ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO DE LOS DOMOS DEL VOLCÁN QUILOTOA Y SU CORRELACIÓN CON LA ESTRATIGRAFÍA DEL VOLCÁN

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO GEÓLOGO

CRISTIAN DAVID PANCHANA GUERRA

cristian.panchana@gmail.com

DIRECTORA: MSc. PATRICIA ANN MOTHES

pmothes@igepn.edu.ec

Quito, Diciembre 2015

DECLARACIÓN

Yo Cristian David Panchana Guerra, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Cristian David Panchana Guerra

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Cristian David Panchana Guerra, bajo mi supervisión.

MSc. Patricia Ann Mothes

DIRECTORA DEL PROYECTO

AGRADECIMIENTOS

A Dios por brindarme la vida, salud y las condiciones necesarias para transitar y resistir a lo largo del camino universitario.

A mis Padres por haberme dado su inmenso amor, educación, ética, humor, consejo y guía, y por haber estado desde un inicio impulsándome y apoyándome incondicionalmente en esta carrera científica, hasta la actualidad.

A la Ing. Mothes por haber dirigido este proyecto y por todo su apoyo, ayuda y amistad a lo largo del mismo. Además al Dr. Hall por todo el conocimiento, ayuda y guía impartidos tanto en el Instituto como en el campo.

A Patrick Ball por su gran ayuda en el campo y a Liz Gaunt por proporcionarme los medios para conseguir la información necesaria para el desarrollo del presente proyecto, además de agradecer a ambos por su gran amistad.

A los Compañeros del Instituto que siempre me ayudaron en el trabajo, sin ningún orden en particular Ing. Ramón, Pedro, Mafer, Diego, Pancho, Santiago A, Santiago S, Lilian, Samy, Javier, Edwin, Marco, Marjorie, Johnny, David, Alexandra y José.

A mis amigos con los cuales se pudo compartir grandes momentos en las aulas, haciendo deporte y en muchas cosas más; quienes además me han brindado su consejo, humor y apoyo desinteresado en la universidad, Mario B, Pancho H, Rodrigo, Pancho E, Pancho R, Andrés†, Andrés E, Alexis, Danny, Klever, Alex T, Taty, Byron P, Jonathan Y, Cocho, Pedro E, Marco A, Pancho V, Diego N, Diego SZ, Chiche, Willy, Charles, Mateo, Yogo, JC, Esteban, Recargado, Josué Luis, McClane, Serena, Dany Boy, Tiburón, Juver, Mono, Regalito, Oso, Fumas, Monday, Kelly, Dayana, John Lennon, Ivan Drago, Danny Stark, Chivo y a todos los demás compañeros.

DEDICATORIA

A las siguientes personas con las cuales sin su inmensa ayuda, ánimo, preocupación, cariño, enseñanzas, ejemplo, amistad y guía, no me hubiera sido posible lograr esta meta.

A mis Padres Omar y Lupe.

A mi abuela Tita.

A mis Tíos Wilson, Mario y Enmita.

A mis Primasos Mayra, Pocho, Danny, Wilma, Alvaro, Marcela, Pepe, Alex, Nena y Andrea.

Al Prof. Eduardo Delgado y al Ing. Ramón Vera.

CONTENIDO

CONTENIDO	I
ÍNDICE DE FIGURAS	V
ÍNDICE DE TABLAS	IX
RESUMEN	XI
ABSTRACT	XII
* <u>CAPÍTULO I</u>	1
INTRODUCCIÓN	1
1.1 ANTECEDENTES	1
1.2 JUSTIFICATIVOS	1
1.3 OBJETIVOS	2
1.3.1 OBJETIVO GENERAL	2
1.3.2 OBJETIVOS ESPECÍFICOS	2
1.4 ALCANCE	2
1.5 METODOLOGÍA	3
1.6 ESTUDIOS ANTERIORES	3
* <u>CAPÍTULO II</u>	5
VOLCANES DEL ECUADOR	5
2.1 INTRODUCCIÓN	5
2.2 VOLCANES DE LA CORDILLERA OCCIDENTAL	5
2.3 VOLCANES DEL VALLE INTERANDINO	7
2.4 VOLCANES DE LA CORDILLERA REAL	7
2.5 VOLCANES DEL TRASARCO	8
* <u>CAPÍTULO III</u>	9
VOLCANES VECINOS DE LA CORDILLERA OCCIDENTAL	9
3.1 UBICACIÓN Y CARACTERÍSTICAS DEL ÁREA DEL QUILOTOA	9
3.2 COMPLEJO VOLCÁNICO <u>PICHINCHA</u>	11
3.2.1 DESCRIPCIÓN GENERAL	11
3.2.2 PETROGRAFÍA, MINERALOGÍA y QÚIMICA	12
EL EDIFICIO BASAL EL CINTO.	12
ESTRATOVOLCÁN BASAL RUCO PICHINCHA	14
EL EDIFICIO GUAGUA PICHINCHA.	14
EL EDIFICIO BASAL GUAGUA PICHINCHA.	14

• EL EDIFICIO TOAZA	14
• FASE HOLOCÉNICA Y ACTUAL DE LA ACTIVIDAD DEL DOMO)14
3.2.3 EVOLUCIÓN MAGMÁTICA	15
3.3 COMPLEJO VOLCÁNICO ATACAZO-NINAHUILCA	15
3.3.1 DESCRIPCIÓN GENERAL	15
3.3.2 PETROGRAFÍA y MINERALOGÍA	17
3.3.3 QÚIMICA	17
3.3.4 EVOLUCIÓN MAGMÁTICA	
3.4 COMPLEJO VOLCÁNICO <u>ILINIZA</u>	20
3.4.1 DESCRIPCIÓN GENERAL	20
3.4.2 PETROGRAFÍA	22
3.4.3 MINERALOGÍA	23
3.4.4 QÚIMICA	24
3.4.5 EVOLUCIÓN MAGMÁTICA	27
3.5 COMPLEJO VOLCÁNICO <u>CHIMBORAZO</u>	29
3.5.1 DESCRIPCIÓN GENERAL	29
3.5.2 PETROGRAFÍA, MINERALOGÍA Y QÚIMICA	
CHIMBORAZO I	
CHIMBORAZO II.	32
CHIMBORAZO III.	
* <u>CAPÍTULO IV</u>	
VOLCÁN QUILOTOA	34
4.1) TRABAJOS ANTERIORES	34
4.2) MORFOLOGÍA Y DIMENSIONES	34
4.2.1) ANTECEDENTES	34
4.2.2) UBICACIÓN DEL QUILOTOA	34
4.2.3) DESCRIPCIÓN GENERAL DEL VOLCÁN QUILOTOA	36
4.2.4) MARCO TECTÓNICO	
4.2.5) CARACTERÍSTICAS GENERALES DE LOS DOMOS VOLCÁNIO	COS42
4.3) ESTRATIGRAFÍA	43
4.3.1) DESCRIPCIÓN BREVE DE LAS UNIDADES ESTRATIGRÁFICA	S43
UNIDAD Q – 1	46
UNIDAD Q – 2	46

UNIDAD Q – 3	47
UNIDAD Q – 4	48
UNIDAD Q – 5	48
UNIDAD Q – 6	49
UNIDAD QS – 7	49
UNIDAD QS – 8	50
UNIDAD QS – 9	50
UNIDAD QS – 10	51
UNIDAD QS – 11	52
UNIDAD QS – 12	53
UNIDAD QS – 13	54
4.4) LOS DOMOS DEL QUILOTOA	56
4.4.1) UBICACIÓN	56
4.4.2) IDENTIFICACIÓN DE LOS DOMOS	58
4.4.3) DIMENSIONES DE LOS DOMOS	62
4.4.4) NIVEL ESTRATIGRÁFICO	63
4.4.5) DESCRIPCIÓN MACROSCÓPICA	63
4.4.6) DESCRIPCIÓN MICROSCÓPICA	65
4.4.7) ORDEN SECUENCIAL DE LOS DOMOS	67
4.4.7.1) Morfología	67
4.4.7.2) Petrografía	68
4.4.8) QUÍMICA DE LAS TEFRAS Y LOS DOMOS	70
4.5) CORRELACIÓN ENTRE LOS DOMOS Y LA ESTRATIGRAFÍA	82
4.5.1) EN BASE A LA PETROGRAFÍA:	82
4.5.2) EN BASE AL TAMAÑO DE LOS MINERALES:	85
4.5.3) EN BASE A LA QUÍMICA:	93
4.5.4) EDADES DE LOS DOMOS BASADAS EN LA ESTRATIGRAFÍA:	99
* <u>CAPÍTULO V</u>	104
CONCLUSIONES Y REFERENCIAS	104
5.1 CONCLUSIONES	104
5.2 REFERENCIAS	107
ANEXOS	112
ANEXO 1: DESCRIPCIÓN MACROSCÓPICA DE LOS DOMOS Y DE LOS LÍTIO LA ESTRATIGRAFÍA	COS DE

ANEXO 2: DESCRIPCIÓN MICROSCÓPICA DE LOS DOMOS1	.16
---	-----

ÍNDICE DE FIGURAS

CAPITULO II

Figura 2.1. Distribución de los volcanes del Ecuador continental tomado de Hall et al. (2008) a lo largo de dos ejes principales (líneas de guiones), además del grupo trasarco. Modelo Digital de Elevación de los Andes Ecuatorianos, proporcionado por M. Souris (IRD), que fue generado a partir de mapas topográficos 1:50,000 del Instituto Geográfico Militar, Quito. Los nombres de los edificios volcánicos son: (1) Cerro Negro de Mayasquer; (2) Chiles; (3) Chiltazón; (4) Potrerillos; (5) Chalpatán; (6) Chulamuez; (7) Horqueta; (8) Iguán; (9) Chaquilulo; (10) Soche; (11) Mangus; (12) Pilavo; (13) Yanaurcu de Piñan; (14) Huanguillaro; (15) Cotacachi; (16) Cuicocha; (17) Imbabura; (18) Cubilche; (19) Cushnirumi; (20) Mojanda; (21) Fuya Fuya; (22) Cusin; (23) Viejo Cayambe; (24) Nevado Cayambe: (25) El Reventador: (26) Pululahua: (27) Casitagua: (28) Pambamarca: (29) Izambi; (30) Guagua Pichincha; (31) Rucu Pichincha; (32) Puntas; (33) Ilaló; (34) Chacana; (35) Yanaurcu; (36) Ninahuilca; (37) Atacazo; (38) Pasochoa; (39) Sincholagua; (40) Antisana; (41) Pan de Azucar; (42) Sumaco; (43) Corazón; (44) Rumiñahui; (45) Almas Santas; (46) Ilinizas; (47) Tres Marías; (48) Cotopaxi; (49) Chalupas; (50) Quilindaña; (51) Quilotoa; (52) Chinibano; (53) Angahuana; (54) Sagoatoa; (55) Larcapungo (56) Huicutambo; (57) Carihuarazo; (58) Puñalica; (59) Huisla; (60) Tungurahua; (61) Mera; (62) Puyo; (63) Chimborazo; (64) Igualata; (65) Calpi; (66) Altar; (67) Tulabug;(68) Sangay. Las citas incluyen: Tulcán (T), Ibarra (I), Quito (Q), Latacunga (L), Ambato (A), Riobamba (R),

CAPITULO III

Figura 3.2. Mapa de los Volcanes Vecinos al Volcán Quilotoa en la Cordillera Occidental.

CAPITULO IV

Figura 4.1. Mapa digitalizado del Volcán Quilotoa tomado de Hall et al. (2008) donde se muestra el edificio volcánico y la caldera bordeada por domos, así como también la distribución de las unidades de flujos piroclásticos. Las líneas serradas y los símbolos C-1, C-2 y C-3 se refieren a las diferentes calderas. Los domos de lava se muestran como ruedas y radios. DF se refiere a la distribución del flujo de escombros Q-I y AV se refiere al depósito de avalancha de escombros Q-II. La estratigrafía de las unidades de flujo es detallada a continuación: Is/II/III se refieren a las unidades de surge Q-I, subyacidas por los

Figura 4.2. En el ploteo K_2O vs SiO₂ tomado de Hall et al. (2008), las pómeces obtenidas de los depósitos de flujo de ceniza, surge y caída pliniana provenientes de los depósitos Q-I a Q-V, muestran valores casi constantes de 1.5 a 1.8% de K_2O y valores de 65.0 a 66.9% de SiO₂. Similares flujos de ceniza pero de mayor edad, son más enriquecidos en SiO₂ pero con valores constantes de K_2O (por ejemplo 67.5% SiO₂; 1.6% K_2O). Un domo más viejo en el borde de la caldera está menos evolucionado (64% SiO₂; 1.4% K_2O).....38

Figura 4.4. Mapa Batimétrico del Lago Quilotoa tomado y modificado de Aguilera et al., 2000, mostrando la ubicación de los perfiles verticales (1-5) y el punto de muestreo de gas (X).

Figura 4.10. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-8, QS-9, QS-10, QS-11 y QS-12. (Foto tomada por M. Hall)..... 52

Figura 4.21. Secuencia de aparición de los domos del volcán, donde se agrupan en cuadros a aquellos domos que presentan una edad similar. 68

Figura 4.23. K₂O vs SiO₂ entre los domos......81

Figura 4.30. K ₂ O vs SiO ₂ entre los domos	94
Figura 4.31. K_2O vs SiO ₂ para los 13 ciclos de pómez de la estratigrafía	94

Figura 4.32. K₂O vs SiO₂ entre los domos y la pómez de la estratigrafía......95

Figura 4.33. K ₂ O vs SiO ₂ entre los domos y la estratigrafía95
Figura 4.34. $Na_2O + K_2O vs SiO_2$ entre los domos y la estratigrafía
Figura 4.35. Rb vs SiO ₂ entre los domos
Figura 4.36. Rb vs SiO ₂ para los 13 ciclos de la estratigrafía
Figura 4.37. Rb vs SiO ₂ entre los domos y la estratigrafía97
Figura 4 38. Variación en la concentración de los elementos en traza y de los elementos mayores en las rocas volcánicas del Ecuador del Holoceno – Pleistoceno tardío, tomado y modificado de Bryant et al., 2006. Los límites que definen las series de bajo, medio y alto K son de Ewart (1982)
Figura 4.39. Secuencia de aparición de los domos del volcán, donde se agrupan en cuadros a aquellos domos que presentan una edad similar
Figura 4.40. Orden de aparición de los domos del Volcán Quilotoa con respecto a su edad aproximada y relativa a los cuatro períodos eruptivos más recientes del Quilotoa 100
Figura 4.41. Mapa final de los domos del Volcán Quilotoa101
Figura 4.42. Orden de aparición de los domos en base a los gráficos K ₂ O vs SiO ₂ y Rb vs SiO ₂

ÍNDICE DE TABLAS

CAPITULO IV

Tabla 4.1: Domos del Volcán Quilotoa. Las muestras que presentan carsimilares están marcadas en color rojo o amarillo.	<i>acterísticas</i> 60
Tabla 4.2: Dimensiones aproximadas de los domos de la caldera	63
Tabla 4.3: Características de los domos de la caldera	67
Tabla 4.4: Domos del Volcán Quilotoa ordenados, de jóvenes en la parte antiguos en la parte inferior. Las muestras que presentan características sim marcadas en color rojo o amarillo	superior a ilares están 69

Tabla 4.5: Análisis químicos realizados en los trece niveles de tefra del Volcán Quilotoa,los elementos mayores se presentan en % en peso (Tabla 4.5a) y los elementos trazas enppm (Tabla 4.5b).71

Tabla 4.11: Datos de la longitud promedio y longitud máxima dados en mm, para loscristales de plagioclasa presentes en las litologías de la estratigrafía.89

 Tabla 4.13: Datos de la longitud promedio y longitud máxima para los cristales de plagioclasa presentes en las litologías de la estratigrafía y de los domos, ordenados por su tamaño.

 91

Tabla 4.14: Comparación de los resultados de la correlación petrográfica y química.... 102

RESUMEN

El volcán Quilotoa, que pertenece a la cordillera occidental del Ecuador, ha experimentado trece ciclos eruptivos en sus aproximadamente 200.000 años de historia geológica. Dentro de ella se dio el emplazamiento de varios domos, los cuales se localizan en el borde de la caldera actual del volcán. Es por tanto, el motivo de este trabajo, estudiar a los domos del volcán Quilotoa y correlacionarlos con la estratigrafía del volcán.

Petrográficamente, en su mayoría estos domos son dacitas porfiríticas formadas por una asociación mineralógica típica de plagioclasa, hornblenda, biotita y cuarzo. Una comparación petrográfica (macroscópica y microscópica) permitió identificar la presencia de dieciocho domos en el borde de la caldera del volcán y su orden aproximado de formación. Geoquímicamente, se observa que los domos poseen un contenido SiO₂ (64–67%), cayendo en el campo de las dacitas y en el campo de las series calco-alcalinas.

La correlación petrográfica entre los domos y la estratigrafía arrojó que los dieciocho domos se formaron entre (34.000 – 800) aAP, correspondiendo a los últimos cuatro ciclos eruptivos del volcán (Q-1 a Q-4).

La correlación química permitió determinar un orden uniforme de aparición de los domos con respecto a la estratigrafía. Además, todos los domos y las muestras de los últimos doce ciclos eruptivos del volcán (Q-1 a QS-12) corresponden a dacitas y caen en el campo de las series calco-alcalinas; mientras que, las muestras del primer ciclo eruptivo del volcán (QS-13) corresponden a riolitas y caen en la proyección de los campos de las series calco-alcalinas y de las series calco-alcalinas de las series calco-alcalinas y de las series calco-alcalinas de las series calco-alcalinas de las series calco-alcalinas y de las series calco-alcalinas de las series calco-alcalinas y de las series calco-alcalinas de alto – K.

El presente trabajo considera correcta a la secuencia de formación de domos obtenida petrográficamente y a su correlación con los trece ciclos eruptivos del volcán Quilotoa, debido a que las alteraciones posiblemente han modificado las concentraciones de los elementos presentes en las litologías estudiadas.

ABSTRACT

The Quilotoa volcano, which belongs to the Western Cordillera of Ecuador, has experienced thirteen eruptive cycles in its approximately 200.000 years of geological history. Within it some domes were emplaced, which are located at the edge of the present caldera. Therefore, the motive of this work is to study to the Quilotoa volcano domes and correlate them with the stratigraphy of the volcano.

Petrographically, the mayority of these domes are porphyritic dacites, which are formed by a typical mineralogical assemblage of plagioclase, hornblende, biotite and quartz. A petrographic comparison allows identifying the presence of eighteen domes at the edge of the volcano's caldera and, their approximated formation order. Geoquemically, is observed that the domes have SiO₂ (64–67%) content, falling in the dacites field and in the calc-alkaline series field.

The petrographic correlation between the domes and the stratigraphy shows that the domes were formed between (34.000 - 800) aAP, corresponding to the last four eruptive cycles of the volcano (Q-1 to Q-4).

The chemical correlation allowed us to determine a uniform dome formation order with respect to the stratigraphy. Besides, all the domes and the samples of the last twelve eruptive cycles of the volcano (Q-1 to QS-12) correspond to dacites and fall in the calc-alkaline series field; whilst the first eruptive cycle samples of the volcano (QS-13) correspond to riolites and fall in the projection of the calc-alkaline series field and in the high – K calc-alkaline series field.

The present work consider correct to the domes formation sequence obtained petrophically, and to its correlation with the thirteen eruptive cycles of Quilotoa volcano, because the alterations have possibly modified the concentrations of the elements that are present in the studied lithologies.

* <u>CAPÍTULO I</u>

INTRODUCCIÓN

1.1 ANTECEDENTES

Los domos de lava son montículos de roca extruida provenientes de un vento volcánico. Se forman a medida que el magma viscoso se enfría relativamente rápido luego de emerger sobre la superficie. El peligro asociado con el crecimiento de los domos de lava es menor que el peligro asociado a su colapso (Fink et al., 2000).

En el caso del Volcán Quilotoa el colapso de estos domos podría ocasionar flujos piroclásticos. Además la presencia de grandes depósitos de este tipo en el área del volcán, indica que en una futura erupción estos eventos posiblemente vuelvan a ocurrir, afectando a los poblados cercanos como Zumbahua, con una población de 12.000 personas. Además, el colapso de los domos de lava junto con la gran cantidad de agua presente en la laguna del Quilotoa, podrían producir la ruptura de esta laguna generando lahares. Dichos lahares podrían alcanzar grandes distancias a lo largo del Cañón del Río Toachi, siendo distancias aún mayores a las alcanzadas por los flujos piroclásticos de erupciones anteriores (Tríptico Volcán Quilotoa, IGEPN 2015).

En años recientes, el emplazamiento de los domos de lava ha estado entre los tipos de erupciones volcánicas más mortíferas, con más de 100 muertes registradas en los domos de lava activos esta década, incluyendo a 44 muertos en el Monte Unzen (Japón) en 1991 y a 66 en el Monte Merapi (Indonesia) en 1994 (Fink et al., 2000).

1.2 JUSTIFICATIVOS

Establecer las características de los domos del volcán Quilotoa, su química y su correlación con la estratigrafía del volcán, todo esto basado en el estudio petrográfico de estos domos, permitirá conocer con mayor detalle la edad de formación de estos domos y su rol en la historia geológica del Volcán, con el fin de contribuir al conocimiento científico del Volcán Quilotoa. Actualmente no hay ningún estudio petrográfico macro y microscópico de ellos.

Es por tanto el fin de esta investigación enriquecer el conocimiento del comportamiento eruptivo de este volcán para comprender futuros acontecimientos similares a los ya ocurridos, tomando en cuenta que en el Ecuador, únicamente los volcanes Quilotoa, Cuicocha y Puñalica son volcanes potencialmente activos que poseen una laguna dentro de su cráter.

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

Estudio de los Domos del Volcán Quilotoa y su Correlación con la Estratigrafía del Volcán.

1.3.2 OBJETIVOS ESPECÍFICOS

- Recolección de muestras de los domos y fragmentos líticos de las erupciones del volcán.
- Descripción macroscópica de las muestras recolectadas.
- Preparación y estudio petrográfico de láminas delgadas.
- Estudio de su Geoquímica.
- Correlación entre los domos y la estratigrafía.

1.4 ALCANCE

- Recopilación de información existente sobre el Volcán Quilotoa.
- Recolección de muestras en el campo.
- Organización de muestras recolectadas.
- Descripción macroscópica de las muestras.
- Preparación de muestras para la elaboración de láminas delgadas.
- Estudio petrográfico de láminas delgadas.

- Interpretación de los datos obtenidos.
- Correlación petrográfica entre los domos y la estratigrafía del Volcán.
- Comparación entre la petrografía obtenida con la geoquímica ya existente.
- Redacción del Proyecto de Titulación.

1.5 METODOLOGÍA

El presente proyecto se realizó en las siguientes etapas:

- Recopilación de información sobre el tema y sobre la zona de estudio. Dicha información se obtuvo a partir de publicaciones científicas, tesis de ingeniería previas, fotografías aéreas, mapas geológicos y de sitios web especializados.
- Trabajó de Campo: se realizaron tres salidas al Volcán Quilotoa donde se recolectaron muestras representativas de cada unidad y de cada domo.
- Trabajo de Laboratorio: realización del análisis macroscópico de las muestras recolectadas, selección y preparación de muestras para la realización de láminas delgadas y de análisis químicos, análisis de las láminas delgadas obtenidas.
- Procesamiento e interpretación de los datos y redacción del informe final.

1.6 ESTUDIOS ANTERIORES

Actualmente no existen estudios sobre los domos del Volcán, sin embargo se han realizado trabajos sobre la historia geológica del mismo. Los más importantes se mencionan a continuación:

 Hall, M.L., Mothes, P. (2008). Quilotoa volcano — Ecuador: An overview of young dacitic volcanism in a lake-filled caldera. Journal of Volcanology and Geothermal Research 176, 44-55. Este trabajo reconoce la presencia de una larga serie de poderosas erupciones plinianas, así como de al menos ocho ciclos eruptivos en los últimos 200 ka años; además, identifica tanto la existencia de tres calderas, como la de domos de dacitas localizados a lo largo del borde de la caldera actual. Finalmente halla una pequeña variación química y mineralógica en los productos eruptivos del Volcán.

- Mothes, P., Hall, M.L. (2008). The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes. Journal of Volcanology and Geothermal Research 176, 56-69. Este estudio documenta un caso donde el depósito de caída de ceniza fina asociado a la fase pliniana de la erupción, conforma el 87% de la masa de los productos volcánicos. En estos productos eruptivos se realizaron estudios estratigráficos y petrográficos, además de análisis granulométricos y de densidad. Finalmente se plantean los factores que contribuyeron posiblemente a la explosividad extrema de esta erupción.
- Di Muro et al. (2008). Transport and sedimentation dynamics of transitional explosive eruption columns: The example of the 800 BP Quilotoa plinian eruption (Ecuador). Journal of Volcanology and Geothermal Research 174, 307-324. Se investigó la dinámica del transporte y dispersión de la ceniza y lapilli durante una erupción pliniana transicional, en la que coexistieron e interactuaron columnas plinianas y co-ignimbríticas. Además se identificó que el estilo eruptivo de la erupción pliniana principal ocurrida hace 800 años, evolucionó progresivamente desde una columna convectiva temprana a una fuente colapsante tardía, pasando a través de una fase eruptiva transicional intermedia.

* <u>CAPÍTULO II</u>

VOLCANES DEL ECUADOR

2.1 INTRODUCCIÓN

El Ecuador es un pequeño país Andino con un arco volcánico impresionante que contiene muchos volcanes activos y potencialmente activos. El volcanismo del Plioceno tardío hasta el presente (Figura 2.1) se manifiesta a lo largo de cuatro grupos lineales, cada uno teniendo una morfología, estilo eruptivo, diversidad petrográfica y geoquímica características (Hall and Mothes, 2008).

2.2 VOLCANES DE LA CORDILLERA OCCIDENTAL

La Cordillera Occidental del Ecuador o también conocida como el Frente Volcánico, está asentado sobre basamento del Cretácico tardío, el cual está conformado por basaltos y rocas volcano-sedimentarias (Hughes and Pilatasig, 2002; Jaillard et al., 2004). La actividad de muchos de estos centros volcánicos durante el Holoceno y el Pleistoceno tardío fue de composición andesítica y dacítica. Morfológicamente la mayoría de estos centros son conos compuestos, construidos sucesivamente por la migración del vento y/o del conducto. Estos comúnmente tienen calderas de 2-3 km de ancho, en los cuales se han emplazado domos de lava dacítica, tanto en el centro de la caldera como a lo largo de su borde.

La actividad histórica y precolombina, que se ejemplifica por las erupciones del Quilotoa (800 ¹⁴C años AP), Pululahua (2400 años AP), Ninahuilca (2300-2400 ¹⁴C años AP) y Cuicocha (2900-3000 ¹⁴C años AP), estuvo caracterizada por amplias caídas y flujos de ceniza que afectaron a las culturas indígenas tempranas.

Las rocas jóvenes de este grupo tienden a caer dentro del rango entre 60-66 %SiO₂ y 0.9-1.5 %K₂O, y contienen fenocristales de plagioclasa, anfíbol, ortopiroxeno y raramente biotita y cuarzo (Hall and Mothes, 2008).

Figura 2.1. Distribución de los volcanes del Ecuador continental tomado de Hall et al. (2008) a lo largo de dos ejes principales (líneas de guiones), además del grupo trasarco. Modelo Digital de

Elevación de los Andes Ecuatorianos, proporcionado por M. Souris (IRD), que fue generado a partir de mapas topográficos 1:50,000 del Instituto Geográfico Militar, Quito. Los nombres de los edificios volcánicos son: (1) Cerro Negro de Mayasquer; (2) Chiles; (3) Chiltazón; (4) Potrerillos; (5) Chalpatán; (6) Chulamuez; (7) Horqueta; (8) Iguán; (9) Chaquilulo; (10) Soche; (11) Mangus; (12) Pilavo; (13) Yanaurcu de Piñan; (14) Huanguillaro; (15) Cotacachi; (16) Cuicocha; (17) Imbabura; (18) Cubilche; (19) Cushnirumi; (20) Mojanda; (21) Fuya Fuya; (22) Cusin; (23) Viejo Cayambe; (24) Nevado Cayambe; (25) El Reventador; (26) Pululahua; (27) Casitagua; (28) Pambamarca; (29) Izambi; (30) Guagua Pichincha; (31) Rucu Pichincha; (32) Puntas; (33) Ilaló; (34) Chacana; (35) Yanaurcu; (36) Ninahuilca; (37) Atacazo; (38) Pasochoa; (39) Sincholagua; (40) Antisana; (41) Pan de Azucar; (42) Sumaco; (43) Corazón; (44) Rumiñahui; (45) Almas Santas; (46) Ilinizas; (47) Tres Marías; (48) Cotopaxi; (49) Chalupas; (50) Quilindaña; (51) Quilotoa; (52) Chinibano; (53) Angahuana; (54) Sagoatoa; (55) Larcapungo (56) Huicutambo; (57) Carihuarazo; (58) Puñalica; (59) Huisla; (60) Tungurahua; (61) Mera; (62) Puyo; (63) Chimborazo; (64) Igualata; (65) Calpi; (66) Altar; (67) Tulabug;(68) Sangay. Las citas incluyen: Tulcán (T), Ibarra (I), Quito (Q), Latacunga (L), Ambato (A), Riobamba (R), Puyo (P), and Sto. Domingo (SD).

2.3 VOLCANES DEL VALLE INTERANDINO

Una docena de centros volcánicos andesíticos viejos se localizan irregularmente a lo largo del eje del Valle Interandino. Tres centros cerca de Quito (Ilaló, Pasochoa y Rumiñahui) definen una línea de edificios volcánicos del Pleistoceno medio. En otros sitios estos centros se agrupan donde se da una ligera curvatura axial en la cadena Andina, como cerca de Otavalo (volcanes Cusin, Mojanda, Fuya Fuya e Imbabura) y entre Ambato y Riobamba (centros Igualata, Llimpi-Huisla). En su mayoría son grandes estratovolcanes con elevaciones de 3800-4700 m, que tienden a presentar calderas remanentes con domos de lava y la mayoría están extintos.

En general, este grupo se caracteriza por andesitas básicas de dos piroxenos, plagioclasa y ocasionalmente anfíbol; químicamente tienen entre 57–60% SiO₂ y 0.5–1.0% K₂O. Como grupo representan un volcanismo andesítico más temprano que aparentemente migró al este, hacia la Cordillera Real (Hall and Mothes, 2008).

2.4 VOLCANES DE LA CORDILLERA REAL

Los centros volcánicos de la Cordillera Real están subyacidos principalmente por rocas metamórficas Paleozoicas y Mesozoicas (Aspden and Litherland, 1992) y por volcánicos del Terciario tardío, estos centros son grandes estratovolcanes andesíticos que están distribuidos aleatoriamente a través de toda esta cordillera. En muchos casos estos estratovolcanes de flancos abruptos alcanzan entre los 5700-5900 m de elevación. Muchos han tenido colapsos de sus flancos (e.g., Tungurahua, Antisana, Cotopaxi, Sangay, El Reventador). Los volcanes de la Cordillera Real han estado sistemáticamente más activos durante el Holoceno que aquellos de la Cordillera Occidental. Los productos eruptivos más jóvenes son andesitas de bajo a alto sílice, con una afinidad calco alcalina normal (56–61% SiO₂; 1–2% K₂O), conteniendo plagioclasa, clinopiroxeno, ortopiroxeno, óxidos de Fe-Ti y ocasionalmente olivino, sin embargo, se reportan abundantes dacitas y riolitas en el Cayambe y Cotopaxi, respectivamente.

En los últimos 20 años se han identificado grandes centros riolíticos en la parte central de la Cordillera Real. Finalmente al Este de Quito yace un gran centro riolítico llamado el Complejo Chacana con una edad de Pleistoceno a Holoceno, cuyo diámetro excede los 50 km (Hall and Mothes, 1997).

2.5 VOLCANES DEL TRASARCO

Un pequeño grupo de volcanes alcalinos ocurren al Este de la Cordillera Real en la selva amazónica. Son estratovolcanes más pequeños con una elevación entre 2000-4000 m. Están conformados por el volcán Sumaco y por sus centros vecinos y por los conos de escoria que afloran cerca al Puyo (Hoffer et al., 2008), y por el Complejo Cacalurcu que corresponde a un área recientemente reconocida de las lavas trasarco y que previamente estuvo incluida dentro de las Lavas Mera (Ball, 2015). Las rocas principalmente son Basanitas y Tefritas (42–53% SiO₂; 1–5% K₂O) que contienen grandes fenocristales de piroxeno sódico y huayna en una masa de plagioclasa, óxidos de Fe-Ti, y \pm olivino y noseano.

* <u>CAPÍTULO III</u>

VOLCANES VECINOS DE LA CORDILLERA OCCIDENTAL

3.1 UBICACIÓN Y CARACTERÍSTICAS DEL ÁREA DEL QUILOTOA

El Volcán Quilotoa se ubica en la provincia de Cotopaxi. Con una altitud de 3914 msnm, se encuentra a 33 Km al Oeste de Latacunga y a 83 Km al Suroeste de Quito, en la Cordillera Occidental del Ecuador.

La topografía de la zona varía entre los 3400 y 3800 msnm, además el centro del Quilotoa en sí es una caldera, rellena por una laguna cratérica que se localiza sobre el edificio volcánico de bajo relieve, edificio que posee un diámetro basal aproximado de 6 Km. La caldera presenta una forma circular y un diámetro de 2.9 Km, caldera que contiene una laguna alcalina de 2.1 km de diámetro y 240 m de profundidad.

