmico, aplicando 2.1.

$$\int_{x_2}^{x_1} \operatorname{qc} dx = \int_{T_1}^{T_2} - k A dT.$$

Si qc = cte $dc (x_1 - x_0) = -k A (T_2 - T_1)$

Pero $x_1 - x_2 = D$

$$qc = K A \frac{(T_1 - T_2)}{D}$$
 (2.2)

En realidad la transferencia de calor por conducción no es unidireccional sino que es un fenómeno tridimensional, pero debido a la dif<u>i</u> cultad de obtener por métodos sencillos una expresión general, se i<u>n</u> troduce un factor de forma por conducción S que se lo expresa como:⁽⁴⁾

$$S = Sp + Sv + Se$$
(2.3)

que permite reemplazar A/D con expresiones fáciles de calcular.

Si la mufla tiene dimensiones que sean superiores en 5 veces al esp<u>e</u> sor de las paredes, los factores de forma vienen dados por:

$$Sp = A/L$$
(2.4)

$$Sv = 0.54 L$$
 (2.5)

$$Se = 0.15 D$$
 (2.6)

donde:

Sv = factor de forma para los extremos. Se = factor de forma para las esquinas. Sp = factor de forma para las paredes. L = longitud del extremo (m).

D = espesor de la pared (m).

Considerando la distribución volumétrica de la conducción, el flujo de calor por conducción dado por la ecuación 2.3. sería:

$$qc = K(-\frac{A}{L} + 0.54 L + 0.15 D).(T_1 - T_2)$$
 (2.7)

2.1.2. <u>Transferencia</u> del calor por <u>c</u>onvección

El fenómeno de convección está relacionado con la dinámica de los fluí dos, ya que la transferencia del calor por conducción en un medio <u>ga</u> seoso solo alcanza las capas de fluido muy cercanas a los radiadores de calor, teniéndose luego una transferencia de energía de estas mol<u>é</u> culas a las moléculas de las capas más alejadas.

El fenómeno de convección puede darse en forma libre o forzada. La convección se denomina libre, si el movimiento del fluido se produce debido a la diferencia energética alcanzada por las diferentes c<u>a</u> pas. Será forzada si el fluido es movido mediante medios externos (por ejemplo bombas).

En el caso de la mufla debido a su tamaño reducido, interesa solamente la convección libre. La misma que se presentará entre:

a) La superficie exterior de la mufla y el medio ambiente;

. b) Las superficies radiadoras y el aire interior;

c) El aire interior y el objeto de prueba;

d) El aire interior y las superficies no radiadoras.

Para convección libre se establece de manera general que el flujo de calor viene dada por⁽²⁾:

$$q_{cc} = hc A (T_s - T_{\infty})$$
 (2.8)

donde:

 $q_{cc} = flujo$ de calor por convección libre (w).

hc = coeficiente de transferencia por convección $(w/m^2 \circ C)$.

Ts = temperatura de la superficie.

 T_{∞} = temperatura del fluido en las zonas donde la velocidad de convección es relativamente nula.

El factor importante para determinar el flujo de calor por convección es calcular el coeficiente de transferencia hc, el mismo que depende de las disposiciones geométricas de las superficies. Por tanto es de interés para el calculo posterior dejar planteadas las expresiones de hc para algunas configuraciones.

2.1.2.1. Calculo de los coeficientes de transferencia por convección

a) hc PARA PLACAS PARALELAS Y HORIZONTALES

- El coeficiente de transferencia de calor por convección libre en

placas verticales isotérmicas se determina por: ⁽⁴⁾

hc = 0.29 |
$$\frac{T_1 - T_2}{L}$$
 | (2.9)

donde:

 T_1 = temperatura de la superficie (°C)

 T_2 = temperatura del aire (°C)

b) hc ENTRE PLACAS PARALELAS DE DIFERENTE AREA

L = dimensión vertical de la superficie (m)

- El coeficiente para placas horizontales se lo determina por: (4)

hc = 0.27
$$|\frac{T_1 - T_2}{L}|$$
 (2.10)

1/4

donde:

L = media de las dimensiones de la placa horizontal | m |

Para determinar la transferencia de calor entre las placas de la mu fla y entre placas y objeto de prueba es necesario calcular el coefi ciente convectivo, el mismo que se lo determina por⁽⁴⁾:

 $hc = k \cdot 0.195 \text{ Gr}^{1/4}$ para $10^4 < Gr < 4 \times 10^5$ (2.11)

hc = k . 0.068 Gr^{1/3} para $4 \times 10^{5} > Gr$ (2.12)

Donde:

Gr = número adimensional de Grashof que se lo determina por:

$$Gr = \frac{g \cdot \beta \cdot (T_1 - T_2) \cdot Dc^3}{\gamma^2}$$
 (2.13)

Donde:

g = aceleración de la gravedad (9.8 m/s²)

 β = coeficiente.de expansión volumétrica del aire (°C⁻¹)

Dc = separación entre placas (m)

 γ = viscocidad cinemática del aire (m²/s).

2.1.3. Transmisión del calor por radiación

Este mecanismo de transmisión del calor es importante, ya que toda fuente de energía transfiere la misma por medio de la radiación de ondas electromagnéticas.

Este mecanismo de transmisión de la energía, a diferencia de los a<u>n</u> teriores, no necesita de un medio especial para su ocurrencia, pudiéndose inclusive tener transferencia del calor por radiación en el vacío.

Para que un cuerpo sólido emita energía radiante es necesario que sus átomos sufran perturbación en los nieveles energéticos de sus electrones, es decir que éstos pasen de un nivel energético a otro, existiendo emisión si un electrón salta de una órbita de mayor a me nor energía. Pero la emisión de energía radiante también puede darse a nivel atómico y molecular, ya que si estas partículas en forma ai<u>s</u> lada vibran a frecuencias diferentes tendremos un movimiento armónico simple creado por las partículas que han ganado energía comportándose así como osciladores lineales.⁽²⁾

Esto indica que una forma de evaluar la energía emitida o recibida por radiación en un cuerpo es conocer su espectro de emisión electromagnética.

La frecuencia de una onda oscilatoria permite conocer la longitud de onda de las mismas. Por tanto, para tener transmisión del calor por radiación es necesario que esta energía sea transportada por ondas c<u>u</u> yas longitudes de onda esten comprendidas entre 0.75 - 400 um que corresponden en el espectro al infrarrojo.

Dentro de este contexto, cada material tendrá su espectro de emisión característico en función de la temperatura que alcance. Para que un cuerpo sólido emita su máxima cantidad de energía en el infrarrojo se necesita que alcance temperaturas entre 300 - 800 °K. ⁽⁵⁾

En la mufla se presentará transmisión del calor por radiación en los siguientes casos:

a) Entre los radiadores y las paredes.

b) Entre las paredes y el medio ambiente,

c) Entre la superficie radiante y el objeto de prueba.

Por tanto interesa evaluar las expresiones para el calculo del flujo de calor por radiación entre:

a) Dos superficies.

b) En un recinto cerrado.

c) Entre un cuerpo y el recinto que lo encierra.

a) ENTRE DOS SUPERFICIES

El flujo de energía radiante entre dos superficies se evalua mediante la expresión⁽²⁾:

$$qr = \frac{\sigma (T_1^4 - T_2^4)}{(1 - e_1)/e_1 A_1 + 1/A_1 F_{1-2} + (1 - e_2)/e_2 A_2}$$
(2.14)

donde:

= flujo del calor por radiación | W | qr F_{1-2} = factor de forma geometrica. = área de la superficie $1 | m^2 |$ A1 = đrea de la superficie 2 | m² | A2 = emisividad de la superficie 1 ė, = emisividad de la superficie 2 e2 = constante de Stefan - Boltzman (5.67x10⁻⁸ W/m² °K⁴) σ = temperatura de la superficie 1 (°K) T₁ = temperatura de la superficie 2 (°K) T2

Ь) EN UN RECINTO CERRADO

La ecuación que permite calcular el flujo de calor radiante en un r<u>e</u> cinto cerrado, donde se tengan N superficies, está dada por: ⁽⁴⁾

$$q_i = A_i (e_i/(1 - e_i)) \times (T_i - B_i)$$
 (2.15)

Donde:

Ai = área de la superficie i

e_i = emisividad de la superficie i.

B_i = radiosidad de la superficie i, que se determina por:

$$B_{i} = \sum_{j=1}^{N} m_{ij} \sigma T_{j}^{4} \qquad 1 \leq j \leq N \qquad (2.16)$$

A continuación se presenta la forma de calcular las radiosidades

b.1. Cálculo de las radiosidades

Si reordenamos la ecuación 2,16. tendremos:

$$\sum_{j=1}^{N} X_{ij} \cdot B_j = \sigma T_i^4$$
(2.17)

Donde los términos X_{ij} están dados por: ⁽⁴⁾

 $X_{ij} = \frac{D_{ij} - (1 - e_i) F_{i-j}}{e_i}$ (2.18)

Donde:

e_i = emisividad de la superficie i.

D_{ij} = 1 para i=j.

D_{jj} = 0 para i≠j.

 F_{i-j} = factor de forma entre la superficie i-j.

Luego para cada par de superficies tendremos un Xij lo cual nos da \underline{u} na matriz X, cuya inversa:

$$X^{-1} = M$$
 (2.19)

será la matriz de los elementos $|m_{ij}|$, retornando a evaluar los B_i (radiosidades) como en la ecuación 2.16.

Como se puede ver esta expresión resulta ser no lineal y por tanto existirá una solución para cada temperatura de las superficies del r<u>e</u> cinto y para el número de superficies del mismo, por tanto, para realizar estos calculos se deben utilizar técnicas de evaluación e inve<u>r</u> sión de matrices.

c) INTERCAMBIO ENTRE UN RECINTO CERRADO Y UN CUERPO EN SU INTERIOR

Este tipo de transferencia aparecerá entre las superficies de la <u>mu</u> fla y el objeto de prueba, así como con el aislador de alta tensión (que permite el ingreso del potencial eléctrico a la mufla).

La expresión que permite evaluar el flujo radiante se la puede deter-

minar por una analogia con el diagrama de celocía para ondas viajeras en líneas de transmisión llegando a establecerse que⁽¹⁾:

$$q_{r} = \frac{A_{1} \sigma (T_{1}^{4} - T_{2}^{4})}{1/e_{1} + A_{1}/A_{2}(1/e_{2} - 1)}$$
(2.20)

Donde:

A₁ = área del objeto o cuerpo (m²)
A₂ = área de la câmara del horno (m²)
T₁ = temperatura del cuerpo en (°K)
T₂ = temperatura de los radiadores en (°K)
qr = flujo de calor radiante (W)

2.1.3.1. Calculo del factor de forma.

En las expresiones para el calculo del flujo de calor por radiación se señala un factor de forma geométrica, el mismo que tiene relación con el área efectiva de transferencia de calor entre dos cuerpos, y se lo evalua dependiendo de la configuración, así:

a) ENTRE DOS SUPERFICIES PARALELAS

El factor de forma entre dos superficies paralelas esta dado por⁽⁴⁾:

$$F_{1-2}\left(\frac{\pi xy}{2}\right) = \ln \left|\frac{(1+x)^2(1+y)^2}{1+x^2+y^2}\right| + y\sqrt{1+x^2} \tan^{-1}\left(\frac{y}{\sqrt{1+x^2}}\right) + y\sqrt{1+x^2}$$

+
$$X\sqrt{1+y^2} \tan^{-1} \left(\frac{X}{\sqrt{1+y^2}}\right) - Y \tan^{-1} (y) - X \tan^{-1} (x)$$

(2.21)

Fig. 2.2. Determinación del factor de forma entre dos superficies paralelas.

Donde:

$$X = a/c$$
$$Y = b/c$$

Se puede demostrar que si el área $A_1 = A_2$ y c << a , b entonces $F_{1-2} = 1$.

b) FACTOR DE FORMA ENTRE DOS SUPERFICIES PERPENDICULARES

Este factor de forma esta dado por la expresión $^{(4)}$:

$$F_{1-2} (\pi Y) = \frac{1}{4} \{ \ln \left| \frac{(1+x^2)(1+y^2)}{1+z} \right| + y^2 \ln \left| \frac{y^2(1+z)}{(1+y^2)z} \right| + x^2 \ln \left| \frac{x^2(1+z)}{z(1+x^2)} \right| \} + Y \tan^{-1} (\frac{1}{y}) + X \tan^{-1} (\frac{1}{x}) + x^2 \ln^{-1} (\frac{1}{x^2}) + x^2 \ln^{-1} (\frac{1}{y^2}) + x^2 \ln^{-1} (\frac{1}{y^$$

Donde la definición de cada variable es:

$$X = a/b$$

$$Y = c/b$$

$$Z = x^{2} + y^{2}$$

las dimensiones a, b, c están indicadas en la figura 2.3.

Fig. 2.3. Determinación del factor de forma entre dos superficies per pendiculares.

2.1.4. Acceso visual al interior

Como es conocido, el mejor sensor para tener una idea del comportamie<u>n</u> to de un fenómeno es alguno de los sentidos del hombre, por tanto se ha creido conveniente preveer un acceso visual al interior de la mufla.

La ubicación que permitirá la mayor persepción será en la pared lateral del horno. Para lo cual y deseando tener una buena resolución, se ha previsto la utilización de una puerta de vidrio y un sistema de il<u>u</u> minación interno.

2.1.5. Comportamiento térmico de la ventana.

La función que debe cumplir esta ventana es la de permitir ver hacia el interior y además evitar la transmisión del calor. Se ha encontr<u>a</u> do que el vidrio con un contenido de 0.1% de Fe_2O_3 , tiene una alta r<u>e</u> flectancia para ondas cuya longitud de onda sea mayor que 3 um, es d<u>e</u> cir el infrarojo. ⁽⁴⁾

La transmisión de la radiación a través de un material transparente depende de: la longitud de onda, el ángulo de incidencia, índice de refracción y el coeficiente de extinsión. ⁽⁴⁾

Es conocido que la energía radiante puede involucrarse en tres fenóm<u>e</u> nos: reflexión, transmisión y absorción, por tanto existirán los co<u>e</u> ficientes respectivos para cada material, los mismos que satisfacen la expresión:

21

$\tau + \rho = 1$

El coeficiente de transmisión (τ) y el de reflexión (ρ) para dos superficies paralelas estan dados por⁽⁴⁾:

$$\tau = \frac{1}{2} | \left(\frac{\tau_{\perp}}{1 - \rho_{\perp}} \right)^{2} + \left(\frac{\tau_{\perp}}{1 - \rho_{\perp}} \right)^{2} |$$
(2.23)

$$\rho = \frac{1}{2} \left| \left(\rho_{1} + \frac{\rho_{L} \tau_{1}^{2}}{1 - \rho_{L}^{2}} \right) + \left(\rho_{1} + \frac{\rho_{L} \tau_{L}^{2}}{1 - \rho_{L}^{2}} \right) \right|$$
(2.24)

Donde:

 $\rho_{\rm L}$, $\rho_{\rm H}$ = componentes perpendicular y paralela de la reflexión <u>e</u> valuadas por

$$\rho_{\rm L} = \frac{\rm Sen^2 (\theta_i - \theta_r)}{\rm Sen^2 (\theta_i + \theta_r)}$$
(2.25)

$$\rho_{II} = \frac{\tan^2 (\theta_i - \theta_r)}{\tan^2 (\theta_i - \theta_r)}$$
(2.26)

 $\tau_{\perp}, \tau_{\perp} =$ componentes perpendicular y paralela de la transmisión evaluadas por

$$\tau_{\perp} = \tau \alpha \mid \left(\frac{1 - \rho_{\perp}}{1 + \rho_{\perp}}\right) \left(\frac{1 - \rho_{\perp}^{2}}{1 - (\rho_{\perp} \tau \alpha)^{2}}\right) \mid (2.27)$$

$$\tau_{\rm IL} = \tau \alpha \mid \left(\frac{1 - \rho_{\rm II}}{1 + \rho_{\rm IL}}\right) \left(\frac{1 - \rho_{\rm IL}^2}{1 - (\rho_{\rm IL} \tau \alpha)^2}\right) \mid (2.28)$$

Siendo $\tau \alpha$ = absorción de la radiación por el medio transparente evaluado por: $\tau \alpha = e^{-kxL/\cos \theta r}$

Donde:

L = espesor de la cubierta transparente.

 θ_i = ángulo de incidencia medido entre la normal y la superficie y el rayo refractado.

k = coeficiente de extinsión de la cubierta (para vidrio al
$$0.01\%$$
 Fe₂O₃ k = 4) ⁽⁴⁾

Para poder trabajar con estas expresiones, se debe recordar que todo fenómeno que involucra reflexión y transmisión de ondas electromagnéticas debe satisfacer la ley de Snell.

$$\frac{\text{Sen }(\theta_i)}{\text{Sen }(\theta_r)} = \frac{n_r}{n_i}$$
(2.30)

Donde:

 n_r , n_i = índice de refracción de las substancias que forman la interface.

Para aire y vidrio de $(0.01\% \text{ Fe}_2O_3)$ se tienen los siguientes índices de refracción:

$$n_{aire} = 1.00$$

 $n_{vidrio} = 1.50$ (4

23

(2.29)

De lo expuesto se desprende que para evaluar el flujo de calor por radiación mediante la expresión 2.15. hay que considerar todas las superficies que se involucran en este fenómeno y que tengan diferente ej.

a) Las superficies radiantes.

·b) La superficie interior de la ventana.

2.2. FUENTE DE ENERGIA CALORICA

La fuente de energía calórica a utilizarse debe cumplir con los siguientes requerimientos:

- Transformar la energía disponible en el laboratorio (Eléctrica).

- Dar facilidades en el control.

- Ser de fácil obtención, montaje y mantenimiento.

- Tener un adecuado rendimiento calórico.

- No presentar peligro de deterioro para las muestras.

Desde estos puntos de vista se encuentra que el sistema de calefactores que mejor se ajustan son los construidos utilizando resistencias del tipo hierro, niquel, cromo (niquelinas). Por tanto es necesario hacer un análisis del comportamiento de estos dispositivos, al transformar la energía.

2.2.1. Flujo térmico conseguido en una resistencia metálica

Previamente se estableció que los cuerpos sólidos incandescentes em<u>i</u> ten radiaciones que se las puede aprovechar como fuentes de calor cuando estas están en el infrarrojo. Se conoce que, en una resiste<u>n</u> cia al circular una corriente eléctrica I.(A), por efecto Joule, I²R, se produce calor, aún más, cuando la temperatura a la que llega el m<u>a</u> terial alcanza valores tales como 300 - 800°K se tiene flujo de calor radiante, predominantemente.

La radiación de los sólidos incandescentes ha sido estudiada desde h<u>a</u> ce mucho tiempo y para tener un patrón referencial de radiación se ha supuesto un cuerpo negro, el mismo que se caracteriza por una absort<u>i</u> vidad (a) igual a 1 y una reflexividad igual a cero. (5)

El cuerpo negro ideal tiene una longitud de onda de máxima energía que será menor cuanto mayor sea la temperatura que alcance como se in dica en la figura 2.4. (5)

Para la radiación de cuerpos negros Stefan dedujo que la energía radiada por unidad de tiempo de área por un cuerpo diferente al cuerpo negro está dada por

Fig. 2.4. Radiación del cuerpo negro a diferentes temperaturas (5).

Donde:

a = coeficiente de emisividad (0 - 1 dependiendo del material) $\sigma = 5.6699 \times 10^{-8} \left(\frac{W}{m^2 \ ^{\circ}K^4}\right)$ T = temperatura del cuerpo en °K

Por tanto la cantidad del flujo de calor obtenida del sistema será:

$$q_{\Gamma} = a \alpha (T_1^{4} - T_2^{4}) . A_1$$
 (2.32)

donde:

q_r = flujo de calor producido | W |

 T_2 = temperatura del medio al cual se entrega la energía (°K) A₁ = área del cuerpo radiante $|m^2|$

Pero el sistema generador de calor no sólo entregará calor por radiación sino también por convección y conducción, teniéndose así un equ<u>i</u> librio de potencia en el sistema.

$$I^2 R = qr + qc + qk$$
 (2.33)

Adicionalmente se debe recordar que la resistencia del material metálico tiene un comportamiento no lineal con la temperatura, siendo el comportamiento ⁽³⁾

$$R = R_0 (1 + \alpha_1 \Delta T + \alpha_2 \Delta T^2 + ...)$$
 (2.34)

Donde:

 $R = resistencia a |a temperatura final | \Omega |$ $R_0 = resistencia a |a temperatura inicial | \Omega |$ $\alpha_{1,2} = coeficientes de variación de la resistencia con la temperatura. | \frac{1}{\circ C} |$ $\Delta T = diferencia de temperatura | \circ C |$

2.3. AISLAMIENTO TERMICO

En todo sistema donde se quiere tener un alto rendimiento se debe mi nimizar las pérdidas. Para conseguir este objetivo se debe proveer a la mufla de un aislamiento térmico que minimice la transferencia -
de calor al medio ambiente.

Este objetivo se lo consigue poniendo una capa de lana mineral entre las superficies interiores y las exteriores de la mufla.

Pero para minimizar la transferencia de calor existe un radio critico de aislamiento luego del cual de ser mayor a este se produce una mayor transferencia al medio (en formas cilíndricas).

Se sabe que la forma del flujo de calor por conducción entre dos su perficies cilíndricas a diferente temperatura esta dado por (1):

$$q = \frac{2 \pi Rb}{\ln r/r_{in}} (T - T_{\infty})$$
 (2.35)

Donde:

Rb = conductividad térmica aislante $(\frac{W}{m \circ C})$ r = radio exterior (m) rin = radio interior (m) (Figura 2.5.)

Luego la resistencia térmica será ⁽¹⁾:

$$Rc = \frac{1}{2 \pi Rb} \ln \frac{r}{r_{in}}$$
(2.36)

La resistencia térmica de convección entre la pared externa y el aire será (1):

$$Ra = \frac{1}{h_a 2 \pi r}$$
(2.37)

Fig. 2.5. Representación gráfica de un cilindro aislado, para determinar el radio crítico de aislamiento.

Donde:

ha = factor de transferencia del calor por convección en aire.

Para encontrar un mínimo de la transferencia de calor debemos encontrar el máximo de la resistencia térmica equivalente que sea la suma de las dos resistencias térmicas ya anotadas.

$$\frac{\partial R}{\partial r} = 0 = \frac{1}{2\pi k b r_c} = \frac{1}{h_a 2 \pi r_c^2}$$
 (2.38)

por tanto el radio crítico de máxima transferencia de calor estará d<u>a</u> do por:

$$r_{c} = \frac{k_{b}}{h_{a}}$$
(2.39)

30

Esto implica que para reducir las pérdidas de calor por las paredes, el material escogido debe ser tal que el radio exterior resultante s<u>a</u> tisfaga la condición que el radio exterior sea menor que el radio cr<u>í</u> tico.

Entonces:

. rc > rext.

Lo cual se consigue poniendo materiales cuyo coeficiente de conductividad sea tal que satisfaga esta condición. Existen algunos materiales aislantes térmicos así: lana mineral, asbestos, arcillas refractarias, arena, etc.

