ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO PARA EVALUAR EL POTENCIAL DE LA APLICACIÓN DE LA RECUPERACIÓN MEJORADA EN UN CAMPO DE LA CUENCA ORIENTE DEL ECUADOR

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERAS EN PETRÓLEOS

MAYRA VANESSA ANDRADE CULLISPUMA

(mayravanessa.andrade@gmail.com)

ROMMY GABRIELA CRUZ CHAFLA

(rommygcc@outlook.com)

DIRECTOR: Msc. RAÚL VALENCIA TAPIA (raul.valenciat@gmail.com)

Quito, Diciembre 2015

DECLARACIÓN

Nosotras, Mayra Vanessa Andrade Cullispuma y Rommy Gabriela Cruz Chafla,

declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que

no ha sido previamente utilizado para ningún grado o calificación profesional; y

que hemos consultado las referencias bibliográficas que se incluyen en este

documento.

A través de la presente declaración cedemos nuestros derechos de propiedad

intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional,

según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por

la normativa institucional vigente.

Mayra Vanessa Andrade Cullispuma

Rommy Gabriela Cruz Chafla

CERTIFICACIÓN

Certifico que el presente proyecto de titulación fue realizado por las señoritas Mayra Vanessa Andrade Cullispuma y Rommy Gabriela Cruz Chafla, quienes lo han realizado bajo mi supervisión.

Msc. Raúl Valencia Tapia
DIRECTOR DE PROYECTO

AGRADECIMIENTO

Agradezco a Dios todopoderoso, dueño y Señor del Universo, por permitirme alcanzar un logro más en mi vida y seguir adelante con cada uno de los nuevos retos que él ha puesto en mi camino.

A mis padres y hermanos que con sus sabios y oportunos consejos han contribuido con la culminación de mis estudios superiores.

También expreso mis agradecimientos:

A la Escuela Politécnica Nacional; A mi exdirector de tesis
PhD. José Luis Ziritt; A mi actual director de tesis Msc. Raúl
Valencia Tapia; A Schlumberger en especial a los
Ingenieros Ken Luzuriaga y Javier Salero; A
Petroamazonas en especial a los Ingenieros Francisco Paz
y Álvaro Izurieta; A la Agencia de control de regulación
hidrocarburifera; A mis codirectores de tesis Msc. Bladimir
Cerón y Msc. Pablo Trejo.

Quienes aportaron con parte de sus valiosos conocimientos en la realización del presente proyecto de titulación.

Mayra Vanessa Andrade

AGRADECIMIENTO

Quiero agradecer a Dios por brindarme todos los días el aliento para seguir adelante con cada reto que se me presenta en la vida.

A mi madre que con su demostración de una madre ejemplar me ha enseñado a no desfallecer ni rendirme ante nada.

A mi hermano por su apoyo incondicional.

A Andrés por acompañarme durante todo este arduo camino y compartir conmigo alegrías y fracasos.

A Jessy que siempre me ha acompañado en los circunstancias más difíciles y brindarme el apoyo de una hermana incondicional.

Al PhD. José Luis Ziritt por su esfuerzo y dedicación, quien con sus conocimientos, su experiencia, ha logrado en mí que pueda terminar con éxito.

De igual manera agradecer a mi profesor de Investigación, Msc. Bladimir Cerón por su visión crítica de muchos aspectos cotidianos de la vida, por su rectitud en su profesión como docente, por sus consejos, que ayudan a formarte como persona e investigador.

DEDICATORIA

Esta tesis la dedico de manera especial a la memoria de mis abuelos paternos y maternos, por darme uno de los regalos más grandes que la vida pudo brindarme, mis padres. Quienes con su valentía, coraje y fortaleza me han apoyado incondicionalmente.

De igual manera quiero dedicar una vez más esta tesis a Antonio Andrade por que ha sido una de las personas más honestas, respetuosas y ejemplares para sus hijos y nietos. Gracias a ti, tengo el honor de tener a una familia adorable, incomparable y admirable.

Asimismo esta tesis está dedicada a Leonila y Liduvina Andrade por siempre confiar en mí, enseñarme a reír, respetar, compartir y ser el mejor símbolo de coraje, valentía y admiración.

DEDICATORIA

A la memoria de mi abuelo Olmedo Rigoberto Chafla Miranda, por todas las buenas enseñanzas y recuerdos que me dejo.

A mi madre por toda su paciencia, esfuerzo y dedicación para tratar de hacer de mí una mejor persona.

A mi hermano que siempre ha estado junto a mí brindándome su apoyo y muchas veces poniéndose en el papel de padre.

CONTENIDO

DECL	.ARACION		II
CERT	IFICACIÓN		III
AGRA	ADECIMIENT	0	IV
DEDI	CATORIA		VI
CONT	TENIDO		VIII
ÍNDIC	E DE TABLA	S	XII
ÍNDIC	E DE GRÁFIC	CAS	XVI
ÍNDIC	E DE ANEXO	os	XIX
1		ÓN DEL CAMPO DE ESTUDIO	
		CCIÓN	
1.2		DADES DEL CAMPO	
	1.2.1	BREVE RESEÑA HISTÓRICA DEL CAMPO	
	1.2.2	UBICACIÓN DEL CAMPO	2
1.3	GEOLOGÍA	4	2
	1.3.1	ESTRATIGRAFÍA	4
	1.3.2	DESCRIPCIÓN LITOLÓGICA	5
	1.3.3	ESTRUCTURA	12
1.4	CARACTE	RÍSTICAS DEL RESERVORIO	
	1.4.1	HISTORIAL DE PRODUCCIÓN	
	1.4.2	PROPIEDADES DE LOS FLUIDOS DEL CAMPO MR	
	1.4.3	PROPIEDADES DEL RESERVORIO	
	1.4.4	PETRÓLEO EN SITIO	
	1.4.5	FACTOR DE RECOBRO	30

	1.4.6	F	RESERVAS		31
CAPÍ	TULO 2				33
2 MEJC				ERACIÓN SECUNDARIA Y RECUPERACIO	
2.1	INTROE	DUCC	IÓN		.33
2.2	PROPIE	EDAD	ES ROCA-F	FLUIDO	.33
	2.2.1	1	TENSIÓN INT	TERFACIAL	34
	2.2.2	F	HUMECTABIL	LIDAD Y MOJABILIDAD	34
	2.2.3 HUMECT			DE LA SATURACIÓN EN FUNCIÓN DE L'ACIMIENTO HIDRÓFILO	
	2.2.4	F	PRESIÓN CA	APILAR	37
	2.2.5	F	ENOMENO	DE HISTÉRESIS	40
	2.2.6	I	NTERFACES	S DEL RESERVORIO	41
2.3	RECUP	ERAG	CIÓN SECUN	NDARIA	.42
	2.3.1	I	NYECCIÓN [DE AGUA	42
	2.3.2	I	NYECCIÓN [DE GAS INMISCIBLE	43
	2.3.3	I	NYECCIÓN [DE AGUA Y GAS (WAG)	44
	2.3.4	F	FACTORES	QUE CONTROLAN LA RECUPERACIO	ΛĊ
	SECUND	ARIA			44
2.4				RADA	
	2.4.1			CIÓN MEDIANTE GASES MISCIBLES	
	2.4.2			CIÓN TÉRMICA	
	2.4.3	F	RECUPERAC	CIÓN QUÍMICA	74
CAPÍ	TULO 3				82
3 RECU				OS Y SELECCIÓN DE LOS MÉTODOS MEJORADA	
3.1	INTROE	DUCC	IÓN		.82
3.2	SELEC	CIÓN	DE LA AREN	NA PRODUCTORA	.82
3.3	POZOS	ACT	IVOS E INAC	CTIVOS DE LA ARENA UL INFERIOR	83

3.4 SELECCIÓN DE LOS POZOS USADOS PARA LA INYECCIÓN85
3.5 POSICIÓN DE LOS POZOS SELECCIONADOS DEL CAMPO MR91
3.6 PARAMETROS TÉCNICOS DE LA ARENA U. INFERIOR91
3.7 PROMEDIO DE LOS DATOS DE ROCA Y FLUIDO PARA LOS POZOS
SELECCIONADOS DEL CAMPO MR92
3.8 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN92
3.8.1 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN
TÉRMICA 93
3.8.2 SELECCIÓN DE LA MEJOR ALTERNATIVA DE LA
INYECCIÓN DE GAS97
3.8.3 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN
QUÍMICA 101
3.9 ANÁLISIS DE LOS MÉTODOS DE EOR107
3.9.1 Inyección térmica
3.9.2 Inyección miscible de gas
3.9.3 inyección química
3.10 SIMULACIÓN DE LOS METODOS DE EOR110
3.10.1 Presión mínima de miscibilidad
3.10.2 Presión de fractura
3.10.3 Caudal crítico
3.11 SIMULACIÓN ANÁLITICA Y MODELOS PROGRAMADOS DE LOS
MÉTODOS SELECCIONADOS114
3.11.1 Simulación analítica de la Inyección Térmica
3.11.2 Modelos dinámicos de inyección
APÍTULO 4135
ESTUDIO DE VIABILIDAD DE RECUPERACIÓN TERCIARIA Y
EJORADA135
4.1 INTRODUCCIÓN135
4.2 ESCENARIOS DE INVERSIÓN DE LAS PRODUCCIONES DE EOR135

4.3	VALOR AC	CTUAL NETO (VAN)	135
	4.3.1	INVERSIÓN INICIAL	136
	4.3.2	FLUJO DE CAJA NETO	136
	4.3.3	TASA DE INTERÉS	136
4.4	TASA DE	RETORNO INTERNO (TIR)	139
4.5	COSTO B	ENEFICIO.	140
CAPÍ	ΓULO 5		141
5	CONCLUSION	ONES Y RECOMENDACIONES	141
5.1	CONCLUS	SIONES	141
5.2	RECOME	NDACIONES	144
REFE	RENCIAS B	IBLIOGRÁFICAS	146
WEB	GRAFÍA		148
ANEX	os		149
CIMP			

ÍNDICE DE TABLAS

TABLA 1.1: ESTRATIGRAFÍA DEL CAMPO MR4
TABLA 1.2 HISTORIAL DE LA PRODUCCIÓN DEL CAMPO MR HASTA EL AÑO
201114
TABLA 1.3 PRESIÓN Y FACTOR VOLUMÉTRICO DEL PETRÓLEO 17
TABLA 1.4 FACTOR VOLUMÉTRICO DEL GAS DE LA ARENA U INFERIOR DEL
CAMPO MR
TABLA 1.5 RELACIÓN GAS- PETRÓLEO DE LA ARENA U INFERIOR DEL
CAMPO MR
TABLA 1.6 DENSIDAD DEL PETRÓLEO DE LA ARENA U INFERIOR DEL
CAMPO MR
TABLA 1.7 PERMEABILIDADES RELATIVAS DEL CAMPO MR 26
TABLA 1.8 PROPIEDADES DE LA ROCA
TABLA 1.9 PROPIEDADES DE LA ROCA
TABLA 1.10 PROPIEDADES DEL CAMPO MR
TABLA 1.11 CARACTERÍSTICAS DE LAS PRINCIPALES ARENAS PARA EL
CÁLCULO DEL POES DEL CAMPO MR30
TABLA 1.12 CÁLCULO DEL POES PARA LAS PRINCIPALES ARENAS DEL MR
TABLA 1.13 CÁLCULO DEL FACTOR DE RECOBRO PARA LAS PRINCIPALES
ARENAS DEL CAMPO MR 31
TABLA 1.14 CUADRO RESUMEN DEL CÁLCULO DE RESERVAS DE LAS
PRINCIPALES ARENAS PRODUCTORAS DEL CAMPO MR 32
TABLA 2.1 PRESIONES CAPILARES VS SATURACIONES DE AGUA DEL
CAMPO MR
TABLA 2.2 VENTAJAS DE LA INYECCIÓN MISCIBLE DE DIÓXIDO DE
CARBONO60
TABLA 2.3 DESVENTAJAS DE LA INYECCIÓN MISCIBLE DE DIÓXIDO DE
CARBONO60
TABLA 2.4 INYECCIÓN DE DIÓXIDO DE CARBONO
TABLA 2.5 VENTAJAS DE LA INYECCIÓN ALTERNADA DE AGUA CON GAS
MISCIBLE 62

TABLA 2.6 DESVENTAJAS DE LA INYECCIÓN ALTERNADA DE AGUA C	ON
GAS MISCIBLE	. 62
TABLA 2.7 INYECCIÓN ALTERNADA DE AGUA Y GAS	. 63
TABLA 2.8 VENTAJAS DE LA INYECCIÓN ALTERNADA DE NITRÓGENO	. 64
TABLA 2.9 DESVENTAJAS DE LA INYECCIÓN ALTERNADA DE NITRÓGENO	64
TABLA 2.10 INYECCIÓN DE NITRÓGENO	. 65
TABLA 2.11 VENTAJAS DE LA INYECCIÓN DEL AGUA CALIENTE	. 66
TABLA 2.12 DESVENTAJAS DE LA INYECCIÓN DEL AGUA CALIENTE	. 66
TABLA 2.13 INYECCIÓN DE AGUA CALIENTE	. 67
TABLA 2.14 VENTAJAS DE LA INYECCIÓN DE VAPOR	. 70
TABLA 2.15 DESVENTAJAS DE LA INYECCIÓN DE VAPOR	. 70
TABLA 2.16 INYECCIÓN DE VAPOR	. 71
TABLA 2.17 VENTAJAS DE LA COMBUSTIÓN EN SITIO	. 71
TABLA 2.18 DESVENTAJAS DE LA COMBUSTIÓN EN SITIO	. 72
TABLA 2.19 INYECCIÓN COMBUSTIÓN EN SITIO	. 72
TABLA 2.20 VENTAJAS DE LA INYECCIÓN DE POLÍMEROS	. 75
TABLA 2.21 DESVENTAJAS DE LA INYECCIÓN DE POLÍMEROS	. 75
TABLA 2.22 INYECCIÓN DE POLÍMEROS	. 76
TABLA 2.23 VENTAJAS DE LA INYECCIÓN DE SURFACTANTES	. 77
TABLA 2.24 DESVENTAJAS DE LA INYECCIÓN DE SURFACTANTES	. 77
TABLA 2.25 INYECCIÓN DE SURFACTANTES	. 78
TABLA 2.26 VENTAJAS DE LA INYECCIÓN DE ÁLCALI- SURFACTANTE	. 79
TABLA 2.27 DESVENTAJAS DE LA INYECCIÓN DE ÁLCALI- SURFACTANTE.	. 79
TABLA 2.28 INYECCIÓN DE ÁLCALI- SURFACTANTE	. 79
TABLA 2.29 VENTAJAS DE LA INYECCIÓN DE ÁLCALI- SURFACTAN	TE-
POLÍMERO	. 80
TABLA 2.30 DESVENTAJAS DE LA INYECCIÓN DE ÁLCALI- SURFACTAN	TE-
POLÍMERO	. 80
TABLA 2.31 INYECCIÓN ALCALINO- SURFACTANTE- POLÍMERO	. 81
TABLA 3.1 POZOS ACTIVOS DE LA ARENA U. INFERIOR	. 84
TABLA 3.2 POZOS INACTIVOS DE LA ARENA U. INFERIOR	. 84
TABLA 3.3 PRODUCCIÓN DEL POZO MR- 023A	. 86
TABLA 3.4 PRODUCCIÓN DEL POZO MR- 045	. 87

TABLA 3.5 PRODUCCIÓN DEL POZO MR- 028	88
TABLA 3.6 PRODUCCIÓN DEL POZO MR- 031	89
TABLA 3.7 PRODUCCIÓN DEL POZO MR- 041A	90
TABLA 3.8 DATOS DEL CAMPO MR	92
TABLA 3.9 DATOS DE ROCA- FLUIDO PROMEDIO DE LOS	
SELECCIONADOS	92
TABLA 3.10 CUADRO COMPARATIVO DE LA COMBUSTIÓN INSITU	93
TABLA 3.11 CUADRO COMPARATIVO DEL VAPOR	95
TABLA 3.12 CUADRO COMPARATIVO DE AGUA CALIENTE	96
TABLA 3.13 CUADRO COMPARATIVO DE DIÓXIDO DE CARBONO	97
TABLA 3.14 CUADRO COMPARATIVO DE NITRÓGENO	99
TABLA 3.15 CUADRO COMPARATIVO ALTERNA DE AGUA Y GAS	100
TABLA 3.16 CUADRO COMPARATIVO DE POLÍMEROS	102
TABLA 3.17 CUADRO COMPARATIVO DE SURFACTANTES	103
TABLA 3.18 CUADRO COMPARATIVO DE ALCALINO-SURFACTANTES.	104
TABLA 3.19 CUADRO COMPARATIVO ALCALINO SURFACTANTE POL	-ÍMERC
	106
TABLA 3.20 SCREENING EOR TÉRMICO	107
TABLA 3.21 SCREENING EOR GAS	
TABLA 3.22 SCREENING EOR QUÍMICOS	109
TABLA 3.23 PRESIÓN MÍNIMA DE MISCIBILIDAD DE LOS	
SELECCIONADOS	111
TABLA 3.24 INYECCIÓN CONTINUA DE VAPOR	115
TABLA 3.25 CUADRO COMPARATIVO INYECCIÓN CONTINUA	116
TABLA 3.26 INYECCIÓN CÍCLICA DE VAPOR	117
TABLA 3.27 CUADRO COMPARATIVO INYECCIÓN CÍCLICA	118
TABLA 3.28 SCREENING DE LA INYECCIÓN DE VAPOR	119
TABLA 3.29 PARÁMETROS UTILIZADOS PARA LA SIMULACIÓN DEL	CAMPO
MR	120
TABLA 3.30 TEMPERATURA DE SATURACIÓN	122
TABLA 3.31 CALOR LATENTE DE VAPORIZACIÓN	122
TABLA 3.32 CAUDAL DE INYECCIÓN	122
TABLA 3.33 TIEMPO ADIMENSIONAL	123

TABLA 3.34 CONSTANTE F1
TABLA 3.35 ÁREA DE LA ZONA DE VAPOR CALENTADA 123
TABLA 3.36 RADIO CALENTADO POR EL VAPOR 124
TABLA 3.37 CONSTANTE B DE ANDRADE
TABLA 3.38 CONSTANTE A DE ANDRADE
TABLA 3.39 VISCOSIDAD A TEMPERATURA PROMEDIO DEL RESERVORIO
TABLA 3.40 TASA DE FLUJO DE PETRÓLEO ANTES DE LA ESTIMULACIÓN 126
TABLA 3.41 VISCOSIDAD A TEMPERATURA PROMEDIO DEL RESERVORIO
TABLA 3.42 VISCOSIDAD A TEMPERATURA PROMEDIO DEL RESERVORIO
TABLA 4.1 INGRESO ECONÓMICO DEL CAMPO MR
TABLA 4.2 EGRESOS DEL CAMPO MR
TABLA 4.3 CÁLCULO DEL VAN

ÍNDICE DE GRÁFICAS

GRÁFICA 1.1 UBICACIÓN DEL CAMPO MR	2
GRÁFICA 1.2 SECCIÓN SÍSMICA Y ESTRUCTURAL DEL CAMPO MR	3
GRÁFICA 1.3 ESTRUCTURA DE LA ARENA U INFERIOR DEL CAMPO MR	. 12
GRÁFICA 1.4 ESTRUCTURA DE LA ARENA T PRINCIPAL DEL CAMPO MR	. 13
GRÁFICA 1.5 HISTORIAL DE PRODUCCIÓN DEL CAMPO MR HASTA	
DICIEMBRE DE 2011	. 15
GRÁFICA 1.6 FACTOR VOLUMÉTRICO DEL PETRÓLEO DE LA ARENA U	
INFERIOR DEL CAMPO MR	. 17
GRÁFICA 1.7 FACTOR VOLUMÉTRICO DEL GAS DE LA ARENA U INFERIOR	
DEL CAMPO MR	. 18
GRÁFICA 1.8 RELACIÓN GAS PETRÓLEO DE LA ARENA U INFERIOR DEL	
CAMPO MR	. 19
GRÁFICA 1.9 COMPOSICIÓN DEL HIDROCARBURO DEL CAMPO MR	. 21
GRÁFICA 1.10 SATURACIÓN DEL AGUA DE LA ARENA U INFERIOR DEL	
CAMPO MR	. 24
GRÁFICA 1.11 PERMEABILIDAD DE LA ARENA U INFERIOR DEL CAMPO ME	R25
GRÁFICA 1.12 PERMEABILIDADES RELATIVAS VS SATURACIONES DE AG	UA
	. 26
GRÁFICA 1.13 POROSIDAD DE LA ARENA U INFERIOR DEL CAMPO MR	. 28
GRÁFICA 2.1 EFECTO DE LAS FUERZAS DE ATRACCIÓN DENTRO DEL	
RESERVORIO	. 34
GRÁFICA 2.2 HUMECTABILIDAD DEL AGUA Y PETRÓLEO	. 35
GRÁFICA 2.3 FUERZAS QUE ACTÚAN EN LA HUMECTABILIDAD DE LA ROC	A
	. 35
GRÁFICA 2.4 SATURACIÓN PENDULAR	. 36
GRÁFICA 2.5 SATURACIÓN FUNICULAR	. 37
GRÁFICA 2.6 SATURACIÓN INSULAR	. 37
GRÁFICA 2.7 REPRESENTACIÓN DE LA PRESIÓN CAPILAR	. 38
GRÁFICA 2.8 PROFUNDIDAD VS SATURACIÓN DE AGUA	. 39
GRÁFICA 2.9 PRESIÓN CAPILAR VS SATURACIÓN DEL AGUA DEL CAMPO	
MR	40

GRÁFICA 2.10 CURVA DE LA PRESIÓN CAPILAR PARA UN SISTEMA
HUMECTADO POR EL AGUA41
GRÁFICA 2.11 DISTRIBUCIÓN DE LOS FLUIDOS EN EL RESERVORIO 41
GRÁFICA 2.12 EFICIENCIA DE BARRIDO MICROSCÓPICO Y MACROSCÓPICO
50
GRÁFICA 2.13 PRESIÓN MÍNIMA DE MISCIBILIDAD VS TEMPERATURA 52
GRÁFICA 2.14 GRAVEDAD API VS FACTOR DE WUATSON 53
GRÁFICA 2.15 SATURACIÓN DE PETRÓLEO RESIDUAL VS NÚMERO CAPILAR
(FAROUQ Y THOMAS)55
GRÁFICA 2.16 DISTRIBUCIÓN DE LOS FLUIDOS EN LA FASE INICIAL 56
GRÁFICA 2.17 DISTRIBUCIÓN DE LOS FLUIDOS DURANTE LA RUPTURA 57
GRÁFICA 2.18 DISTRIBUCIÓN DE LOS FLUIDOS DESPUÉS DE LA RUPTURA57
GRÁFICA 2.19 GENERAL SECUENCIA DE INYECCIÓN DE EOR 58
GRÁFICA 3.1 PRODUCCIÓN ACUMULADA AL 31 DE DICIEMBRE DE 2011 83
GRÁFICA 3.2 RESERVAS REMANENTES AL 31 DE DICIEMBRE DE 2011 83
GRÁFICA 3.3 CORRELACIÓN DE LOS POZOS SELECCIONADOS 85
GRÁFICA 3.4 PRODUCCIÓN DEL POZO MR- 023 86
GRÁFICA 3.5 PRODUCCIÓN DEL POZO MR- 045 87
GRÁFICA 3.6 PRODUCCIÓN DEL POZO MR- 028 88
GRÁFICA 3.7 PRODUCCIÓN DEL POZO MR- 031 89
GRÁFICA 3.8 PRODUCCIÓN DEL POZO MR- 041A
GRÁFICA 3.9 UBICACIÓN DE LOS POZOS SELECCIONADOS
GRÁFICA 3.10 CUADRO COMPARATIVO DE LA COMBUSTION IN SITU 94
GRÁFICA 3.11 CUADRO COMPARATIVO DEL VAPOR95
GRÁFICA 3.12 CUADRO COMPARATIVO DE AGUA CALIENTE
GRÁFICA 3.13 CUADRO COMPARATIVO DE DIÓXIDO DE CARBONO
GRÁFICA 3.14 CUADRO COMPARATIVO DE NITRÓGENO
GRÁFICA 3.15 CUADRO COMPARATIVO ALTERNA DE AGUA Y GAS 101
GRÁFICA 3.16 CUADRO COMPARATIVO DE POLÍMEROS 102
GRÁFICA 3.17 CUADRO COMPARATIVO DE SURFACTANTES 104
GRÁFICA 3.18 CUADRO COMPARATIVO DE ALCALINO-SURFACTANTES 105
GRÁFICA 3.19 CUADRO COMPARATIVO ALCALINO SURFACTANTE
POLÍMERO 106

GRÁFICA 3.20 SCREENING DE INYECCIÓN TÉRMICA	108
GRÁFICA 3.21 SCREENING DE INYECCIÓN DE GAS	109
GRÁFICA 3.22 SCREENING DE INYECCIÓN QUÍMICA	110
GRÁFICA 3.23 CUADRO COMPARATIVO INYECCIÓN CONTINUA	116
GRÁFICA 3.24 CUADRO COMPARATIVO INYECCIÓN CÍCLICA	118
GRÁFICA 3.25 INYECCIÓN DE VAPOR	119
GRÁFICA 3.26 CAUDAL DEL PETRÓLEO DESPUÉS DE LA INYECCIÓN	128
GRÁFICA 3.27 CREACIÓN DE LA GRILLA Y POZOS SELECCIONADOS	130
GRÁFICA 3.28 COMPLETACIÓN Y CAÑONEO DE LOS POZOS	
SELECCIONADOS	130
GRÁFICA 3.29 RESULTADOS DE LA DECLARACIÓN DE DATOS DE FLUIDO)131
GRÁFICA 3.30 MODELACIÓN DE LA INYECCIÓN DE DIÓXIDO DE CARBON	0
	131
GRÁFICA 3.31 CAUDAL DEL PETRÓLEO DESPUÉS DE LA INYECCIÓN	132
GRÁFICA 3.32 MODELACIÓN PROGRAMADA DE LA INYECCIÓN DE	
POLÍMEROS	133
GRÁFICA 3.33 CAUDAL DEL PETRÓLEO DESPUÉS DE LA INYECCIÓN DE	
POLÍMEROS	133
GRÁFICA 3.34 FACTOR DE RECOBRO VS RELACIÓN DE MOVILIDADES	134
GRÁFICA 3.35 SATURACIONES VS PERMEABILIDADES RELATIVAS	134
GRÁFICA 4.1 PRÁCTICA MUNDIAL DE GAS INMISCIBLE EN DIFERENTES	
ARENAS PRODUCTORAS	139

ÍNDICE DE ANEXOS

ANEXO 1 COMPOSICION DE LOS FLUIDOS DEL RESERVORIO DEL CAMPO
MR150
ANEXO 2 SATURACIÓN DE AGUA DEL CAMPO MR152
ANEXO 3 PERMEABILIDAD DEL CAMPO MR153
ANEXO 4 POROSIDAD DEL CAMPO MR
ANEXO 5 FUNCIONES F1 Y F2 DE MARX Y LANGEMHEIM155
ANEXO 6 TABLA DE KEYBOARDS USADOS EN LA SIMULACIÓN DE
GAS156
ANEXO 7 TABLA DE KEYBOARDS USADOS EN LA SIMULACIÓN
QUÍMICA158
ANEXO 8 GRÁFICO DE LOS DOS POZOS Y DEL CONTACTO AGUA-
PETRÓLEO EN EL CAMPO MR160
ANEXO 9 GRÁFICAS DEL FACTOR DE FORMACIÓN, VISCOSIDAD DEL
PETRÓLEO Y CONTACTO AGUA PETRÓLEO161
ANEXO 10 GRÁFICA DE LA SATURACION DE AGUA DE LOS POZOS P01 Y I01
DEL CAMPO MR162
ANEXO 11 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN EL
ESTADO INICIAL DE LOS POZOS P01 Y 01 DEL CAMPO MR163
ANEXO 12 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA
DESPUES DE LA FASE INICIAL DE LOS POZOS P01 Y 01 DEL CAMPO
MR164
ANEXO 13 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN LA
FASE DE RUPTURA DE LOS POZOS P01 Y 01 DEL CAMPO MR165
ANEXO 14 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA
DESPUÉS EN LA FASE DE RUPTURA DE LOS POZOS P01 Y 01 DEL
CAMPO
ANEXO 15 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA
DESPUÉS EN LA FASE DE RUPTURA DE LOS POZOS P01 Y 01 DEL
CAMPO MR

ANEXO 16 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN LA
FASE FINAL DE LA INUNDACIÓN DE LOS POZOS P01 Y 01 DEL CAMPO
MR168
ANEXO 17 GRÁFICA DE LA INYECCIÓN PROGRAMADA DE AGUA DE LOS
POZOS P01 Y 01 DEL CAMPO MR CON UNA PRESIÓN DE FONDO
FLUYENTE DE 2000 Y 2500; Y UN CAUDAL DE INYECCIÓN DE 1500 Y
2000

RESUMEN

El siguiente proyecto de titulación denominado "ESTUDIO PARA EVALUAR EL POTENCIAL DE LA APLICACIÓN DE RECUPERACIÓN MEJORADA EN UN CAMPO DE LA CUENCA ORIENTE DEL ECUADOR " analiza los posibles métodos de recuperación mejorada como: inyección de gas, inyección térmica e inyección química, para aplicar a un Campo de la Cuenca Oriente.

En el primer capítulo se expone la ubicación del campo MR, descripción de la geología, historia, propiedades de las rocas, propiedades PVT, producción hasta el año 2011 y cálculos de reservas. El nombre del campo MR se establece de acuerdo a la discreción establecida por de la empresa operadora.

El segundo capítulo da a conocer la importancia de la recuperación mejorada y los criterios de selección para los diferentes métodos de la recuperación mejorada. Además se selecciona los métodos aplicables para nuestro campo de estudio.

En el tercer capítulo se realiza una simulación analítica y demostraciones de modelos dinámicos para los métodos más óptimos de la recuperación mejorada, tales como: inyección cíclica de vapor, inyección de dióxido de carbono e inyección de polímeros, en donde también se exponen los resultados obtenidos.

En el capítulo cuarto se presenta un análisis económico del mejor método de recuperación mejorada seleccionado, para este nuestro caso se encuentra que el análisis económico de la inyección de polímeros.

Finalmente se da a conocer las conclusiones de este proyecto de titulación, así como también las recomendaciones que se pueden dar a la mejor técnica de recuperación mejorada que se acople al campo de estudio.

PRESENTACIÓN

En la industria petrolera es de gran utilidad aumentar la producción de petróleo mediante varias técnicas; para mejorar las características de producción del reservorio, alterar favorablemente las condiciones de roca y fluidos, aprovechar un mayor producción de petróleo y ahorrar dinero; estas técnicas se pueden utilizar en Campos Maduros y en pozos abandonados en buen estado. A estos métodos se les denomina recuperación mejorada, recuperación terciaria o técnica EOR por sus siglas en inglés Emprove Oil Recovery, razón por la cual en el Oriente Ecuatoriano se están efectuando estudios para la evaluación y ejecución de las técnicas antes mencionadas (EOR).

Para emplear y evaluar una de estas técnicas de recuperación mejorada en un campo de la Cuenca Oriente del Ecuador, es necesario como punto de partida obtener información de experiencias desarrolladas con éxito, mismas que nos guiarán y servirán en la elección del mejor método de recuperación mejorada.

Estas experiencias consisten en establecer parámetros técnicos necesarios e imprescindibles para seleccionar el mejor método de recuperación mejorada que se puede acoplar a cualquier campo de estudio. Los parámetros técnicos a analizarse son: viscosidades, °API, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, dureza del agua, tipo de roca, permeabilidad, profundidad, espesor neto, presión del reservorio, mecanismos de empuje y porosidad.

Una vez realizada la selección, tamizado o screening se procede a analizar todas las características del campo de estudio que se pueda obtener, tales como: información geológica, geofísica, estructuras, producción, propiedades PVT, propiedades de roca y fluido, entre otras más. Con el fin de caracterizar y dar a conocer las condiciones de campo necesarias. Para después realizar estudios más detallados utilizando simulación analítica y demostraciones de modelos dinámicos, que nos servirán para garantizar la efectividad y buen desarrollo del proyecto a realizarse.

CAPÍTULO 1

DESCRIPCIÓN DEL CAMPO DE ESTUDIO

1.1 INTRODUCCIÓN

El campo seleccionado para realizar el estudio de la mejor técnica de EOR en la Cuenca Oriente del Ecuador es el Campo MR¹, mismo que se eligió en base a la disponibilidad de datos y características propias del campo, que nos servirán para el desarrollo del presente estudio.

En esta unidad se da a conocer las características del campo como: datos petrofísicos, geológicos, propiedades del fluido, propiedades de la roca, cálculo de reservas, entre otras más, que se emplearan más adelante para realizar la selección de la mejor alternativa de EOR.

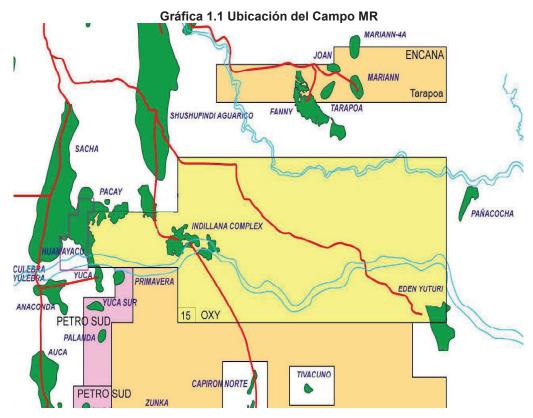
1.2 GENERALIDADES DEL CAMPO

1.2.1 BREVE RESEÑA HISTÓRICA DEL CAMPO

El campo MR fue descubierto en 1985 e inició su producción en 1993, a finales del mismo año se perforó el pozo MR Norte-1, el mismo que se localiza en lo alto de la estructura y sirvió para confirmar la existencia de las arenas productoras: "U Inferior", "T Principal" y "T Superior".

En el año 1985 se perforó el pozo MR-1 al sur de la estructura, descubriendo acumulaciones de petróleo que se oscilaban entre 18 y 27 grados API en las areniscas Napo "U Inferior", "T Principal" y "T Superior".

Hasta el año 2003 se perforaron 10 pozos y durante el año 2004 se perforaron cinco pozos más en la parte norte del campo, produciendo una delineación bastante confiable de la estructura norte y noroeste.


¹ Debido a la confidencialidad de la información del Campo de estudio, se optó por designar un nombre ficticio denominado Campo MR

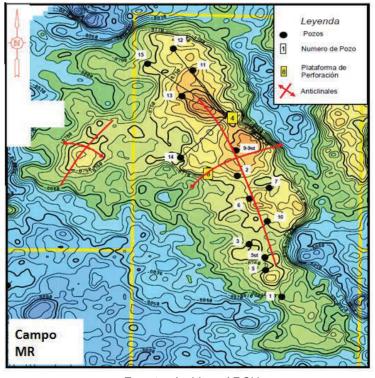
En el año 2005 se utilizó la técnica de perforación de pozos "sidetrack", y se perforaron dos pozos más con esta técnica.

Durante los años siguientes hasta la actualidad se crearon más pozos realizando expansiones en las plataformas².

1.2.2 UBICACIÓN DEL CAMPO

El campo MR se encuentra localizado en el cantón Shushufindi, provincia de Sucumbíos, con una latitud de -0.4 y una longitud de -76.6167³. La ubicación del Campo MR se puede apreciar la en la gráfica 1.1.

Fuente: Archivos ARCH


1.3 GEOLOGÍA.

El campo MR, es una acumulación estructural con cierre en sus cuatro costados,

² Archivo reservorio de PETROAMAZONAS

³ http://mapasamerica.dices.net/ecuador/mapa.php?nombre=Limoncocha&id=10567

compuesto por dos anticlinales. En el primer anticlinal se localizan la mayoría de pozos perforados, mientras que el segundo anticlinal es de menor área y se encuentra en dirección Noreste⁴, en la gráfica 1.2 se puede observar de mejor manera los anticlinales que presenta el Campo MR con sus respectivas direcciones.

Gráfica 1.2 Sección sísmica y estructural del Campo MR

Fuente: Archivos ARCH

El Campo MR posee dos yacimientos productores principales que son: el yacimiento U inferior y el yacimiento T Principal⁵.

