ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ESTIMACIÓN PARAMÉTRICA DE SISTEMAS ELÉCTRICOS DE POTENCIA PARA MODELOS DE TIEMPO REAL

Y FUERA DE LÍNEA

TESIS PREVIA A LA OBTENCIÓN DEL GRADO DE MAGÍSTER EN INGENIERÍA ELÉCTRICA

MARÍA DE LOURDES FARINANGO CISNEROS

lfarinango@cenace.org.ec

DIRECTOR: JESÚS AMADO JÁTIVA IBARRA, Ph.D.

jesus.jativa@epn.edu.ec

CODIRECTOR: CARLOS SANTIAGO GRIJALVA SILVA, Ph.D.

sgrijalva@ece.gatech.edu

Quito, Septiembre 2015

DECLARACIÓN

Yo, María de Lourdes Farinango Cisneros, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

María de Lourdes Farinango Cisneros

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por María de Lourdes Farinango Cisneros, bajo mi supervisión.

Jesús Játiva, Ph.D.

DIRECTOR DE TESIS

AGRADECIMIENTO

Mi profunda gratitud para:

Doctor Jesús Játiva por su acertada dirección e impulso a la realización de esta tesis.

Doctor Santiago Grijalva por su constante apoyo y revisión de esta tesis. Sus observaciones han sido de gran valor y su amistad muy fortalecedora.

Ing. Gabriel Argüello por darme la oportunidad de trabajar en el Operador Nacional de Electricidad CENACE, escuela que día a día me ha ayudado a crecer tanto profesional como personalmente.

Ing. Gonzalo Uquillas por apoyarme con su comprensión y apoyo para la finalización de esta tesis.

A todos los compañeros y amigos de las diferentes direcciones de CENACE, TRANSELECTRIC, DEBARR, ABB quienes con sus conocimientos y amistad han contribuido a la culminación de este proyecto. En particular a los ingenieros: Gabriel Rivera, Adriana Pacheco, Juan Carlos Herrera, Verónica Flores, Jaime Cepeda, Pablo Verdugo, Aharon de la Torre, Linda Chimborazo, Vicente Quizanga, Francisco de Lima, Oscar de Lima y Juan Suárez; quienes siempre me brindaron su amistad, palabras de aliento y predisposición para ayudarme a lograr la exitosa culminación de esta tesis.

A mis padres, hermanos, familia y amigos por su apoyo incondicional y permanente en mi vida.

DEDICATORIA

Este trabajo de tesis lo dedico al Ser que guía mis pasos desde el fondo de mi corazón.

RESUMEN

Los algoritmos de estimación de estado convencionales se basan en la suposición de que los parámetros de las líneas (resistencia, reactancia, tomas de los transformadores, etc.) y el estado de los interruptores no tienen errores, lo cual no siempre es así.

Los errores en los estados de los interruptores afectan a la topología de la red produciendo grandes inconsistencias en las mediciones estimadas y pueden ser identificables, mientras que los errores en las impedancias de las ramas son menos visibles y pueden producir errores en los datos proporcionados por el estimador continuamente y durante grandes periodos de tiempo sin que dichos errores se detecten.

Los errores en los parámetros dependiendo de dicho error, pueden producir un impacto sobre la estimación de estado similar o superior al de los errores no detectados en las mediciones.

En esta tesis se desarrolla un programa de identificación de errores en parámetros basado en un algoritmo que utiliza Multiplicadores de Lagrange.

Se aplica este algoritmo a casos de estudio en diferentes condiciones de demanda obtenidos de los sistemas de tiempo real EMS y fuera de línea PowerFactory de DIgSILENT.

Una vez identificado el equipo de red que presenta errores de parámetros, se plantean alternativas de cálculo para corrección de parámetros, utilizando mediciones de equipos de medición fasorial PMUs.

Adicionalmente, se presentan procedimientos de modelación de transformadores de tres devanados con tap y LTC.

Palabras clave: Estimación de Estado, Estimación de Parámetros, PMU, modelación de elementos de red, transformadores de tres devanados con tap y LTC.

CONTENIDO

RES	SUMEN	VI
LIS	TA DE TABLAS XI	Π
LIS	TA DE FIGURASXV	VI
LIS	TA DE ACRÓNIMOS Y ABREVIATURASXX	XI
LIS	TA DE SÍMBOLOSXXI	Π
CAI	PÍTULO 1	.1
1.1	INTRODUCCIÓN	. 1
1.2	OBJETIVOS	. 1
]	1.2.1 OBJETIVO GENERAL	. 1
1	1.2.2 OBJETIVOS ESPECÍFICOS	. 1
1.3	JUSTIFICACIÓN	. 1
1.4	ALCANCE	. 2
1.5	PRESENTACIÓN DEL TEMARIO DE TESIS	2
16	FSTIMACIÓN DE FSTADO CONVENCIONAL	 ۲
1.0 1		د . د
	1.6.2 FORMULACIÓN MATEMÁTICA – ESTIMADOR DE ESTADO DE MÍNIM	. J NG
	CUADRADOS PONDERADOS (WIS)	7 7
171	ESTIMACIÓN DE PADÁMETDOS EN SISTEMAS ELÉCTDICOS I).)F
1./ 1	ESTIMACIÓN DE TARAMETROS EN SISTEMAS ELECTRICOS I	7Ľ 11
rui	ENCIA	11
	1.7.1 INTRODUCCIÓN	11
-	1.7.2 TIPOS DE ERRORES DE ESTIMACIÓN DE PARAMETROS	12
	1.7.2.1 Enforces en las Tons de Transformedores	14
	1.7.2.2 Enores en los raps de transformadores \dots	14
	174 EFECTOS DE LOS EPROPES DE MODELACIÓN EN LA ESTIMACIÓN I	1 4
	ESTADO DE SISTEMAS DE POTENCIA	15
1	1741 Influencia de los Fluios e Invecciones sobre las Mediciones Estimadas	15
	1 7 4 2 Carácter local del Efecto de los Errores en los Parámetros	16
1.8	MÉTODOS DE ESTIMACIÓN DE PARÁMETROS	18

1.8.1 INTRODUCCIÓN	18
1.8.2 MÉTODOS QUE NO AMPLÍAN EL VECTOR DE ESTADO	20
1.8.3 MÉTODOS QUE AMPLÍAN EL VECTOR DE ESTADO	23
1.8.3.1 Solución ocupando ecuaciones normales	24
1.8.3.2 Solución basada en filtros Kalman	27
1.8.4 MÉTODO BASADO EN MEDICIONES HISTÓRICAS	28
1.8.5 COMPARACIÓN ENTRE MÉTODOS	30
CAPÍTULO 2	31
2.1 METODOLOGÍA ESTADÍSTICA DE ESTIMACIÓN DE ESTADO	31
2.2 IDENTIFICACIÓN DE ERRORES DE PARÁMETROS	31
2.2.1 INTRODUCCIÓN	31
2.2.2 MÉTODO DE MULTIPLICADORES DE LAGRANGE	33
2.2.3 CÁLCULO DE MULTIPLICADORES DE LAGRANGE NORMALIZADOS .	37
2.2.4 ALGORITMO DE IDENTIFICACIÓN DE PARÁMETROS	38
2.3 CORRECCIÓN DE ERRORES DE PARÁMETROS	40
2.3.1 INTRODUCCIÓN	40
2.3.2 UNIDAD DE MEDICIÓN FASORIAL PMU	41
2.3.3 CÁLCULO DE PARÁMETROS DE LÍNEAS DE TRANSMISIÓN	44
2.3.4 CÁLCULO DE PARÁMETROS DE TRANSFORMADORES	46
2.3.4.1 Caso I: Transformador de dos devanados con tap o LTC	47
2.3.4.2 Caso II: Transformador de tres devanados con tap en el primario	49
2.3.4.3 Caso III: Transformador de tres devanados con tap en el primario y LTC	en el
secundario	54
2.4 DIFERENCIAS DE MODELACIÓN ENTRE CASOS DE TIEMPO REA	AL Y
FUERA DE LÍNEA	59
2.4.1 MODELO DE LÍNEAS DE TRANSMISIÓN	60
2.4.2 MODELO DE TRANSFORMADORES	60
2.4.3 CASOS DE PLANIFICACIÓN CON DIFERENCIAS DE PARÁMETROS	64
2.4.4 CASOS DE TIEMPO REAL CON DIFERENCIAS DE PARÁMETROS	65
CAPÍTULO 3	66
3.1 PROGRAMA COMPUTACIONAL DE ESTIMACIÓN DE PARÁMET	ROS
EN MATLAB	66
3.2 PROGRAMA DE ESTIMACIÓN DE PARÁMETROS	66

3.2.1 DESCR	RIPCIÓN GENERAL DEL PROGRAMA	
3.2.2 DIAGR	AMA DE FLUJO DEL PROGRAMA	
3.3 IDENTIFIC	CACIÓN DE PARÁMETROS ERRÓNEOS	68
3.3.1 EJEMP	LO DE APLICACIÓN PARA IDENTIFICACIÓN DE PARÁ	METROS
ERRÓNEOS.		69
3.3.1.1 Cálc	culo de Y barra	
3.3.1.2 Cálc	culo de mediciones de inyecciones y flujos por ramas	71
3.3.1.3 Cálc	ulo de Jacobiano Hx de mediciones	
3.3.1.3.1	l Derivadas parciales de las mediciones de voltaje	
3.3.1.3.2	2 Derivadas parciales de las mediciones de inyección de potencia	activa 73
3.3.1.3.2	3 Derivadas parciales de las mediciones de inyección de potencia 75	ı reactiva
3.3.1.3.4 ramas	<i>4 Derivadas parciales de las mediciones de flujo de potencia acti</i> 77	va en
3.3.1.3.5	5 Derivadas parciales de las mediciones de flujo de potencia read	ctiva en
ramas	79	
3.3.1.4 Cálc	culo de $\mathbf{C}\mathbf{x}$ de mediciones (jacobiano de mediciones de inyecciones	cero) 82
3.3.1.5 Solu	ción de Estimación de Estado Convencional	
3.3.1.6 Cálc 83	culo de multiplicadores de Lagrange de mediciones \mathbf{r} y de inyeccio	nes cero u
3.3.1.7 Cálc	ulo de Jacobiano de Parámetros Hp	
3.3.1.7.1	<i>1 Derivadas parciales de las mediciones de voltaje</i> H V_g, H V_b 86	y H V_bs
3.3.1.7.2	2 Derivadas parciales de las mediciones de inyección de potencia	ı activa
H pin_g	, H pin_b y H pin_bs	
3.3.1.7.3	3 Derivadas parciales de las mediciones de inyección de potencia	ı reactiva
H qin_g	, H qin_b y H qin_bs	
3.3.1.7.4	4 Derivadas parciales de las mediciones de flujo de potencia acti	va en
ramas I	Hpram_g , Hpram_b y Hpram_bs	
3.3.1.7.5	5 Derivadas parciales de las mediciones de flujo de potencia read	ctiva en
ramas I	Hqram_g , Hqram_b y Hqram_bs	
3.3.1.8 Cálc	eulo de Cp (jacobiano de parámetros de mediciones de inyecciones	s cero) 93
3.3.1.9 Cálc	culo de Multiplicadores de Lagrange λi	
3.3.1.10	Cálculo de Multiplicadores de Lagrange Normallizados λNi	

3.3.1.11 Resul	tados de Cálculo de Multiplicadores de Lagrange Normaliza	ados λNi
para casos de erroi	res en parámetros	
3.3.2 DESARROL	lo del programa de identificación de parán	METROS
ERRÓNEOS		
3.3.2.1 Consideration	ciones de Diseño	
3.3.2.2 Descripció	on del Programa y Diagramas de Flujo	
3.3.2.2.1 Ma	ódulo principal PSE_MAIN	
3.3.2.2.2 Me	ódulo de ingreso de Datos	
3.3.2.2.3 Me	ódulo de cálculo de Y barra	
3.3.2.2.4 Me	ódulo de Estimación de estado Convencional	100
3.3.2.2.5 Ma	ódulo de Cálculo de jacobianos Hx y Cx	100
3.3.2.2.6 Ma	ódulo de Cálculo de jacobianos Hp y Cp	100
3.3.2.2.7 Ma	ódulo de Cálculo de Multiplicadores de Lagrange normalizado	os λ iN
10	1	
3.3.2.2.8 Me	ódulo de reporte de parámetros erróneos	101
3.4 DESARROLLO	DE LA INTERFAZ	102
3.4.1 CONSIDERA	ACIONES DE DISEÑO	104
3.4.2 DESARROL	LO DE LA INTERFAZ	104
3.4.2.1 Módulo de	e Obtención de Información del EMS	105
3.4.2.2 Módulo de	e Obtención de Información de PowerFactory de DIgSILENT .	105
3.4.2.3 Módulo de	e Creación del Modelo de Referencia de Red	105
3.4.2.3.1 Ta	blas BUS_EMS y BUS_DGS	106
3.4.2.3.2 Ta	blas BRANCH_EMS y BRANCH_DGS	106
3.4.2.3.3 Ta	blas MED_EMS y MED_DGS	107
3.4.2.4 Módulo de	e Creación de Tablas en Excel	109
3.5 DESARROLLO	DEL PROGRAMA DE CORRECCIÓN DE PARÁM	ETROS
ERRÓNEOS		109
3.5.1 MÓDULO D 109	E CÁLCULO DE PARÁMETROS DE LÍNEAS DE TRANS	SMISIÓN
3.5.2 MÓDULO D	E CÁLCULO DE PARÁMETROS DE TRANSFORMADO	ORES DE
DOS DEVANADO	S	111
3.5.3 MÓDULO D	E CÁLCULO DE PARÁMETROS DE TRANSFORMADO	ORES DE
TRES DEVANADO	DS	112
		114

4.1 APLICACIÓN A MODELOS DE TIEMPO REAL Y FUERA DE LÍNEA I	DEL
S.N.I.	114
4.2 INTRODUCCIÓN	114
4.3 ESCENARIOS DE SIMULACIÓN	116
4.4 ESCENARIO DE MÁXIMA DEMANDA	118
4.4.1 SISTEMA DE TIEMPO REAL EMS	. 118
4.4.2 SISTEMA FUERA DE LÍNEA PowerFactory de DIgSILENT	. 121
4.4.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO	DE
DEMANDA MÁXIMA	. 123
4.5 ESCENARIO DE DEMANDA MEDIA	123
4.5.1 SISTEMA DE TIEMPO REAL EMS	. 123
4.5.2 SISTEMA FUERA DE LÍNEA	. 126
4.5.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO	DE
DEMANDA MEDIA	. 128
4.6 ESCENARIO DE DEMANDA MÍNIMA	128
4.6.1 SISTEMA DE TIEMPO REAL	. 128
4.6.2 SISTEMA FUERA DE LÍNEA	. 131
4.6.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO	DE
DEMANDA MÍNIMA	. 132
4.7 CORRECCIÓN DE ERRORES DE PARÁMETROS	133
4.7.1 CASO DE LÍNEA DE TRANSMISIÓN	. 133
4.7.1.1 Ejemplo de Aplicación para Corrección de Parámetros de Línea de Transm	isión
133	
4.7.1.2 Mediciones disponibles en PMUs	. 134
4.7.1.3 Cálculo de Parámetros de Línea de Transmisión Pascuales Molino 1 con date	os de
PMUs 144	
4.7.1.4 Resultados de Corrección de Parámetros de Línea de Transmisión Pasc	uales
Molino 1 en Sistema EMS	. 146
4.7.2 CASO TRANSFORMADORES	. 151
4.7.2.1 Ejemplo de Aplicación para Corrección de Parámetros de Transformadores	. 151
4.7.2.2 Resultados de corrección de Parámetros del Transformador ATQ de S/E France	cisco
de Orellana en Estimador de Estado de Sistema EMS	. 155
4.8 ANALISIS Y COMPARACION DE RESULTADOS	159
CAPÍTULO 5	168

5.1 CONCLUSIONES Y SUGERENCIAS DE TRABAJOS FUTUR	ROS DE
INVESTIGACIÓN	168
5.2 CONCLUSIONES	168
5.3 RECOMENDACIONES	173
BIBLIOGRAFÍA	175
ANEXO 1. ANÁLISIS DE DATOS CON STATA	182

LISTA DE TABLAS

Tabla 2.1: PMUs Instalados en el Ecuador 43
Tabla 2.2: Obtención de Impedancias Estrella en base a impedancias Delta Caso II: Transformador de 3 Devanados con Tap en Primario
Tabla 2.3: Obtención de Impedancias Estrella en base a impedancias Delta CasoIII: Transformador de 3 Devanados con Tap en Primario y LTC en Secundario58
Tabla 2.4: Parámetros utilizados en modelación de transformadores enPowerFactory de DIgSILENT [54].61
Tabla 3.1: Parámetros del Sistema de Prueba69
Tabla 3.2: Valores Medidos en el Sistema de Prueba
Tabla 3.3: Multiplicadores de Lagrange obtenidos simulando parámetroserróneos en el Sistema de Prueba96
Tabla 3.4: Estructura de Tablas BUS_EMS y BUS_DGS para el sistema de prueba
Tabla 3.5: Estructura de Tablas BRANCH_EMS y BRANCH_DGS para el sistema de prueba
Tabla 3.6: Estructura de Tablas MED_EMS y MED_DGS para el sistema de prueba
Tabla 4.1: Elementos utilizados en los modelos de red en los Sistemas EMS y Fuera de Línea
Tabla 4.2: Estaciones Hidrológicas de Ecuador116
Tabla 4.3: Períodos de Demanda en Ecuador 116
Tabla 4.4: Escenarios Simulados 117
Tabla 4.5: Escenario de Demanda Máxima 118
Tabla 4.6: Multiplicadores de Lagrange mayores que tres obtenidos simulandodatos del sistema EMS en demanda máxima

Tabla 4.7: Residuales normalizados mayores que tres obtenidos simulandodatos del sistema EMS en demanda máxima.120
Tabla 4.8: Multiplicadores de Lagrange mayores a tres obtenidos simulandodatos del sistema PowerFactory de DIgSILENT en demanda máxima.121
Tabla 4.9: Residuales normalizados mayores a tres obtenidos simulando datosdel sistema PowerFactory de DIgSILENT en demanda máxima
Tabla 4.10: Resumen de resultados obtenidos en demanda máxima 123
Tabla 4.11: Escenario Demanda Media 123
Tabla 4.12: Multiplicadores de Lagrange mayores a tres obtenidos simulandodatos del sistema EMS en demanda media.124
Tabla 4.13: Residuales normalizados mayores de tres obtenidos simulandodatos del sistema EMS en demanda media.125
Tabla 4.14: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema PowerFactory de DIgSILENT en demanda media
Tabla 4.15: Residuales normalizados mayores a tres obtenidos simulando datosdel sistema PowerFactory de DIgSILENT en demanda media
Tabla 4.16: Resumen de resultados obtenidos en demanda media 128
Tabla 4.17: Escenario Demanda Mínima 128
Tabla 4.18: Multiplicadores de Lagrange mayores a tres obtenidos simulandodatos del sistema EMS en demanda mínima.129
Tabla 4.19: Residuales normalizados mayores a tres obtenidos simulando datosdel sistema EMS en demanda mínima.130
Tabla 4.20: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema PowerFactory de DIgSILENT en demanda mínima
Tabla 4.21: Residuales normalizados mayores a tres obtenidos simulando datosdel sistema PowerFactory de DIgSILENT en demanda mínima
Tabla 4.22: Resumen de resultados obtenidos en demanda mínima 132

Tabla 4.23: Mediciones obtenidas de los PMUs instalados en las S/E Pascualesy Molino.135
Tabla 4.24: Impacto de Parámetros de L/T PASC-MOLI 1 en resultados deEstimador de Estado del EMS
Tabla 4.25: Cálculo de Impedancias del Transformador ATQ de Francisco deOrellana
Tabla 4.26: Impedancias del Transformador ATQ de Francisco de Orellana enpu de 100 MVA
Tabla 4.27: Impacto de Parámetros de transformado ATQ de S/E Francisco deOrellana en resultados de Estimador de Estado del EMS
Tabla 4.28: Multiplicadores de Lagrange obtenidos de EMS para tres condicionesde demanda.161
Tabla 4.29: Multiplicadores de Lagrange obtenidos de PowerFactory deDIgSILENT para tres condiciones de demanda.162
Tabla 4.30: Equipos con Multiplicadores de Lagrange de EMS mayores a tres entres o dos condiciones de demanda.163
Tabla 4.31: Equipos con Multiplicadores de Lagrange de PowerFactory deDIgSILENT mayores a tres en tres o dos condiciones de demanda.164
Tabla 4.32: Análisis Estadístico de Multiplicadores de Lagrange en EMS endiferentes condiciones de demanda.166
Tabla 4.33: Análisis Estadístico de Multiplicadores de Lagrange en EMS endiferentes condiciones de demanda.167

LISTA DE FIGURAS

Figura 1.1: Componentes de un estimador de estado y relaciones entre los mismos [2]
Figura 1.2: Influencia del error en la susceptancia B y en la conductancia G de una línea sobre las mediciones adyacentes. [3]
Figura 1.3: Influencia del error en la susceptancia de una línea sobre las mediciones adyacentes con diferentes tipos de mediciones [5]
Figura 1.4: Influencia del error conjunto en la susceptancia y la conductancia de una línea sobre las mediciones: De toda la red (trazo discontinuo); Adyacentes (trazo continuo) [5]
Figura 1.5: Influencia del error de una línea sobre las mediciones estimadas a distintas distancias: Error de las mediciones estimadas con error en una línea / Error de las mediciones estimadas sin error en la línea [5]
Figura 1.6: Estimación de Parámetros por cálculo de Residuales [31] 22
Figura 1.7: Estimación de Parámetros por métodos de vector ampliado [31] 26
Figura 2.1: Diagrama de flujo del método de identificación de errores de parámetros [31]
Figura 2.2: Equivalente π de una línea de transmisión [10]
Figura 2.3: Diagrama equivalente de un transformador de dos devanados 47
Figura 2.4: Diagrama simplificado de un transformador de dos devanados 49
Figura 2.5: Transformador de tres devanados con tap en primario
Figura 2.6: Transformador de tres devanados con tap en primario modelado con tres transformadores de dos devanados
Figura 2.7: Transformador de tres devanados con 5 posiciones de tap en primario
Figura 2.8: Transformador de tres devanados con tap en primario y LTC en el secundario

Figura 2.9: Transformador de tres devanados con tap en primario y LTC en secundario modelado con tres transformadores de dos devanados
Figura 2.10: Transformador de tres devanados con 5 posiciones de tap en primario y 33 posiciones de LTC en el secundario
Figura 2.11: Equivalente π de secuencia positiva de una línea de transmisión en el modelo de planeamiento [53]
Figura 2.12: Modelo de secuencia positiva de un transformador de dos devanados en ohmios en PowerFactory de DIgSILENT [53] 61
Figura 2.13: Cambiador de tap en el lado de alto voltaje de un transformador de dos devanados en pu en PowerFactory de DIgSILENT [53] 62
Figura 2.14: Cambiador de tap en el lado de bajo voltaje de un transformador de dos devanados en pu en PowerFactory de DIgSILENT [53]
Figura 2.15: Modelo de un transformador de tres devanados en PowerFactory de DIgSILENT [53]
Figura 2.16: Esquema de análisis de diferencias de parámetros en modelos de PowerFactory de DIgSILENT
Figura 3.1: Diagrama de flujo del programa de identificación y corrección de errores de parámetros
Figura 3.2: Sistema de prueba de 4 barras 69
Figura 3.3: Diagrama de flujo del módulo principal de identificación de errores de parámetros
Figura 3.4: Diagrama de flujo del módulo de estimador de estado convencional.
Figura 3.5: Diagrama de flujo del módulo de cálculo de Multiplicadores de Lagrange
Figura 3.6: Diagrama conceptual de la Interfaz EMS-PowerFactory de DIgSILENT-PSE

Figura 3.7: Diagrama de flujo del módulo de cálculo de parámetros de una L/T en base a datos de PMUs
Figura 3.8: Diagrama de flujo del módulo de cálculo de parámetros de un transformador de dos devanados en base a datos de PMUs
Figura 3.9: Diagrama de flujo del módulo de cálculo de parámetros de un transformador de tres devanados en base a datos de PMUs
Figura 4.1: Línea de Transmisión Pascuales 1 Molino 1 con ubicación de PMUs
Figura 4.2: Densidad de Probabilidad de Potencia Activa MOLI-PASC1 136
Figura 4.3: Función de Distribución Acumulada Normalizada de Potencia Activa 136
Figura 4.4: Densidad de Probabilidad de Potencia Reactiva MOLI-PASC1 137
Figura 4.5: Función de Distribución Acumulada Normalizada de Potencia Reactiva
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.8: Densidad de Probabilidad del Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.8: Densidad de Probabilidad del Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.8: Densidad de Probabilidad del Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.10: Densidad de Probabilidad de Potencia Activa PASC-MOLI 1 140
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.8: Densidad de Probabilidad del Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.10: Densidad de Probabilidad de Potencia Activa PASC-MOLI 1 140 Figura 4.11: Función de Distribución Acumulada Normalizada de Potencia Activa
Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV. 138 Figura 4.8: Densidad de Probabilidad del Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV. 139 Figura 4.10: Densidad de Probabilidad de Potencia Activa PASC-MOLI 1 140 Figura 4.12: Densidad de Probabilidad de Potencia Reactiva PASC-MOLI 1.141

Figura 4.14: Densidad de Probabilidad del Voltaje en S/E Pascuales Barra de 230 kV
Figura 4.15: Función de Distribución Acumulada Normalizada de Voltaje en S/E Pascuales Barra de 230 kV142
Figura 4.16: Densidad de Probabilidad del Ángulo de Voltaje en S/E Pascuales Barra de 230 kV
Figura 4.17: Función de Distribución Acumulada Normalizada del Ángulo de Voltaje en S/E Pascuales Barra de 230 kV
Figura 4.18: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS
Figura 4.19: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS
Figura 4.20: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS
Figura 4.21: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS
Figura 4.22: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS
Figura 4.23: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS
Figura 4.24: Transformador Francisco de Orellana ATQ 151
Figura 4.25: Reporte de Pruebas del Fabricante, Pruebas HV-MV 152
Figura 4.26: Reporte de Pruebas del Fabricante, Pruebas HV-LV y MV-LV 152
Figura 4.27: Valores medidos en ATQ S/E Francisco de Orellana, Sistema EMS
Figura 4.28: Valores estimados en ATQ S/E Francisco de Orellana, Sistema EMS

Figura 4.29: Valores medidos en ATQ S/E Francisco de Orellana, Sistema EMS
Figura 4.30: Valores estimados en ATQ S/E Francisco de Orellana, Sistema EMS

LISTA DE ACRÓNIMOS Y ABREVIATURAS

AC	Alterning Current (Corriente Alterna)
AVR	Automatic Voltage Regulator
BDD	Base de Datos
CSV	Comma Separated Values (Valores separados por comas)
dbl	<i>Database language</i> (Aplicación de la Base de Datos de tiempo real del EMS de CENACE
DGS	DIgSILENT-GIS-SCADA (Interfaz de PowerFactory)
EHV	Exta High Voltage (Extra Alto Voltaje)
EMS	Energy Management System (Sistemas de Gestión de Energía)
GPS	Global Positioning System (Sistema de Posicionamiento Global)
IEEE	Institute of Electrical and Electronics Engineers (Instituto de Ingenieros Eléctricos y Electrónicos)
ISO	Independent System Operator
Kurtosis	Medida de la forma
LTC	Load Tap Changer (Cambiador de taps bajo carga)
MIT	Massachusetts Institute Technological
NM2003	Sistema EMS de ABB USA
NM6.3	Sistema EMS de ABB USA
NMR3	Sistema EMS de ABB USA
PMU	Phasor Measurement Unit (Unidades de Medición Fasorial)
PSS	Power System Stabilizer
p.u.	Valores en por unidad

- SE State Estimation (Estimador de Estado)
- S.N.I. Sistema Nacional Interconectado del Ecuador
- SPIDER Sistema EMS de ABB Suecia
- Skewness Medición de simetría
- USA United States of America
- UTC Universal Time Coordinated
- WAMS Wide Area Monitoring System
- WLS Weighted Least Squares (Mínimos Cuadrados Ponderados)

LISTA DE SÍMBOLOS

CAPÍTULO 1

- R Resistencia
- L Inductancia
- z Vector de mediciones
- x Vector de variables de estado
- h(x) Vector de funciones de medición
 - *e* Vector de errores de mediciones
 - σ_i Desviación estándar de la medición *i*
- σ_i^2 Varianza de la medición *i*
- **R** Matriz de Covarianza de los errores de las mediciones
- f(z) Función de densidad de probabilidad de z
- J(x) Función Objetivo de Estimación de Estado
- $g(\mathbf{x})$ Function auxiliar para representar la derivada de la function $J(\mathbf{x})$
- H Matriz Jacobiana de estimación de estado
- V_i , θ_i magnitud de voltaje y ángulo de fase en la barra i
- $G_{ij} + j B_{ij}$ *ij* -ésimo elemento de la matriz Yb
- $g_{ij} + j b_{ij}$ admitancia de la rama serie conectada entre las barras *i*, *j*
- $g_{si} + j b_{si}$ admitancia de la rama paralelo conectada en la barra *i*
 - *m* Número de mediciones
 - P_i , Q_i potencias de inyección activa y reactiva en la barra i
 - *n* Número de variables de estado

- z_s conjunto de mediciones que son función de un parámetro
- **h**_s Función de parámetros
- e_p Error de parámetro
- p valor exacto de un parámetro
- **p**₀ valor supuesto de un parámetro
- $\hat{\mathbf{x}}$ Vector de variables de estado estimadas
- r_i Residual de la medición i
- r Vector de residuales de las mediciones
- **r**_s Vector de residuales sin error de parámetros
- G Matriz de Ganancia
- W Matriz de Ponderaciones de las Mediciones
- S Matriz de sensibilidad residual
- I Matriz identidad
- \mathbf{R}_{p} matriz de covarianza

CAPÍTULO 2

- H_x Jacobiano de mediciones
- C_x Jacobiano de mediciones con restricciones de igualdad
- **H**_p Jacobiano de parámetros
- \mathbf{C}_{p} Jacobiano de parámetros con restricciones de igualdad

- Λ covarianza de **U**
- u Vector de Multiplicadores de Lagrange de restricciones de igualdad
- L Función de Lagrange
- λ Vector de Multiplicadores de Lagrange
- V_k Magnitud de voltaje en el nodo k
- θ_k Valor angular del voltaje en el nodo k
- p_k Inyección de potencia activa en el nodo k
- q_k Inyección de potencia reactiva en el nodo k
- λ_m Multiplicadores de Lagrange de mediciones
- λ_i^N Multiplicador de Lagrange Normalizado *i*
- σ Desviación estándar de la Distribución normal
- x_{ps} reactancia entre primario y secundario
- x_{pt} reactancia entre primario y terciario
- x_{st} reactancia entre el secundario y terciario
- x_p reactancia del primario
- *x_s* reactancia del secundario
 - reactancia del terciario
- x_t
- *V_p* voltaje en el primario
- *V*_s voltaje en el secundario
- *V_t* voltaje en el terciario
- Z_+ impedancia de secuencia positiva en ohm

- Y_{+} susceptancia de la línea en siemens
- Yb Matriz Y de Barra de Flujos de Potencia

CAPÍTULO 3

- θ Vector de variables de estado relacionado con ángulos de voltaje
- v Vector de variables de estado relacionado con módulos de voltaje
- P_i Potencia activa total de inyección en el nodo *i*
- Q_i Potencia reactiva total de inyección en el nodo *i*
- G_{ij} Conductancia de la matriz **Y** de Barra de la *i* y columna *j*
- B_{ij} Susceptancia de la matriz **Y** de Barra de la *i* y columna *j*
- P_{ij} Flujo de potencia activa saliendo desde el nodo i
- Q_{ij} Flujo de potencia reactiva saliendo desde el nodo *i*
- P_{ji} Flujo de potencia activa saliendo desde el nodo j
- Q_{ji} Flujo de potencia reactiva saliendo desde el nodo j

CAPÍTULO 1.

1.1 INTRODUCCIÓN

En este capítulo se presentan la base teórica y un resumen de los principales estudios realizados hasta el momento en el desarrollo de algoritmos de estimación paramétrica.

1.2 OBJETIVOS

1.2.1 OBJETIVO GENERAL

El objetivo general de esta tesis es desarrollar un programa de estimación paramétrica para detectar los errores de parámetros de una red eléctrica y corregirlos. Este programa deberá ser aplicado al Sistema Nacional Interconectado en los modelos de tiempo real y fuera de línea.

1.2.2 OBJETIVOS ESPECÍFICOS

- Desarrollar un programa que permita la identificación de errores en los parámetros eléctricos de un sistema eléctrico y corregirlos.
- Detectar errores y diferencias de parámetros de red en los modelos de tiempo real y fuera de línea del Sistema Nacional Interconectado.
- Realizar la corrección de los parámetros erróneos en los modelos de tiempo real y fuera de línea del Sistema Nacional Interconectado.
- Analizar y comparar los resultados en los modelos de tiempo real y fuera de línea en varias condiciones de demanda.

1.3 JUSTIFICACIÓN

Es necesario complementar el algoritmo de estimador de estado estándar, para que pueda identificar los parámetros incorrectos del modelo de red y corregirlos, para asegurar que siempre se disponga de la información más exacta y veraz para la operación en tiempo real del Sistema Nacional Interconectado S.N.I. y asegurar la exactitud de los análisis de seguridad en tiempo real o fuera de línea.

1.4 ALCANCE

En este trabajo de tesis se revisará en las referencias bibliográficas el estado de arte de la estimación paramétrica para elegir los algoritmos más idóneos que permitan detectar y corregir los parámetros erróneos en una red eléctrica. En base a los algoritmos seleccionados, se programará en MATLAB un programa de detección de parámetros erróneos para aplicarlo primero en un sistema de prueba pequeño y después en el Sistema Nacional Interconectado, en los modelos de los sistemas EMS y PowerFactory de DIgSILENT.

Se realizará la corrección de parámetros erróneos en base a información disponible de PMUs instalados en el Sistema Nacional Interconectado, planteando para ello los modelos eléctricos a utilizar y desarrollando las aplicaciones necesarias en MATLAB para realizar la corrección de parámetros.

1.5 PRESENTACIÓN DEL TEMARIO DE TESIS

En el Capítulo 1. INTRODUCCIÓN: Se plantean los objetivos, el alcance y la justificación de la tesis. Adicionalmente, se realizará un resumen de los principales estudios realizados hasta el momento en el desarrollo de algoritmos de estimación paramétrica.

En el Capítulo 2. METODOLOGÍA ESTADÍSTICA DE ESTIMACIÓN: Se presenta la base teórica de los métodos que se utilizarán para la identificación de errores de parámetros y la corrección de parámetros utilizando PMUs.

Se analizarán los casos de los modelos de tiempo real y fuera de línea a fin de establecer las principales características y diferencias entre los mismos.

Se establecerán los casos a analizar en los modelos de tiempo real y fuera de línea.

- Casos de planificación (modelos fuera de línea) con diferencias de parámetros.
- Casos históricos en tiempo real.

En el Capítulo 3. PROGRAMA COMPUTACIONAL DE ESTIMACIÓN PARAMÉTRICA EN MATLAB: Se desarrollará un programa de identificación de parámetros erróneos en una red eléctrica en Matlab y se lo probará en un sistema eléctrico de cuatro barras antes de aplicarlo al Sistema Nacional Interconectado del Ecuador en los modelos eléctricos de tiempo real y fuera de línea. Se desarrollará también los programas para la corrección de parámetros erróneos identificados.

En el Capítulo 4. APLICACIÓN A MODELOS DE TIEMPO REAL Y FUERA DE LÍNEA DEL S.N.I.: Utilizando el programa desarrollado se aplicará a los modelos de tiempo real y fuera de línea en las principales condiciones de demanda del Sistema Nacional Interconectado como son: máxima, media y mínima y se presentarán los principales resultados de esta aplicación.

Se realizará el análisis y comparación de resultados

En el Capítulo 5. CONCLUSIONES Y RECOMENDACIONES: Se presentan las principales conclusiones y recomendaciones obtenidas como producto del desarrollo de la presente tesis.

1.6 ESTIMACIÓN DE ESTADO CONVENCIONAL

1.6.1 INTRODUCCIÓN

A partir del incidente que se produjo en Estados Unidos, el 9 de noviembre de 1965, donde se quedó sin energía eléctrica la región nordeste de Estados Unidos y parte de Canadá; 8 estados de la costa este, incluyendo Nueva York y 2 estados de Canadá durante 14 horas afectando a aproximadamente 30 millones de personas [1]; las empresas eléctricas iniciaron sus esfuerzos para investigar técnicas de operación que aseguren altos niveles de disponibilidad y seguridad del servicio de energía eléctrica.

Antes de este incidente, los sistemas SCADA existentes contenían las funciones más primitivas como la captura de datos relevantes del sistema supervisado mediante unidades terminales remotas, el mantenimiento de una base de datos, la presentación en pantallas gráficas de la información disponible resaltando posibles alarmas o eventos importantes para facilitar al operador la actuación sobre el sistema de control que permita modificar su evolución; así como ciertas funciones de control automático de generación y despacho económico, por lo que también se monitoreaba la frecuencia de los sistemas y las potencias activas de los generadores [2].

El mencionado apagón y otros incidentes menos conocidos, pusieron de manifiesto que se debía fortalecer la seguridad en la operación del sistema con sistemas SCADA más sofisticados a los existentes. Se empezaron a capturar a intervalos de tiempo menores un mayor número de mediciones, incluyendo flujos de potencia por las líneas y se desarrollaron nuevas herramientas informáticas que permitieran analizar la seguridad de la red, los riesgos de inestabilidad, las pérdidas, etc [2].

Lo que se buscaba es conocer el estado del sistema determinado por los voltajes en todos los nodos. Los primeros intentos de obtener dicho estado mediante un flujo de potencia on-line tuvieron muchos problemas por la carencia de ciertas mediciones, la inconsistencia de otras, etc. En esta situación el profesor Fred Schweppe del Instituto Tecnológico de Massachusetts (MIT) sugirió que la solución pasara por aplicar el concepto de estimación de estado, que se utilizaba ya en otras áreas tecnológicas en sistemas más pequeños [2].

Schweppe identificó desde el principio la existencia de dos problemas fundamentales para la ejecución de las funciones de seguridad [3].

El primero, aunque el número de mediciones era generalmente muy grande, siempre se presentaban ciertas inconsistencias, ya que algunas mediciones se perdían temporalmente o existían mediciones con errores no gaussianos. El segundo problema era que las nuevas funciones de seguridad necesitaban un punto de partida, es decir, una distribución real de las cargas. Considerando que las mediciones venían con inconsistencias, los programas de distribución de cargas que se venían utilizando hasta esas fechas no se podían aplicar en tiempo real, por lo que no era posible realizar funciones de seguridad [3].

Schweppe, con la estimación de estado, resolvió tanto el problema de los datos como el de la resolución en tiempo real. Como él dijo, "el estimador de estado es un purificador de datos", utilizando una analogía con la purificación de la sangre en el cuerpo humano [2]. Pero es algo más, el estimador de estado es un distribuidor de cargas en tiempo real. Con esto se hacía posible la ejecución de las funciones de seguridad en los centros de control [3].

Un estimador de estado trabajando on-line permite obtener una base de datos fiable y completa imprescindible para el correcto funcionamiento de todas las actividades involucradas en el control y operación del sistema eléctrico [2].

La incorporación de las funciones de estimación de estado, análisis de seguridad, el registro histórico de toda la información para utilizarla en funciones relacionadas con planificación y gestión de nuevos mercados de electricidad junto al gran avance en arquitectura de procesadores ha dado lugar a los modernos Sistemas de Gestión de Energía EMS [2].

Como se puede observar en la figura 1.1, un estimador de estado incluye básicamente las siguientes funciones [2]:

- Pre-filtrado de mediciones: chequeo de consistencia de mediciones para detectar y descartar errores grandes en las mediciones (voltajes negativos, potencias fuera de rango, etc.)
- Procesador Topológico: Obtiene el modelo de red mediante el estado de disyuntores y seccionadores.
- Análisis de Observabilidad: Determina si la disponibilidad y distribución de las mediciones permite que la estimación pueda realizarse sobre toda la red.
- Estimación de estado: Calcula en base al modelo de red y las mediciones existentes, el estado óptimo del sistema con los voltajes y ángulos en todos los nodos de la red, desde un punto de vista estadístico [4].
- Procesador de mediciones erróneas: Detecta la existencia de errores en las mediciones y si dispone redundancia las elimina. Dependiendo del algoritmo, también puede detectar errores topológicos o errores en los parámetros de red.

Las fuentes de información necesarias para el estimador de estado son [3]:

- Los valores de los parámetros de diseño de la red (R, L, etc.).
- La información topológica o estructural (posición de interruptores, etc.).
- El modelo matemático del sistema.

Los distintos tipos de medición son [3]:

Telemediciones: Son las que se obtienen en tiempo real desde las unidades terminales remotas de las subestaciones a través del SCADA. Los datos típicos que se incluyen son:

• Los voltajes e inyecciones de potencia activa y reactiva en los nodos.

