ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO TÉCNICO – ECONÓMICO POSTFRACTURA EN EL CAMPO CONONACO

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEOS

GABRIELA NATHALY HERRERA CADENA nathalyherrera1@gmail.com

DIRECTOR: ING. GERARDO BARROS gerardo.barros@epn.edu.ec

Quito, Febrero 2009

DECLARACIÓN

Yo Gabriela Nathaly Herrera Cadena; declaro bajo juramento que el trabajo aquí escrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normalidad institucional vigente.

Nathaly Herrera

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Gabriela Nathaly Herrera Cadena, bajo mi supervisión.

Ingeniero Gerardo Barros DIRECTOR DEL PROYECTO

AGRADECIMIENTO

El reconocimiento fluye de los sentimientos humanos y el primer impulso es dar gracias a Dios, por haberme proporcionado salud y una predisposición férrea para poder cumplir con mi anhelo.

Experimento una gratitud indescriptible para mis padres, quienes han colaborado incondicionalmente en el trajinar de mi vida estudiantil, aunando esfuerzos, evocando permanentemente esas bienvenidas palabras de aliento cuando parecía desfallecer.

La satisfacción de un reconocido agradecimiento a los ingenieros que compartieron parte de su tiempo de trabajo, para orientarme, asesorarme y guiarme en la realización de mi tesis.

No podía faltar el dar gracias mis apreciados maestros de la facultad de Petróleos, que con su acertada dirección han cubierto el cúmulo de expectativas que emana diariamente en la vida del estudiante.

Las palabras de: ¡Sigue adelante, no desmayes! Pronunciadas por mis hermanos repercuten al amanecer de cada día.

La amistad brindada por mis compañeros y amigos, esa voz de aliento, esas freses de cómo te encuentras, cómo estás es importante retribuirlas.

Nathaly Herrera

DEDICATORIA

Este trabajo donde he plasmado minuto a minuto el sacrificio, el amor, el desvelo y la vehemencia incontrolable de dar lo mejor de mí en esta ardua tarea estudiantil, con el cariño más grade lo dedico a mis padres, de quien aprendí a luchar y no claudicar mis ideales, con quien comparto alegrías e inquietudes.

A mi abuelita Carlotita que con sus consejos semeja a una gota de rocío que refresca el ánimo y da vida.

A mis hermanos que con su ejemplo dotaron de energía para culminar mi carrera.

Nathaly Herrera

CONTENIDO

DECLARACIÓN	<u></u>
CERTIFICACIÓN	
AGRADECIMIENTO	IV
DEDICATORIA	V
RESUMEN	XXIV
PRESENTACIÓN	XXV

CAPÍTULO I

1. DESCRIPCIÓN DEL CAMPO CONONACO	1
1.1. BREVE RESEÑA HISTÓRICA	1
1.2. UBICACIÓN Y DATOS GENERALES	3
1.3. LA ESTRUCTURA CONONACO Y SU EVOLUCIÓN	3
1.4. GEOLOGÍA LOCAL	5
1.4.1. ESTRATIGRAFÍA LOCAL	5
1.4.2.2. Yacimiento "T"	7
- "T" Inferior	7
- "T" Superior	8
1.4.2.3. Yacimiento "U"	8
- "U" Inferior	9
1.5. SEDIMENTOLOGÍA	<u>9</u>
1.5.1. FORMACIÓN HOLLÍN (RESERVORIO HOLLÍN INFERIOR)	<u>9</u>
1.5.2. FORMACIÓN HOLLÍN (RESERVORIO HOLLÍN SUPERIOR)	<u> 10 </u>
1.5.3. FORMACIÓN NAPO (RESERVORIO "T" INFERIOR)	11
1.6. CARACTERÍSICAS DE LAS ROCAS DE LA FORMACIÓN	12
1.6.1. NAPO G-2	12
1.6.2. NAPO "U"	12

1.6.3. NAPO T	<u>12</u>
1.6.4. HOLLÍN	<u>13</u>
1.7. ANÁLISIS DE NÚCLEOS	<u>13</u>
1.8. ANÁLISIS MINERALÓGICO	<u>14</u>
1.9. PROPIEDADES DE LOS FLUIDOS	<u>15</u>
1.9.1. PARÁMETROS PVT DEL FLUIDO	16
1.10. MECANISMOS DE PRODUCCIÓN DEL YACIMIENTO	<u>16</u>
1.10.1. MECANISMO DE EMPUJE POR GAS EN SOLUCIÓN	16
1.10.2. MECANISMO POR EMPUJE DE AGUA	18
1.10.3. MECANISMO POR CAPA DE GAS	18
1.10.4. MECANISMO POR SEGREGACIÓN GRAVITACIONAL	20
1.11. SITUACIÓN ACTUAL DEL CAMPO	20
1.11.1. POZOS PRODUCTORES	21
1.11.2. POZOS REINYECTORES	22
1.11.3. POZOS CERRADOS	22
1.11.4. POZOS ABANDONADOS	22
1.11.5. HISTORIA DE PRODUCCIÓN DEL CAMPO	23

CAPÍTULO II

2. TEORIA Y ANÁLISIS DE LOS TRABAJOS DE FRACTURAMIENTO	25
2.1. DAÑO A LA FORMACIÓN	25
2.1.1. DEFINICIÓN	25
2.1.2. MECANISMO DE DAÑO EN LA FORMACIÓN	<u></u> 25
2.1.2.1. Interacciones roca/fluidos	26
2.1.2.2. Fenómenos Interfaciales	29
2.1.2.3. Interacciones Fluido / Fluido	<u>30</u>
2.1.3. CLASIFICACIÓN GENERAL DE LAS FORMAS DE INDUCIR	
DAÑO DE FORMACIÓN	31

2.1.3.1. Inducido en forma mecánica	31
2.1.4. CAUSAS DEL DAÑO A LA FORMACIÓN DURANTE LAS	
OPERACIONES	33
2.1.4.1. Daños durante la perforación	33
2.1.4.2. Daños durante las operaciones de cementación	33
2.1.4.3. Daños durante las operaciones de terminación o reparación	
de pozos	33
2.1.4.5. Daños causados durante el proceso de producción	33
2.1.4.6. Daños causados durante procesos de inyección de	
gas o agua	33
2.2. FRACTURAMIENTO HIDRÁULICO	34
2.2.1. DEFINICIÓN	34
2.2.2. FRACTURA HIDRÁULICA	35
2.2.2.1. Finalidades del Fracturamiento Hidráulico	35
2.2.3. VARIABLES UTILIZADAS	36
2.2.3.1. Permeabilidad (k)	36
2.2.3.2. Porosidad (□)	36
2.2.3.6. Altura de la Fractura (h)	37
2.2.3.7. Relación de Penetración	38
2.2.3.8. Conductividad Adimensional de la Fractura	38
2.2.3.9. Número Sustentante	39
2.2.4. PROPIEDADES MECÁNICAS DE LA ROCA	39
2.2.4.1. Esfuerzo	39
2.2.4.2. Deformación	40
2.2.4.3. Material Linealmente Elástico	41
2.2.4.4. Módulo de Corte (G)	43
2.2.4.5. Módulo de Young (E) o Módulo de Elasticidad de la Roca	43
2.2.4.6. Módulo de Poisson (<i>v</i>)	44
2.2.4.7. Módulo de Bulk (k)	44
2.2.5. PRESIÓN NETA	<u>45</u>

2.2.6. LONGITUD DE LA FRACTURA	47
2.2.7. ALTURA DE LA FRACTURA	<u></u> 47
2.2.8. ANCHO DE LA FRACTURA	48
2.2.9. CONDUCTIVIDAD DE LA FRACTURA Y CONDUCTIVIDAD	
ADIMENSIONAL DE LA FRACTURA	<u></u> 49
2.2.10. MECÁNICA Y FLUJO DEL FLUIDO EN LA FRACTURA	<u></u> 50
2.2.11. EFECTOS DE LA PUNTA EN LA FRACTURA	<u></u> 50
2.2.12. PÉRDIDAS DE FLUIDO EN LA FRACTURA	<u></u> 51
2.2.13. SELECCIÓN DEL FLUIDO FRACTURANTE	<u>53</u>
2.2.13.1. Admisión del material sustentante	<u></u> 53
2.2.14.1.1. Modelo PKN	<u></u> 54
2.2.14.1. Modelos en Dos Dimensiones	54
2.2.14. MODELOS DE FRACTURA	<u></u> 54
2.2.15. Modelo KGD	<u></u> 56
2.2.16. Requerimientos del Flujo de Fluidos	57
2.2.16.1. Fluido de Relleno	<u></u> 57
2.2.16.2. Fluido con Sustentante o Lechada	<u>5</u> 7
2.2.16.3. Fluido de Limpieza	<u></u> 58
2.2.17. Material Sustentante	<u></u> 59
2.3. Fluido Fracturante, aditivos y material sustentante	<u></u> 59
2.3.1.2. Aditivos	<u>60 </u>
2.3.1.3. Selección del Fluido Fracturante	<u>61</u>
2.3.1.4. Presión y Potencia utilizada en el proceso	<u></u> 62
2.3.2. MATERIAL SUSTENTANTE APROPIADO	<u>62</u>
2.3.2.1. Categorías del material sustentante	<u>63</u>
2.4. DISEÑO DEL PROCESO DE FRACTURAMIENTO	<u>65</u>
2.4.1. MINIFRAC O DATAFRAC	<u></u> 66
2.4.1.1. Validez de los datos necesarios para diseño	<u></u> 69
2.4.2. EL CIERRE DE FRACTURA	70
2.4.3. BOMBEO DE APUNTALANTE	70
2.4.4. COLCHÓN (PAD)	<u></u> 70

IX

2.4.5. TRANSPORTE DE APUN	TALANTE (SLURRY VOLUME)	71
2.5. SECUENCIA OPERATIVA		71

CAPÍTULO III

3. ANÁ	LISIS TÉCNICO DE LOS POZOS FRACTURADOS EN EL	
CAMPO		
3.1. P/	ARÁMETROS PETROFÍSICOS DEL CAMPO	76
3.1.1. PE	ETROFÍSICA	76
3.1.1.1.	Análisis de los parámetros petrofísicos	
3.1.1.2.	Filtración de datos	77
3.1.1.3.	Volumen de arcilla (VcI)	77
3.1.1.4.	Saturación de agua	77
3.1.1.5.	Resultados finales	78
3.1.2. RI	ESERVAS	79
3.1.2.1. F	Reservas Probadas	80
3.1.2.2. F	Reservas Probables	
3.1.2.3. F	Reservas Posibles (Potencial Geológico)	
3.1.2.4. F	Reservas Remanentes	
3.1.3. M	ÉTODO VOLUMÉTRICO	
3.1.4. CI	JRVA DE DECLINACIÓN EXPONENCIAL	82
3.1.5. HI	STORIA DE PRODUCCIÓN ARENA T INFERIOR	85
3.2. ANÁ	LISIS TÉCNICO DE LOS POZOS PARA LA ARENA T	
INFERIO	R	
3.2.1. PC	20 CONONACO – 02	
3.2.1.1. [Datos generales del pozo	<u>86</u>
3.2.1.2. [Descripción del Yacimiento	86
3.2.1.3. (Caracterización del Yacimiento	87
3.2.1.4.	Análisis Productivo	<u></u> 92

3.2.1.5. Historiales de completación y reacondicionamiento	<u>93</u>
3.2.1.6. Historial de Build Up	95
3.2.1.7. Diseño de Fracturamiento	<u>98</u>
3.2.1.8. Ejecución de la fractura	103
3.2.1.9. Ejecución del trabajo de fracturamiento	<u>108 </u>
3.2.1.10. Análisis de presiones	<u>113</u>
3.2.1.11. Análisis de Curva IPR	<u>114 </u>
3.2.1.12. Incremento de producción estimado del fracturamiento	
hidráulico	<u></u> 116
3.2.1.13. Etapas de ejecución (Programa de WO)	<u></u> 120
3.2.2. CONONACO – 16	<u>124</u>
3.2.2.1. Datos Generales del pozo	<u>124 </u>
3.2.2.2. Datos de Yacimiento	<u>124 </u>
3.2.2.3. Historial de Producción	124
3.2.2.4. Evaluación De Registros	<u>126 </u>
3.2.2.5. Historial De Workovers	<u>126 </u>
3.2.2.6. Diseño De La Fractura	<u>127</u>
3.2.2.7. Modelo de producción	<u>131</u>
3.2.2.8. Longitud de fractura óptima	<u>132 </u>
3.2.2.9. Historial de B' UP	<u>133</u>
3.2.2.10. Análisis de las Curvas IPR	133
3.2.2.11. Incremento de producción estimado del desarrollo óptimo	
esperado del fracturamiento hidráulico	137
3.2.3. CONONACO – 23	140
3.2.3.1. Datos Generales del pozo	140
3.2.3.2. Datos de Yacimiento	140

XI

3.2.3.3. Historial de Producción	140
3.2.3.3. Historial de Producción	140
3.2.3.4. Evaluación Registros Eléctricos	141
3.2.3.5. Historial de Workovers	142
3.2.3.6. Diseño de la fractura	143
3.2.3.7. Modelo de producción	148
3.2.3.8. Longitud de fractura óptima	149
3.2.3.9. Historial de B' UP	149
3.2.3.10. Análisis de Curvas IPR	150
3.2.3.11. Incremento de producción estimado del desarrollo óptimo	
esperado del fracturamiento hidráulico	153
3.2.4. CONONACO – 28	156
3.2.4.1. Datos Generales del pozo	156
3.2.4.2. Datos de Yacimiento	156
3.2.4.3. Historial de Producción	156
3.2.4.4. Evaluación Registros Eléctricos	158
3.2.4.5. Historial de Workover	158
3.2.4.6. Diseño de la Fractura	159
3.2.4.7. Modelo de producción	163
3.2.4.8. Longitud de fractura óptima	164
3.2.4.9. Historial de B' UP	164
3.2.4.10. Análisis de Curvas IPR 1	<u>1</u> 65
3.2.4.11. Incremento de producción estimado del desarrollo óptimo	
esperado del fracturamiento hidráulico	167

CAPÍTULO IV

4. ANÁLISIS ECONÓMICO)	169
-----------------------	---	-----

4.1. ANÁLISIS ECONÓMICO	169
4.1.1. PERFIL DE PRODUCCIÓN	170
4.1.2 EGRESOS	171
4.1.2.1 Precio del Crudo Napo	171
4.1.2.2 Costos de Operación	171
4.1.2.3 Costos de Producción (Inversión)	172
4.1.3 INGRESOS	172
4.1.4. HIPÓTESIS CONSIDERADAS EN EL ANÁLISIS ECONÓMICO	173
4.2. EVALUACION DEL PROYECTO	174
4.2.1. VALOR ACTUAL NETO	174
4.2.2. TASA INTERNA DE RETORNO	175
4.3. ANÁLISIS DE RESULTADOS	177

CAPÍTULO V

5. CONCLUSIONES Y RECOMENDACIONES	184
5.1. CONCLUSIONES	184
5.2. RECOMENDACIONES	190

BIBLIOGRAFÍA	
GLOSARIO	194
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1.1. Descripción Litológica del Campo Cononaco	5
Tabla 1.2 Propiedades de la arena G-2	12
Tabla 1.3 Propiedades de la arena U	12
Tabla 1.4 Propiedades de la arena T	12
Tabla 1.5. Propiedades de la arena Hollín	13
Tabla 1.6. Profundidad de los pozos en los que se tomaron núcleos	13
Tabla 1.7. Difracción de Rayos X para el pozo CON-16	14
Tabla 1.8. Datos PVT	15
TABLA 1.9. Datos PVT	16
Tabla 1.10. Datos PVT del fluido	16
Tabla 1.11. Pozos Produciendo	21
Tabla 1.12. Pozos Reinyectores	22
Tabla 1.13. Pozos Cerrados	22
Tabla 1.14. Pozos Abandonados	23
Tabla 1.15. Reservas de Petróleo del Campo Cononaco	23
Tablas 2.1. Tipos de Porosidad	37
Tabla 2.2. Rangos para los valores de la relación entre Poisson y	
Young para los diferentes tipos de roca	44
Tabla 2.3. Dimensión característica según el tipo de modelo utilizado	o para
Fracturamiento hidráulico	49
Tabla 2.4. Concentración de agente sustentante en función del ancho d	e la
fractura	<u>54</u>
Tabla 2.5. Nomenclatura de los fluidos fracturantes	60
Tabla 2.6. Material Sustentante	<u>64</u>
Tabla 2.7. Especificaciones de diferentes sustentantes	64
Tabla 2.8. Secuencia de bombeo	74
Tabla 2.9. Total de fluido y propalante utilizados en la secuencia	
de bombeo	75
Tabla 2.10. Total del fluido de fractura y apuntalante	75

Tabla 3.1. Pozos seleccionados	76
Tabla 3.2 Valores de RW	<u></u> 78
Tabla 3.3. Resultados de la interpretación petrofísica zonas de pago	79
Tabla 3.4. Tabla de Reservas de los pozos estimulados	<u>82</u>
Tabla 3.5. Cutoff de la Arena T inferior del pozo Cononaco – 02	<u></u> 90
Tabla 3.6. Propiedades del fluido del pozo Con – 02	92
Tabla 3.7. Historiales de Reacondicionamiento del pozo Con – 02	<u></u> 93
Tabla 3.8 Resultado del Build UP antes de la fractura	95
Tabla 3.9. Resultado del Build UP después de la fractura	<u></u> 96
Tabla 3.10. Resumen General del Pozo	<u></u> 98
Tabla 3.11. Datos de Perforación	<u></u> 98
Tabla 3.12. Propiedades Mecánicas de la Formación	<u></u> 98
Tabla 3.13. Datos del Propalante	99
Tabla 3.14. Descripción del trabajo de Fractura	100
Tabla 3.15. Fluidos Utilizados	100
Tabla 3.16. Trabajo de Ejecución	100
Tabla 3.17. Resultados de la simulación de la fractura	101
Tabla 3.18. Datos de la Geometría de la Fractura por Zona de	
Producción	101
Tabla 3.19. Predicción del tiempo de bombeo por etapa	102
Tabla 3.20. Rediseño de Bombeo de la Fractura	105
Tabla 3.26. Resumen de Conductividad a ser obtenida	107

Tabla 3.21. Parámetros del Pozo utilizados en el tratamiento	109
Tabla 3.22. Volúmenes y Geometría de Fractura	112
Tabla 3.23. Historiales de Producción Post-fractura	116

Tabla 3.24. Parámetros del pozo a diferentes valores de daño	118
Tabla 3.25. Producción de petróleo a diferentes valores de S	118
Tabla 3.26. Descripción del Trabajo de Fracturamiento Hidráulico	122
Tabla 3.27. Datos Generales del Pozo Cononaco – 16	124
Tabla 3.28. Datos de Yacimiento del Pozo Cononaco – 16	124
Tabla 3.29. Intervalos Cañoneados del Pozo Cononaco – 16	125
Tabla 3.30. Prueba Inicial de Producción	125
Tabla 3.31. Cutoff de la Arena T inferior del pozo Cononaco – 16	126
Tabla 3.32. Historial de reacondicionamientos del pozo Cononaco – 16 _	126
Tabla 3.33. DataFrac del pozo Con – 16	129
Tabla 3.34. Secuencia del Bombeo de el Fracturamiento Hidráulico	130
Tabla 3.35. Parámetros de tratamiento registrados durante la operación	
Tabla 3.36. Parámetros de la Fractura	131
Tabla 3.37. Resultados del Build Up del Pozo Cononaco – 16	133
Tabla 3.38. Historial de Producción del pozo Cononaco – 16	136
Tabla 3.40. Parámetros del pozo Cononaco – 16 a diferentes valores	
de S	137
Tabla 3.41. Caudales estimados del pozo Cononaco – 16 a diferentes	
valores de S	138
Tabla 3.42. Datos Generales del pozo Cononaco – 23	140
Tabla 3.43. Datos de Yacimiento	140
Tabla 3.44. Intervalos Cañoneados	141
Tabla 3.45. Pruebas Iniciales	141
Tabla 3.46. Cutoff de la Arena T inferior del pozo Cononaco – 23	142
Tabla 3.47. Historial de Workover	142
Tabla 3.48. Descripción del la Secuencia de Bombeo del Trabajo de	
Fracturamiento	145
Tabla 3.49. Fluidos y Propalante Utilizados	145
Tabla 3.50. Rediseño del Bombeo del Fracturamiento	146
Tabla 3.51. Parámetros del Tratamiento	147
Tabla 3.52. Volúmenes y Geometría de la Fractura	148

Tabla 3.53. Resultados de los Build Ups del pozo Cononaco – 23	149
Tabla 3.54. Historial de Producción del pozo Cononaco – 23	
después de la fractura	152
Tabla 3.55. Historiales de Completación	152
Tabla 3.56. Parámetros del pozo Cononaco – 23 a diferentes	
valores de S	153
Tabla 3.57. Caudales estimados del pozo Cononaco – 23 a diferente	S
valores de S	154
Tabla 3.58. Datos Generales del pozo Cononaco – 28	156
Tabla 3.59. Datos del Yacimiento	156
Tabla 3.60. Intervalos Cañoneados	157
Tabla 3.61. Pruebas Iniciales	157
Tabla 3.62. Cutoff de la Arena T inferior del pozo Cononaco – 28	158
Tabla 3.63. Historial de Reacondicionamientos	159
Tabla 3.65. Resultados del DataFrac	160
Tabla 3.64. DataFrac del pozo Cononaco – 28	160
Tabla 3.66. Secuencia del Bombeo de el Fracturamiento Hidráulico	161
Tabla 3.67. Parámetros de Tratamiento registrados durante la	
operación de fracturamiento	162
Tabla 3.68. Volúmenes y Geometría de la Fractura	163
Tabla 3.69. Historial de Build UP del pozo Cononaco- 28	164
Tabla 3.70. Datos de Producción	166
Tabla 3.71. Parámetros del pozo Cononaco – 28 a diferentes	
valores de S	167
Tabla 3.72. Caudales estimados del pozo Cononaco – 28 a diferentes	5
valores de S	167
Tabla 4.1. Incremento de Producción	170
Tabla 4.2. Estimación de Producción por Declinación Exponencial 1	70
Tabla 4.3. Costos del Fracturamiento Hidráulico	171
Tabla 4.4. Egresos Mensuales por Costos de Producción por Barril	

de Petróleo	172
Tabla 4.5. Ingresos por Producción Mensual	
Tabla 4.5. Interpretación Valor Actual Neto	
Tabla 4.6. Resultados de la Evaluación del Proyecto para el	
pozo Cononaco – 16	176
Tabla 4.7. Resultados de la Evaluación del Proyecto para el	
pozo Cononaco – 23	
Tabla 4.8. Cálculo del VAN y el TIR para el pozo Cononaco – 16	6 <u>1</u> 78
Tabla 4.9. Cálculo del VAN y el TIR para el pozo Cononaco – 2 _.	181
Tabla 5.1. Resultados del Análisis Económico del Proyecto	189

ÍNDICE DE FIGURAS

Figura 1.1. Mapa del Campo Cononaco	_2
Figura 1.2. Edad de Estructuración del Campo Cononaco	4
Figura 1.3. Columna Estratigráfica del Campo Cononaco	6
Figura 1.4. Mecanismo de Empuje por gas en solución	17
Figura 1.5. Gráfica Relación Gas-Petróleo en Solución	_17
Figura 1.6. Gráfica Mecanismo por empuje de agua	18
Figura 1.7. Mecanismo por empuje de capa de gas en el Yacimiento	_18
19 Figura 1.8. Mecanismo de empuje por capa de gas en la completación	18
Figura 1.19. Gráfico Bo vs Presión del Reservorio	20
Figura 1.20. Historia de Producción del Campo Cononaco	_24
Figura 2.1. Esquema representativo del daño en la formación	26
Figura 2.2. Depositación de finos en la cara del pozo	27
Figura 2.3. Microfotografías de la Caolinita en Medio poroso	28
Figura 2.4. Microfotografías de Esmectita en Medio Poroso	28
Figura 2.5. Filamentos de Illita haciendo puente dentro de un poro	29
Figura 2.6. Cristales de Clorita	29
Figura 2.7. Efecto de la alteración de la mojabilidad en las curvas de	
permeabilidad Relativa	30
Figura 2.8. Precipitados en un medio poroso	31
Figura 2.9. Cañoneo de la formación productora	32
Figura 2.10. Bacterias Sulforeductoras en el medio poroso	32
Figura 2.11. Daño producido durante la inyección de fluidos	34
Figura 2.12. Proceso de Fracturamiento Hidráulico	34
Figura 2.13. Diagrama básico de una fractura	35
Figura 2.14. Esfuerzos de fractura aplicados en la formación	38

Figura 2.15. Diagrama de esfuerzos sobre un cuerpo	40
Figura 2.16. Diagrama de esfuerzos sobre un cuerpo	<u>41</u>
Figura 2.17. Gráfico de Deformación elástica	42
Figura 2.18. Aplicación del Módulo de Young sobre un volumen de roca _	_43
Figura 2.19. Aplicación del Módulo de Bulk	<u></u> 45
Figura 2.20. Grafico del esfuerzo total dentro de la roca	46
En la figura 2.21 se muestran los principales modelos de fracturas	<u>54</u>
Figura 2.22. Diagrama de la fractura con el modelo PKN	<u></u> 55
Figura 2.23. Grafico de direccionamiento de la fractura	<u>55 _</u>
Figura 2.24. Diagrama del modelo de fractura KGD	<u>.</u> 57
Figura 2.25. Tipos de Material Sustentante	<u></u> 63
Figura 2.26. Esquematización del proceso de	
Fracturamiento	<u>65</u>
Figura 2.27. Diagrama del Diseño del Fracturamiento a aplicarse al	
Campo Cononaco	65
Figura 2.28. Gráfico de presión vs tiempo resultado del Datafrac	<u></u> 66
Figura 2.29 Inicio de la fractura	<u>67</u>
Figura 2.30. Diagrama de la presión en función de la presión	<u>.</u> 68
Figura 2.31. Representación gráfica del comportamiento de la presión	
en función del tiempo durante la prueba tomada	<u></u> 68
Figura 2.32. Establecimiento de la Fractura	69
Figura 2.33. Representación de la etapa de introducción del apuntalante	
más el material sustentante	71
Figura 2.34. Incremento progresivo de la fractura	72
Figura 2.35. Finalización del trabajo de fracturamiento	72
Figura 3.1. Curva de declinación para la arena T inferior del pozo	
Cononaco – 02	83
Figura 3.2. Curva de declinación exponencial para el pozo	
Cononaco – 16	<u>83</u>
Figura 3.3. Curva de declinación exponencial para el pozo	
Cononaco – 23	<u></u> 84

Figura 3.4. Curva de declinación exponencial para el pozo	
Cononaco – 28	<u>84</u>
Figura 3.5. Proyección de producción de la arena T inferior del Campo	
Cononaco	<u>85</u>
Figura 3.6. Historial de Producción de la arena T del Campo Cononaco	<u>85</u>
Figura 3.7. Mapa Estructura (Tope Caliza B)	<u>87</u>
Figura 3.8. Representación de los esfuerzos y fracturas del campo	88
Figura 3.9. Mapa de espesores de arena	<u></u> 89
Figura 3.10. Cortes estratigráficos del pozo Cononaco – 02	<u>89</u>
Figura 3.11. Corte estratigráfico para el pozo Con – 02 y pozos aledaños	<u>90 </u>
Figura 3.12. Análisis del registro eléctrico para la arena T inferior del	
pozo Con – 02	<u>91</u>
Figura 3.13, Zona do Pago do la Arona T superior y T inferior del	
rigura 5.15. 201a ue rago ue la Arena i superior y rimenor uer	01
pozo con – oz	
Figura 3.14. Curvas de producción de la arena T inferior del	
pozo Con – 02	<u>92</u>
Figura 3.15. Diagrama de Completación del pozo Con – 02	94
Figura 3.16. Curva Derivada obtenida del análisis de presiones después	
de la fractura	97
Figura 3.17. Curva de Horner obtenida del análisis de presiones después	
de la fractura	97
Figura 3.18. Permeabilidad del Propalante	99
Figura 3.19. Esquematización de la fractura y la concentración del	
propalante	102
Figura 3.20. Presiones consideradas para la longitud óptima de la	
fractura	103
Figura 3.21. Presiones tomadas durante el proceso de DataFrac	104

Figura 3.22. Resultados del DataFRAC	105
Figura 3.23. Presión de Tratamiento	106
Figura 3.24. Presión Neta	106
Figura 3.25. Gráfico de la Geometría de la Fractura	106
Figura 3.27. Ejecución de Fractura Hidráulica	109
Figura 3.28. Superposición de Presiones	110
Figura 3.29. Gráfico de Presión Neta	111
Figura 3.30. Perfil y concentración de apuntalante en la fractura	<u>112 </u>
Figura 3.31. IPR del pozo Cononaco – 02 Arena T inferior	114
Figura 3.32. IPR del pozo Cononaco – 02, para diferentes valores de S	_119
Figura 3.33. Geometría de la fractura y Concentración del apuntalante	127
Figura 3.34. Resultados del Datafrac	130
Figura 3.35. Superposición de presiones del tratamiento	130
Figura 3.36. IPR del pozo Cononaco – 16 antes de la fractura	133
Figura 3.37. IPR del pozo Cononaco – 16 después de la fractura	<u>134</u>
Figura 3.38. IPR futuros estimados del pozo Cononaco – 16	<u>134 </u>
Figura 3.39. IPR del pozo Cononaco – 16, para diferentes valores de S	<u>138</u>
Figura 3.40. Geometría de la fractura y Concentración del apuntalante	143
Figura 3.41. Resultados del Datafrac	146
Figura 3.42. Superposición de Presiones durante el proceso	
de fracturamiento	<u>147</u>
Figura 3.43. IPR para el pozo Cononaco - 23 antes del fracturamiento	150
Figura 3.44. IPR para el pozo Cononaco - 23 después del	
fracturamiento	150
Figura 3.45. IPR del pozo Cononaco – 23 para diferentes valores de S	154
Figura 3.46. Geometría de la Fractura y Concentración del	
apuntalante	<u>154</u>
Figura 3.47. Resultados del DataFrac	161
Figura 3.48. Superposición de presiones durante el fracturamiento	162
Figura 3.49. IPR del pozo Cononaco – 28 antes de la fractura	165

Figura 3.50. IPR del pozo Cononaco – 28 después de la fractura	165
Figura 3.51. IPR del pozo Cononaco – 28 para diferentes	
valores de S	168
Figura 4.1. Representación del VAN en función del tiempo para el	
pozo Cononaco – 16	179
Figura 4.2. Representación del TIR en función del tiempo para el	
pozo Cononaco – 16	180
Figura 4.3. Representación del VAN en función del tiempo para el p	ozo
Cononaco – 23	182
Figura 4.4. Representación del TIR en función del tiempo para el	
pozo Cononaco – 23	183

RESUMEN

En el primer capítulo se realiza la descripción de la ubicación geográfica, la geología local, la sedimentología, las características de las rocas de la formación, el análisis de núcleos, el análisis mineralógico, análisis de los fluidos y la situación actual del Campo Cononaco.

En el segundo capítulo se presenta la teoría y análisis de los trabajos de fracturamiento, se describe los diferentes tipos de daño que afectan a la formación, se analiza la mecánica de las rocas, los diferentes tipos de fractura, como diseñar una fractura, la selección de la mejor alternativa de fluido de fractura, las características y selección de los diferentes apuntalantes.

En el tercer capítulo se analiza los trabajos de fracturamiento realizados en los pozos Cononaco – 02, Cononaco – 16, Cononaco -23 y Cononaco – 28, se verifica los registros eléctricos, la continuidad de las zonas, las propiedades de las rocas, los historiales de workover, completación y de producción, se realiza una comparación de acuerdo a los datos obtenidos en los Build Up corridos antes y después del fracturamiento, también se presenta una estimación de diferentes caudales de producción a diferentes valores de daño; de esta manera corroborar los resultados de la factibilidad de los fracturamiento realizados.

En el cuarto capítulo se presenta el análisis económico determinando la rentabilidad del proyecto, dicho análisis se lo realiza con los datos obtenidos tanto de la inversión de la aplicación del fracturamiento, como de los costos que implica la producción del barril de petróleo asociando los ingresos con los precios de venta de petróleo actuales, para la evaluación de este proyecto se utilizó métodos de análisis como son el VAN y el TIR.

En el quinto capítulo se establecen las conclusiones y recomendaciones que se obtuvieron de la realización de este proyecto.

PRESENTACIÓN

La realización de este proyecto se encuentra enfocada en el análisis de los trabajos de fracturamientos realizados a diferentes pozos que producen de la arena T inferior en el campo Cononaco y que presentaban daños de formación; ya que a esta arena se encuentra afectada principalmente por la migración de finos por la presencia de la Caolinita; esta arcilla migratoria se desprende y deposita en la cara del pozo ocasionando el taponamiento de los conductos porales, reduciendo de esta manera la permeabilidad de las vecindades del pozo.

Para el desenvolvimiento de este análisis técnico se analizaron los registros eléctricos, los historiales de Workovers, completación y de producción periodos antes y después de la fractura, previo a este análisis se realizó la petrofísica, el cálculo de reservas de los mismos y la mecánica de las rocas, también se dio a conocer recomendaciones para evitar los problemas operacionales presentados en el desarrollo de los trabajos.

Se realizó un estudio de sensibilidad variando el valor del daño, de esta manera se observó el posible incremento de producción que se debería tener al finalizar los fracturamientos. Los diseños de las fracturas para los pozos Cononaco – 02 y Cononaco – 28 se realizaron en base al diseño de los fracturamientos de los pozos Cononaco – 23 y Cononaco – 16.

CAPÍTULO I

2. DESCRIPCIÓN DEL CAMPO CONONACO

1.1. BREVE RESEÑA HISTÓRICA

El campo Cononaco fue descubierto por la Compañía Texaco-Gulf con el pozo Cononaco - 01 como pozo exploratorio, cuya perforación arranco el 26 de octubre y fue completada el 19 de diciembre de 1972, alcanzando una profundidad de 11233' de la formación Chapiza, obteniéndose de la arenisca Hollín 1341 BPPD de 34°API a flujo natural, posteriormente se tomar on pruebas de las areniscas "U" Principal, recuperándose 110 barriles de 17°API, y de la arenisca "T" Principal y "T" Secundaria 21 barriles de petróleo de 13°API. En la figura 1.1. se presenta la Ubicación del Campo Cononaco.

La producción del campo arrancó el 14 de febrero de 1983 bajo la operación del Consorcio CEPE – TEXACO, actualmente está manejado por PETROPRODUCCIÓN.

El Campo Cononaco tiene petróleo en el sitio para la formación Hollín del orden de 205929762 BN, su producción acumulada es de 82852507 BLS y actualmente tiene una producción diaria de 8876 BPPD; mientras que de la arenisca "T" tiene un petróleo en sitio de 11235,9 Mbbl.

El 95% de esta producción proviene de la Arena Hollín; especialmente de su parte inferior, conocida también como Hollín Principal.

A esta fecha en el campo se han perforado 28 pozos verticales, incluyendo el pozo 12-B; todos ellos productivos.

Figura 1.1. Mapa del Campo Cononaco

Fuente: Petroproducción

1.2. UBICACIÓN Y DATOS GENERALES

El campo Cononaco se encuentra ubicado en la cuenca Sedimentaria de la Región Amazónica de Ecuador, al suroeste del campo Auca, al noroeste el campo Tigüino, al este del río Napo y al suroeste de la sub-cuenca cretácica Napo; delimitado por las coordenadas 01º 00´ de Latitud Sur y 76º 56´ de Longitud Oeste en la Provincia de Orellana de la Región Amazónica Ecuatoriana.

Se ha considerado al campo Cononaco como parte del tren estructural Sacha – Auca con una orientación de Norte a Sur.

1.3. LA ESTRUCTURA CONONACO Y SU EVOLUCIÓN

A la base de la caliza A, el flanco oeste del anticlinal Cononaco está cortado por una falla asimétrica transcurrente, lo que constituye un anticlinal fallado. Se prolonga en dirección N-S a lo largo de 10,5 Km aproximadamente. Su parte más ancha se ubica en la zona central con 3 Km, bajo un cierre vertical de 277 pies adelgazándose en dirección norte y sur, cierra al oeste contra una falla inversa sinsedimentaria de alto ángulo transgresiva dextral originándose en basamento; la que se reactivó en más de una ocasión llegando hasta la base de la formación Tena, la cual tiene aproximadamente 300 pies de alto en el centro del campo y disminuye hacia los flancos.

La estructura se formó entre el Turoniano y el Eoceno Inferior, como muestra la reformación sin-sedimentaria de las formaciones Napo Medio-Superior, Tena y Tiyuyacu Inferior experimentando una reactivación durante el Neógeno. Ver Figura 1.2.

Figura 1.2. Edad de Estructuración del Campo Cononaco

Fuente: Petroproducción

1.4. GEOLOGÍA LOCAL

1.4.1. ESTRATIGRAFÍA LOCAL

La parte areal del campo Cononaco se encuentra definida por las siguientes formaciones: G-2; U superior; U inferior; T; Hollín superior; y, Hollín inferior. La formación G-2 es mejor definida que en el resto de campos de la Cuenca Oriente ya que en la mayoría se encuentra como parte de la arena U superior. El principal reservorio de este campo lo constituye la Arena Hollín inferior, le siguen en importancia, Hollín superior, U, T y G-2. En la tabla 1.1. se presenta la descripción litológica del Campo Cononaco.

Formación	Descripción Litológica
G-2	Arenisca, Caliza, Lutita
U superior	Arenisca, Caliza, Lutita
U inferior	Arenisca y Lutita principalmente en su parte superior
T superior	Arenisca con intercalaciones de Lutita
T inferior	Arenisca con intercalaciones de Lutita
H superior	Caliza, Arenisca y Lutita
H inferior	Arenisca

Tabla 1.1. Descripción Litológica del Campo Cononaco

Fuente: Petroproducción

1.4.2. YACIMIENTOS PRODUCTORES

1.4.2.1. Yacimiento Hollín Superior

Esta zona muestra una tendencia general Noreste-Suroeste y el mayor depósito clástico se encuentra al Sur del campo (pozo Con-18) con valores que oscilan entre 60 y 74 píes de espesor, los mismos que estarían relacionados con el depósito de facies de zona de barra de marea, planicie arenosa de marea y canal de marea.

Figura 1.3. Columna Estratigráfica del Campo Cononaco

Fuente: Petroproducción

Para el campo Cononaco, en general, la formación Hollín contiene cuarzo-arenita de grano medio, subredondeado a subangular, cuyo contenido promedio de minerales presentes es: cuarzo 92.5%, feldespato 3.5%, carbón 4%, mientras que la presencia de arcillas, micas, cemento calcáreo y otros es despreciable. Los ambientes de depositación para el yacimiento son mayormente planicies arenosas de marea y barra de marea.

1.4.2.2. Yacimiento "T"

La tendencia general de los depósitos para esta zona es Noreste-Suroeste, y los mayores espesores se desarrollan principalmente al centro del campo correspondiente a la zona del centro de canales de marea (Con-1, Con-13, Con-2 y Con-16), con valores que oscilan entre 47 y 60 píes de espesor; y hacia el Sur en zonas correspondientes a facies de planicie arenosa de marea (Con-23 y Con-4) con espesores que oscilan entre 59 y 67 píes.

La zona de la arena "T" tiene múltiples cuerpos de areniscas. Esta arena se encuentra subdividida en dos etapas "T" Superior y "T" inferior, con el intervalo más productivo ubicado en la parte inferior de la zona, en la que debido a la presencia de glauconita presenta un color gris a cobrizo y en pocos lugares presenta un color verdoso.

- "T" Inferior

La litología de esta sección de la arenisca se define como cuarzosa blanca ocasionalmente café clara, subtranslúcida, grano fino a medio, subangular a subredondeada, suelta a friable, sorteo regular, cemento calcáreo y matriz no visible, porosidad no visible, presencia de hidrocarburos en forma de manchas y puntos color café claro a oscuro, fluorescencia natural no visible, corte lento nuboso blanco amarillento, anillo residual grueso blanco amarillento, con luz ultravioleta, anillo residual no visible con luz natural y pobre saturación de hidrocarburo.

- "T" Superior

La litología de esta sección de la arenisca se define como cuarzosa, café clara, glauconítica, grano fino a medio, subredondeado a subangular, friable a moderadamente consolidada, en parte matriz arcillosa, cemento calcáreo, baja luz ultravioleta, no fluorescencia, corte medio en forma radial blanquecino azulado, sin anillo residual y con luz natural sin residuo. Pobre presencia de hidrocarburos. Lutita gris oscura, ocasionalmente gris clara, negra, firme a moderadamente dura, ocasionalmente suave, laminar a sublaminar, astillosa, físil a subfísil y no calcárea.

1.4.2.3. Yacimiento "U"

Pertenece a un período inestable de depositación, en el cual se inicia una transgresión marina debido a dos posibles factores como: subsidencia en la cuenca o debido a movimientos eustáticos dando paso a la formación del cuerpo lutítico regional que constituye la base de la arenisca "U".

La parte superior de la arena "U" es usualmente muy calcárea y resistiva, posee intercalaciones delgadas de caliza y de mayor continuidad que la zona de la Arena "T"; es de color gris a gris oscuro con presencia de hidrocarburo. Es cuarzosa de grano muy fino a medio, pobremente empaquetado, subredondeado, frecuentemente sedimentario y arcilloso, localmente glauconítico.

- "U" Inferior

Los mejores espesores (89 a 93 píes) se encuentran al norte del campo y corresponden a facies de canales de marea, exclusivamente a centros de canal (Con-6 y 21); al centro del campo (Con-11 y 14) con espesores que van de 96 a 98 píes, y al sur (Con-15 y 9) con espesores que van de 88 a 98 píes. La tendencia general de depósito de esta zona es Noroeste – Sursuroeste.

- "U" Superior

La tendencia general de los cuerpos arenosos es Noreste-Suroeste, los mayores espesores registrados son de 20 a 22 píes, desde el centro del campo hacia el norte, correspondientes a facies de canales de marea; de manera contraria hacia el sur disminuyen estos espesores y son depósitos correspondientes a facies de barra arenosa de marea.

1.5. SEDIMENTOLOGÍA

A través de núcleos centrales de corona tomados en varios pozos, en las areniscas Hollín Inferior, Hollín Superior y "T" Inferior. Señalando que a la fecha no se dispone aún de núcleos centrales de corona tomados en las areniscas "U" Superior ni "U" Inferior; se ha definido la litología, tamaño de grano, figuras de sedimentación y principalmente el ambiente de depósito de los reservorios del campo Cononaco. Ver figura 1.3.

1.5.1. FORMACIÓN HOLLÍN (RESERVORIO HOLLÍN INFERIOR)

Varía del ambiente continental sub-aéreo, al ambiente marginal clástico o transicional, y al ambiente marino de plataforma clástica somera.