El Yacimiento "U" inferior se caracteriza por presentar una unidad basal fluvial yuxtapuesta por una unidad de depósitos marinos cercanos, un canal estuario bioturbado rellenado por facies que cambian de secuencia normal a depósitos de marea⁶.

⁴ Documentos ARCH

⁵ Archivo Reservorio Petroamazonas

⁶ Documentos ARCH

El Yacimiento "T" principal es muy pobre debido a la acumulación de parches de arena y está formado por la Arenisca "T" Superior y por la Arenisca "T" Inferior. La Arenisca "T" superior está constituida por depósitos glauconíticos de bancos de arena aislados dentro de facies marinas, mientras que la Arenisca "T" Inferior se caracteriza por la presencia de arenisca cuarzosa.

1.3.1 ESTRATIGRAFÍA.

La estratigrafía del Campo MR se describe en la tabla 1.1, la misma que manifiesta la secuencia de la disposición de las diferentes formaciones.

Tabla 1.1: Estratigrafía del Campo MR

Tabla 1.1. Estratigrana del Campo MR						
EDAD	FORMACIÓN	TRAMOS	TOPES	AMBIENTE DE DEPOSITACIÓN		
Cuaternario	Cuaternario Indeferenciado		-	Continental		
Mioceno	Chalcana Inferior		4,266'	Continental		
Oligoceno	Orteguaza		6,020'	Marino		
Eoceno	Tiyuyacu		7,115'	Continental		
		Conglomerado Tiyuyacu	8,767'	Continental		
Paleoceno	Tena		9,345'	Continental		
Cretáceo Superior	Napo	Arenisca "M-1"	10,133'	Marino		
		Lutita Napo	10,189'			
		Caliza "M-1"	10,616'			
		Caliza "M-2"	10,942'			
		Arenisca "M-2"	10,983'			
		Caliza "A"	11,032'			
		Arenisca "U"	11,100'			
		Superior				
		Arenisca "U" Media"	11,174'			
		Arenisca "U" Inferior	11,197'			
		Base Arenisca "U" Inferior	11,244'			
		Caliza "B"	11,260'			
		Arenisca "T" Superior	11,353'			
		Arenisca "T" Principal	11,489'			
		Base Arenisca "T" Principal	11,566'			
		Basal Napo	11,599'			
		Caliza "C"	11,657'			

Fuente: Archivos ARCH

1.3.2 DESCRIPCIÓN LITOLÓGICA

La descripción litológica del Campo MR se lo ha realizado en referencia a uno de sus pozos, permitiendo diferenciar los distintos tipos formaciones según la meteorización de las rocas. Así, el Campo MR está compuesto por las siguientes formaciones:

1.3.2.1 Formación Chalcana

Dentro de la formación Chalcana se encuentra la formación Chalcana Inferior y presenta las siguientes características:

La Formación Chalcana Inferior: Se encuentra a una profundidad de 4,266 pies, presenta arcillolitas con intercalaciones de limolitas, y trazas de areniscas en la base con las siguientes características:

- Las arcillolitas son rocas sedimentarias de color café rojizo a gris claro, presentan una textura suave y cerosa; en algunas partes es terrosa y presenta ligeramente nódulos calcáreos.
- Las limolitas son rocas sedimentarias y a esta profundidad están compuestas principalmente por limo, son de color amarillo rojizo a color café rojizo. Presentan una textura suave, terrosa, no calcárea con varios cortes irregulares.

1.3.2.2 Formación Orteguaza

Se encuentra a una profundidad de 6,020 pies, es una formación de gran espesor lutítico, presenta intercalaciones de limolitas, carbón en la mitad de la formación y lentes de arenisca en la parte basal con las siguientes características:

- Las lutitas son rocas sedimentarias de color gris verdoso a gris claro, de textura suave a moderadamente dura, su textura es cerosa, laminar y presenta inclusiones de micro pirita.
- Las limolitas son rocas sedimentarias, de color café oscuro a gris claro, su textura es terrosa, no calcárea, suave a moderadamente dura con incrustaciones de arenisca a grano muy fino.

- El carbón es una roca sedimentaria de color negro a café oscuro, su textura quebradiza a moderadamente dura y presenta inclusiones de micro pirita.
- La arenisca es una roca sedimentaria, su color va desde gris clara a blanca, el grano va de fino a muy fino, es cuarzosa, de moderada selección, de pobre porosidad con inclusiones de glauconita y micro pirita. Sin manifestación de hidrocarburos.

1.3.2.3 Formación Tiyuyacu

Dentro de la formación Tiyuyacu se encuentran las siguientes sub formaciones:

Tope de la formación Tiyuyacu: La formación Tiyuyacu se encuentra a una profundidad de 7,115 pies, constituida por arcillolitas con intercalaciones de limolitas y lentes de areniscas, en la parte superior y conformada además por dos cuerpos de conglomerado de tipo cuarzoso y chert, con las siguientes características:

- La arcillolita es una roca sedimentaria de color blanco a gris clara, con textura suave y moderadamente dura, cerosa, no calcárea, lavable y gomosa.
- La limolita es una roca sedimentaria de color gris clara a café rojiza con textura terrosa, no calcárea, gradando a una arenisca de grano muy fino.
- La Arenisca es una roca sedimentaria formada por pequeños granos de arena compactados, de color blanca a gris clara, moderadamente dura, de grano fino a muy fino, cuarzosa, de porosidad no visible, ocasionalmente con inclusiones de glauconita y no exhibe la presencia de hidrocarburos.
- El conglomerado es una roca sedimentaria de color blanco a gris claro, de grano grueso, suelto, cuarzoso, presenta pobre selección y porosidad no visible.

El Conglomerado Basal: Se encuentra a una profundidad de 8,767 pies, constituida por conglomerados tipo chert con intercalaciones de arcillolitas, delgados niveles de arenisca en la base y presenta las siguientes características:

- El conglomerado es de tipo chert, de color gris oscuro a mostaza, presenta fragmentos rotos angulares, de textura dura a muy dura y porosidad no visible.
- La arcillolita es una roca sedimentaria, de textura suave a moderadamente dura, cerosa a limosa, no calcárea, de color café rojiza a crema.
- La arenisca a esta profundidad es moderada selección, presenta cemento silíceo, la porosidad no es visible, el grano que presenta es suelto y va de tamaño muy fino a fino, es de color gris a blanco.

1.3.2.4 Formación Tena

La formación Tena se encuentra a una profundidad de 9,345 pies, presenta una secuencia homogénea de arcillolitas intercaladas con niveles continuos de limolitas y presentan las siguientes características:

- Las arcillolitas son de color café rojizo a blanco, su textura terrosa a ceroso, suave, no calcárea lavable y gomosa.
- La limolita es de textura terrosa, no calcárea, de color café a café rojizo, en algunas partes presenta gradaciones de arenisca de grano muy fino.

1.3.2.5 Formación Napo

La formación Napo presenta manchas de hidrocarburo, bajos niveles de gas, se compone por una secuencia de lutitas con intercalaciones de arenisca y caliza. Además a esta profundidad se localizan las areniscas U inferior y T principal. Dentro de la formación Napo se encuentran las siguientes sub formaciones:

Arenisca M-1: Es de poco espesor, se localiza a una profundidad de 10,133', se encuentra definida por areniscas con intercalaciones de lutitas y presenta las siguientes características:

 Las areniscas son de color blanco a transparente, con grano moderadamente duro, suelto, cuarzoso, de moderada selección, con pobre porosidad visible, con inclusiones de micro pirita, con cemento calcáreo, ocasionalmente con cemento silíceo y sin manifestación de hidrocarburo. La lutita es suave, no calcárea, de textura terrosa y su color va de café amarillenta a gris verdosa.

Lutita Napo: Se encuentra a una profundidad de 10,189 pies, definida por una secuencia lutítica, presenta escasos lentes de caliza y presenta las siguientes características:

- La lutita es de color gris oscuro a negro, de textura laminar, cerosa, moderadamente suave a dura, en algunas partes es ligeramente calcárea con inclusiones de micro mica y micro pirita.
- La caliza no presenta alguna manifestación de hidrocarburos, es de color gris a crema y de porosidad no visible.

Caliza M-1: Presenta una profundidad de 10,616 pies, formada por caliza e intercalaciones de lutitas y presenta las siguientes características.

- Las calizas a esta profundidad son de color crema a gris, de textura suave a moderadamente dura, sin manifestación de hidrocarburos y con porosidad poco visible.
- Las lutitas son de color gris a gris oscuro, de textura suave a moderadamente dura, laminar, cerosa, no calcárea, con incrustaciones de micro pirita.

Caliza M-2: Se encuentra a una profundidad de 10,942 pies, formada por calizas e intercalaciones de lutitas, presentando las siguientes características:

- La piedra caliza a esta profundidad es de color crema a gris clara, no presenta alguna manifestación de hidrocarburos, la porosidad es poco visible y su textura es suave.
- La lutita es moderadamente dura, presenta una textura cerosa a terrosa, no calcárea, con inclusiones de micro pirita.

Arenisca M-2: Su profundidad es de 10,983 pies, se encuentra formada por arenisca con intercalaciones de lutitas y calizas; presenta las siguientes características:

- La arenisca a esta profundidad es de color gris claro a transparente, de grano fino a medio, cuarzoso, suelta, selección moderada, presenta cemento calcáreo, de porosidad pobremente visible con inclusiones de glauconita y no presenta alguna manifestación de hidrocarburo.
- La lutita es de color gris a gris clara, de textura laminar, fisil, moderadamente dura, cerosa, terrosa, no calcárea con inclusiones de micro pirita.
- La caliza es de color crema a crema con gris, suave, con porosidad no visible y no presenta manifestación alguna de hidrocarburo.

Caliza A: Se encuentra a una profundidad de 11,032 pies, constituida principalmente por calizas finas con intercalaciones de lutitas y presenta las siguientes características:

- La caliza oscila de un color gris claro a crema, su textura es moderadamente dura a suave, de porosidad no visible y sin manifestación alguna de hidrocarburos.
- Lutita de color gris a gris claro, de textura moderadamente suave a dura, laminar, cerosa, terrosa, no calcárea y presenta además inclusiones de micro pirita.

La Arenisca U está comprendida por areniscas con intercalaciones de calizas y lutitas, de acuerdo a las características que presenta el reservorio se ha dividido a la arenisca U en tres tramos:

Arenisca U Superior: Se encuentra a una profundidad de 11,100 pies, conformada por niveles de arenisca e intercalaciones de lutita y caliza; y presentan las siguientes características:

- La arenisca es de color blanca a transparente, de grano muy fino a fino, de selección regular, con cemento calcáreo, porosidad pobremente visible, cuarzosa, con abundantes inclusiones de glauconita y pirita, sin manifestación de hidrocarburos.
- Lutita de color gris a gris clara, laminar, cerosa, terrosa, no calcárea, suave a moderadamente dura y con incrustaciones de micro pirita.

 Caliza de color gris clara a crema moteada con gris, sin manifestación de hidrocarburos, moderadamente dura a suave, de porosidad no visible.

Arenisca U Media: Se encuentra a una profundidad de 11,174 pies y está comprendida por areniscas con intercalaciones de calizas, lutita y a continuación se presentan las siguientes características:

- La arenisca a esta profundidad es de color gris clara a translucida, de textura cuarzosa, de grano muy fino, buena selección, con cemento calcáreo, con inclusiones de glauconita, porosidad pobremente visible y sin manifestación de hidrocarburos.
- La caliza es de color gris claro a crema, moderadamente dura a suave, porosidad no visible y sin manifestación de hidrocarburos.
- La lutita es de color gris a gris claro, laminar, cerosa, fisil, terrosa, no calcárea y además presenta inclusiones de micro pirita

Arenisca U Inferior: Se encuentra a una profundidad de 11,197 pies y está compuesta por areniscas con intercalaciones de lutitas que presenta las siguientes características:

- Las areniscas son de color café claro a translucidos, de grano fino a muy fino, de cemento ligeramente calcáreo, porosidad poco visible, pobre manifestación de hidrocarburo.
- Las lutitas son de color gris a gris claro, laminar, cerosa, limosa, no calcárea, moderadamente dura a suave, fisil, con inclusiones de micro pirita.
- La base de la Arenisca U Inferior se encuentra a 11,244 pies y está formado por lutitas.
- Las lutitas a esta profundidad presentan un color gris, estructura laminar, suave, cerosa, terrosa, no calcárea y presenta inclusiones de micro pirita.

Caliza B: su tope se encuentra a 11,260 pies y se encuentra formada por calizas con intercalaciones de lutitas que presenta las siguientes características:

Las lutitas se caracterizan por suaves a moderadamente duras, terrosas,

- con una porosidad poco visible, de color gris claro a blanco y no presentar alguna mancha de hidrocarburo.
- Las lutitas son moderadamente duras, laminares, semi- astillosa, terrosa, limosa, no calcárea, de color gris oscuro a gris.
- La Arenisca T, ésta comprendida por areniscas con intercalaciones de lutita y esporádicos niveles de caliza, de acuerdo a las características del reservorio, la arenisca T es subdividida en dos tramos.

Arenisca T Superior: Se encuentra a una profundidad de 11,353 pies y está compuesta de arenisca con intercalaciones de lutitas, calizas y se presentan las siguientes características:

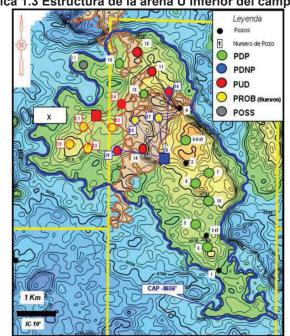
- La arenisca a esta profundidad tiene un color griseo claro hasta llegar a transparente, de grano muy fino a fino, cuarzosa, de selección moderada, con cemento calcáreo, con pobre porosidad visible, inclusiones de glauconita y micro pirita, en la parte inferior de la arenisca T Superior se presenta trazas de hidrocarburos.
- La lutita es de color gris oscuro a gris, laminar, semi astillosa, terrosa, limosa, no calcárea, de textura suave a moderadamente dura.
- La caliza es de color gris clara a crema, la porosidad es poco visible, no presenta manifestaciones de hidrocarburos y su textura es suave a moderadamente dura.

Arenisca T principal: Se encuentra a una profundidad de 11,489 pies y está compuesta por arenisca intercalada con lutita, y se presenta las siguientes características:

- Arenisca de color blanco a café clara, de grano muy fino a fino, suelta, cuarzosa, con cemento calcáreo, de pobre porosidad visible.
- Lutita de color gris oscura a gris, laminar, semi astillosa, terrosa, limosa, no calcárea y textura suave a moderadamente dura.

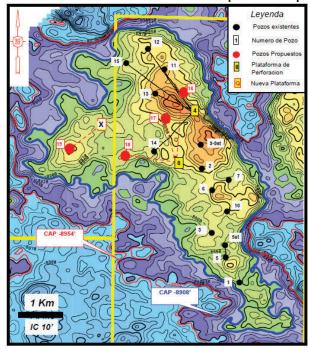
Base Arenisca T principal: Su tope se encuentra a 11,566 pies y está compuesta por lutitas y delgados lentes de calizas. A continuación se presentan algunas de sus características:

- La lutita es de color grisáceo oscuro, laminar, semi astillosa, no calcárea.
- La caliza es de color crema moteada a gris clara, de textura suave, porosidad no visible y sin manifestación de hidrocarburos.


Basal Napo: se encuentra a 11599 pies, formado por lutitas de color gris claro a gris oscuro, suave, laminar, cerosa, no calcárea y con inclusiones de micro pirita.

Caliza C: el tope se encuentra a 11657 pies y se encuentra compuesta por caliza intercalada con lutita. Y a continuación se presenta sus características:

- La caliza es de color crema a gris clara, de textura suave, sin manifestación de hidrocarburos y de porosidad no visible.
- La lutita es de color gris oscura a gris clara, de textura suave, laminar, fisil, cerosa, no calcárea.


1.3.3 ESTRUCTURA

Mediante la sísmica 3D, se determinó que el campo MR presenta un principal anticlinal en la dirección Noroeste, con un pliegue muy pronunciado hacia el este, como se lo puede apreciar en las figuras 1.3. y 1.4.

Gráfica 1.3 Estructura de la arena U inferior del campo MR

Fuente: Archivos ARCH

Gráfica 1.4 Estructura de la arena T Principal del campo MR

Fuente: Archivos ARCH

1.4 CARACTERÍSTICAS DEL RESERVORIO

Las arenas productoras presentes en el campo MR son las arenas: "U" inferior, "T" Superior y "T" Principal de la Formación Napo.

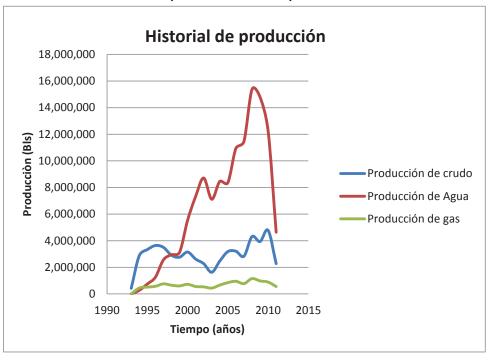
Las arenas productoras del campo son: U Media, U inferior, T Superior, T principal y Hollín Superior, siendo los yacimientos: U Inferior y T Principal los que presentan mayor potencial de productividad⁷.

La tasa individual de producción inicial de cada pozo se encuentra en función de la energía del reservorio, cuya limitación se ve reflejada por la energía o presión de fondo fluyente que oscila en un rango de 500 a 1000 psi por encima de la presión del punto de burbuja. Los pozos del campo de estudio desde el inicio de su desarrollo se completaron con bombas electro- sumergibles y se prevé que se continuará con esta técnica debido a su alta eficiencia.

⁷ Archivo reservorio de PETROAMAZONAS

1.4.1 HISTORIAL DE PRODUCCIÓN

Durante el inicio de la explotación petrolera, los yacimientos del Campo MR han presentado una alta productividad de agua debido al efecto combinado de la configuración estructural (empuje lateral y de fondo), existiendo además una desfavorable relación de movilidad agua-petróleo, el mismo que se da debido a la viscosidad que presentan los crudos semi- viscosos.


La producción del Campo MR es mediante técnicas de sistemas de levantamiento artificial tales como: Bombeo Electrosumergible y Bombeo Hidráulico.

En la tabla 1.2 se puede apreciar el historial de producción del Campo MR desde el año 1993 hasta el 2011, la misma que manifiesta una gran producción de agua, a partir del año 2011 la producción del Campo solo se podrá observar en gráficas debido a la confidencialidad de la información.

Tabla 1.2 Historial de la producción del campo MR hasta el año 2011

DATOS PROMEDIOS DE PRODUCCIÓN DEL CAMPO MR					
AÑO	PRODUCCIÓN DE CRUDO (BLS)	PRODUCCIÓN DE AGUA (BLS)	PRODUCCIÓN DE GAS (PCS/BF)		
1993	412.568	534	0		
1994	2.873.153	271.105	444.405		
1995	3.328.764	749.056	511.618		
1996	3.633.512	1.258.229	573.057		
1997	3.498.972	2.558.434	757.230		
1998	2.903.140	2.946.841	655.361		
1999	2.757.170	3.120.856	603.752		
2000	3.145.684	5.536.386	723.932		
2001	2.614.536	7.326.947	558.036		
2002	2.272.122	8.712.388	530.768		
2003	1.622.840	7.114.690	438.328		
2004	2.467.122	8.462.686	660.540		
2005	3.176.551	8.357.125	849.173		
2006	3.206.526	10.944.834	950.845		
2007	2.829.800	11.462.447	774.009		
2008	4.308.565	15.373.951	1.152.424		
2009	3.932.771	14.795.102	977.837		
2010	4.775.062	12.247.727	891.164		
2011	2.270.311	4.641.783	557.578		

Fuente: Archivos PETROAMAZONAS EP.

Gráfica 1.5 Historial de producción del campo MR hasta diciembre de 2011

Fuente: Documentos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

En la gráfica 1.5 se puede visualizar y concluir que la menor producción es de gas con un promedio de 663.687 PC/BF entre los años 1993 y 2011, seguida por la producción de crudo con un promedio de 66.625.322 BLS y finalmente se encuentra la producción de agua con un promedio de 2.948.904 BLS.

1.4.2 PROPIEDADES DE LOS FLUIDOS DEL CAMPO MR

Las propiedades de los fluidos definen los diferentes comportamientos y características del hidrocarburo, entre las propiedades que se darán a conocer se encuentran:

1.4.2.1 Gravedad API

La gravedad API (American Petroleum Institute), es una medida de la densidad que da a conocer cuán pesado o liviano es el petróleo, se usa universalmente para establecer el contenido de azufre, sal, corrosividad, metales, precio del crudo, entre otras propiedades más; para definir las propiedades de los fluidos en el reservorio es necesario dar a conocer la clasificación del crudo según el ° API.

- Crudos extra- pesados: se dice que el crudo es extra- pesado si el ° API es menor a 10°.
- Crudos pesados: el crudo es pesado si el ° API se encuentra en un rango mayor de 10° API y menor a 22, 3° API.
- Crudos medianos: el crudo es mediano si se encuentra en un rango mayor a 22,3° API y menor o igual a 31,1° API.
- Crudos livianos o ligeros: el crudo es liviano si se encuentra en un rango mayor a 31,1° API y menor o igual a 39° API.
- Crudos extra- livianos: se considera al crudo extra liviano si el ° API es mayor a 39.

La densidad API del Campo MR es 19° API y de acuerdo a la clasificación anterior del Instituto Mexicano de Petróleo se considera al crudo, pesado.

1.4.2.2 Factor volumétrico del petróleo

El factor volumétrico del petróleo es un factor del fluido de la formación, cuyas siglas son βo y se define como el volumen de petróleo y gas disuelto a condiciones del yacimiento dividido para el mismo volumen de petróleo a condiciones de normales o condiciones de superficie. A continuación la fórmula 1.1 define el factor volumétrico del petróleo.

$$\beta_o = \frac{V_o + V_g \text{ disuelto a CY}}{V_o \text{ a CN}}$$
 (1.1)

Dónde:

 $\beta_o = factor volumétrico del petróleo$

 $V_0 = volumen, de petróleo$

Vg = volumen de gas

CY = condiciones de yacimiento

CN = condiciones normales

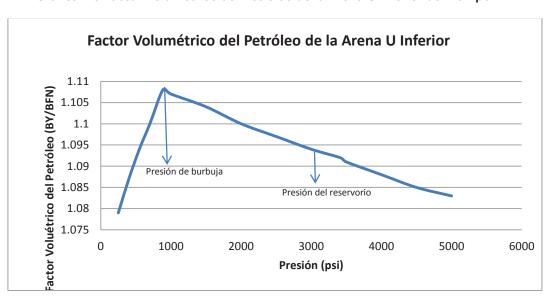

A continuación la tabla 1.3 representa un promedio del factor volumétrico del petróleo con las respectivas presiones del Campo MR.

Tabla 1.3 Presión y factor volumétrico del petróleo

	Presión (psi)	Factor Volumétrico del Petróleo (βο)
	5000	1,083
	4500	1,085
	4000	1,088
	3500	1,091
P. del reservorio	3415	1,092
	3000	1,094
	2500	1,097
	2000	1,100
	1500	1,104
	1000	1,107
P. burbuja	886	1,108
	700	1,100
	550	1,094
	400	1,087
	250	1,079

Fuente: Archivos PETROAMAZONAS EP

Gráfica 1.6 Factor Volumétrico del Petróleo de la Arena U Inferior del Campo MR

Elaborado por: Mayra Andrade- Rommy Cruz

De la gráfica 1.6 se puede analizar que a medida que disminuye la presión por debajo de la presión de burbuja aparece la primera burbuja de gas, permitiendo que el volumen de hidrocarburo líquido disminuya y aumente el volumen de hidrocarburo gaseoso liberado.

De esta manera se tiene:

Si; P > Pb = El hidrocarburo es líquido, también llamada región monofásica

Si; P < Pb = El hidrocarburo es gaseoso, también llamada región bifásica

1.4.2.3 Factor de volumétrico del gas

El factor volumétrico del gas es un factor que relaciona el volumen del gas en el yacimiento con el volumen del mismo gas en superficie o a condiciones normales y se expresa en ft cúbicos del yacimiento por pie cúbico de gas a condiciones normales. El gas tiene un mayor volumen a condiciones de superficie. A continuación la fórmula 1.2 define la relación del gas petróleo en solución.

$$\beta_g = \frac{V_g \ a \ CY}{V_o \ a \ CN} \tag{1.2}$$

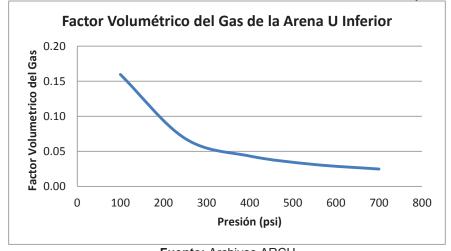

La tabla 1.4 muestra los valores de la presión con su respectivo factor volumétrico del gas:

Tabla 1.4 Factor Volumétrico del gas de la arena U Inferior del Campo MR

Presión (psi)	Factor Volumétrico del Gas (βg)
700	0,02472
550	0,03119
400	0,04326
250	0,06837
100	0,15957

Fuente: Archivos ARCH

Gráfica 1.7 Factor Volumétrico del Gas de la Arena U Inferior del Campo MR

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

La gráfica 1.7 analiza el factor volumétrico del gas que se localiza por debajo de la presión de burbuja.

1.4.2.4 Relación gas- petróleo en solución

La relación gas- petróleo se define como la cantidad de gas, medidos en pies cúbicos estándar de gas (SCF) con respecto a los barriles de petróleo producidos, también llamados barriles de petróleo a condiciones normales (STB).

La Relación Gas- Petróleo (RGP) es medida en superficie y su valor depende principalmente de la presión y temperatura del recipiente en el que se encuentra. A continuación la fórmula 1.3 define la relación del gas petróleo en solución.

$$R_s = \frac{Q_g}{Q_g} \tag{1.3}$$

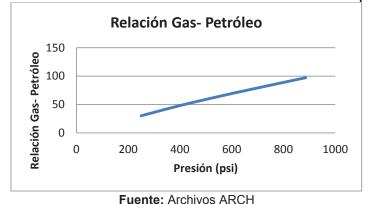

A continuación la tabla 1.5 establece la presión del Campo MR con su respectiva relación gas- petróleo en solución.

Tabla 1.5 Relación Gas-Petróleo de la Arena U Inferior del Campo MR

Presión (psi)	Relación gas- petróleo (scf/bbl)	
1000	97	
886	97	
700	79	
550	64	
400	48	
250	30	

Fuente: Archivos ARCH

Gráfica 1.8 Relación Gas Petróleo de la Arena U Inferior del Campo MR

Elaborado por: Mayra Andrade- Rommy Cruz

En la gráfica 1.8 se observa la relación gas- petróleo únicamente en la zona bifásica, es decir, cuando la presión es menor a la presión de burbuja. A partir de la presión de burbuja se libera la primera burbuja de gas y progresivamente la cantidad de gas disuelto va disminuyendo, por lo tanto la relación gas- petróleo también disminuye de manera lineal.

1.4.2.5 Densidad del petróleo

La densidad del petróleo es la relación entre la masa y el volumen de una sustancia, se mide en gr/cc y las variaciones que presenta la densidad a diversas presiones se deben a la diversidad de concentraciones del crudo. A continuación la fórmula 1.4 presenta la densidad del petróleo.

$$\partial_o = \frac{m}{v} \tag{1.4}$$

En la tabla 1.6 se visualiza la presión del petróleo versus la densidad del petróleo:

Tabla 1.6 Densidad del Petróleo de la Arena U Inferior del Campo MR

Tubla 110 Bollon	Presión (psi)	Densidad- petróleo (gr/cm3)
	5000	0,8924
	4500	0,8903
	4000	0,8881
	3500	0,8857
Presión del reservorio	3415	0,8853
	3000	0,8833
	2500	0,8808
	2000	0,8783
	1900	0,8777
	1800	0,8772
	1700	0,8767
	1600	0,8762
	1500	0,8757
	1400	0,8751
	1300	0,8746
	1200	0,8741
	1100	0,8735
	1000	0,8730
	900	0,8724
Presión de burbuja	886	0,8978

Fuente: Archivos ARCH

1.4.2.6 Composición del crudo

La composición del crudo proveniente de la Cuenca Oriente del Ecuador varía de acuerdo a la ubicación de los diferentes reservorios, diagénesis y a sus ambientes de depositación.

A continuación se presenta la gráfica 1.9, la misma que presenta la composición y estructura del hidrocarburo del Campo MR y se observa que el elemento químico predominante es el componente C36+ con un porcentaje mayor al 50%, mientras el resto de componentes del hidrocarburo presentes se encuentran en un margen menor al 10%, la gráfica 1.9 se elaboró mediante la tabla descrita en el Anexo 1.

Gráfica 1.9 Composición del hidrocarburo del campo MR

Fuente: Documentos PETROAMAZONAS

1.4.2.7 Temperatura

Propiedad que determina el nivel térmico de un fluido o cuerpo, siendo sus unidades de medida la escala Kelvin, Fahrenheit y Celsius. La escala que se utiliza en para determinar la temperatura en el sector petrolero, es la escala Fahrenheit.

La temperatura utilizada en el campo MR es 215 °F.

1.4.2.8 Compresibilidad del petróleo (Co)

Es la medida del cambio de volumen con el cambio de presión a una temperatura constante y se encuentra en función de la profundidad y de las capas

suprayacentes. A continuación la fórmula 1.5 presenta la compresibilidad del petróleo.

$$Co = \frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_{Tote} \tag{1.5}$$

Dónde:

 $v = Volumen, pie^3$

 $\partial v = derivada del volumen$

 $\partial P = derivada de la presión, psi$

Tcte = *temperatura constante* (°F)

1.4.2.9 Saturación

Es un indicativo de la cantidad de fluido existente en el medio poroso, también conocido como la relación que existe entre el volumen de un fluido en los poros con el volumen total de los poros y se expresa en porcentaje (%). Así, si queremos estimar la cantidad de petróleo o de cualquier otro fluido presente en un yacimiento es necesario establecer la fracción del volumen poroso ocupado por dicho fluido, como lo indica la fórmula 1.6

$$S = \frac{V_f}{V_T} \tag{1.6}$$

Dónde:

S = Saturación

 $V_f = Volumen del fluido$

 $V_t = Volumen total$

La sumatoria de las saturaciones de todos los fluidos presentes en el yacimiento es igual a uno, sin embargo si el yacimiento es sub-saturado (cuando el gas se encuentra disuelto en el petróleo) la sumatoria de los fluidos se la encuentra en la fórmula 1.7

$$S_w + S_o = 1 \tag{1.7}$$

Dónde:

 $S_w = Saturación del agua$

 $S_o = Saturación del petróleo$

De igual manera, la sumatoria de la saturación en yacimientos saturados o yacimientos bifásicos llamados así, porque el yacimiento presenta una zona liquida y otra zona gaseosa, se presenta a continuación en la fórmula 1.8

$$S_w + S_o + S_g = 1 (1.8)$$

Dónde:

 $S_w = Saturación del agua$

 $S_o = Saturación del petróleo$

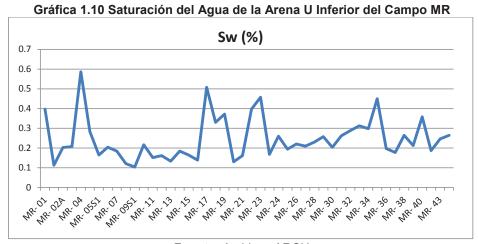
 $S_g = Saturación del gas$

Entre las saturaciones más conocidas se tiene:

1.4.2.9.1 Saturación de agua connata

La saturación de agua connata, es la saturación de agua que quedó en el yacimiento inicialmente cuando fue descubierto y debido a las fuerzas de retención que presenta el yacimiento, este fluido no ha podido ser desplazado por los hidrocarburos que migraron del yacimiento; además, se considera a la saturación de agua connata inmóvil en el yacimiento excepto en la zona de transición o intervalo en donde se separan dos fluidos presentes en el reservorio. Cuando se inyecta agua en el reservorio, se ha demostrado que el agua de producción es diferente a la composición del agua connata razón por la cual se concluye que el agua connata es desplazada por la inyección de agua.

1.4.2.9.2 Saturación de agua irreductible (Swirr)


Es la saturación de agua que no se puede reducir y permanece como fase no continúa en el reservorio.

1.4.2.9.3 Saturación de residual (Swr)

La saturación de agua residual es el agua que queda en el yacimiento después de un proceso de desplazamiento de hidrocarburos. Se considera, además que

cualquier clase de fluido puede ser residual, si se aplica este concepto.

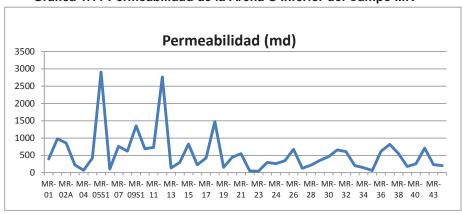
A continuación se presenta la gráfica 1.10 realizada mediante el Anexo 2 y detalla el porcentaje de las saturaciones de los pozos del Campo MR.

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

1.4.3 PROPIEDADES DEL RESERVORIO

1.4.3.1 Permeabilidad

Es la capacidad que tiene una roca para permitir el paso del fluido a través de su espacio poroso, los tipos de permeabilidad que existen son:


1.4.3.1.1 Permeabilidad Absoluta

Es la capacidad que tiene una roca para permitir el paso del fluido cuando esta se encuentra saturada al 100) por un solo fluido.

1.4.3.1.2 Permeabilidad Efectiva

Es la capacidad que tiene una roca para permitir el paso del fluido cuando esta se encuentra saturada por dos o más fluidos.

A continuación se presenta la gráfica 1.11, realizada a partir del Anexo 3, el mismo que representa la permeabilidad del Campo MR de la Arena U. Inferior.

Gráfica 1.11 Permeabilidad de la Arena U Inferior del Campo MR

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

1.4.3.1.3 Permeabilidad Relativa

La permeabilidad relativa es la habilidad relativa de un fluido a fluir en presencia de otros fluidos y cuantitativamente está definida como la relación entre la permeabilidad efectiva de un fluido en particular (con una saturación dada) y la permeabilidad absoluta o base (en condiciones de su saturación total), entendiéndose por permeabilidad base, a la permeabilidad efectiva del petróleo, medida a una saturación irreductible de agua.

El efecto neto de la reducción de la tensión interfacial es aumentar la permeabilidad relativa de cada fase; a continuación la fórmula 1.9 y 1.10 describen la permeabilidad relativa.

$$K_r = \frac{K_{efec}}{K} \tag{1.9}$$

$$K_r = \frac{K_{efec}}{(K_o)_{Swirr}} \tag{1.10}$$

Dónde:

 $K_{efec} = Permeabilidad\ efectiva$

K = Permeabilidad

 $K_r = Permeabilidad relativa$

 $(K_o)_{Swirr}$ = Permeabilidad del petróleo medida a la saturación de agua irreductible

A continuación se presenta la tabla 1.7, la misma que presenta las permeabilidades relativas versus la saturación del agua del Campo MR.

Tabla 1.7 Permeabilidades Relativas del Campo MR

SW	KRO	KRW
0,114	1,0000	0,0000
0,161	0,7684	0,0093
0,207	0,5724	0,0213
0,254	0,4100	0,0347
0,301	0,2789	0,0490
0,347	0,1768	0,0640
0,394	0,1012	0,0796
0,440	0,0493	0,0958
0,487	0,0179	0,1125
0,533	0,0032	0,1295
0,580	0,0000	0,1470

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

A continuación se presenta la gráfica 1.12, la misma que se realizó en función de la tabla 1.7 y representa las permeabilidades relativas de las fases: agua y petróleo versus los diversos valores de la saturación de agua.

 Gráfica 1.12 Permeabilidades Relativas vs Saturaciones de Agua

 1.0000

 0.8000

 0.6000

 0.4000

 0.2000

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

0.400

0.600

0.800

0.200

0.0000

0.000

Las rocas reservorio, son las rocas en las que se acumulan los hidrocarburos y deben presentar excelentes propiedades de permeabilidad y porosidad, así mismo es indispensable que se encuentren dentro de una trampa para impedir que los fluidos sigan fluyendo. La mayor parte de rocas reservorio son sedimentarias, tales como areniscas, calizas y dolomitas.