• Los flujos de potencia activa y reactiva en las líneas.

Todas las mediciones llevan asociado un cierto error que proviene de los transformadores de medición, del propio transductor, del proceso de la conversión analógica- digital, del posible sesgo o ruido introducido por los sistemas de comunicaciones, el desequilibrio entre fases, etc.

Pseudomediciones: Son valores obtenidos basándose en los datos históricos existentes, por lo que tienen menos precisión que si fuesen medidos; por ejemplo, la potencia generada en las centrales o la demanda de las subestaciones.

Mediciones virtuales: Son aquellas que no requieren ser mediciones, como por ejemplo la inyección cero en las subestaciones de transporte.

1.6.2 FORMULACIÓN MATEMÁTICA – ESTIMADOR DE ESTADO DE MÍNIMOS CUADRADOS PONDERADOS (WLS)

El estado de un sistema de potencia hace referencia a su condición de operación y, matemáticamente, todas las cantidades se pueden calcular una vez que se conocen las magnitudes de los voltajes y los desfases de los ángulos. Por lo tanto, el modelo matemático de la estimación de estado se basa en las relaciones matemáticas entre las mediciones y las variables de estado [3], [5], [6], [7], [8], [9].

Se asume implícitamente que la topología y parámetros de la red, como las tomas de los transformadores son parámetros conocidos, por lo que no forman parte del estado [10].

Las mediciones incluyen potencia y voltaje y pueden incluir corriente y mediciones de fasores sincronizados [10], [11], [12].

Se asume que el sistema de potencia opera en estado estable bajo condiciones balanceadas [10].

Se modela el sistema completo con un equivalente de secuencia positiva monofásico [10].

Sea **z** el vector de telemediciones, **x** el vector de variables de estado (voltajes en los nudos y fase de los ángulos), **h** las ecuaciones que relacionan las mediciones

con las variables de estado y **e** el vector de errores de las mediciones. Entonces, el vector de mediciones se modela como [3]:

$$\mathbf{z} = \mathbf{h}(\mathbf{x}) + \mathbf{e} \tag{1.1}$$

Se supone que los errores e_1 , e_2 ,...., e_m son variables aleatorias independientes con distribución gaussiana y media cero, siendo m el número de mediciones. La varianza σ_i^2 del error de la medición e_i , proporciona una indicación de la exactitud de la medición [3].

Sea R la matriz de covarianzas de errores de las mediciones [3]:

$$\mathbf{R} = \mathbf{E}[\mathbf{e}, \mathbf{e}^{\mathrm{T}}] = diag([\sigma_1^2 \sigma_2^2 \dots \sigma_m^2])$$
(1.2)
$$\mathbf{y} \quad \mathbf{W} = \mathbf{R}^{-1}$$

En la ecuación (1. 1), \mathbf{x} es el verdadero valor del estado desconocido y como los errores **e** son variables aleatorias, las mediciones **z** también lo son, **z** tiene distribución gaussiana con media $\mathbf{h}(\mathbf{x})$ y covarianza **R**. La función de densidad de probabilidad de **z** se puede escribir [3]:

$$\mathbf{f}(\mathbf{z}) = \left(\sqrt{2\,\pi}\right)^{-m} |\mathbf{W}|^{1/2} e^{-\frac{1}{2}[z-\mathbf{h}(\mathbf{x})]^{\mathrm{T}} \,\mathbf{W} \,[\mathbf{z}-\mathbf{h}(\mathbf{x})]}$$
(1.3)

En el problema de estimación de estado se reciben un conjunto de telemediciones **z** basándose en el hecho de querer estimar el estado **x**. El conjunto **x** que maximiza la función de densidad de probabilidad (1.3) es el estimado de máxima verosimilitud \hat{x} . Esto se basa en el hecho de que si se han observado dichas mediciones es porque el estado que dio lugar a ellas es, en sentido estadístico, el más probable, y si no lo es, se habrían observado otras mediciones con una probabilidad bastante alta [3], [13].

Maximizar f(z) en (1.3) es equivalente a minimizar el término cuadrático del exponente [3]:

$$\mathbf{J}(\mathbf{x}) = [\mathbf{z} - \mathbf{h}(\mathbf{x})]^{\mathrm{T}} \mathbf{W} [\mathbf{z} - \mathbf{h}(\mathbf{x})]$$
(1.4)

$$\mathbf{J}(\mathbf{x}) = \sum_{i=1}^{m} \frac{[z_i - h_i(x)]^2}{{\sigma_i}^2}$$
(1.5)

Siendo J(x) la función objetivo de mínimos cuadrados ponderados.

Como en este caso el estimador de máxima verosimilitud minimiza el error cuadrático ponderado con la exactitud de las mediciones, éste es el estimador de mínimos cuadrados ponderados (WLS) [3], [14], [15].

La solución del problema WLS (1.4) proporciona el estado estimado \hat{x} que satisface la siguiente condición de optimización [3]:

$$\frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}} = 0$$

$$\mathbf{g}(\hat{\mathbf{x}}) = \mathbf{H}^{\mathrm{T}}(\hat{\mathbf{x}}) \mathbf{W} [\mathbf{z} - \mathbf{h}(\hat{\mathbf{x}})] = 0$$
(1.6)

Donde:

$$\mathbf{H}(\mathbf{x}) = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \tag{1.7}$$

H es la matriz jacobiano.

Independientemente de la visión estadística de la función J(x), es posible dar otra interpretación geométrica de dicha elección. Por analogía con mínimos cuadrados lineales se puede decir que minimizar la función J(x) es encontrar el estado que hace que la distancia desde las mediciones obtenidas a las mediciones estimadas sea mínima [3].

Expandiendo la función no lineal $\mathbf{g}(\mathbf{x})$ en series de Taylor [10] alrededor del vector de estado \mathbf{x}^{k}

$$\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x}^{k}) + \mathbf{G}(\mathbf{x}^{k})(\mathbf{x} - \mathbf{x}^{k}) + \dots \dots \text{ h. o. } \mathbf{t} = 0$$
(1.8)

Despreciando los términos h.o.t se llega a una solución iterativa de Newton [10]

$$\mathbf{x}^{k+1} = \mathbf{x}^{k} - [\mathbf{G}(\mathbf{x}^{k})]^{-1}\mathbf{g}(\mathbf{x}^{k})$$
(1.9)

Donde:

$$\mathbf{G}(\mathbf{x}^{k}) = \frac{\partial \mathbf{g}(\mathbf{x}^{k})}{\partial \mathbf{x}} = [\mathbf{H}(\mathbf{x}^{k})]^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}(\mathbf{x}^{k})$$
(1.10)

$$\mathbf{g}(\mathbf{x}^{k}) = -\left[\mathbf{H}\left(\mathbf{x}^{k}\right)\right]^{\mathrm{T}} \mathbf{R}^{-1} \left[\mathbf{z} - \mathbf{h}(\mathbf{x}^{k})\right]$$
(1.11)

h(x) se obtiene con las siguientes ecuaciones generales [10]:

$$P_{i} = V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right)$$
(1.12)

$$Q_{i} = V_{i} \sum_{j=1}^{n} V_{j} (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij})$$
(1.13)

$$P_{ij} = V_i^2 (g_{ij} + g_{si}) - V_i V_j (g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij})$$
(1.14)

$$Q_{ij} = -V_i^2 (b_{ij} + b_{si}) - V_i V_j (g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij})$$
(1.15)

Donde:

 V_i , θ_i son la magnitud de voltaje y ángulo de fase en la barra *i* $G_{ij} + j B_{ij}$ es el *ij* -ésimo elemento de la matriz **Y**b $g_{ij} + j b_{ij}$ es la admitancia de la rama serie conectada entre las barras *i*, *j* $g_{si} + j b_{si}$ es la admitancia de la rama paralelo conectada en la barra *i* P_i , Q_i son las potencias de inyección activa y reactiva en la barra *i* P_{ij} , Q_{ij} son los flujos de potencias activa y reactiva desde la barra *i* hacia la barra *j*
1.7 ESTIMACIÓN DE PARÁMETROS EN SISTEMAS ELÉCTRICOS DE POTENCIA

1.7.1 INTRODUCCIÓN

Los algoritmos de estimación de estado convencionales se basan en la suposición de que los parámetros de las líneas (resistencia, reactancia, tomas de los transformadores, etc.) y el estado de los interruptores no tienen errores, lo cual no siempre es así [3], [16].

Los errores en los estados de los interruptores afectan a la topología de la red produciendo inconsistencias en las mediciones estimadas y pueden ser identificables, mientras que los errores en las impedancias de las ramas son menos visibles y pueden producir errores en los datos proporcionados por el estimador continuamente y durante grandes períodos de tiempo sin que dichos errores se detecten [3], [17], [18], [19].

Estos errores en los parámetros, pueden ser [5]:

- Impedancias incorrectas de ramas.
- Impedancias incorrectas de los transformadores o posición incorrecta del intercambiador de tomas.

Las causas de estos errores pueden ser [5]:

- Datos erróneos proporcionados por el fabricante.
- Errores en la calibración.
- Discrepancias entre la longitud real de las líneas y la de diseño.
- Cambio de los taps de transformadores por parte de personal de campo sin que se lo haya comunicado al Centro de Control.
- Errores humanos en el ingreso de datos.

Estos errores pueden producir [5]:

 Una solución errónea del estimador de estado y, por lo tanto de los resultados de los programas que utilizan los datos de salida del estimador como datos de entrada, como por ejemplo, los programas de análisis de seguridad. • Una detección de mediciones erróneas que realmente no lo son.

Desde el punto de vista del estimador de estado, un error en un parámetro tiene el mismo efecto que un conjunto de errores correlacionados que actuarán sobre todas las mediciones que afectan a la rama errónea, es decir, las mediciones de flujo sobre la rama y las de inyecciones en los nudos extremos de ella [5], [20], [21].

Los errores en los parámetros dependiendo de dicho error, pueden producir un impacto sobre la estimación de estado similar o superior al de los errores en las mediciones no detectados [3] [22], [23], [24], [25].

1.7.2 TIPOS DE ERRORES DE ESTIMACIÓN DE PARÁMETROS

En esta sección se analizarán los tipos de errores que se pueden presentar en la estimación de parámetros.

1.7.2.1 Errores en la Conductancia y Susceptancia

Según los análisis realizados por Pedro Zarco y Antonio Gómez Expósito en [5] y [3], respecto a los errores en la conductancia o en la susceptancia, en la literatura existente de estimación de parámetros se demuestra que solamente tiene importancia la susceptancia. Así, se menciona que es razonable asumir que en la práctica no existe error en la conductancia, ya que las pequeñas conductancias y capacitancias en paralelo que suelen tener las líneas no afectan la estimación de estado [5].

En la Figura 1.2 se muestra la influencia del error en la conductancia y en la susceptancia, independientemente, de una línea sobre las mediciones adyacentes cuando se dispone de transductores de clases 1 y 5. Las curvas correspondientes a la clase 1 son las de menores errores en las mediciones.

Figura 1.2: Influencia del error en la susceptancia B y en la conductancia G de una línea sobre las mediciones adyacentes. [3]

De dicha figura se puede concluir que los errores en la conductancia son menos significativos que los existentes en la susceptancia; es decir, al aumentar el error de la conductancia, el aumento de su influencia sobre las mediciones adyacentes es mucho menor que el que se produce cuando aumenta el de la susceptancia.

Los factores que influyen en la conductancia son [5]:

- El efecto pelicular, que es función de la frecuencia.
- La temperatura del conductor, que depende de la disipación del calor de la línea por convección y radiación y es la causa que produce los mayores efectos.

Los factores que influyen en la susceptancia son [5]:

- La permeabilidad del material del conductor.
- La geometría de la configuración de la línea.

Considerando que los errores en la conductancia son menos significativos que los errores de la susceptancia, la estimación puede enfocarse principalmente en el parámetro de la susceptancia.

1.7.2.2 Errores en los Taps de Transformadores

Los errores en los taps de transformadores son menos visibles que los errores en parámetros de red y pueden mantenerse por largos períodos de tiempo sin ser detectados por lo que su impacto puede ser mayor [2].

La estimación de tomas y estado de interruptores debe hacerse cada vez que se ejecute el estimador de estado ya que su variación es de acuerdo a la operación del sistema eléctrico [2].

1.7.3 IDENTIFICACIÓN DE ERRORES EN LOS PARÁMETROS

En base a [2], sea p_0 el valor supuesto de un parámetro cuyo valor exacto es p (p puede ser escalar o vector columna compuesto por varios parámetros) y sea z_s el conjunto de mediciones que son función de dicho parámetro. Estas mediciones son los flujos por los elementos en cuestión y las inyecciones en sus nudos externos.

El modelo no lineal de estas mediciones puede escribirse:

$$\mathbf{z}_{s} = \mathbf{h}_{s}(\mathbf{x}, \mathbf{p}) + \mathbf{e} = \mathbf{h}_{s}(\mathbf{x}, \mathbf{p}_{0}) + [\mathbf{h}_{s}(\mathbf{x}, \mathbf{p}) - \mathbf{h}_{s}(\mathbf{x}, \mathbf{p}_{0})] + \mathbf{e}$$
 (1.16)

El término entre corchetes equivale a un ruido adicional en las mediciones afectadas provocado por el error en el parámetro:

$$\mathbf{e}_{\mathrm{p}} = \mathbf{p} - \mathbf{p}_{\mathrm{0}} \tag{1.17}$$

Para pequeños errores se cumple aproximadamente que:

$$[\mathbf{h}_{s}(\mathbf{x},\mathbf{p}) - \mathbf{h}_{s}(\mathbf{x},\mathbf{p}_{0})] \approx \left[\frac{\partial \mathbf{h}_{s}}{\partial \mathbf{p}}\right] \mathbf{e}_{p}$$
(1.18)

Si \mathbf{e}_{p} es suficientemente grande, los residuos normalizados de dichas mediciones serán mayores de lo esperado y estas pueden ser clasificadas como erróneas. Por lo tanto aquellas líneas o transformadores cuyas mediciones asociadas tengan un residuo elevado deben clasificarse como sospechosas. [2]

Una condición necesaria para que el valor de un parámetro pueda estimarse o para que su error pueda detectarse, es que las mediciones asociadas (flujos o inyecciones en los extremos) no sean críticas. Si estas mediciones son críticas, sus residuos serán nulos y cualquier error en las mismas o en el parámetro pasará desapercibido [2].

En base a los análisis efectuados por Liu y Wu en [26], se realiza la suposición de que los datos con errores no gaussianos han sido identificados y eliminados previamente por lo que una presencia persistente de un término de sesgo en ciertos residuos de medición en los resultados de la estimación de estado es una indicación de la presencia de errores en los parámetros y puede utilizarse para detectar dicha presencia [5].

Liu y Lim en [27], [28] proponen un método para proceder a la identificación de errores también basándose en el cálculo de los residuos normalizados, por lo que un residuo normalizado elevado puede indicar que alguno de los parámetros no es correcto en la proximidad de la medición y la estimación sólo se lleva a cabo si se detecta la existencia de parámetros erróneos [5].

Por lo tanto, la identificación de errores en los parámetros se basa fundamentalmente en el estudio de los residuales de las mediciones.

1.7.4 EFECTOS DE LOS ERRORES DE MODELACIÓN EN LA ESTIMACIÓN DE ESTADO DE SISTEMAS DE POTENCIA

Según los análisis presentados por Javier Zarco en [5] se presenta lo siguiente:

1.7.4.1 Influencia de los Flujos e Inyecciones sobre las Mediciones Estimadas

Cuando se dispone de mediciones de flujos de potencia, la influencia del parámetro erróneo es mucho mayor que cuando se dispone de mediciones de inyecciones, siendo la influencia en este último caso casi nula. Es decir, los errores de las mediciones estimadas son casi independientes de los parámetros,

al menos cuando un solo parámetro es erróneo. Esto se debe a la estructura de las ecuaciones de flujos de potencia e inyecciones [5].

Figura 1.3: Influencia del error en la susceptancia de una línea sobre las mediciones adyacentes con diferentes tipos de mediciones [5].

1.7.4.2 Carácter local del Efecto de los Errores en los Parámetros

Pedro Zarco en [5] realiza un análisis detallado del efecto de los errores en los parámetros según la ubicación de los mismos dentro de la red.

Considerando que todas las mediciones de la red están disponibles, clasifica como mediciones adyacentes a aquellas que están directamente relacionadas con la línea que tiene problemas (los flujos de potencia de la propia línea errónea y las tensiones e inyecciones de sus nudos adyacentes).

En la Figura 1.4 se representa la influencia del error conjunto de la susceptancia y la conductancia cuando solo existe una línea errónea.

Con trazo discontinuo aparece la influencia sobre las mediciones de toda la red y en trazo continuo sobre las mediciones adyacentes a la rama.

Figura 1.4: Influencia del error conjunto en la susceptancia y la conductancia de una línea sobre las mediciones: De toda la red (trazo discontinuo); Adyacentes (trazo continuo) [5].

En la figura 1.5 se presenta el cociente entre el error de las mediciones estimadas cuando existe un error en la susceptancia de una línea y el mismo cuando no existe error en dicha línea, es decir considerando diferentes distancias de la medición errónea.

Se entiende por distancia 1 a las adyacentes a la rama que contiene el parámetro erróneo, es decir los voltajes e inyecciones de los nudos extremos de la rama y los flujos de la propia rama. Distancia 2 las anexas a las que se encuentran a distancia 1 y así sucesivamente [5].

Figura 1.5: Influencia del error de una línea sobre las mediciones estimadas a distintas distancias: Error de las mediciones estimadas con error en una línea / Error de las mediciones estimadas sin error en la línea [5].

En dicha figura se muestra cómo a medida que aumenta la distancia a la línea que contiene el parámetro erróneo dicho cociente tiende a 1, es decir, al comportamiento como si no existiese dicho error, y ello independientemente del error en dicho parámetro [5].

1.8 MÉTODOS DE ESTIMACIÓN DE PARÁMETROS

1.8.1 INTRODUCCIÓN

Según Pedro Zarco indica en [5] que varios investigadores han realizado dos clasificaciones sobre los métodos de estimación de parámetros:

La primera clasificación es:

- Métodos que utilizan un único vector de mediciones:
 - Estimación simultánea del estado y del parámetro.

- Estimación secuencial del estado y del parámetro.
- Métodos que utilizan varios vectores de mediciones:
 - Estimador adaptativo.
 - Estimación secuencial múltiple del estado y del parámetro.

La segunda clasificación realizada es la siguiente:

- Métodos que utilizan un único vector de mediciones.
- Métodos que utilizan varios vectores de mediciones:
 - Estimación de parámetros invariables con el tiempo.
 - Estimación de parámetros variables con el tiempo.

Ambas clasificaciones son similares y no recogen la singularidad propia de cada método; por lo que en [5] se propone la siguiente clasificación más general:

- Métodos que no amplían el vector de estado:
 - Utilización de residuales. Según Zhu [29], [26], la utilización de los métodos basados en análisis de sensitividad residual son ejecutados después de obtener una solución de estimación de estado convergente y requieren identificar previamente un set de parámetros sospechosos.
- Métodos que amplían el vector de estado: Los parámetros sospechosos son incluidos en el vector de estado, de manera que los parámetros y el estado son estimados simultáneamente [30].
 - Resolución mediante ecuaciones normales. Excepto para algunos problemas de observabilidad y numéricos este método es una extensión directa de modelo SE convencional [27].
 - Resolución mediante filtro de Kalman. Bajo este enfoque varias muestras de medición se procesan radialmente con el fin de mejorar de forma recursiva valores de los parámetros existentes [5].

Esta clasificación resalta la diferencia más significativa de cada uno de los métodos, la ampliación o no del vector de estado mediante la introducción de los

parámetros erróneos como variables adicionales, e indica la metodología utilizada en su resolución [5].

1.8.2 MÉTODOS QUE NO AMPLÍAN EL VECTOR DE ESTADO

Los métodos que no amplían el vector de estado con los parámetros erróneos se basan para su resolución en el análisis de los residuales [5].

El método propuesto se basa en la relación de sensibilidad entre los residuales y los errores de las mediciones [5]:

$$\mathbf{r} = \mathbf{S}.\,\mathbf{e} \tag{1.19}$$

Donde **S** es la matriz de sensibilidad residual y **e** es el vector de errores de las mediciones. **G** es la matriz de ganancia [5] , **H** es la matriz jacobiano, **I** es la matriz Identidad, **W** es la matriz inversa de **R** que es la matriz de covarianzas de las mediciones y se presentan en las siguientes ecuaciones:

$$\mathbf{S} = \mathbf{I} - \mathbf{H} \, \mathbf{G}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{W} \tag{1.20}$$

$$\mathbf{G} = \mathbf{H}^{\mathrm{T}} \mathbf{W} \mathbf{H} \tag{1.21}$$

Según [3], al igual que los errores en las mediciones relacionadas con una rama, un error de parámetro podría tener el mismo efecto en el estado estimado. Un modelo básico de medición puede expresarse de esta manera:

$$\mathbf{z}_{s} = \mathbf{h}_{s}(\mathbf{x}, \mathbf{p}) + \mathbf{e}_{s} = \mathbf{h}_{s} (\mathbf{x}, \mathbf{p}_{0}) + [\mathbf{h}_{s}(\mathbf{x}, \mathbf{p}) - \mathbf{h}_{s} (\mathbf{x}, \mathbf{p}_{0})] + \mathbf{e}_{s}$$
(1.22)

Donde:

z es el vector de mediciones

x es el vector de variables de estado

h es la función no lineal que relaciona mediciones y vectores de estado

e_s es el vector de error de mediciones

 ${\bm p}$ y ${\bm p}_{\scriptscriptstyle 0}$ son respectivamente los valores verdadero y erróneo de los parámetros de red

El subíndice *s* se refiere a las mediciones adyacentes involucradas

El término $[\mathbf{h}_{s}(\mathbf{x}, \mathbf{p}) - \mathbf{h}_{s}(\mathbf{x}, \mathbf{p}_{0})]$ en (1.22) es el error de parámetro que puede observarse como errores de medición equivalentes. Si ese error de parámetro es lo suficientemente grande, un dato será detectado como malo y las mediciones relacionadas serán con mayor probabilidad identificadas como erróneas [3].

El error de medición equivalente se puede escribir como [3]:

$$\mathbf{h}_{s}(\mathbf{x},\mathbf{p}) - \mathbf{h}_{s}(\mathbf{x},\mathbf{p}_{0}) \approx \left[\frac{\partial \mathbf{h}_{s}}{\partial p}\right] \mathbf{e}_{p}$$
 (1.23)

$$\mathbf{e}_{\mathrm{p}} = \mathbf{p} - \mathbf{p}_{\mathrm{0}} \tag{1.24}$$

Donde e_p es el error de parámetro.

Una relación lineal entre los residuales de las mediciones relacionadas r_s y el error de parámetro e_p se puede escribir como [3]:

$$\mathbf{r}_{s} = \left(\mathbf{S}_{ss} \ \frac{\partial \mathbf{h}_{s}}{\partial p}\right) \mathbf{e}_{p} + \ \overline{\mathbf{r}_{s}}$$
(1.25)

Donde S_{ss} es la submatriz (s x s) de **S** correspondiente a las mediciones s involucradas y $\overline{r_s}$ es el vector residual que se obtendría en ausencia de errores en los parámetros [3].

Esta ecuación (1.25) da la relación lineal entre los residuales \mathbf{r}_s de las mediciones y los errores desconocidos de parámetros \mathbf{e}_p en la presencia de ruido $\overline{\mathbf{r}_s}$. Por lo tanto, esto hace que la determinación de \mathbf{e}_p sea un problema de estimación local si cada residual es ponderado de acuerdo a su distribución normal [3].

Los procedimientos generales de este método son [31], como se puede ver en la figura 1.6:

- 1. Identificar las mediciones involucradas (flujos en ramas, inyecciones de potencia en los nodos terminales)
- 2. Ejecutar el estimador de estado tradicional y los residuales de las mediciones relevantes \mathbf{r}_{s}
- 3. Calcular $\widehat{e_p}$ basado en r_s con las ecuaciones planteadas
- 4. Corregir los parámetros sospechosos $\hat{\mathbf{p}}$ por la ecuación $\hat{\mathbf{p}} = \mathbf{p}_0 + \widehat{\mathbf{e}_p}$
- Ejecutar una nueva estimación de estado y nueva detección de datos erróneos; si todavía existen errores regresar al paso 3 de lo contrario parar.

Figura 1.6: Estimación de Parámetros por cálculo de Residuales [31]

La principal ventaja de este método es que los procedimientos de identificación y estimación de parámetros constituyen rutinas adicionales e independientes y

- Debe señalarse un conjunto de parámetros sospechosos antes de realizar la estimación de parámetros.
- 2. Se asume que las mediciones en el sistema son correctas o la relación lineal entre mediciones residuales \mathbf{r}_s y el error de parámetro \mathbf{e}_p será verdad.
- Cada vez que cambien los parámetros sospechosos, el vector de mediciones relacionadas tendrá que ajustarse.

1.8.3 MÉTODOS QUE AMPLÍAN EL VECTOR DE ESTADO

Según [31], en estos métodos los parámetros sospechosos p son tratados como variables de estado adicionales.

Por lo tanto la función objetivo es [31]:

$$\mathbf{J}(\mathbf{x}, \mathbf{p}) = \sum_{i=1}^{m} w_i [z_i - h_i(\mathbf{x}, \mathbf{p})]^2$$
(1.26)

Donde w_i es el peso de la medición i

p es el vector de parámetros sospechosos

Si el parámetro sospechoso es parámetro de una línea o tap de transformador, este puede aumentarse al modelo como una pseudomedición usando el valor p_0 provisto en la base de datos [31].

En este caso la función objetivo es [31]:

$$\mathbf{J}(\mathbf{x}, \mathbf{p}) = \sum_{i=1}^{m} w_i [z_i - h_i(\mathbf{x}, \mathbf{p})]^2 + w_p (\mathbf{p} - \mathbf{p_0})^2$$
(1.27)

Donde w_p es el peso arbitrario asignado a la pseudomedición.

Según [31] la introducción de pseudomediciones a veces no ayuda a la estimación de parámetros. Si p no es observable con las mediciones existentes el término nuevo es crítico e inútil. Por otro lado, si el término es redundante el valor asignado a w_p puede influir significativamente sobre el valor estimado \hat{p} . Considerando esta influencia, la pseudomedición p_0 no debería ser añadida al modelo. Si esto es necesario por propósitos de observabilidad w_p debería tener un valor muy pequeño.

Existen dos tipos de solución que aumentan el vector de estado [31]:

- La solución ocupando ecuaciones normales convencionales.
- La solución basada en el filtro de Kalman.

1.8.3.1 Solución ocupando ecuaciones normales

El vector aumentado con los parámetros sospechosos puede ser resuelto con el método WLS [31]:

$$\mathbf{G}\Delta \mathbf{x} = \mathbf{H}^{\mathrm{T}}\mathbf{W}\mathbf{H}\Delta \mathbf{z} \tag{1.28}$$

Esta solución involucra la expansión de la matriz jacobiana **H** la cual se ampliará para dar cabida a las columnas adicionales y filas adicionales de parámetros sospechosos como nuevas variables de estado y nuevas pseudo-mediciones, respectivamente. La matriz Jacobiana ampliada tendrá la siguiente estructura [31]:

Donde la parte izquierda superior corresponde al jacobiano convencional. La parte derecha son las columnas adicionales correspondientes a los parámetros sospechosos. La parte inferior son las filas adicionales de pseudo-mediciones de los parámetros sospechosos. Los elementos distintos de cero \otimes en las nuevas columnas corresponden a las mediciones pertinentes [31].

Una vez construido este jacobiano, la estimación de estado se lleva a cabo de manera similar a la tradicional y se obtienen los valores de los parámetros sospechosos cuando el estimador de estado converge [31].

Siendo esta la idea general, sin embargo existen ciertas variaciones. Así, las variables de estado aumentadas son incrementos de flujo de potencia originadas por los parámetros erróneos [31]. Por lo tanto después de que se obtengan las variables de estado tradicionales y las variables de estado de los flujos de potencia, se pueden calcular los parámetros sospechosos. Este enfoque indirecto se utiliza para prevenir problemas numéricos causados por falta de pseudomediciones [31].

El procedimiento general de este enfoque que se observa en la Figura 1.7 es [31]:

- Leer los datos de entrada que incluyen parámetros de red, mediciones de tiempo real y juego de parámetros sospechosos.
- 2. Formar el jacobiano de medición **H** con las variables de estado adicionales.
- 3. Realizar la estimación de estado.
- 4. Actualizar las variables de estado.
- 5. Repetir los pasos 3 y 4 hasta que converja. Calcular los parámetros finales.

Figura 1.7: Estimación de Parámetros por métodos de vector ampliado [31]

Las limitaciones de este método son las siguientes [31]:

- Debe determinarse el conjunto de parámetros sospechoso antes de la estimación de estado.
- Cuando el set de mediciones sospechosas cambia, el jacobiano debe ser reconstruido
- Se supone que las mediciones del sistema son correctas de lo contrario el parámetro estimado será incorrecto.

1.8.3.2 Solución basada en filtros Kalman

Este método puede estimar múltiples tipos de variables incluyendo parámetros de red, taps de transformadores, desvío de mediciones y desviaciones estándar de errores de mediciones [31], [5].

En cada muestra de tiempo k, las mediciones son [31]:

$$\mathbf{z}(\mathbf{k}) = \mathbf{h}(\mathbf{x}(\mathbf{k}), \mathbf{k}, \mathbf{p}) + \mathbf{e}(\mathbf{k})$$
(1.29)

Donde k es incluido en la ecuación de medición h para indicar la posibilidad de que cambios en la red pueden formar una muestra del tiempo siguiente. Se suponen los parámetros constantes durante el período de muestra de tiempo.

Para estimar los vectores de estado debe optimizarse la siguiente ecuación [31]:

$$J_{k} = \sum_{i=1}^{m} [z_{i}(k) - h_{i}(\mathbf{x}(k), k, \mathbf{p})]^{T} \mathbf{W} [z_{i}(k) - h_{i}(\mathbf{x}(k), k, \mathbf{p})]$$
(1.30)

Si p_0 es el valor a priori asignado de p los estimados de los parámetros p pueden ser actualizados cada nueva muestra de tiempo y puede ser usado como pseudomedición [31]:

$$p_{i-1} = p_k + e_p(k)$$
 (1.31)

Donde se asume que el vector de errores $\mathbf{e}_{p}(k)$ tiene media cero y matriz de covarianza $\mathbf{R}_{p}(k)$. Entonces la función objetivo puede escribirse con pseudomediciones adicionales de parámetros sospechosos [31].

$$\mathbf{J} = (\mathbf{p}_{k-1} - \mathbf{p}_k)^{\mathrm{T}} \mathbf{R}_{\mathrm{p}}^{-1} (k) (\mathbf{p}_{k-1} - \mathbf{p}_k) + \mathbf{J}_k$$
(1.32)

En la k - ésima muestra de tiempo solo se consideran el vector $\mathbf{z}(k)$ y los parámetros estimados actualizados con sus covarianzas, por lo que este algoritmo es recursivo [31].

El procedimiento del método de filtro de Kalman se inicia mediante la estimación de los parámetros de unas pocas ramas con redundancia máxima. A medida que se estiman los parámetros de las ramas, estos se utilizan para extender el proceso a ramas con menos mediciones, y así sucesivamente. La solución finalmente incluirá todas las ramas de la red con redundancia local adecuada, excluyendo sólo aquellos para los que el proceso no se puede realizar de forma fiable [31].

En comparación con los otros métodos, las soluciones basadas en el filtro de Kalman son más apropiadas para la estimación de parámetros variables en el tiempo en un área localizada, ya que hace uso de varias muestras de medición en períodos de tiempo continuo [31]. Sus principales limitaciones son [31]:

- Se requiere actualizar la matriz de covarianza de los errores de los parámetros, así como otras matrices generales relacionadas, lo cual hace de este método más engorroso y costoso, especialmente cuando el número de parámetros es alto.
- El error de medición debe ser identificado y rechazado antes de la estimación de parámetros, o puede corromper la solución.
- Aunque puede no ser necesario disponer de un conjunto de parámetros sospechoso inicial, sólo se puede realizar la estimación de parámetros localizada.

1.8.4 MÉTODO BASADO EN MEDICIONES HISTÓRICAS

Según lo expuesto en [5] la estimación de parámetros puede realizarse en modo off-line, incluyendo la información previa existente sobre el parámetro y considerando el carácter local de la estimación de parámetros.

Es importante considerar que no es necesario realizar un seguimiento exacto de los parámetros de red ya que ellos no cambian continuamente. Sin embargo los que sí cambian continuamente son las posiciones de LTCs de los transformadores.

En lo que corresponde a la estimación de parámetros en modo off-line es posible [5]:

- Trasladar las mediciones SCADA a un computador diferente y realizar el proceso de estimación de parámetros con algoritmos más precisos sin afectar el tiempo de procesamiento de las funciones que corren en tiempo real.
- Mientras que los errores topológicos y las mediciones con errores no gaussianos tienen una naturaleza temporal, es decir que cambian con el tiempo, los errores de parámetros son casi permanentes, por lo que se pueden seleccionar los conjuntos de mediciones a usar en la estimación de parámetros basándose en los residuos normalizados para elegir los mejores estados, es decir los que tengan menos errores y mayor redundancia.
- Los parámetros de red que sean sospechosos pueden identificarse basándose en residuos normalizados grandes que se repitan constantemente y que afecten a las mediciones.

Este método se basa en una ejecución off line donde [5]:

- El vector de estado se aumenta con los parámetros sospechosos.
- Se procesan varias muestras de diferentes momentos para aumentar la redundancia alrededor de los parámetros erróneos.
- Con el uso simultáneo de varias muestras, la redundancia global del sistema se puede mantener aumentando el número de muestras.

El método basado en datos históricos evita el posible mal condicionamiento que puede producirse al mezclar los valores grandes provenientes de los elementos de la submatriz del jacobiano correspondiente a las variables de estado habituales y los pequeños de la parte correspondiente a los parámetros utilizando doble precisión.

1.8.5 COMPARACIÓN ENTRE MÉTODOS

Según lo indicado por Zhu y Abur en [29] los métodos de identificación de errores de parámetros y estimación de los mismos tienen las siguientes limitaciones comunes:

- 1. Requieren un conjunto de parámetros sospechosos antes de la identificación de errores de parámetros. Teniendo en cuenta la dimensión del sistema de potencia, no es matemáticamente práctico incluir todos los parámetros de red en el sistema en la matriz de estimación. En algún momento los parámetros sospechosos son seleccionados arbitrariamente por los operadores de red con experiencia. Este conjunto de parámetros sospechoso también podría ser generado por el algoritmo basado en residuales de medición. Sin embargo, tal algoritmo puede estar sesgado debido al error de medición.
- 2. Los datos erróneos en las mediciones tienen que ser removidos de la red antes de realizar la identificación de errores de parámetros o estimación. Para los métodos basados en el análisis de sensibilidad residual, el error de medición sesga los resultados de la identificación de errores de parámetros. Para los métodos con aumento de variables de estado, el algoritmo utilizado para generar el conjunto de parámetros sospechoso es influenciado severamente por las mediciones malas. Así, la estimación de errores de parámetro basado en tal conjunto de parámetros sospechoso puede ser incorrecta.

Considerando entonces que los métodos existentes no son capaces de identificar el error de parámetro de red si no se proporcionan una serie de parámetros sospechoso y que esos métodos son vulnerables a los errores de medición analógicos, en el siguiente capítulo de esta tesis se analizará un nuevo algoritmo que supera estas limitaciones y permite identificar los parámetros erróneos utilizando Multiplicadores de Lagrange.

CAPÍTULO 2.

2.1 METODOLOGÍA ESTADÍSTICA DE ESTIMACIÓN DE ESTADO

En este capítulo se presentan la base teórica de los métodos que se utilizarán para la identificación de errores de parámetros y la corrección de parámetros utilizando PMUs.

Se analizarán los casos de los modelos de tiempo real y fuera de línea a fin de establecer las principales características y diferencias entre los mismos.

Se identificarán los casos de estimación de parámetros a analizar en los ambientes de tiempo real y fuera de línea.

El algoritmo elegido para realizar la identificación de parámetros erróneos es aquel que fue propuesto por Jun Zhu y Ali Abur en [29] y que se basa en Multiplicadores de Lagrange.

La forma de modelar los trasformadores de tres devanados con tap y/o LTC y los modelos de cálculo de parámetros eléctricos que se plantean en la sección 2.2 para realizar la corrección de errores de parámetros en líneas de transmisión y transformadores son parte de la contribución principal de esta tesis.

2.2 IDENTIFICACIÓN DE ERRORES DE PARÁMETROS

2.2.1 INTRODUCCIÓN

Como se observó en el capítulo anterior los métodos presentados para identificación de parámetros erróneos tienen dos grandes limitaciones que son [29]:

- Se requiere identificar un set de parámetros sospechoso antes de realizar la estimación de errores de parámetros.
- Los datos erróneos de mediciones deben ser removidos antes de la identificación de parámetros erróneos.

Sin la primera condición los métodos de vector de estado aumentado no pueden ser procesados y los métodos que no amplían el vector de estado y se basan principalmente en análisis de sensitividad residual tienen limitaciones en el cálculo para sistemas grandes. Con errores de mediciones presentes en el sistema, los métodos planteados anteriormente no ofrecerán una solución correcta [29].

Los errores de topología involucran información de estado incorrecta para interruptores y para su detección e identificación se han creado varios métodos, siendo uno de ellos basado en un modelo de sistema reducido y en multiplicadores de Lagrange [32], [33], [34], [35], [33], [36].

Jun Zhu y Ali Abur proponen en [29] un método de identificación de errores de parámetros que complementa el método de identificación de errores de topología [37]. Este método se basa en multiplicadores de Lagrange de las restricciones de los parámetros.

Un conjunto de variables adicionales que corresponden a los errores en los parámetros de red se introduce en el problema de estimación de estado. Sin embargo, la estimación directa de estas variables se evita mediante la formulación propuesta. Después de la solución de estimación de estado tradicional, los residuales de medición se utilizan para calcular los multiplicadores de Lagrange asociados con los errores de los parámetros. Si estos multiplicadores tienen un valor significativo, entonces el parámetro asociado será probablemente erróneo [29], debido a la relación directa existente entre los multiplicadores de Lagrange y los errores de parámetros.

La principal ventaja de este método es que se pueden calcular los residuales normalizados de la medición y los multiplicadores de Lagrange de los errores de parámetros, lo que permite su identificación incluso cuando aparecen simultáneamente. La primera parte del procedimiento propuesto en [29] se basa sólo en los mínimos cuadrados ponderados convencionales de solución de estimación de estado (WLS) [38]; sin embargo, los procedimientos de identificación y corrección de errores posteriores tendrán que ser integrados en el código del estimador de estado convencional o implementado en una aplicación adicional. No hay necesidad de especificar un conjunto de parámetros sospechosos a priori, ya que el método identificará fácilmente los parámetros erróneos junto con cualquier set de mediciones erróneas existentes [29].