• El ambiente Marino

Está compuesto por facies de plataforma clástica arcillosa somera.

• El ambiente Transicional

Formado básicamente por superposiciones de facies arenosas de planicie arenosa de marea y facies lodosas de planicie lodosa de marea y también de facies de barra arenosa de marea y canal de marea.

• El ambiente Continental

Está compuesto principalmente de barras fluviales (algunas con clara influencia mareal) y de una superposición de facies de canal fluvial.

<u>El modelo Paleogeográfico</u> Proviene de un estuario dominado por mareas, aledaño a la zona de plataforma marina y a la plataforma continental.

1.5.2. FORMACIÓN HOLLÍN (RESERVORIO HOLLÍN SUPERIOR)

De mayor a menor profundidad relativa, las facies sedimentarias son:

- Facies de plataforma clástica arcillosa somera, lutitas duras, moderada bioturbación, con laminaciones de areniscas muy finas.
- Facies de plataforma clástica arcillosa somera, lutitas duras, moderada bioturbación, con laminaciones de arenisca muy finas.
- Facies de plataforma clástica arenosa somera, arenisca de grano muy fino a fino, bien consolidadas, intensa bioturbación.
- Facies de cara de playa inferior, areniscas muy finas, bien consolidadas, con hidrocarburo móvil y residual.
- Facies de planicie arenosa de marea, areniscas oscuras, grano fino a medio, bien consolidadas, intensa bioturbación, con hidrocarburo móvil y residual.
- Facies de barra de marea, areniscas oscuras, grano muy fino a medio, escasa bioturbación, con hidrocarburo móvil.
- Facies de canal de marea, areniscas cafés claras a oscuras, grano fino a grueso, escasa bioturbación, con hidrocarburo móvil.

1.5.3. FORMACIÓN NAPO (RESERVORIO "T" INFERIOR)

Las facies sedimentarias identificadas son:

- En el Ambiente Transicional
 - <u>Facies de planicie lodosa de marea</u>
 Areniscas de grano muy fino con finísimas intercalaciones de laminaciones lenticulares.
 - <u>Facies de planicie arenosa de marea</u>
 Areniscas de grano muy fino a medio intercalada con finas laminaciones
 de Lutita, moderada bioturbación, visualmente impregnadas de hidrocarburos.
 - <u>Facies de canal de marea</u>
 Areniscas de grano medio, poseen clastos arcillosos y laminaciones de arcillas.
- En el Ambiente Continental
 - <u>Facies palustres o de pantano (Marsh)</u>
 Sedimentos arcillosos con pequeñas laminaciones lenticulares de arenisca muy fina, mayor a menor profundidad relativa las facies sedimentarias.

1.6. CARACTERÍSICAS DE LAS ROCAS DE LA FORMACIÓN

1.6.1. NAPO G-2

La formación estratigráfica, forma parte del estrato superior de la Zona, la cual fue descubierta por la TEXACO Gulf en los años 70. Ver en la tabla 1.2.
Formación	Napo G-2
Porosidad promedia (arit.)%	15,2
APÍ	19,0
Boi [Bls/BF]	1,106
Sw %	43,1

Tabla 1.2	Propiedades	de la arena G-2
-----------	--------------------	-----------------

Fuente: Petroproducción

1.6.2. NAPO "U"

De acuerdo a las propiedades promedio de las formaciones, la formación Napo U inferior presenta un mejor escenario que la formación Napo U superior, los espesores netos de la arena fluctúan entre 2 ft en Con-12 y 32.5 ft en Con-21. ver Tabla 1.3.

Tabla 1.3 Propiedades de la arena U						
Formación	Napo U Superior	Napo U Inferior				
Porosidad promedia (arit. %)	14,3	16,13				
Permeabilidad promedia (Geo) md	405	942				
Sw %	32,5	25,6				
APÍ	19,7					
Boi [Bls/BF]	1,109					

Fuente: Petroproducción

1.6.3. NAPO T

Las propiedades promedias para Napo T se presentan en la tabla 1.4.

Tabla 1.4 Propiedades de la arena T						
Formación	Napo TSup	Napo Tinf				
Porosidad promedia (arit.) %	16,7	15,93				
Permeabilidad promedia (mD).	1083,3	880,45				
Sw %	42,92 25,92					
APÍ	18	3,2				
Boi [Bls/BF]	1,170					

able 4.4 Dreviededes de la s _

Fuente: Petroproducción

1.6.4. HOLLÍN

Para la formación Hollín las propiedades son similares tanto en la parte superior como en la parte inferior. Ver en tabla 1.5.

Formación	H superior	H inferior				
Porosidad promedia (arit.)%	14	16,01				
Permeabilidad promedia (Geom) md	147,52	742,5				
Sw%	20	46,05				
APÍ	32,8	33				
Boi[Bls/BF]	1,1983	1,145				

Tabla 1.5. Propiedades de la arena Hollín

Fuente: Petroproducción

1.7. ANÁLISIS DE NÚCLEOS

Se tomaron núcleos de corona de la arena T inferior del campo Cononaco para realizar un análisis convencional de núcleos; ver tabla 1.6.

	Tabla 1.0. I Tolundidad de los pozos en los que se tomaron núcleos				
POZO	Arena T Inferior Intervalo				
Cononaco - 16	10121-10149				
Cononaco - 20	10460-10472				
Cononaco - 24	10466-10496				
Cononaco - 26	10465-10520				

Tabla 1.6. Profundidad de los pozos en los que se tomaron núcleos

Fuente: Petroproducción

1.8. ANÁLISIS MINERALÓGICO

Se analizó un estudio Diafractométrico en la formación de la arena T inferior para el pozo Cononaco-16; con el objeto de tener un mejor conocimiento del tipo de daño existente.

En la tabla 1.7 se presenta la mineralogía obtenida a partir del análisis de difracción de Rayos X del pozo Cononaco 16, arenisca T Inferior.

Profundidad [Feet]	Quartz %	Kaolinite %	Glauconita %	Illita %	Calcita %	Dolomita %
10121	59,02	26,63	4,46	0,00	0,00	0,00
10123	82,45	6,27	6,27	0,16	0,00	0,00
10134	75,93	3,25	0,00	0,00	0,10	0,10
10137	60,43	17,28	0,00	5,88	0,00	0,00
10142	77,33	4,96	0,00	0,00	0,01	0,40
10145	67,73	10,05	0,00	0,00	0,36	0,68
10148.4	81,58	9,27	0,00	0,00	4,36	0,00

Tabla 1.7. Difracción de Rayos X para el pozo CON-16

Fuente: Petroproducción

La arcilla en mayor proporción presente en la formación es la Caolinita, que debido a cambios en la salinidad del agua se fractura y migra arrastrada por la producción del pozo. Estas partículas de arcilla desprendidas de la matriz se depositan y se acumulan entre 3 y 5 pies alrededor de la cara del pozo. La depositación de estos finos generan una reducción en la permeabilidad de la zona cercana al pozo.

1.9. PROPIEDADES DE LOS FLUIDOS

Para conocer las propiedades del fluido se revisaron los estudios PVT de laboratorio realizado en la arena T Inferior del Campo Cononaco y se presentan en la Tabla 1.8.

Las pruebas PVT para esta arena se realizaron únicamente en el pozo Cononaco-22, debido a que son los únicos datos de análisis PVT, sus resultados servirán como margen de referencia para determinados pozos, en especial para la presión de saturación ya que se refiere a la misma arena.

ARENA T INFEROR						
DATOS P	PVT					
POZO	CONONACO-22					
Intervalo de Producción ft	10214-10244					
Temperatura de formación F	220					
Petróleo Saturado						
Presión de Saturación (Pb) Psi	820					
ßoi @ Pb	1,2127					
GOR @ Pb	126					
Densidad @ 220 F gr/cc	0,8187					
Volumen Específico pc/lb	0,01961					
Viscosidad cp	9,35					
Petróleo Residual						
API @ 60 F	15,8					
Densidad @ 220 F gr/cc	0,9006					
Viscosidad @ 220 F cp	14,55					

Table 4.0 Date

Fuente: Petroproducción

En base a registros eléctricos se tomó los resultados petrofísicos de los pozos del campo, los que se indican a continuación en la tabla 1.9.

YACIMIENTO	— Swi (%)	 Φ (%)	— ho Pies	— K (mD)
U	29,13	15,23	10,45	673,8
т	34,41	16,3	14,8	891
HOLLIN SUPERIOR	20	14,0	20	147,52

TABLA 1.9. Datos PVT

Fuente: Petroproducción

1.9.1. PARÁMETROS PVT DEL FLUIDO

Se obtuvieron de los pozos CON-01, CON-21 y CON-22 y se presentan en la tabla 1.10.

Tahla	1 10	Datos	D\/T	امل	fluido
i apia	1.10.	Dalos		uei	nuido

YACIMIENTO	Pb PSI	Uo Cp	GOR PC/BBL	ßoi By/Bn	°API
U	620	-	56	1,109	19,7
т	820	3,58	126	1,2127	17
HOLLIN SUPERIOR	155	2,46	33	1,1983	32

Fuente: Petroproducción

1.10. MECANISMOS DE PRODUCCIÓN DEL YACIMIENTO

1.10.1. MECANISMO DE EMPUJE POR GAS EN SOLUCIÓN

El empuje por gas en solución también es conocido como empuje por gas disuelto, ya que si el crudo se encuentra bajo ciertas condiciones de presión y temperatura en los yacimientos es posible que el mismo contenga grandes cantidades de gas disuelto. Cuando la presión del yacimiento disminuye, debido a la extracción de los fluidos, el gas se desprende, se expande y desplaza al petróleo del yacimiento

hacia los pozos productores. La eficiencia de este mecanismo de empuje depende de la cantidad de gas en solución, de las propiedades del petróleo y de la estructura geológica del yacimiento.

El empuje por gas disuelto es el que resulta en menores recuperaciones, las presiones de fondo disminuyen rápidamente y la recuperación final suele ser menor al 20%. Los yacimientos con empuje por gas en solución son usualmente buenos candidatos para la inyección de agua. Ver figuras 1.4. y 1.5.

Figura 1.4. Mecanismo de Empuje por gas en solución

Fuente: Petroproducción

Figura 1.5. Gráfica Relación Gas-Petróleo en Solución

Fuente: Petroproducción

En la figura 1.5. se puede observar que a medida que la presión del yacimiento decrece la relación Gas-Petróleo en solución aumenta su pendiente; que da una idea de que el volumen de gas en el petróleo se encuentra en aumento.

1.10.2. MECANISMO POR EMPUJE DE AGUA

Este mecanismo de empuje se produce por la apreciable expansión de agua del acuífero que debe formar parte del sistema; la presión del yacimiento permanece alta por influencia del acuífero. A medida que se reduce la presión, el agua se expande, e invade el yacimiento, reemplazando parcialmente los fluidos extraídos del mismo. En este tipo de yacimientos no existe capa de gas y la producción de agua inicia muy temprano e incrementa en cantidades apreciables. La conificación en este tipo de yacimientos puede convertirse en un problema. La recuperación de petróleo para este mecanismo usualmente está en el rango de 30 al 60% del POES.

Figura 1.6. Gráfica Mecanismo por empuje de agua

1.10.3. MECANISMO POR CAPA DE GAS

Este mecanismo de empuje se produce porque a medida que se reduce la presión, la capa de gas se expande causando un desplazamiento inmiscible del petróleo. La presión inicial del yacimiento es igual a la presión de burbujeo.

Fuente: Petroproducción

La recuperación de petróleo para este mecanismo usualmente está en el rango de 20 al 40% del POES. Ver figuras 1.7, 1.8, 1.9.

Figura 1.7. Mecanismo por empuje de capa de gas en el Yacimiento

Fuente: Petroproducción

Figura 1.8. Mecanismo de empuje por capa de gas en la completación

Fuente: Petroproducción

Figura 1.19. Gráfico Bo vs Presión del Reservorio

Fuente: Petroproducción

1.10.4. MECANISMO POR SEGREGACIÓN GRAVITACIONAL

Este mecanismo de empuje se produce cuando existe suficiente permeabilidad vertical para permitir que las fuerzas gravitacionales sean mayores que las fuerzas viscosas dentro del reservorio.

Generalmente no poseen capa de gas, pero la recuperación será mayor si existe alguna. La presión tiende a mantenerse.

La recuperación de petróleo para este mecanismo usualmente está en el rango de 25 al 80% del POES.

1.11. SITUACIÓN ACTUAL DEL CAMPO

El campo Cononaco cuenta con 36 pozos perforados de petróleo, los cuales 25 pozos son productores de petróleo, 2 pozos reinyectores, 1 pozo abandonado y 8 pozos cerrados.

1.11.1. POZOS PRODUCTORES

Al mes de Junio del 2008 se encuentran produciendo 26 pozos, 2 del yacimiento HS+HI, 10 del yacimiento Hollín Inferior Principal, 3 del yacimiento Hollín Superior, 2 del yacimiento Hollín + T, 1 del yacimiento U y 7 del yacimiento T. De estos, 20 producen con bombeo electro sumergible y 4 a flujo natural; ver Tabla 1.11.

POZO	ARENA	ESTADO DEL POZO	MÉTODO	BPPD	BFPD	%BSW	°API	FECHA DE PRUEBA
CON - 01	ні	POZO PRODUCIENDO	PPS	430	717	40	32,3	29/06/2008
CON - 02	т	POZO PRODUCIENDO	PPHJ	186	192	3	28,8	30/06/2008
CON - 03	ні	POZO PRODUCIENDO	PPS	233	727	68	33	24/06/2008
CON - 04	HS	POZO PRODUCIENDO	PPS	181	349	48	32	29/06/2008
CON - 07	HS+HI	POZO PRODUCIENDO	PPS	137	342	60	33,2	21/06/2008
CON - 08	HS	POZO PRODUCIENDO	PPS	480	685	30	32,8	27/06/2008
CON - 09	U	POZO PRODUCIENDO	PPS	312	315	1	18,5	27/06/2000
CON - 13	ні	POZO PRODUCIENDO	PPF	255	637	60	32	28/06/2008
CON - 14	Т	POZO PRODUCIENDO	PPS	269	313	14	21,2	27/06/2008
CON - 15	ні	POZO PRODUCIENDO	PPS	214	356	40	33	27/06/2008
CON - 16	т	POZO PRODUCIENDO	PPHJ	108	120	10	18,6	28/06/2008
CON - 18	HS + HI	POZO PRODUCIENDO	PPS	504	1259	60	32,6	27/06/2008
CON - 20	Т	POZO PRODUCIENDO	PPS	206	322	36	18	28/06/2008
CON - 21	т	POZO PRODUCIENDO	PPS	147	734	80	19	27/06/2008
CON - 23	т	POZO PRODUCIENDO	PPS	164	180	9	18,7	27/06/2008
CON - 24	ні	POZO PRODUCIENDO	PPS	378	755	50	33	27/06/2008
CON - 25	HS	POZO PRODUCIENDO	PPS	271	774	65	28,5	28/06/2008
CON - 27	H + T	POZO PRODUCIENDO	PPS	290	322	10	23,9	28/06/2008
CON - 28	ті	POZO PRODUCIENDO	PPS	64	117	45	18	30/06/2008
CON - 29	ні	POZO PRODUCIENDO	PPS	198	450	56	33,3	29/06/2008
CON - 30	ні	POZO PRODUCIENDO	PPHJ	476	1488	68	31,4	30/06/2008
CON - 31	ні	POZO PRODUCIENDO	PPF	152	762	80	30,8	30/06/2008
CON - 32	ні	POZO PRODUCIENDO	PPHJ	492	1536	68	32,5	30/06/2008
CON - 33	ні	POZO PRODUCIENDO	PPS	337	1203	72	32,9	29/06/2008
CON - 34	TS	POZO PRODUCIENDO	PPS	259	288	10	27,5	26/06/2008
CON - 35	H + T	POZO PRODUCIENDO	PPS	197	658	70	21	29/06/2008

Tabla 1.11. Pozos Produciend

Fuente: Petroproducción

PPF = Bombeo a Flujo Natural

PPS = Bombeo Electrosumergible

PPHJ = Bombeo Hidráulico tipo Jet

1.11.2. POZOS REINYECTORES

En el Campo Cononaco cuenta con un solo pozo reinyector, el 12B, del cual se registra la última producción el 01-10-1999; ver tabla 1.12.

Tabla 1.12. Pozos Reinyectores

Pozos Reinyectores				
Campo	Pozos	Arena	Fecha	
Cononaco	12B	Hollín	12-31-2007	
Fuente: Petroproducción				

1.11.3. POZOS CERRADOS

Al mes de Junio del 2008 se registran 8 pozos cerrados, presentados en la tabla 1.13.

Pozos Cerrados						
Campo	Pozos	Arena	Fecha	Razón		
Cononaco	5	Arena U Inferior	30/11/2002	Esperando solicitud de abandono		
Cononaco	10	Arena T Inferior	13/07/2003	Baja Producción		
Cononaco	11	Arena U	22/10/2004	Baja Producción		
Cononaco	17	Hollín Inferior	22/01/2003	Baja Producción		
Cononaco	19	Hollín Inferior	26/01/2003	Baja Producción		
Cononaco	22	Hollín Inferior	20/12/2007	Conificación de la Arena		
Cononaco	28	Hollín Inferior	04/10/2005	Baja Producción		
Cononaco	26	Pozo seco	01/04/1998	Pozo seco		

Tabla 1.13. Pozos Cerrados

Fuente: Petroproducción

1.11.4. POZOS ABANDONADOS

De acuerdo a los datos de producción, se registra un solo pozo abandonado en el Campo Cononaco, a Junio del 2008; ver tabla 1.14.

Pozos Abandonados					
Campo	Pozos	Arena	Fecha	Razón	
Cononaco	12	Hollín	20/10/1990	Casing Colapsado	

Tabla 1.14. Pozos Abandonados

Fuente: Petroproducción

1.11.5. HISTORIA DE PRODUCCIÓN DEL CAMPO

Al 21 de Junio del 2008, el departamento de Yacimientos de Petroproducción realizó una actualización de reservas para el Campo Cononaco y obtuvo un volumen de reservas iniciales probadas de 140.502.580 Bls, una producción acumulada de 105.712.876 BLS y un volumen de reservas remanentes de aproximadamente 34 MM Bls. El factor de recuperación (FR) del Campo es de 30,19 %, a junio-2008. Ver valores en tabla 1.15.

RESERVAS DE PETRÓLEO POR CAMPO Y YACIMIENTO EN PRODUCCIÓN							
Campo		Cononaco	Cononaco	Cononaco	Cononaco	Cononaco	
Yacimiento		G - 2	Hollín Inferior	Hollín Superior	т	U	Subtotal
Petróleo In-Situ [BIs N]		4289900	227340000	49131169	39315000	21246000	341322069
Factor de Recobro [%]		10	43,9	51,95	28,58	16,53	
Reservas Originales	Probadas BIs.N.	428990	99802260	25522500	11235900	3512930	140502580
	Probables Bls.N.						
	Posibles Bls.N.						
	Totales Bls.N.	428990	99802260	25522500	11235900	3512930	140502580
Producción Acumulada BIs.N. Al 31/12/2007		0	83630381	17657316	2372892	2052287	105712876
Reservas Remanentes BIs.N. Al 31/12/2007		428990	16171879	7865184	8863008	1460643	34789704
Fact Actu	or de Recobro ual [%]	0	35,66	41,804	43,278	43,256	

Tabla 1.15. Reservas de Petróleo del Campo Cononaco

Fuente: Petroproducción

Los yacimientos U, T, Hollín Superior y Hollín Inferior, al 21 de junio del 2006 tiene una producción acumulada de 105712876 Bls de petróleo.

La historia de producción para los yacimientos U, T, Hollín Superior y Hollín Inferior, se muestran en la figura 1.20., realizada con el software OFM 2005.

Figura 1.20. Historia de Producción del Campo Cononaco

Fuente: Petroproducción

CAPÍTULO II

2. TEORIA Y ANÁLISIS DE LOS TRABAJOS DE FRACTURAMIENTO

2.1. DAÑO A LA FORMACIÓN

Durante las operaciones de perforación, completación y reacondicionamiento la formación productora está expuesta a una serie de fluidos ya sea por largos períodos de tiempo como los fluidos de perforación o por solo horas como el caso de los fluidos de reacondicionamiento. El daño de formación se considera como cualquier proceso que altera la permeabilidad de una formación en un reservorio de tal manera que la producción o inyectividad decrecen.

2.1.1. DEFINICIÓN

Los daños a la formación suelen expresarse numéricamente mediante un Factor de "Piel o Skin" denominado (S), adimensional; éste factor se calcula a partir de las pruebas de presión que miden los cambios de permeabilidad.

- -S > 0 Formación dañada.
- -S = 0 Ni dañada ni estimulada.
- S < 0 Formación estimulada.

Otra medida de los daños a la formación es el Índice de Productividad (IP). El daño puede tener un gran impacto negativo sobre la producción e incluso puede conducir a un abandono prematuro del pozo. Ver figura 2.1.

2.1.2. MECANISMO DE DAÑO EN LA FORMACIÓN

Existen varios mecanismos por los cuales puede restringirse el flujo de fluidos desde el Yacimiento hasta el pozo como son:

2.1.2.1. Interacciones roca/fluidos

La restricción puede ser causada por desequilibrios químicos o físicos en la matriz de la roca o en los fluidos de la formación, se ven alterados por la introducción de fluidos extraños durante las operaciones de campo, con lo cual sufren alteraciones químicas que pueden producir precipitados, reduciendo la permeabilidad.

a. Minerales sensibles al agua

- Coloidales
- Sensibles a la salinidad y al contraste salino
- Sensibles al pH
- Sensibles a la diferencia de composición catiónica
 - Esmectita
 - Illita/Esmectita
 - Clorita/Esmectita
- Las esmectitas sódicas se hinchan con el agua
- La caolinita desestabiliza y migra con agua de baja concentración de cationes

b. Sensibilidad a los ácidos

Rocas que contengan minerales de hierro (clorita, pirita), las que podrán precipitar hidróxido férrico amorfo, al gastarse el HCl y subir el pH por encima de 2,2.

c. Migración de finos

Consiste en el desprendimiento de partículas finas, que se desestabilizan, por la velocidad del flujo. Ver figura 2.2.

Los finos se definen como pequeñas partículas que están adheridas a las paredes de los poros de la roca, las partículas deben desprenderse de la superficie del grano, fluyen a través del medio poroso hasta llegar a los cuellos de los poros, causando taponamiento y disminución en la permeabilidad en la región cercana al pozo. Las arcillas más frecuentes en los yacimientos de arenisca son:

- Caolinita: Al2Si2O5 (OH)4

No se expande, pero se fractura y migra, por efecto de la concentración iónica del medio. Se reconoce fácilmente en microfotografías por su aspecto de láminas paralelas perfectamente colocadas unas sobre otras. Ver figura 2.3.

Fuente: Schlumberger

Fuente: Libro DAÑOS A LA FORMACIÓN Y ESTIMULACIÓN DE POZOS Autores: BETANCOURT / CIGÜELA

- Esmectita o montmorillonita: Na0,33Al1,6Mg0,33Si4O10(OH)2

Tiene apariencia de hojuelas continuas, formando estructuras en forma de colmena. El agua de baja concentración puede expandir la esmectita, hasta separar completamente las capas. Ver figura 2.4.

Figura 2.4. Microfotografías de Esmectita en Medio Poroso

Fuente: Libro DAÑOS A LA FORMACIÓN Y ESTIMULACIÓN DE POZOS Autores: BETANCOURT / CIGÜELA

- Illita: (K1, 8(Al1, 6Fe0, 2Mg0.2) (Si3, 4Al0, 6) O10 (OH)2)

La illita se reconoce en microfotografías por su forma de agujas o cabellos, es muy propensa a quebrarse y migrar por el movimiento de fluidos. Ver figura 2.5.

Figura 2.5. Filamentos de Illita haciendo puente dentro de un poro

Fuente: Libro DAÑOS A LA FORMACIÓN Y ESTIMULACIÓN DE POZOS Autores: BETANCOURT / CIGÜELA

- Clorita: ((MgFe)5(AlSi3)(AlO10)(OH)8)

Esta arcilla no es propensa a disgregarse y migrar ni a expandirse, pero por su alto contenido de hierro es muy problemática a la hora de inyectar ácido en una formación. Ver figura 2.6.

Figura 2.6. Cristales de Clorita

Fuente: Libro DAÑOS A LA FORMACIÓN Y ESTIMULACIÓN DE POZOS Autores: BETANCOURT / CIGÜELA

2.1.2.2. Fenómenos Interfaciales

- Bloqueos por agua

Bloqueo por agua es una reducción en la permeabilidad relativa al petróleo por el incremento de la saturación de agua en el medio poroso en las cercanías del pozo. Ver figura 2.7.

Figura 2.7. Efecto de la alteración de la mojabilidad en las curvas de permeabilidad Relativa

Fuente: Schlumberger

- Bloqueos por emulsiones

Ocurre cuando una emulsión viscosa ocupa el espacio poroso cercano al pozo, y bloquea el flujo de fluidos hacia el mismo. La permeabilidad de la formación cerca del pozo puede quedar reducida a cero.

2.1.2.3. Interacciones Fluido / Fluido

Existen varios mecanismos de daño como son los bloqueos por emulsiones, así como la precipitación de ciertos compuestos sólidos inorgánicos y orgánicos.

- Precipitación inorgánica

La precipitación puede ser natural o inducida. La natural está asociada con la producción, cuando los gases disueltos salen de solución a medida que va declinando la presión del yacimiento. La precipitación inducida puede ocurrir en diversas operaciones debido a la mezcla de fluidos incompatibles. Ver figura 2.8.

Fuente: Manual BJ Services

- Precipitación orgánica

Las especies orgánicas más comunes son:

- Las parafinas son hidrocarburos, que precipitan cuando baja la temperatura o cambia la composición del crudo por la liberación del gas.
- Los asfáltenos son compuestos aromáticos y nafténicos de alto peso molecular, que se encuentran en dispersión coloidal en algunos crudos.

2.1.3. CLASIFICACIÓN GENERAL DE LAS FORMAS DE INDUCIR DAÑO DE FORMACIÓN

2.1.3.1. Inducido en forma mecánica

- Invasión de sólidos

La invasión de sólidos produce el taponamiento de las gargantas de los poros por la formación de revoques internos, así como incremento de la presión capilar, al reducir el diámetro de los poros y gargantas.

- Daños por Cañoneo

Durante el cañoneo se producen la invasión de sólidos presentes en el fluido de cañoneo y residuos de la carga, además del aplastamiento y compactación de la formación en el área cercana al pozo, dañando la zona alrededor del túnel de cañoneo. Ver figura 2.9.

- Daños de origen biológico

Este tipo de daño se presenta en pozos donde se inyectan bacterias, ya que al reproducirse obstruyen la inyectividad del mismo. Las bacterias se dividen en: sulfatos reductores (anaeróbicas) y formadoras de limo (aeróbicas). Ver figura 2.10.

Figura 2.10. Bacterias Sulforeductoras en el medio poroso

Fuente: Libro DAÑOS A LA FORMACIÓN Y ESTIMULACIÓN DE POZOS Autores: BETANCOURT / CIGÜELA

2.1.4. CAUSAS DEL DAÑO A LA FORMACIÓN DURANTE LAS OPERACIONES

2.1.4.1. Daños durante la perforación

Se presenta el taponamiento de las gargantas de los poros y el incremento de la presión capilar al reducir el radio de los poros.

2.1.4.2. Daños durante las operaciones de cementación

Durante operaciones de cementación forzada, o la cementación primaria, existe la posibilidad de forzar sólidos hacia la formación, pero en forma de una fractura, no de invasión del medio poroso.

2.1.4.3. Daños durante las operaciones de terminación o reparación de pozos

El daño se produce por invasión de fluidos hacia el pozo debido a los altos sobre balances de presión que se utilizan como medida de seguridad al realizar las operaciones de terminación o reparación.

2.1.4.5. Daños causados durante el proceso de producción

El daño se produce por migración y taponamiento de partículas finas en el área crítica alrededor del pozo como: precipitados orgánicos, producción de arena y colapso de los poros por alta presión diferencial.

2.1.4.6. Daños causados durante procesos de inyección de gas o agua

El daño se produce por cambios de mojabilidad debidos a la presencia de surfactantes en el agua de inyección, reducción de la inyectividad por taponamiento debido a sólidos suspendidos en el agua de inyección y taponamiento por productos de corrosión. Ver Figura 2.11.

Figura 2.11. Daño producido durante la inyección de fluidos

2.2. FRACTURAMIENTO HIDRÁULICO

2.2.1. DEFINICIÓN

El fracturamiento hidráulico implica la inyección de fluidos en el yacimiento, a altas presiones, suficientes para inducir la ruptura de la formación. A continuación se inyectan materiales granulares, desde arena a materiales sintéticos de tipo cerámico, con el objeto de mantener abierta la fractura al cesar el bombeo creando un conducto delgado, pero de muy alta conductividad entre el yacimiento y el pozo. La permeabilidad de este conducto es de 5 ó 6 órdenes de magnitud mayor que la del yacimiento y a pesar de su poca anchura (entre 0,1 y 2 pulgadas), su longitud puede variar entre 30 pies para yacimientos de alta permeabilidad, y varios cientos de pies para yacimientos de baja permeabilidad. Casi toda la producción llegará al pozo a través de la fractura, sobrepasando la zona dañada original. Ver figura 2.12.

Fuente: Schlumberger

2.2.2. FRACTURA HIDRÁULICA

La fractura Hidráulica se debe aplicar por una de las siguientes razones:

- Desviar el Flujo para evitar el daño en las vecindades del pozo y retornar a su productividad normal.
- Extender una ruta de conducto en la formación y así incrementar la productividad a sus niveles naturales.
- Alterar el flujo de fluidos en la formación.

Figura 2.13. Diagrama básico de una fractura

2.2.2.1. Finalidades del Fracturamiento Hidráulico

- Mejora la producción.
- Desarrolla reservas adicionales.
- Sobrepasa zonas altamente dañadas.
- Reduce la deposición de asfáltenos.
- Controla la producción de escamas.
- Conecta sistemas de fracturas naturales.
- Asegura la producción de intervalos laminares.
- Conecta formaciones lenticulares.
- Disminuye la velocidad de flujo en la matriz rocosa.
- Incrementa el área efectiva de drenaje de un pozo.
- Disminuye el número de pozos necesarios para drenar un área.
- Reduce la necesidad de perforar pozos horizontales.

Libro DANOS A LA FORMACION Y ESTIMULACION DE PO Autores: BETANCOURT / CIGÜELA

- Disminuye la caída de presión en la matriz.
- Retarda el efecto de conificación del agua.

2.2.3. VARIABLES UTILIZADAS

2.2.3.1. Permeabilidad (k)

Es la capacidad de una roca para que un fluido fluya a través de ella y se mide en milidarcys. La permeabilidad varía entre 5000 milidarcys (md) para una arena no consolidada y 0.1 milidarcys (md) para algunos carbonatos. La reducción de la permeabilidad está influenciada por los siguientes factores:

- Si los granos del yacimiento son grandes la permeabilidad del reservorio disminuye.
- Los fluidos con altas cantidades de sólidos pueden taponar los poros de la formación, disminuyendo la permeabilidad en esas zonas.
- Los fluidos deben mantener una columna hidrostática en el pozo con la finalidad de controlarlo y evitar la invasión de filtrado hacia la formación.

2.2.3.2. Porosidad (□)

La porosidad de una roca es la relación de su volumen poroso a su volumen total expresado generalmente en porcentaje. Las porosidades típicas de los sedimentos están entre el 5 % y el 25%.

El valor promedio de porosidad obtenido para la arena T inferior es de 16%, obtenida a través de la combinación de los registros de densidad y neutrón; considerando una densidad de matriz de 2,65 g/cc. Ver tabla 2.1.

Tipos de Porosidad	Clases	Origen		
Primaria o	Intergranular			
Deposicional	Intergranular	Sedimentación		
	Intercristalina	Cementación		
Secundaria	Fenestral	Cementación		
	Móldica	Disolución		
o postdeposicional	Vugular	Disolución		
oposicional	De fractura	Movimiento tectónicos, compactación o deshidratación		

Tablas 2.1. Tipos de Porosidad

Elaborado por: Gabriela Nathaly Herrera Cadena

2.2.3.6. Altura de la Fractura (h)

Una fractura se desarrolla perpendicular al mínimo esfuerzo, es decir, si el esfuerzo se encuentra en el plano horizontal, entonces la fractura se desarrollará en el plano vertical.

El mínimo de los esfuerzos controla muchos aspectos del fracturamiento hidráulico como:

1.- La fractura será horizontal, sólo si el peso de los estratos que están por encima de la formación productora originan que se genere un esfuerzo mínimo vertical.

2.- La diferencia de esfuerzos entra la formación productora y los estratos geológicos en la parte superior e inferior constituye el control primario sobre el crecimiento de la altura de la fractura.

3.- La magnitud del esfuerzo mínimo sirve como guía para seleccionar el tipo de sustentante a utilizarse en el fracturamiento hidráulico.

En la figura 2.14. se representan los esfuerzos de fracturas aplicadas a la formación.

Figura 2.14. Esfuerzos de fractura aplicados en la formación

Fuente: Schlumberger

2.2.3.7. Relación de Penetración

Determina la fractura vertical rectangular que penetra totalmente desde el fondo al tope del área del volumen de drenaje rectangular de un yacimiento.

$$I_x = \frac{2X_f}{X_e}$$
 Ec. 2.1

2.2.3.8. Conductividad Adimensional de la Fractura

$$C_{fD} = \frac{k_f w}{kX_f}$$
 Ec.2.2

Donde:

k Permeabilidad de la formación.

k_f Permeabilidad de la formación.

W Ancho promedio de la fractura sustentada.

X_f Longitud de la fractura.

 C_{fD} Conductividad adimensional de la fractura.

2.2.3.9. Número Sustentante

Establece la relación entre la penetración de la fractura y la conductividad adimensional de la misma; es decir, implica la relación entre permeabilidades y volúmenes.

$$N_{prop} = I_x^2 C_{fD}$$
Ec.2.3
$$N_{prop} = \frac{2k_f V_{prop}}{kV_{res}}$$
Ec.2.4

2.2.4. PROPIEDADES MECÁNICAS DE LA ROCA

2.2.4.1. Esfuerzo

Se define como esfuerzo a la razón de la fuerza que se aplica sobre la superficie de un área elemental; esta acción es la intensidad de la fuerza llamada esfuerzo. El esfuerzo constituye un vector con magnitud y dirección, el esfuerzo normal al plano será de **tensión** o **compresión** mientras que el esfuerzo paralelo al plano es de **corte** o cizalla.

Overburden se calcula mediante la siguiente ecuación. Ver figura 2.15.

$$\sigma_{v}(Z_{TVD}) = \int_{0}^{Z_{TVD}} \rho_{b} * g * dz$$

Donde:

g= gravedad ρ_b = densidad de la roca Z= profundidad Ec. 2.5

Figura 2.15. Diagrama de esfuerzos sobre un cuerpo

Elaborado por: Schlumberger Fracturing Course

2.2.4.2. Deformación

Se define como la compresión (positiva) o extensión (negativa) de un material en especial como resultado de la aplicación de fuerzas externas, dividida para su dimensión original.

a. Tipos de Deformaciones

- Deformación Finita

Cuando a un cuerpo se le aplican grandes esfuerzos a grandes temperaturas.

- Deformación Infinitesimal

Se obtiene debido a la aplicación de un incremento de esfuerzo que puede ser tratado matemáticamente como infinitesimal.

- Deformación de Corte

Se refiere al cambio angular en ángulo recto de un punto del cuerpo y está relacionado a los desplazamientos en las direcciones.

La suma de las deformaciones del cuerpo determina la deformación total del cuerpo; es decir, la dilatación del volumen de un cuerpo; ver figura 2.6.

$$\Delta V = (\varepsilon_1 + \varepsilon_2 + \varepsilon_3)V$$
 Ec. 2.6

Figura 2.16. Diagrama de esfuerzos sobre un cuerpo

Elaborado por: Schlumberger Fracturing Course

La relación entre esfuerzos y deformación para la roca de los yacimientos de hidrocarburos está influenciado por un significativo número de factores como:

- Composición y litología de la roca
- Grado de cementación
- Tipos de material cementante
- Cantidad y tipo de fluido en el medio poroso
- Compresibilidad de la matriz de la roca y de los fluidos en el medio poroso
- Porosidad
- Permeabilidad
- Presión del yacimiento
- Temperatura de la formación

2.2.4.3. Material Linealmente Elástico

Para un material linealmente elástico, el esfuerzo varía linealmente con la deformación. La Ley de Hooke determina que bajo compresión uniaxial el esfuerzo inducido es proporcional a la deformación.

a. Etapas de la Deformación

- Deformación Elástica

Su comportamiento es lineal ascendente de la curva de deformación. Ver figura 2.17.

- Deformación Elástico – Viscosa

Se combina la deformación elástica con la viscosa, cuyo comportamiento no es lineal debido a su amortiguamiento.

- Deformación Plástica

Se caracteriza por tener un esfuerzo constante mientras se tiene la deformación.

- Ruptura

Constituye la fase final de la deformación y se encuentra formada de las siguientes fases.

- I. Elasticidad
- II. Viscosidad
- III. Rigidez de la Roca
- IV. Comportamiento en el tiempo de los esfuerzos.
- V. Tiempo
- VI. Presión del poro
- VII. Anisotropía del medio.

Figura 2.17. Gráfico de Deformación elástica

2.2.4.4. Módulo de Corte (G)

Tiene como finalidad medir la resistencia de un cuerpo al cambio de su forma:

$$G = \frac{\tau_{xy}}{\varepsilon_{xy}}$$
 Ec.2.7

Donde:

- G Módulo de Cizalla
- τ_{xy} Esfuerzos de Corte
- ε_{xy} Deformación

2.2.4.5. Módulo de Young (E) o Módulo de Elasticidad de la Roca

Constituye la rigidez de un material y describe la respuesta del material a la deformación en la misma dirección de la aplicación del esfuerzo. Se define como la razón entre la variación del esfuerzo con respecto a la variación de la deformación en la dirección de la aplicación del esfuerzo. Ver figura 2.8.

$$E = 2G(1+v)$$
 Ec.2.8

Figura 2.18. Aplicación del Módulo de Young sobre un volumen de roca

Fuente: Unified Fracturing Design

2.2.4.6. Módulo de Poisson (v)

Describe la respuesta a la deformación del material, en dirección perpendicular a la dirección que se ha aplicado el esfuerzo; definiéndose como la relación entre la variación de la deformación perpendicular a la dirección del esfuerzo respecto a la variación de la deformación que está en la misma dirección en que es aplicado el esfuerzo.

En la tabla 2.2 se presentan los valores de la relación entre Poisson y Young para varios tipos de rocas.

$$\nu = \frac{3 * K_{bulk} - 2 * G}{6 * K_{bulk} + 2 * G}$$
 Ec. 2.9

 Tabla 2.2. Rangos para los valores de la relación entre Poisson y Young para los diferentes tipos de roca

Tipo de Roca	Relación de Poisson	Módulo de Young (10⁵)
Limos	0,30 - 0,35	5 – 13
Arenas no consolidadas	0,25 - 0,35	0,2 – 1,3
Arenas consolidadas	0,15 - 0,30	1 – 8
Sílice	0,20 - 0,30	4 – 8
Lutita	0,25 - 0,45	1 – 5
Carbón	0,35 – 0,45	0,1 – 1,0

Elaborado por: Gabriela Nathaly Herrera Cadena

2.2.4.7. Módulo de Bulk (k)

Este módulo corresponde a la relación entre la presión aplicada con respecto al porcentaje del cambio de volumen dado en la aplicación de dicha presión. Ver figura 2.19.

$$K_{B} = a * \rho_{b} * \left(\frac{1}{t_{c}^{2}}\right) - \frac{4}{3} * G$$
 Ec 2.10

Donde:

a = Factor de conversión

t_c= Tiempo complexional

 ρ_B = Densidad de la roca

G= Módulo de corte

Fuente: Análisis de gradiente de fractura Petroproducción

2.2.5. PRESIÓN NETA

Constituye la diferencia en cualquier punto en la fractura y la presión a la cual la fractura cierra; este criterio implica la existencia de una sola presión de cierre.

$$p_{net} = p_f - p_c = p_f - \sigma_c$$

Ec.2.11

Donde:

- pf Presión del Fluido de Fractura
- pc Presión de cierre de la Fractura
- σ_{c} Esfuerzo de cierre de la Fractura

La Presión de cierre constituye una propiedad constante que depende netamente de la presión del poro.

Una formación a una profundidad determinada se encuentra sujeta a tres diferentes tipos de esfuerzos, uno vertical y dos horizontales. El esfuerzo vertical absoluto es únicamente el peso de los estratos.

$$\sigma_{v} = g \int_{O}^{H} \rho dH$$
 Ec.2.12

Donde:

 ρ Densidad de los estratos

El esfuerzo calculado y el gradiente de esfuerzos están en términos absolutos, y en el caso de un medio poroso, el peso de los estratos está conformado por los granos y el fluido contenido dentro del espacio poroso, obteniendo un esfuerzo efectivo. Ver figura 2.20.

$$= \sigma - \alpha p$$

Donde:

P Presión del poro

a Constante poroelástica o de Biot del grano, se considera de un valor de 0,7.

Figura 2.20. Grafico del esfuerzo total dentro de la roca

Ec.2.13

 $\sigma_v = \sigma_v - \alpha p$

2.2.6. LONGITUD DE LA FRACTURA

Constituye la distancia de la fractura abierta al flujo consiste de dos lados simétricos o medidas longitudinales, xf, a cada lado del pozo; es decir la mitad de la longitud de conductividad de la fractura y se fundamenta en el balance de materiales en el cual hace referencia al volumen inyectado del fluido fracturante en el pozo, donde una parte penetra dentro de la formación y otra parte está en el volumen de la fractura.

$$Vi = qi \times t_p$$
 Ec.2.14

Donde:

- V_i Volumen inyectado
- qi Taza de inyección total del fluido fracturante
- t_p Tiempo de bombeo para el proceso de fracturamiento

$$V_f = h_f \times \bar{w} \times 2x_f$$
 Ec.2.15

Donde:

- h_f Altura de la fractura
- w Ancho promedio de la fractura sustentada
- 2xf Longitud de la fractura de extremo a extremo

2.2.7. ALTURA DE LA FRACTURA

La altura es controlada por la relación de la p_{neta} , entre la diferencia de los esfuerzos, $\Delta\sigma$; esta consiste en la diferencia de los esfuerzos entre las fronteras impermeables y la zona productora.
Condiciones:

- Si p_{neta}<50% del Δσ, la fractura hidráulica está perfectamente confinada en el espesor de la formación productora.
- Si p_{neta} >> Δσ, la altura de la fractura no tiene restricciones y la geometría es radial.