Tabla 1.8 Propiedades de la roca

PARÁMETROS	ARENISCA U INFERIOR	ARENISCA T PRINCIPAL	UNIDADES	SÍMBOLO
Permeabilidad	250	650	Md	K
Porosidad	0,164	0,152	%	Ø
Espesor	52,76	42,68	ft	Е

Fuente: Archivos PETROAMAZONAS EP.

1.4.3.2 Porosidad

Es la capacidad de la roca para contener fluidos y se define como la relación entre el volumen vacío de la roca, llamado también volumen poroso y el volumen total de la roca. La porosidad se mide en porcentaje, a continuación la fórmula 1.11 define la porosidad.

$$\emptyset = \frac{V_p}{V_T} \tag{1.11}$$

Dónde:

 $\Phi = Porosidad$

 $V_p = Volumen poroso$

 $V_T = Volumen total$

1.4.3.2.1 Porosidad Efectiva

Es el volumen de poros interconectados respecto al volumen total de la roca, es decir excluye a los poros aislados y el volumen de los poros ocupado por el agua adsorbida por minerales de arcilla u otros granos⁸.

1.4.3.2.2 Porosidad Absoluta

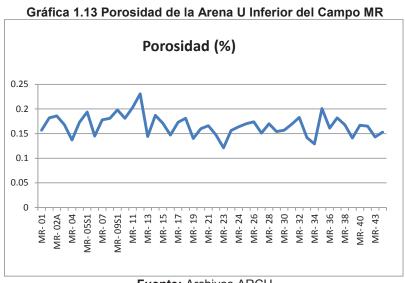
Es el volumen total poroso y no tiene en cuenta, si los poros se encuentran conectados. Existen dos tipos de porosidad:

 Porosidad Primaria: es aquella que se genera en el proceso de depositación de los sedimentos. Los factores que afectan a la porosidad primaria son:

⁸ http://www.glossary.oilfield.slb.com/es/Terms/e/effective_porosity.aspx

Empaquetamiento: es la configuración geométrica de la distribución de las partículas y describe el tipo de arreglo de los granos de arena, entre ellos se pueden encontrar: empaquetamiento cubico, empaquetamiento hexagonal.

Compactación: es la presión ejercida sobre las rocas las capas supra-adyacentes.


Angularidad y Redondez: se refiere al entrelazamiento de las partículas.

Cementación: es el material que mantiene unido los granos de las rocas.

Selección: se refiere al tamaño y la forma de las partículas. Una roca bien seleccionada es la que tiene tamaño y forma uniforme.

 Porosidad Secundaria: se produce después de la depositación como consecuencia de agentes geológicos tales como fracturamiento, lixiviación, entre otras.

A continuación la gráfica 1.13 describe la porosidad de la Arena U- Inferior y fue realizada mediante el Anexo 4.

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

La tabla 1.9 indica las propiedades de la roca como: porosidad, permeabilidad y espesor de las Arenas U. Inferior y T principal.

Tabla 1.9 Propiedades de la roca

PARÁMETROS	ARENISCA U INFERIOR	ARENISCA T PRINCIPAL	UNIDADES	SÍMBOLO
Permeabilidad	250	650	Md	K
Porosidad	0,164	0,152	%	Ø
Espesor	52,76	42,68	Ft	Ē

Fuente: Archivos PETROAMAZONAS EP

De la tabla 1.10 se concluye que la Arena T principal se encuentra sub- saturada al igual que la Arena U Inferior, debido a que la presión original del reservorio es mayor que la presión de saturación o presión de burbuja; además en la tabla 1.10 ratifica lo dicho y muestra un resumen de las propiedades del Campo MR.

Tabla 1.10 Propiedades del campo MR

		or oumpo mix	1	1
PARÁMETROS	ARENISCA U	ARENISCA T	UNIDADES	SÍMBOLO
	INFERIOR	PRINCIPAL		
Temperatura del reservorio	215	220	°F	Tr
Gravedad	18.5	28.8	°API	
Densidad del petróleo	0.943	0.877	gr/cc	Δο
Factor volumétrico inicial	1,1528	1,261	(Bbl/STB)	Boi
Viscosidad inicial del petróleo	13.089	1.1	Ср	Мо
Presión de burbuja	886	977	Psi	Pb
Compresibilidad del petróleo	6.91	13.87	(1/psi*10E-6)	Co a Pb
Factor volumétrico a Pb	1.173	1.295	Bbl/STB	Bo a Pb
Viscosidad del petróleo a Pb	9.48	0.87	Ср	Uo a Pb
Permeabilidad	250	650	Md	K
Porosidad	0,164	0,152	%	Ø
Espesor	52,76	42,68	Ft	Е
Presión inicial	3842	3800	Psi	Pi
Presión del reservorio	3415	2851	Psi	Pr
Relación gas- petróleo	129	200		GOR

Fuente: Archivos PETROAMAZONAS EP.

1.4.4 PETRÓLEO EN SITIO

El petróleo original en sitio (POES) es el volumen total de petróleo estimado, que existe originalmente en el yacimiento y se lo determina en base a la información geológica, geofísica, petrofísica y de ingeniería de yacimientos⁹.

A continuación mediante la fórmula 1.12, indica el cálculo del POES necesarios para el cálculo de las arenas principales.

⁹ Archivo reservorio de PETROAMAZONAS

$$POES = \frac{7758 * V_{roca} * \emptyset * S_o}{B_{oi}}$$
 (1.12)

Dónde:

 $V_R = Volumen de la roca$

 $\Phi = Porosidad$

 $S_o = Saturación de petróleo$

 $B_{oi} = Factor volumétrico inicial de petróleo$

La tabla 1.11 presenta los datos de área, volumen de la roca, porosidad, saturación del agua y factor volumétrico del petróleo inicial necesarios para el cálculo del POES de las Arenas: U Inferior, T Superior y T principal.

Tabla 1.11 Características de las principales arenas para el cálculo del POES del Campo MR

Nombre del yacimiento	Área (acre)	Volumen de la roca (acre- ft)	Porosidad (Ø) %	Saturación de agua (Sw) %	Factor Volumétrico Inicial (STB/bbl)
U Inferior	1,082	133.272	16,15	10,3	1,09
T Superior	1,717	65.513	15,35	24,7	1,16
T Principal	2,157	107.332	17,2	19,6	1,16

Fuente: Archivos PETROAMAZONAS.

La tabla 1.12 presenta los resultados obtenidos del petróleo original en sitio (POES) de las Arenas: U Inferior, T Superior y T principal del Campo MR, mediante la fórmula 1.12.

Tabla 1.12 Cálculo del POES para las principales arenas del MR

Nombre del yacimiento	POES (BIs)	POES (MMBIs)
U Inferior	137.412.791	137,41
T Superior	50.643.374	50,64
T Principal	99.267.139	99,27

Fuente: Documentos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

1.4.5 FACTOR DE RECOBRO

El factor de recobro es el porcentaje de petróleo o gas en sitio que puede ser recuperado mediante técnicas de producción con la tecnología disponible y

presenta una relación directa con el mecanismo de producción del yacimiento¹⁰. El cálculo del factor de recobro hasta el año 2011 se lo puede observar en la tabla 1.13.

Tabla 1.13 Cálculo del factor de recobro para las principales arenas del Campo MR

Nombre del yacimiento	POES (BIs)	Producción hasta el año 2011 (Bls)	Factor de recobro (fr)
U Inferior	137.412.791	29.939.590	4,59
T Superior	50.643.374	19.465	0,0004
T Principal	99.267.139	21.147.771	4,69

Fuente: Archivos ARCH

Elaborado por: Mayra Andrade- Rommy Cruz

1.4.6 RESERVAS

Las reservas son volúmenes de hidrocarburos que existen en el yacimiento, accesibles para la extracción y/o recuperación de crudo y se clasifican principalmente en: reservas probadas, reservas no probadas, reservas remanentes.

1.4.6.1 Reservas probadas

Las reservas probadas son volúmenes de hidrocarburos que existen en el yacimiento, determinados mediante resultados obt enidos con la geología, perforación de pozos y pruebas de producción, dando como resultado un alto nivel de confianza para la recuperación de crudo¹¹, como se lo presenta en la fórmula 1.13.

$$Reservas(BF) = POES(BF) * \frac{Fr}{Boi(\frac{Bls}{RF})}$$
(1.13)

Dónde:

 $F_R = Factor de recobro$

 $B_{oi} = Factor\ volum\'etrico\ inicial\ de\ petr\'oleo$

¹⁰Archivos producción ARCH

¹¹Archivos reservorio ARCH

1.4.6.2 Reservas no probadas.

Las reservas no probadas son reservas que no disponen de la suficiente información geológica, para asegurar el volumen de hidrocarburos¹².

1.4.6.3 Reservas remanentes.

Las reservas remanentes son volúmenes de hidrocarburos que permanecen en el yacimiento y por lo tanto son recuperables o cuantificables a cualquier fecha posterior al inicio de la producción¹³. A continuación la fórmula 1.14 representa de manera cuantitativa a las reservas remanentes.

En la tabla 1. 14 se expone el cálculo de las reservas probadas y remanentes de las Arenas U Inferior y T principal.

Tabla 1.14 Cuadro resumen del cálculo de reservas de las principales arenas productoras del Campo MR

Nombre del yacimiento	Reservas probadas a dic. del año 2011 (Bls)	Reservas Remanentes a dic. del año 2011 (BIs)
U Inferior	578.604.727,56	548.665.138
T Principal	465.957.609,32	444.809.838
Total	1.044.562.336,88	993.474.976

Fuente: Archivos ARCH

Elaborado por: Mayra Andrade- Rommy Cruz

¹²Archivos producción ARCH

¹³Archivos producción ARCH

CAPÍTULO 2

TEORÍA DE LA RECUPERACIÓN SECUNDARIA Y RECUPERACIÓN MEJORADA.

2.1 INTRODUCCIÓN

En esta sección se describe la teoría de la Recuperación Secundaria para entender de mejor manera la Recuperación Mejorada y al mismo tiempo vislumbrar la metodología bajo la cual funcionan las diferentes técnicas de Recuperación Mejorada.

Dentro de las metodologías de extracción se hará mención a los procesos recuperación los cuales son: Recuperación primaria con su factor de recobro promedio de petróleo del 34%¹⁴. Una vez que la etapa de producción primaria ha alcanzado su límite se procede a realizar una recuperación adicional en base a la inyección inmiscible de fluidos, esta extracción se la denomina recuperación secundaria o convencional, y su factor de recobro en promedio se encuentra en el orden de 30 a 50%¹⁵.

Finalmente si aún es rentable la extracción, se puede aplicar una nueva técnica llamada recuperación mejorada, recuperación terciaria o recuperación no convencional con un factor de recobro con un porcentaje mayor al 50%¹⁶. La implementación de cualquiera de estos sistemas de recuperación de petróleo no necesariamente debe seguir un orden¹⁷.

2.2 PROPIEDADES ROCA-FLUIDO

Para el estudio de la inyección de fluidos en el medio poroso es de gran utilidad entender el comportamiento de la inyección de los fluidos, así como también las

¹⁴EOR Laura Romero Ceron

¹⁵http://www.world-petroleum.org/docs/docs/publications/2010yearbook/P64-69_Kokal-Al Kaabi.pdf

¹⁶http://www.world-petroleum.org/docs/docs/publications/2010yearbook/P64-69_Kokal-Al Kaabi.pdf

¹⁷Alvarado y Manrique

interacciones químicas- físicas, desplazamientos, fuerzas que actúan en el reservorio, entre otros.

2.2.1 TENSIÓN INTERFACIAL

Es la fuerza de atracción que existe entre las moléculas de dos fases líquidas inmiscibles, se representa mediante la letra griega sigma (σ) y su unidad en el sistema CGS (centímetro gramo segundo) es dyn/cm. Se ve afectada por el uso de surfactantes e incrementos en la temperatura, que originan una atenuación en las fuerzas moleculares.

La tensión interfacial entre dos fases es una región de solubilidad limitada o interface fluido- fluido que en la mayoría de los casos es de unas pocas moléculas de espesor. 18

A continuación se presenta la gráfica 2.1 que representa el efecto de las fuerzas de atracción en el reservorio.

Agua Connata

Petróleo

Granos de Arena

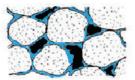
Gráfica 2.1 Efecto de las fuerzas de atracción dentro del reservorio

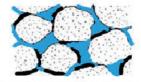
Fuente: Fundamentos de Ingeniería de Yacimientos- Dra. Magdalena Paris de Ferrer

2.2.2 HUMECTABILIDAD Y MOJABILIDAD

Es la tendencia de un fluido a adherirse o a mojar una superficie sólida en presencia de al menos un fluido inmiscible, a éste líquido atraído con mayor fuerza se la denomina fluido o fase mojante.

La humectabilidad de la roca es de gran importancia porque controla la posición de los fluidos en concordancia con la habilidad de los líquidos a fluir, de esta manera, una fuerte humectabilidad al agua, significa que toda la superficie del sólido está humectada por agua y el yacimiento es hidrófilo, caso contrario si

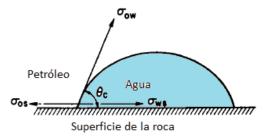

¹⁸Recuperación Secundaria. Primera Edición, Raúl Valencia, 2012


yacimiento presenta una fuerte humectabilidad al petróleo, el yacimiento es llamado oleófilo y presenta un alto contenido de azufre y oxígeno, por lo que es llamado también yacimiento agrio.

El porcentaje de humectabilidad de un yacimiento hidrófilo puede ser del 100% mientras que la humectabilidad de un yacimiento oleófilo está en el orden de 50 a 60%, presentando además una saturación de agua que va de 3 a 4%.

A continuación la gráfica 2.2 representa la humectabilidad de la roca para un sistema oleófilo e hidrófilo.

Gráfica 2.2 Humectabilidad del agua y petróleo


Roca humectada por agua

Roca humectada por petróleo

Fuente: Recuperación Secundaria- Raúl Valencia

La humectabilidad también se la puede definir de manera cuantitativa para establecer la tendencia de la fase mojante, mediante la gráfica 2.3, la misma que representa la tendencia de la humectabilidad.

Gráfica 2.3 Fuerzas que actúan en la humectabilidad de la roca

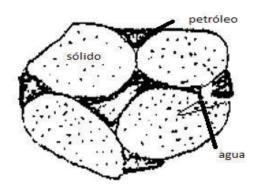
Fuente: Recuperación Secundaria- Raúl Valencia

Dónde:

 $\Theta_{\theta c}=$ ángulo de contacto $^{\circ}$ (formado entre el sólido y la superficie más densa)

 σ_{ws} = tensión interfacial entre el agua y el sólido (md)

 σ_{ow} = tensión interfacial entre el petróleo y el agua (md)

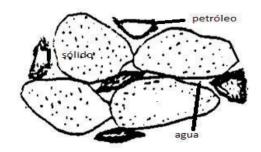

 $\sigma_{os} = tensión interfacial entre el petróleo y el sólido (md)$

Mediante el análisis del ángulo de contacto se puede establecer la tendencia del líquido a humectar a la roca, así, si el ángulo de contacto es menor a 90° se dice que el agua humecta a la roca, si el ángulo de contacto está entre 60° y 120°, la roca presenta una humectabilidad mixta y finalmente cuando el ángulo de contacto se encuentra cercano a 180° se dice que la roca es humectada por petróleo.

2.2.3 ESTADOS DE LA SATURACIÓN EN FUNCIÓN DE LA HUMECTABILIDAD EN UN YACIMIENTO HIDRÓFILO.

En un yacimiento hidrófilo, se pueden distinguir tres tipos de saturación de acuerdo a las características de humectabilidad de la roca reservorio y cantidad de fluido presente.

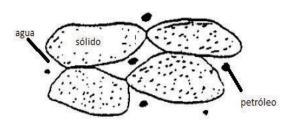
Saturación Pendular: caracterizada porque la saturación de agua es muy baja y el petróleo se encuentra en los puntos de contacto de los granos en forma de anillos o péndulos, como se puede apreciar en la gráfica 2.4.



Gráfica 2.4 Saturación Pendular

Fuente: Recuperación Secundaria- Raúl Valencia

Saturación Funicular: en este estado de saturación, la producción de petróleo aumenta y los capilares son invadidos por el agua, las presiones de ambos fluidos se comunican y originan el desplazamiento de la fase no humectante sobre una membrana de agua, tal como lo indica la gráfica 2.5.


Gráfica 2.5 Saturación Funicular

Fuente: Recuperación Secundaria- Raúl Valencia

Saturación Insular: durante esta etapa el fluido no humectante pierde su calidad de fase continua, la saturación de agua se incrementa, la fase no humectante se dispersa y no pueda ser desplazada. Para el desplazamiento de la fase no humectante es necesario aplicar una fuerza externa mayor y recuperar la dispersión del fluido de interés, tal como lo indica la gráfica 2.5.

Gráfica 2.6 Saturación Insular

Fuente: Recuperación Secundaria- Raúl Valencia

2.2.4 PRESIÓN CAPILAR

La presión capilar describe el comportamiento de la inyección de fluidos, predice la distribución vertical inicial del fluido dentro del reservorio y se define de la siguiente manera.

Cualitativamente: es la diferencia de presión que resulta a través de la interface que separa dos fluidos inmiscibles

Conceptualmente: es la capacidad de succión de un sólido para un fluido humectante o es la capacidad que tiene un sólido para repeler un fluido no humectante.

Cuantitativamente: para un yacimiento hidrófilo, la presión capilar se define como la diferencia de la presión del fluido no mojante con el fluido mojante y viceversa para un yacimiento oleófilo.

A continuación se presentan las ecuaciones 2.1, 2.2 y 2.3, que representan la presión capilar:

$$Pc = (\delta w - \delta o)gh \tag{2.1}$$

$$\sigma = \frac{Pcr}{2Cos\theta} \tag{2.2}$$

$$Pc = \frac{2Cos\theta\sigma}{r} \tag{2.3}$$

Dónde:

Pc = presión capilar (psia)

 $\delta w = densidad del agua$

 $\delta o = densidad del petróleo$

 $\theta =$ ángulo de contacto

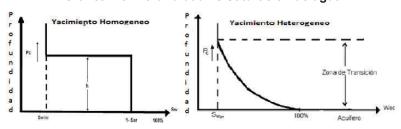
 $r = radio\ entre\ las\ rocas$

g = gravedad específica

 $\sigma = tensión interfacial$

h = altura

La gráfica 2.7, representa la presión capilar en el reservorio.


Gráfica 2.7 Representación de la Presión Capilar

Fuente: Recuperación Secundaria- Raúl Valencia

La presión capilar también se la puede representar de manera gráfica en función de la profundidad y la saturación de agua, como se ve en la gráfica 2.8.

Gráfica 2.8 Profundidad vs Saturación de agua

Fuente: Recuperación Secundaria- Raúl Valencia

Para saber la medida de la presión capilar se toman muestras de cores, mismos que son analizados en el laboratorio y que necesitan ser corregidos o cambiados a condiciones de reservorio, de la siguiente manera:

$$P_{CL} = 2 \frac{(\sigma cos\theta)_L}{r}$$
 (2.4)

$$P_{CR} = 2 \frac{(\sigma cos\theta)_R}{r} \tag{2.5}$$

Si reemplazo, la fórmula 2.5 en la fórmula 2.4 se obtiene:

$$P_{CR} = P_{CL} \frac{(\sigma cos\theta)_R}{(\sigma cos\theta)_L}$$
 (2.6)

Y si el ángulo de contacto es cero se tiene la siguiente fórmula:

$$P_{CR} = P_{CL} \frac{\sigma_R}{\sigma_L} \tag{2.7}$$

Dónde:

 $P_{CL} = Presi\'on capilar medida en el laboratorio$

 P_{CR} = Presión capilar medida en el reservorio

 $(\cos\theta)_L = Coseno \ del \ ángulo \ de \ contacto \ medido \ en \ el \ laboratorio$

 $(\cos\theta)_R = Coseno$ del ángulo de contacto medido en el reservorio

 $\sigma = tensión interfacial$

Las fuerzas capilares generadas por la energía interfacial entre fluidos desplazantes y desplazados, son las responsables de capturar el petróleo dentro de las gargantas porales del medio poroso.

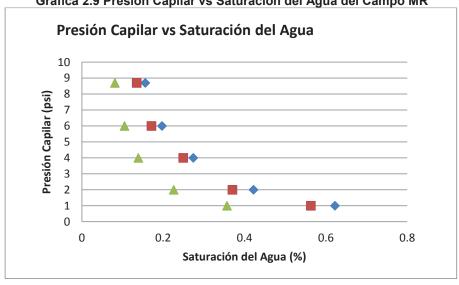

A continución se presenta la tabla 2.1 con su respectiva gráfica 2.9, en el que se representa a las presiones capilares versus la saturación de agua del campo MR.

Tabla 2.1 Presiones capilares vs Saturaciones de agua del Campo MR

Arena U Inferior			
Profundidades	9439'	9464,5'	9479,5'
Pc (psi)	Sw (1)	Sw (2)	Sw (3)
1	0,622	0,563	0,357
2	0,422	0,37	0,226
4	0,274	0,249	0,139
6	0,197	0,171	0,105
8,7	0,156	0,135	0,081

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

Gráfica 2.9 Presión Capilar vs Saturación del Agua del Campo MR

Fuente: Archivos ARCH
Elaborado por: Mayra Andrade- Rommy Cruz

2.2.5 FENOMENO DE HISTÉRESIS

La histéresis es la dirección del cambio de la saturación y se aplica a la diferencia entre los valores de la permeabilidad relativa, presión capilar y saturación residual cuando la saturación de un fluido aumenta o disminuve.

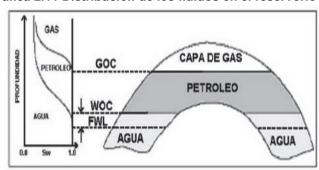
Dependiendo del incremento o reducción de la saturación de una fase determinada, se obtienen diversos valores.

Para el análisis de las curvas de presión capilar y permeabilidad relativa es indispensable conocer dos conceptos básicos:

Imbibición: Proceso en el que la fase no- mojante desplaza a la fase mojante del yacimiento

Drenaje: Proceso en el que la fase mojante desplaza a la fase no- mojante del medio poroso.

A continuación la gráfica 2.10 indica las curvas de drenaje e imbibición de la presión capilar para un sistema humectado por el agua.



Gráfica 2.10 Curva de la Presión Capilar para un sistema humectado por el agua

Fuente: Recuperación Secundaria- Raúl Valencia

2.2.6 INTERFACES DEL RESERVORIO

Las interfaces en el reservorio se encuentran en función de la presión capilar, en la gráfica 2.11 se puede apreciar de mejor manera la distribución de los fluidos en el reservorio.

Gráfica 2.11 Distribución de los fluidos en el reservorio

Fuente: Recuperación Secundaria- Raúl Valencia

- Contacto Gas-Petróleo (GOC): es una pequeña zona que separa la capa de gas de la zona de petróleo. Debajo del GOC, el gas puede estar disuelto dentro del petróleo. El GOC del Campo MR se encuentra a 9515 pies de profundidad.
- Contacto Petróleo-Aguas (WOC): es una pequeña zona que separa la zona del petróleo de la zona del agua. Debajo del WOC no hay petróleo y el WOC en del Campo MR es 9559 pies.
- Nivel de agua libre (Free Water Level-FWL): es una zona imaginaria localizada a la menor profundidad donde la saturación del agua es 100% (Pc=0).

2.3 RECUPERACIÓN SECUNDARIA.

Es un tipo de recuperación que consiste en introducir energía artificial al pozo inyector para desplazar o empujar el hidrocarburo hacia los pozos productores, modificando su comportamiento dinámico y manteniendo el estado de inmiscibilidad.

La recuperación secundaria incluye los procesos inmiscibles, tales como: inyección de agua, inyección de gas o de la inyección combinada de agua y gas, también conocida como WAG.

2.3.1 INYECCIÓN DE AGUA

La inyección de agua es un método que se descubrió de manera accidental en el año 1870, en la ciudad de Pennsylvania, cuando una fuga en una formación acuífera redujo la producción del pozo afectado, aumentando la producción de los pozos vecinos.

Dentro de la recuperación secundaria, el fluido de inyección más común es el agua debido a su disponibilidad, bajo costo, alta eficiencia de desplazamiento, alta presión en el yacimiento y alta gravedad específica que facilita la inyección¹⁹.

¹⁹Dake, 1978; Lyons y Plisga, 2005; Satter et al., 2008.

La inyección de agua consiste en inyectar volúmenes predeterminados de agua de formación previamente tratada o reacondicionada. Los parámetros a tratar son: corrosividad, reactividad con minerales arcillosos, sólidos o líquidos que produzcan obstrucción en el pozo de inyección como: sulfato de bario (BaSO4), carbonato de calcio (CaCO3), carbonato de magnesio (MgCO3), sulfuro de hierro (FeS), entre otros.

En el yacimiento el agua se moviliza y desplaza al petróleo remanente hacia los pozos productores; la inyección de agua con baja salinidad ha demostrado una elevada recuperación de petróleo²⁰.

2.3.2 INYECCIÓN DE GAS INMISCIBLE.

El gas inmiscible históricamente fue utilizado para mantener la presión del yacimiento, incrementar la recuperación de petróleo y reducir la declinación de la producción.

Una vez que el gas se inyecta dentro de la formación, el fluido tiende a expandirse y logra empujar al petróleo hacia la superficie; la inyección de gas requiere el uso de compresores para elevar la presión del gas, logrando que el fluido entre en los medios porosos de la formación²¹.

El recobro de la inyección de gas inmiscible es menor al recobro de la inyección inmiscible de agua, sin embargo en algunas situaciones el único proceso posible de recuperación secundario es la inyección de gas inmiscible debido a las características que presenta la formación como: baja permeabilidad de petróleo, contenido de arcillas expandibles y formaciones con poco espesor en donde el principal mecanismo de accionamiento es la solución de gas²².

Los gases inmiscibles que se inyectan pueden ser: gas natural, gas nitrógeno, dióxido de carbono, entre otros.

²⁰Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, Laura Romero

²¹Van Dyke, 1997- EOR Laura Romero

²²Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, Laura Romero

2.3.3 INYECCIÓN DE AGUA Y GAS (WAG).

La combinación inmiscible de agua y gas para la inyección en el pozo productor se denomina WAG por sus siglas en ingles water- alterning- gas²³ y consiste en inyectar agua y gas de manera alternada para mejorar la recuperación de petróleo.

2.3.4 FACTORES QUE CONTROLAN LA RECUPERACIÓN SECUNDARIA.

2.3.4.1 Movilidad

La movilidad indica la capacidad que tiene el petróleo para desplazarse hacia los pozos productores.

$$\lambda = \frac{k}{u} \tag{2.8}$$

Dónde:

 $\lambda = movilidad$

K = permeabilidad (md)

 $\mu = viscosidad(cp)$

Cuando hay dos fases en el yacimiento, la movilidad se define como una relación entre la movilidad de la fase desplazante y la movilidad de la fase desplazada, y se expresa de la siguiente manera.

$$M = \frac{\lambda \, desplazante}{\lambda \, desplazado} \tag{2.9}$$

Dónde:

M = relación de movilidad

Para un modelo de inyección de agua- petróleo se tiene:

²³EOR Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, Laura Romero OR Laura Romero

$$M = \frac{\left(\frac{k}{u}\right)_{desplazante}}{\left(\frac{k}{u}\right)_{desplazado}} = \frac{K_w/\mu_w}{K_o/\mu_o} = \frac{K_w\mu_o}{K_o\mu_w} = \frac{K_{rw}\mu_o}{K_{ro}\mu_w}$$
(2.10)

Dónde:

$$\left(\frac{K}{\mu}\right)_{desplazante} = relación \ de \ movilidad \ del \ fluido \ desplazante$$

$$\left(\frac{K}{\mu}\right)_{desplazado} = relación \ de \ movilidad \ del \ fluido \ desplazado$$

 $K_{rw} = Permeabilidad relativa del agua$

 $K_{ro} = Permeabilidad relativa del petróleo$

 $\mu_o = Viscosidad del petróleo$

 $\mu_w = Viscosidad del agua$

La relación de movilidad puede ser favorable o desfavorable de acuerdo al valor que tenga:

Cuando M=1: es considerado un caso ideal, en donde las movilidades del petróleo y del aqua son idénticas.

Cuando M<1: es una condición beneficiosa e indica que, el petróleo fluye mejor que el agua o que el gas, necesaria para un buen recobro de petróleo.

Cuando M>1: es una condición desfavorable e indica que el gas fluye mejor que el petróleo y no es bueno para el recobro de petróleo.

La movilidad del campo MR, se determinó en base a la correlación de Corey para cuando la fase mojante desplaza a la fase no mojante, la fórmula 2.11 detalla la de manera cuantitativa la permeabilidad relativa del agua.

$$Krw = \left(\frac{Sw - Swi}{1 - Swi}\right)^4 \tag{2.11}$$

Dónde:

Krw = Permeabilidad relativa del agua

Sw = Saturación de agua

Swi = Saturación de agua inicial

2.3.4.2 Flujo Fraccional

Es una relación entre la fracción de petróleo y agua que fluye en cualquier punto del reservorio, a continuación la fórmula 2.12 muestra de manera cuantitativa la fracción de flujo fraccional:

$$fw = \frac{1 + 0.001127 \frac{KoA}{Uoqt} \left[\frac{\partial Pc}{\partial x} - 0.00694 (\gamma_w - \gamma_o) Sen \alpha \right]}{1 + \frac{U_w K_o}{U_o K_w}}$$
 (2.12)

Dónde:

fw = fracci'on de agua

Ko = permeabilidad del petróleo

Kw = permeabilidad del agua

A =área longitudinal

Uo = viscosidad del petróleo

 $U_w = viscosidad\ del\ petr\'oleo$

 $\frac{\partial Pc}{\partial x}$ = gradiente de presión capilar

 $\gamma_w = gravedad especifica del agua.$

 $\gamma_o = gravedad$ específica del petróleo

 $\alpha =$ ángulo de buzamiento

2.3.4.3 Efecto de las variables del reservorio sobre la eficiencia de desplazamiento

Un bajo valor de flujo fraccional representa una alta eficiencia de desplazamiento y alta eficiencia en la inyección de agua, y considerando ciertas variaciones en la

fórmula de flujo fraccional que pueden alterar la fracción de agua, las variaciones son:

Humectabilidad

La humectabilidad expresa el grado en que las superficies de los granos de una roca (arena) entran en contacto con un líquido determinado, afectando de manera directa a la permeabilidad.

Para minimizar la fórmula de flujo fraccional y tener una mejor eficiencia en el recobro de petróleo durante la inyección necesitamos que la permeabilidad del agua sea alta y desplace al petróleo que se encuentra delante de ella.

Ángulo de buzamiento

Cuando se inyecta agua en un reservorio con un ángulo de inclinación significante, la magnitud del ángulo y la dirección de la inyección de agua relativa al ángulo de inclinación puede tener una considerable influencia en el recobro de petróleo.

El efecto del ángulo de inclinación o buzamiento de la formación es dictado por el término $(\gamma_w - \gamma_o)Sen~\alpha$, si el signo de este término es positivo el efecto de la gravedad será minimizar fw, lo que puede ocurrir cuando el agua desplaza al petróleo hacia arriba, o que el ángulo de buzamiento se encuentre entre 0 y 180°.

Presión Capilar

En un reservorio la presión capilar siempre va a estar presente y su efecto será incrementar el valor de fw y disminuir la eficiencia de la invección de aqua.

Si la presión capilar es mayor entonces el flujo fraccional también lo va a ser, por ello es conveniente el uso de aditivos y el decremento de la presión capilar.

Movilidad

La movilidad indica la capacidad que tiene un fluido para fluir. Para minimizar el flujo fraccional es necesario que la movilidad del petróleo sea alta y la movilidad del agua sea baja.

Caudal

El efecto del caudal varía según su movilidad, si se está moviendo hacia arriba o hacia abajo. Así un bajo valor de qt es deseable si el agua se está moviendo hacia arriba, como se muestra a continuación:

De acuerdo a la fórmula 2.12, si el buzamiento es hacia abajo el $Sen\ \alpha$ es negativo haciéndose positivo por el signo posterior a la presión capilar y con ello tengo un incremento mayor en la fracción de flujo fraccional, es por ello que se prefiere que el buzamiento sea hacia arriba.

2.3.4.4 Eficiencia de Desplazamiento

Mide la efectividad del barrido del fluido inyectado para desplazar la mayor parte de petróleo posible hacia el o los pozos productores, en muchas ocasiones el fluido desplazado deja atrás algunos canales de petróleo que no son convenientes para su producción. La eficiencia de barrido es un resultado total del espaciamiento de los pozos, fracturas, espesor, permeabilidad, diferencia de densidades entre fluidos tanto desplazante como desplazado, posición de los contactos (gas-petróleo y petróleo/agua), modelo de inyección, heterogeneidad del yacimiento, entre otros.

Por lo tanto el éxito de un proyecto dependerá de la eficiencia con la que el fluido inyectado desplaza al petróleo y de la fracción del reservorio que es barrido. A continuación las clases de eficiencia de barrido, junto con la fórmula 2.13 que representa el factor de recobro.

$$N_p = NE_{A\$}E_{V\$}E_D \tag{2.13}$$

Dónde:

Np = factor de recobro

N = petróleo original en sitio

 $E_{A\$} = Eficiencia de barrido areal u horizontal$

 $E_{V\$} = Ef$ ciencia de barrido vertical

 $E_D = Eficiencia de desplazamiento$

La eficiencia de desplazamiento (E_D), llamada también eficiencia microscópica, se define como la efectividad con la que el fluido desplazante desaloja al petróleo contactado del yacimiento; a continuación la fórmula 2.14 da a conocer de manera cuantitativamente, la eficiencia de desplazamiento:

$$E_D = \frac{Volumen\ de\ petr\'oleo\ contactado\ y\ movilizado}{Volumen\ de\ petr\'oleo\ contactado} \tag{2.14}$$

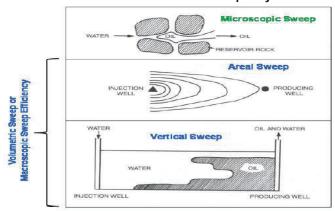
La eficiencia de barrido areal u horizontal ($E_{A\$}$) es la fracción de área horizontal del yacimiento que está en contacto con el fluido desplazante, siendo afectada por las propiedades de la roca, propiedades del sistema roca- fluido, velocidad del fluido inyectado, espaciamiento de pozos, entre otros²⁴.

La eficiencia areal aumenta con el volumen de los fluidos inyectados, como lo muestra la fórmula 2.15:

$$E_{A\$} = \frac{\text{\'A}rea\ horizontal\ invadida}}{\text{\'A}rea\ total\ horizontal\ invadida}} \tag{2.15}$$

La eficiencia de barrido vertical ($E_{V\$}$) es la fracción de área vertical del yacimiento que está en contacto con el fluido desplazante; entre los factores que afectan la eficiencia de barrido vertical se encuentran: heterogeneidad del yacimiento (mientras mayor es la heterogeneidad de los estratos del yacimiento, menor será la eficiencia de barrido vertical), razón de movilidad (al aumentar la razón de movilidad disminuye la eficiencia de barrido vertical), volumen de fluido inyectado, flujo cruzado entre capas 25 , a continuación la fórmula 2.16 presenta de manera cuantitativa la eficiencia de barrido vertical.

²⁴ Magdalena Paris de Ferrer, Inyección de agua y gas en yacimientos petrolíferos, segunda edición.


²⁵ Magdalena Paris de Ferrer, Inyección de agua y gas en yacimientos petrolíferos, segunda edición.

$$E_{V\$} = \frac{\text{\'Area vertical invadida}}{\text{\'Area total verticalal invadida}}$$
 (2.16)

Al producto entre la eficiencia de barrido areal $(E_{A\$})$ y la eficiencia de barrido vertical $(E_{V\$})$, se lo conoce con el nombre de eficiencia volumétrica o eficiencia de desplazamiento macroscópico, los factores que afectan la eficiencia de barrido volumétrico son: índice de inyectividad, fuerzas gravitacionales, efecto de la tasa de flujo, entre otros²⁶; a continuación la fórmula 2.17 presenta de manera cuantitativa la eficiencia de barrido areal:

$$E_{V\$} = \frac{Volumen\ del\ yacimiento\ invadido}{Volumen\ total\ del\ yacimiento\ invadible} \tag{2.17}$$

A continuación, la gráfica 2.12 representa de mejor manera, la eficiencia de barrido microscópico, tanto areal como vertical.