La utilización de alguno de ellos estará determinada por los requerimientos de diseño, dando un radio exterior a la mufla que satisfaga la condición del radio crítico y adicionalmente permita mantener la temperatura exterior de la mufla en valores bajos por ejemplo 30°C, pa ra así conseguir una reducida potencia de pérdidas.

2.4. ENERGIA ALMACENADA Y PERDIDAS TERMICAS

2.4.1. Consideraciones

Para facilitar el planteamiento del modelo matemático se hacen algunas asumpciones que no introducen error.

- a) Para tener una adecuada distribución de las superficies equitérmicas el sistema deberá tener la misma forma que los objetos de prue ba, por tanto deberá ser cilíndrico.
- b) Las superficies radiadoras, así como las absorvedoras y el aire ex terior se encuentran a una misma temperatura, por tanto solo se <u>a</u> nalizará en el estado estable.
- c) Las pérdidas de energía por las caras del horno serán referidas a la temperatura ambiente.
- d) Las placas cobertoras se considerarán superficies equitérmicas.
- e) Las superficies radiadoras así como el aire exterior de la mufla se considerarán como un sólo sistema de capacidad térmica.

Fig. 2.6. Esquema que muestra el flujo de energía en la mufla: Eg(t) = energía entregada. Qa = energía almacenada. Qp = energía de pérdidas.

Con las asumpciones anotadas y para el sistema mostrado en la figura 2.6., se establece que el balance de energía se ajusta a la siguiente expresión:

$$Eg(t) = Qa + Qp \qquad (2.40)$$

Donde:

Eg(t) = energía entregada al sistema.

Qa = energía almacenada por el sistema.

Qp = pérdidas de calor desde el sistema al ambiente.

2.4.2. Energía térmica almacenada en la mufla.

La cámara de la mufla conforma un sistema de capacidad termica que da lugar a un almacenamiento de energía que se lo evalúa por (2):

$$Q_a = M , C , (\frac{dT}{dt})$$
 (2.41)

Donde:

 $\frac{dT}{dt} = variación de la temperatura en la cámara respecto al tiem_po.$

MC = capacitancia térmica equivalente que se evalúa por: (4)

$$MC = \rho_{p} \cdot V_{p} \cdot C_{p} + \rho_{a} \cdot V_{a} \cdot C_{a} + \rho_{i} \cdot V_{i} \cdot C_{i}$$
 (2.42)

 ρ_p , ρ_a , ρ_i = densidad de los absorvedores, aire y aislador, respec-

 V_p , V_a , V_i = volumen de los absorvedores, aire y aislador, respectivamente.

 C_p , C_a , C_i = calor específico de los absorvedores, aire y aislador, respectivamente.

Los volúmenes se evaluarán como:

$$p = A_p \cdot e_p$$
 (2.43)

Donde:

 V_p = volumen de las placas absorvedoras (m³)

V

e_p = espesor de las placas absorvedoras (m)

A_p = área de las placas absorvedoras (m²)

$$V_a = \pi r_1^2 \cdot L_1 + \pi \left(\frac{r_1 + r_2}{2}\right)^2 \cdot L_2 \quad (m^3)$$
 (2.44)

En donde los valores corresponden a las dimensiones indicadas en la figura 2.7.

Fig. 2.7. Dimensiones de la cámara de la mufla.

2.4.3. Pérdidas desde la cámara de la mufla al medio ambiente

En la mufla existirán pérdidas por convección, conducción y radiación desde la placa absorvedora y el aire interior, hasta el exterior a tr<u>a</u>vés de las paredes de la cámara.

En la figura 2.8. se muestra un esquema de las pérdidas en la mufla.

Donde:

Eg = energía ganada por las superficies absorvedoras.

 $q_1, R_1 = pérdidas de calor por conducción y su resistencia té<u>r</u>$ mica respectiva.

Fig. 2.8. (a) Representación de los flujos de pérdidas en la mufla con su resistencia térmica respectiva.

(b) Circuito equivalente del flujo de pérdidas mostrado -en (a).

- q_2 , R_2 = pérdidas de calor por convección y su resistencia té<u>r</u> mica respectiva.
- q₃, R₃ = pérdidas de calor por conducción en el aislador y su resistencia térmica respectiva.
- q₄, R₄ = pérdidas de calor por conducción en el relleno del "bushing" y su resistencia térmica respectiva.
- q_5 , R_5 = pérdidas de calor por radiación desde las superficies absorvedoras hacia la segunda cubierta de vidrio y su resistencia térmica total respectivamente.
- q₆, R₆ = pérdidas de calor por convección desde el aire interior de la cámara del horno hacia la segunda cubierta de vidrio y su resistencia térmica respectivamente.
- q7, R7 = pérdidas de calor por radiación entre las dos cubier tas de vidrio y su resistencia térmica respectivamente.
- q_8 , R_8 = pérdidas de calor por convección desde la segunda ha cia la primera cubierta de vidrio y su respectiva re sistencia térmica.
- $q_9, R_9 = pérdidas de calor por convección desde la primera c<u>u</u>$ bierta de vidrio hacia el ambiente exterior y su re<u>s</u>pectiva resistencia térmica.
- T = temperatura de las placas absorvedoras |°C| Ts = temperatura de la superficie exterior |°C| $T_{\infty} = temperatura del ambiente externo |°C|$ $Tc_1 = temperatura de la primera cubierta de vidrio |°C|$ $Tc_2 = temperatura de la segunda cubierta de vidrio |°C|$

2.4.3.1. Formulación de q1, R1

Las pérdidas de calor por conducción entre las placas absorvedoras y la superficie exterior están dadas por:

$$q_1 = k \cdot S \cdot (T - TS)$$
 (2.45)

Donde:

- k = conductividad del aislante térmico.
- S = factor de forma por extremos y aristas definido en las expresiones: 2.4; 2.5; 2.6.

Para el caso de la mufla definida como en la figura 2.7. se obtienen las siguientes expresiones:

$$Sp = \frac{2\pi r_1 h_1}{2\pi r_1} + \frac{2\pi \left(\frac{r_1 + r_2}{2}\right) h_2}{2\pi r_1 + 2\pi r_2} + \frac{\pi r_1^2}{2\pi r_1} + \frac{\pi r_2^2}{2\pi r_1}$$

$$S_V = 0.54 (2\pi r_1 + 4\pi r_2)$$

 $S_e = 0.15 D \times 4$

Donde:

$$h_1, h_2 = alturas de la cámara | m |$$

 $r_1, r_2 = radios de la cámara | m |$
 $D = r_{ext} - r_{int}$

Operando:

$$S = h_1 + \frac{h_2}{2} + \frac{r_1}{2} + \frac{r_2}{2} + 3.39(r_1 + 2r_2) + 0.6 D$$
 (2.46)

Otra forma de evaluar el flujo térmico es (2):

$$q = \frac{T - Ts}{R}$$
 (2.46.a)

De donde se obtiene:

$$R = \frac{T - Ts}{q}$$
(2.46.b)

Donde R = resistencia térmica |°C/W |

Reemplazando las ecuaciones 2.45 y 2.46 en 2.46.b. se obtiene la expresión que permitirá evaluar R_1 :

$$R_{1} = \frac{1}{k \mid h_{1} + \frac{h_{2}}{2} + \frac{r_{1}}{2} + \frac{r_{2}}{2} + 3.39(r_{1} + 2 r_{2}) + 0.6 D \mid} (2.47)$$

2.4.3.2. Formulación de q_2 , R_2

Las pérdidas por convección en la superficie de la mufla se las evalúa por: (4)

$$q_2 = h_2(Ab + As) (Ts - T_{\infty})$$
 (2.48)

Donde:

Ab = área exterior de las bases $|m^2|$ As = área exterior lateral $|m^2|$ h_2 = coeficiente convectivo de transferencia de calor se lo d<u>e</u> termina por (2)

$$h_2 = 5.7 + 3.8 v$$
 (2.49)

Donde:

v = velocidad media del viento | m/s |

Por tanto R₂ se evalua como:

$$R_2 = -\frac{1}{(Ab + Ac)(5.7 + 3.8 v)}$$
(2.50)

2.4.3.3. Formulación de q₃, R_3 , q_4 R_4

Las pérdidas de calor por conducción a través del bushing y su relleno se las evalua por: (1)

$$q_i = K_i \frac{A_i}{L_i} (T - T_{\infty}) . S_i \quad i = 3,4$$
 (2.51)

Donde:

K_i = conductividad térmical del material.

A; = área del material expuesto a la cámara.

 L_i = longitud del material hasta estar a T_{∞} .

Por tanto Ri se evalua como:

$$R_{i} = \frac{L_{i}}{K_{i} A_{i}}$$
 $i = 3, 4$ (2.52)

2.4.3.4. Formulación de qs , Rs

Las pérdidas de calor por radiación desde la placa absorvedora a la segunda cubierta de vidrio se determina aplicando el método de transferencia de calor desde un recinto cerrado dado por 2.15.

$$q_{5} = \frac{A_{C} e_{C}}{1 - e_{C}} (\sigma T c_{2}^{4} - Bc)$$
(2.53)

Donde:

 q_6 = flujo de calor por radiación entre la placa absorvedora y la segunda cubierta.

Ac = área de la cubierta de vidrio.

e_c = emisividad de la placa absorvedora.

Tc₂ = temperatura de la segunda cubierta.

Bc = radiosidad de la cubierta, se calcula por la ec. (2.16)

La resistencia térmica se puede obtener con la expresión:

$$R_{5} = \frac{T - Tc_{2}}{0.5}$$

(2.54)

2.4.3.5 Formulación de q₆, R₆

El flujo de energía por convección desde el aire interior de la cáma ra de la mufla a la segunda cubierta de vidrio se evalua por

$$q_6 = h_6 \cdot Ac (T - Tc_2)$$
 (2.55)

donde:

Ac = área de la cubierta de vidrio.

h₅ = coeficiente de convección de transferencia de calor, el mismo que está dado por:

$$h_{6} = (0.29 + 0.27) | (T - Tc_{2}) |^{1/4} (\frac{1}{1} + \frac{2}{1+p})^{1/4}$$

(2.56)

Dada por la suma de las ecuaciones 2.9; 2.10.

donde:

1 = longitud vertical de la ventana.

p = ancho de la ventana.

Con lo cual la resistencia térmica R₆ se define:

$$R_{6} = \frac{1}{0.56 (1p) | (T - Tc_{2})(\frac{1}{1} + \frac{2}{1+p}) |}$$
(2.57)

2.4.3.6 Formulación de q7, R7

El flujo de calor por radiación entre las placas cobertoras se puede analizar como un intercambio radiante entre superficies paralelas i<u>n</u> finitas dado que las dimensiones de los vidrios son mayores que las distancias que los separa, por tanto la ecuación será para el flujo de calor:

$$q_{7} = -\frac{Ac \cdot \sigma \epsilon_{1} (Tc_{2}^{4} - Tc_{1}^{4})}{2/(1 - \epsilon_{1})}$$
(2.58)

Donde;

Ac = área de la cubierta (m) Tc₂ = temperatura de la segunda cubierta (°C) Tc₁ = temperatura de la primera cubierta (°C) $\tilde{c_1}$ = emisividad de la cubierta.

Por lo tanto la resistencia térmica será:

$$R_{7} = \frac{2/(1 - \epsilon_{1})}{\epsilon_{1} \operatorname{Ac} \sigma (Tc_{2} + Tc_{1})(Tc_{2}^{2} + Tc_{1}^{2})}$$
(2.59)

2.4.3.7. Formulación de q₈, R₈

El flujo de calor por convección entre placas de vidrio se puede ca<u>l</u> cular con la expresión:

 $q_8 = h_8 Ac (Tc_2 - Tc_1)$

Donde:

Ac = área del vidrio (m²)
Tc₁ = temperatura de la primera cubierta (°K)
Tc₂ = temperatura de la segunda cubierta (°K)
h₈ = coeficiente convectivo de transferencia de calor entre
las placas de vidrio.

De las expresiones expuestas en el estudio inicial (Ecs. 2.11 y 2.12)

$$h_{\rm B} = k \ . \ 0.195 \ {\rm Gr}^{1/4}$$
 (2.61)

Donde:

k = conductividad térmica del aire.

Gr = número de Grashof.

Luego, la resistencia térmica estará dada por:

$$R_{8} = \frac{1}{Ac \ k \ 0.195 \ Gr^{1/4}}$$
(2.62)

2.4.3.8. Formulación de q₉, R₉

El flujo de calor por convección entre la primera tapa de vidrio y el medio ambiente se evalua por:

$$q_{9} = Ac \cdot h_{9} \cdot (Tc_{1} - T_{00})$$
 (2.63)

Donde:

Ac = área de la placa de vidrio o segunda placa.

h₉ = coeficiente convectivo de transferencia del calor, se evalua mediante:

$$h_9 = 5.7 + 3.8 \times V$$

Donde:

V = velocidad del viento.

Por tanto la resistencia térmica estará dada por:

$$R_{9} = -\frac{1}{Ac(5.7 + 3.8 V)}$$
(2.64)

2.4.39. Formulación del flujo de energía total perdido y la resistencia térmica total equivalente

El flujo total de pérdidas, del interior al exterior de la cámara, d<u>e</u> pende de la temperatura que vaya adquiriendo la cámara, por tabto la pérdida de energía variable en el tiempo se la evalua como: (2)

 $Qp = (T - T_{\infty})/RT$ (2.65)

Donde:

Qp = pérdida total de energía térmica variable con el tiempo.

T = temperatura interior de la cámara. T_{∞} = temperatura del medio ambiente exterior. RT = resistencia térmica total equivalente.

Para determinar la resistencia térmica equivalente se parte de la an<u>a</u> logía entre un circuito eléctrico y el sistema térmico. Así tendr<u>e</u> mos analogía entre:

TABLA DE ANALOGIAS

MAGNITUD CALORICA

MAGNITUD ELECTRICA

(Ω)

R

i (A)

De donde:

$$R_{T_{1}} = R_{1} \coprod R_{3} \coprod R_{4} + R_{2}$$
 (2.66.a)

$$R_{T_{2}} = R_{5} \coprod R_{6} | + R_{7} \coprod R_{8} + R_{9}$$
 (2.66.b)

$$R_{T} = R_{T_1} \coprod R_{T_2}$$
 (2.67)

2.5. ECUACION DIFERENCIAL DEL COMPORTAMIENTO TERMICO DE LA MUFLA

Partiendo del balance energético expuesto anteriormente y reemplazando las expresiones obtenidas, la ecuación diferencial que describe el comportamiento térmico de la mufla es:

$$Eg(T) = MC \frac{dT}{dt} + \frac{T - T_{\infty}}{RT}$$
(2.68)

Donde:

Eg = energía entregada por la fuente | W-min |

Que se la evalua como:

$$Eg(T) = I^2 R(T) \cdot t$$

siendo:

I = corriente eléctrica eficaz (A)

t

= tiempo transcurrido (min)

46

(2.69)

R(T) = resistencia de las niquelinas variable con la temperat<u>u</u> $ra (<math>\Omega$)

Que se la evalúa como:

$$R_{(T)} = R_{\infty} (1 + \alpha_1 \Delta T + \alpha_2 \Delta t^2 + ...)$$
 (2.70)

donde AT se evalúa como

$$\Delta T = T - T_{\infty} \tag{2.71}$$

siendo:

 T_{∞} = temperatura a la cual se tiene R_{∞} |°C |

Como en un circuito eléctrico la corriente se calcula:

$$I = \frac{V}{R(T)}$$
(2.72)

donde:

V = voltaje aplicado eficaz (Voltios)

Se obtiene que en la expresión 2.69. reemplazando las ecs. 2.70. y 2.72. la energía esta dada por:

$$Eg(T) = \frac{V^2}{R_{\infty} (1 + \alpha_1 (T - T_{\infty}) + \alpha_2 (T - T_{\infty})^2)} \cdot t \qquad (2.73)$$

Luego la energía por unidad de tiempo será:

$$Eg = \frac{V^2}{R_{\infty} (1 + \alpha_1 (T - T_{\infty}) + \alpha_2 (T - T_{\infty})^2)}$$
 (2.74)

Reemplazando (2.74) en (2.68) tenemos

$$MC \frac{dT}{dt} = \frac{V}{R_{\infty}(1 + \alpha_{1}(t-T_{\infty}) + \alpha_{2}(T-T_{\infty})^{2})} - \frac{T - T_{\infty}}{R_{T}}$$
(2.75)

Cuya solución se la obtiene con métodos numéricos por ser una ecu<u>a</u> ción diferencial no lineal.

Para resolver esta ecuación se escogerá la temperatura más alta de <u>o</u> peración y se fijará un valor de R(T) para este punto, debiendo lu<u>e</u> go evaluar el comportamiento de R(T) con la temperatura.

Se aplica la ley de Ohm en la evaluación de la energía entregada por las resistencias ya que la tensión eficaz se puede mantener consta<u>n</u> te para un determinado valor de temperatura que se desee alcanzar.

Cabe resaltar el hecho de que un sistema eléctrico es más fácil con trolar el valor eficaz de voltaje y mantenerlo constante que mantener constante la corriente. Esto se lo consigue con circuitos electrón<u>i</u> cos de potencia realizando el control del Vef. por metodos tales como: control de fase, ciclo integral, etc. (5)

2.6. CONTROL DE TEMPERATURA MEDIANTE CONTROL DE POTENCIA

La expresión 2.75. sugiere el que la temperatura de la mufla se pueda

controlar mediante el control de voltaje.

Si se recuerda que la potencia instantánea biene dada por:

$$p = v \cdot i$$
 (2.76)

y que la potencia media, que es la energía consumida o transmitida en la unidad de tiempo está dada por

$$P = \frac{1}{\hat{T}} \int_{0}^{T} p dt$$

(2.77).

donde:

T = período (seg)

dt = diferencial de tiempo.

Para una carga resistiva:

$$i = \frac{v}{R}$$

(2.78)

Si se reemplaza 2.76 y 2.78 en 2.77 se tiene:

$$P = \frac{1}{T} \int_{0}^{T} \frac{v^2}{R} dt$$

(2.79)

Si para una temperatura determinada la resistencia varia hasta R(T)(T = temperatura), de la expresión 2.79. se puede llegar a:

$$P = \frac{1}{R(T)} - \frac{1}{T} \int_{0}^{T} v_{(t)}^{2} dt \qquad (2.80)$$

Donde:

T = período de la señal | S | V_(t) = señal sinusoidal de voltaje | V | R_(T) = resistencia que será constante para una temperatura T constante | Ω |

Por tanto de 2.80. se llega a:

$$= \frac{Vrms}{R(T)}$$

Como se conoce la potencia media es la que se transforma en otro tipo de energía en un sistema conversor, en este caso en energía calórica, de ahí que para controlar la cantidad de calor y por ende la temper<u>a</u> tura de la mufla se tenga que controlar la potencia entregada a tr<u>a</u> vés del control del voltaje eficaz.

Existen varias formas de controlar el voltaje eficaz en un sistema , pudiendo hacerlo mediante sistemas electromecánicos o con sistemas de estado sólido.

50

(2.81)

En nuestro medio aún se encuentran controles de potencia para sistemas térmicos del tipo electromecánico, pero se tiene la desventaja que son lentos y por tanto acarrean una banda de error en el control muy grande.

Dentro de los sistemas de control de potencia de estado sólido exis ten varios tipos de ellos así: control de fase, control de fase inverso, control por ciclo integral, etc.

De estos controles se analizarán las características de algunos de ellos para justificar su utilización.

2.6.1. Control de fase

Este tipo de control se lo hace utilizando los elementos electrónicos denominados tiristores, los cuales son dispositivos que permiten la conexión de la carga a la red solo cuando han recibido una señal de encendido.

Como se analizó antes la potencia entregada a la carga depende del voltaje eficaz y el voltaje eficaz depende del período con que se apli que la señal por tanto al controlar el período de la señal se controlaría el valor del voltaje eficaz y por ende la potencia.

En forma sencilla una señal controlada por fase será del tipo mostr<u>a</u> da en la figura 2.10., para la cual el voltaje eficaz esta dado por la ecuación 2.82.

Fig. 2.10. Variación del valor eficaz de una señal por control de fase.

Esta forma de control tiene el inconveniente de producir una trans<u>i</u> ción abrupta en la conexión, lo cual provoca ruido de radio frecuencia.

Dentro de este tipo de control de fase existen las modalidades inve<u>r</u> sa y diferencial que son realizadas cuando se requiere reducir el p<u>a</u> so abrupto de conexión a desconexión.

Este tipo de control se justifica sólo cuando la potencia a controla<u>r</u> se es baja respecto de la potencia del transformador que alimenta el sistema.

2.6.2. Control por ciclo integral

į.

Este control consiste en entregar a la carga ciclos enteros de señal así como lo muestra la figura 2.11. para la cual el voltaje eficaz esta dado por la ecuación 2.83.

$$Vrms = Vmax \quad \frac{M}{T}$$
 (2.83)

Como se observa este tipo de control sólo aplica ciclos completos, lo cual permite tener características mejores que las conseguidas con el sistema anterior así:

- Ausencia o reducción al mínimo del ruido de radio frecuencia.
- Los tiristores y/o triacs no precisan rendir grandes prestaciones relativas a la derivada de la corriente respecto al tiempo que es nociva al ser muy elevada.
- La potencia suministrada esta formada por unidades elementales de un ciclo mínimo sin límite con respecto al máximo.

Por lo expuesto este tipo de control es el que menos problemas prese<u>n</u> ta inclusive para los dispositivos electrónicos de control. Lo cual hace muy recomendable su utilización en circuitos de control térmicos.

De las formas de control mencionadas la más utilizada en la actualidad es la del control de potencia por ciclo integral y será por tanto el control que se implementará para controlar la potencia en el sist<u>e</u> ma.

2.7. SENSORES Y SISTEMA DE MEDICION DE LA TEMPERATURA

2.7.1. Sensores de temperatura

Los sensores o transductores son dispositivos que permiten cambiar una variable de un tipo de energía a otro así por ejemplo: temperatura a voltaje.

Para sensar la temperatura y utilizar esta señal en circuitos electr<u>ó</u> nicos existen varios tipos de dispositivos tales como: Sondas de pl<u>a</u> tino, termocuplas, termistores, etc.

Todos estos dispositivos basan su funcionamiento en el comportamiento de los materiales conductores o semiconductores frente a las variaci<u>o</u> nes de la temperatura.

Así las sondas de platino son dispositivos provistos de una resistencia construida de un hilo de platino donde se aprovecha la variación de la resistencia con la temperatura dada por: (6)

$$R_{(T)} = R_0 (1 + \alpha_1 \Delta T + \alpha_2 \Delta T^2 + ...)$$
 (2.84)

donde:

R(T) = resistencia a T |°C |

 $R_{(0)} = resistencia a 0|°C|$

 ΔT = variación de temperatura.

α₁ = coeficiente lineal de variación de la resistencia con
 la temperatura.

α₂ = coeficiente cuadrático de variación de la resistencia con la temperatura.

Las termocuplas o termopares son dispositivos construídos pensando en la utilización de la termo electricidad, la cual se basa en que al so meter a una unión de dos materiales de diferente tipo (por ejemplo – iron – constantan) en los extremos opuestos de la unión aparecerá una diferencia de potencial del orden de los mV, que se debera básicamente a la diferencia energética alcanzada por los electrones de cada ma terial, respecto de la temperatura a la que se encuentra el lado \underline{o} puesto.