2.2.8. ANCHO DE LA FRACTURA

El inicio de una fractura es una grieta en la roca y esto responde al criterio de considerar que la formación productora es un medio elástico, la grieta se cierra por la acción del esfuerzo de cierre que hace que la p_{neta} sea cero o menor que cero.

$$w_{\max} = \frac{2p_{neta}d}{E}$$
 Ec.2.16

Donde:

w_{max} Ancho máximo de la fractura

pneta Presión neta

E' Módulo del plano de deformación que es función del módulo de Young E, y de la relación de Poisson, v, la cual tiene un valor típico de 0,2.

$$E' = \frac{E}{1 - v^2}$$
 Ec.2.17

d dimensión característica de la fractura que se selecciona con base del modelo que se utiliza.

En la tabla 2.3. se presenta la dimensión característica para el fracturamiento hidráulico.

Tabla 2.3. Dimensión característica según el tipo de modelo utilizado para
Fracturamiento hidráulico

Modelo	Dimensión Característica, d
PKN	h _f
KGD	2x _f

Elaborado por: Gabriela Nathaly Herrera Cadena

2.2.9. CONDUCTIVIDAD DE LA FRACTURA Y CONDUCTIVIDAD ADIMENSIONAL DE LA FRACTURA

La **conductividad de la fractura** se conoce como el producto entre la permeabilidad de la fractura y el ancho de la misma establecido como el denominador en la fórmula que determina la capacidad relativa de la fractura denominada a.

$$a = \frac{\pi K x_f}{2k_f w}$$
Ec.2.18
$$C_{fD} = \frac{k_f w}{k X_f}$$
Ec.2.19

Donde:

- a Conductividad de la fractura
- k Permeabilidad de la formación
- x_f Ancho de la fractura
- k_f Permeabilidad de la fractura
- w Ancho de la fractura
- C_{fD} Conductividad Adimensional de la fractura

Las fracturas hidráulicas deberán estar diseñadas para valores que cumplan con las siguientes condiciones: a < 1 o C_{fD} > 1.6

$$rw' = \frac{k_f w}{4k}$$
 Ec.2.20

2.2.10. MECÁNICA Y FLUJO DEL FLUIDO EN LA FRACTURA

La iniciación y propagación de una fractura significa que el material ha respondido de una manera no elástica y ha sufrido un cambio irreversible. La teoría de elasticidad lineal describe adecuadamente el proceso de fractura (comportamiento esfuerzo - deformación) excepto quizás en la vecindad de la cara de la fractura y espacialmente en la punta.

Un material elástico lineal isotrópico está caracterizado por constantes elásticas, y solo dos de ellas son suficientes para describir su comportamiento como son μ y q_i , los cuales hacen posible que la fractura permanezca abierta después del tratamiento.

El fluido Newtoniano fluye en una fractura de altura y ancho constante.

$$q = \frac{h_f w^3 \Delta p}{12\mu L}$$
 Ec.2.21

$$p_{net} = \frac{6\mu i}{h_f w^3} x_f$$
 Ec.2.22

 Δp Caída de presión en el canal de la fractura.

- L Longitud del canal
- μ Viscosidad del fluido que fluye en el canal de la fractura.

2.2.11. EFECTOS DE LA PUNTA EN LA FRACTURA

Regularmente el papel que desempeña la punta de la fractura han sido ignorados, mientras que el ancho de la fractura han sido afectados por la viscosidad del fluido y el efecto de punta. Para una fractura de geometría radial con una penetración x_f se tiene la siguiente ecuación:

$$P_{tip} = K_{cl} \sqrt{\frac{\pi}{48x_f}}$$
 Ec.2.24

Donde:

- p_{net} Presión neta para una presión de punta positiva.
- p_{tip} Presión de punta
- k Constante de igualdad de la ecuación
- K_{lc} Factor de la intensidad del esfuerzo crítico

2.2.12. PÉRDIDAS DE FLUIDO EN LA FRACTURA

La pérdida de fluido a la formación durante el tratamiento es uno de los factores más críticos involucrados en la determinación de la geometría de la fractura; este a su vez determina la eficiencia del fluido fracturante.

 C_L Coeficiente de pérdidas de fluido a la formación total, controla la pérdida de fluido total desde la fractura hacia la formación, este se conforma de tres mecanismos separados.

1.- Primer Mecanismo.- Definido por el Coeficiente de Costra C_w, representa la tasa de flujo de fluido a través de la costra.

$Cw = \frac{0.0164m}{A}$	Ec.2.25
$m = \frac{k_f A^2 \Delta p'}{\mu_f F_{cV}}$	Ec.2.26

$$F_{cV} = \frac{F_{cV}}{1 - f(F_{cV})}$$
 Ec.2.27

2.- Segundo Mecanismo.- El efecto de la zona invadida está caracterizado por la viscosidad y la permeabilidad relativa, denotado por C_v .

$$C_{v} = 0,0269 \sqrt{\frac{k_{f} \Delta p \phi}{\mu_{a}}}$$
 Ec.2.28
V_s=2S_pA Ec.2.29

3.- Tercer Mecanismo.- La compresibilidad y la viscosidad del fluido existente en el yacimiento afectan a la tasa de filtrado del fluido fracturante, denominado con C_c .

$$C_c = 0.0374 \sqrt{\frac{k_r C_t \phi}{\mu_f}}$$
 Ec.2.30

Donde:

- C_w Coeficiente de la construcción de la costra, ft/√min
- A Área de la sección transversal del núcleo, cm²
- m Pendiente de la curva, ml/√min
- k_f permeabilidad de la costra
- Δp' Caída de la presión
- μ_f Viscosidad del fluido fracturante filtrado a través de la costra.
- F_{cv} Relación de la costra del volumen filtrado.
- V_s Volumen de filtrado debido al espurreo
- S_p Coeficiente de Espurreo
- Vs Volumen de filtrado debido al espurreo
- C_V Coeficiente del control de la viscosidad, ft/ \sqrt{min}
- Δp Diferencia en presión del fluido en la cara de la formación y la presión inicial del poro en la formación, psi.

- k_i Permeabilidad relativa de ka formación al fluido filtrado, md.
- Φ Porosidad
- μ_a Viscosidad aparente del fluido fracturante filtrado a condiciones del pozo, cp.
- Cc Coeficiente del control de la compresibilidad, ft/√min
- Kr Permeabilidad relativa de la formación al fluido móvil del yacimiento, md.
- Ct Compresibilidad total de la formación, psi⁻¹

2.2.13. SELECCIÓN DEL FLUIDO FRACTURANTE

Su principal función es la transportar el material sustentante dentro de la fractura. Se debe tomar en cuenta los siguientes parámetros:

- Compatibilidad con los fluidos del yacimiento y la roca productora.
- Compatibilidad con la presión del Yacimiento.
- Consideraciones de la presión de bombeo en superficie y las pérdidas por fricción en los ductos.
- Compatibilidad con otros materiales.

2.2.13.1. Admisión del material sustentante

Para que la fractura pueda admitir la partícula del agente sustentante, esta debe tener un ancho aproximadamente mayor a 2.5 veces el diámetro de la partícula. Ver figura 2.4.

 $w > 2.5 \ x \ d_p$

Concentración del Agente Sustentante	Ancho / Diá	ametro Partícula
(lbm/gal Fluido)	Experimental 1	Correlación
0,5 a 2	1,8	1,15 a 2,0
2 a 5	2,2	2,0 a 3,0
5 a 8	2,6	3

Tabla 2.4. Concentración de agente sustentante en función del ancho de la fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

2.2.14. MODELOS DE FRACTURA

2.2.14.1. Modelos en Dos Dimensiones

Los modelos en dos dimensiones determinan el ancho (w), y la longitud (x_f), de la fractura, considerada a la fractura como un paralelepípedo.

2.2.14.1.1. Modelo PKN

Se utiliza para modelo de fracturas mucho mayores que la altura de la fractura; donde la fractura es de forma elíptica en el eje vertical del pozo. La máxima amplitud está en la línea central de la elipse, con cero de ancho en el tope y fondo. Ver figura 2.22 y 2.23.

- El ancho es mucho menor que las otras dimensiones de la fractura: altura y longitud; mientras que la longitud es mayor que las otras dimensiones.
- La geometría elíptica se considera una aproximación acertada.
- La altura de la fractura es constante.

Figura 2.22. Diagrama de la fractura con el modelo PKN

Fuente: Schlumberger

Para fracturas de una altura fija h_f y de extensión infinita, la máxima amplitud del ancho de la fractura está expresado por:

$$wo = \frac{2h_f p_{net}}{E'}$$
 Ec.2.31

Donde:

- w Ancho de la fractura
- μ Viscosidad del fluido
- E Módulo de Young
- v Relación de Poisson

pnet Presión neta

- h_f Altura de la fractura
- $\bar{\mu}$ Velocidad promedio del fluido
- wo Ancho del a fractura en el centro del pozo
- i=qi Tasa de inyección del fluido fracturante a un solo lado de la fractura.

$$\bar{\mu} = \frac{64\mu i}{\pi h_f w_o^3}$$
 Ec.2.32

2.2.15. Modelo KGD

Se utiliza para modelos con longitudes de fracturas mucho menores que la altura de la fractura. El modelo es semejante al PKN con un giro de 90° y aplicable para aproximar la geometría de fracturas en donde $h_f >> x_f$.

Para el desarrollo de las diferentes ecuaciones, se ha considerado la suposición de la existencia de una zona no mojada en la punta de la fractura.

$$w_{w,o} = \frac{4x_f p_{net}}{E'}$$
 Ec.2.33

$$\bar{w} = 2.53 \left(\frac{\mu i x_f^2}{E' h_f} \right)^{\frac{1}{4}}$$
 Ec.2.34

Las ecuaciones anteriores dan el valor del ancho promedio de la fractura con igual dimensión vertical y horizontal. Ver figura 2.24.

2.2.16. Requerimientos del Flujo de Fluidos

Dentro del proceso de fracturamiento hidráulico se manejan diferentes tipos de fluido, cada uno de ellos cumplen con un rol específico.

2.2.16.1. Fluido de Relleno

El fluido de relleno no tiene material sustentante en suspensión. Su objetivo se localiza en iniciar y propagar la fractura; es decir, ingresa a la formación de interés (leakoff) y crea una costra de la fractura (filter-cake).

2.2.16.2. Fluido con Sustentante o Lechada

Una vez que ha sido inyectado el fluido de relleno, se incrementa la concentración del mismo añadiendo material sustentante hasta el final del tratamiento. La concentración del material sustentante en suspensión depende de la habilidad de transporte del mismo con el fluido y la capacidad de aceptación del vacimiento y la creación de la fractura.

$$V_{pad} \approx V_i \left(\frac{1-\eta}{1+\eta}\right) = V_i \varepsilon$$
 Ec.2.35

Donde:

V_{pad} Volumen de relleno

V_i Volumen inyectado

η Eficiencia del fluido de relleno

2.2.16.3. Fluido de Limpieza

Su objetivo es desplazar la suspensión desde el pozo hasta la punta de la fractura. Por ello, es importante verificar que no exista un desplazamiento exagerado del fluido, ya que podría causar un estrangulamiento de la fractura y esto ocasionará una disipación de la Presión de fracturamiento y el cierre de la misma.

$$i \times t_i = A_f \times w + K_L \times C_L \times (2A_f) \times r_p \times \sqrt{t_i}$$
 Ec.2.36

$$K_{L} = \frac{1}{2} \left[\frac{8}{3} \eta + \pi (1 - \mu) \right]$$
 Ec.2.37

$$t_{pad} = \frac{V_{pad}}{i}$$
 Ec.2.38

Donde:

t_i Tiempo en que se rellena el fluido de relleno.

t_{pad} Tiempo de inyección del fluido de relleno.

V_{pad} Volumen de relleno

i Tasa de inyección del fluido de relleno

2.2.17. Material Sustentante

La adición del material sustentante tiene un inicio y las concentraciones se realizan en función del tiempo y de la eficiencia del fluido.

$$c_{p}(t) = c_{f} \left(\frac{t - t_{pad}}{t_{i} - t_{pad}}\right)^{\varepsilon}$$
 Ec.2.39

$$\varepsilon = \frac{1-\eta}{1+\eta}$$
 Ec.2.40

Donde:

- C_p(t) Concentración de la suspensión del material sustentante en la lechada, Lb/gal
- C_f Concentración de la suspensión al final del trabajo
- t_{pad} Tiempo del fluido de relleno
- t_i Tiempo total del tratamiento.

2.3. Fluido Fracturante, aditivos y material sustentante

Se debe tomar en cuenta los siguientes criterios para la selección del fluido:

1.-Transportar en forma óptima el material sustentante, tanto en el sistema de tuberías como dentro de la fractura.

2.- Evitar cualquier empaquetamiento del material sustentante que cause un daño en la fractura. Es necesario recalcar que la adición de polímeros es vital para manejar los valores de la viscosidad.

Nomenclatura Química del Polímero				
Descripción	Notación			
Guar	Guar			
Hidroxipropil Guar	HPG			
Caboximetilhidroxipropil Guar	CMHPG			
Carboximetil Guar	CMG			
Carboximetil Celulosa	HEC			
Carboximetilhidroxipropil Celulosa	CMHEC			
Cantan Gum	XC Polímero			
Poliacrilamida (Reductor de Fricción)	PA			

 Tabla 2.5. Nomenclatura de los fluidos fracturantes

Elaborado por: Gabriela Nathaly Herrera Cadena

2.3.1.2. Aditivos

- Bactericidas o Bióxidos

Se encarga de controlar la contaminación bacterial, incrementando el valor del pH ya que ellas provocan la destrucción de la viscosidad. Esto se controla incrementando el valor del pH a un valor mayor que 12.

- Buffers

Se utiliza los que contienen ácidos orgánicos provocando la hidratación del fluido.

- Estabilizadores

Ayudan a atrapar el oxígeno y removerlo, para que este no degrade a los polímeros.

- Aditivos para el control de pérdidas de fluido

Controla el filtrado una vez que se ha formado y estabilizado la costra dentro de la fractura.

- Surfactantes

Su finalidad radica en prevenir las emulsiones, bajar la tensión superficial y los cambios de mojabilidad. Se adicionan para facilitar la limpieza postfractura.

- Breakers

Reduce la viscosidad al disminuir el tamaño del polímero; permitiendo así la limpieza de los residuos en el proceso de post-tratamiento y producción.

2.3.1.3. Selección del Fluido Fracturante

- Base Agua

Son los más utilizados debido a su bajo costo; no son combustibles, su disposición es inmediata y facilita el control de la viscosidad.

- Base Aceite

Determinados tipos de geles requieren de bases para preparar el fluido fracturante.

- Base Alcohol

El alcohol reduce la tensión superficial del agua y tiene un amplio uso como estabilizador de temperatura.

- Emulsiones

En presencia de geles reducen las pérdidas de fricción.

- Base Espuma

Las burbujas de gas proveen alta viscosidad y una excelente capacidad de transporte del material sustentante.

2.3.1.4. Presión y Potencia utilizada en el proceso

$$p_{tr} = p_{bd} - \Delta p_{PE} + \Delta p_{Fricción}$$
 Ec.2.41

$$HHP = \frac{q \times p_{tr}}{40.8}$$
 Ec.2.42

Donde:

p_{tr}	Presión de tratamiento
p_{bd}	Presión de ruptura de la formación
$p_{bd} = 3\sigma_h$	$-\sigma_{H,\max} + To - p$
Δp_{PE}	Diferencia de presión estática
$\Delta p_{\it Fricción}$	Pérdida de fricción
q	Tasa de inyección para los dos lados de la fractura.

ptr Presión de tratamiento

2.3.2. MATERIAL SUSTENTANTE APROPIADO

Su función es la de maximizar el producto de la permeabilidad de el empaquetamiento con material sustentante por el ancho de la fractura.

1.- Altas tasas de inyección de fluido fracturante dan como resultado altas presiones netas y por ello la posibilidad de fracturar formaciones adyacentes.

2.- Si la altura de la fractura es tolerable; una mayor tasa de inyección resultará en un menor tiempo de tratamiento.

2.3.2.1. Categorías del material sustentante

Las principales categorías del material sustentante son: Arenas, Baucitas y cerámicos. La arena natural es el material sustentante comúnmente utilizado cuando se trata de formaciones con esfuerzos bajos.

Figura 2.25. Tipos de Material Sustentante

Fuente: Schlumberger

- Propiedades del material sustentante

En la tabla 2.6 y 2.7 se presentan los tipos de Material Sustentante y sus especificaciones.

- Tamaños de los granos.
- Distribución del tamaño del poro.
- Calidad.
- Redondez y esfericidad de los granos.
- Densidad del material sustentante.
- Porosidad del empaquetamiento con material sustentante.

Material Sustentante			
Тіро	Esfuerzo de cierre máximo		
Arena	5000 psi		
Cerámicos de baja densidad	8000 psi		
Cerámicos de alta densidad	10000 psi		
Baucita	14000 psi		

Tabla 2.6. Material Sustentante

Elaborado por: Gabriela Nathaly Herrera Cadena

Material Sustentante						
Тіро	Tamaño	(pg)	(lb/ft²)	Porosidad		
	12/20	0.0496	165	0.38		
	16/30	0.0350	165	0.39		
Arena Northern White	20/40	0.0248	165	0.40		
	12/20	0.0496	165	0.39		
	16/30	0.0350	165	0.40		
Arena Texas Brown	20/40	0.0248	165	0.42		
	12/20	0.0496	160	0.43		
Arena Recubierta con	16/30	0.0350	160	0.43		
Resina Curada	20/40	0.0248	160	0.41		
	12/20	0.0496	160	0.38		
Arena Recubierta con	16/30	0.0350	160	0.37		
Resina Recurada	20/40	0.0248	160	0.37		
	12/20	0.0496	198	0.42		
ISP	20/40	0.0248	202	0.42		
	12/20	0.0496	170	0.40		
	16/30	0.0350	231	0.43		
	20/40	0.0248	231	0.42		
ISP de Peso Ligero	40/70	0.0124	131	0.42		
Oxido de Zirconio	20/40	0.0248	197	0.42		

Tabla 2.7. Especificaciones de diferentes sustentantes

Elaborado por: Gabriela Nathaly Herrera Cadena

2.4. DISEÑO DEL PROCESO DE FRACTURAMIENTO

En la figura 2.26. y 2.27. se esquematiza el diseño del proceso de fracturamiento.

Figura 2.26. Esquematización del proceso de Fracturamiento

Fuente: Manual de BJ

Realizado por Schlumberger.

2.4.1. MINIFRAC O DATAFRAC

Prueba de inyección de fluidos que se realiza con el fluido de fractura a la tasa que se va a usar en la ejecución definitiva del trabajo. Se registra tasa y presión vs. tiempo, presión neta y declinación de la presión después de parar el bombeo. Véase figura 2.28. de prueba típica.

Figura 2.28. Gráfico de presión vs tiempo resultado del Datafrac

Es importante tomar encuentra los siguientes parámetros para su diseño:

- Simular el comportamiento del minifrac por diversos modelos hasta conseguir el correcto.
- Determinar el modelo que se ajusta al tiempo de cierre.
- Usar las propiedades correctas del fluido de fractura y de los esfuerzos de las capas.

$$V = \left(\frac{n'+1}{3n'+1}\phi\right)^{\frac{n'}{n'+1}} \left(\frac{72\Delta p\phi}{\lambda K'}\right)^{\frac{1}{n'+1}} \sqrt{\frac{8x10^{-15}\lambda k}{\phi}} (60t)^{\frac{n'}{n'+1}}$$
Ec.2.43

Fuente: Schlumberger

Donde:

V es el volumen total de filtrado en función del tiempo, por unidad de área de fractura, en metros cúbicos por metro cuadrado.

El coeficiente de pérdida de filtrado es la pendiente de la curva de V contra t.

Para fluidos reticulados no hay un modelo reológico representativo, además de que tienen un Spurt alto y pueden formar revoque. Por lo tanto, el coeficiente será Cw. Para determinar estos valores se usa una técnica de bombeo y cierre doble en el campo. Observar figura 2.29. del inicio de la fractura.

Figura 2.29 Inicio de la fractura

Fuente: Curso de Fracturamiento de BJ

Debe tomarse en cuenta que al abrirse la fractura, se atraviesan zonas de permeabilidad variable y que la eficiencia del fluido hallada del minifrac puede no cumplirse para un volumen mucho mayor de fluido. Es importante hallar un buen modelo que produzca un buen ajuste con los datos del minifrac, para predecir lo

que pueda ocurrir si se siguiese bombeando, que es la forma de hacer el diseño del trabajo principal. Observar la figura 2.30 de la presión en función del tiempo.

Figura 2.30. Diagrama de la presión en función de la presión

Fuente: Schlumberger

Del análisis de la prueba se obtiene la eficiencia del fluido de fractura, el verdadero coeficiente de pérdida de filtrado del fluido y la presión neta en la fractura. Realizar un registro de temperatura 8 horas después de la prueba se determina la verdadera altura de la fractura. Ver resultados de la prueba típica en la figura 2.31.

Figura 2.31. Representación gráfica del comportamiento de la presión en función del tiempo durante la prueba tomada

Fuente: Schlumberger

Con estos datos se realiza un diseño más refinado del fracturamiento.

2.4.1.1. Validez de los datos necesarios para diseño

Los datos necesarios para un adecuado diseño son:

- Datos geomecánicos: módulo de elasticidad, relación de Poisson, contraste de esfuerzos entre capas.
- Permeabilidad de las diferentes capas.
- Competencia de las barreras para contener el crecimiento vertical.
- Gradiente de fractura.
- Propiedades de los fluidos de fractura.
- Pérdidas por fricción en la tubería y perforaciones.
- Tortuosidad cerca del pozo.

En la figura 2.32. se esquematiza la formación de una fractura típica.

Fuente: Schlumberger

2.4.2. EL CIERRE DE FRACTURA

Se determina por una o más construcciones de la curva de declinación. Ver figura 2.32. Alguno de los gráficos más usados son:

- P_{shut in} vs t
- P_{shut in} vs
- P_{shut in} vs función g (y variaciones)
- Log (P_{isip}-P_{shut -in})

El concepto original de análisis de declinación de presión se fundamenta en la observación de la tasa de declinación de presión durante el proceso de cierre.

2.4.3. BOMBEO DE APUNTALANTE

Dado el tiempo total de bombeo y volumen de fluido entrecruzado, el paso siguiente es la adición del programa de adición apuntalante a la fractura. Generalmente, el proceso de inyección de fluido en un tratamiento de fracturamiento hidráulico se puede dividir en: Ver figura 2.33.

- Colchón (pad)
- Transporte de apuntalante (slurry volume)
- Desplazamiento (Flush)
- Shut in

2.4.4. COLCHÓN (PAD)

Es el fluido que se inyecta al comienzo del tratamiento sin apuntalante. Normalmente, de 30 a 60% del fluido bombeado en el tratamiento se filtra a la formación mientras se bombea.

Figura 2.33. Representación de la etapa de introducción del apuntalante más el material sustentante

Fuente: Schlumberger

El pad debe generar suficiente longitud de fractura y ancho para permitir el emplazamiento de apuntalante dentro de la fractura.

2.4.5. TRANSPORTE DE APUNTALANTE (SLURRY VOLUME)

Después de que el pad especificado es bombeado, la concentración de apuntalante puede ser bombeado, de dos maneras.

Una es bombear la concentración en la rampa, y la otra es bombearla en escalera, hasta llegar a la concentración final fijada en el diseño. Ver figura 2.34 y 2.35.

2.5. SECUENCIA OPERATIVA

La secuencia operativa para la remediación del daño a la formación, tomando en cuenta que el equipo operativo del tratamiento ya se encuentra dentro del pozo, se cita a continuación.

Figura 2.35. Finalización del trabajo de fracturamiento

- 1. Movilizar dos tanques de fractura para almacenamiento de agua.
- 2. Movilizar equipo de fractura y materiales necesarios para la ejecución del trabajo.
- Preparar permiso de trabajo, hacer un análisis de los riesgos de la operación, evaluando y minimizando los posibles riesgos por medio de planes de acción y medidas de contingencia.
- 4. Instalar líneas de 3" de alta presión hasta el cabezal de pozo en la mesa del taladro. Adicional, una línea de 2" tipo manifold deberá armarse en el piso con el objeto de tener la posibilidad de liberar presión, reversar, etc. hacia los tanques del taladro.
- 5. Reunión de seguridad con personal de la empresa prestadora de servicios y la empresa operadora del campo, discutiendo lo siguiente:
 - a. Programa de Fractura
 - b. Equipo de seguridad
 - c. Normas de trabajo
 - d. Responsabilidad durante el trabajo
 - e. Aplicación de las Normas Mínimas de Seguridad
 - f. Análisis de Riesgo del trabajo
 - g. Ruta de escape
- 6. Probar líneas. Aplicar 8,000 psi en la línea de bombeo para el tubing y 1,000 psi en la línea de bombeo para el espacio anular.
- 7. Realizar una limpieza de tubing bombeando HCL y desplazando con salmuera hasta 1 bbl antes de llegar al bypass del packer. Entonces, cambiar las válvulas

en superficie y reversarlo hacia los tanques del taladro para ser neutralizado y desechado posteriormente.

- 8. Realizar DataFRAC bombeado la siguiente secuencia de fluidos:
 - Freflo para realizar el Step Rate Test, volúmenes y caudales será indicados al supervisor una vez en locación
 - Parar bombeo, observar estabilización de presiones
 - Desplazar con WF130 (gel lineal)
 - Parar bombeo, monitorear presiones y determinar presión de cierre de fractura
- 9. Ejecutar fracturamiento Hidráulico de acuerdo a rediseño de campo

Secuencia de bombeo del tratamiento.

En la tabla 2.8. se presenta la secuencia de bombeo

Tabla 2.8. Secuencia de pompeo							
Stage	Pump	Fluid Name	Stage Fluid	Gel	Prop.	Prop.	
Name	Rate		Volume	Conc.	Type and Mesh	Conc.	
	(bbl/min)		(gal)	(lb/mgal)		(PPA)	
PAD	18	YF130 HTD	7500	30		0	
1.0 PPA	18	YF130 HTD	1300	30	16/20 CarboUTE	1	
20PPA	18	YF130 HTD	1500	30	16/20 CarboLITE	2	
3.0 PPA	18	YF130 HTD	1600	30	16/20 CarboLITE	3	
4.0 PPA	18	YF130 HTD	1600	30	16/20 CarboLITE	4	
5.0 PPA	18	YF130 HTD	1600	30	16/20 CarboLITE	5	
6.0 PPA	18	YF130 HTD	1600	30	16/20 CarboLITE	6	
8.0 PPA	18	YF130 HTD	800	30	16/20 CarboLITE	8	
FLUSH	18	WF130	3720	30		0	
					39,500 lb		

Table 2.9. Convensio de homb

Fuente: Propuesta de Fracturamiento Hidráulico Cononaco 28 Schlumberger

En la tabla 2.9. se presenta el total del fluido y propalante empleados para el fracturamiento.

From	То	Prop. Conc.	Propped	Propped	Frac.	Frac.	Fracture
(ft)	(ft)	at End of Pumping	Width	Height	Prop. Conc.	Gel Conc.	(md.ft)
		(PPA)	(in)	(ft)	(lb/ft2)	(lb/mgal)	
0	36.6	8.3	0.256	68.8	23	475.2	6689
36.6	73.3	8.4	0.256	68.8	23	494.5	6689
73.3	109.9	7.9	0.256	65	23	492.3	6423
109.9	146.5	15.5	0.16	56.6	1.44	486.8	4136

Tabla 2.9. Total de fluido y propalante utilizados en la secuencia de bombeo

Fuente: Schlumberger

Tabla 2.10. Total del fluido de fractura y apuntalante

Total de Fluidos					
3270 gal	de	WF130			
17500	de	YF130HT			
gal		D			
Total de Propalante					
39500 lb	de	16/20 CarboLITE			

Fuente: Propuesta de Fracturamiento Hidráulico Cononaco 28 Schlumberger

- 10. Observar declinación de presión y esperar por cierre de fractura.
- 11. Limpiar arena remanente en la tubería.
- 12. Fluir el pozo para limpiar de polímero la zona fracturada.
- 13. Evaluar el pozo, ponerlo nuevamente en producción.

CAPÍTULO III

3. ANÁLISIS TÉCNICO DE LOS POZOS FRACTURADOS EN EL CAMPO CONONACO

3.2. PARÁMETROS PETROFÍSICOS DEL CAMPO

3.2.1. PETROFÍSICA

Previo a la determinación las reservas del campo, es importante analizar las propiedades petrofísicas a la arena T de los pozos a los cuales se aplicó el tratamiento de Fracturamiento Hidráulico.

En la Tabla 3.1. se presentan los topes y bases de los registros eléctricos de los pozos a los cuales se aplicó el tratamiento.

Pozo	Tope(ft)	Base(ft)
Cononaco-02	10143	10197
Cononaco-16	10120	10155
Cononaco-23	10136	10204
Cononaco-28	10198	10274

 Tabla 3.1. Pozos seleccionados

Realizado por: Gabriela Nathaly Herrera Cadena

3.2.1.1. Análisis de los parámetros petrofísicos

La evaluación petrofísica de los pozos estimulados fue llevada a cabo, utilizando el programa Interactive Petrophysics IP, para el análisis y procesamiento de los datos de los registros eléctricos; de los cuales se analizaron las siguientes curvas: rayos gamma, potencial espontáneo, densidad, neutrón, resistividad de inducción, resistividad lateral y Micro Log, tomando en cuenta la información ya existente de núcleos y litología.

3.2.1.2. Filtración de datos

La filtración de datos veraces de los registros se los realizó con las curvas de RHOZ, de densidad y de resistividad de la zona invadida; donde RXOZ presentaba ciertas distorsiones en pequeños intervalos denominados washout, en donde se estima el ineficiente contacto entre la herramienta y la cara del pozo.

La precisión de los cálculos de saturación, porosidad y volumen de arcilla durante la interpretación petrofísica, se puede mejorar con la utilización de la información obtenida de los cores.

3.2.1.3. Volumen de arcilla (Vcl)

El Volumen de arcilla estimado para la arena T del Campo Cononaco se calcula a partir del registro de rayos gamma (GR), y Densidad-Neutrón, debido a que se ven afectados con la presencia de mal hueco (washout), en los intervalos es necesario estimar el volumen de arcilla utilizando el registro GR, usando el método lineal: Ecuación 3.1.

$$VclGR = \frac{GR - GRclean}{GRclay - GRclean}$$
 Ec. 3.1

3.2.1.4. Saturación de agua

Constituye la capacidad de la roca para alojar fluido en el espacio poral. Obtener el valor de Sw, implica predeterminar un modelo de saturaciones; es por eso que se recurre a la utilización de la ecuación de Indonesia para corregir mejor los efectos de la conductividad de las arcillas sobre las mediciones de resistividad.

$$Sw = \left(\frac{1}{\frac{\phi_{e}^{m/2}}{\sqrt{aR_{w}}} + \frac{V_{sh}^{(1-V_{sh}/2)}}{\sqrt{R_{sh}}}} * \frac{1}{\sqrt{R_{t}}}\right)^{2/n}$$
Ec.3.2

De acuerdo a los datos de cementación obtenido de los núcleos de los pozos Con-16 y Con-20, m= 1.81 y n=2; mientras que los valores de Temperatura en superficie Ts y Resistividad del filtrado del lodo, Rmf, son tomados de la portada del registro eléctrico del pozo, teniendo en cuenta que los valores de Rw varían de acuerdo a la temperatura de la formación y se los obtiene de la carta de interpretación GEN-9 Anexo 3.1., la salinidad considerada es de 21304,8 ppm NaCl.

POZO	ARENA	Tf F	Rw (OHMM)
Cononaco – 02	Ti	209	0,305
Cononaco – 16	Ti	205	0,063
Cononaco – 23	Ti	201	0,137
Cononaco – 28	Ti	207	0,221

Tabla 3.2 Valores de RW

Fuente: Petroproducción Realizado por: Gabriela Nathaly Herrera Cadena

3.2.1.5. Resultados finales

Los resultados finales se encuentran dados en función de los Cutoff, lo cuales definen los parámetros mínimos o máximos de la presencia de fluidos e hidrocarburo móvil.

- Si, \Box > 8%, Arena porosa y permeable.
- Sw < 50%, el fluido contiene más petróleo que agua.
- Vcl < 50%, Arena limpia.

Los registros analizados contienen la siguiente información y son recopilados en los anexos 3.2.

Pista 1: Profundidad

Pista 2: Cali, Gr, Sp, Minv, Mnor

Pista 3: Registros de resistividad

Pista 4: Los registros de densidad, neutrón y sónico.

Pista 5: La porosidad efectiva y el volumen de arcilla.

Pista 6: Saturación de Agua.

Se obtuvo los siguientes parámetros petrofísicos de los pozos estimulados con la ayuda del IP, y se presentan en la siguiente tabla; tomando en cuenta que la saturación inicial de agua promedio para la arena T inferior está en un rango de 15% y su porosidad oscila en el 16%.

POZO	ARENA	TOPE	BASE	ESPESOR TOTAL	Espesor de las zonas de pago	θ	Sw	Vcl
Cononaco – 02	Ti	10143	10197	54	30,25	0,135	0,315	0,130
Cononaco – 16	Ti	10120	10155	35	20	0,125	0,255	0,321
Cononaco – 23	Ti	10136	10204	68	44	0,117	0,178	0,313
Cononaco – 28	Ti	10198	10274	76	41	0,19	0,19	0,157

Tabla 3.3. Resultados de la interpretación petrofísica zonas de pago

Realizado por: Gabriela Nathaly Herrera Cadena

3.2.2. RESERVAS

Es imprescindible el cálculo de reservas para la exploración y explotación de un campo, estableciendo que los yacimientos son cuerpos de roca que aloja hidrocarburo; su transporte y distribución dentro de la misma, está en función de las fuerzas capilares y gravitacionales.

La arena T inferior del Campo Cononaco presenta un mecanismo de producción en función de una entrada lateral de agua y expansión de roca y fluido.

3.1.2.1. Reservas Probadas

Se denominan reservas probadas a la cantidad de hidrocarburos que se estima se puede recuperar con casi una exactitud a partir de datos geológicos y técnicas de reservorios conocidos, a las condiciones económicas actuales.

3.1.2.2. Reservas Probables

Se denominan reservas probables a la cantidad de hidrocarburos que se espera recuperar de reservorios conocidos, pero sin una exactitud tal que se les pueda clasificar dentro de la categoría anterior.

3.1.2.3. Reservas Posibles (Potencial Geológico)

Se denominan reservas posibles a la cantidad de hidrocarburos que se espera descubrir a partir de reservorios que no se conocen en áreas aun no exploradas evaluando solamente en base a criterios geológicos.

3.1.2.4. Reservas Remanentes

"Es el volumen de hidrocarburos que resulta de la diferencia de las reservas probadas y de la producción acumulada al momento de la estimación, este volumen es un indicativo del potencial de un yacimiento, a más de ser una base o justificativo para operaciones futuras en un campo"

3.2.3. MÉTODO VOLUMÉTRICO

Su función es estimar las reservas probadas; se basa en la determinación volumétrica de las cantidades totales de los hidrocarburos *in situ*, a los que se les aplica un factor de recuperación (FR) y análisis petrofísicos de presión-volumen temperatura (PVT).

Los siguientes parámetros son necesarios para estimar el método volumétrico:

- Registros eléctricos de los pozos.
- Análisis de muestras recogidas durante la perforación o en la completación de pozos.
- Análisis de los fluidos encontrados.
- Determinación de la porosidad total y efectiva
- Determinación de las permeabilidades de las rocas y el estudio de otros parámetros.

Se debe indicar que es importante que las muestras de pozos sean obtenidas en el inicio del desarrollo de los campos, ya que para una correcta evaluación de las reservas hay necesidad de que dichas muestras presenten lo más representativo de las condiciones originales del yacimiento.

Se asumieron áreas de drenaje circulares obtenidas de mapas estructurales, a partir del radio entre los pozos; ubicando el punto medio de un segmento de recta entre los pozos; los cuales se obtuvieron de mapas estructurales graficados con la ayuda del programa OFM (Oilfield Manager).

OOIP (Bls.F) =
$$\left(\frac{7758xAxh_o x \phi x(1-S_W)}{B_{OI}}\right)$$
 Ec.3.3

Donde:

N = Volumen de Petróleo in situ.

 \emptyset = Porosidad.

Sw = Saturación de Agua innata o intersticial.

βoi = Factor Volumétrico del Petróleo Inicial en el yacimiento (BIs/BF).

VR = Volumen Bruto de la Roca (Acre-Pie).

Es indispensable obtener las reservas probadas (N), las cuales se obtienen multiplicando el factor de recobro por el petróleo in-situ, se tiene un factor de recobro de 28,58% para la arena T.

Reservas Remanentes (Bls)=
$$Nr = N - Np$$
 Ec.3.4

	А	h	Φ	Swi	βοί	OOIP	Ν	NP	Nr
Pozo	Acres	ft			Bls/BF	bbls	bbls	bbls	bbls
Cononaco - 02	59,55	30,25	0,135	0,315	1,17	1.104.575	315688	57794	257894
Cononaco - 16	56,7	20	0,125	0,255	1,17	700.234	200127	140631	59496
Cononaco - 23	47,83	44	0,117	0,178	1,17	1.342.068	383563	289592	93971
Cononaco - 28	63,16	41	0,19	0,19	1,17	2.642.582	755250	7725	747525
Total						5.789.460	1654628	495742	1158886

Tabla 3.4. Tabla de Reservas de los pozos estimulados

Elaborado por Gabriela Nathaly Herrera Cadena

3.2.4. CURVA DE DECLINACIÓN EXPONENCIAL

La curva de declinación es un trazo del comportamiento histórico de producción con respecto al tiempo; siendo posible determinar la producción futura total de un yacimiento y las reservas probadas de esta formación en particular; su correcta interpretación nos da la oportunidad de tomar acciones; medidas correctivas y preventivas buscando alargar la vida productiva. El llamado límite económico es cuando al extrapolar la gráfica se llega a un punto donde el valor de la producción de petróleo, es equivalente a los gastos de producción, en el caso de los pozos del Campo Cononaco se ha fijado una tasa de producción de 100 bppd.

$$q = q_0 e^{-Dt}$$
 Ec.3.5

Donde:

q = Tasa de producción al tiempo t (BPPD)
q_o = Tasa de producción al tiempo t=0 (BPPD)
D = Declinación exponencial (1/año)
t = tiempo en años

$d = 1 - e^{-D}$	Ec.3.6
$q = q_0 (1-d)^t$	Ec.3.7
$Np = \left(\frac{q_0 - q}{d}\right) + q$	Ec.3.8

En la figura 3.1. se presenta las reservas calculadas para el pozo Con-02 las cuales son 109538 Mbbl.

Figura 3.1. Curva de declinación para la arena T inferior del pozo Cononaco - 02

Elaborado por: Gabriela Nathaly Herrera Cadena

La figura 3.2. Representa las reservas calculadas mediante este método para el pozo Con - 16 son 49,1807 Mbbl.

Figura 3.2. Curva de declinación exponencial para el pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena
La figura 3.3. Representa las reservas para el pozo Con – 23 son 120,734 Mbbl.

Figura 3.3. Curva de declinación exponencial para el pozo Cononaco - 23

Elaborado por: Gabriela Nathaly Herrera Cadena

La figura 3.4. Representa las reservas calculadas para el pozo Con – 28 son 18,7156 Mbbl.

Figura 3.4. Curva de declinación exponencial para el pozo Cononaco - 28

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.5. HISTORIA DE PRODUCCIÓN ARENA T INFERIOR

La producción de esta arena no ha sido constante debido a falla en los equipos, y migración de finos; en la figura 3.5. se esquematiza la producción de la arena T inferior desde sus inicios en 1995 con intervalos de no producción.

Figura 3.5. Proyección de producción de la arena T inferior del Campo Cononaco

Elaborado por: Gabriela Nathaly Herrera Cadena

En la figura 3.6. se observa el comportamiento de la producción de agua relativamente bajo que se va incrementando progresivamente hasta alcanzar un corte de agua de 120000 bls.

Figura 3.6. Historial de Producción de la arena T del Campo Cononaco

3.2. ANÁLISIS TÉCNICO DE LOS POZOS PARA LA ARENA T INFERIOR

3.2.1. POZO CONONACO – 02

3.2.1.1. Datos generales del pozo

El pozo Cononaco - 02 es un pozo de desarrollo ubicado en el centro de la estructura Cononaco a 609,018 m al oeste del pozo Cononaco - 12 y a 542,6 m al nor-oeste del Cononaco - 16; 737,4 m al sur este del pozo Cononaco - 22; 561,4 m al noreste del pozo Cononaco - 19.

La perforación de este pozo alcanza una profundidad de 10420' y se completa a una profundidad de 10410', las perforaciones iniciales para la arena Hollín son:

Hollín Sup.:	10331' – 10338' (7')
Hollín Sup.:	10350' – 10360' (10')
Hollín Inf:	10370' – 10387' (17')
Hollín Inf:	10395' - 10410' (15')

Se ha evaluado los 3 registros de porosidad, la parte más somera de la formación Hollín ha sido perforada. Basado en la relación Phie-Sw, la mayor parte de la arena Hollín Inferior tiene anomalías de baja saturación de Agua y puede ser mojado por petróleo, no hay contacto de fluidos que se visualicen en Hollín.

3.2.1.2. Descripción del Yacimiento

La estructura del campo está cortada por una falla lateral WNW- ESE que desplaza la parte sur del campo hacia el Este con respecto a la parte Norte.

Esta falla tiene un salto lateral mucho más importante que el salto vertical de la falla inversa que limita el campo al Oeste, todos los pozos al Norte de esta falla tienen una elevación del terreno 250 pies más alta que los situados al sur de la

misma. Esta falla es seguramente sellante a nivel de la arena T, corta el reservorio en dos yacimientos separados.

3.2.1.3. Caracterización del Yacimiento

a. Ubicación estructural

a.1. Mapa Estructural

Se observan dos fallas paralelas parecidas, de desplazamiento lateral mucho menor, sobre todo la primera cerca del pozo 15, que tienen un efecto sobre la estructura del campo, desplazando los altos estructurales hacia el Oeste en el Norte con respecto a los mismos en el Sur. Hay otra falla del mismo tipo que no aparece en los mapas de la figura 3.7., por donde el río Shiripuno cruza la estructura, se trata de una característica tectónica regional de la cuenca.

Fuente: Petroproducción

a.2. Mapa Geomecánico

Cerca de la zona donde se desarrolla la falla los esfuerzos horizontales principales cambian de dirección y se facilita la formación de fracturas abiertas en zonas en extensión, bajas estructuralmente, simétricas con respecto a la falla, mientras que el lado opuesto está en compresión y no permite la existencia de fracturas abiertas, esta estructura se representa en la figura 3.8.