Gráfica 2.12 Eficiencia de barrido microscópico y macroscópico

Fuente: Enhance Oil Recovery- Laura Romero

2.3.4.4.1 Fenómenos asociados con el desplazamiento miscible.

Los factores inestables que controlan el desplazamiento miscible durante el proceso de recuperación mejorada son:

Digitación: es un fenómeno importante a tomarse en cuenta en proyectos de recuperación mejorada, pues se encuentra asociado con la disminución de la

²⁶ Magdalena Paris de Ferrer, Inyección de agua y gas en yacimientos petrolíferos, segunda edición.

eficiencia de barrido y recuperación de petróleo. Se produce cuando el fluido desplazante es significativamente menos viscoso que el fluido desplazado, se esta manera el frente de desplazamiento es inestable y llega a formar figuras (dedos- "fingering") que posteriormente penetran en el petróleo.

Finalmente la digitación formada por el fluido desplazante llega al pozo productor y el resto del fluido inyectado sigue preferiblemente la trayectoria de la figura, permitiendo que el fluido inyectado no realice su función y salga rápidamente hacia el pozo inyector.

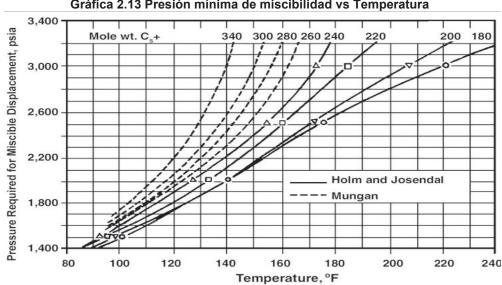
La digitación aumenta a medida que aumenta la relación de movilidades entre el fluido desplazante y el fluido desplazado.

Flujo Cruzado: es el movimiento de fluidos de capas de baja permeabilidad a alta permeabilidad, y en la recuperación mejorada este fenómeno se hace presente cuando los estratos adyacentes se encuentran comunicados.

Difusión y Dispersión: la difusión es la tendencia de todo fluido a esparcirse uniformemente mientras que la dispersión es la mezcla entre dos o más fluidos, cuando se encuentra en movimiento.

La dispersión puede ser longitudinal y transversal. La dispersión longitudinal se produce cuando los fluidos van en dirección del movimiento, mientras que la dispersión transversal es el movimiento perpendicular a la dispersión longitudinal.

Inestabilidad del desplazamiento miscible: este fenómeno se origina por efectos de la diferencia entre la densidad y la viscosidad. Éste fenómeno se encuentra ligado a la digitación e inestabilidad del desplazamiento miscible.


2.3.4.5 Compatibilidad del fluido invectado

La importancia de la compatibilidad del fluido inyectado con el fluido de la formación radica en evitar problemas o daños futuros en el fondo del pozo, evitando taponamientos en las tuberías (escala) y daños severos en el reservorio (presurización).

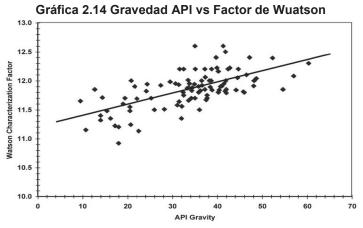
2.3.4.6 Presión mínima de miscibilidad (PMM)

La presión mínima de miscibilidad (PMM), es la mínima presión en la que el fluido inyectado y el crudo del yacimiento pueden llegar a ser miscibles; cuando los fluidos son miscibles la tensión interfacial es cero y por lo tanto no existe ninguna interface entre los fluidos.

La presión mínima de miscibilidad depende de la heterogeneidad del reservorio, composición del fluido almacenado e inyectado y de las condiciones de presión y temperatura del reservorio. Un proceso de inyección es miscible cuando la presión de inyección es superior a la presión mínima de miscibilidad (PMM)²⁷, y uno de los métodos analíticos para encontrar la PMM es a partir de la temperatura y del peso molecular, como se observa en la gráfica 2.13

Gráfica 2.13 Presión mínima de miscibilidad vs Temperatura

Fuente: Mungan, N. 1981. Carbon Dioxide Flooding-fundamentals/ Can Pet Technol 20


Para determinar la PMM se necesita conocer la temperatura del reservorio junto con el peso molecular (Mo).

Para el crudo Napo se considera un °API de 18, mientras que para el crudo Oriente se utiliza un °API de 23 y mediante la fórmula 2.18 se realiza el cálculo de las gravedades específicas obtenidas a partir del °API.

²⁷A new look at the Minimum Miscibility Pressure (MMP) Determination from slimtube measurents, Herd Department of Petroleum Engineering, SPE, Bob L.

$$\gamma_o = \frac{141.5}{\gamma_{API} + 131.5} \tag{2.18}$$

La gravedad específica para el crudo Napo es 0,9464 y para el crudo Oriente es 0,9158 y para poder cuantificar el peso molecular (Mo), se ocupó la gráfica 2.14, la misma que nos servirá para encontrar el factor de Wuatson (Kuop) a partir del °API.

FUENTE: Typical characterization factors for various crude oil gravitieshttp://petrowiki.org/Crude_oil_characterization#Characterization_factor

El factor Kuop para el crudo Napo es: 11,52 y para el crudo Oriente es 11,6 y mediante la fórmula 2.19 se obtiene la masa molar.

$$M_o = \left(\frac{K_w \gamma_o^{0.84573}}{4.5579}\right)^{6.58848} \tag{2.19}$$

Dónde:

 $M_o = Peso\ Molecular$

 $K_w = Factor Kuop o factor de Wuatson$

 $\gamma_o = API$

El peso molecular en Ecuador de los crudos Napo y Oriente son: 331,14 y 288, 53 respectivamente; y mediante las diversas temperaturas que presenta el reservorio se puede encontrar la presión mínima de miscibilidad (PMM). Para este ejemplo se ha tomado un valor aleatorio de la cuenca oriente del Ecuador, con un valor de

140 °F y se obtiene que la presión mínima de miscibilidad para el crudo Napo es de 2800 psi y para el crudo Oriente es de 2450 psi.

Las principales características de la PMM son:

- La miscibilidad aumenta con la profundidad y con la gravedad del petróleo.
- A mayor temperatura la PMM requerida aumenta
- El PMM es una función directa del GOR.
- A menor peso molecular la presión mínima de miscibilidad es mayor, por lo tanto los hidrocarburos de bajo peso molecular son efectivos para propiciar la miscibilidad a una presión menor
- La presencia de contaminantes en flujo de inyección incrementa la PMM.

2.3.4.7 Número capilar

El número capilar es un indicador a-dimensional que relaciona las fuerzas viscosas y las fuerzas capilares, además de controlar la oposición o concordancia de las fuerzas capilares y viscosas. En este caso el fluido desplazante es el agua y el fluido desplazado es el aceite, a continuación las ecuaciones 2.20 y 2.21 ejemplifican de manera cuantitativa el número capilar:

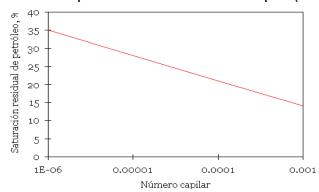
$$N_{C} = \frac{Fuerzas \, viscosas}{Fuerzas \, capilares} \tag{2.20}$$

$$N_C = \frac{V \mu_w}{\theta_{ow}} \tag{2.21}$$

Dónde:

Nc = Número capilar

V = Velocidad intersticial del fluido desplazante


 $U_w = Viscosidad del fluido desplazante$

 $\theta_{ow} = Tensi\'on interfacial entre el fluido desplazante y el fluido desplazado$

El número capilar para un proceso de inyección de agua se encuentra en el orden

de $10^{-7} a 10^{-6}$ ²⁸. Un bajo número capilar indica que una cantidad importante de petróleo se queda en el reservorio atrapado por las fuerzas capilares, mientras que un alto número capilar significa que predominan las fuerzas viscosas y el petróleo remanente puede ser recuperado mediante la aplicación de procesos EOR.

Otra manera de calcular el número capilar es mediante la gráfica de la saturación de petróleo residual vs el número capilar, es mediante la gráfica 2.15 en la que se puede observar una relación inversa entre el número capilar y la saturación residual de petróleo.

Gráfica 2.15 Saturación de petróleo residual vs Número capilar (Faroug y Thomas)

Fuente: Documento SPE

2.3.4.8 Modelos de inyección

Los modelos de inyección son creados con la finalidad de contactar y recuperar la mayor cantidad de petróleo posible en el yacimiento. Los modelos de inyección más comúnmente usados son:

Modelo aislado: modelo que no tiene fronteras y ningún otro pozo. Los fluidos desde el pozo de inyección desplazan el petróleo desde el exterior del modelo.

Modelo normal: es un modelo donde hay un solo pozo productor (o).

Modelo invertido: modelo con un pozo inyector (Δ).

Estos modelos a su vez, se pueden clasificar en modelos geométricos (forman figuras geométricas) o modelos irregulares (los pozos de producción e inyección

²⁸Green & Willhite- Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, 1998.

están colocados de forma desordenada). Los modelos geométricos se dividen en:

Línea: directa o alternada

Redondo o periférico: normal de cinco pozos, normal de siete pozos, invertido de siete pozos, distorsionado de siete pozos, normal de nueve pozos, invertido de nueve pozos.

A lo que corresponde a los modelos irregulares se dividen en:

Inyección central: consiste en inyectar el fluido desde el centro del arreglo Inyección periférica: se conoce también como inyección tradicional consiste en inyectar agua en el acuífero cerca del contacto agua-petróleo, mientras que en el periférico consiste en inyectar agua fuera de la zona de petróleo (flancos del yacimiento).

2.3.4.9 Predicción del comportamiento de la inyección de fluidos

Consiste en aplicar un conjunto de ecuaciones que simulan el comportamiento del yacimiento como saturaciones, permeabilidades, producción, viscosidades, entre otras más.

Durante el desplazamiento de la inyección, se conocen tres etapas:

Antes de la ruptura: inicia cuando comienza la inyección del fluido desplazante, como se muestra en la gráfica 2.16.

Pozo inyector

Gas atrapado

Gas

Agua inyectada

Frente del banco de petróleo

Agua intersticial o connata

Distancia

Gráfica 2.16 Distribución de los fluidos en la fase inicial

Fuente: Fundamentos de Ingeniería de Yacimientos- Dra. Magdalena Paris de Ferrer

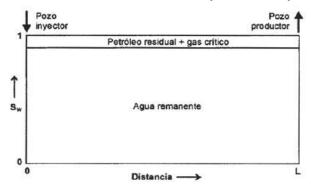
Durante la ruptura: el fluido inyectado llega al pozo productor, y provoca que la

fase desplazante se incremente, a continuación la gráfica 2.17 presenta de mejor manera la distribución de los fluidos durante la ruptura.

Pozo productor

Petróleo residual + gas crítico

Petróleo recuperable después de la ruptura

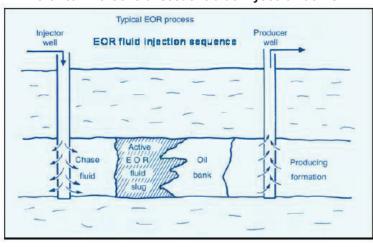

Agua invectada

Agua intersticial o connata

Gráfica 2.17 Distribución de los fluidos durante la ruptura

Fuente: Fundamentos de Ingeniería de Yacimientos- Dra. Magdalena Paris de Ferrer

Después de la ruptura: caracterizada porque el fluido desplazante arrastra a la fase desplazada por medio del flujo del fluido poroso existente, durante esta etapa la producción del fluido desplazante es mayor que la del fluido desplazado y se la puede apreciar en la figura 2.18.



Gráfica 2.18 Distribución de los fluidos después de la ruptura

Fuente: Fundamentos de Ingeniería de Yacimientos- Dra. Magdalena Paris de Ferrer

2.4 RECUPERACIÓN MEJORADA

La recuperación mejorada es un mecanismo de inyección de fluidos miscibles que tiene como objetivo la recuperación de petróleo remanente y/o residual que se encuentra en el reservorio. A continuación la gráfica 2.19 indica la inyección, dispersión, empuje y producción del petróleo.

Gráfica 2.19 General secuencia de inyección de EOR

FUENTE: Lyons & Plisga, 2005- EOR Laura Romero

La recuperación mejorada tiene algunos objetivos, como:

- Reducir la tensión interfacial entre el fluido desplazante y el petróleo.
- Incrementar el número capilar.
- Reducir las fuerzas capilares
- Incrementar la viscosidad del fluido desplazante
- Controlar la movilidad
- Tolerar la salinidad y dureza del agua
- Reducir la viscosidad del crudo
- Mejorar la eficiencia de barrido
- Alterar las condiciones de humectabilidad en la roca
- Incrementar la eficiencia de desplazamiento

2.4.1 RECUPERACIÓN MEDIANTE GASES MISCIBLES

La inyección de gas miscible se ha aplicado varias décadas atrás, principalmente en Norteamérica y Canadá, y consiste en inyectar gas en el pozo inyector y desplazar gran parte de petróleo hacia el pozo productor.

El principio de la inyección de gas miscible radica en reducir la tensión interfacial entre los fluidos y eliminar los efectos de las fuerzas capilares.

La recuperación mejorada mediante la inyección de gas ha sido una de las técnicas más utilizadas en reservorios condensados, formaciones carbonatadas y

crudos livianos, además de ser la opción más viable de EOR para las formaciones con baja permeabilidad²⁹. La inyección de gas inmiscible de mayor éxito se presenta en los proyectos de drenaje por gravedad vertical en donde el gas puede ser inyectado en la cresta del reservorio o en la capa de gas.

Los gases de inyección miscible incluyen propano, metano, metano enriquecido con hidrocarburos ligeros, nitrógeno, gases de combustión, dióxido de carbono y gases licuados del petróleo (GLP), éste último es un gas de uso doméstico y comercial; razón por la cual la inyección de gas licuado no es rentable.

En lo que corresponde al presente estudio se dará mayor énfasis a los siguientes procesos de inyección:

- Inyección de dióxido de carbono
- Inyección de nitrógeno
- Inyección de gas alternado con agua

2.4.1.1 Inyección de dióxido de carbono (CO2) miscible

La inyección de dióxido de carbono (CO2) en el reservorio, es en la actualidad el fluido más comúnmente utilizado para el desplazamiento miscible de crudos medianos y livianos. Siendo su principal característica la alta solubilidad³⁰.

La miscibilidad presente en el gas ayuda a la extracción fracciones de crudo que van desde el metano (C4) hasta el triacontano (C30), mejorando las propiedades de la roca y fluidos del yacimiento, que contribuyen a la reducción de la saturación del petróleo residual al valor más bajo posible.

En la actualidad, la recuperación mejorada mediante el dióxido de carbono se ha convertido en una de las estrategias más preferidas para reducir las emisiones de gas de efecto invernadero³¹. A continuación la tabla 2.2 indica las ventajas de la inyección miscible de dióxido de carbono.

²⁹ Enhanced Oil Recovery, Field planning and development strategies- Alvarado & Manrique, 2012

 $^{^{30}}$ http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2213/Inyecci%C3%B 3n%20de%20CO2%20en%20el%20Area%20de%20Coapechaca.pdf?sequence=1

³¹ Enhanced Oil Recovery, Field planning and development strategies- Alvarado & Manrique, 2012

Tabla 2.2 Ventajas de la inyección miscible de dióxido de carbono

	2.2 Ventajas de la myección miscible de dioxido de carbono
Solvente	El CO2 es usado como solvente, junto con la saturación de petróleo residual para superar las fuerzas capilares e incrementar la movilidad de petróleo.
Eficiencia de desplazamiento	La eficiencia de desplazamiento por la inyección de CO2 miscible es cerca del 100%, pues al mezclarse con el petróleo produce un decremento en la tensión interfacial (aproximadamente cero) y un incremento en la mojabilidad del petróleo.
Alto poder disolvente	Consiste en extraer componentes de hidrocarburos y desplazar al petróleo.
Segregación gravitacional	La alta densidad del CO2 hace que sea muy compatible con aceite.
Viscosidad	La muy alta solubilidad del dióxido de carbono en el petróleo permite la reducción en la viscosidad del petróleo y un pequeño incremento en la viscosidad del agua.
Expansión de petróleo	La expansión de petróleo es debido al incremento de contenido de metano en un rango del 10 al 20% dependiendo de la composición y presión de saturación.
Medio ambiente	El CO2 es el mejor candidato para el reducir las emisiones de gas de efecto invernadero.
Formación	Se prefiere inyectar en formaciones homogéneas con baja permeabilidad vertical y bajo espesor.

Elaborado por: Mayra Andrade- Rommy Cruz

La tabla 2.3 indica las desventajas de la inyección miscible de dióxido de carbono.

Tabla 2.3 Desventajas de la inyección miscible de dióxido de carbono

Disponibilidad	Almacenamiento.
Eficiencia de barrido	Puede verse afectada por la canalización, segregación, altas permeabilidades o fracturas, sin embargo el uso de espumas alrededor del pozo productor es un proceso auxiliar que incrementa la recuperación de hidrocarburos.
Presencia de oxígeno	Mientras mayor es el contenido de oxígeno en el dióxido de carbono menor es la recuperación de petróleo.
Contaminación	La contaminación de CO2, N2, O2, o CH4 puede incrementar sustancialmente la PMM mientras que la presencia de H2S, SO2, C2H6 o hidrocarburos intermedios (C3 o C4) pueden reducir la MMP.
Ruptura temprana	Causando por la corrosión que presentan los pozos productores.
Espesor de la formación	Si el reservorio presenta un gran espesor.
Hinchazón	Durante la inyección se produce el hinchamiento de las arcillas causando daño en la formación, el grado de este fenómeno depende los cationes presentes en los fluidos (van 1977). El potencial de hinchamiento de arcilla disminuye a medida que la salinidad del fluido aumenta.
Formación	Si la formación presenta fracturamiento extensivo, acuíferos activos o la presencia de capas de gas

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.1.1.1 Forma de aplicación

El método de recuperación mediante Dióxido de Carbono (CO2) es analizado por varios autores; los mismos que se dividen en dos grupos que determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.4

Tabla 2.4 Inyección de dióxido de carbono

INYECCIÓN: DIOXIDO DE CARBONO	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.		Taber, J.J., Martin, F.D., and Seright, R.S.	
Gravedad API	Mayor	25	mayor	22
Viscosidad del petróleo (cp)	Menor	15	menor	10
Composición del crudo	C5- C12		C5- C12	
Saturación del petróleo (%)	Mayor	30	mayor	20
Salinidad del agua (ppm)	No crítico			
Temperatura del reservorio (F)	No crítico		No crítico	
Tipo de roca	Areniscas o carbonatos			
Permeabilidad (mD)	No crítico		No crítico	
Profundidad	Mayor	2000	mayor	2500
Espesor neto	Delgada		Amplio rango	
Presión del reservorio (psi)	Mayor	PMM		
Porosidad	No crítico			

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.1.2 Inyección de agua alternada con gas miscible (WAG)

La inyección alternada de agua con gas miscible también conocida como WAG, water- alternating- gas, consiste en introducir al yacimiento tapones alternados de agua y gas.

El objetivo del WAG es reducir la canalización o digitación desde el pozo inyector hasta el pozo productor, mediante la disminución de la viscosidad de petróleo. Los gases que comúnmente se inyectan al reservorio son: dióxido de carbono (CO2) y nitrógeno (N2).

La inyección de WAG moviliza el petróleo remanente del yacimiento, mediante la combinación de las ventajas que ofrece la inyección del agua y la inyección del gas. Con la inyección del agua se obtiene un buen desplazamiento volumétrico, mientras que con la inyección de gas se obtiene un buen desplazamiento microscópico.

Además el agua ayuda a reducir los efectos de la digitación viscosa que presenta el gas y controla la movilidad del frente de desplazamiento.

A continuación la tabla 2.5 y 2.6 enuncian las ventajas y desventajas de la inyección alternada de agua con gas miscible.

Tabla 2.5 Ventajas de la inyección alternada de agua con gas miscible

Eficiencia de barrido	Mejora la eficiencia de barrido vertical junto con la eficiencia volumétrica al disminuir la razón de movilidad.		
Frente de desplazamiento	Contrala la inestabilidad del frente de desplazamiento ³² .		
Canalización	Minimiza la canalización.		
Drenaje gravitacional	Mejora el drenaje gravitacional en yacimientos profundos.		
Adedamiento	Minimiza el adedamiento principalmente en zonas de alta permeabilidad.		

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.6 Desventajas de la inyección alternada de agua con gas miscible

rabia 2.0 Desventajas de la myección alternada de agua con gas iniscible			
Formación de escamas	La formación de escamas es un problema ocasionado principalmente por la presencia del dioxido de carbono, a medida que las escamas se van extendiendo, pueden presinar fuertemente la tubería y ocasionar fallas.		
Corrosión	La inyección alternada de agua y gas miscible genera una alta corrosión, por lo tanto se requiere de un especial manejo del fluido.		
Disponibilidad	Para la inyección de WAG es necesario la disponibilidad y almacenamiento del gas.		
Eficiencia microscópica	Hay una baja eficiencia microscopica para el agua, y una baja eficiencia microscopica para el gas.		
Taponamiento de poros	La migración de finos causa taponamiento en los poros y no permite el desplazamiento.		
Irrupción temprana del gas en pozos productores	La irrupción temprana del gas se manifiesta cuando el gas tiene mayor movilidad que el crudo produciendo digitación viscosa y canalizaciones ³³ .		
Reducción de la inyectividad	La causa de la reducción en la inyectividad puede ser debido a un cambio en las permeabilidades relativas de las fases presentes en el reservorio, precipitación de asfaltenos o hidratos cerca de la cara de los pozos inyectores ³⁴ , entrampamiento del gas después de la inyección. La rapida reducción de la inyección implica una rapida caida de presión del yacimiento, afectando la eficiencia en el desplazamiento y el comportamiento de la producción.		
Costo	La inyección alternada de agua y gas, no solo depende de las propiedades del reservorio, sino también de los costos de la inyección.		

Elaborado por: Mayra Andrade- Rommy Cruz

³²http://ingenieraenpetroleo.blogspot.com/search/label/Inyecci%C3%B3n%20de%20agua%20y%20gas%20en%20yacimientos%20petrol%C3%ADferos

³³http://repositorio.uis.edu.co/jspui/bitstream/123456789/917/2/116207.pdf

³⁴CHRISTENSEN, J.R. et al. Op. cit. p. 101.

2.4.1.2.1 Forma de aplicación

El método de recuperación mediante la inyección alternada de agua y gas va a estar en función de ciertos parámetros como: gravedad API, viscosidad, temperatura, permeabilidad, porosidad, profundidad, tipo de roca y espesor neto. Esta caracterización fue realizada en base a estudios de casos particulares y fueron desarrollados por autores como: Mortis, Taber et al., Kottungal entre otros, tal como se enuncia en la tabla 2.7

Tabla 2.7 Inyección alternada de agua y gas

INYECCIÓN ALTERNADA DE AGUA Y GAS	Mortis (2004); Taber et al.; Anonymous (1998, 2000, 2002, 2006); Kottungal (2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)			
Gravedad (°API)	entre	33	39	
Viscosidad del petróleo (cp)	entre	0	0,3	
Temperatura del reservorio (°F)	entre	194	253	
Tipo de roca	Arenisca			
Permeabilidad (mD)	entre	130	1000	
Profundidad (ft)	entre	7545	8887	
Espesor neto (ft)	No crítico			
Porosidad (%)	Entre 11 24		24	

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.1.3 Inyección de nitrógeno (N2)

La inyección de nitrógeno comenzó en los años ochenta, como una estrategia para mantener la presión³⁵, más después se propuso a esta técnica como un método para incrementar el factor de petróleo, favoreciendo además la evaporación de las fracciones ligeras de los reservorios condensados y crudos ligeros³⁶, lo que permite la rápida fusión de los fluidos miscibles.

El proceso de inyección miscible de nitrógeno ha sido un proceso exitoso en

³⁵ Enhanced Oil Recovery, Field planning and development strategies- Alvarado & Manrique, 2012

³⁶ Enhanced Oil Recovery, Field planning and development strategies- Alvarado & Manrique, 2012

yacimientos profundos, con altas presiones y con crudo liviano; y consiste en inyectar gas nitrógeno en un yacimiento para aumentar la producción de crudo por medio de la hinchazón del petróleo y reducción de la viscosidad. A continuación la tabla 2.8 y 2.9 enuncian las ventajas y desventajas de la inyección alternada de nitrógeno.

Tabla 2.8 Ventajas de la inyección alternada de nitrógeno

Costo	Relativamente bajo en comparación con otros gases como: GLP, CO2, entre otros.
Componentes livianos del nitrógeno	Se vaporizan los componentes livianos del nitrógeno en el crudo, permitiendo desplazar el petróleo hacia los pozos productores ³⁷ .
Corrosividad	No es corrosivo, por lo tanto no se requieren grandes modificaciones en las instalaciones.
Formación	Se usa en formaciones que contengan areniscas o carbonatados con pocas fracturas y altas permeabilidades.

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.9 Desventajas de la inyección alternada de nitrógeno

rabia 2.3 Desventajas de la infrección alternada de introgeno			
Preferencia del crudo	Se utiliza más en petróleos medios y livianos		
Reservorios profundos	Para la inyección de nitrógeno se necesitan reservorios con alto espesor que permiten la estabilización de la gravedad, como en el caso de un ineficiente radio de movilidad.		
Adedamiento	Medio y produce una pobre eficiencia de barrido		
Presión	Se utiliza cuando la presión del reservorio es alta		
Temperatura	Se utiliza cuando la temperatura del reservorio es alta		

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.1.3.1 Forma de aplicación

El método de recuperación mediante inyección de nitrógeno es analizado por varios autores; los mismos que se dividen en dos grupos que determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.10

³⁷ EOR Screening criteria revisited- part 2, applications and impact of oil prices, SPE- 39234

Tabla 2.10 Inyección de nitrógeno

INYECCIÓN DE NITRÓGENO	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.		Taber, J.J., Martin, F.D., and Seright, R.S.	
Gravedad (° API)	Mayor	35	Mayor	35
Viscosidad del petróleo (cp)	Menor	10	Menor	0,4
Composición del crudo	C1 a	C7	C1 a C7	
Saturación del petróleo (%)	Mayor	30	Mayor	40
Salinidad del agua (ppm)	No crítico			
Temperatura del reservorio (°F)	No crítico			
Tipo de roca	Areniscas o carbonatos			
Permeabilidad (mD)	No crítico			No crítico
Profundidad (ft)	Mayor	4500	Mayor	6000
Espesor neto (ft)	Delgada			
Porosidad (%)	No crítico			

2.4.2 RECUPERACIÓN TÉRMICA

La recuperación térmica, es un proceso por el cual intencionalmente se introduce calor dentro del reservorio con el propósito de aumentar la temperatura del yacimiento y reducir la viscosidad del petróleo, permitiendo un óptimo desplazamiento del crudo hacia los pozos de producción.

Los procesos de recuperación térmica son globalmente los procesos más avanzados de EOR y tuvieron su auge a mediados de 1980.

Los proyectos térmicos de recuperación mejorada se encuentran principalmente en Canadá, La Unión Soviética, Venezuela, Brasil y en menor medida en China³⁸. Los métodos térmicos más conocidos son:

- Inyección de agua caliente
- Combustión INSITU
- Inyección de vapor

³⁸ Enhance Oil Recovery, Field planning and development strategies- Alvarado & Manrique, 2012

2.4.2.1 Inyección de agua caliente.

La inyección de agua caliente es un proceso térmico de desplazamiento que consiste en inyectar agua caliente en el yacimiento y parte de su contenido calorífico es transferido a la roca matriz, fluidos intersticiales y a las formaciones adyacentes no productivas.

A medida de que el fluido inyectado avanza parcialmente hacia el petróleo, se forma una zona calentada que va perdiendo calor rápidamente hasta alcanzar la temperatura del yacimiento, es decir, se transfiriere el calor sensible que presenta el agua caliente. A continuación la tabla 2.11 y 2.12 enuncian las ventajas y desventajas de la inyección de agua caliente.

Tabla 2.11 Ventajas de la invección del agua caliente

- and a contract and				
Viscosidad	Como resultado del incremento de temperatura, disminuye la viscosidad del crudo y mejora su movilidad			
Petróleo residual	Reduce el petróleo residual debido a la expansión térmica del petróleo a altas temperaturas.			
Permeabilidad	Debe ser alta para minimizar las pérdidas de calor y mantener una alta tasa de inyección.			
Calor	Transporta una mayor cantidad de calor			

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.12 Desventajas de la inyección del agua caliente

Pérdidas de calor	Las pérdidas de calor en superficie y en el pozo causan la disminución en la temperatura del agua.
Producción	Cuando el pozo está produciendo, solo una parte del agua inyectada como vapor es producida, lo que implica que una gran cantidad de agua inyectada se queda en el yacimiento formando zonas de alta saturación.
Digitación y canalización	El agua caliente es susceptible a formar canales, la saturación de agua se incrementa en las cercanías del pozo y se forma emulsiones una vez que se disipan los efectos térmicos.
Entalpía	La entalpia del agua es menor en comparación con otros fluidos térmicos.

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.2.1.1 Forma de aplicación

El método de recuperación mediante la inyección de agua caliente va a estar en

función de ciertos parámetros como: gravedad API, viscosidad del petróleo, temperatura, permeabilidad, porosidad, profundidad, tipo de roca, espesor neto, entre otros. Esta caracterización fue realizada en base a estudios de casos particulares y fueron desarrollados por autores como: Mortis, Taber et al., Kottungal entre otros, tal como se enuncia en la tabla 2.13

Tabla 2.13 Inyección de agua caliente				
INYECCIÓN DE AGUA CALIENTE	Mortis (2004); Taber et al.;Anonymous (1998, 2000, 2002, 2006); Kottungal (2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)			
Gravedad API	entre	12	25	
Viscosidad del petróleo (cp)	entre	170	8000	
Composición del crudo				
Saturación del petróleo (%)	entre	15	85	
Temperatura del reservorio (F)	entre	75	135	
Tipo de roca	Arenisca			
Permeabilidad (mD)	entre	900	6000	
Profundidad (ft)	entre	500	2950	
Porosidad (%)	entre	25	37	

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.2.2 Inyección de vapor

La inyección de vapor puede ser de manera continua o cíclica y consiste en generar vapor de agua en la superficie e inyectar el vapor dentro del pozo de inyección.

2.4.2.2.1 Inyección continúa de vapor

El uso de la inyección continua de vapor comienza entre los años 1931 – 1932 y

el proceso consiste en el desplazamiento de petróleo a través del vapor entre pozos de inyección y producción, formándose una zona de vapor que avanza a una tasa de producción decreciente.

Para disminuir las pérdidas de calor, se debe reducir el volumen de inyección hasta un valor conveniente, generalmente el recobro de petróleo por éste método puede pasar del 50%.

Después de terminada la inyección de vapor, se introduce agua caliente o fría mientras que los pozos productores se mantienen abiertos.

La recuperación de petróleo por inyección continua de vapor permite:

- Obtener ingresos anuales adicionales
- Producciones aceleradas.
- El rango de la eficiencia se encuentra en del 75 a 85%

2.4.2.2.2 Inyección cíclica de vapor

La mayor parte de la producción de la recuperación térmica es debido al resultado de la inyección de vapor cíclico de vapor³⁹, también conocida como: inyección alternada, remojo con vapor, estimulación por vapor, huff and puff o steamsoak.

La inyección cíclica de vapor es un método muy utilizado en operaciones de recuperación térmica, debido a la fácil aplicación del método, bajo costo en la inversión inicial y rápido recobro de petróleo.

El proceso de inyección cíclica de vapor posee diferentes etapas.

Etapa de inyección: Consiste en inyectar vapor durante dos o tres semanas, la tasa de inyección debe ser la máxima posible con el fin de evitar que la cantidad de calor se pierda en las paredes del pozo, además de lograr el máximo radio calentado y la máxima temperatura en la zona calentada. La presión de inyección no debe exceder la presión de fractura del yacimiento.

³⁹EOR Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, Laura Romero OR Laura Romero

Etapa de remojo: Radica en mantener el pozo cerrado por un determinado tiempo y depende de la experiencia del reservorio a ser aplicado para una suficiente distribución de calor inyectado. Generalmente el pozo se cierra durante cinco días.

Si el yacimiento es activo debido a los mecanismos de producción se recomienda que el tiempo de remojo sea prolongado y no de manera exagerada debido a la condensación del vapor, caso contrario si el yacimiento no es activo (bajas presiones), se recomienda que el tiempo de remojo sea corto con el fin de utilizar el aumento de presión del yacimiento en las cercanías del pozo inyector.

Etapa de producción: Una vez que el crudo se encuentra en mejores condiciones para ser producido, el pozo es abierto y puesto nuevamente a producir. Al inicio de esta etapa, la tasa de producción es elevada debido a la condensación en las cercanías del pozo. Al cabo de un tiempo comienza la producción normal del petróleo y la etapa culmina cuando el pozo presenta una baja tasa de producción y no es económicamente rentable para la empresa, usualmente el pozo es puesto en producción durante 6 semanas.

Los factores favorables durante la inyección cíclica de vapor se pueden manifestar en la reducción de costos de desarrollo en comparación con procesos termales alternativos, alta porosidad, bajo espesor neto, disponibilidad de pozos a ser utilizados, tratamiento del agua para la generación de vapor, bajo contenido de arcillas, entre otras más.

Mientras que los factores desfavorables durante el proceso de inyección es el fuerte empuje de agua, capa de gas, fracturas extensivas, daños en el casing mientras el vapor se está inyectando (expansión térmica). A continuación las tablas 2.14 y 2.15 enuncian las ventajas y desventajas de la inyección de vapor.

Tabla 2.14 Ventajas de la invección de vapor

Calentamiento del crudo	Reduce de la viscosidad del crudo, por esta razón la técnica se aplica en su mayoría a petróleos viscosos.
Presión	La inyección impulsa al crudo para la producción del pozo
Crudos Viscosos	El método es aplicable a aceites viscosos en areniscas, arenas con permeabilidad o arenas no consolidadas.

Tabla 2.15 Desventajas de la inyección de vapor

Destilación de vapor	Despoja los componentes más volátiles del petróleo residual.
Saturación del crudo	La saturación de petróleo debe ser alta para una alta recuperación de petróleo.
Zona productiva	El espesor de la zona productiva debe ser alto para reducir las pérdidas de calor a las formaciones adyacentes.
Yacimientos carbonatados	La inyección de vapor no se utiliza normalmente en yacimientos carbonatados.
Canalización de vapor	Debido a la desfavorable relación de movilidades.
Anulación de la gravedad	Debido a la baja densidad del vapor de agua que llega a la parte superior de la formación.
Profundidad	La profundidad del reservorio no debe ser elevada debido a las altas pérdidas de calor en el medio poroso.

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.2.2.3 Forma de aplicación

El método de recuperación mediante Inyección de vapor es analizado por varios autores; los mismos que se dividen en dos grupos que determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.16

Tabla 2.16 Invección de vapor

INYECCIÓN DE VAPOR		d Lett, G.O., , F. T., Chun Sarathi, P.		Taber, J.J., Martin, F.D., and Seright, R.S.		
Gravedad API	Entre 10 34			mayor	8	
Viscosidad del petróleo (cp)	Menor	150	00	menor	200000	
Composición del crudo			No cr	ítico		
Saturación del petróleo (%)	Entre	40	50	mayor	40	
Temperatura del reservorio (F)	No crítico			No c	No critica	
Tipo de roca	Arenas no consolidadas con alta porosidad o carbonatados			ta		
Permeabilidad (mD)	Mayor	250		Mayor	200	
Profundidad	Menor	3000		Menor	4500	
Espesor neto	Mayor	20		Mayor	20	
Presión del reservorio (psi)	Menor	1500			·	
Porosidad	Mayor	20				

2.4.2.3 Combustión INSITU.

La Combustión INSITU se descubrió en el año de 1920 por Wolcott y Howard durante la ejecución de proyectos de inyección de aire, consiste en quemar una cierta cantidad de petróleo en el yacimiento (aproximadamente 10%) para generar calor, acompañado por una serie de reacciones químicas que contribuyen a la movilidad del petróleo. El objetivo principal de la combustión en sitio es reducir la viscosidad y optimizar la producción de petróleo mediante la propagación de calor dentro del yacimiento, a continuación las tablas 2.17 y 2.18 enuncian las ventajas y desventajas de la inyección de vapor.