El volcán es drenado por algunas quebradas que desembocan en el río Toachi al Norte y en el Río Zumbahua al Sur (Figura 3.1). La vegetación existente en los alrededores de la caldera del volcán es bastante pobre, consistiendo en algunas partes de pinos que son de origen de plantaciones hechas por lugareños y lo demás que corresponde a lo endémico y por la gran altitud del sector es particularmente de árboles pequeños y maleza de origen silvestre. Esto añadido a la gran influencia del viento produce en el sector la presencia de una constante erosión eólica.

Varias comunidades se localizan en los alrededores del volcán principalmente hacia el nor-occidente del mismo, las cuales son Sigchos, H. Moreta, Chugchilan, Hizana, Pasoloma, La Cocha, Isinlivi, Anchi, Ponce y Zumbahua. Existe una carretera de primer orden que conecta a estas localidades en este orden: Latacunga – Pujilí – Zumbahua – Volcán Quilotoa. Finalmente las comunidades alrededor del volcán se enlazan entre sí con carreteras de segundo orden.

Figura 3.1. Mapa político de la provincia de Cotopaxi tomado de http://www.econativaturismo.com/web/images/MAPAS%20ECUADOR/Mapa_Cotopaxi_Ecuador.jp g, donde se muestra la Laguna Quilotoa, la capital y los poblados de la provincia, los ríos y vías de acceso.

Los volcanes vecinos al Volcán Quilotoa del Norte al Sur son los siguientes: Complejo Volcánico Pichincha, Complejo Volcánico Atacazo – Ninahuilca, Complejo Volcánico Iliniza, Complejo Volcánico Chimborazo y Volcán Carihuairazo (no estudios previos) (Figura 3.2). Estos constituyen el frente volcánico que se localiza a 200 – 250 km al Este de la fosa. Dicho frente posee aproximadamente 470 km de largo y 50 km de ancho. Además, presenta una morfología montañosa de pendientes abruptas alcanzado una altura máxima de 6310 msnm en la cumbre Whymper del volcán Chimborazo y una altura promedio de 3000 – 3500 msnm; y a dichos volcanes se los tratará a continuación.

Figura 3.2. Mapa de los Volcanes Vecinos al Volcán Quilotoa en la Cordillera Occidental.

3.2 COMPLEJO VOLCÁNICO <u>PICHINCHA</u>

3.2.1 DESCRIPCIÓN GENERAL

El Complejo Volcánico Pichincha (PVC) está localizado a 15 km al oeste de la ciudad de Quito (Bourdon et al., 2002). El lado occidental del PVC está construído directamente sobre el basamento cretácico conformado por basaltos de plateau oceánico y por rocas ultramáficas (Unidades Pallatanga y San Juan), así como por rocas volcanosedimentarias (Formación Yunguilla) (Hughes et al., 1998). Por otro lado (Samaniego et al., 2006), la parte oriental del complejo sobreyace a los productos volcánicos de edad Pliocena (Geotermica Italiana, 1989). El PVC es elongado (20 km E – W y 20 km N – S, Figura 3.3) y posee una forma asimétrica con una base variando desde los 3000 a 2500 m en elevación de E a W. La parte superior del complejo define tres cumbres principales: Rucu Pichincha (4627 msnm), Padre Encantado (4374 msnm) y Guagua Pichincha (4675 msnm).

El desarrollo del edificio estuvo conformado primero por un volcán viejo, grande y principalmente efusivo (Rucu Pichincha) y por edificios sucesivos más recientes (estratovolcanes Guagua Pichincha) de menores volúmenes, pero más explosivos.

El PVC (Samaniego et al., 2006) está compuesto por dos estratovolcanes principales: (1) Rucu Pichincha; y (2) Guagua Pichincha, construido sobre los remanentes occidentales del edificio inicial. Los restos de otro edificio basal, llamado El Cinto, se presentan en la parte suroeste del complejo.

3.2.2 PETROGRAFÍA, MINERALOGÍA y QÚIMICA

• EL EDIFICIO BASAL EL CINTO.

La zona montañosa entre el valle del Río Cinto y Quito representa los remanentes de este edificio basal. Está conformado por una pila de 200-300 m de espesor de flujos de lava de andesíticos a dacíticos. Su composición varía entre 61.8 – 63.4 wt.% SiO₂ (Figura 3.3). A estos flujos de lava les sobreyace un domo conocido como el Domo Ungüi.

Un flujo de lava andesítico de la parte inferior y un flujo de lava dacítico proveniente del Domo Ungüi muestran edades entre los 1100 y 900 ka. Por lo tanto, el desarrollo de este edificio se dio en al menos 200 ka (Samaniego et al., 2006).

Figura 3.3. Mapa Geológico del Complejo Volcánico Pichincha, tomado de Samaniego et al., 2006. Información Digital provista por M. Souris (IRD), generada a partir de mapas topográficos del Instituto Geográfico Militar, Quito. Basamento de la Cordillera Occidental (Hughes et al., 1998) correspondiente a (1) Unidad Pallatanga y (2) Unidad Silante. (3) Volcánicos viejos correspondientes a la pila de lava la Esperanza. Edificio El Cinto: (4) Flujos de lava y domos indeferenciados. Edificio Rucu Pichincha: (5) Flujos de lava y brechas indiferenciadas; (6) Brechas de la cumbre. Edificio Guagua Pichincha. (7) Edificio Basal: flujos de lava y domos y depósitos piroclásticos relacionados; (8) Abánicos de bloque y ceniza Lloa y Río Mindo; (9) Depósitos Viejos de Avalancha de Escombros; (10) Edificio Toaza: domos y depósitos piroclásticos relacionados; (11) Depósito de avalancha de escombros Toaza; (12) Complejo de domos intracaldérico (Domos Cristal). (13) Cicatriz de Avalancha del Edificio Guagua Pichincha; (14) Cicatriz de Avalancha del Edificio Toaza; (15) Escarpes; (16) Fallas; (17) Curvas de 3.000 y 4.000 msnm; (18) Carreteras; (19) Ríos Principales.

• ESTRATOVOLCÁN BASAL RUCO PICHINCHA.

El Ruco Pichincha está compuesto mayoritariamente de flujos de lava andesíticos (57.3 – 63.2 wt. % SiO₂, Figura 3.4) y brechas interestratificadas escasas.

Nuevas determinaciones de edades ⁴⁰Ar/³⁹Ar en las lavas superiores del Ruco Pichincha reportan edades que varían de 850 a 260 ka (Samaniego et al., 2006).

• EL EDIFICIO GUAGUA PICHINCHA.

Este es un volcán compuesto el cual se desarrolló durante algunas fases de construcción principales, a cada fase la siguió un complejo de domos. El último complejo de domos representa a la parte activa del PVC (Samaniego et al., 2006).

• EL EDIFICIO BASAL GUAGUA PICHINCHA.

La primera fase de actividad resultó en la construcción del volumen principal del Guagua Pichincha (Samaniego et al., 2006), conformado por gruesas series de domos y flujos de lava andesíticos y dacíticos (59.8 – 64.0 wt. % SiO₂, Figura 3.4).

• EL EDIFICIO TOAZA.

El edificio Toaza posee 5 km de ancho, en su mayoría es un complejo de domos dacíticos (61.0-66.3 wt.% SiO₂, Figura 3.4) el cual creció dentro del anfiteatro de la avalancha de hace 23 ka (Samaniego et al., 2006).

• FASE HOLOCÉNICA Y ACTUAL DE LA ACTIVIDAD DEL DOMO.

Siguiendo al colapso de sector que afectó al edificio Toaza, un nuevo complejo de domos, en su mayoría dacíticos (61.5 a 65.7 wt.% SiO₂) fue emplazado dentro de la depresión de avalancha.

De esta manera, desde hace 55.000 años, el desarrollo del Guagua Pichincha ha estado conformado por una fase de construcción temprana de flujos de lava, seguida por tres fases principales de construcción/destrucción relacionada a la actividad del domo (Samaniego et al., 2006).

Figura 3.4. Diagrama SiO₂ vs Th tomado de Samaniego et al., 2006. Composición de elementos mayores recalculada al 100% en una base anhidra. Análisis ICP-AES llevados a cabo por J. Cotten en la Universidad de Brest, Francia.

3.2.3 EVOLUCIÓN MAGMÁTICA

El volcán Pichincha es un edificio activo donde han sido emitidos magmas inusuales, como adakitas y andesitas de alto Mg. Las andesitas de alto Mg con características geoquímicas cercanas a las de las adakitas, presentan fuertes enriquecimientos en MgO que sugieren que, una vez que fueron producidos por un 10% de fusión parcial del slab, algunas adakitas en ruta a la superficie interactuaron fuertemente con la cuña mantélica peridotítica. Por lo tanto, los magmas adakíticos podrían representar al agente metasomático principal del manto en la zona volcánica norte en el Ecuador (Bourdon et al., 2002).

3.3 COMPLEJO VOLCÁNICO ATACAZO-NINAHUILCA

3.3.1 DESCRIPCIÓN GENERAL

El Complejo Volcánico Atacazo – Ninahuilca (ANVC) está localizado en la Cordillera Occidental del Ecuador, 20 km al suroeste de Quito. El complejo (Figura 3.5) puede ser dividido en un edificio viejo (siendo los Volcanes Carcacha y Atacazo), y en un edificio joven consistiendo en dos grupos de domos dacíticos. El volcán Atacazo es el más grande del complejo y sufrió un evento de

desestabilización, el cual produjo una depresión tipo caldera (de 7 km de largo x 5 km de ancho x 400 m de profundidad) (Hidalgo et al., 2008c) (Almeida, 1996) (Hall y Maruri, 1992).

El edificio Atacazo puede ser dividido en tres unidades diferentes: Lavas Base, Lavas Superiores y flujo de lava La Estancia. Con respecto a los domos dacíticos, el primer grupo conformado por los domos dacíticos post-colapso (Figura 3.5) se localiza en la parte externa del edificio, al Este (La Viudita y Omoturco) y al Norte (Gallo Cantana). El segundo grupo creció dentro de la depresión de la caldera (Arenal I y II, La Cocha I y II y Ninahuilca Chico I y II) (Hidalgo et al., 2006).

El edificio Carcacha posee la edad más vieja del complejo (1,29 Ma), mientras que el Atacazo (Hidalgo et al., 2006) muestra tres diferentes etapas de construcción:

- De 220 a 200 ka ocurrió la emisión de las Lavas Base (domos andesíticos) las cuales constituyen la parte basal del edificio.
- De 82 a 90 ka se dio la construcción de la parte superior del edificio (flujos de lava andesíticos).
- Hace 84 ka tuvo lugar la emisión del flujo de lava andesítico La Estancia (Hidalgo et al., 2008b).

El flujo de lava la Estancia presenta importantes diferencias geoquímicas con respecto a las Lavas Superiores o Lavas Base (Hidalgo et al., 2006).

Cabe mencionar que entre los edificios volcánicos Atacazo-Ninahuilca e lliniza, existe el remanente de otro volcán conocido como El Corazón; pero hasta el presente este volcán no ha sido estudiado y no se cuenta con una descripción del mismo. Sin embargo Robles 2013, estudió las tefras más recientes arrojadas por este volcán en los últimos 20.000 años, aproximadamente.

Figura 3.5. Esquema de la Geología del ANVC tomado de Hidalgo et al., 2006. Coordenadas UTM de la zona 17.

3.3.2 PETROGRAFÍA y MINERALOGÍA

Al menos seis períodos eruptivos (N1 a N6) de actividad reciente del ANVC están presentes en el registro geológico como caídas de tefra o flujos piroclásticos (Hidalgo et al., 2006).

La parte más vieja del edificio (Carcacha y Atacazo) está conformada por andesitas de dos piroxenos, con anfíbol subordinado. Los domos de la Viudita y Gallo Cantana están conformados por dacitas muy homogéneas que contienen pl+anf+opx+mag. Los niveles N5 y N6 están conformados por dacitas con esta composición mineralógica pl + anf + opx + mag ± bio. Los niveles N1 y N4 están conformados por andesitas y dacitas que contienen pl+anf+opx+mag (Hidalgo et al., 2008c).

3.3.3 QÚIMICA

En la parte más vieja del edificio (Carcacha y Atacazo), el SiO₂ se correlaciona positivamente con el Na₂O y con el K₂O y se correlaciona negativamente con el MgO, CaO, TiO₂ y FeO. Los domos de la Viudita y Gallo Cantana presentan una composición alta en SiO₂ (66.18 a 67.04 wt% SiO₂) los cuales no muestran ningún tren de diferenciación. N5 es fácilmente discriminado de N6 por su contenido en elementos en trazas, siendo N5 rico en TiO₂, Eu, Nd y

Ce. Los niveles N1 y N4 poseen características químicas intermedias entre los productos de Carcacha-Atacazo y los productos N5 y N6 (Hidalgo et al., 2008c).

Los elementos incompatibles como el Rb y Ba muestran correlaciones positivas, mientras que el Sr permanece constante en N5, N6 y en los domos externos. Los diagramas multielementales normalizados de los N-MORB (Figura 3.6) muestran que los patrones son idénticos para todos los elementos, excepto para los HREE donde se discriminan claramente dos grupos: las lavas viejas que son ricas en HREE y las lavas jóvenes (los domos externos, el nivel N5 y N6) que son pobres en Y y HREE (Hidalgo et al., 2008c).

Figura 3.6. Tomada y modificada de Hidalgo et al., 2008c, indicando arriba un diagrama K₂O, TiO₂, MgO y Yb vs SiO₂, y abajo un diagrama multielemental normalizado de los N-MORB.

3.3.4 EVOLUCIÓN MAGMÁTICA

Las rocas de Carcacha – Atacazo practicamente muestran características geoquímicas calcoalcalinas clásicas, mientras que los domos externos con los productos del nivel N5 y N6 reproducen las características de las adakitas de alto SiO₂ (Martin et al., 2005) (por ejemplo, alto contenido de Na₂O y Sr, y bajo contenido de Y y HREE). Este cambio temporal en la química de los magmas ya ha sido reportado para otros volcanes en el arco Ecuatoriano (Cayambe: Samaniego et al., 2002; Iliniza: Hidalgo, 2002; Pululahua: Andrade et al., 2005). Estos autores proponen que este cambio recurrente podría estar vinculado a una importante modificación geodinámica del estado termal y de la geometría del slab subducido en respuesta a la entrada en subducción de la Cordillera de Carnegie.

Los valores excepcionalmente altos en δ^{18} O al ser comparados con los valores típicos de los magmas de arco (Harmon and Hoefs, 1995), y los grandes rangos de variación en las lavas Carcacha-Atacazo-Arenal I (CAA) (8.0 a 8.9 ‰) sugieren un proceso de contaminación. De hecho, el fuerte incremento en δ^{18} O (mayor a 0,9‰) para las andesitas Carcacha-Atacazo, comparado al débil incremento en la composición de SiO₂ (7 wt%), sugieren una asimilación de materiales ricos en ¹⁸O provenientes de la corteza (Figura 3.7), en conjunto con un proceso de cristalización fraccional (Hidalgo et al., 2008a).

Figura 3.7. Diagrama SiO₂ vs δ^{18} O‰ tomada de Hidalgo et al., 2008a.

La petrogénesis de las rocas del ANVC (Hidalgo et al., 2008a) parece estar controlada por diferentes procesos:
Las características geoquímicas adakíticas de las rocas del ANVC requieren la adición de materiales fundidos o de fluídos supercríticos provenientes del slab subductante hacia el manto y/o a un fraccionamiento temprano del granate.

2) Los altos radios de oxígeno de las lavas máficas de las series CAA sugieren una contaminación de la fuente mantélica por materiales ricos en ¹⁸O. Estos materiales son ciertamente un asunto de la fusión parcial o de la deshidratación de los sedimentos carbonatados subductantes o de la corteza oceánica alterada.

3.4 COMPLEJO VOLCÁNICO ILINIZA

3.4.1 DESCRIPCIÓN GENERAL

El Complejo Volcánico Iliniza (IVC) (Hidalgo, 2001, 2002), es un gran edificio de forma casi circular (9 km NW–SE x 8 km NE–SW). Este complejo está pobremente conocido y se localiza a 60 km al SSW de Quito en la Cordillera Occidental del Ecuador (Figura 3.8). Está conformado por dos picos gemelos, el Iliniza Norte y el Iliniza Sur, y por dos domos satélites, Pilongo y Tishigcuchi.

Este complejo se halla en la zona geográfica afectada por la subducción de la Cordillera de Carnegie (Hidalgo et al., 2007); además, este complejo está construido sobre un basamento volcano-sedimentario conformado por la Unidad Silante y por el Grupo Zumbahua, donde ambos están subyacidos por la Unidad Pallatanga (Hughes, 1998; Hughes and Pilatasig, 2002).

Figura 3.8. Complejo Volcánico Iliniza. Tomada de Hidalgo et al., 2007. (b) DEM sombreado con las principales características morfoestructurales del complejo volcánico; (c) Mapa geológico simplicado

del Complejo Volcánico Iliniza mostrando los sitios de muestreo (UTM zona 17). 1=Domo Iliniza Sur; 2=Ignimbrita Jatuncama, depósito del Iliniza Sur; 3= Dome Tishigcuchi; 4= Domo Pilongo; 5=Flujo de Pómez y Ceniza Santa Rosa; 6=Lavas viejas del Iliniza Sur; 7=Lavas viejas del Iliniza Norte; 8=Complejos Volcánicos Cuaternarios (Almas Santas y Corazón); 9=Complejo Volcánico Pliocénico Santa María; 10=Unidades Silante y Zumbagua del Eoceno–Mioceno.

Un set de fallas dextrales de strike-slip N40°E que conforman la Zona de Falla Iliniza, cortan al IVC (Figura 3.8) y son parte del sistema de fallas regionales Pallatanga-Algeciras-Sibundoy (Hall and Ramón, 1978; Soulas et al., 1991). Los domos satélites del IVC (Tishigcuchi y Pilongo) definen un alineamiento paralelo, sugiriendo que este sistema de fallas controló el emplazamiento y el crecimiento de los edificios en el complejo (Hidalgo et al., 2007).

3.4.2 PETROGRAFÍA

La siguiente descripción fue tomada de Hidalgo et al., 2007.

El Iliniza Norte (5105 m.s.n.m.) constituye la parte más vieja y la base del edificio volcánico principal. Está formado por flujos de lava Pleistocénicos andesíticos y dacíticos, y por abundantes brechas subglaciales alteradas. La paragénesis comprende plagioclasa + ortopiroxeno + óxidos de hierro + clinopiroxeno.

El Iliniza Sur (5245 m.s.n.m.) es un gran estratovolcán, que fue construido al menos varios cientos de miles de años después que el Iliniza Norte, está conformado por flujos de lava andesítica y dacítica, y gruesos depósitos de flujos piroclásticos localizados en los flancos exteriores.

La paragénesis típica de las lavas del Iliniza Sur y de los depósitos piroclásticos incluyen plagioclasa + óxidos de Fe–Ti ± ortopiroxeno ± clinopiroxeno ± anfíbol ± apatito ± cuarzo. Dos importantes domos satélites han sido reconocidos en el complejo (Figura 3.8). El Domo Pilongo (3925 m.s.n.m.) está conformado por una lava dacítica microcristalina incluyendo plagioclasa ± anfíbol ± óxidos de Fe–Ti + cuarzo ± ortopiroxeno. El Domo Tishigcuchi (4185 m.s.n.m.) está conformado por andesitas silíceas de intersertales a microcristalinas (plagioclasa + anfíbol + ortopiroxeno + clinopiroxeno + óxidos de Fe–Ti ± cuarzo).

No se han establecido edades absolutas para los edificios del complejo. Sin embargo, basado en su morfología erosional y en las relaciones de campo, el lliniza Norte parece ser el más viejo, seguido por la base del lliniza Sur, el Domo Tishigcuchi, el Domo Pilongo y al final la parte nueva del edificio del lliniza Sur, (Hidalgo et al., 2007).

En el trabajo de Hidalgo et al., 2007, en base a la evidencia de campo y a los datos geoquímicos se han identificado cuatro unidades distintas:

- Los productos del lliniza Norte.
- El lliniza Sur, y el flujo de pómez y ceniza Santa Rosa.
- El Domo Pilongo.
- El Domo Tishigcuchi.

3.4.3 MINERALOGÍA

Las rocas volcánicas del IVC pertenecientes a los flujos de lava y domos presentan una textura porfirítica-afanítica con una matriz intersertal para las lavas y una matriz microcristalina intergranular para los domos (Hidalgo et al., 2007).

Según Hidalgo et al., 2007, los fenocristales de plagioclasa (5–40% vol) son típicamente euhedrales con una composición que varía de andesina a labradorita (An_{38–65}). Para los edificios Iliniza Norte y Sur, y para los productos Tishigcuchi la zonación es altamente variable. Sin embargo para el Domo Pilongo la plagioclasa presenta una zonación normal y una rara zonación inversa. En los productos del Iliniza, los microlitos de plagioclasa son más sódicos que los fenocristales, variando de andesina a oligoclasa, mientras que en Tishigcuchi los microlitos frecuentemente son más cálcicos. Los microlitos de Pilongo tienen el mismo rango composicional que los fenocristales.

El clinopiroxeno está presente en las lavas del lliniza y de Tishigcuchi. Aparece como fenocristales de euhedrales a subhedrales (0–15 % vol) de augita a augita magnesiana (Mg# 85.6–70.9) (Morimoto et al., 1988). Este generalmente posee una zonación normal, pero comúnmente, las zonas intermedias son ligeramente más magnesianas que los núcleos. No se ha observado clinopiroxeno en el Domo Pilongo. El Ortopiroxeno está presente en ambos Ilinizas y en Tishigcuchi como fenocristales de euhedrales a subhedrales, estos son fenocristales de enstatita con zonación normal (0–25 vol%). Una característica particular de las rocas de Tishigcuchi es que el hipersteno podría coexistir con la augita en una asociación cercana. En Pilongo y en las Riolitas Santa Rosa, el ortopiroxeno está presente solamente como microlito en cantidades ínfimas.

El anfíbol se presenta de color café, euhedral (0–20 %vol), principalmente es tshermakita (Leake et al., 1997). En los edificios lliniza la zonación es muy débil e inversa mientras que en Pilongo, en las riolitas Santa Rosa y en las Rocas Tishigcuchi es normal.

3.4.4 QÚIMICA

En las rocas del IVC, las concentraciones de SiO₂ varían de 55 a 71% (Hidalgo et al., 2007). En el diagrama de clasificación (Peccerillo y Taylor, 1976) de K_2O vs SiO₂ sus composiciones varían entre los campos de la andesita básica y de la riolita de moderado k, pero la mayoría de las rocas son andesitas y dacitas (Figura 3.9).

Figura 3.9. Diagrama de clasificación para magmas orogénicos K₂O vs. SiO₂ (Peccerillo and Taylor, 1976) para las series del Complejo Volcánico Iliniza tomado de Hidalgo et al., 2007. Los datos están recalculados al 100% de una base anhidra.

Los diagramas de Harker (Figura 3.10) muestran marcadas correlaciones negativas entre el SiO2 y los contenidos de Fe₂O₃, MgO, CaO y de TiO₂. Una

correlación negativa general también se puede notar para el Al₂O₃ y para el P₂O₅, donde las concentraciones de Na₂O y K₂O se correlacionan positivamente con el contenido de SiO₂.

Figura 3.10. Diagramas de Harker para las rocas del Complejo Volcánico Iliniza tomado de Hidalgo et al., 2007. Los valores de los óxidos están recalculados al 100% de una base anhidra.

Las rocas del Iliniza Norte son más básicas (55.30 a 64.20% SiO₂) y presentan un ligero enriquecimiento en elementos incompatibles (Rb, Ba, Th) con respecto a las rocas del Iliniza Sur (Figura 3.10 y 3.11). Los productos del Domo Tishigcuchi despliegan un rango más restringido de composición (60 a 63% SiO₂), y son más ricas en MgO, K₂O y P₂O₅ que las rocas del Iliniza Sur. Las rocas del

Domo Pilongo consisten de riodacitas muy homogéneas, con un contenido cercano a 69% SiO₂, las cuales para los elementos mayores caen en el tren general del Iliniza Sur.

Para los productos del Iliniza Sur el Zr, Sc, V, Cr y Ni se correlacionan negativamente con el SiO₂, donde el Rb, La y Ba muestran una correlación positiva (Figura 3.11). Para algunos elementos traza, los productos del Domo Pilongo caen en el tren del Iliniza Sur. Esto no se da en los productos de Tishigcuchi, los cuales por ejemplo, tienen concentraciones más grandes de Rb, Sr, Nb, La y Th que todas las otras lavas del IVC (Figura 3.11).

Debe enfatizarse que el Y y el Yb (HREE) muestran una correlación negativa con el SiO₂. Las concentraciones de Y y Yb son relativamente bajas, excepto para las rocas más básicas del Iliniza Norte. A estas bajas concentraciones clásicamente se las considera típicas de las adakitas de alto SiO₂. Adicionalmente, las riodacitas Pilongo y las riolitas Santa Rosa despliegan características fuertemente marcadas, de adakitas de alto SiO₂.

Figura 3.11. Ploteos de las concentraciones de elementos traza seleccionados (ppm) vs % SiO₂. **3.4.5 EVOLUCIÓN MAGMÁTICA**

En las zonas de subducción tres fuentes principales diferentes pueden contar para el origen de los magmas de arco: la cuña mantélica metasomatizada ya sea por fluidos hidratados (para producir magmas alcalinos) o por fundidos silicatados (para producir adakitas bajas en sílice), el slab subducido y los basaltos de la base de la corteza (para producir magmas adakíticos). El estudio de Hidalgo et al., 2007 muestra que al menos las dos primeras fuentes han estado activas (algunas veces juntas) para generar los magmas de todo el complejo. Una de estas fuentes es una cuña mantélica peridotítica previamente metasomatizada por un agente rico en fluido, resultante de la deshidratación del slab subducido; los magmas del Iliniza Norte se generan a través de este mecanismo; el segundo mecanismo es la fusión parcial de los basaltos subducidos, lo cual está bien ejemplificado por el magma del Domo Pilongo.

Todas las otras petrogénesis de magma requieren la participación de estos dos miembros finales a través de diferentes tipos de interacciones:

- Mezcla de Magmas: por ejemplo, la composición del magma padre del lliniza Sur parece resultar de la mezcla de dos magmas: uno con una afinidad calcoalcalina (64%) y el otro siendo una riodacita adakítica (36%).
- Magma adakítico vs Peridotita: las riolitas Santa Rosa parecen ser generadas por la fusión parcial de los basaltos que probablemente pertenecen al slab subductante.
- 3. La fusión de la peridotita metasomatizada de la cuña mantélica por fundidos de slab: Los magmas de la andesita ácida de Tishigcuchi parecen ser generados por la fusión parcial de la cuña mantélica previamente metasomatizada por un fundido adakítico similar a la lava Pilongo. Tal mecanismo también ha sido propuesto por Yogodzinski et al. (1994) en el Arco Aleutiano y por Sajona et al. (2000) en la Isla Negros (Filipinas), y en Ecuador para los Volcanes Antisana (Bourdon et al., 2003), Cayambe (Samaniego et al., 2005), y Mojanda-Fuya Fuya (Robin et al., in press).

3.5 COMPLEJO VOLCÁNICO CHIMBORAZO

3.5.1 DESCRIPCIÓN GENERAL

El Complejo Volcánico Chimborazo (CVCh) se localiza a aproximadamente 150 km al sur-suroeste de Quito y a 28 km al NW de Riobamba (Barba, 2003), siendo el volcán cubierto de hielo más alto en el Ecuador y también en la Zona Volcánica Norte (6268 m). Este yace sobre el basamento de la Cordillera Occidental (Figura 3.12), conformado por sedimentos y volcánicos de edad Cretácica a Paleógena (McCourt et al., 1997).

Presenta tres cumbres mayores o domos de nieve alineados en una dirección WNW – ESE. La cumbre máxima llamada Whymper (6310 m) ocupa la posición más occidental, este domo de nieve constituye el extremo SE del cráter más joven del volcán, seguido por una cumbre central denominada Politécnica (5850 m), y la cumbre oriental nombrada como Nicolás Martínez (5650 m). El Volcán Chimborazo cuenta con un casquete glacial muy potente formado por nieves perpetuas que cubren gran parte de su edificio actual (Barba, 2003).

El Volcán Chimborazo es un estratovolcán compuesto y masivo, que está conformado por tres edificios sucesivos, separados por dos eventos catastróficos.

El edificio basal (CH-I) estuvo activo entre ~120 a 60ka y formó un gran edificio mayoritariamente efusivo; el cual fue construido durante dos etapas de formación de conos, terminando con la formación de un complejo de domos (Samaniego et al., 2012). En base a datos ⁴⁰ Ar/³⁹ Ar, el edificio CH-I fue construido entre > 150 y 85 ka (Barba et al., 2005).

El volcán basal CH-I terminó con un gran evento catastrófico (colapso de sector y avalancha de escombros), responsable de la erupción de una ignimbrita y la subsecuente formación de una caldera hace 65 a 60ka (Samaniego et al., 2012) (Barba et al., 2005). Este evento dejó una cicatriz de 4 km de ancho, removiendo 8.0 ± 0.5 km³ del edificio. Su depósito de avalancha posee un espesor promedio de 40 m, cubre un área de 280 km² y tiene un volumen > 11 km³. Dentro de esta avalancha de escombros se reconocen dos facies: una facies de bloque y una facies mezclada. La facies de bloque se deriva predominantemente de las lavas del

edificio y forma >80 vol.% de esta avalancha. La facies de mezcla fue creada esencialmente, por la mezcla entre rocas brechadas del edificio con el substrato (Bernard et al., 2008).

El volcán intermedio (CH-II) fue construido en el borde oriental de la caldera antes mencionada entre 60 a 35ka, sus remanentes son los picos Politécnica y Martínez (Samaniego et al., 2012), y fue afectado por un gran colapso de sector (Barba et al., 2005).

Finalmente, entre ~33 ka y 10 ka una actividad eruptiva fuerte y recurrente, llevó a la construcción del cono joven morfológicamente bien preservado (CH-III), el cual actualmente forma la cumbre más alta (Whymper) (Samaniego et al., 2012).

Figura 3.12. Mapa Geológico Simplificado del Volcán Chimborazo, tomado de Barba et al., 2005.

3.5.2 PETROGRAFÍA, MINERALOGÍA Y QÚIMICA

• CHIMBORAZO I.

El volcán basal (CH-I) es un estratovolcán masivo y principalmente efusivo, cuyos relictos están representados por gruesos flujos lava de andesíticos a dacíticos distribuidos radialmente (56.8 – 64.1 wt% SiO₂), los cuales se hallan interestratificados con unas pocas brechas subglaciales. En el flanco suroccidental, los flujos de lava basales están sobreyacidos por una secuencia de depósitos de bloque y flujos de ceniza andesíticos (60.0 – 61.8 wt% SiO₂).

Las lavas CH-I contienen plagioclasa, ortopiroxeno, clinopiroxeno, anfíbol y magnetita. Dos dataciones ⁴⁰Ar/³⁹Ar de roca total dan edades sorprendentemente jóvenes de 93±5 y 83±7 ka, revelando una edad de Pleistoceno tardío para este edificio basal. Además la presencia de una Ignimbrita de estas características mineralógicas y químicas indica que el edificio más viejo finalizó con una gran erupción que formó una caldera (Barba et al., 2005).

• CHIMBORAZO II.

Los remanentes de este edificio (CH-II) consisten de dos picos, actualmente preservados como las cumbres "Politécnica" (5850 m) y "Nicolas Martinez" (5650 m). La cumbre del edificio "Politécnica" (CH-IIA) fue construida rápidamente (en menos de 30.000 años o incluso en menor tiempo) sobre el límite oriental de la caldera vieja CH-I.

Los flujos de lava CH-II son andesitas y dacitas (59.5 – 64.3 wt% SiO₂) los cuales contienen plagioclasa, piroxeno y cristales de magnetita. Al compararlos con las lavas CH-I, las rocas CH-II son enriquecidas en K (Figura 3.13). Las series de andesita a dacita de la cumbre "Nicolas Martinez" parecen ser independientes de las secuencias de flujos de lava "Politécnica"; esta cumbre correspondería a un vento lateral (CH-IIB).

El Chimborazo II fue afectado por un gran colapso de sector. Este evento ocurrió hace aproximadamente 50 ka. Los escombros se esparcieron hacia la Cuenca de Riobamba y fueron seguidos por flujos piroclásticos andesíticos (58.4 – 60.1 wt% SiO₂). Luego, gruesos flujos de lava andesíticos (Unidad Guano: 60.4 – 62.9 wt% SiO₂), sobreyacieron parcialmente al depósito de avalancha de escombros. En el diagrama K₂O vs SiO₂ (Figura 2.12), las lavas de estos depósitos

definen un único tren distinto al tren definido por las rocas de CH-I y CH-II (Barba et al., 2005).

Figura 3.13. Diagrama K₂O vs SiO₂ para las rocas del Volcán Chimborazo.

• CHIMBORAZO III.

Este edificio que es un estratovolcán cónico bien preservado (Barba et al., 2006a_Abstract), fue construido sobre los remanentes de CH-I y está actualmente representado por dos cumbres principales (Whymper y Veintimilla). El volcán CH-III consiste de depósitos de flujos de lava y flujos piroclásticos (56.4 – 61.8 wt% SiO₂). Además, el flanco occidental del complejo volcánico expone decenas de metros de depósitos de caída de tefra de andesítica a dacítica (Barba et al., 2005). Finalmente el CH-III fue afectado por un pequeño colapso de sector (Barba et al., 2006a_Poster) (Samaniego et al., 2010).