Figura 3.8. Representación de los esfuerzos y fracturas del campo

a.3. Mapa de espesor de arenas

Se contó un pie de espesor por pie de arena limpia y un medio pie en caso de arena mala, limolítica o arcillosa. Los pozos 16, 2 y 22 están en un cuerpo de arena bastante espeso y continuo a nivel del yacimiento T, graficado en la figura 3.9.

a.4. Cortes estructurales

Se analizaron varios cortes estructurales utilizando el análisis de registros eléctricos realizados en el programa IP, en el cual se observo que en la dirección Noreste – Sureste que los estratos productores para los pozos Con- 19, Con – 02 y Con – 11, se mantiene constante.

En la figura 3.12. se representa el corte realizado, correlacionando los pozos Con – 22, Con – 02, Con – 08 y Con – 16; en dirección Noroeste – Sureste, donde podemos observar que la continuidad de los estratos de la formación difieren tanto en la profundidad como en los espesores de las mismas en especial entre los pozos Con – 08 y Con – 16. El contacto agua petróleo, se encuentra a 9385. El pozo Con – 02, se encuentra perforado en la parte alta de la estructura.

Figura 3.10. Cortes estratigráficos del pozo Cononaco - 02

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 3.11. Corte estratigráfico para el pozo Con – 02 y pozos aledaños

Elaborado por: Gabriela Nathaly Herrera Cadena

b. Evaluación de registros

En la evaluación de los registros eléctricos, el pozo Con – 02 cuenta con un espesor de 54 pies para la arena T inferior, considerada una arenisca arcillosa debido a que la presencia de un sello lutítico de aproximadamente 10 pies que divide a la arena en dos segmentos, la zona de pago es de 30,25 pies, una porosidad promedio aritmética es de 13,1% que se considera relativamente baja, mientras que la saturación de agua promedio aritmética es de 34,65%.

Arena	Торе	Base	Espesor	Espesor Neto	Av Phi	Av Sw	Av Vcl
T inferior	10153	10163	10	3,5	0,117	0,42	0,164
T inferior	10163	10197	34	27,75	0,145	0,273	0,139
T inferior	10197	10307	10	0	0	0	0

Elaborado por: Gabriela Nathaly Herrera Cadena

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 3.13. Zona de Pago de la Arena T superior y T inferior del pozo Con – 02

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.1.4. Análisis Productivo

a. Análisis de fluidos

Figura 3.14. Curvas de producción de la arena T inferior del pozo Con - 02

Elaborado por: Gabriela Nathaly Herrera Cadena

La figura 3.14. muestra el historial de producción de la arena T del pozo Con – 02, el cual empieza en septiembre del 2007 con un caudal de 160 bppd, incrementándose a 225 bppd a abril del 2008, mientras que el corte de agua disminuye de 30 bapd a 5 bapd, en la tabla 3.6 se presenta las propiedades del fluido.

Gravedad del petróleo	19°API
Viscosidad del petróleo, a condiciones de reservorio	4,27 cp
Producción de petróleo	200 bbpd
Producción de agua	8,3 bbpd
GOR	75 scf/bbl
Presión de Burbuja	820 psi
Factor Volumétrico del petróleo	1,0647
Factor Volumétrico del agua	1,0424
Viscosidad del agua	0,2309 cp

Tabla 3.6. Propiedades del fluido del pozo Con – 02

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.1.5. Historiales de completación y reacondicionamiento

a. Historiales de Completación y pruebas iniciales

Fecha de Completad	11 – Enero –1984	
Perforaciones Inicia	Cañón 4" a 4 DPP	
Hollín Sup: Hollín Sup: Hollín Inf: Hollín Inf:	10331 10350' 10370' 10395	' – 10338' (7') – 10360' (10') – 10387' (17') ' - 10410' (15')

Se realizaron las siguientes pruebas.

FECHA	ARENA	METODO	BPPD	BSW	°API	P. CAB	RGP
27-12-83	Н	PPF	5915	0 %	33.5	130	N.R.

b. Historiales de Reacondicionamientos

	HISTORIAL DE REACONDICIONAMIENTOS							
W.O.	FECHA	BREVE DESCRIPCIÓN	RESULTADOS					
W.O.# 1	08-dic-00	CAMBIAR BHA. AISLAR "HI" CON CIBP. REPUNZONAR "Hs", EVALUAR Y REDISEÑAR BES.	EXITOSO					
W.O.# 2	08-oct-03	CEMENTACIÓN FORZADA "Hs+i". EVALUAR POR SEPARADO. COMPLETAR PARA PPH.	NO SATISFACTORIO					
W.O.# 3	05-sep-05	CAMBIAR BHA POR OBSTRUCCION EN SAFETY JOINT. REPUNZONAR CON TCP ARENA "HS". EVALUAR. COMPLETAR	TRABAJO NO SATISFACTORIO. LAS ARENAS "HS", "T" Y "U" NO DIERON RESULTADOS POSITIVOS EN LA EVAL. SE ESTIMULO "U" Y "HS" SIN ÉXITO. QUEDA COMPLETADO PARA EVALUAR SIN TORRE LA ARENA "U"					
W.O. # 4	04-ago-07	FRACTURAR ARENA "T". EVALUAR. COMPLETAR	EL TRABAJO FUE SATISFACTORIO, LA ARENA "Ti" RETOMO LA ETAPA DE PRODUCCIÓN CON UN APORTE DE 480 Bbls DE FLUIDO CON UN BSW DE 10%.					

Tabla 3.7. Historiales de Reacondicionamiento del pozo Con - 02

Elaborado por: Gabriela Nathaly Herrera Cadena

c. Diagrama de completación

Figura 3.15. Diagrama de Completación del pozo Con - 02

Fuente: Petroproducción

3.2.1.6. Historial de Build Up

- Build Up antes de la fractura

Antes del trabajo de estimulación, el pozo Con - 02 no estaba produciendo, es decir el Qo = 0 Bbls de la arena T, es por eso que se ha tomado como referencia el BUP de un pozo aledaño y tenemos los siguientes resultados.

PRUEBA DE PRODUCCIÓN								
Qo =		2	00	BPP	D			
Qw =	w = 8			BAPD				
Qt =	208	3,3	BFPD					
BSW =			4	%				
API =		19						
PARÁ	M	ETROS	DE	L FL	UIDO			
Bo =		1,06	47	By/B	n			
Bw =		1,042	24	By/B	n			
Rs =	7	75		Scf/E	Bbl			
Uo =		4,2	27	Cps				
Co =	5	,95 e-4		Psi-1				
GOR =			75	Scf/Bbl				
Ggas =		0,	65	Sp grav				
TF =	TF =20			۴				
	PA	RAMET YACIMII	RC EN	DS DE TO	ËL			
Ht =		54	ft					
Hn =		30,25	ft					
□ =	13	,1	%					
rw =		0,29	ft					
Pb =		820	PS	SI				
PARÁN	1E1 	rros d De pre	e l Sić	LA PF ÓN	RUEBA			
Pwf @ mp TVD				1321	PSI			
Pws @ mp TVD			:	3453	PSI			
Prof. mitad perf. (mp)			1(0170	Pies			
K =				12	Md			
CD =				1				
Skin =				19				

Tabla 3.8 Resultado del Build UP antes de la fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

- Build Up después de la fractura

PRUEBA DE PRODUCCIÓN							
Qo =		2	204	ΒP	P)	
Qw =			36	BA	P)	
Qt =		2	240	BFI	PE)	
BSW =			15	%			
API =			19				
PARÁN	IETF	ROS	DE	LYA	١C	IMIENTO	
Ht =		Ę	54	ft			
Hn =	30,2	25		ft			
□ =		13	5,1	%			
rw =		0,2	29	Ft			
Pb =		82	20	PSI			
PARÁMETROS DEL FLUIDO							
Bo =			1,0	647	В	By/Bn	
Bw =			1,0	424	В	sy/Bn	
Rs =				75	S	cf/Bbl	
Uo =			2	1,27	С	ps	
Co =	5,9	<u>2 E -</u>	6		Ρ	'si-1	
GOR =				75	S	cf/Bbl	
Ggas =			C),65	Sp grav		
TF =				209	F		
PARÁM	ETR		DE	LA F	PR		
		PR	ESI	ÓN			
Pwf@m	рТ∖	/D	13	31,6	1,63 PSI		
Pws @ m	יד קו	VD		345	4	PSI	
Prof. mitad perf. (mp)				10170		Pies	
K =				13,7 N		Md	
CD =				1			

Tabla 3.9. Resultado del Build UP después de la fractura

Skin =-2,798Elaborado por: Gabriela Nathaly Herrera Cadena

- DERIVADA

Figura 3.16. Curva Derivada obtenida del análisis de presiones después de la fractura

Fuente: Petroproducción

- HORNER

Figura 3.17. Curva de Horner obtenida del análisis de presiones después de la fractura

Fuente:Petroproducción

3.2.1.7. Diseño de Fracturamiento

a. Configuración del Pozo

Tabla 3.10. Resumen General del Pozo

Resumen General						
BHST	209 F					
Tope de las perforaciones	10143 ft					
Fondo de las perforaciones	10197 ft					
Revestidor	7", 26,0 lb/ft, C-95					
Sarta de Trabajo	3 ½" 9,3 #/ft					
Packer	7" x 3 1-2" @ 9936 ft					

Elaborado por: Gabriela Nathaly Herrera Cadena

Tabla 3.11. Datos de Perforación									
Datos de Perforación									
Top Top Bottom Bottom Shot Number Diameter									
MD	TVD	MD	TVD	Density					
(ft)	(ft)	(ft)	(ft)	(shot/ft)		(in)			
10143	10146	10152	10152	9	54	0,32			
10164	10164	10197	10197	9	234	0,32			

Fuente: Schlumberger

b. Datos de la Zona

Propiedades Mecánicas de la Formación							
Zone Name	Top MD	Zone	Frac	Insitu	Young's	Poisson's	Toughness
	(ft)	Height	Grad.	Stress	Modulus	Ratio	(psi.in0.5)
		(ft)	(psi/ft)	(psi)	(psi)		
Arenisca arcillosa	10095,0	3,5	0,700	7068	4,800E+06	0,20	142
Arenisca	10098,5	2,0	0,600	6060	6,000E+06	0,20	700
Arenisca fina jimol	10100,5	3,0	0,700	7071	5,900E+06	0,20	700
Arenisca arcillosa	10103,5	2,5	0,700	7073	5,100E+06	0,20	700
Arenisca fina limol	10106,0	3,0	0,700	7075	5,600E+06	0,20	700
Arenisca arcillosa	10109,0	2,0	0,700	7077	5,000E+06	0,20	700
Arenisca arcillosa	10120,0	3,0	0,700	7085	4,300E+06	0,20	700
Lutita arcillosa	10123,0	5,0	0,900	9113	3,100E+06	0,30	100
Limolita arcillosa	10128,0	3,0	0,800	8104	4,700E+06	0,30	1200
Arenisca arcillosa	10131,0	2,0	0,700	7092	5,300E+06	0,20	700
Lutita limolitica	10133,0	9,0	0,900	9124	4,100E+06	0,30	100
Limolita arcillosa	10142,0	2,0	0,800	8114	4,600E+06	0,30	1200
Arenisca	10144,0	11,0	0,600	6090	5,900E+06	0,20	700
Arenisca fina limol	10155,0	8,5	0,700	7111	6,100E+06	0,20	700
Arenisca	10163,5	11,5	0,600	6102	5,900E+06	0,20	1200
Arenisca arcillosa	10175,0	9,0	0,700	7126	5,200E+06	0,20	700
Arenisca	10184,0	8,5	0,600	6113	5,900E+06	0,20	1200
Limolita	10192,5	3,5	0,800	8155	5,400E+06	0,30	1200
Limolita arcillosa	10196,0	2,0	0,800	8158	4,800E+06	0,30	1200
Limolita	10198,0	2,0	0,800	8159	5,800E+06	0,30	1200
Limolita arcillosa	10208,0	2,5	0,800	8167	5,100E+06	0,30	1200

Fuente: Schlumberger

c. Datos del Propalante

La permeabilidad del Propalante es calculada en función de los siguientes parámetros:

Temperatura de fondo en el pozo = 209 ₽

Esfuerzo en el propalante = 4500 psi

Resistencia a la fractura = 1.50 lb/ft2

Valor promedio del modulo de Young = 4.986E+06 psi

Tabla 3.13. Datos del Propalante	

Datos del Propalante						
Proppant Name	Specific Gravity	Mean Diameter (in)	Pack Porosity (%)	Permeability (md)		
20/40 C-Lite	2,73	0,028	35	406000		
16/20 C-Lite	2,73	0,037	35	777500		
16/20 CeramaxTM I	2,66	0,041	35	543250		

Fuente: Schlumberger

La figura 3.18. muestra un esquema de selección del propalante más adecuado en función de la presión de cierre del Yacimiento se determina la permeabilidad a ser obtenida dependiendo del tipo de apuntalante utilizado; para nuestro diseño se ha utilizado el propalante 16/20 CeramaxTM a una presión de cierre de 4500 psi, esperando obtener una permeabilidad de 160000 md.

Figura 3.18. Permeabilidad del Propalante

d. Esquema del proceso de la fractura

Fuente: Schlumberger

- Proceso de Bombeo

Las siguientes tablas muestran el proceso de bombeo a seguir para realizar la fractura longitud estimada X_f = 295.4 ft y una Conductiva promedia K_fW = 2163 md.ft.

	Descripción del Trabajo							
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)		
PAD	19.0	YF130HTD	(gai) 3900	30.0		0.0		
1,0 PPA	19,0	YF130HTD	1600	30,0	16/20 CeramaxTM I	1,0		
2,0 PPA	19,0	YF130HTD	1700	30,0	16/20 CeramaxTM I	2,0		
3,0 PPA	19,0	YF130HTD	1800	30,0	16/20 CeramaxTM I	3,0		
4,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	4,0		
5,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	5,0		
6,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	6,0		
FLUSH	19,0	WF130	3695	30,0		0,0		

Tabla 3.14.	Descr	ripción	del	trabaj	o de	Fractura

Fuente: Schlumberger

El esquema de bombeo es desplazado con 1,5 bbl.

Tabla 3.15. Fluidos Utilizados

Fluidos	s Utiliz	ados
14700 gal	of	YF130HTD
3695 gal	of	WF130

Propalante Utilizado				
38900 lb	of	16/20 CeramaxTM I		
	Fuente	: Schlumberger		

Tabla 3.16. Trabajo de Ejecución

	Trabajo de Ejecucion								
Stage Name	Stage Fluid Volume (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressur e (psi)	Stag e Time (min)	Cum. Time (min)
PAD	3900	3900	92,9	92,9	0	0	4551	4,9	4,9
1,0 PPA	1600	5500	39,8	132,7	1600	1600	4655	2,1	7,0
2,0 PPA	1700	7200	44,1	176,8	3400	5000	4661	2,3	9,3
3,0 PPA	1800	9000	48,6	225,4	5400	10400	4573	2,6	11,9
4,0 PPA	1900	10900	53,4	278,8	7600	18000	4520	2,8	14,7
5,0 PPA	1900	12800	55,4	334,3	9500	27500	4487	2,9	17,6
6,0 PPA	1900	14700	57,5	391,7	11400	38900	4620	3,0	20,6
FLUSH	3695	18395	88,0	479,7	0	38900	5191	4,6	25,2

Fuente: Schlumberger

e. Simulación de la Fractura

Los siguientes datos, son los resultados de la simulación computacional de la fractura propuesta usando el modelo 3-D. La conductividad efectiva y la FCD son calculados basados en los intervalos de perforados con alturas positivas.

Longitud media apuntalada	394 ft
Altura Hidráulica	<u>67,1</u> ft
Ancho promedio	0,084 in
Eficiencia	0,522
Effective FCD	0,556
Máxima Presión en Superficie	5801 psi

	Resultados de la Simulación de la Fractura						
From (ft)	To (ft)	Prop. Conc. at End of Pumping (PPA)	Propped Width (in)	Propped Height (ft)	Frac. Prop. Conc. (lb/ft2)	Frac. Gel Conc. (lb/mgal)	Fracture Conductivity (md.ft)
0,0	73,9	6,1	0,132	64,4	1,19	386,8	2363
73,9	147,7	5,6	0,125	61,6	1,12	430,9	2239
147,7	221,6	5,3	0,121	58,0	1,09	445,3	2170
221,6	295,4	4,2	0,113	49,6	1,03	381,4	2026

Tabla 3.17. I	Resultados	de la	simulación	de	la fractura
Post	Itadas da la	Cimul	lación do la E	rad	luro

Fuente: Schlumberger

Debe realizarse una inyección de apuntalante a 292 pies, después de haber bombeado 24 bbl en la etapa 4.

Tabla 3.18. Datos de la Geometría de la Fractura por Zona de Producción
Deter de la Orementaja de la Frantismo, man Zene de Dreducestán

Datos de la Geometría de la Fractura por Zona de Producción									
Zone Name	Top MD	Top TVD	Gross	Net	Fracture	Fracture	Fracture		
	(ft)	(ft)	Height	Height	Width	Length	Conductivity		
			(ft)	(ft)	(in)	(ft)	(md.ft)		
Lutita limolitica	10133,0	10133,0	9,0	0,0	0,017	210,9	297		
Limolita arcillosa	10142,0	10142,0	2,0	0,0	0,046	295,4	830		
Arenisca	10144,0	10144,0	11,0	11,0	0,120	295,4	2153		
Arenisca fina	10155,0	10155,0	8,5	8,5	0,150	295,4	2686		
limol									
Arenisca	10163,5	10163,5	11,5	11,5	0,173	295,4	3102		
Arenisca arcillosa	10175,0	10175,0	9,0	9,0	0,139	295,4	2485		
Arenisca	10184,0	10184,0	8,5	8,5	0,111	295,4	1988		
Limolita	10192,5	10192,5	3,5	0,0	0,045	287,4	809		
Limolita arcillosa	10196,0	10196,0	2,0	0,0	0,014	249,9	247		
Limolita	10198,0	10198,0	2,0	0,0	0,004	186,6	67		
Lutita arcillosa	10200,0	10200,0	8,0	0,0	0,001	108,6	14		

Fuente: Schlumberger

Tabla 3.19. Predicción del tiempo de bombeo por etapa

Predicción del tiempo de bombeo por etapa									
Stage Name	Fluid Name	Pump Rate (bbl/min)	Fluid Volume (gal)	Perforation Injection Temp. (degF)	Exposure at BHST of 223 degF (min)	Exposure aboveWatch Temp. of 218 degF (min)			
PAD	YF130HTD	19,0	3900	199	4,0	4,0			
1,0 PPA	YF130HTD	19,0	1600	178	11,7	11,7			
2,0 PPA	YF130HTD	19,0	1700	122	7,3	7,3			
3,0 PPA	YF130HTD	19,0	1800	90	0,0	0,0			
4,0 PPA	YF130HTD	19,0	1900	89	0,0	0,0			
5,0 PPA	YF130HTD	19,0	1900	89	0,0	0,0			
6,0 PPA	YF130HTD	19,0	1900	88	0,0	0,0			
FLUSH	WF130	19,0	3695						

Fuente: Schlumberger

- Resultados de la Simulación de la Fractura

(1) Perfil de la Fractura y gráfico de la concentración del propalante

Figura 3.19. Esquematización de la fractura y la concentración del propalante

Fuente: Schlumberger

(2) Esquema del Tratamiento

Figura 3.20. Presiones consideradas para la longitud óptima de la fractura

Luego de realizado el DataFRAC no hubieron mayores modificaciones en los parámetros de diseño iniciales: únicamente la presión de cierre era mayor en la zona de interés. Analizando los datos posteriores a la fractura, se sugiere que la geometría en la zona de interés consiste en una longitud media de 445 ft, altura de 69,3 ft y ancho de 0,037 pulgadas.

3.2.1.8. Ejecución de la fractura

TUBING PICKLE

La prueba de líneas en superficie y el tubing pickle, se probó presión de 8000 psi en superficie y después contra el standing valve, para verificar la integridad del tubing; mientras que en el tubing pickle se bombeo 500 galones de ácido clorhídrico al 7,5%.

ANALISIS DEL DataFRAC Y REDISEÑO DEL TRABAJO DE FRACTURA

Se bombearon en total:

- 130 bbls de FreFLO para llenar la tubería y realizar la prueba de ratas múltiples, ascendentes y descendentes. El máximo caudal alcanzado fue de 13,3 bpm.
- 163 bbls de YF135HTD para realizar la inyección de calibración que posteriormente serviría para realizar un análisis de la geometría de la fractura y eficiencia del fluido, más 1332 lb de arena Ceramax.
- > 146 bbls de WF135 para desplazar el tubing al finalizar la prueba.

Figura 3.21. Presiones tomadas durante el proceso de DataFrac

Fuente: Schlumberger

- RESULTADOS DE DATAFRAC

En la figura 3.22. se presentan los resultados de la prueba DataFrac, se puede apreciar los valores del Datafrac diseñados y los datos reales obtenidos en la práctica.

Geometry Model	PKN 🐱	ISIP	8300 psi					
Volume Injected	12944 gal	Y Intercept	8272 psi					
Pump Time	23.5 min	P Star	930 psi					
Spurt Correction	1.034	Closure Pressure	7136 psi					
Calibration Variable		Closure Time	21.8 min					
Height	- Decline Analysis	Job Simulation —	Calibrated Solution					
Young's Modulus	s 5.734E+6 psi	5.734E+6 psi	5.734E+6 psi					
Fracture Height	54.0 ft	54.0 ft	53.8 ft					
Fracture Toughn	ess 936 psi.in0.5	936 psi.in0.5	936 psi.in0.5					
Net Pressure	1164 psi	1141 psi	1164 psi					
Efficiency	0.39	0.35	0.39					
Frac Half Length	512.7 ft	499.8 ft	517.3 ft					
Total Leakoff Co	ef. 1.3E-3 ft/min0.5	1.3E-3 ft/min0.5	1.3E-3 ft/min0.5					
Equiv. Spurt 0.2 gal/100ft2		0.2 gal/100ft2	0.2 gal/100ft2					
Note: No indication of significant height growth or fissure effects.								

Figura 3.22. Resultados del DataFRAC

- REDISEÑO DE LA FRACTURA:

El programa de bombeo quedó definido de la siguiente manera:

_	Tabla 3.20. Rediseño de Bombeo de la Fractura										
Stage Name	Stage Fluid	Qum Fluid	Stage Slurry	Qum Slurry	Stage	Cum	Avg. Surface Pressure	Stage	Cum	J218	J475
	Volume	Volume	Volume	Volume	Prop	Prop.	(psi)	Time	Time	Solución	Encaps.
	(gal)	(gal)	(bbl)	(bbl)	(lb)	(lb)		(min)	(min)	(ppt)	(ppt)
PAD	4500	4500	107.1	107.1	0	0	5572	6	6	0	0.15
1.0PPA	1500	6000	37.3	144.4	1500	1500	5601	21	8	0.05	0.15
20PPA	1500	7500	38.8	183.3	3000	4500	5621	22	10.2	0.1	0.25
3.0PPA	1600	9100	43.1	226.4	4800	9300	5539	24	126	0.1	0.5
4.0PPA	1700	10800	47.6	274	6800	16100	5471	26	15.2	0.25	0.75
5.0PPA	1700	12500	49.4	323.3	8500	24600	5422	27	18	0.5	3
6.0 PPA	1700	14200	51.1	374.5	10200	34800	5388	28	20.8	1.5	6
FLUSH	3812	18012	90.8	465.2	0	34800	5690	5	25.8	0	0

Fuente: Schlumberger

Fuente: Schlumberger

Fuente: Schlumberger

Fuente: Schlumberger

Max Hyd F	Frac Half-Le	ngth	460.0 ft		EOJ Net	Pressure		2069 ps	i .	
Propped F	Frac Half-Ler	ngth	411.2 ft		Efficienc	ÿ		0.519		
EOJ Hyd f	Frac Half-Le	ngth [394.3 ft		Effective	e Conductivi	ity	1719 m	d.ft	
EOJ Hyd I	Height at W	ell 🛛	67.1 ft		Average	Average Gel Concentration			/mgal	
EOJ Hyd V	Width at We		0.307 in		Effective	e Fod		0.3		
Propped \	√idth at We		0.084 in		Max Surface Pressure		6100 ps	i		
Average F	Average Propped Width		0.072 in		Estimated Closure Time			40.0 mir	40.0 min	
Segmen	1t	Average F	Property: EO	J		Average	e Property: A	4CL		
Segment From ft	Segment To ft	Slurry Height ft	Pack Height ft	Prop. Conc. PPA	Propped Width in	Propped Height ft	Prop. Conc. Ib/ft2	Gel Conc. Ib/mgal	Conduc- tivity md.ft	
0.0	102.8	66.0	0.0	6.2	0.084	65.2	0.78	459.6	1701	
102.8	205.6	62.8	0.0	5.4	0.078	62.6	0.72	546.7	1584	
205.6	308.4	60.6	0.0	4.9	0.073	60.5	0.67	579.4	1477	
308.4	411.2	43.9	0.0	3.2	0.059	53.3	0.54	607.2	1187	

Tabla 3.26. Resumen de Conductividad a ser obtenida

Fuente: Schlumberger

Se verifica que la presión de cierre en fondo de pozo es de 7152 psi, que corresponde a un gradiente de fractura de 0,7 psi/ft.

- El fluido presenta una eficiencia en el rango de 35 a 39%
- La altura de la fractura creada durante el DataFRAC alcanza 54 ft
- El coeficiente de filtrado del fluido es de 1,3E-03 ft/min0,5 con un spurt de 0,2.

De acuerdo a los valores obtenidos anteriormente de la fractura, se pude apreciar valores similares a los obtenidos en los pozos 16 y 23. Con estos datos se procede a diseñar el tratamiento de fractura, para un volumen de apuntalante de 34800 lbs de CarboLITE 16/20, bombeados a un caudal de 18 bpm.

El volumen de PAD se calculó en 4500 galones.

3.2.1.9. Ejecución del trabajo de fracturamiento

El trabajo de Fractura se realizó el día 25 de Agosto del 2007 empezando aproximadamente a las 08:45 hrs. El bombeo terminó aproximadamente 17 minutos más tarde, produciéndose un arenamiento prematuro sin embargo se descarta que dicho arenamiento se debiera a fallas operacionales o debido al fluido de fractura. Es posible que el arenamiento se debiera a la presencia de una fractura o falla de conductividad infinita que se encuentra en un área cercana al pozo. Debido a lo anterior se explica el alto gradiente de fractura (0,7 psi/ft) comparado con los otros pozos fracturados.

Durante el trabajo de Fractura se bombearon los siguientes fluidos:

- YF135HTD: 12721 gal 303 bbls.
- > Apuntalante: 10267 lbs de Ceramax 16/20 bombeados dentro de la formación
- > Máxima concentración de apuntalante en la formación: 4 ppa

La siguiente gráfica muestra la ejecución del trabajo, presión de tratamiento, caudal de bombeo, concentración de arena en superficie.

Figura 3.27. Ejecución de Fractura Hidráulica

Fuente: Schlumberger

Algunos de los parámetros de tratamiento registrados durante la operación pueden verse en la tabla siguiente:

5500 psi
6300 psi
18 bbl/min
18,3 bbl/min
2427 hhp
2825 hhp
1271 psi

Tabla 3.21. Parámetros del Pozo utilizados en el tratamiento

Fuente: Petroproducción

- EVALUACIÓN DEL TRABAJO DE FRACTURAMIENTO

Para realizar la evaluación del Fracturamiento Hidráulico, se ha realizado una calibración de presiones, utilizando el módulo DataFRAC del FracCADE 5.4, el cual permite calibrar las presiones de tratamiento en superficie, la de fondo de pozo y la presión neta. Después de eso, el programa permitirá estimar una geometría de fractura basada en los datos obtenidos.

- ANALISIS DE PRESIONES POST-FRACTURA

Se realizó un matching de presiones (empate de presiones a tiempo real y simulación) para determinar la geometría final de la fractura.

La única diferencia entre estos tres trabajos, era una presión de tratamiento aproximadamente 500 psi superior a la que se tenía en los mencionados tratamientos de los pozos 23 y 16.

Esto fue causado directamente por el gradiente de fractura más elevado, observado en Cononaco - 2 (comparando los gradientes, Cononaco - 2 tenía 0,7 psi/ft, mientras que Cononaco - 23 tenía 0,69 y Cononaco - 16; 0,67 psi/ft, respectivamente).

Fuente: Schlumberger

Cuando se bombeaba la etapa de 6,0 ppa, se produjo un incremento brusco de presión neta, lo cual indicaba que había un arenamiento en el vértice; apenas 3 o 4 segundos más tarde, se produjo el arenamiento prematuro, alcanzando una presión de aproximadamente 10000 psi.

De acuerdo a lo observado en la figura 3.28. se concluye que no existió problemas operacionales relacionados al equipo de superficie, caudal de bombeo, alimentación de activador, rompedores, apuntalante; encontrándose todo dentro de los parámetros estipulados.

Se realizó un control de calidad de los fluidos de fractura y estos cumplían con los parámetros requeridos, descartándose el mal diseño de los fluidos como causa del arenamiento prematuro.

- ANALISIS DE PRESION NETA:

Durante el trabajo de fracturamiento hidráulico realizado en el pozo Cononaco -02, sucedieron los siguientes eventos descritos en el gráfico Nolte Smith:

1.- Crecimiento en longitud, lo cual puede afirmarse debido a la relativamente baja pendiente de la curva.

Figura 3.29. Gráfico de Presión Neta

Fuente: Schlumberger

2.- Crecimiento en altura, lo cual puede afirmarse con una pendiente positiva.

3.- Crecimiento a través de las barreras lo que se puede observar en el gráfico como una línea recta de pendiente 0.

4.- Finalmente se produce el arenamiento en la punta de la fractura y arenamiento prematuro.

Utilizando las variables ajustadas, se procedió a ejecutar la simulación una vez más. El siguiente gráfico muestra un estimado de la forma de la fractura, con una máxima longitud media de fractura igual a 120 ft (longitud hidráulica), y 93.9 ft longitud apuntalada.

La tabla 3.22. presenta los principales parámetros de la fractura, tanto como diseño preliminar, como ajuste en locación posterior al DataFRAC y finalmente como resultado de la calibración de presiones.

Figura 3.30. Perfil y concentración de apuntalante en la fractura

Fuente: Schlumberger

Volúmenes y Geometría de Fractura								
	Diseño	Ejecución real	Unidades					
Volumen de YF135HTD	18012	12721	Gal					
Volumen de Ceramax en formación 16/20	34800	10167	Lbs					
Longitud de Fractura	394	93,9	Pies					
Altura de Fractura	67,1	56,5	Pies					
Ancho de Fractura	0,084	0,053	Pulg.					
Conductividad Promedia	1487	1295	md-ft					
FCD	0,3	0,7						

Tabla 3.22. Volúmenes y Geometría de Fractura

Fuente: Petroproducción

En el análisis de la factibilidad previo a la fractura, se pudo determinar que no ha sido satisfactoria en un 100%, debido a que la longitud de la fractura estuvo diseñada para alcanzar un valor de 394 pies, pero en la realidad se alcanzó una longitud de 93,9 pies; la altura de la fractura alcanzada tuvo un margen de error mucho menor a la esperada, lo mismo sucede con el ancho de la fractura.

Se presume que el diseño de la concentración del apuntalante fue algo deficiente, ya que mientras se corrió la prueba de Datafrac se produjo un arenamiento. En

estos casos se recomienda parar las operaciones por un determinado momento antes de que la arena se compacte con el apuntalente.

3.2.1.10. Análisis de presiones

Para el análisis nodal se usaron las siguientes condiciones de producción disponibles al día 18 de Octubre del 2003:

Qo = 200 BOPDBSW = 4 % (Estimado)Pwf = 1321 psiEspesor neto = 32 ftPermeabilidad = 12 md

- COMPARACION DE ANALISIS DE BUILD UP PRE Y POST FRACTURA

La prueba de Build up previa a la fractura fue realizada entre los días 20 y 22 de Agosto del año 2007 en un pozo aledaño al Cononaco – 02; de allí se obtuvieron los resultados mostrados a continuación:

- Índice de productividad antes de la fractura = 0,028
- Daño pre-fractura calculado = 19

La prueba de Build up post-fractura fue realizada en el mes de Septiembre, posterior a la ejecución del fracturamiento hidráulico. Los datos obtenidos se resumen en lo siguiente:

- Índice de productividad después de la fractura = 0,088
- Daño total = -2,798
- Permeabilidad = 13,7 md

De acuerdo a los resultados obtenidos, el incremento en el valor del IP es de 0,12. Estos datos pre-fractura tomados de un pozo aledaño que produce de la arena Tinferior, me ayuda a tener una idea del comportamiento de la arena del campo en general, más no del pozo estudiado, por ejemplo el daño de formación corresponde únicamente al pozo analizado; mientras que el índice de productividad me brinda un panorama similar al pozo estimulado, ya que analiza la relación entre caudales y presiones.

Después de haber sido realizada la fractura se presenta los siguientes valores:

Qo = 204 bbl Pwf = 1331 psi

.

K = 13,7 md

S = -2,678

%BSW = 4

3.2.1.11. Análisis de Curva IPR

Elaborado por: Gabriela Nathaly Herrera Cadena

En la figura 3.31. se muestra la curva IPR graficada con resultados de producción después de la fractura, que no son los esperados ya que en los cálculos realizados de su diseño se estimó una producción de aproximada de Qo = 425

bbls con una factor de daño de S = -2,78 y una presión de fondo fluyente Pwf = 1321 psi, pero en la realidad se cuenta con una producción de Qo = 139 bbls, a una Pwf = 679 psi, estos valores son deplorables con respecto a la expectativa de la producción después a la remediación del daño.

La relación entre los valores de los caudales de producción antes y después del fracturamiento presentan una diferencia de $\Delta Qo = 286$ bbls, de acuerdo a los valores PVT de la arena la presión de burbuja es de Pb = 820 psi, actualmente se produce a una Pwf = 679 psi, que representa un valor mucho menor al de la presión de burbuja esto provocaría que la bomba cavite y disminuya su tiempo de vida útil.

Es necesario que se corrobore los datos PVT de la presión de burbuja para este pozo, ya que la referencia de la misma se la ha tomado del núcleo del pozo Cononaco – 22, el cual se encuentra al otro lado de la falla, esto puede significar que el crudo presente características diferentes debido a que su entrampamiento pudo haberse suscitado antes o después de la formación de la fractura; debido a que en el pozo Cononaco – 02 se sigue produciendo a una presión considerablemente menor a la de la presión de burbuja y por el momento su producción no ha presentado problemas de cavitación de la BES para que el aporte de petróleo sea moderado y así no ocasione daño a la formación por degradación prematura del apuntalante y a la vez migración del propalante utilizado en la fractura.

Cabe recalcar que durante el proceso de fracturamiento se tuvo problemas de arenamiento prematuro, asumiendo que dicho problema fue ocasionado porque en el estudio pre-fractura no se estimó la falla cercana al pozo y que esta absorbió rápidamente el apuntalante y el fluido de fractura, pero en los estudios de geomecánica y geología presentados por parte de Petroproducción si se contempla esta falla natural, este hecho fue pasado por alto por la empresa prestadora de servicios.

Los resultados de producción después de la aplicación del tratamiento son incluso inferiores a los encontrados antes de la misma que era de Qo = 165 bbls, se presume que la fractura se redujo ya que el apuntalante utilizado no soportó los esfuerzo de la roca aplicados sobre la fractura, concluyendo así que el mal diseño de la geometría de la fractura y de la concentración del Pad bombeado del apuntalante no mantuvieron la geometría establecida en sus principios, provocando de esta manera un cierto nivel de daño a la formación.

La productividad del pozo en las condiciones actuales es baja debido a las siguientes razones: una baja permeabilidad de la matriz, alrededor de 15 md causada principalmente por el alto contenido de arcillas en la matriz.

CONONACO – 02									
Sistema de Levantamiento Artificial	FECHA	Qt	Qo	BSW	API	GOR			
UNIDADES		BFPD	BPPD	%		MPCS			
PPHJ	12/10/2007	240	209	13	19,2	5			
РРНЈ	22/02/2008	240	233	3	19,2	7			
РРНЈ	04/03/2008	240	233	3	19,1	49			
PPHJ	06/06/2008	216	210	3	19,3	44			
PPHJ	03/09/2008	192	186	3	18,8	39			
PPS	04/12/2008	123	116	6	19	53			
PPS	01/01/2009	133	125	6	19	58			
PPS	30/01/2008	143	134	6	19	62			

Tabla 3.23. Historiales de Producción Post-fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

De acuerdo a la gráfica de la segunda IPR, nos muestra que se está produciendo bajo el punto de burbuja, suceso que traería problemas la completación de fondo, por cavitación de la bomba, pero el porcentaje de gas producido es realmente bajo al estimado en el análisis PVT, razón por la cual se deduce que la presión de burbuja no es exactamente el señalado de Pb=820psi, si no que es un valor menor, es necesario que se tome un nuevo análisis PVT de un pozo que se encuentre al otro lado de la falla, ya que los parámetros del PVT pueden variar

dependiendo del entrampamiento del crudo. Para corroborar que la producción de gas es alta se enlistó los historiales de reacondicionamientos y ninguno se lo realizó por un posible daño a la bomba por cavitación.

3.2.1.12. Incremento de producción estimado del fracturamiento hidráulico

Se determinó caudales a diferentes valores de daños, simulando su producción futura con valores de S = -1,-2,-3, relacionando varios parámetros como la EF = Eficiencia de Flujo, ΔPs = Caída de presión por el daño a la formación, IP=índice de productividad, Qi = Caudal incremental, tomados de la prueba de Build Up previo a la fractura.

• Caudal Incremental

$$Qi = IP * \Delta P fracturamiento$$

$$\Delta P fracturamaiento = 0.87 * m * (S_{daño} - S_{estimulación})$$

Ec.3.9

Caída de Presión en función del Daño

$$\Delta ps = 141 . 2 \frac{q_{sc} \beta \mu}{Kh} S$$
 Ec.3.10

• Eficiencia de Flujo

$$EF = \frac{\Pr - Pwf - \Delta P_s}{\Pr - Pwf}$$
 Ec.3.11

• Índice de Productividad

$$IP = \frac{(7,08 \ x10^{-3}) * k * h}{Uo * Bo * \left(Ln \left(\frac{re}{rw} \right) - \frac{3}{4} + S \right)}$$
Ec.3.12

• Ecuación de Voguel

$$\left(\frac{q}{q \max}\right) = \left[1 - 0.2 * \left(\frac{Pwf}{P_R}\right) - 0.8 * \left(\frac{Pwf}{P_R}\right)^2\right]$$
EC.3.13

• Ecuación de Fetkovich

$$\left(\frac{q}{q\max}\right) = \left[1 - 0.2 * \left(\frac{Pwf'}{P_R}\right) - 0.8 * \left(\frac{Pwf'}{P_R}\right)^2\right]$$

$$Ec.3.14.$$

$$Q = C * (P_R^2 - P_{wf}^2)^n$$

$$Ec.3.15.$$

En la siguiente tabla se presenta la eficiencia de Flujo y el caudal incremental a diferentes valores de daño.

EF	Qo APs		IP	ΔP fract=	Qi
-1,38	200,00	5081,97	0,028	0,00	0,00
0,75	329,49	534,94	0,080	4555,46	129,49
1,13	352,35	-267,47	0,119	5359,37	152,35
1,25	359,96	-534,94	0,141	5627,34	159,96
1,38	367,58	-802,42	0,174	5895,31	167,58
	EF -1,38 0,75 1,13 1,25 1,38	EFQo-1,38200,000,75329,491,13352,351,25359,961,38367,58	EF Qo ΔPs -1,38 200,00 5081,97 0,75 329,49 534,94 1,13 352,35 -267,47 1,25 359,96 -534,94 1,38 367,58 -802,42	EF Qo △Ps IP -1,38 200,00 5081,97 0,028 0,75 329,49 534,94 0,080 1,13 352,35 -267,47 0,119 1,25 359,96 -534,94 0,141 1,38 367,58 -802,42 0,174	EFQoΔPsIPΔP fract=-1,38200,005081,970,0280,0000,75329,49534,940,0804555,461,13352,35-267,470,1195359,371,25359,96-534,940,1415627,341,38367,58-802,420,1745895,31

Tabla 3.24. Parámetros del pozo a diferentes valores de daño

Elaborado por: Gabriela Nathaly Herrera Cadena

En la siguiente tabla se presenta una secuencia de los caudales de petróleo a diferentes valores de daño estimados para la gráfica de la IPR actuales y futuros.

	Qo								
Pwf	S = 19	S = 19 S=2 S=-1		S=-2	S=-3				
3453	0	0	0	0	0				
3000	62,70233	79,1727	110,4648	112,8529	115,241				
2500	120,0862	154,923	211,5599	216,1336	220,7073				
2100	158,143	208,049	278,6058	284,6289	290,652				
2000	166,5958	220,328	293,4974	299,8425	306,1875				
1500	202,5817	275,812	356,8949	364,6105	372,3262				
1321	212,94	293,306	375,1434	383,2536	391,3638				
1100	223,9042	313,196	394,4594	402,9872	411,5149				
1000	228,2045	321,578	402,0355	410,727	419,4186				
820	234,9098	335,698	413,8483	422,7953	431,7422				
500	243,5496	357,739	429,0695	438,3454	447,6214				
100	248,4558	379,804	437,7129	447,1757	456,6386				
0	248,6602	384,37	438,0729	447,5436	457,0142				

Tabla 3.25. Producción de petróleo a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

Las Curvas IPR's obtenidas se muestran en la figura siguiente:

Elaborado por: Gabriela Nathaly Herrera Cadena

El valor de la producción de petróleo antes de la fractura es de 200 BPPD, la gráfica esquematiza el posible incremento de producción en función de la remediación del daño, el daño obtenido después de la fractura es de S = -2,798, con lo que se debería obtener una producción de petróleo de aproximadamente 357,68 BPPD, similar al valor propuesto por la empresa en el diseño previo a la misma, pero en realidad se produjo 139 BPPD existe una diferencia de 218,7 BPPD, valor con el cual se deduce que el diseño de la fractura aplicado no fue el óptimo, se debió incrementar la concentración del fluido de fractura y a la vez el caudal bombeado a la formación, es de vital importancia tomar en cuenta que nos encontramos produciendo crudo pesado; caracterizado por su alta viscosidad; la cual se incrementa con la disminución de la temperatura dificultando su conductividad.

El rediseño de las facilidades de producción es indispensable, cambiando el sistema de levantamiento artificial o colocando un sistema MTU o un sistema de
levantamiento artificial mecánico de producción por cada pozo, considerando el contenido parafínico del crudo.