Tabla 2.17 Ventajas de la combustión en sitio

	asia 2:17 Vontajao ao la combaction en citic		
Movilización del petróleo	La energía térmica generada da lugar a una serie de reacciones químicas tales como oxidación, desintegración catalítica, destilación, entre otras. Mismas que contribuyen a mover el petróleo desde la zona de combustión hacia los pozos de producción.		
Recobro	Aumento del porcentaje de recobro debido al calentamiento de las zonas no drenadas.		
Volumen de los fluidos	El aumento del volumen de petróleo se incrementa debido a la expansión térmica del vapor inyectado		
Viscosidad del petróleo	Disminución de la viscosidad del petróleo y aumento en la movilidad del mismo.		

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.18 Desventajas de la combustión en sitio

Energía	Necesita suficiente cantidad de energía para generar vapor		
Eficiencia de barrido	El vapor sobrepasa el crudo		
Frente de avance	El frente de combustión por la zona calentada puede ser muy bajo, si hay pérdidas de calor en el trayecto.		
Generación de coque	La generación de coque es un problema en el frente de avance		
Consumo del crudo	Durante la combustión el consumo de crudo es del 7 al10% ⁴⁰		
Recuperación de petróleo	La recuperación petróleo se encuentra en un rango del 30%.		

2.4.2.3.1 Forma de aplicación

El método de recuperación mediante Combustión en sitio es analizado por varios autores; los mismos que se dividen en dos grupos que determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.19

Tabla 2.19 Inyección Combustión en sitio

COMBUSTIÓN INSITU	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.			Taber, J.J., Martin, F.D., and Seright, R.S.		
Gravedad API	Entre	Entre 15 35		mayor	10	
Viscosidad del petróleo (cp)	Menor	500	000	menor	5000	
Composición del crudo	Algur	nos co	mpone	ntes asfált	icos	
Saturación del petróleo (%)	Entre	40	50	mayor	50	
Salinidad del agua (ppm)	No crítico					
Temperatura del reservorio (F)	Mayor 150		mayor	100		
Tipo de roca	Arenas no consolidadas con alta porosidad o carbonatados		Arenas con alta porosidad o areniscas			
Permeabilidad (mD)	Mayor 35		5	mayor	50	
Profundidad	Menor 11500		menor	11500		
Espesor neto (ft)	Mayor 20		0	mayor	10	
Presión del reservorio (psi)	Menor 2000		00			
Porosidad	Mayor		0			

Elaborado por: Mayra Andrade- Rommy Cruz

⁴⁰Introduccion_a_Metodos_de_Recuperacion_Mejorada-libre.pdf

2.4.2.4 Drenaje por gravedad asistido por vapor (SAGD)

El factor de recuperación para el proceso SAGD es alto, en comparación con todos los otros métodos de recuperación térmica, en un rango de 60 a 80%⁴¹.

El proceso consiste en la creación de dos pozos horizontales, un inyector y un productor, el pozo productor se encuentra en la parte inferior de la formación, mientras que el pozo inyector se encuentra en la parte superior, con un espaciamiento aproximado de 5 metros; pudiendo variar de acuerdo a la movilidad inicial de la formación. Al inicio de éste proceso los pozos entran a una etapa de precalentamiento para que exista una comunicación previa a la inyección.

La inyección de vapor continua se realiza en el pozo superior, permitiendo que el crudo se caliente y drene por gravedad hasta el pozo productor; a medida que el petróleo fluye y es producido, la cámara de vapor que se va formando encima del pozo productor no avanza como un frente plano sino más bien en forma de adedamiento, es por ello que se recomienda un sellado en la cámara de vapor: Las alternativas que ofrece el proceso de SAGD son: VAPEX (extracción de vapor), ES- SAGD (extracción por solvente- segregación gravitacional asistida por vapor. Cross or X- SAGD, Fast SAGD (SAGD solo con un pozo), SW- SAGD (SAGD+ aditivos químicos), SAGP (SAGD- empuje de vapor y gas).

2.4.2.5 Inyección de aire (THAI)

La inyección de aire THAI, que por sus siglas Toe-to-Heel Air Injection o inyección de aire de punta a talón, genera calor in situ y puede adoptar una configuración especial en pozos verticales y horizontales;

La diferencia del proceso THAI y el método de SAGD radican en eliminar las restricciones de profundidad.

⁴¹Larter et al. 2008, Qiaohui et al 2010. Haldorsen et al 1985.

2.4.2.6 Proceso de actuación catalítica in situ (CAPRI)

El proceso de actuación catalítica in situ, es el método THAI más la actuación de un catalizador de fondo de pozo, cuyo objetivo es lograr una mayor modernización en la extracción de crudo pesado.

Con el fuego subterráneo el petróleo pesado fluye y mejora la condición del crudo, en términos de densidad antes de llegar a superficie. Las tecnologías alternativas que se han desarrollado para mejorar el calentamiento in situ, son técnicas prometedoras para la producción de crudos pesados, mismos que requieren grandes insumos de energía eléctrica como son: el electrofrac, la calefacción eléctrica, entre otros más.

2.4.3 RECUPERACIÓN QUÍMICA

La recuperación mejorada de petróleo mediante inyecciones químicas, ha tenido avances muy importantes en la última década y consiste en incrementar la producción de crudo, mediante la disminución de la tensión interfacial entre el fluido desplazante y el petróleo⁴², aumentar la viscosidad del fluido inyectado y permitir una mejora en la relación de la movilidad, en conjunto con la eficiencia de barrido.

El método de EOR mediante la inyección de químicos tuvo su auge en 1980, muchos de los proyectos químicos se realizaron en reservorios de areniscas. Siendo el proceso más exitoso; la inyección de polímeros en reservorios de arenisca (información de campo).

Las inyecciones más conocidas son:

- Inyección de polímeros
- Invección de surfactantes
- Inyección de Alcalinos Surfactantes
- Inyección de Alcalinos Surfactantes Polímeros

2.4.3.1 Inyección de polímeros

La inyección de polímeros es uno de los métodos más simples dentro de la recuperación mejorada de petróleo y es el método más ampliamente utilizado para el control de la movilidad del agua⁴³, debido al incremento de la viscosidad del agua y reducción de la digitación viscosa. Además se conoce que el el rango del 15 al 25%, a continuación se presentan las tablas 2.20 y 2.21 que presentan las ventajas y desventajas de la inyección de polímeros.

Tabla 2.20 Ventajas de la inyección de polímeros

Viscosidad del agua (cp)	Incrementa la viscosidad del agua			
Movilidad del agua	Decremento de la movilidad del agua			
Permeabilidad	Reduce la permeabilidad del agua en mayor grado que la permeabilidad del gas y del petróleo.			
Volumen del reservorio	La inyección de polímeros se pone en contacto con un gran volumen del reservorio			
Desplazamiento	Mejora la razón de movilidad agua-petróleo, lo cual da como sultado un mejor desplazamiento y un barrido más completo que en la invasión con agua convencional44.			
Fracturas	bloquea fracturas y arenas con altas permeabilidades ⁴⁵			

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.21 Desventajas de la invección de polímeros

Viscosidad del petróleo (cp)	Si la viscosidad del petróleo es alta, entonces la cantidad de polímero a utilizar también es alta para obtener el control de movilidad deseado.				
Presencia de arcillas	Las arcillas incrementan la adsorción de polímeros.				
Temperaturas	La inyección de polímeros es limitada por las temperaturas < 200°F				
Rata de inyección	La baja velocidad de inyección de los polímeros afecta negativamente a la tasa de producción de petróleo durante las primeras etapas de la inyección.				
Roca	Los polímeros son también susceptibles de precipitarse, formar nuevas fases al contacto del tapón de surfactante, adsorberse en la roca, o ser retenido por filtración en los poros pequeños ⁴⁶ .				

Elaborado por: Mayra Andrade- Rommy Cruz

 $^{^{43}}$ EOR Introduction to enhanced oil recovery (EOR) Processes and bioremediation of oil, Laura Romero OR Laura Romero

⁴⁴http://petroquimex.com/010210/articulos/11.pdf

⁴⁵http://petroquimex.com/010210/articulos/11.pdf

⁴⁶http://www.firp.ula.ve/archivos/cuadernos/S357C.pdf

2.4.3.1.1 Forma de aplicación

El método de recuperación mediante Inyección de polímeros es analizado por varios autores; los mismos que se dividen en dos grupos y determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.22

Tabla 2.22 Inyección de polímeros

INYECCIÓN DE POLÍMEROS	K. Hern Manrique,	o, A. Ranson, ández , E. J. Matheus, , N. Prosperi	Taber, J.J., Martin, F.D., and Seright, R.S.		
Gravedad (° API)	Mayor	22	Mayor	15	
Viscosidad del petróleo (cp)	Menor	100	Menor	150	
Composición del crudo	No crítico		No crítico		
Saturación del petróleo (%)	Mayor	50	Mayor	50	
Salinidad del agua (ppm)	Menor	100000			
Dureza del agua (ppm)	Menor	5000			
Mobilidad del radio	Entre	2 40			
Temperatura del reservorio (F)	Menor	200	Menor	200	
Tipo de roca	Preferible a	renisca	Preferible arenisca		
Permeabilidad (mD)	Mayor	50	Mayor	10	
Profundidad (ft)	Menor	9000	Menor	9000	
Espesor neto (ft)	No crítico		No crítico		
Presión del reservorio (psi)	No crítico				
Mecanismo de empuje	No capa de de agua	gas y empuje			

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.3.2 Inyección de surfactantes

La aplicación de este método a nivel de campo ha resultado ser uno de los mejores y más costosos métodos de inyección de químicos, razón por la cual surge la necesidad de combinar surfactantes con aditivos químicos, que permitan la disminución de costos.

Las moléculas de los surfactantes se acumulan en la interface del fluido desplante y del fluido desplazado, permitiendo reducir la tensión interfacial y eliminar las fuerzas capilares que impiden el desplazamiento del petróleo a través del medio poroso.

Los surfactantes más utilizados son sulfanatos (sulfanatosoxialquilados y sulfanatos en combinación con sulfanatos de petróleo) de petróleo y sulfanatos sintéticos; los cuales son empleados en un amplio intervalo de temperatura a bajas salinidades, a continuación se presentan las tablas 2.23 y 2.24 que presentan las ventajas y desventajas de la inyección de polímeros.

Tabla 2.23 Ventaias de la invección de surfactantes

rabia 2.25 Ventajas de la myección de sunactantes				
Solubiliza al crudo	Los surfactantes tienen la capacidad de solubilizar al crudo, dispersándolo en forma de una emulsión.			
Eficiencia de desplazamiento	Mejora la eficiencia de desplazamiento mediante la reducción de la tensión interfacial, en presencia de un surfactante generalmente la tensión interfacial en la pareja de agua/crudo se reduce de 30 o 40 dina/cm a 1 o 0,1 dina/cm, sin embargo estudios realizados en los años 1970 demuestran que en ciertas circunstancias muy particulares la tensión interfacial podría reducirse a menos de 0,001 dina/cm.			
Adsorción en presencia de sólidos	Tienen la capacidad de adsorberse en presencia de sólidos como: calizas, arcillas, entre otras más. Produciendo intercambios catiónico, modificando la mojabilidad del medio poroso			
Saturación de petróleo residual	Disminuye la saturación de la saturación de petróleo residual.			
Temperaturas altas	Los surfactantes pueden ser empleados para un alto intervalo de temperaturas e incluso a bajas salinidades			

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.24 Desventaias de la invección de surfactantes

	rabia 2.24 Desventajas de la invección de surfactantes				
Renta	abilidad	Pese a que las aplicaciones de éste método a nivel de campo han resultado exitosas, la mayoría de los proyectos no presentan una alta rentabilidad debido a los altos costos de los surfactantes inyectados.			
Compa	atibilidad	Debe existir compatibilidad entre el surfactante y el agua de formación, la selección del surfactante adecuado depende del tipo de crudo y de las condiciones de reservorio.			
Mov	vilidad	La movilidad desfavorable y la segregación por la gravedad ⁴⁷ .			

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.3.2.1 Forma de aplicación

El método de recuperación mediante Inyección de surfactantes es analizado por varios autores, entre ellos se encuentran: Good Lett, G.O., Honar Pour, F. T.,

⁴⁷ http://tecnicasderecuperacionmejorada.blogspot.com/

Chung, F.T., Sarat, Larry W. Lake y Mark P. Walsh hi, P.S; los mismos que se dividen en dos grupos y determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.25

Tabla 2.25 Inyección de surfactantes

· ····································						
INYECCIÓN DE SURFACTANTES	Good Lett, G.O., Chung, F.T.		Larry W. Lake, Mark P. Walsh			
Gravedad API	Mayor		25	mayor	23	
Viscosidad del petróleo (cp)	Menor		40	menor	10	
Composición del crudo	Livianos e	Inter	medios			
Saturación del petróleo (%)	Mayor 30					
Salinidad del agua (ppm)	Menor		140000			
Temperatura del reservorio (F)	Menor		200			
Tipo de roca	Preferible arenisca					
Permeabilidad (mD)	Mayor		40			
Profundidad	Menor	Menor 9000		mayor	2500	
Espesor neto (ft)	No crítico					
Presión del reservorio (psi)				mayor	1500	
Porosidad	Mayor 20			•	·	

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.3.3 Invección de álcalis- surfactantes (AS)

La inyección de álcali- surfactante consiste en inyectar un tapón de surfactante para movilizar el petróleo, seguido por la inyección de polímeros para prevenir el fenómeno de digitación. Se considera recomendable la inyección álcalis-surfactantes en yacimientos con crudos livianos y con baja reacción de los ácidos orgánicos presentes en el crudo

El proceso de álcali- surfactante es eficiente para crudos con alto contenido de ácidos orgánicos, e ineficiente por la formación de escamas producidas por las reacciones químicas de los aditivos y los minerales de la formación⁴⁸. Al ser los surfactantes aditivos muy costosos, una alternativa para producir surfactantes

⁴⁸Simulación de Yacimientos de Petróleos Negros PDVSA-CIED (centro educacional de educación y desarrollo), 2001

naturales es mediante la reacción entre la inyección de alcalinos con un elevado PH seguido por ácidos orgánicos presentes en el crudo. La recuperación de petróleo mediante surfactantes naturales es menor que la recuperación de petróleo mediante surfactantes sintéticos⁴⁹, a continuación las tablas 2.26 y 2.27 presentan las ventajas y desventajas de la inyección de álcali- surfactante.

Tabla 2.26 Ventaias de la invección de álcali- surfactante

Saturación de petróleo residual	Con la inyección de álcali- surfactante disminuye la saturación de petróleo.
Temperatura	Resiste un mayor rango de temperatura del reservorio.

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.27 Desventajas de la inyección de álcali- surfactante

Crudos Livianos	Es recomendable aplicar esta técnica en crudos livianos ya que se puede alcanzar reducciones importantes en la tensión interfacial mediante la activación de los surfactantes naturales.
Muy altas temperaturas	A muy altas temperaturas se pueden degradar los químicos
Formaciones	Se prefiere inyectar en formaciones homogéneas para la inyección.

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.3.3.1 Forma de aplicación

El método de recuperación mediante Inyección de álcali- surfactante es analizado por varios autores; los mismos que se dividen en dos grupos y determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.28

Tabla 2.28 Inyección de álcali- surfactante

INYECCIÓN DE ALCALINOS SURFACTANTE	Brashear, J.P. and Kuuskraa, V.A.		Taber, J.J., Martin, F.D Seright, R.S.		
Gravedad (° API)	Mayor	23	Entre	21	35
Viscosidad del petróleo (cp)	Menor	20	Entre	13	35
Saturación del petróleo (%)			Entre	36	53
Temperatura del reservorio (°F)			Entre	80	200
Permeabilidad (mD)			Entre	11	450
Profundidad (ft)	Mayor	2500	Entre	3250	9000
Presión del reservorio (psi)	Mayor	1500			
Porosidad (%)			Entre	13	35

Elaborado por: Mayra Andrade- Rommy Cruz

⁴⁹ Paper SPE- EOR has come?

2.4.3.4 Inyección de mezclas álcali- surfactante- polímero (ASP)

El proceso ASP es una inyección de mezclas: álcali- surfactante- polímero, para un efecto positivo en el pozo, se prefiere inyectar una mezcla de álcalis y surfactantes diseñados para el campo, seguido por la inyección de tapones de polímeros para el control de la movilidad. De esta manera, el método de inyección ASP combina lo mejor de los tres métodos químicos e incrementando la recuperación de crudo, a continuación las tablas 2.29 y 2.30 presentan las ventajas y desventajas de la inyección de álcali- surfactante.

Tabla 2.29 Ventajas de la invección de álcali- surfactante- polímero

Eficiencia de barrido	Mejora la eficiencia de barrido volumétrico	
Temperatura	Soportan una mayor temperatura < 200F	
Saturación de petróleo residual	Con esta técnica la saturación de petróleo disminuye e incrementos significativamente la recuperación	
Fluido-roca	El empleo de álcali contribuye a disminuir el contenido de iones divalentes en el sistema fluido-roca y minimiza la pérdida de surfactantes y polímeros por adsorción en la roca ⁵⁰ .	

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 2.30 Desventajas de la inyección de álcali- surfactante- polímero

_		, ,	-
Ī	Costo	Los aditivos a inyectar son costosos	

Elaborado por: Mayra Andrade- Rommy Cruz

2.4.3.4.1 Forma de aplicación

El método de recuperación mediante Inyección de álcali- surfactante- polímero es analizado por varios autores; los mismos que se dividen en dos grupos y determinan la efectividad de los proyectos pilotos, tal como se enuncia en la tabla 2.31

⁵⁰ http://www.monografias.com/trabajos31/recuperacion-petroleo/recuperacion-petroleo.shtml

Tabla 2.31 Inyección alcalino- surfactante- polímero

INYECCIÓN ALCALINO SURFACTANTE POLIMERO	Taber, J.J., Martin, F.D., and Seright, R.S.		Mortis (2004); Taber et al.;Anonymous (1998, 2000, 2002, 2006); Kottungal(2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)			
Gravedad (° API)	Entre	21	35	Entre	23	34
Viscosidad del petróleo (cp)	Entre	13	34	Entre	11	6500
Saturación de petróleo (%)	Entre	36	53	Entre	68	74,8
Temperatura del reservorio (°F)	Entre	80	200	Entre	118	158
Tipo de roca				Arenisca		
Permeabilidad (mD)	Entre	11	450	Entre	596	1520
Profundidad (ft)	Entre	3250	9000	Entre	2723	3900
Espesor neto (ft)				No crítico		
Porosidad (%)	Entre	13	35	Entre	26	32

CAPÍTULO 3

ANÁLISIS DE LOS DATOS Y SELECCIÓN DE LOS MÉTODOS DE RECUPERACIÓN TERCEARIA Y MEJORADA

3.1 INTRODUCCIÓN

Durante esta unidad se analizará la mejor alternativa de la Recuperación Mejorada de acuerdo con los criterios técnicos de selección ya establecidos, mismas que nos servirán como pautas para la toma de decisiones y determinar el mejor método de EOR que aplique en el Campo MR.

Posteriormente, con las estrategias de recuperación mejorada seleccionadas se empezará a realizar la simulación analítica de la recuperación térmica y mediante modelos dinámicos se obtendrá una predicción de la producción del campo MR, usando los softwares Eclipse y Petrel de forma complementaria, que nos permitirá conocer las ventajas de la aplicación del mejor método seleccionado.

3.2 SELECCIÓN DE LA ARENA PRODUCTORA

La producción de las diferentes Arenas que constituyen al Yacimiento del Campo MR puede afectar drásticamente a los regímenes de producción y por consiguiente afectar a la recuperación de petróleo.

Los datos de producción y reservas que presentan la Arenas productoras: U Inferior y T Principal, son muy favorables para realizar la simulación de la Recuperación Mejorada sin embargo para simular los tres principales métodos de EOR se ha seleccionado a la Arena U Inferior como la mejor Arena del Campo MR. A continuación las gráficas 3.1 y 3.2 explican de manera visual las razones de selección de la Arena U Inferior.

Producción Acumulada al 31 de Diciembre de 2011

Producción Acumulada (MMBIs)

U inferior T Principal

45%

55%

Fuente: Archivos ARCH

De la gráfica 3.1, se puede concluir que las dos Arenas tienen un buen potencial de producción y consecuentemente las dos Arenas son posibles candidatas para la recuperación mejorada.

Fuente: Archivos ARCH

En la gráfica 3.2 se puede observar las reservas remanentes hasta el año 2011, y se concluye que las dos Arenas también son posibles candidatas para la recuperación mejorada, sin embargo la arena U Inferior posee un mayor volumen de reservas, lo cual la convierte en la Arena seleccionada.

3.3 POZOS ACTIVOS E INACTIVOS DE LA ARENA U. INFERIOR

Los pozos activos son los pozos que se encuentran produciendo mientras los pozos inactivos son los pozos cerrados por un largo o corto período de tiempo que puede ser debido a los trabajos de mantenimiento de presión.

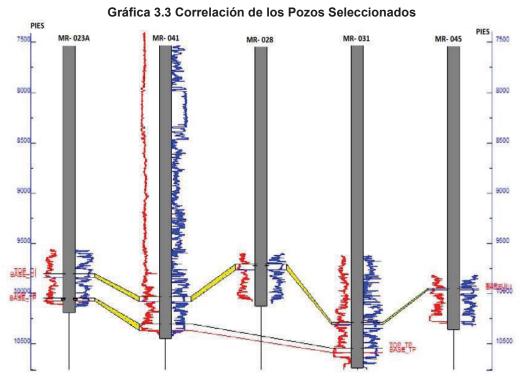
A continuación se presentan las tablas 3.1 y 3.2, que muestran los pozos activos e inactivos de la arena U Inferior.

Tabla 3.1 Pozos activos de la Arena U. Inferior

Tabla 3.1 Pozos activos de la Arena O. Interior			
ARENA	ESTADO		
U Inferior	activo		
	ARENA U Inferior		

Fuente: Archivos ARCH

Tabla 3.2 Pozos inactivos de la Arena U. Inferior


CAMPO MR	ARENA	ESTADO
MR C003	U Inferior	inactivo
MR D014	U Inferior	inactivo
MR E005S1	U Inferior	inactivo
MR H016	U Inferior	inactivo
MR H017	U Inferior	inactivo
MR H018	U Inferior	inactivo
MR H033	U Inferior	inactivo
MR H039	U Inferior	inactivo
MR I009S1	U Inferior	inactivo
MR 009	U Inferior	inactivo
MR J010	U Inferior	inactivo
MR K019	U Inferior	inactivo
MR K021	U Inferior	inactivo
MR L026	U Inferior	inactivo

Fuente: Archivos ARCH

3.4 SELECCIÓN DE LOS POZOS USADOS PARA LA INYECCIÓN

Para seleccionar los pozos que se van a usar en la Recuperación Mejorada de Petróleo es necesario considerar la cercanía de los pozos activos que se van a emplear, las correlaciones de la arena que nos indicaran la conexión entre pozos, la productividad de los pozos, la presión mínima de miscibilidad y por último la distribución de los pozos o modelo geométrico, puesto que a partir de este dato se podrá calcular la eficiencia de desplazamiento.

A continuación se presenta la gráfica 3.3 en el que se determina la correlación de los pozos seleccionados.

Fuente: Archivos ARCH

Los pozos seleccionados del Campo MR son: los pozos MR-023A, MR-041, MR - 028, MR- 031 y el pozo MR-045, este último se encuentra en la lista de los pozos inactivos debido a trabajos de mantenimiento de presión y a la vez nos servirá como pozo inyector debido al cierre temporal (incremento de presión) y productividad efectiva cuando se encontraba activo. Mientras que los pozos MR-

023A, MR-041, MR-028, MR-031, podrán servirnos como pozos productores en la recuperación mejorada de petróleo.

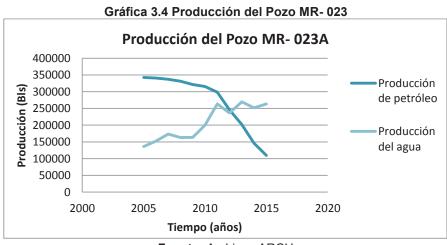

En la tabla 3.3 se observa los datos de producción del pozo MR-023A (pozo productor).

Tabla 3.3 Producción del Pozo MR-023A

Pozo MR- 023A				
Año	Producción de Petróleo (Bls)	Producción de Agua (Bls)		
2005	342635	136254		
2006	340625	152362		
2007	336985	173562		
2008	331125	163201		
2009	321256	163526		
2010	315269	199951		
2011	298564	263245		
2012	245896	236583		
2013	201545	269584		
2014	145896	251536		
2015	109500	263153		

Fuente: Archivos ARCH

A continuación en la gráfica 3.4 se observa un incremento en la producción del agua y una pequeña disminución en la producción de petróleo, esta gráfica se realizó mediante los datos de la tabla 3.3.

Fuente: Archivos ARCH

En la tabla 3.4 se observa los datos de producción del pozo MR-045 (pozo inyector).

Tabla 3.4 Producción del Pozo MR-045

Pozo MR- 045					
Año	Producción de Petróleo (Bls)	Producción de Agua (Bls)			
1999	45885	2495			
2000	26146	3804			
2001	21718	4219			
2002	18866	5195			
2003	18193	4092			
2004	20185	4978			
2005	26406	5445			
2006	26632	6089			
2007	28048	6937			
2008	35835	6523			
2009	32705	6536			
2010	39724	16352			
2011	46695	19852			
2012	43230	29653			
2013	32196	63254			
2014	33922	52146			
2015	24244	78652			

Fuente: Archivos ARCH

A continuación en la gráfica 3.5 se observa un incremento en la producción del agua y una pequeña disminución en la producción de petróleo, esta gráfica se realizó mediante los datos de la tabla 3.4.

Gráfica 3.5 Producción del Pozo MR-045 Producción del Pozo MR-045 90000 80000 70000 **(BI)** 60000 **(BI)** 50000 40000 30000 20000 70000 Producción de petróleo Producción del agua 20000 10000 1995 2010 2000 2005 2015 2020 Tiempo (años)

Fuente: Archivos ARCH

En la tabla 3.5 se observa los datos de producción del pozo MR-028 (posible pozo productor).

Tabla 3.5 Producción del Pozo MR- 028

Tabla 5.5 FTOduccion del Fozo Min- 020						
	Pozo MR- 028					
Año	Producción de Petróleo (Bls)	Producción de Agua (Bls)				
1999	61270	34676				
2000	34952	45698				
2001	29048	41896				
2002	25245	49320				
2003	18031	63256				
2004	27004	52364				
2005	35298	68956				
2006	35600	69148				
2007	31442	75012				
2008	47870	97688,5				
2009	43697	120365				
2010	53056	136085				
2011	62351	136254				
2012	30210	159652				
2013	43018	146325				
2014	45320	135624				
2015	58964	153363				

Fuente: Archivos ARCH

A continuación en la gráfica 3.6 se observa un incremento en la producción del agua y una disminución en la producción de petróleo, esta gráfica se realizó mediante los datos de la tabla 3.5.

Gráfica 3.6 Producción del Pozo MR-028 Producción del Pozo MR-028 180000 160000 140000 120000 100000 80000 60000 40000 140000 Producción de petróleo Producción del agua 40000 20000 2005 1995 2000 2010 2015 2020 Tiempo (años)

Fuente: Archivos ARCH

En la tabla 3.6 se observa los datos de producción del pozo MR-031 (posible pozo productor).

Tabla 3.6 Producción del Pozo MR-031

Pozo MR- 031				
Año	Producción de Petróleo (Bls)	Producción de Agua (Bls)		
1993	121117	41941		
1994	116632	85281		
1995	95108	98228		
1996	103815	104029		
1997	99971	184546		
1998	82947	244232		
1999	122676	23060		
2000	70040	30408		
2001	58232	27873		
2002	50626	32823		
2003	36198	42113		
2004	54144	34852		
2005	106098	45913		
2006	107004	46041		
2007	94530	49951		
2008	143814	57413		
2009	131295	70752		
2010	159372	79999		
2011	187257	80099		
2012	90834	93862		
2013	129258	81244		
2014	136164	75299		
2015	177096	85154		

Fuente: Archivos ARCH

A continuación en la gráfica 3.7 se observa un incremento en la producción del petróleo y una disminución en la producción de agua, esta gráfica se realizó mediante los datos de la tabla 3.6.

Gráfica 3.7 Producción del Pozo MR-031 Producción del Pozo MR- 031 300000 250000 250000 Loopoo 150000 100000 50000 Producción de petróleo Producción del agua 50000 0 1990 2000 2005 2010 1995 2015 2020 Tiempo (años)

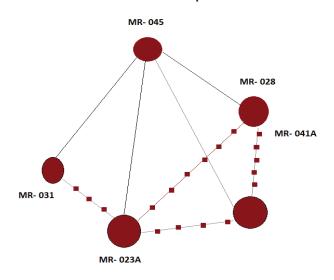
Fuente: Archivos ARCH

En la tabla 3.7 se observa los datos de producción del pozo MR-041A.

Tabla 3.7 Producción del Pozo MR- 041A

	Pozo MR- 041A					
Año	Producción de Petróleo (Bls)	Producción de Agua (Bls)				
2000	151878	9846,8				
2001	1226760	6918				
2002	700400	9122				
2003	582320	8362				
2004	506260	9847				
2005	72396	12634				
2006	108288	10456				
2007	212196	13774				
2008	214008	13812				
2009	189060	14985				
2010	287628	17224				
2011	262590	21226				
2012	318744	24000				
2013	374514	25032				

Fuente: Archivos ARCH


A continuación en la gráfica 3.8 se observa un incremento en la producción del petróleo y una disminución en la producción de agua, esta gráfica se realizó mediante los datos de la tabla 3.7.

Gráfica 3.8 Producción del Pozo MR- 041A Producción del Pozo MR- 041A 1400000 1200000 Producción Producción (Bls) 1000000 de petróleo 800000 Producción 600000 del agua 400000 200000 0 1995 2000 2005 2010 2015 Tiempo (años)

Fuente: Archivos ARCH

3.5 POSICIÓN DE LOS POZOS SELECCIONADOS DEL CAMPO MR

La posición y ubicación de los pozos seleccionados nos servirá para visualizar de mejor manera la zona que va a ocupar el proceso, recorrido de la inyección a efectuarse y el modelo a utilizar, siente este el modelo externo de cinco puntos. En la gráfica 3.9 se determinan los posibles caminos de la inyección, siendo el pozo MR- 045 el pozo inyector y los demás pozos los pozos productores.

Gráfica 3.9 Ubicación de los pozos seleccionados

Elaborado por: Mayra Andrade y Rommy Cruz

3.6 PARAMETROS TÉCNICOS DE LA ARENA U. INFERIOR

Los parámetros técnicos del Campo MR nos servirán para caracterizar y conocer las principales propiedades del petróleo y del reservorio.

La creación de la tabla 3.8 no solo muestra las propiedades PVT y propiedades de la roca del campo MR, sino también las propiedades del reservorio necesarias para compararlos con los criterios técnicos de selección de EOR.

Tabla 3.8 Datos del campo MR

PARÁMETROS	DATOS
Gravedad (° API)	18,5
Viscosidad del petróleo (cp)	9,48
Composición del crudo	C1- C36+
Saturación del petróleo (%)	60
Salinidad del agua (ppm)	51673
Dureza del agua (ppm)	500
Temperatura del reservorio (°F)	215
Tipo de roca	Arenisca
Permeabilidad (mD)	250
Profundidad (ft)	9524
Espesor neto (ft)	52,76
Presión del reservorio (psi)	3415
Mecanismo de empuje	Empuje lateral de agua
Porosidad (%)	16,4

3.7 PROMEDIO DE LOS DATOS DE ROCA Y FLUIDO PARA LOS POZOS SELECCIONADOS DEL CAMPO MR

El promedio de los datos de roca y fluido de los pozos seleccionados se pueden observar en la tabla 3.9, mismos que nos servirá para la simulación analítica y modelación dinámica de los métodos de EOR seleccionados.

Tabla 3.9 Datos de roca-fluido promedio de los pozos seleccionados

Parámetros	Valor	Unidades
Permeabilidad Promedio	210	mD
Gravedad Promedio (° API)	17,8	
Área	4,3	acre
Profundidad Promedio	9568	ft
Viscosidad Promedio	14	ср
Porosidad Promedio	15	%
Temperatura	210	°F
Presión de Saturación	886	psi

Fuente: Archivos ARCH

3.8 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN

Los criterios de selección técnica, establecen el punto de partida para conocer el

mejor método a utilizarse; y mediante las ventajas, aplicaciones y desventajas de los diferentes métodos nos ayudan a visualizar de mejor manera la técnica más óptima para realizar un estudio piloto de Recuperación Mejorada, a partir de las características geológicas del reservorio.

La selección de la mejor alternativa o screening de EOR a usarse en la Arena U. Inferior del Campo MR, se la realiza en base a un exhaustivo análisis comparativo con los criterios de selección, datos del reservorio y datos del fluido del Campo MR.

3.8.1 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN TÉRMICA

3.8.1.1 Recuperación térmica mediante combustión in situ

Para realizar el análisis de la inyección térmica, mediante COMBUSTION INSITU se debe comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto, presión del reservorio y porosidad como se observa en la tabla 3.10.

Tabla 3.10 Cuadro comparativo de la COMBUSTIÓN INSITU

Tabla 3.10 Cuadro comparativo de la Combos Hon Institu						
COMBUSTIÓN INSITU	Honar Po Chung, F.T	Good Lett, G.O., Honar Pour, F. T., hung, F.T., Sarathi, P.S.		Taber, J.J., Martin, F.D., and Seright, R.S.		CAMPO MR
Gravedad API	Entre	15	35	Mayor	10	18,5
Viscosidad del petróleo (cp)	Menor	50	0000	Menor	5000	13,089
Composición del crudo	Alç	junos	compo	onentes asf	álticos	C1- C36+
Saturación del petróleo (%)	Entre	40	50	Mayor	50	60
Salinidad del agua (ppm)		No crítico			49663	
Temperatura del reservorio (F)	Mayor		150	Mayor	100	215
Tipo de roca	conso alta p	Arenas no consolidadas con alta porosidad o carbonatados Arenas con alta porosidad o areniscas		sidad o	Arenisca	
Permeabilidad (mD)	Mayor		35	Mayor	50	250
Profundidad	Menor	1	1500	Menor	11500	9568
Espesor neto (ft)	Mayor		20	Mayor	10	30
Presión del reservorio (psi)	Menor	2	2000	No (definido	3415
Porosidad	Mayor		20	No	definido	16,4

Para analizar la metodología a aplicarse (COMBUSTION IN SITU) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S. -- Taber, J.J., Martin, F.D., and Seright, R.S. 35 40 150 2000 **COMBUSTIÓN INSITU** Gravedad (°API) Viscosidad del petróleo (cp) Composición del crudo Algunos componentes asfálticos Saturación del petróleo (%) Salinidad del agua (ppm) Temperatura del reservorio (°F) Arenas no consolidadas o arenas con alta porosidad o areniscas Tipo de roca Permeabilidad (mD) Profundidad (ft) Espesor neto (ft) Presión del reservorio (psia) Porosidad (%) Posible No realizable Elaborado por: Mayra Andrade- Rommy Cruz

Gráfica 3.10 Cuadro comparativo de la COMBUSTION IN SITU

De la gráfica 3.10 se puede concluir que los datos de Campo son apropiados para la aplicación de la COMBUSTIÓN IN SITU, a excepción del parámetro de porosidad, por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.1.2 Recuperación térmica mediante vapor

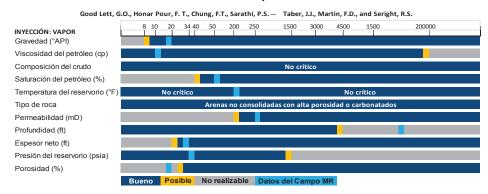

Para realizar el análisis de la inyección térmica, mediante VAPOR se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto, presión del reservorio y porosidad, como se observa en la tabla 3.11.