* <u>CAPÍTULO IV</u>

VOLCÁN QUILOTOA

4.1) TRABAJOS ANTERIORES

Los estudios previos realizados en el volcán (Hall and Mothes, 2008), (Mothes and Hall, 2008) y (Di Muro et al., 2008) se han enfocado en la estratigrafía del volcán (donde se describieron sus ocho ciclos eruptivos) o en secciones de la misma, en la historia geológica del volcán y en la química de los trece ciclos eruptivos. En el trabajo de (Rosi et al., 2003) se estudió el rol de la cizalla durante el ascenso del magma perteneciente a la erupción de hace 800 años, a través de la caracterización de las pómez correspondientes a la fase final de dicha erupción. Estudios posteriores adicionales han reconocido trece ciclos de erupciones en total. Sin embargo hasta el presente no ha habido estudios detallados sobre los domos del volcán, siendo éste el propósito de este trabajo.

4.2) MORFOLOGÍA Y DIMENSIONES DEL VOLCÁN

4.2.1) ANTECEDENTES

El Capítulo III del presente trabajo trató de los Volcanes de la Cordillera Occidental que son vecinos al Volcán Quilotoa; donde por cada volcán, se dio una descripción general. Ahora, en el presente capítulo se tratará a fondo al volcán Quilotoa; específicamente a su estratigrafía, y a la petrografía y química de sus domos lávicos, y la posible correlación entre ellos y con los líticos encontrados en los flujos piroclásticos de la estratigrafía.

4.2.2) UBICACIÓN DEL QUILOTOA

El Volcán Quilotoa se ubica en la provincia de Cotopaxi. Con una altitud de 3914 msnm, se encuentra a 33 Km al Oeste de Latacunga y a 83 Km al Suroeste de Quito, en la Cordillera Occidental del Ecuador.

Figura 4.1. Mapa digitalizado del Volcán Quilotoa tomado de Hall et al. (2008) donde se muestra el edificio volcánico y la caldera bordeada por domos, así como también la distribución de las unidades

de flujos piroclásticos. Las líneas serradas y los símbolos C-1, C-2 y C-3 se refieren a las diferentes calderas. Los domos de lava se muestran como ruedas y radios. DF se refiere a la distribución del flujo de escombros Q-I y AV se refiere al depósito de avalancha de escombros Q-II. La estratigrafía de las unidades de flujo es detallada a continuación: Is/II/III se refieren a las unidades de surge Q-I, subyacidas por los depósitos de flujo de ceniza Q-II y Q-III. El área gris oscura representa a los remanentes inferidos del edificio Q-III.

4.2.3) DESCRIPCIÓN GENERAL DEL VOLCÁN QUILOTOA

El Quilotoa (3914 m) es el volcán activo más occidental de la cordillera occidental del Ecuador (Figura 4.1). Dicho volcán en sí: a; es una caldera rellena por una laguna, b; caldera situada sobre un edificio volcánico de bajo relieve de 6 km de diámetro, c; dicha caldera posee una forma circular y un diámetro de 2.9 km, d; la laguna tiene 2.1 km de diámetro y una profundidad de 240 m (Hall and Mothes, 2008).

La topografía de la zona varía entre los 3400 y 3800 msnm. Los flancos internos del volcán presentan paredes empinadas, mientras que los flancos externos presentan paredes moderadamente empinadas a empinadas. El volcán es drenado por algunos afluentes del río Toachi al Norte y del Río Zumbahua al Sur (Figura 4.1).

Varias comunidades se localizan en los alrededores del volcán principalmente hacia el nor-occidente del mismo, las cuales son Sigchos, H. Moreta, Chugchilan, Hizana, Pasoloma, La Cocha, Isinliví, Anchi, Ponce y Zumbahua. Existe una carretera de primer orden que conecta a estas localidades en este orden: Latacunga – Pujilí – Zumbahua – Volcán Quilotoa. Adicionalmente las comunidades alrededor del volcán se enlazan entre sí con carreteras de segundo orden. Finalmente existen algunos senderos que permiten acceder a la laguna cratérica y rodear a la caldera a lo largo de su borde, dichos senderos pueden ser recorridos a pie o en caballo.

Este volcán ha tenido una larga serie de erupciones plinianas poderosas a intervalos repetitivos de aproximadamente 10.000 – 15.000 años. Estratigráficamente este volcán presenta trece ciclos eruptivos dentro de los últimos 200.000 años, siendo Q-1 el más joven y QS-13 el más viejo. El depósito de flujo de pómez Chalupas, proveniente de la caldera Chalupas que está ubicada en la Cordillera Real, cronológicamente antecede a la secuencia de trece ciclos eruptivos del volcán Quilotoa; dicho depósito con una edad de 211.000 años, nos parece ser

el límite de tiempo máximo para los ciclos eruptivos del Quilotoa (Hall and Mothes, 2008).

Es por tanto el motivo de este trabajo, estudiar a los domos petrográficamente (macro y microscópicamente) y químicamente, determinando su posible correlación entre sí (comparando sus características petrográficas y químicas) y su correlación con la estratigrafía del volcán (comparando a los domos con los líticos presentes en los depósitos de flujos piroclásticos de la estratigrafía del volcán). Finalmente esto permitirá conocer con mayor detalle la edad de formación de estos domos.

A lo largo del borde de su caldera se presentan comúnmente domos de dacita, los cuales en su mayoría se emplazaron al fin del ciclo eruptivo QS-II, mientras los domos más viejos de dacitas oscuras pertenecen a los ciclos eruptivos QS-III y QS-IV (Hall and Mothes, 2008).

Los productos de tefra de la secuencia completa Q-VIII a Q-I son similares en textura, mineralogía y composición química. Las pómeces de estos ocho ciclos generalmente son de color blanco a gris moderado. Las pómeces típicamente contienen 10-50 vol.% de fenocristales de plagioclasa, anfíbol, biotita, cuarzo y óxidos de Fe-Ti (Hall and Mothes, 2008).

Petrográficamente las rocas de domo contienen fenocristales de plagioclasa con una alta zonación oscilatoria, se presentan tanto euhedrales como rotos y son de color blanco. Las plagioclasas son más del doble de abundantes que los anfíboles y las biotitas juntas. Los anfíboles dominan sobre las biotitas por un ratio de 4:1 a 10:1. Los fenocristales de anfíbol pueden ser euhedrales, estar rotos o reabsorbidos. Las biotitas siempre se presentan euhedrales y de un color café rojizo. El cuarzo se presenta con frecuencia y está reabsorbido. Los óxidos de Fe-Ti y los cristales de apatito comprender menos del 1%. Otros constituyentes importantes tanto en los depósitos de caída y flujo son los componentes líticos densos, dominados por dacitas porfiríticas de color gris claro a gris moderado, con grandes fenocristales de los mismos cuatro minerales dispersos en una matriz de afanítica a microcristalina (50-70%) (Hall and Mothes, 2008).

Químicamente las rocas de domo y las tefras del Quilotoa en el gráfico K₂O vs SiO₂, se plotean en la parte inferior del campo de las dacitas de medio K (ver Figura 4.2). Los domos dacíticos del ciclo Q-II de los lados E, SE y O del borde de la caldera, poseen composiciones similares (65,4–66,1% SiO₂; 1,5–1,6% K₂O). Las pómeces de los depósitos de flujos de ceniza y de surge tienen valores constantes de K₂O de 1,6 a 1,8%, mientras que los valores de SiO₂ varían de 65,2 a 66,9%. Ni los elementos en traza ni los elementos en tierras raras muestran una gran variación en el tiempo. Todos los productos del Quilotoa muestran un decremento muy débil en SiO₂ para un valor casi constante de K₂O con el tiempo. Se observa poca variación en la mineralogía y química de los productos eruptivos del Quilotoa, sugiriendo que la fuente es un cuerpo de magma homogéneo localizado a profundidad somera (Hall and Mothes, 2008).

Figura 4.2. En el ploteo K_2O vs SiO₂ tomado de Hall et al. (2008), las pómeces obtenidas de los depósitos de flujo de ceniza, surge y caída pliniana provenientes de los depósitos Q-I a Q-V, muestran valores casi constantes de 1.5 a 1.8% de K_2O y valores de 65.0 a 66.9% de SiO₂. Similares flujos de ceniza pero de mayor edad, son más enriquecidos en SiO₂ pero con valores constantes de K_2O (por ejemplo 67.5% SiO₂; 1.6% K_2O). Un domo más viejo en el borde de la caldera está menos evolucionado (64% SiO₂; 1.4% K_2O).

4.2.4) MARCO TECTÓNICO

Existen tres grandes sistemas de sistemas de fallas (Soulas et al., 1991) que dominan la neotectónica regional:

- a) El sistema sinestral El Ángel-Hauyrapungo-Nanegal-Apuela, que se prolonga con la falla de San Isidro en el norte ecuatoriano (ver el segmento verde en la figura 4.3b).
- b) El sistema frontal de fallas Cutucú-Napo, ubicadas al mismo pie de la Cordillera Oriental en Colombia, que se prolongan con las fallas de la zona subandina del Ecuador (ver el segmento café en la figura 4.3b).
- c) El sistema mayor dextral Chingual-Cosanga-Pallatanga-Puná (En Ecuador) Algeciras-Sibundoy en Colombia prolongado con la falla Chingual y la región transpresiva ubicada entre esta última y la ciudad de Baeza (asociación compleja de fallas transcurrentes, y de fallas inversas u oblicuas). Al sur de Baeza el sistema sigue con toda probabilidad, en una región totalmente desconocida, para luego corresponder con la falla Pallatanga y las otras asociadas al norte y sur de la misma (Alvarado, 2012). Entre Baeza y el nevado Cayambe, este sistema mayor se bifurca en ramales que atraviesan oblicuamente la cordillera, como la falla de Iliniza al sur de Machachi (ver el segmento rojo en la figura 4.3b).

Estos sistemas inducen a su vez fallamientos de menor extensión como por ejemplo las fallas inversas del Callejón Interandino. Finalmente, es de notar que prácticamente todas las fallas activas observadas son transcurrentes, de orientación aproximada N-S en el Ecuador y NE-SW en Colombia (Soulas et al., 1991).

Figura 4.3. a) Mapa detallado de las fallas activas del Ecuador con su cinemática tomado y modificado de Alvarado, 2012. Círculo azul: ubicación aproximada del volcán Quilotoa. b) Mapa de las principales estructuras Mesozoicas y Cenozoicas, y de los principales sistemas de fallas activas del Ecuador y del sur de Colombia.

La estructura del edificio Quilotoa permanece algo escondida, debido a estar ampliamente cubierta por productos eruptivos jóvenes. Una cresta arqueada al oeste de la caldera actual (ver Figura 4.1) sugiere la existencia de una caldera más vieja (C-1) que tendría de 5-6 km de diámetro, abierta hacia el E, y que precedería la actividad Q-IV. Un subsecuente rasgo tipo caldera (C-2) está centrado sobre la mitad oriental de la caldera actual, que está abierta hacia el E, y que está claramente definida por las crestas envolventes de dirección NE y ESE, así como por la batimetría del lago (Aguilera et al., 2000). Debido a que este rasgo trunca el edificio Q-III y Q-IV, éste aparentemente se formó al fin del ciclo Q-III o al inicio del ciclo Q-II y finalizó con el emplazamiento de domos en el final de este ciclo Q-II. Durante el ciclo eruptivo más reciente este rasgo fue alargado, formando la estructura actual C-3, cuyo cráter está centrado en la mitad occidental de la caldera (Hall & Mothes, 2008).

El mapa batimétrico del lago (ver Figura 4.4) muestra una serie de irregularidades como un resultado de varias características tectónicas. El fondo del lago está conformado por dos planos separados por un escarpe de falla de dirección NNE, falla que atraviesa al fondo del lago y a las paredes de la caldera. El plano nororiental tiene una profundidad máxima de 256m, mientras que el plano suroriental tiene una profundidad promedio de 220m debajo de la superficie del lago, la cual se encuentra a 3500 msnm. (Aguilera et al., 2000).

Figura 4.4. Mapa Batimétrico del Lago Quilotoa tomado y modificado de Aguilera et al., 2000, mostrando la ubicación de los perfiles verticales (1-5) y el punto de muestreo de gas (X).

4.2.5) CARACTERÍSTICAS GENERALES DE LOS DOMOS VOLCÁNICOS

Los domos de lava son montículos de roca extruida provenientes de un vento volcánico. Se forman a medida que el magma viscoso desgasificado se enfría relativamente rápido luego de emerger sobre la superficie. Debido a que los domos se forman a partir de lava muy viscosa, ellos están compuestos usualmente de riolitas, dacitas, andesitas o traquitas (Williams et al., 1979). A pesar de que las composiciones de los domos podrían abarcar el espectro completo de los contenidos de sílice, la mayoría de ellos tienen contenidos de sílice relativamente altos. Los diámetros de los domos varían de unos pocos metros a varios kilómetros, y su altura varía desde unos pocos metros hasta mayores a 1 km. En perfil los domos pueden tener paredes abruptas o ser tubulares, su contorno puede ser circular, elíptico o irregular, y su color y textura puede ser uniforme o variada (Fink et al., 2000).

Algunos domos ocurren aislados, mientras otros forman cadenas lineales o arqueadas con más de 20 km de longitud. Pueden tener un crecimiento suave o por episodios, con tiempos de emplazamiento que varían de unas pocas horas a varias décadas. Las tasas de efusión varían desde <1 m³/s a más de 100 m³/s. Algunos de los grandes domos de lava presentan un flujo de lava lejos del vento principal, y son llamados coulees (flujo o colada o derrames). Un coulee es una extrusión de lava que tiene aspectos tanto de un domo como de un flujo de lava (Fink et al., 2000).

Según Williams & McBirney (1979) la morfología de las extrusiones está determinada por a; el volumen de lava emitido por unidad de tiempo (tasa de emisión), por b; la pendiente de la superficie sobre la cual la lava se derrama, y por c; la viscosidad de la lava. De éstos, el primero es el factor más importante (Walker, 1973). En los casos de caudales bajos (<10m³/seg), las lavas basálticas tienden a producir numerosos flujos pequeños que se apilan cerca al centro de emisión y por lo tanto no se extienden a distancias considerables. En contraste con los grandes flujos formados por lavas de composición basáltica y básica en general, las lavas más viscosas tales como las dacitas y riolitas, que típicamente son emitidas a tasas bajas, forman flujos de lava cortos y gruesos, o domos empinados, que cubren unos pocos kilómetros cuadrados. Las velocidades de avance de los flujos de lava varían

considerablemente desde unos pocos metros a cientos de metros por hora para flujos de lava silícicos, hasta varios kilómetros por hora para flujos de lava basálticos (Tilling et al., 1993).

Generalmente, los domos de lava avanzan demasiado lento como para amenazar con enterrar a las poblaciones cercanas, sin embargo en años recientes, el emplazamiento de domos de lava ha estado dentro del tipo de erupciones volcánicas más mortíferas, causando la muerte de más de 100 personas en la década de 1990, incluyendo a 44 personas en la erupción del Monte Unzen (Japón) en 1991 y a 66 personas en la erupción del Monte Merapi (Indonesia) en 1994 (Fink et al., 2000).

4.3) ESTRATIGRAFÍA

4.3.1) DESCRIPCIÓN BREVE DE LAS UNIDADES ESTRATIGRÁFICAS

Para realizar una correlación entre los domos con la estratigrafía del volcán, se comparará a los domos con las tefras y líticos presentes en los depósitos de flujos piroclásticos y en la tefra (caídas de tefra) según la estratigrafía. A continuación, se presenta una breve descripción, primeramente de las unidades Q – 1 a Q – 8 (Hall and Mothes, 2008) y finalmente de las unidades QS – 9 a QS – 13 con el objetivo de completar la totalidad de la historia eruptiva del Quilotoa.

Cabe indicar que las unidades estratigráficas que se describen en las series Q - 1 a Q - 8 corresponden a sitios dentro de la caldera o localizados en sus flancos exteriores inmediatos; pero para el caso de las unidades dadas por Q - 2 a QS - 13 vistas en las fotos a continuación (Figuras 4.6 – 4.12), éstas afloran al Oeste del volcán y están conformadas por depósitos de surge y/o caídas de tefra (Figura 4.5).

Figura 4.5. Mapa del Volcán Quilotoa donde los sitios de los afloramientos estudiados se encuentran a lo largo de la carretera entre Zanjaloma y Cuizán (Información digital tomada de Instituto Geográfico Militar, 2013, Base escala 1:50.000). El Afloramiento Quisama está indicado por la "X".

Figura 4.6. Afloramiento de depósitos plinianos proximales de lapilli/bloque y de depósitos de surge Q-l, tomado y modificado de Mothes et al. (2008), localizado en el corte de la carretera a 2 km al NW del centro de la caldera. Nótese los grandes clastos de pómez y líticos en el depósito pliniano. Además, la secuencia del depósito sugiere que la transición desde una actividad pliniana a una actividad de surge fue abrupta.

Figura 4.7. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-2, QS-3, QS-4, QS-5 y QS-6. (Foto tomada por M. Hall).

UNIDAD Q - 1

Está (Ver Figura 4.7) caracterizada por la presencia de:

El suelo actual (30 cm)

Eventos freatomagmáticos (surge y caídas de ceniza) (5 m), presentan clastos de pómez, de dacitas de gris claro a moderado y unos pocos clastos de dacita hidrotermalmente alterada.

Flujos de ceniza (8 m), conformados por clastos de pómez microvesiculares, de blancas a grises en su base y de gris amarillento a rosado hacia el tope. Además contienen dacitas de un color gris claro a moderado y también dacitas rosadas.

Un surge (70 cm), presentan clastos de pómez, de dacitas de gris claro a moderado y unos pocos clastos de dacita hidrotermalmente alterada.

Flujos de ceniza (20 m), presentan clastos de pómez, de dacitas de gris claro a moderado y unos pocos clastos de dacita hidrotermalmente alterada.

Un surge (5 m), es rico en pómez.

Una caída pliniana (80 cm), con clastos de pómez blanca, vesiculares, de menor densidad hacia la base del depósito, volviéndose más oscuros y densos hacia el tope. Además se presentan clastos de dacitas hidrotermalmente alteradas y clastos de dacitas de color gris moderado.

Un flujo de escombros (>300 cm), presentan bloques polilíticos.

Eventos freatomagmáticos (surge y caídas de ceniza) (100 cm), contiene dacitas y clastos de dacitas hidrotermalmente alteradas.

UNIDAD Q – 2

Esta (Ver Figura 4.7) se caracteriza por la presencia de:

Un paleosuelo (160 cm).

Una caída ceniza (10 cm), con clastos de pómez blanca que contiene plagioclasa, anfíbol y biotita.

Un paleosuelo (75 cm)

Un período fluvio-lacustre sin datos de espesor.

Flujos piroclásticos por colapso de domo (>10 m), con 50-70% de clastos de dacitas porfiríticas de color rosado a gris moderado, con plagioclasa, anfíbol y biotita. Además existen pocos líticos de dacitas hidrotermalmente alteradas y fragmentos de pómez.

Surges (5 m), presenta líticos de dacita fresca e hidrotermalmente alterada.

Flujos de ceniza (30 m), con clastos de pómez blanca, clastos de dacita hidrotermalmente alterada, dacitas grises oscuras con plagioclasa y biotita, y fragmentos de dacitas grises claras. Finalmente se presentan dacitas ricas en plagioclasa.

Un surge (5 m), con pómez de densidad moderada con cristales (plagioclasa, biotita y anfíbol). Además se presentan dacitas de color gris moderado y clastos de dacita hidrotermalmente alterada.

Una caída pliniana (90 cm), con pómez de densidad moderada con 10% de cristales (plagioclasa, biotita y anfíbol). Además se presentan dacitas de color gris moderado y clastos de dacita hidrotermalmente alterada.

Una caída freatomagmática (120 cm), presenta más líticos de dacita negra que de dacita gris moderada y pómez de color café a gris de baja densidad, con 10% de cristales.

UNIDAD Q – 3

Está caracterizada (Ver Figura 4.7) por la presencia de:

Un nivel de suelo negro (200 cm).

Un surge (250 cm), con pómez grises claras y clastos de dacitas negras.

Flujos de ceniza (10 m)

Un surge (400 cm), con pómez grises claras y clastos de dacitas negras.

Una caída pliniana (105 cm), con pómez rica en plagioclasa (25%), de densidad moderada, no vesiculadas. Con respecto a sus líticos presenta dacitas negras, gris claras y clastos de dacitas hidrotermalmente alteradas.

Una caída freatomagmática (60 cm)

UNIDAD Q – 4

Esta (Ver Figura 4.7) se caracteriza por contener:

Un nivel de cangahua (250 cm).

Un período fluvial (300 cm)

Un surge (100 cm), contiene pómez blancas, microvesiculares, ricas en cristales (30% cristales). Además sus líticos incluyen clastos de dacita hidrotermalmente alterada y dacitas de color gris moderado.

Un flujo de ceniza (25 m), grandes clastos de pómez blanca, medianamente vesicular con biotita oxidada y dacitas de color gris moderado a negro.

Un surge (350 cm), contiene pómez blancas, microvesiculares, ricas en cristales (30% cristales). Además sus líticos incluyen clastos de dacita hidrotermalmente alterada y dacitas de color gris moderado.

Una caída pliniana (12 cm), contiene pómez y clastos de dacita gris clara a negra.

UNIDAD Q – 5

Está caracterizada (Ver Figura 4.7) por contener:

Una disconformidad angular entre Q - 4 y Q - 5.

Un nivel de cangahua (450 cm).

Un período fluvio lacustre (210 cm)

Un surge (>300 cm), con clastos de dacita porfirítica de gris a negra y pocos clastos de dacita hidrotermalmente alterada.

Figura 4.8. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-6 y QS-7. (Foto tomada por M. Hall).

Una caída pliniana (40 cm), con clastos de dacita de gris a negra, con pocos clastos de dacita hidrotermalmente alterada y con pequeñas pómez de color gris amarillento muy ricas en cristales.

UNIDAD Q – 6

Esta (Ver Figuras 4.7 y 4.8) se caracteriza por la presencia de:

Un nivel de cangahua (145 cm).

Un flujo de ceniza (34 cm), con pocos clastos de pómez.

Una caída pliniana (60 cm), con pómez blancas, microvesiculares y de baja densidad.

UNIDAD QS – 7

Esta unidad presenta un espesor de 12 m (Ver Figuras 4.8 y 4.9), su color varía desde gris claro en la base hasta gris un poco más oscuro en el tope. Presenta buen sorteo y capas de \sim 1 cm de espesor. En su base presenta un surge sucio de espesor similar a la unidad QS – 6, sus líticos son ricos en cristales (plagioclasa). La parte principal de esta unidad está conformada por una caída de ceniza que se

alterna su color entre blanco y negro, un espesor uniforme de 10 m, está bien estratificada y presenta un tamaño de arena gruesa a grava. Finalmente se halla sobreyacida por 15 cm de cangahua de un color naranja rosado.

Figura 4.9. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-7, QS-8 y QS-9. (Foto tomada por M. Hall).

UNIDAD QS – 8

Esta posee 3 m de espesor (Ver Figuras 4.9 y 4.10), está conformada por una mezcla de cangahua con pocas caídas de pómez y ceniza, ocasionalmente cristales y pocos fragmentos líticos; o posiblemente representa una cangahua de color beige poco rosada, la misma que ha sido retrabajada?.

Tiene una capa basal de 20 cm de espesor de pequeños niveles estratificados, pero en forma irregular con pómez de color blanco, lo que sugiere que son los productos de una serie de un surge pliniano.

UNIDAD QS – 9

Está unidad posee un espesor entre 3 a 4 m (Ver Figuras 4.9 y 4.10), es de color gris claro, corresponde a una caída piroclástica pliniana de pómez densas sucias, presenta una marcada estratificación la cual, está compuesta por laminaciones de 1 a 5 cm de espesor; además, el material que conforma esta

unidad posee un tamaño de arena media a gruesa. Finalmente, presenta pocos líticos, los cuales, son pequeños, de color gris claro, porfiríticos y contienen cristales de plagioclasa, anfíbol y biotita.

Esta unidad está sobreyacida por 10 cm de un suelo de color café oscuro y finalmente; esta unidad contiene un nivel de 1 m de espesor, conformado por pómez densas ricas en plagioclasa dentro de un surge húmedo y de color café, dicho surge está sucio, posee un tamaño de arena gruesa y es rico en cristales.

UNIDAD QS - 10

Presenta entre 5 a 6 m de espesor (Ver Figuras 4.10, 4.11 y 4.12), una marcada estratificación, un buen sorteo y un origen por caída piroclástica.

Es una caída de ceniza rica en clastos (tamaño \leq 10 cm) y pobre en pómez, las pómez son densas, de color beige acaramelado, ricas en hornblenda, biotita dorada y plagioclasa. Este depósito en su base está compuesto por una matriz húmeda, rica en clastos con tamaño de limo y en su parte media está enriquecida en clastos del tamaño de grava, de un color blanco y negro. Además dicha unidad presenta unos pocos surges.

Esta unidad es muy similar a QS – 9 y están separadas entre sí por un contacto abrupto que es nivel de suelo de 10 cm de espesor, que tiene un color castaño oscuro.

Figura 4.10. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-8, QS-9, QS-10, QS-11 y QS-12. (Foto tomada por M. Hall).

UNIDAD QS - 11

Corresponde a un depósito delgado de caída de lapilli rico en clastos (Ver Figuras 4.10, 4.11 y 4.12), clastos que son pómez blancas y densas, sin cavidades, además este depósito es rico en pequeños cristales de hornblenda, biotita y plagioclasa.

El espesor de esta unidad varía entre 1 a 3 m y consiste de 4 partes:

- **Parte superior:** capa de cangahua de 50 100 cm de espesor, con un color amarillo oscuro.
- Parte intermedia QS 11A: es similar a QS 9, posee un espesor ~100 cm, corresponde a una caída de ceniza pobremente sorteada, conformada por pómez blancas y densas, cristales y líticos; finalmente se presenta estratificada.
- **Parte intermedia:** corresponde a un surge sucio y seco, de espesor variable (~100 cm), posee clastos angulares de hasta 20 cm de tamaño,

se halla bien estratificado, presenta un mal sorteo y un color blanco y negro.

 Parte basal QS – 11B: es igual a QS – 11A; es un nivel de caída de ceniza húmeda con un tamaño de limo, presenta una marcada estratificación; además, este nivel es rico en matriz y su espesor varía entre los 50 a 200 cm.

UNIDAD QS – 12

Esta unidad se halla sobreyacida por un nivel de cangahua de 80 cm de espesor (Ver Figuras 4.10, 4.11 y 4.12) y en sí, está compuesta por una caída piroclástica pliniana de 2 m de espesor; dicha caída presenta pómez de color blanco similares a las pómez de QS – 11A. Finalmente presenta abundantes líticos negros, con un tamaño entre 1 a 5 cm. Finalmente, se encontró un bloque de roca granítica cristalina en los 10 cm superiores del nivel de cangahua (12Abk, ver Figura 4.11) que subyace a la unidad QS – 12; donde, dicho bloque granítico contiene plagioclasa, hornblenda, biotita (8 mm de longitud) y cuarzo?.

Figura 4.11. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-10, QS-11, QS-12 y QS-13. (Foto tomada por M. Hall).

UNIDAD QS – 13

Es la unidad de mayor edad y se halla compuesta por diferentes bloques (estratificados y fallados) los cuales presentan diferentes orientaciones y envuelto entre ellos existe un nivel de cangahua de color amarillo a café (~ 2m de espesor). Estos bloques están conformados por niveles pobremente sorteados y estratificados irregularmente; además, dichos niveles presentan un tamaño de grava. Estos bloques están interestratificados en niveles ricos en matriz de tamaño de arena. Además, esta unidad presenta fragmentos muy angulares polilíticos (0.3 – 2 cm) y líticos de obsidianas bandeadas (Ver Figuras 4.11 y 4.12).

En total son cuatro bloques (13A, 13B, 13C y 13D), los cuales presentan una distribución desordenada que no corresponde con la edad relativa entre ellos, en donde por ejemplo, en el lado inferior izquierdo de la figura 4.11 se observa que el bloque 13B se halla estratigráficamente debajo del bloque 13A; y en el lado inferior derecho de la figura 4.11 se observa que el bloque 13D se halla de manera discordante sobre el bloque 13B. Por lo tanto esto indica la influencia que han tenido las fallas en alterar y desordenar a la Unidad QS-13.

Dichos bloques se describen a continuación:

13A: es un nivel arenoso y húmedo.

13B: este nivel está conformado por pómez blancas microvesiculares con trazas de biotita, líticos y trazas de obsidiana, todos los cuales son de un tamaño de grava a arena gruesa. Además, dicho depósito es rico en matriz y se halla pobremente sorteado.

13C: es un depósito de caída de ceniza (tamaño de arena fina), es de color gris, rico en matriz, está pobremente sorteado.

13D: presenta pómez fibrosas, con un color rosado en su interior, con poca plagioclasa y con trazas de cristales.

Figura 4.12. Afloramiento cercano a Quisama (UTM 0730160mE/9905865mN), donde se observan los niveles QS-10, QS-11, QS-12 y QS-13. (Foto tomada por M. Hall).
4.4) LOS DOMOS DEL QUILOTOA

4.4.1) UBICACIÓN

A continuación se presenta un mapa de ubicación de la laguna (Figura 4.13) y algunas vistas panorámicas de las paredes de la laguna (Figuras 4.14 – 4.16).

Figura 4.13. Mapa de Ubicación del Volcán Quilotoa.

Figura 4.14. Vista Panorámica del Interior de la Laguna desde el Sur, los domos están señalados con líneas y con su respectivo número. (Foto tomada por M. Hall).

Figura 4.15. Vista Panorámica de la Laguna desde el Este, los domos están señalados con líneas y su respectivo número. (Foto tomada por C. Panchana).

Figura 4.16. Vista Panorámica de la Laguna desde el Noreste, los domos están señalados con líneas y con su respectivo número. (Foto tomada por C. Panchana).

4.4.2) IDENTIFICACIÓN DE LOS DOMOS

En esta sección, en primer lugar se va a explicar el procedimiento con el cual se determinó el número total de domos presentes en la caldera del volcán. Posteriormente, se discute brevemente la distribución de los domos alrededor de la caldera. Finalmente, se presentan algunas vistas panorámicas donde se señalan a los domos identificados.

Para determinar el número de domos presentes se utilizó las descripciones macroscópicas (Anexo 1) y microscópicas (Anexo 2) de las muestras estudiadas, las cuales fueron comparadas entre sí. En base a esta comparación se encontraron diferentes similitudes y diferencias entre ellas, con lo cual fue posible en ciertos casos agrupar a algunas de las muestras en un mismo domo, en otros los domos contenían solo una muestra y finalmente, discriminar a las muestras que no eran rocas de domo.

Los domos se presentan en la Figura 4.17 y los que contienen más de una muestra son:

Domo # 4: muestras CP – 30 y CP – 44.

Domo # 5: muestras CP – 22 y CP – 42.

Domo # 14: muestras CP – 38 y CP 39.

Domo # 15: muestras CP – 25, CP – 26 y CP – 27.

Domo # 18: muestras CP –17, CP – 31, CP – 32, CP – 33, CP – 36, CP – 37 y CP - 41.

Los domos representados por una sola muestra son:

Domo # 1: muestra CP – 34.

Domo # 2: muestra CP – 29.

Domo # 3: muestra CP – 35.

Domo # 6: muestra CP – 23.

Domo # 7: muestra CP – 21.

Domo # 8: muestra CP – 45.

Domo # 9: muestra CP – 1 + muestra CP – 2 (oxidada).

Domo # 10: muestra CP – 3.

Domo # 11: muestra CP – 24.

Domo # 12: muestra CP – 16.

- **Domo # 13:** muestra CP 18.
- **Domo # 16:** muestra CP 28.

Domo # 17: muestra CP – 43.

Las muestras que no son domos son:

Muestra CP – 46: no es un domo ya que la roca presenta un 29% de porosidad, porcentaje que excede al porcentaje de porosidad promedio que contiene una roca de domo, siendo aproximadamente un 10%.

Muestra CP – 40: no es un domo ya que la roca presenta un 35% de porosidad, porcentaje que excede al porcentaje de porosidad promedio que contiene una roca de domo, siendo aproximadamente un 10%.

A continuación se presenta una tabla con los 18 domos identificados (ver Tabla 4.1), en la cual se agrupa a la (s) muestra (s) por domo, con su respectiva descripción macroscópica y microscópica.