Se las encuentra de varios tipos así: J, K, T, E, etc. cuya diferencia radica en los materiales utilizados para formar el termo par y por tanto varia también el rango de temperatura en el cual pueden ser utilizadas, así como la variación del voltaje con la temperatura conocido como coeficiente de Seebeck. (7)

Los termistores, son dispositivos construidos de óxidos metálicos <u>a</u> glutinados con polímeros y se los encuentra de dos tipos los PTC (P<u>o</u> sitive Temperature Characterístic) y NTC (Negative Temperature Characteristic).

Los PTC se caracterizan por aumentar su resistencia al aumentar la temperatura y los NTC por disminuir su resistencia al aumentar la tem peratura. (3)

Por estar constituídos con materiales poliméricos el rango de temperatura en el que pueden trabajar es bajo, teniendo además el inconv<u>e</u> niente de presentar un comportamiento no lineal, lo cual hace que para utilizarlos haya que linealizar su característica.

Debido a que se va a trabajar hasta 300°C se utilizará una termocupla del tipo T (copper - Constatan, que se la puede conseguir en el mercado y su costo respecto a la sonda de platino es mas bajo).

Adicionalmente este tipo de termocupla presenta un error de + 1 °C

en el rango de operación de O a 390 °C. (7)

2.7.2. Sistema sensor

Como se señaló el sensor escogido es la termocupla, dispositivo que se caracteriza por transducir la temperatura en señal de voltaje, el mismo que para el termopar tipo T oscila entre 0 mV para : 0 °C y 14.864 mV para 300°C, teniendo un coeficiente Seebeck o coeficiente de variación del voltaje con la temperatura de 42.7 uV/°C. (7)

El voltaje que aparecerá entre los terminales abiertos de la termocupla estará dado por:

$v = v_{TIN} - V_{tamb}$

v = voltaje en los terminales abiertos | mV |
v_{TIN} = voltaje en los terminales abiertos si la temperatura
ambiente fuese 0 °C | mV |

 v_{Tamb} = voltaje que aparece debido a que la temperatura de r<u>e</u> ferencia es la ambiental. | mV |

Para poder utilizar esta señal en el circuito de control, se deben hacer algunas consideraciones que hagan válida su utilización.

 Como la señal es del orden de los mV, hay que llevar esta señal a un sistema con alta impedancia de entrada, que permita captar la señal en su totalidad. Hay que proteger el sistema contra rotura de termopar.

- 3. La temperatura de referencia será la temperatura ambiente, por tan to cualquier variación deberá ser compensada con un sistema auxi liar. Simulando con el los 0°C como temperatura de referencia. ⁽⁸⁾
- 4. Las señales se deben amplificar hasta un valor tal que permita ma nejarlas con mayor seguridad y facilidad, debiendo por tanto en las etapas aplificadoras eliminar los efectos de offset, derivas, retornos por tierra, variación de resistencias del sistema eléctri co.
- 5. Introducir esta señal a un sistema digital donde se codifiquen los pulsos que permitan presentar la temperatura en displays.

Para conseguir estos objetivos se diseñará un circuito electrónico que cumpla todos estos requerimientos, en el cual como detalle importante se debe destacar la utilización de resistencias de precisión que son las que se mantienen más tiempo inalteradas por las condiciones ambientales estando además su valor declarado con un error menor al +1%

Dado que la utilización de este equipo será en el estudio de envejeci miento de materiales aislantes, los requerimientos en lo que ha medi ción y control de temperatura se refieren deben enmarcarse dentro de las normas para que los resultados obtenidos tengan validéz.

La norma IEC - 212, 1971 (STANDARD CONDITIONS FOR USE PRIOR TO AND DURING THE TESTING OF SOLID ELECTRICAL INSULATION MATERIALS) establece que para que los resultados obtenidos sean válidos al trabajar con rasgos de temperatura de hasta 400°C se puede tener un error de \pm 5°C y sólo en casos especiales el error puede ser de \pm 2°C. Siendo además condición necesaria que la medición se realice lo más cerca pos<u>i</u> ble a la muestra bajo estudio.

Para conseguir estos objetivos el diseño considera todos los factores de error ya mencionados y se construirá un orificio en el pedestal po<u>r</u> ta electrodos por lo que se introducirá la termocupla, teniendo así la medición a nivel de electrodos y sin distorsionar el campo electr<u>i</u> co en la cámara de la mufla. La termocupla será colocada como muestra la figura 2.12.

CAPITULO III

AISLAMIENTO ELECTRICO

Para poder realizar el estudio de envejecimiento de materiales se ha señalado que a las muestras se las va a someter a esfuerzos debidos a temperatura o voltaje (campo eléctrico) o ambos.

El voltaje con el cual se operará en la cámara será de hasta 30 Kv, valor este que se lo justificará más adelante dentro de este capítulo

Por tanto será conveniente analizar el comportamiento del medio aislante y la configuración geometrica desde el punto de vista del aisl<u>a</u> miento.

3.1. EFECTO DE LA TEMPERATURA EN LA CAPACIDAD DIELECTRICA DEL AIRE

El comportamiento dielectrico del aire esta regido por la ley de Pa<u>s</u> hen , la misma que establece una relación entre el producto densidad por distancia y el voltaje de disrupción.

Pero al no trabajar a condiciones normalizadas de presión, temperatura y humedad (según BS. 20°C, 1 at, 11 gr/cm³) el voltaje de disrupción estará dado por: (9)

$$Vs = 24.4 (pd) + 6.53 \sqrt{pd}$$
 (3.1)

Donde:

Vs = voltaje de disrupción del aire (KV).

d = separación entre electrodos menor o igual a 20 cm.

p = densidad del aire, dada por:

$$p = \frac{P}{760 \text{ mmHg}}, \frac{293}{t + 273}$$
 a 11 gr/m³ de humedad (3.2)

Donde:

El considerar la variación de la humedad en el aire introduciría un factor de corrección de la densidad dado por:

$$H = \frac{h}{11 \text{ gr/m}^3} \tag{3.3}$$

donde:

H = factor de corrección por humedad.

h = humedad del medio. (gr/m³)

Siendo por tanto:

$$p = \frac{P}{760} \cdot \frac{293}{t + 273} \cdot H$$
 (3.4)

Estas expresiones no señalan el rango de temperatura para el cual se cumple la ley de Pashen, por tanto se realizaron pruebas de desrupción a diferentes longitudes y temperaturas que indicaron que el com portamiento dieléctrico del aire con una temperatura de hasta 200 °C se comportaba según la ley de Pashen, es decir sólo se afecta la densidad.

Pruebas realizadas con aire caliente entre temperaturas de 20 - 1100 °C por Powell y Ryan⁽⁹⁾ en 1969, demostraron que el voltaje de "desrupción del aire se altera respecto del obtenido de la curva de Pashen a partir de los 860°C, concluyéndose que el voltaje de ruptura del aire hasta esta temperatura solamente se afecta por la variación de la densidad."

Sobre esta temperatura se produce variaciones debido a la emisión de cátodo que puede aparecer dependiendo del material del mismo, ya que dicha emisión dependerá de la función de trabajo del material.

Si la mufla va a trabajar hasta 300°C, será suficiente considerar en el diseño, la variación del voltaje de disrupción debida a la variación de la densidad.

3.2. EFECTO DE LA CONFIGURACION GEOMETRICA DE LA MUFLA EN EL AISLA-MIENTO

Adicionalmente al comportamiento del aire como dieléctrico, en el ais lamiento se debe considerar la influencia de la configuración geométrica dada por las paredes de la mufla y los electrodos, debido a que la configuración del campo eléctrico que se obtenga dentro de la mufla influirá en los resultados al realizar el estudio de envejecimie<u>n</u> to.

62

Si existen zonas con gradientes de potencial muy fuertes, se puede producir corona y dado que una de las formas de evaluar el envejecimiento es mediante la medición de microdescargas en el material, e<u>s</u> ta corona puede invalidar la observación o análisis o los resultados que se obtengan.

Adicionalmente la separación entre las partes no aisladas del sist<u>e</u> ma debe ser tal que el campo eléctrico no se distorcione de la forma que tendría si los electrodos estuviesen en un sistema ordinario de prueba esto es sin placas aterrizadas en su entorno⁽⁹⁾.

Para evaluar este comportamiento se recurrió a dos procedimientos:

a) Modelación digital.

b) Modelación analógica.

3.2.a. Modelación digital

La modelación digital se la realizó utilizando el programa digital im plementado por Correa René, "DISEÑO DE AISLADORES", Tesis de Grado, E.P.N., Quito, 1982.

Si bien es cierto esta tesis tiene algunas limitaciones respecto de la forma y tamaño del material aislante, en cambio permitió introducir un modelo aproximado de la configuración de interes así:

Fig. 3.1. Modelo introducido al computador.

Donde: a = paredes de la mufla

b = aislador 52-4 bajo prueba.

c = bushing cerámico de ingreso de alta tensión a la mufla.

d = conductor.

Los datos utilizados, así como las dimensiones de los espacios de la matriz y los resultados detallados se presentan en el Apéndice A (R<u>E</u> SULTADOS OBTENIDOS EN EL COMPUTADOR).

De los resultados obtenidos se encontro que con una distancia de ai<u>s</u> lamiento de 30 cm entre conductor y paredes de la mufla (que están al potencial de referencia), el campo eléctrico presentaba gradientes su

periores a los 10 KV/cm únicamente en la zona considerada crítica do<u>n</u> de se une el bushing con la pared de la mufla, como se indica en los resultados del programa digital. La falta de resolución por la lim<u>i</u> tación del programa digital, que no fue hecho con esta perspectiva, d<u>e</u> terminó la modelación analógica, previendo que para mejorar esta co<u>n</u> centración de campo detectada había que introducir en la configuración un anillo de tierra, que ayude a ecualizar y eliminar las gradientes peligrosas del orden de 16 KV/cm que se presentaban en esta zona. Este es un requerimiento importantísimo ya que se busca gradientes de potencial menores a 10 KV/cm para evitar la aparición de corona.

3.2.b. Modelo analógico

Para observar en mejor forma la configuración del campo eléctrico al variar el perfil de tierra junto al bushing, se recurrió a modelar es te sector en forma analógica, utilizando el equipo de medición de equi potenciales MESSWANDLER, disponible en el laboratorio de Alto Voltaje, cuyo principio de operación se basa en la analogía existente entre densidad de corriente y densidad de flujo eléctrico:

$$J = \sigma E \tag{3.5}$$

$$\mathsf{D} = \boldsymbol{\xi} \mathsf{E} \tag{3.6}$$

Esto permitió hacer modelos a escala de la zona de interés y encontrar la configuración de las curvas de potencial, permitiendo así ajustar el modelo y la forma del anillo de tierra para conseguir una menor con

centración de campo en este sector, que podría originar corona.

Para mantener una distribución más homogénea del campo eléctrico se simuló una primera vez en la forma como se indica en la Figura 3.2. Con estos resultados se estableció la superficie equipotencial hasta la cual existían fuertes gradientes de potencial, correspondiendo e<u>s</u> ta a la curva del 20%.

Teniendo como base esta curva, se modeló un perfil siguiendo la mis ma forma, que permita mantener el campo eléctrico en su entorno más homogéneo y que corresponde a un perfil Rogowsky.

En la modelación, el perfil obtenido se lo acercó al bushing hasta que tenga un contacto que permita sujetar al mismo.

Para evitar que el campo eléctrico se deforme por esto, se pone el tope del perfil en forma perpendicular a la cerámica en la parte ba ja de la saliente, haciendo que las líneas equipotenciales no cambien de dirección al cambiar de medio, (ver Figura 3.3).

Esto se justifica con la expresión valida para campos eléctricos que establece: ⁽¹⁰⁾

$$\frac{\text{tg } \gamma_1}{\text{tg } \gamma_2} = \frac{\xi_2}{\xi_1}$$

Donde:

tg = tangente

 γ_1 = ángulo con que incide la superfície equipotencial respecto

(3.7).

Fig. 3.2. Modelo analógico inicial para encontrar la distribución de superficies equipotenciales.

de la normal al borde.

 γ_2 = angulo con que ingresa la superficie equipotencial en el medio 2.

 ξ_1 , ξ_2 = permitividad relativa de los medios.

Por esta misma razón en la parte superior de la tapa se da una curv<u>a</u> tura tal que las superficies equipotenciales mantengan la dirección requerida en la parte baja.

Por tanto si $\xi_1 = 3$, $\xi_2 = 1$ y $\gamma_1 = 34.44^\circ$, como se indica en la Fig<u>u</u> ra 3.3, el ángulo para el perfil superior debe valer, utilizando la expresión 3.7.

 $\gamma_2 = 64^\circ$ (respecto de la normal)

Angulo con el cual se parte para redondear el perfil.

Realizada la modelación bajo estas condiciones, se obtiene una distr<u>i</u> bución de equipotenciales como la mostrada en la figura 3.4., donde se puede observar que en la zona de interés el campo se ha hecho más homogéneo, encontrándose gradientes de 9 KV/cm, en la zona donde están más unidas las superficies equipotenciales

3.2.c. Bushing de la Mufla

Para poder atravezar las paredes metálicas de la mufla, se necesita un bushing, de un material tal que mantenga sus características dieléctricas sin envejecer al someterse a temperaturas de hasta 300 °C.

Los bushings hechos de cerámica se ajustan bien a estos requerimientos, ya que la capacidad dieléctrica de los mismos se altera cuando la cerámica ha alcanzado temperaturas superiores a los 700 °C. (10)

Para conseguir un menor costo en la fabricación de la mufla se deci dió utilizar los materiales y partes que se las encuentre en el labo ratorio, una de estas partes fue el bushing, del mismo que no se sa bía el voltaje que soportaría sin producir una falla de aislamiento, por esta razón se realizaron pruebas para establecer el voltaje de operación.

Para realizar estas pruebas se montó una lámina metalica para soportar al bushing, de tal forma simular las condiciones de funcionamie<u>n</u> to y medir el voltaje de contorno a frecuencia industrial, obtenié<u>n</u> dose los valores mostrados en la Tabla 3.1., se realizaron cinco m<u>e</u> didas para tomar en cuenta el factor probabilístico que siempre se da en este tipo de pruebas.

TABLA 3.1.

No. PRUEBA

VOLTAJE CONTORNEO

,	· · ·		
	1		45
	2 :		46
	3		43
	4	-	42
	5	, · .	. 43.

Por tanto el valor esperado del voltaje de contorneo .será:

$$V = 43.8 \text{ KV}$$
 a. 547 mmHg y 17°C

Para poder correlacionar con las distancias de aislamiento dadas en las normas se debe calcular el voltaje de contorneo en condiciones standar de presión y temperatura (10) (STP 760 mmHg, 20°C).

$$V_{STP} = 60.51 \text{ KV}$$

Al aumentar la temperatura en un sistema no hermético (Presión con<u>s</u> tante) y partiendo de ecuación 3.4., la densidad del aire disminuye, por tanto el voltaje de contorneo disminuye, lo cual hace que el vo<u>l</u> taje máximo con que se puede operar sea el encontrado para la temp<u>e</u> ratura más baja (20°C), ya que se estará simulando una variación en la densidad del aire.

Como se anotó antes el voltaje de contorneo del bushing en condici<u>o</u> nes normales (STP) es de:

Por tanto para poder determinar el voltaje máximo de operación del equipo se ha recurrido a la utlización de la norma IEC 71 (INSULA -TION COORDINATION, 1967, TABLA I, LISTA 1, pág. 21) en la cual se dan los voltajes para equipos que operarán en sitios cubiertos de la intemperie.

Al interpolar en esta tabla el valor de sobrevoltaje de frecuencia in dustrial medido se encuentra el voltaje máximo de valor:

$V_{max} = 30.25 \text{ KV}$ a condiciones STP

3.2.d. Distancia de aislamiento y voltaje de operación

En base al voltaje máximo de operación obtenido se recurre a la norma VDE159 - BUSBARS, 1969, en la tabla correspondiente a "DISTANCIAS EN INSTALACIONES INTERIORES ABIERTAS O CERRADAS AISLADAS EN AIRE PARA BARRAS Y CONEXIONES" en un sistema efectivamente aterrizado se encuentra interpolando que para el voltaje especificado de 30 KV la di<u>s</u> tancia de aislamiento es de:

$D_{fT} = 200.03 \text{ mm}$

Esta distancia será la que se utilizará en el dimensionamiento de la cámara siendo por tanto el límite inferior de las dimensiones

Cabe resaltar que tanto el voltaje de operación como la distancia de aislamiento, mencionados, se han determinado para operar al nivel del mar, por tanto para que esta distancia de aislamiento garantice el funcionamiento del equipo en una altura diferente sobre el nivel del mar (por ejemplo Quito 2840 m s.n.m), el voltaje de operación debe ser escogido por el factor correspondiente a la variación de la dens<u>i</u>. dad del aire, expresado en la ecuación 3.2.

. Para Quito este factor calculado con valores de P = 540 mmHg y

Ta = $18^{\circ}C$, es de:

p = 0.71

Con el cual el voltaje de operación en Quito será :

$$V_{Q_{max}} = 21.5 \text{ KV}$$
 (3.8)

3.3. DISEÑO DEL AISLAMIENTO PARA OPERAR CON HASTA 30 KV

Por lo expuesto en los párrafos anteriores, se encontró que el máximo voltaje con el que se podrá operar en la mufla es de 30 KV, por tanto este valor será el que determine la distancia fase – tierra de aisl<u>a</u> miento. Esta distancia ya se estableció y es de 200.03 mm.

La distancia de aislamiento se debe guardar entre todos los puntos energizados (100% Pot.) y todos los puntos aterrizados (0% pot).

Por tanto en las dimensiones de la mufla se considera esta distancia de aislamiento, como "PRIORITARIA" lo cual hace que se determine la distancia entre la punta del bushing y la lámina metálica del cono de techo tal que se mantenga 200.03 mm dando así las dimensiones de este sector, las mismas que se presentan en los planos de la mufla.

Adicionalmente hay que considerar que para evitar la deformación del campo eléctrico debido a la presencia de las paredes de la mufla, que no estan aisladas, se debe dejar una separación entre el electrodo <u>a</u> terrizado y el plano de tierra al menos igual al diámetro del elec-

trodo mayor que se utilice (14 cm) por tanto el pedestal tendrá una altura de 15 cm y un diámetro menor a 1/5 del diámetro de los electr<u>o</u> dos (2 cm), ver figura 3.5. ⁽¹¹⁾

El introducir todos estos criterios y el considerar el mayor tamaño de los electrodos que se podrán introducir en la mufla (Pérfiles Rogowsky de acero 14 cm), lleva a establecer que las dimensiones de la mufla en su cámara sean:

DETALLE	ANCHO (m)	ALTURA (m)
CAMARA CILINDRICĂ	r = 0.31	h1= 0.40 ·
CIELO CAMARA*	$r_1 = 0.31$	h ₂ = 0.13
(CONICO)	$r_2 = 0.156$	

*Se considera la longitud del bushing que estará en el interior y se encuentra la distancia de aislamiento.

Cabe destacar que el radio de la cámara cilíndrica es mayor que el encontrado por el modelo digital (0.3 m) a partir del cual se tiene un campo eléctrico con buenas características para permitir la util<u>i</u> zación del equipo.

Adicionalmente dentro del aislamiento se debe considerar, el tamaño del objeto de prueba y su forma, ya que al colocarun dieléctrico en tre dos electrodos, el voltaje de descarga se reduce debido a que la superficie del material coincide con las líneas de campo eléctrico, este descenso en el voltaje de disrupción (respecto al aire) se debe

-> Fig. 3.5. Configuración del electrodo de tierra para no deformar el campo eléctrico.

į.

a las imperfecciones en la superficie del material, cuando la muestra tiene dimensiones que son inferiores a las de los electrodos.

Para eliminar estos efectos en investigaciones realizadas por Masayki Ieda, (IEEE Transactions on Electrical Insulation Vol. EI-15 No. 3 Junio 1980), se recomienda utilizar perfiles Rogoswky para los electrodos, muestras con un buen acabado superficiel que tengan dimensiones tal que su lado sea mayor al diámetro de los electrodos y de un espesor menor o igual a 2 mm.

Esto hace que al poner muestras de estas dimensiones se pueda en nues tro caso utilizar el puente de Schering para medir la tangente de pér didas dieléctricas, como una forma de evaluar el envejecimiento de los materiales aislantes poliméricos, ya que se tendría una capacitan cia mayor a 1.2 pf que es el valor mínimo que se puede conectar al puente.

CAPITULO IV

DISEROS Y PRUEBAS DE FUNCIONAMIENTO

4.1. DISEÑO TERMICO

Una vez determinadas las dimensiones de la camara para satisfacer los requerimientos del aislamiento eléctrico, corresponde realizar los cálculos de diseño térmico, que permitán alcanzar los requerimientos del equipo.

El hacer la cámara en forma circular permite que la distribución de las superficies equitérmicas sea uniforme en el interior de la cámara.

4.1.1. Constante térmica y pérdidas

La constante térmica se determina conociendo las características de los materiales y las dimensiones de la mufla (ver Apéndice B, PLANOS) las mismas que se deben introducir en las ec. 2.42., para lo cual se han utilizado los valores de las constantes detallados en la Tabla 4.1.

TABLA 4.1.

MATERIAL	Cp [*] J/Kg°C	ρ * K <u>g</u> /m³	V m³
Hierro (4.8 nm)	418.759	7288	0.003325
Aire (interior)	1017.585	28.9	0.1429
Cerámica (Bushing)	1138.80	441.57	4.41x10 ⁻⁵

* Manual del Ingeniero Químico, Prentice Hall 1979.

de donde la constante térmica es:

$$mC_T = 14373.1025 | J/°C |$$

Las pérdidas térmicas se evalúan utilizando las expresiones 2.46-51 55 - 58 - 60 - 63 - 66, obteniéndose las siguientes resistencias de pérdidas Tabla 4.2.

TABLA 4.2.

RESISTENCIA

VALOR °C/w

R ₁	3.9552
R ₂	0.1586
R ₃	6103.760
R ₄	230294.600
R _s	41.455
R ₆	9 29
R ₇	42.41
R _e	9.653848
R _a	3.68568

Con estos valores se calcula la resistencia de pérdidas térmicas y las pérdidas térmicas, así como las temperaturas esperadas en .cada punto para la máxima temperatura interior (300 °C) y a 20°C de temp<u>e</u> ratura ambiente para lo cual se utiliza al modelo de pérdidas de la figura 2.9. (Ver figura 4.1).

La resistencia de pérdidas es:

$$R_{T} = 3.364 | °C/w |$$

Por tanto la constante de inercia térmica es:

$$MCR_T = 48351.12$$
 | S |

Para conseguir estos objetivos de diseño se requieren las siguientes condiciones:

a) Se debe aislar la cámara del medio externo con una capa de 5 cm.

de lana mineral, espesor calculado en base a las condiciones de aislamiento y pérdidas deseadas.

 b) La puerta deberá ser fabricada con vidrio comercial ponténdose dos tapas con una separación de 0.5 cm., entre capas.