2.2.2 MÉTODO DE MULTIPLICADORES DE LAGRANGE

Este método considera el siguiente modelo de mediciones [29]:

$$\mathbf{z} = \mathbf{h}(\mathbf{x}, \mathbf{p}_{e}) + \mathbf{e}$$
(2.1)

Donde z es el vector de mediciones

 $h(x, p_e)$ es la función no lineal que relaciona el estado del sistema y los errores de parámetros de red

x es el vector de estado del sistema incluyendo magnitudes y ángulos de voltaje

pe es el vector que contiene los errores de parámetros de red

e es el vector de error de mediciones

Las barras sin generación o carga proveerán mediciones exactas como las inyecciones de potencia cero [39], [40]. Esto se representa con la siguiente restricción de igualdad [31].

$$\mathbf{c}\left(\mathbf{x},\mathbf{p}_{\mathrm{e}}\right) = 0 \tag{2.2}$$

El vector de parámetros de red será [31]:

$$\mathbf{p} = \mathbf{p}_{\rm t} + \mathbf{p}_{\rm e} \tag{2.3}$$

Donde \mathbf{p} y \mathbf{p}_{t} son los vectores de parámetros de red asumido y verdadero. El estimador de estado asume normalmente los errores de parámetros de red como cero. Por lo tanto sin error se puede plantear la siguiente restricción [31]:

$$\mathbf{p}_{\rm e} = 0 \tag{2.4}$$

El problema de estimación de estado con WLS en presencia de errores de parámetros de red y restricciones de igualdad puede ser formulado como un problema de optimización [31]:

Minimizar

$$J(\mathbf{x}) = \frac{1}{2} \mathbf{r}^{\mathsf{t}} \mathbf{W} \mathbf{r}$$
(2.5)

Sujeto a:

$$c(\mathbf{x}, \mathbf{p}_{e}) = 0 \tag{2.2}$$

$$\mathbf{p}_{\rm e} = 0 \tag{2.4}$$

Siendo

$$\mathbf{r} = \mathbf{z} - \mathbf{h} \left(\mathbf{x}, \mathbf{p}_{\mathrm{e}} \right) \tag{2.6}$$

El vector de residuales de mediciones

W es la matriz diagonal cuya inversa es la matriz de covarianza de errores de mediciones cov (e)

Aplicando el método de multiplicadores de Lagrange [32], se puede definir el siguiente Lagrangiano:

$$\mathbf{L} = \frac{1}{2} \mathbf{r}^{t} \mathbf{W} \mathbf{r} - \mathbf{u}^{t} \mathbf{c} (\mathbf{x}, \mathbf{p}_{e}) - \boldsymbol{\lambda}^{t} \mathbf{p}_{e}$$
(2.7)

Reemplazando (2.6) en (2.7)

$$\mathbf{L} = \frac{1}{2} (\mathbf{z} - \mathbf{h} (\mathbf{x}, \mathbf{p}_e))^{\mathrm{t}} \mathbf{W} \mathbf{r} - \mathbf{u}^{\mathrm{t}} \mathbf{c} (\mathbf{x}, \mathbf{p}_e) - \boldsymbol{\lambda}^{\mathrm{t}} \mathbf{p}_e$$
(2.8)

Aplicando condiciones de optimalidad de primer orden [41], [31]:

Para x :

$$\frac{\partial \mathbf{L}}{\partial \mathbf{x}} = \left[\frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{p}_{e})}{\partial \mathbf{x}}\right]^{\mathsf{t}} \mathbf{W}\mathbf{r} + \left[\frac{\partial \mathbf{c}(\mathbf{x}, \mathbf{p}_{e})}{\partial \mathbf{x}}\right]^{\mathsf{t}} \mathbf{u} = 0 \quad (2.9)$$

Siendo

$$\mathbf{H}_{\mathbf{x}} = \frac{\partial \mathbf{h} \left(\mathbf{x}, \mathbf{p}_{\mathbf{e}} \right)}{\partial \mathbf{x}}$$
(2.10)

$$\mathbf{C}_{\mathrm{x}} = \frac{\partial \mathbf{c} \left(\mathbf{x}, \mathbf{p}_{\mathrm{e}} \right)}{\partial \mathbf{x}}$$
(2.11)

Reemplazando (2.10) y (2.11) en (2.9) se tiene:

$$\frac{\partial \mathbf{L}}{\partial \mathbf{x}} = \mathbf{H}_{\mathbf{x}}^{\mathsf{t}} \mathbf{W} \mathbf{r} + \mathbf{C}_{\mathbf{x}}^{\mathsf{t}} \mathbf{u} = 0$$
 (2.12)

Para p:

$$\frac{\partial \mathbf{L}}{\partial \mathbf{p}} = \left[\frac{\partial \mathbf{h} (\mathbf{x}, \mathbf{p}_{e})}{\partial \mathbf{p}_{e}}\right]^{\mathsf{t}} \mathbf{W}\mathbf{r} + \left[\frac{\partial \mathbf{c} (\mathbf{x}, \mathbf{p}_{e})}{\partial \mathbf{p}_{e}}\right]^{\mathsf{t}} \mathbf{u} + \mathbf{\lambda} = 0$$
(2.13)

Siendo

$$\mathbf{H}_{\mathrm{p}} = \frac{\partial \mathbf{h} (\mathbf{x}, \mathbf{p}_{\mathrm{e}})}{\partial \mathbf{p}_{\mathrm{e}}}$$
(2.14)

$$\mathbf{C}_{\mathrm{p}} = \frac{\partial \mathbf{c} \left(\mathbf{x}, \mathbf{p}_{\mathrm{e}} \right)}{\partial \mathbf{p}_{\mathrm{e}}}$$
(2.15)

Se tiene:

$$\frac{\partial \mathbf{L}}{\partial \mathbf{p}} = \mathbf{H}_{\mathrm{p}}^{\mathrm{t}} \mathbf{W} \mathbf{r} + \mathbf{C}_{\mathrm{p}}^{\mathrm{t}} \mathbf{u} + \mathbf{\lambda} = 0$$
(2.16)

Para u:

$$\frac{\partial \mathbf{L}}{\partial \mathbf{u}} = \mathbf{c} (\mathbf{x}, \mathbf{p}_{e}) = 0$$
 (2.17)

Para **λ**:

$$\frac{\partial \mathbf{L}}{\partial \boldsymbol{\lambda}} = \mathbf{p}_{\mathrm{e}} = 0 \tag{2.18}$$

u y $\,\lambda$ son los multiplicadores de Lagrange para las restricciones de igualdad (2.2) y (2.4). [31]

De la ecuación (2.16)

$$\boldsymbol{\lambda} = -\mathbf{H}_{\mathrm{p}}^{\mathrm{t}}\mathbf{W}\mathbf{r} - \mathbf{C}_{\mathrm{p}}^{\mathrm{t}}\mathbf{u}$$
 (2.19)

Siendo

$$\mathbf{S} = - \begin{bmatrix} \mathbf{W} \, \mathbf{H}_{\mathrm{p}} \\ \mathbf{C}_{\mathrm{p}} \end{bmatrix}^{\mathrm{t}}$$
(2.20)

La matriz de sensitividad de parámetros

Por lo que λ puede expresarse en términos de \mathbf{u} , \mathbf{r} y \mathbf{S} como

$$\lambda = S. \begin{bmatrix} r \\ u \end{bmatrix}$$
(2.21)

Las restricciones de igualdad (2.4) permiten sustituir \mathbf{p}_e en (2.9) y (2.17). [31] Cambiando la notación de $\mathbf{h}(\mathbf{x}, 0)$ y $\mathbf{c}(\mathbf{x}, 0)$ por $\mathbf{h}_0(\mathbf{x})$ y $\mathbf{c}_0(\mathbf{x})$, las ecuaciones de medición toman la siguiente forma:

$$\mathbf{z} = \mathbf{h}_{0}(\mathbf{x}) + \mathbf{e} \tag{2.22}$$

$$\mathbf{c}_{0}(\mathbf{x}) = 0 \tag{2.23}$$

Las ecuaciones (2.22) y (2.23) son las ecuaciones de mediciones convencionales e inyecciones cero usadas por los estimadores de estado [42]. Estas ecuaciones no incluyen errores de parámetros como variables explícitas.

Sustituyendo las aproximaciones de Taylor de primer orden para $\mathbf{h}_0(\mathbf{x})$ y $\mathbf{c}_0(\mathbf{x})$ se obtiene las siguientes ecuaciones lineales [31]:

$$\mathbf{H}_{\mathbf{x}} \, . \, \Delta \mathbf{x} + \mathbf{r} = \, \Delta \mathbf{z} \tag{2.24}$$

$$\mathbf{C}_{\mathbf{x}} \cdot \Delta \mathbf{x} = -\mathbf{C}_0 (\mathbf{x}_0) \tag{2.25}$$

Donde: $\Delta x = x - \ x_0$, $x_0 \$ son los valores iniciales para el vector de estado

 $\Delta \mathbf{z} = \mathbf{z} - \mathbf{h}_0 \left(\mathbf{x}_0 \right)$

En base a las ecuaciones (2.12), (2.24) y (2.25) se puede escribir la siguiente ecuación en forma de matrices:

$$\begin{bmatrix} 0 & \mathbf{H}_{\mathbf{x}}^{\mathsf{t}} \mathbf{w} & \mathbf{C}_{\mathbf{x}}^{\mathsf{t}} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{I} & 0 \\ \mathbf{C}_{\mathbf{x}} & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \Delta \mathbf{x} \\ \mathbf{r} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta \mathbf{z} \\ -\mathbf{c}_{0}(\mathbf{x}_{0}) \end{bmatrix}$$
(2.26)

Esta ecuación es la que se usa en la solución iterativa del problema convencional WLS [31]. La solución para las mediciones residuales **r** y los multiplicadores de Lagrange para las inyecciones cero **u** pueden ser obtenidas primero por la solución iterativa de (2.26). Una vez que la solución de estimador de estado tradicional converge; con la ecuación (2.21) se pueden calcular los multiplicadores de Lagrange del vector λ asociados a los errores de parámetros [31].

2.2.3 CÁLCULO DE MULTIPLICADORES DE LAGRANGE NORMALIZADOS

Según [29] para identificar los datos erróneos se debe validar la restricción (2.18). Esto se puede realizar con el vector multiplicador de Lagrange λ asociado con el vector de errores de parámetros \mathbf{p}_e . A fin de interpretar y comparar el significado del valor de un multiplicador de Lagrange λ_i , este debe ser normalizado, para ello se utilizará la matriz de covarianzas $cov(\lambda)$.

Sea

$$\mathbf{U} = \begin{bmatrix} \mathbf{r} & \mathbf{u} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \mathbf{r} \\ \mathbf{u} \end{bmatrix}$$
(2.27)

Y usando (2.21):

$$\mathbf{\Lambda} = \operatorname{cov}\left(\mathbf{\lambda}\right) = \mathbf{S} \cdot \operatorname{cov}\left(\mathbf{U}\right) \cdot \mathbf{S}^{\mathrm{t}}$$
(2.28)

La covarianza de **U**, $cov(\mathbf{U})$ puede ser calculada expresando **r** y **u** en términos del umbral de convergencia (mismatch) de mediciones [31]. Para esto invirtiendo la matriz (2.26) se obtienen los siguientes coeficientes:

$$\begin{bmatrix} 0 & \mathbf{H}_{\mathbf{x}}^{\mathsf{t}} \mathbf{w} & \mathbf{C}_{\mathbf{x}}^{\mathsf{t}} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{I} & 0 \\ \mathbf{C}_{\mathbf{x}} & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{E}_{1} & \mathbf{E}_{2} & \mathbf{E}_{3} \\ \mathbf{E}_{4} & \mathbf{E}_{5} & \mathbf{E}_{6} \\ \mathbf{E}_{7} & \mathbf{E}_{8} & \mathbf{E}_{9} \end{bmatrix}$$
(2.29)

Nótese que $\mathbf{c}_0(\mathbf{x}) = 0$ en la solución (2.26) permitirá plantear lo siguiente para \mathbf{r} y \mathbf{u}

$$\mathbf{r} = \mathbf{E}_5 \cdot \Delta \mathbf{z} \tag{2.30}$$

$$\mathbf{u} = \mathbf{E}_8 \, \Delta \mathbf{z} \tag{2.31}$$

Sea

$$\boldsymbol{\Psi} = \begin{bmatrix} \mathbf{E}_5 & \mathbf{E}_8 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \mathbf{E}_5 \\ \mathbf{E}_8 \end{bmatrix}$$
(2.32)

Entonces

$$\mathbf{U} = \mathbf{\Psi} \cdot \Delta \mathbf{z} \tag{2.33}$$

$$\operatorname{cov}\left(\mathbf{U}\right) = \boldsymbol{\Psi} \cdot \mathbf{W}^{-1} \cdot \boldsymbol{\psi}^{\mathsf{t}} \tag{2.34}$$

Los multiplicadores de Lagrange para los errores de parámetros pueden ser normalizados usando los elementos de la diagonal de la matriz de covarianza Λ definida en (2.28) [31]:

$$\lambda_{i}^{N} = \frac{\lambda_{i}}{\sqrt{\Lambda(i,i)}}$$
(2.35)

Para todo i = 1...k, donde k es el número total de parámetros de red identificados.

El denominador en (2.35) será cero donde la redundancia de mediciones locales no permita detectar errores de parámetros. En tal caso las mediciones son funciones de parámetros que son críticos [29].

2.2.4 ALGORITMO DE IDENTIFICACIÓN DE PARÁMETROS

El algoritmo propuesto en [31] y que se observa en la Figura 2.1 es el siguiente:

1. Estimación de estado tradicional

Resolver el problema de estimación de estado WLS normalmente. La solución proveerá el vector de residuales de mediciones **r** y un vector de multiplicadores de Lagrange **u** de inyecciones cero. La solución se obtendrá cuando el algoritmo de estimador de estado WLS converja.

2. Identificación de errores de parámetros y datos

Calcular los multiplicadores de Lagrange λ de parámetros, los residuales normalizados de las mediciones y los multiplicadores de Lagrange

normalizados en base a (2.35). Escoger el mayor entre los residuales normalizados y los multiplicadores de Lagrange de parámetros.

- Si el valor escogido está bajo el umbral (3), valor semejante al umbral establecido para residuales, entonces no hay datos ni parámetros sospechosos.
- De lo contrario, si la medición o el parámetro corresponde al mayor valor este será identificado como fuente de error.
- 3. Corrección del error de parámetro

Si una medición es identificada como mala debería removerse del set de mediciones. Si un parámetro es identificado como erróneo debe corregirse con los métodos que se proponen para ello.

Figura 2.1: Diagrama de flujo del método de identificación de errores de parámetros [31].

2.3 CORRECCIÓN DE ERRORES DE PARÁMETROS

2.3.1 INTRODUCCIÓN

Una vez que se han detectado los parámetros erróneos en base al algoritmo basado en multiplicadores de Lagrange, considerando las características de los errores de los parámetros mencionadas en el capítulo anterior, como son la influencia local de los errores de parámetros y la baja influencia de la conductancia, se plantea corregir los parámetros erróneos calculando los mismos con mediciones obtenidas de los PMUs, como un procedimiento básicamente fuera de línea.

2.3.2 UNIDAD DE MEDICIÓN FASORIAL PMU

Las unidades de medición fasorial (Phasor Measurement Units PMU), fueron desarrolladas en 1988 por Phadke y Thorp en los Institutos Politécnicos de Virginia [43], para proporcionar mediciones fasoriales de voltaje y corriente. La popularidad de estos dispositivos se desencadenó a causa de los grandes apagones del 2003 en el noreste de USA e Italia, ya que con estos incidentes se despertó el interés de poder observar la condición de toda la red, evaluar la estabilidad del sistema, operar el sistema mediante la información proporcionada con los ángulos de los fasores de voltaje y predecir problemas [44].

Las unidades de medición de fasores son dispositivos que pueden proporcionar mediciones directas de ángulos de fase sincronizada con respecto a la referencia de tiempo proporcionada por el sistema de posicionamiento global (GPS) de satélite [31]. La frecuencia de muestreo de las PMU es mucho más rápida que la velocidad de barrido del SCADA y las mediciones fasoriales proporcionadas son más precisas que las mediciones convencionales, [45], [46].

Con la disponibilidad de la medición del ángulo de fase, que es la variable de estado clave en la estimación de estado, las PMUs son muy útiles para aplicaciones de EMS, [47]. En base a la tasa de muestreo alta, un cálculo de estado en tiempo real se puede realizar con suficiente número y la ubicación adecuada de PMUs en el sistema. Con las PMUs instaladas en su posición estratégica, es posible cubrir la pérdida de medición, mejorar la detección e identificación de errores y permite también realizar el cálculo de parámetros técnicos de líneas de transmisión y transformadores.

Las PMUs son dispositivos que permiten estimar sincrofasores (fasores que tienen como referencia angular a una onda coseno de frecuencia nominal, sincronizada con el tiempo UTC - Universal Time Coordinated) de las ondas sinusoidales de corriente y voltaje AC, en diferentes nodos de un sistema eléctrico de potencia. Para calcular un sincrofasor, la PMU utiliza un algoritmo de estimación fasorial. Estos algoritmos utilizan un número N de muestras en el tiempo para efectuar la estimación del fasor. El algoritmo más comúnmente utilizado es la transformada discreta de Fourier. La alta precisión, velocidad de respuesta y sincronización de tiempo hacen de las PMUs equipos apropiados para el monitoreo global en estado estable y dinámico, así como para

aplicaciones en protección y control, como parte básica de un sistema de monitoreo de área extendida WAMS [48].

En Ecuador, la ubicación de las PMU se ha realizado bajo los siguientes criterios técnicos [44], [49]:

• Ubicación considerando la Supervisión Angular del S.N.I.

Las PMUs se ubican principalmente en las barras del anillo troncal del sistema de transmisión del SNI, en las subestaciones frontera de interconexiones eléctricas y en barras de los grandes centros de carga o generación del SNI.

• Ubicación considerando la Estabilidad Oscilatoria del S.N.I.

La ubicación de las PMUs dependerá de los estudios eléctricos que identifiquen subestaciones que presenten oscilaciones en el sistema, y en las interconexiones internacionales para obtener información de oscilaciones inter-área.

• Sintonización de Parámetros Eléctricos de Elementos del S.N.I.

Para el caso de líneas de transmisión, las PMUs se ubicarán en las barras que conectan con la línea de transmisión cuyos parámetros serán analizados.

Para el caso de transformadores, las PMUs se ubicarán las barras de alto y bajo voltaje.

• Calibración de Parámetros en PSS, Reguladores de Velocidad y AVRs

Las PMUs se ubicarán en la barra de bornes del generador.

• Subestaciones Críticas en la Operación del S.N.I.

Es necesario también determinar los elementos que son críticos en el sistema y que necesitan una mejor supervisión. Este caso comprende líneas de transmisión y transformadores con altas transferencias de potencia, líneas de transmisión y/o transformadores, cuya salida ponga en riesgo la operación del S.N.I. [44].

A continuación en la Tabla 2.1 se presenta un resumen de las PMUs en servicio en el Ecuador.

SUBESTACIÓN	PMU	POSICIÓN	VOLTAJE
LOJA	1	VILLONACO	69 kV
MILAGRO	2	SAN IDELFONSO 1	138 kV
MOLINO	3	PASCUALES1	230 kV
	4	TOTORAS	230 kV
	5	AT1	138 kV
MONTECRISTI	6	JARAMIJÓ	138 KV
PASCUALES	7	MOLINO 1	230 kV
	8	MOLINO 2	230 kV
	9	ELECTROQUIL 3	138 kV
POMASQUI	10	JAMONDINO 2	230 kV
	11	JAMONDINO 3	230 kV
QUEVEDO	12	PASCUALES 1	230 kV
	13	ATT	138 kV
SALITRAL	14	ATR	138 kV
SANTA ROSA	15	TOTORAS 1	230 kV
	16	TOTORAS 2	230 kV
	17	POMASQUI 1	230 kV
	18	STO. DOMINGO 1	230 kV
STO. DOMINGO	19	BABA	230 kV
	20	ESMERALDAS 1	138 kV
TOTORAS	21	SANTA ROSA 1	230 kV
ZHORAY	22	MILAGRO 2	230 kV

 Tabla 2.1: PMUs Instalados en el Ecuador

La velocidad de muestreo para la adquisición de información de las PMUs está restringida a la velocidad de transmisión de las PMUs, al número de PMUs instaladas, al medio y ancho de banda de comunicaciones y a la capacidad de procesamiento de las aplicaciones WAMS [44].

En la actualidad, la velocidad de muestreo de información de las PMUs está en el orden entre 20 y 60 muestras por segundo [44].

Las principales variables que se pueden obtener de un PMU son:

- Frecuencia
- Voltaje: Magnitud y ángulo
- Corriente: Magnitud y ángulo
- Potencia activa

- Potencia Reactiva
- Potencia Aparente

2.3.3 CÁLCULO DE PARÁMETROS DE LÍNEAS DE TRANSMISIÓN

Una línea de transmisión puede ser representada con su equivalente π [50], [51], [10], como se muestra en la siguiente figura:

Figura 2.2: Equivalente π de una línea de transmisión [10].

De las ecuaciones (1.14) y (1.15):

$$P_{ij} = V_i^2 \left(g_{ij} + g_{si} \right) - V_i V_j \left(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \right)$$
(1.14)

$$Q_{ij} = -V_i^2 (b_{ij} + b_{si}) - V_i V_j (g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij})$$
(1.15)

Se asume que $g_{si} = 0$

Entonces:

$$P_{ij} = (V_i^2 - V_i V_j \cos \theta_{ij}) g_{ij} - (V_i V_j \sin \theta_{ij}) b_{ij}$$
(2.36)

$$Q_{ij} = -(V_i V_j \sin \theta_{ij}) g_{ij} - (V_i^2 - V_i V_j \cos \theta_{ij}) b_{ij} - V_i^2 b_{si}$$
(2.37)

De (2.36) se obtiene en las barras i, j:

$$P_{ij} = (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) g_{ij} - (V_i V_j \sin(\theta_i - \theta_j)) b_{ij}$$
(2.38)

$$P_{ji} = (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) g_{ji} - (V_j V_i \sin(\theta_j - \theta_i)) b_{ji}$$
(2.39)

Siendo:

$$g_{ij} = g_{ji} = G$$

$$b_{ij} = b_{ji} = B$$

$$P_{ij} = (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) G - (V_i V_j \sin(\theta_i - \theta_j)) B$$
(2.40)

$$P_{ji} = (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) G - (V_j V_i \sin(\theta_j - \theta_i)) B$$
(2.41)

En forma matricial:

$$\begin{bmatrix} G \\ B \end{bmatrix} = \begin{bmatrix} (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) & -(V_i V_j \sin(\theta_i - \theta_j)) \\ (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) & -(V_j V_i \sin(\theta_j - \theta_i)) \end{bmatrix}^{-1} \begin{bmatrix} P_{ij} \\ P_{ji} \end{bmatrix}$$
(2.42)

Si en la línea de transmisión de estudio se disponen PMUs instalados en los dos extremos, los datos de: V_i , V_j , θ_i , θ_j , P_{ij} , P_{ji} serán conocidos, con lo cual podrán obtenerse los valores de G y B de la admitancia de la L/T *ij* resolviendo la ecuación (2.42).

Por otra parte:

Considerando $g_{si} = 0$ y $b_{si} = BC$, la ecuación (2.37) se puede escribir como:

$$Q_{ij} = -(V_i V_j \sin \theta_{ij}) G - (V_i^2 - V_i V_j \cos \theta_{ij}) B - V_i^2 BC$$
(2.43)

De donde BC puede ser calculada con cualquiera de estas dos ecuaciones:

$$BC = \frac{1}{V_i^2} \left[-(V_i V_j \sin(\theta_i - \theta_j)) G - (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) B - Q_{ij} \right]$$
(2.44)

$$BC = \frac{1}{V_j^2} \left[-(V_j V_i \sin(\theta_j - \theta_i)) G - (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) B - Q_{ji} \right]$$
(2.45)

De esta manera con las mediciones obtenidas con las PMUs pueden calcularse los parámetros G, B y BC que definen a la línea de transmisión.

2.3.4 CÁLCULO DE PARÁMETROS DE TRANSFORMADORES

En el Sistema Nacional Interconectado del Ecuador S.N.I. existen transformadores de 2 y 3 devanados, los cuales tienen cambiador de tomas sin carga (tap), cambiador de tomas con carga (LTC) o ambos. En la operación de tiempo real es importante conocer la posición de tap y LTC de cada transformador para mantener las condiciones de calidad de voltaje de la red, por lo que la modelación eléctrica de estos equipos debe realizarse de manera que permita representarse las posiciones de taps y LTCs correspondientes.

Adicionalmente, en el Ecuador para la operación del sistema de potencia se tienen dos estaciones del año bien marcadas que dependen de la hidrología, así se tienen los períodos de baja hidrología (período seco) y alta hidrología (período lluvioso). En el período de alta hidrología, la generación es mayoritariamente hidroeléctrica (generación concentrada en pocos sitios y lejos de los centros de carga), mientras que el período de baja hidrología es mayoritariamente térmica (generación distribuida y cerca de los centros de carga).

El perfil de voltajes y la circulación de reactivos es muy diferente en cada período, por lo que, uno de los recursos para mejorar esta condición en particular del sistema de potencia es mover los Taps de los transformadores. Estos transformadores tienen los valores de Tap fuera del nominal, por lo que es necesaria la modelación de Tap y LTC de manera simultánea en los transformadores de 3W.

El Operador Nacional de Electricidad CENACE que cumple funciones similares a un ISO (Independent System Operator) ha realizado a través del tiempo la operación del S.N.I. con sistemas de manejo de energía EMS de algunos proveedores, observándose en cada uno de ellos una gran limitación en cuanto a la imposibilidad de modelar transformadores de tres devanados con cambiadores de tap y LTC.

Es importante recalcar que éste ha sido un problema que ha afectado básicamente a la operación de tiempo real y no a los estudios fuera de línea, debido a que en estos últimos no se requiere modelar todas las posiciones de tap y LTC de cada transformador.
Considerando la alta importancia que este tema tiene dentro de la operación del S.N.I., como parte del grupo técnico que administra la modelación del sistema eléctrico en el sistema de tiempo real se desarrolló un procedimiento y una aplicación innovadora para obtener mediante un sistema de transformadores equivalentes las reactancias correspondientes a cada posición de tap y LTC que permiten modelar los transformadores de 3 devanados con tap y LTC. Este procedimiento fue entregado al proveedor del EMS para que sea incluido durante la fase de migración del sistema SPIDER al sistema NM2003 en el modelo implementado en CENACE con resultados operativos satisfactorios.

Este procedimiento se describe dentro de esta sección en los ítems 2.2.4.2 y 2.2.4.3 y es uno de los principales aportes de esta tesis.

En general los tipos de transformadores existentes en Ecuador pueden agruparse en tres casos:

- Caso I: Transformador de dos devanados con tap o LTC
- Caso II: Transformador de tres devanados con tap en el primario
- Caso III: Transformador de tres devanados con tap en el primario y LTC en el secundario.

2.3.4.1 Caso I: Transformador de dos devanados con tap o LTC

Un transformador de dos devanados puede ser modelado como se muestra en la siguiente figura:

Figura 2.3: Diagrama equivalente de un transformador de dos devanados.

Haciendo la analogía del transformador con una línea de transmisión que no tiene ramas en paralelo, podría aplicarse las ecuaciones (1.14) y (1.15) con $g_{si} = 0$ y $b_{si} = 0$, obteniéndose:

$$P_{ij} = (V_i^2 - V_i V_j \cos \theta_{ij}) g_{ij} - (V_i V_j \sin \theta_{ij}) b_{ij}$$
(2.36)

$$Q_{ij} = -(V_i V_j \sin \theta_{ij}) g_{ij} - (V_i^2 - V_i V_j \cos \theta_{ij}) b_{ij}$$
(2.46)

Para el caso específico de un transformador debe considerarse la relación de transformación t y el ángulo de fase del transformador Ø

Siendo:

$$a = \frac{1}{t} \tag{2.47}$$

Reemplazando:

$$V_i \rightarrow aV_i$$
 (2.48)

$$\theta_i \rightarrow \theta_i - \phi$$
 (2.49)

En (2.36) y (2.46):

$$P_{ij} = (a^2 V_i^2 - a V_i V_j \cos(\theta_i - \phi - \theta_j) g_{ij} -(a V_i V_j \sin(\theta_i - \phi - \theta_j)) b_{ij}$$
(2.50)

$$Q_{ij} = -(a V_i V_j \sin(\theta_i - \phi - \theta_j)) g_{ij} - (a^2 V_i^2 - a V_i V_j \cos(\theta_i - \phi - \theta_j)) b_{ij}$$
(2.51)

Considerando que los transformadores en el Ecuador no se considera ángulo de desfase y que la conductancia de un transformador en general es despreciable, esto es:

$$\phi = 0 \tag{2.52}$$

$$g_{ii} = 0$$
 (2.53)

Las ecuaciones (2,50) y (2.51) se simplifican de la siguiente manera:

$$P_{ij} = -(a V_i V_j \sin(\theta_i - \theta_j)) b_{ij}$$
(2.54)

$$Q_{ij} = -(a^2 V_i^2 - a V_i V_j \cos(\theta_i - \theta_j)) b_{ij}$$
(2.55)

De donde se obtienen las ecuaciones para obtener a y b_{ij} . Esto es:

$$a = \frac{(Q_{ij} V_j \sin(\theta_i - \theta_j)) + V_j P_{ij} \cos(\theta_i - \theta_j))}{V_i P_{ij}}$$
(2.56)

$$b_{ij} = - \frac{P_{ij}}{(a V_i V_j \sin(\theta_i - \theta_j))}$$
(2.57)

Si en la rama del transformador de estudio se disponen PMUs instalados en los dos extremos, los datos de: V_i , V_j , θ_i , θ_j , P_{ij} , Q_{ij} serán conocidos, con lo cual podrán obtenerse los valores de a y b_{ij} del transformador con las ecuaciones (2.56) y (2.57).

El esquema simplificado del transformador quedaría como se presenta en la siguiente figura:

Figura 2.4: Diagrama simplificado de un transformador de dos devanados.

2.3.4.2 Caso II: Transformador de tres devanados con tap en el primario

El esquema correspondiente se representa en la figura 2.5.

Figura 2.5: Transformador de tres devanados con tap en primario.

Donde:

 X_{ps} es la reactancia entre primario y secundario

- X_{pt} es la reactancia entre primario y terciario
- xst es la reactancia entre el secundario y terciario
- V_p es el voltaje en el primario
- V_s es el voltaje en el secundario
- Vt es el voltaje en el terciario

Los transformadores de tres devanados pueden ser modelados como tres transformadores de dos devanados [50] como de presenta en la figura 2.6:

Figura 2.6: Transformador de tres devanados con tap en primario modelado con tres transformadores de dos devanados.

Donde:

 X_p es la reactancia del primario

 X_s es la reactancia del secundario

 x_t es la reactancia del terciario

 V_{ρ} es el voltaje en el primario

 V_s es el voltaje en el secundario

 V_t es el voltaje en el terciario

Por lo general los fabricantes de los transformadores proporcionan las impedancias delta x_{ps} , x_{pt} , x_{st} del transformador para cada una de sus posiciones extrema y nominal de tap y LTC, en sus reportes de prueba, como parte de la prueba de medición de impedancia de cortocircuito.

Para convertir las impedancias del transformador del modelo delta al modelo estrella se utilizan las siguientes ecuaciones [50]:

$$x_p = \frac{x_{pt} + x_{ps} - x_{st}}{2}$$
(2.58)

$$x_s = \frac{x_{ps} + x_{st} - x_{pt}}{2}$$
(2.59)

$$x_t = \frac{x_{pt} + x_{st} - x_{ps}}{2}$$
(2.60)

En el caso particular de Ecuador, los transformadores de tres devanados con tap en el primario tienen 5 posiciones de tap, lo cual se representa en la figura 2.7 con las posiciones extremas 1 y 5 y la posición nominal 3, correspondiendo a cada posición un valor de impedancia. Las ecuaciones son las que se escriben a continuación:

Figura 2.7: Transformador de tres devanados con 5 posiciones de tap en primario En la posición primario tap 1, secundario nominal (n), terciario nominal(n) (1,n,n):

$$x_{p1} = \frac{x_{p1t} + x_{p1s} - x_{st}}{2} \tag{2.61}$$

$$x_s = \frac{x_{p1s} + x_{st} - x_{p1t}}{2}$$
(2.62)

$$x_t = \frac{x_{p1t} + x_{st} - x_{p1s}}{2}$$
(2.63)

En la posición primario tap 3, secundario nominal, terciario nominal (3,n,n):

$$x_{p3} = \frac{x_{p3t} + x_{p3s} - x_{st}}{2}$$
(2.64)

$$x_s = \frac{x_{p3s} + x_{st} - x_{p3t}}{2}$$
(2.65)

$$x_t = \frac{x_{p3t} + x_{st} - x_{p3s}}{2}$$
(2.66)

En la posición primario tap 5, secundario nominal, terciario nominal (5,n,n):

$$x_{p5} = \frac{x_{p5t} + x_{p5s} - x_{st}}{2} \tag{2.67}$$

$$x_s = \frac{x_{p5s} + x_{st} - x_{p5t}}{2}$$
(2.68)

$$x_t = \frac{x_{p5t} + x_{st} - x_{p5s}}{2}$$
(2.69)

Con las ecuaciones (2.61) a (2.69) se obtienen las impedancias correspondientes del transformador para cada posición de tap. Esto puede resumirse en la siguiente tabla:

Tabla 2.2: Obtención de Impedancias Estrella en base a impedancias Delta Caso II:Transformador de 3 Devanados con Tap en Primario

Posición primario,				Impedancias Estrella						
secundario,			Impedancia delta	Prim	ario (p) con				
terciario					tap		Secundario(s)	Terciario(t)		
р	s	t		p1	р3	р5	S	t		
1	n	n	xp1s, xp1t,xst	xp1			xs	xt		
3	n	n	xp3s, xp3t,xst		хр3		xs	xt		
5	n	n	xp5s, xp5t,xst			xp5	xs	xt		

*n es nominal

Como se observa en la tabla 2.2 se han obtenido impedancias para cada posición de tap en el primario y tres impedancias para el secundario y tres impedancias para el terciario. El criterio para seleccionar la impedancia del secundario y terciario ha sido escoger aquellas que se obtienen en la posición nominal del tap del primario, esto es en la posición 3,n,n. Estas impedancias se encuentran resaltadas en la tabla 2.2.

Es importante mencionar que las impedancias utilizadas previamente han sido convertidas a la base de 100 MVA que es la base que se utiliza en el sistema de tiempo real y también se ha verificado si el transformador es trifásico o está formado por tres transformadores monofásicos.

Una vez que se han obtenido los valores de las impedancias en estrella x_{p1} , x_{p3} , x_{p5} , x_s , x_t , el transformador de tres devanados es modelado como tres transformadores de dos devanados: un transformador de dos devanados con tap en el primario y dos transformadores de dos devanados con reactancia fija, los tres conectados con una barra de referencia virtual o ideal cuyo voltaje puede asumirse 1 y ángulo cero.

Finalmente, si se disponen las mediciones de PMUs en los terminales primario y secundario del transformador con el terciario abierto pueden aplicarse las ecuaciones de la sección 2.2.4.1 para calcular la impedancia x_p y la posición de tap correspondiente.

2.3.4.3 Caso III: Transformador de tres devanados con tap en el primario y LTC en el secundario

El esquema correspondiente se representa en la figura 2.8.

Figura 2.8: Transformador de tres devanados con tap en primario y LTC en el secundario.

Donde:

*X*_{ps} es la reactancia entre primario y secundario

 X_{pt} es la reactancia entre primario y terciario

x_{st} es la reactancia entre el secundario y terciario

 V_{ρ} es el voltaje en el primario

Vs es el voltaje en el secundario

Vt es el voltaje en el terciario

Este transformador de tres devanados puede ser modelado como tres transformadores de dos devanados [50] como se representa en la figura 2.9:

Figura 2.9: Transformador de tres devanados con tap en primario y LTC en secundario modelado con tres transformadores de dos devanados.

Donde:

- X_p es la reactancia del primario
- X_s es la reactancia del secundario
- x_t es la reactancia del terciario
- V_{ρ} es el voltaje en el primario
- V_s es el voltaje en el secundario
- V_t es el voltaje en el terciario

Al igual que en la sección anterior, es necesario convertir las impedancias del transformador del modelo delta que son proporcionadas por el fabricante al modelo estrella mediante las ecuaciones (2.58) a (2.60):

En el caso particular de Ecuador, los transformadores de tres devanados con tap en el primario y LTC en el secundario tienen 5 posiciones de tap en el primario y 33 posiciones de LTC en el secundario, con las posiciones extremas 1 y 5 y la posición nominal 3 en el tap y con las posiciones extremas 1 y 33 y la posición nominal 17 en el LTC. Correspondiendo a cada posición combinada de tap y LTC un valor de impedancia, lo cual se representa en la figura 2.10 y las ecuaciones son las que se escriben a continuación.

Figura 2.10: Transformador de tres devanados con 5 posiciones de tap en primario y 33 posiciones de LTC en el secundario

En la posición primario tap 1, secundario LTC 1, terciario nominal n (1,1,n):

$$x_{p1} = \frac{x_{p1t} + x_{p1s1} - x_{s1t}}{2}$$
(2.70)

$$x_{s1} = \frac{x_{p1s1} + x_{s1t} - x_{p1t}}{2}$$
(2.71)

$$x_t = \frac{x_{p1t} + x_{s1t} - x_{p1s1}}{2}$$
(2.72)

En la posición primario tap 1, secundario LTC 17, terciario nominal (1,17,n):

$$x_{p1} = \frac{x_{p1t} + x_{p1s17} - x_{s17t}}{2}$$
(2.73)

$$x_{s17} = \frac{x_{p1s17} + x_{s17t} - x_{p1t}}{2}$$
(2.74)

$$x_t = \frac{x_{p1t} + x_{s17t} - x_{p1s17}}{2}$$
(2.75)

En la posición primario tap 1, secundario LTC 33, terciario nominal (1,33,1):

$$x_{p1} = \frac{x_{p1t} + x_{p1s33} - x_{s33t}}{2}$$
(2.76)

$$x_{s33} = \frac{x_{p1s33} + x_{s33t} - x_{p1t}}{2}$$
(2.77)

$$x_t = \frac{x_{p1t} + x_{s33t} - x_{p1s33}}{2}$$
(2.78)

En la posición primario tap 3, secundario LTC 1, terciario nominal (3,1,n):

$$x_{p3} = \frac{x_{p3t} + x_{p3s1} - x_{s1t}}{2}$$
(2.79)

$$x_{s1} = \frac{x_{p3s1} + x_{s1t} - x_{p3t}}{2}$$
(2.80)

$$x_t = \frac{x_{p3t} + x_{s1t} - x_{p3s1}}{2}$$
(2.81)

En la posición primario tap 3, secundario LTC 17, terciario nominal (3,17,n):

$$x_{p3} = \frac{x_{p3t} + x_{p3s17} - x_{s17t}}{2}$$
(2.82)

$$x_{s17} = \frac{x_{p3s17} + x_{s17t} - x_{p3t}}{2}$$
(2.83)

$$x_t = \frac{x_{p3t} + x_{s17t} - x_{p3s17}}{2}$$
(2.84)

En la posición primario tap 3, secundario LTC 33, terciario nominal (3,33,n):

$$x_{p3} = \frac{x_{p3t} + x_{p3s33} - x_{s33t}}{2}$$
(2.85)

$$x_{s33} = \frac{x_{p3s33} + x_{s33t} - x_{p3t}}{2}$$
(2.86)

$$x_t = \frac{x_{p3t} + x_{s33t} - x_{p3s33}}{2}$$
(2.87)

En la posición primario tap 5, secundario LTC 1, terciario nominal (5,1,n):

$$x_{p5} = \frac{x_{p5t} + x_{p5s1} - x_{s1t}}{2}$$
(2.88)

$$x_{s1} = \frac{x_{p5s1} + x_{s1t} - x_{p5t}}{2}$$
(2.89)

$$x_t = \frac{x_{p5t} + x_{s1t} - x_{p5s1}}{2}$$
(2.90)

En la posición primario tap 5, secundario LTC 17, terciario nominal (5,17,n):

$$x_{p5} = \frac{x_{p5t} + x_{p5s17} - x_{s17t}}{2}$$
(2.91)

$$x_{s17} = \frac{x_{p5s17} + x_{s17t} - x_{p5t}}{2}$$
(2.92)

$$x_t = \frac{x_{p5t} + x_{s17t} - x_{p5s17}}{2}$$
(2.92)

En la posición primario tap 5, secundario LTC 33, terciario nominal (5,33,n):

$$x_{p5} = \frac{x_{p5t} + x_{p5s33} - x_{s33t}}{2}$$
(2.94)

$$x_{s33} = \frac{x_{p5s33} + x_{s33t} - x_{p5t}}{2}$$
(2.95)

$$x_t = \frac{x_{p5t} + x_{s33t} - x_{p5s33}}{2}$$
(2.96)

Con las ecuaciones (2.70) a (2.96) se obtienen las impedancias correspondientes del transformador para cada posición combinada de tap y LTC. Esto puede resumirse en la siguiente tabla:

Tabla 2.3: Obtención de Impedancias Estrella en base a impedancias Delta Caso III:Transformador de 3 Devanados con Tap en Primario y LTC en Secundario

Decición primerio				Impedancias Estrella							
secundario, terciario			Impedancia delta	Prii c	mario on ta	р р	Secur	ndario(s)	Terciario(t)		
р	S	t		p1	р3	р5	s 1	s17	s33	t	
	1	n	xp1s1, xp1t,xs1t	xp1			xs1			xt	
1	17	n	xp1s17, xp1t,xs17t	xp1				xs17		xt	
	33	n	xp1s33, xp1t,xs33t	xp1					xs33	xt	
	1	n	xp3s1, xp3t,xs1t		хр3		xs1			xt	
3	17	n	xp3s17, xp3t,xs17t		хр3			xs17		xt	
	33	n	xp3s33, xp3t,xs33t		хр3				xs33	xt	
5	1	n	xp5s1, xp5t,xs1t			xp5	xs1			xt	
	17	n	xp5s17, xp5t,xs17t			xp5		xs17		xt	
	33	n	xp5s33, xp5t,xs33t			xp5			xs33	xt	

*n es nominal

Como se observa en esta tabla se han obtenido tres impedancias para cada posición de tap en el primario, tres impedancias para cada posición de LTC en el secundario y nueve impedancias para el terciario. El criterio para seleccionar la impedancia de cada posición de tap del primario, LTC del secundario y terciario ha sido escoger aquella que se obtiene en la posición nominal del tap del primario, y/o posición nominal del LTC del secundario, esto es en la posición 3,17,n. Estas impedancias se encuentran resaltadas con negrilla en la tabla 2.3.

Al igual que en la sección anterior, las impedancias utilizadas previamente han sido convertidas a la base de 100 MVAs que es la base que se utiliza en el sistema de tiempo real y también se ha verificado si el transformador es trifásico o está formado por tres transformadores monofásicos.

Una vez que se han obtenido los valores de las impedancias en estrella x_{p1} , x_{p3} , x_{p5} , x_{s1} , x_{s17} , x_{s33} , x_t , el transformador de tres devanados es modelado como tres transformadores de dos devanados; un transformador de dos devanados con tap en el primario, un transformador de dos devanados con LTC y un transformador de dos devanados con reactancia fija, los tres conectados con una barra de referencia virtual o ideal cuyo voltaje puede asumirse 1 y ángulo cero.