3.2.1.13. Etapas de ejecución (Programa de WO)

- 1. Mover torre de reacondicionamiento a locación.
- 2. Controlar pozo con agua filtrada y tratada.
- Desarmar cabezal de pozo, armar BOP, sacar completación de bombeo jet. Chequear presencia de escala, sólidos y corrosión.
- 4. Bajar con broca y raspatubos en tubería de 3,5" hasta 10000 ft. No moler retenedor de cemento.
- 5. Bajar sarta de prueba con packer en la punta para realizar prueba de inyectividad a "U". Si la inyectividad es baja, bombear 500 gal de acido clorhídrico al 10%.
- Bajar retenedor de cemento para realizar squeeze en "U". Asentarlo a 9780 ft. Programa de bombeo de cemento de acuerdo a recomendaciones de compañía de servicios.
- Moler retenedor de cemento a 9780 ft, moler cemento y moler retenedor de cemento a 10000 ft. Bajar libre hasta 10260 ft. Topar retenedor de cemento a esa profundidad, no moler. Circular para limpiar y sacar.
- 8. Correr registros eléctricos con cable, consistentes en:
 - CBL/VBL/USIT
- Cubrir al menos desde profundidad total (10260 ft) hasta 9000 ft. Si el registro de cemento no muestra buena adherencia frente a la zona "T" y vecindades, se realizará una cementación forzada para mejorar la adherencia. Redisparos según la necesidad.

NOTA: En caso de que se deba realizar una cementación forzada, luego de ejecutada la misma, se deberá correr un registro de evaluación de cemento por segunda vez.

- 10. Utilizando Coiled Tubing, (en caso de que no se requiera realizar squeeze en "T"), ubicar un tapón de cemento sobre CIBP a 10260 ft de 20 ft de altura.
- 11. Bajar sarta de evaluación para la arena "T" con sensores de fondo para realizar Build up. Tiempo estimado de producción requerido es 48hrs. Tiempo de cierre alrededor de 48hrs. Realizar prueba de inyectividad en la formación "T". Si no se tiene buena admisión se recomendará realizar redisparos en el mismo intervalo propuesto, densidad 4 disparos por pie.
- 12. Movilizar y armar equipo de Well Services para fracturamiento hidráulico. NOTA: el taladro deberá suministrar un estimado de 1200 bbls de agua fresca filtrada para realizar la mezcla de los fluidos de tratamiento.
- 13. Sacar sarta de prueba y bajar sarta de fracturamiento hidráulico consistente en:
 - ➢ 3-1/2" EUE Niple campana.
 - ➤ 3-1/2" EUE, 9,3 #/ft, 1 tubo.
 - > 3-1/2" EUE, packer tipo positrieve a ser asentado a 10050 ft.
 - ➤ 3-1/2" EUE, 9,3 #/ft, 1 tubo.
 - 3-1/2" EUE, No-go, diámetro interno es 2,25".
 - > 3-1/2" EUE, 9,3 #/ft, tubing hasta superficie.
- 14. Realizar prueba de líneas de Schlumberger con 8000 psi contra válvula de tapón en cabezal de pozo. Si la prueba es satisfactoria durante 5 minutos, liberar presión, abrir cabezal de pozo y probar con 7000 psi contra standing valve durante 5 minutos.
- 15. Si la prueba es exitosa, liberar presión, retirar conexiones en cabezal de pozo y recuperar standing valve con slickline. Conectar nuevamente líneas de Well Services, probar con 8000 psi nuevamente contra la válvula del cabezal.

- 16. Abrir bypass del packer, probar circulación y bombear tubing pickle consistente en:
 - ➢ 5 bbls de gel lineal.
 - ➤ 10 bbls de 10% HCL.
 - Desplazar hasta que el ácido se encuentre a 1 bbls cerca del bypass. Detener bombeo, cambiar válvulas en superficie y reversar al tanque de viaje del taladro donde será neutralizado antes de desechar el fluido.
- 17. Realizar DataFRAC, el cuál consistirá en lo siguiente:
 - Prueba multitasas ascendente y descendente hasta 12 bpm, utilizando 180 bbls de FreFLO.
 - Prueba de inyección con 300 bbls de YF130HTD, bombeados a 18 bpm.
- 18. Esperar declinación de presión durante aproximadamente 1hr. Reportar resultados a departamento técnico de Schlumberger en Quito y Bogotá para realizar análisis y re-definir tratamiento de fractura. Realizar verificación de fluidos, mezclar más gel lineal en caso de necesidad.
- 19. Realizar operación de fracturamiento hidráulico, el cual tentativamente tendrá la siguiente secuencia:

Descripción del Trabajo							
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)	
PAD	19,0	YF130HTD	3900	30,0		0,0	
1,0 PPA	19,0	YF130HTD	1600	30,0	16/20 CeramaxTM I	1,0	
2,0 PPA	19,0	YF130HTD	1700	30,0	16/20 CeramaxTM I	2,0	
3,0 PPA	19,0	YF130HTD	1800	30,0	16/20 CeramaxTM I	3,0	
4,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	4,0	
5,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	5,0	
6,0 PPA	19,0	YF130HTD	1900	30,0	16/20 CeramaxTM I	6,0	
FLUSH	19,0	WF130	3695	30,0		0,0	
		-					

Tabla 3.26. Descripción del Trabajo de Fracturamiento Hidráulico

Fuente: Schlumberger

El orden de bombeo del tratamiento tiene un desplazamiento de 15 bbl.

- 20. Esperar cierre de fractura. Liberar presión. Si el pozo fluye, recuperar los fluidos de la formación por un período estimado de 4hrs para luego controlarlo con salmuera a 8,5 ppg.
- 21. Si el pozo no fluye, desasentar el packer, bajar la sarta hasta 10240 ft (topar fondo y volver a subir unos 4 ft), fluir pozo en reversa para recuperar remanente de apuntalante y gel de fractura roto.
- 22. Sacar sarta de fractura, correr sarta de evaluación para poner pozo en producción por bombeo jet.
- 23. Evaluar pozo hasta obtener producción estabilizada. Verificar que no existe producción de finos o apuntalante.
- 24. Bajar completación de producción definitiva de acuerdo a los resultados de la evaluación y diseño por parte de Ingeniería.

Nota: en caso de que la completación de producción consista en bomba electrosumergible, las frecuencias de trabajo iniciales para que el pozo produzca, tendrán que ser lo más bajas posible para reducir los riesgos de migración de finos, producción de apuntalante, etc.

- 25. Realizar prueba de producción.
- 26. Dar por terminadas las operaciones.

3.2.2. CONONACO - 16

3.2.2.1. Datos Generales del pozo

Revestidor:	7" CGS: N-80, 26 LB/FT, 242 TUBOS
Inclinación:	0°, en las perforaciones.
Tubería de producción:	3-1/2", 9.3 #/ft, N-80;
Intervalo a tratar:	10120 ft – 10155 ft (intervalo actual de perforación) formación "T" Inferior; (35 ft).
Detalle del cañoneo:	8 dpp

Tabla 3.27. Datos Generales del Pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.2.2. Datos de Yacimiento:

Tabla 3.28. Dato	os de Yacimiento del Pozo	Cononaco - 16

Zona de Interés:	"T" Inferior
Arena Neta Productora:	35 pies.
Temperatura de Yacimiento:	205 F @ 10140 pies. (Asumiendo 1.4 °F/100ft gradiente)
Permeabilidad:	10 md
Porosidad:	12.5 %
Presión de yacimiento:	3151 psi.
Contacto Agua – Petróleo:	No identificado
Tipo de Crudo:	19.9°

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.2.3. Historial de Producción:

El pozo Cononaco – 16, fue inicialmente completado el día 9 de Noviembre de 1991 como pozo productor, cuenta con tres zonas productoras: Hollín, Arenisca T, y Caliza M-2, su ubicación es: 542,6 m al suroeste del pozo Cononaco - 2 y a 637,2 m al este del Cononaco - 19. > Se han cañoneado los siguientes intervalos:

Tabla 3.29.	Intervalos	Cañoneados	del Pozo	Cononaco - 16

Arena Hollín	10282 – 10370 (46 ft)	41 DPP
Arena T	10152 – 10200 (48 ft)	4 DPP

Elaborado por: Gabriela Nathaly Herrera Cadena

Las pruebas iniciales han arrojado los siguientes resultados:

Tabla 3.30. Prueba Inicial de Producción					
FECHA	BPPD	BSW	ARENA	METODO	
01-11-91	1048	3	HI	FN	
Elaborado por: Gabriela Nathaly Herrera Cadena					

Intervalos perforados a 4 DPP. Intervalo "H" 10326' – 10346' (20') 10312' – 10318' (6')

- El pozo produjo de la arenisca Hollín Inferior durante los años 2000 y 2002.
 Con un BSW de 40%, con una producción de 280 bpd.
- El 12 de Julio de 2003 el pozo Cononaco 16 fue completado para la arenisca "T". El pozo produjo de esta formación hasta Enero del 2004 con un aporte de 168 bpd y un BSW = 5 %, se cierra el pozo esperando workover y tratamiento de fracturamiento hidráulico, donde se pretende remediar el daño de formación e incrementando la conductividad del crudo hacia el pozo. Después del tratamiento de estimulación, se obtuvo una producción de 221 bpd, con un %BSW = 15 %. Posteriormente se observa que la P_{intake} empieza a disminuir, presentando un daño en la bomba, el 23 de diciembre del 2006, el pozo entra a fase de reacondicionamiento, se procede a cambiar la completación de fondo de Bombeo Electrosumergible a Bombeo Hidráulico, la producción se estabiliza en 121 bpd con un BSW = 16 %. Se estima que en el reservorio cuenta con reservas de 49,1807 Mbbls, proyectada al 2009.

3.2.2.4. Evaluación De Registros

El registro sónico no se encuentra disponible para este pozo. Aparentemente el tope de la zona de transición se encuentra a 10390 pies. De acuerdo a los resultados de los Cutoffs de la arena T inferior se cuenta con zonas de 35 ft y 110 ft un espesor neto de 20 ft, una porosidad de \Box = 12,5 %, Sw = 0,255 y Vcl = 0,321.

Zona	Тор	Bottom	Gross	Net	Av Phi	Av Sw	Av Vcl
T inferior	10120	10155	35	20	0,125	0,255	0,321
T inferior	10155	10265	110	0	0	0	0

Tabla 3.31. Cutoff de la Arena T inferior del pozo Cononaco – 16

Elaborado por: Gabriela Nathaly Herrera Cadena

El gráfico del registro eléctrico se presenta en el anexo 4.2.

3.2.2.5. Historial De Workovers

HISTORIAL DE REACONDICIONAMIENTOS						
W.O. N°	FECHA	BREVE DESCRIPCIÓN	RESULTADOS			
1	20-sep-93	BAJAR B.E.S.	SE RECUPERA 905 BPPD			
2	13-ene-94	CAMBIO DE COMPLETACIÓN POR HUECO EN TUBERÍA.	EXITOSIO SE RECUPERA 275 BPPD			
3	20-oct-96	CAMBIO DE COMPLETACIÓN POR HUECO EN TUBERÍA, LIMPIAR PUNZADOS CON HCL , EVALUAR Y REDISEÑAR.	SE RECUPERA 292 BPPD			
4	06-sep-97	REPUNZONAR HOLLÍN DE 10282' A 10300', REPUNZONAR HINF, EVALUAR Y REDISEÑAR BES.	EXITOSO SE RECUPERA +/- 360 BPPD			
5	13-sep-99	REPARAR BES	SE RECUPERA 316 BBPD			
6	28-jul-02	REPARAR BES, POSIBLE EJE ROTO	SE RECUPERA 198 BBPD			
7	27-jun-03	RE-EVALUAR ARENA T, REDISEÑAR BES.	SE RECUPERA 157 BBPD			
8	25-nov-06	FRACTURAMIENTO HIDRÁULICO ARENA T	TRABAJO PARCIALMENTE SATISFACTORIO, SE RECUPERA LA PRODUCCIÓN +/- 160 BBPD.			
9	11-nov-07	REPARAR BES, EVALUAR ARENA "T", REDISEÑAR BES	SE RECUPERA LA PRODUCCIÓN +/- 140 BBPD.			
10	05-jul-07	CAMBIO DE COMPLETACIÓN POR PESCADO (B.H)	TRABAJO PARCIALMENTE SATISFACTORIO, SE RECUPERA LA PRODUCCIÓN +/- 130 BBPD.			
11	07-jun-07	REPARAR BES, EVALUAR ARENA "T", REDISEÑAR BES	PROCEDIMIENTO EXITOSO			
12	30-jun-07	CAMBIO DE COMPLETACIÓN POR PESCADO	PROCEDIMIENTO EXITOSO			

Tabla 3.32. Historial de reacondicionamientos del pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 5.1. Diagrama de Completación

Anexo 5.2. Diagrama de Sarta de Fracturamiento

3.2.2.6. Diseño De La Fractura

La simulación del diseño para el intervalo propuesto, indica lo siguiente:

<u>315,4</u> ft
102,0 ft
0,112 in
0,557
1,120
4593,0 psi

En el presente gráfico se presenta las curvas que me indica los esfuerzos que debe vencer la roca y el otro gráfico indica las concentraciones del apuntalante a distribuirse dentro de la fractura.

Figura 3.33. Geometría de la fractura y Concentración del apuntalante

Para los datos de presión y caudal pronosticados (20 bpm y 4593 psi), la potencia hidráulica requerida es de 2200 HHP.

Tomando en cuenta los resultados del DataFRAC y fracturamiento hidráulico posterior, se verificó que los cálculos realizados fueron bastante cercanos a la realidad.

Se bombearon en total:

- 172,5 bbls de FreFLO para llenar la tubería y realizar la prueba de ratas múltiples, ascendentes y descendentes. El máximo caudal alcanzado fue de 13,9 bpm y una presión de rompimiento de 3075 psi.
- 181 bbls de YF130HTD bombeado a 18 bpm, para realizar la inyección de calibración que posteriormente serviría para realizar un análisis de la geometría de la fractura y eficiencia del fluido.
- > 91 bbls de WF135 bombeado a 18,1 bpm, a una presión de 5000 psi.

- Secuencia de Bombeo del DataFrac

DataFrac del pozo Con - 16							
Caudal	Presión	Volumen	Fluido	Tiempo			
BPM	PSI	BLS					
1,2	2700	9,4	FREFLO	1,5			
2	2900	3	FREFLO	1,5			
4	3200	6	FREFLO	1,5			
6	3700	9	FREFLO	1,5			
8	4000	12,1	FREFLO	1,5			
9,2	410	15	FREFLO	1,5			
14	5500	68	FREFLO	5			
12	5000	17,6	FREFLO	5			
8,1	4100	12,2	FREFLO	1,5			
6,1	3500	9,2	FREFLO	1,5			
4	3200	6	FREFLO	1,5			
1,9	2800	2,9	FREFLO	1,5			
1,2	2500	2,3	FREFLO	1,5			
	Prueba c	le calibració	n de inyección	r			
8,3	4000	91	YF135 HTD	11			
18	5000	90	YF135 HTD	5			
18	5000	91	WF 135	5			
Total Bombeado = 172,5 bls							
Presión	de rompim	iento = 307	5 psi				
ISIP = 2400 psi							

Tabla 3.33. DataFrac del pozo Con - 16

Elaborado por: Gabriela Nathaly Herrera Cadena Fuente: Petroproducción Los resultados obtenidos fueron, gradiente de fractura igual a 0,67 psi/ft; Módulo de Young igual a 3,208 x 106 psi, y una eficiencia del fluido equivalente al 46%. Los volúmenes totales bombeados fueron 600 bls de gel de fractura, 48350 lbs de apuntalante cerámico tipo Ceramax 16/20. Adicional a eso se utilizaron casi 300 libras de PropNET con el fin de prevenir un re-flujo de apuntalante de la formación.

- Resultados de Datafrac

Figura 3.34. Resultados del Datafrac

Fuente: Schlumberger

ETAPA	CAUDAL	PRESIÓN	VOLUMEN	APUNTALANTE	FLUIDO	TIEMPO
BPM	BPM	PSI	BLS	LBS/GAL		
PREPAD	18	4500	110	8,3	YF130HTD	6,1
PAD	18	4750	39	8,3	YF130HTD	2,2
0,5 PPA	18	4750	45	8,8	YF130HTD	2,5
1,0 PPA	18	4500	52	9,3	YF130HTD	2,9
2,0 PPA	18	4400	57	10	YF130HTD	3,2
3,0 PPA	18	4250	62	11	YF130HTD	3,4
4,0 PPA	18	4400	67	12	YF130HTD	3,7
5,0 PPA	18	4300	80,2	13	YF130HTD	
6,0 PPA	18	5100	87,5	14	WF - 130	4,9

Presión Máxima = 4750 psi Caudal Promedio = 18 BLS Presión Promedio= 4953 psi ISIP = 3440 psi

Elaborado por: Gabriela Nathaly Herrera Cadena Fuente: Petroproducción La siguiente gráfica muestra la ejecución del trabajo, presión de tratamiento, caudal de bombeo, concentración de arena en superficie y al fondo del pozo, y presión en el anular.

Figura 3.35. Superposición de presiones del tratamiento

Fuente: Schlumberger

Tabla 3.35. Parámetros de tratamiento registrados durante la operación

Presión de Tratamiento Promedio:	3859 psi
Máxima Presión de Tratamiento:	4117 psi
Caudal de inyección promedio:	20 bbl/min
Máximo caudal de inyección:	20 bbl/min
Potencia promedio:	2200 hhp
Potencia Máxima:	2800 hhp
Presión Neta:	1998 psi

Elaborado por: Gabriela Nathaly Herrera Cadena

La siguiente tabla resume los principales parámetros de la fractura, tanto como diseño preliminar, como ajuste en locación posterior al DataFRAC y finalmente como resultado de la calibración de presiones.

Volúmenes y Geometría de Fractura					
		Diseño	Ejecución real		
Volumen de YF130HTD	Gal	19026	21512		
Volumen de Ceramax 16/20	Lbs	47600	48350		
Longitud de Fractura	Pies	315,4	442,3		
Altura de Fractura	Pies	102	37,3		
Ancho de Fractura	Pulg.	0.112	0,129		
Conductividad Promedia	md-ft	2118	3196		
FCD		0,759	0,8		
Daño equivalente *		12,89	-5,2		

Tabla 3.36. Parámetros de la Fractura

Fuente: Petroproducción

- Anexo 6.1. Reporte de FracCade
- Anexo 6.2. Evaluación de Resultados del DataFrac
- Anexo 6.2.1. Caudal de Bombeo Acendente
- Anexo 6.2.2. Determinación del límite superior de la presión de cierre
- Anexo 6.2.3. Determinación de Presión de Cierre
- Anexo 6.2.4. Determinación del límite inferior de la presión de cierre
- Anexo 6.2.5. Determinación de la Geometría de la fractura
- Anexo 6.2.6. Determinación de la Eficiencia del Fluido

3.2.2.7. Modelo de producción

Los siguientes datos, fueron ingresados al software de análisis nodal Perform, para determinar la producción del pozo antes y después del fracturamiento. Se usaronlos siguientes datos para el análisis.

Qo = 79 BOPD Pwf = 974 psi Permeabilidad = 6,5 md BSW = 12 % Espesor Neto = 35 ft $K^*h = 227,5 \text{ md-ft}$ Daño total = 2,6

En el análisis nodal realizada, se determinó la permeabilidad a partir de los datos de conductividad obtenidos del reporte del Build Up, en donde se estimó un daño igual a S = 2,6; el pronóstico de producción del análisis nodal es bastante similar a los resultados reales obtenidos durante las pruebas de producción del pozo antes de ser cerrado, esto nos indica que el modelo usado representa dentro de sus limitaciones las condiciones reales de producción del pozo.

Una vez realizada la fractura, la producción empieza a estabilizarse en un promedio de 240 barriles por día, mientras que el BSW es de 12%.

El día 18 de Noviembre se realiza un tratamiento matricial consistente en solventes, con el objeto de realizar una limpieza del BHA de evaluación y disolver posibles breas u otros sólidos orgánicos presentes en los perforados o Casing. Dicho tratamiento no produce ninguna mejora, lo cual lleva a la conclusión de que no existen problemas de este tipo en el pozo.

Luego de realizado este tratamiento, se prosigue otra vez con la evaluación, y se ratifica que la producción del pozo se estabiliza en unos 432 barriles por día, con un corte de agua que finalmente ha disminuido a los valores esperados para la formación arenisca Napo "T".

3.2.2.8. Longitud de fractura óptima

El tratamiento de fractura fue exitoso: se ha observado que la producción de crudo esta estable en 330 barriles de fluido por día, con un BSW de 7%.

Analizando los datos posteriores a la fractura, se sugiere que la geometría en la zona de interés consiste en una longitud media de 175,6 ft; altura de 94,2 ft y ancho de 0,194 pulgadas. Según esto el daño de formación alcanzado es de -4,3, de acuerdo a la correlación de Prats.

3.2.2.9. Historial de B' UP

Resultados del B' Up de Con-16							
B' UP	B' Up # 1	B' Up # 2	B' Up # 3	B' Up # 4			
Fecha:	25-jun-03	03-nov-06	27-jun-07	16-nov-07			
Qo =	163	79	178	372			
Qw =	317	65	62	60			
Qt =	480	144	240	432			
hmp =	10135	10088	10080	10119			
hbomba =	9282	9945	9945	9945			
Pwf =	1682	914	1339	1684			
PR =	3225	3538	3151	3449			
Pwfmp =	2044	974	1395	1750			
PRmp =	3587	3598	3207	3515			
S =	0,14	2,6	-1,08	-0,42			
k =	6	6,5	10	16			

Tabla 3.37. Resultados del Build Up del Pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena Fuente: Petroproducción

3.2.2.10. Análisis de las Curvas IPR

Figura 3.36. IPR del pozo Cononaco – 16 antes de la fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 3.38. IPR futuros estimados del pozo Cononaco – 16

Elaborado por: Gabriela Nathaly Herrera Cadena

- Análisis del Fracturamiento

La figura 3.36. Curva IPR, nos muestra que el pozo se encuentra produciendo 79 bpd de petróleo a una Pwf = 914 psi, con un daño de S= 2,6, razón por la cual se determinó realizar un tratamiento de fracturamiento para remediar el daño de la formación y de esa manera incrementar la producción del pozo, el proceso se llevo a cabo el 16 de noviembre del 2006, antes de la fractura a pesar del daño existente el pozo se encuentra produciendo sobre el punto de burbuja.

La figura 3.37. Curva IPR, fue graficada con datos de los resultados de un Build Up posterior a la aplicación de la fractura, donde se pudo constatar que el daño del pozo ha disminuido sustancialmente a S=-1,08, indicador que me muestra que el pozo esta estimulado, se cuenta con un caudal de petróleo Qo=178 bpd a una Pwf=1395psi, la intersección de las curvas de presión versus caudal, se intersecan sobre la curva IPR factor indicativo de que el pozo ha sido estimulado.

La figura 3.38. Curva IPR graficada constituye una estimación futura al comportamiento del pozo en donde el daño a la formación se incrementa moderadamente S=-0,42 valor coherente ya que el tiempo de vida útil de la fractura se encuentra alrededor de un año, la presión de fondo fluyente disminuye baja el punto de burbuja Pwf=658psi y un caudal de petróleo de Qo=136bpd, el punto de intersección de estos valores se encuentra fuera de la curva en la parte superior, que señala que el pozo aún se encuentra estimulado, lo curioso es que se está produciendo bajo el punto de burbuja, se asume que debería existir un alto contenido de gas en solución y liberación del mismo, esto podría ser un causante de futuros daños de la BES debido a cavitación.

A continuación se realiza un estudio a los datos de producción del pozo posteriores al fracturamiento.

CONONACO – 16						
Sistema de Levantamiento Artificial	FECHA	Qt	Qo	BSW	API	GOR
UNIDADES		BBLS	BBLS	%		MPCS
PPS	28/11/2006	260	221	15	18,6	1
РРНЈ	01/09/2007	120	112	7	19,2	2
РРНЈ	06/06/2008	144	134	7	15,9	2
PPS	09/09/2008	200	170	15	18,6	1
PPS	27/12/2008	145	128	12	18,6	1
PPS	22/01/2008	155	136	12	18,6	1

Tabla 3.38. Historial de Producción del pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena

Para corroborar las afirmaciones anteriores de que se está produciendo bajo el punto de burbuja se enlisto los cambios y reparaciones de las completaciones de fondo y se obtuvo lo siguiente.

N°	Fecha	Daños presentados en la Completación de Fondo
1 05/07/2007		Completación con PPHJ
2 10/08/2007		Cambio de Bomba PPHJ
3	22/02/2008	Completación con PPHJ
4	30/05/2008	Arreglo de la Bomba
5	06/09/2008	Cambio de Sistema a PPS
6	30/12/2008	Limpieza de BES

Tabla 3.39. Historial de Completaciones de Fondo del pozo Cononaco - 16

Elaborado por: Gabriela Nathaly Herrera Cadena

En donde, las bombas no se han dañado por cavitación o por presencia de gas, sino más bien por sedimentación de parafinas, debido a que nos encontramos produciendo un crudo muy pesado.

Los datos presentados en la tabla anterior fueron tomados después de la fractura, donde la relación gas – petróleo GOR = 1,5 scf/Bbl, es relativamente baja con respecto a la relación gas – petróleo de la arena tomado en el PVT del pozo Cononaco – 22, siendo el GOR = 126 scf/Bbl, razón por la cual no se han presentado problemas de cavitación en las bombas de completación de fondo, problema, antecedentes que indican que la formación no se encuentra produciendo bajo el punto de burbuja, se estima que este importante parámetro de Pb=820psi para la arena Tinferior no es el correcto, debido a que esta prueba se la realizó al pozo Cononaco – 22 el cual se encuentra delimitado por una falla natural, se deduce que el entrampamiento de petróleo se suscitó en tiempos diferentes razón por la cual difieren los valores de las propiedades de la formación, es de vita importancia que se realice un nuevo PVT para la arena Tinferior del Campo Cononaco, ya que este dato está dificultando los diseños tanto de perforación como de estimulación de los pozos.

Según lo observado, en cuanto a datos de producción de este pozo, el mismo podría estar en un rango entre 400 y 500 barriles de crudo por día. Sin embargo debe analizarse cuidadosamente el efecto del crudo pesado, una vez que el mismo alcanza la superficie. Quizá se produce un incremento en la viscosidad del mismo por efecto del enfriamiento, lo cual hace que el sistema electrosumergible sea sometido a mayor esfuerzo, provocando el daño del equipo.

3.2.2.11. Incremento de producción estimado del desarrollo óptimo esperado del fracturamiento hidráulico

En la siguiente tabla se presenta la eficiencia de Flujo y el caudal incremental a diferentes valores de daño.

S	EF	Qo	Qo	∆Ps	IP	∆P fract=
2,6	0,78	79	0	564,71	0,037	0,00
2	0,83	83,807	4,8072	434,39	0,039	130,56
-1	1,08	107,84	28,843	-217,20	0,058	783,35
-2	1,17	115,86	36,855	-434,39	0,069	1000,95
-3	1,25	123,87	44,867	-651,59	0,085	1218,55

Tabla 3.40. Parámetros del pozo Cononaco – 16 a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

En la tabla 3.41. se presenta una secuencia de los caudales de petróleo a diferentes valores de daño estimados para la gráfica de la IPR actuales y futuros.

	Qo				
Pwf	S = 2,6	S = 2	S = -1	S = -2	S = -3
3453	0	0	0	0	0
3000	23,27055	24,687	30,949	33,24874	35,54806
2500	44,56729	47,279	59,274	63,67731	68,08093
2100	58,69119	62,263	78,058	83,85741	89,6566
2000	61,82827	65,591	82,23	88,33963	94,44879
1500	75,1836	79,759	99,993	107,4216	114,8504
1100	83,09696	88,153	110,52	118,7281	126,9388
1000	84,69294	89,847	112,64	121,0085	129,3768
914	85,94348	91,173	114,3	122,7952	131,2872
820	87,18144	92,486	115,95	124,564	133,1783
500	90,38793	95,888	120,21	129,1454	138,0765
100	92,20875	97,82	122,64	131,747	140,858
0	92,28461	97,9	122,74	131,8554	140,9739

Tabla 3.41. Caudales estimados del pozo Cononaco – 16 a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

Las Curvas IPR's obtenidas se muestran en la figura siguiente:

Figura 3.39. IPR del pozo Cononaco – 16, para diferentes valores de S

El valor de la producción de petróleo antes de la fractura es de 79 BPPD, la gráfica esquematiza el posible incremento de producción en función de la remediación del daño, el daño obtenido después del fracturamiento hidráulico es de S = -1,08, con un caudal de Qo = 178 BPPD, mientras que en el diseño de la fractura se estimó obtener un S = -1 con un caudal de Qo = 107,84 BPPD, relacionando estos valores se concluye que la fractura se realizó a cabalidad de acuerdo a lo establecido, en el gráfico de las IPR's se realizando un corte a una Pwf el caudal se incrementa a medida que el valor del daño disminuye.

3.2.3. CONONACO - 23

3.2.3.1. Datos Generales del pozo

Revestidor:	7", 26 #/ft; C-95. Desde superficie hasta 10530 ft
Inclinación:	0°, en las perforaciones.
Tubería de producción:	3-1/2", 9.3 #/ft, N-80;
Intervalo a tratar:	10136 ft – 10204 ft (intervalo actual de perforación) formación "T" Inferior; (68 ft).
Detalle del cañoneo:	9 dpp

Tabla 3.42. Datos Generales del pozo Cononaco - 23

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.3.2. Datos de Yacimiento

Tabla 3.43. Datos de Yacimiento

Zona de Interés:	"T" Inferior
Arena Neta Productora:	68 ft
Temperatura de Yacimiento:	201 F @ 10176 ft. (Asumiendo 1.4 °F/100ft gradiente)
Permeabilidad:	105 md
Porosidad:	15 % (Estimado en base a análisis mineralógico)
Presión de yacimiento:	4378 psi.
Contacto Agua – Petróleo:	No identificado
Tipo de Crudo:	23.2°

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.3.3. Historial de Producción

El pozo Cononaco - 23 es un pozo de desarrollo que está ubicado 428m al suroeste del pozo Cononaco - 9 y a 364m al nor-oeste del Cononaco - 28; completado el 23 de Mayo de 1995.

Arena Hollín	10,338 – 10,353 (15 ft)	4 DPP
Arena T	10,152 – 10,200 (48 ft)	4 DPP

Tabla 3.44. Intervalos Cañoneados

Elaborado por: Gabriela Nathaly Herrera Cadena

FECHA	BPPD	BSW	ARENA	METODO			
02 May 1995	1,008	40	Hs	PPH			
16 May 1995	533	40	Hs	PPH			
07 May 1995	768	50	Т	PPH			

Tabla 3.45. Pruebas Iniciales

- El pozo produjo de la arenisca Hollín Superior durante los años 1995 y 1998 al 2,000- El acumulado de esta arena es de 355999 bbls de petróleo. La última producción reportada es de 70 bbls con 31% de corte de agua.
- Las reservas remanentes en la arenisca Hollín inferior fueron estimadas en 399163 bbls.
- En Septiembre de 1996 el pozo Cononaco 23 fue completado para la arenisca "T" y se realizó una estimulación con HCL al 15%. El pozo produjo de esta formación hasta Enero de 1998 en donde fue cerrado por falta de aporte. Tuvo una producción inicial de 584 BOPD con un BSW del 4%. Desde el inicio de la vida productiva la producción de líquido declina aceleradamente a razón de 46,76. Esto se debe a un incremento en el daño de formación. La última producción reportada del pozo en la arena "T" en Enero de 1998 es de 173 BOPD con un BSW del 4%.
- > Se estima que en el reservorio existen unas reservas de 156805 bbls.

3.2.3.4. Evaluación Registros Eléctricos

En la evaluación de los registros eléctricos, el pozo Cononaco – 23 cuenta con un espesor de 68 pies para la arena T inferior, considerada una arenisca arcillosa debido a que la presencia de un sello lutítico, la zona de pago es de 44 pies, una porosidad promedio aritmética es de 15,0% que se considera relativamente baja,

mientras que la saturación de agua promedio aritmética es de 16,4% y se considera un Volumen de Arcilla generalizado de 0,293.

Zona	Торе	Base	Espesor	Espesor Neto	Av Phi	Av Sw	Av Vcl
T inferior	10136	10148	12	7,25	0,114	0,154	0,273
T inferior	10148,5	10151	2,5	0,25	0,13	0,16	0,027
T inferior	10151	10204	53	44	0,117	0,178	0,313

Tabla 3.46. Cutoff de la Arena T inferior del pozo Cononaco – 23

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 4.3. Registro Eléctrico, Cutoff y Zona de Pago del pozo Cononaco – 23.

3.2.3.5. Historial de Workovers

	HISTORIAL DE REACONDICIONAMIENTOS									
W.O. N°	FECHA	BREVE DESCRIPCIÓN	RESULTADOS							
1	21-sep- 96	REPUNZONAR HOLLIN CON TCP. EVALUAR Y REDISENAR	SE RECUPERA 454 BPPD							
2	23-ene- 98	SQUEZZ A "HS".REPUNZONAR EVALUAR REPUNZONAR T. EVAL Y REDISENAR	EXITOSIO SE RECUPERA 275 BPPD							
3	12-abr-98	REPARAR BES EVALUAR ARENA "HS".REDISENAR	SE RECUPERA 49 BPPD							
4	28-jun-04	PUNZONAR ARENA "U".EVALUAR Y REDISENAR BES	EXITOSO							
5	10-oct-06	FRACTURA HIDRAULICA A ARENA "T"	EXITOSO SE RECUPERA +/- 350 BPPD							
6	11-may- 07	EVALUAR ARENA "T". REDISEÑAR BES	EXITOSO RECUPERA PRODUCCION							
7	27-may- 07	REPARAR BES	EXITOSO RECUPERA PRODUCCION							
8	14-dic-07	EVALUAR ARENA "T". REDĪSEÑAR BES	EXITOSO SE RECUPERA +/- 300 BPPD							

Tabla 3.47. Historial de Workover

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 5.3. Diagrama de Completación

Anexo 5.4. Diagrama de Sarta de Trabajo para Fracturamiento Hidráulico

3.2.3.6. Diseño de la fractura

La simulación del diseño para el intervalo propuesto, indica lo siguiente:

Altura Hidráulica al fin del trabajo 76,	5 ft
Ancho promedio0,13	35 in
Eficiencia0,49)7
Effective Fcd0,3	
Máxima Presión en Superficie650	1 psi

Figura 3.40. Geometría de la fractura y Concentración del apuntalante

Fuente: Schlumberger

Para los datos de presión y caudal pronosticados (19 bpm y 6501 psi), la potencia hidráulica requerida es de 2868 HHP.

El simulador de fractura indica que la longitud media que puede ser obtenida es de aproximadamente 221,5 ft. La altura estimada también podría ser la misma, considerándose que es la altura hidráulica, y luego se cerrará, dejando una fractura apuntalada con una altura equivalente a 77 ft.

Antes de realizarse el DataFRAC, se disponía del modelo geomecánico calibrado de acuerdo a los valores tomados del DSI corrido en el pozo antes de la fractura. Tomando en cuenta los resultados del DataFRAC y fracturamiento hidráulico posterior, se verificó que los cálculos realizados fueron bastante cercanos a la realidad.

El DataFRAC fue realizado el día 21 de Septiembre del 2006 en la tarde. Se bombearon los siguientes fluidos:

Se bombearon en total:

- 203 bbls de FreFLO para llenar la tubería y realizar la prueba de ratas múltiples, ascendentes y descendentes. El máximo caudal alcanzado fue de 18,5 bpm.
- 161 bbls de YF130HTD para realizar la inyección de calibración que posteriormente serviría para realizar un análisis de la geometría de la fractura y eficiencia del fluido.
- > 91 bbls de WF130 para desplazar el tubing al finalizar la prueba.

Operacionalmente no se detectaron fallas durante el trabajo, y el mismo fue bombeado de acuerdo al diseño en cuanto a caudal y concentraciones de apuntalante. Sin embargo, fue necesario cortar el apuntalante antes de lo previsto debido a la evidencia de arenamiento en la punta de la fractura (Tip Screenout).

El desplazamiento fue realizado sin ningún inconveniente. El volumen de subdesplazamiento previamente acordado con el cliente era de 1,5 bbls, con lo cual se calculaba que 816 lbs de arena iban a ser dejadas dentro del casing.

La limpieza de la tubería realizada posteriormente indicó que se tenía aproximadamente 3 ft de apuntalante dentro de la tubería, lo cual equivale a 65 lbs de Ceramax 16/20. Se asume que este monto se debía a:

- > El monto de apuntalante subdesplazado
- Apuntalante que reversó luego de la fractura, al liberar las presiones de la tubería
- Operación de circulación que se realizaron para limpiar la fractura y hacer fluir el pozo.

Durante el trabajo de Fractura se bombearon los siguientes fluidos:

- > YF130HTD: 16,128 gal 384bbls
- > WF130: (Desplazamiento) 4565 gal 108,7 bbls
- Apuntalante: 33387 lbs de Ceramax 16-20 bombeados, 33322 lbs dentro de la formación
- > Máxima concentración de apuntalante: 6 ppa

- Secuencia de Bombeo

Las siguientes tablas muestran el proceso de bombeo a seguir para realizar la fractura longitud estimada X_f = 221.5 ft y una Conductiva promedia K_fW = 2464 md.ft.

Descripcion del Trabajo										
Stage Name	Pump Rate	Fluid Name	Stage Fluid Volume	Gel Conc.	Prop. Type and Mesh	Prop. Conc.				
)		(gal)	(ib/iligal)						
PREPAD	18,0	WF130	80	30,0		0,0				
PAD	18,0	YF130HTD	3900	35,0		0,0				
0,5 PPA	18,0	YF130HTD	1500	35,0	16/20 CeramaxTM I	0,5				
1,0 PPA	18,0	YF130HTD	1500	35,0	16/20 CeramaxTM I	1,0				
2,0 PPA	18,0	YF130HTD	1500	35,0	16/20 CeramaxTM I	2,0				
3,0 PPA	18,0	YF130HTD	1600	35,0	16/20 CeramaxTM I	3,0				
4,0 PPA	18,0	YF130HTD	1700	35,0	16/20 CeramaxTM I	4,0				
5,0 PPA	18,0	YF130HTD	1800	35,0	16/20 CeramaxTM I	5,0				
6,0 PPA	18,0	YF130HTD	2100	35,0	16/20 CeramaxTM I	6,0				
FLUSH	18,0	WF130	3829	30,0		0,0				

Tabla 3.48. Descripción del la Secuencia de Bombeo del Trabajo de Fracturamiento

Fuente: Schlumberger

El esquema de bombeo es desplazado con 1,5 bbl.

Tabla 3.49. Fluidos y Propalante UtilizadosFluid Totals3909 galofWF13015600 galofYF130HTD

Total de Propalante							
38500 lb	of	16/20 CeramaxTM I					
Fuente: Schlumberger							

- Resultados del Datafrac

Figura 3.41. Resultados del Datafrac									
Geometry Model	PKN 👻	ISIP	6762 psi						
Volume Injected 3516 gal		Y Intercept	6762 psi						
Pump Time	0.1 min	P Star 🛛	410 psi						
Spurt Correction	.022	Closure Pressure	6309 psi						
Calibration Variable		Closure Time	0.0 min						
Height	Decline Analysis	Job Simulation	Calibrated Solution						
Young's Modulus	2.469E+6 psi	2.469E+6 psi	2.469E+6 psi						
Fracture Height	49.0 ft	49.0 ft	50.4 ft						
Fracture Toughnes	s 1408 psi.in0.5	1408 psi.in0.5	1408 psi.in0.5						
Net Pressure	453 psi	463 psi	453 psi						
Efficiency	0.36	0.34	0.36						
Frac Half Length	175.5 ft	168.3 ft	165.9 ft						
Total Leakoff Coef. 2.3E-3 ft/min0.5		2.3E-3 ft/min0.5	2.4E-3 ft/min0.5						
Equiv. Spurt	0.2 gal/100ft2	0.2 gal/100ft2	0.2 gal/100ft2						
Note: No indication of significant height growth or fissure effects.									

----2 44 D outedee del D

Luego de verificados los resultados del DataFRAC, se propuso el siguiente rediseño para la fractura hidráulica:

	Descripción del Trabajo										
Stg #	Stage Name	Slurry Volum e (bbl)	Slurry Rate (bbl/mi n)	Pum p Time (min)	Fluid Name	Fluid Volume (gal)	Proppant Name	Max Prop Conc (PPA)	Prop Conc (PPA)	Prop Mass (lb)	
1	PREPA D	20.4	9.7	2.1	WF130	846	None	0.0	0.0	0	
2	PAD	92.9	18.5	5.0	YF130H TD	3899	None	0.2	0.0	28	
3	0.5 PPA	36.5	18.4	2.0	YF130H TD	1494	16/20 Cerama	0.8	0.6	888	
4	1.0 PPA	37.3	18.5	2.0	YF130H TD	1500	16/20 Cerama	1.3	1.0	1496	
5	2.0 PPA	38.9	18.5	2.1	YF130H TD	1509	16/20 Cerama	2.8	1.9	2796	
6	3.0 PPA	43.2	18.5	2.3	YF130H TD	1587	16/20 Cerama	3.4	3.2	5092	
7	4.0 PPA	47.8	18.5	2.6	YF130H TD	1688	16/20 Cerama	4.6	4.2	7066	
8	5.0 PPA	52.5	18.5	2.8	YF130H TD	1789	16/20 Cerama	5.4	5.2	9245	
9	6.0 PPA	34.7	18.6	1.9	YF130H TD	1156	16/20 Cerama	6.6	5.8	6712	
10	FLUSH	88.3	4.2	20.8	WF130	3717	None	1.5	0.0	65	

Tabla 3.50.	Rediseño	del	Bo	omb	eo	del	Fracturamiento
	_						

Fuente: Schlumberger

Fuente: Schlumberger

La Figura 3.42. muestra la ejecución del trabajo, presión de tratamiento, caudal de bombeo, concentración de arena en superficie y al fondo del pozo, y presión en el anular.

Figura 3.42. Superposición de Presiones durante el proceso de fracturamiento

Algunos de los parámetros de tratamiento registrados durante la operación pueden verse en la tabla siguiente:

Tabla 3.51. Parametros del	Tratamiento
Presión de Tratamiento Promedio:	4087 psi
Máxima Presión de Tratamiento:	4929 psi
Caudal de inyección promedio:	18.5 bbl/min
Máximo caudal de inyección:	19.3 bbl/min
Potencia promedio:	1775.5 hhp
Potencia Máxima:	2296.1 hhp
Presión Neta:	700 psi

Elaborado por: Gabriela Nathaly Herrera Cadena

La siguiente tabla resume los principales parámetros de la fractura, tanto como diseño preliminar, como ajuste en locación posterior al DataFRAC y finalmente como resultado de la calibración de presiones.