Domo	Domo 2	Domo 3	Domo 1	Domo 17		Domo 5	Domo 6	
Muestra	CP-29	CP-35	CP-34	CP-43	CP-22	CP-42	CP-23	
# Minerales	PI + Anf + Oz + Bt	PI + Bt + Anf + Qz	PI + Anf + Oz + Bt		PI+Arif+Oz+Bt		PI+OZ	
Min. Oxidados	9	Bt con oxidación moderada	Bt con oxidación moderada		Bt con oxidación leve		PI con caolinitización leve	
Matriz	20%	57%	70%		53%		62%	
Color (matriz)	Gris claro	Gris moderado a oscuro	Gris claro		Gris claro		Rosada clara	
Alter. (matriz)	9	Q	Desvitrificación moderada		Desvitrificación leve		Desvitrificación moderada	
Vidrio	10%			2%	0%0	0%0	44%	
# Min. Lámina	PI + Qz + Hom + Bt + Cpx			PI + Cpx + Qz + Bt + Hom + Opx	PI + Bt + Horn + Oz + Cpx	PI + Horn + Bt + Qz + Cpx	PI + (Min. Oxid.) + Qz + Cpx + Hom	
Min. Oxidados	9			Btoxidada	Q	Plagioclasa caolinitizada	Minerales Oxid ados	
Poros	1%			3%	1%	1%	3%	
% Min. Lám.						Similares		
Alteración	Dacita Fresca			Dacita Oxidada	Dacita Fresca	Dacita Epidotizada y Caolinitizada	Dacita Oxidada	
Domo	Dome	04	Domo 7	Domo 8	Domo 9	Domo 10	Domo 11	
Muestra	CP-30	CP-44	CP-21	CP-45	CP-1	CP-3	CP-24	
# Minerales	PI + Anf + Oz		PI + Qz + Anf + Bt + Px		PI + Px + Qz + Bt + Anf	PI + Anf + Bt + Oz + Px	PI+Bt+Anf+Oz	
Min. Oxidados	£		Bt con oxida ción avanzada		Px con oxidación y epidotización leves	Bt (oxidación avarzada), Px (epidotización leve)	Bt con oxidación leve	
Matriz	51%		44%		77%	71%	47%	
Color (matriz)	Gris claro		Caté rosado		Gris claro	Gris moderado	Rosada clara	
Alter. (matriz)	2		Desvitrificación le ve		2	8	Desvitrificación moderada	
Vidrio	0%	0%	27%	0%	0%	50%	0%	
# Min. Lámina	PI+Bt+Hom +Qz+Opx	PI+Hom + Bt +Qz + Opx	PI + Horn + Bt + Qz + C px	PI+Bt+Hom +Cpx+Opx	PI + Horn + Bt + Qz	PI+Hom + Qz + Cpx + Bt + Opx	PI + Horn + Bt + Qz + C px	
Min. Oxidados	9	8	No	8	8	Plagioclasa caolinitizada levemente	Po	
Poros	7%	3%	10%	4%	1%	1%	5%	
% Min. Lám.	Simila	Ires						
Alteración	Dacita Fresca	Dacita Fresca	Dacita Fresca	Andesita Fresca	Dacita Fresca	Dacita Caolinitizada	Dacita Fresca	
Domo		Domo 15		Domo 16	Domo 12	Domo 13	Domo 14	
Muestra	CP-25	CP-26	CP-27	CP-28	CP-16	CP-18	CP-38	CP-39
# Minerales	PI + Qz + Arf + Bt	PI + Anf + Bt + Qz	PI + Anf + Cz + Bt	PI + Anf + Oz	PI + Anf + Px + Bt	PI + Anf + Qz + Bt		
Min. Oxidados	Bt con oxidació	ón avanzada	Bt (oxidación avanzada) y hom (oxidación moderada)	8	Bt con oxidación a vanzada	Pl con caolinitización moderada		
Matriz	54%	49%	63%	43%	52%	88%		
Color (matriz)		Rosada clar	Ë	Gris claro	Rosada gris	Gris oscuro		
Alter. (matriz)	Desvitrificació	n moderada	Desvitrificación leve	Desvitrificación leve-moderada	£	Oxidación leve a moderada		
Vidrio	%0	0%				27%	0%	0%
# Min. Lámina	PI+Bt+Hom +Qz+Cpx	PI+Bt+Hom +Cpx+Qz				PI + Horn + Qz + Bt + C px	PI+Cpx+Bt+Hom+Opx	PI + Horn + Cpx + Bt
Min. Oxidados	Bt y honr oxid adas fuertemente	Bt oxida da fuertemente				Minerales Oxidados	Cpx con oxidación moderada	
Poros	8%	6%				1%	1%	4%
% Min. Lám.	Simila	ares					Muy similares	
Alteración	Dacita Oxidada	Dacita Oxidada				Dacita Oxidada	Andesita oxidada	
Domo				Domo 18				
Muestra	CP-32	CP-33	CP-36	CP-37	CP-31	CP-41	CP-17	
# Minerales	PI + Anf + Oz + Bt	PI+Qz+Arif+Bt			PI+Anf+Oz+Bt		PI + Anf + Qz + Px + Bt	
Min. Oxidados	ક	No			₽		Hom (oxidación moderada), Bt (oxidación avanzada)	
Matriz	64%	67%			45%		52%	
Color (matriz)	Gris claro a r	moderado			Gris claro		Rosada gris	
Alter. (matriz)	શ્ર	9N			શ્ર		8	
Vidrio			0%	0%		%0	0%	
# Min. Lámina			PI+Bt+Qz+Hom	PI + Bt + Oz + Hom		PI + Bt + Hom + Oz	PI + Qz + Hom + Bt + C px	
Min. Oxidados			۶	٩		2	ع	
Poros			5%	4%		2%	3%	
% Min. Lám.			Muy similares			W	y similares	
Alteración			Dacita Fresca	Dacita Fresca		Dacita Fresca	Dacita Fresca	

Tabla 4.1: Domos del Volcán Quilotoa. Las muestras que presentan características similares están marcadas en color rojo o amarillo.

60

En el siguiente mapa (Figura 4.17) se muestra a los 18 domos identificados, conteniendo a sus respectivas muestras (azul) y láminas delgadas (verde). Para identificar a una muestra o lámina delgada en particular ver las figuras 4.18 y 4.19, ya que en el presente mapa los nombres de las muestras y láminas se cubrían entre sí, quitando claridad a los domos y saturando el mapa.

Figura 4.17. Mapa de Domos del Volcán Quilotoa, basado en la descripción petrográfica de las muestras y láminas delgadas estudiadas.

Adicionalmente con respecto al control de la distribución de los domos, al parecer hay ciertos grupos de domos que se alinean, siendo ellos los siguientes arreglos: (1 - 2 - 3), (9 - 10 - 11) y (15 - 16 - 17 - 18) (Figura 4.17). Mientras que los domos restantes adoptan una distribución circular alrededor de la laguna; donde, los domos 4, 5, 6, 7 y 14 se localizan en la cresta de la caldera, los domos 12 y 13 se ubican en el lado exterior del filo de la caldera y el domo 8 se ubica en el lado interior del filo de la caldera.

Los digues en general alimentan a muchos domos silíceos. Estos domos tienden a ocurrir en grupos que están organizados en arreglos lineales o en echelon. Muchos de los domos individuales son asimétricos y se elongan en paralelo con el tren general del grupo de domos. Las orientaciones de los diques pueden estar relacionadas a las direcciones de los esfuerzos para evaluar la influencia relativa de fuerzas tectónicas y magmáticas. Por ejemplo, las estructuras mapeadas a lo largo del curso de los domos Inyo cerca del Long Valley Caldera en California, sugieren que los domos fueron alimentados por un dique que rosa oblicuamente hacia el norte, proveniente de un área debajo de la Montaña Mammoth. Los domos en la pendiente sureste del volcán South Sister refleja una serie en diques en echelon o segmentos de diques que rotaron ligeramente a medida que se aproximaban a la superficie. Los domos de riolita en el Coso Range al este de California, trazan cursos que sugieren que los diques subyacentes poseen orientaciones predominantes norte-sur (consistentes con influencias tectónicas) pero se doblan hacia el interior hacia una posición más radial, a medida que se aproximan hacia un cuerpo de magma central inferido (Fink., et al 2000). Finalmente, para el caso del Quilotoa no se observaron diques que estén en contacto con los domos.

4.4.3) DIMENSIONES DE LOS DOMOS

A continuación se presenta una tabla (Tabla 4.2) en la cual se indica las dimensiones aproximadas de los domos.

# de Domo	# de Muestra	Longitud aproximada (m)	Ancho aproximado (m)
D1	CP-34	397	305
D2	CP-29	383	312
D3	CP-35	812	341
D4	CP-30, CP-44	383	247
D5	CP-22, CP-42	625	292
D6	CP-23	362	266
D7	CP-21	1057	471
D8	CP-45	458	115
D9	CP-1	485	334
D10	CP-3	287	213
D11	CP-24	572	277
D12	CP-16	642	418
D13	CP-18	861	428
D14	C-38, C-39	649	422
D15	CP-25, CP-26, CP-27	560	244
D16	CP-28	653	508
D17	CP-43	497	188
D18	CP-32, CP-33, CP-36, CP-37, CP-31, CP-41, CP-17	2506	521

 Tabla 4.2: Dimensiones aproximadas de los domos de la caldera.

4.4.4) NIVEL ESTRATIGRÁFICO

En esta sección se trató de identificar dentro de las paredes de la caldera, como los domos y sus diques alimentadores cortan a la estratigrafía, en base a cual determina la edad de los domos respecto a la de las tefras, tomando en cuenta que dentro de la caldera afloran principalmente los dos últimos ciclos eruptivos Q-1 y Q-2 (Hall & Mothes, 2008). Resulta que esto no fue posible ya que las paredes de la caldera son muy empinadas y peligrosas como para buscar contactos entre los domos con la estratigrafía. En el sendero que se localiza sobre el borde de la caldera y que rodea a la laguna existen pocos afloramientos, los cuales son pequeños. Además, la fuerte erosión eólica presente posiblemente ha borrado parcial o totalmente los niveles superiores de las tefras, dificultando su identificación. Por lo tanto fue necesario dar más confianza a la descripción macroscópica y a la comparación de las muestras de los domos.

4.4.5) DESCRIPCIÓN MACROSCÓPICA DE LAS ROCAS DE LOS DOMOS

Los domos del Volcán Quilotoa, los cuales se localizan en el borde de su caldera, en su mayoría son dacíticos aunque también se presentan domos andesíticos. Para este trabajo se recolectaron en total 22 de muestras (Figura 4.18), una por cada domo y sus características generales se detallan a continuación.

Figura 4.18. Mapa del Volcán indicando la localización de las muestras que fueron estudiadas.

Estos domos presentan una asociación mineral típica conformada por biotita, cuarzo, hornblenda y plagioclasa; en pocas ocasiones dentro de dicha paragénesis, uno de estos minerales no se presenta: biotita, cuarzo u hornblenda. Finalmente ésta asociación en ocasiones está acompañada por piroxeno.

Las matrices de estos domos en su mayoría son de color gris claro, gris moderado y rosado claro; su textura es porfirítica y su estructura es masiva. Además con respecto al tamaño de los cristales, en general la plagioclasa es el mineral de mayor tamaño, siguiéndole el cuarzo y la biotita.

Además en la mayoría de domos, la matriz es la que representa el mayor porcentaje de la roca (>40%), siendo seguida por el porcentaje de plagioclasa (~30%). anfíbol (~3%), biotita (~1%), cuarzo (3%) y piroxeno (3%). Tanto los minerales como las matrices de los domos no presentan fracturamiento, ni cizallamiento. Finalmente estos minerales, en la mayoría de los casos se presentan como cristales euhedrales, aunque en ocasiones la biotita, la hornblenda y la matriz se presentan alteradas. Para información más detallada sobre los domos ver el Anexo 1.

4.4.6) DESCRIPCIÓN MICROSCÓPICA

Para este estudio se analizaron un total de 24 láminas delgadas (Figura 4.19), 13 fueron elaboradas a partir de las muestras del presente trabajo (una lámina por muestra) y 11 láminas ya elaboradas previamente. Sus características generales se detallan a continuación.

Estas 24 láminas en su mayoría corresponden a dacitas (roca conformada por plagioclasa, anfíbol, biotita y cuarzo), aunque también se presentan andesitas (roca conformada por plagioclasa, anfíbol y biotita). Con respecto a su estructura en su mayoría es vesicular (textura con vesículas o cavidades redondeadas que se forman en rocas volcánicas a causa de la exsolución de volátiles del magma por enfriamiento o descompresión) y desordenada (referente a la distribución casual de los minerales en la lámina), y en menores ocasiones es vesicular y/o fluidal. Con respecto a su textura, en su mayoría es más porfirítica seriada (variación gradual del tamaño de grano entre todas las poblaciones del mismo mineral) que porfirítica (presencia de al menos dos poblaciones del mismo mineral, bien diferenciadas en su tamaño), la matriz es más intergranular que intersertal, más microcristalina que criptocristalina, y la totalidad de las láminas tienen una textura poikilítica (los fenocristales contienen inclusiones de minerales opacos, plagioclasa, cuarzo, biotita, hornblenda, clinopiroxeno y ortopiroxeno, inclusiones que se formaron antes de los fenocristales).

Finalmente todas las láminas estudiadas presentan la misma paragénesis formada por plagioclasa – hornblenda – biotita – cuarzo, ésta está siempre acompañada por minerales opacos, y algunas veces la acompaña el ortopiroxeno, en menores ocasiones ambos tipos de piroxeno y rara vez el clinopiroxeno. Además estas láminas muestran el siguiente orden de cristalización: plagioclasa, clinopiroxeno, ortopiroxeno, hornblenda, biotita y cuarzo Para información más detallada sobre las láminas ver en Anexo 2.

Figura 4.19. Mapa del Volcán indicando la localización de las láminas delgadas que fueron analizadas.

4.4.7) ORDEN SECUENCIAL DE LOS DOMOS

4.4.7.1) Morfología

A continuación se presenta una tabla (Tabla 4.3) en la cual se indica la morfología de los domos. La evaluación de la morfología de los domos se la realizó utilizando las figuras 4.14 – 4.16 y el software Google Earth.

# de Domo	# de Muestra	Morfología
D1	CP-34	Paredes de angularidad moderada
D2	CP-29	Angular con deslizamientos de tamaño moderado al pie
D3	CP-35	Angular con deslizamientos de tamaño moderado al pie
D4	CP-30, CP-44	Paredes angulares abruptas
D5	CP-22, CP-42	Paredes de angularidad moderada
D6	CP-23	Paredes de angularidad moderada
D7	CP-21	Paredes angulares abruptas
D8	CP-45	Paredes de angularidad moderada
D9	CP-1	Paredes redondeadas
D10	CP-3	Paredes angulares abruptas con un deslizamiento pequeño
D11	CP-24	Paredes angulares abruptas con un deslizamiento moderado
D12	CP-16	Paredes de angularidad moderada
D13	CP-18	Paredes de angularidad moderada
D14	C-38, C-39	Paredes redondeadas con un deslizamiento moderado
D15	CP-25, CP-26, CP-27	Paredes angulares abruptas con un deslizamiento grande
D16	CP-28	Paredes angulares abruptas con un deslizamiento grande
D17	CP-43	Paredes redondeadas
D19		Paredes con una angularidad de moderada a alta,
810	Cr-32, Cr-33, Cr-30, Cr-37, CP-31, CP-41, CP-17	con deslizamientos de moderados a pequeños

 Tabla 4.3: Características de los domos de la caldera.

En base a su morfología (angularidad de las paredes del domo, si el domo presenta un deslizamiento y el tamaño del mismo) se tiene. Los domos más jóvenes serían los domos D4 y D7 por presentar una morfología de paredes angulares abruptas. El domo que seguiría en edad correspondería al D10, por poseer paredes abruptas con un deslizamiento pequeño al pie, lo que significa que la erosión actuó durante un corto período de tiempo, pero siendo un tiempo suficiente para producir este pequeño deslizamiento. Luego, vendrían los domos D2, D3 y D11 por presentar paredes angulares con deslizamientos con tamaño moderado, reflejando que la erosión actuó por un mayor período de tiempo para estos domos. Posteriormente, continúan los domos D15 y D16 por poseer paredes abruptas con un gran deslizamiento. Luego, continúan los domos D1, D5, D6, D8, D12 y D13 por poseer paredes de angularidad moderada. Posteriormente, le sigue el domo D18 por presentar paredes con angularidad de moderada a alta, con deslizamientos de tamaño moderado a pequeño. Finalmente, vienen los domos D9, D14 y D17 por presentar una morfología redondeada, donde, estos serían los de mayor edad.

En base a la tabla anterior (Tabla 4.3) se puede decir que la totalidad de domos del volcán se formaron en el orden que se detalla a continuación (ver Figura 4.20).

Figura 4.20. Secuencia de aparición de los domos del volcán, donde se agrupan en cuadros a aquellos domos que presentan una edad similar, en base de la morfología.

4.4.7.2) Petrografía

En esta sección se realizó una comparación entre los domos, para determinar su orden de aparición aproximado.

La comparación entre los domos se la hizo en base a sus descripciones macroscópicas y microscópicas; al justamente comparar, la intensidad de las alteraciones presentes (oxidación, epidotización, desvitrificación y caolinitización) tanto en los minerales como en las matrices de las rocas (Tabla 4.4), con lo cual se obtuvo el siguiente orden aproximado de su aparición (ver Figura 4.21).

Figura 4.21. Secuencia de aparición de los domos del volcán, donde se agrupan en cuadros a aquellos domos que presentan una edad similar.

Material Object Objec	Domo					Domo 18			
Ministre Ministre Statistics Display (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Muestra	CP-32	CP-33	CP-36	CP-37	CP-31	CP41	CP-17	
Number (manual manual	# Minerales	PI+Anf+Oz+Bt	PI+Qz+Anf+Bt			PI + Anf + Qz + Bt		PI + Anf + Qz + Px + Bt	MAVOR FDAD
Control Control <t< th=""><th>Min. Oxidados</th><th>9</th><th>8</th><th></th><th></th><th>8</th><th></th><th>Horn (oxidación moderada), Bt (oxidación avarzada)</th><th></th></t<>	Min. Oxidados	9	8			8		Horn (oxidación moderada), Bt (oxidación avarzada)	
Current Current	Matriz	64%	67%			45%		52%	_
Matrix building Weig Weig Meig	Color (matriz)	Gris claro a	moderado			Gris claro		Rosada gris	
With the constraint of th	Alter. (matriz)	No	No			No		No	
Mutuality Mut	Vidrio			0%	0%		0%	0%	
Munder Manuality Manual	# Min. Lámina			PI + Bt + Oz + Horn	PI + Bt + Qz + Hom		PI + Bt + Hom + Qz	PI + Qz + Horn + Bt + Cpx	
Protection Distribution Distribution <th>Min. Oxidados</th> <th></th> <th></th> <th>9N</th> <th>8</th> <th>*****</th> <th>No</th> <th>No</th> <th></th>	Min. Oxidados			9N	8	*****	No	No	
Mutuality <	Poros			5%	4%		2%	3%	
	% Min. Lám.			Muy simi	lares		Mu	vsimilares	
	Alteración			Dacita Fresca	Dacita Fresca		Dacita Fresca	Dacita Fresca	
Heater In Priority Meater M	Domo	Domo 2	Do	omo 4	Domo 8	Domo 9	Domo 3	Domo 16	
Memorine Memorine MemorineMedication MemorineMedication MemorineMedication MemorineMedication MemorineMedication MemorineMedication MemorineMedication MemorineMedication Medication <th>Muestra</th> <th>CP-29</th> <th>CP-30</th> <th>CP-44</th> <th>CP-45</th> <th>CP-1</th> <th>CP-35</th> <th>CP-28</th> <th></th>	Muestra	CP-29	CP-30	CP-44	CP-45	CP-1	CP-35	CP-28	
MIC Details Number N	# Minerales	PI + Anf + Oz + Bt	PI + Anf + Oz			PI+Px+Qz+Bt+Anf	PI+Bt+Anf+Qz	PI+Anf+Qz	
Method Origination Origination <t< th=""><th>Min. Oxidados</th><th>No</th><th>No</th><th></th><th></th><th>Px con oxidación y epidotización leves</th><th>Bt con oxidación moderada</th><th>No</th><th></th></t<>	Min. Oxidados	No	No			Px con oxidación y epidotización leves	Bt con oxidación moderada	No	
Optimize Mark (Monito) Optimize (Monito) Optit Optit Optit	Matriz	70%	51%			77%	57%	43%	
Mark (mode) (mod) (m	Color (matriz)	Gris claro	Grisclaro			Gris claro	Gris moderado a oscuro	Gris claro	
Web Web <th>Alter. (matriz)</th> <th>υN</th> <th>QN</th> <th></th> <th></th> <th>No</th> <th>No</th> <th>Desvitrificación leve-moderada</th> <th></th>	Alter. (matriz)	υN	QN			No	No	Desvitrificación leve-moderada	
	Vidrio	10%	%0	0%	%0	0%	2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	# Min. Lámina	PI + Oz + Horn + Bt + Cpx	PI + Bt + Hom + Qz + Opx	PI + Horn + Bt + Oz + Opx	PI + Bt + Horn + Cpx + Opx	PI + Horn + Bt + Oz			
Motion Motion	Min. Oxidados	No	No	PN N	No	No			
Merile in Merile in <th>Poros</th> <th>1%</th> <th>7%</th> <th>3%</th> <th>4%</th> <th>1%</th> <th></th> <th></th> <th></th>	Poros	1%	7%	3%	4%	1%			
Autoric functionDensity consistent of the constraint of th	% Min. Lám.	*****	Sin	milares					
	Alteración	Dacita Fresca	Dacita Fresca	Dacita Fresca	Andesita Fresca	Dacita Fresca			
Memory CP24 CP24 <thcp24< th=""> CP24 CP24 <</thcp24<>	Domo	Domo 11	od	omo 5	Domo 7	Domo 17	Domo 10	Domo 14	
MinimumFirst-MarkaPri-Marka <th>Muestra</th> <th>CP-24</th> <th>CP-22</th> <th>CP-42</th> <th>CP-21</th> <th>CP-43</th> <th>CP-3</th> <th>CP-38</th> <th>CP-39</th>	Muestra	CP-24	CP-22	CP-42	CP-21	CP-43	CP-3	CP-38	CP-39
Immodiation Immodiation Immodiation ImmodiationEncondiation and and andEncondiation and andEncondiation and andEncondiation and andEncondiation and andEncondiation and andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation andEncondiation and <th># Minerales</th> <th>PI+Bt+Anf+Oz</th> <th>PI+Anf+Qz+Bt</th> <th></th> <th>PI+Oz+Arf+Bt+Px</th> <th></th> <th>PI+Anf+Bt+Qz+Px</th> <th></th> <th></th>	# Minerales	PI+Bt+Anf+Oz	PI+Anf+Qz+Bt		PI+Oz+Arf+Bt+Px		PI+Anf+Bt+Qz+Px		
	Min. Oxidados	Bt con oxidación leve	Btconoxidación leve		Bt con oxidación avanzada		Bt (oxidación avanzada), Px (epidotización leve)		
Colorination based eter based eter based eter based eter based eter based eterCaliforation based eter based eter<	Matriz	47%	53%		44%		71%		
InstructionDestinitacioneDestinit	Color (matriz)	Rosada clara	Grisclaro		Café rosado		Gris moderado		
Victor Notice 0% 0%	Alter. (matriz)	Desvitrificación moderada	Desvitrificación leve		Desvitrificación leve		No		
# Min LáninaPi-Honn-Gz-GyaPi-Honn-Gya </th <th>Vidrio</th> <th>0%</th> <th>0%</th> <th>0%</th> <th>27%</th> <th>2%</th> <th>50%</th> <th>0%</th> <th>0%</th>	Vidrio	0%	0%	0%	27%	2%	50%	0%	0%
MIL. OxtdatedNo.	# Min. Lámina	PI + Horn + Bt + Qz + Cpx	PI+Bt+Hom+Qz+Cpx	PI + Horn + Bt + Qz + Cpx	PI+Horn+Bt+Oz+Cpx	PI + Cpx + Qz + Bt + Horn + Opx	PI + Horn + Qz + Cpx + Bt + Opx	PI+Cpx+Bt+Horn+Opx	PI + Horn + Cpx + Bt
Porces 5% 1% <th< th=""><th>Min. Oxidados</th><th>9V</th><th>No</th><th>Plagioclasa caolinitizada</th><th>٩</th><th>Bt oxidada</th><th>Plagiodasa caolinitizada levemente</th><th>Cpx con oxidación moderada</th><th></th></th<>	Min. Oxidados	9V	No	Plagioclasa caolinitizada	٩	Bt oxidada	Plagiodasa caolinitizada levemente	Cpx con oxidación moderada	
% Min Laim.ContactCanalersSimilarsNom Laim.Denoit FeecaDecide FreecaDecide Freeca<	Poros	5%	1%	1%	10%	3%	1%	1%	4%
MitmedioinDecide FreesaDecide FreesaDecide ContinuctedDecide ContinuctedDecide ContinuctedModella continuctedDomoDo	% Min. Lám.		Sin	nilares				Muy similares	
DomoDomo (1)Domo (1)Domo (1)Domo (1)Domo (1)Domo (1)Muteria $P+d2$ $P+d2$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ Muteria $P+d2$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ Muteria $P+d2$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ $P+d1$ Muteria $P+d2$ $P+d1$ <td< th=""><th>Alteración</th><th>Dacita Fresca</th><th>Dacita Fresca</th><th>Dacita Epidotzada y Caolinitizada</th><th>Dacita Fresca</th><th>Dacita Oxidada</th><th>Dacita Caolinitizada</th><th>Andesita oxidada</th><th></th></td<>	Alteración	Dacita Fresca	Dacita Fresca	Dacita Epidotzada y Caolinitizada	Dacita Fresca	Dacita Oxidada	Dacita Caolinitizada	Andesita oxidada	
Muetation 2.3 $-1.4-10$ <	Domo	Domo 6	Domo 13	Domo 12	Domo 1	1000	Domo 15	1000	
Immediates Intramiters	Minoraloo		CP-18			0F-23 01-0-1-0-1	OF-20 DI 1 A-6 D1 1 C-	0F-2/	
Image: Marrier	# MILICIALCO	Place coolicit-motion loss		PLT ALL TTATU				Dt/oridorión energid) , them (oridorión moderado)	
Continuiture Aller (matriz) Reside clan Origination (reside) Operation (reside) Op	Min. UXIDADOS	PI CON CAONINIZACION IEVE	PI CON CAUIMIZACION INOUEIAUA	BL COTI OXIDAGOTI AVAIIZADA	biconoxidacionmoderada	BI COII E 402	OXIGACION AVAIZAGA		
All construction Description Description <thdescription< th=""></thdescription<>	Mauliz Color (matriz)	0/ 20 Docada clara	Grie cecilin	Deada arie	Grie daro	2450	Poseda clama	03/8	
Vittor Total design Total design <thtotal design<="" th=""> Total design</thtotal>	Alter (matriz)	Devitrificación moderada	Oxidación lava a moderada	No	Desvitrificación moderada	Desvit	rificación moderada	Desvitrificación leve	
# Min. Laimina PH + Min. Adv.) PH + Hom + Cz + Cpx + Hom PH + Hom + Cz + Cpx PH + Hom + Cz + Cpx PA + Bit + Hom + Cpx + Oz Min. Laimina Min. Laimina Min. Laimina PH + Hom + Cz + Cpx PH + Hom + Cz + Cpx PA + Bit + Hom + Cpx + Oz Min. Jaimina Min. Laimina Minerales Oxidados Minerales Oxidados Bit y Hom + Oz + Cpx Bit y Hom + Cpx + Oz Min. Jaimina 3% 9% Similares Similares Bit with tam Min. Jaimina Dacita Oxidada Dac	Vidrio	44%	27%	2		0%		24210222	
Min. Oxtlados Minerales Oxtlados Minerales Oxtlados Minerales Oxtlados B1 y forr oxtladas tertemente B1 oxtladad herenete Poros 3% 1% 1% 1% 1% 1% Poros 3% 1% 1% 1% 1% 1% Poros 3% 1% 1% 1% 1% 1% Alma cina Dacita Oxtlada Dacita Oxtlada Dacita Oxtlada Dacita Oxtlada Dacita Oxtlada	# Min. Lámina	PI + (Min Oxid) + Oz + Cnx + Horn	PI+Hom + 07 + Bt + Cnx			PI + Bt + Horn + Oz + Cox	PI + Bt + Horn + Cox + Oz		
Poros 3% 1% 6% 6% % Min. Lam. 5%	Min. Oxidados	Minerales Oxidados	Minerales Oxidados			st y honr oxidadas fuertemente	Bt oxidada fuertemente		
% Min. Lám. Similares Similares Similares Dacita Oxidada Dacita Oxida	Poros	3%	1%			8%	6%		
Atteración Dacita Oxidada Dacita Oxidada Dacita Oxidada Dacita Oxidada Dacita Oxidada	% Min. Lám.	*****					Similares		
	Alteración	Dacita Oxidada	Dacita Oxidada			Dacita Oxidada	Dacita Oxidada		

Tabla 4.4: Domos del Volcán Quilotoa ordenados, de jóvenes en la parte superior a antiguos en la parte inferior. Las muestras que presentan características similares están marcadas en color rojo o amarillo.

69

Finalmente se observa que, la secuencia de aparición de los domos obtenida en base a la morfología, difiere bastante de la secuencia de aparición obtenida en base a la petrografía; ahora tomando en cuenta que la erosión puede actuar de manera diferente a lo largo del tiempo, teniendo un mayor impacto en una determinada área que en otra, esto puede causar que los domos de un área en particular puedan estar más afectados que los domos de otra área, y considerando la posibilidad de que los domos de ambas áreas sean de la misma edad; estás posibles diferencias en la intensidad de la erosión en domos contemporáneos de diferentes áreas, hace que las edades obtenidas en base a la morfología no sean confiables.

Ahora, tomando en cuenta que los domos presentan una litología y mineralogía muy similar y que las alteraciones actúan de manera uniforme en las rocas a lo largo del tiempo, se considera que las edades obtenidas en base a la petrografía son confiables y reflejan aproximadamente la secuencia correcta de aparición de los domos.

4.4.8) QUÍMICA DE LAS TEFRAS Y LOS DOMOS

Se presenta una tabla (Tabla 4.5) de los análisis químicos de la pómez realizados en los trece niveles de tefra del Volcán Quilotoa, los cuales fueron realizados por D. Geist (Universidad de Idaho, USA), M. Hall, e IRD. Adicionalmente, se muestran algunas figuras (Tabla 4.6) donde se plotean tanto los óxidos como algunos elementos en trazas de las 13 tefras, versus la estratigrafía.

En general, en las siguientes figuras (Tabla 4.6) se observan patrones fluctuantes con una tendencia lineal general, indicando que los contenidos de los elementos mayores y trazas no han tenido grandes variaciones a lo largo del tiempo; en donde, específicamente se observa que entre las muestras de Q–1 a QS–12 el contenido de SiO₂ varía de SiO₂ (64-68%) y en las muestras correspondientes a QS–13 este contenido fluctúa entre SiO₂ (74-76%).

Adicionalmente, las muestras pertenecientes a QS–13 (Tabla 4.5) presentan contenidos en TiO₂, Al₂O₃, Fe₂O₃, Sr, Rb, K₂O, CaO y MgO, que se diferencian fuertemente de los contenidos de los mismos elementos, para las muestras entre Q–1 a QS–12. Finalmente, la muestra erupt-VIII (Tabla 4.4) presenta una alta

concentración en MnO, Zr, Y, Sr, P₂O₅, CaO y MgO, con respecto las concentraciones de las otras muestras, para los mismos elementos.

Tabla 4.5: Análisis químicos realizados en los trece niveles de tefra del Volcán Quilotoa, los elementos mayores se presentan en % en peso (Tabla 4.5a) y los elementos trazas en ppm (Tabla 4.5b).

Tabla 4.5a.

Muestra	SiO2	TiO2	Al2O3	Fe2O3*	MnO	MgO	CaO	Na2O	K2O	P2O5	LOI	Total
Q1 a	65,42	0,46	16,86	4,22	0,07	1,97	4,42	4,82	1,59	0,17	1,56	100
Q1 b	65,60	0,47	16,53	4,47	0,07	2,07	4,39	4,62	1,62	0,16	1,69	100
erupt I - PF	67,56	0,50	15,24	4,44	0,07	1,67	3,57	4,80	1,98	0,16		100
erupt I - surge	65,26	0,47	16,79	4,21	0,07	1,79	4,42	5,22	1,64	0,15		100
Q2 caldera	65,83	0,48	16,00	4,59	0,07	2,29	4,67	4,38	1,51	0,17	0,05	100
Q2 Chugchilan	65,71	0,48	16,47	4,32	0,07	2,10	4,40	4,67	1,64	0,15	1,95	100
Q2 Chame	65,75	0,46	17,32	4,32	0,07	1,62	4,32	4,58	1,50	0,06	3,67	100
Q2 Chinalo	66,56	0,46	16,49	4,17	0,07	1,80	4,20	4,52	1,58	0,15	2,28	100
erupt II -PF a	66,37	0,46	16,12	4,16	0,07	1,79	4,21	5,01	1,67	0,14		100
erupt II -PF b	66,37	0,46	16,09	4,23	0,07	1,76	4,19	5,03	1,66	0,14		100
erupt II	66,50	0,42	16,57	3,76	0,07	1,64	4,10	5,12	1,70	0,13		100
Q3 Chame	66,94	0,49	15,95	4,55	0,08	2,01	4,11	4,11	1,67	0,09	3,6	100
erupt III a	66,30	0,45	16,47	3,92	0,06	1,66	4,18	5,12	1,70	0,14		100
erupt III b	65,72	0,45	16,90	3,91	0,06	1,73	4,36	5,09	1,64	0,14		100
erupt IV	66,49	0,42	16,65	3,92	0,07	1,51	4,09	5,00	1,72	0,14		100
erupt V a	66,54	0,44	17,12	3,19	0,06	1,66	4,23	5,09	1,61	0,06		100
erupt V b	65,41	0,47	17,09	4,15	0,07	1,96	4,39	4,69	1,61	0,16		100
erupt VI	66,85	0,45	16,80	4,12	0,07	1,61	4,04	4,15	1,72	0,19		100
erupt VII	65,43	0,47	16,66	4,51	0,08	2,55	4,46	4,06	1,61	0,17		100
QS-7	65,72	0,468	16,515	4,451	0,074	2,572	4,215	4,409	1,829	0,173		100
erupt VIII	64,24	0,53	15,75	5,07	0,10	2,95	5,00	4,01	2,04	0,32		100
QS-8	66,43	0,515	16,314	4,565	0,076	2,134	4,094	4,339	1,797	0,177		100
QS-9	65,91	0,462	16,983	4,163	0,074	1,936	4,402	4,698	1,614	0,159		100
QS-10	66,68	0,465	16,482	4,162	0,072	1,874	4,135	4,582	1,782	0,171		100
QS-11	65,51	0,500	17,021	4,446	0,072	2,016	4,482	4,764	1,457	0,157		100
QS-12	65,98	0,490	16,916	4,299	0,064	1,925	4,452	4,625	1,512	0,156		100
QS-12A	65,70	0,507	16,661	4,417	0,066	2,123	4,529	4,803	1,461	0,155		100
QS-13B	75,08	0,057	14,947	0,968	0,073	0,208	0,899	4,005	3,743	0,113		100
QS-13D	74,66	0,074	15,393	1,227	0,072	0,274	0,943	3,974	3,403	0,101		100
QS-13	75,18	0,046	14,702	0,828	0,072	0,167	0,836	4,747	3,390	0,112		100

Tabla 4.5b.