Finalmente, si se disponen las mediciones de PMUs en los terminales de los lados primario y secundario del transformador y si el terciario está abierto, pueden aplicarse las ecuaciones de la sección 2.2.4.1 para calcular las impedancias x_p y x_s , la posición de tap correspondiente al primario y la posición de LTC correspondiente al secundario.

2.4 DIFERENCIAS DE MODELACIÓN ENTRE CASOS DE TIEMPO REAL Y FUERA DE LÍNEA

En consideración de que uno de los objetivos principales de esta tesis es aplicar el programa de identificación de errores de parámetros al S.N.I. en los modelos eléctricos de tiempo real y fuera de línea; en esta sección se realiza un análisis de las particularidades de estos sistemas.

En CENACE existen dos ambientes plenamente identificados, como son el ambiente de tiempo real donde están las aplicaciones de operación en tiempo real (sistema EMS) [52] y el ambiente fuera de línea donde están principalmente las aplicaciones de planeamiento y análisis post-operativo (PowerFactory de DIgSILENT).

El modelo eléctrico de tiempo real obedece a una realidad de condiciones eléctricas con la cual el operador debe tomar decisiones en línea sobre el sistema eléctrico, para lograr la calidad y seguridad de la operación del S.N.I.

El modelo utilizado en el ambiente fuera de línea tiene como objetivo permitir estudios de planificación, expansión y seguridad del sistema en el corto, mediano y largo plazo.

A continuación se analiza la modelación de líneas de transmisión y transformadores en los sistemas EMS y PowerFactory de DIgSILENT.

2.4.1 MODELO DE LÍNEAS DE TRANSMISIÓN

Para la modelación eléctrica de líneas de transmisión tanto en el sistema EMS como en PowerFactory de DIgSILENT [53], se utiliza el modelo π de parámetros concentrados con los parámetros de secuencia positiva, como se observa en la siguiente figura:

Figura 2.11: Equivalente π de secuencia positiva de una línea de transmisión en el modelo de planeamiento [53]

En donde:

- Z_+ es la impedancia de secuencia positiva en ohm
- Y_+ es la susceptancia de la línea en siemens

El modelo de tiempo real es el indicado en la sección 2.2.3

2.4.2 MODELO DE TRANSFORMADORES

Para la modelación eléctrica de transformadores, en el sistema EMS se utilizan los modelos planteados en la sección 2.2.4 de este capítulo.

En PowerFactory de DIgSILENT se utiliza el modelo detallado de secuencia positiva con impedancias absolutas en ohmios como se muestra en la figura 2.12., el cual contiene las reactancias de dispersión y las resistencias de los devanados de alto y bajo voltaje, la reactancia de magnetización y la admitancia de pérdidas de hierro, cerca de su punto ideal para el transformador.

Figura 2.12: Modelo de secuencia positiva de un transformador de dos devanados en ohmios en PowerFactory de DIgSILENT [53]

Donde:

 Tabla 2.4: Parámetros utilizados en modelación de transformadores en PowerFactory de DIgSILENT [54].

Z _{r,HV}	Nominal impedance, HV side	Ω
Z _{r,LV}	Nominal impedance, LV side	Ω
U _{r,HV} , U _{r,HV}	Rated voltages on HV/LV side	kV
Sr	Rated power	MVA
Pou	Copper losses	kW
USC	Relative short-circuit voltage	%
Z _{SC}	Short-circuit impedance	p.u.
rsc	Short-circuit resistance	p.u.
X _{SC}	Short-circuit reactance	p.u.
Ŷχ. H V,1	Share of transformer short-circuit reactance on HV side in the positive-sequence system	p.u.
ŶR,HV,1	Share of transformer short-circuit resistance on HV side in the positive-sequence system	p.u.
rcu, HV, rcu, LV	Resistances on HV/LV sides	p.u.
$X_{\sigma,HV}$, $X_{\sigma,LV}$	Leakage reactances on HV/LV side	p.u.
Io	no-load current	%
P _{Fe}	No-load losses	kW
XM	Magnetizing impedance	p.u.
r _{Fe}	Shunt resistance	p.u.

El cambiador de tap está representado por un transformador adicional, ideal ya sea en el lado de alto o bajo voltaje. (Figuras 2.13 y 2.14)

Figura 2.13: Cambiador de tap en el lado de alto voltaje de un transformador de dos devanados en pu en PowerFactory de DIgSILENT [53]

Figura 2.14: Cambiador de tap en el lado de bajo voltaje de un transformador de dos devanados en pu en PowerFactory de DIgSILENT [53]

El modelo de un transformador de tres devanados se representa en la figura 2.15

Figura 2.15: Modelo de un transformador de tres devanados en PowerFactory de DIgSILENT [53]

Como diferencias adicionales a las existentes entre la forma de modelar los transformadores en los sistemas EMS y PowerFactory de DIgSILENT, se

presentan las siguientes diferencias principales entre estos dos ámbitos de modelación de un sistema eléctrico:

- El modelo utilizado en EMS modela en forma detallada el sistema eléctrico incluyendo seccionadores e interruptores de maniobra, seccionadores de tierra. El modelo de PowerFactory de DIgSILENT utiliza por lo general un modelo consolidado, sin seccionadores.
- El modelo utilizado en EMS incluye mediciones reales con altos niveles de precisión de voltajes, flujos de potencia en las líneas de transmisión, inyecciones de generación y carga en las diferentes barras del sistema. El modelo de PowerFactory de DIgSILENT no dispone de mediciones reales, sino básicamente trabaja con programas de generación y distribución de carga.
- El modelo utilizado en EMS requiere modelar los transformadores con todas sus posiciones de tap y LTC, para el modelo de PowerFactory de DIgSILENT es suficiente modelar las posiciones nominales de tap y LTC.
- El modelo utilizado en EMS dispone programas de validación de la información de las mediciones como es el estimador de estado, con lo que se asegura que la información del sistema eléctrico que observa el operador es la más fiable y real. El modelo de PowerFactory de DIgSILENT podría presentar resultados teóricos que no se ajusten a la realidad, debido a que no incluye como parte de su programa principal, rutinas adicionales de validación de información.
- El modelo de PowerFactory de DIgSILENT modela en detalle la topología de las zonas de distribución y zonas de frontera con Colombia y Perú, mientras que en el modelo utilizado en EMS no se modelan las zonas en las cuales no se dispone suficiente información SCADA; debido a que es necesario asegurar la disponibilidad de mediciones de voltaje, potencia activa y reactiva que permita tener la suficiente observabilidad sobre estas áreas.
- El modelo de PowerFactory de DIgSILENT en varios casos no considera la separación de las cargas de las empresas de distribución. El sistema

EMS sí modela cada uno de los alimentadores de carga a nivel de subestaciones frontera entre transmisión y distribución.

 El modelo utilizado en EMS considera los parámetros técnicos de sus equipos en pu y el modelo de planeamiento trabaja con unidades de ingeniería.

2.4.3 CASOS DE PLANIFICACIÓN CON DIFERENCIAS DE PARÁMETROS

Los modelos eléctricos de los equipos en planeamiento son realizados en base a información declarada por los agentes dueños de las instalaciones. Las diferencias obtenidas en los casos de planeamiento son obtenidas al comparar los resultados de los casos de estudio de planeamiento con la información de la operación del sistema de tiempo real, o con los resultados de un flujo de potencia de tiempo real. Esto se puede esquematizar en la siguiente figura.

Figura 2.16: Esquema de análisis de diferencias de parámetros en modelos de PowerFactory de DIgSILENT

2.4.4 CASOS DE TIEMPO REAL CON DIFERENCIAS DE PARÁMETROS

En el Capítulo 4 se realizarán análisis de casos de tiempo real en diferentes condiciones de demanda, donde se definen los parámetros con mayor probabilidad de error.

Adicionalmente, en el Capítulo 3, a fin de validar los procedimientos de corrección de parámetros erróneos de líneas de transmisión con PMUs indicados en la sección 2. 2 de este capítulo, se analiza el caso que dispone de información de PMUs que corresponde a la línea de transmisión Pascuales 1 – Molino 1.

CAPÍTULO 3.

3.1 PROGRAMA COMPUTACIONAL DE ESTIMACIÓN DE PARÁMETROS EN MATLAB

En este capítulo se presenta la descripción del desarrollo de un programa en MATLAB de identificación de errores de parámetros en redes eléctricas y su aplicación inicialmente en un caso de prueba de 4 barras. Considerando que uno de los objetivos principales de esta tesis es aplicar el programa de identificación de parámetros erróneos en el S:N.I, se presenta como parte de este capítulo la descripción de la aplicación desarrollada para obtener los modelos de red de tiempo real (EMS) y fuera de línea (POWERFACTORY DE DIGSILENT).

En este contexto las siguientes actividades tienen que ser realizadas:

- Desarrollo de un programa de identificación y corrección de parámetros utilizando MATLAB.
- Desarrollo de una aplicación que permita obtener los modelos de tiempo real y fuera de línea en un formato común para análisis y comparación de resultados y que sirva como información de entrada para el programa de identificación de parámetros erróneos.

3.2 PROGRAMA DE ESTIMACIÓN DE PARÁMETROS

3.2.1 DESCRIPCIÓN GENERAL DEL PROGRAMA

En el Capítulo I se ha analizado que los métodos tradicionales de identificación y estimación de parámetros tienen las siguientes limitaciones:

- Deben disponer de un set de parámetros sospechosos para iniciar el proceso de estimación.
- Se debe considerar que no existen errores en las mediciones.

En esta tesis, empleando MATLAB, se realiza un programa de identificación de parámetros erróneos utilizando el algoritmo de identificación de parámetros erróneos propuesto por Jun Zhu y Ali Abur en [29] basado en los multiplicadores de Lagrange. Este algoritmo no requiere conocer anticipadamente un set de

parámetros sospechosos y tampoco requiere considerar mediciones sin presencia de errores, por el contrario, el resultado de este programa será un conjunto de residuales que permitirán conocer los errores de las mediciones y un conjunto de multiplicadores de Lagrange que permitirán conocer los parámetros erróneos [31].

Una vez que se identifiquen los parámetros erróneos, se procederá a aplicar los procedimientos de cálculo de parámetros indicados en la sección 2.2 del Capítulo 2, utilizando la información disponible de los PMUs instalados por CENACE.

3.2.2 DIAGRAMA DE FLUJO DEL PROGRAMA

El diagrama de flujo que describe el esquema general del programa es el siguiente:

3.3 IDENTIFICACIÓN DE PARÁMETROS ERRÓNEOS

Para facilitar el entendimiento del programa de identificación de parámetros erróneos desarrollado en esta tesis, y para probar el programa desarrollado en primer lugar, se presenta un ejemplo ilustrativo para un sistema de prueba de cuatro barras. Este ejemplo está diseñado de tal manera que se presenta todo el detalle en la aplicación de las ecuaciones presentadas en capítulos anteriores y en construcción y cálculo de variables y matrices que intervienen en el algoritmo de identificación de parámetros erróneos seleccionado.

3.3.1 EJEMPLO DE APLICACIÓN PARA IDENTIFICACIÓN DE PARÁMETROS ERRÓNEOS

El sistema que se utilizará como ejemplo es el sistema de cuatro barras de la figura 3.2.

Figura 3.2: Sistema de prueba de 4 barras

Los parámetros del sistema de prueba son los siguientes:

Línea	Resistencia (pu)	Reactancia (pu)	Susceptancia(pu)
1-2	0,066	0,24	0
1-4	0,012	0,25	0
2-3	0,0044	0,16	0

Fabla 3.1:	Parámetros	del Sistema	de	Prueba
Fabla 3.1:	Parámetros	del Sistema	de	Prueba

Tabla 3.2: Valores Medidos en el Sistema de Prue	eba
--	-----

Medición	Valor medido	Desviación Estándar
V3	0,91589	0,004
P2	7,65E-06	0,008
Р3	-0,39356	0,008
P4	-0,79291	0,008
P12	0,40893	0,01
P14	0,79775	0,01
Q2	0,0002131	0,008
Q3	-0,15279	0,008
Q4	-0,19726	0,008
Q12	0,24095	0,01
Q14	0,40645	0,01

Se considera la base de 100 MVA y las siguientes desviaciones estándar:

 $\sigma = 0,004$ para voltajes

 $\sigma = 0,008$ para mediciones de inyección

 $\sigma = 0.01$ para mediciones de flujos de potencia en ramas

3.3.1.1 Cálculo de Y barra

Considerando que:

$$\mathbf{I} = \mathbf{Y}_b \, \mathbf{V} \tag{3.1}$$

Para el ejemplo dado:

$$\mathbf{Y}_{b} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ Y_{12} + Y_{14} & -Y_{12} & \mathbf{0} & -Y_{14} \\ \hline & -Y_{12} & Y_{12} + Y_{23} & -Y_{23} & \mathbf{0} \\ \hline & \mathbf{0} & -Y_{23} & Y_{23} & \mathbf{0} \\ \hline & -Y_{14} & \mathbf{0} & \mathbf{0} & Y_{14} \end{bmatrix} \mathbf{2}$$
(3.2)

Entonces Y de barra es:

El vector de variables de estado es:

$$\mathbf{x} = [\theta_1 \theta_2 \theta_3 \theta_4 \ V_1 V_2 V_3 V_4]^t$$

El vector de mediciones es:

$$\mathbf{z} = [V_3 P_2 P_3 P_4 P_{12} P_{14} Q_2 Q_3 Q_4 Q_{12} Q_{14}]^t$$

El vector de mediciones de inyecciones cero es:

$$\boldsymbol{c} = [P_2 \ Q_2]^t$$

El vector de pesos de las mediciones es:

 $\mathbf{R} = diag[\ 0.004^2\ 0.008^2\ 0.008^2\ 0.008^2\ 0.01^2\ 0.01^2\ 0.008^2\ 0.008^2\ 0.008^2\ 0.01^2\ 0.01^2]$

Y el vector W de pesos de las mediciones es:

$$\mathbf{W} = \frac{1}{\mathbf{R}}$$

3.3.1.2 Cálculo de mediciones de inyecciones y flujos por ramas

De acuerdo a las ecuaciones (1.12) a (1.15) del Capítulo 1 se tiene:

$$P_{i} = V_{i} \sum_{j=1}^{n} V_{j} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right)$$
(3.3)

En las ecuaciones que se plantearán en este capítulo es necesario recordar lo siguiente:

 V_i , θ_i son la magnitud de voltaje y ángulo de fase en la barra i

 $G_{ii} + j B_{ii}$ es el *ij* -ésimo elemento de la matriz Yb

 $g_{ij} + j b_{ij}$ es la admitancia de la rama serie conectada entre las barras *i*, *j*

 $g_{si} + j b_{si}$ es la admitancia de la rama paralelo conectada en la barra *i*

 P_i , Q_i son la potencias de inyección activa y reactiva en la barra *i*

 P_{ij} , Q_{ij} son los flujos de potencias activa y reactiva desde la barra i hacia la barra j

$$P_{3} = G_{32}V_{2}V_{3}\cos\theta_{32} + B_{32}V_{2}V_{3}\sin\theta_{32} + G_{33}V_{3}^{2}$$
$$P_{4} = G_{41}V_{1}V_{4}\cos\theta_{41} + B_{41}V_{1}V_{4}\sin\theta_{41} + G_{44}V_{4}^{2}$$

$$Q_{i} = V_{i} \sum_{j=1}^{n} V_{j} (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij})$$
(3.4)

$$Q_3 = G_{32}V_2 V_3 \sin \theta_{32} - B_{32}V_2 V_3 \cos \theta_{32} - B_{33}V_3^2$$
$$Q_4 = G_{41}V_1 V_4 \sin \theta_{41} - B_{41}V_1 V_4 \cos \theta_{41} - B_{44}V_4^2$$

Para inyecciones cero:

$$P_{2} = G_{21}V_{1}V_{2}\cos\theta_{21} + B_{21}V_{1}V_{2}\sin\theta_{21} + G_{22}V_{2}^{2} + G_{23}V_{2}V_{3}\cos\theta_{23} + B_{23}V_{2}V_{3}\sin\theta_{23}$$
$$Q_{2} = G_{21}V_{1}V_{2}\sin\theta_{21} - B_{21}V_{1}V_{2}\cos\theta_{21} - B_{22}V_{2}^{2} + G_{23}V_{2}V_{3}\sin\theta_{23} - B_{23}V_{2}V_{3}\cos\theta_{23}$$

Para los flujos de potencia por las ramas:

$$P_{ij} = V_i^2 (g_{ij} + g_{si}) - V_i V_j (g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij})$$
(3.5)

$$P_{12} = g_{12}V_1^2 + g_{s12}V_1^2 - g_{12}V_1V_2\cos\theta_{12} - b_{12}V_1V_2\sin\theta_{12})$$

$$P_{14} = g_{14}V_1^2 + g_{s14}V_1^2 - g_{14}V_1V_4\cos\theta_{14} - b_{14}V_1V_4\sin\theta_{14})$$

$$Q_{ij} = -V_i^2 (b_{ij} + b_{si}) - V_i V_j (g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij})$$
(3.6)

$$Q_{12} = -b_{12}V_1^2 - b_{s12}V_1^2 - g_{12}V_1V_2\sin\theta_{12} + b_{12}V_1V_2\cos\theta_{12})$$
$$Q_{14} = -b_{14}V_1^2 - b_{s14}V_1^2 - g_{14}V_1V_4\sin\theta_{14} + b_{14}V_1V_4\cos\theta_{14})$$

3.3.1.3 Cálculo de Jacobiano H_x de mediciones

En base a la ecuación (2.10) el jacobiano de las mediciones $\boldsymbol{H}_{\boldsymbol{x}}$ es:

$$\mathbf{H}_{x} = \begin{bmatrix} \mathbf{\theta} & \mathbf{V} \\ \frac{\partial \mathbf{V}}{\partial \mathbf{\theta}} & \frac{\partial \mathbf{V}}{\partial \mathbf{V}} \\ \frac{\partial \mathbf{P}_{iny}}{\partial \mathbf{\theta}} & \frac{\partial \mathbf{P}_{iny}}{\partial \mathbf{V}} \\ \frac{\partial \mathbf{P}_{rama}}{\partial \mathbf{\theta}} & \frac{\partial \mathbf{P}_{rama}}{\partial \mathbf{V}} \\ \frac{\partial \mathbf{Q}_{iny}}{\partial \mathbf{\theta}} & \frac{\partial \mathbf{Q}_{iny}}{\partial \mathbf{V}} \\ \frac{\partial \mathbf{Q}_{rama}}{\partial \mathbf{\theta}} & \frac{\partial \mathbf{Q}_{rama}}{\partial \mathbf{V}} \\ \end{bmatrix} \mathbf{Q}_{iny} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \partial \mathbf{Q}_{rama} \\ \partial \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \begin{bmatrix} \mathbf{Q}_{rama} \\ \mathbf{Q}_{rama} \\ \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{rama} \end{bmatrix} \mathbf{Q}_{$$

3.3.1.3.1 Derivadas parciales de las mediciones de voltaje

n

$$\frac{\partial V_i}{\partial V_i} = 1 \tag{3.8}$$

$$\frac{\partial V_i}{\partial V_j} = 0 \tag{3.9}$$

$$\frac{\partial V_i}{\partial \theta_i} = 0 \tag{3.10}$$

$$\frac{\partial V_i}{\partial \theta_i} = 0 \tag{3.11}$$

3.3.1.3.2 Derivadas parciales de las mediciones de inyección de potencia activa

De la referencia [10], las ecuaciones de las derivadas de potencia activa son:

$$\frac{\partial P_i}{\partial \theta_i} = \sum_{j=1}^n V_i V_j (-G_{ij} \sin \theta_{ij} + B_{ij} \cos \theta_{ij}) - V_i^2 B_{ii}$$
(3.12)

$$\frac{\partial P_i}{\partial \theta_j} = V_i V_j \left(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \right)$$
(3.13)

$$\frac{\partial P_i}{\partial V_i} = \sum_{j=1}^n V_j (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}) + V_i G_{ii}$$
(3.14)

$$\frac{\partial P_i}{\partial V_j} = V_i \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right)$$
(3.15)

Entonces para el sistema de ejemplo se tiene las siguientes ecuaciones de derivadas de potencia activa:

Para
$$P_2$$
:

$$\frac{\partial P_2}{\partial \theta_2} = -G_{21}V_1V_2 \sin \theta_{21} + B_{21}V_1V_2 \cos \theta_{21} - G_{23}V_2V_3 \sin \theta_{23} + B_{23}V_2V_3 \cos \theta_{23}$$

$$\frac{\partial P_2}{\partial \theta_3} = G_{23}V_2V_3 \sin \theta_{23} - B_{23}V_2V_3 \cos \theta_{23}$$

$$\frac{\partial P_2}{\partial \theta_4} = 0$$

$$\frac{\partial P_2}{\partial V_1} = G_{21}V_2 \cos \theta_{21} + B_{21}V_2 \sin \theta_{21}$$

$$\frac{\partial P_2}{\partial V_2} = G_{21}V_1 \cos \theta_{21} + B_{21}V_2 \sin \theta_{23}$$

$$\frac{\partial P_2}{\partial V_3} = G_{23}V_2 \cos \theta_{23} + B_{23}V_2 \sin \theta_{23}$$

$$\frac{\partial P_2}{\partial V_4} = 0$$

Para P_3 :

$$\frac{\partial P_3}{\partial \theta_2} = G_{32}V_2V_3\sin \theta_{32} - B_{32}V_2V_3\cos \theta_{32}$$
$$\frac{\partial P_3}{\partial \theta_3} = -G_{32}V_2V_3\sin \theta_{32} + B_{32}V_2V_3\cos \theta_{32}$$
$$\frac{\partial P_3}{\partial \theta_4} = 0$$
$$\frac{\partial P_3}{\partial V_1} = 0$$
$$\frac{\partial P_3}{\partial V_2} = G_{32}V_3\cos \theta_{32} + B_{32}V_3\sin \theta_{32}$$

$$\begin{split} \frac{\partial P_3}{\partial V_3} &= G_{32}V_2\cos\,\theta_{32} + B_{32}V_2\sin\theta_{32} + 2\,G_{33}V_3\\ \frac{\partial P_3}{\partial V_4} &= 0\\ \text{Para} \quad P_4 : \\ \frac{\partial P_4}{\partial \theta_2} &= 0\\ \frac{\partial P_4}{\partial \theta_3} &= 0\\ \frac{\partial P_4}{\partial \theta_4} &= -G_{41}V_1V_4\sin\,\theta_{41} + B_{41}V_1V_4\cos\theta_{41}\\ \frac{\partial P_4}{\partial V_1} &= G_{41}V_4\cos\,\theta_{41} + B_{41}V_4\sin\theta_{41}\\ \frac{\partial P_4}{\partial V_2} &= 0\\ \frac{\partial P_4}{\partial V_3} &= 0\\ \frac{\partial P_4}{\partial V_4} &= G_{41}V_1\cos\,\theta_{41} + B_{41}V_1\sin\theta_{41} + 2\,G_{41}V_1 \end{split}$$

3.3.1.3.3 Derivadas parciales de las mediciones de inyección de potencia reactiva

De la referencia [10], las ecuaciones de las derivadas de potencia reactiva son:

$$\frac{\partial Q_i}{\partial \theta_i} = \sum_{j=1}^n V_i V_j (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}) - V_i^2 G_{ii}$$
(3.16)

$$\frac{\partial Q_i}{\partial \theta_j} = V_i V_j \left(-G_{ij} \cos \theta_{ij} - B_{ij} \sin \theta_{ij} \right)$$
(3.17)

$$\frac{\partial Q_i}{\partial V_i} = \sum_{j=1}^n V_j (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}) - V_i B_{ii}$$
(3.18)

$$\frac{\partial Q_i}{\partial V_j} = V_i \left(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \right)$$
(3.19)

Entonces para el sistema de ejemplo se tiene las siguientes ecuaciones de derivadas de potencia reactiva:

Para
$$Q_2$$
:

$$\frac{\partial Q_2}{\partial \theta_2} = G_{21}V_1V_2 \cos \theta_{21} + B_{21}V_1V_2 \sin \theta_{21} + G_{23}V_2V_3 \cos \theta_{23} + B_{23}V_2V_3 \sin \theta_{23}$$

$$\frac{\partial Q_2}{\partial \theta_3} = -G_{23}V_2V_3 \cos \theta_{23} - B_{23}V_2V_3 \sin \theta_{23}$$

$$\frac{\partial Q_2}{\partial \theta_4} = 0$$

$$\frac{\partial Q_2}{\partial V_1} = G_{21}V_2 \sin \theta_{21} - B_{21}V_2 \cos \theta_{21} - B_{21}V_1 \cos \theta_{21} - 2B_{22}V_2 + G_{23}V_3 \sin \theta_{23} - B_{23}V_3 \cos \theta_{23}$$

$$\frac{\partial Q_2}{\partial V_2} = G_{23}V_2 \sin \theta_{23} - B_{23}V_2 \cos \theta_{23}$$

$$\frac{\partial Q_2}{\partial V_4} = G_{23}V_2 \sin \theta_{23} - B_{23}V_2 \cos \theta_{23}$$

$$\frac{\partial Q_2}{\partial V_4} = 0$$
Para Q_3 :

$$\frac{\partial Q_3}{\partial \theta_2} = -G_{32}V_2V_3 \cos \theta_{32} - B_{32}V_2V_3 \sin \theta_{32}$$

$$\frac{\partial Q_3}{\partial \theta_4} = 0$$
$$\frac{\partial Q_3}{\partial V_1} = 0$$

$$\frac{\partial Q_3}{\partial V_2} = G_{32}V_3 \sin \theta_{32} - B_{32}V_3 \cos \theta_{32}$$

$$\frac{\partial Q_3}{\partial V_3} = G_{32}V_2 \sin \theta_{32} - B_{32}V_2 \cos \theta_{32} - 2B_{33}V_3$$

$$\frac{\partial Q_3}{\partial V_4} = 0$$
Para Q_4 :
$$\frac{\partial Q_4}{\partial \theta_2} = 0$$

$$\frac{\partial Q_4}{\partial \theta_3} = 0$$

$$\frac{\partial Q_4}{\partial \theta_4} = G_{41}V_1V_4 \cos \theta_{41} + B_{41}V_1V_4 \sin \theta_{41}$$

$$\frac{\partial Q_4}{\partial V_1} = G_{41}V_4 \sin \theta_{41} - B_{41}V_4 \cos \theta_{41}$$

$$\frac{\partial Q_4}{\partial V_2} = 0$$

$$\frac{\partial Q_4}{\partial V_2} = 0$$

$$\frac{\partial Q_4}{\partial V_3} = 0$$

$$\frac{\partial Q_4}{\partial V_4} = G_{41}V_1 \sin \theta_{41} - B_{41}V_1 \cos \theta_{41} - 2B_{44}V_4$$

3.3.1.3.4 Derivadas parciales de las mediciones de flujo de potencia activa en ramas

De la referencia [10], las ecuaciones de las derivadas de flujo de potencia activa en ramas son:

$$\frac{\partial P_{ij}}{\partial \theta_i} = V_i V_j \left(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \right)$$
(3.20)

$$\frac{\partial P_{ij}}{\partial \theta_j} = -V_i V_j \left(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \right)$$
(3.21)

$$\frac{\partial P_{ij}}{\partial V_i} = -V_j \left(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \right) + 2(g_{ij} + g_{sij}) V_i$$
(3.22)

$$\frac{\partial P_{ij}}{\partial V_j} = -V_i \left(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \right)$$
(3.23)

Entonces para el sistema de ejemplo se tiene las siguientes ecuaciones de derivadas de los flujos de potencia activa en ramas:

Para P_{12} : $\frac{\partial P_{12}}{\partial \theta_2} = -g_{12}V_1V_2\sin \theta_{12} + b_{12}V_1V_2\cos \theta_{12}$ $\frac{\partial P_{12}}{\partial \theta_2} = 0$ $\frac{\partial P_{12}}{\partial \theta_{\star}} = 0$ $\frac{\partial P_{12}}{\partial V_1} = 2 g_{12}V_1 + 2 g_{s12}V_1 - g_{12}V_2 \cos \theta_{12} - b_{12}V_2 \sin \theta_{12}$ $\frac{\partial P_{12}}{\partial V_2} = -g_{12}V_1 \cos \theta_{12} - b_{12}V_1 \sin \theta_{12}$ $\frac{\partial P_{12}}{\partial V_2} = 0$ $\frac{\partial P_{12}}{\partial V_4} = 0$ Para P_{14} : $\frac{\partial P_{14}}{\partial \theta_2} = 0$ $\frac{\partial P_{14}}{\partial \theta_2} = 0$ $\frac{\partial P_{14}}{\partial \theta_{4}} = -g_{14}V_{1}V_{4}\sin \theta_{14} + b_{14}V_{1}V_{4}\cos \theta_{14}$ $\frac{\partial P_{14}}{\partial V_{.}} = 2 g_{14} V_{1} + 2 g_{s14} V_{1} - g_{14} V_{4} \cos \theta_{14} - b_{14} V_{4} \sin \theta_{14}$ $\frac{\partial P_{14}}{\partial V_2} = 0$

$$\frac{\partial P_{14}}{\partial V_3} = 0$$

$$\frac{\partial P_{14}}{\partial V_4} = -g_{14}V_1 \cos \theta_{14} - b_{14}V_1 \sin \theta_{14}$$

3.3.1.3.5 Derivadas parciales de las mediciones de flujo de potencia reactiva en ramas

De la referencia [10], las ecuaciones de las derivadas de flujo de potencia reactiva en ramas son:

$$\frac{\partial Q_{ij}}{\partial \theta_i} = -V_i V_j \left(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \right)$$
(3.24)

$$\frac{\partial Q_{ij}}{\partial \theta_j} = V_i V_j \left(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \right)$$
(3.25)

$$\frac{\partial Q_{ij}}{\partial V_i} = -V_j \left(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \right) - 2(b_{ij} + b_{sij}) V_i$$
(3.26)

$$\frac{\partial Q_{ij}}{\partial V_j} = -V_i \left(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \right)$$
(3.27)

Entonces para el sistema de ejemplo se tiene las siguientes ecuaciones de derivadas de los flujos de potencia reactiva en ramas:

Para
$$Q_{12}$$
:

$$\frac{\partial Q_{12}}{\partial \theta_2} = g_{12}V_1V_2\cos\theta_{12} + b_{12}V_1V_2\sin\theta_{12}$$

$$\frac{\partial Q_{12}}{\partial \theta_3} = 0$$

$$\frac{\partial Q_{12}}{\partial \theta_4} = 0$$

$$\frac{\partial Q_{12}}{\partial V_1} = -2 \ b_{12}V_1 - 2 \ b_{s12}V_1 - g_{12}V_2 \sin \theta_{12} + b_{12}V_2 \cos \theta_{12}$$
$$\frac{\partial Q_{12}}{\partial V_2} = -g_{12}V_1 \sin \theta_{12} + b_{12}V_1 \cos \theta_{12}$$
$$\frac{\partial Q_{12}}{\partial V_3} = 0$$
$$\frac{\partial Q_{12}}{\partial V_4} = 0$$

Para Q_{14} : $\frac{\partial Q_{14}}{\partial \theta_2} = 0$ $\frac{\partial Q_{14}}{\partial \theta_3} = 0$ $\frac{\partial Q_{14}}{\partial \theta_4} = g_{14}V_1V_4\cos\theta_{14} + b_{14}V_1V_4\sin\theta_{14}$ $\frac{\partial Q_{14}}{\partial V_1} = -2 b_{14}V_1 - 2 b_{s14}V_1 - g_{14}V_4\sin\theta_{14} + b_{14}V_4\cos\theta_{14}$ $\frac{\partial Q_{14}}{\partial V_2} = 0$ $\frac{\partial Q_{14}}{\partial V_3} = 0$ $\frac{\partial Q_{14}}{\partial V_4} = -g_{14}V_1\sin\theta_{14} + b_{14}V_1\cos\theta_{14}$

Entonces el jacobiano H_x de mediciones es:

	θ_2	θ_3	$ heta_4$	V_1	V_2	V_3	V_4	
	0	0	0	0	0	1	0	V ₃
	$\frac{\partial P_2}{\partial \theta_2}$	$\frac{\partial P_2}{\partial \theta_3}$	0	$\frac{\partial P_2}{\partial V_1}$	$\frac{\partial P_2}{\partial V_2}$	$\frac{\partial P_2}{\partial V_3}$	0	<i>P</i> ₂
	$\frac{\partial P_3}{\partial \theta_2}$	$\frac{\partial P_3}{\partial \theta_3}$	0	0	$\frac{\partial P_3}{\partial V_2}$	$\frac{\partial P_3}{\partial V_3}$	0	P ₃
	0	0	$rac{\partial P_4}{\partial heta_4}$	$\frac{\partial P_4}{\partial V_1}$	0	0	$\frac{\partial P_4}{\partial V_4}$	P ₄
	$\frac{\partial P_{12}}{\partial \theta_2}$	0	0	$\frac{\partial P_{12}}{\partial V_1}$	$\frac{\partial P_{12}}{\partial V_2}$	0	0	P ₁₂
	0	0	$\frac{\partial P_{14}}{\partial \theta_4}$	$\frac{\partial P_{14}}{\partial V_1}$	0	0	$\frac{\partial P_{14}}{\partial V_4}$	P ₁₄
$H_x =$	$\frac{\partial Q_2}{\partial \theta_2}$	$\frac{\partial Q_2}{\partial \theta_3}$	0	$\frac{\partial Q_2}{\partial V_1}$	$\frac{\partial Q_2}{\partial V_2}$	$\frac{\partial Q_2}{\partial V_3}$	0	Q_2
	$\frac{\partial Q_3}{\partial \theta_2}$	$\frac{\partial Q_3}{\partial \theta_3}$	0	0	$\frac{\partial Q_3}{\partial V_2}$	$\frac{\partial Q_3}{\partial V_3}$	0	Q 3
	0	0	$rac{\partial Q_4}{\partial heta_4}$	$\frac{\partial Q_4}{\partial V_1}$	0	0	$\frac{\partial Q_4}{\partial V_4}$	Q_4
	$\frac{\partial Q_{12}}{\partial \theta_2}$	0	0	$\frac{\partial Q_{12}}{\partial V_1}$	$\frac{\partial Q_{12}}{\partial V_2}$	0	0	Q ₁₂
	0	0	$\frac{\partial Q_{14}}{\partial \theta_4}$	$\frac{\partial Q_{14}}{\partial V_1}$	0	0	$\frac{\partial Q_{14}}{\partial V_4}$	Q ₁₄
1		•	•	•	•	•		4

La matriz $\,\,H_{\rm x}\,$ de la primera iteración del estimador de estado convencional es:

	A2	A3	A4	V1	V2	V3	V/A	
		0	0	0	0	1 0000	0	V3
	10 1190	-6 2453	0	-1.0653	1 2370	-0 1717	0	P2
	-6.2453	6.2453	0	1,0000	-0.1717	0,1717	0	P3
	0	0	3,9908	-0,1916	0	0	0,1916	P4
	-3,8737	0	0	1,0653	-1,0653	0	0	P12
Hx=	0	0	-3,9908	0,1916	0	0	-0,1916	P14
	-1,2370	0,1717	0	-3,8737	10,1190	-6,2453	0	Q2
	0,1717	-0,1717	0	0	-6,2453	6,2453	0	Q3
	0	0	-0,1916	-3,9908	0	0	3,9908	Q4
	1,0653	0	0	3,8737	-3,8737	0	0	Q12
	0	0	0,1916	3,9908	0	0	-3,9908	Q14

81

3.3.1.4 Cálculo de C_x de mediciones (jacobiano de mediciones de inyecciones cero) En base a la ecuación (2.11) y considerando las derivadas parciales de P_2 y Q_2 de la sección anterior, el jacobiano de inyecciones cero C_x es:

La matriz C_x de la primera iteración del estimador de estado convencional es:

	 θ2	θ3	θ4		V1	V2	V3	V4	
Cx=	10,1190	-6,2453		0	-1,0653	1,237	70 -0,1717	0	P2
	-1,2370	0,1717		0	-3,8737	10,119	90 -6,2453	0	Q2

3.3.1.5 Solución de Estimación de Estado Convencional

Aplicando las ecuaciones (1.9) a (1.11) se obtiene la solución iterativa de Newton, utilizando la matriz jacobiana H_x y los vectores **R**, z y Δz . Siendo

 Δz el vector de residuales obtenido en la convergencia.