Volúmenes y Geometría de Fractura									
		Diseño	Ejecución real						
Volumen de YF130HTD	Gal	15600	14928						
Volumen de Ceramax 16/20	Lbs	384	34368						
Longitud de Fractura	Pies	221,5	301,3						
Altura de Fractura	Pies	76,5	80,1						
Ancho Promedio de la Fractura	Pulg.	0,151	0,103						
Conductividad Promedia	md-ft	2731	1784						
FCD		0,3	0,135						
Daño equivalente *		-4,033	-3,06						

Tabla 3.52.	Volúmenes v	v Geometría	de la	Fractura
Tapia 3.52.	volumenes	y Geometria	ae la	ractura

Elaborado por: Gabriela Nathaly Herrera Cadena

- Anexo 6.3. Reporte de FracCade
- Anexo 6.4. Evaluación de Resultados del DataFrac
- Anexo 6.4.1. Caudal de Bombeo Acendente
- Anexo 6.4.2. Determinación del límite superior de la presión de cierre
- Anexo 6.4.3. Determinación de Presión de Cierre
- Anexo 6.4.4. Determinación del límite inferior de la presión de cierre
- Anexo 6.4.5. Determinación de la Geometría de la fractura
- Anexo 6.4.6. Determinación de la Eficiencia del Fluido

3.2.3.7. Modelo de producción

Los siguientes datos, fueron ingresados al software de análisis nodal Perform, para determinar la producción del pozo antes y después del fracturamiento. Se usaronlos siguientes datos para el análisis.

Qo = 580 BOPD Pwf = 2712 psi Permeabilidad = 105 md BSW = 9 % Espesor Neto = 68 ft K*h = 7140 md-ft Daño total = 10,5 En el análisis nodal realizada, se determinó la permeabilidad a partir de los datos de conductividad obtenidos del reporte del Build Up, en donde se estimó un daño igual a S = 10,5.

Una vez realizada la fractura, la producción empieza a estabilizarse en un promedio de 714 barriles por día, con un BSW de 9%.

3.2.3.8. Longitud de fractura óptima

El tratamiento de fractura fue exitoso: se ha observado que la producción de crudo esta estable en 768 barriles de fluido por día, con un BSW de 9%.

Analizando los datos posteriores a la fractura, se sugiere que la geometría en la zona de interés consiste en una longitud media de 301,3 ft; altura de 80,1 ft y ancho de 0,103 pulgadas. Según esto el daño de formación alcanzado es de -0,8, de acuerdo a la correlación de Prats.

Tabla 3.53. Resu	tados de le	os Build U	ps del poz	zo Cononaco - 23
	Resultados	s del B' Up o	de Con-23	
	B' UP	B' Up # 1	B' Up # 2	
	Fecha:	18-sep-96	1-oct-06	
	Qo =	580	714	
	Qw =	260	54	
	Qt =	840	768	
	hmp =	10071	10152	
	hbomba =	10071	10023	
	Pwf =	2702	2521	
	PR =	4378	3197	
	Pwfmp =	2712	2569	
	PRmp =	4378	3245	
	S =	10,5	-0,8	
	k =	105	174	

3.2.3.9. Historial de B' UP

Elaborado por: Gabriela Nathaly Herrera Cadena

Elaborado por: Gabriela Nathaly Herrera Cadena

• IPR después de la fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

- Análisis del Fracturamiento

El fracturamiento realizado al pozo Cononaco – 23 fue exitoso, tomando en cuenta los parámetros de la formación obtenidos del Build Up y pruebas de producción antes de la fractura que indicaban una producción superior a 584

barriles de fluido por día con 4% de BSW con una declinación acelerada del 46.7%, debido al daño de formación.

Posterior a la fractura, la producción incrementó hasta mantenerse en valores cercanos a 672 barriles por día, completamente estable. El corte de agua es de aproximadamente 2%, lo cual indica que ya se ha reversado el fluido inyectado durante el fracturamiento hidráulico.

La frecuencia de la bomba electrosumergible debe mantenerse baja, la razón de eso es prevenir una posible producción de arena de fractura, con opción a incrementar la frecuencia de la bomba en un futuro cercano y de esta manera hacer fluir el pozo a un caudal un poco más elevado. No se ha observado ningún tipo de sólidos en superficie.

De acuerdo a estos datos, se observa que la producción del pozo se ha incrementado 173 barriles, dando un total de 750 barriles por día, una vez que la bomba electrosumergible ha sido bajada el pozo produce un total de 714 bpd en condición de operación normal.

La figura 3.43. Curva IPR, se encuentra graficada en función de los valores del pozo antes de la estimulación del mismo, podemos observar que se produce sobre la presión de burbuja, y los datos de caudal y presión se acoplan a un punto dentro de la curva la cual define el comportamiento de producción del pozo con un daño de formación igual a S = 10, producido por la migración de arcillas de tipo caolinita, una vez detectado el daño, fue necesario plantear una solución de remediación del mismo aplicando la estimulación de fracturamiento hidráulico, incrementando así la conductividad del fluido hacia el pozo, la permeabilidad, la presión y la producción del mismo.

La figura 3.44. Curva IPR, se encuentra graficada con los valores iniciales del reservorio antes de aplicar el tratamiento de fracturamiento, relacionándolos con los valores de presión y caudal obtenidos una vez realizada la estimulación, y

puesto en producción el pozo, donde el daño se redujo al S = -0.8, permitiendo remediar el índice progresivo de producción, es perceptible este incremento, debido a que los puntos de presión y temperatura caen fuera de la curva IPR, en la parte superior una vez realizada la fractura, es necesario recalcar que el trabajo de fractura tuvo ciertos inconvenientes como arenamiento en la punta de la fractura, como consecuencia de un mal diseño del apuntalante y del fluido de sostén, lo curioso es que se está produciendo bajo el punto de burbuja, se asume que debería existir un alto contenido de gas en solución y liberación del mismo, esto podría ser un causante de futuros daños de la BES debido a cavitación. A continuación se realiza un estudio a los datos de producción del pozo posteriores al fracturamiento.

CONONACO - 23							
Sistema de Levantamiento Artificial	FECHA	Qt	Qo	BSW	API	GOR	
UNIDADES		BFPD	BPPD	%		SCF/PCS	
PPS	27/05/2007	407	224	45	18,7	5	
PPS	28/05/2008	244	222	9	18,7	1	
PPS	27/12/2008	170	155	9	18,7	1	
PPS	30/01/2009	163	148	9	18,7	1	

Tabla 3.54. Historial de Producción del pozo Cononaco – 23 después de la fractura

Elaborado por: Gabriela Nathaly Herrera Cadena

Para corroborar las afirmaciones anteriores de que se está produciendo bajo el punto de burbuja se enlisto los cambios y reparaciones de las completaciones de fondo y se obtuvo lo siguiente.

Tabla 3.55. Historiales de Completación						
Daños presentados en la Completación de						
N°	Fecha	Fondo				
1	27/05/2007	Reparación de BES por fases a tierra.				
2	20/11/2007	Reparar la BES por bajo aislamiento.				
	Elabora	a pari Cabriela Nathaly Herrora Cadana				

|--|

Elaborado por: Gabriela Nathaly Herrera Cadena

En donde, las bombas no se han dañado por cavitación o por presencia de gas, sino más bien por fase a tierra y por bajo aislamiento.

Los datos presentados en la tabla anterior fueron tomados después de la fractura, donde la relación gas – petróleo GOR = 1 scf/Bbl, es relativamente baja con respecto a la relación gas - petróleo de la arena tomado en el PVT del pozo Cononaco - 22, siendo el GOR = 126 scf/Bbl, razón por la cual no se han presentado problemas de cavitación en las bombas de completación de fondo, problema, antecedentes que indican que la formación no se encuentra produciendo bajo el punto de burbuja, se estima que este importante parámetro de Pb=820psi para la arena Tinferior no es el correcto, debido a que esta prueba se la realizó al pozo Cononaco - 22 el cual se encuentra delimitado por una falla natural, se deduce que el entrampamiento de petróleo se suscitó en tiempos diferentes razón por la cual difieren los valores de las propiedades de la formación, es de vita importancia que se realice un nuevo PVT para la arena Tinferior del Campo Cononaco, ya que este dato está dificultando los diseños tanto de perforación como de estimulación de los pozos.

3.2.3.11. Incremento de producción estimado del desarrollo óptimo esperado del fracturamiento hidráulico

Se determinó caudales a diferentes valores de daños de la formación antes y después de ser estimulada simulando su producción con valores de S = -1,-2,-3.

En la siguiente tabla se presenta la eficiencia de Flujo y el caudal incremental a diferentes valores de daño.

S	EF	Qo	Qi	∆Ps	IP	ΔP fract=
10,5	0,53	580	0	775,16	0,442	0,00
2	0,87	857,78	277,78	218,36	0,847	628,67
-1	1,07	955,82	375,82	- 121,66	1,252	850,56
-2	1,15	988,50	408,50	- 251,64	1,489	924,52
-3	1,23	1021,18	441,18	- 389,94	1,837	998,48

Tabla 3.56. Parámetros del pozo Cononaco – 23 a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

En la siguiente tabla se presenta una secuencia de los caudales de petróleo a diferentes valores de daño estimados para la gráfica de la IPR actuales y futuros.

Qo							
S = 2,6	S = 2	S = -1	S = -2	S = -3			
0	0	0	0	0			
169,8691	251,2241	279,9377	289,5089	299,0801			
365,2642	540,1995	601,9413	622,522	643,1026			
532,769	787,927	877,9828	908,0014	938,0199			
617,12	912,6761	1016,99	1051,761	1086,533			
673,6424	996,2687	1110,137	1148,093	1186,049			
788,4484	1166,058	1299,333	1343,757	1388,182			
877,5033	1297,764	1446,092	1495,534	1544,977			
941,0001	1391,671	1550,732	1603,752	1656,772			
957,6266	1416,261	1578,132	1632,089	1686,046			
979,0558	1447,953	1613,446	1668,611	1723,775			
991,7342	1466,704	1634,34	1690,219	1746,097			
	S = 2,6 0 169,8691 365,2642 532,769 617,12 673,6424 788,4484 877,5033 941,0001 957,6266 979,0558 991,7342	S = 2,6 S = 2 0 0 169,8691 251,2241 365,2642 540,1995 532,769 787,927 617,12 912,6761 673,6424 996,2687 788,4484 1166,058 877,5033 1297,764 941,0001 1391,671 957,6266 1416,261 979,0558 1447,953 991,7342 1466,704	S = 2,6 S = 2 S = -1 0 0 0 169,8691 251,2241 279,9377 365,2642 540,1995 601,9413 532,769 787,927 877,9828 617,12 912,6761 1016,99 673,6424 996,2687 1110,137 788,4484 1166,058 1299,333 877,5033 1297,764 1446,092 941,0001 1391,671 1550,732 957,6266 1416,261 1578,132 979,0558 1447,953 1613,446 991,7342 1466,704 1634,34	S = 2,6 S = 2 S = -1 S = -2 0 0 0 0 0 169,8691 251,2241 279,9377 289,5089 365,2642 540,1995 601,9413 622,522 532,769 787,927 877,9828 908,0014 617,12 912,6761 1016,99 1051,761 673,6424 996,2687 1110,137 1148,093 788,4484 1166,058 1299,333 1343,757 877,5033 1297,764 1446,092 1495,534 941,0001 1391,671 1550,732 1603,752 957,6266 1416,261 1578,132 1632,089 979,0558 1447,953 1613,446 1668,611 991,7342 1466,704 1634,34 1690,219			

Tabla 3.57. Caudales estimados del pozo Cononaco - 23 a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

Las Curvas IPR's obtenidas se muestran en la figura siguiente:

Figura 3.45. IPR del pozo Cononaco – 23 para diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

El valor de la producción de petróleo antes de la fractura es de 580 BPPD, la gráfica esquematiza el posible incremento de producción en función de la remediación del daño, el daño obtenido después del fracturamiento hidráulico es de S = -0,8, con lo que se debería obtener una producción de petróleo de aproximadamente 955 BPPD, pero en realidad se produjo 714 BPPD existe una diferencia de 241 BPPD, valor con el cual se deduce que el diseño de la fractura aplicado no fue el óptimo, se debió incrementar la concentración del fluido de fractura bombeado a la formación, pese a esto el pozo se encuentra estimulado con un caudal incremental de alrededor 134 BPPD que es una buena cantidad, se debe tomar en cuenta que el yacimiento contiene crudo pesado; este crudo a pesar de tener alta viscosidad esta se incrementa con la disminución de la temperatura dificultando su conductividad. Constituye un factor muy importante el rediseñar las facilidades de producción cambiando el sistema de levantamiento artificial o colocando un sistema MTU de producción por cada pozo, considerando el contenido parafínico del crudo.
3.2.4. CONONACO - 28

3.2.4.1. Datos Generales del pozo

Tabla 3.30.	Datos Generales del pozo Cononaco - 26
Revestidor:	7" CGS: N-80, 26 LB/FT, 229 TUBOS
Inclinación:	0°, en las perforaciones.
Tubería de producción:	3-1/2", 9.3 #/ft, N-80;
Intervalo a tratar:	10198 ft – 10274 ft (intervalo actual de perforación) formación "T" Inferior; (76 ft).
Detalle del cañoneo:	2 dpp – 10 dpp

Tabla 3.58. Datos Generales del pozo Cononaco - 28

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.4.2. Datos de Yacimiento

Tabla 3.59. Datos del Yacimiento

Zona de Interés:	"T" Inferior
Arena Neta Productora:	76 pies.
Temperatura de Yacimiento:	207 F @ 10240 pies
Permeabilidad:	44 md
Porosidad:	10,5 %
Presión de yacimiento:	2324 psi.
Contacto Agua – Petróleo:	No identificado
Tipo de Crudo:	18°

Elaborado por: Gabriela Nathaly Herrera Cadena

3.2.4.3. Historial de Producción

El pozo Cononaco 28 fue inicialmente completado el 13 de Febrero del 2003, siendo uno de los pozos más nuevos perforados en el campo Cononaco.

Desde entonces, varias formaciones han estado en producción: Napo "U", Napo "T", Hollín Superior e Inferior.

Tres workover se muestran en el historial de producción del pozo. El primero en Julio del 2004, el siguiente en Mayo del 2005 y finalmente el tercero en Noviembre del 2,005.

Durante el último workover se deja al pozo configurado para producir de la arena "U". Pruebas de producción para "T" muestran que el mismo ha fluido a razón de unos 200 barriles por día, y que el corte de agua podría ubicarse en los mismos valores que para el Cononaco 23.

El pozo Cononaco – 16, fue inicialmente completado el día 9 de Noviembre de 1991 como pozo productor, cuenta con tres zonas productoras: Hollín, Arenisca T, y Caliza M-2, su ubicación es: 542,6 m al suroeste del pozo Cononaco - 2 y a 637,2 m al este del Cononaco - 19.

Arena U	9956' - 99720 (16')	10 DPP
Arena T	10201' - 10207' (6')	10 DPP
	10222' - 10254' (32')	10 DPP
	10254' - 10258' (4')	2 DPP
Arena Hollín Inferior	10436' - 10444' (8')	5 DPP
	10452' - 10456' (4')	4 DPP
	10458' - 10462' (4')	2 DPP

Tabla 3.60. Intervalos Cañoneados

Elaborado por: Gabriela Nathaly Herrera Cadena

Tabla 3.61.	Pruebas	Iniciales
-------------	---------	-----------

PRUEBA	FECHA	ZONA	METODO	BPPD	BSW	API	PFT	OBSERVACIONES
ANTES	05-oct-03	Hi	PPF	161	30,0	33,0	70	Prueba contra tanque
DESPUES	20-sep-04	Hi	PPF	518	55,0	33,0	34	Prueba contra tanque

Elaborado por: Gabriela Nathaly Herrera Cadena

El 13 de Febrero del 2003 el pozo Cononaco - 28 fue completado para la arenisca "Hollín Inferior" con un caudal de Qt=1092 BFPD, un %BSW= 58, Qo=459 BBPD. Se estima que en el reservorio de la arena Tinferior, cuenta con reservas de 18,7156 Mbbls, proyectada al 2008.

3.2.4.4. Evaluación Registros Eléctricos

En la evaluación de los registros eléctricos, el pozo Cononaco – 28 cuenta con un espesor de 76 pies para la arena T inferior, considerada una arenisca arcillosa debido a que la presencia de un sello lutítico, la zona de pago es de 41 pies, una porosidad promedio aritmética es de 19%, mientras que la saturación de agua promedio aritmética es de 19% y se considera un Volumen de Arcilla generalizado de 0,157.

Tublu	CICEI Cut				pere 661	lonaoo	20
				Espesor			
Zona	Торе	Base	Espesor	Neto	Av Phi	Av Sw	Av Vcl
T inferior	10198	10274	76	41	0,19	0,19	0,157
			<u> </u>	41 1 11			

Tabla 3.62. Cutoff de la Arena T inferior del pozo Cononaco – 28

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 4.4. Registro Eléctrico, Cutoff y Zona de Pago del pozo Cononaco - 23

3.2.4.5. Historial de Workover

Tabla 3.63. Historial de Reacondicionamientos

HISTORIAL DE REACONDICIONAMIENTOS						
W.O. N°	FECHA	BREVE DESCRIPCIÓN	RESULTADOS			
COMPLETACIÓN Y PRUEBAS	13-02-03	COMPLETACIÓN ORIGINAL	EXITOSO			
1	17-07-04	REPARAR BES. EVALUAR "Hs". REDISEÑAR BES	EXITOSO			
2	21-05-05	SQZ A "Hi". REPUNZONAR. EVALUAR	EXITOSO			
3	10-11-05	SQZ. A "Hi" . REPUNZONAR. EVAUAR. REDISEÑAR BRS	EXITOSO			
4	22-03-08	FRACTURAMIENTO HIDRÁULICO ARENA "T"	PARCIALMENTE SATISFACTORIO			
5	23-05-08	CAMBIO DE COMPLETACIÓN BES. EVALUAR "T" CON PWF. REDISEÑAR BES.	SATISFACTORIO			
6	14-12-08	REPARAR BES. REALIZAR TRATAMIENTO RPM A ARENA T	SATISFACTORIO			

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 5.5. Diagrama de Completación

Anexo 5.6. Diagrama de Sarta de Trabajo para Fracturamiento Hidráulico

3.2.4.6. Diseño de la Fractura

La simulación del diseño para el intervalo propuesto, indica lo siguiente:

Longitud media apuntalada	315,4 ft
Altura Hidráulica al fin del trabajo	102 ft
Ancho promedio	0,112 in
Eficiencia	0,321
Effective Fcd	0,5
Máxima Presión de Fractura	<u>4</u> 583,0 psi

En la figura 3.46. se muestran las curvas que me indica los esfuerzos que debe vencer la roca y el otro gráfico indica las concentraciones del apuntalante a distribuirse dentro de la fractura.

Figura 3.46. Geometría de la Fractura y Concentración del apuntalante

Para los datos de presión y caudal pronosticados (19,5 bpm y 2700 psi), la potencia hidráulica requerida es de 1950 HHP.

Fuente: Schlumberger

Tomando en cuenta los resultados del DataFRAC y fracturamiento hidráulico posterior, se verificó que los cálculos realizados fueron bastante cercanos a la realidad.

El DataFRAC fue realizado el día 09 de Octubre del 2006 en la tarde. Se bombearon los siguientes fluidos:

Se bombearon en total:

- 14500 gal de YF130HTD bombeado a 18 bpm, para realizar la inyección de calibración que posteriormente serviría para realizar un análisis de la geometría de la fractura y eficiencia del fluido.
- > 3883 gal de WF130 bombeado a 17 bpm, a una presión de 6500 psi.

- Secuencia de Bombeo del DataFrac

Descripción del Trabajo							
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)	
PRE-PAD	19.5	WF130	100	30.0		0.0	
PAD	19.5	YF130 HTD	4000	30.0		0.0	
0.5 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	0.5	
1.0 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	1.5	
2.0 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	2.5	
3.0 PPA	19.5	YF130 HTD	1200	30.0	16/20 Ceramax I	3.5	
4.0 PPA	19.5	YF130 HTD	1500	30.0	16/20 Ceramax I	4.5	
5.0 PPA	19.5	YF130 HTD	2000	30.0	16/20 Ceramax I	5.5	
6.0 PPA	19.5	YF130 HTD	2500	30.0	16/20 Ceramax I	6.5	
FLUSH	19.5	WF130	3783	30.0		0.0	

Tabla 3.64. DataFrac del pozo Cononaco - 28

Elaborado por: Gabriela Nathaly Herrera Cadena

Tabla 3.65.	Resultados	del DataFrac
-------------	------------	--------------

Resultados de DataFRAC
Gradiente de Fractura: 0.61 psi/ft
Presión de Fractura a la mitad de los perforados: 4500 psi
Eficiencia del fluido: 26%
Leakoff: 1.9 E-3 ft/min0.5

Elaborado por: Gabriela Nathaly Herrera Cadena

- Resultado del DataFrac

Figura 3.47. Resultados del Datarrac						
Geometry Model	PKN 🗸	ISIP	6934 psi			
Volume Injected	14397 gal	Y Intercept	6934 psi			
Pump Time	27.4 min	P Star	1029 psi			
Spurt Correction	1.034	Closure Pressure	6200 psi			
Calibration Variable		Closure Time	13.4 min			
Height	- Decline Analysis	Job Simulation —	Calibrated Solution			
Young's Modulus	s 5.729E+6 psi	5.729E+6 psi	5.729E+6 psi			
Fracture Height	81.5 ft	81.5 ft	79.0 ft			
Fracture Toughn	ess 890 psi.in0.5	890 psi.in0.5	890 psi.in0.5			
Net Pressure	734 psi	696 psi	734 psi			
Efficiency	0.26	0.24	0.26			
Frac Half Length	274.8 ft	270.7 ft	292.2 ft			
Total Leakoff Co	ef. 1.9E-3 ft/min0.5	5 1.9E-3 ft/min0.5	1.9E-3 ft/min0.5			
Equiv. Spurt	0.4 gal/100ft2	0.4 gal/100ft2	0.4 gal/100ft2			

Figura 3.47. Resultados del DataFrac

Fuente: Schlumberger

Los volúmenes totales bombeados fueron 600 bls de gel de fractura, 48350 lbs de apuntalante cerámico tipo Ceramax 16/20. Adicional a eso se utilizaron casi 300 libras de PropNET con el fin de prevenir un re-flujo de apuntalante de la formación.

Ejecución del Trabajo									
Stage Name	Stage Fluid Volume (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressure (psi)	Stage Time (min)	Cum. Time (min)
PRE- PAD	100	100	2.4	2.4	0	0	3414	0.1	0.1
PAD	4000	4100	95.2	97.6	0	0	3414	4.9	5.0
0.5 PPA	1100	5200	26.8	124.4	550	550	3560	1.4	6.4
1.0 PPA	1100	6300	28.0	152.4	1650	2200	3730	1.4	7.8
2.0 PPA	1100	7400	29.1	181.5	2749	4949	3710	1.5	9.3
3.0 PPA	1200	8600	33.1	214.6	4199	9148	3613	1.7	11.0
4.0 PPA	1500	10100	43.0	257.5	6749	15897	3472	2.2	13.2
5.0 PPA	2000	12100	59.4	316.9	10998	26895	3307	3.0	16.3
6.0 PPA	2500	14600	76.9	393.9	16247	43141	3316	3.9	20.2
FLUSH	3783	18383	90.1	484.0	0	43141	3890	4.6	24.8

Tabla 3.66. Secuencia del Bombeo de el Fracturamiento Hidráulico

Elaborado por: Gabriela Nathaly Herrera Cadena

Presión Máxima = 4518 psi

Caudal Promedio = 18 BLS

Presión Promedio=5000 psi ISIP = 3600 psi La figura 3.48. muestra la ejecución del trabajo, presión de tratamiento, caudal de bombeo, concentración de arena en superficie y al fondo del pozo, y presión en el anular.

Figura 3.48. Superposición de presiones durante el fracturamiento

Parámetros de tratamiento registrados durante la operación:

Tabla 3.67. Parámetros de	Tratamiento re	egistrados d	lurante la	operación	de
	fracturami	iento			

5000 psi
4518 psi
17 bbl/min
18 bbl/min
1950 hhp
2800 hhp
1617 psi

Elaborado por: Gabriela Nathaly Herrera Cadena

La tabla 3.70. resume los principales parámetros de la fractura, tanto como diseño preliminar, como ajuste en locación posterior al DataFRAC y finalmente como resultado de la calibración de presiones.

Volúmenes y Geometría de Fractura						
		Diseño	Ejecución real			
Volumen de YF130HTD	Gal	19026	21512			
Volumen de Ceramax 16/20	Lbs	47600	48350			
Longitud de Fractura	Pies	315,4	442,3			
Altura de Fractura	Pies	102	37,3			
Ancho de Fractura	Pulg.	0,112	0,129			
Conductividad Promedia	md-ft	2118	3196			
FCD		0,759	0,8			
Daño equivalente *		12,89	-5,2			

Elaborado por: Gabriela Nathaly Herrera Cadena

- Anexo 6.5. Reporte de FracCade
- Anexo 6.6. Evaluación de Resultados del DataFrac
- Anexo 6.6.1. Caudal de Bombeo Acendente
- Anexo 6.6.2. Determinación del límite superior de la presión de cierre
- Anexo 6.6.3. Determinación de Presión de Cierre
- Anexo 6.6.4. Determinación del límite inferior de la presión de cierre
- Anexo 6.6.5. Determinación de la Geometría de la fractura
- Anexo 6.6.6. Determinación de la Eficiencia del Fluido

3.2.4.7. Modelo de producción

Los siguientes datos, fueron ingresados al software de análisis nodal Perform, para determinar la producción del pozo antes y después del fracturamiento.Se usaron los siguientes datos para el análisis.

Qo = 240 BOPD

Pwf = 1256 psi

Permeabilidad = 67 md

BSW = 50 % Espesor Neto = 67 ft K*h = 4489 md-ft Daño total = 1

En el análisis nodal realizada, se determinó la permeabilidad a partir de los datos de conductividad obtenidos del reporte del Build Up, en donde se estimó un daño igual a S = 1. Una vez realizada la fractura, la producción empieza a estabilizarse en un promedio de 303 barriles por día de fluido, 182 barriles de petróleo por día, con un %BSW = 50, API= 18, GOR = 1 scf/bbl, con una presión de fondo fluyente de Pwf=1152 psi.

Este pozo se cierra el 17 de mayo del 2008, debido a bajo aporte causado por comunicación Casing – tubing, a posterior a este suceso se realizó un cambio de completación electro-sumergible por comunicación tubing – Casing, se evaluó la arena T y se rediseño la nueva completación de fondo.

3.2.4.8. Longitud de fractura óptima

El tratamiento de fractura fue exitoso: se ha observado que la producción de crudo esta estable en 303 barriles de fluido por día, con un BSW de 58%. Según el diseño propuesto se obtuvo una longitud media de fractura igual a 442,3 ft, una altura de 37,2 ft y ancho de 0,129.

ibia 3.09. HIStorial de Bullu OF del pozo conoliaco- z								
Resultados del B' Up de Con-28								
B' UP	B' Up # 1 B' Up # 2 B' Up # 3 Unida							
Fecha:	05-mar-08	15-mar-08	24-mar-08					
Qo =	32,4	240	182	BPPD				
Qw =	183,6	409	121	BAPD				
Qt =	216	649	303	BFPD				
hmp =	10238	10238	10238	ft				
hbomba =	9988	9988	9945	ft				
Pwf =	1164	1152	1152	psi				
PR =	2800	2220	2545	psi				

3.2.4.9. Historial de B' UP

Tabla 3.69. Historial de Build UP del pozo Cononaco- 28

Pwfmp =	1200	1256	1251	psi			
PRmp =	3587	2324	2700	psi			
S =	2,5	1	-2,53				
k =	32	67	17	md			
Elaborado por: Gabriela Nathaly Herrera Cadena							

^{3.2.4.10.} Análisis de Curvas IPR

Elaborado por: Gabriela Nathaly Herrera Cadena

Elaborado por: Gabriela Nathaly Herrera Cadena

- Análisis del Fracturamiento

La figura 3.49. Curva IPR, nos muestra que el pozo se encuentra produciendo 240 bppd de petróleo, Qw= 409 bapd, a una Pwf = 1152 psi, con un daño de S= 1, razón por la cual se determinó realizar un tratamiento de fracturamiento para remediar el daño de la formación y solucionar el alto contenido de agua producido, el proceso concluyó satisfactoriamente el 22 de marzo del 2008.

La figura 3.50. Curva IPR, fue graficada con datos de los resultados de un Build Up posterior a la aplicación de la fractura, donde se pudo constatar que el daño del pozo ha disminuido sustancialmente a S=-2,53, indicador que me muestra que el pozo esta estimulado, se cuenta con un caudal de petróleo Qo=182 bppd a una Pwf=1251 psi, la intersección de las curvas de presión versus caudal, se intersecan sobre la curva IPR factor indicativo de que el pozo ha sido estimulado.

CONONACO – 28							
Sistema de Levantamiento Artificial	FECHA	Qt	Qo	BSW	API	GOR	
UNIDADES		BFPD	BPPD	%		MPCS	
PPS	27/03/2008	400	168	58	18	2	
PPS	30/08/2008	117	64	45	18	1	
PPS	28/12/2008	228	114	50	18	1	
PPS	29/01/2009	51	26	50	18	1	

Tabla 3.70. Datos de Producción

Elaborado por: Gabriela Nathaly Herrera Cadena

Los presentes datos dela tabla nos muestra que la producción del pozo Cononaco – 28 tiene un alto corte de agua, que ayuda al empuje del petróleo al pozo ya que nos encontramos frente a la producción de un crudo pesado y parafínico.

Posterior a la fractura se realizan cambios a las bombas de completación de fondo debido a daños de taponamiento por residuos parafínicos relacionado a la producción de crudo pesado, no se percibe un alto nivel de contenido de gas.

Según lo observado, en cuanto a datos de producción de este pozo, el mismo podría estar en un rango entre 400 y 500 barriles de crudo por día. Sin embargo

debe analizarse cuidadosamente el efecto del crudo pesado, una vez que el mismo alcanza la superficie.

Quizá se produce un incremento en la viscosidad del mismo por efecto del enfriamiento, lo cual hace que el sistema electrosumergible sea sometido a mayor esfuerzo, provocando el daño del equipo.

3.2.4.11. Incremento de producción estimado del desarrollo óptimo esperado del fracturamiento hidráulico

Se determinó caudales a diferentes valores de daños de la formación antes y después de ser estimulada simulando su producción con valores de S = -1, -2, -3.

En la siguiente tabla se presenta la eficiencia de Flujo y el caudal incremental a diferentes valores de daño.

					ΔP	
S	EF	Qo	ΔPs	IP	fract=	Qi
1	0,9816	240	19,618	1,4682	0	0
-1	1,0228	297,7	-24,34	1,9322	39,3094	57,715
-2	1,05	326,6	-53,39	2,2947	58,9641	86,573
-3	1,0816	355,4	-87,16	2,8247	78,6188	115,43
		<u> </u>			<u> </u>	

Tabla 3.71. Parámetros del pozo Cononaco – 28 a diferentes valores de S

Elaborado por: Gabriela Nathaly Herrera Cadena

En la siguiente tabla se presenta una secuencia de los caudales de petróleo a diferentes valores de daño estimados para la gráfica de la IPR actuales y futuros.

Tabla 3.72. Cauda	les estim	ados del	pozo C	ononaco -	· 28 a	diferentes	valores	de S

	Qo							
Pwf	S = 1	S = -1	S = -2	S = -3				
2324	0	0	0	0				
2200	43,03074	53,37881	58,55285	63,72688				
2000	105,5153	130,8897	143,5769	156,2642				
1800	161,3505	200,1522	219,5531	238,954				
1500	233,5014	289,6541	317,7304	345,8068				
1256	282,24	350,1134	384,05	417,9867				
1000	323,96	401,8662	440,8193	479,7724				

820	347,5755	431,1608	472,9534	514,7461		
500	377,9768	468,873	514,3211	559,7692		
0	395,9462	491,1637	538,7725	586,3813		
Elaborado por: Gabriela Nathaly Herrera Cadena						

Las Curvas IPR's obtenidas se muestran en la figura siguiente:

El valor de la producción de petróleo antes de la fractura es de 240 BPPD, la gráfica esquematiza el posible incremento de producción en función de la remediación del daño, el daño obtenido después del fracturamiento hidráulico es de S = -2,53, con lo que se debería obtener una producción de petróleo de aproximadamente 340 BPPD, pero en realidad se produjo 182 BPPD existe una diferencia de 158 BPPD, valor con el cual se deduce que el diseño de la fractura aplicado no fue el óptimo, ya que se produjo una estimulación y el caudal produción, en el Build Up realizado después de la fractura consta este valor de caudal, pero es importante poner en conocimiento que el pozo tuvo varios problemas por el estado del sistema de levantamiento artificial. Se debe tomar en

cuenta que el yacimiento contiene crudo pesado; este crudo a pesar de tener alta viscosidad esta se incrementa con la disminución de la temperatura dificultando su conductividad. Constituye un factor muy importante el rediseñar las facilidades de producción cambiando el sistema de levantamiento artificial o colocando un sistema MTU de producción por cada pozo, considerando el contenido parafínico del crudo.

CAPÍTULO IV

4. ANÁLISIS ECONÓMICO

4.1. ANÁLISIS ECONÓMICO

El análisis económico constituye un estudio que correlaciona la inversión realizada al aplicar la remediación de daño y el ingreso de capital en función de la proyección de producción estimada.

El análisis se aplicó a los pozos en los cuales tuvo lugar el Fracturamiento Hidráulico, señalando que los resultados esperados en el incremento de producción para los pozos Cononaco – 02 y Cononaco - 28 después de la fractura presentan un escenario pesimista, razón por la cual dicho análisis se aplicó únicamente a los pozos Cononaco – 16 y Cononaco – 23 que presentan un escenario considerablemente bueno.

De acuerdo al Build Up del pozo Cononaco – 16 antes de la fractura este presenta un daño de S = 2,6; mientras que después de la fractura el daño disminuye a S = -1 con este valor se obtiene un incremento de producción de 99 bppd caudal con el cual se aplicada la estimación de declinación de producción exponencial durante un 12 periodos de 1 mes.

En función a la declinación de producción promedio obtenida se aplica los métodos de evaluación de proyectos como son el Valor Actual Neto VAN y la Tasa Interna de Retorno TIR para verificar la factibilidad del proyecto.

De la misma manera se evalúa al pozo Cononaco – 23, con un valor de daño de S = 10,5 obtenido antes de la fractura y un valor de año de S = -0.8 obtenido después de la fractura con un incremento de producción de Qo = 134 bppd. Ver tabla 4.1.

	Qo antes de la fractura	Qo después de la fractura	INCREMENTO	
POZO	BPPD	BPPD	BPPD	
Cononaco - 16	79	178	99	
Cononaco - 23	580	714	134	

Tabla 4.1. Incremento de Producción

Realizado por: Gabriela Nathaly Herrera Cadena

4.1.1. PERFIL DE PRODUCCIÓN

El incremento de producción de petróleo de cada uno de los pozos ha sido estimado para el tiempo de vida útil del proyecto, es decir; 12 periodos de 1 mes, considerando una declinación exponencial de un año de producción. Ver tabla 4.2.

$$q_t = q_i e^{-Dt}$$
 Ec. 4.1.

Donde:

- D = Declinación como una fracción de la tasa de producción [barril/mes]
- q_i = Tasa de producción referencial [barriles mensuales]

t = Tiempo [meses]

	Tabla 4.2.	Estimación	de Prod	ducción	por De	clinación	Exponencial
--	------------	------------	---------	---------	--------	-----------	-------------

Incren	Incremento de Producción ∆Qo en (BPPD)							
Periodo Cononaco - 16 Cononaco								
0	0	0						
1	96	130						
2	93	126						
3	91	123						
4	88	119						
5	86	116						
6	83	112						
7	81	109						
8	78	106						
9	76	103						
10	74	100						
11	72	97						
12	70	94						
TOTAL	988	1337						

Realizado por: Gabriela Nathaly Herrera Cadena

4.1.2 EGRESOS

4.1.2.1 Precio del Crudo Napo

Es fijado en base al marcador estadounidense West Textas Intermediate (WTI). El diferencial (castigo) entre el precio WTI y el crudo Napo es debido a la calidad del crudo (ºAPI, azufre y %BSW), los cuales afectan su precio de venta. Para la evaluación del proyecto se considera un promedio entre los dos valores de precio del crudo Napo \$40 y \$60 el cual sería \$ 50 /barril.

4.1.2.2 Costos de Operación

El costo de operación incluye: salarios, materiales, transporte, inspección técnica, mantenimiento, instrumentación, químicos, reacondicionamiento. Ver Tabla 4.3.

Table							
Compañía	Servicio	Gastos					
DYGOIL - 20	Movimiento de la Torre	5700					
DYGOIL - 20	Trabajo de la Torre (30D + 4H)	260205					
DYGOIL - 20	SUPERVICIÓN Y TRANSPORTE	32229					
	QUIMICOS						
REDA	EQUIPOS DE SUBSUELO Y SUPERFICIE	100000					
PETROTECH		479					
DYGOIL	UNIDAD DE WIRELINE	9264					
SLB		161153					
	UNIDAD DE CABLE ELECTRICO						
REDA		2368					
ADRIALPETROL	SUPERVISION E INSTALACIONES	7700					
SOLIPET	SERVICIO DE SPOOLER	3388					
SLB	UNIDAD DE BOMBEO FRACTURA	248046					
BJ SERVICES		14223					
PRIDE	UNIDAD DE BOMBEO	6827					
SERTECPET	EVALUACIÓN JET	49999					
SOLIPET	EVALUACIÓN JET	540					
	TOTAL	902121					

Tabla 4.3. Costos del Fracturamiento Hidráulico

Fuente: Petroproducción

4.1.2.3 Costos de Producción (Inversión)

Los costos de producción incluyen los costos de operación y de transporte del crudo hasta ser comercializado; este valor se fija en \$8/barril según datos emitidos por Petroproducción y Petrocomercial para junio del 2008. Ver tabla 4.4.

Costos de Producción Mensuales						
	Conon	aco - 16	Cononaco – 23			
Periodo (meses)	Incremento de Producción Mensual (BPPD)	Egresos por Producción Mensuales (USD)	Incremento de Producción Mensual (BPPD)	Egresos por Producción Mensuales (USD)		
0	0	0	0	0		
1	2885	23077	3904	31236		
2	2802	22414	3792	30338		
3	2721	21769	3683	29466		
4	2643	21144	3577	28619		
5	2567	20536	3474	27796		
6	2493	19946	3375	26997		
7	2422	19372	3278	26221		
8	2352	18815	3183	25467		
9	2284	18274	3092	24735		
10	2219	17749	3003	24024		
11	2155	17239	2917	23334		
12	2093	16743	2833	22663		
TOTAL	29635	237078	40112	320894		

Tabla 4.4. Egresos Mensuales por Costos de Producción por Barril de Petróleo

Realizado por: Gabriela Nathaly Herrera Cadena

4.1.3 INGRESOS

Los ingresos mensuales se obtienen con el producto del precio del crudo de \$50 y la producción de petróleo en ese periodo. Ver tabla 4.5.

Ingresos por Producción Mensual (USD)							
	Cononad	co – 16	Cononaco – 23				
Periodo (meses)	Incremento de Producción Mensual (BPPD)	Ingresos por Producción Mensual (USD)	Incremento de Producción Mensual (BPPD)	Ingresos por Producción Mensual (USD)			
0	0	0	0	0			
1	2885	144231	3904	195222			
2	2802	140085	3792	189610			
3	2721	136059	3683	184160			
4	2643	132147	3577	178866			
5	2567	128349	3474	173725			
6	2493	124659	3375	168731			
7	2422	121076	3278	163881			
8	2352	117596	3183	159170			
9	2284	114215	3092	154594			
10	2219	110932	3003	150151			
11	2155	107743	2917	145834			
12	2093	104646	2833	141642			
TOTAL	29635	1481739	40112	2005586			

Tabla 4.5. Ingresos por Producción Mensual

Realizado por: Gabriela Nathaly Herrera Cadena

La sumatoria de los ingresos mensuales da como resultado para el pozo Cononaco – 16 un ingreso de \$1481739 y para el pozo Cononaco – 23 un ingreso de \$2005586.

4.1.4. HIPÓTESIS CONSIDERADAS EN EL ANÁLISIS ECONÓMICO

- Se estima a una tasa de actualización anual de 12% (1% mensual)
- De acuerdo con los historiales de Build Up antes y después de la fractura se estima la declinación del incremento producción diaria individualmente para cada pozo, como se muestra en la tabla 4.2.
- Se considera 1 año de vida útil de la aplicación del tratamiento de Fracturamiento Hidráulico en óptimas condiciones.

 Se determina un incremento de producción de 99 BPPD, para el pozo Cononaco – 16 y de 134 BPPD para el pozo Cononaco – 23, obtenidos después de la aplicación del tratamiento de Fracturamiento Hidráulico.

4.2. EVALUACION DEL PROYECTO

En la industria petrolera la rentabilidad es alta, por lo cual las inversiones son recuperadas a corto plazo de 9 a 12 meses, para asegurar la recuperación de la inversión y obtener ganancias del proyecto.

A continuación se presentan la evaluación financiera del proyecto, considerado para \$50 por barril de petróleo.

El análisis económico incluye cálculo del TIR, VAN.

4.2.1. VALOR ACTUAL NETO

Es un procedimiento que permite calcular el valor presente de un determinado número de flujos de caja futuros, originados por una inversión; entendiéndose como flujos de caja a la diferencia entre los ingresos y los egresos generados en un periodo determinado durante el tiempo de vida del proyecto. Además, descuenta una tasa o tipo de interés igual para todo el tiempo de vida del proyecto. Su interpretación se muestra en la siguiente tabla.

El valor actual neto es igual a la sumatoria de los flujos de caja actualizados de cada mes, es decir los valores actuales de los ingresos menos los egresos, a una tasa de actualización i.

Para el cálculo del VAN se usa la siguiente fórmula:

$$VAN = \sum_{k=0}^{n} \frac{FNCK}{(1+r)^{k}}$$
 Ec. 4.2.

Donde:

FNCK = Flujo neto de caja para el periodo k

- i = Tasa de actualización (interés)
- n = Tiempo de vida del proyecto

Valor	Significado	Decisión a tomar					
VAN > 0	La inversión produciría ganancias por encima de la rentabilidad exigida	Se acepta el proyecto					
VAN < 0	La inversión produciría pérdidas por encima de la rentabilidad exigida	No se acepta el proyecto					
VAN = 0	La inversión no produciría ni ganancias ni pérdidas	Dado que el proyecto no agrega valor monetario por encima de la rentabilidad exigida, la decisión debería basarse en otros criterios.					