Muestra	Rb	Sr	Ва	Sc	V	Cr	Со	Ni	Y	Zr	Nb	La	Се
Q1 a	32,5	538	600	9	95	21	12	11	8,8	61	3,3	12	25
Q1 b	33	518	625	9,2	95	25	13	13	9,1	60	3,4	12	25
erupt I - PF	39	419	677	12	94	17		14	9	105	3,6	16	30
erupt I - surge	34	532	584	10	82	19		13	9	108	4,4	15	26
Q2 caldera	31	500	600	9	98	31	14	20	9,2	45	3,7	12,5	27
Q2 Chugchilan	33,5	512	590	8,8	94	24	13	14	8,4	59	3,2	11,8	23,5
Q2 Chame	33,5	535	540	7,3	86	12	13	12	8,4	47	3,7	11	23
Q2 Chinalo	37	508	550	7,3	84	19	10	10	8,4	42	3,7	12,5	25
erupt II -PF a	32	487	551	9	90	30		13	9	104	3,8	18	32
erupt II -PF b	32	489	550	13	92	27		13	9	103	4	15	20
erupt II	35	486	611	12	69	16		13	9	99	4,1	13	23
Q3 Chame	35	464	604	8,6	93	21	13	15	8,6	52	3,6	10,8	22
erupt III a	32	508	558	13	83	26		12	8	100	3,3	25	20
erupt III b	32	533	585	10	86	17		15	9	99	4,3	10	20
erupt IV	32	498	586	9	75	14		10	10	100	3,8	19	38
erupt V a	32	536	634	10	57	21		14	9	102	3,8	11	34
erupt V b	33	524	604	8	83	17		4	9	90	2,9	9	22
erupt VI	33	476	671	7	78	18		3	8	87	3,4	15	28
erupt VII	32	499	614	10	86	57		22	9	94	3,1	14	26
QS-7	36	493	646	10	88	43		37	9	90	3,5	13	28
erupt VIII	36	882	947	12	115	82		19	12	120	3,7	39	77
QS-8	39	469	636	7	89	27		20	10	92	3,9	15	24
QS-9	39	532	595	9	83	17		11	10	88	3,8	11	24
QS-10	35	500	626	9	84	18		10	10	90	4,2	13	30
QS-11	28	522	583	8	93	18		13	9	87	3,5	11	24
QS-12	27	521	561	7	90	18		12	9	88	3,3	11	21
QS-12A	28	507	554	9	97	21		14	9	91	3,1	10	21
QS-13B	65	145	1129	3	5	5		6	8	56	6,2	10	20
QS-13D	64	159	1062	4	9	6		5	9	60	6,1	12	18
QS-13	66	139	1183	2	1	4		3	8	57	6,8	7	17

Tabla 4.5b (continuación).

Muestra	Nd	Sm	Eu	Gd	Dy	Er	Yb	Th	Ga	Cu	Zn	Pb	U
Q1 a	12,5	2,7	0,71	2,1	1,55	0,85	0,75	3,25					
Q1 b	12,5	2,8	0,73	2,2	1,7	0,9	0,81	3,35					
erupt I - PF								3					
erupt I - surge								5					
Q2 caldera	12,8	2,8	0,64	2,3	1,6	0,9	0,77	3,25					
Q2 Chugchilan	11,8	2,6	0,66	2,2	1,55	0,85	0,75	3,15					
Q2 Chame	10	2,4	0,63	2,2	1,5	0,8	0,69	3,15					
Q2 Chinalo	12,4	2,8	0,7	2,3	1,6	0,8	0,72	3,4					
erupt II -PF a								2					
erupt II -PF b								4					
erupt II								3					
Q3 Chame	10,6	2,5	0,58	1,8	1,5	0,8	0,75	3,3					
erupt III a								2					
erupt III b								2					
erupt IV								4					
erupt V a								4					
erupt V b	14							1					
erupt VI	15							2					
erupt VII	13							2					
QS-7	15							4	18	22	69	9	2
erupt VIII	37							7					
QS-8	14							4	18	14	71	9	2
QS-9	13							4	19	11	68	9	2
QS-10	15							4	20	21	70	8	2
QS-11	13							3	20	11	71	7	0
QS-12	14							2	19	10	68	7	2
QS-12A	12							3	19	5	68	7	1
QS-13B	8							4	21	4	66	15	4
QS-13D	10							4	20	9	66	14	2
QS-13	7							3	20	0	66	15	2

Los valores anómalos de "erupt VIII" no tienen relación con otras rocas. Sin análisis adicionales no se los puede tomar en serio.

Los valores de las rocas del ciclo QS-13 son similares entre ellos. Estos valores son válidos e implican la presencia de un magma más silíceo (riolítico); siendo éste magma una intrusión distinta.

Los análisis son similares con pocas excepciones, implicando que las erupciones desde QS-12 a Q-1 fueron alimentadas por un solo magma.

Tabla 4.6: Química de las Pómeces. En esta tabla se plotea el valor de la concentración de unos elementos químicos de las pómeces desde la más joven (Q-1) a la más vieja (QS-13), con el fin mostrar su variación en el tiempo. Las pómeces más jóvenes se localizan al lado izquierdo del eje horizontal y las más viejas se localizan al lado derecho.

En general, en la Tabla 4.6 se observan patrones fluctuantes con una tendencia lineal, indicando que los contenidos de los elementos mayores y trazas no han tenido grandes variaciones a lo largo del tiempo; en donde, específicamente se observa que entre las muestras de Q–1 a QS–12 el contenido de SiO₂ varía de SiO₂ (64-68%) y en las muestras correspondientes a QS–13 este contenido fluctúa entre SiO₂ (74-76%).

Adicionalmente, las muestras pertenecientes a QS–13 (Tabla 4.5) presentan contenidos en TiO₂, Al₂O₃, Fe₂O₃, Sr, Rb, K₂O, CaO y MgO, que se diferencian fuertemente de los contenidos de los mismos elementos, para las muestras entre Q–1 a QS–12. Finalmente, la muestra erupt-VIII (Tabla 4.4) presenta una alta concentración en MnO, Zr, Y, Sr, P₂O₅, CaO y MgO, con respecto las concentraciones de las otras muestras, para los mismos elementos.

Posteriormente, en esta sección se muestran 12 análisis químicos (Tabla 4.7) correspondientes a los domos (3 realizados por el IRD, 3 por Dennis Geist y 6 por el presente estudio). Además, utilizando el software Igpet06, se realizó algunos gráficos comparativos entre todos los domos (Figuras 4.22 – 4.25).

Muestra	SiO2	TiO2	AI2O3	Fe2O3*	MnO	MgO	CaO	Na2O	К2О	P2O5	LOI	Total
QUIL 2 / Domo 14	66,05	0,43	16,79	4,09	0,07	1,78	4,34	4,74	1,54	0,16	0,36	100
QUIL 4 / Domo 5	64,13	0,51	16,63	5,01	0,08	2,51	5,11	4,43	1,42	0,17	0,10	100
QUIL3 / Domo 18	65,39	0,48	17,21	4,05	0,07	1,82	4,30	4,91	1,61	0,16	0,17	100
QUIL 2 / Domo 14	66,06	0,43	16,79	4,09	0,07	1,78	4,34	4,74	1,54	0,16		100
QUIL3 / Domo 18	65,39	0,48	17,21	4,06	0,07	1,82	4,30	4,91	1,61	0,16		100
QUIL 4 / Domo 5	64,13	0,51	16,63	5,01	0,08	2,51	5,11	4,43	1,42	0,17		100
CP1 / Domo 9	66,98	0,47	16,23	4,28	0,09	1,96	3,99	4,54	1,70	0,16		100,40
CP3 / Domo 10	64,86	0,58	16,05	5,12	0,09	2,58	4,83	4,46	1,74	0,19		100,49
CP21 / Domo 7	65,64	0,57	15,81	5,26	0,08	2,44	4,26	4,48	1,78	0,17		100,49
CP23 / Domo 6	65,26	0,49	16,87	4,53	0,07	2,07	4,64	4,78	1,56	0,15		100,43
CP28 / Domo 16	66,04	0,55	15,83	4,97	0,08	2,34	4,08	4,52	1,88	0,18		100,48
CP29 / Domo 2	65,29	0,56	16,03	5,10	0,08	2,56	4,47	4,46	1,77	0,18		100,49

Tabla 4.7: Análisis químicos realizados en los domos del Volcán Quilotoa.

Muestra	Rb	Sr	Ва	Sc	V	Cr	Со	Ni	Y	Zr	Nb	La	Ce
QUIL 2 / Domo 14	30	540	630	7,5	90	18	10	10	9	33	3,45	12,8	26
QUIL 4 / Domo 5	26,5	512	592	11,5	122	38	15,5	17	10,7	49	3,4	11,9	25
QUIL3 / Domo 18	30,5	540	630	7,2	85	17	11	10	8,7	32	3,6	12,8	27
QUIL 2 / Domo 14	30	540	630	8	90	18	10	10	9	33	3	13	26
QUIL3 / Domo 18	31	540	630	7	85	17	11	10	9	32	4	13	27
QUIL 4 / Domo 5	27	512	592	12	122	38	16	17	11	49	3	12	25
CP1 / Domo 9	34	482	605	8	84	20		15	10	93	3,6	13	25
CP3 / Domo 10	34	489	637	10	109	17		16	12	100	4,7	13	28
CP21 / Domo 7	34	452	666	9	101	27		15	11	98	4,4	12	29
CP23 / Domo 6	28	531	597	8	67	23		14	10	92	4,8	11	28
CP28 / Domo 16	37	447	694	9	103	22		13	11	100	5,6	13	28
CP29 / Domo 2	35	458	654	10	109	40		22	11	94	4,3	12	23

Muestra	Nd	Sm	Eu	Gd	Dy	Er	Yb	Th	Ga	Cu	Zn	Pb	U	um tr	in %	ım m+	Toxide	w/LOI	if Fe3+
QUIL 2 / Domo 14	14,5		0,65		1,5	0,9	0,675												
QUIL 4 / Domo 5	14		0,70		1,8	1	0,825												
QUIL3 / Domo 18	14		0,65		1,5	0,8	0,650												
QUIL 2 / Domo 14	15		1		2	1	1												
QUIL3 / Domo 18	14		1		2	1	1												
QUIL 4 / Domo 5	14		1		2	1	1												
CP1 / Domo 9	12							2	18	33	79	15	1	1553	0,16	96,88	96,91	98,90	99,31
CP3 / Domo 10	13							3	18	22	77	8	1	1612	0,16	98,59	98,63	99,47	99,98
CP21 / Domo 7	15							3	18	21	78	8	1	1600	0,16	99,10	99,14	99,67	100,19
CP23 / Domo 6	11							3	18	24	67	6	0	1542	0,15	98,52	98,55	99,13	99,58
CP28 / Domo 16	12							4	20	21	79	8	2	1627	0,16	99,33	99,36	99,69	100,18
CP29 / Domo 2	13							5	18	14	78	9	1	1607	0,16	98,89	98,92	99,43	99,93

Figura 4.22. Rb vs SiO₂ entre los domos.

Figura 4.25. $Na_2O + K_2O vs SiO_2$ entre los domos.

Los análisis presentados en la Tabla 4.7 son similares con pequeñas excepciones, implicando que los domos considerados se formaron a partir de un solo magma.

En las figuras 4.22 - 4.25 cuales se observa que los domos poseen un contenido de SiO₂ (64-67%), Rb (26–38ppm) y K₂O (1,4-1,9%). Por otro lado, en el gráfico K₂O vs SiO₂ (Arc rock types) (Figura 4.24) todos los domos caen en el campo de las dacitas, y en el campo de las series calcoalcalinas. Finalmente, en el gráfico álcalis vs SiO₂ (Figura 4.25), todos los domos caen en el campo de las dacitas.

4.5) CORRELACIÓN ENTRE LOS DOMOS Y LA ESTRATIGRAFÍA

4.5.1) EN BASE A LA PETROGRAFÍA:

En esta sección se procedió a correlacionar petrográficamente los domos con la estratigrafía del volcán. Adicionalmente, utilizando los líticos de dacita encontrados en las capas de tefra que se recolectaron en el campo desde Q – 1 a QS – 13 (Figura 4.26), se correlacionó a los domos con la estratigrafía del volcán en base a la comparación de las rocas de los domos con los clastos líticos pertenecientes a los trece ciclos eruptivos del Quilotoa (Hall and Mothes, 2008).

Figura 4.26. Mapa del Volcán mostrando los sitios donde fueron recolectados los líticos en las capas de tefra, los cuales se indican en los cuadros en rojo.

Para esto se utilizó tanto las descripciones macroscópicas y microscópicas de domos presentadas en la Tabla 4.4; como la información de los líticos de la estratigrafía, que fue tratada previamente en la sección 4.3.1. La información de los líticos se centra en el color y en el grado de alteración que estos presentan, razón por la cual, la correlación se la realizó en base a estas características, presentadas tanto por las muestras de líticos y de domos. A continuación se presenta una tabla (Tabla 4.8) en la cual se explica cómo se efectuó esta correlación:

Tabla 4.8: Correlación entre las rocas de los domos y los clastos líticos encontrados en la tefraestratigrafía, utilizando la Tabla 4.4 y la información de la estratigrafía. Dicha correlación se realizó a través de comparar las similitudes en color y en el grado de alteración entre las muestras de los domos y de los líticos.

		lacitas	scuro.			4 que		ciente		iotita. ble la			/ no es	
Estratigrafía	Características de los Fragmentos Líticos	En su mayoría son dacitas de color gris claro a gris moderado y hidrotermalmente alteradas	En su mayoría son dacitas de color gris moderado, rosado y gris Además hay dacitas hidrotermalmente alteradas	Dacitas negras	Dacitas de color gris moderado e hidrotermalmente alteradas	Dacitas de grises a negras, no existen domos negros previos a Q · permitan efectuar una correlación	No presenta clastos y no es posible la correlación	Dacitas frescas e hidrotermalmente alteradas, no hay sul información para la correlación	Dacitas, no hay suficiente información para la correlación	Pocos líticos de color gris claro, contienen plagioclasa, anfíbol y Se desconoce que tipo de roca son los líticos y no es pos correlación	No presenta clastos y no es posible la correlación	No presenta clastos y no es posible la correlación	Líticos negros, pero se desconoce que tipo de roca son los líticos posible la correlación	
	Ciclo eruptivo	Q – 1 (≈800 aAP)	Q – 2 (≈14.770 aAP)	Q – 3	Q – 4 (≈33.700 aAP)	Q – 5 (> 40.000 aAP)	Q – 6	QS – 7	QS – 8	6 – SQ	QS – 10	QS – 11	QS – 12	
S	Grupos de domos	(2, 4, 18, 8, 9)	(3, 16, 11, 5, 7, 17, 10, 14, 6)	13	(12, 1, 15)									
Domo	Color de la roca característica del domo	Gris claro a gris moderado	Gris moderado a oscuro	Gris oscuro	Gris claro a rosado grisáceo			Posiblemente no hubo	domos entre los ciclos	eruptivos Q – 5 a Q5 – 13, debido a que la evidencia de clastos que	pertenezcan a los domos -			

La ausencia de clastos de domos en las tefras QS - 12 a Q - 6 o Q - 5 sugiere que anteriormente no se formaron domos, caso debido a explosiones muy fuertes o posiblemente el magma no fue tan viscoso (y así más explosivo?).

En base a la tabla anterior se puede concluir que la totalidad de domos del volcán se formaron entre los ciclos eruptivos Q - 4 a Q - 1, en el orden que se detalla a continuación.

<u>ESTRATIGRAFÍA</u> <u>DOMOS</u> **Q – 1**.... (2, 4, 8, 9, 18) **Q – 2**.... (3, 5, 6, 7, 10, 11, 14, 16, 17) **Q – 3**.... 13 **Q – 4**..... (1, 12, 15)

4.5.2) EN BASE AL TAMAÑO DE LOS MINERALES:

En esta sección se correlacionará a los domos con la estratigrafía del volcán, en base al tamaño que poseen ciertos minerales presentes en estas litologías. Aquí se utilizará la información macroscópica de los domos, la cual ya fue tratada en secciones previas; como también se usará la información macroscópica de 12 muestras adicionales que fueron recolectadas en el volcán (muestras CP-4 a CP-15) (ver Tablas 4.9 y 4.10, y Figura 4.26), donde se recogió una muestra por cada tefra, desde Q-1 a QS-12.

Domo/Unidad	Mineralogía	Longitud promedio del Cristal (mm)	Ancho promedio del Cristal (mm)	Longitud Máxima del Cristal (mm)
	Plagioclasa	5	5	10
D1	Anfíbol	2	1	3
	Biotita	0,5	0,5	0,5
	Cuarzo	1	1	2,5
	Plagioclasa	3	3	9,5
D2	Anfíbol	2	1	4
DZ	Biotita	2	1	2
	Cuarzo	2	1	3
	Plagioclasa	4,5	4	9
52	Anfíbol	1	0,5	2
D3	Biotita	1	0,5	2
	Cuarzo	1	1	1,5
	Plagioclasa	4,5	3	9,5
54	Anfíbol	1,5	1,5	4
D4	Biotita			
	Cuarzo	3	3	5
	Plagioclasa	5	5	10
55	Anfíbol	3	1,5	3,5
D5	Biotita	2	1,5	3,5
	Cuarzo	1,5	1,5	3,5
	Plagioclasa	7	3	16,5
50	Anfíbol			
Do	Biotita			
	Cuarzo	0,5	0,5	0,5
	Plagioclasa	7	3	12
D7	Anfíbol	3	3	5
DI	Biotita	1,5	1	3
	Cuarzo	3,5	2	4
	Plagioclasa	5	2	18
	Anfíbol	2	2	4
	Biotita	2	2	3
50	Cuarzo	5	3	6
D9	Plagioclasa	5	5	10
	Anfíbol	3	2	3
	Biotita	1	1	1,5
	Cuarzo	2	1	3
	Plagioclasa	8	5	13
540	Anfíbol	2	1	5
D10	Biotita	2	1	3
	Cuarzo	1	1	2

Tabla 4.9: Tamaño de los minerales presentes en los domos.

Domo/Unidad	Mineralogía	Longitud promedio del Cristal (mm)	Ancho promedio del Cristal (mm)	Longitud Máxima del Cristal (mm)
	Plagioclasa	4	4	15,5
D11	Anfíbol	3	2,5	7
DII	Biotita	2,5	Ancho promedio del Cristal (mm) 4 2,5 2,5 3,5 4 4 1,5 2 3,5 4 1,5 3,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	4
	Cuarzo	4	3,5	4
	Plagioclasa	4,5	4	12,5
D12	Anfíbol	3	1,5	3,5
DIZ	Biotita	3	2	6
	Cuarzo		Ancho promedio del Cristal (mm) 4 4 2,5 2,5 3,5 4 4 1,5 2 4 3,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	
	Plagioclasa	5	3	10
D13	Anfíbol	2,5	2	5,5
015	Biotita	2	1	2,5
	Cuarzo	2,5	2	7
Domo/Unidad	Plagioclasa	5	3,5	15
	Anfíbol	2	1,5	4
	Biotita	2	1,5	4,5
	Cuarzo	2,5	1,5	7
	Plagioclasa	6	5	19
	Anfíbol	2,5	1	3
	Biotita	2	1	3
	Cuarzo	2,5	2	5,5
	Plagioclasa	4,5	4	12,5
	Anfíbol	4,5	3	1
	Biotita	2	1,5	4
	Cuarzo	4	1,5	5,5
	Plagioclasa	5	4	12,5
D15	Anfíbol	2	1	4
DIO	Biotita			
	Cuarzo	2,5	1,5	7
	Plagioclasa	5	4	12
Domo/Unidad	Anfíbol	2	2	4
	Biotita	1	1	4
	Cuarzo	2	1,5	4
	Plagioclasa	4,5	3	14
	Anfíbol	2,5	2	7
	Biotita	2	1,5	2,5
D18	Cuarzo	1	1	6
D18	Plagioclasa	4,5	2,5	9,5
	Anfíbol	2	1,5	7
	Biotita	1	1	2,5
	Cuarzo	1	1	3
	Plagioclasa	5,5	4	11
	Anfíbol	2	1,5	4
	Biotita	2	2	2
	Cuarzo	2.5	1.5	3

Tabla 4.9 (continuación).

Domo/Unidad	Mineralogía	Longitud promedio del Cristal (mm)	Ancho promedio del Cristal (mm)	Longitud Máxima del Cristal (mm)
	Plagioclasa	3	2,5	9
0.1	Anfíbol	1,5	1,5	2,5
Q=1	Biotita			
	Cuarzo	1	1	2
	Plagioclasa	3	2	5
Q-2	Anfíbol	2	1,5	3,5
	Biotita	3	2	5
	Cuarzo		Ancho promedio del Cristal (mm) 2,5 1,5 2 1,5 2 1 1 2 1,5 2 1 1 2 0,5 0,5 0,5 0,5 1 1 1 1 1,5 1,5 1,5 1,5 1,5 0,7 1,5 0,7 1,5 0,7 1,5 0,5 2 1 1,5 0,5 2 1 3,5 2 1 3,5 2 1 3 2 2 1 3 2 2 <td></td>	
	Plagioclasa	4	2	8
0-3	Anfíbol	1	1	2
Q-3	Biotita	2	1	7
	Cuarzo	1	1	1
Domo/Unidad Q-1 Q-2 Q-3 Q-4 Q-5 Q-6 QS-7 QS-8 QS-9 QS-10 QS-11 QS-12	Plagioclasa	2	2	5,5
	Anfíbol	2	0,5	5
	Biotita	0,5	0,3	0,5
	Cuarzo	2,5	2	3
	Plagioclasa	2	2	5,5
0.5	Anfíbol	1,5	1	4
Q-5	Biotita	2	1	1,5
	Cuarzo	1,5	1,5	1,5
	Plagioclasa	1,5	1,5	1,5
0.6	Anfíbol	1,5	1	4
Q=0	Biotita			
	Cuarzo	1,5	1,5	1,5
	Plagioclasa	1	0,7	5
05.7	Anfíbol	2	1,5	4
QS-7	Biotita	0,5	0,5	1,5
	Cuarzo			
	Plagioclasa	3,5	3,5	4
05.8	Anfíbol	3	4	6
QS-8	Biotita	3	1,5	3
	Cuarzo	0,5	0,5	0,5
	Plagioclasa	2	2	7
05-9	Anfíbol	1	1	5
00-3	Biotita	1,5	1	2,5
	Cuarzo	0,5	0,5	0,5
	Plagioclasa	3	2	6
05 10	Anfíbol	2	1	7
QS-10	Biotita	4	3	5
	Cuarzo	2,5	2	4
	Plagioclasa	2,5	2	4,5
QS-11	Anfíbol	1	1	3
	Biotita			
	Cuarzo	2	1	5
QS-12	Plagioclasa	2,5	1,5	4
	Anfíbol	0,5	0,5	0,5
	Biotita	1,5	1	1,5
	Cuarzo	1	1	1

Tabla 4.10: Tamaño de los minerales presentes en la tefra.

En primer lugar, con la información presentada en las Tablas 4.9 y 4.10, se procedió a realizar gráficos comparativos por mineral, de los promedios de la longitud, ancho y longitud máxima del cristal vs la estratigrafía, con el fin de determinar tendencias que indiquen un incremento del tamaño del cristal con el tiempo. Se realizó estos gráficos para los cristales de plagioclasa, piroxeno, anfíbol y biotita, pero de estos los únicos que mostraron una tendencia relativamente clara fueron los realizados para la plagioclasa, específicamente para la longitud promedio y longitud máxima del cristal (Ver Tabla 4.11 y Figura 4.27).

En la Figura 4.27 se observa que en ambos gráficos existe una tendencia general de crecimiento del tamaño del cristal con el tiempo, desde QS-12 a Q-1.

Plagioclasa	Longitud Promedio	Longitud Máxima
Q-1	3	9
Q-2	3	5
Q-3	4	8
Q-4	2	5,5
Q-5	2	5,5
Q-6	1,5	1,5
QS-7	1	5
QS-8	3,5	4
QS-9	2	7
QS-10	3	6
QS-11	2,5	4,5
QS-12	2,5	4

Tabla 4.11: Datos de la longitud promedio y longitud máxima dados en mm, para los cristales deplagioclasa presentes en las litologías de la estratigrafía.

Figura 4.27. Gráficos de la longitud promedio y de la longitud máxima del cristal vs la estratigrafía, mostrando en ambos una tendencia general de crecimiento del tamaño del cristal desde QS-12 a Q-1.

Posteriormente, se ordenó a los domos según el tamaño de sus cristales de plagioclasa para obtener una secuencia de crecimiento de los mismos, según la longitud promedio y la longitud máxima de estos minerales (Ver Tabla 4.12 y Figura 4.28).

Los minerales máficos que no muestran evidencia de crecimiento se formaron más temprano, cuando el magma estuvo más caliente (a excepción de la biotita). Caso contrario la plagioclasa tiene un rango de condiciones de P, T y X que favorece un crecimiento lento.

# Unidad	Longitud Promedio Decreciente	# Unidad	Longitud Máxima Decreciente
D10	8	D15	19
D6	7	D9	18
D7	7	D6	16,5
D15	6	D11	15,5
D18	5,5	D15	15
D1	5	D18	14
D5	5	D10	13
D9	5	D12	12,5
D9	5	D15	12,5
D13	5	D16	12,5
D15	5	D7	12
D16	5	D18	12
D18	5	D18	11
D3	4,5	D1	10
D4	4,5	D5	10
D12	4,5	D9	10
D15	4,5	D13	10
D18	4,5	D2	9,5
D18	4,5	D4	9,5
D11	4	D18	9,5
D2	3	D3	9

Tabla 4.12: Datos de la longitud promedio y longitud máxima para los cristales de plagioclasapresentes en las litologías de los domos, ordenados por su longitud.

Figura 4.28. Gráficos de la longitud promedio y de la longitud máxima de los cristales de plagioclasa vs los domos.

De esta figura se obtiene dos secuencias de aparición de los cristales de plagioclasa de los domos. La primera secuencia que está basada en la longitud

promedio, muestra un orden donde los cristales del domo D2 son los más chicos y los cristales del domo D10 son los más grandes. Mientras que en la secuencia basada en la longitud máxima, se tiene que los cristales del domo D3 son los más chicos y del domo D15 los cristales son los más grandes.

Finalmente, se ordenó a los domos y la estratigrafía según el tamaño de sus cristales de plagioclasa para obtener una secuencia de aparición de todas estas litologías, según la longitud promedio y la longitud máxima de estos minerales (Ver Tabla 4.13 y Figura 4.29 a y b).

# Unidad	Longitud Promedio Decreciente	# Unidad	Longitud Máxima Decreciente
D10	8	D15	19
D6	7	D9	18
D7	7	D6	16,5
D15	6	D11	15,5
D18	5,5	D15	15
D1	5	D18	14
D5	5	D10	13
D9	5	D12	12,5
D9	5	D15	12,5
D13	5	D16	12,5
D15	5	D7	12
D16	5	D18	12
D18	5	D18	11
D3	4,5	D1	10
D4	4,5	D5	10
D12	4,5	D9	10
D15	4,5	D13	10
D18	4,5	D2	9,5
D18	4,5	D4	9,5
D11	4	D18	9,5
Q-3	4	D3	9
QS-8	3,5	Q-1	9
D2	3	Q-3	8
Q-1	3	QS-9	7
Q-2	3	QS-10	6
QS-10	3	Q-4	5,5
QS-11	2,5	Q-5	5,5
QS-12	2,5	Q-2	5
Q-4	2	QS-7	5
Q-5	2	QS-11	4,5
Q-9	2	QS-8	4
Q-6	1,5	QS-12	4
QS-7	1	Q-6	1,5

Tabla 4.13: Datos de la longitud promedio y longitud máxima para los cristales de plagioclasa

 presentes en las litologías de la estratigrafía y de los domos, ordenados por su tamaño.

Figura 4.29. a). Gráfico de la longitud promedio decreciente de los cristales de plagioclasa vs la estratigrafía y los domos, y **b**) Gráfico de la longitud máxima decreciente de los cristales de plagioclasa vs la estratigrafía y los domos.

En conclusión, estas figuras se presentan dos secuencias de aparición de estas litologías. La primera secuencia que está basada en la longitud promedio, muestra un orden donde la litología más antigua corresponde a la tefra QS-7 y la más joven corresponde al domo D10. Adicionalmente, en primer lugar se observa que el orden de las tefras por tamaño del cristal, no coincide con el orden cronológico de las mismas; finalmente solo dos de las tefras (Q-3 y QS-8) se entrelazan con los domos, mientras que el resto de ellas se ubican en los tamaños de cristal más pequeños, que corresponderían a las litologías más antiguas.

Mientras que en la secuencia basada en la longitud máxima, se tiene que la litología más antigua corresponde a la tefra Q-6 y la más joven corresponde al domo D15. Adicionalmente, en segundo lugar se observa que el orden de las tefras por tamaño del cristal, no coincide con el orden cronológico de las mismas; finalmente

en tercer lugar las tefras no se entrelazan con los domos, donde la totalidad de ellas se ubican en los tamaños de cristal más pequeños, que corresponderían a las litologías más antiguas.

4.5.3) EN BASE A LA QUÍMICA:

En esta sección, utilizando el software Igpet06, se realizó gráficos comparativos entre los domos y la estratigrafía del volcán. Los domos considerados son el # 2, # 5, # 6, # 7, # 9, # 10, # 14, # 16 y # 18. Además, aquí se presentarán 2 gráficos comparativos entre todos los domos (Figuras 4.30 y 4.35) que ya fueron mostrados en la sección 4.4.8 y que ahora se los muestra modificados. Debido a que el software Igpet06 no permite ingresar más de 37 datos, lo cual fue un limitante para plotear los 42 datos totales; se decidió presentar tres gráficos (gráficos K₂O vs SiO₂ y Rb vs SiO₂), el primero para los 12 datos de domos (Figuras 4.30 y 4.35), el segundo para los 30 datos de la estratigrafía (Figuras 4.31 y 4.36) y el tercero para los domos y la estratigrafía en conjunto (Figuras 4.32 y 4.37). En el tercer gráfico se representa a los 12 domos con pequeños anillos de color negro, los cuales se ubican en las mismas posiciones que tomaron en el primer gráfico. Finalmente se presentan dos gráficos (Figuras 4.33 y 4.34) en los que se representan el K₂O vs SiO₂ y el Álcalis vs SiO₂, para los domos y la estratigrafía en conjunto.

En los gráficos que se muestran a continuación (ver figuras 4.30 - 4.37), en primer lugar, se observa que para todos los domos y para las muestras de los ciclos Q–1 a QS–12, existe un contenido de SiO₂ (64–68%) y para las 3 muestras del ciclo QS–13 existe un contenido de SiO₂ (74–76%).

Además, se observa que para todos los domos y para las muestras de todos los ciclos eruptivos, existe un contenido de K₂O (1,4–2,1%) (Ver figuras 3.29 - 3.31) y un contenido de Rb (26–40ppm) (ver figuras 4.35 - 4.37).

Figura 4.30. K₂O vs SiO₂ entre los domos.

En la figura 4.30 se observa la presencia de dos trenes de diferenciación, ambos con tendencias de pendiente positiva, en donde el tren inferior está conformado por los domos más antiguos (#5, #6, #9, #14 y #18) y el tren superior está conformado por los domos más jóvenes (#2, #7, #10 y #16).

Figura 4.31. K₂O vs SiO₂ para los 13 ciclos de pómez de la estratigrafía.

Figura 4.32. K₂O vs SiO₂ entre los domos y la pómez de la estratigrafía.

La figura 4.32 es un acercamiento de la figura 4.31, la cual muestra únicamente los datos químicos entre Q-1 a QS-12; en donde se observa la presencia de 3 trenes de diferenciación claros para los ciclos eruptivos Q-1, Q-2 y Q-3, donde los domos #2, #7, #10 y #16 tienen una edad cercana o menor al ciclo Q-1. Mientras que para los domos #5, #6, #9, #14 y #18 no se pudo obtener una edad clara debido a que el tren correspondiente al ciclo Q-3 se cruza con los trenes correspondientes a los ciclos Q-1 y Q-2.

Figura 4.33. K₂O vs SiO₂ entre los domos y la estratigrafía.

Por otro lado, en el gráfico K_2O vs SiO₂ (Arc rock types) (ver figura 4.33) todos los domos y las muestras de los ciclos eruptivos de Q–1 a QS–12, caen en el campo de las dacitas y en el campo de las series calcoalcalinas. Mientras que las 3 muestras del ciclo QS–13 caen en el campo de las riolitas, y en la proyección de los campos de las series calcoalcalinas y de las series calcoalcalinas de alto – K.