La solución se la consigue en tres iteraciones obteniéndose como resultado el vector \mathbf{x} de variables de estado y las matrices $\mathbf{H}_{\mathbf{x}}$, $\mathbf{C}_{\mathbf{x}}$ y $\Delta \mathbf{z}$ de la última iteración que serán necesarios para la siguiente fase. Esto es:

$$\mathbf{x} = [\theta_1 \theta_2 \theta_3 \theta_4 \ V_1 V_2 V_3 V_4]^t$$

	θ2	θ3	θ4	V1	V2	V3	V4	
	0	0	0	0	0	1,0000	0	V3
	9,0621	-5,4056	0	-1,3157	1,1704	0,2631	0	P2
	-5,3842	5,3842	0	0	-0,5681	-0,2730	0	P3
	0	0	3,7230	-0,9384	0	0	-0,6649	P4
	-3,8320	0	0	1,4909	-0,7509	0	0	P12
Hx=	0	0	-3,7980	0,9790	0	0	0,6401	P14
	-1,1079	-0,2408	0	-3,5669	9,5753	-5,9064	0	Q2
	0,5376	-0,5376	0	0	-5,6897	5,5486	0	Q3
	0	0	-0,9619	-3,6317	0	0	3,5279	Q4
	0,7106	0	0	4,2039	-4,0494	0	0	Q12
	0	0	-0,6009	4,4772	0	0	-4,0454	Q14
	θ2	θ3	θ4	V1	V2	V3	V4	
Cx=	9,0621	-5,4056	0	-1,3157	1,1704	0,2631	0	P2
	-1,1079	-0,2408	0	-3,5669	9,5753	-5,9064	0	Q2

Las matrices H_x y C_x de la tercera y última iteración son:

3.3.1.6 Cálculo de multiplicadores de Lagrange de mediciones r y de inyecciones cero u

Después de haber logrado la solución del estimador de estado convencional, y con ello las matrices H_x , C_x , $\Delta z \ y \ W$, aplicando la ecuación (2.29) del Capítulo 2, se calculan los coeficientes E_1 , $E_2 \dots \dots E_9$

$$\begin{bmatrix} 0 & \mathbf{H}_{\mathbf{x}}^{\mathsf{t}} \mathbf{w} & \mathbf{C}_{\mathbf{x}}^{\mathsf{t}} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{I} & 0 \\ \mathbf{C}_{\mathbf{x}} & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{E}_{1} & \mathbf{E}_{2} & \mathbf{E}_{3} \\ \mathbf{E}_{4} & \mathbf{E}_{5} & \mathbf{E}_{6} \\ \mathbf{E}_{7} & \mathbf{E}_{8} & \mathbf{E}_{9} \end{bmatrix}$$
(3.28)

Habiendo obtenido las matrices \mathbf{E}_5 , \mathbf{E}_8 y $\Delta \mathbf{z}$ se aplican las ecuaciones del Capítulo 2 (2.30) y (2.31) para calcular los vectores \mathbf{r} y \mathbf{u} . Esto es:

$$\mathbf{r} = \mathbf{E}_5 \,.\,\Delta \mathbf{z} \tag{3.29}$$

$$\mathbf{u} = \mathbf{E}_8 \,.\, \Delta \mathbf{z} \tag{3.30}$$

1											
	0,0157	0,0000	0,0057	0,0107	0,0011	-0,0042	0,0000	0,0141	0,0386	0,0176	0,0312
	0	1	0	0	0	0	0	0	0	0	0
	0,0227	-0,0000	0,4354	-0,0024	0,3836	0,0009	-0,0000	0,0903	-0,0086	0,0690	-0,0070
	0,0429	-0,0000	-0,0024	0,4252	0,0016	0,3754	-0,0000	-0,0115	0,1101	0,0077	0,0855
	0,0067	-0,0000	0,5994	0,0025	0,5923	-0,0010	0,0000	-0,0824	0,0090	-0,0840	0,0073
E 5=	-0,0262	0,0000	0,0015	0,5865	-0,0010	0,6169	0,0000	0,0070	-0,1077	-0,0047	-0,0927
	-0,0000	0	-0,0000	0,0000	0	-0,0000	1	-0,0000	0,0000	0	0,0000
	0,0565	-0,0000	0,0903	-0,0115	-0,0528	0,0045	0,0000	0,4450	-0,0412	0,3837	-0,0333
	0,1543	-0.0000	-0,0086	0,1101	0,0057	-0,0689	-0,0000	-0,0412	0,4637	0,0277	0,3754
	0,1101	0	0,1078	0,0120	-0,0840	-0,0047	0,0000	0,5996	0,0433	0,5309	0,0350
	0,1951	-0,0000	-0,0109	0,1336	0,0073	-0,0927	-0,0000	-0,0521	0,5865	0,0350	0,4749

E 8= 1.0e+04*	0,0221	-1,5625	0,6576	-0,0017	0,6087	0,0007	0,0000	0,0418	-0,0061	0,0220	-0,0050	_
	0,0990	0	0,1364	-0,0054	-0,0769	0,0021	-1,5625	0,6636	-0,0193	0,5779	-0,0156	

	V3	P2	P3	P4	P12	P14	Q2	Q3	Q4	Q12	Q14	t
∆z=	0,0007	0,0002	0,0001	0,0002	0,0001	-0,0045	0,0006	0,0002	0,0082	0,0022	0,0106	

Entonces r y u son:

	0,0007	V3
	0,0002	P2
	0,0001	P3
	0,0002	P4
	0,0001	P12
r=	-0,0045	P14
	0,0006	Q2
	0,0003	Q 3
	0,0083	Q 4
	0,0021	Q12
	0,0105	Q14
		 I

3.3.1.7 Cálculo de Jacobiano de Parámetros H_p

Expresando la matriz \mathbf{Y}_{b} de la ecuación (3.2) en función de los parámetros de conductancia y susceptancia g_{ij} , b_{ij} y b_{sij} se obtiene:

$$Y_{b} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ (g_{12} + g_{14}) + (b_{12} & -g_{12} - b_{12}i & 0 & -g_{14} - b_{14}i \\ -b_{s14}i & -b_{s12}i & 0 & -g_{14} - b_{14}i \\ -b_{s14}i & 0 & -b_{s12}i & 0 & -g_{13} - b_{14}i \\ \hline -g_{12} - b_{12}i & (g_{12} + g_{23}) & -g_{23} - b_{23}i & 0 \\ -b_{s12}i & +(b_{12} + b_{23})i & -b_{s23}i & 0 \\ \hline 0 & -g_{23} - b_{23}i & g_{23} + b_{23}i & 0 \\ \hline 0 & -b_{s23}i & +b_{s23}i & 0 \\ \hline -g_{14} - b_{14}i & 0 & 0 & g_{14} + b_{14}i \\ -b_{s14}i & 0 & 0 & g_{14} + b_{14}i \\ \hline \end{pmatrix}$$
(3.31)

En base a la ecuación (2.14) el jacobiano de los parámetros \boldsymbol{H}_p $\,$ es:

$$\mathbf{H}_{\mathrm{p}} = \begin{bmatrix} \mathbf{b} & \mathbf{g} & \mathbf{b}s \\ \frac{\partial \mathbf{V}}{\partial \mathbf{b}} & \frac{\partial \mathbf{V}}{\partial \mathbf{g}} & \frac{\partial \mathbf{V}}{\partial \mathbf{b}s} \\ \frac{\partial \mathbf{P}_{\mathrm{iny}}}{\partial \mathbf{b}} & \frac{\partial \mathbf{P}_{\mathrm{iny}}}{\partial \mathbf{b}g} & \frac{\partial \mathbf{P}_{\mathrm{iny}}}{\partial \mathbf{b}s} \\ \frac{\partial \mathbf{P}_{\mathrm{rama}}}{\partial \mathbf{b}} & \frac{\partial \mathbf{P}_{\mathrm{rama}}}{\partial \mathbf{g}} & \frac{\partial \mathbf{P}_{\mathrm{rama}}}{\partial \mathbf{b}s} \\ \frac{\partial \mathbf{Q}_{\mathrm{iny}}}{\partial \mathbf{b}} & \frac{\partial \mathbf{Q}_{\mathrm{iny}}}{\partial \mathbf{g}} & \frac{\partial \mathbf{Q}_{\mathrm{iny}}}{\partial \mathbf{b}s} \\ \frac{\partial \mathbf{Q}_{\mathrm{rama}}}{\partial \mathbf{b}} & \frac{\partial \mathbf{Q}_{\mathrm{rama}}}{\partial \mathbf{g}} & \frac{\partial \mathbf{Q}_{\mathrm{rama}}}{\partial \mathbf{b}s} \\ \end{bmatrix} \mathbf{Q}_{\mathrm{rama}} = \begin{bmatrix} \mathbf{Q}_{\mathrm{rama}} & \mathbf{Q}_{\mathrm{rama}} \\ \mathbf{Q}_{\mathrm{rama}} & \mathbf{Q}_{\mathrm{rama}} \\ \frac{\partial \mathbf{Q}_{\mathrm{rama}}}{\partial \mathbf{g}} & \frac{\partial \mathbf{Q}_{\mathrm{rama}}}{\partial \mathbf{b}s} \end{bmatrix} \mathbf{Q}_{\mathrm{rama}} \\ \mathbf{Q}_{\mathrm{rama}} \end{bmatrix} \mathbf{Q}_{\mathrm{rama}}$$

Esto es:

3.3.1.7.1 Derivadas parciales de las mediciones de voltaje $H_{V_{-}g}$, $H_{V_{-}b}$ y $H_{V_{-}bs}$

$$\forall i, \forall j: \qquad \frac{\partial V_i}{\partial g_{ij}} = 0 \tag{3.33}$$

$$\forall i, \forall j: \qquad \frac{\partial V_i}{\partial b_{i\,i}} = 0 \tag{3.34}$$

$$\forall i, \forall j: \qquad \frac{\partial V_i}{\partial b s_{ij}} = 0 \tag{3.35}$$

3.3.1.7.2 Derivadas parciales de las mediciones de inyección de potencia activa H_{pin_g} , H_{pin_b} y H_{pin_bs}

Considerando las ecuaciones (3.3) y (3.31), las ecuaciones de las derivadas de medición de inyección de potencia activa respecto a los parámetros de conductancia son:

$$\forall k \neq i \neq j = > \frac{\partial P_k}{\partial g_{ij}} = 0$$
 (3.36)

$$Si k = i \implies \frac{\partial P_k}{\partial g_{ij}} = -V_i V_j \cos \theta_{ij} + V_i^2$$
(3.37)

$$Si k = j = \Longrightarrow \quad \frac{\partial P_k}{\partial g_{ij}} = -V_i V_j \cos \theta_{ji} + V_j^2$$
(3.38)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{\text{pin}_{g}} = \begin{bmatrix} g_{12} & g_{14} & g_{23} \\ & -V_{1}V_{2}\cos\theta_{21} + V_{2}^{2} & 0 & -V_{2}V_{3}\cos\theta_{23} + V_{2}^{2} \\ & 0 & 0 & -V_{2}V_{3}\cos\theta_{32} + V_{3}^{2} \\ & 0 & 0 & -V_{1}V_{4}\cos\theta_{41} + V_{4}^{2} & 0 \\ \end{bmatrix} \begin{bmatrix} P_{2} & P_{3} & P_{4} & P_{4} \\ P_{4} & P_{4} & P_{4} & P_{4} \\ & P_{4} & P_{4} & P_{4} & P_{4} \\ \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de inyección de potencia activa respecto a los parámetros de susceptancia son:

$$\forall k \neq i \neq j = > \frac{\partial P_k}{\partial b_{ij}} = 0$$
(3.39)

$$Si \ k = i = > \frac{\partial P_k}{\partial b_{ij}} = -V_i V_j \sin \theta_{ij}$$
 (3.40)

$$Si \ k = j = \gg \frac{\partial P_k}{\partial b_{ij}} = -V_i V_j \sin \theta_{ji}$$
 (3.41)

$$\mathbf{H}_{\text{pin}_b} = \begin{bmatrix} b_{12} & b_{14} & b_{23} \\ & -V_1 V_2 \sin \theta_{21} & 0 & -V_2 V_3 \sin \theta_{23} \\ & 0 & 0 & -V_2 V_3 \sin \theta_{32} \\ & 0 & -V_1 V_4 \sin \theta_{41} & 0 \\ \end{bmatrix} \begin{bmatrix} P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de inyección de potencia activa respecto a los parámetros de susceptancia paralelo son:

$$\forall k \neq i \neq j == > \frac{\partial P_k}{\partial b_{sij}} = 0$$
 (3.42)

$$Si k = i \implies \frac{\partial P_k}{\partial b_{sij}} = -V_i V_j \sin \theta_{ij}$$
 (3.43)

$$Si \ k = j = > \frac{\partial P_k}{\partial b_{sij}} = -V_i V_j \sin \theta_{ji}$$
 (3.44)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{\text{pin}_\text{bs}} = \begin{bmatrix} b_{s12} & b_{s14} & b_{s23} \\ -V_1 V_2 \sin \theta_{21} & 0 & -V_2 V_3 \sin \theta_{23} \\ 0 & 0 & -V_2 V_3 \sin \theta_{32} \\ 0 & -V_1 V_4 \sin \theta_{41} & 0 \\ \end{bmatrix} \begin{bmatrix} P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

3.3.1.7.3 Derivadas parciales de las mediciones de inyección de potencia reactiva H_{qin_g} , H_{qin_b} y H_{qin_bs}

Considerando las ecuaciones (3.4) y (3.31), las ecuaciones de las derivadas de medición de inyección de potencia reactiva respecto a los parámetros de conductancia son:

$$\forall k \neq i \neq j ==> \frac{\partial Q_k}{\partial g_{ij}} = 0$$
(3.45)

$$Si \ k = i = > \frac{\partial Q_k}{\partial g_{ij}} = -V_i V_j \sin \theta_{ij}$$
 (3.46)

$$Si k = j =$$
 $\frac{\partial Q_k}{\partial g_{ij}} = -V_i V_j \sin \theta_{ji}$ (3.47)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{qin_g} = \begin{bmatrix} \begin{array}{cccc} g_{12} & g_{14} & g_{23} \\ \\ -V_1 V_2 \sin \theta_{21} & 0 & -V_2 V_3 \sin \theta_{23} \\ \hline 0 & 0 & -V_2 V_3 \sin \theta_{32} \\ \hline 0 & -V_1 V_4 \sin \theta_{41} & 0 \\ \end{array} \begin{bmatrix} Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de inyección de potencia reactiva respecto a los parámetros de susceptancia son:

$$\forall k \neq i \neq j = > \frac{\partial Q_k}{\partial b_{ij}} = 0$$
(3.48)

$$Si k = i \implies \frac{\partial Q_k}{\partial b_{ij}} = V_i V_j \cos \theta_{ij} - V_i^2$$
(3.49)

$$Si k = j \implies \frac{\partial Q_k}{\partial b_{ij}} = V_i V_j \cos \theta_{ji} - V_j^2$$
(3.50)

$$\mathbf{H}_{qin_b} = \begin{bmatrix} b_{12} & b_{14} & b_{23} \\ V_1 V_2 \cos \theta_{21} - V_2^2 & 0 & V_2 V_3 \cos \theta_{23} - V_2^2 \\ 0 & 0 & V_2 V_3 \cos \theta_{32} - V_3^2 \\ 0 & V_1 V_4 \cos \theta_{41} - V_4^2 & 0 \end{bmatrix} \begin{bmatrix} Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de inyección de potencia reactiva respecto a los parámetros de susceptancia paralelo son:

$$\forall k \neq i \neq j = > \frac{\partial Q_k}{\partial b_{sij}} = 0$$
 (3.51)

$$Si k = i \implies \frac{\partial Q_k}{\partial b_{sij}} = V_i V_j \cos \theta_{ij} - V_i^2$$
 (3.52)

$$Si k = j \implies \frac{\partial Q_k}{\partial b_{sij}} = V_i V_j \cos \theta_{ji} - V_j^2$$
(3.53)

Entonces para el sistema de ejemplo se tiene lo siguiente:

	<i>b</i> _{<i>s</i>12}	b_{s14}	<i>b</i> _{<i>s</i>23}	
	$V_1 V_2 \cos \theta_{21} - V_2^2$	0	$V_2 V_3 \cos \theta_{23} - V_2^2$	<i>Q</i> ₂
$\mathbf{H}_{qin_bs} =$	0	0	$V_2 V_3 \cos \theta_{32} - V_3^2$	<i>Q</i> ₃
	0	$V_1 V_4 \cos \theta_{41} - V_4^2$	0	Q_4

3.3.1.7.4 Derivadas parciales de las mediciones de flujo de potencia activa en ramas H_{pram_g} , H_{pram_b} y H_{pram_bs}

Considerando las ecuaciones (3.5) y (3.31), las ecuaciones de las derivadas de medición de flujo de potencia activa en ramas respecto a los parámetros de conductancia son:

$$\forall i, j \neq i, j = > \frac{\partial P_{ij}}{\partial g_{ij}} = 0$$
(3.54)

$$\forall i, j = i, j = > \frac{\partial P_{ij}}{\partial g_{ij}} = -V_i V_j \cos \theta_{ij} + V_i^2$$
(3.55)

$$\mathbf{H}_{\text{pram}_g} = \begin{bmatrix} g_{12} & g_{14} & g_{23} \\ & -V_1 V_2 \cos \theta_{12} + V_1^2 & 0 & 0 \\ \hline & 0 & -V_1 V_4 \cos \theta_{14} + V_1^2 & 0 \\ \end{bmatrix} \begin{bmatrix} P_{12} & P_{14} & P_{14} & P_{14} \\ P_{14} & P_{14} & P_{14} & P_{14} \\ \hline & P_{14} & P_{14} & P_{14} & P_{14} & P_{14} \\ \hline & P_{14} & P_{14} & P_{14} & P_{14} & P_{14} \\ \hline & P_{14} & P_{14} & P_{14} & P_{14} & P_{14} & P_{14} \\ \hline & P_{14} & P_{1$$

Las ecuaciones de las derivadas de medición de flujo de potencia activa respecto a los parámetros de susceptancia son:

$$\forall i, j \neq i, j = > \frac{\partial P_{ij}}{\partial b_{ij}} = 0$$
(3.56)

$$\forall i, j = i, j = > \frac{\partial P_{ij}}{\partial b_{ij}} = -V_i V_j \sin \theta_{ij}$$
(3.57)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{\text{pram}_b} = \begin{bmatrix} b_{12} & b_{14} & b_{23} \\ & -V_1 V_2 \sin \theta_{12} & 0 & 0 \\ & & 0 & -V_1 V_4 \sin \theta_{14} & 0 \end{bmatrix} \begin{bmatrix} P_{12} \\ P_{14} \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de flujo de potencia activa respecto a los parámetros de susceptancia paralelo son:

$$\forall i, j == > \quad \frac{\partial P_{ij}}{\partial b_{sij}} = \quad 0 \tag{3.58}$$

$$\mathbf{H}_{\text{pram_bs}} = \begin{bmatrix} b_{s12} & b_{s14} & b_{s23} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{12} \\ p_{14} \end{bmatrix}$$

3.3.1.7.5 Derivadas parciales de las mediciones de flujo de potencia reactiva en ramas H_{qram_g} , H_{qram_b} y H_{qram_bs}

Considerando las ecuaciones (3.6) y (3.31), las ecuaciones de las derivadas de medición de flujo de potencia reactiva en ramas respecto a los parámetros de conductancia son:

$$\forall i, j \neq i, j = > \frac{\partial Q_{ij}}{\partial g_{ij}} = 0$$
(3.59)

$$\forall i, j = i, j = > \frac{\partial Q_{ij}}{\partial g_{ij}} = -V_i V_j \sin \theta_{ij}$$
(3.60)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{qram_g} = \begin{bmatrix} g_{12} & g_{14} & g_{23} \\ & -V_1 V_2 \sin \theta_{12} & 0 & 0 \\ & 0 & -V_1 V_4 \sin \theta_{14} & 0 \end{bmatrix} \begin{bmatrix} q_{12} & q_{14} & q_{14} \\ & 0 & 0 \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de flujo de potencia reactiva respecto a los parámetros de susceptancia son:

$$\forall i, j \neq i, j = > \frac{\partial Q_{ij}}{\partial b_{ij}} = 0$$
 (3.61)

$$\forall i, j = i, j = > \frac{\partial Q_{ij}}{\partial b_{ij}} = V_i V_j \cos \theta_{ij} - V_i^2$$
(3.62)

Entonces para el sistema de ejemplo se tiene lo siguiente:

$$\mathbf{H}_{\text{qram}_b} = \begin{bmatrix} b_{12} & b_{14} & b_{23} \\ V_1 V_2 \cos \theta_{12} - V_1^2 & 0 & 0 \\ \hline 0 & V_1 V_4 \cos \theta_{14} - V_1^2 & 0 \end{bmatrix} \begin{bmatrix} Q_{12} \\ Q_{14} \end{bmatrix}$$

Las ecuaciones de las derivadas de medición de flujo de potencia reactiva respecto a los parámetros de susceptancia paralelo son:

$$\forall i, j ==> \quad \frac{\partial Q_{ij}}{\partial b_{sij}} = \quad 0 \tag{3.63}$$

$$\forall i, j = i, j = > \frac{\partial Q_{ij}}{\partial b_{sij}} = -V_i^2$$
(3.64)

Entonces para el sistema de ejemplo se tiene lo siguiente:

Entonces para el sistema de ejemplo $\ H_p$ es:

	b12	b14	b23	g12	g14	g23	bs12	bs14	bs23	
	0	0	0	0	0	0	0	0	0	V3
	0,0823	0	-0,0623	-0,0711	0	0,0317	0,0823	0	-0,0623	P2
	0	0	0,0623	0	0	-0,0262	0	0	0,0623	P3
	0	0,1958	0	0	-0,0609	0	0	0,1958	0	P4
	-0,0823	0	0	0,0843	0	0	0	0	0	P12
H p=	0	-0,1958	0	0	0,1086	0	0	0	0	P14
	0,0711	0	-0,0317	0,0823	0	-0,0623	0,0711	0	-0,0317	Q2
	0	0	0,0262	0	0	0,0623	0	0	0,0262	Q3
	0	0,0609	0	0	0,1958	0	0	0,0609	0	Q4
	-0,0843	0	0	-0,0823	0	0	-1,0508	0	0	Q12
	0	-0,1086	0	0	-0,1958	0	0	-1,0508	0	Q14

3.3.1.8 Cálculo de C_p (jacobiano de parámetros de mediciones de inyecciones cero)

En base a la ecuación (2.15) y considerando las derivadas parciales de las potencias de inyección de la sección anterior, el jacobiano de parámetros de inyecciones cero C_p es:

$$\mathbf{C}_{\mathrm{p}} = \begin{bmatrix} \frac{b}{\partial P_{iny0}} & \frac{g}{\partial g} & \frac{bs}{\partial s} \\ \frac{\partial Q_{iny0}}{\partial b} & \frac{\partial Q_{iny0}}{\partial g} & \frac{\partial Q_{iny0}}{\partial bs} \end{bmatrix} \mathbf{P}_{iny} \quad (3.65)$$

$$\frac{\partial Q_{iny0}}{\partial b} & \frac{\partial Q_{iny0}}{\partial g} & \frac{\partial Q_{iny0}}{\partial bs} \end{bmatrix} \mathbf{Q}_{iny}$$

Para el sistema de prueba $P_2 \ y \ Q_2$ son mediciones de inyecciones cero, por lo tanto el jacobiano de parámetros de inyecciones cero \mathbf{C}_p es:

	b12	b14	b23	g12	g14	g23	bs12	bs14	bs23	
Cp=	0,0823	0	-0,0623	-0,0711	0	0,0317	0,0823	0	-0,0623	P2
	0,0711	0	-0,0317	0,0823	0	-0,0623	0,0711	0	-0,0317	Q2

3.3.1.9 Cálculo de Multiplicadores de Lagrange λ_i

En base a la ecuación (2.20) y conociendo en este punto las matrices ${\bm H}_p$, ${\bm C}_p$ y ${\bm W}\,$ se obtiene la matriz $~{\it S}\,$:

$$\mathbf{S} = - \begin{bmatrix} \mathbf{W} \, \mathbf{H}_{\mathrm{p}} \\ \mathbf{C}_{\mathrm{p}} \end{bmatrix}^{\mathrm{t}} \tag{3.66}$$

Para este ejemplo S es:

S= 1.0e+04

	0	-0,1287	0	0	0,0823	0	-0,1111	0	0	0,0843	0	-0,0000	-0,0000	
	0	0	0	-0,3060	0	0,1958	0	0	-0,0952	0	0,1086	0	0	
	0	0,0974	-0,0974	0	0	0	0,0495	-0,0410	0	0	0	0,0000	0,0000	
	0	0,1111	0	0	-0,0843	0	-0,1287	0	0	0,0823	0	0,0000	-0,0000	
)4*	0	0	0	0,0952	0	-0,1086	0	0	-0,3060	0	0,1958	0	0	
	0	-0,0495	0,0410	0	0	0	0,0974	-0,0974	0	0	0	-0,0000	0,0000	
	0	-0,1287	0	0	0	0	-0,1111	0	0	1,0508	0	-0,0000	-0,0000	
	0	0	0	-0,3060	0	0	0	0	-0,0952	0	1,0508	0	0	
	0	0,0974	-0,0974	0	0	0	0,0495	-0,0410	0	0	0	0,0000	0,0000	
Conc	cier	ndo	S , r, y	y u y	aplica	indo la	a ecu	ación	(2.21)	se o	obtiene	en los		

multiplicadores de Lagrange λ :

$$\lambda = S. \begin{bmatrix} \mathbf{r} \\ \mathbf{u} \end{bmatrix}$$
(3.67)

3.3.1.10 Cálculo de Multiplicadores de Lagrange Normallizados λ_{Ni}

En base a las ecuaciones (2.28), (2.32) y (2.34) se calcula la matriz Λ cuyos elementos de la diagonal serán utilizados para normalizar los multiplicadores de Lagrange λ :

$$\boldsymbol{\Psi} = \begin{bmatrix} \mathbf{E}_5 & \mathbf{E}_8 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \mathbf{E}_5 \\ \mathbf{E}_8 \end{bmatrix}$$
(3.68)

$$\operatorname{cov}\left(\mathbf{U}\right) = \mathbf{\Psi} \cdot \mathbf{W}^{-1} \cdot \mathbf{\Psi}^{\mathsf{t}} \tag{3.69}$$

$$\Lambda = \operatorname{cov} \left(\lambda \right) = \mathbf{S} \cdot \operatorname{cov} \left(\mathbf{U} \right) \cdot \mathbf{S}^{\mathsf{t}}$$
(3.70)

Para el caso de ejemplo Λ es :

	0,0014	-0,0031	0,0004	0,0003	-0,0005	0,0004	-0,0450	0,0460	0,0004	
	-0,0031	0,0172	-0,0007	-0,0019	0,0037	-0,0013	-0,0231	-0,2557	-0,0007	
	0,0004	-0,0007	0,0002	-0,0001	-0,0001	0,0000	-0,0265	0,0113	0,0002	
	0,0003	-0,0019	-0,0001	0,0014	-0,0003	0,0006	0,0524	0,0291	-0,0001	
∧ = 1.0e+03*	-0,0005	0,0037	-0,0001	-0,0003	0,0144	-0,0002	-0,0041	0,0247	-0,0001	
	0,0004	-0,0013	0,0000	0,0006	-0,0002	0,0003	0,0106	0,0195	0,0000	
	-0,0450	-0,0231	-0,0265	0,0524	-0,0041	0,0106	5,0417	0,3480	-0,0265	
	0,0460	-0,2557	0,0113	0,0291	0,0247	0,0195	0,3480	4,2655	0,0113	
	0,0004	-0,0007	0,0002	-0,0001	-0,0001	0,0000	-0,0265	0,0113	0,0002	

Con los términos de la diagonal de la matriz Λ y la ecuación (2.35) se calculan los multiplicadores de Lagrange normalizados λ_i^N :

$$\lambda_{i}^{N} = \frac{\lambda_{i}}{\sqrt{\Lambda(i,i)}}$$
(3.71)

Para el caso del ejemplo, el vector de multiplicadores de Lagrange normalizados es $\lambda^{\rm N}\,$:

$$\boldsymbol{\lambda}^{\rm N} = \begin{bmatrix} 0,8171 & b12 \\ -1,4823 & b14 \\ 0,4517 & b23 \\ 0,6904 & g12 \\ 0,1074 & g14 \\ 0,9074 & g23 \\ 0,3050 & bs12 \\ 1,5543 & bs14 \\ 0,4517 & bs23 \end{bmatrix}$$

Como se puede observar ninguno de los multiplicadores de Lagrange normalizados es mayor a tres, por lo que se puede decir que no existen errores de parámetros en este caso de estudio base.

3.3.1.11 Resultados de Cálculo de Multiplicadores de Lagrange Normalizados λ_{Ni} para casos de errores en parámetros

Realizando variaciones en los parámetros del sistema de prueba y calculando los multiplicadores de Lagrange normalizados λ^N se obtiene la siguiente tabla:

Tabla 3.3: Multiplicadores de Lagrange obtenidos simulando parámetros erróneos e	en el
Sistema de Prueba	

Item	Parámetro		parámetro correcto	parámetro erróneo	λasociado
1		r12	0,066	0,166	0,5113
2		r12	0,066	0,566	-4,8309
3	resistencia	r14	0,012	0,112	5,1836
4		r23	0,0044	0,1044	0,6976
5		r23	0,0044	1,0044	-11,6924
6		x14	0,25	0,55	18,5770
7	reactancia	x12	0,24	1,24	9,6119
8		x23	0,16	1,16	11,0709
9		Bs14	0	0,5	31,3080
10	suscentancia naralelo	Bs14	0	0,2	15,2280
11		Bs23	0	0,2	-8,5154
12		Bs12	0	0,5	27,2423

Al revisar los valores de esta tabla, se observa que para la mayor parte de los casos cuando existe un parámetro erróneo el multiplicador λ_{Ni} presenta un valor alto y por lo general con valor absoluto mayor que tres.

3.3.2 DESARROLLO DEL PROGRAMA DE IDENTIFICACIÓN DE PARÁMETROS ERRÓNEOS

3.3.2.1 Consideraciones de Diseño

Para el desarrollo del programa de identificación de parámetros erróneos, se realizan las siguientes consideraciones generales:

- Se utiliza el modelo "bus-branch" o "barra-rama" del sistema de potencia, es decir, no se modelan interruptores ni seccionadores. El modelo "busbranch" también se lo conoce como modelo consolidado y en esta tesis se utiliza con preferencia el término consolidado para referirse a este modelo.
- El programa realizará la identificación de los parámetros erróneos en base a los multiplicadores de Lagrange obtenidos para cada uno de los parámetros considerados.
- Se modelan tanto las líneas de transmisión y los transformadores en base a los parámetros de conductancia, susceptancia y susceptancia paralelo. Una vez que se identifique el parámetro erróneo, se procede a analizarlo fuera de línea con procedimientos creados para el efecto. Para el caso de transformadores se verifica en detalle el tap y la susceptancia y se omite la conductancia y susceptancia paralelo.
- El programa de identificación de parámetros erróneos realiza primero la estimación de estado convencional y una vez que obtiene la convergencia de la solución se determina si existen parámetros erróneos.

3.3.2.2 Descripción del Programa y Diagramas de Flujo

El programa de identificación de parámetros erróneos está desarrollado en MATLAB y está realizado en forma modular, debido a su complejidad y para que sea más fácil su edición y entendimiento del código.

El programa ejecuta cada uno de los pasos señalados en el ejemplo de la sección 3.2.1 aplicando ecuaciones generales de n barras que permitan su aplicación a cualquier sistema de potencia. El programa fue probado inicialmente con el sistema de ejemplo de 4 barras y posteriormente como parte

del alcance de esta tesis se aplicó al Sistema Nacional Interconectado del Ecuador S.N.I.

El programa consta de los siguientes módulos:

- Módulo Principal PSE_MAIN
- Módulo de Ingreso de Parámetros de Red y Mediciones (Interfaz de ingreso de datos):import_file
- Módulo de Cálculo de Y de barra: Y_BARRA
- Módulo de estimación de Estado convencional (Método WLS): WLS_SE
- Módulo de cálculo de Jacobiano de Mediciones y de inyecciones cero H_SE
- Módulo de cálculo de Jacobiano de parámetros: Hparam_SE
- Módulo de cálculo de Multiplicadores de Lagrange: Lagrange_SE
- Módulo de reporte de parámetros erróneos: report_PSE

3.3.2.2.1 Módulo principal PSE_MAIN

El módulo principal PSE_MAIN tiene el siguiente diagrama de flujo, figura 3.3:

3.3.2.2.2 Módulo de ingreso de Datos

Este módulo administra el ingreso de parámetros de la red y mediciones, lo cual caracterizará al sistema de potencia, en donde se van a detectar los parámetros erróneos. La interfaz para ingresar estos datos se detalla en la siguiente sección.

3.3.2.2.3 Módulo de cálculo de Y barra

Este módulo calcula la Y de barra considerando básicamente la ecuación 3.1 de este capítulo, esta matriz relaciona las inyecciones de corrientes y los voltajes de una barra. Cada elemento de la diagonal se obtiene sumando las admitancias de todas las ramas conectadas físicamente a esa barra, incluyendo los elementos paralelo (shunt).

Los elementos fuera de la diagonal son el valor con signo negativo de la admitancia que se forma entre la barra analizada y cada una de las demás barras.

Figura 3.4: Diagrama de flujo del módulo de estimador de estado convencional.

3.3.2.2.4 Módulo de Estimación de estado Convencional

En base al método de mínimos cuadrados ponderados WLS, en este módulo se calcula el jacobiano de las mediciones y se aplican las ecuaciones indicadas en el diagrama de flujo de la figura 3.4 para obtener una solución de estimación de estado.

3.3.2.2.5 Módulo de Cálculo de jacobianos H_x y C_x

Conocidas las funciones de mediciones h(x) para las inyecciones de potencia y para los flujos determinados en el módulo WLS_SE se aplican las derivadas generales indicadas en las ecuaciones (3.7) a (3.27) para calcular las matrices

$$\mathbf{H}_{\mathbf{x}} \ \mathbf{y} \ \mathbf{C}_{\mathbf{x}}$$
 .

3.3.2.2.6 Módulo de Cálculo de jacobianos H_p y C_p

Una vez obtenida la solución del módulo de estimador de estado convencional WLS_SE y conocidas las funciones de mediciones h(x) para las inyecciones de potencia y para los flujos determinadas en el módulo WLS_SE y considerando la matriz Y de barra expresada en función de los parámetros de red, se aplican las derivadas generales indicadas en las ecuaciones (3.32) a (3.65) para calcular las matrices H_p y C_p con los valores de las variables de estado de la última iteración de convergencia del estimador de estado.

3.3.2.2.7 Módulo de Cálculo de Multiplicadores de Lagrange normalizados λ_i^N

Una vez que se ha obtenido una solución en el módulo de estimador de estado, se calcularán los multiplicadores de Lagrange normalizados λ_i^N en base al diagrama de flujo de la figura 3.5.

3.3.2.2.8 Módulo de reporte de parámetros erróneos

Una vez que se han obtenido los multiplicadores de Lagrange normalizados λ_i^N si estos son mayores a 3 indicarían que el parámetro relacionado es sospechoso, por lo tanto, será incluido en un listado de salida de parámetros erróneos, luego de lo cual será necesario aplicar los procedimientos de corrección de datos erróneos dependiendo si es línea de transmisión o transformador.

Figura 3.5: Diagrama de flujo del módulo de cálculo de Multiplicadores de Lagrange.

3.4 DESARROLLO DE LA INTERFAZ

Uno de los objetivos principales de esta tesis es analizar los parámetros de red en los modelos de tiempo real (EMS) y fuera de línea (PowerFactory de DIgSILENT) del S.N.I. Por su naturaleza, cada modelo tiene sus propias particularidades, sin embargo, puesto que el objetivo final de cada modelo es posibilitar la operación del sistema de potencia, se debe crear una aplicación que pueda poner los dos modelos en una misma referencia, lo que se ha denominado en esta tesis como "Modelo de Referencia de Red".

Para cumplir con lo anterior, una interfaz fue desarrollada para obtener el modelo del EMS y el modelo de PowerFactory de DIgSILENT. Adicionalmente, esta interfaz adaptando los modelos de EMS y PowerFactory de DIgSILENT previamente obtenidos, crea el Modelo de Referencia de Red. Este modelo de referencia, toma como base principalmente el modelo de red del EMS, puesto

que para las simulaciones se utilizará directamente las mediciones del sistema de adquisición de datos de este sistema.

Como resultado de lo anterior, tres tablas de Excel son creadas para que sean importadas al ambiente de MATLAB.

Un diagrama que resume el diseño y funcionamiento de la interfaz es presentado en la figura 3.6.

Figura 3.6: Diagrama conceptual de la Interfaz EMS-PowerFactory de DIgSILENT-PSE.

3.4.1 CONSIDERACIONES DE DISEÑO

Como condiciones generales de diseño de la interfaz se tienen los siguientes:

- La interfaz utiliza el modelo consolidado de los dos sistemas, es decir, no se toman en cuenta equipos de seccionamiento como son seccionadores y disyuntores. Sin embargo de lo anterior, se crean banderas para identificar si el equipo está en línea o no y de esta manera pueda o no ser incluido dentro del modelo.
- La interfaz obtiene de los dos sistemas, entre otras, la siguiente información: barras y sus referencias, parámetros de red de líneas de transmisión y transformadores, referencias de barras a las que están conectadas las líneas y transformadores. Del EMS obtiene específicamente: datos de mediciones y su referenciamiento con relación a los equipos del sistema de potencia e información adicional para saber si el equipo está en línea o no.
- La interfaz crea un modelo de referencia de red al que puedan converger los modelos de red del EMS y de PowerFactory de DIgSILENT.
- El módulo principal de la interfaz que crea el Modelo de Referencia de Red del sistema fue desarrollado en Microsoft Access, que es una herramienta que posibilita el manejo de tablas de varias fuentes de información y que facilita la extracción de información común mediante el relacionamiento de estas tablas y la creación de consultas personalizadas.
- La interfaz consta de cuatro módulos, el primer módulo obtiene la información del modelo de red del EMS, el segundo módulo obtiene la información del modelo de red del PowerFactory de DIgSILENT, el tercer módulo crea el Modelo de Referencia de Red y el cuarto módulo convierte las tablas de Access en tablas de Excel para que puedan ser importadas a MATLAB.

3.4.2 DESARROLLO DE LA INTERFAZ

Para cumplir con las condiciones de diseño anotadas en la sección 3.3.1, a continuación se detallan los módulos de la interfaz.

3.4.2.1 Módulo de Obtención de Información del EMS

Este módulo utiliza la base de datos de tiempo real del EMS para obtener los datos de mediciones, del equipamiento que se encuentra en línea y el modelo de red en formato IEEE [55]. Toda esta información es obtenida mediante archivos de texto utilizando una herramienta propia del EMS para el manejo de su base de datos denominada dbl (Database Language) [56]. Estos archivos de texto son convertidos primero en archivos con formato "csv" (valores separados por comas) y luego en tablas de Excel para finalmente copiarlas a Access. Para esta conversión de archivos y su copia a Access se utiliza una aplicación creada en Excel.

3.4.2.2 Módulo de Obtención de Información de PowerFactory de DIgSILENT

Este módulo utiliza una herramienta propia de PowerFactory de DIgSILENT denominada DGS para obtener directamente el modelo de red en tablas de Access.

DGS es una interfaz que permite el intercambio de información con otros sistemas mediante archivos de Excel o tablas de Access [54]. Para la interpretación de esta información, se utiliza un archivo plano de extensión "dgs" que es generado conjuntamente con el caso exportado de PowerFactory de DIgSILENT y que contiene toda la información del mismo.

3.4.2.3 Módulo de Creación del Modelo de Referencia de Red

Este módulo crea el Modelo de Referencia de Red, utilizando los modelos de red del EMS y PowerFactory de DIgSILENT previamente obtenidos. El programa de identificación de parámetros erróneos está diseñado para utilizar directamente el Modelo de Referencia de Red.

El formato del Modelo de Referencia de Red está basado en el modelo de red de IEEE, al que se le han añadido algunos campos para incluir banderas que indican, por ejemplo, si la barra es una inyección cero, o si el equipo está en línea o no. Lo anterior, sirve principalmente para facilitar la programación en MATLAB.

El Modelo de Referencia de Red consta de tres tablas, que por facilidad en el manejo de la información se crean por duplicado, una tabla para el EMS y otra

para PowerFactory de DIgSILENT. El detalle de estas tablas es presentado a continuación:

3.4.2.3.1 Tablas BUS_EMS y BUS_DGS

Como fue mencionado en el punto anterior, se crean dos tablas duplicadas que tienen el mismo contenido y solo se diferencian en el nombre, esto permite tener un pleno control de la fuente de la información, su manejo independiente y la posibilidad de creación de aplicaciones futuras basadas en esta interfaz.

Las tablas BUS_EMS y BUS_DGS tienen un formato similar a la sección BUS_DATA del modelo IEEE de flujos de potencia. En la tabla 3.4, se presenta la estructura de las tablas BUS_EMS y BUS_DGS correspondiente a la información del sistema de prueba.

COD_B	L_MW	L_MVAR	G_MW	G_MVAR	BSVNOM	FLG_PIC	FLG_QIC
1	0	0	1,21	0,64	138	0	0
2	0	0	0	0	138	1	1
3	0,4	0,15	0	0	138	0	0
4	0,8	0,2	0	0	138	0	0

Donde:

COD_B: Referencia del Nodo del sistema

L_MW / L_MVAR: Potencia Activa / Reactiva de Cargas

G_MW / G_MVAR: Potencia Activa / Reactiva de Generación

BSVNOM: Voltaje Nominal del Nodo en Unidades de Ingeniería

FLG_PIC / FLG_QIC: Banderas que indican si la barra contiene mediciones de inyecciones cero para Potencia Activa y Reactiva. (0: No 1: Si).

3.4.2.3.2 Tablas BRANCH_EMS y BRANCH_DGS

Las tablas BRANCH_EMS y BRANCH_DGS tienen un formato similar a la sección BRANCH_DATA del modelo IEEE de flujos de potencia, con la diferencia de que aquí se incluyen también los compensadores, que sabiendo que no son ramas, facilitan la programación de la obtención de Y de barra, al utilizar una sola matriz para su cálculo. En este caso, la matriz puede provenir de dos sistemas: del EMS si se utiliza la matriz BRANCH_EMS o del PowerFactory de DIgSILENT

si se utiliza la matriz BRANCH_DGS. En la tabla 3.5, se presenta la estructura de las tablas BRANCH_EMS y BRANCH_DGS correspondiente a la información del sistema de prueba.

Tabla 3 5: Estructura d		DCSn	ara al sistema de r	aruoha
	IE TADIAS DRANCH	_DG3 p	Jara el sisterría de p	Jueba

B_F	B_T	R_PU	X_PU	B_PU	STATUS	TYPE_BR
1	2	0,066	0,24	0	1	0
1	4	0,012	0,25	0	1	0
2	3	0,0044	0,16	0	1	0

Donde:

- **B_F:** Referencia del Nodo Inicial "FROM" de la rama
- **B_T:** Referencia del Nodo Final "TO" de la rama
- **R_PU:** Resistencia de la rama en por unidad
- **X_PU:** Reactancia de la rama en por unidad
- B_PU: Susceptancia Total de la rama en por unidad

STATUS: Para identificar si el equipo está en línea.

- 0: Fuera de Servicio
- 1: En servicio

TYPE_BR: Indica el tipo de rama de la siguiente manera:

- 0: Líneas de Transmisión
- 1: Transformadores
- 2: Compensadores Shunt
- 3.4.2.3.3 Tablas MED_EMS y MED_DGS

Si bien la información de mediciones que utiliza el programa de estimación de parámetros proviene del EMS, se ha creado una tabla adicional MED_DGS como parte del diseño. La tabla MED_DGS no es utilizada en esta interfaz, pero ha sido creada para que en aplicaciones futuras basadas en esta interfaz, se puedan llevar los datos de mediciones del EMS al modelo de red de planeamiento utilizando PowerFactory de DIgSILENT.

Las tablas MED_EMS y MED_DGS contienen toda la información con respecto al sistema de medición del sistema de potencia y unifica en una sola tabla, las mediciones para barras, generación y carga que son presentados en las tablas BUS_EMS y BUS_DGS, así como los equipos contenidos en las tablas BRANCH_EMS y BRANCH_DGS.

En la tabla 3.6 se presenta la estructura de las tablas MED_EMS y MED_DGS para el sistema de prueba.

B_F	B_T	M_P/V_PU	SIG_V/P_PU	M_Q_PU	SIG_Q_PU	FLG_M	FLG_SIDE
3	0	0,91589	0,004	0	0	0	0
3	0	-0,39356	0,008	-0,15279	0,008	1	0
4	0	-0,79291	0,008	-0,19726	0,008	1	0
2	0	7,65E-06	0,008	0,0002131	0,008	3	0
1	2	0,40893	0,01	0,24095	0,01	4	0
1	4	0,79775	0,01	0,40645	0,01	4	0

Tabla 3.6: Estructura de Tablas MED_EMS y MED_DGS para el sistema de prueba

Donde:

B_F: Referencia del Nodo Inicial "FROM" de la rama o equipo de BUS_DAT

B_T: Referencia del Nodo Final "TO" de la rama. No aplica para equipos de BUS_DAT.

M_P/V_PU: Medición de Voltaje / Potencia Activa en por unidad

SIG_V/P_PU: Desviación Estándar en por unidad de Medición de Voltaje / Potencia Activa.

M_Q_PU: Medición de Potencia Reactiva en por unidad

SIG_Q_PU: Desviación Estándar en por unidad de Medición de Potencia Reactiva.