Cabe resaltar que el diseño considera una potencia de pérdidas de 83.24 w, con una temperatura de la carcaza de 30°C cuando el sist<u>e</u> ma opere a 300°C (Tmax).

4.1.2. Potencia de la fuente

Para encontrar la potencia máxima necesaria se debe resolver la ecu<u>a</u> ción del comportamiento térmico para la temperatura máxima.

La ecuación diferencial está dada en la expresión (2.75)[,] y se puede linealizarla para esta condición, así:

a 300°C
$$R_{\infty}(1 + \alpha_{\Delta}\Delta T + \alpha_{2}\Delta T^{2}) = R(T) = kte.$$

Por tanto $\frac{V^2}{R(T)}$ = Eg = kte. a 300°C (4.1)

Esto hace la ecuación diferencial lineal cuya solución es:

$$T_{(t)} = T_{\infty} + (1 - e^{-\frac{t}{mc R_T}}) Eg R_T$$
 (4.2)

donde:

t = tiempo | S |

Por tanto el sistema diseñado tendrá un porcentaje de pérdidas

$$\eta_{\rm n} = 3.68 \ \%$$
 a 300°C

Este disminuirá al reducirse la temperatura de operación, ya que las resistencias térmicas son dependientes del material conque se relacionan, cuyas constantes térmicas son prácticamente invariables en este rango de temperaturas, cambiando el flujo térmico.

4.1.3. Disposición de los calefactores

Para satisfacer la condición de que la superficie radiadora de calor, sea isotérmica es necesario distribuir los calefactores en forma sim<u>é</u> trica a lo largo de la pared de la cámara. Para establecer la disp<u>o</u> sición de los calefactores se necesita tomar en cuenta las siguientes condiciones:

- a) Los calefactores deben llevar a la placa absorvedora a la condición de isotermia.
- b) Los calefactores deben estar dispuestos de tal forma que el flujo actue sobre la muestra, aprovechando de la mejor forma los flujos

componentes; esto es: radiación, convección y conducción.

c) Mantener la forma de la placa absorvedora de calor para así conseguir un campo térmico homogéneo.

83

Para satisfacer estos requerimientos se hace el diseño en la forma siguiente:

- a. Dado que la muestra estará a una altura del fondo de la cámara de 15 cm (distancia definida en el capítulo III), los calefactores deben estar distribuidos alrededor de esta altura, para concentrar el flujo térmico sobre la muestra.
- b. Si se parte la cámara a la mitad y se superponen las partes, se en cuentra que, a partir de la altura base, la forma más fácil de con seguir una distribución igual en la placa es la mostrada en la figura 4.2.

Al observar este gráfico se desprenden las siguientes conclusiones:

- Cada semiplaca se calienta en forma homogénea en el sector donde se encuentra imerso el objeto de prueba.
- El flujo por radiación de una semiplaca sobre la opuesta ayuda a aumentar la distancia entre calefactores permitiendo así cubrir un mayor perímetro.
- 3. Al ser los calefactores expuestos (sin ningún cobertor) la placa absorve más rápido el calor.
- 4. No se distribuyen calefactores en el sector donde irá la ventana de acceso ni en su lado opuesto para evitar un flujo radiante di recto sobre la misma.

Con estas premisas el diseño de la disposición de los calefactores es como el mostrado en el Apéndice B (planos).

4.2. DISENO ELECTRICO

Si:

4.2.1. Resistencia de las niquelinas

Teniendo la potencia necesaria para alcanzar la temperatura, resta calcular el valor de la resistencia total de las niquelinas.

$$\frac{\dot{V}}{R(T)} = Eg$$

Para máxima temperatura se operará el equipo con 120 V hasta alcan-

zar el punto de equilibrio.

Por tanto:

$R_{(T)} = 6.37 \ \Omega$ a 300°C

Como se anotó anteriormente, la resistencia eléctrica varia con la temperatura. La variación de la misma se puede representar ya sea como una recta: o por un polinomio así:

$$R_{(T)} = R_{T_0} (1 + \alpha_1 \Delta T)$$
(4.3)

$$R_{(T)} = R_{T_0} (1 + \alpha_1 \Delta T + \alpha_2 \Delta T^2 + ...)$$
(4.3.1)

Donde:

 R_{T_0} = resistencia eléctrica a temperatura T_0 | Ω | $\alpha_1, \dot{\alpha}_2$ = coeficientes de variación de la resistencia con la tem peratura | 1/°C ; 1/°C²|

Cuando se requiere un control muy fino de la temperatura es necesario utilizar la forma polinómica de variación de la resistencia, en este diseño se utilizará un polinomio de segundo grado.

Para hacer menos costoso el equipo y de fácil reparación, se utilizarán resistencias del tipo "Niquelinas" (Fe, Cr, Ni) que se encuentran facilmente en el mercado.

Las características comerciales de las mismas son:

P ≈ 600 w . V = 120 V

Pero estos datos son insuficientes para el diseño y por tanto median te pruebas de laboratorio y cálculos por recurrencia que se indican en el Apéndice C, se determinó que estas niquelinas presentan las si quientes características:

$$R(18^{\circ}C) = 19.1 | \Omega |$$

 $\alpha_1 = 0.00031751$ |°C⁻¹|

 $\alpha_2 = -2.23264 \times 10^{-7} |\circ C^{-2}|$

Luego la resistencia necesaria para calentar el equipo hasta 300 °C, que se mida a 18°C será despejando de la ec. 4.3.

$$R_{(18^{\circ}C)} = \frac{R_{(300^{\circ}C)}}{|1 + \alpha_1(282) + \alpha_2(282)^2|}$$
$$R_{(18^{\circ}C)} = 5.94 \ \Omega$$

Para prolongar la vida de las niquelinas es necesario que estas no trabajen a potencia máxima nunca, por tanto para satisfacer la resi<u>s</u> tencia necesaria a 18°C se busca un arreglo resistivo con el mayor – número de resistencias en paralelo.

Esto hace que si cada niquelina tiene 19.1 Ω a 18°C se necesita c<u>o</u> nectar: 5 resistencias de 29.70 Ω en paralelo para alcanzar la resi<u>s</u> tencia deseada. lo cual implica que cada resistencia estará compuesta de 1.55 niquelinas.

Al ser las resistencias los calefactores, su disposición en la cámara deberá ajustarse a los requerimientos del diseño térmico, lo cual requiere que las cinco resistencias se dividan en segmentos de la longitud exigida por el diseño. Para esto se dividirá cada niquelina en 6 segmentos.

Al tener que conectar cada resistencia en 6 segmentos iguales se d<u>e</u> be unirlos de tal forma que el flujo magnético que aparezca en cada segmento sea opuesto al siguiente para que así se anulen y tener un factor de potencia unitario.

4.2.2. Evaluación de potencia en las niquelinas

Al eliminar el efecto inductivo de las niquelinas, mediante el con trol de la instalación de los segmentos de las mismas, por diseño d<u>e</u> bemos tener un factor de potencia unitario, lo cual hace que la ev<u>a</u> luación de la potencia discipada en las niquelinas sea muy simple.

Si tenemos 5 niquelinas de 29.7 en paralelo, la potencia total a 120 V entre terminales será:

$$P_{DT} = 2424.24 | w | a 18^{\circ}C$$

Potencia que satisface los requerimientos térmicos, siendo a 18°C ma yor que la requerida a 300 °C, por existir una variación de la resi<u>s</u> tencia eléctrica con la temperatura y siendo la fuente una barra in

finita.:

Cada resistencia en paralelo entregará:

P_{C/R} = 484.85 | w |

lo que implica una discipación por niquelina de 312.8 w , que representa el 52.13% de la capacidad de las mismas, lo cual prolongaría su vida útil.

4.2.3. Conductores eléctricos

Como se ha señalado se dispondrán las resistencian en 5 ramas paral<u>e</u> las, se desprende que la corriente que circulará por cada rama será:

$$Ir = 4.04$$
 a $18^{\circ}C$

Por lo tanto la corriente que circulará por los conductores princip<u>a</u> les será de:

$$It = 20.20 A a 18°C$$

Pero por la disposición de las niquelinas hay que construir dos al<u>i</u> mentadores, uno por cada lado, por tanto la corriente de cada alime<u>n</u> tador será

$$Ia = 10.10 A a 18°C$$

Con estos valores de corriente se deben escoger los calibres de con

ductor necesarios para transportarla.

a. Conductor en las ramas

Estos conductores serán los que enlacen los segmentos de niquelina en cada rama. Por lo mismo serán conductores que podrán trabajar hasta 300°C, lo cual hace prever que no podrán tener ningun tipo de aislamiento termoplástico y se los deberá aislar de las partes metálicas con materiales resistentes a esta temperatura. Se encontro factible aislarlos con aisladores de cerámica del mismo tipo que los que se utilizarán en el montaje de las niquelinas, dejando los segmentos l<u>i</u> bres de conductor envueltos en lana mineral.

Por lo expuesto se debe colocar conductores del siguiente calibre; en cuyo calculo se hace un ajuste por el cambio en las condiciones de <u>o</u> peración. (14)

$$I_{20^{\circ}C} = I_{300^{\circ}C} \cdot \sqrt{\frac{T_{max} - T_{npvc}}{T_{n pvc}}} \cdot \sqrt{\frac{R_{Lm}}{k_{p.v.c}}}$$
(4.4)
$$I_{20^{\circ}C} = 4.04 \sqrt{\frac{220^{\circ}C}{80^{\circ}C}} \sqrt{\frac{0.0744 \text{ w/m}^{\circ}C}{0.1029 \text{ w/m}^{\circ}C}}$$

 $I_{20^{\circ}C} = 6 A$

Para trabajar en estas condiciones se requiere hacer las conexiones con conductor de cobre No. 18 AWG desnudo. (Tablas Técnicas Squard-D)

b. - Conductores principales

Los conductores que llevarán la energía a cada arreglo resistivo en cada lado de la cámara se encontrarán de igual manera a 300°C, por tanto el cálculo del conductor requerido se realiza de forma idént<u>i</u> ca al procedimiento anterior.

 $I_{300} \circ_{\rm C} = 13.12$ A

Para esta corriente el conductor requerido en este sector será No. 14 AWG.

c. Conductores que van al control

Los conductores que van al control de temperatura serán conductores que puedan servir una carga de 20.20 A, por tanto se requieren co<u>n</u> ductores No. 12 AWG, siendo estos aislados con PVC ya que estarán en el aire y solo soportarán el calentamiento que se transmita de los conductores principales.

4.2.4. Protecciones

- a. Para proteger el sistema contra un cortocircuito se instalará un interruptor termo magnético de 30 A/120 V a la entrada de todo el .sistema.
- b. Existe la posibilidad de tener potenciales transferidos desde la cámara a través del sistema calefactor, por tanto se instalará -

un descargador del tipo de válvula de 140 V máximo entre polos.

4.3. DISENO DEL CONTROL DE TEMPERATURA

Como se señaló en el capítulo dos el control de temperatura se lo ha ce mediante el control de potencia por ciclo integral.

Los requerimientos de este control son: Permitir controlar la temperatura hasta 300°C con un error inferior al \pm 2°C, permitiendo además tener la lectura de la temperatura.

El sistema de control que permitirá alcanzar estos objetivos se lo représenta en diagrama de bloques como sigue: figura 4.3.

Fig. 4.3. Diagrama de bloques del control

La descripción de cada una de estas etapas así como la configuración

de las mismas se lo hace a continuación.

4.3.1. Transductor

Como se señaló antes, el transductor será una termocupla tipo T (cobre - Constantan), cuya característica temperatura - voltaje se pr<u>e</u> senta a continuación. (Omega Engineering Inc. Sternford).

P1 8 (•	•	2	•	· •	•	•	,	٠	•	12	Des c
The employed that we have the entry we to												
			-						-			
- , 73												-113
-1.4			-+.131									- 1 - 0
	•	•	••••									
-1-0	101	***11*	-4-122			-+.1.4	-5.151		1	-+.17.	-4.101	-1-2
-1.0				-+.01*			-+.01+				103	-110
											-4.007	-270
-200	- 1 . + 3 3			-1.+10	-1	-110					-1.711	-213
												-,
-1-0					-1.104	-1-322	-1.119	->.)))		-1.11/	-1.401	-1 =0
-116		-3.274		->. (1)				-1-1-1				-190
-1.0										-1./.]	->./.	-110
-110		10		/1>	117	13.	710					-120
							-					
-1-3												-1-0
-110								!				-134
-110			-).///	-1-111	- 1 - 74 -	-1.111			-1.111			-130
-100	-1.114	-1.497	-1 11	-1.++1	-11	-1.11.	-1.3.3	-3.774	-1.402	-3.323	-1	-104
- •0		-] . ! ! •	-3-1-7	-3-177	-1.231	-).//	-3.34-	- 1 - 1 • 1	-3.331	-1.120	-1,) /4	- 70
~70	-1.575	-2.301	-/.)17	-/.) /9		~/	-1.410		-3-027	-).634	-1.044	-/3
-+0	-7.137	-1.133	-2.214	-1.150	-1.1.	-1.11		-2-110	-///	-/	-1.41	- /3
-30	-1.417	-1. (1)	-1.446	-1. 120	-1. ***	-1.7+2	-1.010	-1.031	-1.017	-1.114	-1.157	- 10
												-
	-175	-1-110	-1.1	-1.17+	-11-	-1	-1	-1-117	-1.74	-1.2**	-1	
- 10	= 1 = 1 ()		-1.1.	-1.11	-1. /	-1.244	-1.114	-1.,70	-1	-1	-1-11	- 10
-10	-0.3+1	-4/1	-01+	-3	-9.33-	-0.211	-0.444	-0.444	-0.11)	-0.770	~1.7.7	-10
٠	0.000	-0.03*	-0-011	-0-11+	-0.13-	-0.14)	-4.211	-0.1.1	-0.107	-0.1-5	-0.333	
014 C	a											
	-			,	•	,	•	,	•	•	19	016 C
3	0.000	0.010	0.0/0	0.117	0.134	0.1.5	0.294	0.171	0.317	0.131	8.341	. •
10	5.74	1.14	0	0.310	0.1.1	0.515	1.0.0	0.040	0.704		0.750	1.0
10	1.1	1.00	1.77.	1. 10	1.201	1	1	1	1	1.344	1	15
- 3	1.411	1.433	1.441	1.758	1.7.0	1.+22	1. ** >	1.+47	1.330	1. ***	4.033	
10	2.313	2.474	1.151	3.1	1.207	1.150		2-117	2.3.3	11-	27	10
10		2.511			1	2	1.11	1.11			1-1-1	10
	1. 117		3 7	3	5		1.130		3.711	3.3.1	3. +1.3	• •
~	1.411	1.15	1. 404	>. • • 2	>		·. 0·1	·· 1)/	÷.1•*	1.131	×-277	+0
										• • •		
110												100
1/0	5.11)	3.225	1.12-	5.117	3		2.317		2	1.441	2.212	120
110	3.112	5.7EL	1.110	3		3. * 1 7	A. 047		101	4-137	4.20-	12-4
1.0	L. /31	A . 234	··)01	• - • > •		****3	1.201	*****	A-103	*****	1.763	1-0
1	1.141		1.107	1. 140	1.511	1	1.000		1.100	1.174	1.237	
110	1. 114	1.1.+	1.431	1	7	7. * /*		4.074		4.143		173
1+2	0.235	4.1.1		1.1-1		4			· · · · ·	+ . 134		103
120	••••		•.•••			*. az t	01-	4.127	1.1.0	****		1+0
100	1.144		+-1+2	1		*. >>>		*	4. 11 1	7.1.1	1.120	204
21 B	1. 123	v. • I -			10.414	10.0+3	10.145	10.1**	10-112	13. 404	12	210
2:0	10.1+3	10	10.1.1	10.123	10. 110	14.412	10.4.1	10.1-1	10. 1 **	10.411	1321	113
230	10. 101	12.400	11-013	11-0.00	11-122	11-1+*	11-133	11.3+0	11	1141	11.+24	112
1-4	11	11.111		11.47	(1++))	11.741	11.7•4	11	11. 100	11	11.211	1-4
:	12.411	12.4.1	12.121	12.1**	11.714	12.241	12.3.1	1101	12	11.515	12.572	274
200	12.314	12.420	11	11.1-1	11.1+1	11.154	11 10	12.707	13.020	11.000	13.117	1
270	12-111	11.1m	11.211	11.147	11.100	11-41	1114	11	11-1-2	11.1.4	13. 101	270
2.04	14.241	13.764	15.17	13.474	1	11.12	11.01	1.164	14.144	11.12	14.201	100
												1.0
10-0	1	1	176	11.030	14.0+3	11.111	15.200	11.247	11.124	11.10-	1	10-0
		11.141	1.140		13	11.11.	17.113	1	1	1.44.11	1410	110
	14.01	1	1	14.74	14.764	11.11	1	11.010	11.01	14,942	14.441	110
3.0	17.215	11.211	17.174	11.1+4	11	17.51	17.514	17	11	11.154	17.214	3-3
110	11.414	17.477	11.411	17.++7	11.437	15.114	14.174	14.210	11.1+1	14.139	1+	340
344	4. 4. 4. 4	10.444	14-1-1	1+-+31	14.444	14.125	14.14-	14. ***		14.744	1.027	>++
	14.627	1	19.144	14.210	1	10.002	(1) . 0	10.000	13.124	1.1.1.1	20.231	
3 **	20.234	20. 11.	14.174	10	10	10.300	10.021	20.1+4	10.7-4	14.101	14.147	100
130	10.140											
H44 (1	2	3	•	1	•	1		• '	1.	M4 C

Debido al costo de la termocupla su longitud debe ser lo más corta posible, utilizándose únicamente hasta llegar al cable de extensión, que se caracteriza por no formar un nuevo termopar en la unión te<u>r</u> mocupla - cable de extensión. Esquemáticamente se representa el conjunto en la figura 4.4.

Fig. 4.4. Conexión del transductor

4.3.2. Amplificador

Esta etapa es la que permitirá tener la señal del transductor en v<u>a</u> lores más manejables, ya que la señal del transductor es de unos p<u>o</u> cos mili voltios (14.864 mV a 300°C), en esta etapa se encuentran – los siguientes circuitos.

a. Captación de la señal

Esto se consigue conectando la señal a un amplificador operacional

de alta impedancia de entrada conectada en la forma conocida como seguidor de voltaje. Figura 4.5. (7)

Fig. 4.5. Seguidor de voltaje para captar la señal de la termocupla

b. Protección contra rotura de termopar

El poner esta protección es de gran importancia, ya que si el termo par se rompiece el sistema podría dispararse y alcanzar temperaturas muy elevadas que pueden poner en peligro la integridad del equipo⁽³⁾:

Para evitar este peligro se diseña un sistema por el cual, al rompe<u>r</u> se el termopar la señal que llega al control sea la máxima que se tendría del termopar en condición de funcionamiento esto es 14.864 mV.

En la figura 4.6. se muestra la protección y su cálculo se lo hace utilizando la siguiente expresión:

Fig. 4.6. Protección contra rotura de termopar

$$V_{in}(r) = V(300^{\circ}C)$$

 $V_{in}(r) = \frac{V_{cc} R_{a}}{R_{r} + R_{a}}$ (4.5)

Donde:

 $v_{in(r)}$ = voltaje de entrada si se rompe el termopar (mV). R_a = resistencia de entrada al amplificador. R_r = resistencia de protección a la rotura.

Para garantizar el buen funcionamiento en condiciones normales de op<u>e</u> ración R_r debe ser lo suficientemente grande de tal forma que $I_s >> I_p$ (6).

c) Escalamiento de la señal

Para operar con mayor facilidad con el circuito electrónico es nec<u>e</u> sario que la señal se escale o amplifique a valores de voltaje mucho más manejables, por esta razón se introduce dos etapas de amplificación, una primera por 10 y la otra por 50, con lo cual la s<u>e</u> ñal se amplifica en definitiva por 500, dando un rango de variación a la salida de los mismos de 0 - 7.5 voltios.

La etapa de escalamiento es como muestra la figura 4.7.

Fig. 4.7. Etapa de escalamiento o amplificación de la señal de la termocupla.

Para calcular la ganancia de cada amplificador se utiliza la conocida expresión:

$$V_0 = V_{\text{in}} \left(- \frac{R_{\text{Lp}}}{R_{\text{IN}}} \right)$$
 (4.6)

97

Donde:

V_o = voltaje de salida | V | V_{IN} = voltaje de entrada | V | R_{Lp} = resistencia del lazo | Ω | R_{IN} = resistencia de entrada | Ω |

Por lo tanto los voltajes marcados en la figura 4.7. son:

$$V_{01} = V_{1n} \left(- \frac{R_2}{R_1} \right)$$
 (4.7)

Donde:

$$\frac{R_2}{R_1}$$
 = 10 para amplificar por 10

$$V_{02} = V_{01} \left(- \frac{R_s}{R_4} \right)$$
 (4.8)

Donde:

$$\frac{R_s}{R_4}$$
 = 50 para amplificar por 50.

En esta etapa adiconalmente se ponen filtros pasa bajos, con el obj<u>e</u> to de permitir el ingreso de señales de muy baja frecuencia, (en el orden de 0.1 Hz) ya que el sistema es de respuesta lenta y las señ<u>a</u> les de alta frecuencia son ruido que serra tremendamente nocivo en la operación. Las frecuencias de corte para estos filtros se evaluan con las expr<u>e</u> siones (6) :

$$f_{1_{10}} = \frac{1}{2 R_2 C_1}$$
 (4.9)

$$f_{2_{10}} = \frac{1}{2 R_1 C_1}$$
(4.10)

$$f_{1_{50}} = \frac{1}{7.82 \text{ R}_{5}\text{C}_{2}} \tag{4.11}$$

$$f_{2} = \frac{1}{7.82 \text{ R}_{4}\text{C}_{2}}$$
(4.12)

Donde:

 f_{n_m} = frecuencia de corte en Hertz.

n = denominación de la respuesta: 1 para ganancia nominal; 2 para ganancia cero.

m = etapa de amplificación.

Para evitar que alguna señal parásita que se introduzca al sistema destruya los dispositivos se ponen diodos en inverso paralela, los mismos que impedirán el ingreso de sobrevoltajes en la señal.

Las resistencias R_3 y R_5 se colocan para evitar el desvio de la se- $\bar{n}al$ (bias curent) y por lo tanto deben satisfacer la condición que $R_3 = R_1 \coprod R_2$ y $R_6 = R_4 \coprod R_5$. (6)

4.3.3. Comparador

4.3.3.a. Compensador de la temperatura ambiente

Como se señaló con anticipación, el voltaje que se obtiene en los ter minales frios de la termocupla está disminuído por el voltaje debido a la temperatura del lado frío, que en este caso es la temperatura am biente. Esto implica que al necesitar la temperatura neta de la cáma ra haya que compensar la señal con un sistema que tenga la misma res puesta que la termocupla en el rango correspondiente a la temperatura ambiente, entre 5 a 25°C.

Para alcanzar este objetivo se diseña el sistema mostrado en la figura 4.8., el mismo que utiliza un termistor con características $NTC^{(8)}$

Fig. 4.8. Compensador de la temperatura ambiente.