Figura 4.34. $Na_2O + K_2O vs SiO_2$ entre los domos y la estratigrafía.

Finalmente, en el gráfico Álcalis vs SiO₂ (ver figura 4.34), todos los domos y las muestras de los ciclos eruptivos de Q–1 a QS–12 caen en el campo de las dacitas; mientras que las 3 muestras del ciclo QS–13, caen en el campo de las riolitas.

Figura 4.35. Rb vs SiO₂ entre los domos.

En la figura 4.35 se observa la presencia de dos trenes de diferenciación, ambos con tendencias de pendiente positiva, en donde el tren inferior está conformado por los domos más antiguos (#5, #6, #9, #14 y #18) y el tren superior está conformado por los domos más jóvenes (#2, #7, #10 y #16).

Figura 4.36. Rb vs SiO₂ para los 13 ciclos de la estratigrafía.

En la figura 4.36 se hace una comparación entre SiO₂ y Rb para todas las muestras de la estratigrafía, donde no se observa mucha diferenciación.

Figura 4.37. Rb vs SiO₂ entre los domos y la estratigrafía.

La figura 4.37 es un acercamiento de la figura 4.36, la cual muestra únicamente los datos químicos entre Q-1 a QS-12; en donde se observa la presencia de 3 trenes de diferenciación claros para los ciclos eruptivos Q-1, Q-2 y Q-3; donde los domos

#2, #7, #10 y #16 tienen una edad cercana o menor a Q-1, el domo #18 cae entre el ciclo Q-2 y Q-3, los domos #5 y #9 presentan una similaridad cercana al ciclo Q-3 y, los domos #6 y #14 presentan una edad mayor al ciclo Q-4.

Figura 4 38. Variación en la concentración de los elementos en traza y de los elementos mayores en las rocas volcánicas del Ecuador del Holoceno – Pleistoceno tardío, tomado y modificado de Bryant et al., 2006. Los límites que definen las series de bajo, medio y alto K son de Ewart (1982).

Adicionalmente, debido a que las 3 muestras pertenecientes al ciclo eruptivo QS-13 que caen en el campo de las riolitas presentan valores más similares a los de la Cordillera Real que a los de la Cordillera Occidental, a estas muestras (Figuras 4.33 y 4.36) se las comparó con las riolitas de la Cordillera Real (Figura 4.38).

Se observa que para el gráfico K_2O vs SiO₂ (Figura 4.38), las riolitas de la Cordillera Real presentan valores de K_2O (2.5–5%); y en el gráfico K_2O vs SiO₂ (Arc rock types) (ver figura 4.33) las riolitas del ciclo QS-13 muestran valores de K_2O (3–4%). Además, para el gráfico Rb vs SiO₂ (Figura 4.38), las riolitas de la Cordillera Real presentan valores de Rb (50–200 ppm); y en el gráfico Rb vs SiO₂ (ver figura 4.36) las riolitas del ciclo eruptivo QS-13 muestran valores de Rb (60–70 ppm).

Finalmente se observa que las figuras 4.33, 4.36 y 4,38, presentan contenidos similares de SiO₂ (70–80%). En base a lo anterior se puede concluir que las 3 muestras de pómez riolítica pertenecientes al ciclo eruptivo QS-13, geoquímicamente caen en el campo composicional de las riolitas de la Cordillera Real del Ecuador.

4.5.4) EDADES DE LOS DOMOS BASADAS EN LA ESTRATIGRAFÍA:

En base a la correlación petrográfica entre los domos y la estratigrafía del volcán se pudo obtener una edad aproximada para la formación de los domos, tomando en cuenta las edades de la estratigrafía reportadas en Hall and Mothes, 2008; lo cual se presenta en las figuras 4.39, 4.40 y 4.41.

Figura 4.39. Secuencia de aparición de los domos del volcán, donde se agrupan en cuadros a aquellos domos que presentan una edad similar.

ESTRATIGRAFIADOMOS(~800 aAP) Q - 1.... (2, 4, 8, 9, 18)(14.770 aAP) Q - 2.... (3, 5, 6, 7, 10, 11, 14, 16, 17)Q - 3.... 13(33.700 aAP) Q - 4..... (1, 12, 15)

ORDEN DE APARICIÓN DE LOS DOMOS.

<u>Q – 3</u>

<u>Q – 2 (14.770 aAP)</u>

Figura 4.40. Orden de aparición de los domos del Volcán Quilotoa con respecto a su edad aproximada y relativa a los cuatro períodos eruptivos más recientes del Quilotoa.

Figura 4.41. Mapa final de los domos del Volcán Quilotoa.

En base a la correlación química entre los domos y la estratigrafía del volcán se pudo establecer un orden de aparición de los domos y un orden de aparición de ellos respecto a la estratigrafía. Tanto para el gráfico K₂O vs SiO₂ (ver figura 4.30) como para el gráfico Rb vs SiO₂ (ver figura 4.35), se obtuvo un mismo orden de aparición de domos (ver figura 4.42).

Figura 4.42. Orden de aparición de los domos en base a los gráficos K_2O vs SiO₂ y Rb vs SiO₂.

DOMOS JÓVENES

DOMOS VIEJOS

Finalmente, en las figuras 4.33 y 4.38, se determinó un mismo orden de aparición de los domos con respecto a la estratigrafía (ver Tabla 4.14), el cual indica que los domos #2, #7, #10 y #16 tienen una edad cercana o menor a Q-1, el domo #18 presenta una edad entre el ciclo Q-2 y Q-3, los domos #5 y #9 presentan una edad cercana al ciclo Q-3 y, los domos #6 y #14 presentan una edad mayor al ciclo Q-4.

La correlación entre los domos y la estratigrafía en base al tamaño de los cristales no arrojó datos útiles para este estudio, ya que la gran mayoría de los ciclos eruptivos de la estratigrafía no se entrelazan con los domos; en donde, estos ciclos corresponderían a las litologías más antiguas y los domos corresponderían a las litologías más jóvenes.

A continuación se presenta una tabla explicativa que compara los resultados obtenidos de la correlación petrográfica y química (ver Tabla 4.14).

CORRELACIÓN	I PETROGRÁFICA	CORRELACIÓN GEOC	UÍMICA
ESTRATIGRAFÍA	DOMOS	ESTRATIGRAFÍA	DOMOS
			(2 7 10 16)
(~800 aAP) Q-1	(2, 4, 8, 9, 18)	(~800 aAP) Q-1	(2, 7, 10, 10)
(14.770 aAP) Q-2	(3, 5, 6, 7, 10, 11, 14, 16, 17)	(14.770 aAP) Q – 2	
			18
Q-3	13	Q-3	(5, 9)
(33.700 aAP) Q-4	(1, 12, 15)	(33.700 aAP) Q-4	(6, 14)

 Tabla 4.14:
 Comparación de los resultados de la correlación petrográfica y química.

Primeramente, fue posible realizar una correlación petrográfica completa debido a que se contó con una muestra por cada domo, de los 18 domos totales; mientras que para realizar la correlación geoquímica, únicamente se contó con 9 análisis, dejando 9 domos sin análisis.

Adicionalmente, los domos que fueron analizados geoquímicamente son los domos # 2, # 5, # 6, # 7, # 9, # 10, # 14, # 16 y # 18, los cuales caen dentro del grupo de domos que petrográficamente se formaron entre los ciclos eruptivos Q–1 y Q–2.

El domo #2 que petrográficamente se formó en el ciclo Q-1, geoquímicamente se formó durante el mismo ciclo o poco tiempo después del mismo. Los domos # 7, #10 y #16 que petrográficamente se formaron durante el ciclo Q-2, geoquímicamente se formaron durante el ciclo Q-1 o poco tiempo después del mismo. El domo #18 que petrográficamente se formó durante el ciclo Q-1, geoquímicamente se formó entre los ciclos Q-2 y Q-3.

El domo #5 que petrográficamente se formó durante el ciclo Q-2, geoquímicamente se formó durante el ciclo Q-3. El domo #9 que petrográficamente se formó durante el ciclo Q-1, geoquímicamente se formó durante el ciclo Q-3. Finalmente los domos #6 y #14 que petrográficamente se formaron durante el ciclo Q-2, geoquímicamente se formaron durante el

En base a lo expuesto anteriormente, el presente estudio considera que la correlación petrográfica entre los domos y la estratigrafía es la correcta, ya que se dispuso de una información completa y los resultados que arrojó fueron coherentes; mientras que la información de la correlación geoquímica se enlaza muy poco con la información dada por la correlación estratigráfica. Además, luego del procesamiento de los datos geoquímicos, únicamente los ploteos K₂O vs SiO₂ y Rb vs SiO₂ indicaron la presencia de una secuencia de diferenciación para las pómez de las tefras, mientras que en los ploteos FeO vs SiO₂, MgO vs SiO₂, CaO vs SiO₂ y Na₂O vs SiO₂ (no presentados en este trabajo), no se presentan dichas secuencias, reflejando posiblemente la influencia que han tenido las alteraciones en estas litologías para estos elementos, por lo cual la concentración de dichos elementos ha variado.

* <u>CAPÍTULO V</u>

CONCLUSIONES Y REFERENCIAS

5.1 CONCLUSIONES

- Para el presente trabajo se recolectaron 22 muestras de los domos del volcán, de las cuales en su mayoría macroscópicamente son dacitas y pocas andesitas. Dichas muestras contienen una asociación mineral típica, conformada por plagioclasa, hornblenda, biotita y cuarzo, y en pocas ocasiones el cuarzo o la biotita o la hornblenda no se presenta. Adicionalmente, dicha paragénesis en ocasiones está acompañada por piroxeno. Finalmente, macroscópicamente no se aprecian minerales opacos debido a su pequeño tamaño, pero su presencia se confirmó con el análisis microscópico.
- Macroscópicamente, la totalidad de estas rocas presenta una textura porfirítica y sus matrices son de color gris claro, gris moderado y rosado claro. La plagioclasa es el mineral de mayor tamaño de la paragénesis; además, la matriz representa el mayor porcentaje de la roca (>40%), siendo seguida por el porcentaje de plagioclasa (~30%).
- Para este estudio se analizaron un total de 24 láminas delgadas que son mayoritariamente dacitas y menormente andesitas. Estás láminas en su mayoría, son de estructura vesicular y desordenada, y su textura es porfirítica seriada; y la textura de la matriz es intergranular o microcristalina y poikilítica.
- Microscópicamente, todas las láminas estudiadas presentan una paragénesis formada por plagioclasa – hornblenda – biotita – cuarzo, la que siempre está acompañada por minerales opacos, algunas veces lo hace el ortopiroxeno, en menores ocasiones ambos tipos de piroxeno y rara vez el clinopiroxeno.

- Una comparación entre las descripciones macroscópicas y microscópicas de las 22 muestras y de las 24 láminas delgadas disponibles, hizo posible identificar un total de 18 domos en el borde de la caldera del volcán en base a sus descripciones macroscópicas y microscópicas. Al comparar la intensidad de las alteraciones presentes en los minerales y en las matrices de las rocas, esto permitió determinar su orden de aparición aproximado.
- Posteriormente se correlacionó dicho orden de aparición con la estratigrafía del volcán, a través de comparar a los domos con los líticos pertenecientes a los trece ciclos eruptivos (Hall and Mothes, 2008), con lo cual fue posible determinar que de los 18 domos presentes, los domos #1, #12 y #15 se formaron durante el ciclo eruptivo Q 4, el domo #13 se formó durante el ciclo eruptivo Q 4, el domo #13 se formó durante el ciclo eruptivo Q 2 y los domos #2, #4, #8, #9 y #18 se formaron durante el ciclo Q 1.
- La correlación geoquímica efectuada entre los domos y la estratigrafía, en base a las relaciones Rb vs SiO₂ y K₂O vs SiO₂ permitió determinar un mismo orden de aparición de los domos con respecto a la estratigrafía, el cual indica que los domos #2, #7, #10 y #16 tienen una edad cercana al ciclo Q-1, el domo #18 presenta una edad entre el ciclo Q-2 y Q-3, los domos #5 y #9 presentan una edad cercana al ciclo Q-4.
- Geoquímicamente en el diagrama K₂O vs SiO₂ (Arc rock types), todos los domos y las muestras de los ciclos eruptivos de Q 1 a QS 12, caen en el campo de las dacitas y en el campo de las series calcoalcalinas. Mientras que las 3 muestras del ciclo QS 13 caen en el campo de las riolitas, y en la proyección de los campos de las series calcoalcalinas y de las series calcoalcalinas de alto K.
- Adicionalmente, en el gráfico (Na₂O+K₂O) vs SiO₂, todos los domos y las muestras de los ciclos eruptivos de Q – 1 a QS – 12 caen en el campo de las dacitas; mientras que las 3 muestras del ciclo QS – 13, caen en el campo de las riolitas.

- El orden de formación de los domos obtenido petrográficamente, no se corresponde con el orden resultante del análisis morfológico. El presente trabajo considera a la secuencia de aparición de domos de la correlación estratigráfica como la secuencia correcta, ya que la información morfológica indica que la erosión ha actuado de manera diferente en los domos, modificando sus formas y provocando que algunos de los domos petrográficamente más jóvenes sean morfológicamente más viejos.
- La comparación entre la correlación estratigráfica y geoquímica muestra que el domo #2 que petrográficamente se formó en el ciclo Q-1, químicamente se formó durante el mismo ciclo o poco tiempo después del mismo. Los domos # 7, #10 y #16 que petrográficamente se formaron durante el ciclo Q-2, geoquímicamente se formaron durante el ciclo Q-1 o poco tiempo después del mismo. El domo #18 que petrográficamente se formó durante el ciclo Q-1, geoquímicamente se formó entre los ciclos Q-2 y Q-3. Además, el domo #5 que petrográficamente se formó durante el ciclo Q-2, químicamente se formó durante el ciclo Q-3. El domo #9 que petrográficamente se formó durante el ciclo Q-3. Finalmente los domos #6 y #14 que petrográficamente se formaron durante el ciclo Q-4.
- El presente estudio considera que la correlación petrográfica entre los domos y la estratigrafía es la correcta, ya que se dispuso de una información completa y los resultados que arrojó fueron coherentes; mientras que la información de la correlación geoquímica se enlaza muy poco con la información de la correlación estratigráfica. Además, luego del procesamiento de los datos químicos, únicamente los ploteos K₂O vs SiO₂ y Rb vs SiO₂ indicaron la presencia de una secuencia de diferenciación para las tefras, mientras que en los ploteos FeO vs SiO₂, MgO vs SiO₂, CaO vs SiO₂ y Na₂O vs SiO₂ (no indicados en este trabajo), no se presentan dichas secuencias, reflejando posiblemente la influencia que han tenido las alteraciones en estas litologías para estos elementos, por lo cual la concentración de dichos elementos ha variado.

- A pesar que existen grandes fallas y estructuras en la zona, la distribución de los domos no corresponde a estas estructuras. Más bien la distribución de los domos, en forma circular, sugiere que el magma siguió fracturas circulares de la caldera, producidas por movimiento vertical debido a inflación y deflación de la estructura.
- Después de un estudio detallado de las condiciones de cristalización del magma de la dacita erupcionada en 1280 dC (Stewart et al., in press), los autores sugieren lo siguiente: profundidad ~ 7.5 Km, presión litostática ~ 240 ± 64 MPa, temperatura ~ 785-800 °C, y finalmente H₂O ~ 6.2 ± 1.2 wt%.

5.2 REFERENCIAS

Aguilera, E., Chiodini, G., Cioni, R., Guidi, M., Marini, L., Raco, B. (2000). Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards. Journal of Volcanology and Geothermal Research 97, 271–285.

Alvarado, A., 2012. Néotectonique el cinématique de la déformation continentale en Equateur. Tesis de Doctorado, Université de Grenoble, Grenoble, Francia, pp. 259.

Aspden, J., & Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. *Tectonophysics, 205*, 187–204.

Barba, D. (2003). Los Glaciares del Volcán Chimborazo (6310 m.s.n.m.).

Barba, D., Samaniego, P., Eissen, J.-P., Robin, C., Fornari, M., Cotten, J., & Beate, B. (2005). Geology and Structure of the late Pleistocene to Holocene Chimborazo Stratovolcano (Ecuador). Extended abstracts of the 6th ISAG: 90-93. Barcelona – España.

Ball, P., 2015. Geochemical Analysis of Ecuadorian Back-Arc Lavas. Tesis de Maestría, University of Oxford, Oxford, Inglaterra, pp. 80.

Bryant, J.A., Yogodzinski, G.M., Hall, M.L., Lewicki, J.L. & Bailey, D.G. (2006). Geochemical Constraints on the Origin of Volcanic Rocks from the Andean Northern Volcanic Zone, Ecuador. Journal of Petrology.

Bourdon, E., Eissem, J.-P., Gutscher, M.-A., Monzier, M., Samaniego, P., Robin, C., Bollinger, C. & Cotten, J. (2002). Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites, from Pichincha volcano (Ecuador). Bulletin de la Societé Géologique de France 173, 195-206.

Di Muro et al. (2008). Transport and sedimentation dynamics of transitional explosive eruption columns: The example of the 800 BP Quilotoa plinian eruption (Ecuador). Journal of Volcanology and Geothermal Research 174, 307-324.

Fink, J., Anderson, S. (2000). Lava Domes and Coulees. Encyclopedia of Volcanoes, 307-319.

Geotermica Italiana (1989), Mitigación del riesgo volcánico en el area metropolitana de Quito, Informe final. 2 Vol.

Hall, M.L., Ramón, P., 1978. Estudio microsísmico del valle interandino entre Latacunga y Guayllabamba. Dirección Nacional de Defensa Civil, Quito, Ecuador, p. 29.

Hall, M., Mothes, P., 1997. Chacana Caldera — the largest rhyolitic eruptive center in the northern Andes. Abs. Memorias IAVCEI Mtg, México, p. 14.

Hall, M.L., Mothes, P. (2008). Quilotoa volcano — Ecuador: An overview of young dacitic volcanism in a lake-filled caldera. Journal of Volcanology and Geothermal Research 176, 44-55.

Hidalgo, S., 2001. Estudio geovolcanológico del complejo volcánico Iliniza. Tesis de Grado, Escuela Politécnica Nacional, Quito, Ecuador, pp. 85.

Hidalgo, S., 2002. Géochimie du complexe volcanique des Iliniza: pétrogenèse de séries à affinité adakitique de l'arc équatorien. DEA Report. Université Blaise Pascal, Clermont-Ferrand, p. 50.

Hidalgo, S., Monzier, M., Fornari, M., Hall, M., Chazot, G., Eissen, J-P., Almeida, E., 2006. New Chronological data for the Atacazo-Ninahuilca volcanic complex (Ecuador). Poster.

Hidalgo, S., Monzier, M., Martin, H., Chazot, G., Eissen, J.P., Cotton, J., 2007. Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). Journal of Volcanology and Geothermal Research 159, 366-392.

Hidalgo, S., Monzier, M., Martin, H., Cotton, J., Fornari, M., Chazot, G., Eissen, J-P., 2008c. New Geochemical and Geochronological data for the Atacazo-Ninahuilca Volcanic Complex (Ecuador). Poster

Hoffer, G., Eissen, J.P., Beate, B., Bourdon, E., Fornari, M., Cotten, J., 2008. Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: the Puyo cones and Mera lavas volcanic formations. J. Volcanol. Geotherm. Res. 176, 107–118 (this issue).

Hojas Sigchos y Pilalo tomadas de Instituto Geográfico Militar, 2013, Base escala 1:50.000.

Hughes, R.A., 1998 — Mapa geológico de la cordillera occidental del Ecuador entre 0°–1°S. BGS-CODIGEM ed., Quito, Ecuador, 1/200 000.

Hughes, R, Bermudez, R. & Espinel, G. (1998). Mapa Geológico de la Cordillera Occidental del Ecuador entre 0° y 1°S escala 1:200.000. PRODEMINCA – MEM/CODIGEM – BGS. Quito, Ecuador. Hughes, R.A., Pilatasig, L.F., 2002. Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador. Tectonophysics 345, 29–48.

Jaillard, E., Ordoñez, M., Suarez, J., Toro, J., Iza, D., & Lugo, W. (2004). Stratigraphy of the late Cretaceous–Paleogene deposits of the Cordillera Occidental of central Ecuador: geodynamic implications. *Journal of South American Earth Sciences*, *17*, 49–58.

McCourt W J, Duque P, Pilatasig L & Villagómez R (1997). Geology of the Cordillera Occidental of Ecuador between 1° & 2°S. Reporte N° 3, CODIGEM-BGS.

Mothes, P., Hall, M.L. (2008). The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes. Journal of Volcanology and Geothermal Research 176, 56-69.

Robles, A., 2013. Estudio de Depósitos Volcánicos del Cuaternario en la Zona Sur del Distrito Metropolitano de Quito. Tesis de Grado, Escuela Politécnica Nacional, Quito, Ecuador, pp. 306.

Riggs, N.R., Carrasco-Núñez, G. (2004) Evolution of a complex, isolated dome system, Cerro Pizarro, central México. Bull Volcanol 66:322–335.

Samaniego, P., Robin, C., Monzier, M., Mothes, P., Beate, B., García, A. (2006). Guagua Pichincha Volcano Holoceno and Late Pleistocene Activity. Fourth Conference Cities on Volcanoes IAVCEI Quito-Ecuador.

Samaniego, P., Barba, D., Robin, C., Fornani, M., Bernard, B. (2012). Eruptive history of Chimborazo volcano (Ecuador): A Large, ice-capped and hazardous compound volcano in the Northern Andes. Journal of Volcanology and Geothermal Research 221-222, 33-51.

Siebert L, Carrasco-Nuñez G (2002) Late-Pleistocene to precolumbian behind-thearc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards. JVolcanolGeotherm Res 115:179–205.

Soulas, J.-P., Egüez, A., Yepes, H., Pérez, V.H., 1991. Tectónica activa y riesgo sísmico en los Andes ecuatorianos y el extremo sur de Colombia. Bol. Geol. Ecuatoriano 2, 3–11.

Stewart, A.M. and Castro, J (in press). P-T-X Evolution of the 1280 AD Quilotoa Dacite. Journal of Volcanology and Geothermal Research.

Tilling, R.I., Beate, B. (1993). Los Peligros Volcánicos. Los Peligros Volcánicos, 9-24.

Williams, H., & McBirney, A. R. (1979). Volcanology. San Francisco: Freeman, Cooper & Co.

http://www.econativaturismo.com/web/images/MAPAS%20ECUADOR/Mapa_Coto paxi_Ecuador.jpg

ANEXOS

# Domo	Coordenadas UTM	# Miloch	hehini #	Tovtura	Fetnich	Minoralonía /	Matriz	Colorytomo	Tamaño de Cristales (longitud ancho v máv lond)	Forma da Cristalas	Porcentaie en la Roca	Fracturado o Cizallado	Altaracionae (tino / nivel)
	X Y Z(I	(m							(Bio your Counting to making) counting on a multi-				
			Domo	Porfitica	Masiva	Plagioclasa	×	Gris claro cremoso	5 mm, 5 mm, 10 mm	Rectangulares y cuadrados	26%	No presenta	No presenta
			Descenso de la cuchilla hacia el NE			Arribol	×	Negro	2 mm, 1 mm, 3 mm	Rectangulares y alargados	2%	No presenta	No presenta
	100 Thranno anort	- C - C +				Biotita	\times	Negra a café oscura	0.5 mm, 0.5 mm, 0.5 mm	Rectangulares	*	No presenta	Oxidación moderada
-	00 220066 000001	÷				Cuarzo	×	hcobro	1 mm, 1 mm, 2.5 mm	Redondeados	2%	No presenta	No presenta
					ļ	Otros							
						MATRIZ	Х	Gris claro			70%	Presenta ligero fracturamiento	Desvitrificación leve
			Domo gris claro	Portitica	Masiva	Plagioclasa	~	Gris claro	3 mm, 3 mm, 9.5 mm	Rectangulares y alargados	23%	No presenta	No presenta
					ļ	Arribol	×	Negro	2 mm, 1 mm, 4 mm	Alargados y rectangulares	4%	No presenta	No presenta
•		5			ļ	Biotita	\times	Negra	2 mm, 1 mm, 2 mm	Alargados	1%	No presenta	No presenta
7	133400 33003/0 30	R7 07			ļ	Cuarzo	\times	hcoloros	2 mm, 1 mm, 3 mm	Redondeados	2%	No presenta	No presenta
					ļ	Otros							
						MATRIZ	×	Gris clara			70%	No presenta	No presenta
			Domo	Pontitica	Masiva	Plagioclasa	×	De blanco mayoritariamente a gris claro	4,5 mm, 4 mm, 9 mm	Rectangulares	39%	No presenta	No presenta
			Bloques de rocas con minerales blan-			Arrfbol	×	Negro	1 mm, 0,5 mm, 2 mm	Rectangulares y cuadrados	1%	No presenta	No presenta
•	100 0200000 000002	20	cos alineados y bloques cubiertos por		ļ	Biotita	~	Café oscuro	1 mm, 0,5 mm, 2 mm	Rectangulares y xehagonales	2%	No presenta	Oxidación moderada
°	100000 8800010 000	27	suelo		ļ	Cuarzo	×	hcobro a gris claro	1 mm, 1 mm, 1.5 mm	Redondeados	1%	No presenta	No presenta
			Esta roca presenta sus minerales alinea-			Otros							
			dos.			MATRIZ	X	Gris moderado a oscuro			57%	No presenta	No presenta
			Domo Gris	Portitica	Masiva	Plagioclasa	×	Gris claro	4.5 mm, 3 mm, 9.5 mm	Rectangulares y cuadrados	40%	No presenta	No presenta
						Anfbol	\times	Negro	1.5 mm, 1.5 mm, 4 mm	Rectangulares, alargados y hexagonales	5%	No presenta	No presenta
-	707547 0006472 201	00 20				Biotita							
*	1 32312 3300 123 300	20				Cuarzo	×	hcoloros	3 mm, 3 mm, 5 mm	Redondeados	4%	No presenta	No presenta
						Otros							
						MATRIZ	~	Gris clara			51%	No presenta	No presenta
			Domo	Porfitica	Masiva	Plagioclasa	~	Gris claro	5 mm, 5 mm, 10 mm	Alargados y rectangulares	40%	No presenta	No presenta
			Domo conformado por rocas de		ļ	Arribol	×	Negro	3 mm, 1.5 mm, 3.5 mm	Alargados y rectangulares	4%	No presenta	No presenta
	700050 00005071 070	5	matriz gris.		ļ	Biotita	\times	Café oscuro	2 mm, 1.5 mm, 3.5 mm	Alargados y hexagonales	1%	No presenta	Oxidación leve
0	1.22000 8900014 37.	77			ļ	Cuarzo	\times	hoobro	1.5 mm, 1.5 mm, 3.5 mm	Redondeados	2%	No presenta	No presenta
					ļ	Otros							
						MATRIZ	X	Gris claro			53%	No presenta	Desvitrificación leve
			Domo rojizo orientado	Ponfitica	Masiva	Plagioclasa	×	Blanco	7 mm, 3 mm, 16.5 mm	Alargados, rectangulares	37%	No presenta	Caolinitización leve
			Esta roca presenta sus minerales			Arritbol							
u	72.7770 00015000 201	72	alneados.			Biotita							
Þ	oc 0000066 017701	07				Cuarzo	×	Incoloro	0.5 mm, 0.5 mm, 0.5 mm	Redondeados	1%	No presenta	No presenta
						Otros							
						MATRIZ	\times	Rosada clara			62%	No presenta	Desvitrificación moderada
			Domo	Porfitica	Masiva	Plagioclasa	×	Gris claro	7 mm, 3 mm, 12 mm	Rectangulares y alargados	48%	No presenta	No presenta
			Domo al W de la Laguna, el cual está			Arrfbol	×	Negro	3 mm, 5 mm	Alargados y rectangulares	2%	No presenta	No presenta
7	731602 0005353 301	10	debajo de estratos inclinados, que			Biotita	\times	Café dorado	1.5 mm, 1 mm, 3 mm	Hexagonales	1%	No presenta	Oxidación avanzada
-	7000000 700101	-	posiblemente se inclinaron debido al			Cuarzo	×	hcoloro	3.5 mm, 2 mm, 4 mm	Redondeados	4%	No presenta	No presenta
			emplazamiento de este Domo.			Otros	~	Negro (Piroxeno)	2.5 mm, 1.5 mm, 4.5 mm	Alargados y cuadrados	\$	No presenta	No presenta
			Con inclusiones de biotita bien oxidada.			MATRIZ	×	Café rosado			44%	No presenta	Desvitrificación leve

ANEXO 1: DESCRIPCIÓN MACROSCÓPICA DE LOS DOMOS Y DE LOS LÍTICOS DE LA ESTRATIGRAFÍA

# Domo	Coorden	adas UTM	# Muestra	# Unidad	Textura	Estructura	Mineralogía	/ Matriz	Colory tono	Tamaño de Cristales (longitud, ancho y máx long)	Forma de Cristales	Porcentaje en la Roca	Fracturado o Cizallado	Alteraciones (tipo / nivel)
	~	(m) 2 Y						Ť		•				
				Domo de la Laguna	Porfiritica A	Masiva	Plagioclasa	<u>></u>	Bris claro	5 mm, 2 mm, 18 mm	Alargados, prismáticos	10%	No presenta	No presenta
				Domo de la Laguna / Secuencia de			Anfibol	×	legro	2 mm, 2 mm, 4 mm	Hexagonales	1%	No presenta	No presenta
	727660 001	DAERE 257A	Ŧ	Caídas cerca a la renta de botes en el			Biotta	×	legro	2 mm, 2 mm, 3 mm	Hexagonales	2%	No presenta	No presenta
	1 22 2001 33	4700 00040	-	borde de la laguna. (Domo de roca			Cuarzo	×	roloro	5 mm, 3 mm, 6 mm	Redondeados	3%	No presenta	No presenta
				dura y de edad / piso estratigráfico			Otros	~	Bris oscuro (Piroxeno)	3 mm, 1 mm, 5 mm	Rectangulares, alargados y fibrosos	7%	No presenta	Oxidación y Epidofización leves
-				desconocido dentro de la caldera).			MATRIZ	×	Bris claro			77%	No presenta	No presenta
2				Domo de la Laguna	Porfiritica N	Asiva	Plagioclasa	~	Bris claro a blanco	5 mm, 5 mm, 10 mm	Prismáticos, alargados y rectangulares	6%	No presenta	No presenta
							Anfibol	×	legro verdoso	3 mm, 2 mm, 3 mm	Rómbicos y hexagonales	2%	No presenta	Epidotización moderada
	727660 001	DAERE 257A	ç				Biotita	×	legro	1 mm, 1 mm, 1.5 mm	Hexagonales	1%	No presenta	Oxidación leve
	1 22 2001 33	+700 000+0	7				Cuarzo	X	Bris ahumado	2 mm, 1 mm, 3 mm	Redondeados	1%	No presenta	No presenta
							Otros	×	Bris oscuro (Piroxeno)	2 mm, 1 mm, 4 mm	Alargados, tabulares	3%	No presenta	Epidotización leve
							MATRIZ	×	Bris claro			87%	No presenta	Desvitrificación leve
				Domo	Porfiritica N	Masiva	Plagioclasa	X	bris clara a blanca	8 mm, 5 mm, 13 mm	Prismáticos, rectangulares	22%	No presenta	No presenta
							Arrfibol	~	legro	2 mm, 1 mm, 5 mm	Alargados, tabulares	4%	No presenta	No presenta
ę	733010 001	04166 3530	~				Biotita	×	legro a caté oscuro	2 mm, 1 mm, 3 mm	Escamas hexagonales	1%	No presenta	Oxidación avanzada
2			2				Cuarzo	×	ncoloro a gris claro	1 mm, 1 mm, 2 mm	Redondeados	1%	No presenta	No presenta
							Otros	~	Bris oscuro (Piroxeno)	3 mm, 1 mm, 5 mm	Alargados Prismáticos	1%	No presenta	Epidotización leve
							MATRIZ	<u>)</u> ×	bris moderada			71%	No presenta	No presenta
				Domo Gris	Porfitica N	Masiva	Plagioclasa) X	Bris clara con tono verdoso	4 mm, 4 mm, 15.5 mm	Alargados, rectangulares y cuadrados	43%	No presenta	No presenta
							Anfibol	×	legro	3 mm, 2.5 mm, 7 mm	Rectangulares y cuadrados	3%	No presenta	No presenta
Ę	100 220002	00200	¥6				Biotita	×	legro a caté oscuro dorado	2.5 mm, 2.5 mm, 4 mm	Hexagonales	5%	No presenta	Oxidación leve
=	1.33211 33	-	47				Cuarzo	×	roloro	4 mm, 3.5 mm, 4 mm	Redondeados	2%	No presenta	No presenta
							Otras							
							MATRZ	X	kosada clara			47%	No presenta	Desvitrificación moderada
				Domo	Porfitica N	Masiva	Plagioclasa) X	Bris claro	4.5 mm, 4 mm, 12.5 mm	Alargados, rectangulares	40%	No presenta	No presenta
							Anfibol	×	legro	3 mm, 1.5 mm, 3.5 mm	Alargados	3%	No presenta	No presenta
ţ	73/15.80 00/	03185 3600	4				Biofita) ×	Café dorado	3 mm, 2 mm, 6 mm	Hexagonales	2%	No presenta	Oxidación avanzada
2	1 000 000	000 0000	2				Cuarzo							
							Otros	~	kegro (Piraxeno)	3 mm, 1.5 mm, 5 mm	Alargados, rectangulares	3%	No presenta	No presenta
		_					MATRZ	~	kosada gris			52%	No presenta	No presenta
				Domo	Porfitica N	Masiva	Plagioclasa	×	Bris claro	5 mm, 3 mm, 10 mm	Alargados y rectangulares	4%	No presenta	Caolinitización moderada
				Domo al SE de la Caldera, al Surde			Anfibol	~	legro	2.5 mm, 2 mm, 5.5 mm	Alargados	3%	No presenta	No presenta
ţ	735030 001	03815 3EAE	4	la Q. Fucungo.			Biotita	×	legro	2 mm, 1 mm, 2.5 mm	Alargados y hexagonales	2%	No presenta	No presenta
2	00 070000 1		2				Cuarzo	\times	ncoloro con un tono amarillo	2.5 mm, 2 mm, 7 mm	Redondeados	3%	No presenta	No presenta
							Otros							
							MATRZ	~	Bris oscuro			88%	No presenta	Oxidación de leve a moderada