FLG_M: Indica el tipo de medición de la siguiente manera:

- 0: Medición de Voltaje
- 1: Medición de Potencia Activa / Reactiva de Carga
- 2: Medición de Potencia Activa / Reactiva de Generación
- 3: Medición de Inyección Cero de Potencia Activa / Reactiva

4: Medición de Potencia Activa / Reactiva de Líneas

5: Medición de Potencia Activa / Reactiva de Transformadores

FLG_SIDE: Indica si la medición corresponde al lado inicial "FROM" o al lado final "TO" de la rama.

0: Medición en Lado "From"

1: Medición en Lado "To"

3.4.2.4 Módulo de Creación de Tablas en Excel

Este módulo copia las tablas de Access del modelo de referencia de red a formato Excel para que puedan ser importadas al ambiente de MATLAB, en donde se desarrolló el programa de identificación de parámetros erróneos.

3.5 DESARROLLO DEL PROGRAMA DE CORRECCIÓN DE PARÁMETROS ERRÓNEOS

Una vez identificados los parámetros erróneos debe realizarse la corrección de los mismos, para ello es necesario identificar el tipo de equipo, es decir definir si se trata de una línea de transmisión o un transformador de dos o tres devanados.

Una vez identificado el tipo de equipo se aplicará el módulo de cálculo de parámetros correspondiente. Por lo tanto, para la realización de la corrección de parámetros erróneos se han programado en MATLAB tres módulos de cálculo de parámetros en base a mediciones de PMU. Estos son:

- Módulo de cálculo de parámetros de línea de transmisión: Parámetros_L/T
- Módulo de cálculo de parámetros de transformador de dos devanados: Parámetros_Traf2D
- Módulo de cálculo de parámetros de transformador de tres devanados: Parámetros_Traf2D
- 3.5.1 MÓDULO DE CÁLCULO DE PARÁMETROS DE LÍNEAS DE TRANSMISIÓN

Una vez identificada la línea de transmisión que contiene parámetros erróneos, se procede a la aplicación de cálculo de parámetros que se esquematiza en el diagrama de flujo de la figura 3.7, después de verificar las siguientes condiciones:

- Existen PMUs instalados en los extremos de la línea
- Debe descargarse la información de los PMUs en un formato que permita obtener todas las variables
- Considerar las unidades de las mediciones de voltaje, potencia activa, reactiva y ángulos proporcionadas por los PMUs

Figura 3.7: Diagrama de flujo del módulo de cálculo de parámetros de una L/T en base a datos de PMUs

3.5.2 MÓDULO DE CÁLCULO DE PARÁMETROS DE TRANSFORMADORES DE DOS DEVANADOS

Una vez identificado el transformador de dos devanados que contiene parámetros erróneos, se procede a la aplicación de cálculo de parámetros que se esquematiza en el diagrama de flujo de la figura 3.8, después de verificar las siguientes condiciones:

- Existen PMUs instalados en los extremos del transformador.
- Debe descargarse la información de los PMUs en un formato que permita obtener todas las variables.
- Considerar las unidades de las mediciones de voltaje, potencia activa, reactiva y ángulos proporcionadas por los PMUs.

Figura 3.8: Diagrama de flujo del módulo de cálculo de parámetros de un transformador de dos devanados en base a datos de PMUs

3.5.3 MÓDULO DE CÁLCULO DE PARÁMETROS DE TRANSFORMADORES DE TRES DEVANADOS

Una vez identificado el transformador de tres devanados que contiene parámetros erróneos, se procede a la aplicación de cálculo de parámetros que se esquematiza en el diagrama de flujo de la figura 3.9, después de verificar las siguientes condiciones:

• Existen PMUs instalados en dos extremos del transformador.

- Debe descargarse la información de los PMUs en un formato que permita obtener todas las variables.
- Considerar las unidades de las mediciones de voltaje, potencia activa, reactiva y ángulos proporcionadas por los PMUs.

Figura 3.9: Diagrama de flujo del módulo de cálculo de parámetros de un transformador de tres devanados en base a datos de PMUs

CAPÍTULO 4.

4.1 APLICACIÓN A MODELOS DE TIEMPO REAL Y FUERA DE LÍNEA DEL S.N.I.

En este capítulo se presentan los principales resultados de la aplicación del programa de identificación y corrección de parámetros erróneos al S.N.I. Utilizando el programa desarrollado de identificación de parámetros erróneos se aplica a los modelos de tiempo real y fuera de línea en las principales condiciones de demanda del Sistema Nacional Interconectado en tres escenarios:

- Demanda máxima.
- Demanda media.
- Demanda mínima.

Se realiza un análisis y comparación de resultados.

También se presentan ejemplos de aplicación práctica de corrección de parámetros erróneos con información de los PMUs instalados en el Ecuador y determinación de parámetros de transformadores de tres devanados para la modelación en tiempo real en base a protocolos de prueba del fabricante.

4.2 INTRODUCCIÓN

El S.N.I. del Ecuador tiene una demanda máxima proyectada para el año 2015 de alrededor de 3600 MW y una demanda de energía proyectada de alrededor de 22631 GWh. El parque generador del sistema está conformado por 57% de generación hidroeléctrica, 40% de generación térmica, 2.9% de importaciones por interconexiones internacionales y 0.1% de generación renovable (solar y eólica).

Los niveles de voltaje del sistema de transmisión son 230 y 138 kV que se proyecta ser expandidos a una red de 500 kV (Extra Alto Voltaje) para el año 2016. El Ecuador cuenta además con una interconexión eléctrica con Colombia con una capacidad de 250 MW y otra interconexión eléctrica con Perú con una capacidad de 90 MW, ésta última utilizada mediante transferencia de carga entre los dos países.

El Operador Nacional de Electricidad CENACE dispone para la operación del S.N.I. del sistema de tiempo real EMS cuyo nombre comercial es Network Manager, versión 3, o NMR3, provisto por ABB Estados Unidos. Este sistema se encuentra en proceso de actualización para disponer de la última versión de EMS disponible por parte de ABB denominado Network Manager versión 6.3, o NM6.3.

El software disponible para el análisis del S.N.I. fuera de línea es el programa PowerFactory de DIgSILENT de Power Factory versión 15.1.4.

Los elementos modelados en los sistemas de tiempo real y fuera de línea son los siguientes:

Doscrinción	EMS	PowerFactory de DIgSILENT				
Descripcion	Total	Total	Р	arcial		
			790	Colombia		
Líneas de Transmisión	157	1110	237	Ecuador		
			83	Perú		
Tropoformo donos do dos			231	Colombia		
devanados	238	400	164	Ecuador		
			5	Perú		
turn of our of our of o turns			161	Colombia		
devanados	68	247	70	Ecuador		
			16	Perú		
		230	171	Colombia		
Generadores	238		58	Ecuador		
			1	Perú		
				Colombia		
Cargas	289	619 <u>188</u> 24	188	Ecuador		
			24	Perú		
				Colombia		
Compensadores	65	129	41	Ecuador		
			9	Perú		
Barras reales	627					
Interruptores	2103	5111	2121	Colombia		
interruptores	2103	5111	2990	Ecuador		
Mediciones	5732					

Tabla 4.1: Elementos utilizados en los modelos de red en los Sistemas EMS y Fuera de Línea

Los casos de análisis que se presentan en este capítulo fueron obtenidos del sistema EMS y del sistema fuera de línea PowerFactory de DIgSILENT y llevados al programa de identificación de parámetros erróneos mediante la interface desarrollada para este propósito, para obtener los multiplicadores de Lagrange mayores que tres que permitan identificar los parámetros erróneos.

En base a los multiplicadores de Lagrange se define dónde se encuentran los parámetros erróneos y una vez que se identifican los equipos relacionados, es decir, si es un transformador o una línea de transmisión, se aplica el programa correspondiente de corrección de parámetros en base a información obtenida de los PMUs, según lo detallado en el Capítulo 3.

4.3 ESCENARIOS DE SIMULACIÓN

En Ecuador, según el documento de Codificación del Reglamento de Tarifas Eléctricas vigente, existen dos estaciones en el año que consideran las condiciones hidrológicas, las cuales se presentan en la tabla 4.2 y son:

- Estación de Baja Hidrología o Estación Seca
- Estación de Alta Hidrología o Estación Lluviosa

Tabla 4.2: Estaciones Hidrológicas de Ecuador

Estación	Período
Seca	Octubre - Marzo
Lluviosa	Abril -Septiembre

En cada una de estas estaciones se consideran los siguientes períodos horarios de demanda:

Tabla 4.3: Per	íodos de	Demanda	en	Ecuador
----------------	----------	---------	----	---------

DEMANDA	Período
Domanda do Dunta	17:00 a 22:00 de
Demanua de Pulita	lunes a domingo
Domanda Modia	07:00 a 17:00 de
Demanda Media	lunes a viernes
Domanda Paso	Las restantes horas
Demailua Base	de la semana

Considerando básicamente las condiciones de demanda del S.N.I. se han preparado tres escenarios de prueba, a los cuales se les ha aplicado el algoritmo de identificación de parámetros erróneos. Estos escenarios se basan en casos obtenidos de los sistemas EMS y PowerFactory de DIgSILENT en condición de alta hidrología.

Todos los escenarios utilizan las mediciones obtenidas del sistema EMS, de manera que la principal variación entre un escenario de EMS y un escenario PowerFactory de DIgSILENT son los parámetros de los elementos de red.

Considerando que los modelos de los sistemas EMS y PowerFactory de DIgSILENT principalmente presentan variaciones en la forma de modelar los transformadores; para las simulaciones de los casos tomados de los sistemas de tiempo real y fuera de línea se han considerado a las líneas de transmisión y a los transformadores con el modelo π desarrollado en el Capítulo 2. En el caso específico de los transformadores se los ha modelado como una reactancia equivalente que considera las posiciones de tap y LTC si las tuviera, con un valor cero de susceptancia.

Los casos de simulación fueron obtenidos con el programa de interface que obtiene la información de los sistemas EMS y PowerFactory de DIgSILENT y forma un modelo de referencia común para los dos sistemas donde la principal diferencia serán los parámetros de los elementos de red.

Los escenarios modelados fueron revisados a fin de asegurar la observabilidad y condiciones de topología que no limiten la convergencia de los casos de estudio. Los escenarios simulados son:

	Escenarios Simulados						
Item	Demanda	Sistema					
1		Sistema de Tiempo Real EMS					
	Máxima	Sistema Fuera de Línea					
2		PowerFactory de DIgSILENT					
3		Sistema de Tiempo Real EMS					
	Media	Sistema Fuera de Línea					
4		PowerFactory de DIgSILENT					
5		Sistema de Tiempo Real EMS					
	Baja	Sistema Fuera de Línea					
6		PowerFactory de DIgSILENT					

Tabla 4.4: Escenarios Sin	nulados
---------------------------	---------

Los principales resultados de las simulaciones realizadas se presentan en las siguientes secciones de este capítulo y corresponden básicamente a los Multiplicadores de Lagrange normalizados y los residuales mayores que tres obtenidos ordenados en forma descendente considerando su valor absoluto.

4.4 ESCENARIO DE MÁXIMA DEMANDA

Este escenario dispone las siguientes características:

Descripción	Número
Demanda	2646,7 MW
No. Barras	350
No. Ramas	408
Sbase	100 MVA
Hora:	20:00
Mes	abril

Tabla 4.5: Escenario de Demanda Máxima

4.4.1 SISTEMA DE TIEMPO REAL EMS

Al realizar la simulación del escenario de Demanda Máxima del sistema EMS en el programa de identificación de parámetros erróneos se han obtenido los siguientes resultados, tabla 4.6:

• Multiplicadores de Lagrange normalizados mayores que tres ordenados en orden descendente:
No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	Lagrange	abs (Lagrange)	Equipment
1	381	384	0	0,01434	0	JAMO AF1	240,45	240,45	3X
2	381	387	0,02111	0,17019	0,34786	JAMO-SBER2 230	111,81	111,81	LINE
3	381	387	0,02111	0,17019	0,34786	JAMO-SBER1 230	111,05	111,05	LINE
4	137	140	0	0,04545	0	POMA ATU	63,63	63,63	3X
5	286	297	0,00634	0,02492	0,00625	CONO-VICE 138	30,77	30,77	LINE
6	382	391	0,25005	0,65462	0,0895	JAMO-PANA 115	-27,8	27,8	LINE
7	160	166	0	0,053	0	MILA ATK	-25,81	25,81	3X
8	391	388	0	0,4985	0	PANA TF1	-23,7	23,7	2X
9	194	206	0	0,02735	0	SROS ATU	-15,03	15,03	3X
10	217	221	0	0,11727	0	SELE ATQ	15	15	3X
11	1	25	0,02108	0,17126	0,3459	MOLI PASC 1 230	14,47	14,47	LINE
12	25	33	0	0,023506	0	PASC ATU	13,07	13,07	3X
13	138	286	0,01469	0,05402	0,01324	POMA VICE 2 138	12,88	12,88	LINE
14	195	297	0,00814	0,03234	0,00811	CONO-SROS 138	12,76	12,76	LINE
15	160	167	0	0,050785	0	MILAATU	11,79	11,79	3X
16	137	194	0,00435	0,04348	0,08517	POMA SROS2 230	10,67	10,67	LINE
17	217	222	0	-0,02468	0	SELE ATR	-10	10	3X
18	25	36	0	0,020474	0	PASC ATT	-9,12	9,12	3X
19	160	340	0,01349	0,10788	0,22546	MILA ZHOR 1 230	8,7	8,7	LINE
20	160	340	0,01349	0,10788	0,22546	MILA ZHOR 2 230	8,55	8,55	LINE
21	137	194	0,00435	0,04348	0,08517	POMA SROS1 230	8,32	8,32	LINE
22	19	23	0	0,284393	0	ESMERALDAS AA1	-8	8	3X
23	137	381	0.02178	0 10/53	0 387/17	JAMO-POMA 4	7.05	7.05	LINE
23	137	194	0.01236	0 10212	0,38747	SBOS TOTO2 230	7,05	7,05	
24		134	0,01230	0,10212	0,13043	JAMO-POMA 1	1	/	LINE
25	137	381	0,02178	0,19453	0,38747	230	6,92	6,92	LINE
26	138	286	0,01469	0,05402	0,01324	POMA VICE 1 138	6,92	6,92	LINE
27	25	211	0,003976	0,03181	0,06647	ESCL-PASC	6,91	6,91	LINE
28	137	381	0,02178	0,19453	0,38747	JAMO-POMA 2 230	6,44	6,44	LINE
29	235	238	0	0,143765	0	AGOYAN MTU2	6	6	2X
30	340	349	0,00481	0,04847	0,09325	SINI ZHOR 1 230	5,93	5,93	LINE
31	137	381	0,02178	0,19453	0,38747	JAMO-POMA 3 230	5,73	5,73	LINE
32	223	286	0,0524	0,19322	0,04688	MULA-VICE 138	5,73	5,73	LINE
33	44	194	0,01236	0,10212	0,19845	SROS TOTO1 230	5,55	5,55	LINE
34	194	209	0	0,02735	0	SROS ATT	5,49	5,49	3X
35	1	25	0,02108	0,17126	0,346	MOLI PASC 2 230	-5,29	5,29	LINE
36	19	24	0	0,4345	0	ESMERALDAS AA2	5,1	5,1	3X
37	52	56	0	0,441025	0	AMBATO AT2	-3,03	3,03	3X
38	177	183	0	0,2019	0	IBARRA ATR	-3,02	3,02	3X

 Tabla 4.6: Multiplicadores de Lagrange mayores que tres obtenidos simulando datos del sistema EMS en demanda máxima

• Residuales normalizados mayores que tres ordenados en orden descendente:

No	BUS	Station	Туре	RESIDUAL	abs (residual)	No	BUS	Station	Туре	RESIDUAL	abs (residual)
1	382	JAMONDIN	INJ	172,78	172,78	41	138	POMASQUI	INJ	6,69	6,69
2	381	JAMONDIN	LINE	-77	77	42	195	S_ROSA	LINE	-6,51	6,51
3	386	C_BETANI	INJ	-62,22	62,22	43	138	POMASQUI	LINE	6,41	6,41
4	5	MOLINO	INJ	-60,08	60,08	44	391	PANAMERI	2X	-6,39	6,39
5	381	JAMONDIN	LINE	-51,64	51,64	45	194	S ROSA	LINE	5,96	5,96
6	231	BANOS	LINE	46,96	46.96	46	137	POMASQUI	LINE	-5.69	5.69
7	387	S_BERNAR	INJ	-43,43	43,43	47	381	JAMONDIN	INJ	-5,52	5,52
8	386	C_BETANI	INJ	42,5	42,5	48	194	S_ROSA	LINE	5,35	5,35
9	381	JAMONDIN	3X	42,12	42,12	49	310	C_ASAN_D	INJ	5,29	5,29
10	137	POMASQUI	3X	36,38	36,38	50	177	IBARRA	INJ	-4,99	4,99
11	387	S_BERNAR	INJ	-34,23	34,23	51	317	C_ASAN_D	2X	4,98	4,98
12	121	D_CERRIT	INJ	26,86	26,86	52	137	POMASQUI	LINE	-4,76	4,76
13	286	VICENTIN	LINE	25,27	25,27	53	44	TOTORAS	LINE	4,58	4,58
14	350	SININCAY	INJ	24,98	24,98	54	25	PASCUALE	LINE	4,4	4,4
15	297	CONOCOTO	LINE	-24,32	24,32	55	177	IBARRA	INJ	-4,24	4,24
16	359	C_BABA	INJ	-22,29	22,29	56	137	POMASQUI	LINE	-4,21	4,21
17	393	ZORRITOS	INJ	21,78	21,78	57	160	MILAGRO	3X	4,14	4,14
18	387	S_BERNAR	LINE	21,38	21,38	58	137	POMASQUI	LINE	-4,07	4,07
19	286	VICENTIN	LINE	-13,68	13,68	59	1	MOLINO	LINE	4	4
20	361	C_ATIN_D	INJ	13,09	13,09	60	177	IBARRA	INJ	-3,98	3,98
21	381	JAMONDIN	INJ	-12,87	12,87	61	235	C_AGOYAN	LINE	3,96	3,96
22	360	C_BABA	INJ	12,45	12,45	62	26	POLICENT	LINE	-3,87	3,87
23	1	MOLINO	LINE	11,86	11,86	63	25	PASCUALE	LINE	-3,82	3,82
24	169	CUENCA	INJ	11,21	11,21	64	340	ZHORAY	LINE	-3,82	3,82
25	160	MILAGRO	3X	-10,83	10,83	65	386	C_BETANI	INJ	-3,71	3,71
26	194	S_ROSA	3X	-10,6	10,6	66	340	ZHORAY	LINE	-3,7	3,7
27	391	PANAMERI	LINE	-10,56	10,56	67	286	VICENTIN	LINE	-3,67	3,67
28	387	S_BERNAR	LINE	10,46	10,46	68	177	IBARRA	INJ	-3,66	3,66
29	58	PORTOVIE	LINE	-9,95	9,95	69	137	POMASQUI	LINE	-3,58	3,58
30	350	SININCAY	INJ	-9,83	9,83	70	386	C_BETANI	INJ	3,57	3,57
31	160	MILAGRO	3X	9,48	9,48	71	58	PORTOVIE	3X	3,51	3,51
32	312	C_ASAN_D	INJ	8,55	8,55	72	122	D_CERRIT	LINE	3,48	3,48
33	163	MILAGRO	LINE	8,03	8,03	73	296	BABA	LINE	-3,42	3,42
34	58	PORTOVIE	LINE	7,71	7,71	74	349	SININCAY	3X	-3,41	3,41
35	45	TOTORAS	LINE	7,51	7,51	75	25	PASCUALE	LINE	3,38	3,38
36	361	C_ATIN_D	INJ	7,5	7,5	76	160	MILAGRO	LINE	-3,33	3,33
37	160	MILAGRO	LINE	7,36	7,36	77	194	S_ROSA	LINE	-3,29	3,29
38	137	POMASQUI	LINE	-6,86	6,86						
39	298	CONOCOTO	INJ	6,84	6,84						
40	358	C_BABA	2X	-6,73	6,73						

 Tabla 4.7: Residuales normalizados mayores que tres obtenidos simulando datos del sistema

 EMS en demanda máxima.

4.4.2 SISTEMA FUERA DE LÍNEA PowerFactory de DIgSILENT

Los resultados obtenidos de la simulación del escenario de Demanda Máxima del sistema PowerFactory de DIgSILENT en el programa de identificación de parámetros erróneos son los presentados a continuación en la tabla 4.8:

• Multiplicadores de Lagrange normalizados mayores a tres ordenados en forma descendente:

 Tabla 4.8: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema

 PowerFactory de DIgSILENT en demanda máxima.

No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	KV	Lagrange	abs (Lagrange)	
1	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_1_2	230	28,84	28,84	LINE
2	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_2_2	230	28,84	28,84	LINE
3	38	77	0,00521	0,01924	0,72464	L_QUEV_SGRE_2_2_A	138	-25,17	25,17	LINE
4	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_1	138	6,26	6,26	LINE
5	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_2	138	6,26	6,26	LINE
6	343	340	0,00019	0,00187	0,43478	L_MAZA_ZHOR_1	230	-5,78	5,78	LINE
7	343	340	0,00019	0,00187	0,43478	L_MAZA_ZHOR_2	230	-5,78	5,78	LINE
8	81	85	0,05418	0,16598	0,72464	L_DPER_CHON_1	138	4,93	4,93	LINE
9	217	222	0	-0,02468	0	ATR STA. ELENA		-4,85	4,85	3X
10	25	33	0	0,023506	0	ATU PASCUALES		4,81	4,81	3X
11	186	211	0,00050	0,00405	0,43478	L_TRIN_ESCL_1	230	-4,62	4,62	LINE
12	235	94	0,04880	0,11604	0,72464	L_AGOY_PUYO	138	-4,50	4,50	LINE
13	19	23	0	0,284393	0	AA1 ESMERALDAS		-4,03	4,03	3X
14	228	230	0	-0,004516	0	ΑΤQ ΒΑΒΑΗΟΥΟ		3,98	3,98	3X
15	94	173	0,07351	0,17480	0,72464	L_PUYO_TENA	138	3,84	3,84	LINE
16	138	295	0,00495	0,01828	0,72464	L_VICE_GUAN_1	138	3,76	3,76	LINE
17	217	221	0	0,11727	0	ATQ STA. ELENA		3,74	3,74	3X
18	1	25	0,02105	0,16836	0,43478	L_MOLI_PASC_2_1	230	-3,53	3,53	LINE
19	1	25	0,02105	0,16836	0,43478	L_MOLI_PASC_2_2	230	-3,53	3,53	LINE
20	160	167	0	0,050785	0	ATU MILAGRO		3,41	3,41	3X
21	168	90	0,11405	0,34940	0,72464	L_CUEN_LOJA_1	138	-3,10	3,10	LINE
22	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_1	230	-3,00	3,00	LINE
23	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_2	230	-3,00	3,00	LINE
24	177	183	0	0,2019	0	ATR IBARRA		3,00	3,00	3X

 Residuales normalizados mayores que tres ordenados en forma descendente:

No	BUS	Station	Туре	RESIDUAL	abs (residual)	No	BUS	Station	Туре	RESIDUAL	abs (residual)
1	37	QUEVEDO	LINE	90,34	90,34	33	45	TOTORAS	LINE	11,68	11,68
2	382	JAMONDIN	INJ	78,13	78,13	34	177	IBARRA	INJ	-11,26	11,26
3	78	S_GREGORIO	LINE	65,58	65,58	35	5	MOLINO	INJ	-11,21	11,21
4	343	MAZAR	LINE	57,46	57,46	36	211	ESCLUSAS	LINE	-10,49	10,49
5	173	TENA	LINE	-51,98	51,98	37	138	POMASQUI	INJ	10,22	10,22
6	19	ESMERALDAS	LINE	-46,71	46,71	38	340	ZHORAY	LINE	-8,85	8,85
7	381	JAMONDIN	3X	40,6	40,6	39	186	TRINITARIA	LINE	8,76	8,76
8	150	SALITRAL	LINE	30,64	30,64	40	387	S_BERNAR	LINE	8,29	8,29
9	295	GUANGOPOLO	LINE	-29,45	29,45	41	317	C_ASAN_D	2X	7,63	7,63
10	387	S_BERNAR	INJ	-28,67	28,67	42	297	солосото	LINE	-7,24	7,24
11	386	C_BETANI	INJ	-28,51	28,51	43	138	POMASQUI	LINE	7,18	7,18
12	90	LOJA	LINE	-28,07	28,07	44	231	BANOS	LINE	7,01	7,01
13	137	POMASQUI	3X	26,82	26,82	45	286	VICENTIN	LINE	6,95	6,95
14	163	MILAGRO	LINE	26,33	26,33	46	177	IBARRA	INJ	-6,84	6,84
15	85	CHONE	LINE	26,21	26,21	47	160	MILAGRO	LINE	6,52	6,52
16	160	MILAGRO	3X	26,01	26,01	48	361	C_ATIN_D	INJ	6,44	6,44
17	393	ZORRITOS	INJ	25,47	25,47	49	25	PASCUALE	LINE	5,99	5,99
18	286	VICENTIN	LINE	-20,89	20,89	50	381	JAMONDIN	LINE	-5,82	5,82
19	25	PASCUALE	LINE	-18,13	18,13	51	217	STA. ELENA	LINE	5,3	5,3
20	228	BABAHOYO	LINE	-18,1	18,1	52	386	C_BETANI	INJ	5,2	5,2
21	160	MILAGRO	3X	17,81	17,81	53	340	ZHORAY	LINE	-5,04	5,04
22	94	Ρυγο	LINE	-17,62	17,62	54	194	S_ROSA	LINE	4,61	4,61
23	25	PASCUALE	LINE	17,46	17,46	55	1	MOLINO	LINE	4,57	4,57
24	160	MILAGRO	3X	-16,27	16,27	56	177	IBARRA	INJ	-4,5	4,5
25	121	D_CERRIT	INJ	15,23	15,23	57	194	S_ROSA	LINE	4,25	4,25
26	160	MILAGRO	LINE	-14,9	14,9	58	58	PORTOVIE	LINE	4,19	4,19
27	359	C_BABA	INJ	-14,84	14,84	59	169	CUENCA	INJ	4,16	4,16
28	350	SININCAY	INJ	14,67	14,67	60	286	VICENTIN	LINE	-4,14	4,14
29	177	IBARRA	INJ	-13,65	13,65	61	310	C_ASAN_D	INJ	3,36	3,36
30	312	C_ASAN_D	INJ	13,2	13,2	62	381	JAMONDIN	LINE	-3,35	3,35
31	386	C_BETANI	INJ	12,76	12,76	63	387	S_BERNAR	LINE	3,15	3,15
32	235	C_AGOYAN	LINE	12,05	12,05						

Tabla 4.9: Residuales normalizados mayores a tres obtenidos simulando datos del sistemaPowerFactory de DIgSILENT en demanda máxima.

4.4.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO DE DEMANDA MÁXIMA

Se presenta un cuadro comparativo referencial de los resultados principales del escenario de demanda máxima:

Demanda Máxima											
	EI	٧S		PowerFactory	de DIgSILENT						
Descripción	Multiplicadores de Lagrange	Residual	es	Multiplicadores de Lagrange	Residuales						
Número	39 77			24 63							
Máximo valor abs.	240,45	172,78		28,84	90,34						
	JAMO AF1	JAMONDIN	INJ	L_QUEV_SGRE_1_2	QUEVEDO	LINE					
	JAMO-SBER2 230	JAMONDIN	LINE	L_QUEV_SGRE_2_2	JAMONDIN	INJ					
	JAMO-SBER1 230	C_BETANI	INJ	L_QUEV_SGRE_2_2_A	S_GREGORIO	LINE					
	POMA ATU	MOLINO	INJ	L_PASC_SALI_1_1	MAZAR	LINE					
10 primoros itoms	CONO-VICE 138	JAMONDIN	LINE	L_PASC_SALI_1_2	TENA	LINE					
to primeros items	JAMO-PANA 115	BANOS	LINE	L_MAZA_ZHOR_1	ESMERALDAS	LINE					
	MILA ATK	S_BERNAR	INJ	L_MAZA_ZHOR_2	JAMONDIN	3X					
	PANA TF1	C_BETANI	INJ	L_DPER_CHON_1	SALITRAL	LINE					
	SROS ATU	JAMONDIN	3X	ATR STA. ELENA	GUANGOPOLO	LINE					
	SELE ATQ	POMASQUI	3X	ATU PASCUALES	S_BERNAR	INJ					

 Tabla 4.10: Resumen de resultados obtenidos en demanda máxima.

4.5 ESCENARIO DE DEMANDA MEDIA

Este escenario dispone las siguientes características:

Descripción	Número
Demanda	2419,2 MW
No. Barras	346
No. Ramas	405
Sbase	100 MVA
Hora:	13:30
Mes	abril

Tabla 4.11: Escenario De	emanda Media
--------------------------	--------------

4.5.1 SISTEMA DE TIEMPO REAL EMS

Al realizar la simulación del escenario de Demanda Media del sistema EMS en el programa de identificación de parámetros erróneos se han obtenido los siguientes resultados, tabla 4.12: • Multiplicadores de Lagrange normalizados mayores a tres ordenados en forma descendente:

No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	Lagrange	abs (Lagrange)	Equipment
1	137	140	0	0,04545	0	POMA ATU	30,06	30,06	3X
2	158	164	0	0,053	0	MILA ATU	26,8	26,8	3X
3	393	390	0	0,4985	0	PANA TF1	-25,7	25,7	2X
4	37	296	0,004885	0,039081	0,08167	BABA-QUEV2 230	-21,26	21,26	LINE
5	1	25	0,02108	0,17126	0,3459	MOLI-PASC1 230	13,91	13,91	LINE
6	122	158	0,00477	0,03897	0,07806	DCER-MILA 230	13,85	13,85	LINE
7	25	33	0	0,023506	0	PASC ATU	13,78	13,78	3X
8	1	25	0,02108	0,17126	0,346	MOLI-PASC2 230	12,94	12,94	LINE
9	66	296	0,006731	0,053844	0,11253	BABA-SDOM2 230	12,83	12,83	LINE
10	158	165	0	0,050785	0	MILA ATK	-11,89	11,89	3X
11	25	158	0,00589	0,04709	0,0984	MILA-PASC 230	11,75	11,75	LINE
12	286	297	0,00634	0,02492	0,00625	CONO-VICE 138	11,73	11,73	LINE
13	192	204	0	0,02735	0	SROS ATU	-11	11	3X
14	25	122	0,0011	0,00901	0,01807	DCER-PASC 230	9,86	9,86	LINE
15	137	192	0,00435	0,04348	0,08517	POMA-SROS1 230	9,49	9,49	LINE
16	137	192	0,00435	0,04348	0,08517	POMA-SROS2 230	8,44	8,44	LINE
17	388	389	0,00898	0,1275	0,27569	BETA-BERN2 230	7,99	7,99	LINE
18	388	389	0,00898	0,1275	0,27569	BETA-BERN1 230	7,82	7,82	LINE
19	25	36	0	0,020474	0	PASC ATT	7,64	7,64	3X
20	37	350	0,0011	0,00901	0,01807	CQUE-QUEV 230	7,25	7,25	LINE
21	25	209	0,003976	0,03181	0,06647	ESCL-PASC 230	6,72	6,72	LINE
22	192	207	0	0,02735	0	SROS ATT	6,53	6,53	3X
23	383	389	0,02111	0,17019	0,34786	JAMO-SBER1 230	6,11	6,11	LINE
24	150	156	0	0,0683	0	SALI ATR	-5,15	5,15	3X
25	150	157	0	0,0643	0	SALI ATQ	-5,05	5,05	3X

 Tabla 4.12: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema

 EMS en demanda media.

• Residuales normalizados mayores que tres ordenados en forma descendente:

No	BUS	Station	Туре	RESIDUAL	abs (residual)	No	BUS	Station	Туре	RESIDUAL	abs (residual)
1	387	S_BERNAR	INJ	29,92	29,92	33	361	C_ATIN_D	INJ	8,29	8,29
2	296	BABA	LINE	-28,52	28,52	34	25	PASCUALE	LINE	7,98	7,98
3	387	S_BERNAR	INJ	28,01	28,01	35	297	CONOCOTO	2X	-7,71	7,71
4	393	ZORRITOS	INJ	24,36	24,36	36	160	MILAGRO	LINE	-7,66	7,66
5	226	BABAHOYO	3X	-23,62	23,62	37	361	C_ATIN_D	INJ	7,46	7,46
6	163	MILAGRO	LINE	23,11	23,11	38	310	C_ASAN_D	INJ	7,37	7,37
7	160	MILAGRO	3X	-22,32	22,32	39	359	C_BABA	INJ	5,62	5,62
8	382	JAMONDIN	INJ	-22,28	22,28	40	122	D_CERRIT	LINE	-5,32	5,32
9	121	D_CERRIT	INJ	19,96	19,96	41	296	BABA	LINE	5,08	5,08
10	381	JAMONDIN	INJ	-17,92	17,92	42	381	JAMONDIN	LINE	5	5
11	391	PANAMERI	2X	-17,73	17,73	43	25	PASCUALE	LINE	4,99	4,99
12	226	BABAHOYO	LINE	-17,6	17,6	44	387	S_BERNAR	LINE	-4,85	4,85
13	386	C_BETANI	INJ	16,99	16,99	45	286	VICENTIN	LINE	4,7	4,7
14	386	C_BETANI	INJ	-16,46	16,46	46	350	SININCAY	INJ	-4,67	4,67
15	387	S_BERNAR	INJ	-16,45	16,45	47	194	S_ROSA	3X	-4,63	4,63
16	160	MILAGRO	3X	15,9	15,9	48	387	S_BERNAR	LINE	-4,58	4,58
17	386	C_BETANI	INJ	15,71	15,71	49	286	VICENTIN	LINE	-4,5	4,5
18	235	C_AGOYAN	LINE	14,63	14,63	50	194	S_ROSA	LINE	4,5	4,5
19	386	C_BETANI	INJ	12,15	12,15	51	163	MILAGRO	LINE	-4,3	4,3
20	350	SININCAY	INJ	11,02	11,02	52	386	C_BETANI	LINE	4,27	4,27
21	58	PORTOVIE	LINE	-10,82	10,82	53	209	ESCLUSAS	LINE	-4,05	4,05
22	58	PORTOVIE	LINE	10,77	10,77	54	194	S_ROSA	LINE	-3,97	3,97
23	391	PANAMERI	LINE	-10,41	10,41	55	298	солосото	INJ	3,73	3,73
24	122	D_CERRIT	LINE	10,34	10,34	56	137	POMASQUI	LINE	-3,63	3,63
25	160	MILAGRO	LINE	-10,16	10,16	57	25	PASCUALE	LINE	3,54	3,54
26	297	солосото	LINE	-9,92	9,92	58	298	солосото	INJ	3,49	3,49
27	1	MOLINO	LINE	9,81	9,81	59	286	VICENTIN	LINE	3,49	3,49
28	194	S_ROSA	3X	9,68	9,68	60	25	PASCUALE	LINE	-3,35	3,35
29	210	ESMERALD	LINE	-9,34	9,34	61	194	S_ROSA	3X	-3,27	3,27
30	138	POMASQUI	LINE	9,19	9,19	62	1	MOLINO	3X	3,27	3,27
31	166	CUENCA	LINE	-9,17	9,17	63	138	POMASQUI	INJ	3,23	3,23
32	137	POMASQUI	3X	9,07	9,07						

 Tabla 4.13: Residuales normalizados mayores de tres obtenidos simulando datos del sistema

 EMS en demanda media.

4.5.2 SISTEMA FUERA DE LÍNEA

Los resultados obtenidos de la simulación del escenario de Demanda Media del sistema PowerFactory de DIgSILENT en el programa de identificación de parámetros erróneos son los siguientes, tabla 4.14:

• Multiplicadores de Lagrange normalizados mayores a tres ordenados en forma descendente:

 Tabla 4.14: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema

 PowerFactory de DIgSILENT en demanda media.

No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	KV	Lagrange	abs (Lagrange)	Equip.
1	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_2_2	230	13,09	13,09	LINE
2	228	230	0	-0,004516	0	ATQ BABAHOYO		12,50	12,50	3X
3	94	173	0,07351	0,17480	0,72464	L_PUYO_TENA	138	10,63	10,63	LINE
4	138	295	0,00495	0,01828	0,72464	L_VICE_GUAN_1	138	9,88	9,88	LINE
5	217	221	0	0,11727	0	ATQ STA. ELENA		9,56	9,56	3X
6	160	167	0	0,050785	0	ATU MILAGRO		9,40	9,40	3X
7	81	85	0,05418	0,16598	0,72464	L_DPER_CHON_1	138	8,25	8,25	LINE
8	343	340	0,00019	0,00187	0,43478	L_MAZA_ZHOR_2	230	7,73	7,73	LINE
9	235	94	0,04880	0,11604	0,72464	L_AGOY_PUYO	138	7,05	7,05	LINE
10	177	183	0	0,2019	0	ATR IBARRA		7,02	7,02	3X
11	19	23	0	0,284393	0	AA1 ESMERALDAS		6,93	6,93	3X
12	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_1_2	230	6,80	6,80	LINE
13	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_2	230	6,08	6,08	LINE
14	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_1	230	5,93	5,93	LINE
15	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_1	138	5,69	5,69	LINE
16	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_2	138	5,36	5,36	LINE
17	217	222	0	-0,02468	0	ATR STA. ELENA		4,68	4,68	3X
18	25	33	0	0,023506	0	ATU PASCUALES		4,58	4,58	3X
19	1	25	0,02105	0,16836	0,43478	L_MOLI_PASC_2_1	230	4,08	4,08	LINE
20	186	211	0,00050	0,00405	0,43478	L_TRIN_ESCL_1	230	4,05	4,05	LINE

 Residuales normalizados mayores que tres ordenados en forma descendente:

Tabla 4.15: Residuales normalizados mayores a tres obtenidos simulando datos del sistema

PowerFactory de DIgSILENT en demanda media.

		-			
No	BUS	Station	Туре	RESIDUAL	abs (residual)
1	37	QUEVEDO	LINE	46,24	46,24
2	387	S_BERNAR	INJ	-29,56	29,56
3	382	JAMONDIN	INJ	27,62	27,62
4	19	ESMERALDAS	LINE	-26,01	26,01
5	173	TENA	LINE	-25,14	25,14
6	85	CHONE	LINE	23,48	23,48
7	150	SALITRAL	LINE	23,08	23,08
8	295	GUANGOPOLO	LINE	-22,19	22,19
9	386	C_BETANI	INJ	-21,37	21,37
10	381	JAMONDIN	3X	19,76	19,76
11	163	MILAGRO	LINE	18,70	18,70
12	78	S_GREGORIO	LINE	18,22	18,22
13	94	PUYO	LINE	-15,51	15,51
14	177	IBARRA	INJ	-12,80	12,80
15	343	MAZAR	LINE	12,06	12,06
16	25	PASCUALE	LINE	-11,78	11,78
17	160	MILAGRO	LINE	-10,95	10,95
18	160	MILAGRO	3X	-10,03	10,03
19	359	C_BABA	INJ	-9,12	9,12
20	160	MILAGRO	3X	8,85	8,85
21	393	ZORRITOS	INJ	7,71	7,71
22	381	JAMONDIN	LINE	-7,39	7,39
23	286	VICENTIN	LINE	-6,87	6,87
24	350	SININCAY	INJ	6,63	6,63
25	386	C_BETANI	INJ	6,53	6,53
26	25	PASCUALE	LINE	6,42	6,42
27	340	ZHORAY	LINE	-6,29	6,29
28	387	S_BERNAR	LINE	6,12	6,12
29	186	TRINITARIA	LINE	6,00	6,00
30	177	IBARRA	INJ	-5,86	5,86
31	5	MOLINO	INJ	-5,60	5,60
32	312	C_ASAN_D	INJ	5,53	5,53
33	177	IBARRA	INJ	-5,34	5,34
34	228	BABAHOYO	LINE	-4,87	4,87
35	138	POMASQUI	LINE	4,81	4,81
36	90	LOJA	LINE	-4,43	4,43
37	211	ESCLUSAS	LINE	-4,18	4,18
38	387	S_BERNAR	INJ	-4,15	4,15
39	340	ZHORAY	LINE	-4,12	4,12
40	160	MILAGRO	3X	3,61	3,61
41	58	PORTOVIE	LINE	-3,37	3,37
42	381	JAMONDIN	LINE	-3,37	3,37
43	138	POMASQUI	INJ	3,28	3,28
44	350	SININCAY	INJ	-3,21	3,21
45	195	S ROSA	LINE	-3,17	3,17

4.5.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO DE DEMANDA MEDIA

Se presenta un cuadro comparativo referencial de los resultados principales del escenario de demanda media:

Demanda Media												
	EN	/IS		PowerFactor	y de DIgSILENT							
Descripción	Multiplicadores de Lagrange	Residual	es	Multiplicadores de Lagrange	Residuales							
Número	25	63		20	45							
Máximo valor abs.	30,06	29,92		13,09 46,2								
	POMA ATU S_BERNAR INJ		L_QUEV_SGRE_2_2	QUEVEDO	LINE							
	MILA ATU	BABA	LINE	ATQ BABAHOYO	S_BERNAR	INJ						
	PANA TF1	S_BERNAR	INJ	L_PUYO_TENA	JAMONDIN	INJ						
	BABA-QUEV2 230	ZORRITOS	INJ	L_VICE_GUAN_1	ESMERALDAS	LINE						
10 primoros itoms	MOLI-PASC1 230	BABAHOYO	3X	ATQ STA. ELENA	TENA	LINE						
to primeros items	DCER-MILA 230	MILAGRO	LINE	ATU MILAGRO	CHONE	LINE						
	PASC ATU	MILAGRO	3X	L_DPER_CHON_1	SALITRAL	LINE						
	MOLI-PASC2 230	JAMONDIN	INJ	L_MAZA_ZHOR_2	GUANGOPOLO	LINE						
	BABA-SDOM2 230	D_CERRIT	INJ	L_AGOY_PUYO	C_BETANI	INJ						
	MILA ATK	JAMONDIN	INJ	ATR IBARRA	JAMONDIN	3X						

Tabla 4.16: Resumen de resultados obtenidos en demanda media.