La señal de salida de este compensador será:

$$V_{E} = V_{m} \left(1 + \frac{Rc}{R_{T}}\right)$$
 (4.13)
Donde:

el cual está dado por

$$Vm = Vcc \frac{Rb}{Ra}$$
(4.14)

R_T = resistencia del termistor decreciente con la temperatura

siendo (6):

$$R_{T} = A e^{B/T}$$
(4.15)

B = constante dada por el fabricante | 1/°k |

 $A = R_{25} \circ e^{-\frac{B}{298 \circ K}} |\Omega|$ (4.16)

R₂₅° = resistencia del termistor dada por el fabricante a 25°C.

Expresiones con las cuales se calcula la respuesta del sistema de tal forma que sea del mismo tipo que la termocupla esto es:

$$v = 0.019 \ V/^{\circ}C \ T \qquad 5 < T < 25 \qquad (4.18)$$

4.3.3.b. Selector de temperatura

Si se parte del hecho que la temperatura ambiente podría alcanzar has

ta 25°C, el equipo deberá tener un punto mínimo de selección mayor a la mencionada temperatura. Adicionalmente la mayoría de polímeros utilizados para fabricar aislantes, tienen un comportamiento normal para temperaturas inferiores a 70°C. Por esta razón el equipo se d<u>i</u> seña con un selector cuya temperatura mínima a seleccionarse sea de 50°C y tenga 10 pasos de 25°C hasta alcanzar los 300°C, la configur<u>a</u> ción de este selector será como muestra la figura 4.9.

En el cual el voltaje en s será de la forma:

$$Vs = + Vcc - \frac{Ry + n Rsi}{Rx + Ry + 10 Rs}$$
(4.19)

Donde:

Vcc = voltaje de alimentación (+ 15 V).

Ry = resistencia que da la tensión equivalente a 50°C. $|\Omega|$ Rsi = resistencias iguales que dan los pasos de selección $|\Omega|$. Rx = resistencia que permite seleccionar la tensión equivale<u>n</u> te a 300°C $|\Omega|$

n = número de pasos $0 \le n \le 10$.

4.3.4. Controlador

En esta etapa es donde se ajusta la sensibilidad del equipo y su exactitud. Para realizar un adecuado control de la temperatura se utilizará un control del tipo Proporcional – Integral (PI), el cual se caracteriza porque su salida sigue el error de entrada y además integra la variación, reduciendo así el sobretiro por un cambio de estado en el sistema. (3)

Se mencionó el error en el párrafo anterior; esta señal será la que se obtiene de la salida de un sumador. Para aclarar estos conceptos se presenta la configuración en la figura 4.10. La formulación de esta señal será:

$$V_e = -\frac{R}{R_{Lp}} (V_D + V_E - V_S)$$
 (4.20)

Donde:

Ve = voltaje de error. V_D = voltaje que llega de la termocupla. V_E = voltaje que llega del compensador. Vs = voltaje que llega del selector. Al introducir esta señal en la etapa de control la respuesta del mismo sera: (3)

$$V_{c} = kp Ve + K_{I} \int Ve dt$$

Donde:

Kp = constante de proporcionalidad
KI = constante integral

Vc = salida del control.

Fig. 4.10. Controlador Proporcional Integral

Para calcular las constantes en la expresión 4.21. se deben fijar los requerimientos del control, los mismos que tienen estrecha relación con los requerimientos del sistema. Así, el error buscado es \pm 2°C, por tanto la banda de acción del control Bp% (5), deberá ser tal que se vaya controlando la potencia entregada al sistema desde un valor

(4.21)

-Si la entrada.Ve oscila entre O y Vmáx

$$Vosc = \frac{Bp_{\pi}}{100} Vmax \qquad (4.22)$$

Si se busca que la salida del controlador Vc oscile entre O y Vcmax entonces (8)

$$Kp = \frac{Vcmax}{Vosc}$$
(4.23)

En este equipo se ha diseñado un Vcmax de 5 voltios con una Kp de 3.5.

La constante kI depende de la velocidad del sistema, que para el si<u>s</u> tema térmico es muy baja, por lo que se escoje un valor de kI igual 5 segundos de tiempo integral.

Ya en el circuito mismo, las constantes se evaluan por (8):

$$kI = \frac{1}{Rc_2 C_0} = \frac{1}{\text{tiempo integral}}$$
(4.24)

$$kp = \frac{Rc_2}{Rc_1}$$
(4.25)

El diodo D_1 se pone para evitar oscilaciones porque el condensador se puede quedar cargado. El diodo D_2 y el diodo zener Dz se ponen para evitar que la salida supere al Vcmax o cambia de signo. 4.3.5. Control de potencia

En esta etapa se diseña el circuito que controlará el encendido de un TRIAC para mediante este dispositivo controlar la potencia entrecada a la carga, figura 4.11.

Fig. 4.11. Control de potencia por ciclo integral, sistema de disparo

Su funcionamiento se basa en generar una frecuencia variable con un timer funcionando como aestable y un amplificador en el cual mediante la detección de nivel se genera una señal de salida de periodo constante 166.66 ms (10 ciclos de 60 hertz) con la particularidad de ser una señal variable entre 15 Voc a O V_{DC} , siendo el tiempo que perman<u>e</u> ce en 15 V_{DC} un tiempo proporcional a la salida del controlador, ad<u>e</u>

más su duración será menor mientras más cercana esté a cero la señal del control P.I.

Esta señal se sincroniza con la red de 60 Hertz para comandar el disparo del triac en los cruces por cero de la señal de alterna, es to se hace utilizando un opto acoplador y un transistor que está co nectado a la compuerta del triac.

4.3.6. Salida a los displays

En las etapas anteriores se diseñó el sistema de control propiamente dicho, pero ante la necesidad de saber la temperatura a la que esta trabajando el sistema, se diseña una etapa adicional de tipo digital y que permitirá ver el valor de la temperatura en los displays. Esta etapa se diseñó como muestra la figura 4.12.

Fig. 4.12. Salida digital para tener la información de temperatura

La explicación del funcionamiento de cada dispositivo se puede encon trar en un texto de electrónica digital o en las referencias adjuntas. (15) (16) (17) (18) (19).

4.3.7. Reloj de tiempo real

Debido a que las muestras que se someteran a envejecimiento pueden estar bajo prueba muchas horas, es necesario introducir un sistema de medición del tiempo, el mismo que estara instalado de tal forma que permita evaluar el tiempo que ha estado sometida la muestra a d<u>e</u> terminadas condiciones de envejecimiento.

Para esto se utilizara un reloj del tipo CONTADOR REAL cuya aliment<u>a</u> ción de 120 V 60 Hz, está conectada a través de un relé, que se deb<u>e</u> rá instalar en la puesta a tierra del equipo, el mismo que descone<u>c</u> tará todo el sistema de la alimentación, permitiendo evaluar así el tiempo que ha soportado la muestras las condiciones impuestas. Esqu<u>e</u> máticamente el sistema será como muestra la figura 4.13.

El circuito general con todas sus etapas, así como los valores y ti pos de dispositivos utilizados se presentan en las láminas del apén dice B, correspondiente a planos de diseño.

4.4. DETALLES CONSTRUCTIVOS Y PRUEBAS

4.4.1. Detalles constructivos

Con los diseños térmico y eléctrico se procedió a la materialización del equipo. El primer paso fue la construcción de la cámara en la cual se utilizó una lámina de hierro negro de 4.8 mm de espesor, dan dosele la forma requerida por el diseño.

De acuerdo con el diseño, se construyó un cuerpo de forma similar de diámetro mayor y en lámina de hierro de 1.6 mm. FOTO.1.

El aislamiento térmico se lo dió con una capa de lana mineral de 5cm. cuyas características se presentan en la Tabla 4.1.

TABLA 4.1.

CARACTERISTICAS*

- Lana AN aislante térmico.

0 - 538 °C - Rango de temperatura de operación. - Densidad. 17.30 Kq/m

- Conductividad térmica.

- Constituída de materiales inorgánicos.
- Constituída de fibras de vidrio resistentes y elásticas aglutinadas con resina de fraguado termoestable.

*Catálogo "Fiber Glass Corp.", 1984.

VALOR

0.037 w/m°C

Para alcanzar los requerimientos térmicos de diseño se dispusieron las niquelinas siguiendo una línea quebrada alrededor de una cota de 15 cm de la base de la cámara, con espaciamiento entre puntas de 5 cm. Siendo la disposición de la una cara respecto a su opue<u>s</u> ta, invertida.

Cada niquelina de resistencia, medida con el puente de Wheastone, 29.45Ω, se partió en 6 partes iguales, en cada parte se colocaron terminales soldados a las niquelinas para evitar así su deterioro por mala conexión eléctrica.

Para instalar estos segmentos de niquelina hubo que recurrir a la utilización de aisladores de cerámica diminutos, los que fueron empotrados en la pared de la cámara colocándose tres aisladores por segmento de niquelina, dos en los extremos para conexión y uno al centro para soportar la niquelina y evitar que se produzca un co<u>r</u> tocircuito en caso de elongación por calentamiento. FOTO.2.

Los conductores eléctricos se llevaron en forma aérea, suspendidos cada 15 cm en un aislador de los utilizados para sostener las ni quelinas, realizando las conexiones a los puntos de interes (cada 6 segmentos) a través de conectores y ajustados con tornillos, los puentes entre segmentos son del mismo tipo: FOTO.3.

Para poder instalar en el interior de la cámara los electrodos, se instaló en el centro de la base un pedestal de 15 cm torneado en bronce, en cuya punta existe un tornillo de 0.6 cm. Adicionalmente este pedestal tiene un hueco interior que llega hasta 1 cm de la punta pasando por la cámara y la cascara exterior con la final<u>i</u>

109

dad de introducir por ahi la termocupla y sensar la temperatura lo nás cerca posible a la muestra sin distorcionar el comportamiento térmico y eléctrico de la cámara. FOTO.3.

El perfil ecualizador de voltaje se lo construyó en plancha de 13 mm de hierro, torneado en la forma requerida por el diseño, sujetándolo a la cámara con pernos, en hueco ciego y colocando en la parte s<u>u</u> perior un anillo de asbesto de 5 mm, el cual también es parte del d<u>i</u> seño y sirve para evitar el corrimiento del bushing. FOTOS.4 y 5.

Para llegar con la alta tensión al interior sin permitir el escape de calor por el interior del bushing y evitar la transferencia del mismo por la parte metálica se construyó un electrodo de carbón, de 28 cm de largo, utilizando las barras de carbón que se encuentran en las pilas de teléfono antiguas. FOTO. 6.

Las características eléctricas y térmicas de este material se muestran a continuación en la Tabla 4.2.

En la parte baja del bushing se instaló un electrodo torneado en bro<u>n</u> ce, como se muestra en la figura 4.14. (más detalles en el apéndice B), el mismo que se ajusta al bushing por la tracción hecha por los demás componentes.

En la parte superior del bushing se construyó un terminal de forma idéntica a los que tienen los equipos del laboratorio de alto volt<u>a</u> je, con la finalidad de colocar sobre este los cabezotes de conexión de alta tensión y evitar así la aparición de corona en este punto.

TABLA 4.2.

CARACTERISTICAS DEL CARBON UTILIZADO PARA EL ELECTRODO

DE ALTA TENSION

ø 2.4 cm ; Long. 14 cm.

Tamb = 15°C

Tlado caliente = 300°C

TIEMPO	TEMPERATURA
min.	. °C
0	15
5	60
10	65
15	67
20	71
25	73
30	75
35 .	76.5
40 .	78
45	78.5
50	79
55	. 79
60	79

Nota: Pruebas realizadas con un quemador de gas, teniendo la muestra sumergida en un recipiente con aceite hasta una altura de 3cm.

Pero la parte inferior de estos cabezotes no es redondeada, por lo que se hizo necesario colocar un anillo ecualizador de voltaje en la parte donde asienta el cabezote para evitar la concentración de ca<u>m</u> po y por ende la corona. (Ver FOTO. 7)

Para conectar el alta tensión con el electrodo que se coloque sobre la muestra, se construyó un resorte em alambre galvanizado, de 20 cm de longitud natural y 2 cm de diámetro, teniendo terminales soldados en ambos extremos para conexión. Se le dió esta forma para impedir la aparición de corona y poder mover el electrodo que se coloque so bre la muestra.

En la puertade acceso se utilizaron 2 vidrios de 4 mm del tipo comer

cial, suspendidos entre láminas de asbesto y separados entre si 5 mm. FOTO, 1.

El equipo tiene su propio sistema de transporte y adicionalmente se instaló un brazo externo para montar el control de temperatura. FOTO. 8.

El control de temperatura esta instalado en 6 impresos que se colocan en una caja metálica, en cada uno de los cuales se colocan cie<u>r</u> tas etapas del circuito así:

λ.

IMPRESO 1 Escalamiento y compensación.

IMPRESO 2 Selector, controlador.

IMPRESO 3 Conversor análogo digital.

IMPRESO 4 Circuito de disparo.

IMPRESO 5 Circuito digital.

IMPRESO 6 Displays.

La forma de cada uno de estos, así como su disposición en la caja, se muestra en las FOTOS: 8 y 9.

Fotografía 1. Cámara y carcasa de la mufla.

Fotografía 2. Montaje de las niquelinas.

:

Fotografía 3. Disposición de los conductores y el pedestal porta ele<u>c</u>trodos.

Fotografía 4. Anillo equializador de tierra.

Fotografia 5. Montaje del anillo equalizador de tierra.

Fotografía 6. Configuración del electrodo de alta tensión.

Fotografía 7. Anillo ecualizador en la parte superior del bushing.

Fotografía 8. El interior del control de temperatura.

Fotografía 9. El control de temperatura.

Fotografia 10. El equipo utilizado en pruebas de envejecimiento.

4.4.2. Pruebas de funcionamiento

El objeto de estas pruebas prototipo es el obtener la repuesta del equipo en condiciones de trabajo, para con estos resultados establ<u>e</u> cer si se satisfacen las condiciones de diseño.

Por lo tanto las pruebas que se realizarán deberán estar orientadas a obtener valores que permitan evaluar los diseños térmico, eléctrico y del control de temperatura.

A continuación se presenta la descripción del conjunto de pruebas realizadas.

4.4.2.1. Pruebas de calentamiento

El realizar este tipo de pruebas permite obtener la respuesta térmi ca del equipo en vacio, esto implica obtener la respuesta: Temperat<u>u</u> ra vs tiempo, para la condición de máxima temperatura (300°C). Adicionalmente, este tipo de pruebas permiten evaluar el comportamiento del aislante térmico, así como el de la ventana de acceso a la cám<u>a</u> ra.

Por otro lado, es importante establecer el comportamiento de estos parámetros cuando el sistema funciona con carga, debiendo entenderse por carga cualquier objeto en el interior de la mufla que no sea pa<u>r</u> te integrante de esta.

Realizadas las pruebas antes mencionadas los resultados se presentan

en el Apéndice F, tablas F-1 y F-2, y como gráficos racionalizados (%T = f(t)), se indican en las figuras 4.15., 4.16., 4.17., 4.18.

Al analizar estas curvas de respuesta se desprenden las siguientes conclusiones:

a) En el gráfico de la figura 4.15. se observa que el sistema pre senta inicialmente un crecimiento lineal, el mismo que se mantiene hasta alcanzar el 50% (150°C) de la temperatura seleccionada, luego de este punto el sistema empieza a responder a la acción del sistema de control, el mismo que empieza ha controlar la potencia entregada para así garantizar que el sistema vaya a la temperatura seleccionada (300°C) sin existir un sobre tiro debido a un exceso de energía almacenada en el sistema.Por lo tanto se puede concluir diciendo que el sistema térmico y el control estan actuando de acuerdo a lo previsto.

La figura 4.16. muestra las respuesta de temperatura en la car caza y en la ventana de vidrio de la mufla, se observa que no existen discontinuidades ni saltos bruscos de temperatura, 10 cual indica la ausencia de esfuerzos térmicos en el aislamiento, siendo este un sintoma de su adecuado funcionamiento. Observa ción que se corrobora con la comparación de los valores de dise ño que para la temperatura de la ventana en su cubierta exterior (Tc₁) y la de carcaza (Ts) para máxima temperatura son: $Tc_1 = 75$ y Ts = 30 respectivamente, frente a los resultados de las pruebas que indican $Tc_1 = 73.8$ y Ts = 32 °C.

🛪 Temperatura Interna

արթուցիուց 🕺

Fig. 4.17 % Tint.=f(t).con carga

🛪 Temperatura Interna.

🛪 Temperatura Interna

El obtener estas curvas para la máxima temperatura permite evaluar el diseño, no se realiza en este punto la misma prueba para temperaturas intermedias por cuanto en el diseño sólo se consid<u>e</u> ra la temperatura máxima de operación para el dimensionamiento de los componentes. Pero se puede concluir apriori que si el sistema trabaja adecuacamente para la condición máxima, en las condiciones intermedias lo hará de igual forma inclusive se te<u>n</u> dría unas curvas de respuestas parecidas a las obtenidas sólo con cambio en el tiempo de respuesta.

Las pruebas a temperaturas intermedias se realizarán para dete<u>r</u> minar la calidad del sistema de control.

b) De la prueba con carga, cuya respuesta se presenta en las figuras 4.17 y 4.18 se desprende que como era de esperar el sistema tiene una respuesta parecida a la prueba en vacío con la diferen cia que para alcanzar la temperatura final el equipo requiere un tiempo mayor de operación, lo cual se debe a que la carga térmica introducida es relativamente grande (ver anexo F).

4.4.2.2. Pruebas eléctricas

Con estas pruebas se busca establecer el comportamiento del diseño eléctrico de alta y baja tensión.

a.- PRUEBAS DE ALTO VOLTAJE

Estas pruebas están encaminadas a evaluar el comportamiento del sis

tema: bushing, electrodos de alta y tierra y los pérfiles ecualizadores. Verificando la distancia de aislamiento y determinando el voltaje de operación libre de corona.

a.1. Prueba de aislamiento

Esta prueba se realizará según la norma IEC., 76, 1967. (23).

Por norma, para evaluar si un sistema de alto voltaje esta bien ai<u>s</u> lado (distancia de aislamiento y configuración adecuada para el vo<u>l</u> taje de diseño), se debe someter al sistema al sobrevoltaje de fr<u>e</u> cuencia industrial correspondiente al voltaje de diseño, por espacio de un minuto.

Como la mufla esta diseñada para soportar 30 kV_{STP} el sobrevoltaje aplicado fue de 60.4 kV STP, (en Quito se corrige por variación de la densidad a 547 mm Hg y 19°C, el factor es de 0,71), el equipo p<u>a</u> sa la prueba.

a.2. Detección de corona

Esta prueba se realizó según la norma IEEE, Std. 454, 1973 (21). P<u>a</u> ra establecer la presencia de corona en un equipo, por recomendación de la norma, hay que establecer la presencia de corona en todos los equipos auxiliares para determinar así si la corona es debida sólo al equipo que interesa.

Esta prueba permitió establecer los siguientes valores de carga en

los pulsos de corona que se producen en la mufla a diferentes voltajes.

TABLA 4.3.

MEDICION DE CORONA EN LA MUFLA*

VOLTAJE	CARGA DE LOS PULSOS
(KV)	(pc)
4	0
6	0
8	. 5
10	18
12	50
12.5	224
13.0	282 (audible)
13.5	1000 (audible)

* Prueba realizada a 548,49 mmHg y 20,2°C.

Como el objeto de esta prueba es el de establecer el voltaje hasta el cual la mufla se consideraría libre de corona, se decidió revisar los resultados obtenidos en pruebas de detección de micro descargas (22) y realizar otras tantas que permitan establecer el nivel de vol taje útil para este tipo de estudios. En la Tabla 4.4. se presenta un resultado de detección de microdescargas (22), los otros result<u>a</u> dos se presentan en la tabla F-3 del apéndice F.

TAB	LA	4	•	4	•

PRUEBA DE DETECCION DE DESCARGAS PARCIALES

MATERIAL	VOLTAJE	GRADIENTE DE POTENCIAL	CARGA	DE
		•	· LOS PULS	0 S
	(KV)	(KV/cm)	(pc)	
Lámina de poliester	2	20	50	
de 12x12 cm x 0.1 cm	4	- 40	100	
en aire.	5	50	3000	

En base a estos resultados se puede establecer que un valor adecuado de voltaje para considerar a la mufla libre de corona será aquel que presente como máximo pulsos de 50 pc.

En la tabla 4.3. se encuentra que la mufla presenta pulsos de 50 pc a 12 kV, además si se evalúa la energía de los mismos con la expresión siguiente (21):

$$E = \frac{1}{2} QV$$
 (4.25)

donde:

Ε	Ξ	energía de los pulsos de corona	(ŋJ)
Q	n	carga de los pulsos de corona	(pc)
۷	=	voltaje aplicado	(KV)

Se obtiene que en este nivel de voltaje la energía de los pulsos te<u>n</u> dría un valor máximo de 300 nJ, lo cual hace que el equipo este de<u>n</u> tro de los valores permitidos por la norma (21), la misma que establece una energía de 700 nJ para considerar a un equipo aislado en aire libre de corona.

Luego de establecer el nivel permisible de corona corresponde establecer el voltaje de iniciación de corona (CIV) y el de extinsión de corona (CEV), obteniéndose:

CIV = 12.5 kV

CEV = 11.5 KV

Por lo expuesto se puede concluir diciendo que la mufla está libre de corona para una tensión inferior a los 12.5 KV.

b. PRUEBAS EN BAJO VOLTAJE

Estas pruebas tienen por objeto verificar si se satisface tanto el valor de la resistencia eléctrica de los calefactores como el factor de potencia del mismo.

Se realizaron dos tipos de pruebas: Prueba del voltímetro – amperím<u>e</u> tro con tensión contínua, para determinar la resistencia de los cal<u>e</u> factores y prueba del voltímetro, amperímetro, vatímetro, con tensión alterna para determinar el factor de potencia. Los resultados obtenidos en estas pruebas se muestran en las tablas 4.5. y 4.6

T/	\BL	A	4	:	5	•

VOLTAJE	CORRIENTE	RESISTENCIA
(V)D.C.	(A)	()
24	4.1	5.86
24	4.0	6.00
24	4.0	6.00
24	. 4.0	6.00
24	4.1	5.86

MEDICION DE LA RESISTENCIA DE LOS CALEFACTORES

TABLA 4.6.

MEDICION DEL FACTOR DE POTENCIA

VOLTAJE	CORRIENTE	POTENCIA S	POTENCIA P
(V)A.C.	(A)	(VA)	(₩)
. •			
24	4.1	98.4	98
24	4.1	98.4	98
24	4.0	96.0	98
24	4.0	96.0	98
24	4.1	98.4	. 98

En base a estos resultados se encuentra que la resistencia de los c<u>a</u>

lefactores medida es de 5.97 Ω , frente a 5.94 Ω que es la resisten cia de diseño, se tiene un error del 0,5 % lo cual garantiza una adecuada construcción.

Respecto del factor de potencia, éste es unitario, lo cual satisface plenamente las espectativas de diseño.

4.4.2.3. Prueba del control de temperatura

Esta prueba permitirá comprobar si el control de temperatura está operando de acuerdo a los requerimientos de diseño, esto es permitir controlar la temperatura desde 50°C a 300°C en pasos discretos de 25°C, con un error de estabilización de + 2°C.