# Domo	Coordenadas	UTM # Mile	#IInidad	Tovtura	Fetructurs	Minoraloría / h	Antriz	Colorytono	Tamaño de Cristales (longitud ancho y máx long)	Forma de Crietalee	Dorcentaie en la Poca	Fracturado o Cizallado	Alteraciones (tino / nivel)
	X X	Z (m) Z				- miRomonia -	4. 11						line in a day on incomment
_			Domo rojizo fracturado	Porfitica	Masiva	Plagioclasa	X Grisclaro		5 mm, 3.5 mm, 15 mm	Rectangulares, cuadrados	40%	No presenta	No presenta
			Presenta inclusiones de biotita oxidada			Anfibol	X Negro		2 mm, 1.5 mm, 4 mm	Rectangulares, cuadrados	3%	No presenta	No presenta
_			 Presenta un xenolito intrusivo que contie- 			Biotta	X Café dorau	do	2 mm, 1,5 mm, 4,5 mm	Hexagonales v alargados	1%	No presenta	Oxidación Avanzada
	13441/ 990420.	3 3800 24	ne cuarzo y minerales Fe-Mg de color			Cuarzo	X Incoloro		2.5 mm, 1.5 mm, 7 mm	Redondeados	2%	No presenta	No presenta
			negro			Otros							
						MATRIZ	X Rosada ck	ara			54%	No presenta	Desvitrificación moderada
_			Domo	Porfitica	Masiva	Plagioclasa	X Grisclaro		6 mm, 5 mm, 19 mm	Alargados y rectangulares	45%	No presenta	No presenta
						Anfibol	X Negro		2.5 mm, 1 mm, 3 mm	Alargados	2%	No presenta	No presenta
46	FUCFUUU LEAFOL	20 2100 1				Biotta	X Café dorac	do	2 mm, 1 mm, 3 mm	Hexagonales	2%	No presenta	Oxidación avanzada
2	10404/ 330402	101 80 4				Cuarzo	X Incoloro		2.5 mm, 2 mm, 5.5 mm	Redondeados	2%	No presenta	No presenta
_						Otros							
_					ļ	MATRIZ	X Rosada ck	ara			49%	No presenta	Desvitrificación moderada
_			Domo rosado claro	Porfitica	Masiva	Plaqioclasa	X Grisclaro		4.5 mm.4 mm. 12.5 mm	Rectangulares v alargados	29%	No presenta	No presenta
_						Anfibol	X Café rojizo	(4.5 mm, 3 mm, 1 mm	Alargados	3%	No presenta	Oxidación moderada
						Biotta	X Café dorac	do	2 mm. 1.5 mm. 4 mm	Hexaconales	2%	No presenta	Oxidación Avanzada
	/346/1 990446/	0 3808 27				Cuarzo	X Incoloro		4 mm. 1.5 mm. 5.5 mm	Redondeados	3%	No presenta	No presenta
					ļ	Otros							
						MATRIZ	X Rosada da	313			63%	No nresenta	Desvitrificación leve
			Domo oris claro	Porfitica	Masiva	Planinclasa	X Grisclaro		5 mm 4 mm 12 5 mm	Rectannilares v cuadrados	45%	No nresenta	No nresenta
_					DAIODAD	Anthol	V Mooro		2 mm 1 mm 4 mm	Abrandoe v hovaconsho	2017	Alo procorto	No procenta
						Rinfita	v likedio		Z 11111, 1 11111, 4 11111	Haliyauus y nexayonales	e. ,	IND DIESEIILE	IND DIGSEIIIA
16	734669 990454	5 3901 26	8			Ciarzo	X Inchind		25 mm 15 mm 7 mm	Retinuleache	F %	Nn nracanta	Nn nrecenta
_						Office			11111 7 11111 C 1 11111 C 7	Ixenolineacos	877		
					-	MATRIZ	X Grisclaro				43%	No presenta	Desvitrificación leve-moderada
			- mol	Dorfition	Machia	Diarinclara	Y Crie claro	a hiann	mm 10 mm 1 mm 3	Alarcados y radancularas	2007	No presenta	No presente
			Domo grande al Este de la Caldera			Anthol	V Caté marde		2 mm 2 mm 4 mm	Alarcados y revenigueres	200	No presenta	Ovidenia Avidenia
_			DUIN GIAING ALLAGUGA CANGIA,	-		Diath		a	2 1 1 1 1 2		10,0	Alapoonda	
_	735020 9903815	5 3545 17				BIOUR	X Cale cold	03	1 mm, 1 mm, 4 mm	nexagoriales	e/1	NO DIESEIIIA	
_						Cuarzo	X Incoloro		2 mm, 1.5 mm, 4 mm	Kedondeados	3%	No presenta	No presenta
						Otros	X Negro (Pir	roxeno)	1 mm, 1 mm, 2 mm	Alargados y cuadrados	2%	No presenta	No presenta
						MATRE	X Café rosa	da			41%	No presenta	No presenta
			Domo	Porfitica	Masiva	Plagioclasa	X Grisclaro		4.5 mm, 3 mm, 14 mm	Rectangulares y alargados.	40%	No presenta	No presenta
_						Anfibol	X Negro		2.5 mm 2 mm, 7 mm	Rectangulares y alargados.	8%	No presenta	No presenta
	734553 0005117	7 _ 34				Biotta	X Negro		2 mm, 1.5 mm, 2.5 mm	Rectangulares y hexagonales	2%	No presenta	No presenta
	2000					Cuarzo	X Incoloro		1 mm, 1 mm, 6 mm	Redondeados	5%	No presenta	No presenta
_						Otros							
10						MATRZ	X Gris claro				45%	No presenta	No presenta
2			Domo	Porfitica	Masiva	Plagioclasa	X Grisclaro		4.5 mm, 2.5 mm, 9.5 mm	Rectangulares, alargados y cuadrados	25%	No presenta	No presenta
			Roca gris crema			Anfibol	X Negro		2 mm, 1.5 mm, 7 mm	Rectangulares y cuadrados	5%	No presenta	No presenta
	734143 0006017	7 2820 23				Biotta	X Negro		1 mm, 1 mm, 2.5 mm	Rectangulares	1%	No presenta	No presenta
_	00000 041401		7			Cuarzo	X Incoloro a	gris claro	1 mm, 1 mm, 3 mm	Redondeados	5%	No presenta	No presenta
_						Otros							
						MATRZ	X Gris claro.	a moderado			64%	No presenta	No presenta
_			Domo	Portitica	Masiva	Plagioclasa	X Grisclaro		5.5 mm, 4 mm, 11 mm	Rectangulares y alargados	21%	No presenta	No presenta
_			Roca gris			Anfibol	X Negro		2 mm, 1.5 mm, 4 mm	Rectangulares, cuadrados y alargados	3%	No presenta	No presenta
	733057 0006145	5 3850 33	~			Biotta	X Negro		2 mm, 2 mm, 2 mm	Rectangulares	1%	No presenta	No presenta
	1 22321 3300 14	0.000 0	2			Cuarzo	X Incoloro a j	gris claro	2.5 mm, 1.5 mm, 3 mm	Redondeados	8%	No presenta	No presenta
						Otros							
						MATRZ	X Gris claro,	a moderado			67%	No presenta	No presenta
			Colapso de Domo	Portitica	Masiva	Plagioclasa	X Grisclaro		7 mm, 5 mm, 13 mm	Alargados, rectangulares	35%	No presenta	No presenta
						Anfibol	X Negro		5 mm, 4 mm, 8 mm	Alargados, rectangulares, cuadrados	12%	No presenta	No presenta
	1100000	2 2 2 2 2 2 2				Biotta	X Negro		3 mm, 2,5 mm, 1 mm	Hexagonales	1%	No presenta	No presenta
	1 70000 001 70 1	1 3000			ļļ	Cuarzo	X Grisclaro		4 mm, 3 mm 6 mm	Redondeados	2%	No presenta	No presenta
						Otros	X Negro (Pir	roxeno)	3 mm, 2 mm 3 mm	Alargados	1%	No presenta	No presenta
						MATRZ	X Gris claro				49%	No presenta	No nresenta

ANEXO 2: DESCRIPCIÓN MICROSCÓPICA DE LOS DOMOS

DOMO 2.

Muestra	СР 29											
Textura	Porfirítica Ser	iada,	Inter	rserta	al, Cri	ptoc	ristal	ina y	Poik	ilítica	a.	
Estructura	Vesicular y de	sord	enad	la								
Fenocristal es	% Total de Fenocristales : 89%			Cara	acter	ística	s de	los F	enoc	crista	les	
Plagioclasa	63%	Crist de bi zona plagi halla dura	ales rrefr dos, ocla n pa nte la	de su inger pres sa, a rcialn a elat	ubheo ncia k entar vece nente porac	drales baja, o n incl s se l e des ión d	s a ei estár usior halla prend le la l	uhed n más nes d n roto didos ámin	rales s mac e opa os y e s, lo c a.	, inco lado: acos en oc cual s	oloros s que y asion e pro	s, son e nes se odujo
Hornblenda	6%	Crist son o anfíb vece	ales de bi ool e s gol	subh rrefri inclu lfos d	edra ngen sione le res	les, p cia m es de sorció	leoci ioder opac ón y c	roico ada, cos, p cavid	s (ca pres plagio ades	fé cla entar oclas inter	aro a n cliva a y bi mas.	rojizo), aje de iotita, a
Cuarzo	Cristales anhedrales, incoloros, son de birrefringencia baja, a veces se presentan rotos, contienen inclusiones 11% de opacos y en ocasiones golfos de resorción. Además algunos cristales se hallan parcialmente desprendidos, lo cual se produjo durante la elaboración de la lámina.											
Opacos	4%	Crist inclu reso	ales sion rción	subh es de 1.	edra plag	les de jiocla	e col sa y	or ne en o	gro, casio	prese ones (entan golfo	s de
Biotita	4%	Esca mode cavic inclu reso	mas erado lade: sion rción	alarg o), so s inte es de	jadas on de ernas e opa	s, pleo birre en oo cos y	ocroi frige casic plag	cas (ncia a ones, jiocla	café alta; ader Isa, y	claro prese nás d golfe	a entan le os de	•

Clinopiroxe no	1%	Crista oscu cerca opac	ales ro), s ana a sos.	subh son d a los 4	iedral le biri 45 gra	les, p refrin ados	leoc genc y co	roico tia alf ntien	s (ca ta, pr en in	fé cla esen ⁻ clusi	iro a tan e ones	café xtinción de
Matriz	% Total de Matriz: 10%				Cara	cterí	stica	s de l	la Ma	triz		
					Car	acter	ístic	as de	l Vid	rio		
Vidrio	10%	Es ur oscu	na m ro	asa a	morf	a de	un co	olor g	yris n	nodei	rado :	а
Poros	% Total de Poros: 1%											
Nombre de la Roca	Dacita											
Observacio	nes Generales	<u> </u>		<u> </u>	I		I	I	I	I	1	I
Los cristale	s de cuarzo, bi	iotita,	ора	cos y	/ hori	nblen	ida p	reser	ntan g	golfo	s de	

Figura 1. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 29.

DOMO 4.

Muestra	CP 30											
Textura	Porfirítica Ser	iada,	Inter	gran	ular,	Micro	ocrist	alina	у Ро	ikilíti	ca.	
Estructura	Vesicular y de	sord	enad	а								
Fenocristal es	% Total de Fenocristales : 93%			Cara	acter	istica	is de	los F	enoc	rista	les	
Plagioclasa	65%	Crist birre meno de o caus	ales fring or ca paco ado	incol encia ntida s y se durar	oros, baja d zor e hall ite la	subl , esta ados an ba elabo	hedra án ma s, ade astan oraci	ales, aclad emás te rot ón de	prese os er pres tos, le e la lá	entan n su r entar o cua imina	mayo n incl al en _l a.	ría y en usiones parte fue
Cuarzo	5%	Crist pres inclu	ales entar Ision	incol h birre es de	oros, efrinç opa	anho jenci cos.	edral a baj	es y ı a, go	redor Ifos d	ndeac de rea	dos, acció	n e
Biotita	13%	Esca pleo birre cuar	imas croic fring zo y o	alarg as (ca encia opace	adas afé cl alta, os, ac	, cua aro a golf lemá	drang i café os de s se	gular e mod e reac halla	es y lerad ción n rote	recta o), pi , incl os.	ngula resen usior	ares, tan nes de
Hornblenda	7%	Crist mayo canti cliva plagi	ales oritar idad je de ioclas	pleoc iame macla anfík sa, fir	roico nte e ados, ool, ir nalme	os (ca uhed pres nclus ente p	afé cl rales senta iones posee	aro a , se ł n birr s de c en co	mod nallar refrin opaco rona	lerad n roto genc os, cu s de	o), os y e ia me uarzo reacc	n edia, y eión.
Opacos	2%	Crist Ader	ales nás p	mayc orese	oritari ntan	amei golfo	nte si os de	ubhe reac	drale ción.	s de	color	'negro.
Ortopiroxe no	1%	Crist pleo pres	ales croic entar	euhe os (ca	drale afé cl efrinç	s, ala aro a jenci	argad a café a baj	os y moc a y e	recta lerad xtinc	ingul o), es ión p	ares, stán i arale	rotos, Ia.

Matriz	% Total de Matriz: 0%				Cara	octerí	stica	s de	la Ma	triz		
					Car	acter	rística	as de	l Vid	rio		
Vidrio	0%											
Poros	% Total de Poros: 7%	Algu cuan	nos (Ido s	crista e la e	lles fi laboi	ueror ró	n arra	ncad	os d	e la lá	ámina	à
Nombre de la Roca	Dacita		·									
Observacio	nes Generales	-			-	-			-	-		
La roca se e	encuentra freso	a										

Figura 2. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 30.

DOMO 4.

Muestra	CP 44		
Textura	Porifirítica S	eriada, Criptocristalina e Intergranular	
Estructura	Vesicular y o	desordenada	

Economictal	% Total de	
renocristai	Fenocristal	Características de los Fenocristales
es	es: 97%	
		Son cristales subhedrales y alargados, maclados en su
		mayoría y en menor grado zonados, incoloros, su
		birrefringencia es baja; además en algunos cristales,
Plagioclas	000/	desde adentro del cristal de plagioclasa nace una masa
а	00 /0	amorfa de vidrio con pocos minerales ferromagnesianos
		de color negro, masa de color gris que se extiende hacia
		afuera del cristal, alcanzando tamaños más grandes que el
		cristal de plagioclasa original
		Son escamas alargadas de color café pardo, presentan
Biotita	3%	birrefringencia alta y su textura en ocasiones es
		corrugada. Sin filos de reacción.
		Cristales alargados y hexagonales, subhedrales, son
Hornblend		pleocroicos (pardo a verde oscuro), presentan clivaje de
а	8%	anfíbol, su birrefringencia es moderada, finalmente en
-		ocasiones se presentan maclados y rotos. Sin filos de
		reacción.
Cuarzo	3%	Cristales anhedrales e incoloros de birrefringencia baja.
		Cristales alargados y subhedrales, son pleocroicos (de
Ortopiroxe		café claro a verde moderado), algunos presentan el clivaje
no	1%	de piroxeno, finalmente presentan birrefringencia
		moderada y algunos se hallan maclados. Sin filos de
		reacción.
Opacos	2%	Cristales subhedrales y granulares de color negro. Sin
		filos de reacción.
Matriz	% Total de	Características de la Matriz
	Matriz: 0%	
		Características del Vidrio
Vidrio	0%	

Poros	% Total de		
F0105	Poros: 3%		
Nombre de	Dacita		
la Roca	Dacita		
Observacio	ones General	es	
La roca est	tá fresca.		

Figura 3. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 44.

DOMO 5.

Muestra	CP 42	
Textura	Porfirítica S	Seriada, intergranular, criptocristalina y poikilítica
Estructura	Vesicular y	desordenada
Fenocristal es	% Total de Fenocristal es: 94%	Características de los Fenocristales
Plagioclas a	81%	Cristales subhedrales a anhedrales, incoloros, mayoritariamente maclados y en menor frecuencia zonados, presentan birrefringencia baja, inclusiones de opacos y en sus bordes los cristales presentan caolinitización leve.

		Cristales euhedrales, pleocroicos (café claro a verde												
Hornblend	5 9/	moderado), son de birrefringencia moderada, presentan												
а	5%	clivaje de anfíbol y presentan inclusiones de opacos y												
		plagioclasa.												
		Cristales pleocroicos (café anaranjado a café moderado)	,											
Biotita	3%	de subhedrales a anhedrales, birrefringencia alta,												
	presentan inclusiones de opacos y plagioclasa.													
Opacos	3%	Cristales subhedrales de color negro.												
		Cristales pleocroicos (café claro a verde moderado), son												
Clinopirox	10/	subhedrales, presentan macla espada, birrefringecnia												
eno	170	moderada, extinción paralela y presentan inclusiones de												
		opacos.												
Cuarzo	1%	Cristales anhedrales, incoloros, de birrefringencia baja,												
Guarzo	170	uniaxiales (+) y presenta inclusiones de opacos.												
Matriz	% Total de	Características de la Matriz												
	Matriz: 0%													
		Características del Vidrio												
Vidrio	0%													
Poros	% Total de													
F 01 0 S	Poros: 1%													
Minerales	% Total de													
de	Min de Alt:	Características de los Minerales de Alteración												
Alteración	5%													
		Cristales granulares, se presentan como cristales												
		individuales comúnmente aunque también se presentan en												
Enidota	4%	agregados, pleocroicos (café claro a verde moderado), se	on											
Lpraota		de birrefringencia moderada, su extinción es paralela y												
		son biaxiales (-). Además presentan inclusiones de												
		opacos.												
Agregado	1%	Está conformado por minerales opacos, hornblenda,												
9. 09000	170	epidota y clorita												

Nombre de la Roca	Dacita epido	otizada y caolinitizada
Observacio	nes General	es
Esta roca p	resenta una	epidotización de moderada a avanzada, caolinitización leve
y un agrega	ado conforma	ado por minerales ferromagnesianos.

Figura 4. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 42.

DOMO 5.

Muestra	CP 22												
Textura	Porfíritica Seriada, Intergranular, Criptocristalina y Poikilítica												
Estructura	Vesicular y de	/esicular y desordenada											
Fenocristal es	% Total de Fenocristales : 98%	Características de los Fenocristales											
Plagioclasa	86%	Cris com está de o	tales o agr n rote paco	subh egad os, pr s.	edra os co resen	es, ir omo d tan b	ncolo crista pirrefi	oros, Iles il ringe	se pr ndivio ncia	resen duale baja	tan ta s, a v e incl	anto veces Iusiones	

		Escamas alargadas y subhedrales, pleocroicas (café											
		claro a café oscuro), presentan birrefringencia alta,											
		cavidades internas, inclusiones de opacos y											
Biotita	4% plagioclasa. Pocos cristales posiblemente se están alterando a minerales no identificados de birrefring moderada, pleocroicos (café claro a moderado), qu											tán	
												ingencia	
												que	
		rodean junto con minerales opacos a las biotitas.											
		Cristales de subhedrales a anhedrales de color negro,											
Opacos	3%	presentan inclusiones de plagioclasa, y en ocasiones											
		cavid	lades	s inte	rnas	y/o g	jolfos	s de r	esor	ción.			
		Crist	ales	pleod	croic	os (ca	afé m	uy c	aro a	a moo	derad	o),	
Llowablanda	20/	euhedrales, a veces están rotos, son de birrefringencia											
Fornbienda	3%	moderada, tienen el clivaje de anfíbol, están maclados y											
		contienen inclusiones de opacos y plagioclasa.											
		Cristales incoloros, anhedrales, a veces están rotos y en											
Cuarzo	1%	ocasiones poseen cavidades internas, son de											
		birrefringencia baja y contienen inclusiones de opacos.											
	1%	Cristales subhedrales, pleocroicos (café claro a											
Clinopiroxe		moderado), presentan birrefringencia moderada,											
no		inclusiones de opacos y extinción cercana a los 45											
		grados.											
Motriz	% Total de			1	Cara	otorí	otion	c do		tria	1	1	
iviati iz	Matriz: 0%	Características de la Matriz											
					Car	acter	rística	as de	l Vid	rio			
Vidrio	0%	,											
	% Total de												
Poros	Poros: 1%												
Nombre de													
la Roca	Dacita												
Observacio	nes Generales												

Se presentan dos agregados de minerales conformados por hornblenda, plagioclasa, opacos y biotita. Estos agregados se representan el 1% de la lámina. Finalmente en ocasiones los minerales opacos presentan golfos de resorción

Figura 5. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 22.

DOMO 6.

Muestra	CP 23														
Textura	Porfirítica Seriada. Intersertal, Microcristalina y Poikilítica														
Estructura	Vesicular y de	/esicular y desordenada													
Fenocristal	% Total de														
20	Fenocristales	Garacterísticas de los Fenocristales													
	: 53%														
		Cristales anhedrales, incoloros, presentan													
Cuarzo	1%	birrefringencia baja, son uniaxiales (+), contienen													
		inclusiones de opacos y en su mayoría se hallan rotos.													
		Crist	tales	incol	oros	está	n má	is ma	clad	os qı	ie zor	nados,			
Plagioclasa	39%	% presentan birrefringencia baja, se hallan tanto rotos													
		com	o inta	actos	у со	ntien	en in	clusi	ones	de o	paco	s			
		Crist	tales	de eu	Ihedi	ales	a sul	ohed	rales	, plec	ocroio	cos (café			
Hornblenda	1%	clarc	o a m	odera	ido),	pres	entar	n cliv	aje d	e anf	íbol,				
	birrefringencia moderada, una fuerte oxidación y										/				

		coro	nas o	de rea	acció	n. Ad	lemá	s de i	nclu	sione	es de	opacos	
		y pla	gioc	asa.									
		Cristales de euhedrales a subhedrales, pleocroicos (café											
Clinopiroxe		claro a café rojizo), presentan birrefringencia alta,											
no	1%	extinción cercana a los 45 grados, están fuertemente											
		oxid	ados	y mւ	iestra	an co	rona	s de I	reacc	ión.	Adem	nás	
		presentan inclusiones de opacos.											
		Crist	tales	que	varía	n enti	re un	colo	r cafe	ému	y osc	uro a	
		negro; su forma es mayoritariamente anhedral, aunque											
Minerales	11%	en ci	iertos	s cas	os co	onser	van I	a forr	na de	el mir	neral	original;	
Oxidados		son	isotro	ópico	s, pr	esent	tan c	orona	as de	reac	ción	y en	
		ocasiones goitos de resorción, además de estar											
		completamente oxidados.											
Matriz	% Total de Matriz: 44%				Cara	icterí	stica	s de l	la Ma	triz			
					Car	acter	rístic	as de	l Vid	rio			
Vidrio	44%	Es u	na m	asa a	morf	a de	coloi	r gris	mod	erad	o a ro	jizo	
	% Total de												
Poros	Poros: 3%												
Nombre de													
la Roca	Dacita oxidad	а											
Observacio	nes Generales												
La roca se h	alla bastante o	oxida	da, lo	o cua	l cau	só qı	ue alg	gunos	s de s	sus n	ninera	ales	
originales y	a no se pueda	n dist	tingu	ir.									

Figura 6. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 23.

DOMO 7.

Muestra	CP 21												
Textura	Porfíritica Seriada, Intersertal, Microscristalina y Poikilítica.												
Estructura	Vesicular y de	sord	enad	а									
Fenocristal es	% Total de Fenocristales : 63%	Características de los Fenocristales											
Plagioclasa	37%	Cristales de subhedrales a anhedrales, incoloros, son de birrefringencia baja, se hallan más maclados que zonados, a veces están rotos, presentan inclusiones de opacos y de biotita, y en ocasiones presentan cavidades.											
Hornblenda	12%	Crist clarc cliva ader que cavio simu	tales o a ca ije de nás s en aç dades iltáne	de eu Ifé ro anfíl se pre grega s inte eame	ihedi jizo), ool, ir senta dos y rnas nte.	ales pres nclus an ma y en c com	a sul entai ione: ás co ocasi o gol	ohedi n birr s de c omo c ones fos d	ales, efring pace rista cont e res	pleo genci os y l les ir iener orció	ocroic ia mo biotita ndivid n tant ón, pe	cos (café oderada, a, luales co ero no	
Onacos	Son cristales de subhedrales a anhedrales de color 3% negro y contienen cavidades internas.												
----------------------	---	-------	----------------------------------	--------	----------	--------	--------	----------	----------	----------	--------	----------	
Opacos	J /0	negr	оус	ontie	nen o	avid	ades	inter	nas.				
		Esca	amas	subh	edra	les a	larga	das y	v cua	drang	gulare	es,	
Biotita	6%	pleo	croic	as (c	afé c	aro a	rojiz	20), a	vece	s est	án ro	otas,	
Biotita	070	pres	entar	ı cav	idade	s int	ernas	s e in	clusi	ones	de o	pacos y	
		plag	iocla	sa.									
		Crist	tales	de ar	nhedr	ales	a sub	bhedr	ales,	inco	loros	,	
Cuarzo	4%	pres	entar	h birr	efring	genci	a baj	a, inc	lusio	ones	de op	oacos y	
		en o	casic	nes o	cavid	ades	inter	nas.					
		Crist	tales	subh	edra	es, r	ectan	gula	res, p	oleoc	roico	s (café	
Clinopiroxe	1%	claro	o a ca	fé ro	jizo),	son	de bi	rrefri	ngen	cia m	noder	ada y	
no		de e	xtinc	ión c	ercar	a a lo	os 45	grad	los, f	inalm	nente		
		pres	presentan inclusiones de opacos.										
	% Total de												
Matriz	Matriz: 27%		Características de la Matriz										
					Car	acter	ística	as de	l Vid	rio			
Vidrio	27%	Es u	na m	asa a	morf	a de	color	gris	oscu	iro.			
Poros	% Total de												
-0105	Poros: 10%												
Nombre de la Roca	Dacita												
Observacio	nes Generales	I	1	I	<u> </u>	I	I	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	
Los cristale	s de hornblend	la co	ntien	en go	olfos	de re	sorc	ión					

Figura 7. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 21.

DOMO 9.

Muestra	CP 1											
Textura	Porfíritica Ser	iada,	Inter	gran	ular, I	Micro	ocrist	alina	у Ро	ikilíti	са	
Estructura	Vesicular y de	sord	enad	а								
Fenocristal es	% Total de Fenocristales : 98%			Cara	acter	ística	is de	los F	enoc	rista	les	
Plagioclasa	70%	Cristales incoloros, de anhedrales a subhedrales, están maclados y zonados, están más maclados que zonados, se presentan tanto como cristales individuales así como en agregados, presentan birrefringencia baja e inclusiones de opacos.										
Cuarzo	6%	Cristales anhedrales y redondeados, incoloros, presentan birrefringencia baja, golfos de resorción y cavidades internas, las cuales se hallan rellenas de calcita. Finalmente contienen inclusiones de opacos.										
Opacos	2%	Cristales anhedrales y subhedrales de color negro, 2% además presentan golfos de resorción y cavidades internas ocasionalmente rellenas por calcita.										
Biotita	9%	Cristales subhedrales, alargados y cuadrangulares, 9% pleocroicos (café claro a oscuro), poseen birrefringencia alta, a veces están rotos, contienen golfos de resorción y							es, ngencia orción y			

	cavidades internas que a veces están rellenas por											
		calci	ta, fir	nalme	ente p	orese	ntan	inclu	sion	es de	opac	os y de
		plagi	oclas	sa.								
		Crist	ales	subh	edral	es, c	on fo	rma	y cliv	aje d	e anfi	í bol ,
		son	de un	l colo	or gris	3 OSC	uro d	lebid	o a q	ue pr	esen	tan
Hornblenda	11%	coro	nas d	le rea	icció	n en o	casi t	oda (el áre	a del	mine	əral, no
		pose	e bir	refrin	genc	ia, co	ontier	ne ind	clusio	ones	de op	oacos,
		golfo	os de	reso	rción	y ca	vidad	les re	ellena	IS OC	asion	almente
		por c	alcit	а.								
Matriz	% Total de		<u></u>		Cara	octerí	stica	s de l	la Ma	triz		
Manz	Matriz: 0%											
			Características del Vidrio									
Vidrio	0%											
Doroc	% Total de											
PUIUS	Poros: 1%											
Minerales	% Total: 1%		Ca	racto	ríetic	ae de		Mino	ralas	Acce	eoric)e
Accesorios	/0 I Utai. I /0		Ua	acic	liano	as uu	; 103	VIIIICI	ales	AUUU	50110	15
		Crist	ales	incol	oros,	de a	nhed	rales	a su	bhed	rales	, se
		pres	entar	ı com	io cri	stale	s ind	ividu	ales y	y en a	agreg	ados,
		aden	nás s	on ur	niaxia	iles (·	-) cor	1 anil	los, p	orese	ntan	el
Calcita	1%	cliva	je de	calci	ita e i	nclus	sione	s de	орас	os. F	inalm	iente se
		halla	relle	nand	lo las	cavi	dade	s de a	algun	ios m	ninera	iles y
		tamb	oién s	e hal	la en	entre	e los	feno	crista	iles ta	anto	como
		cristales individuales, así como en agregados.										
Nombre de la Roca	Dacita											
Observacior	nes Generales	<u> </u>			<u> </u>				<u> </u>	L	<u> </u>	

La roca presenta Calcita como mineral accesorio, la que a veces rellena las cavidades de la mayoría de los minerales de la roca. Adicionalmente la mayoría de los minerales muestran golfos de resorción

Figura 8. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 1.

DOMO 10.

Muestra	CP 3										
Textura	Porfíritica Ser	iada,	Inter	serta	l, Mic	crocri	staliı	na y F	Poikil	ítica	
Estructura	Vesicular y de	sord	enad	а							
Fenocristal es	% Total de Fenocristales : 49%	Características de los Fenocristales									
Plagioclasa	28%	Cristales incoloros, subhedrales, están más maclados que zonados, presentan birrefringencia baja, cavidades internas y en menor cantidad se hallan rotos, además contienen inclusiones de opacos, biotita y hornblenda. Finalmente muy pocos presentan un caolinitización leve.									
Cuarzo	4%	Cristales anhedrales, redondeados, incoloros, son de %birrefringencia baja, se hallan rotos y presentan golfos de resorción.									

		Esca	mas	alarg	adas	, sub	hedra	ales,	pleo	croic	as (ca	afé
		mod	erado	o a os	scuro), sor	n de l	oirref	ringe	encia	alta,	
Biotita	2%	pres	entar	n incl	usior	nes de	e opa		y pla	giocla	asa, a	demás
		росо	s cri	stales	s pre	senta	ın en	sus	borde	es un	a lev	9
		caoli	nitiza	ación								
Onacos	3%	Crist	ales	subh	edral	es de	e colo	or neg	gro, s	se ha	lan r	otos y
Opacos	570	mue	stran	golfo	os de	reso	rción).				
		Crist	ales	de ar	hedr	ales	a sub	hedr	ales,	pleo	croic	os (café
Hornblanda	Q %	claro	o a ve	rde n	node	rado)	, pres	senta	n bir	refrir	igenc	ia
nombienda	570	mod	erada	a, cliv	aje d	e anf	ïbol,	pres	entar	ı cavi	dade	s e
		inclu	sion	es de	opa	cos y	plag	iocla	sa.			
Ortonirovon		Crist	ales	subh	edral	es, p	leocr	oicos	s (cal	é cla	ro a v	/erde
	1%	mod	erado	o), mu	uestra	an biı	rrefrii	ngen	cia b	aja, e	xtinc	ión
0		para	lela e	inclu	usion	es de	e opa	cos y	/ plag	giocla	isa.	
		Cristales subhedrales, pleocroicos (café claro a verde										
Clinopiroxe	2%	moderado), se hallan rotos, presentan birrefringencia										
no	2 /0	mod	erada	a, exti	inció	n cer	cana	a los	45 g	rado	s e	
		inclu	sion	es de	opa	cos.						
	0/ Total da											
Matriz	Matriz: 50%				Cara	acterí	stica	s de l	la Ma	triz		
					Car	acter	rística	as de	l Vid	rio		
Vidrio	50%	Es u	na m	asa a	morf	a de l	un co	olor g	ris o	scuro).	
	% Total de											
Poros	Poros: 1%											
Nombre de la Roca	Dacita caolinitizada											
Observacior	nes Generales											

Los cristales de plagioclasa y de biotita se hallan levemente caolinitizados, los minerales opacos muestran golfos de resorción y los cristales de hornblenda presentan cavidades.

Figura 9. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 3.

DOMO 11.