4.6 ESCENARIO DE DEMANDA MÍNIMA

Para este escenario se simulan las siguientes condiciones:

Descripción	Número
Demanda	2115,2 MW
No. Barras	351
No. Ramas	410
Hora:	00:00
Mes	abril

Tabla 4.17: Escenario Demanda Mínima

4.6.1 SISTEMA DE TIEMPO REAL

Al realizar la simulación del escenario de Demanda Mínima del sistema EMS en el programa de identificación de parámetros erróneos se han obtenido los siguientes resultados, tabla 4.18:

 Multiplicadores de Lagrange mayores a tres normalizados ordenados en forma descendente:

No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	Lagrange	abs (Lagrange)	Equipment
1	138	141	0	0,04545	0	POMA ATU	25,96	25,96	3X
2	389	386	0	0,4985	0	PANA TF1	-25,92	25,92	2X
3	381	389	0,25005	0,65462	0,0895	JAMO-PANA 115	-25,57	25,57	LINE
4	25	33	0	0,023506	0	PASC ATU	12,97	12,97	3X
5	380	383	0	0,01434	0	JAMO AF1	-11,82	11,82	3X
6	1	25	0,02108	0,17126	0,3459	MOLI-PASC1 230	11,76	11,76	LINE
7	1	25	0,02108	0,17126	0,346	MOLI-PASC2 230	11,76	11,76	LINE
8	285	296	0,00634	0,02492	0,00625	CONO VICE 138	11,28	11,28	LINE
9	357	358	0	0,2196	0	C_BABA T2	-11,24	11,24	2X
10	193	205	0	0,02735	0	SROS ATU	-10,94	10,94	3X
11	25	36	0	0,020474	0	PASC ATT	8,79	8,79	3X
12	25	122	0,0011	0,00901	0,01807	DCER PASC 230	6,55	6,55	LINE
13	138	193	0,00435	0,04348	0,08517	POMA SROS 230	6,55	6,55	LINE
14	159	339	0,01349	0,10788	0,22546	MILA-ZHOR2 230	6,01	6,01	LINE
15	25	159	0,00589	0,04709	0,0984	MILA PASC 230	5,83	5,83	LINE
16	193	208	0	0,02735	0	SROS ATT	5,34	5,34	3X
17	25	210	0,003976	0,03181	0,06647	ESCL PASC 230	5,27	5,27	LINE
18	159	339	0,01349	0,10788	0,22546	MILA-ZHOR1 230	5,26	5,26	LINE
19	357	359	0	0,2196	0	C BABA T1	-5,24	5,24	2X

 Tabla 4.18: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistema

 EMS en demanda mínima.

• Residuales normalizados mayores que tres ordenados en forma descendente:

Tabla 4.19: Residuales normalizados m	nayores a tres	obtenidos s	simulando	datos de	el sistema
---------------------------------------	----------------	-------------	-----------	----------	------------

EMS en demanda mínima.

No	BUS	Station	Туре	RESIDUAL	abs (residual)
1	6	MOLINO	INJ	-34,73	34,73
2	393	ZORRITOS	INJ	28,21	28,21
3	391	PANAMERI	LINE	-24,75	24,75
4	270	C_TERMOG	INJ	-20,79	20,79
5	386	C_BETANI	INJ	15,51	15,51
6	137	POMASQUI	3X	15,40	15,40
7	358	C_BABA	INJ	-14,83	14,83
8	85	CHONE	3X	12,63	12,63
9	1	MOLINO	LINE	11,11	11,11
10	350	SININCAY	INJ	10,85	10,85
11	110	MONTECRI	INJ	-10,30	10,30
12	391	PANAMERI	2X	-9,62	9,62
13	194	S_ROSA	3X	9,61	9,61
14	296	CONOCOTO	LINE	-9,10	9,10
15	168	CUENCA	INJ	8,06	8,06
16	58	PORTOVIE	LINE	-7,69	7,69
17	194	S_ROSA	3X	-6,91	6,91
18	138	POMASQUI	LINE	6,49	6,49
19	1	MOLINO	LINE	6,36	6,36
20	387	S_BERNAR	INJ	6,11	6,11
21	194	S_ROSA	LINE	5,96	5,96
22	260	C_ATIN_D	INJ	5,92	5,92
23	147	POLICENT	LINE	-5,41	5,41
24	44	TOTORAS	LINE	5,33	5,33
25	339	ZHORAY	LINE	-5,32	5,32
26	137	POMASQUI	LINE	-5,22	5,22
27	161	MILAGRO	INJ	4,88	4,88
28	350	SININCAY	INJ	-4,83	4,83
29	161	MILAGRO	INJ	4,83	4,83
30	25	PASCUALE	LINE	-4,73	4,73
31	381	JAMONDIN	INJ	-4,65	4,65
32	161	MILAGRO	INJ	4,56	4,56
33	137	POMASQUI	LINE	-4,45	4,45
34	160	MILAGRO	LINE	-4,36	4,36
35	381	JAMONDIN	3X	-4,35	4,35
36	362	C_ATIN_D	INJ	-4,33	4,33
37	161	MILAGRO	INJ	4,30	4,30
38	160	MILAGRO	LINE	-4,23	4,23
39	387	S_BERNAR	INJ	4,21	4,21
40	25	PASCUALE	LINE	4,06	4,06
41	138	POMASQUI	INJ	3,98	3,98
42	138	POMASQUI	LINE	3,97	3,97
43	268	C_TERMOG	LINE	3,97	3,97
44	161	MILAGRO	INJ	3,93	3,93
45	339	ZHORAY	LINE	-3,77	3,77
46	339	ZHORAY	LINE	3,64	3,64
47	386	C_BETANI	INJ	-3,51	3,51
48	285	VICENTIN	LINE	-3,49	3,49
49	382	JAMONDIN	INJ	-3,48	3,48

4.6.2 SISTEMA FUERA DE LÍNEA

Los resultados obtenidos de la simulación del escenario de Demanda Mínima del sistema PowerFactory de DIgSILENT en el programa de identificación de parámetros erróneos son los siguientes, tabla 4.20:

• Multiplicadores de Lagrange normalizados mayores a tres ordenados en forma descendente:

Tabla 4.20: Multiplicadores de Lagrange mayores a tres obtenidos simulando datos del sistemaPowerFactory de DIgSILENT en demanda mínima.

No.	From Bus	To Bus	R p.u.	X p.u.	B p.u.	Name	KV	Lagrange	abs (Lagrange)	Equip.
1	1	25	0,02105	0,16836	0,43478	L_MOLI_PASC_2_1	230	197,76	197,76	LINE
2	186	211	0,00050	0,00405	0,43478	L_TRIN_ESCL_1	230	138,49	138,49	LINE
3	343	340	0,00019	0,00187	0,43478	L_MAZA_ZHOR_2	230	121,78	121,78	LINE
4	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_1_2	230	103,52	103,52	LINE
5	94	173	0,07351	0,17480	0,72464	L_PUYO_TENA	138	101,81	101,81	LINE
6	81	85	0,05418	0,16598	0,72464	L_DPER_CHON_1	138	95,52	95,52	LINE
7	37	78	0,01268	0,10147	0,43478	L_QUEV_SGRE_2_2	230	76,55	76,55	LINE
8	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_1	138	64,73	64,73	LINE
9	235	94	0,04880	0,11604	0,72464	L_AGOY_PUYO	138	64,40	64,40	LINE
10	25	150	0,01233	0,04469	0,72464	L_PASC_SALI_1_2	138	62,03	62,03	LINE
11	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_2	230	49,50	49,50	LINE
12	160	340	0,01324	0,10604	0,43478	L_MILA_ZHOR_2_1	230	40,01	40,01	LINE
13	138	295	0,00495	0,01828	0,72464	L_VICE_GUAN_1	138	31,00	31,00	LINE

 Residuales normalizados mayores que tres ordenados en forma descendente:

Tabla 4.21:	Residuales	normalizados	mayores	a tres	obtenidos	simulando	datos	del	sistema

					abs
No	BUS	Station	Туре	RESIDUAL	(residual)
1	37	QUEVEDO	LINE	64,07	64,07
2	382	JAMONDIN	INJ	18,41	18,41
3	387	S_BERNAR	INJ	-18,02	18,02
4	228	BABAHOYO	LINE	-17,13	17,13
5	359	C_BABA	INJ	-15,21	15,21
6	150	SALITRAL	LINE	12,71	12,71
7	381	JAMONDIN	3X	10,25	10,25
8	163	MILAGRO	LINE	9,72	9,72
9	90	LOJA	LINE	-8,33	8,33
10	25	PASCUALE	LINE	8,10	8,10
11	137	POMASQUI	3X	8,03	8,03
12	25	PASCUALE	LINE	-7,62	7,62
13	350	SININCAY	INJ	-7,15	7,15
14	393	ZORRITOS	INJ	6,43	6,43
15	94	PUYO	LINE	-6,07	6,07
16	343	MAZAR	LINE	5,14	5,14
17	160	MILAGRO	3X	4,43	4,43
18	137	POMASQUI	LINE	-4,25	4,25
19	340	ZHORAY	LINE	-4,23	4,23
20	358	C_BABA	2X	-4,18	4,18
21	5	MOLINO	INJ	-3,78	3,78
22	177	IBARRA	INJ	-3,75	3,75
23	137	POMASQUI	LINE	-3,46	3,46
24	381	JAMONDIN	LINE	-3,29	3,29
25	19	ESMERALDAS	LINE	-3,28	3,28

PowerFactory de DIgSILENT en demanda mínima.

4.6.3 RESUMEN DE RESULTADOS OBTENIDOS EN EL ESCENARIO DE DEMANDA MÍNIMA

Se presenta un cuadro comparativo referencial de los resultados principales del escenario de demanda mínima:

	Dema	nda Mínima				
	E	MS		PowerFactory	de DIgSILENT	
Descripción	Multiplicadores de Lagrange	Residual	es	Multiplicadores de Lagrange	Residual	es
Número	19	49		13	25	
Máximo valor abs	25,96	34,73		197,76	64,07	
	POMA ATU	MOLINO	INJ	L_MOLI_PASC_2_1	QUEVEDO	LINE
	PANA TF1	ZORRITOS	INJ	L_TRIN_ESCL_1	JAMONDIN	INJ
	JAMO-PANA 115	PANAMERI	LINE	L_MAZA_ZHOR_2	S_BERNAR	INJ
	PASC ATU	C_TERMOG	INJ	L_QUEV_SGRE_1_2	BABAHOYO	LINE
10 primeros itomo	JAMO AF1	C_BETANI	INJ	L_PUYO_TENA	C_BABA	INJ
to primeros items	MOLI-PASC1 230	POMASQUI	3X	L_DPER_CHON_1	SALITRAL	LINE
	MOLI-PASC2 230	C_BABA	INJ	L_QUEV_SGRE_2_2	JAMONDIN	3X
	CONO VICE 138	CHONE	3X	L_PASC_SALI_1_1	MILAGRO	LINE
	C_BABA T2	MOLINO	LINE	L_AGOY_PUYO	LOJA	LINE
	SROS ATU	SININCAY	INJ	L_PASC_SALI_1_2	PASCUALE	LINE

Tabla 4.22: Resumen de resultados obtenidos en demanda mínima.

4.7 CORRECCIÓN DE ERRORES DE PARÁMETROS

Mediante el algoritmo de identificación de parámetros erróneos, se detectan las ramas que tienen parámetros sospechosos, se identifica si estas ramas corresponden a una línea de transmisión o a un transformador, para aplicar el programa de corrección de parámetros.

Si se trata de una línea de transmisión y se disponen PMUs instalados en los dos extremos de la línea se aplica el programa descrito en las secciones 2.2.3 y 3.4.1 de los Capítulos 2 y 3.

Si se trata de un transformador de dos devanados y se disponen PMU instalados en los dos terminales del transformador se aplica el programa descrito en las secciones 2.2.4.1 y 3.4.2 de los Capítulos 2 y 3.

Si se trata de un transformador de tres devanados con un devanado abierto (el terciario) y se disponen PMUs instalados en los dos lados del transformador se aplica el programa descrito en las secciones 2.2.4.2, 2.2.4.3 y 3.4.3 de los Capítulos 2 y 3.

En los casos en que no se disponen PMUs instalados, si no es posible la instalación de los PMUs para la determinación de los parámetros, es necesario realizar la revisión de los parámetros técnicos proporcionados por los propietarios o fabricantes de los equipos.

En esta sección se presentan ejemplos reales de corrección de parámetros en una línea de transmisión que dispone información de PMUs.

En el caso de transformadores, en el S.N.I. no se disponen PMUs instalados en los dos lados de un transformador, sin embargo se presenta un ejemplo práctico de corrección de parámetros en base a los datos del protocolo de pruebas del fabricante.

4.7.1 CASO DE LÍNEA DE TRANSMISIÓN

4.7.1.1 Ejemplo de Aplicación para Corrección de Parámetros de Línea de Transmisión

Según los resultados obtenidos en todos los escenarios realizados en las secciones anteriores, la línea de transmisión Molino Pascuales 1 presenta

multiplicadores de Lagrange mayores a tres, por lo que se requiere la revisión de sus parámetros. Considerando que en esta línea existen PMUs instalados en los dos extremos de la línea y a fin de aplicar el método propuesto en la sección 2.2.3 para calcular los parámetros de una línea de transmisión y el programa descrito en la sección 3.4.1, se realiza la corrección de los parámetros Pascuales Molino 1 en base a la información obtenida de los PMUs instalados en las subestaciones Pascuales y Molino.

A continuación en la figura 4.1 se presenta un gráfico donde se puede observar la ubicación de PMUs en la línea Pascuales Molino y las mediciones correspondientes.

Figura 4.1: Línea de Transmisión Pascuales 1 Molino 1 con ubicación de PMUs

4.7.1.2 Mediciones disponibles en PMUs

De los PMUs instalados en las subestaciones Pascuales y Molino, se han extraído las mediciones de potencia activa, potencia reactiva, voltaje y ángulo con las siguientes características:

L/T	PMU	MEDICIONES		Tiempo de Muestreo (min)	Frecuencia de Muestreo (muestras/seg)	No de datos
		Potencia Activa de Molino a Pascuales (MW)	P12	30	2	3600
	MOLINO	Potencia Reactiva de Molino a Pascuales(MVAR)	Q12	30	2	3600
		Voltaje en Molino 230 kV	V1	30	2	3600
Molino 1 -		Angulo en Molino 230 kV	Θ1	30	2	3600
Pascuales 1		Potencia Activa de Pascuales a Molino (MW)	P21	30	2	3600
	PASCUALES	Potencia Reactiva de Pascuales a Molino (MVAR)	Q21	30	2	3600
		Voltaje en Pascuales 230 kV	V2	30	2	3600
		Angulo en Pascuales230 kV	Θ2	30	2	3600

Tabla 4.23: Mediciones obtenidas de los PMUs instalados en las S/E Pascuales y Molino.

Las muestras de mediciones tomadas de los PMUs de las subestaciones Molino y Pascuales, son representadas en las figuras 4.2 a 4. 17 por los siguientes gráficos de Densidad de Probabilidad y Función de Distribución Acumulada Normalizada [57], los cuales permiten observar si la variable observada sigue una distribución normal y simétrica o que tan alejado está de ello. En general los gráficos de Densidad de Probabilidad permiten observar si la variable analizada tiene un comportamiento normal gaussiano. Los gráficos de Función de Distribución Acumulada Normalizada, complementan la información del gráfico de densidad, ya que conforme los datos estén más cercanos a la línea central, más reflejarán un comportamiento gaussiano normalizado: Potencia Activa MOLI-PASC 1

Figura 4.2: Densidad de Probabilidad de Potencia Activa MOLI-PASC1.

Figura 4.3: Función de Distribución Acumulada Normalizada de Potencia Activa

Potencia Reactiva MOLI-PASC 1

Figura 4.4: Densidad de Probabilidad de Potencia Reactiva MOLI-PASC1.

Figura 4.5: Función de Distribución Acumulada Normalizada de Potencia Reactiva

MOLI-PASC1.

Figura 4.6: Densidad de Probabilidad de Voltaje en S/E Molino Barra de 230 kV.

Figura 4.7: Función de Distribución Acumulada Normalizada de Voltaje en S/E Molino Barra de 230 kV.

to the set of the set

Figura 4.9: Función de Distribución Acumulada Normalizada de Ángulo de Voltaje en S/E Molino Barra de 230 kV.

Ángulo de Voltaje en S/E Molino 230

Potencia Activa PASC-MOLI- 1

Figura 4.10: Densidad de Probabilidad de Potencia Activa PASC-MOLI 1.

Figura 4.11: Función de Distribución Acumulada Normalizada de Potencia Activa

PASC-MOLI 1.

Potencia Reactiva PASC-MOLI- 1

Figura 4.12: Densidad de Probabilidad de Potencia Reactiva PASC-MOLI 1.

Figura 4.13: Función de Distribución Acumulada Normalizada de Potencia Reactiva PASC-MOLI 1.

Figura 4.14: Densidad de Probabilidad del Voltaje en S/E Pascuales Barra de 230 kV.

Figura 4.15: Función de Distribución Acumulada Normalizada de Voltaje en S/E Pascuales Barra de 230 kV.

Ángulo de Voltaje en S/E Pascuales 230

Figura 4.16: Densidad de Probabilidad del Ángulo de Voltaje en S/E Pascuales Barra de 230 kV.

Figura 4.17: Función de Distribución Acumulada Normalizada del Ángulo de Voltaje en S/E Pascuales Barra de 230 kV.

Según los gráficos obtenidos se observa un comportamiento normal y simétrico para las variables de P y Q de la Línea Pascuales Molino en los dos extremos de la línea.

Los voltajes en los extremos de la línea presentan un comportamiento gaussiano normal y simétrico mejor que el observado en las mediciones de P y Q.

Los gráficos obtenidos para los ángulos de voltaje no son muy claros en cuanto a indicar un comportamiento gaussiano normal, sin embargo al realizar el análisis estadístico de las mediciones de los ángulos cuyo detalle se presenta en el Anexo 1, se observa que los indicadores estadísticos de Skewness y Kurtosis indican simetría y normalidad para estas mediciones porque el valor de Skewness se encuentra cercano a 1 y el valor de Kurtosis se encuentra entre 2 y 4 para los voltajes en los dos extremos de la línea.

4.7.1.3 Cálculo de Parámetros de Línea de Transmisión Pascuales Molino 1 con datos de PMUs

Considerando que las muestras de mediciones tomadas en la sección anterior tienen características de simetría y normalidad, y para no utilizar datos calculados sino mediciones reales, se ha optado por utilizar como mediciones los valores que más se repiten (moda) para el cálculo de parámetros correspondiente, siendo éstos los siguientes:

	155,5374	P12
	-150,7305	P21
	234,3767	V1
Mediciones de PMUs	228,6016	V2
	68,4983	θ1
	53,9691	θ2
	-0,4021	Q12
	1,5017	Q21

Siendo MW las unidades de potencia activa, MVAR las unidades de potencia reactiva, kV las unidades de voltaje y grados las unidades de ángulo.

Aplicando las fórmulas (2.42), (2.44) y (2.45) del Capítulo 2 se obtienen G, B y BC.

$$\begin{bmatrix} G \\ B \end{bmatrix} = \begin{bmatrix} (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) & -(V_i V_j \sin(\theta_i - \theta_j)) \\ (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) & -(V_j V_i \sin(\theta_j - \theta_i)) \end{bmatrix}^{-1} \begin{bmatrix} P_{ij} \\ P_{ji} \end{bmatrix}$$
(4.1)

$$BC = \frac{1}{V_i^2} \left[-(V_i V_j \sin(\theta_i - \theta_j)) G - (V_i^2 - V_i V_j \cos(\theta_i - \theta_j)) B - Q_{ij} \right]$$
(4.2)

$$BC = \frac{1}{V_j^2} \left[-(V_j V_i \sin(\theta_j - \theta_i)) G - (V_j^2 - V_j V_i \cos(\theta_j - \theta_i)) B - Q_{ji} \right]$$
(4.3)

Donde i = 1 y j = 2

Considerando que:

$$Z = R + jX = \frac{1}{G + jB} \tag{4.4}$$

Y que:

$$Z_B = \frac{KV^2}{MVA} = \frac{230^2}{100} = 529 \tag{4.5}$$

Se obtienen los siguientes resultados:

	0,0014	G
	-0,0113	В
Resultados	0,0004	BC
	0,0204	r(pu)
	0,1665	x(pu)
	0,1883	Bc (pu)

4.7.1.4 Resultados de Corrección de Parámetros de Línea de Transmisión Pascuales Molino 1 en Sistema EMS

A fin de observar el impacto real de los parámetros de la línea Pascuales Molino 1 en el Estimador de Estado del EMS, se realizó la corrección de los parámetros incorrectos de esta línea en el sistema EMS con los parámetros correctos obtenidos con las mediciones de los PMUs, obteniéndose los siguientes resultados de valores estimados y residuales:

			مىلە مەرسەر		Malazar	modidoc	Volcas o	time aloc	Docid	20101
C S S	Doccrinción				v alules		v alui co c	SUIIIAUUS		uaico
Caso		r (pu)	(nd) x	Bc (pu)	P (MW)	Q(MVAR)	P(MW)	Q(MVAR)	P(MW)	Q(MVAR)
Parámetros	Pascuales 1- Molino 1	0.00108	0 17176	0 17705	159	2,7	156,3	3,8	-2,7	1,1
incorrectos	Molino 1 - Pascuales 1	001700	071/10	007/7/0	172,1	8,1	158,6	11	-13,5	2,9
Parámetros	Pascuales 1- Molino 1		0.1666	0 1 0 0 0	162,3	2,3	161,9	4,7	-0,4	2,4
correctos	Molino 1 -Pascuales 1	U,U2U4	CCDT'N	COOT 'N	171,6	8,1	162,7	9,7	-8,9	1,6
Parámetros	Pascuales 1- Molino 1	001000	201210	17705	157,7	3,8	153,8	4,8	-3,9	1
incorrectos	Molino 1 -Pascuales 1	0,02100	0,1,120	0,41,430	169,7	7,2	158,9	10,9	-10,8	3,7

Tabla 4.24: Impacto de Parámetros de L/T PASC-MOLI 1 en resultados de Estimador de Estado del EMS.

A continuación en las figuras 4.18 a 4.23, se presentan estos resultados observados en los unifilares del EMS.

Valores medidos y estimados con parámetros incorrectos.

Figura 4.18: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS

Figura 4.19: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS

Valores medidos y estimados con parámetros correctos.

Figura 4.20: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS

Figura 4.21: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS

Valores medidos y estimados con parámetros incorrectos nuevamente.

Figura 4.22: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Molino en sistema EMS

Figura 4.23: Valores Medidos y Estimados de L/T PASC MOLI 1 en S/E Pascuales en sistema EMS

En base a los resultados obtenidos se observa que con la corrección de los parámetros de la L/T PASC MOLI 1, los resultados estimados en el EMS mejoran

acercándose más a los valores de las mediciones produciendo residuales menores que cuando se disponían los valores incorrectos de los parámetros.

En la tabla 4.24 se observa que al realizar la corrección de parámetros de la línea de transmisión Pascuales Molino con los parámetros calculados, los residuales de P y Q disminuyen en valor absolutos para todos los casos a excepción de la potencia reactiva de Pascuales Molino 1. Si bien los residuales disminuyen su valor absoluto, algunos siguen siendo altos. Este comportamiento podría tener su origen en alguna influencia de errores de parámetros o mediciones en equipos aledaños a esta línea en la zona de Pascuales. Adicionalmente, en este caso se debe considerar que los residuales que se están analizando no son residuales normalizados.

4.7.2 CASO TRANSFORMADORES

4.7.2.1 Ejemplo de Aplicación para Corrección de Parámetros de Transformadores

A fin de ilustrar el método propuesto en la sección 2.2.4.3 para modelar un transformador de 3 devanados con tap en el primario y LTC en el secundario en el sistema EMS, se utilizará como ejemplo el transformador ATQ de Francisco de Orellana, del cual se dispone el reporte de pruebas del fabricante.

Figura 4.24: Transformador Francisco de Orellana ATQ

La sección del reporte de pruebas del fabricante que define las impedancias de cortocircuito es la que se indica a continuación:

-			T . T		b=	Prod	uct Type 品型号	OSFSZ-6	6660/138			
L		N	I UE	315 4	62	Proc 7 ^{te}	iuet No. 品编号	251208036				
loa	d los	负载损 s and	耗、阻打 impende	亢电压测量 ince meas	e urement	Rep 报·	oort No. 告编号	201311041				
负载损耗和	阻抗	电压测	量 Meas	urement o	of short-cir	cuit impeda 油平均温度/	ince and 1 Oil avera;	oad loss ge temperatu	ure :26.7ºC			
-	4	}接	施加約 Curre	密组电流 ent (A)	测量中压	阻抗电压 Impedance	损耗(kW)Losses (base power on 53.32MVA)					
湖量 绕组	T	ap	额定	施加	(kV) Measured	%	測量值	校正值 Corrected value				
Windings	HV	MV	(A) Rated	(A) Applied	voltage	(base power on 40MVA)	Measured Value	OSFSZ-66660/138 251208036 201311041 ad loss e temperature :26.7% 速(kW)Losses ower on 53.32MVA) 校正值 Corrected value 额定电流下 Under rated current 136.17 144.25 143.76 149.6% 160.00 162.31 142.71 154.45 143.67 154.05 161.60 167.85 177.97 191.13 179.44 190.88 189.99 198.14				
	í		265.6	163.41	11.627	7.83	80.56	136.17	144.25			
HV-MV	3	2	278.9	170.71	10.65?	7.57	84.19	143.76	149.69			
	5		293.6	185.64	10.443	7.56	100.00	160.00	162.31			
	1		265.6	169.77	11.574	7.50	91.13	142.71	154.45			
HV-MV	3	17	278.9	172.00	10.219	7.20	85.41	143.67	154.05			
	5		293.6	196.61	10.461	7.15	113.29	161.60	167.85			
	1		265.6	170.34	11.688	7.55	114.41	177.97	191.13			
HV-MV	3	33	278.9	176.68	10.424	7,15	112.56	179.44	190.88			
	5		293.6	199.39	10.488	7.07	136.99	189.99	198.14			

Figura 4.25: Reporte de Pruebas del Fabricante, Pruebas HV-MV

測量 绕组 Windings HV-LV MV-LV 注 Remark 1. 測试设- Test eq 2. 损耗测 Losses 3.阻抗 HV-) Impedar	/\+ *	施加約 Curre	毛组电流 nt (A)	Solution of the	阻抗电压 Impedance	拔耗(kW) (base power on 16MVA) Losses					
	元 位置 Ten	微定	施加	(kV) Measured	%	测量值	校正值 Corrected value				
Windings	Position	(A) Rated	(A) Applied	voltage	(base power on 12MVA)	Measured Value	额定电流下 Under rated	t=75°C At 75 °C			
	1	138.0	41.11	9.0772	7.29	13.94	33.52	36.88			
HV-LV	3	144.9	40.80	8.0457	7.18	12.74	34.29	37.64			
	5	152.6	50.14	8.8420	7.11	18.22	35.98	39.19			
	1	507.1	81.88	2.9306	4.30	15.189	33.56	38.22			
MV-LV	17	557.8	104.47	3.4566	4.82	21.760	35,74	40.89			
	33	619.7	116.60	3.6224	5.58	25.130	40,90	46.39			
注 Remark 1. 測试设4 Test eq 2. 损耗制1 Losses 3.阻抗 HV-1 Impedar	11 各 D6000 損料 uipment: D6 量 HV-MV, measuremen MV, 参考容 mee measurem	毛制量系统 6000 loss r 参考容量 t of HV-M 量 40MV/ ment HV-	死 neasuring sj 53.35MVA V base pow HV-LV,M MV base po	ystem :HV-LV, ver on 53.32M IV-LV,参考 iwer on 40M	MV-LV 参考3 dVA: HV-LV 容量都为 12M VA.HV-LV,M	学是 16MAXA 7、MV-LV 6 IVA ^{Tos} V-LV, all bas	usepsion of the second	IEMVA			

Figura 4.26: Reporte de Pruebas del Fabricante, Pruebas HV-LV y MV-LV

En base a los datos proporcionados por el fabricante y las ecuaciones (2.70) a (2.96) del Capítulo 2, se obtienen las impedancias estrella que representan al transformador en la tabla 4.25. El resumen de estos valores se pueden observar en la tabla 4.26:

			_									_	_	_	_	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	-
	erciario(t)	t		0,10075 0,11787					0,11787 0,13625					0,10262					0,13987			0,10187			0,12	0,14								
				xt		xt			xt			¥			xt				xt			¥			¥	¥								
		s33							0,14275									0,139125									0,139							
	10									xs33									xs33									xs33						
MVA	io(s) con L'	17				0,123125									0,12075									0,121										
e 100	undaı					:s17										<s17< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="3">s17</td><td colspan="3"></td></s17<>								s17										
strella pu d	Seci	s 1		0,11425	C2411,0							0,112375									0,113125													
cias E			xs1									xs1			xs1							1												
mpedanc		p5																				,075875		0,05775			0,03775							
																						p5 C		p5			p5							
	n tap												75			ŝ			25			×			×			×						
	(p) cc	33),0768			0,0593			,0396																
	ario										b3			p3 (b3 0																	
	Prin			2			75		10			×			×			×																
		p1		0,081		0,0643			0,04																									
				p1		kp1 (¢p1																									
							~			~																								
	su potencia		7,83	7,29	4,3	7,5	7,29	4,82	7,55	7,29	5,58	7,57	7,18	4,3	7,2	7,18	4,82	7,15	7,18	5,58	7,56	7,11	4,3	7,15	7,11	4,82	7,07	7,11	5 58					
	% de inal	5																																
	edancia delta (шоп		xp1-t	xs1-t	xp1-s17	xp1-t	xs17-t	xp1-s33	xp1-t	xs33-t	xp3-s1	xp3-t	xs1-t	xp3-s17	xp3-t	xs17-t	xp3-s33	xp3-t	xs33-t	xp5-s1	xp5-t	xs1-t	xp5-s17	xp5-t	xs17-t	xp5-s33	xp5-t	vc33_t					
	Impe																																	
irio, secundario, ciario	t		c	•		۲																												
																				ļ						<u> </u>								
	s	1 S				17		33			7			[]			33			1			2			33								
nrima	Posición primar terci								Cî .									m										-						
Posiciór		d	م				4								m						<u>م</u>													

Tabla 4.25: Cálculo de Impedancias del Transformador ATQ de Francisco de Orellana.
ATQS	/E FRAM	ICISCO I	DE ORELLANA			
TRAFO1(PRIMARIO)			TRAFO 1 (SI	ECUNDARI	0)	TRAFO 3 (TERCIARIO)
Хр			Xs Xt			Xt
p1	р3	р5	s1	s17	s33	t
0,0644	0,0593	0,058	0,112375	0,12075	0,13913	0,12025

Tabla 4.26: Impedancias del Transformador ATQ de Francisco de Orellana en pu de 100 MVA.

4.7.2.2 Resultados de corrección de Parámetros del Transformador ATQ de S/E Francisco de Orellana en Estimador de Estado de Sistema EMS

A fin de observar el impacto de los parámetros del transformador ATQ de la S/E Francisco de Orellana en el Estimador de Estado del EMS, se realizó la corrección de los parámetros incorrectos de este transformador en el sistema EMS con los parámetros correctos obtenidos con el protocolo del fabricante, obteniéndose los siguientes resultados de valores estimados y residuales: Tabla 4.27: Impacto de Parámetros de transformado ATQ de S/E Francisco de Orellana en resultados de Estimador de Estado del EMS.

				ATQ	S/E Francisco de	Orellana					
					Parámetros						
Caso	Descripción		Хp			Xs		Xt	Valores	Valores	Residuales
		p1	p3	p5	s1	s17	s33	t		escillados	
	P secundario								15,2	15,8	0,6
	Q secundario								10,6	10,5	-0,1
Parámetros	V primario								127,2	129,3	2,1
incorrectos	V secundario	0,11801	0,11301	0,11088	-0,0152	-0,005	0,0136	0,246	68,4	66,7	-1,7
	Tap primario								1	1	0
	LTC secundario								1	1	0
	P secundario								1,8	1,7	-0,1
	Q secundario								12,8	13,2	0,4
Parámetros	V primario	007900	O DE O DE	0 06 776	000000	00000	10010		133,6	135	1,4
correctos	V secundario	0,00430	C28CU/U	c//cn/n	0,11230	0,1200	1,134 I	0, 1203	69'69	68,7	-0,9
	Tap primario								1	1	0
	LTC secundario								1	1	0

156

A continuación en las figuras 4.27 a 4.30, se presentan estos resultados observados en los unifilares del EMS.

• Valores medidos y estimados con parámetros incorrectos.

Figura 4.27: Valores medidos en ATQ S/E Francisco de Orellana, Sistema EMS

Figura 4.28: Valores estimados en ATQ S/E Francisco de Orellana, Sistema EMS

• Valores medidos y estimados con parámetros correctos.

Figura 4.29: Valores medidos en ATQ S/E Francisco de Orellana, Sistema EMS

Figura 4.30: Valores estimados en ATQ S/E Francisco de Orellana, Sistema EMS

En base a los resultados obtenidos se observa que con la corrección de los parámetros del transformador ATQ de la S/E Francisco de Orellana, los resultados estimados en el EMS, en la zona del ATQ mejoran acercándose más a los valores de las mediciones produciendo residuales menores que cuando se disponían los valores incorrectos de los parámetros.

4.8 ANÁLISIS Y COMPARACIÓN DE RESULTADOS

Si se analizan las tablas 4.10, 4,16 y 4,22, se observa que en demanda máxima los residuales mayores que tres son casi el doble de los Multiplicadores de Lagrange, esto corresponde a que los multiplicadores de Lagrange están relacionados con ramas y los residuales con barras, por lo que si una rama de transformador o L/T tiene parámetros erróneos afectará a los extremos donde se encuentra esta rama, lo cual puede afectar también los residuales asociados. Esta tendencia se observa en todos los casos simulados de demanda y también en los dos sistemas considerados EMS y PowerFactory de DIgSILENT.

También se observa que los valores máximos de Multiplicadores de Lagrange y residuales no tienen una relación establecida entre ellos, sin embargo si expresan una prioridad en cuanto a los equipos que pueden presentar un mayor error en sus parámetros.

En las siguientes tablas 4.28 y 4.29 se presentan los Multiplicadores de Lagrange normalizados mayores que tres obtenidos en las tres condiciones de demanda, tanto para el sistema EMS como para el sistema PowerFactory de DIgSILENT y se señalan con diferentes colores aquellos equipos que coinciden en dos o tres condiciones de demanda:

					SISTEMA	EMS					
	DEMANDA	MÁXIMA	4		DEMANDA				DEMAN	DA BASE	
No	Name	abs Lag.	Equip.	No	Name	abs Lag.	Equip.	No	Name	abs Lag.	Equip.
1	JAMO AF1	240.45	3X	1	ΡΟΜΑ ΑΤU	30.06	зх	1	POMA ATU	25.96	зх
2	JAMO-SBER2 230	111,81	LINE	2	MILA ATU	26,8	3X	2	PANA TF1	25,92	2X
3	JAMO-SBER1 230	111,05	LINE	3	PANA TF1	25,7	2X	3	JAMO-PANA 115	25,57	LINE
4	POMA ATU	63,63	3X	4	BABA-QUEV2 230	21,26	LINE	4	PASC ATU	12,97	3X
5	CONO-VICE 138	30,77	LINE	5	MOLI-PASC1 230	13,91	LINE	5	JAMO AF1	11,82	3X
6	JAMO-PANA 115	27,8	LINE	6	DCER-MILA 230	13,85	LINE	6	MOLI-PASC1 230	11,76	LINE
7	MILA ATK	25,81	3X	7	PASC ATU	13,78	3X	7	MOLI-PASC2 230	11,76	LINE
8	PANA TF1	23,7	2X	8	MOLI-PASC2 230	12,94	LINE	8	CONO VICE 138	11,28	LINE
9	SROS ATU	15,03	3X	9	BABA-SDOM2 230	12,83	LINE	9	C_BABA T2	11,24	2X
10	SELE ATQ	15	3X	10	MILA ATK	11,89	3X	10	SROS ATU	10,94	3X
11	MOLI PASC 1 230	14.47	LINE	11	MILA-PASC 230	11.75	LINE	11	PASC ATT	8.79	3X
12	PASC ATU	13,07	3X	12	CONO-VICE 138	11,73	LINE	12	DCER PASC 230	6,55	LINE
13	POMA VICE 2 138	12,88	LINE	13	SROS ATU	11	3X	13	POMA SROS 230	6,55	LINE
14	CONO-SROS 138	12,76	LINE	14	DCER-PASC 230	9,86	LINE	14	MILA-ZHOR2 230	6,01	LINE
15	MILAATU	11,79	3X	15	POMA-SROS1 230	9,49	LINE	15	MILA PASC 230	5,83	LINE
16	POMA SROS2 230	10,67	LINE	16	POMA-SROS2 230	8,44	LINE	16	SROS ATT	5,34	3X
17	SELE ATR	10	3X	17	BETA-BERN2 230	7,99	LINE	17	ESCL PASC 230	5,27	LINE
18	PASC ATT	9,12	3X	18	BETA-BERN1 230	7,82	LINE	18	MILA-ZHOR1 230	5,26	LINE
19	MILA ZHOR 1 230	8,7	LINE	19	PASC ATT	7,64	3X	19	C_BABA T1	5,24	2X
20	MILA ZHOR 2 230	8,55	LINE	20	CQUE-QUEV 230	7,25	LINE				
21	POMA SROS1 230	8,32	LINE	21	ESCL-PASC 230	6,72	LINE				
22	ESMERALDAS AA1	8	3X	22	SROS ATT	6,53	3X				
23	JAMO-POMA 4 230	7,05	LINE	23	JAMO-SBER1 230	6,11	LINE				
24	SROS TOTO2 230	7	LINE	24	SALI ATR	5,15	3X				
25	JAMO-POMA 1 230	6,92	LINE	25	SALI ATQ	5,05	3X				
26	POMA VICE 1 138	6,92	LINE								
27	ESCL-PASC	6,91	LINE								
28	JAMO-POMA 2 230	6,44	LINE								
29	AGOYAN MTU2	6	2X								
30	SINI ZHOR 1 230	5,93	LINE								
31	230	5,73	LINE								
32	MULA-VICE 138	5,73	LINE								
33	SROS TOTO1 230	5,55	LINE								
34	SROS ATT	5,49	3X								
35	ESMERALDAS AA2	5,29	3X							1	
37	AMBATO AT2	3,03	3X								
38	IBARRA ATR	3,02	3X								
39	BABAHOYO ATO	3	3X	1				1			

Tabla 4.28: Multiplicadores de Lagrange obtenidos de EMS para tres condiciones de demanda.

Tabla 4.29: Multiplicadores de Lagrange obtenidos de PowerFactory de DIgSILENT para tres condiciones de demanda.