Para realizar esta prueba se utilizó el termómetro disponible en el laboratorio (tipo puente), con el cual se tomó la medida de temperatura en el mismo sitio donde está la termocupla, ademas se varió el selector de temperatura a cada posición de temperatura en pasos de 25°C y se tomó lecturas de la temperatura alcanzada por el mismo ha<u>s</u> ta la desconexión y la temperatura en la que se volvía a conectar p<u>a</u> ra así determinar la banda de error, los valores obtenidos en esta prueba son los mostrados en la tabla 4.7.

De los resultados expuestos se puede observar que el valor de ΔT es ta entre <u>+</u> 2°C, encontrando que sólo en una temperatura (150°C) exis te un error de -3°C en la reconexión, lo cual se puede atribuir a una mala lectura o a una variación en la resistencia que pone la se nal del selector en el control.

TABLA 4.7.

DETERMINACION DEL ERROR EN EL CONTROL DE TEMPERATURA

TEMPERATURA SELECCIONADA TERMOMETRO DE LA MUFLA TEMPERATURA MEDIDA

	Desco	nexion	Reco	nexion	Desc	onexion	кесоп	exion
°C	°C	Ťa	°C	۵T	°C	۵Ť،	°C	ΔT_1
50	51	+1	48	-2	50	· 1	48	0
, 75	75	0	73	-2	76	-1	74	-1
100	101	+1	98	-2	101	0	98	0
125	126	+1	124	-1	125	1	123	+1
150	151	+1	147	-3	151	0	148	-1
175	174	-1	173	-2	175	-1	173	0
200	200	0	198	-2	201	1	199	-1
225	226	+1	224	-1	*		-	
250	249	-1	247 -	-3	*		-	
275	276	+1	273	-2	*		-	
300	302	+2	299	-1	*		-	
	-							

 $\star \Delta T = T_{termo} - T_{selec}$

*ΔT1 = T_{term}ó - T_{medida}

* Estas medidas no se pudieron tomar debido a que el termómetro no ti<u>e</u> ne sino una capacidad de 210°C.

En definitiva se puede decir que se ha satisfecho el requerimiento de obtener una temperatura controlada de hasta 300°C con un error de \pm 2°C.

El valor de ΔT_{\pm} es un valor que sirve para contrastar el termómetro, el resultado indica que el termómetro esta dando lecturas confiables con un error de <u>+</u> 1°C, lo cual corrobora la presición del sis tema.

Se puede finalizar diciendo que se han alcanzado las metas trazadas en el diseño.

CÁPITULO V

PRUEBAS DE APLICACION EN EL ENVEJECIMIENTO

El envejecimiento de un material no es sino los cambios causados en sus propiedades físicas o químicas por uno o varios esfuerzos aplic<u>a</u> dos al mismo a lo largo de un tiempo. (13)

Estos cambios pueden ser evaluados por la medición de algunas propi<u>e</u> dades tales como: voltaje de ruptura; tangente de pérdidas dieléctr<u>i</u> cas etc. o también estableciendo y calibrando modelos que permitan predecir el estado del material.

Si una propiedad del material (p), sufre variación por un esfuerzo <u>a</u> plicado, se puede establecer una función F(p), la misma que si presenta una velocidad de cambio R se la puede representar como:

$$F(p) = Rt$$
 (5.1)

Donde:

t = tiempo.

Si la propiedad decae hasta un valor límite (criterio de falla) la propiedad no podrá reducirse más sin deteriorar el material como tal y su aplicación. El tiempo que dicha propiedad soporte hasta alca<u>n</u> zar el valor límite se denomina vida del material, que analíticamente se representa así: Si t•L

P = PL

entonces

$$F(P_1) = R \cdot L$$
 (5.2)

Donde:

L = vida del material respecto de la propiedad p.

5.1. MODELOS SIMPLES DE ENVEJECIMIENTO

5.1.1. Modelo de envejecimiento térmico

El envejecimiento térmico de los materiales fue planteado por Dakin en 1948, como una reacción química, modelando la velocidad de cambio del material como una función basada en la conocida fórmula de Arrh<u>e</u> nius así: (12; 13)

$$R_{t} = A \exp\left(-\frac{Ea}{T}\right)$$
 (5.3)

Donde:

A = constante del material.

Ea = relación de la energía de activación del material respecto de la constante de Boltzman.

T = temperatura absoluta |°K |

 R_t = velocidad de envejecimiento térmico $\left| \frac{1}{S} \right|$
Como es lógico la vida de un material es una función inversa de su velocidad de envejecimiento así:

$$Lt = kt \exp\left(\frac{Ea}{1}\right)$$
 (5.4)

Donde:

$$L_t = vida térmica$$

 $k_t = \frac{1}{A}$

Ahora bien si se toman por condiciones de frontera del material la vi da en condiciones ambientales esto es:

 $a T_0 \rightarrow L_0$

aplicándolas en la expresión 5.4. se tiene:

$$kt = L_0 \exp(-\frac{Ea}{T_0})$$
 (5.5)

Por lo anotado la vida térmica del material será:

$$Lt = L_0 \exp - Ea \left(\frac{1}{T_0} - \frac{1}{T} \right)$$
 (5.6)

Pero el factor exponencial de la ec. 5.6.

$$\frac{1}{T_0} - \frac{1}{T} = \frac{T - T_0}{T \cdot T_0}$$

 $\frac{T - T_0}{T T_0} = \frac{1}{T_0}$

Si T → ∞ entonces

Si
$$T \rightarrow T_0$$
 entonces $\frac{T - T_0}{T T_0} = 0$

Por tanto $\frac{T - T_0}{T T_0} = \Delta T$ ya que son cantidades pequeñas, si esta <u>ul</u> tima expresión se reemplaza en la expresión 5.6.

Se obtiene:

$$L_{t} = L_{0} \exp - Ea \Delta T$$
 (5.7)

Aplicando logaritmos en 5.7. se obtiene:

$$Ln Lt = Ln L_0 + (- Ea \Delta T)$$
 (5.8)

La misma que en un papel semilogarítmico son rectas con pendiente -- Ea ∆T.

5.1.2. Modelo de envejecimiento eléctrico

Los investigadores de envejecimiento de materiales dieléctricos han formulado dos modelos de envejecimiento eléctrico así: Modelo de P<u>o</u> tencia inversa y modelo exponencial. (12)

a) MODELO EXPONENCIAL

Se lo propone como: (12)

Le = k exp - h G

(5.9)

Donde:

- Le = vida eléctrica.
- k = constante.
- h = constante.
- G = gradiente eléctrico.

Las condiciones de frontera para este modelo son:

El material tendrá una vida L_0 cuando G = 0, aplicadas estas condiiones en la ec. 5.9. se obtiene:

 $k = L_0$

Por tanto:

$$Le = L_0 exp - hG$$
(5.10)

Si se aplican logaritmos a ambos miembros se obtendrá graficando en papel,semilogarítmico una recta con pendiente - hG.

b) MODELO DE POTENCIA INVERSA

Se lo concibe como: (12)

$$Le = C exp^{-n}$$

(5.11)

Donde:

C = constante.

n = constante.

Si se aplican las mismas condiciones de borde que en el modelo anterior se encuentra que a G = O la vida Le tiende a infinito, lo cual esta en desacuerdo con un modelo real por tanto hay que introducir condiciones que hagan válido este modelo.

Las nuevas condiciones de frontera serán:

En todo material eléctrico existe un gradiente de potencial, debido a la presencia de partículas cargadas por tanto existirá un G_0 por debajo del cual la vida del material es Lo así aplicando en la ec. 5.11. se obtiene:

$$C = \frac{L_0}{G_0^{-n}}$$
(5.12)

Por lo tanto:

$$Le = L_0 \left(\frac{G}{G_0}\right)^{-n}$$
(5.13)

Aplicando logaritmos y graficando en papel bilogarítmico se obtendría una recta con pendiente -n.

5.2. MODELO DE ENVEJECIMIENTO COMBINADO

Se puede plantear un modelo de envejecimiento combinado, utilizando las expresiones de los modelos separados, para lo cual se deben co<u>n</u> siderar modelos del mismo tipo, razón por la que este modelo se lo hará utilizando modelos exponenciales.

Pero al aplicar esfuerzos combinados a un material aparecerán fenóm<u>e</u> nos de superposición y de reacción combinados.

Si la velocidad de cambio de las propiedades se expresa por: (12)

$$R = A \exp\left(-\frac{Ea}{T}\right) \exp\left(\left(a + \frac{b}{T}\right) f(G)\right)$$
(5.14)

donde:

a = constante

b = constante

f(G) = función del gradiente de potencial.

Si se escoge:

$$f(G) = G$$
 (5.15)

y la vida del material es el inverso del cambio en las propiedades.

$$L = \frac{1}{A} \exp \left(+ \frac{Ea}{T} \right) \exp \left| - \left(a + \frac{b}{T} \right) G \right|$$
 (5.16)

Aplicando las condiciones de borde: la vida es L_0 a temperatura ambiente (T_0) sin gradiente de potencial se tiene:

$$\frac{1}{A} = L_0 \exp - \frac{Ea}{T_0}$$
(5.17)

Si además para que cada modelo se satisfaga inidvidualmente se pone:

$$+ b/T_0 = h$$
 (5.18)

La expresión 5.16, quedará como:

ð

$$L = L_{0} \exp^{-Ea\Delta T} \exp^{-hG} \exp^{+b\Lambda TG}$$
(5.19)

De donde como se puede observar si se pone G = O ausencia de esfuerzo eléctrico se presenta el modelo de envejecimiento térmico y si se pone T = T₀ ausencia de esfuerzo térmico se presenta el modelo de e<u>n</u> vejecimiento eléctrico. Desde este punto de vista se establece que el modelo combinado se puede representar como:

$$L = \frac{Lt \ Le}{L_0} \ exp^+ \ b\Delta TG \tag{5.20}$$

Haciendo el gráfico de esta función en un sistema: G, T, Ln(L), se encuentra una superficie de comportamiento del material, cuya forma típica es como la mostrada en la figura 5.1. (12)

Una vez planteado el modelo aparece la utilidad de la mufla, ya que con ayuda de este equipo se someterá a un set de muestras de un mat<u>e</u> rial aislante polimérico y se encontrarán resultados, con los cuales se calibrará el modelo, esto es encontrar el valor de læsconstantes.

Al tener calibrado el modelo se pueden introducir puntos de operación del material y encontrar la vida del mismo bajo estas condiciones. Adicionalmente se pueden realizar gráficos donde se puedan e<u>n</u> contrar los puntos de operación y la vida esperada.

Fig. 5.1. La superficie de vida del aislamiento eléctrico bajo temperatura y voltaje tomando un simple modelo para la vida elé<u>c</u> trica.

(Reproducida de: IEEE. Trans. Elect. Insu. Vol. EI-16 No. 4 Ag. 81).

5.3. PRUEBAS EN MATERIALES DE TIPO POLIMERICO

5.3.1. Pruebas de envejecimiento térmico

Estas pruebas se realizan con el objeto de demostrar la aplicación del equipo en estudios de envejecimiento de dieléctricos.

El proceso de envejecimiento que se analiza con más detalle es el de envejecimiento térmico, realizándose una prueba de envejecimiento combinado, con la finalidad de mostrar la bondad del equipo y por que adicionalmente se requiere mucho más tiempo debido a las combinaciones que se pueden hacer entre voltaje y temperatura.

El material escogido para realizar estas pruebas es el polimero d<u>e</u> nominado comercialmente "polivinil 040", el mismo que quimicamente es un cloruro de polivinilo.

Para establecer algunas de sus propiedades, que marquen los límites del esfuerzo térmico que se pueda aplicar y adicionalmente permita evaluar el envejecimiento se realizaron las siguientes mediciones, tablas 5.1. y 5.2.

TABLA 5.1.

CARACTERISTICAS INICIALES DEL POLIVINIL 040

Característica

Valor

Espesor	0.40	[mm]
Densidad	1.35 x 10 ³	[Kg/m³]
Voltaje de perforación	18.00	[KV]
Gradiente de potencial de perforación	450.00	[KV/cm]
Tangente de pérdidas dieléctricas	6.99	[%]

TABLA 5.2.

CARGA DE LOS PULSOS DE CORONA MUESTRAS NUEVAS DE POLIVINIL 040

VOLTAJE	GRADIENTE DE	CARGA DE L	OS PULSOS
(KV)	(KV/cm)	(Pc)	(*) %
1.0	25	49.626	0
1.5	37.5	4371.850	43.51
2.0	50	7789.990	77.92
2.5	62.5	9983.700	100.00

(*) Carga racionalizada tomando como 100% el máximo valor de la car ga de los pulsos.

Se debe anotar además que el cloruro de polivinilo (P.V.C.) obtenido de la polimerización del monómero vinil cloro, se caracteriza por ser un polimero de elevado peso molecular y tener un porcentaje de cristalización bajo (10%).

Además no puede ser sometido a temperaturas iguales o mayores a 115 °C por períodos largos, ya que se produce su descomposición liberá<u>n</u> dose ácido clorhídrico que es altamente corrosivo. (25).

5.3.1.1. Resultados del envejecimiento

En busca de establecer un criterio de falla para el material o el fin de su vida útil como aislante eléctrico se decidió evaluar la variación de dos propiedades del material; la carga de los pulsos de corona y la tangente de pérdidas dieléctricas (método tradicional de análisis).

Para que los resultados obtenidos tengan validez se tomaron muestras de una misma pieza de material (P.V.C.), según lo exige la no<u>r</u> ma IEEE St. 98, 1972. (24)

A este conjunto de muestras, se las dividió en grupos de tres mue<u>s</u> tras y cada grupo fue sometido por diferentes espacios de tiempo a diferentes temperaturas. En el análisis de resultados se considera el producto tiempo x temperatura lo que permitirá dar a los result<u>a</u> dos el tratamiento estadístico sugerido en la norma IEEE St. 101, 1972 (26), en base de los cuales se calibrará el modelo de envejec<u>i</u> miento térmico.

Los resultados obtenidos se presentan como tablas en el apéndice G, tablas G1 a G6 y como gráficos racionalizados en las figuras 5.2 a 5.7. Se debe acotar que las muestras fueron sometidas a temperaturas de, 50, 75, 100°C por espacios de tiempo tales que el producto tiempo pro temperatura se mantenga en valores de 2400, 3600, 4800 (horas °C), con la finalidad de buscar un patrón de comportamiento tridimensional, que permita predecir lo adecuado o no del procedimiento.

Al analizar los gráficos de la variación de los pulsos de corona a diferentes temperaturas, figuras 5.3. a 5.6. se puede hacer el s<u>i</u>guiente comentario.

Para todas las temperaturas con un tiempo de exposición tal que txT sea igual a 2400 se nota una tendencia del material a mejorar sus características, la misma que no es acentuada para temperaturas de 50 y 75°C, pero con 100°C, el mejoramiento es muy notorio. Este f<u>e</u> nómeno puede tener su explicación en que al ser fabricado el mat<u>e</u> rial se introdujeron partículas de humedad, las mismas que al cale<u>n</u> tarse tienden a escapar con el reblandecimiento del material, pero a temperaturas inferiores a 100°C el agua no se evapora totalmente, siendo por tanto ésta una posible explicación del resultado prese<u>n</u> tado (*).

Para todas las demás condiciones se observa que la respuesta del m<u>a</u> terial es bastante parecida, teniéndose una mayor degradación del mismo mientras mayor es el producto tiempo por temperatura (t x T).

(*) Anderson J. C., Leaver R. D., Ciencia de los materiales, Alexander J. M., Dawlings R.D., Editorial Limusa, México, 1978.

🛪 Picoculombios de descarga parcial

148

Voltaje aplicado en Kilovoltios

🗶 Picoculombios de descarga parcial

149

Voltaje aplicado en Kilovoltios

% Picoculombios de descarge parcial

Tangente de pérdidas dieléctricas %

x Tangente de pérdidas dieléctricas

152

Producto tiempo x Temperatura (hxgrd.C)

Esta variación es un comportamiento típico de envejecimiento, que se debe a una despolimerización del material, o a la descomposición del material a temperaturas mayores, lo cual concuerda con el concepto de envejecimiento, que se señaló al principio de este capít<u>u</u> lo.

En estos gráficos (Fig. 5.2. a 5.4) se ha introducido una línea p<u>a</u> ralela al eje de las ordenadas, marcada CIV, la misma que señala el voltaje de iniciación de corona, esto es importante señalar ya que sólo así se explica el cambio brusco en el comportamiento de las microdescargas.

La otra característica que se analiza es la tangente de pérdidas dieléctricas, mediciones que se realizaron utilizando el puente de Schering. La variación de este parámetro se presenta en la figura 5.6. y 5.7. Se observa de ellos que la tangente de pérdidas varía con la temperatura en forma lenta hasta llegar a 75°C, acelerandose su variación en 100°C, lo cual concuerda con los resultados obteni dos por microdescargas.

Esto indica que para las temperaturas de 50 y 75°C el comportamiento del material se ve influenciado por algún fenómeno químico sim<u>i</u> lar, no así a los 100 grados donde al parecer entra en juego otro tipo de fenómenos, como la descomposición por ejemplo.

Una de las ventajas de este material para ser estudiado es que las variaciones debidas al envejecimiento son notorias inclusive a si<u>m</u> ple vista, como se muestra en la Fotografía 11.

154

Temperatura de exposición en grados C.

Log. decimal de la carga de la Corona

Finalmente en busca de establecer cual de los métodos de evaluación es el más sensible, se realizan gráficos comparativos de las respuestas obtenidas, mostrados en las figuras 5.8. y 5.9. de los mi<u>s</u> mos que se puede concluir que la evaluación de microdescargas es un método muy sensible ya que se puede detectar inclusibe variaciones que indican un mejoramiento del material para cortos períodos de e<u>x</u> posición a diferentes temperaturas, lo cual no se detecta en la v<u>a</u> riación de la tangente de pérdidas.

Adicionalmente se puede señalar que el evaluar envejecimiento mediante la detección de microdescargas es válido para cualquier tem peratura y para cualquier tiempo de exposición debido a su sensibilidad. No así con la tangente de pérdidas dieléctricas que presen ta una resolución confiable para largos períodos de exposición y tem peraturas relativamente grandes, como se puede observar de la simi litud entre las curvas correspondientes a txT = 4800 (h \cdot C). Figuras 5.8. y 5.9.

En base a estos resultados y tomando en cuenta algunos limitantes físicos adicionales se procede a establecer la vida esperada para el material, debiendo acotar que esto es meramente ilustrativo ya que en una aplicación concreta se deberán hacer muchas pruebas ad<u>i</u> cionales a diferentes temperaturas y tiempos.

5.3.1.2. Calibración del modelo del envejecimiento térmico

Para calibrar el modelo de envejecimiento térmico dado por: (12)

Es necesario establecer algunas premisas que hagan valido al mismo. las mismas que son:

 La constante Ea que es la relación de la energía de activación del material respecto de la constante de Boltzman debe tener un valor tal que concuerde con la condición de aislante del mismo.

Para tener un parámetro de comparación se puede recordar que en los semiconductores puros la energía que separa la banda de con ducción de la de balencia es del orden de 1 a 2 eV y en materia les como el lunysteno y el Torio se tienen funciones de trabajo de 4.5 eV y 2.6 eV respectivamente, estos valores están dados un material cuya configuración molecular es cristalina, no así con el p.v.c., que es un material caracterizado como amorfo, lo cual hace variar el valor de esta energía.

Pero será importante analizar las condiciones de operación del mencionado material, ya que si se somete al mismo a un esfuerzo debido a campo eléctrico por ejemplo esta energía se ve reducida debido a la interacción entre la barrera de energía intrinseca del material y la energía que se entrega con el campo eléctrico, ad<u>i</u> cionalmente la característica de los polimeros de tener enlaces polares, podría permitir que el comportamiento electrónico del material se asemeje al de los semiconductores.

2. Por lo tanto el criterio de falla o vida del material para una de

terminada temperatura deberá ser tomado a base de los datos obtenidos de la variación de las microdescargas o de la tangente de pérdidas.

Así se ha encontrado que la vida del material tiene intima rel<u>a</u> ción con las microdescargas, lo cual implica que de su variación se puede sacar un criterio que permita evaluar el tiempo de vida,

 La comparación con resultados obtenidos en investigaciones en es te campo son de gran ayuda, puesto que si bien no se trata del mis mo material, sin embargo da una luz en el propósito que interesa.

Así por ejemplo para el poliéster se ha encontrado que la vida del mismo para algunas temperaturas es: a 165°C una vida de 1050 horas y a 200°C un valor de 180 horas (WECHSLER R., IEEE, Power Meeting, New York, 1964, pág. 21).

Ahora bien de los resultados obtenidos que se presentan en el numeral anterior y considerando lo anotado se puede preveer los siguie<u>n</u> tes tiempos de vida para el material.

Se ha anotado que el p.v.c. no se puede exponer a temperaturas sup<u>e</u> riores a los 155°C por que se descompone, por tanto al someter la muestra a 100°C por un espacio considerable de tiempo (48 horas, r<u>e</u> sultados más críticos), se nota que el material se ha degradado ta<u>n</u> to visual como cuantitativamente en gran medida, (figura 5.5) lo cual hace pensar que en estas condiciones su vida sera muy corta, pudiendo por tanto tener un valor de una 180 a 200 horas.

La temperatura de 75°C es una temperatura de gran connotación en el

comportamiento de los polímeros ya que un tiempo largo de operación en estas condiciones acarrea una alteración del mismo por fenómenos de post t despolimerización, por lo expuesto y en base a los resul tados presentados antes se puede decir que el material tendra una vida de 1800 a 2000 horas.

Adicionalmente el p.v.c. es un material que se degrada incluso con la influencia de la temperatura ambiente (*) pero en forma lenta Si la temperatura por tanto está cercana a este valor como es el caso de 50°C, la vida por tanto será relativamente larga, lo cual se com prueba de los resultados obtenidos (Fig. 5.3) y por la observación de las muestras, por lo`tanto en esta condición se puede considerar una vida de 12.000 a 14.000 horas.

Establecida la vida del material para las temperaturas mencionadas, el paso siguiente es la calibración del modelo por regresión (26).

La ecuación de regresión utilizada es:

$$Y = a + bX$$
 (5.22)

Donde: Y = Log (Lt) b = -(Log e) Ea $a = Log (L_0)$ $X = \Delta T con T en °K$

Para evaluar las constantes a y b se utiliza el principio de aju<u>s</u> te por mínimos cuadrados siendo (26):

$$b = \frac{N \Sigma XY - \Sigma X \Sigma Y}{N \Sigma X^2 - (\Sigma X)^2}$$
(5.23)

(*) Anderson J. C., Leaver R. D., Ciencia de los materiales Alexander J. M., Rawlings R. D., Editorial Limusa, Máximo, 1978

$$a = \frac{\Sigma Y - b \Sigma X}{N}$$
(5.24)

Donde: N = número de puntos considerados.

Los cálculos realizados se presentan en la Tabla 5.3.

TABLA 5.3.