Tabla 3.11 Cuadro comparativo del VAPOR

INYECCIÓN DE VAPOR	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.				J.J., Martin, nd Seright, R.S.	CAMPO MR
Gravedad API	Entre	10	34	mayor	8	18,5
Viscosidad del petróleo (cp)	Menor	15000)	menor	200000	13,089
Composición del crudo	No crítico				C1- C36+	
Saturación del petróleo (%)	Entre	40	50	mayor	40	60
Temperatura del reservorio (F)	No crítico No critica				215	
Tipo de roca	Arenas no consolidadas con alta porosidad o carbonatados				Arenisca	
Permeabilidad (mD)	Mayor	250		mayor	200	250
Profundidad	Menor	3000		menor	4500	9568
Espesor neto	Mayor	20		mayor	20	30
Presión del reservorio (psi)	Menor	1500				3415
Porosidad	Mayor	20				16,4

Para analizar la metodología a aplicarse (INYECCIÓN DE VAPOR) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.11 Cuadro comparativo del VAPOR

Elaborado por: Mayra Andrade- Rommy Cruz

De la gráfica 3.11 se puede concluir que los datos de Campo son apropiados para la aplicación de la INYECCIÓN DE VAPOR, a excepción de los parámetros de porosidad y profundidad, por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.1.3 Recuperación térmica mediante agua caliente

Para realizar el análisis de la inyección térmica, mediante AGUA CALIENTE se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, saturación del petróleo, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, y porosidad, como se observa en la tabla 3.12.

Tabla 3.12 Cuadro comparativo de AGUA CALIENTE

INYECCIÓN DE AGUA CALIENTE	Mortis (2004) (1998, 2000, 20 Awan et al. (2 De	CAMPO MR			
Gravedad API	Entre	12	25	18,5	
Viscosidad del petróleo (cp)	Entre	170	8000	13,089	
Saturación del petróleo (%)	Entre	15	85	60	
Temperatura del reservorio (F)	Entre	Entre 75 135			
Tipo de roca		Arenisca			
Permeabilidad (mD)	Entre	900	6000	250	
Profundidad	Entre	500	2950	9568	
Porosidad	Entre	25	37	16,4	

Elaborado por: Mayra Andrade- Rommy Cruz

Para analizar la metodología a aplicarse (INYECCIÓN DE AGUA CALIENTE) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.12 Cuadro comparativo de AGUA CALIENTE

Mortis (2004); Taber et al.; Anonymous (1998, 2000, 2002, 2006); Kottungal (2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)

INYECCIÓN DE AGUA CALIENTE Gravedad (°API)

Viscosidad del petróleo (cp)

Saturación del petróleo (%)

Temperatura del reservorio (°F)

Tipo de roca

Permeabilidad (mD)

Profundidad (ft)

Porosidad (%)

Bueno Posible No realizable Datos del Campo MR

De la gráfica 3.12 se puede concluir que los datos de Campo no son apropiados para la aplicación de la INYECCIÓN DE AGUA CALIENTE, ya que solo los parámetros de gravedad API y saturación de petróleo, se encuentran dentro de la franja azul, por lo tanto no se recomienda este método de recuperación mejorada.

3.8.2 SELECCIÓN DE LA MEJOR ALTERNATIVA DE LA INYECCIÓN DE GAS

3.8.2.1 Recuperación química mediante la inyección de dióxido de carbono

Para realizar el análisis de la inyección de gas, mediante DIÓXIDO DE CARBONO se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto, presión del reservorio y porosidad, como se observa en la tabla 3.13.

Tabla 3.13 Cuadro comparativo de DIÓXIDO DE CARBONO

Tabla 3.13 Cuadro comparativo de DIOXIDO DE CARBONO						
INYECCIÓN DIOXIDO DE CARBONO	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.		Taber, J.J., Martin, F.D., and Seright, R.S.		CAMPO MR	
Gravedad API	mayor	25	mayor	22	18,5	
Viscosidad del petróleo (cp)	menor	15	menor	10	13,089	
Composición del crudo	C5- C12 C5- C12			C1- C36+		
Saturación del petróleo (%)	mayor	30	mayor	20	60	
Salinidad del agua (ppm)	No crític	co			49663	
Temperatura del reservorio (F)	No crítico		No crítico		215	
Tipo de roca	Are	eniscas d	o carbonatos		Arenisca	
Permeabilidad (mD)	No crítico		No crítico		250	
Profundidad	mayor	2000	mayor	2500	9568	
Espesor neto	Delgada		Amplio rango		30	
Presión del reservorio (psi)	mayor	PMM			3415	
Porosidad	No crítico				16,4	

Elaborado por: Mayra Andrade- Rommy Cruz

Para analizar la metodología a aplicarse (INYECCIÓN DE DIOXIDO DE CARBONO) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S. - Taber, J.J., Martin, F.D., and Seright, R.S. Inyección: Dióxido de 10 16,4 20 22 215 3415 49663 9568 Carbono Gravedad (°API) Viscosidad del petróleo (cp) Composición del crudo C5- C12 Saturación del petróleo (%) No crítico Salinidad del agua (ppm) No crítico Temperatura del reservorio (°F) Tipo de roca Areniscas o Carbonatos Permeabilidad (mD) No crítico Profundidad (ft) Delgado Delgado Espesor neto (ft) Presión del reservorio (psia) Mayor a PMM Porosidad (%) No crítico

Gráfica 3.13 Cuadro comparativo de DIÓXIDO DE CARBONO

No realizable

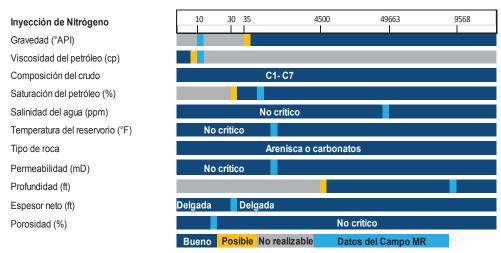
Datos del Campo MR

Posible

De la gráfica 3.13 se puede concluir que los datos de Campo son apropiados para la aplicación de la INYECCIÓN DE DIÓXIDO DE CARBONO, a excepción de los parámetros de gravedad API y viscosidad de petróleo, por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.2.2 Recuperación química mediante la inyección de nitrógeno

Para realizar el análisis de la inyección de gas, mediante NITRÓGENO se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto y porosidad, como se observa en la tabla 3.14.


Tabla 3.14 Cuadro comparativo de NITRÓGENO

INYECCIÓN DE NITRÓGENO	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.		Honar Pour, F. T., Chung, F.T., Sarathi,		CAMPO MR
Gravedad API	Mayor	35	Mayor	35	18,5
Viscosidad del petróleo (cp)	Menor	10	Menor	0,4	13,089
Composición del crudo	C1 a C7		C1 a	a C7	C1- C36+
Saturación del petróleo (%)	Mayor	30	Mayor	40	60
Salinidad del agua (ppm)	No c	rítico			49663
Temperatura del reservorio (F)		No c	rítico		215
Tipo de roca		Areniscas o	carbonatos		Arenisca
Permeabilidad (mD)	No crítico			No crítico	250
Profundidad	Mayor	4500	Mayor	6000	9568
Espesor neto	Delgada			30	
Porosidad	No crítico				16,4

Para analizar la metodología a aplicarse (INYECCIÓN DE NITRÓGENO) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.14 Cuadro comparativo de NITRÓGENO

Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S. -- Taber, J.J., Martin, F.D., and Seright, R.S.

De la gráfica 3.14 se puede concluir que los datos de Campo son apropiados para la aplicación de la INYECCIÓN DE NITRÓGENO, a excepción de los parámetros de gravedad API y viscosidad de petróleo, por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.2.3 Recuperación química mediante la inyección alternada de agua y gas

Para realizar el análisis de la inyección de gas, mediante la inyección ALTERNADA DE AGUA Y GAS se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto y porosidad, como se observa en la tabla 3.15.

Tabla 3.15 Cuadro comparativo ALTERNA DE AGUA Y GAS

INYECCIÓN ALTERNADA DE AGUA Y GAS	Mortis (2004); 1 (1998, 2000, 2 (2008); Awan e al (1980);	CAMPO MR			
Gravedad API	entre	33	39	18,5	
Viscosidad del petróleo (cp)	entre	0	0,3	13,089	
Temperatura del reservorio (F)	entre	215			
Tipo de roca		Arenisca			
Permeabilidad (mD)	entre	entre 130 1000			
Profundidad	entre	7545	8887	9568	
Espesor neto	NO	30			
Porosidad	entre	11	24	16,4	

Elaborado por: Mayra Andrade- Rommy Cruz

Para analizar la metodología a aplicarse (INYECCIÓN ALTERNA DE AGUA Y GAS) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Mortis (2004); Taber et al.; Anonymous (1998, 2000, 2002, 2006); Kottungal (2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999) 33 39 130 194 253 0 0.3 11 24 1000 7545 8887 INYECCIÓN ALTERNADA DE AGUA Y GAS Gravedad (°API) Viscosidad del petróleo (cp) Temperatura del reservorio (°F) Tipo de roca Arenisca Permeabilidad (mD) Profundidad (ft) No crítico Espesor neto (ft) Porosidad (%) Bueno No realizable Datos del Campo MR

Gráfica 3.15 Cuadro comparativo ALTERNA DE AGUA Y GAS

De la gráfica 3.15 se puede concluir que los datos de Campo son apropiados para la aplicación de la INYECCIÓN DE VAPOR, a excepción de los parámetros de gravedad API, viscosidad del petróleo y profundidad, por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.3 SELECCIÓN DE LA MEJOR ALTERNATIVA DE INYECCIÓN QUÍMICA

3.8.3.1 Recuperación química mediante la invección de polímeros

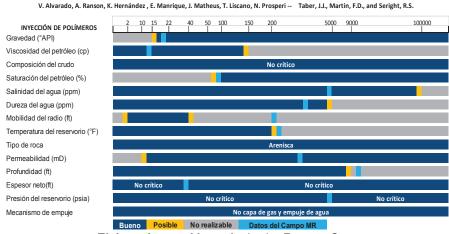

Para realizar el análisis de la inyección química, mediante POLÍMEROS se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, dureza del agua, movilidad del radio, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, presión del reservorio, mecanismo de empuje y porosidad, como se observa en la tabla 3.16.

Tabla 3.16 Cuadro comparativo de POLÍMEROS

INYECCIÓN DE POLÍMEROS	V. Alvarado, A. Ranson, K. Hernández , E. Manrique, J. Matheus, T. Liscano, N. Prosperi		Marti and S	r, J.J., n, F.D., seright, .S.	CAMPO MR
Gravedad API	Mayor	22	Mayor	15	18,5
Viscosidad del petróleo (cp)	Menor	100	Menor	150	13,089
Composición del crudo	No crít	ico	No o	crítico	C1- C36+
Saturación del petróleo (%)	Mayor	50	Mayor	50	60
Salinidad del agua (ppm)	Menor	100000)		49663
Dureza del agua (ppm)	Menor	5000			500
Mobilidad del radio	Entre	2 40			200
Temperatura del reservorio (F)	Menor	200	Menor	200	215
Tipo de roca	Preferible a	renisca	_	erible nisca	Arenisca
Permeabilidad (mD)	Mayor	50	Mayor	10	250
Profundidad	Menor	9000	Menor	9000	9568
Espesor neto (ft)	No crítico		No	crítico	30
Presión del reservorio (psi)	No crítico				3415
Mecanismo de empuje	No capa de gas y empuje de agua				Empuje lateral de agua

Para analizar la metodología a aplicarse (INYECCIÓN DE POLÍMEROS) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.16 Cuadro comparativo de POLÍMEROS

De la gráfica 3.16 se puede concluir que los datos de Campo son apropiados para la aplicación de la INYECCIÓN DE POLÍMEROS, a excepción de los parámetros movilidad del radio, profundidad y temperatura por lo tanto se concluye que este método al no abarcar todos los parámetros en su totalidad (estar dentro de la franja azul- bueno), no es tan recomendable para su aplicación.

3.8.3.2 Recuperación química mediante la inyección de surfactantes

Para realizar el análisis de la inyección química, mediante SURFACTANTE se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, composición del crudo, saturación del petróleo, salinidad del agua, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, presión del reservorio y porosidad, como se observa en la tabla 3.17.

Tabla 3.17 Cuadro comparativo de SURFACTANTES

INYECCIÓN DE SURFACTANTES	Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.		Dr. Lar Lake, Dr. Wal	Mark P.	CAMPO MR	
Gravedad API	Mayor		25	Mayor	23	18,5
Viscosidad del petróleo (cp)	Menor		40	Menor	10	13,089
Composición del crudo	Livianos e Intermedios				C1- C36+	
Saturación del petróleo (%)	Mayor 30				60	
Salinidad del agua (ppm)	Menor		140000			49663
Temperatura del reservorio (F)	Menor		200			215
Tipo de roca	Preferible arenisca					Arenisca
Permeabilidad (mD)	Mayor		40			250
Profundidad	Menor		9000	Mayor	2500	9568
Espesor neto (ft)	No crítico				30	
Presión del reservorio (psi)				Mayor	1500	3415
Porosidad	Mayor		20		·	16,4

Elaborado por: Mayra Andrade- Rommy Cruz

Para analizar la metodología a aplicarse (INYECCIÓN DE SURFACTANTES) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Good Lett, G.O., Honar Pour, F. T., Chung, F.T., Sarathi, P.S.-- Dr. Larry W. Lake, Dr. Mark P. Walsh 10 20 23 25 30 200 1500 2500 14000 INYECCIÓN DE SURFACTANTES Gravedad (°API) Viscosidad del petróleo (cp) Composición del crudo Saturación del petróleo (%) Salinidad del agua (ppm) Temperatura del reservorio (°F) Arenisca Tipo de roca Permeabilidad (mD) Profundidad (ft) Espesor neto (ft) No crítico Presión del reservorio (psia) Porosidad (%) No realizable Datos del Campo MR

Gráfica 3.17 Cuadro comparativo de SURFACTANTES

De la gráfica 3.17 se puede concluir que los datos de Campo no son apropiados para la aplicación de la INYECCIÓN DE SURFACTANTES, pues casi la mitad de los parámetros no cumplen con los requisitos de selección.

3.8.3.3 Recuperación química mediante la inyección de alcalino surfactante

Para realizar el análisis de la inyección química, mediante ALCALINO-SURFACTANTE se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, saturación del petróleo, temperatura del reservorio, permeabilidad, profundidad, presión del reservorio y porosidad, como se observa en la tabla 3.18.

Tabla 3.18 Cuadro comparativo de ALCALINO-SURFACTANTES

INYECCIÓN DE ALCALINOS SURFACTANTE	Brashear, J.P. and Kuuskraa, V.A.			r, J.J., , and S R.S.	Martin, eright,	CAMPO MR
Gravedad API	mayor	23	Entre	21	35	18,5
Viscosidad del petróleo (cp)	menor	20	Entre	13	35	13,089
Saturación del petróleo (%)			Entre	36	53	60
Temperatura del reservorio (F)			Entre	80	200	215
Permeabilidad (mD)			Entre	11	450	250
Profundidad	mayor	2500	Entre	3250	9000	9568
Presión del reservorio (psi)	mayor	1500				3415
Porosidad			Entre	13	35	16,4

Para analizar la metodología a aplicarse (INYECCIÓN DE ALCALINOS-SURFACTANTES) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Brashear, J.P. and Kuuskraa, V.A.- Taber, J.J., Martin, F.D., and Seright, R.S. 11 13 20 21 23 35 36 53 80 200 450 1500 2500 3250 9000 INYECCIÓN DE ALCALINO-SURFACTANTE Gravedad (°API) Viscosidad del petróleo (cp) Saturación del petróleo (%) Temperatura del reservorio (°F) Permeabilidad (mD) Profundidad (ft) Presión del reservorio (psia) Porosidad (%) No realizable Datos del Campo MR

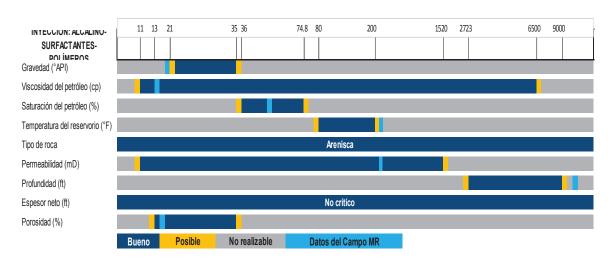
Gráfica 3.18 Cuadro comparativo de ALCALINO-SURFACTANTES

Elaborado por: Mayra Andrade- Rommy Cruz

De la gráfica 3.18 se puede concluir que los datos de Campo no son apropiados para la aplicación de la INYECCIÓN DE ALCALINOS- SURFACTANTES, pues solo cinco parámetros de selección cumplen con los requisitos de selección.

3.8.3.4 Recuperación química mediante la inyección de alcalino surfactante polímero

Para realizar el análisis de la inyección química, mediante ALCALINO SURFACTANTE POLÍMERO se deben comparar los siguientes parámetros: gravedad API, viscosidad del petróleo, saturación del petróleo, temperatura del reservorio, tipo de roca, permeabilidad, profundidad, espesor neto y porosidad, como se observa en la tabla 3.19.


Tabla 3.19 Cuadro comparativo ALCALINO SURFACTANTE POLÍMERO

INYECCIÓN ALCALINO SURFACTANTE POLIMERO		Taber, J.J., Martin, F.D., and Seright, R.S.		Mortis (2004); Taber et al.;Anonymous (1998, 2000, 2002, 2006); Kottungal(2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)		CAMPO MR	
Gravedad API	Entre	21	35	entre	23	34	18,5
Viscosidad del petróleo (cp)	Entre	13	34	entre	11	6500	13,089
Saturación de petróleo (%)	Entre	36	53	entre	68	74,8	60
Temperatura del reservorio (F)	Entre	80	200	entre	118	158	215
Tipo de roca				Arenisca			Arenisca
Permeabilidad	Entre	11	450	entre	596	1520	250
Profundidad (ft)	Entre	3250	9000	entre	2723	3900	9568
Espesor neto (ft)	No crítico			30			
Porosidad (%)	Entre	13	35	entre	26	32	16,4

Para analizar la metodología a aplicarse (INYECCIÓN DE ALCALINO SURFACTANTE POLIMERO) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.19 Cuadro comparativo ALCALINO SURFACTANTE POLÍMERO

Taber, J.J., Martin, F.D., and Seright, R.S.- Mortis (2004); Taber et al.; Anonymous (1998, 2000, 2002, 2006); Kottungal (2008); Awan et al. (2006); Cadeline et al (1980); Demin et al. (1999)

De la gráfica 3.19 se puede concluir que los datos de Campo no son apropiados para la aplicación de la INYECCIÓN DE ALCALINOS- SURFACTANTES-POLÍMEROS, ya que tres parámetros de selección no cumplen con los requisitos de selección.

3.9 ANÁLISIS DE LOS MÉTODOS DE EOR

En el siguiente texto se puede considerar la mejor alternativa de cada método de EOR, en el que se establece comparaciones y deducciones gráficas como los parámetros que cumplen, no cumplen, son probables y los parámetros que no existen debido a la falta de lineamientos que presente cada autor.

A continuación se presentan las siguientes gráficas deductivas:

3.9.1 Inyección térmica

Tabla 3.20 Screening EOR TÉRMICO

DATOS DE SCREENING DEL CAMPO MR		COMBUSTIÓN INSITU	INYECCIÓN DE VAPOR	INYECCIÓN DE AGUA CALIENTE
Gravedad API	18,5	Cumple	Cumple	Cumple
Viscosidad del petróleo (cp)	9,48	Cumple	Cumple	No cumple
Composición del crudo	C1- C36+	Cumple	Cumple	Cumple
Saturación del petróleo (%)	60	Cumple	Cumple	Cumple
Salinidad del agua (ppm)	51673	Cumple	No dato	No dato
Dureza del agua (ppm)	500	No dato	No dato	No dato
Temperatura del reservorio (°F)	215	Cumple	Cumple	No cumple
Tipo de roca	Arenisca	Cumple	Cumple	Cumple
Permeabilidad (mD)	250	Cumple	Cumple	No cumple
Profundidad (ft)	9524	Cumple	No cumple	No cumple
Espesor neto (ft)	52,76	Cumple	Cumple	No dato
Presión del reservorio (psia)	3415	No cumple	No cumple	No dato
Mecanismo de empuje	Empuje lateral de agua	No dato	No dato	No dato
Porosidad (%)	16,4	Probable	No cumple	Probable

Elaborado por: Mayra Andrade- Rommy Cruz

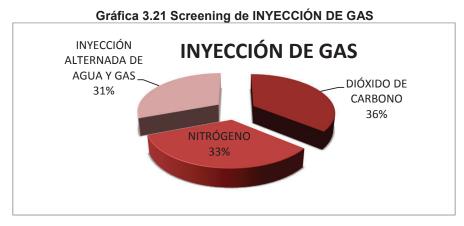
Mediante el screening realizado, tabla 3.20, se puede observar que la Inyección de vapor es mayoritariamente la que cumple con los parámetros especificados del Campo MR; por lo tanto, el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE VAPOR.

INYECCIÓN TÉRMICA

INYECCIÓN DE AGUA CALIENTE 30%

INYECCIÓN DE VAPOR 38%

Gráfica 3.20 Screening de INYECCIÓN TÉRMICA


En la gráfica 3.20 se puede observar de mejor manera que el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE VAPOR con un 38 % favorable en comparación a los otros métodos.

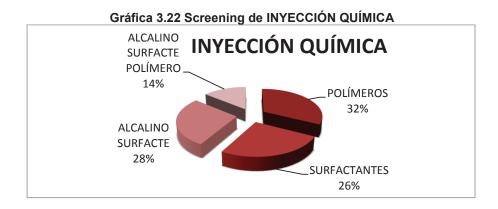
3.9.2 Inyección miscible de gas

Tabla 3.21 Screening EOR GAS

DATOS DE SCREENING DEL CAMPO MR		INYECCIÓN DE DIÓXIDO DE CARBONO	INYECCIÓN DE NITRÓGENO	INYECCIÓN ALTERNADA DE AGUA Y GAS
Gravedad (° API)	18,5	Probable	No cumple	No cumple
Viscosidad del petróleo (cp)	9,48	Cumple	Cumple	Probable
Composición del crudo	C1- C36+	Cumple	Cumple	No cumple
Saturación del petróleo (%)	60	Cumple	Cumple	No dato
Salinidad del agua (ppm)	51673	No crítico	No crítico	No dato
Dureza del agua (ppm)	500	No crítico	No dato	No dato
Temperatura del reservorio (°F)	215	No crítico	No crítico	Cumple
Tipo de roca	Arenisca	Cumple	Cumple	Cumple
Permeabilidad (mD)	250	No crítico	No crítico	Cumple
Profundidad (ft)	9524	Cumple	Cumple	Probable
Espesor neto (ft)	52,76	Cumple	Cumple	Cumple
Presión del reservorio (psia)	3415	No dato	No dato	No dato
Mecanismo de empuje	Empuje lateral de agua	No dato	No dato	No dato
Porosidad (%)	16,4	No crítico	No crítico	No crítico

Mediante el screening realizado, tabla 3.21, se puede observar que la inyección de dióxido de carbono es mayoritariamente la que cumple con los parámetros especificados del campo MR; por lo tanto, el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE DIÓXIDO DE CARBONO.

Elaborado por: Mayra Andrade- Rommy Cruz


En la gráfica 3.21 se puede observar de mejor manera que el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE DIÓXIDO DE CARBONO con un 36% favorable en comparación a los otros métodos.

3.9.3 Inyección química

Tabla 3.22 Screening EOR QUÍMICOS

		<u> </u>			
DATOS DE SCREENING DEL CAMPO MR		INYECCIÓN DE POLÍMEROS	INYECCIÓN DE SURFACTANTES	INYECCIÓN ALCALINO SURFACTE	INYECCIÓN ALCALINO SURFACTE POLÍMERO
Gravedad API	18,5	Cumple	Probable	Probable	Cumple
Viscosidad del petróleo (cp)	9,48	Cumple	Cumple	Cumple	Probable
Composición del crudo	C1- C36+	Cumple	Cumple	No dato	No dato
Saturación del petróleo (%)	60	Cumple	Cumple	Cumple	Cumple
Salinidad del agua (ppm)	51673	Cumple	Cumple	No dato	No dato
Dureza del agua (ppm)	500	Cumple	Cumple	No dato	No dato
Temperatura del reservorio (°F)	215	Probable	Probable	Probable	Probable
Tipo de roca	Arenisca	Cumple	Cumple	No dato	Cumple
Permeabilidad (mD)	250	Cumple	Cumple	Cumple	Cumple
Profundidad (ft)	9524	Probable	Probable	Cumple	Probable
Espesor neto (ft)	52,76	No dato	Cumple	No dato	Cumple
Presión del reservorio (psia)	3415	Cumple	Cumple	Cumple	No dato
Mecanismo de empuje	Empuje lateral de agua	Cumple	No dato	No dato	No dato
Porosidad (%)	16,4	Cumple	Probable	Cumple	Cumple

Mediante el screening realizado, tabla 3.22, se puede observar que la inyección de polímeros es mayoritariamente la que cumple con los parámetros especificados del campo MR; por lo tanto, el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE POLÍMEROS.

Elaborado por: Mayra Andrade- Rommy Cruz

En la gráfica 3.22 se puede observar que todos los métodos nos dan un óptimo factor de recuperación, pero no todos cumplen con los parámetros de campo MR, por este motivo se toma en cuenta la tabla 3.22 para respaldar que el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN DE POLÍMEROS.

Mediante los cuadros de screening para el Campo MR mostrados anteriormente, se puede concluir a criterio personal que los métodos más apropiados para el proceso de la recuperación mejorada de petróleo (EOR) son: inyección de CO2, inyección de vapor e inyección de polímeros.

La selección del mejor método de recuperación mejorada, se ha realizado en base al menor número de restricciones, disponibilidad, cantidad de parámetros de selección y la importancia de los mismos.

3.10 SIMULACIÓN DE LOS METODOS DE EOR

La simulación es una herramienta fundamental que permite describir el comportamiento del reservorio principalmente después de inyectar fluido a la

formación. Adicional se debe considerar que un proyecto bien realizado reduce el factor riesgo al implementar una adecuada técnica de EOR.

A continuación se presentan algunos términos muy utilizados para la inyección de fluidos miscibles dentro del reservorio:

3.10.1 Presión mínima de miscibilidad

La presión mínima de miscibilidad establece las condiciones de miscibilidad, de esta manera se obtienen las PMM como se observa en la tabla 3.23.

Tabla 3.23 Presión Mínima de Miscibilidad de los Pozos Seleccionados

POZO	PMM
MR- 023A	1745
MR- 041A	1956
MR- 028	1958
MR- 031	1856
MR- 045	1700

FUENTE: Documentos ARCH

3.10.2 Presión de fractura

La presión de fractura es la máxima fuerza que se puede aplicar a una unidad de área necesaria para que la formación resista y evite algún tipo de fragmentación dentro del pozo.

De esta manera la presión de fractura es la máxima presión que resiste la matriz y se encuentra en función de la presión de poros, cohesión y esfuerzos de compresibilidad de la roca.

Una de las pruebas que se realizan en el pozo para calcular la presión de fractura es la prueba Leak Off Test (LOT) o prueba de fuga, misma que es importante para evitar la caída de presión dentro del pozo y esta expresada en densidad del fluido equivalente a lbs/gal.

Uno de los métodos empíricos para determinar la presión de fractura es mediante el método de Eaton (1969) que consiste en calcular la presión de fractura (P_{fr}) en función de la presión de sobrecarga, presión de poro, así como de la relación de Poisson (v).

De esta manera la presión de fractura del campo MR utilizada para nuestros cálculos es: 7000 psi, a continuación la fórmula 3.1 presenta la presión de fractura.

$$P_{fr} = P_p + \left(\frac{v}{1-v}\right) \left[P_s - P_p\right] \tag{3.1}$$

Dónde:

 $P_s = Presi\'on de sobrecarga$

 $P_p = Presión de poro$

 $P_{fr} = Presi\'{o}n de fractura$

v = Relación de Poisson

Presión de sobrecarga: Presión ejercida por el peso total de las formaciones hacia a la profundidad de interés, la fórmula 3.2 presenta la manera cuantitativa de la presión de sobrecarga.

$$P_s = 0.052 * \partial_f * D \tag{3.2}$$

Dónde:

 $\partial_f = Densidad de la formación (ppg)$

D = Profundidad(ft)

Relación de Poisson: Es una propiedad mecánica de la formación que relaciona la deformación lateral con la deformación axial de la roca, cuando ésta se encuentra sometida a un esfuerzo. A continuación la fórmula 3.3 indica la relación de Poisson.

$$v = \frac{0.5 \left(\frac{t_s}{t_c}\right)^2}{\left(\frac{t_s}{t_c}\right)^2 - 1} \tag{3.3}$$

Dónde:

 $t_s = Tiempo de tránsito de corte \left(\frac{\mu seg}{ft}\right)$

 $t_c = Tiempo \ de \ tránsito \ compresional \ \left(\frac{\mu seg}{ft}\right)$

Presión de poro: Es aquella presión que actúa sobre los fluidos de los espacios porosos de la roca.

3.10.3 Caudal crítico

El caudal crítico es el máximo caudal que se puede inyectar al pozo y es además uno de los parámetros importantes para el diseño y análisis de un proceso de inyección.

De esta manera se debe considerar cuidadosamente el rango del caudal de inyección para que la producción recuperada de petróleo sea la máxima posible, obteniendo la presión necesaria de fondo.

Así, el máximo caudal de inyección para un sistema para un sistema estará dado por la fórmula 3.4.

$$Qcrítico = \frac{7.08 * 10^{-3} * k * h * (Pr - Pwf)}{\mu_w * \beta_w * \left[Ln\left(\frac{r_e}{r_w}\right) - 0.75 \right]}$$
(3.4)

Dónde:

k = Permeabilidad (Darcy)

h = profundidad(ft)

Pr = Presión del reservorio (psi)

Pwf = Presión de fondo (psi)

 $\mu_w = Viscosidad del agua (cp)$

 $\beta_w = Factor\ volum\'etrico\ del\ agua\ (std/bbl)$

 $r_e = Radio de drenaje (pulg)$

 $r_w = Radio \ del \ pozo \ (pulg)$

3.11 SIMULACIÓN ANÁLITICA Y MODELOS PROGRAMADOS DE LOS MÉTODOS SELECCIONADOS

Con la finalidad de verificar la selección de la metodología idónea de recuperación mejorada, se procedió a realizar una simulación analítica del método de inyección térmica y la modelación programada de los métodos de inyección de Dióxido de Carbono y Polímeros.

La simulación analítica se aplicó exclusivamente a la inyección térmica de vapor cíclico ya que para los otros métodos no existió un marco teórico, por este motivo se procedió a reemplazar a la simulación analítica por una modelación programada para verificar la efectividad de los otros dos métodos seleccionados.

La simulación analítica de inyección térmica de vapor cíclica se la realizó en base a los criterios térmicos publicado por Douglas Alvarado y Carlos Banzer; mientras que el modelo programado se la realizó con la ayuda de los programas Eclipse y Petrel proporcionados por la compañía Schlumberger.

Para la simulación programada se ha utilizado los principales datos del campo, creándose además un modelo estático, en cuya definición se encuentran algunas características geológicas del yacimiento relativamente estables durante largos períodos de tiempo, como: porosidad, permeabilidad, litología, entre otras más.

La porosidad y la permeabilidad varían considerablemente de un lugar a otro de la formación, generando heterogeneidad en la formación. Sin embargo se considera a estas propiedades estables dentro de un marco temporal casi geológico, es decir estas propiedades no cambian pese al movimiento de los fluidos a través de los medios porosos.

El modelo estático es utilizado como dato de entrada en los procesos de simulación y a partir de este modelo se pueden agregar otras características del yacimiento que pueden cambiar debido al movimiento de los fluidos dentro del medio poroso, entre las características del yacimiento que pueden variar se encuentran los siguientes parámetros: temperatura, presión, composición del fluido, entre otros más.

Cuando se inicia la producción y hay cambios en algunos parámetros del yacimiento se denominan modelos dinámicos y son de gran utilidad para optimizar la producción y el desarrollo del pozo o los pozos que se escojan para la simulación. Para realizar las respectivas simulaciones es necesario conocer la energía necesaria que puede soportar el pozo para no ser fracturado.

3.11.1 Simulación analítica de la Inyección Térmica

El proceso de inyección térmica no se puede aplicar a este Campo MR debido a las características incompatibles de roca y fluido que presentan los pozos seleccionados. Para seleccionar el mejor método de inyección de vapor, es necesario elegir uno de los métodos anteriormente mencionados en base a criterios de diseño para la inyección de vapor. Para el diseño de selección se ha tomado en cuenta la selección realizada en el libro de Recuperación Mejorada por Douglas A. Alvarado y Carlos Banzer S. Estos autores subdividen a la inyección de vapor en inyección continua de vapor e inyección cíclica de vapor.

3.11.1.1 Inyección continua de vapor

En la tabla 3.24 se da a conocer los diferentes parámetros de selección que utiliza Carlos Banzer y Douglas Alvarado para la inyección continua de vapor.

Tabla 3.24 Inyección Continua de Vapor

CRITERIOS DE RECUPERACIÓN TÉRMICA DEL PETRÓLEO POR DOUGLAS A.ALVARADO - CARLOS BANZER S. PARA LA INYECCIÓN CONTINUA DE VAPOR					
POES	1200 - 1700 Bl/acre- ft				
Permeabilidad (mD)	≈ 1000				
Gravedad (° API)	12- 25 °API aunque se han desarrollado proyectos de hasta 45°API				
Viscosidad del petróleo (cp)	< 1000 cp				
Profundidad (ft)	< 3000 ft con el objetivo de mantener alta la calidad del vapor que llega a la formación				
Presión de inyección (psi)	< 2500				
Espesor de la arena (ft)	> 30 ft con el fin de reducir las pérdidas de calor hacía las formaciones				
Conductividad (kh/µ)	30- 3000 md- ft/cp				
Espaciamiento (ft)	2-8 acres				
Calidad del vapor	80- 85%				
Porosidad (%)	> 30 %				

En la tabla 3.25 se comparó los datos provenientes del Campo MR con los parámetros que sugieren Douglas Alvarado y Carlos Banzer para la aplicación de la inyección continua de vapor.

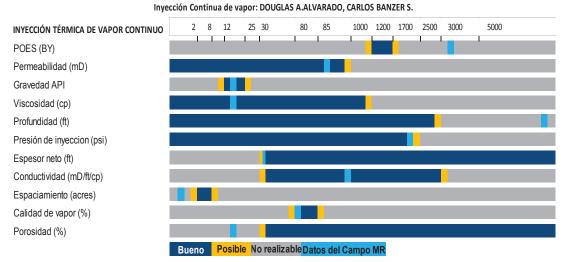

Tabla 3.25 Cuadro comparativo INYECCIÓN CONTINUA

Tabla 3:23 Cuadro Comparativo INTECCION CONTINGA						
INYECCIÓN TÉRMICA DE VAPOR CONTINUO	Inyección Continua de vapor: DOUGLAS A.ALVARADO, CARLOS BANZER S.	CAMPO MR				
POES (BY)	1200 - 1700	3336,63				
Permeabilidad (mD)	Menor 1000	210				
Gravedad API	12 - 25	17,8				
Viscosidad (cp)	Menor 1000	14				
Profundidad (ft)	Menor 3000	9568				
Presión de inyección (psi)	Menor 2500	2000				
Espesor neto (ft)	Mayor 30	30				
Conductividad (mD/ft/cp)	30 - 3000	937,43				
Espaciamiento (acres)	2 - 8	0,3				
Calidad de vapor (%)	80 - 85	80				
Porosidad (%)	Mayor 30	15				

Elaborado por: Mayra Andrade- Rommy Cruz

Para analizar la metodología a aplicarse (INYECCIÓN DE VAPOR CONTINUA) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.23 Cuadro comparativo INYECCIÓN CONTINUA

De la gráfica 3.23 se puede concluir que los datos de Campo MR no son apropiados para la aplicación de la INYECCIÓN CONTINUA, pues el 30% de los parámetros no cumplen con los requisitos de selección.

3.11.1.2 Inyección cíclica de vapor

En la tabla 3.26 se da a conocer los diferentes parámetros de selección que utiliza Carlos Banzer y Douglas Alvarado para la inyección cíclica de vapor.