Muestra	CP 24											
Textura	Porfirítica Ser	iada,	Inter	gran	ular,	Micro	ocris	talina	ı y Po	oikilít	ica.	
Estructura	Vesicular y Fl	uidal										
Fenocristal es	% Total de Fenocristales : 95%	Características de los Fenocristales										
Plagioclasa	72%	Cristales incoloros, de euhedrales a subhedrales, a veces se presentan rotos y a veces han sido desprendidos parcialmente lo cual ocurrió cuando se elaboró la lámina. Además, presentan birrefringencia baja, inclusiones de opacos y hornblenda y están más maclados que zonados.										
Hornblenda	8%	Cristales de euhedrales a subhedrales, pleocroicas (café %claro a moderado), en ocasiones están rotos y contienen cavidades internas, presentan birrefringencia moderada,										

		cliva	je de	anfík	ool, ir	nclus	iones	s de o	opaco	os y k	oiotita	a, y
		estái	stán maclados. ristales de subhedrales a anhedrales de color negro.									
		Crist	ales	de sı	Ibheo	drales	s a ai	nhedi	rales	de co	olor n	egro,
Opacos	3%	pres	entar	n incl	usior	nes d	e opa	acos	y en o	ocasi	iones	i
		cavio	dades	s inte	rnas	y/o g	olfos	s de r	esor	ción.		
		Esca	mas	alarg	adas	s y su	bhed	Irales	s, ple	ocroi	cas (café
		clarc	o a os	curo), sor	n de l	oirref	ringe	ncia	alta,	conti	enen
Biotita	7%	inclu	sion	es de	opa	cos y	plag	iocla	sa, a	vece	s se	hallan
		rotos	s y m	uestr	an ca	avida	des i	nterr	as. F	inaln	nente	en
		ocas	ione	s pre	senta	ın go	lfos d	de res	sorci	ón y a	a su v	/ez se
		halla	n roo	leado	os po	r min	erale	es op	acos	y po	r calc	ita?.
		Crist	ales	subh	edra	les, ir	ncolo	oros,	prese	entan		
Cuarzo	4%	birre	fring	encia	baja	, incl	usio	nes d	le opa	acos	у	
		clino	linopiroxeno, y en ocasiones cavidades internas y/o									
		golfo	golfos de resorción.									
		Crist	Cristales rectangulares, subhedrales, pleocroicos (café									
Clinopiroxe	1%	clarc	laro a moderado), presentan birrefringencia moderada,									
no		estái	n ma	clado	s, co	ntien	ien in	iclusi	ones	de o	paco	sy.
		plag	ocla	sa, y	pose	en e>	ctinci	on ce	ercan	a a lo	os 45	grados
Matriz	% Total de				Cara	octerí	stica	s de	la Ma	triz		
	Matriz: 0%											
					Car	acter	rística	as de	l Vid	rio		
Vidrio	0%											
	% Total de											
Poros	Poros: 5%											
Nombre de												
la Roca	Dacita											
Observacio	nes Generales											

Los minerales opacos, el cuarzo y la biotita a veces presentan golfos de resorción. Los cristales de plagioclasa se desprendieron parcialmente cuando la lámina fue elaborada, proceso que al parecer también causó la formación de grandes cavidades en la lámina, las que no fueron tomadas en cuenta en la porosidad de la misma.

Figura 10. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 24.

DOMO 13.

Muestra	CP 18											
Textura	Porfíritica Ser	iada,	Inter	serta	l, Cri	ptocr	ristal	ina y	Poik	ilítica	l .	
Estructura	Vesicular y de	sord	enad	а								
Fenocristal es	% Total de Fenocristales : 70%	Características de los Fenocristales										
Hornblenda	4%	Cristales subhedrales, pleocroicos (café claro a verde moderado), presentan clivaje de anfíbol, birrefringencia alta, inclusiones de opacos y biotita. Además a veces están maclados y contienen golfos de resorción.										
Plagioclasa	59%	Cristales mayoritariamente subhedrales, incoloros, son de birrefringencia baja, a veces están rotos, se presentan más maclados que zonados y contienen inclusiones de opacos y biotita.										

		Crist	ales	mayo	oritari	amei	nte s	ubhe	drale	s de	color	negro,
Opacos	3%	algu	nos c	le elle	os pr	esent	tan g	olfos	de re	esoro	ión,	
		cavio	dades	s inte	rnas	e inc	lusio	nes o	de pla	agioc	lasa.	
		Esca	mas	alarg	jadas	y su	bhed	Irales	, pleo	ocroi	cas (café
Biotita	1%	clarc	o a os	scuro), sor	n de k	oirref	ringe	ncia	alta,	conti	enen
Diotita	170	inclu	ision	es de	opa	cos y	plag	iocla	sa. F	inalm	nente	algunos
		pres	entar	ı cav	idade	s inte	ernas	6.				
		Crist	ales	anhe	drale	s, inc	color	os, se	on bii	refri	ngen	cia baja,
Cuarzo	2%	unia	xiales	s (+) ,	conti	enen	incl	usion	es de	e opa	icos y	/
		plag	iocla	sa, y	en oo	asio	nes g	golfos	s de r	esor	ción.	
Clinopiroxe		Son	crista	ales s	subhe	edrale	əs, pl	eocr	oicos	(ver	de cla	aro a
no	1%	mod	erado	o), biı	rrefrin	ngeno	cia al	ta, ex	tinci	ón ce	ercan	a a los
		45 g	rados	s e in	clusio	ones	de o	pacos	S.			
Matriz	% Total de		•	•	Cara	ctorí	stica	ah a	la Ma	triz	•	•
Matriz	Matriz: 27%											
					Car	acter	ística	as de	l Vidı	rio		
Vidrio	27%	Es u	na m	asa a	morf	a de	color	gris	mod	erado)	
Deree	% Total de											
Poros	Poros: 1%											
Minerales			0.0							A		
Accesorios	% TOTAL 2%		Ca	racte	ristic	as de	9105	wine	raies	ACCE	soric	05
		La ro	oca p	reser	nta ur	n únio	co ag	rega	do de	cris	tales	de
		anhe	drale	es a s	ubhe	drale	es, in	color	os, s	on de	9	
Calcita	1%	birre	fring	encia	anó	mala,	pres	senta	n la e	xfoli	ación	de los
		carb	onato	os, so	on un	iaxia	les (-) y c	ontie	nen i	nclus	siones
		de opacos.										
		Cristales anhedrales que en ocasiones aún conservan								ervan		
Minerales	1%	parc	ialme	ente la	a forr	na de	el cris	stal o	rigina	al, so	n de	un color
Oxidados		rojiz	o ana	aranja	ado, y	y se p	rese	ntan	como	o incl	usior	nes y
		com	como cristales individuales en la matriz.									

Nombre de la Roca	Dacita oxidada	a										
Observacio	nes Generales		•	•		•						
La roca pres	senta calcita po	osibl más	emen	ite co	omo n alos	niner	al se	cunda s pla	ario,	por la	a acc	ión de cuarzos
presentan g	olfos de resord	ción.	Ader	nás e	existe	n mii	neral	es mi	ly ox	idad	, 105 0S.	cuai 205

Figura 11. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 18.

DOMO 14.

Muestra	CP 38	
Textura	Porfirítica So	eriada, intergranular, criptocristalina y poikilítica
Estructura	Vesicular y o	desordenada
Fenocristal es	% Total de Fenocristal es: 99%	Características de los Fenocristales
Plagioclas a	82%	Cristales incoloros, subhedrales a euhedrales, son de birrefringencia baja, están maclados y en menor cantidad zonados, además se presentan como cristales individuales

		y en menor cantidad en agregados. Finalmente en medio
		de los cristales, de los agregados y desde el contorno de
		los cristales hacia afuera, se presenta una masa amorfa
		(incolora a gris clara sin nicoles y de gris clara a moderada
		con nicoles), la cual presenta una alta concentración de
		minerales opacos muy pequeños. Presentan inclusiones
		de opacos.
Opacos	3%	Cristales de subhedrales a anhedrales color negro.
		Cristales pleocroicos (verde claro a café claro), son de
Hornblend	20/	euhedrales a subhedrales, son de relieve moderado,
а	۷ کے ا	birrefringencia moderada y presentan clivaje de anfíbol.
		Presentan inclusiones de plagioclasa.
		Cristales euhedrales a subhedrales, pleocroicos (café claro
Biotita	4%	a oscuro), son alargados, presentan birrefringencia alta,
		cavidades internas e inclusiones de opacos.
Ortonirovo		Cristales euhedrales a subhedrales, pleocroicos (verde
no	1%	claro a moderado), son de birrefringencia baja y presentan
110		extinción paralela. A veces se encuentran rotos.
		Cristales subhedrales, pleocroicos (verde moderado a café
Clinopirov		oscuro), presentan birrefringencia alta, extinción cercana a
eno	7%	los 45 grados, algunas cavidades dentro de si e
eno		inclusiones de opacos. Además se hallan moderadamente
		oxidados.
Matriz	% Total de	Características de la Matriz
	Matriz: 0%	
		Características del Vidrio
Vidrio	0%	
	% Total de	
Poros	Poros: 1%	

Nombre de la Roca	Andesita ox	idada				
Observaciones Generales						
La lámina presenta oxidación moderada únicamente en sus clinopiroxenos.						

Figura 12. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 38.

Domo 14

Muestra	CP 39	
Textura	Porfirítica S	eriada, intergranular, criptocristalina y poikilítica
Estructura	Vesicular y o	desordenada
Fenocristal es	% Total de Fenocristal es: 96%	Características de los Fenocristales
Plagioclas a	81%	Cristales incoloros, mayoritariamente maclados y en menor cantidad zonados, son de subhedrales a euhedrales,

		presentan birrefringencia baja e inclusiones de opacos.					
		Además presenta una masa amorfa (incolora a gris clara sin					
		nicoles y de gris clara a moderada con nicoles), la cual					
		presenta una alta concentración de minerales opacos muy					
		pequeños.					
		Cristales pleocroicos (café claro a café verdoso), de					
Horphland		euhedrales a subhedrales, están maclados, presentan el					
nombienu	5%	clivaje de anfíbol, birrefringencia moderada e inclusiones					
a		de opacos y plagioclasa. Además presentan pequeñas					
		cavidades internas.					
Opacos	3%	Cristales de subhedrales a anhedrales de color negro.					
		Cristales de subhedrales a anhedrales, pleocroicos (verde					
Clinopirox	5%	oscuro a café claro), presentan birrefringencia alta,					
eno		extinción cercana a los 45 grados, se hallan					
		moderadamente oxidados e inclusiones de opacos.					
		Cristales pleocroicos (café moderado a oscuro),					
Biotita	2%	subhedrales, presentan birrefringencia alta e inclusiones de					
		opacos y plagioclasa.					
Matriz	% Total de	Caractorísticas do la Matriz					
	Matriz: 0%	Características de la Matriz					
		Características del Vidrio					
Vidrio	0%						
	% Total de						
Poros	Poros: 4%						
Nombre de la Roca	Andesita oxi	idada					

Observacio	Observaciones Generales								
La lámina p	resenta oxid	ación moderada únicamente en sus clinopirox	enos.						

Figura 13. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 39.

DOMO 15.

Muestra	CP 25										
Textura	Porfirítica Seriada, Intergranular, Microcristalina y Poikilítica										
Estructura	Vesicular y desordenada										
Fenocristal es	% Total de Fenocristales : 92%	Características de los Fenocristales									
Hornblenda	7%	Cristales pleocroicos (café claro a moderado), subhedrales, a veces están rotos, presentan clivaje de anfíbol, birrefringencia moderada, inclusiones de opacos y presentan una oxidación avanzada.									
Biotita	7%	Esca a roj	· Escamas alargadas, subhedrales, pleocroicos (café claro a rojizo), a veces están rotos y presentan cavidades								

					_							
		inter Fina	Finalmente están fuertemente oxidados.									
		Crist		subh	odral	los ir		ros	nrasa	ntan		
		birro	fring	oncia	baia		icolo in m	105, ác m:	piese		10 70	nados
Planioclasa	68% presentan partes desprendidas formadas en la										nauos,	
riagiociasa											v	
		bornblanda. A vocas astán ratas										
				ua. A	vece	5 851				4		
		Cristales anneorales, incoloros, presentan										
Cuarzo	6%	birre	tring	encia	i baja	y en	ocas	sione	S COI	ntiene	en ca	vidades
		Inter	nas,	goiro	s ae	resor	cion	, y ad	ema	s, inc	IUSIO	nes de
		opac	:0S.						<u> </u>			
Opacos	3%	Crist	ales	de si	ubheo	drales	s a ei	lhedr	ales	de co	olor n	egro, en
		ocas	sione	s pre	senta	in cav	vidad	es y	golfo	s de	reso	rción.
Clinopiroxe		Crist	ales	subh	edra	les, p	leoci	oico	s (ca	fé cla	roaı	rojizo),
no	1%	presentan birrefringencia alta, extinción cercana a los 45										
Motria	% Total de			1	Corr	otorí	otioo			4 wi	1	
Watriz	Matriz: 0%	Caracteristicas de la Matriz										
					Car	acter	rística	as de	l Vid	rio		
Vidrio	0%											
Poros	% lotal de											
	Poros: 8%											
Nombre de												
la Roca	Dacita oxidada	а										
Observacio	nes Generales											
Los mineral	es opacos y el	cuar	zo pi	resen	tan g	olfos	de r	esor	ción,	aden	nás la	IS
biotitas y ho	ornblendas est	án ba	astan	te ox	idada	as.						

Figura 14. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 25.

DOMO 15.

Muestra	CP 26									
Textura	Porfirítica Seriada, Intergranular, Microcristalina y Poikílitica.									
Estructura	Vesicular y desordenada									
Fenocristal es	% Total de Fenocristales : 94%	otal de ocristales Características de los Fenocristales %								
Hornblenda	3%	Cristales pleocroicos (verde claro a rojo intenso), de euhedrales a subhedrales, presentan clivaje de anfíbol, % birrefringencia moderada, están maclados, se hallan rotos, poseen cavidades vacías e inclusiones de opacos.								
Biotita	16%	Escamas alargadas y tabulares de subhedrales a euhedrales, pleocroicas (verde claro a rojizo), con birrefringencia alta y presentan inclusiones de opacos y plagioclasa. Ocasionalmente son totalmente anhedrales y de un color casi negro debido a una fuerte oxidación, adicionalmente poseen cavidades vacías.								
Plagioclasa	68%	Cristales subhedrales, incoloros, maclados y en menor cantidad zonados, presentan birrefringencia baja e inclusiones de opacos.							menor a e	
Opacos	4%	%Cristales de euhedrales a subhedrales de color negro.								

Cuarzo	1%	Crist	Cristales anhedrales, redondeados, incoloros y son de									
e dui 20	170	birrefrigencia baja.										
		Cristales alargados, subhedrales, rotos, pleocroicos										
Clinopiroxe	2%	(verde claro a café rojizo), presentan birrefringencia									ncia	
no	2 /0	mod	ioderada, extinción cercana a los 45 grados e									
	inclusiones de opacos y de plagioclasa											
Matriz	% Total de				Cara	octorí	stica	ah a	la Ma	triz		•
	Matriz: 0%											
			Características del Vidrio									
Vidrio	0%	1										
Poros	% Total de	Algunos cristales fueron arrancados de la lámina										
F 0103	Poros: 6%	cuando se la elaboró										
Nombre de la Roca	Dacita oxidad	a	a									
Observacio	nes Generales	1	1	<u>.</u>	<u>. </u>		1	<u>. </u>	1	1	1	1
La roca pres	senta una fuerl	te ox	idaci	ón er	ı algu	nos	crista	ales c	le bio	otita.		

Figura 15. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 26.

DOMO 17.

Muestra	CP 43	
Textura	Porfirítica S	eriada, Intersertal, Poikilítica y Microcristalina.
Estructura	Vesicular y o	desordenada
Fenocristal es	% Total de Fenocristal es: 95%	Características de los Fenocristales
Plagioclas a	71%	Cristales incoloros, subhedrales, mayoritariamente maclados y en menor frecuencia zonados, birrefringencia baja y presentan inclusiones de opacos. Además presenta una masa amorfa (incolora a gris clara sin nicoles y de gris clara a moderada con nicoles), la cual presenta una alta concentración de minerales opacos muy pequeños, esta masa se encuentra mayoritariamente dentro de los cristales y a veces alrededor de ellos.
Biotita	4%	Escamas alargadas y subhedrales pleocroicas (café rojizo a café anaranjado), presentan birrefringencia alta e inclusiones de opacos. Además presentan una ligera oxidación.
Hornblend a	3%	Cristales euhedrales, pleocroicos (café anaranjado a café oscuro), presentan inclusiones de opacos y clivaje de anfíbol.
Opacos	3%	Cristales anhedrales a subhedrales de color negro.
Cuarzo	5%	Cristales anhedrales, incoloros, fracturados internamente, son de birrefringencia baja, uniaxiales (+), presentan inclusiones de opacos y además presenta una masa amorfa (incolora a gris clara sin nicoles y de gris clara a moderada con nicoles), la cual presenta una alta concentración de minerales opacos muy pequeños. Esta masa se presenta en medio de los cristales y lateralmente a ellos.
Ortopiroxe no	3%	Cristales euhedrales, pleocriocos (café claro a café verdoso), presentan birrefringencia baja, clivaje de

		piroxeno, extinción paralela y presentan inclusiones de opacos.
Clinopirox eno	6%	Cristales subhedrales, pleocroicos (café claro a café moderado), presentan birrefringencia de moderada a alta, extinción cercana a los 45 grados e inclusiones de opacos.
Matriz	% Total de Matriz: 2%	Características de la Matriz
Vidrio	2%	Características del Vidrio
Poros	% Total de Poros: 3%	
Nombre de la Roca	Dacita oxida	llllllllllllllllllllllllllllllll
Observacio	ones General	es
La roca pre	senta sus cr	istales de biotita ligeramente oxidados.

Figura 16. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 43.

Muestra	CP 36									
Textura	Porfirítica S	Porfirítica Seriada, Intergranular y Poikilítica								
Estructura	Vesicular y o	desordenada								
Eopocristal	% Total de									
	Fenocristal	Características de los Fenocristales								
63	es: 95%									
		Son cristales que se presentan como individuales y en								
Plagioclas		agregados, son incoloros, se hallan tanto rotos como bien								
a	84%	formados (siendo de euhedrales a subhedrales), están								
-		mayoritariamente maclados y en menor cantidad zonados,								
		presentan birrefringencia baja e inclusiones de opacos.								
Cuarzo	2%	Cristales anhedrales, incoloros, son de birrefringencia baja								
		y uniaxiales (+).								
		Cristales pleocroicos (café claro a oscuro), son								
Hornblend	2%	subhedrales y presentan clivaje de anfíbol, birrefringencia								
а		media, presentan bordes gruesos e inclusiones de opacos.								
		Sin filos de reacción y hay pocos cristales rotos.								
		Escamas pleocroicas (café claro a oscuro), alargadas,								
Biotita	6%	subhedrales, presentan birrefringencia alta e inclusiones								
		de opacos. Además algunos cristales presentan bordes								
		gruesos. Sin filos de reacción.								
Opacos	1%	Cristales subhedrales de color negro y no presentan filo de								
·		reacción.								
Matriz	% Total de	Características de la Matriz								
	Matriz: 0%									
		Características del Vidrio								
Vidrio	0%									
Poros	% Total de									
1 0103	Poros: 5%									

Nombre de la Roca	Dacita		
Observacio	nes Generale		
La roca pre oxidación o	senta en algu o de alteració	unos cristales coronas de reacción, sin la pres n.	sencia de

Figura 17. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 36.

Muestra	CP 37								
Textura	Porfirítica Seriada, Intergranular y Poikilítica								
Estructura	Vesicular y desordenada								
Fonocristal	% Total de								
es	Fenocristal	Características de los Fenocristales							
	es: 96%								
		Cristales subhedrales, maclados en su mayoría, pocos							
		cristales están rotos y pocos están zonados, además son							
Plagioclas	740/	incoloros y presentan birrefringencia baja e inclusiones de							
а	/4/0	opacos. Además la mayoría se presentan como cristales							
		individuales, pero dentro de dos agregados se halla la							
		misma masa amorfa, isotrópica, muy similar al vidrio (sin							

		nicoles es verde clara), la cual contiene dentro de si								
		algunos minerales opacos pequeños								
Opacos	5%	Cristales subhedrales de color negro, sin filo de reacción.								
		Escamas alargadas, pleocroicas (café caqui a café oscuro),								
Biotita	13%	presentan birrefringencia alta, mayoritariamente								
		subhedrales, pocos cristales se hallan rotos y presentan								
		inclusiones de minerales opacos. Sin filos de reacción.								
		Cristales pleocroicos (café oscuro a café claro), presentan								
Hornblend		clivaje de anfíbol, de forma euhedral a subhedral, algunos								
а	2%	se hallan rotos, además posee birrefringencia moderada,								
		presentan inclusiones de opacos y de plagioclasas y solo								
		un cristal se encuentra maclado. Sin filos de reacción.								
		Cristales incoloros, anhedrales, son de birrefringencia								
Cuarzo	2%	baja, cerca de la mitad de ellos se encuentran rotos y son								
		uniaxiales.								
Matriz	% Total de	Características de la Matriz								
	Matriz: 0%									
		Características del Vidrio								
Vidrio	0%									
Poros	% Total de									
	Poros: 4%									
Nombre de	Dacita									
la Roca	Dacita									
Observacio	ones General	es								
La roca se	encuentra fre	esca								

Figura 18. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 37.

Muestra	CP 41							
Textura	Porfirítica Seriada, Intergranular, microcristalina y poikilítica.							
Estructura	/esicular y desordenada							
Fenocristal	% Total de Fenocristal	Características de los Fenocristales						
es	es: 98%							
		Cristales subhedrales, se presentan como cristales						
		individuales y en agregados, incoloros, maclados y						
	83%	zonados, a veces se encuentran rotos, presentan						
Plagioglas		birrefringencia baja, además presentan inclusiones de						
riagiocias		minerales opacos. Finalmente entre los agregados de						
a		cristales se encuentra una masa amorfa, muy semejante al						
		vidrio la cual sin nicoles es gris clara, pero con nicoles es						
		gris moderada, adicionalmente esta masa presenta						
		cristales pequeños de minerales opacos.						
Onacos	6%	Cristales de anhedrales a subhedrales de color negro, sin						
Opacos	0 /0	filos de reacción.						
Horphland		Cristales de euhedrales a subhedrales, son pleocroicos (de						
	3%	color pardo a café claro), presentan el clivaje de anfíbol,						
а		sin filos de reacción, poseen birrefringencia moderada.						

Cuarzo	2%	Cristales anhedrales e incoloros, son de birrefringencia baja e uniaxiales (+).
Biotita	6%	Escamas alargadas y subhedrales, a veces presentan bordes gruesos y en menos ocasiones se presentan maclados, son pleocroicas (rojizo claro a oscuro), su birrefringencia es alta, presentan inclusiones de opacos.
Matriz	% Total de Matriz: 0%	Características de la Matriz
		Características del Vidrio
Vidrio	0%	
Poros	% Total de	
1 0103	Poros: 2%	
Nombre d Ia Roca	Dacita	
Observac	iones General	es
La roca se	e encuentra fre	esca

Figura 19. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 41.

Muestra	CP 17								
Textura	Porfíritica Seriada, Intergranular, Microcristalina y Poikilítica								
Estructura	Vesicular y desordenada								
Fenocristal es	% Total de Fenocristales : 97%	Características de los Fenocristales							
Plagioclasa	70%	Cristales incoloros, de euhedrales a subhedrales, se presentan tanto como cristales individuales así como en agregados, son de birrefringencia baja, están más maclados que zonados y contienen inclusiones de opacos y de plagioclasa.							
Biotita	4%	Escamas alargadas, de subhedrales a euhedrales, pleocroicas (de verde claro / café claro a café rojizo), presentan birrefringencia alta, presentan cavidades e inclusiones de opacos y plagioclasa, se hallan rotos y en ocasiones presentan golfos de resorción.							
Hornblenda	8%	Cristales de subhedrales a euhedrales, pleocroicos (de verde claro / café claro a café rojizo), presentan birrefringencia moderada, a veces se hallan rotos, contienen cavidades e inclusiones de opacos y biotita. Muestran el clivaje de anfíbol.							
Opacos	4%	Cristales de anhedrales a subhedrales de color negro, 4% presentan cavidades y en ocasiones golfos de resorción.							
Cuarzo	9%	Cristales anhedrales y redondeados, incoloros, presentan birrefringencia baja, contienen inclusiones de ppacos y de hornblenda, además ocasionalmente muestran golfos de resorción. Finalmente a veces contienen cavidades, la cuales se originaron durante el proceso de elaboración de la lámina.							
Clinopiroxe no	2%	Cristales subhedrales en su mayoría, pleocroicos (café claro a café rojizo), presentan clivaje de piroxeno y a							

	veces están rotos, son de birrefringencia moderada,								ada,			
		extir	extinción cercana a los 45 grados y finalmente									
	contienen inclusiones de opacos y de plagiociasa.								sa.			
Matriz	% Total de Matriz: 0%	Características de la Matriz										
		Características del Vidrio										
Vidrio	0%											
Poros	% Total de Poros: 3%											
Nombre de la Roca	Dacita											
Observacio	nes Generales											
En ocasion resorción.	es los cristales	de k	oiotita	a, opa	acos	y cua	arzo p	orese	ntan	golfo	os de	

Figura 20. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 17.

UNIDAD Q-1.

Muestra	CP 15											
Textura	Porfíritica Seriada, Intersertal, Microcristalina y Poikilítica											
Estructura	Vesicular y desordenada											
Fenocristal es	% Total de Fenocristales : 56%	Total de Características de los Fenocristales 6% 6%										
Cuarzo	5%	Cristales anhedrales, incoloros, se hallan tanto como cristales individuales así como en agregados, están rotos, presentan birrefringencia baja, inclusiones de opacos y cuando se presentan en agregados algunos de los cristales se desprendieron durante la elaboración de la lámina. Finalmente algunos cristales presentan golfos de resorción.										
Plagioclasa	31%	Cristales subhedrales, incoloros, en su mayoría están maclados y están zonados en menor cantidad, son de birrefringencia baja, poseen inclusiones de opacos, 31% biotita, clinopiroxeno, ortopiroxeno y en pocas ocasiones están rotos. Algunos de los cristales presentan cavidades y han sido arrancados total o parcialmente de la lámina cuando fue elaborada										
Hornblenda	Cristales de subhedrales a anhedrales, pleocroicos (caf claro a verde moderado), presentan birrefringencia 4% moderada, clivaje de anfíbol, inclusiones de opacos y plagioclasa, y en ocasiones se hallan rotos.						cos (café cia cos y					
Opacos	8%	Crist golfc	ales os de	subh reso	edral rción	es de	e col	or ne	gro q	ue pi	esen	itan
Biotita	3%	Esca mode inclu	Escamas alargadas y subhedrales, pleocroicas (café moderado a oscuro), presentan birrefringencia alta e inclusiones de opacos y plagioclasa									

Ortonirovo	Cristales subhedrales, rotos, pleocroicos (café claro a											
Ortopiroxe	1%	verd	e mo	derad	do), s	on de	e birr	efring	genci	ia baj	a, ex	tinción
no		para	paralela y contienen inclusiones de opacos.									
		Crist	ales	de sı	ubheo	drales	s a ar	nhedr	ales,	pleo	croic	os (café
Clinonirova		claro a verde claro), presentan birrefringencia moderada, 4% extinción cercana a los 45 grados, en ocasiones se hallan rotos y presentan inclusiones de opacos y de									oderada,	
cinopiroxe	4%										se	
no											/ de	
		plag	plagioclasa.									
Matriz	% Total de Matriz: 43%	de Características de la Matriz I3%										
					Car	acter	ística	as de	l Vid	rio		
Vidrio	43%	Es u	na m	asa a	morf	a de	un co	olor g	ris o	scure) .	
D	% Total de											
Poros	Poros: 1%											
Nombre de la Roca	Dacita											
Observacio	nes Generales	1	1	1	1	I	I	1	1	1	1	1
Los mineral	es opacos y el	cuar	zo pi	resen	tan g	olfos	de r	esor	ción,	y ade	emás	,
algunos cris	stales de cuarz	оур	lagio	clasa	a han	sido	arraı	ncad	os de	la lá	mina	cuando

Figura 21. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 15.

Muestra CP 40.

Muestra	CP 40									
Textura	Porfirítica Seriada, Intergranular, Poikilítica y Microcristalina.									
Estructura	Vesicular y f	/esicular y fluidal								
Fenocristal	% Total de	Características de los Fenocristales								
es	es: 65%									
Plagioclas a	39%	Cristales subhedrales, incoloros, más maclados que zonados, se hallan rotos, presentan birrefringencia baja e inclusiones de opacos.								
Biotita	Escamas rotas, alargadas, tabulares y subhedrales, 13%pleocroicas (café claro rojizo a café oscuro), presentan birrefrigencia alta e inclusiones de opacos.									
Hornblend a	5%	Cristales rotos, pleocroicos (café claro a café oscuro), son de subhedrales a euhedrales, presentan clivaje de anfíbol, birrefringencia de moderada a alta e inclusiones de opacos.								
Opacos	5%	Cristales de subhedrales a anhedrales de color negro.								
Clinopirox eno	2%	Cristales pleocroicos (café claro a café oscuro), subhedrales a euhedrales, rotos, presentan birrefringencia alta y extinción cercana a los 45 grados.								
Cuarzo	Cristales incoloros, anhedrales, de birrefringencia baja, 1% son uniaxiales (+) y presentan inclusiones de opacos.									
Matriz	% Total de Matriz: 0%	Características de la Matriz								
		Características del Vidrio								
Vidrio	0%									

Poros	% Total de Poros: 35%		
Nombre de la Roca	Dacita		
Observacio	ones General	es	
La roca se	encuentra fre	esca	

Figura 22. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 40.

Muestra	CP 45							
Textura	Porfirítica Seriada, Intergranular, microcristalina y poikilítica							
Estructura	Vesicular y o	desordenada						
Fenocristal es	% Total de Fenocristal es: 96%	Características de los Fenocristales						
Plagioclas a	64%	Cristales incoloros, maclados, zonados y rotos, son de forma euhedral a subhedral, de birrefringencia baja y						

		presentan inclusiones de hornblenda, ortopiroxeno y de							
		opacos.							
		Son cristales de euhedrales a subhedrales, pleocroicos (de							
Hornblond		color café claro a café rojizo), presentan clivaje de anfíbol,							
a	11%	son de birrefringencia moderada, están maclados y rotos,							
a		finalmente presentan inclusiones de opacos. Sin filos de							
		reacción.							
		Cristales de forma subhedral a euhedral, son de color café							
Biotita	16%	oscuro a café claro anaranjado y son de birrefringencia							
		baja. Sin filos de reacción.							
		Cristales alargados, subhedrales, pleocroicos (de amarillo							
Clinopirox	1%	claro a café oscuro), se hallan rotos, su extinción esta							
eno	1 /0	cercana a los 45 grados y presentan una birrefringencia de							
		moderada a alta. Sin filos de reacción.							
Ortonirova		Cristales alargados, subhedrales, pleocroicos (de café							
no	1%	verdoso a café claro), su extinción es paralela y presentan							
		birrefringencia moderada. Sin filos de reacción.							
Opacos	3%	Son cristales negros y subhedrales. Sin filos de reacción.							
	% Total de								
Matriz	Matriz: 0%	Características de la Matriz							
		Características del Vidrio							
Vidrio	0%								
Poros	% Total de								
F0105	Poros: 4%								
Nombre de la Roca	Andesita								

Observaciones Generales						
La roca esta	á fresca.					

Figura 23. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 45.

Muestra CP 46.

Muestra	CP 46				
Textura	Porfirítica, Intergranular, criptocristalina y poikilítica				
Estructura	Vesicular y Fluidal				
Fenocristal es	% Total de Fenocristal es: 34%	Características de los Fenocristales			
Plagioclas a	21%	Cristales subhedrales, incoloros, zonados, maclados, son de birrefringencia baja, finalmente presenta inclusiones de opacos			
Opacos	4%	Cristales subhedrales de color negro. Sin filos de reacción.			
Hornblend a	2%	Cristales subhedrales, rotos, maclados, presentan un claro clivaje de anfíbol, son pleocroicos (café claro a verde oscuro), son de birrefringencia moderada y además presentan inclusiones de opacos. Sin filos de reacción.			

		Escamas alargadas y rotas, rectas y curvadas, pleocroicos				
Biotita Clinopirox eno Ortopiroxe no	5%	(café claro a moderado), su birrefringencia es alta, además				
		presentan inclusiones de opacos. Sin filos de reacción.				
		Cristales alargados, son pleocroicos (de color verde claro				
		a moderado), presentan clivaje de piroxeno y son de				
		birrefringencia moderada, además presentan una extición				
		cercana a los 45 grados. Sin filos de reacción.				
		Son cristales pleocroicos (verde claro a café moderado),				
	1%	son de rectangulares a cuadrados, presnentan clivaje de				
		piroxeno, presentan extinción paralela y birrefringencia				
		moderada. Sin filos de reacción.				
Matriz	% Total de	Características de la Matriz				
	Matriz: 37%					
		Características del Vidrio				
Vidrio	0%					
	% Total de					
Microlitos	Microlitos:	Características de los Microlitos				
	37%					
Plagioclas	26%	Cristales incoloros, alargados, aciculares y de				
а	5070	birrefringencia baja.				
Opacos	1%	Cristales negros de euhedrales a				
	subhedrales.					
Poros	% Total de					
	Poros: 29%					
Nombre de	Andesita					
la Roca						
Observaciones Generales						
La roca se encuentra fresca						

Figura 24. Imágenes microscópicas sin nicoles (izquierda) y con nicoles (derecha) de la lámina CP 46.