Tabla 4.5. Interpretación Valor Actual Neto

Realizado por: Gabriela Nathaly Herrera Cadena

El VAN para el pozo Cononaco – 16 con un precio de barril de \$50/ barril de petróleo es de VAN = \$269306; analizando el valor anterior obtenido se puede concluir que el proyecto aplicado para este pozo si es rentable; de la misma manera se analiza este valor para el pozo Cononaco – 23 con un VAN = \$683447 se concluye que el proyecto desarrollado si es factible y rentable para Petroproducción. Ver Tabla 4.8. y 4.9.

Es necesario recalcar que se analiza el proyecto con una tasa de actualización anual del 12%.

4.2.2. TASA INTERNA DE RETORNO

Es la tasa de interés con la cual el valor actual neto o valor presente neto (VAN) es igual a cero. El VAN es calculado a partir del flujo de caja anual, trasladando todas

las cantidades futuras al presente. Es un indicador de la rentabilidad de un proyecto, a mayor TIR, mayor rentabilidad.

La fórmula que nos permite calcular La Tasa Interna de Retorno es:

$$VAN = \sum_{k=0}^{n} \frac{FNCK}{(1+TIR)^{k}} = 0$$
 Ec. 4.3.

Si V.A.N =0, entonces T.I.R = i

Si i es la tasa de actualización, entonces:

T.I.R. es menor que i, el proyecto no es viable T.I.R. es igual a i, el proyecto es indiferente, y si T.I.R. es mayor que i, el proyecto es viable

El TIR obtenido para el pozo Cononaco - 16 es de TIR = 2,7% mensual y TIR = 38,35% anual que constituye un valor mayor a la tasa de actualización del 12% anual con un costo de producción \$12 / barril de petróleo; mientras que para el pozo Cononaco - 23 la Tasa Interna de Retorno es de TIR = 8,5% mensual y TIR = 167,12 % anual valor mayor a la tasa de actualización del 12% anual. Ver Tabla 4.6. y 4.7.

Tabla 4	.6. Resultados	s de la E	valuación	del Proyecto	para el pozo	o Conona	co – 16

Inversión Total del Proyecto (USD)	1139199
Tasa Interna de Retorno Mensual	5,7%
Tasa Interna de Retorno Anual	68%
Valor Actual Neto al 12% Anual (USD)	269306
Realizada par: Cabriela Nathaly Herrora Cadena	

Realizado por: Gabriela Nathaly Herrera Cadena

Inversión Anual Total del Proyecto (USD)	1223015
Tasa Interna de Retorno Mensual	145%
Tasa Interna de Retorno Anual	1740%
Valor Actual Neto al 12% Anual (USD)	683447

Tabla 4.7. Resultados de la Evaluación del Proyecto para el pozo Cononaco - 23

Realizado por: Gabriela Nathaly Herrera Cadena

4.3. ANÁLISIS DE RESULTADOS

- El Valor Actual Neto (VAN) calculado indica que los flujos de caja descontados y llevados a valor presente son suficientes para solventar la inversión a realizarse
- La tasa interna de retorno (TIR) calculada indica que los flujos de caja proporcionarán una rentabilidad óptima y superior al costo de capital.
- El tiempo de recuperación de la inversión a realizarse se estima en un corto periodo de ejecución del proyecto

Resumiendo, un proyecto es económicamente rentable cuando:

- El valor actual neto (V.A.N) es mayor que cero.
- La tasa interna de retorno (T.I.R) es mayor a la tasa de actualización.

En las tablas 4.8. y 4.9. se presenta el cálculo del VAN y el TIR para los pozos Cononaco – 16 y Cononaco – 23.

	Análisis Económico pozo Cononaco - 16							
Fecha	Periodo	Incremento de Producción diaria (BPPD)	Producción mensual (BPPD)	Ingresos por Producción mensual (USD)	Egresos Mensuales (USD)	Flujo Neto de Caja (USD)	VAN a 12% anual (USD)	VAN acumulado (USD)
25-nov	0	0	0	0	902121	-902121	-902121	-902121
25-dic	1	96	2885	144231	23077	121154	119955	-782166
25-ene	2	93	2802	140085	22414	117672	115353	-666813
25-feb	3	91	2721	136059	21769	114289	110928	-555885
25-mar	4	88	2643	132147	21144	111004	106673	-449213
25-abr	5	86	2567	128349	20536	107813	102580	-346632
25-may	6	83	2493	124659	19945	104714	98645	-247987
25-jun	7	81	2422	121076	19372	101704	94861	-153126
25-jul	8	78	2352	117596	18815	98780	91222	-61904
25-ago	9	76	2284	114215	18274	95941	87723	25818
25-sep	10	74	2219	110932	17749	93183	84357	110176
25-oct	11	72	2155	107743	17239	90504	81121	191297
25-nov	12	70	2093	104646	16743	87903	78009	269306
			1481739	1139199	342540	269306		

Tabla 4.8. Cálculo del VAN y el TIR para el pozo Cononaco – 16

Inversión Total del Proyecto (USD)	1139199
Tasa Interna de Retorno Mensual	5,7%
Tasa Interna de Retorno Anual	68%
Valor Actual Neto al 12% Anual (USD)	269306

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 4.1. Representación del VAN en función del tiempo para el pozo Cononaco – 16

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 4.2. Representación del TIR en función del tiempo para el pozo Cononaco – 16

Elaborado por: Gabriela Nathaly Herrera Cadena

Análisis Económico del pozo Cononaco - 23										
Fecha	Periodo	Incremento de Producción Diaria de Petróleo (BPPD)	Producción mensual de Petróleo (BPPD)	Ingresos por Producción Mensual de Petróleo (USD)	Egresos Mensuales por barril de Petróleo (USD)	Flujo de Caja (USD)	VAN a 12% anual (USD)	VAN Acumulado (USD)		
25-nov	0	0	0	0	902121	-902121	-902121	-902121		
25-dic	1	130	3904	195222	31236	163987	162363	-739758		
25-ene	2	126	3792	189610	30338	159273	156134	-583624		
25-feb	3	123	3683	184160	29466	154694	150145	-433479		
25-mar	4	119	3577	178866	28619	150248	144385	-289094		
25-abr	5	116	3474	173725	27796	145929	138846	-150248		
25-may	6	112	3375	168731	26997	141734	133520	-16728		
25-jun	7	109	3278	163881	26221	137660	128398	111670		
25-jul	8	106	3183	159170	25467	133703	123472	235142		
25-ago	9	103	3092	154594	24735	129859	118736	353878		
25-sep	10	100	3003	150151	24024	126126	114181	468058		
25-oct	11	97	2917	145834	23334	122501	109800	577859		
25-nov	12	94	2833	141642	22663	118980	105588	683447		
				2005586	1223015	782572	683447			

Tabla 4.9. Cálculo del VAN y el TIR para el pozo Cononaco – 23

Inversión Anual Total del Proyecto (USD)	1223015
Tasa Interna de Retorno Mensual	145%
Tasa Interna de Retorno Anual	1740%
Valor Actual Neto al 12% Anual (USD)	683447

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 4.3. Representación del VAN en función del tiempo para el pozo Cononaco – 23

Elaborado por: Gabriela Nathaly Herrera Cadena

Figura 4.4. Representación del TIR en función del tiempo para el pozo Cononaco – 23

Elaborado por: Gabriela Nathaly Herrera Cadena

CAPÍTULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- La arenisca "T" inferior para el campo Cononaco se define como una arena sucia con intercalaciones de lutita y presencia arcillas migratorias como Glauconita y Caolinita; limitando la aplicación de tratamientos para remedición de daño, focalizando como única alternativa la aplicación del Fracturamiento Hidráulico, ya que si se aplicara la Acidificación las arcillas migratorias podrían hidratarse, desestabilizarse y migrar incrementando de esta manera el taponamiento de los poros y por ende el daño a la formación.
- Se considera un crudo parafínico al encontrado en la arenisca "T" inferior debido a su grado %PI = 19.
- La arena "T" inferior posee un Mecanismo de Producción por empuje Horizontal.
- La arena "T" inferior cuenta con una porosidad promedio de 15,93%, una permeabilidad de 880,45 md y una saturación de agua de 25,92%.
- El Sistema de Levantamiento Artificial predominante en el Campo Cononaco es el Bombeo Electrosumergible.

- De acuerdo a los ajustes de historia se definió que la arena Hollín Inferior y Hollín Superior tienen la misma profundidad al contacto agua – petróleo. En los yacimientos de baja relación gas – petróleo, el mecanismo de producción por expansión es mínimo y la presión cae rápidamente. Esta situación es evidente en las arenas U y T; ya que Hollín Superior y Hollín Inferior son los yacimientos productores con la relación gas – petróleo más baja del campo, sin embargo, la presión se ha mantenido debido a la presión de los acuíferos activos.
- A junio del 2008 la arenisca "T" inferior se cuenta con un volumen de reservas iniciales probadas de 140502580 BLS, una producción acumulada de 105,7 MMBLS y un volumen de reservas remanentes de aproximadamente 34 MMBLS, con un factor de recobro de 30,19%.
- El daño de formación se considera como cualquier proceso que altera la permeabilidad de una formación en un reservorio de tal manera que la producción decrece.
- Se debe considerar diversos factores determinantes para la selección de pozos candidatos a la aplicación del Fracturamiento Hidráulico como son:
 - Condiciones de Reservas recuperables, y presión del reservorio.
 - Tiempo de Vida productiva rentable del pozo.
 - Disposición de la información adecuada y necesaria para sustentar el estudio de la aplicación del fracturamiento.
 - Determinar el volumen incremental previsto para después del fracturamiento.

- La fractura se debe aplicar enfocándose en las siguientes razones:
 - Desviar el flujo para evitar el daño en las vecindades del pozo y retornar a su productividad normal.
 - Extender una ruta de conducto en la formación y así incrementar la productividad a sus niveles naturales.
 - Alterar el flujo de fluidos en la formación.
- El diseño de la Fractura fue considerado similar para los cuatro pozos debido a que se fracturó la misma arena; esta a su vez presenta características similares a lo largo del Campo Cononaco.
- La aplicación del fracturamiento hidráulico es la de incrementar la conductividad del petróleo de la formación hacia el pozo, minimizando la caída de presión, de esta manera ayudando a remediar el daño de formación causado por la migración de finos que se depositan en la cara del pozo.
- Es importante cuidar del drawdown una vez realizado el tratamiento y puesto en producción para de esta manera evitar que suceda el desprendimiento de arcillas migratorias que obstruyan los conductos porales de la arena.
- La potencia requerida para los equipos de fracturamiento, dependerá del tamaño del fracturamiento a realizar, y este a su vez de las características del yacimiento, del material apuntalante y el fluido de fractura.

- Es importante la realización de pruebas de compatibilidad entre fluidos de fractura y fluidos del reservorio, de esta manera evitar la formación de emulsiones o precipitados.
- Se tomó un límite económico de 100BPPD para determinar la declinación exponencial de producción.
- Para controlar y prevenir arenamiento prematuros se tomaron las siguientes medidas; bombear volúmenes de pad más grandes y añadir al fluido fracturante controladores de filtrado como: FloSAVER + Silica 100.
- Se considera indispensable la realización del Tubing Pickle, ya que me ayuda a verificar si las tuberías se encuentran aptas para manejar altas presiones.
- El gradiente de fractura más elevado, se observó en el pozo Cononaco 02; de 0,7 psi/ft, mientras que para el pozo Cononaco - 23 es de 0,69 psi/ft; para el pozo Cononaco – 16 es de 0,67 psi/ft y para el pozo Cononaco – 28 es de 0,61 psi/ft.
- El modelo utilizado para la realización del proyecto de fracturamiento fue el PKN, el cual el ancho es mucho menor que las otras dimensiones de la fractura: altura y longitud; mientras que la longitud es mayor que las otras dimensiones.
- Para la selección del fluido se fijó como prioridad la utilización de un sistema que diera la mayor posibilidad de limpieza en el empaque de la fractura posterior al tratamiento; por este motivo se utilizó el sistema

YF130HTD como fluido de fractura de esta manera mejorar la eficiencia hidráulica de la fractura.

- Para la selección del Apuntalante se fijo como prioridad que este mantenga las paredes de la fractura separada una vez que el bombeo finalice y el fluido de fractura filtre a la formación es por eso que para este proyecto de fracturamiento se utilizo el apuntalante tipo 16/20 CeramaxTM.
- El diseño del DataFrac para los pozos Cononaco 02 y Cononaco 16, no fue el óptimo, debido a que en su realización se produjeron arenamientos prematuros, se presume que en el pozo Cononaco -02 el fluido de fractura fue absorbido por la falla natural cercana al pozo.
- El incremento de producción del fracturamiento no fue el esperado para los pozos Cononaco – 02 y Cononaco – 28, en especial en el pozo Cononaco – 28 que tuvo varios problemas de completación de fondo.
- Es importante recalcar que según los datos de producción de los pozos Cononaco – 02, Cononaco – 16 y Cononaco – 23, la presión de fondo fluyente se encuentra bajo el punto de burbuja, después de la aplicación del fracturamiento.
- Pese a que literalmente se esta produciendo bajo el punto de burbuja las completaciones de fondo que son Bombeo Electrosumergible, no presentan problemas de cavitación.
- Se realizó un minucioso estudio a los historiales de producción de los pozos una vez realizada la fractura y se obtuvo que la producción de gas es relativamente baja de alrededor de GOR = 1 PCS, con este dato se pudo

corroborar que no se está produciendo bajo el punto de burbuja concluyendo que los datos PVT determinados para la arena T inferior son erróneos.

- Los datos PVT tomados para la arena T inferior se extraen del pozo Cononaco – 22, el cual se encuentra del otro lado de la falla natural, con el cual se concluye que este pozo podría tener características PVT diferentes, asumiendo un tiempo de entrampamiento diferente.
- La información de registros sónico di-polar es de mucha importancia para el diseño de fractura ya que a partir de estos datos se obtiene todas las propiedades mecánicas de las rocas.
- El análisis económico se realizó únicamente a los pozos que presentan un incremento de producción sustancialmente factible para Petroproducción como son el pozo Cononaco – 16 y el pozo Cononaco – 23 de los cuales se obtuvieron los siguientes valores: Ver tabla 5.1.

POZO	Cononaco - 16	Cononaco - 23				
Inversión Anual Total del Proyecto (USD)	1223014,817	1223015				
Tasa Interna de Retorno Mensual	145%	145%				
Tasa Interna de Retorno Anual	1740%	1740%				
Valor Actual Neto al 12% Anual (USD)	683446,9813	683447				

Realizado por: Gabriela Nathaly Herrera Cadena

La tasa de actualización es 12 % anual, el valor obtenido del indicador TIR debe ser mayor que la tasa de actualización anual esto se cumple para los dos casos, de igual manera el VAN obtenido es mayor a 0 con el cual se considera un proyecto rentable.

5.2. RECOMENDACIONES

- Debido a los problemas de arenamiento suscitado en algunos pozos se recomienda un minucioso estudio de las propiedades mecánicas de la roca, tomando en cuenta el medio ambiente de pozo como la falla natural cercana al pozo Cononaco – 02.
- Se recomienda realizar pruebas de restauración de presión Build Up antes y después de la fractura, manteniendo tiempos óptimos para que se alcance el estado pseudoestabilizado; teniendo así una mejor perspectiva de las propiedades del pozo a ser tratado.
- Es indispensable realizar una nuevo análisis PVT para la arena "T" inferior del campo Cononaco, debido a que la actual pertenece al pozo Cononaco – 22, y este pozo se encuentra detrás de una falla natural, existiendo la posibilidad de que presente diferentes características debido a diferentes tiempos de entrampamiento del crudo.
- Se recomienda rediseñar las facilidades de producción cambiando el sistema de Levantamiento Artificial para los pozos que producen de la arena "T" inferior, debido a que se cuenta con un crudo relativamente pesado y parafínico, se sugiere reemplazar el Bombeo Electrosumergible por Bombeo Hidráulico o a su vez colocando un sistema MTU de producción por cada pozo.
BIBLIOGRAFÍA

- BABY P, RIVADENEIRA M, BARRAGÁN R, "La Cuenca Oriente Geología y Petróleo", SIPEC, PETROBRAS, Octubre 2004
- BAKER HUGES, "Análisis del gradiente de fractura WAVEVAN Acústico Monopolar – Dipolar pozo Cononaco – 35", Petroproducción, Enero 2006.
- BJ SERVICES, "Fractura Hidráulica", Ecuador, noviembre 2003.
- BJ SERVICES; "Propuesta técnica de fracturamiento hidráulico-Power STIM Pozo Cononaco 23" Petroproducción, Septiembre 2006
- BLES JEAN- LOUIS, "La Fracturation des Roches", Bureau de recherches géologiques et minieres, Orleans 1981
- BOLAÑOS J, KUMMER P, USHIÑA A, "Evaluación del pozo Cononaco 02 previo al fracturamiento hidráulico", Petroproducción, Octubre 2006.
- BOLAÑOS Z. JANETH; "Evaluación Técnica Económica de los fracturamientos hidráulicos realizados en la arenisca "U" de los pozos Pucuna 07, Pucuna 11, Culebra 06 y Lago Agrio 30", UCE, Junio 2004
- COLLAZO JAVIER; "Enciclopedic dictionary of technical terms", Volumen 2, McGarw-Hill.
- DETOURNAY J, ROEGIERS C, "Poroelastic concepts explain some of the hydraulic fracturing mechanisms" paper SPE 15262,1986
- DNH, "Reservas de Petróleo Crudo y Gas del País", Petroproducción, 2007

- ECONOMIDES M, KENNETH G; "Reservoir Stimulation" Schlumberger, 2000
- FRYDMAN M, RESTREPO J, SALAZAR H A, OSORIO JG; "Mem y su aplicación al planeamiento de perforación de pozos"
- GAMBOA MARIA, "Estudio de incremento de producción mediante fracturamiento hidráulico en la arena T inferior del Campo Cononaco", EPN, Octubre 2007.
- NITEC LLC, "Estudio de simulación numérica del campo Cononaco", Reporte Final, Actividad 6, 2002
- PAZMIÑO JORGE, "Fundamentos de la Teoría del Fracturamiento Hidráulico", Petroecuador, 2005
- PIRSON SYLVAIN, "Well Log Analysis for oil and gas formation evaluation", Prentice Hall, Englewood Cliffs, 1963
- PINNACLE TECHNOLOGIES, "Quick Guidelines for diagnostic Injections", Houston – Texas, 2007.
- SCHLUMBERGER; "Intro to well logging"
- SCHLUMBERGER; "Intro to the fracturing hydraulic"
- SCHLUMBERGER; "Propuesta de fracturamiento hidráulico para los Pozos Cononaco – 23, Cononaco – 16, Cononaco – 02 y Cononaco - 28" Petroproducción, Octubre 2006

- SEER OIL; "Interpretación de registros de pozos a hueco abierto", Diciembre 2001
- SUAREZ D. GUIDO; "Fracturamiento Hidráulico en un campo petrolero del Oriente ecuatoriano", EPN, 1976
- VALENCIA T RAUL; "Fundamentos de pruebas de presión", EPN, Agosto 2005
- WORKBENCH, "Production Data Analysis", Cientific Software Intercomp.
- ZAKI BASSIOUNI, "Caracterización y Comportamiento de Reservorios", AMOCO
- www.glossary.oilfield.slb.com
- http://industria-petrolera.blogspot.com/2007/11/mecanismos-naturalesde-produccin.html
- www.lacomunidadpetrolera.com/wiki/index.php?title=Expansi%C3%B3
 n_del_petr%C3%B3leo_y_gas_en_soluci%C3%B3n.
- www.ica.luz.ve/petroleo/grupo.html
- www.hidrocarburos.com.co/Training/CONTENIDOCURSOS/CONTENID OS%202006/Estimulacion%20y%20Fracturamiento%20Hidraulico.htm
- modelaje-de-pozos.blogspot.com/2007/11/utilidad-de-la-simulacin-depozos-con_04.html

GLOSARIO

Pozo Cerrado
Pozo cerrado esperando solicitud de abandono
Bombeo electrosumergible
Flujo natural
Bombeo hidráulico
Presión de reservorio
Presión de fondo fluyente
Trabajo de reacondicionamiento
Densidad de la roca
Gravedad
Esfuerzo
Módulo de corte
Tiempo de corte
Tiempo de compresión
Módulo de bulk
Módulo elástico de Young
Relación de Poisson
Tiempo de tránsito de corte
Tiempo de tránsito de cizalladura
Módulo de Young estático
Módulo de Young dinâmico
Porosidad
Permeabilidad
Skin (dano)
Eficiencia de flujo
Índice de prouctividad
Presión de burbuja
Gravedad específica del crudo
Barriles de petróleo por día

ср	Centipoises
IPR	Curvas de productividad
ppm	Partes por millón
PVT	Análisis de presión, volumen y temperatura
TIR	Taza interna de retorno
VAN	Valor actual neto
Con	Cononaco
OOIP	Petróleo original en sitio
Build-Up	Prueba de restauración de presión
ft	Pies
m	Factor de cementación
n	Exponente de saturación
md	Milidarcys
FR	Factor de recobro
Sw	Saturación de agua

Factor volumétrico del crudo

Bo

ANEXOS

ANEXOS 1 MAPA DE CONTORNOS ESTRUCTURALES AL TOPE ZONA ARENISCA "T" INFERIOR

198

ANEXO 1.1. Mapa de Contornos estructurales al tope Zona Arenisca "T" Inferior

ANEXOS 2 GRÁFICAS PARA EL DISEÑO DE FRACTURAS

Anexo 2.1. Gráfico de el Índice de Productividad en función de la conductividad de la fractura adimensional

Fuente: Schlumberger

Anexo 2.2. Dimensión del radio de la fractura para determinar el Nprop

Fuente: Schlumberger

Anexo 2.4. Gráfico del índice de productividad en función del radio, tomando Npro>0.1

Fuente: Schlumberger

Anexo 2.5. Gráfico de la conductividad de la fractura para diferentes dimensiones de apuntalante (20/40)

Anexo 2.6. Gráfico de la conductividad de la fractura para diferentes dimensiones de apuntalante

Fuente: Schlumberger

Anexo 2.6. Gráfico de la conductividad de la fractura para varias dimensiones de apuntalante

Anexo 2.6. Guía para seleccionar el apuntalante mas adecuado

ANEXOS 3 ESTIMACIÓN DE RESERVAS DE LOS POZOS ESTIMULADOS

Anexo 3.1. Estimación de las Reservas del pozo Cononaco - 02

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena Hollín Superior

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena Hollín Superior e Inferior

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena T

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 3.2. Estimación de las Reservas del pozo Cononaco - 16

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena Hollín Inferior

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena T

Fuente: OFM Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena Hollín

- Arena Hollín Superior

Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena T

Anexo 3.4. Estimación de las Reservas del pozo Cononaco – 28

- Arena Hollín Superior

Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena Hollín Superior

Elaborado por: Gabriela Nathaly Herrera Cadena

- Arena T

Elaborado por: Gabriela Nathaly Herrera Cadena

ANEXOS 4 CARTA DE INTERPRETACIÓN GEN-9

Anexo 4.1. Carta de Interpretación GEN-9

ANEXO 5 REGISTROS ELÉCTRICOS Y ZONAS DE PAGO

Anexo 5.1. Evaluación Petrofísica al pozo Cononaco – 02

- Arena T inferior

Scale : DB: OUTPU	Scale : 1 : 200 CON-02 DB: ОЛГИЛ (8) DEPTH (10142.FT - 10198.FT) 12022007 15:18								
DEPTH FT	0.6 0. 0.2 - LD (OHMM) - 20. 0.0 1.7 0. 0.2 0. 0.2 20. 0.0 1.7 0. 0.2	1.01	2 2.5 HOMA (gm/cc) 3. BH log 1.30. DTMA (uSec/ft) 80. Hyd N RHOHY (gm/cc) 1. Por Cil Por 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10. 10. 10. 10. 10. 10.	0.5 — PHT (Dec)0. 0.5 — PHE (Dec)0. 0.50. 0.50. DVW (Dec)0. 0.70. PHISECU (dec)0. 0.10. 0.10. Cil0. Movable Hyd0. Water0.	01 11 11 VSand (dec) 01 0.			
10150						when when when when when when when when			
DEPTH FT	NHI (dec) LD (OHMM) 20. 0.0 RHOB (OHMM) 2.7 0.2 MSFL (OHMM) 20. 0.0 1.7. DT (uSeoft) 2.7 0.2 MSFL (OHMM) 20. 0.0 140.	RWAFP (OHMM) .01	2 2.5 <u>HTMA (gm/cc)</u> 3. <u>BH log</u> 3. <u>AMA (uSec/ft)</u> 80. <u>HYd N</u> 0. <u>RHOHY (gm/cc)</u> 1. <u>Por Cli</u> Por s (<u>Sat Nt</u>	i SWU(Dec) i: SXOU (Dec) 0 1. 0 1. 1. SXOU (Dec) 0 1.	PHT (Dec) 0.5 — 0. 0.6 — 0. 0.7 — WW (Dec) 0. 0.5 — WW (Dec) 0. 0.5 — 0. — 0. 9.05 — 0. — 0. 9.1 — 1. — 0. 0.5 — 0. — 0. 0.5 — 0. — 0. 0.1 —	VWCL (Dec) 0. PHE (Dec) 1. — ME (Dec) 0. VSand (dec) 0. VLime (dec) 0. VDol (dec) 0. VDol (dec) 0. VDol (dec) 0. VDol (dec) 0. Unime (dec) 0. Unime (dec)			

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

- Zonas de Pago de la Arena T superior y T inferior

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

- Cutoff de la Zona de Pago de la arena Tinferior.

Zona #	Nombre	Top(ft)	Botton(ft)	Gross(ft)	Net(ft)	N/G	Av Phi	Av Sw	Av Vcl	Phi*H	PhiSo*H
7	T inferior	10143	10197	54	30,25	0,56	0,154	0,187	0,087	4,65	3,78
8	T inferior	10197	10308	111	31	0,279	0,379	0,344	0,007	11,74	7,7

Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 5.2. Evaluación Petrofísica al pozo Cononaco – 16

- Zonas de Pago de la Arena T superior y T inferior

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

Scale	Scale : 1 : 200 con-16 DB : CONONACO (86) DEPTH (10120.FT - 10160.FT) 10/02/2009 13:00								
1	2	GammaRay	Porosity	Water Saturation	Clay Volume				
DEPTH (FT)		GR (GAPI) 0	PHIE (Dec) 0.50.	SW (Dec) 10.	0				
			Reservoir Flag	Reservoir Flag	Reservoir Flag				
			Pay Flag	Pay Flag	Pay Flag				
	2								
10150									
10150									
	3								
1	2	GammaRay	Porosity	Water Saturation	Clay Volume				
DEPTH (FT)		GR (GAPI) 0	PHIE (Dec) 0.50.	SW (Dec) 10.	01.				
			Reservoir Flag	Reservoir Flag	Reservoir Flag				
			Pay Flag	Pay Flag	Pay Flag				

- Cutoff de la Zona de Pago del Pozo Cononaco – 16

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

- Zonas de Pago de la Arena T superior y T inferior

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

Scale	e: 1	1:200 ACO (24)	СОХ- DEPTTH (10135.5F	23 T - 10204.FT)	1002/2009 1 2 55
1	2	GammaRay	Porosity	Water Saturation	Clay Volume
DEPTH (FT)		GR (GAPI) 0	PHIE (Dec) 0.50.	SW(Dec) 10.	VWCL (Dec) 01.
10150	2				

- Cutoff y Zona de Pago de Arena T inferior del pozo Cononaco – 23

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

Anexo 5.4. Evaluación Petrofísica al pozo Cononaco – 28

- Zonas de Pago de la Arena T superior y T inferior

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

- Cutoff y Zona de Pago de Arena T inferior del pozo Cononaco – 23

Fuente: Petroproducción Elaborado por: Gabriela Nathaly Herrera Cadena

ANEXO6 DIAGRAMAS DE COMPLETACIÓN

Anexo 6.1. Diagrama de Completación del pozo Cononaco - 16

Fuente: Petroproducción

ANEXO 6.2. Sarta de Trabajo para Fracturamiento Hidráulico

Fuente: Petroproducción

Anexo 6.3. Diagrama de Completación de Fondo del Pozo Cononaco - 23

Fuente: Petroproducción

ANEXO 6.4. Sarta de Trabajo para Fracturamiento Hidráulico

Anexo 6.5. Diagrama de Completación de Fondo del Pozo Cononaco – 28

ANEXO 6.6. Sarta de Trabajo para Fracturamiento Hidráulico

Fuente: Petroproducción

Anexo 7.1. Reporte FracCade del pozo Cononaco – 16

FracCADE^{*} STIMULATION PROPOSAL

Operator: PETROPRODUCCIONWell: Cononaco 16Field: AUCAFormation: Arenisca T

Seccion 1: Configuración del pozo

Bottom Hole Temperature	223 degF
Deviated Hole	NO
Treat Down	TUBING
Flush Volume to 10088.0 f	t90.2 bbl

Tubing Data										
OD	Weight	ID	Depth							
(in)	(lb/ft)	(in)	(ft)							
3.500	9.3	2.990	10000.0							

Casing Data										
OD Weight ID Depth										
(in)	(lb/ft)	(in)	(ft)							
7.000	26.0	6.276	10200.0							

	Perforation Data												
Top MD (ft)	op Top Bottom ID TVD MD ft) (ft) (ft)			Shot Densit y (shot/ft)	Nu mb er	Diameter (in)							
10088.0	10088.0	10110.0	10110.0	9.00	198	0.48							
10120.0	10120.0	10150.0	10150.0	9.00	270	0.48							

Sección 2: Datos de la Zona

Propiedades Mecánicas de la Roca								
Zone Name	Top MD	Zone	Frac	Insitu	Young's	Poisson'	Toughness	
	(ft)	Height	Grad.	Stress	Modulus	s Ratio	(psi.in0.5)	
		(ft)	(psi/ft)	(psi)	(psi)			
Lutita arcillosa	9980.0	9.0	0.770	7688	1.705E+06	0.31	994	
Limolita arcillosa	9989.0	2.0	0.740	7393	2.640E+06	0.29	994	
Lutita limolitica	9991.0	2.0	0.750	7494	1.870E+06	0.30	1420	
Lutita arcillosa	9993.0	5.0	0.770	7697	1.705E+06	0.31	1704	
Lutita limolitica	9998.0	5.0	0.750	7500	1.870E+06	0.30	1420	
Arensica calcarea	10003.0	4.0	0.540	5403	3.685E+06	0.19	1420	
Arenisca arcillosa	10007.0	6.0	0.600	6006	2.530E+06	0.23	994	
Arenisca calcarea	10013.0	4.0	0.560	5608	3.960E+06	0.20	1704	
Limolita calcarea	10017.0	5.0	0.670	6713	4.565E+06	0.24	994	
Arenisca arcillosa	10022.0	6.0	0.580	5814	2.915E+06	0.22	1420	
Limolita	10028.0	2.0	0.730	7321	3.190E+06	0.28	1704	
Arenisca arcillosa	10030.0	2.0	0.580	5818	2.915E+06	0.22	994	
Arenisca calcarea	10032.0	6.0	0.560	5620	3.795E+06	0.20	1704	
Arenisca arcillosa	10038.0	7.0	0.600	6025	2.750E+06	0.23	994	
Limolita calcarea	10045.0	4.0	0.750	7535	4.235E+06	0.30	994	
Lutita limolitica	10049.0	3.0	0.750	7538	1.870E+06	0.30	3408	
Arenisca fina limol	10052.0	2.0	0.580	5831	3.025E+06	0.22	142	
Limolita arcillosa	10054.0	4.0	0.660	6637	2.915E+06	0.23	100	
Arenisca arcillosa	10058.0	6.0	0.580	5835	2.915E+06	0.22	700	
Lutita limolitica	10064.0	2.0	0.700	7045	2.585E+06	0.26	100	
Limolita arcillosa	10066.0	2.0	0.660	6644	2.915E+06	0.23	1200	
Arenisca arcillosa	10068.0	8.0	0.580	5842	2.915E+06	0.22	700	
Lutita arcillosa	10076.0	9.0	0.770	7762	1.705E+06	0.31	100	
Limolita arcillosa	10085.0	3.0	0.730	7363	2.915E+06	0.28	1200	
Lutita limolitica	10088.0	3.0	0.730	7365	2.090E+06	0.28	100	
Arenisca arcillosa	10091.0	9.0	0.600	6057	2.530E+06	0.23	700	
Arenisca fina limol	10100.0	3.0	0.570	5758	3.355E+06	0.21	700	
Arenisca arcillosa	10103.0	6.0	0.580	5861	2.915E+06	0.22	700	
Arenisca	10109.0	3.0	0.530	5359	3.245E+06	0.18	1200	
Lutita limolitica	10112.0	4.0	0.730	7383	2.915E+06	0.28	100	
Arenisca fina limol	10116.0	7.0	0.560	5667	3.190E+06	0.20	700	
Limolita	10123.0	2.0	0.690	6986	3.300E+06	0.25	1200	
Arenisca fina limol	10125.0	8.0	0.570	5774	3.355E+06	0.21	700	
Arenisca	10133.0	5.0	0.530	5372	3.245E+06	0.18	1200	
Caliza	10138.0	5.0	0.770	7808	4.565E+06	0.31	1200	
Limolita arcillosa	10143.0	3.0	0.740	7507	2.640E+06	0.29	1200	
Limolita	10146.0	4.0	0.740	7510	2.970E+06	0.29	1200	
Lutita arcillosa	10150.0	4.0	0.780	7919	1.705E+06	0.32	100	
Limolita	10154.0	2.0	0.730	7413	3.190E+06	0.28	100	
Lutita arcillosa	10156.0	11.0	0.770	7824	1.705E+06	0.31	100	
Arenisca arcillosa	10167.0	4.0	0.610	6203	2.420E+06	0.24	700	
Lutita arcillosa	10171.0	6.0	0.770	7834	1.705E+06	0.31	100	
Lutita limolitica	10177.0	2.0	0.750	7633	1.870E+06	0.30	100	
Lutita arcillosa	10179.0	41.0	0.830	8466	1.595E+06	0.35	100	

F	Propiedad	les de T	ransmi	sibilidad d	le la Roca			
Zone Name	Top MD	Net	Perm	Porosity	Res.	Gas	Oil	Water
	(ft)	Height	(md)	(%)	Pressure	Sat.	Sat.	Sat.
	()	(ft)	((70)	(psi)	(%)	(%)	(%)
Lutita arcillosa	9980.0	0.0	0.5	41.0	4291	65.0	10	25.0
Limolita arcillosa	9989.0	2.0	0.5	33.3	4295	65.0	10	25.0
Lutita limolitica	9991.0	0.0	0.5	33.3	4296	65.0	10	25.0
Lutita arcillosa	9993.0	0.0	0.5	34.3	4297	65.0	10	25.0
Lutita limolitica	9998.0	0.0	0.5	34.8	4299	65.0	10	25.0
Arensica calcarea	10003.0	4.0	8.5	15.8	3401	65.0	10	25.0
Arenisca arcillosa	10007.0	6.0	8.5	12.1	3402	65.0	10	25.0
Arenisca calcarea	10013.0	4.0	8.5	24.6	3404	65.0	10	25.0
Limolita calcarea	10017.0	0.0	0.5	17.4	4307	65.0	10	25.0
Arenisca arcillosa	10022.0	6.0	8.5	14.5	3407	65.0	10	25.0
Limolita	10028.0	0.0	0.5	17.4	4312	65.0	10	25.0
Arenisca arcillosa	10030.0	2.0	8.5	17.4	3410	65.0	10	25.0
Arenisca calcarea	10032.0	6.0	8.5	15.6	3411	65.0	10	25.0
Arenisca arcillosa	10038.0	7.0	8.5	25.6	3413	65.0	10	25.0
Limolita calcarea	10045.0	4.0	0.5	20.1	4319	65.0	10.0	25.0
Lutita limolitica	10049.0	0.0	0.5	18.4	4321	65.0	10.0	25.0
Arenisca fina limol	10052.0	2.0	8.5	18.0	3418	65.0	10.0	25.0
Limolita arcillosa	10054.0	0.0	0.5	18.0	4323	65.0	10	25.0
Arenisca arcillosa	10058.0	6.0	8.5	20.5	3420	65.0	10	25.0
Lutita limolitica	10064.0	0.0	0.5	36.5	4328	65.0	10	25.0
Limolita arcillosa	10066.0	0.0	0.5	31.5	4328	65.0	10	25.0
Arenisca arcillosa	10068.0	8.0	8.5	22.9	3423	65.0	10	25.0
Lutita arcillosa	10076.0	0.0	0.5	42.5	4333	65.0	10	25.0
Limolita arcillosa	10085.0	0.0	0.5	25.6	4337	65.0	10	25.0
Lutita limolitica	10088.0	0.0	0.5	17.7	4338	65.0	10	25.0
Arenisca arcillosa	10091.0	9.0	8.5	19.9	3431	65.0	10	25.0
Arenisca fina limol	10100.0	3.0	8.5	17.7	3434	65.0	10	25.0
Arenisca arcillosa	10103.0	6.0	8.5	20.6	3435	65.0	10	25.0
Arenisca	10109.0	3.0	8.5	19.3	3437	65.0	10	25.0
Lutita limolitica	10112.0	0.0	0.5	25.6	4348	65.0	10	25.0
Arenisca fina limol	10116.0	7.0	8.5	16.2	3439	65.0	10	25.0
Limolita	10123.0	0.0	0.5	13.2	4353	65.0	10	25.0
Arenisca fina limol	10125.0	8.0	8.5	13.2	3443	65.0	10	25.0
Arenisca	10133.0	5.0	8.5	13.9	3445	65.0	10	25.0
Caliza	10138.0	0.0	0.5	13.9	4359	65.0	10	25.0
Limolita arcillosa	10143.0	0.0	0.5	13.9	4361	65.0	10	25.0
Limolita	10146.0	0.0	0.5	16.2	4363	65.0	10	25.0
Lutita arcillosa	10150.0	0.0	0.5	19.4	4365	65.0	10	25.0
Limolita	10154.0	0.0	0.5	25.2	4366	65.0	10	25.0
Lutita arcillosa	10156.0	0.0	0.5	27.2	4367	65.0	10	25.0
Arenisca arcillosa	10167.0	4.0	8.5	18.5	3457	65.0	10	25.0
Lutita arcillosa	10171.0	0.0	0.5	33.1	4374	65.0	10	25.0
Lutita limolitica	10177.0	0.0	0.5	26.4	4376	65.0	10	25.0
Lutita arcillosa	10179.0	0.0	0.5	41.4	4377	65.0	10	25.0

Sección 3: Datos del Apuntalante

Proppant Permeability is calculated based on the following parameters:BH Static Temperature:223 degFStress on Proppant:3859 psiPropped Fracture Conc.:1.00 lb/ft2Average Young's Modulus:2.551E+06 psi

Datos del Apuntalante												
Proppant Name	Specific Gravity	Mean Diameter (in)	Pack Porosity (%)	Permeability (md)								
20/40 C-Lite	2.73	0.028	35.0	439950								
16/20 C-Lite	2.73	0.037	35.0	868486								
16/20 CeramaxTM I	2.66	0.041	35.0	560931								

Gráfico de la Permeabilidad del Apuntalante

Section 3: Propped Fracture Schedule

Pumping Schedule

The following is the Pumping Schedule to achieve a propped fracture half-length (X_f) of 304.4 ft with an average conductivity (K_fw) of 2407 md.ft.

	Descripción del Trabajo												
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)							
PAD	20.0	YF130HTD	4200	30.0		0.0							
0.5 PPA	20.0	YF130HTD	1500	30.0	16/20 CeramaxTM I	0.5							
1.0 PPA	20.0	YF130HTD	1600	30.0	16/20 CeramaxTM I	1.0							
2.0 PPA	20.0	YF130HTD	1700	30.0	16/20 CeramaxTM I	2.0							
3.0 PPA	20.0	YF130HTD	1800	30.0	16/20 CeramaxTM I	3.0							
4.0 PPA	20.0	YF130HTD	2000	30.0	16/20 CeramaxTM I	4.0							
5.0 PPA	20.0	YF130HTD	2100	30.0	16/20 CeramaxTM I	5.0							
6.0 PPA	20.0	YF130HTD	2100	30.0	16/20 CeramaxTM I	6.0							
FLUSH	20.0	WF130	3789	30.0		0.0							

Fluido	s Tot	ales
17000 gal	of	YF130HTD
3789 gal	of	WF130

	Apunt	alante Total	
42300 lb	of	16/20 CeramaxTM I	

	Ejecución del Trabajo													
Stage Name	Stage Fluid Volume (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressur e (psi)	Stage Time (min)	Cum. Time (min)					
PAD	4200	4200	100.0	100.0	0	0	3830	5.0	5.0					
0.5 PPA	1500	5700	36.5	136.5	750	750	3940	1.8	6.8					
1.0 PPA	1600	7300	39.8	176.3	1600	2350	3989	2.0	8.8					
2.0 PPA	1700	9000	44.1	220.5	3400	5750	3935	2.2	11.0					
3.0 PPA	1800	10800	48.6	269.1	5400	11150	3839	2.4	13.5					

	Ejecución del Trabajo												
Stage Name	Stage Fluid Volume (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressur e (psi)	Stage Time (min)	Cum. Time (min)				
4.0 PPA	2000	12800	56.2	325.3	8000	19150	3742	2.8	16.3				
5.0 PPA	2100	14900	61.3	386.6	10500	29650	3664	3.1	19.3				
6.0 PPA	2100	17000	63.5	450.1	12600	42250	3683	3.2	22.5				
FLUSH	3789	20789	90.2	540.3	0	42250	4117	4.5	27.0				

Sección 5: Simulación del Apuntalante de Fractura

The following are the results of the computer simulation of this Fracturing Proposal using a Pseudo 3-D Vertical model. Effective Conductivity and Effective Fcd are calculated based on perforated intervals with positive net heights.