TRATAMIENTO MATEMATICO

N = 6

Temperatura °C	X = AT (%/K) X10-4	$X^{2} = \Delta T^{2}$ (1/°K) X10 ⁻⁷	Lt (h)	Y = Log Lt	X.Y
50	3.40451	1.15906	14.000	4.14613	14.11553
50	3.40451	1.15906	12.000	4.07918	13.88761
75	5.62863	3.16815	2.000	3.30103	18.32272
75	5.62863	3.16815	1.800	3.25527	18.58027
100	7.55461	5.70713	200	2.30103	17.38338
100	7.55461	5.70713	180	2.2552	17.03770
	33.17550	20.06868		19.33791	98.62397
•					
De donde	b =	- 4911.37	° K		
		5 99			

Por lo tanto Ea = 11308.85 |°K| $L_0 = 764384.29 |horas|$

Lo cual hace que el modelo calibrado sea:

Lt = 764384.29 exp^{-11308.85} AT

La gráfica de este modelo se presenta en la figura 5.10.

Como se anotó al inicio de este literal, el factor de comprobación es la energía de activación, la misma que calculada a partir de Ea es:

 $E_{a} = 0.99 \, eV$

Lo cual indica que el material tiene el comportamiento comparable al esperado.

5.3.2. Prueba de envejecimiento combinado

Esta prueba se realiza únicamente con el objeto de probar la bondad del equipo para trabajar con alto voltaje y temperatura, puesto que ésta es una condición de diseño.

La prueba se realiza utilizando una muestra de polivinil 0.40 de las mismas dimensiones que los utilizados en las pruebas de envejecimie<u>n</u> to térmico.

Los resultados obtenidos de esta prueba se presentan en la Tabla 5.4 siendo las condiciones de prueba: Temperatura 75°C, voltaje 2.5 KV, tiempo 24 horas.

Log. natural de la vida (Lt) en horas

TABLA 5.4.

Voltaje enveje-	Temperatura	Tiempo	Voltaje	Carga de los pulsos de coróna	Tangente de pérdidas
<u>(KV)</u>	(°C)	(horas)	<u>(KV)</u>	(Pc)	(%)
2.5	75	24	1.0	2200	11.073
			1.5	10000	(*)
			2.0	10000	-
			2.5	10000	-

PRUEBA DE ENVEJECIMIENTO COMBINADO

(*) La tangente de pérdidas se evalua sólo para 1 KV.

Si se comparan estos resultados con los presentados en el Apéndice G se observa que al aplicar alto voltaje a más de la temperatura, d<u>e</u> grada al material en forma mucho más severa y más rápida que la te<u>m</u> peratura solamente, haciendo que desde el punto de vista de las micr<u>o</u> descargas el material presente pulsos con carga mayor que los enco<u>n</u> trados para muestras sometidas a 100°C por 48 horas.

El valor de tangente de pérdidas medido 11.073% indica que el material deja de servir como aislante ya que para ser considerado como tal la tangente de pérdidas no puede ser mayor al 10%. (25).

Por lo expuesto se puede concluir diciendo que el hacer estudios de envejecimiento combinado, que es una condición más real para un mat<u>e</u> rial aislante, puede llevar a establecer valores de vida mucho meno res que los obtenidos al hacer estudios de envejecimiento simples.

- (1) Muestra sin envejecer.
- (2) Muestra envejecida a 75 °C .
- (3) Muestra envejecida a 100 °C.

Fotografía 11. Estado final de las muestras envejecidas.

CAPITULO VI

CONCLUSIONES Y RECOMENDACIONES

- El análisis de los fenomenos de transferencia de calor y el modelo matemático planteado, permitió hacer el diseño térmico del equipo en forma tal que al construirse se satisfacieron los requerimientos planteados.
- El haber estudiado minuciosamente los problemas de campo eléctrico que se presentaron en el estudio, permitió garantizar una operación con hasta 30 KV y tener un nivel libre de corona de 12.5 KY, lo cual tiene importancia ya que el bushing utilizado para ingresar con el alta tensión esta diseñado para que en condiciones normales se lo instale en sistema de hasta 7,96 KV, necesitando adicionalmente estar su parte baja sumergida en aceite.
- Diseñar y construir el control de temperatura implica el analisis de todas las fuentes de error y aún mas el blindar al equipo para evitar la influencia del ruido, lo cual permite que el control op<u>e</u> re hasta 300°C con pasos discretos de 25°C y con un error de <u>+</u> 2°C.
- Hay que resaltar el hecho que los componentes utilizados se los en cuentra en el mercado nacional, pero existe el problema del elevado costo de muchos de ellos, lo cual repercute en el costo del equipo, sería conveniente que en las universidades se tenga una dependencia que permita adquirir los componentes necesarios a menor precio y así dar un aliciente al desarrollo de tecnologías.

- El sistema de aislamiento térmico aparentemente es muy costoso ya que las pérdidas son bajas (3.68%) pero esto no es rigurosamente válido si se piensa que por un lado se requiere una elevada preci sión del equipo, lo cual será mejor mientras menos influencia del medio ambiente se tenga, mejor aislado, y por otro si se evalúa el costo de esta energía perdida en períodos largos de funcionamiento, este puede ser comparable al aislamiento en períodos cortos de tiem po si se permitieran más pérdidas.
- Será importante si en el futuro se tiene la capacidad de construir aisladores de cerámica, diseñar y construir un bushing a medida de los requermientos de la mufla, lo cual puede hacer que el equipo mejore aún más sus características en lo que a voltaje libre de co rona se refiere.
- Al realizar las pruebas de aplicación se ha encontrado que un mec<u>a</u> nismo válido para evaluar el envejecimiento es la detección de m<u>i</u> crodescargas , ya que resulta ser un sistema muy sensible a las v<u>a</u> riaciones producidas en el material. Esto sugiere que en lo post<u>e</u> rior se realicen investigaciones tendientes a obtener patrones de envejecimiento para diferentes materiales utilizados en la industria eléctrica y en base a ellos plantear un modelo de envejecimiento que permita evaluar la vida de un equipo en conjunto, como por ejemplo un transformador.
- Si se hacen pruebas de envejecimiento será conveniente hacerlas en forma combinada ya que un material aislante al estar instalado en un equipo eléctrico estará sometido a esfuerzos térmicos, de campo

eléctrico e incluso químicos. Esto es importante ya que el resultado de aplicar el envejecimiento combinado al polivinil 040 arro jó valores que muestran una variación de sus características fre<u>n</u> te al envejecimiento térmico.

Finalmente se deberá recordar al operar con el equipo que su vida
dependerá de la forma como se manipule al mismo, recomendando ate
nerse a las instrucciones dadas en el manual de operación.

APENDICE A

RESULTADOS OBTENIDOS EN EL COMPUTADOR

Los siguientes listados presentan la forma como se modeló el sistema en el computador, así como los resultados obtenidos en el mismo, lu<u>e</u> go de utilizar el programa "DISEÑO DE AISLADORES", del Ing. René C<u>o</u> rrea.

Se acompaña en los listados una descripción de las variables en las cuales se identifica el tipo de sistema simulado. En este caso se simulo un aislador 52 – 4 mitad: dándose una relación de dimensiones entre el aislador y los espacios de la matriz de 0.012 m, lo cual r<u>e</u> presenta que la matriz total tiene una dimensión de 39.6 cm.

Una vez analizados los resultados se desprenden los siguientes crit<u>e</u> rios:

- Como la ampliación de zonas peligrosas lo indica, existen elevadas concentraciones de campo (12 kV/cm) entre las coordenadas I(29 a 32); J(28 a 32) que corresponden al área de contacto entre el – bushing y la placa de tierra. Por lo tanto en esta zona se debe ampliar el estudio con un sistema de mayor resolución que permita dar con la solución.
- 2. Al observar la lámina A-11 se encuentra que las potenciales se han distribuido a partir de la 6ta. columna por tanto la matriz utilizada es muy grande, lo cual permite reducir la dimensión de

cada espacio a un valor de 0.0091 m. Con lo cual la dimensión total de la matriz será de 30 cm. Al variar estas dimensiones no se alterarían los resultados sino unicamente hay que afectar los val<u>o</u> res obtenidos por un factor de 1.32.

Se afirma que esto no altera los resultados ya que el programa cal cula los potenciales por el método de las diferencias finitas esto es:

$$V_{0} = \frac{1}{4} (V_{1} + V_{2} + V_{3} + V_{4})^{(\star)}$$
(A.1)

donde:

V = voltaje que se busca. V_i = voltaje del punto i i = 1,2,3,4 equidistantes

Pero este cambio lleva ha establecer un nuevo valor de potencial p<u>e</u> ligroso que será de (16 kV/cm) en la zona de unión del bushing con la cámara.

Los resultados encontrados se presentan en este apéndice en las láminas siguientes.

(*) Correa René, "DISEÑO DE AISLADORES", Tesis, E.P.N., 1982.

4 ************** SLADGR AUUR J-PCKCEHTAJES SOLUCION ¢ A001 Ľ٩ 1100 L S N N N N ~ 1 LADORES ш LLEGAR -1 (VOLTIOS) ت 0 いこと (ADIMENSIONAL ES OS. 44 C มี Ťш マキ HATKIZ DENDE SE SIMJLA EL AISLADER A ANAL DARA QUE FUE DISEMADO EL AISLADER (VOLTIO CONTANINA ANALIZAJA CONTANINA ANALIZAJA L'ATERIAL DEL AISLADER (ADIMENSIONAL) CAPA DE VIDRIO (ADIMENSIENAL) LOS MATERIALES CONTAMINANTES (ADIMENSID DEL CONTAMINÀNIE (MHUS/METRO) CONTAMINÀNIE (MHUS/METRO) wo FILUTO DE AREA CUNTAMINADA ANALIZADA E INICIO DE AREA CUNTAMINADA ANALIZADA E FIN DE AREA CUNTAMINADA ANALIZADA NACENA LOS DATOS PELIGKOSASTINDICES) MACENA LOS DATOS FINALES DE POTENCIALES MACENA LOS DATOS FINALES DE POTENCIALES MACENA LOS DATOS FINALES DE POTENCIALES MACENA LOS DATOS DE DENSIDA DE CURRIENTI MACENA LOS DATOS DE DENSIDAN PUN UNIDADI MACENA LOS DATOS DE PENDIDAS PUN UNIDADI NACENA LOS DATOS DE PENDIDAS PUN UNIDADI MACENA LOS DATOS DE PENDIDAS PUN UNIDADI NACENA LOS DATOS DE PENDIDAS PUN UNIDADI MACENA LOS DATOS DE PENDIDAS PUN UNIDADI NACENA LOS DATOS DE PENDIDA ÷ ~ HAST 샀 SUY 77 Q ICC DE LOS A EXENCIAS FIN 2H) 1. <((6 Ľ LEARON CONTAMINADA EHP - - - 5 ່ບ 🛛 🦗 ш ū 5 AREA Lámina A-1 W - # ш ÷ S AMIENTO 4454444 :**__**: ERACIONES Z ITERACIUM IA ERACIONES (HZ) ANALISIS 1. . U. .. BLES EFE 4Г 4 4 4 ORT. VARIAE • • 1., 17 UKA G L 12AR EL C L LAPLACE L LAPLACE HATKIZ PARA G ю., ٠. LÁDÔR NUMERO 'NVERO' 0 ۵. ドドロシン LMAC LA CJRIC Ξ CZ. PC1CN ====== NYL JZA নর্দ্রার <1⊥ 444 ≺ن 7 1.1 000 000 000 ~5 QUE D ·· L HENSIGNA UK R. ENIERIA E PUIENCIA 5.1 •• 1 DESC 1 0470 R EN D XXXX 225 225 225 200 200 200 200 FACTO *د*.. •• ш., 2 Δ ъш Y * ULAU. 1. 1 1 1 1]]] 1 1 1 1 1 ł 1 111 1 1 1 1 1 1 1 1 1 1 1 1 レンゴによ ... -145 4 Ral 000000 140000 140000 エレドレス لي. لانك വന**റ** ച 1 ₩ ₩ ÷

COND_=___0.0000020 0.01200000 : COUC.UC01 4 R L AD 01 = TIMH D.A.T.D.S.D.E.E.NTRADA DELL = u UCT i 3.000 0.0010 1.532 5.0000 CONV = łt 2.1 F A = 14 UAB νaυ 40.00 = 1000.00 CONDC = 0.00010 3000. = 23 u ų VOLT 4 ~ :00 = 12 ო 1 = 50. 11 H IJ L NOU INUL XAN 2 ×

Lámina A-2
Ĭ,	о. О	0	0 : :	C 10	00100	00100	1100	00151	00100	00100	CÍGO	00100	00100	00100	00100	00100	00100	00100	00100	00100	00100	00100	00100	00100	00100	9-6-1-0 0	00100
0	0	S	. 0	0	010	010		010	0	0	0	0.	0	0	0	0	0	0	0	3	100	100	2	101	0		2
ο.	0	o	0	<u>`</u> .	Z	0	0	S	\sim	20	ō	0	0	0	0	0	0	0	0	di la	101	101	10	7		+	·
0	0	0	0	30	0	0	0		0	0	٦	32	0	0	0	000	0	0	0	3	0	0	0	Ę.	0	9	0
0	0	0	¦0	0	0	0	.0	Ę	0	ζ	2	0	0	0	0	0	0	0	0	1	5		کیب	0	0	o j	O
, 0	: 0	0	0	0	:0	0	, o	。`	6	۰,	ر	0	0	0	0	0	0	.0	0	0	0	0	0	0	.0	0	0
0	0	ð	0	0	0	0	0	0	.)/	ر م	2	\°	0	0	0	0	0	0	0	Ó	0	0		0	0	0	.0
0	6)	5	(ô)	નિ	55	27	0	0	0	7	5		O	0	0	00	0	0	0	20	0	0	0	20	0	0	0
5		0	0	0	0	0	0	0	0	·0	2	3	0	0	0	0	:, 0	0	0	0	jo	0	:0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	່ວ	0	່າ	Э	0	0	່ວ	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	_ O	0	0	0	0	0	0	0	0
0	0	0	0	25	0	0	0	25	0	0	0	52	0	0	်ဝ	40	0	0	0	40	0	0	0	40	0	0	0
0	0	0	0	0	0	0	0	0	0	0) G		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	o.	0	0	0	0	0	0	0	1) of	0	0	0	0	0	0	0	0	5	0	0	0	0.	0	0
ò	0	0	0	0	0	0	0	0	o	0	à	- <u>-</u>	ō	0	0	0	0	0	0-	0	0	0	0	0	0	0	0'
0	0	0	0	20	0	0	0	20	ò	0	(C)		0	0	0	30	0	0	.0	30	0	0	0.	30	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	õ	0	0	0	0
0	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	о.	0	0	ò	0	o O	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:		0	0	5	0	19)	0	5	0	0	0	5	0	0	σ	0	0	0	0	0	0	0	0	50	0	0	0
0	0	.0	0] []		0	50	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	Ð	0	0	0
Ö	0	0	٥	0	.0	0	o	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	;0	0	0	0	0	0	0	0	0	0	;0	0	0
0	່ວ	0	0	10	0	0	0	10	0	0	0	01	0	0	0	10	0	0	0	10	0	0	0	10	0	0	0
0	0	0	္ဝ	0	0	0	0	0	0	0	0	0	်ဝ	0	0	0	်ဝ	о	0	0	. 0	0	0	0	Ō	0	0
0	0	0	0	0	C	o	o	Ċ,	י. ני	0		n	0	0	0	ຕ	0	Э	່ດ	0	0	0	'n	0	່ວ	0	0
0	0	0	0	0	0	0	0	0	0	Э	0	0	0	0	0	0	0	0	a	0	0	0	, n	0))	3	0
.0	0	0	, つ	ŝ	0	.0	0	ŝ	0	0	0	un	: 0	0	0	ŝ	0	0	0	m	Ó	0	0	ŝ	0	0	0
Ω	: 	0	0		י הה.	9	Q_	_ <u>a</u>	0		<u></u>		o.			Ó	<u>'</u> 0	_0_	0	O	_a.		<u></u>	_a_	i		

Lámina A-3. Matriz inicial de potenciales

EXISTE UNA AREA PELIGROSA EN 10. 31 Y EN J = 31
CANPU DE DISTRIBUCION DE AREA PELIGROSA
NUMERO DE ITERACIONES = 1
A & A & A & A & A & A & A & A & A &
 ★ 61 70 79 87 93 98100100160 * ★ 57 66 76 86 96 98 99100100 * ★ 57 66 76 85 100 99100100 *
 4 42 55 69 81 92 96 99100100 ♥ ♦ 31 48 63 77 83 95100100100 ♥ ♦ 31 60 58 75 89 95 99100100 ♥
 φ 13 32 55 //100100100100100 Φ φ40φ0φφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφφ
$A = 14.09 \qquad B = 23.52 \qquad C = 32.73 \ B = 23.52 \ C = 32.52 \ C = $
4 = 77.41 - 5 = -88.74 - 80.
* · · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CANPO DE DISTRIBUCIUR, DE AREA PELIORUSA ジンジャネキャトキナナナシャチャナオケナナナナナナナナナナシャシャナナナナ (下三)
NUMERO DE ITERACIONES = 16
\$
$ * - 0 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \cdot 5 * +$
······································
$A = 0.00 \dots B = 5.61 \dots C = 10.90 \dots D = 17.01 \ B = 27.36 \qquad G = 31.05 \qquad H = 36.68 \ Q = 42.25 \qquad S = 47.59 \qquad R = 52.74$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} * U & C & C & C & D & E & E & h \\ & & A & B & B & B & A & C & C & C & * \\ & & & & & & B & B & A & C & C & C & * \\ & & & & & & B & B & B & A & C & C & C & * \\ & & & & & & & B & B & B & A & C & C & C & * \\ & & & & & & & & B & B & B & A & C & C & C & * \\ & & & & & & & & & B & B & B & A & C & C & C & * \\ & & & & & & & & & & B & B & A & C & C & C & * \\ & & & & & & & & & & & B & B & A & C & C & C & * \\ & & & & & & & & & & & & & \\ & & & &$
$\begin{array}{c} & & A \\ & & & A \\$

*	EXISTE UNA AREA PELIGROSA EN 1. 33 Y EN J. 4 30
	CAMPO DE DISTRIBUCIÓN DE AREA FELIGROSA ++++++++++++++++++++++++++++++++++++
	NUMERU DE ITERACIONES= 16
	\$
4 1 1	$A = 0.00 \qquad B = 11.11 \qquad C = 24.15 \qquad B = 31. E = 42.94 \qquad F = 52.27 \qquad G = 59.34 \qquad B = 72. U = 71.33 \qquad S = -90.91 \qquad B = 100.00 \qquad B = 31.$
	$ \begin{array}{c} + \phi + \psi + \phi + \phi + \psi + \psi + \psi + \psi + \psi + \psi$
	CAMPO DE DISTRIBUCICA, DE AREA PELICROSA
	$\begin{array}{c} 1 4 4 5 + 3 + 4 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$
	A = 3.03 = 8 = 12.49 = C = 23.17 = 0 = 30.65 = 49.75 = 57.39 = 12.49 = 70.55 = 57.39 = 12.49 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.91 = 70.55 = 90.55
-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

l .

.

.

.

. •

/

.

: . .

'n	~	0	0	·0	c	·0	c	.ο	് -	·0.	່ບ່	$\mathbf{\tilde{U}}$	ت ا	0	~~	~ .	- C) -	4. J	9 •		·0·	Ú	ט-	01	-0-	101	-12
1	4					:				:		ļ		1		1	~		~			l' La	.0				~
0	41	21	61	14	ì.2	01	6	ಖ	7	~ ~	\$	S,	ŝ		4		0	Ŭ.	Ċ		1	, n		7		1	20
0	14	23	13	77	12	10	6	ru	i,		Ģ	ι.σ. 	, 0	¢	\$		~	1	7	7	• 0	\$	-0		5	1	14
0	0	8	51	13	11	50	ဆ	3	ŀ	~	2	5	ΰ	<u>م</u>	6	- 6	S	0	3	5	ς.	5	6	1	8	ъ -	11
0	0	0	9	11	10	σ	ന	1	2	1	٢	3	Q	6	Q	\$	9	0	v	\$	S	5	in	`م. ا	~	1	8
C	C	ر.	0	5	9	'n	1	~	7		f~	:	\$	<u>_</u>	•0	10	ŝ	-9	ę	.	۰ ۲	4	ŗ		S	0	9.
0	0	0	0	С	æ	· ?	6	\$	2		1	. ~	6	د.	Ś	Ś	· T	m .	Μ	2	'n		· †	 ~ 1	1	'n	Ś
2	0	.0	C	0	0	\sim	4		9		ទ	1.0	\$	5	ŝ	5,	4	4	Ś	S	Ś	· *	4	י הי	ы	4	す
0	0	.0	0	0	0	0	0	; 0	0	0	ŝ	5	5	5	Ś	<u>ک</u>	4	4	4	4	4	3	ŝ	ן <u>ה</u> יין	ĥ	m.	ŝ.
0	0	0	0	С	0	0	0	0	0	0	0	2.7	Б	:]	9	. 7	4	4	ŝ	ŝ	ŝ	3	2	2	2	۱ ۲	2
0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	-+	ŝ	m	3	2	2	2	~1	i 	7	۲. ا	~
0	0	0	0	0	0	0	O .	0	0		0	. 0	0		0	2.	\sim	2	N	: 		 ;⊶	-1	 1	ч	:	Ν.
() ()	0	0	' O'	0	' O			0		0	: 'O	0	;	0		1	-	1	0	4	0	0	0	0	-	5
13	5	0		0	0	1	0	.0	0		<u>`</u>		· • •		0		-4	-4	н.				Ч	0	0		2
11	یک ~		~	0	0			0	~		Ő		~		0		0			: 1					0		50
	<u>;</u>	0	-	:_	0	,0	0		0		0		0		0		0		:	-			0		0		~
0	Q	0	0		0		0	:	0		0	1	0	:	0		0		-		0		0		0		
10	q	0	0	.0	0	0	0	0	0		0		0	:]	0	1	0		0		0		0		-		
. 🔿	0	. O	,0 ,	C,	0	0	0	0	0	0	0	0	0		0		0		0		0		0		0	1	
0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	a		a	0	0	0	C	<u>.</u>	C		0	0	-1
0	0	0	Ċ	:0	0		J	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0
0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	. '	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	, o	0	.0	0	0	0	0	0	0	0		0	0.	0	0	0	0	0	0	0		0
0	o _.	0	0	• 0	0	່ວ	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 :
0	0	်ဝ	0	0	0	0	0	0	О	0	C	0	0	G	0	0	0	0	0		0	0	0	0	0	0	0
0	C	0	0	0	,O	.0	0	0	0	0	0	0	Ö		0	3	0	0	0	0	0	0	0	0	0	0	0
0	0	; >	a	0	0	:0	Э		Э	10	Э	,0	Э	a	0	0	0	0	Э	0	0	0	0	0	0	5	0
Э	ò	0	0	0	0	3	0	`о	0	0	С	0	0	a	Q	0	0	0	С	0	0	0	0	0	o	0	0
0	0	· 0	0.	0	0	່.ວ	0	0	0	0	0	0	, o	<u></u>	0	0	0	0	ο.	0	0	0	а	0	0	5	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	ò.	0	0	0	0	0	0	0	0	0	0
•		•							•											` .	_						

Lámina A-10.