						PowerFacto	nv de	DIgSILENT						
	DEMAN	IDA M	ÁXIMA			DEMA	ANDA	MEDIA			DEMAN	NDA N	AÍNIMA	
No.	. Name	Š	abs (Lagrange)	Equipment	No.	Name	₹	abs (Lagrange)	Equipment	No.	Name	Κ	abs (Lagrange)	Equipment
	L_QUEV_SGRE_1_2	230	28,84	LINE	1	L_QUEV_SGRE_2_2	230	13,09	LINE	1	L_MOLI_PASC_2_1	230	197,76	LINE
~	2 L_QUEV_SGRE_2_2	230	28,84	LINE	2	ATQ BABAHOYO		12,50	3X	2	L_TRIN_ESCL_1	230	138,49	LINE
(1)	3 L_QUEV_SGRE_2_2_A	138	25,17	LINE	m	L_PUY0_TENA	138	10,63	LINE	3	L_MAZA_ZHOR_2	230	121,78	LINE
4	1 L_PASC_SALI_1_1	138	6,26	LINE	4	L_VICE_GUAN_1	138	9,88	LINE	4	L_QUEV_SGRE_1_2	230	103,52	LINE
'n	L_PASC_SALI_1_2	138	6,26	LINE	ŝ	ATQ STA. ELENA		9,56	ЗХ	5	L_PUYO_TENA	138	101,81	LINE
9	5 L_MAZA_ZHOR_1	230	5,78	LINE	9	ATU MILAGRO		9,40	ЗХ	9	L_DPER_CHON_1	138	95,52	LINE
	7 L_MAZA_ZHOR_2	230	5,78	LINE	7	L DPER CHON 1	138	8,25	LINE	7	L_QUEV_SGRE_2_2	230	76,55	LINE
30	L_DPER_CHON_1	138	4,93	LINE	8	L_MAZA_ZHOR_2	230	7,73	LINE	8	L_PASC_SALI_1_1	138	64,73	LINE
5	ATR STA. ELENA		4,85	3X	6	L_AGOY_PUYO	138	7,05	LINE	9	L_AGOY_PUYO	138	64,40	LINE
10	ATU PASCUALES		4,81	3X	10	ATR IBARRA		7,02	3X	10	L_PASC_SAUL_1_2	138	62,03	LINE
11	L_TRIN_ESCL_1	230	4,62	LINE	11	AA1 ESMERALDAS		6,93	3X	11	L_MILA_ZHOR_2_2	230	49,50	LINE
12	L_AGOY_PUYO	138	4,50	LINE	12	L_QUEV_SGRE_1_2	230	6,80	LINE	12	L_MILA_ZHOR_2_1	230	40,01	LINE
13	3 AA1 ESMERALDAS		4,03	ЗХ	13	L_MILA_ZHOR_2_2	230	6,08	LINE	13	L_VICE_GUAN_1	138	31,00	LINE
14	1 АТД ВАВАНОУО		3,98	ЗХ	14	L_MILA_ZHOR_2_1	230	5,93	LINE					
15	L_PUYO_TENA	138	3,84	LINE	15	L_PASC_SALI_1_1	138	5,69	LINE					
16	5 L_VICE_GUAN_1	138	3,76	LINE	16	L_PASC_SALI_1_2	138	5,36	LINE					
17	7 ATQ STA. ELENA		3,74	ЗХ	17	ATR STA. ELENA		4,68	3X					
15	3 L_MOUL_PASC_2_1	230	3,53	LINE	18	ATU PASCUALES		4,58	3X					
15	L_MOLI_PASC_2_2	230	3,53	LINE	19	L_MOLI_PASC_2_1	230	4,08	LINE					
20) ATU MILAGRO		3,41	ЗХ	20	L_TRIN_ESCL_1	230	4,05	LINE					
21	I L_CUEN_LOJA_1	138	3,10	LINE										
22	2 L_MILA_ZHOR_2_1	230	3,00	LINE										
25	3 L_MILA_ZHOR_2_2	230	3,00	LINE			Ι							
24	4 ATR IBARRA		3,00	3X										

Al analizar las tablas 4.28 y 4.29, se observa que algunos equipos se mantienen en las tres condiciones de demanda, o al menos en dos condiciones de demanda. Como se puede observar en las tablas 4.30 y 4.31. Esto implica que existe un error permanente en los parámetros de ese equipo. Esta tendencia se observa tanto en el sistema EMS como en el sistema PowerFactory de DIgSILENT.

		SIST	EMA EMS		
				DEMANDA	
No.	Name	Equipment	MÁXIMA	MEDIA	BASE
			abs (Lagrange)	abs (Lagrange)	abs (Lagrange)
1	POMA ATU	3X	63,63	30,06	25,96
2	CONO-VICE 138	LINE	30,77	11,73	11,28
3	PANA TF1	2X	23,7	25,7	25,92
4	SROS ATU	3X	15,03	11	10,94
5	MOLI PASC 1 230	LINE	14,47	13,91	11,76
6	PASC ATU	3X	13,07	13,78	12,97
7	POMA SROS2 230	LINE	10,67	8,44	6,55
8	PASC ATT	3X	9,12	7,64	8,79
9	ESCL-PASC	LINE	6,91	6,72	5,27
10	SROS ATT	3X	5,49	6,53	5,34
11	MOLI PASC 2 230	LINE	5,29	12,94	11,76
12	JAMO AF1	3X	240,45		11,82
13	JAMO-SBER2 230	LINE	111,81		
14	JAMO-SBER1 230	LINE	111,05		6,11
15	JAMO-PANA 115	LINE	27,8		25,57
16	MILA ATK	3X	25,81	11,89	
17	MILA ZHOR 1 230	LINE	8,7		
18	MILA ZHOR 2 230	LINE	8,55		6,01
19	POMA SROS1 230	LINE	8.32	9,49	

 Tabla 4.30: Equipos con Multiplicadores de Lagrange de EMS mayores a tres en tres o dos condiciones de demanda.

		PowerFact	tory	de DIgSILEN	IT	
					DEMANDA	
				MÁXIMA	MEDIA	BASE
No.	Name	Equipment	KV	abs (Lagrange)	abs (Lagrange)	abs (Lagrange)
1	L_QUEV_SGRE_1_2	LINE	230	28,84	6,80	103,52
2	L_QUEV_SGRE_2_2	LINE	230	28,84	13,09	76,55
3	L_QUEV_SGRE_2_2_A	LINE	138	25,17		
4	L_PASC_SALI_1_1	LINE	138	6,26	5,69	64,73
5	L_PASC_SALI_1_2	LINE	138	6,26	5,36	62,03
6	L_MAZA_ZHOR_1	LINE	230	5,78		
7	L_MAZA_ZHOR_2	LINE	230	5,78	7,73	121,78
8	L_DPER_CHON_1	LINE	138	4,93	8,25	95,52
9	L_AGOY_PUYO	LINE	138	4,50	7,05	64,40
10	L_PUYO_TENA	LINE	138	3,84	10,63	101,81
11	L_VICE_GUAN_1	LINE	138	3,76	9,88	31,00
12	L_MOLI_PASC_2_1	LINE	230	3,53	4,08	197,76
13	L_MOLI_PASC_2_2	LINE	230	3,53		
14	L_MILA_ZHOR_2_1	LINE	230	3,00	5,93	49,50
15	L_MILA_ZHOR_2_2	LINE	230	3,00	6,08	40,01
16	ATR STA. ELENA	3X		4,85	4,68	
17	ATU PASCUALES	3X		4,81	4,58	
18	L_TRIN_ESCL_1	LINE	230	4,62		138,49
19	AA1 ESMERALDAS	3X		4,03	6,93	
20	ΑΤQ ΒΑΒΑΗΟΥΟ	3X		3,98	12,50	

 Tabla 4.31: Equipos con Multiplicadores de Lagrange de PowerFactory de DIgSILENT mayores

 a tres
 en tres o dos condiciones de demanda.

Analizando la tabla 4.30, se observa que los mayores errores en EMS se presentan en las siguientes L/T:

- Conocoto Vicentina
- Molino Pascuales 1
- Pomasqui Sta. Rosa 2
- Molino Pascuales 2

Y en los siguientes transformadores:

- Pomasqui ATU
- Panamericana TF1

- Sta. Rosa ATU
- Pascuales ATU
- Pascuales ATT
- Sta. Rosa ATT

Analizando la tabla 4.31 se observa que los mayores errores en PowerFactory de DIgSILENT se presentan en las siguientes L/T:

- Quevedo San Gregorio 1 y 2
- Pascuales Salitral 1 y 2
- Mazar Zhoray 1 y 2
- Daule Peripa Chone
- Agoyán Puyo
- Puyo Tena
- Vicentina Guangopolo
- Molino Pascuales 1
- Milagro Zhoray 1 y 2

Y en los siguientes transformadores:

- Sta. Elena ATR
- Pascuales ATU
- Esmeraldas AA1
- Babahoyo ATQ

En base a los resultados obtenidos se dispone la lista de equipos cuyos parámetros salen con error en las tres condiciones de demanda para dar prioridad en la revisión de los mismos tanto en el sistema EMS como en el sistema PowerFactory de DIgSILENT. y si existen las mediciones de PMUs disponibles, realizar la corrección correspondiente.

Según estos resultados también se puede observar que la línea Pascuales Molino 1 tiene problemas en sus parámetros y esto se evidenció en las tres condiciones de demanda en los sistemas EMS y PowerFactory de DIgSILENT.

Al realizar un análisis estadístico de los Multiplicadores de Lagrange obtenidos con los datos del EMS se obtiene el resumen en la tabla 4.32:

Multiplicadores	de Lagrange EMS		
Doscrinción	[Demanda	
Descripcion	Máxima	Media	Base
Media	22,782	12,222	11,266
Error típico	6,963	1,364	1,613
Mediana	8,55	11	10,94
Moda	6,92	#N/A	11,76
Desviación estándar	43,482	6,821	7,033
Varianza de la muestra	1890,665	46,532	49,461
Curtosis	17,208	1,446	0,944
Coeficiente de asimetría	3,935	1,456	1,403
Rango	237,45	25,01	20,72
Mínimo	3	5,05	5,24
Máximo	240,45	30,06	25,96
Suma	888,49	305,55	214,06
Cuenta	39	25	19
Mayor (1)	240,45	30,06	25,96
Menor(1)	3	5,05	5,24
Nivel de confianza(95,0%)	14,095	2,816	3,390

 Tabla 4.32: Análisis Estadístico de Multiplicadores de Lagrange en EMS en diferentes

 condiciones de demanda.

Al realizar un análisis estadístico de los Multiplicadores de Lagrange obtenidos con los datos del PowerFactory de DIgSILENT se obtiene lo siguiente:

Multiplicadores de La	igrange Powe	erFactory de DigSi	LENT
Doscrinción		Demanda	
Description	Máxima	Media	Base
Media	7,190	7,463	88,238
Error típico	1,628	0,593	12,701
Mediana	4,263	6,973	76,548
Moda	3	#N/A	#N/A
Desviación estándar	7,973	2,654	45,794
Varianza de la muestra	63,570	7,043	2097,067
Curtosis	4,200	-0,268	1,439
Coeficiente de asimetría	2,377	0,695	1,108
Rango	25,838	9,036	166,765
Mínimo	3	4,05019173	30,9968261
Máximo	28,838	13,086	197,762
Suma	172,560	149,264	1147,093
Cuenta	24	20	13
Mayor (1)	28,838	13,086	197,762
Menor(1)	3	4,050	30,997
Nivel de confianza(95,0%)	3,367	1,242	27,673

 Tabla 4.33: Análisis Estadístico de Multiplicadores de Lagrange en EMS en diferentes

 condiciones de demanda.

En cuanto a la aplicación realizada de la corrección de los parámetros de la L/T Pascuales Molino 1 utilizando la información de los PMUs, se evidenció que este es un mecanismo válido para la corrección de parámetros, siempre y cuando se dispongan PMUs en cada terminal de la línea y se procese estadísticamente la información proporcionada por las PMUs, a fin de utilizar la mejor información disponible, esto es filtrar la información para utilizar la información de estado estable aislando de los eventos transitorios . La corrección de parámetros de la línea Pascuales Molino 1 ha sido aplicada en el sistema EMS de manera permanente observando resultados coherentes en esta zona.

En cuanto a la aplicación realizada de la corrección de los parámetros del transformador ATQ de Francisco de Orellana, ésta se ha realizado en base al protocolo de pruebas del fabricante y se ha incluido en el sistema EMS como una solución permanente, obteniéndose mejores resultados en la estimación de voltajes, potencias activas y reactivas y posiciones de taps y LTC en la vecindad de este transformador respecto de los resultados que se disponían antes de corregir estos parámetros, por lo cual se aplica este método como válido para el cálculo de parámetros de transformadores de tres devanados con tap y LTC en el sistema EMS.

CAPÍTULO 5.

5.1 CONCLUSIONES Y SUGERENCIAS DE TRABAJOS FUTUROS DE INVESTIGACIÓN

En este capítulo se presentan las principales conclusiones y recomendaciones obtenidas de la realización de esta tesis.

5.2 CONCLUSIONES

- El programa de identificación de parámetros erróneos en un sistema eléctrico ha sido desarrollado para aplicarse en un sistema eléctrico de n barras y ha sido aplicado y validado en un sistema de ejemplo de 4 barras y en el S.N.I. con resultados coherentes.
- Los modelos, procedimientos y programas desarrollados en esta tesis para la corrección de parámetros eléctricos detectados como erróneos en líneas de transmisión y transformadores han sido probados y validados con resultados satisfactorios.
- Considerando que el modelo eléctrico de tiempo real obedece a una realidad de condiciones eléctricas con la cual el operador debe tomar decisiones en línea sobre el sistema eléctrico, para lograr la calidad y seguridad de la operación del S.N.I. y el modelo utilizado en el ambiente fuera de línea tiene como objetivo permitir estudios de planificación, expansión y seguridad del sistema en el corto, mediano y largo plazo, ambos modelos presentan particularidades que se deben considerar para obtener un modelo común de red que permita aplicar el programa de identificación de errores de parámetros y comparar los resultados en los dos sistemas.
- Los elementos modelados en los sistemas de tiempo real y fuera de línea son muy diferentes en número, debido a que en PowerFactory de DIgSILENT se modela con detalle las redes de Colombia, Perú y algunas distribuidoras. Por lo que a fin de modelar sistemas semejantes es necesario determinar circuitos equivalentes (reducidos) en PowerFactory que permitan comparar los resultados de los dos sistemas.

- En PowerFactory de DIgSILENT se realiza por lo general la modelación de las cargas y de la generación de forma unificada mientras que en el sistema de tiempo real se realiza una modelación en detalle.
- Considerando que por su naturaleza, en PowerFactory de DIgSILENT no hay mediciones, las mismas deben ser cargadas desde el EMS, por lo tanto, todos los escenarios utilizan las mediciones obtenidas del sistema EMS, de manera que la principal variación entre un escenario de EMS y un escenario PowerFactory de DIgSILENT son los parámetros de los elementos de red.
- El algoritmo aplicado en esta tesis para realizar la identificación de parámetros erróneos fue aquel que fue propuesto por Jun Zhu y Ali Abur en [34] y que se basa en Multiplicadores de Lagrange y requiere una solución proporcionada por el algoritmo de estimador de estado convencional, para lo cual es necesario disponer un sistema observable y sin errores grandes de topología o medición que dificulte la convergencia del estimador de estado.
- Conforme los resultados obtenidos, el algoritmo utilizado cumple con las características indicadas por su autor, es decir no requiere un set a priori de parámetros sospechosos y permite identificar los parámetros erróneos independientemente de los errores de medición, ya que permite obtener un vector de errores de parámetros (Multiplicadores de Lagrange) y un vector de errores de mediciones (residuales).
- Los Multiplicadores de Lagrange obtenidos permiten identificar donde están los equipos que pueden tener parámetros erróneos, en un módulo adicional al algoritmo de estimación de estado.
- En los resultados, se ha observado que los multiplicadores de Lagrange están relacionados con ramas y los residuales con barras, por lo que si una rama de transformador o L/T tiene parámetros erróneos éstos afectan a los extremos donde se encuentra esta rama, por lo que se observa una incidencia en los residuales asociados. Esta tendencia se observa en

todos los casos simulados de demanda y también en los dos sistemas considerados EMS y PowerFactory de DIgSILENT.

- Los valores máximos de Multiplicadores de Lagrange y residuales obtenidos no tienen una relación claramente establecida entre ellos, sin embargo sí se observa que existe una prioridad semejante en multiplicadores de Lagrange y residuales, en cuanto a los equipos que pueden presentar un mayor error en sus parámetros.
- En los resultados obtenidos se observa que, cuando los parámetros son erróneos, éstos presentan un comportamiento de falla permanente, por lo que esto se reflejará en todas las condiciones de demanda. Esto se pudo observar con varios parámetros detectados como erróneos en los casos de simulación, así, se observa que algunos equipos detectados con error, se mantienen en las tres condiciones de demanda, o al menos en dos condiciones de demanda. Esto implica que existe un error permanente en los parámetros de ese equipo. Esta tendencia se observa tanto en el sistema EMS como en el sistema PowerFactory de DIgSILENT.
- En los resultados obtenidos, se observa que los errores en los parámetros tienen una naturaleza local y esto se ha evidenciado en los residuales de las barras asociadas a las ramas de análisis.
- Como resultado del programa de identificación de datos erróneos, los mayores errores en EMS se presentan en las siguientes L/T:
 - Conocoto Vicentina
 - o Molino Pascuales 1
 - o Pomasqui Sta. Rosa 2
 - o Molino Pascuales 2

Y en los siguientes transformadores:

- Pomasqui ATU
- o Panamericana TF1
- Sta. Rosa ATU

- Pascuales ATU
- Pascuales ATT
- o Sta. Rosa ATT
- Los mayores errores en PowerFactory de DIgSILENT se presentan en las siguientes L/T:
 - o Quevedo San Gregorio 1 y 2
 - Pascuales Salitral 1 y 2
 - Mazar Zhoray 1 y 2
 - Daule Peripa Chone
 - o Agoyán Puyo
 - o Puyo Tena
 - Vicentina Guangopolo
 - o Molino Pascuales 1
 - Milagro Zhoray 1 y 2

Y en los siguientes transformadores:

- o Sta. Elena ATR
- Pascuales ATU
- Esmeraldas AA1
- Babahoyo ATQ
- Al correr el programa de identificación de parámetros erróneos es posible con la lista de multiplicadores de Lagrange obtener una lista de prioridad para revisar y calcular los parámetros de los equipos; tanto en el sistema EMS como en el sistema PowerFactory de DIgSILENT y si existen las mediciones de PMUs disponibles o los protocolos de prueba del fabricante, realizar la corrección correspondiente.
- Los resultados obtenidos principalmente en el sistema EMS son coherentes con la realidad, debido a que tanto las líneas de transmisión como los transformadores identificados como sospechosos de error, si lo

son debido a que en varios de estos casos no se dispone información oficial de sus parámetros, por lo que su modelación se ha realizado con parámetros aproximados.

- En las listas de prioridad de revisión de equipos con parámetros erróneos se pudo observar que la línea Pascuales Molino 1 presentaba problemas en sus parámetros y esto se evidenció en las tres condiciones de demanda en los sistemas EMS y PowerFactory de DIgSILENT.
- En base a los resultados obtenidos se observa que al realizar la corrección de parámetros de la línea de transmisión Pascuales Molino con los parámetros calculados en base a las mediciones disponibles de PMUs, los residuales de P y Q disminuyen en sus valores absolutos para todos los casos a excepción de la potencia reactiva de Pascuales Molino 1. Este comportamiento podría tener su origen en alguna influencia de errores de parámetros o mediciones en equipos aledaños a esta línea en la zona de Pascuales. Por lo tanto, la alternativa de utilizar datos de PMUs para calcular parámetros ha sido utilizada exitosamente en la aplicación realizada de la corrección de los parámetros de la L/T Pascuales Molino 1, y es un mecanismo válido para la corrección de parámetros, siempre y cuando se dispongan PMUs en cada terminal de la línea y se procese estadísticamente la información proporcionada por las PMUs, a fin de utilizar la mejor información disponible, esto es filtrar la información para utilizar la información de estado estable aislada de los eventos transitorios. La corrección de parámetros de la línea Pascuales Molino 1 ha sido aplicada en el sistema EMS de manera permanente observando resultados coherentes en esta zona.
- Una vez identificado el parámetro erróneo, el procedimiento para cambiar los parámetros identificados como erróneos en el EMS sería:
 - Tomar un set de mediciones de PMUs
 - Procesar estadísticamente las mediciones de los PMUs para obtener los mejores valores de la muestra.

- o Calcular los parámetros del equipo correspondiente
- Probar los parámetros calculados en el sistema EMS observando su efecto en un período de tiempo en las zonas aledañas y en el sistema total.
- En cuanto a la aplicación realizada de la corrección de los parámetros del transformador ATQ de Francisco de Orellana, ésta se ha realizado en base al protocolo de pruebas del fabricante y se ha incluido en el sistema EMS como una solución permanente, obteniéndose mejores resultados en la estimación de voltajes, potencias activas y reactivas y posiciones de taps y LTC en la vecindad de este transformador respecto de los resultados que se disponían antes de corregir estos parámetros, por lo cual se aplica este método como válido para el cálculo de parámetros de transformadores de tres devanados con tap y LTC en el sistema EMS.
- La forma de modelar los trasformadores de tres devanados con tap y/o LTC y los modelos de cálculo de parámetros eléctricos que se plantean en la sección 2.2 del Capítulo 2, para realizar la corrección de errores de parámetros en líneas de transmisión y transformadores son parte de la contribución principal de esta tesis.
- El disponer de los protocolos de prueba de los transformadores permite obtener los parámetros correctos de modelación del transformador, conforme se ha verificado en los resultados presentados en el Capítulo 4.

5.3 RECOMENDACIONES

- Una vez obtenida la lista de prioridad de equipos con multiplicadores de Lagrange de los parámetros, mayores a tres e identificados en tres condiciones de demanda, se recomienda revisar los parámetros de estos equipos y realizar un análisis previo al cambio permanente de estos parámetros en los sistemas EMS y PowerFactory de DIgSILENT.
- Es recomendable propiciar el disponer de PMUs móviles que puedan ser instalados según la necesidad de corregir parámetros en alguna zona

detectada por el identificador de parámetros erróneos. En el caso de transformadores, esto haría posible la medición exacta de las impedancias en las diferentes posiciones de tap y LTC.

- Debido a que el sistema PowerFactory de DIgSILENT no dispone de mediciones propias es recomendable realizar la identificación de parámetros erróneos con datos del EMS y una vez identificados estos parámetros y corregidos debe realizarse el ajuste en los parámetros correspondientes en PowerFactory de DIgSILENT.
- Para la utilización de los datos de PMUs en el cálculo de parámetros, es recomendable realizar un análisis estadístico previo de la información, a fin de evitar distorsiones de eventos transitorios en la información, desechando datos extremos que deforman la característica simétrica y normal gaussiana de la medición.
- Se recomienda realizar estudios de parámetros eléctricos en el tiempo con la información de PMUs, a fin de establecer la influencia de la temperatura y cargabilidad de la línea a lo largo del día, de manera que se determinen los parámetros que mejor definan este comportamiento.
- Se recomienda realizar una validación periódica de los parámetros en los sistemas EMS y PowerFactory de DIgSILENT, para poder comparar los resultados entre estos dos sistemas.

BIBLIOGRAFÍA

- C. Sulzberger, «"History When the lights went out remembering 9 November 1965",» *Power and Energy Magazine, IEEE*, pp. 90 - 95, 2006.
- [2] A. Gómez Expósito, A. Abur, A. Alvarado ,C. Álvarez , C. Cañizares , J. Cidras ,A. Conejo , A. Fernández, F. Galiana, J. García, José Martínez , J. Martínez, F. Miñambres, I. Pérez, V. Quintana, M. Rivier, L. Rouco, J. Usaola, "Análisis y Operación de Sistemas de Energía Eléctrica ", España: Mc Graw Hill, 2002.
- [3] A. Gómez Expósito, P. Zarco, "Estimación de Estado y de Parámetros en Redes Eléctricas ", España: Universidad de Sevilla, 1999.
- [4] N. Vempati , I. Slutsker, W. Tinney , «"Enhancement to Givens Rotations for Power System State Estimation",» *IEEE Trans. on Power Systems,* May 1991.
- [5] P. Zarco, "Estimación de Parámetros en Redes Eléctricas utilizando Históricos de Medidas ", España: Universidad de Sevilla, 1997.
- [6] F. Schweppe, J. Wildes, D. Rom, «"Power system static state estimation: Parts I: Exact Model",» *IEEE Trans. on Power Apparatus and Systems,* vol. PAS 89, nº 1, pp. 120-125, January 1970.
- [7] F. Schweppe, J. Wildes, D. Rom, «"Power system static state estimation: Parts II: Approximate Model",» *IEEE Trans. on Power Apparatus and Systems,* vol. PAS 89, nº 1, pp. 125-130, January 1970.
- [8] F. Schweppe, J. Wildes, D. Rom, «"Power system static state estimation: Parts III: Implementation",» *IEEE Trans. on Power Apparatus and Systems*, vol. PAS 89, nº 1, pp. 130-135, January 1970.

- [9] I. Slutsker, A. Clements, «"Real Time Recursive Parameter Estimation in Energy Management Systems ",» *IEEE Trans. on Power Systems,* vol. 11, nº 3, Aug. 1996.
- [10] A. Abur, A. Gómez Expósito, "Power System State Estimation, Theory and Implementation", New York: Marcel Dekker, 2004.
- [11] X. Bian, R. Li, H. Chen, D. Gan, J. Qiu, «"Join Estimation of State and Parameter With Synchrophasors – Part I: State Tracking ",» *IEEE Trans.* on Power Systems, vol. 26, nº 3, August 2011.
- [12] X. Bian, R. Li, H. Chen, D. Gan, J. Qiu, «"Join Estimation of State and Parameter With Synchrophasors – Part II: Parameter Tracking ",» IEEE Trans. on Power Systems, vol. 26, nº 3, August 2011.
- [13] G. Rivera, «"Procedimientos para Operación y Mantenimiento del Estimador de Estado en el Centro Nacional de Control de Energía (CENACE)",» Tesis de Ingeniería. Facultad de Ingeniería Eléctrica. Escuela Politécnica Nacional, Quito, Ecuador, 1999.
- [14] A.P. Meliopoulos, B. Fardanesh, S. Zelingher, «"Power System State Estimation: Modeling Error Effects and Impact on System Operation",» Proceedings of the 34th Hawaii International Conference on System Sciences, 2001.
- [15] A. J. Wood, B. F. Wollenberg, "Power Generation Operation and Control", John Wiley & Sons Inc, 1996.
- [16] J.B.A London, L. Mili, N. G. Bretas, «An Observability Analysys Method for a Combined Parameter and State Estimation of a Power System ",» Proceedings of the 8th International Conference on Probabilistic Method Applied to Power Systems Iowa State University, Sept. 2004.

- [17] F. Aboytes , B. Cory, «"Identification of Measurement, Parameter and Configuration Errors in Static State Estimation",» *Proceedings of the 9th IEEE PICA Conference*, 1975.
- [18] L. Alvarado, «"State Estimation for the Detection of Market Parameters ",» IEEE /PES Summer Meeting, July 16, 2001.
- [19] C. Loong, «"Parameter Estimation in Ordinary Differential Equations ",» Electrical Engineering Thesis, National University of Singapore, May. 2003.
- [20] Ch. Rakpenthai, S. Uatrongjit, S. Premrudeepreechacharn, «"State Estimation of Power System Considering Network Parameter Uncertainty Based on Parametric Interval Linear Systems ",» *IEEE Trans. on Power Systems,* vol. 27, nº 1, Feb. 2012.
- [21] M. Davoudi, «"Sensitivity Analysis of Power System State Estimation Regarding to Network Parameter Uncertaities",» PhD. Thesis, Electrical Engineering Department. Politecnico di Milano, 2012.
- [22] S. Lefebvre, J. Prévost, H. Horisberger, B. Lambert, L. Mili, «"Coping with Multiple Q-V Solutions of the WLS State Estimator Induced by Shunt-Parameters Errors ",» Proceedings of the 8th International Conference on Probabilistic Method Applied to Power Systems Iowa State University, Sept. 2004.
- [23] D. Jones, «"Estimation of Power System Parameters ",» IEEE Trans. on Power Systems, vol. 19, nº 4, Nov. 2004.
- [24] Al. Othman, M.R. Irving, «"A Comparative Study of Two Methods for Uncertainty Analysis in Power System State Estimation ",» IEEE Trans. on Power Systems, vol. 20, nº 2, May. 2005.

- [25] Al. Othman, M.R. Irving, «"Uncertainty modelling in power system state estimation ",» IEEE Proc.-Gener. Transm. Distrib, vol. 152, nº 2, March 2005.
- [26] W. Liu, F. Wu, S.Lun, «"Estimation of Parameters Errors from Measurement Residuals in State Estimation ",» IEEE Transaction on Power Systems, vol. 7, nº 1, Feb. 1992.
- [27] E. Liu, S. Lim, «"Parameter Error Identification and Estimation in Power System State Estimation ",» *IEEE Trans. on Power Systems*, vol. 10, n° 1, Feb. 1995.
- [28] L. Zhang, A. Abur, «"Identifying Parameter Errors via Multiple Measurement Scans",» IEEE Trans. on Power Systems, vol. 28, nº 4, Nov. 2013.
- [29] J. Zhu, A. Abur, «"Identification of Network Parameter Errors ",» IEEE Trans. on Power Systems, vol. 21, nº 2, May. 2006.
- [30] J. Rolim, «"Estimação de Estados em Sistemas de Potencia pelo Método da Matriz Aumentada: Aspectos Numéricos e processamento de erros grosseiros",» Tese de Mestre em Engenharia, Programa de Pós-Graduação em Engenharía Eléctrica, Universidade Federal de Santa Catarina, Brasil, 1988.
- [31] J. Zhu, «"Detection and Identification of Network Parameter Errors using Conventional and Synchronized Phasor Measurements ",» Electrical Engineering Dissertation, Northeastern University, January 2008.
- [32] A. Gjelsvik, S. Aam, «"The significance of the Lagrange Multipliers in WLS State Estimation with Equality Constraints",» de *Proceedings of the 11th Power System Computation Conference*, Avignon, Aug-Sep 1993.
- [33] A. Monticelli, "State Estimation in Electric Power Systems. A Generalized Approach, Kluwer Academic Publishers, 1999.

- [34] A. Gómez Expósito , A. Villa Jaén, «"Reduced Substation Models for Generalized State Estimation",» *IEEE Trans. on Power Systems*, vol. 16, nº 4, pp. 839-846, Nov. 2001..
- [35] A. Villa Jaén, A. Gómez Expósito, «"Implicitly Constrained Substation Model for State Estimation",» *IEEE Trans. on Power Systems*, vol. 17, nº 3, pp. 850-856, Aug. 2002.
- [36] J. Chen , N.D.R. Sarma , F. Garcia , A. Sills,, «"ERCOT's Experience in Identifying Parameter and Topology Errors using State Estimator",» 2010 IEEE PES General Meeting, Minneapolis, July 2010.
- [37] E. Andreoli, «"Coestimação de Estados e Topologia em Sistemas de Potência Representados por Modelo Não-Linear",» MSC. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2013.
- [38] D. Hwang, B. Brewer, «"Using State Estimation for Parameter and Model Error Identification",» Presentation ALSTOM, July 2010.
- [39] F. Aschmoneit, N. Peterson, E. Adrian, «"State Estimation with Equality Constraints",» 10th PICA Conference Proceedings, pp. 427-430, May 1977.
- [40] A. Monticelli, "Testing Equality Constraint Hypotheses in Weighted Least Squares State Estimators", Santa Clara: PICA 99, 1999.
- [41] J. J. Grainger, W. D. Jr. Stevenson, "Power System Analysis", New York: McGraw-Hill Inc., 1994.
- [42] P. Zarco, A. Gómez Exposito, «"Power System Parameter Estimation: A Survey ",» IEEE Trans. on Power Systems, vol. 15, nº 1, Feb. 2000.
- [43] M. Gol, «Incorporation of PMUS in Power System State Estimation",» PhD Electrical Engineering Thesis, Department of Electrical and

Computer Engineering. Northeastern University Boston, Massachusetts, Abril 2014.

- [44] A. D. I. Torre, «"Análisis Técnico para la Implementación de un sistema de Monitoreo de Área Extendida (WAMS) en el Sistema Nacional Interconectado del Ecuador ",» Tesis de Ingeniería. Facultad de Ingeniería Eléctrica. Escuela Politécnica Nacional, Quito, Ecuador, 2013.
- [45] R. Emami, A. Abur, «"Robust Measurements Design by Placing Synchronized Phasor Measurements on Network Branches ",» IEEE Trans. on Power Systems, vol. 25, nº 1, February 2010.
- [46] J. Zhu , A. Abur, «"Improvements in Network Parameter Error Identification via Synchronized phasors ",» IEEE Trans. on Power Systems, vol. 25, nº 1, February 2010.
- [47] C. Borda, «"Desarrollo de un algoritmo de Identificación de Parámetros de Líneas de Transmisión y de la Posición del cambiador de tomas (taps), usando técnicas de estimación de estado y mediciones Fasoriales Sincronizadas",» Tesis de Magister en Ingeniería Eléctrica, Universidad Nacional de Colombia, Bogotá, 2009.
- [48] A. De la Torre, J. Cepeda, J.C. Herrera, «"Implementación de un Sistema de Monitoreo de Área Extendida WAMS en el Sistema Nacional Interconectado del Ecuador SNI",» *Revista de Ciencia y Tecnología INGENIUS*, nº 10, Dic. 2013.
- [49] S. Raman, «"A New Parameter State Estimator with Strategically Placed PMU for a Smart Power Grid",» Master of Science Thesis, Power Systems Research Center, International Institute of Information Technology, Hyderabad, India, 2012.
- [50] F. Milano, "Power System Modelling and Scripting", Springer-Verlag London Limited, 2010.

- [51] R. Cabezas, «"Identificación de los Parámetros Físicos de los Sistemas de Transmisión de Energía Eléctrica ",» Empresa de Transmisión Eléctrica Centro Norte S.A. (ETECEN), Dec. 1999.
- [52] C. Marzinzik, S. Grijalva, J. Weber, «"Experience Using Planning Software to Solve Real-Time Systems",» Proceedings of the 42nd Hawaii International Conference on System Sciences, 2009.
- [53] C. Aguirre, «"Estudios Eléctricos de Sistemas de Potencia para la Carrrera de Ingeniería Eléctrica utilizando el Software Power Factory 13.1 de Digsilent",» Tesis de Ingeniería. Facultad de Ingeniería Eléctrica. Escuela Politécnica Nacional, Quito, Ecuador, Julio 2008.
- [54] DIgSILENT, "PowerFactory 14.1 User's Manual".
- [55] A. Inc., "Power Applications Design", Descripcion Manual, Sugarland, 2003.
- [56] A. Narváez, «"Estimador de Estado Robusto de Sistemas Eléctricos de Potencia en Matlab",» Tesis MSC. Facultad de Ingeniería Eléctrica. Escuela Politécnica Nacional, Quito, Ecuador, 2009.
- [57] R. Kenett, S. Zacks, "Estadística Industrial Moderna. Diseño y Control de la Calidad y la Confiabilidad ", International Thomson Editores, 2000.

ANEXO 1. ANÁLISIS DE DATOS CON STATA

REVISIÓN DE INFORMACIÓN PARA: MOLI-PASC1

ESTADÍSTICA DESCRIPTIVA:

Comandos de STATA:

Análisis variable: q

Ρ	ercentiles	Smallest		
1%	-3.687064	-3.795115		
5%	-3.397599	-3.794299		
10%	-3.077718	-3.785436	Obs	3602
25%	-2.177194	-3.783611	Sum of Wg	gt. 3602
50%	-1.84072	N	lean -1.8	52407
	La	rgest Std.	Dev75099	955
75%	-1.354672	085222		
90%	-1.01264	04972	Variance	.5639943
95%	5857005	024371	Skewness	3914171
99%	261119	.0217615	Kurtosis	3.253362

Debido a que skewness se encuentra cercano a -1, se puede hablar de simetría. Adicionalmente si se analiza la "Kurtosis" y dado que su valor se encuentra entre 2 y 4 se puede considerar que los datos siguen una distribución normal.

PRUEBAS DE NORMALIDAD:

Se empleará la prueba de Wilk-Shapiro para probar normalidad con las siguientes hipótesis:

Hipótesis Nula: Datos siguen Distribución Normal

Hipótesis No Nula: Datos no siguen Distribución Normal

Datos de STATA:

Shapiro-Wilk W test for normal data

Variable | Obs W V z Prob>z

q | 3602 0.96772 65.212 10.847 0.00000

Dato que probabilidad 0, en primera instancia podrían ser normales.

GRAFICOS DE q Comando:

Gráficos de Normalidad, comando STATA

En general los datos seguirían normalidad.

Análisis variable: p

		р		
Pe	ercentiles	Smallest		
1%	140.6581	139.8995		
5%	141.1938	140.1696		
10%	143.5489	140.2117	Obs	3602
25%	148.5423	140.3372	Sum of Wg	jt. 3602
50%	150.698	Μ	ean 150).2668
	Lai	rgest Std. I	Dev. 3.863	177
75%	153.2315	156.8526		
90%	154.5562	156.8629	Variance	14.92414
95%	155.336	156.9073	Skewness	9454292
99%	156.3634	156.9308	Kurtosis	3.551286

Como el valor skewness se encuentra cercano a -1, se puede hablar de simetría. Adicionalmente si se analiza la "Kurtosis" su valor se encuentra entre 2 y 4, entonces se puede considerar que los datos siguen una distribución normal.

Para estos datos se descarta normalidad.

Análisis variable: v

Pe	ercentiles	Smallest		
1%	234.1666	234.076		
5%	234.2218	234.1016		
10%	234.2564	234.1141	Obs	3602
25%	234.3528	234.1159	Sum of Wg	t. 3602
50%	234.4858	Ν	Aean 234	4.5199
	La	rgest Std.	Dev20945	539
75%	234.6806	235.0203		
90%	234.8421	235.0265	Variance	.0438709
95%	234.8819	235.0648	Skewness	.3234373
99%	234.9429	235.0971	Kurtosis	2.104546

Como el valor skewness se encuentra cercano a 1, se puede hablar de simetría. Adicionalmente si se analiza la "Kurtosis" su valor se encuentra entre 2 y 4, entonces se puede considerar que los datos siguen una distribución normal.

Para estos datos se tiende a ser normales.

Análisis variable: theta

	1	theta		
P	ercentiles	Smallest		
1%	-176.4242	-179.9839		
5%	-165.6665	-179.9022		
10%	-153.2005	-179.8795	Obs	3602
25%	-100.7963	-179.7417	Sum of Wg	t. 3602
50%	-6.47454	Ν	lean -3.2	77025
	La	rgest Std.	Dev. 108.84	132
75%	94.4427	179.6034		
90%	150.2692	179.7608	Variance	11846.85
95%	165.5997	179.7754	Skewness	.0368119
99%	176.5773	179.8991	Kurtosis	1.731298

Como el valor skewness se encuentra cercano a -1, se puede hablar de simetría. Adicionalmente si se analiza la "Kurtosis" su valor tiende a 2 se podría considerar que los datos siguen una distribución normal.

Shapiro-Wilk W test for normal data

Variable	Obs	W	V z	z Prob	>Z
+					
theta	3602	0.94381	113.512	12.286	0.00000

REVISION DE INFORMACIÓN PARA: PASC - MOLI

q -----Percentiles Smallest

1%	-3.040617	-3.493403			
5%	-2.725339	-3.369685			
10%	-1.666697	-3.254546	Obs	3602	
25%	614276	-3.188696	Sum of Wgt	. 3602	
50%	.4251578	Ν	lean .18	25447	
	Lar	gest Std. [Dev. 1.2934	86	
75%	1.258739	2.175792			
90%	1.660714	2.198743	Variance	1.673106	
95%	1.789673	2.200468	Skewness	829112	
99%	1.995585	2.225997	Kurtosis	3.099421	

Como el valor skewness se encuentra cercano a -1, se puede hablar de simetría. Adicionalmente si se analiza la "Kurtosis" su valor se encuentra entre 2 y 4, entonces se puede considerar que los datos siguen una distribución normal.

Shapiro-Wilk W test for normal data

Variable	Ob	s W	V	Z	Prob>z	-
+						
q	3602	0.92475	152.023	13.0	045 0.0	00000

 Percentiles
 Smallest

 1%
 -151.5076
 -152.0436

 5%
 -150.5569
 -152.0247

 10%
 -149.8168
 -151.9745
 Obs
 3602

 25%
 -148.5685
 -151.9737
 Sum of Wgt.
 3602

 50%
 -146.1587
 Mean
 -145.762

 Largest
 Std. Dev.
 3.652523

 75%
 -144.1326
 -136.3706

 90%
 -139.418
 -136.2534
 Variance

 95%
 -137.1792
 -136.2138
 Skewness
 .9467237

 99%
 -136.6731
 -135.9483
 Kurtosis
 3.553948

Shapiro-Wilk W test for normal data

Variable | Obs W V z Prob>z

p | 3602 0.91257 176.614 13.434 0.00000

Pe	ercentiles	Smallest		
1%	228.5669	228.4309		
5%	228.6694	228.4328		
10%	228.7268	228.4796	Obs	3602
25%	228.8411	228.4922	Sum of Wg	t. 3602
50%	229.0205	ľ	Mean 229	9.0281
	La	rgest Std.	Dev23357	47
75%	229.1938	229.6354		
90%	229.3557	229.6357	Variance	.0545572
95%	229.4133	229.6492	Skewness	.1412109
99%	229.5313	229.7161	Kurtosis	2.328356

Shapiro-Wilk W test for normal data

Los datos siguen normalidad.

theta

P				
1%	-176.9871	-179.9166		
5%	-167.7307	-179.8819		
10%	-153.4685	-179.8062	Obs	3602
25%	-94.16603	-179.7293	Sum of Wg	t. 3602
50%	-2.030599	Ν	Mean .41	35849
	Lar	rgest Std.	Dev. 109.15	589
75%	97.55447	179.9065		
90%	151.3204	179.9636	Variance	11915.68
95%	165.6485	179.9697	Skewness	0077675
99%	177.2742	179.9839	Kurtosis	1.733703

Shapiro-Wilk W test for normal data

Variable	Obs	W	V z	z Prob)>Z
+					
theta	3602	0.94457	111.975	12.251	0.00000