Tabla 3.26 Inyección Cíclica de Vapor

l abla 3.26 Inyección Ciclica de Vapor				
	RIOS DE DISEÑO PARA LA INYECCIÓN CICLICA DE			
RECUPERACION TERM	MICA DEL PETRÓLEO POR DOUGLAS A.ALVARADO,			
POFO	CARLOS BANZER S.VAPOR			
POES	> 1200 Bls/ acre- pie			
Downson abilidad	4000 2000 and Alto more promoting up a investity alto del			
Permeabilidad	1000- 2000 md, Alta para permitir una inyección alta del			
O	vapor			
Gravedad (°API)	< 15 °API			
Viscosidad del	< 4000 cp			
petróleo (cp)				
Profundidad	< 3000 ft debido a las pérdidas de calor			
Presión de inyección	Debe ser baja para no tener pérdidas de calor			
Tasa de inyección	< 1400 lpc, alta como sea posible, para inyectar calor en			
_	el menor tiempo posible			
Presión del	> 40 lpc			
yacimiento	2 40 lpc			
Espesor de la arena	> 20 ft			
Tiempo de remojo	1 a 4 días			
Producción estimada				
	se puede extraer hasta 24 meses			
Tiempo de inyección	se puede extraer hasta 24 meses 14- 21 días			
	•			
Tiempo de inyección	14- 21 días			
Tiempo de inyección	14- 21 días Posiblemente la mejor guía se obtiene en base al radio			
Tiempo de inyección Cantidad de vapor	14- 21 días Posiblemente la mejor guía se obtiene en base al radio calentado que se desea obtener			
Tiempo de inyección Cantidad de vapor Porosidad	14- 21 días Posiblemente la mejor guía se obtiene en base al radio calentado que se desea obtener > 30%			

Elaborado por: Mayra Andrade- Rommy Cruz

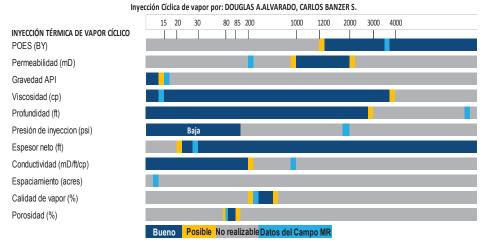

En la tabla 3.27 se puede apreciar los criterios de selección de inyección cíclica de vapor, con el mismo que se realizó un cuadro comparativo con el Campo MR, que a continuación se presenta:

Tabla 3.27 Cuadro comparativo INYECCIÓN CÍCLICA

INYECCIÓN TÉRMICA DE VAPOR CÍCLICO	Inyección Cíclico de vapor: DOUGLAS A.ALVARADO, CARLOS BANZER S.	CAMPO MR
POES (BY)	Mayor 1200	3336,63
Permeabilidad (mD)	1000 - 2000	210
Gravedad API	Menor 15	17,8
Viscosidad (cp)	Menor 4000	14
Profundidad (ft)	Menor 3000	9568
Presión de inyección (psi)	Baja	2000
Espesor neto (ft)	Mayor 20	30
Conductividad (mD/ft/cp)	Menor 200	937,43
Espaciamiento (acres)		0,3
Calidad de vapor (%)	80 - 85	80
Porosidad (%)	Mayor 30	15

Para analizar la metodología a aplicarse (INYECCIÓN DE VAPOR CÍCLICA) mediante el uso de los datos del Campo MR, se procedió a realizar un cuadro comparativo, en donde se establece una zona óptima (buena) de color azul oscuro, una zona posible de color amarillo, una zona no factible (no realizable) de color gris y por último se presenta una franje de color celeste que representa los datos del Campo MR.

Gráfica 3.24 Cuadro comparativo INYECCIÓN CÍCLICA

Elaborado por: Mayra Andrade- Rommy Cruz

De la gráfica 3.24 se puede concluir que los datos de Campo MR no son apropiados para la aplicación de la INYECCIÓN CÍCLICA, pues casi la mitad de los parámetros no cumplen con los requisitos de selección.

3.11.1.3 Análisis comparativo de los métodos de los métodos de inyección de vapor

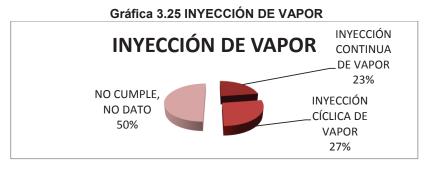

Mediante el screening realizado, tabla 3.28, se puede observar los parámetros de la Inyección Continúa de vapor e Inyección cíclica de vapor; por lo tanto, el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN CÍCLICA DE VAPOR.

Tabla 3.28 Screening de la INYECCIÓN DE VAPOR

INYECCIÓN TÉRMICA DE VAPOR CAMPO MR		Inyección Continua de vapor: DOUGLAS A.ALVARADO, CARLOS BANZER S.	Inyección Cíclico de vapor: DOUGLAS A.ALVARADO, CARLOS BANZER S.
POES (BY)	3336,63	No cumple	Cumple
Permeabilidad (mD)	210	Cumple	No cumple
Gravedad API	17,8	Cumple	No cumple
Viscosidad (cp)	14	Cumple	Cumple
Profundidad (ft)	9568	No cumple	No cumple
Presión de inyeccion (psi)	5000	No cumple	No cumple
Espesor neto (ft)	30	Probable	Cumple
Conductividad (mD/ft/cp)	937,43	Cumple	No cumple
Espaciamiento (acres)	0,3	No cumple	No dato
Calidad de vapor (%)	80	Cumple	Cumple
Porosidad (%)	15	No cumple	No cumple

Elaborado por: Mayra Andrade- Rommy Cruz

En la gráfica 3.25 se puede observar de mejor manera que el método más apropiado para la recuperación de petróleo (EOR) es la INYECCIÓN CÍCLICA DE VAPOR con un 27 % favorable en comparación con la inyección continua de vapor y otros.

Elaborado por: Mayra Andrade- Rommy Cruz

Escogiendo el mejor método y pese a la mayoría de restricciones establecidas, como temperatura, permeabilidad, profundidad, espaciamiento, porosidad y calidad del vapor, entre otras. Se ha simulado analíticamente la inyección cíclica de vapor; A partir de la no compatibilidad con los parámetros establecidos del Campo MR y mediante la selección o screening realizado por DOUGLAS A.

ALVARADO- CARLOS BANZER S.; Comprobaremos si la simulación analítica realizada mediante inyección cíclica es el método de EOR menos óptimo para el Campo MR.

3.11.1.4 Simulación analítica de la inyección cíclica de vapor

Después de haber comprobado que la inyección cíclica de vapor puede ser evaluada y cuantificada mediante por las ecuaciones de Douglas Alvarado y Carlos Banzer se realizara el cálculo de cada uno de los parámetros necesarios para realizar la simulación analítica; para presentar pocas pérdidas de calor, se ha seleccionado a los pozos MR-023A como pozo productor y MR-045 como pozo inyector. A continuación la tabla 3.29 indica los datos necesarios utilizados.

Tabla 3.29 Parámetros utilizados para la simulación del campo MR

Tabla 3.29 Parámetros utilizados para la simulación del campo MR				
PARÁMETROS		UNIDADES		
Inyección de vapor ist (eq. agua)	2000	B/D		
Presión de inyección	5000	Psi		
Presión de saturación	886	Psi		
Calidad (X)	0,8	%		
Espesor de la arena (ht)	30	Pies		
Permeabilidad(k)	0.21	Darcy		
Tiempo de inyección	Hasta 15	Años		
Viscosidad de petróleo (uo) @ 60°F	9934.8	ср		
Viscosidad de petróleo (uo) @ 210°F	14	ср		
Gravedad API	18,5	°API		
Densidad de petróleo	60	lb/pie ³		
Densidad de agua	62,4	lb/pie³		
Calor especifico oil (Co)	0,5	BTU/lb - F		
Calor especifico gas (Cg)	0,01	BTU/lb - F		
Calor especifico agua (Cw)	1	BTU/lb - F		
Porosidad	16,4	%		
Saturación del petróleo (%)	60			
Salinidad del agua	51673	Ppm		
Relación Gas-petróleo RGP	0,01	PCN/BN		
WOR	1	BN/BN		
Presión fondo de pozo (Pwf)	1000	Lpca		
Presión limite exterior (Pe)	1099	Lpca		
Temperatura original (Tr)	210	°F		
Conductividad térmica (Khob)	1,4	BTU		
		h-pie-F		
Difusividad térmica	0,04	pie²/h		
Capacidad calorífica arena (Ms)	35	BTÚ		
		$\overline{pie^3-F}$		
Capacidad calorífica de las capas adyacentes y	35	BTU		
supradyacentes (Mob)		$\overline{pie^3 - F}$		
Radio de drenaje(re)	80	Pies		
Radio de pozo (rw)	0,333	Pies		
Temperatura en superficie	605	°F		

Ejemplo de cálculo:

Para realizar la simulación térmica, primero se calcula el área de la zona de vapor calentada, fórmula 3.5.

$$A_s = \frac{Q_l M_s h_t F_1}{4K_{hoh} M_{ob}(T_s - T_r)}$$
 (3.5)

Dónde:

 $A_s =$ Área de la zona de vapor calentada

 $Q_i = Caudal de inyección$

 $M_s = Capacidad \ calor \'ifica \ de \ la \ arena$

 $h_t = Espesor de la arena$

 $F_1 = Constante adimencional$

 $K_{hob} = Conductividad \ t\'ermica$

 $M_{ob} = Capacidad\ calorifica\ de\ la\ arena$

 $T_s = Temperatura de saturación$

 $T_r = Temperatura$ original del yacimiento

Para calcular el área calentada es necesario primero calcular el caudal de inyección y el factor adimensional F1, usando las fórmulas 3.6 y 3.7.

$$Q_i = \frac{350}{24} i_{st} (C_w (Ts - Tr) + X_{st} L_v)$$
 (3.6)

Dónde:

 $Q_i = Caudal de inyección$

 $i_{st} = Capacidad\ calor ífica\ de\ la\ arena$

 $C_w = Capacidad\ calorifica\ del\ agua$

 $T_s = Temperatura de saturación$

 $T_r = Temperatura original del yacimiento$

 $X_{st} = Calidad de vapor$

 $L_v = Calor Latente de vaporización$

La temperatura de saturación se la calcula en base a la fórmula 3.7

$$T_s = 115.1 P_s^{0.225} (3.7)$$

En la tabla 3.30 se observa el valor calculado de la temperatura de la saturación.

Tabla 3.30 Temperatura de saturación

Parámetros	Cantidad	Unidad
Temperatura de saturación (Ts)	529.96	°F

Elaborado por: Mayra Andrade- Rommy Cruz

El calor latente de vaporización se la calcula en base a la fórmula 3.8.

$$L_{v} = 1318 P_{s}^{-0.08774} \tag{3.8}$$

En la tabla 3.31 se observa el valor calculado del calor latente de vaporización.

Tabla 3.31 Calor latente de vaporización

Parámetros	Cantidad	Unidad
Calor latente de vaporización (Lv)	400.59	BTU/lb-°F

Elaborado por: Mayra Andrade- Rommy Cruz

Con la ayuda de las fórmulas 3.7 y 3.8 se llega a obtener, que el caudal de inyección en diferentes unidades de medición como se observa en la tabla 3.32 es:

Tabla 3.32 Caudal de Inyección

Parámetros	Cantidad	Unidad
Caudal de Inyección (Qi)	18679266.66	BTU/h
Caudal de Inyección (Qi)	68.40	B/D

La constante F, se encuentra en función del tiempo y para su cálculo es indispensable conocer el tiempo adicional, mismo que se encuentra utilizando la fórmula 3.9.

$$T_D = \frac{4K_{hob}M_{ob}t}{M_c^2 h_t^2}$$
 (3.9)

Dónde:

 $T_D = Tiempo \ adimensional$

 $K_{hob} = Conductividad térmica$

 $M_{ob} = Capacidad \ calorifica \ de \ las \ capas \ supra \ y \ sub \ adyacente$

t = Tiempo de inyección en horas

 M_s = apacidad calorifica de la arena

 $h_t = Espesor de la arena$

En la tabla 3.33 se observa el valor calculado del tiempo adimensional.

Tabla 3.33 Tiempo adimensional

Parámetros	Cantidad
Tiempo adimensional (T_D)	529.96

Elaborado por: Mayra Andrade- Rommy Cruz

Obteniendo el valor del tiempo adimensional y mediante Marx y Langenheim (obsérvese Anexo 5), se encuentra la constante F1, a continuación la tabla 3.34

Tabla 3.34 Constante F1

Parámetros	Cantidad					
Constante (F1)	0.2819					

Elaborado por: Mayra Andrade- Rommy Cruz

Mediante las fórmulas 3.5; 3.6; 3.7; 3.8 y 3.9 finalmente se tiene, el área de la zona de vapor calentada, como se observa el valor en la tabla 3.35:

Tabla 3.35 Área de la zona de vapor calentada

Parámetros	Cantidad	Unidad
Área de la zona de vapor calentada	88164.23	ft^2

Elaborado por: Mayra Andrade- Rommy Cruz

A continuación se calcula el radio calentado por el vapor, mediante la fórmula 3.10

$$r_h = \sqrt{\frac{A_s}{\pi}} \tag{3.10}$$

Dónde:

 $A_s =$ Área de la zona calentada

 $r_h = Radio\ calentado\ por\ el\ vapor$

En la tabla 3.36 se observa el valor calculado del radio calentado por el vapor

Tabla 3.36 Radio calentado por el vapor

Parámetros	Cantidad	Unidad
Radio calentado por el vapor	167.522	ft

Elaborado por: Mayra Andrade- Rommy Cruz

Se procede a calcular la tasa de flujo de petróleo antes de la estimulación, mediante la fórmula 3.11.

$$q_{oc} = \frac{2\pi (1,127)hK(P_e - P_w)}{\mu_{oc} ln \frac{r_e}{r_w}} \tag{3.11}$$

Dónde:

h = Espesor de la arena

K = Permeabilidad

 $P_e = Presi\'on del l\'imite exterior$

 $P_w = Presi\'on de fondo de pozo$

 $\mu_{oc} = Viscosidad$ a temperatura promedio del reservorio

 $r_w = Radio de pozo$

 $r_e = Radio de drenaje$

Para calcular la tasa de flujo antes de la estimulación se calcula primero la viscosidad a temperatura promedio del reservorio con la fórmula 3.12.

$$\mu_{oc} = ae^{\frac{b}{T_r + 460}} \tag{3.12}$$

Dónde:

a = constante (Ecuación de Andrade)

b = constante (Ecuación de Andrade)

 $T_r = Temperatura del reservorio$

Para calcular las constante b de la Fórmula de Andrade seutiliza las fórmulas 3.13 y 3.14.

$$b = \frac{\ln(\mu_o @ 60^{\circ}F) + \ln(\mu_o @ 200^{\circ}F)}{\frac{1}{60+460} - \frac{1}{200+460}}$$
(3.13)

Dónde:

 μ_0 @ 60°F = viscosidad del petróleo a 60°F

 μ_0 @ 200°F = viscosidad del petróleo a 200°F

$$a = e^{\ln(\mu_0 @ 60^{\circ}F) - \frac{b}{240 + 460}}$$
(3.14)

Dónde:

 μ_o @ 60°F = viscosidad del petróleo a 60°F

En las tablas 3.37, 3.38 se observan los valores calculados.

Tabla 3.37 Constante b de Andrade

Parámetros	Cantidad
Constante b de Andrade	16092.995

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 3.38 Constante a de Andrade

Parámetros	Cantidad
Constante a de Andrade	3.6023E-10

Elaborado por: Mayra Andrade- Rommy Cruz

Finalmente se obtiene que la viscosidad a temperatura promedio del reservorio con los valores anteriormente calculados y el valor se observa en la tabla 3.39.

Tabla 3.39 Viscosidad a temperatura promedio del reservorio

The state of the s					
Parámetros	Cantidad				
Viscosidad a temperatura promedio del reservorio (μ_{oc})	9,72915				

Elaborado por: Mayra Andrade- Rommy Cruz

Asi, mediante las fórmulas 3.11; 3.12; 3.13 y 3.14 se obtiene la tasa de flujo antes de la estimulación como se observa en la tabla 3.40:

Tabla 3.40 Tasa de flujo de petróleo antes de la estimulación

Parámetros	Cantidad	Unidad	
Tasa de flujo de petróleo antes de la estimulación	82,81	B/D	

Elaborado por: Mayra Andrade- Rommy Cruz

Por último la tasa de flujo de petróleo después de la estimulación se obtiene con la fórmula 3.15.

$$q_{oh} = \frac{2\pi (1,127)hK(\rho_e - \rho_w)}{\mu_{oc} ln \frac{r_e}{r_h} + \mu_{oh} ln \frac{r_h}{r_w}}$$
(3.15)

Dónde:

 $q_{oh} = Tasa$ de flujo del petróleo después de estimulación

h = Espesor de la arena

K = Permeabilidad

 $P_e = Presión del límite exterior$

 $P_w = Presi\'ondo de fondo de pozo$

 $\mu_{oc} = Viscosidad$ a temperatura promedio del reservorio

 $\mu_{oh} = Viscosidad$ a T promedio (temperatura de saturación y reservorio)

 $r_h = Radio de la zona calentada$

 $r_w = Radio de pozo$

 $r_e = Radio de drenaje$

Para calcular la tasa de flujo después de la estimulación primero se calcula la viscosidad a temperatura promedio entre la temperatura de saturación y la temperatura del reservorio utilizando la fórmula 3.16.

$$\mu_{oh} = ae^{\frac{b}{T_{avg} + 460}} \tag{3.16}$$

Dónde:

a = constante (Ecuación de Andrade)

b = constante (Ecuación de Andrade)

 $T_{avg} = Temperatura promedia del reservorio y de saturación$

Como se observa en la tabla 3.41 se obtiene la viscosidad a temperatura promedio gracias a las fórmulas 3.15 y 3.16.

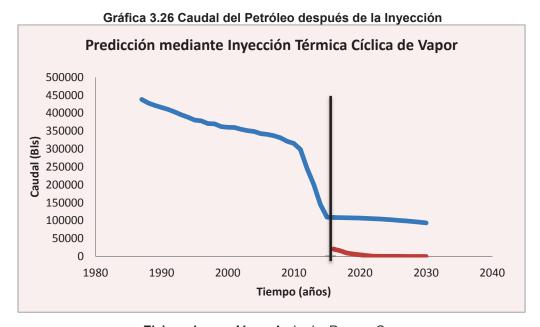
Tabla 3.41 Viscosidad a temperatura promedio del reservorio

Tubia 0.71 Viceociada a temperatura premiedie del receivene						
Parámetros	Cantidad					
Viscosidad a temperatura promedio entre la temperatura de	0.094926721					
saturación y la temperatura del reservorio (μ_{oh})						

Elaborado por: Mayra Andrade- Rommy Cruz

De acuerdo a los cálculos y criterios de selección anteriores, la tasa de flujo de petróleo después de la estimulación provoca pérdidas en la recuperación, tabla 3.42.

Tabla 3.42 Viscosidad a temperatura promedio del reservorio


Parámetros	Cantidad
Tasa de flujo de petróleo después de la estimulación	Pérdida Total $\left(\frac{B}{D}\right)$
(q_{oh})	reraida rotat

Elaborado por: Mayra Andrade- Rommy Cruz

En la tabla 3.42 la pérdida es total y esta se debe a la muy baja permeabilidad, baja conductividad, mayor radio de calentamiento, mayor profundidad, mayor

zona de interés, por lo tanto no es recomendable realizar recuperaciones térmicas en el Campo MR.

Como se observa en los cálculos realizados que el volumen del fluido inyectado llega a la formación productora con una baja presión, lo que implica que el área de influencia va a ser bajo y consecuentemente el fluido calentado y recuperado va ser escaso.

Elaborado por: Mayra Andrade- Rommy Cruz

En la gráfica 3.26 se puede observar que después de la inyección cíclica de vapor la producción de petróleo comienza a declinar hasta el año 2030; por lo cual nos indica que el método de inyección térmica cíclica de vapor no es recomendable.

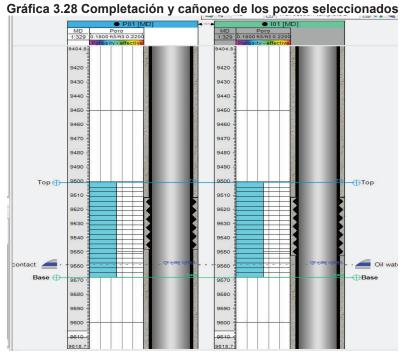
3.11.2 Modelos dinámicos de inyección

Para comprobar la eficiencia de los métodos de inyección de dióxido de carbono e inyección de polímeros, se realizará un modelamiento dinámico en base a los programas Petrel y Eclipse; estos modelos dinámicos son simples y didácticos, para lo cual se ocuparon los keyboards mencionados en los Anexos 6 y 7.

Para la modelación programada se siguió el siguiente esquema:

a. Creación de la Grid.

- b. Declaración de las propiedades tales como: porosidad (Φ), permeabilidad (k).
- c. Creación de pozos: pozo inyector (MR-045 ó I01), pozo productor (MR-023A ó P01); mediante la ubicación de sus respectivas coordenadas.
- d. Selección de contactos: para la inyección de gas se selecciona el contacto gas-petróleo a 9524 ft y el contacto petróleo-agua a 9559 ft; mientras que para la simulación de polímeros tan solo se utilizó el con tacto aguapetróleo siendo este de 9559 ft.
- e. Completación y cañoneo de los pozos seleccionados para la inyección y producción, de esta manera el espesor de la zona productiva es 27 ft y la profundidad de los pozos 9568 ft.
- f. Declaración de los datos de roca y fluido, siendo la presión inicial de los pozos analizados 3415 psi, tipo de arena consolidada, temperatura del reservorio 215, saturación residual del petróleo 40%, factor volumétrico inicial del petróleo 1.13, gravedad API 18.5, viscosidad del petróleo 13.089, salinidad del agua 51673 ppm, dureza del agua 500 ppm y finalmente mecanismo de empuje lateral.
- g. Creación y desarrollo de la estrategía a utilizar, para el modelamiento dinámico ya sea mediante inyección de polímeros o dióxido de carbono se utilizaron los siguientes datos: fecha de inicio jul/2015 y fecha final jul/2030, caudal de inyección 3000 bls, presión de fondo 1500 psi.


A continuación se presentan los gráficos 3.27, 3.28 y 3.29 generados durante el proceso de la modelación, la misma que nos servirá para los dos casos de inyección (inyección de dióxido de carbono e inyección de polímeros).

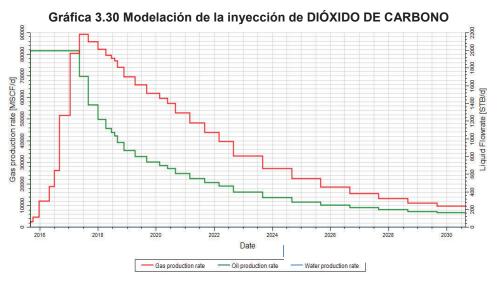
 Creación de la grilla y pozos seleccionados; se toma en cuenta los pasos a, b, c y d anteriormente mencionados de la modelación programada; de estos se obtiene la gráfica 3.27.

Modelado por: Mayra Andrade- Rommy Cruz

 Completación y cañoneo de los pozos seleccionados; se toma en cuenta el paso "e" anteriormente mencionado de la modelación programada; de este se obtiene la gráfica 3.28.

Modelado por: Mayra Andrade- Rommy Cruz

 Resultados de la declaración de datos de fluido; se toma en cuenta el paso "f" anteriormente mencionado de la modelación programada el mismo que nos da como resultado la gráfica 3.29.


| C2 | E3N | E3N | E4N |

Gráfica 3.29 Resultados de la declaración de datos de fluido

Modelado por: Mayra Andrade- Rommy Cruz

3.11.2.1 Modelación programada de la inyección de dióxido de carbono

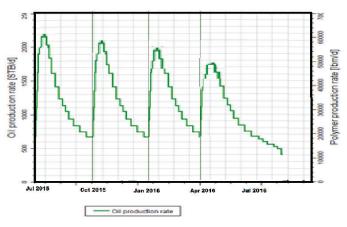

De acuerdo a la estrategia establecida de la inyección de dióxido de carbono, se obtuvieron los siguientes resultados que se observan en la gráfica 3.30.

Modelado por: Mayra Andrade- Rommy Cruz

A continuación el grafico 3.31 se expone las proyecciones de producción de gas y petróleo hasta el año 2030; como se puede observar en los primeros años se va a

tener una producción considerable y a medida que el tiempo transcurre se declina la producción tanto de gas como de petróleo.

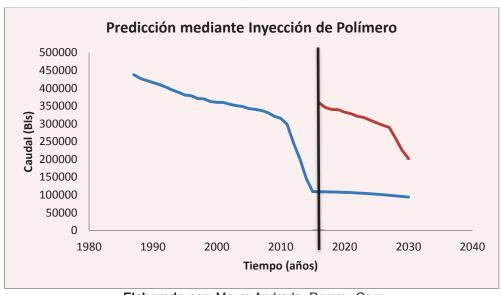
Gráfica 3.31 Caudal del Petróleo después de la Inyección


Elaborado por: Mayra Andrade- Rommy Cruz

3.11.2.2 Modelación programada de la invección de polímeros

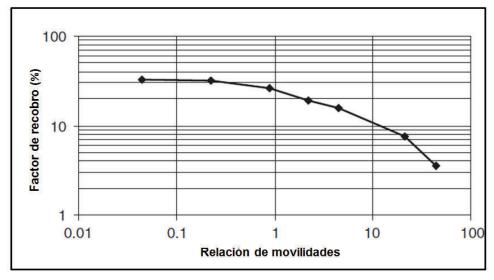
Para la modelación de la inyección de polímeros se siguieron los mismos patrones de la modelación de dióxido de carbono realizando específicos cambios en la estrategia de inyección química de polímeros.

En la modelación de inyección de polímeros se tiene incrementos progresivos en la producción a manera de batches; los lapsos en los que se recomienda la inyección de polímeros dependen del criterio del evaluador. Para nuestro caso hemos elegido un período de inyección de polímeros cada tres meses.


La gráfica 3.32 indica la modelación programada de la inyección de polímeros en un período trimestral, con un caudal de inyección de 3000 Bls, obteniéndose los siguientes resultados durante un año de inyección.

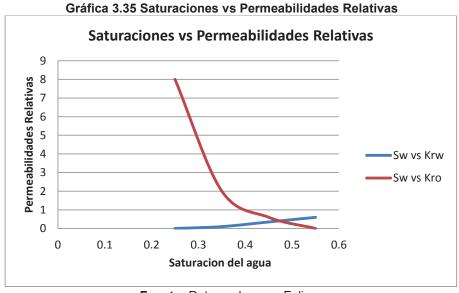
Gráfica 3.32 Modelación programada de la INYECCIÓN DE POLÍMEROS

Modelado por: Mayra Andrade- Rommy Cruz


En la gráfica 3.33 se pone en comparación la producción actual acumulada con las predicciones de producción mediante la inyección de polímeros mediante batches.

Gráfica 3.33 Caudal del Petróleo después de la INYECCIÓN DE POLÍMEROS

Elaborado por: Mayra Andrade- Rommy Cruz


El mejor método utilizado para la recuperación mejorada es mediante la inyección de polímeros, y para saber el porcentaje de recobro de petróleo utilizaremos la gráfica 3.34 que nos indica el recobro obtenido a partir de la relación de movilidades.

Gráfica 3.34 Factor de Recobro vs Relación de Movilidades

Fuente: Modern Chemical Enhanced Oil Recovery- J. Sheng

La relación de la movilidad se obtiene con la gráfica 3.35 que presenta la saturación de agua y las permeabilidades relativas del agua y del petróleo, obtenidas mediante la recuperación.

Fuente: Datos polymers- Eclipse

De acuerdo a la inyección de polímeros, la viscosidad del agua incrementa a 10 cp, obteniéndose una movilidad de 10 y un factor de recobro recuperación de recobro de 10%.

CAPÍTULO 4

ESTUDIO DE VIABILIDAD DE RECUPERACIÓN TERCIARIA Y MEJORADA

4.1 INTRODUCCIÓN

En este capítulo se estudiará la viabilidad del proyecto de recuperación mejorada mediante algunos indicadores económicos, mismos que son indispensables para la toma de decisiones y evaluación de la rentabilidad de los proyectos objeto de estudio.

4.2 ESCENARIOS DE INVERSIÓN DE LAS PRODUCCIONES DE EOR

La evaluación financiera de un proyecto consiste en analizar el comportamiento de los ingresos, egresos, inversión necesaria, impuestos, depreciaciones, utilidades, entre otras características más, para optimizar el proceso de toma de decisiones a la hora de evaluar sus proyectos de inversión.

El estudio de los indicadores económicos son índices que nos ayudan a determinar o interpretar la viabilidad del proyecto a realizarse, sin embargo su resultado final no nos permite determinar con seguridad si el proyecto a ejecutarse es asequible.

Para analizar la evaluación de proyectos se lo realizará a través de ciertos indicadores financieros como: valor actual neto, tasa de retorno interno, razón beneficio/ costo, tiempo de la recuperación de la inversión y eficiencia de la recuperación.

4.3 VALOR ACTUAL NETO (VAN)

El Valor Actual Neto (VAN) es un indicador financiero que mide la viabilidad de un proyecto y representa el valor del dinero presente que va a reportar el proyecto en períodos posteriores.

Para hallar el VAN se necesitan conocer algunas variables que intervienen en la definición, estos son:

4.3.1 INVERSIÓN INICIAL

La inversión inicial indica la importancia del empleo de una cantidad de dinero para efectuar un proyecto. Para efectuar una inversión inicial se realiza un plan de inversión, mismo que establece los gastos imprescindibles o susceptibles de aplazamiento en la ejecución del proyecto cuyo propósito es conseguir ciertas ganancias o beneficios.

4.3.2 FLUJO DE CAJA NETO

Evalúa el valor de los cobros generados que ha tenido el proyecto durante un período de tiempo determinado, matemáticamente el flujo de caja son los egresos menos los ingresos, permitiéndonos ver la rentabilidad del proyecto. De esta manera, si los egresos son mayores a los ingresos el proyecto es conveniente, caso contrario se obtiene un déficit en la economía del proyecto.

4.3.3 TASA DE INTERÉS

El VAN se define como la sumatoria de los flujos netos de caja actualizados menos la inversión inicial, como lo indica en la fórmula 4.1.

$$VAN = -I_O + \sum_{t=1}^{n} \frac{S_t}{(1+i)^t}$$
 (4.1)

Dónde

 $I_0 = Inversión inicial$

t = Periodo en el que nos encontramos

n = Número de periodos de duración del proyecto

 $S_t = Flujo de caja neto al periodo t$

i = Tasa de interés

El análisis de los ingresos se encuentra en función del tiempo y para su estimación es necesario detallar algunos términos:

Caudal Inicial: es la cantidad de fluido de producción con la que se

inicia a recuperar el petróleo residual, el valor del caudal inicial de la Arena U. Inferior del Campo MR es 3000 Bls.

- Tasa de declinación anual: es el comportamiento de la producción con el paso del tiempo y es 25%.
- Precio por barril: es el valor económico que se le da a un barril de petróleo y está establecido en 46,06 \$.
- Tasa de actualización: es el valor del dinero con el paso del tiempo y es 10 %.

A continuación se presenta la tabla 4.1 que incorpora los ingresos económicos del Campo MR.

Tabla 4.1 Ingreso económico del Campo MR

Tabla 4.1 iligreso economico del Campo MR								
N°	AÑOS	PRODUCCIÓN (BLS)		INGRESOS		INGRESOS CTUALIZADOS		
0	2015	36216,00	\$	-		\$ -		
1	2016	36153,18	\$	1.668.109,0	\$	1.516.462,69		
2	2017	36090,47	\$	1.665.215,5	\$	1.376.211,13		
3	2018	36027,87	\$	1.662.327,0	\$	1.248.930,92		
4	2019	35965,37	\$	1.659.443,7	\$	1.133.422,37		
5	2020	35902,99	\$	1.656.564,9	\$	1.028.596,50		
6	2021	35840,71	\$	1.653.691,7	\$	933.465,86		
7	2022	35778,54	\$	1.650.823,1	\$	847.133,28		
8	2023	35716,48	\$	1.647.959,6	\$	768.785,29		
9	2024	35654,52	\$	1.645.101,1	\$	697.683,45		
10	2025	35592,68	\$	1.642.247,2	\$	633.157,38		
11	2026	35530,94	\$	1.639.398,8	\$	574.599,29		
12	2027	35469,31	\$	1.636.555,1	\$	521.456,89		
	TOT	AL	\$	19.827.436,69	\$	11.279.905,05		

Elaborado por: Mayra Andrade- Rommy Cruz

Para el análisis económico de los egresos se utilizó los siguientes datos del campo MR y se puede observar en la tabla 4.2:

• Inversión inicial: es el capital con el que se va a iniciar el proyecto piloto, para nuestro caso el costo de inversión es de: 3.000.000 \$

 Costos operativos: es el costo que le cuesta al Estado producir un barril, para nuestro caso el valor es de: 12\$

Tabla 4.2 Egresos del Campo MR

Tabla 4.2 Egresos del Campo Milk									
N°	AÑOS	PRODUCCIÓN (BLS)	INVERSIÓN	EGRESOS (\$)			INVERSIÓN + EGRESOS	AC ⁻	EGRESOS FUALIZADOS (\$)
0	2015	36216,00	\$ 3.000.000	\$	-	\$	3.000.000	\$	3.000.000
1	2016	36153,18	0	\$	434.592,0	\$	434.592	\$	395.084
2	2017	36090,47	0	\$	433.838,2	\$	433.838	\$	358.544
3	2018	36027,87	0	\$	433.085,6	\$	433.086	\$	325.384
4	2019	35965,37	0	\$	432.334,4	\$	432.334	\$	295.290
5	2020	35902,99	0	\$	431.584,4	\$	431.584	\$	267.980
6	2021	35840,71	0	\$	430.835,9	\$	430.836	\$	243.196
7	2022	35778,54	0	\$	430.088,5	\$	430.089	\$	220.703
8	2023	35716,48	0	\$	429.342,5	\$	429.342	\$	200.291
9	2024	35654,52	0	\$	428.597,8	\$	428.598	\$	181.767
10	2025	35592,68	0	\$	427.854,2	\$	427.854	\$	164.956
11	2026	35530,94	0	\$	427.112,2	\$	427.112	\$	149.700
12	2027	35469,31	0	\$	426.371,3	\$	426.371	\$	135.855
	TOTAL			\$	8.165.637,00	\$	5.802.895,74		

Elaborado por: Mayra Andrade- Rommy Cruz

Tabla 4.3 Cálculo del VAN

Tabla 4.3 Calculo del VAN						
N°	AÑOS	PRODUCCIÓN MENSUAL	FNC	FNC Actualizado	FNC actualizado acumulado	
0	2015	36216,00	-3000000	-3000000	-3000000	
1	2016	36153,18	1233516,96	1121379,05	-1878620,95	
2	2017	36090,47	1231377,31	1017667,2	-860953,746	
3	2018	36027,87	1229241,41	923547,264	62593,5174	
4	2019	35965,37	1227109,25	838132,13	900725,648	
5	2020	35902,99	1224980,5	760616,514	1661342,16	
6	2021	35840,71	1222855,84	690270,242	2351612,4	
7	2022	35778,54	1220734,58	626429,861	2978042,26	
8	2023	35716,48	1218617,07	568493,858	3546536,12	
9	2024	35654,52	1216503,31	515916,156	4062452,28	
10	2025	35592,68	1214392,95	468201,053	4530653,33	
11	2026	35530,94	1212286,68	424899,086	4955552,42	
12	2027	35469,31	1210183,82	385601,859	5341154,28	
			VAN	5341154,28		

Elaborado por: Mayra Andrade- Rommy Cruz

En la tabla 4.3 se puede observar que el proyecto es rentable y por ende se lo considera óptimo, a continuación una breve aclaración del porque se acepta el

proyecto.