Initial Fracture	е Тор	TVD	10091.0 ft
------------------	-------	-----	------------

Initial Fracture Bottom TVD ____ 10154.0 ft

Propped Fracture Half-Length 304.4 ft

EOJ Hyd Height at Well_____ 66.0 ft

Average Propped Width 0.129 in

Average Gel Concentration 466.5 lb/mgal

Average Gel Fluid Retained Factor 0.40

Net Pressure_____1998 psi

Efficiency 0.557

Effective Conductivity 2898 md.ft

Effective Fcd 1.120

Max Surface Pressure 4593 psi

Resultados de la Simulación de la Fractura											
From (ft)	To (ft)	Prop. Conc. at End of Pumping (PPA)	Propped Width (in)	Propped Height (ft)	Frac. Prop. Conc. (lb/ft2)	Frac. Gel Conc. (lb/mgal)	Fracture Conductivit y (md.ft)				
0.0	76.1	6.1	0.152	64.8	1.37	377.3	2841				
76.1	152.2	5.4	0.142	61.2	1.28	410.6	2659				
152.2	228.3	4.7	0.131	57.1	1.18	465.3	2454				
228.3	304.4	2.9	0.093	48.9	0.84	563.5	1747				

Proppant packed at 303 ft after 29 bbl in stage 5

Datos de la Geometría por Zona de Producción									
Zone Name	Top MD	Тор	Gross	Net	Fractur	Fractur	Fracture		
	(ft)	TVD	Height	Height	e Width	е	Conductivity		
		(ft)	(ft)	(ft)	(in)	Length	(md.ft)		
						(ft)			
Lutita arcillosa	9980.0	9980.0	9.0	0.0	0.000	0.0	0		
Limolita arcillosa	9989.0	9989.0	2.0	2.0	0.000	0.0	0		
Lutita limolitica	9991.0	9991.0	2.0	0.0	0.000	0.0	0		
Lutita arcillosa	9993.0	9993.0	5.0	0.0	0.000	0.0	0		
Lutita limolitica	9998.0	9998.0	5.0	0.0	0.000	0.0	0		
Arensica calcarea	10003.0	10003.0	4.0	4.0	0.000	0.0	0		
Arenisca arcillosa	10007.0	10007.0	6.0	6.0	0.000	0.0	0		
Arenisca calcarea	10013.0	10013.0	4.0	4.0	0.000	0.0	0		
Limolita calcarea	10017.0	10017.0	5.0	0.0	0.000	0.0	0		
Arenisca arcillosa	10022.0	10022.0	6.0	6.0	0.000	0.0	0		
Limolita	10028.0	10028.0	2.0	0.0	0.000	0.0	0		
Arenisca arcillosa	10030.0	10030.0	2.0	2.0	0.000	0.0	0		
Arenisca calcarea	10032.0	10032.0	6.0	6.0	0.000	0.0	0		
Arenisca arcillosa	10038.0	10038.0	7.0	7.0	0.000	0.0	0		
Limolita calcarea	10045.0	10045.0	4.0	4.0	0.000	0.0	0		
Lutita limolitica	10049.0	10049.0	3.0	0.0	0.000	0.0	0		
Arenisca fina limol	10052.0	10052.0	2.0	2.0	0.000	0.0	0		
Limolita arcillosa	10054.0	10054.0	4.0	0.0	0.000	0.0	0		
Arenisca arcillosa	10058.0	10058.0	6.0	6.0	0.000	0.0	0		
Lutita limolitica	10064.0	10064.0	2.0	0.0	0.000	0.0	0		
Limolita arcillosa	10066.0	10066.0	2.0	0.0	0.000	0.0	0		
Arenisca arcillosa	10068.0	10068.0	8.0	8.0	0.000	0.0	0		
Lutita arcillosa	10076.0	10076.0	9.0	0.0	0.000	0.0	0		
Limolita arcillosa	10085.0	10085.0	3.0	0.0	0.002	289.2	42		
Lutita limolitica	10088.0	10088.0	3.0	0.0	0.028	304.4	525		
Arenisca arcillosa	10091.0	10091.0	9.0	9.0	0.110	304.4	2057		
Arenisca fina limol	10100.0	10100.0	3.0	3.0	0.169	304.4	3152		
Arenisca arcillosa	10103.0	10103.0	6.0	6.0	0.186	304.4	3477		
Arenisca	10109.0	10109.0	3.0	3.0	0.173	304.4	3228		
Lutita limolitica	10112.0	10112.0	4.0	0.0	0.151	304.4	2822		
Arenisca fina limol	10116.0	10116.0	7.0	7.0	0.172	304.4	3220		
Limolita	10123.0	10123.0	2.0	0.0	0.174	304.4	3253		
Arenisca fina limol	10125.0	10125.0	8.0	8.0	0.175	304.4	3267		
Arenisca	10133.0	10133.0	5.0	5.0	0.124	304.4	2324		
Caliza	10138.0	10138.0	5.0	0.0	0.030	303.8	566		
Limolita arcillosa	10143.0	10143.0	3.0	0.0	0.000	0.0	0		

	Datos de la Geometría por Zona de Producción										
Zone Name	Top MD (ft)	Top TVD (ft)	Gross Height (ft)	Net Height (ft)	Fractur e Width (in)	Fractur e Length (ft)	Fracture Conductivity (md.ft)				
Limolita	10146.0	10146.0	4.0	0.0	0.000	0.0	0				
Lutita arcillosa	10150.0	10150.0	4.0	0.0	0.000	0.0	0				
Limolita	10154.0	10154.0	2.0	0.0	0.000	0.0	0				
Lutita arcillosa	10156.0	10156.0	11.0	0.0	0.000	0.0	0				
Arenisca arcillosa	10167.0	10167.0	4.0	4.0	0.000	0.0	0				
Lutita arcillosa	10171.0	10171.0	6.0	0.0	0.000	0.0	0				
Lutita limolitica	10177.0	10177.0	2.0	0.0	0.000	0.0	0				
Lutita arcillosa	10179.0	10179.0	41.0	0.0	0.000	0.0	0				

	Predicción del Tiempo de Exposición por Etapa											
Stage Name	Fluid Name	Pump Rate (bbl/min)	Fluid Volume (gal)	Perforation Injection Temp. (degF)	Exposure at BHST of 223 degF (min)	Exposure aboveWatch Temp. of 218 degF (min)						
PAD	YF130HTD	20.0	4200	198	5.6	5.6						
0.5 PPA	YF130HTD	20.0	1500	175	11.5	11.5						
1.0 PPA	YF130HTD	20.0	1600	121	7.2	7.2						
2.0 PPA	YF130HTD	20.0	1700	90	0.0	0.0						
3.0 PPA	YF130HTD	20.0	1800	88	0.0	0.0						
4.0 PPA	YF130HTD	20.0	2000	88	0.0	0.0						
5.0 PPA	YF130HTD	20.0	2100	88	0.0	0.0						
6.0 PPA	YF130HTD	20.0	2100	88	0.0	0.0						
FLUSH	WF130	20.0	3789									

Sección 6: Resultados de la Simulación de la Fractura

(3) ACL Perfil de la Concentración del Apuntalante

(4) Tratamiento

Anexo 7.2. Evaluación de Resultados del DataFrac

Fuente: Schlumberger

Anexo 7.2.2. Determinación del límite superior de la presión de cierre

Fuente: Schlumberger

Anexo 7.2.3. Determinación de Presión de Cierre

Fuente: Schlumberger

Anexo 7.2.4. Determinación del límite inferior de la presión de cierre

Fuente: Schlumberger

Anexo 7.2.5. Determinación de la Geometría de la fractura

Fuente: Schlumberger

Anexo 7.3. Reporte FracCade del pozo Cononaco – 23

FracCADE^{*} STIMULATION PROPOSAL

Operator: PETROPRODUCCIONWell: CONONACO 23Field: AUCAFormation: "T" Inferior

Well Location :

County	: Sucumbios
State	: Coca
Country	: Ecuador

Sección 4: Configuración del Pozo

Bottom Hole Temperature 223 degF Deviated Hole NO Treat Down TUBING Flush Volume to 10112.8 ft91.2 bbl

Tubing Data									
OD	Weight	ID	Depth						
(in)	(lb/ft)	(in)	(ft)						
3.500 9.3 2.990 10000.0									

Casing Data									
OD	Weight	ID	Depth						
(in)	(lb/ft)	(in)	(ft)						
7.000 26.0 6.276 10260.0									

Perforation Data										
Top MD (ft)	Top TVD (ft)	Botto m MD (ft)	Botto m TVD (ft)	Shot Density (shot/ft)	Number	Diameter (in)				
10152	10152	10200	10200	14.00	672	0.32				

Sección 2: Datos de la Zona

	Propiedades Mecánicas de la Formación									
Zone Name	Top MD	Zone	Frac	Insitu	Young's	Poisson'	Toughness			
	(ft)	Height	Grad.	Stress	Modulus	s Ratio	(psi.in0.5)			
		(ft)	(psi/ft)	(psi)	(psi)					
DIRTY-SANDSTONE	10080.0	25.0	0.749	7560	2.440E+06	0.34	994			
DIRTY-SANDSTONE	10105.0	8.0	0.716	7239	2.640E+06	0.20	994			
SHALE	10113.0	1.0	0.793	8021	7.840E+05	0.31	1420			
LIMESTONE	10114.0	5.0	0.815	8246	3.970E+06	0.17	1704			
SHALE	10119.0	11.0	0.815	8252	1.260E+06	0.34	1420			
SHALE	10130.0	4.0	0.749	7590	2.310E+06	0.16	1420			
T Sandstone	10134.0	8.0	0.749	7594	2.520E+06	0.23	994			
T Sandstone	10142.0	8.0	0.705	7154	3.490E+06	0.20	1704			
T Sandstone	10150.0	2.0	0.705	7157	3.850E+06	0.22	994			
Shale	10152.0	6.0	0.716	7272	2.380E+06	0.17	1420			
T Sandstone	10158.0	12.0	0.683	6943	2.330E+06	0.21	1704			
T Sandstone	10170.0	6.0	0.716	7285	3.150E+06	0.21	994			
T Sandstone	10176.0	13.0	0.716	7292	2.940E+06	0.20	1704			
T Sandstone	10189.0	12.0	0.716	7301	1.800E+06	0.24	994			
T Sandstone	10201.0	2.0	0.771	7867	2.620E+06	0.26	994			
Caliza	10203.0	9.0	0.815	8320	4.200E+06	0.32	3408			
SHALE	10212.0	10.0	0.858	8766	3.150E+06	0.36	142			

Pro	Propiedades de Transmisibilidad de la Formación									
Zone Name	Тор	Net	Perm	Porosity	Res.	Gas	Oil	Water		
	MD	Height	(md)	(%)	Pressure	Sat.	Sat.	Sat.		
	(ft)	(ft)			(psi)	(%)	(%)	(%)		
DIRTY-SANDSTONE	10080	0.0	1	10.0	4200	65.0	10.0	25.0		
DIRTY-SANDSTONE	10105	0.0	1	10.0	4368	65.0	10.0	25.0		
SHALE	10113	0.0	0.5	1.0	4374	65.0	10.0	25.0		
LIMESTONE	10114	0.0	1	10.0	4376	65.0	10.0	25.0		
SHALE	10119	0.0	0.5	1.0	4383	65.0	10.0	25.0		
SHALE	10130	0.0	0.5	1.0	4338	65.0	10.0	25.0		
T Sandstone	10134	8.0	44	9.0	4378	65.0	10.0	25.0		
T Sandstone	10142	8.0	44	7.0	4381	65.0	10.0	25.0		
T Sandstone	10150	2.0	44	7.0	4385	65.0	10.0	25.0		
Shale	10152	0.0	0.5	4.0	4386	65.0	10.0	25.0		
T Sandstone	10158	12.0	44	13.0	4388	65.0	10.0	25.0		
T Sandstone	10170	6.0	44	7.0	4394	65.0	10.0	25.0		
T Sandstone	10176	13.0	44	15.0	4396	65.0	10.0	25.0		
T Sandstone	10189	12.0	44	9.0	4402	65.0	10.0	25.0		
T Sandstone	10201	2.0	44	10.0	4407	65.0	10.0	25.0		
Caliza	10203	0.0	0.1	5.0	4616	65.0	10.0	25.0		
SHALE	10212	0.0	0.1	7.0	4882	65.0	10.0	25.0		

Sección 3: Secuencia de Bombeo

The following is the Pumping Schedule to achieve a propped fracture half-length (X_f) of 221.5 ft with an average conductivity $(K_f w)$ of 2464 md.ft.

	Descripción del Trabajo											
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)						
PREPAD	18.0	WF130	80	30.0		0.0						
PAD	18.0	YF130HTD	3900	35.0		0.0						
0.5 PPA	18.0	YF130HTD	1500	35.0	16/20 CeramaxTM I	0.5						
1.0 PPA	18.0	YF130HTD	1500	35.0	16/20 CeramaxTM I	1.0						
2.0 PPA	18.0	YF130HTD	1500	35.0	16/20 CeramaxTM I	2.0						
3.0 PPA	18.0	YF130HTD	1600	35.0	16/20 CeramaxTM I	3.0						
4.0 PPA	18.0	YF130HTD	1700	35.0	16/20 CeramaxTM I	4.0						
5.0 PPA	18.0	YF130HTD	1800	35.0	16/20 CeramaxTM I	5.0						
6.0 PPA	18.0	YF130HTD	2100	35.0	16/20 CeramaxTM I	6.0						
FLUSH	18.0	WF130	3829	30.0		0.0						

Please note that this pumping schedule is under-displaced by 1.5 bbl.

Fluidos Totales							
3909 gal	of	WF130					
15600 gal	of	YF130HTD					

Apuntalante Total						
38500 lb	of	16/20 CeramaxTM I				

Ejecución del Trabajo									
Stage Name	Stage Fluid Volum e (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressur e (psi)	Stage Time (min)	Cum. Time (min)
PREPAD	80	80	1.9	1.9	0	0	3795	0.1	0.1
PAD	3900	3980	92.9	94.8	0	0	3795	5.2	5.3
0.5 PPA	1500	5480	36.5	131.3	750	750	3868	2.0	7.3
1.0 PPA	1500	6980	37.3	168.6	1500	2250	3916	2.1	9.4
2.0 PPA	1500	8480	38.9	207.5	3000	5250	3913	2.2	11.5
3.0 PPA	1600	10080	43.2	250.8	4800	10050	3861	2.4	13.9
4.0 PPA	1700	11780	47.8	298.5	6800	16850	3764	2.7	16.6
5.0 PPA	1800	13580	52.5	351.1	9000	25850	3698	2.9	19.5
6.0 PPA	2100	15680	63.5	414.6	12600	38450	3880	3.5	23.0

Ejecución del Trabajo									
Stage Name	Stage Fluid Volum e (gal)	Cum. Fluid Volume (gal)	Stage Slurry Volume (bbl)	Cum. Slurry Volume (bbl)	Stage Prop (lb)	Cum. Prop. (lb)	Avg. Surface Pressur e (psi)	Stage Time (min)	Cum. Time (min)
FLUSH	3829	19509	91.2	505.7	0	38450	4539	5.1	28.1

Sección 4: Simulación de Fractura del Apuntalante

The following are the results of the computer simulation of this Fracturing Proposal using a Pseudo 3-D Vertical model. Effective Conductivity and Effective Fcd are calculated based on perforated intervals with positive net heights.

Initial Fracture Top TVD	10134.0 ft
Initial Fracture Bottom TVD	10170.0 ft
Propped Fracture Half-Length	221.5 ft
EOJ Hyd Height at Well	76.5 ft
Average Propped Width	0.135 in
Average Gel Concentration	553.3 lb/mgal
Average Gel Fluid Retained Fa	octor 0.40
Average Gel Fluid Retained Fa Net Pressure	ottor0.40 996 psi
Average Gel Fluid Retained Fa Net Pressure Efficiency	ctor0.40 996 psi 0.497
Average Gel Fluid Retained Fa Net Pressure Efficiency Effective Conductivity	ctor0.40 996 psi 0.497 2731 md.ft
Average Gel Fluid Retained Fa Net Pressure Efficiency Effective Conductivity Effective Fcd	octor0.40 996 psi 0.497 2731 md.ft 0.3

Resultado de Simulación por Segmento de Fractura									
From (ft)	To (ft)	Prop. Conc. at End of Pumping (PPA)	Propped Width (in)	Propped Height (ft)	Frac. Prop. Conc. (lb/ft2)	Frac. Gel Conc. (lb/mgal)	Fracture Conductivit y (md.ft)		
0.0	55.4	6.2	0.151	75.9	1.36	522.7	2769		
55.4	110.8	6.1	0.150	74.3	1.37	507.8	2764		
110.8	166.1	5.5	0.139	69.5	1.28	569.1	2583		
166.1	221.5	3.0	0.109	56.8	1.00	552.9	2110		

Proppant packed at 216 ft after 38 bbl in stage 5

Datos de la Geometría de la Fractura por Zona de Producción								
Zone Name	Top MD (ft)	Top TVD (ft)	Gross Height (ft)	Net Height (ft)	Fractur e Width (in)	Fracture Length (ft)	Fracture Conductivi ty (md.ft)	
DIRTY-SANDSTONE	10080	10080	25.0	0.0	0.000	0.0	0	
DIRTY-SANDSTONE	10105	10105	8.0	0.0	0.000	0.0	0	
SHALE	10113	10113	1.0	0.0	0.000	0.0	0	
LIMESTONE	10114	10114	5.0	0.0	0.000	0.0	0	
SHALE	10119	10119	11.0	0.0	0.004	78.5	76	
SHALE	10130	10130	4.0	0.0	0.015	137.0	273	
T Sandstone	10134	10134	8.0	8.0	0.056	204.9	1033	
T Sandstone	10142	10142	8.0	8.0	0.128	221.5	2336	
T Sandstone	10150	10150	2.0	2.0	0.162	221.5	2966	
Shale	10152	10152	6.0	0.0	0.180	221.5	3298	
T Sandstone	10158	10158	12.0	12.0	0.210	221.5	3850	
T Sandstone	10170	10170	6.0	6.0	0.183	221.5	3341	
T Sandstone	10176	10176	13.0	13.0	0.141	221.5	2587	
T Sandstone	10189	10189	12.0	12.0	0.080	216.3	1464	
T Sandstone	10201	10201	2.0	2.0	0.025	176.7	462	
Caliza	10203	10203	9.0	0.0	0.010	88.2	187	
SHALE	10212	10212	10.0	0.0	0.000	0.0	0	

Exposure Time Prediction by Stage									
Stage Name	Fluid Name	Pump Rate (bbl/min)	Fluid Volume (gal)	Perforation Injection Temp. (degF)	Exposure at BHST of 223 degF (min)	Exposure aboveWatch Temp. of 218 degF (min)			
PREPAD	WF130	18.0	80	207	0.0	0.0			
PAD	YF130HTD	18.0	3900	207	4.7	4.7			
0.5 PPA	YF130HTD	18.0	1500	191	13.6	13.6			
1.0 PPA	YF130HTD	18.0	1500	158	9.0	9.0			
2.0 PPA	YF130HTD	18.0	1500	120	0.5	0.5			
3.0 PPA	YF130HTD	18.0	1600	100	0.0	0.0			
4.0 PPA	YF130HTD	18.0	1700	98	0.0	0.0			
5.0 PPA	YF130HTD	18.0	1800	98	0.0	0.0			
6.0 PPA	YF130HTD	18.0	2100	97	0.0	0.0			
FLUSH	WF130	18.0	3829						

Sección 5 : Resultados de la Simulación de la Fractura

(1) ACL Perfil de la Fractura y Concentración del Apuntalante

(2) Tratamiento

Sección 6 : Datos del Apuntalante

Proppant Permeability is calculated based on the following parameters:BH Static Temperature:223 degFStress on Proppant:4243 psiPropped Fracture Conc.:1.00 lb/ft2Average Young's Modulus:2.469E+06 psi

Datos del Apuntalante								
Proppant Name	Specific Gravity	Mean Diameter (in)	Pack Porosity (%)	Permeability (md)				
20/40 C-Lite	2.73	0.028	35.0	420905				
16/20 C-Lite	2.73	0.037	35.0	819901				
16/20 CeramaxTM I	2.66	0.041	35.0	548775				

Permeabilidad del Apuntalante

Sección 7 : Descripción del Fluido

<u>WF130</u>

- J877, GUAR POLYMER SLURRY
- M117, POTASSIUM CHLORIDE

6.75 gal/mgal 166.00 lb/mgal

YF130HTD

J877, GUAR POLYMER SLURRYM117, POTASSIUM CHLORIDE

7.87 gal/mgal 166.00 lb/mgal

Anexo 7.4. Evaluación de Resultados del DataFrac

Fuente: Schlumberger

Anexo 7.4.2. Determinación del límite superior de la presión de cierre

Fuente: Schlumberger

Anexo 7.4.4. Determinación del límite inferior de la presión de cierre Horner Plot вня 7000 7000 6500 Pressure psi 3000 ime) 5500 1000 5000 0.5 1.0 1.5 log10(Horner Time) 2.0

Fuente: Schlumberger

Anexo 7.4.5. Determinación de la Geometría de la fractura

Fuente: Schlumberger

Anexo 7.4.6. Determinación de la Eficiencia del Fluido

Fuente: Schlumberger

Anexo 7.5. Reporte FracCade del pozo Cononaco – 28

FracCADE^{*} STIMULATION PROPOSAL

Operator	:	PETROPRODUCCION
Well	:	CONONACO 28
Field	:	CONONACO
Formation	:	ARENA "T"

Sección 1: Configuración del Pozo

Bottom Hole Temperature 223 degF Deviated Hole NO Treat Down TUBING Flush Volume to 10161.8 ft90.1 bbl

Datos del Tubing								
OD Weight ID Depth								
(in)	(lb/ft)	(in)	(ft)					
3.500	9.3	2.990	10100.0					

Datos del Casing							
OD	Weight	ID	Depth				
(in)	(lb/ft)	(in)	(ft)				
7.000	26.0	6.276	10500.0				

	Datos de Perforación										
Top MD (ft)	Top TVD (ft)	Botto m MD (ft)	Botto m TVD (ft)	Shot Density (shot/ft)	Number	Diameter (in)					
10201	10201	10205	10205	10.00	40	0.32					
10205	10205	10207	10207	10.00	20	0.32					
10222	10222	10242	10242	10.00	200	0.32					
10242	10242	10244	10244	10.00	25	0.32					
10244	10244	10254	10254	10.00	95	0.32					
10254	10254	10259	10259	2.00	10	0.00					

Propiedades Mecánicas de la Roca								
Zone Name	Top MD	Zone	Frac	Insitu	Young's	Poisson'	Toughness	
	(ft)	Height	Grad.	Stress	Modulus	s Ratio	(psi.in0.5)	
		(ft)	(psi/ft)	(psi)	(psi)			
Lutita Arcillosa	10060.0	13.0	0.731	7357	3.100E+06	0.31	100	
Arenisca Arcillosa	10073.0	2.0	0.594	5988	4.200E+06	0.23	700	
Lutita Arcillosa	10075.0	13.5	0.717	7229	3.200E+06	0.30	100	
Arenisca Arcillosa	10088.5	6.0	0.594	5998	4.800E+06	0.23	700	
Arenisca Limolitica	10094.5	6.0	0.571	5762	5.900E+06	0.21	700	
Arenisca Calcarea	10100.5	3.0	0.559	5650	7.000E+06	0.20	700	
Limolita Calcarea	10103.5	5.0	0.642	6484	8.100E+06	0.24	2400	
Arenisca Calcarea	10108.5	3.0	0.559	5654	7.000E+06	0.20	700	
Caliza	10111.5	3.0	0.717	7252	7.700E+06	0.30	1200	
Arenisca Calcarea	10114.5	2.5	0.582	5891	7.200E+06	0.22	700	
Lutita Limolitica	10117.0	4.5	0.642	6492	4.000E+06	0.24	100	
Arenisca Arcillosa	10121.5	2.5	0.632	6401	4.700E+06	0.26	700	
Arenisca Limolitica	10124.0	2.0	0.559	5662	5.800E+06	0.20	700	
Arenisca Arcillosa	10126.0	2.0	0.594	6019	5.100E+06	0.23	700	
Arenisca	10128.0	4.0	0.537	5443	5.900E+06	0.18	1200	
Arenisca Limolitica	10132.0	2.0	0.571	5782	5.900E+06	0.21	700	
Arenisca Calcarea	10134.0	2.5	0.594	6024	5.900E+06	0.23	700	
Arenisca Arcillosa	10136.5	11.5	0.594	6028	4.600E+06	0.23	700	
Lutita Arcillosa	10148.0	2.0	0.678	6879	3.600E+06	0.27	100	
Arenisca Arcillosa	10150.0	2.5	0.582	5912	5.300E+06	0.22	700	
Arenisca Limoitica	10152.5	4.0	0.559	5679	5.800E+06	0.20	700	
Arenisca Arcillosa	10156.5	11.5	0.582	5918	5.000E+06	0.22	700	
Lutita Limolitica	10168.0	2.5	0.704	7155	3.600E+06	0.29	100	
Limolita Arcillosa	10170.5	2.0	0.630	6409	5.400E+06	0.23	1200	
Lutita Arcillosa	10172.5	5.0	0.731	7437	3.100E+06	0.31	100	
Arenisca Calcarea	10177.5	9.0	0.559	5694	6.900E+06	0.20	700	
Limolita Arcillosa	10186.5	4.5	0.642	6537	5.100E+06	0.24	1200	
Lutita Limolitica	10191.0	10.0	0.690	7040	3.800E+06	0.28	100	
Arenisca Arcillosa	10201.0	4.0	0.571	5822	5.300E+06	0.21	700	
Arenisca	10205.0	2.0	0.537	5484	5.900E+06	0.18	1200	
Arenisca	10207.0	2.0	0.548	5597	5.900E+06	0.18	1200	
Arenisca Calcarea	10209.0	3.0	0.548	5597	6.600E+06	0.19	700	
Arenisca Limolitica	10212.0	2.5	0.559	5712	5.900E+06	0.20	700	
Arenisca Calcarea	10214.5	5.0	0.571	5830	6.900E+06	0.21	700	
Arenisca Limolitica	10219.5	2.5	0.548	5602	6.100E+06	0.19	700	
Arenisca	10222.0	20.0	0.537	5498	5.900E+06	0.18	1200	
Arenisca Limolitica	10242.0	2.5	0.559	5729	5.800E+06	0.20	700	
Arenisca	10244.5	9.5	0.537	5508	5.553E+06	0.18	1200	
Arenisca Calcarea	10254.0	5.0	0.559	5738	5.900E+06	0.18	1200	
Arenisca Calcarea	10259.0	4.0	0.559	5738	7.000E+06	0.20	700	
Limolita	10263.0	5.0	0.691	7088	5.800E+06	0.28	1200	
Limolita Calcarea	10268.0	2.5	0.665	6833	7.200E+06	0.26	1200	
Arenisca Calcarea	10270.5	2.5	0.559	5744	6.900E+06	0.20	700	
Limolita Arcillosa	10273.0	4.5	0.691	7095	5.100E+06	0.28	100	
Lutita Limolitica	10277.5	4.5	0.691	7098	3.600E+06	0.28	100	

Propiedades Mecánicas de la Roca									
Zone Name	Top MD	Zone	Frac	Insitu	Y	'oung's	Poisson'	То	ughness
	(ft)	Height	Grad.	Stress	M	lodulus	s Ratio	(p	si.in0.5)
		(ft)	(psi/ft)	(psi)		(psi)			
Lutita Arcillosa	10282.0	8.0	0.731	7518	3.1	190E+06	0.31		1200
Arenisca Arcillosa	10290.0	5.0	0.594	6117	4.8	800E+06	0.23		700
Lutita Arcillosa	10295.0	100.0	0.728	7532	3.2	200E+06	0.31		100
	Propieda	des de ⁻	Transmi	isibilida	d d	e la Roca	a		
Zone Name	Top MD	Net	Perm	Porosi	ty	Res.	Gas	Oil	Water
	(ft)	Height	(md)	(%)	-	Pressure	Sat.	Sat.	Sat.
		(ft)		. ,		(psi)	(%)	(%)	(%)
Lutita Arcillosa	10060.0	0.0	0.1	41.1		4331	0.0	0.0	100.0
Arenisca Arcillosa	10073.0	2.0	0.1	18.8		3818	0.0	0.0	100.0
Lutita Arcillosa	10075.0	0.0	0.1	29.1		4338	0.0	0.0	100.0
Arenisca Arcillosa	10088.5	6.0	44	21.3		3826	0.0	70.0	30.0
Arenisca Limolitica	10094.5	6.0	44	15.5		3828	0.0	70.0	30.0
Arenisca Calcarea	10100.5	3.0	44	9.3		3829	0.0	70.0	30.0
Limolita Calcarea	10103.5	0.0	0.1	3.7		4347	0.0	0.0	100.0
Arenisca Calcarea	10108.5	3.0	44	8.6		3832	0.0	70.0	30.0
Caliza	10111.5	0.0	0.1	10.0		4349	0.0	0.0	100.0
Arenisca Calcarea	10114.5	2.5	44	6.6		3834	0.0	70.0	30.0
Lutita Limolitica	10117.0	0.0	0.1	18.9		4352	0.0	0.0	100.0
Arenisca Arcillosa	10121.5	2.5	44	23.1		3837	0.0	70.0	30.0
Arenisca Limolitica	10124.0	2.0	44	19.9		3838	0.0	70.0	30.0
Arenisca Arcillosa	10126.0	2.0	44	22.3		3839	0.0	70.0	30.0
Arenisca	10128.0	4.0	44	14.0		3840	0.0	70.0	30.0
Arenisca Limolitica	10132.0	2.0	44	14.6		3841	0.0	70.0	30.0
Arenisca Calcarea	10134.0	2.5	44	17.2		3842	0.0	70.0	30.0
Arenisca Arcillosa	10136.5	11.5	44	15.7		3846	0.0	70.0	30.0
Lutita Arcillosa	10148.0	0.0	0.1	19.1		4365	0.0	0.0	100.0
Arenisca Arcillosa	10150.0	2.5	44	25.9		3848	0.0	70.0	30.0
Arenisca Limoitica	10152.5	4.0	44	15.6		3849	0.0	70.0	30.0
Arenisca Arcillosa	10156.5	11.5	44	15.3		3854	0.0	70.0	30.0
Lutita Limolitica	10168.0	0.0	0.1	19.1		4373	0.0	0.0	100.0
Limolita Arcillosa	10170.5	0.0	0.1	10.0		4374	0.0	0.0	100.0
Lutita Arcillosa	10172.5	0.0	0.1	16.1		4376	0.0	0.0	100.0
Arenisca Calcarea	10177.5	9.0	44	18.9		3861	0.0	70.0	30.0
Limolita Arcillosa	10186.5	0.0	0.1	15.2		4382	0.0	0.0	100.0
Lutita Limolitica	10191.0	0.0	0.1	32.0		4386	0.0	0.0	100.0
Arenisca Arcillosa	10201.0	4.0	44	12.7		3868	0.0	70.0	30.0
Arenisca	10205.0	2.0	44	7.0		3869	0.0	70.0	30.0
Arenisca	10207.0	2.0	44	7.0		3869	0.0	70.0	30.0
Arenisca Calcarea	10209.0	3.0	44	12.5		3869	0.0	70.0	30.0
Arenisca Limolitica	10212.0	2.5	44	10.7		3870	0.0	70.0	30.0
Arenisca Calcarea	10214.5	5.0	44	16.0		3871	0.0	70.0	30.0
Arenisca Limolitica	10219.5	2.5	44	11.9		3873	0.0	70.0	30.0
Arenisca	10222.0	20.0	44	10.3		3874	0.0	70.0	30.0
Arenisca Limolitica	10242.0	2.5	44	12.5		3882	0.0	70.0	30.0
Arenisca	10244.5	9.5	44	10.2		3883	0.0	70.0	30.0
Arenisca Calcarea	10254.0	5.0	44	10.2		3888	0.0	70.0	30.0
Arenisca Calcarea	10259.0	4.0	44	18.1		3890	0.0	70.0	30.0
Limolita	10263.0	0.0	0.1	19.3		4415	0.0	0.0	100.0

	Propiedades Mecánicas de la Roca									
Zone Name	Top MD (ft)	Zone Height (ft)	Frac Grad. (psi/ft)	Insitu Stress (psi)	Young's Modulus (psi)	Poisson' s Ratio	То (р	ughness si.in0.5)		
Limolita Calcarea	10268.0	0.0	0.1	17.7	4416	0.0	0.0	100.0		
Arenisca Calcarea	10270.5	2.5	44	14.7	3894	0.0	70.0	30.0		
Limolita Arcillosa	10273.0	0.0	0.1	27.3	4419	0.0	0.0	100.0		
Lutita Limolitica	10277.5	0.0	0.1	25.5	4421	0.0	0.0	100.0		
Lutita Arcillosa	10282.0	0.0	0.1	34.5	4425	0.0	0.0	100.0		
Arenisca Arcillosa	10290.0	5.0	44	28.2	3902	0.0	70.0	30.0		
Lutita Arcillosa	10295.0	0.0	0.1	36.9	4438	0.0	0.0	100.0		

Sección 3: Datos del Apuntalante

Proppant Permeability is calculated based on the following parameters:BH Static Temperature:223 degFStress on Proppant:2784 psiPropped Fracture Conc.:1.00 lb/ft2Average Young's Modulus:5.929E+06 psi

Datos del Apuntalante							
Proppant Name	Specific Gravity	Mean Diameter (in)	Pack Porosity (%)	Permeability (md)			
16/20 Ceramax I	2.66	0.042	35.0	638355			
16/20 C-Lite	2.73	0.037	35.0	914545			
20/40 C-Lite	2.73	0.028	35.0	469581			

Permeabilidad del Apuntalante

Sección 4: Secuencia de Bombeo

The following is the Pumping Schedule to achieve a propped fracture half-length (X_f) of 229.1 ft with an average conductivity (K_fw) of 3684 md.ft.

	Descripción del Trabajo										
Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Gel Conc. (lb/mgal)	Prop. Type and Mesh	Prop. Conc. (PPA)					
PRE-PAD	19.5	WF130	100	30.0		0.0					
PAD	19.5	YF130 HTD	4000	30.0		0.0					
0.5 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	0.5					
1.0 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	1.5					
2.0 PPA	19.5	YF130 HTD	1100	30.0	16/20 Ceramax I	2.5					
3.0 PPA	19.5	YF130 HTD	1200	30.0	16/20 Ceramax I	3.5					
4.0 PPA	19.5	YF130 HTD	1500	30.0	16/20 Ceramax I	4.5					
5.0 PPA	19.5	YF130 HTD	2000	30.0	16/20 Ceramax I	5.5					
6.0 PPA	19.5	YF130 HTD	2500	30.0	16/20 Ceramax I	6.5					
FLUSH	19.5	WF130	3783	30.0		0.0					

Please note that this pumping schedule is under-displaced by 1.5 bbl.

Fluidos Totales							
3883 gal	of	WF130					
14500 gal	of	YF130 HTD					

	Apunta	lante Total	
43100 lb	of	16/20 Ceramax I	

Sección 5: Simulación de Fractura del Apuntalante

The following are the results of the computer simulation of this Fracturing Proposal using a Pseudo 3-D Vertical model. Effective Conductivity and Effective Fcd are calculated based on perforated intervals with positive net heights.

Initial Fracture Top TVD	10205.0 ft
Initial Fracture Bottom TVD	10207.0 ft
Propped Fracture Half-Length	229.1 ft
EOJ Hyd Height at Well	82.0 ft
Average Propped Width	0.144 in
Average Gel Concentration	358.7 lb/mgal
Average Gel Fluid Retained Fa	octor0.50
Average Gel Fluid Retained Fa Net Pressure	ctor0.50 1617 psi
Average Gel Fluid Retained Fa Net Pressure Efficiency	octor0.50 1617 psi 0.516
Average Gel Fluid Retained Fa Net Pressure Efficiency Effective Conductivity	octor0.50 1617 psi 0.516 3851 md.ft
Average Gel Fluid Retained Fa Net Pressure Efficiency Effective Conductivity Effective Fcd	octor0.50 1617 psi 0.516 3851 md.ft 0.382

	Resultados de Simulación de Fractura por Etapas									
From (ft)	To (ft)	Prop. Conc. at End of Pumping (PPA)	Propped Width (in)	Propped Height (ft)	Frac. Prop. Conc. (lb/ft2)	Frac. Gel Conc. (lb/mgal)	Fracture Conductivit y (md.ft)			
0.0	57.3	6.8	0.147	80.2	1.32	318.4	3762			
57.3	114.6	6.9	0.152	73.4	1.36	339.1	3978			
114.6	171.8	6.9	0.151	69.7	1.36	358.8	3886			
171.8	229.1	5.1	0.135	66.1	1.22	418.5	3562			

Rock has started to close, fracture calculation restarted

Geo	ometría	de la Fra	actura p	or Zona o	le Produc	ción	
Zone Name	Тор	Тор	Gross	Net	Fractur	Fractur	Fracture
	MD	TVD	Height	Height	e Width	е	Conductivity
	(ft)	(ft)	(ft)	(ft)	(in)	Length	(md.ft)
						(ft)	
Arenisca Arcillosa	10156	10156	11.5	11.5	0.000	0.0	0
Lutita Limolitica	10168	10168	2.5	0.0	0.000	0.0	0
Limolita Arcillosa	10170	10170	2.0	0.0	0.000	0.0	0
Lutita Arcillosa	10172	10172	5.0	0.0	0.000	0.0	0
Arenisca Calcarea	10177	10177	9.0	9.0	0.000	0.0	0
Limolita Arcillosa	10186	10186	4.5	0.0	0.000	0.0	0
Lutita Limolitica	10191	10191	10.0	0.0	0.026	191.7	668
Arenisca Arcillosa	10201	10201	4.0	4.0	0.068	229.1	1732
Arenisca	10205	10205	2.0	2.0	0.095	229.1	2443
Arenisca	10207	10207	2.0	2.0	0.111	229.1	2839
Arenisca Calcarea	10209	10209	3.0	3.0	0.124	229.1	3174
Arenisca Limolitica	10212	10212	2.5	2.5	0.133	229.1	3422
Arenisca Calcarea	10214	10214	5.0	5.0	0.146	229.1	3749
Arenisca Limolitica	10219	10219	2.5	2.5	0.161	229.1	4121
Arenisca	10222	10222	20.0	20.0	0.179	229.1	4581
Arenisca Limolitica	10242	10242	2.5	2.5	0.171	229.1	4385
Arenisca	10244	10244	9.5	9.5	0.152	229.1	3898
Arenisca Calcarea	10254	10254	5.0	5.0	0.111	229.1	2836
Arenisca Calcarea	10259	10259	4.0	4.0	0.075	229.1	1927
Limolita	10263	10263	5.0	0.0	0.034	208.6	873
Limolita Calcarea	10268	10268	2.5	0.0	0.009	84.1	243
Arenisca Calcarea	10270	10270	2.5	2.5	0.004	58.6	114
Limolita Arcillosa	10273	10273.	4.5	0.0	0.002	31.9	62
Lutita Limolitica	10277	10277	4.5	0.0	0.000	0.0	0
Lutita Arcillosa	10282	10282	8.0	0.0	0.000	0.0	0
Arenisca Arcillosa	10290	10290	5.0	5.0	0.000	0.0	0
Lutita Arcillosa	10295	10295.	100.0	0.0	0.000	0.0	0
		0					

	Predicción del Tiempo de Exposición por Etapa									
Stage Name	Fluid Name	Pump Rate (bbl/min)	Fluid Volume (gal)	Perforation Injection Temp. (degF)	Exposure at BHST of 223 degF (min)	Exposure aboveWatch Temp. of 218 degF (min)				
PRE-PAD	WF130	19.5	100	204	0.3	0.3				
PAD	YF130 HTD	19.5	4000	204	3.8	3.8				
0.5 PPA	YF130 HTD	19.5	1100	191	11.3	11.3				
1.0 PPA	YF130 HTD	19.5	1100	157	9.1	9.1				
2.0 PPA	YF130 HTD	19.5	1100	116	4.3	4.3				
3.0 PPA	YF130 HTD	19.5	1200	98	0.0	0.0				
4.0 PPA	YF130 HTD	19.5	1500	97	0.0	0.0				
5.0 PPA	YF130 HTD	19.5	2000	96	0.0	0.0				
6.0 PPA	YF130 HTD	19.5	2500	95	0.0	0.0				
FLUSH	WF130	19.5	3783							

Sección 6: Resultados de la Simulación de la Fractura

(1) ACL Perfil de Fractura y Concentración del Apuntalante

(2) Tratamiento

Sección 7: Información General

(1) Información General

Datos del Fluido de Fracturamiento						
Fluid Name	Gel Conc (lb/mgal)	Breaker Conc (lb/mgal)	Leakoff Coefficient (ft/min0.5)	N Prime	K Prime (lbf.s^n/ft2)	Cost (\$/gal)
2% KCL Water	0.0	0.0	1.361E-2	1.00	5.65E-6	0.00
WF130	30.0	0.0	5.436E-3	1.00	2.09E-5	0.00
YF130 HTD	30.0	0.0	1.950E-3	0.28	2.87E-1	0.35

(2) Información del Apuntalante

Datos del Apuntalante						
Proppant Name	Mesh Size	Specific Gravity	Mean Diameter (in)	Pack Porosity (%)	Perm. (md)	Cost (\$/lb)
16/20 Ceramax I	16/20	2.66	0.042	35.0	638355	2.44
16/20 C-Lite	16/20	2.73	0.037	35.0	914545	2.44
20/40 C-Lite	20/40	2.73	0.028	35.0	469581	2.44

Sección 8: Análisis de Sensibilidad

(1) Parámetros de Estudio de la Permeabilidad de la Formación

Información de Operación							
Formation Permeability	Pump Rate (bbl/min)	Fluid Efficiency	Pad Volume (gal)	Total Fluid (gal)	Total Proppant (lb)		
5 md	20.0	0.3	11633	20907	34533		
15 md	20.0	0.3	11633	20907	34533		
44 md	20.0	0.4	2521	5256	11503		
50 md	20.0	0.4	2521	5256	11503		
100 md	20.0	0.5	1219	2856	6992		

Información de Producción							
Formation Permeability	FCD	Propped 1/2 Length (ft)	Radial Production (STB)	Fracture Production (STB)	Job Cost (\$(US))	NPV 2 Year (\$(US))	
5 md	0.91	310.5	16,518	75,294	118,315	2,517,898	

Información de Producción							
Formation Permeability	FCD	Propped 1/2 Length (ft)	Radial Production (STB)	Fracture Production (STB)	Job Cost (\$(US))	NPV 2 Year (\$(US))	
15 md	0.30	310.5	32,821	89,244	118,315	2,426,669	
44 md	0.15	158.8	53,578	99,916	55,855	2,041,930	
50 md	0.13	158.8	56,204	100,696	55,855	1,958,897	
100 md	0.08	109.9	70,462	104,669	43,613	1,507,241	

Anexo 7.6. Reporte de FracCade

Anexo 7.6.1. Caudal de Bombeo Acendente

Fuente: Schlumberger

Anexo 7.6.2. Determinación del límite superior de la presión de cierre

Fuente: Schlumberger

Anexo 7.6.3. Determinación de Presión de Cierre

Fuente: Schlumberger

Anexo 7.6.4. Determinación del límite inferior de la presión de cierre

Fuente: Schlumberger

Fuente: Schlumberger

Anexo 7.6.6. Determinación de la Eficiencia del Fluido

Fuente: Schlumberger