-10. Gradientes de potencia, la zona encerrada en el círculo se considera peligrosa.

APENDICE B

PLANOS DE LA MUFLA

Ì

. .

:

ļ

APENDICE C

PRUEBAS PARA DETERMINAR LOS COEFICIENTES DE VARIACION DE LA RESISTEN-CIA CON LA TEMPERATURA EN LAS NIQUELINAS

Para realizar estas pruebas se compraron todas las niquelinas que se requerian más dos adicionales, total 10 niquelinas; de este conjunto de muestras se tomó una al hazar para someterle a las pruebas.

Las pruebas se las realizo implementando el siguiente circuito: Fig. C.1.

Fig. C.1. Circuito de pruebas.

La expresión a calibrarse es:

 $R(T) = R_0 (1 + \alpha_1 \Delta T + \alpha_2 \Delta T^2)$ (1)

Por tanto la resistencia R_0 se determinó con un puente de Wheastone a una temperatura ambiente de 18°C y fue: $R_0 = 5.681$ a 18°C (sólo un segmento de niquelina), los valores obtenidos fueron:

TABLA C.1.

TEMPERATURA (°C)

RESISTENCIA (Ω)

-24	5.7755
46	5.81633
72	5.84828
127	5.89109
175	5.912698
219	5.92105
290	6.04651
316	6.140351
265	6.17257

Para encontrar el valor de α_1 y α_2 se recurre al metodo de recurrencia del polinomio con n-m grados de libertad el cual se presenta a continuación.

C.1. METODO DEL ERROR MINIMO CUADRATICO

Si se tiene un set de medidas (n) y un número m de incógnitas el sis tema se puede representar matricialmente como:

α |

Donde estaremos resolviendo el sistema con n-m grados de libertad.

B

Si a ambos lados de la ec. (2) premultiplicamos por $|B|^{t}$ tenemos

 $|B|^{t} |A| = |B|^{t} |B| |\alpha|$ (3)

Pero $|B|^{t}$. |B| es una matriz mxm cuyo determinate es distinto de cero, siendo por tanto invertible, luego si premultiplicamos la expresión por { $|B|^{t}$ |B|.

 $\{ | B |^{t} . | B |\}^{-1} | B |^{t} | A | = \{ | B |^{t} | B |\}^{-1} . \{ | B |^{t} | B |\} |\alpha|$

Como $|B|^{t}|B|$ es escalar el orden de multiplicación de la matriz por su inversa siempre dará la matriz unitaria, por tanto:

$$|\alpha| = \{|B|^{t} |B|\}^{-1} |B|^{t} |A|$$

Siguiendo este método se calibra la expresión 1 con 7 grados de libe<u>r</u> tad obteniéndose los siguientes valores para los coeficientes:

 $\alpha_1 = 0.00031751 |1/°C|$

 $\alpha_2 = -2.23264 \times 10^{-7} |1/°C^2|$

APENDICE D

MANUAL DE OPERACION

Para garantizar una operación adecuada de la mufla se debera seguir el siguiente procedimiento:

- Para mover la mufla se deberá desconectar el cable de extensión de la termocupla, para evitar su posible deterioro. Para hacerlo hay que desconectar en la parte de abajo de la mufla.
- 2. Llevar el equipo a un sitio donde se tenga acceso a:
 - a) Tensión alterna de 60 Hz, 120 V, capacidad de 2.5 |KW|

Tensión contínua de \pm 15 V y \pm 5 V_{DC} con capacidad de 2.5 | W |

- b) Si se va a trabajar adiconalmente en envejecimiento eléctrico, esto implicará operar con alta tensión, por tanto se deberá instalar el equipo dentro de la jaula de Faraday.
- Una vez definido el sitio, se deberá reinstalar el cable de exten sión de la termocupla, cuidando de mantener la polaridad indicada en los terminales.
- 4. Si se va a someter a la muestra sólo a envejecimiento térmico, se deberá alimentar el panel de control a través de los terminales dispuestos con este objeto, debiendo hacerlo con las señales y en

los s	los sitios indicados a continuación:											
TIPO	VALOR	DENOMINACION	OBSERVACIONES									
A.C.	120 Vrms	F N 120V 60 Hz	Alimentar la fase donde se indica "F" y el neu- tro por "N". Estos te <u>r</u> minales están en la pa <u>r</u> te posterior.									
D.C.	+ 15 V _{DC}	+ 15 V _{DC}	Terminal negro en la pa <u>r</u> te inferior derecha del frente del panel.									
D.C.	- 15 V _{DC}	- 15 V _{DC}	Terminal rojo en la pa <u>r</u> te inferior derecha del frente del panel.									
D.C.		GND	Terminal celeste en la parte inferior derecha - del frente del panel.									
D.C.	+ 5 V _{DC}	5 V _{DC}	Terminal negro al centro del frente del panel.									

5. Si se va a trabajar con envejecimiento combinado, se deberán hacer las mismas conexiones indicadas en (4) excepto la de la tensión alterna, la misma que deberá ser conectada a través de los contactos de la protección de falla a tierra, se debe llegar al panel en la forma indicada en (4). El sistema de protección se deberá calibrar inicialmente realizando descargas entre los ele<u>c</u> trodos.

Adicionalmente se deberá instalar el descargador a la entrada de la señal alterna para proteger el sistema contra sobrevoltajes.

 Seleccionar la temperatura a la que se desea trabajar moviendo a la posición indicada la perilla del selector.

7. Tomar la lectura que indique el reloj.

 Poner el interruptor del panel en "ON", en caso de trabajar con alto voltaje se deberá poner el voltaje que se requiera a través del panel del laboratorio.

El alto voltaje no podrá ser mayor a 21.5 KV en Quito, Para e<u>s</u> tudios donde es nociva la corona no sobrepasar los 12 KV.

9. El equipo estara trabajando.

El sistema operará por el tiempo que se desee, siempre y cuando
 el material no se deteriore.

Se deberá antes de someter al material a envejecimiento establ<u>e</u> cer datos tales como: - Temperatura máxima o de descomposición.

- Voltaje de perforación.

Los mismos que serán valores límite del esfuerzo aplicado.

- 11. Si transcurrido un tiempo se detecta que el sistema se ha desco nectado, indicará esto que la muestra a fallado debiéndose tomar la lectura final del registrador de tiempo para por diferencia establecer la vida del material bajo esas condiciones, esto si se trabaja con alto voltaje, caso contrario el tiempo de trabajo dependerá del usuario.
- 12. Para apagar el sistema se deberá primero retirar la alta tensión y cortocircuitar los capacitores, se debe tener cuidado de descargar los terminales de las muestras que también son capacitancias, en caso de haber realizado pruebas sólo de envejecimiento no se requiere hacer esto, luego desconectar la alimentación de l20 V, 60 Hz del panel de control, realizado esto poner el int<u>e</u> rruptor del panel en OFF y finalmente desconectar la fuente de tensión continua.
- Será conveniente dejar el sistema inmóvil por un tiempo pruden cial (1 hora) para cambiarlo de sitio.

NOTA: Para hacer mantenimiento del equipo se recomienda revisar el capítulo IV de la tesis.

APENDICE E

ANALISIS DE COSTOS

a) COSTO DEL EQUIPO

A continuación se presenta la cuantificación del costo de fabricación de la mufla, el mismo que para hacerlo de caracter general se lo pr<u>e</u> senta en forma condensada, haciendo desagregación entre las diferentes etapas del sistema y el costo de mano de obra, como se indica en las tablas E-1, E-2 y E-3.

TABLA E-1

COSTO DE MATERIALES POR ETAPAS

ΕΤΑΡΑ	DESCRIPCION	COSTO S/.	*COSTO USD
1	Materiales utilizados para construir la cámara térmi-		
	ca.	25.271,00	149
2	Materiales utilizados para construir el sistema de a <u>l</u>		
	ta tensión.	12.000,00	71
3	Hateriales utilizados para construir el circuito ele <u>c</u>	• •	•
	trónico.	29.271,40	173
Tm	Costo total de materiales.	66.542,40	393

TABLA E-2

COSTO DE MANO DE OBRA POR ETAPAS

έταρα	DESCRIPCION	COSTO S/.	*COSTO USD
1	Mano de obra utilizada en la construcción de la cámara de		
	la mufla.	40.000	235,3
2.	Mano de obra utilizada en la construcción del sistema de		
	alta tensión.	3.000	17,7
3	Mano de obra utilizada en la		
	construccion del circuito <u>e</u> lectrónico.	30.000	176,4
Tino	Costo total de mano de obra.	73.000	429,41

* Se considera 170 sucres = 1 dólar.

COSTO TOTAL POR ETAPA

ΕΤΑΡΑ	COSTO SŻ.	COSTO USD
	• • •	· · ·
1	65.271	384,3
2	15.000	88,7
3	59.271,4	349,4
Tco	139.542,4	822,4

b) COMENTARIOS SOBRE EL COSTO

Al establecer que el costo del equipo es de S/. 139.542,4 (822,4 USD), se puede ver que el equipo tiene un precio reducido frente a los costos que se encuentran para equipos de laboratorio en el mercado inte<u>r</u> nacional, así por ejemplo un termómetro digital para termocuplas tiene un costo de 550, lo cual le hace comparable con el precio del equipo construído.

Adicionalmente se debe observar que los componentes utilizados fueron adquiridos en el mercado nacional, por tanto los costos incluyen ara<u>n</u> celes de importación que estan alrededor del 300% del valor de la me<u>r</u> cadería, lo cual hace que el equipo sea más caro de lo que podría ser si las partes hubiesen sido adquiridas libres de aranceles.

APENDICE F

RESULTADOS DE LAS PRUEBAS DE FUNCIONAMIENTO

F.1. RESPUESTA TERMICA

La respuesta térmica del equipo se la obtuvo en vacío, esto es sin la presencia de objetos que no se hayan considerado en el diseño, por tanto el sistema estuvo compuesto por la cámara, los radiadores, el electrodo de alta tensión, el "bushing" y el pedestal porta electrodos. Los resultados obtenidos se presentan en la Tabla F-1.

Adicionalmente se obtuvo la respuesta del sistema con carga, con este objeto se instalo en el interior de la mufla dos electrodos de 14 cm. de diámetro hechos de hierro con un peso de 2 Kg y un aislador clase ANSI 55-6, los resultados obtenidos bajo estas condiciones se prese<u>n</u> tan en la Tabla F - 2.

F.2. DETECCION DE CORONA EN LA MUFLA

THE TYPE THE THE THE

A continuación se presentan algunos resultados adicionales de la pru<u>e</u> ba de detección de corona, los mismos que sirvieron para tener un v<u>a</u> lor referencial de los pulsos que se presentan al hacer estudios con materiales y en base a estos garantizar la utilidad del equipo al h<u>a</u> cer este tipo de estudios, el mismo que sirve para evaluar y establ<u>e</u> cer el envejecimiento de los materiales. Los resultados se presentan en la Tabla F-3.

TABLA	F-1	
-------	-----	--

RESPUESTA TERMICA DE LA MUFLA EN VACIO

Tiempo	Temp.	interna	Tempera segunda de vidr r	tura de la cubierta io' (exte- ior)	Temperatura de la carcaza			
(min.)	°C	¥.	°C	%	°C			
0	18	0	18	0	18	0		
5	46	9.93	23	8.82	19	7.14		
10 .	74	19.86	28	17.65	20	14.29		
15	101	29.43	33	26.47	21	21.43		
20	128	39.00	38	35.29	22.5	32.14		
25	154	48.23	45	47.06	24	42.86		
30	179	57.09	52	58.82	25.5	53.57		
35	203	65.60	58	70.60	27	64.29		
40	226	73.76	62	76.47	28	71.43		
45	248	81.56	65	82.35	29	78.57		
50	269	89.00	68	88.24	30	85.70		
55	289	96.10	72	94.012	31	92.90		
63	300	100.00	74	100.00	32	100.00		

•

.

TABLA F-2

Tiempo	Temp	e. interna	Temper segund de vid	atura de la a cubierta rio (exte- rior)	Temperatura de carcaza			
(min.)	°C	%	°C	Ľ.	°C	Z		
0	10	0	18	0	18	Ó		
5	. 42	8.51	23	9.1	18.5	3.57		
10	66	17.02	27	15.15	19.5	10.71		
15	90	25.53	32	24.24	21	21.43		
20	113	33.69	37	33.33	22.5	32.14		
25	135	41.49	42	42.42	23.5	40.01		
30	157	49.29	47	51.52	25	50.00		
35	178	56.74	52	60.61	26	57.14		
40	199	64.18	58	69.70	. 27	64.29		
45	219	71.28	63	78.79	28	71.43		
50	238	78.01	66	84.85	29	78.57		
55	256	84.40	70	90.91	30	85.71		
60	273	90.42	72	93.94	. 30.5	89.29		
65	289	96.10	73	96.97	31	92.86		
70	300	100.00	75	100.00	32	100.00		

RESPUESTA TERMICA DE LA MUFLA CON CARGA

TABLA F-3

i

I

PRUEBAS DE DETECCION DE CORONA

MATERIAL	VOLTAJE APLICADO	GRADIENTE DE POTENCIAL	CARGA DE LOS PULSOS	
	(KV)	. (KV/cm.)	(pc)	
Papel craft negro im-	0.15	15	56	
pregnado de 14 x 14	0.30	30	88	
cm x 0.1 mm				
Peso 1.685 gr.	0.50	50	432	
Papel bond de	0.20	28.95	70	
14 x 14 cm x 0.069 mm	0.40	. 57.95	92	
Peso 1.42 gr	0.50	72.48	780	
	0.60	86.96	Perforación	
Material compuesto	1.0	4.76	0	
poliester - carga 20%, 5%	3 1.5	7.14	0	
de 12 x 12 cm x 2.1 mm	1.7	8,19	0	
Peso 40.32 gr.	2.0	9.52	0	
	2.4	11.43	0	
	2.6	12.38	3.16	
	3.0	14.29	descargas sup.	
	3.4	16.19	Perforación	
Cartón comercial	0.5	4,17	0	
•			/	

MATERIAL	VOLTAJE APLICADO	GRADIENTE DE POTENCIAL	CARGA DE LOS PULSOS	
	(K V)	(KV/cm.)	(pc)	
de 12 x 12 cm x 1.2 mm	1.0	8.34	0	
Peso 19.007 gr	1.5	12.50	0	
	2.0	16.67	0	
	3.0	25.00	0	
	3.3	27.50	0	
	3.7	30.83	980	
	. 4.0	33.33	>1000	
	5.0	41.66	>1000	
Papel crepe blanco	0.4	133.33	228	
12 x 12 cm x 0.03 mm	0.6	200.00	274	
Peso 0.5970 gr.	0.8	266.67	306 -	
	0.9	300.00	Perforación	

Estos valores como se puede observar muestran que el rango de operación para la mufla de 12.5 kV con 50 pc y 300 nJ es un rango muy bueno para hacer el análisis de micro descargas en materiales como una forma de evaluar el envejecimiento.

APENDICE G

RESULTADOS DE LAS PRUEBAS DE ENVEJECIMIENTO

Las muestras fueron expuestas à temperaturas de 50°C, 75°C y 100°C, por espacios de tiempo tales que se mantenga el producto tiempo por temperatura constante para tres puntos, e iguales a 2400, 3600, 4800 (°C x hora).

Los resultados obtenidos tanto para la carga de los pulsos de corona como para la tangente de pérdidas dieléctricas han sido tratados estadísticamente, para así presentar el valor esperado para cada propiedad y condición que se presentan a continuación.

TABLA G1

CARGA DE LOS PULSOS DE CORONA PARA MUESTRAS SOMETIDAS A 50°C

t	Ţ	txT	VOLTAJE	GRADIENTE	CARGA DE	PULSOS
(h)	(°C)	(°Ch)	KV	KV/cm	(Pc)	(%)*
48	50	2400	1.0	24.94	36.3	- 0.13
			1.5	37.41	5906.6	58.96
			2.0	49.88	7466.6	74.66
			2.5	62.34	9313.3	93.25
72	50	3600	1.0	24.90	48.6	- 0.01
		,	1.5	37.36	6826:6	68.22
			2,0	49.81	8260.0	82.65
			2.5	62.27	9773.3	97.88
96	50	4800	1.0	24.88	56.0	0.004
			1.5	37.32	7030.0	70.27
			2.0	49.76	8950.0	89.59
			2.5	62.20	10000.0	100.16

*t = tiempo; T = temperatura; Pc = pico coulombios.
INDEN GE	TA	BL	Α.	G2
----------	----	----	----	----

					•	
t	т	txï	VOLTAJE	GRADIENTE DE POTENCIAL	CARGA DE	PULSOS
<u>(h)</u>	<u>(°C)</u>	<u>(°Ch)</u>	ΚΥ	KV/cm	(Pc)·	(%)*
32	75	2400	1.0	24.57	30.0	- 0.1975
			1.5	36.85	6630.0	66.24
			2.0	49.14	9413.3	84.19
			2.5	61.43	10000.0	100.16
48	75	3600	1.0	24.54	40.0	- 0.097
			1.5	36.82	7440.0	73.991
			2.0	49.09	9573.3	95.87
			2.5	61.36	10000.0	105.16
						·
64	75	4800	1.0	24.53	80.0	0.31
			1.5	36.79	7630.0	76.31
			2.0	49.06	9753.3	97.68
			2.5	61'32	10000.0	110.16

CARGA DE LOS PULSOS DE CORONA PARA MUESTRAS SOMETIDAS A 75 °C

(*) Tomando los valores mínimos y maximos de los datos de carga in<u>i</u>. cial.

t	Т	txΤ	VOLTAJE	GRADIENT	E CARGA	DE PULSOS
<u>(t)</u>	(°C)	<u>(°Ch)</u>	KV	KV/cm	<u>(Pc)</u>	(%)
24	100	2400	1.0	24.41	28.3	- 0,26
			1.5	36.62	3693.3	36.678
			2.0	48.83	6656.6	66.51
			2.5	61.04	9156.6	91.6747
		3600	1.0	24.39	53.3	0.037
			1.5	36.59	9113.3	91.24
			2.0	48.78	10000.0	100.160
			2.5	60.97	>10000.0	>105.00
48	100	4800	1.0	24.36	3086.6	30.57
			1.5	36.54	. 10000.0	100.160
			2.0	48.72	>10000.0	>105.00
			2.5	60.90	>10000.0	>110.00

CARGA DE LOS PULSOS DE CORONA PARA MUESTRAS SOMETIDAS A 100°C

TABLA G3

MEDIDAS A 1KV				
t (h)	T (°C)	txT (°Cxh)	Τg δ _(%)	Tg δ racionalizada* (%)
0	18	0	6.9900	0
48	50	2400	7.0891	43.48
72	50	3600	7.1547	72.27
96	50	4800	7.2179	100.00

(*) Tomando como 100% el valor mayor.

TABLA G5

TANGENTE DE PERDIDAS DIELECTRICAS PARA MUESTRAS SOMETIDAS A 100 °C MEDIDAS A 1 KV

t <u>(h)</u>	т <u>(°С)</u>	txT <u>(°Cxh)</u>	Τg δ (%)	Tg δ racionalizada* (%)
0	18	0	6.99000	0
32	75	2400	7.1562	47,80
48	75	3600	7.2582	77.13
64	75	4800	7.3377	100.00

* Tomando como el 100% el valor mayor.

TABLA G4

TANGENTE DE PERDIDAS DIELECTRICAS PARA MUESTRAS SOMETIDAS A 50°C

T	AB	L٨	G6

TANGENTE DE PERDIDAS DIELECTRICAS PARA MUESTRAS SOMETIDAS A 100°C MEDIDAS A 1KY

t (<u>h)</u>	T (°C)	txT (°Cxh)	Tg (χ)	Т <u>д</u>	racionalizada* (%)
0	18	0	6.9900		0
24	100	2400	7.9211		94.33
36	100	3600	7.9652		98.78
48	100	4800	7.9771		100.00

(*) Tomando como el 100% el valor mayor.

En busca de la causa por la que se da este comportamiento se realizaron mediciones del espesor y el diámetro de las muestras, encontrándose los valores dados en la tabla G7.

T	AB	L٨	G7

VARIACION DE LAS DIMENSIONES

MUESTRA

DIMENSIONES

ESPESOR (nvm) DIAMETRO (cm)

•			
0h	x 18°C	0.4000	14
48h	x 50°C	0.4010	14
72h	x 50°C	0.4015	14
96h	x 50°C •	0.4019	14
32h	x 75°C	0.4070	14
48h	x 75°C	0.4074	14
64h	x 75°C	0.4077	14
24h	x 100°C	0.4096	14
36h	x 100°C .	0.4100	14
48h	x 100°C	0.4105 .	14

Estos resultados indican que el material a sufrido un esponjamiento, lo cual puede deberse a un agrandamiento de las cavidades gaseosas en su interior, las mismas que se amplian en dirección al menor ac<u>u</u> mulamiento de material el mismo que se tiene en sentido del espesor.

Esto permite por tanto explicar por que se tiene una variación en la respuesta del material.

BIBLIOGRAFIA .

- KERN Donald, Precesos de Transferencia de Calor, Mc Graw Hill, Nue va York, 1982.
- 2. KREITH Frank, Principios de Transferencia de Calor, Herrera Hermanos MDF, México, 1974.
- JOHNSON Curtis, Process Control Instrumentation Tecnology, John Wi ley and Sons, New York, 1977.
- 4. NIETO Wilson, Diseño y Construcción de un Horno Solar para Cocción de ALimentos, Tesis EPN, Quito, 1986.
- 5. BANDA Hugo, Electrónica Industrial, Area de Control, E.P.N., Quito, 1986.
- RENEDO J., Electrónica y Automática Industriales, Marcombo, España, 1980.
- OMEGASCOPE, Practical Temperature Measurements, Stamford Conmecticut, 1982.
- KHAN A., An Improved Linear Temperature / Voltage Converter Using Thermistor in Logaritmic Network, IEEE Transaction on Instrumentation and Measurement, IM-34, No. 4, Dec. 1985.

9. MEEK y GRAGGS, Electrical Breakdown of Gases, Editorial MEEK, New

York, 1981, pág. 539 - 546.

- ROTH Arnold, Técnica de las Altas Tensiones, Editorial LABOR, Bar celona, 1968.
- COBINE J. D., Gaseosus Conductors, Dover Publications, New York, 1968.
- 12. SIMONI L., A General Approach to the Endurance of Electrical Insulation Under Temperature and Voltage, IEEE Transactions on Electrical Insulation, Vol. EI 16, No. 4, Agosto 1981.
- 13. BRANCATO L., Insulation Aging a Historical and Critical Review , IEEE Trans. Electr. Insul., Vol. EI-13 No. 4, Agosto 1978.
- SPITTA Albert, Instalaciones Eléctricas, Tomo I, Editorial Dossat
 s. a., España, 1981.
- NATIONAL SEMICONDUCTOR, Industrial Blocks, Life Support Policy , Santa Clara Calif., 1984.
- TEXAS INSTRUMENTS, TTL Data Book for Engineer Design, Second Edition, 1983.
- 17. TELEDYNE SEMICONDUCTOR, Data Adquisition Design Handbook, Mountain View California, 1983.

18. ESPINOSA Renán Alfonso, Sistemas Digitales III, EPN, Quito, 1983.