Para la toma de decisiones a través de VAN, los criterios a considerar son:

- Si el indicador VAN > 0, el proyecto es rentable
- Si el indicador VAN = 0, el proyecto es indiferente (no hay pérdidas ni ganancias)Si el indicador
- VAN < 0, el proyecto no es rentable

4.4 TASA DE RETORNO INTERNO (TIR).

La tasa interna de retorno (TIR) es la tasa de rentabilidad mínima que puede tener un proyecto para que sea eficaz. Y se define como el valor actual neto de los costos de inversión igual al valor actual neto de los beneficios de la inversión, es decir es la tasa a la cual el valor presente es cero. Gráfica 4.1

Gráfica 4.1 Práctica mundial de gas inmiscible en diferentes arenas productoras

Elaborado por: Mayra Andrade- Rommy Cruz

El TIR se calcula mediante la fórmula 4.2.

$$\sum_{t=1}^{n} \frac{s_t}{(1+t)^t} = 0 {(4.2)}$$

t = Período en el que nos encontramos

n = Número de periodos de duración del proyecto

 $S_t = Flujo de caja neto al periodo t$

i = Tasa de interés

La tasa interna de retorno indica la rentabilidad de un proyecto. De esta manera mientras mayor sea la tasa interna de retorno de un proyecto, más deseable será llevar a cabo el proyecto.

La tasa de retorno interno es del 27%.

4.5 COSTO BENEFICIO.

Las relación costo / beneficio determina la conveniencia de un proyecto mediante el axioma que determina que para que haya ganancias es necesario que los beneficios deben exceder a los costos iniciales de inversión y, se define como la relación entre el costo actual neto y el monto del capital y se utiliza la fórmula 4.3.

$$Relación Costo - Beneficio = \frac{VAN}{Inversión inicial}$$
 (4.3)

Costo beneficio = 1,9438

Es decir por cada 1\$ que gasto, obtengo 0,9438 \$ de ganancia.

A continuación una breve aclaración de lo que suele pasar con el costo/beneficio.

- Si la relación C/B >0, el proyecto es rentable y es capaz de generar ganancias.
- Si la relación C/B < 0, el proyecto no es rentable.
- Si la relación C/B = 0, los beneficios y los costos son iguales

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- El Campo MR es un campo maduro, que inició su producción a partir del año 1993 con una producción de petróleo de 412.568 BLS y un °API promedio de 25; mientras que en el año 2015 la producción de petróleo fue de 1.950.635 BLS con un °API promedio de 18.5. El incremento de producción y el decremento del °API se debe a la explotación hidrocarburífera.
- Del análisis realizado se propone la implementación de la recuperación mejorada del petróleo mediante la técnica de inyección de polímeros, desde el pozo inyector MR-045 ó (I01) hacía el pozo productor MR-023A (P01) y debido a las condiciones favorables de producción para el año 2030, se manifiesta que este método de EOR es técnicamente aplicable.
- Debido a la alta producción que presenta el pozo productor MR-023A y debido a la influencia que presenta el modelo de 5 puntos, la eficiencia de barrido que comienza en el pozo inyector MR-045, no solamente afecta a la producción del pozo MR-023A sino también a los pozos aledaños, como son los pozos MR-028, MR-031 y MR-041A, siendo además pozos activos y por lo tanto su producción va a ser óptima.
- La inyección de polímeros es la metodología más favorable no solo desde el punto de vista ambiental sino también desde el punto de vista económico, pues al presentar el Campo MR una alta producción de agua, ésta podría aprovecharse en la inyección de polímeros que consiste en inyectar batches continuos de agua tratada del pozo con aditivos polímeros.

- La implementación de las facilidades de superficie para las diferentes metodologías de recuperación mejorada como: inyección de polímeros, inyección dióxido de carbono e inyección cíclica de vapor, son indispensables y muy costosas, sin embargo debido al beneficio de extracción y facilidades de superficie ya establecidas para el agua de formación de los pozos, el método EOR mediante inyección de polímeros representa un ahorro para el almacenamiento de agua con polímeros.
- La mejor recuperación de petróleo es con la inyección de polímeros puesto que solo se inyecta cuatro batches de productos químicos y la recuperación es de 650.000 Bls en comparación a la recuperación de dióxido de carbono 80.000 Bls e inyección cíclica de vapor 20.586 Bls en el año 2016.
- Al inyectar dióxido de carbono dentro de la zona de petróleo, los granos de las rocas quedan recubiertos por sustancias bituminosas, que provocan un incremento en la mojabilidad ó humectabilidad del petróleo, afectando de esta manera también a la solubilidad de asfáltenos presentes en el hidrocarburo.
- La implementación de la técnica EOR mediante la inyección de polímeros de los pozos productores e inyector de la arena U inferior Campo MR, resultó favorable teórica y económicamente.
- El Campo MR es un yacimiento sub-saturado puesto que la presión de burbuja se encuentra en 785 psi y la presión de fondo fluyente a 1000 psi.
- La arena seleccionada del Campo MR es la Arena U Inferior la misma que fue seleccionada en función de su producción, reservas remanentes y disponibilidad de pozos, como se muestra a continuación en la tabla 5.1

Tabla 5.1 Datos de la Arena U Inferior hasta 2011

	Datos de la Arena U Inferior hasta 2011		
Arena	PRODUCCIÓN ACUMULADA	RESERVAS	POES
	(MBIs)	REMANENTES (MBIs)	(MMBIs)
U Inferior	29.940	548.665	137,41
T principal	21.148	444.810	99,27

Elaborado por: Mayra Andrade- Rommy Cruz

5.2 RECOMENDACIONES

- Para aplicar cualquier método de EOR se debe hacer un amplio estudio de las recomendaciones y conclusiones de cada método, viendo los pros y contras que conlleva un proyecto de recuperación mejorada.
- Dada la nueva situación económica del petróleo, es necesario que se realicen varias investigaciones para la extracción de la mayor cantidad de petróleo.
- Para realizar la modelación programada, simulación analítica de algún método de EOR es necesario conocer a fondo todos los parámetros reales del Campo de estudio, mismos que son de gran importancia en la ejecución del proyecto piloto.
- Para las tres metodologías seleccionadas de recuperación de petróleo, vistas anteriormente se requiere la implementación de las facilidades de superficie, mismas que son muy costosas y solo se las puede construir a partir de un proyecto piloto elaborado con exactitud, en el que conste la simulación dinámica de todo el Campo MR, esta clase de simulación consiste en determinar con exactitud el petróleo en sitio que queda después de la inyección, elaborar las predicciones de producción de agua, petróleo y gas, obtener los diferentes escenarios de recuperación.
- Es importante realizar el análisis económico para complementar el análisis técnico, para decidir la factibilidad de la implementación de la recuperación mejorada.
- Se recomienda la mayor cantidad de datos de muestra para obtener mejores resultados de la predicción de desplazamiento.
- Los costos de producción e inversión son solamente estimaciones, por lo tanto se recomienda que las Compañías que se encuentran a cargo de los datos que caracterizan a los diferentes campos petrolíferos ayuden de manera eficaz a los estudiantes que necesiten información únicamente con

fines didácticos.

- Se recomienda realizar un análisis del uso del dióxido de carbono cuando hay una alta solubilidad de CO2 en el petróleo y en menor grado en el agua.
- Se recomienda la simulación de la producción de agua y gas, al ser factores muy importantes para los posibles problemas futuros de canalización, digitación, entre otros más que puede presentar el campo de estudio junto con la metodología de recuperación mejorada de petróleo.
- Se recomienda realizar pruebas de presión a los pozos seleccionados para realizar estudios de recuperación mejorada de petróleo y con ello obtener pruebas actualizadas de presión, las mismas que nos van a dar mayor grado de certeza.
- Nuestro análisis teórico realizado es un ejemplo didáctico; para que se haga realidad este proyecto piloto de EOR es necesario obtener todos los datos de campo, disponibles para su respectiva simulación dinámica.

REFERENCIAS BIBLIOGRÁFICAS

- Schlumberger Eclipse (Enero 2014). Simulation Software Manuals
- Magdalena Paris de Ferrer (2009). Inyección de agua y gas en yacimientos petrolíferos. Segunda Edición.
- Craig, (Enero, 1971). The reservoir Engineering Aspects of Waterflooding
- Willhite (1986). (1986). Waterflooding.
- Smith y Cobb. (1992). Notas de Waterflooding
- Laurie Dake (1994). The practice of Reservoir Engineering
- Thakur y Satter (1998). Integrated Waterflood Asset Management
- Green y Willhite (Texas- 1998). Enhanced Oil Recovery. Henry L. Doherty Memorial Fund of AIME.
- Larry Lake (1989). Enhanced Oil Recovery
- Magdalena Paris de Ferrer. (2010). Fundamentos de Ingeniería de Yacimientos. Edicion 1, GUAJIRO BLANCO
- Pirson (1958). El arte de Desarrollar y Producir con Máxima eficiencia los campos de petróleo y gas de forma tal que permita obtener la máxima recuperación a un menor costo.
- Craft y Hawkins (1959). La aplicación de principios científicos a los procesos de drenaje que surgen durante el desarrollo y producción de yacimientos de petróleo y gas
- Clark (1960). La disciplina que trata de la ocurrencia y movimiento y
 movimiento de los fluidos en el yacimiento y su recobro, lo cual implica el
 estudio y evaluación de todos los factores que lo afectan para determinar la
 forma más eficiente y económica de producirlo en términos económicos
- Dake (1978). Métodos de recuperación mejorada de petróleo con aditivos químicos.
- Douglas Alvarado y Carlos Bánzer. (Caracas- 2002). Recuperación térmica del petróleo. Re- editado y corregido: Dr. Adafel C. Rincón Mora.
- Roger M. Butler. (Canada- 1991). Thermal Recovery of Oil and Bitumen
- Anotaciones de Clases. (Maracaibo- 1990). Inyección mejorada de Agua.

- J.P. Holman (1986)Transferencia de Calor. Mc- Graw -Primera Edición
- Erle C. Donaldson, Chilingarian, Yen (Oklahoma- 1985) Enhanced Oil Recovery & Fundamentals and analyses.
- Dr. Tarek Ahmed. (Emeritus- 2006). Principals of Secondary & Enhanced
 Oil Recovery. Tarek Ahmed & Associates, Ltd. All Rights Reserve
- Farouq Ali, J.A. Jones (Canada- 1997). Practical Heavy Oil Recovery.
 University of Alberta
- Marcel Latil, Charles Bardon, Jacques Burguer, Pierre Sourieau (Paris-1980). Enhance Oil Recovery. Edition Technip.
- Laura Romero (2012). EOR Introduction to enhanced oil recovery (EOR)
 Processes and bioremediation of oil,
- Alvarado & Manrique (2012). Enhance Oil Recovery, Field planning and development strategies.
- J.J Taber, F.D. Martin and R,S, Seright- SPE. (New Mexico) EOR Screening Criteria Revisited- Part 2. Applications and Impact Oil Prices.
- Abidun Mattew Amaao, SPE (Texas) A new Look at the Minimun Miscibility Pressure (MMP) Determination from Slimtube Measurements.
- A. Thomas, N. Gaillard and C. Favero (Francia- 2013). Some Key Features to Consider When Studying Acrylamide-Based Polymers for Chemical Enhanced Oil Recovery.
- Eduardo Manrique, Director Res. Eng.& Fernando Cabrera, EOR Manager.
 (Manta, Ecuador 2013), Technical and Managerial Framework for Ensuring a Successful Implementation
- V. Alvarado & G.R. Murrell- SPE 115940. Screening Strategy for Chemical Enhanced Oil Recoveryin Wyoming Basin
- Hourshad Mohammadi, BP; Gary R. Jerauld, BP. (SPE- 2012), Mechanistic Modeling of the Benefit of Combining Polymer with Low Salinity Water for Enhanced Oil Recovery.
- John Putnam, (SPE 2010) Implementing a Chemical EOR Project.

WEBGRAFÍA

- http://mapasamerica.dices.net/ecuador/mapa.php?nombre=Limoncocha&id =10567
- http://petrowiki.org/Crude_oil_characterization#Characterization_factor
- http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2213/Inyecci%C3%B3n%20de%20CO2%20en%20el%20Area%20de%20Coapechaca.pdf?sequence=1
- http://ingenieraenpetroleo.blogspot.com/search/label/Inyecci%C3%B3n%20 de%20agua%20y%20gas%20en%20yacimientos%20petrol%C3%ADferos
- http://repositorio.uis.edu.co/jspui/bitstream/123456789/917/2/116207.pdf
- http://petroquimex.com/010210/articulos/11.pdf
- http://petroquimex.com/010210/articulos/11.pdf
- http://www.firp.ula.ve/archivos/cuadernos/S357C.pdf
- http://tecnicasderecuperacionmejorada.blogspot.com/

ANEXOS

ANEXO 1 COMPOSICION DE LOS FLUIDOS DEL RESERVORIO DEL CAMPO MR

	Componentes	Molar %	Peso %
H2	Hidrogeno	0,00	0,00
H2S	Sulfuro de hidrogeno	0,00	0,00
CO2	Dióxido de carbono	0,91	0,13
N2	Nitrógeno	0,55	0,05
C1	Metano	15,92	0,84
C2	Etano	2,31	0,23
С3	Propano	3,26	0,47
iC4	i- Butano	1,23	0,24
nC4	n- Butano	1,58	0,30
i C5	i- Pentano	1,17	0,28
n C5	n- Pentano	0,69	0,16
C6	Hexano	1,51	0,43
C 7	Heptano	3,13	0,97
C8	Octano	3,99	1,45
C9	Nonano	3,86	1,57
C10	Decano	3,58	1,66
C11	Undecano	3,20	1,55
C12	Dodecano	3,66	1,95
C13	Tridecano	3,76	2,17
C14	Tetradecano	3,16	1,99
C15	Pentadecano	3,19	2,17
C16	Hexadecano	2,68	1,97
C17	Heptadecano	2,44	1,91
C18	Octadecano	2,43	2,02
	Nonadecano	2,31	2,01

C19			
C20	Eicosano	1,98	1,80
C21	Heneicosano	1,71	1,65
C22	Docosano	1,60	1,62
C23	Tricosano	1,46	1,53
C24	Tetracosano	1,33	1,45
C25	Pentacosano	1,32	1,51
C26	Hexacosano	1,09	1,30
C27	Heptacosano	1,06	1,31
C28	Octacosano	1,06	1,36
C29	Nonacosano	1,01	1,34
C30	Triacontano	0,97	1,33
C31	Hentriacontano	0,92	1,31
C32	Dotricontano	0,86	1,27
C33	Tritriacontano	0,79	1,20
C34	Tetratriacontano	0,73	1,14
C35	Pentatriacontano	0,69	1,10
C36+	Hexatriacontano plus	10,90	51,26

ANEXO 2 SATURACIÓN DE AGUA DEL CAMPO MR

	ICIOIVI	D MGC1	TDEEC
Pozo	Arena	Grosor (ft)	Sw (%)
MR- 01	UI	35	0,397
MR- 02	UI	72	0,112
MR- 02A	UI	64	0,202
MR- 03	UI	14	0,207
MR- 04	UI	33	0,586
MR- 05	UI	27	0,283
MR- 05S1	UI	29	0,164
MR- 06	UI	32	0,204
MR- 07	UI	58	0,184
MR- 08	UI	54	0,121
MR- 09S1	UI	37	0,103
MR- 10	UI	22	0,216
MR- 11	UI	15	0,151
MR- 12	UI	2	0,161
MR- 13	UI	34	0,133
MR- 14	UI	13	0,184
MR- 15	UI	43	0,164
MR- 16	UI	6	0,138
MR- 17	UI	50	0,508
MR- 18	UI	40	0,33
MR- 19	UI	29	0,372
MR- 20	UI	38	0,13
MR- 21	UI	27	0,161
MR- 22	UI	18	0,397
MR- 23	UI	36	0,357
MR- 23A	UI	36	0,437
MR- 24	UI	23	0,167
MR- 25	UI	14	0,20
MR- 26	UI	27	
MR- 27	UI	19	0,22 0,209
MR- 28	UI	57	
MR- 29			0,23
	UI	15	0,257
MR- 30	UI	38	0,203
MR- 31	UI	43	0,262
MR- 32	UI	20	0,288
MR- 33	UI	36	0,312
MR- 34	UI	38	0,298
MR- 35	UI	8	0,45
MR- 36	UI	43	0,197
MR- 37A	UI	58	0,177
MR- 38	UI	26	0,264
MR- 39	UI	57	0,212
MR- 40	UI	20	0,358
MR- 41	UI	50	0,186
MR- 43	UI	41	0,246
MR- 44	UI	60	0,264

ANEXO 3 PERMEABILIDAD DEL CAMPO MR

Pozo	Arena	Grosor (ft)	Permeabilidad (md)
MR- 01	UI	35	395
MR- 02	UI	72	978
MR- 02A	UI	64	858
MR- 03	UI	14	221
MR- 04	UI	33	69
MR- 05	UI	27	417
MR- 05S1	UI	29	2907
MR- 06	UI	32	106
MR- 07	UI	58	762
MR- 08	UI	54	623
MR- 09S1	UI	37	1353
MR- 10	UI	22	691
MR- 11	UI	15	732
MR- 12	UI	2	2767
MR- 13	UI	34	133
MR- 14	UI	13	294
MR- 15	UI	43	826
MR- 16	UI	6	226
MR- 17	UI	50	428
MR- 18	UI	40	1473
MR- 19	UI	29	152
MR- 20	UI	38	446
MR- 21	UI	27	550
MR- 22	UI	18	48
MR- 23	UI	36	44
MR- 23A	UI	36	294
MR- 24	UI	23	259
MR- 25	UI	14	343
MR- 26	UI	27	673
MR- 27	UI	19	128
MR- 28	UI	57	216
MR- 29	UI	15	351
MR- 30	UI	38	462
MR- 31	UI	43	655
MR- 32	UI	20	611
MR- 33	UI	36	204
MR- 34	UI	38	142
MR- 35	UI	8	61
MR- 36	UI	43	619
MR- 37A	UI	58	820
MR- 38	UI	26	553
MR- 39	UI	57	177
4MR- 40	UI	20	257
MR- 41	UI	50	707
MR- 43	UI	41	229
MR- 44	UI	60	204

ANEXO 4 POROSIDAD DEL CAMPO MR

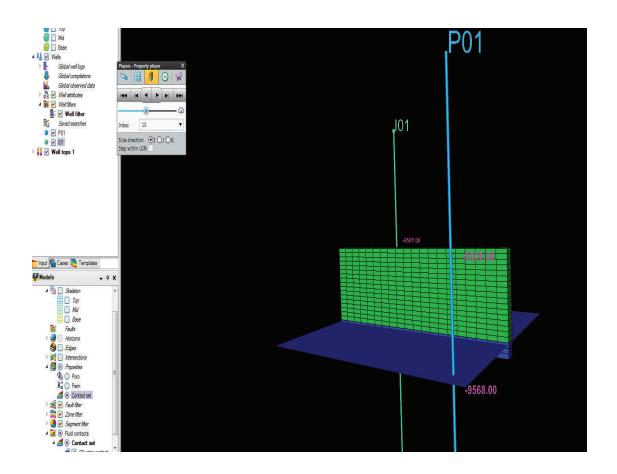
ANEAU	41 OKO		L CAMI O MIK
Pozo	Arena	Grosor (ft)	Porosidad (%)
MR- 01	UI	35	0,157
MR- 02	UI	72	0,182
MR- 02 ^a	UI	64	0,186
MR- 03	UI	14	0,168
MR- 04	UI	33	0,137
MR- 05	UI	27	0,173
MR- 05S1	UI	29	0,194
MR- 06	UI	32	0,145
MR- 07	UI	58	0,178
MR- 08	UI	54	0,181
MR- 09S1	UI	37	0,198
MR- 10	UI	22	0,181
MR- 11	UI	15	0,203
MR- 12	UI	2	0,231
MR- 13	UI	34	0,144
MR- 14	UI	13	0,187
MR- 15	UI	43	0,171
MR- 16	UI	6	0,147
MR- 17	UI	50	0,173
MR- 18	UI	40	0,181
MR- 19	UI	29	0,14
MR- 20	UI	38	0,16
MR- 21	UI	27	0,166
MR- 22	UI	18	0,147
MR- 23	UI	36	0,121
MR- 23 ^a	UI	36	0,1564
MR- 24	UI	23	0,164
MR- 25	UI	14	0,17
MR- 26	UI	27	0,174
MR- 27	UI	19	0,151
MR- 28	UI	57	0,17
MR- 29	UI	15	0,154
MR- 30	UI	38	0,157
MR- 31	UI	43	0,169
MR- 32	UI	20	0,183
MR- 33	UI	36	0,142
MR- 34	UI	38	0,129
MR- 35	UI	8	0,201
MR- 36	UI	43	0,161
MR- 37 ^a	UI	58	0,182
MR- 38	UI	26	0,168
MR- 39	UI	57	0,141
MR- 40	UI	20	0,167
MR- 41	UI	50	0,165
MR- 43	UI	41	0,143
MR- 44	UI	60	0,153

ANEXO 5 FUNCIONES F1 Y F2 DE MARX Y LANGEMHEIM

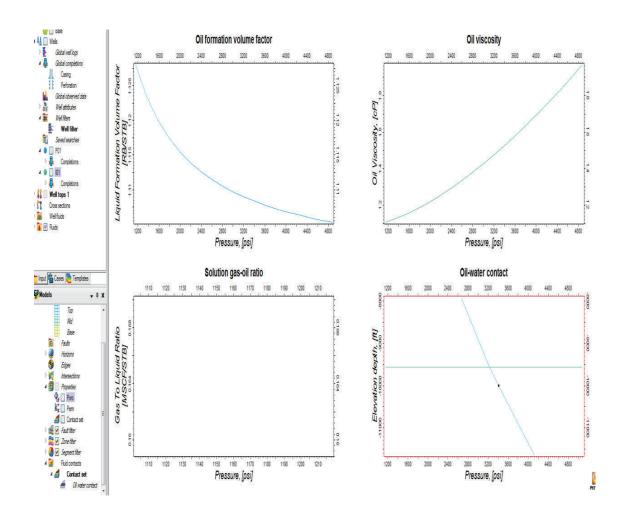
<u>ID</u>	F ₁	<u>F2</u>	to	<u>F</u> 1	F ₂	to	<u>F</u> 1	<u>F2</u>
0,0000	0,00000	1,00000	0,62	0,38198	0,49349	3,2	1,29847	0,27996
0,0002	0,00020	0,98424	0,64	0,39180	0,48910	3,3	1,32629	0,27649
0,0004	0,00039	0,97783	0,66	0,40154	0,48484	3,4	1,35377	0,27314
0,0006	0,00059	0,97295	0,68	0,41120	0,48071	3,5	1,38092	0,26992
0,0008	0,00028	0,96887	0,70	0,42077	0,47670	3,6	1,40775	0,26681
0,0010	0,00098	0,96529	0,72	0,43027	0,47281	3,7	1,43428	0,26380
0,0020	0,00193	0,95147	0,74	0,43969	0,46902	3,8	1,46052	0,26090
0,0040	0,00382	0,93245	0,76	0,44903	0,46533	3,9	1,48647	0,25810
0,0060	0,00567	0,91826	0,78	0,45830	0,46174	4,0	1,51214	0,25538
0,0080	0,00749	0,90657	0,80	0,46750	0,45825	4,1	1,53755	0,25275
0,0100	0,00930	0,89646	0,82	0,47663	0,45484	4,2	1,56270	0,25021
0,0020	0,01806	0,85848	0,84	0,48569	0,45152	4,3	1,58759	0,24774
0,0040	0,03470	0,80902	0,86	0,49469	0,44827	4,4	1,61225	0,24534
0,0060	0,05051	0,77412	0,88	0,50362	0,44511	4,5	1,63667	0,24301
0,0080	0,06571	0,74655	0,90	0,51250	0,44202	4,6	1,66086	0,24075
0,1000	0,08040	0,72358	0,92	0,52131	0,43900	4,7	1,68482	0,23856
0,1200	0,09467	0,70379	0,94	0,53006	0,43605	4,8	1,70857	0,23642
0,1400	0,10857	0,68637	0,96	0,53875	0,43317	4,9	1,73212	0,23434
0,1600	0,12214	0,67079	0,98	0,54738	0,43034	5,0	1,75545	0,23232
0,1800	0,13541	0,65668	1,00	0,55596	0,42758	5,2	1,80153	0,22843
0,2000	0,14841	0,64379	1,10	0,57717	0,42093	5,4	1,84686	0,22474
0,2200	0,16117	0,63191	1.20	0,63892	0,40285	5,6	1,89146	0,22123
0,2400	0,17370	0,62091	1,30	0,67866	0,39211	5,8	1,93538	0,21788
0,2600	0,18601	0,61065	1,40	0,71738	0,38226	6,0	1,97865	0,21470
0,2800	0,19813	0,60105	1,50	0,75514	0,37317	6,2	2,02129	0,21165
0,3000	0,21006	0,59202	1,60	0,79203	0,36473	6,4	2,06334	0,20875
0,3200	0,22181	0,58350	1,70	0,82811	0,35688	6,6	2,10482	0,20597
0,3400	0,23340	0,57545	1,80	0,86343	0,34955	6,8	2,14576	0,20330
0,3600	0,24483	0,56781	1,90	0,89803	0,34267	7,0	2,18617	0,20076
0,3800	0,25612	0,56054	2,00	0,93198	0,33621	7,2	2,22608	0,19832
0,4000	0,26726	0,55361	2,10	0,96529	0,33011	7,4	2,26550	0,19598
0,4200	0,27826	0,54699	2,20	0,99801	0,32435	7,6	2,30446	0,19374
0,4400	0,28914	0,54066	2,30	1,03017	0,31890	7,8	2,34298	0,19159
0,4600	0,29989	0,53459	2,40	1,06180	0,31372	8,0	2,38106	0,18952
0,4800	0,31052	0,52876	2,50	1,09292	0,30880	8,2	2,41873	0,18755
0,5000	0,32104	0,52316	2,60	1,12356	0,30411	8,4	2,45600	0,18565
0,5200	0,33145	0,51776	2,70	1,15375	0,29963	8,6	2,49289	0,18383
0,5400	0,34175	0,51257	2,80	1,18349	0,29535	8,8	2,52940	0,18208
0,5600	0,35195	0,50755	2,90	1,21282	0,29126	9,0	2,56555	0,18041
0,5800	0,36206	0,50271	3,00	1,24175	0,28734	9,2	2,60135	0,17881
0,6000	0,37206	0,49802	3,10	1,27029	0,28358	9,4	2,63682	0,17727

ANEXO 6 TABLA DE KEYBOARDS USADOS EN LA SIMULACIÓN DE GAS

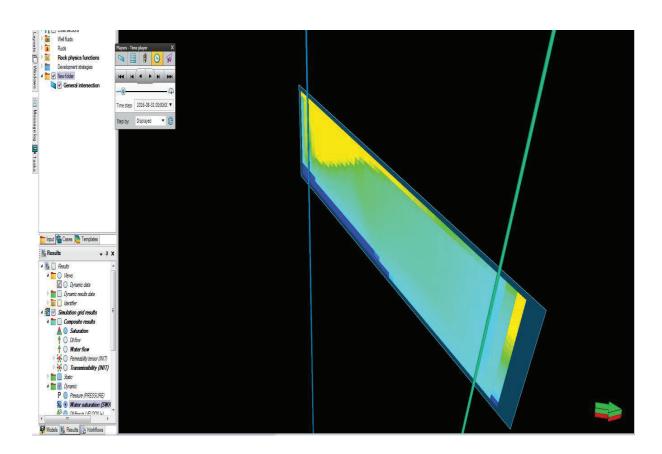
PALABRAS CLAVES USADAS EN LA SIMULACIÓN GAS	DEFINICIÓN
TITLE	Es el título que lleva la simulación
DIMENS	Son las diferentes dimensiones de las celdas, bloques, grupos.
DUALPORO	Indica la doble porosidad del yacimiento.
WATER	Indica que en la ejecución del programa el yacimiento contiene agua como fase activa y pudiendo cambiar la saturación.
GAS	Indica que en el yacimiento contiene gas.
SOLVENT	Es un solvente que va a estar presente en el yacimiento y se debe utilizar este keybord cuando las fases de gas, petróleo y agua estén presentes.
FIELD	Las unidades a utilizarse estarán dadas en unidades de campo.
COAL	Permite utilizar la opción de carbón
EQLDIMS	Son las dimensiones de las tablas de equilibrio
REGDIMS	Representa las dimensiones de las regiones.
START	Específica la fecha de inicio de la corrida, en este caso la fecha es el 31 de agosto de 2015
NSTACK	Es el solucionador de las ecuaciones lineales, herramienta muy eficiente para la programación.
DIFFMMF	Modifica la difusividad de la matriz.
PORO	Modifica porosidad
PERMX, Y, Z	Modifica la permeabilidad en las direcciones X, Y y Z.
NTG	Es el espesor neto de las tasas productivas.
TOPS	Indica los topes o las profundidades que tiene la grilla.
SIGMA	Modifica la transmisibilidad de acoplamiento de fractura en la roca madre
DIFFCOAL	Indica datos de la difusión de gas
LANGMUIR	Indica la concentración de gas en la superficie

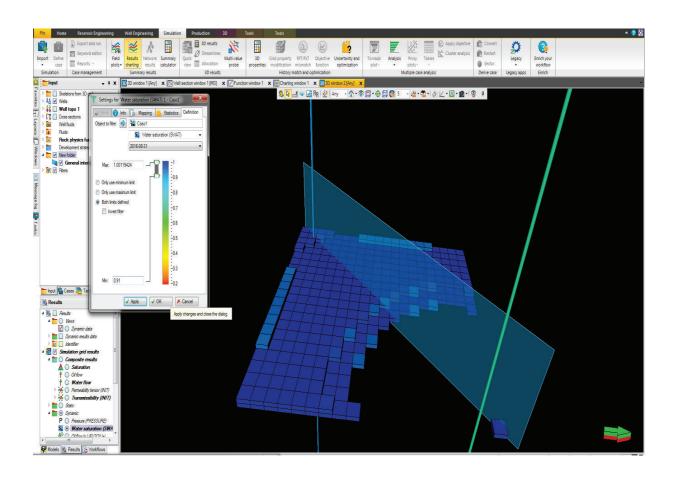

MLANG	Es un keyboard opcional e indica la concentración
	máxima de gas en la superficie.
MULTIPLY	Multiplica el arreglo formado por las características del
	yacimiento por una constante.
	, '
LANGSOLV	Indica la concentración de disolvente en la superficie
	de la capa de gas.
	de la capa de gao.
COALADS	Indica los datos de gas de adsorción relativa
	disolvente.
	district.
SWFN	Indica la saturación del agua.
J WIN	indica la saturación del agua.
SGFN	Indica la saturación de gas
00114	indica la saturación de gas
SSFN	Representa la función de saturación del gas
JOHN	disolvente
	disolvente
PVTW	Depresenta la función DVT del egua
PVIVV	Representa la función PVT del agua
DVDC	Indiana las areniadades DVT de res acce (sin accite
PVDG	Indican las propiedades PVT de gas seco (sin aceite
	vaporizado)
PVDS	Indian Ion was indeed as DVT del disply anto
PVDS	Indica las propiedades PVT del disolvente.
ROCK	Depresents al valor de la compresibilidad de la rece
ROCK	Representa el valor de la compresibilidad de la roca.
DENSITY	Incorpora las densidades del fluido en condiciones
DENSIT	Incorpora las densidades del fluido en condiciones
	superficiales.
SDENSITY	Fo le dencided del see missible en condiciones de la
SDENSITY	Es la densidad del gas miscible en condiciones de la
	superficie.
RPTPROPS	Son los datos de salida para las propiedades del
	yacimiento.
EQUIL	Se refiere a las profundidades de contacto de fluidos y
	parámetros de equilibrio.
SOLVFRAC	Es la fracción de disolvente inicial en la fase gaseosa
RPTSOL	Indica los controles sobre la salida en la sección
	SOLUCIÓN.

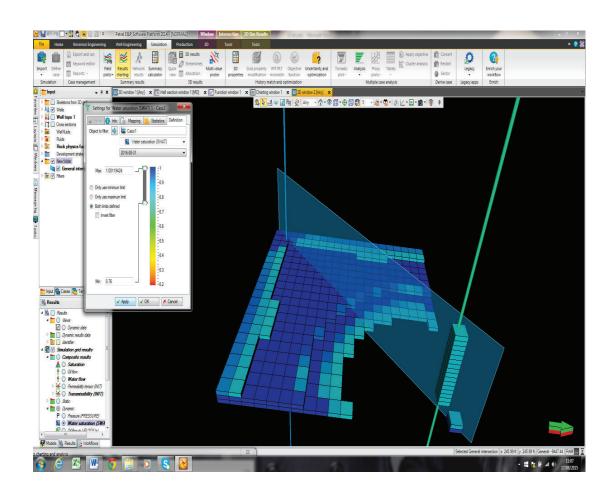
ANEXO 7 TABLA DE KEYBOARDS USADOS EN LA SIMULACIÓN QUÍMICA

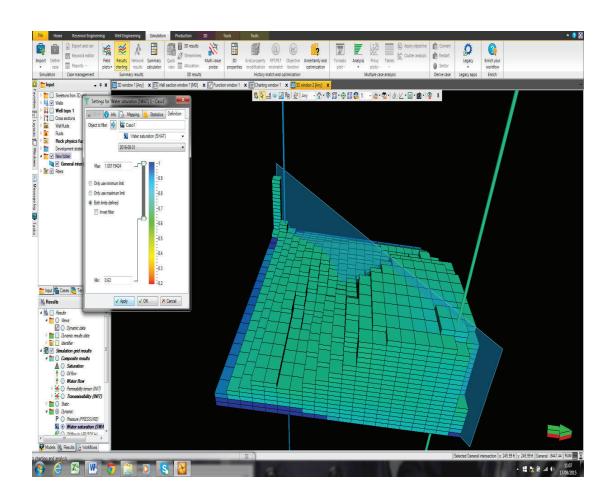

PALABRAS CLAVES	
USADAS EN LA	,
SIMULACIÓN	DEFINICIÓN
QUÍMICA	
FMTOUT	Este keyboard indica que los archivos de salida se
	formatean
FMTIN	Este keyboard indica que los archivos de entrada se
	formatean
RPTGRID	
	Representa a los controles sobre la salida de la
	sección de GRID.
SOF2	
	Representan funciones de saturación de dos fases
PVDO	Indica las propiedades PVT del petróleo muerto (que
	no tiene gas disuelto)
PLYVISC	Representa la viscosidad y la concentración de
	polímero en la solución polimérica.
PLYROCK	Especifica las propiedades del polímero y de la roca.
DLVADO	
PLYADS	Representa las funciones de adsorción de polímeros.
TLMIXPAR	Representa el parámetro de mezcla de datos para el
ILIMIAFAN	cálculo de la viscosidad, densidad.
	calculo de la viscosidad, defisidad.
PLYMAX	Indican las concentraciones de polímero y sal.
	masamas someonia asienes as perimere y sain
RPTPROPS	
	Representan los controles sobre la salida de la
	sección propiedades.
FIPNUM	Representa el líquido en las diferentes regiones,

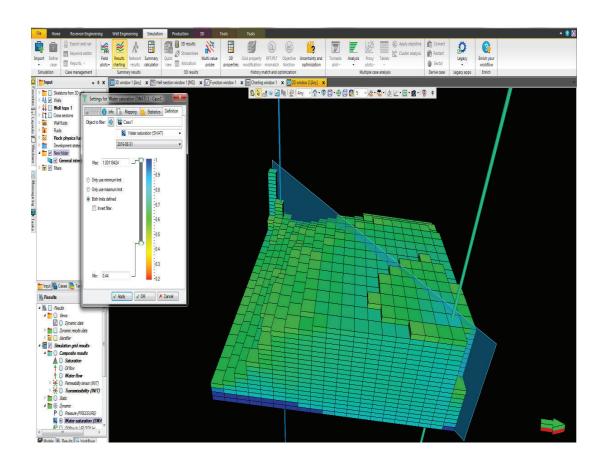
SWAT	Representa las saturaciones de agua iniciales
RUNSUM	Representan a los datos tabulados.
FWCT	Es el corte de agua del campo.
FCPR	Es la rata de producción del polímero.
FCPT	Es la producción total del polímero.
FOPT	Es la producción total acumulado del petróleo.
RPTSMRY	Son los controles sobre la salida de la sección
	resumen
RPTSCHED	Los controles sobre la salida de la sección
	SCHEDULE (tiempo necesario para la simulación)
WELSPECS	Son los datos de especificaciones generales para
	pozos
WCONPROD	Son los datos de control de pozos de producción
WCONINJE	Son los datos de control de pozos de inyección
WPOLYMER	Establece las concentraciones de polímero y sal para
	pozos de inyección.
TSTEP	Son los avances de tiempo del simulador.

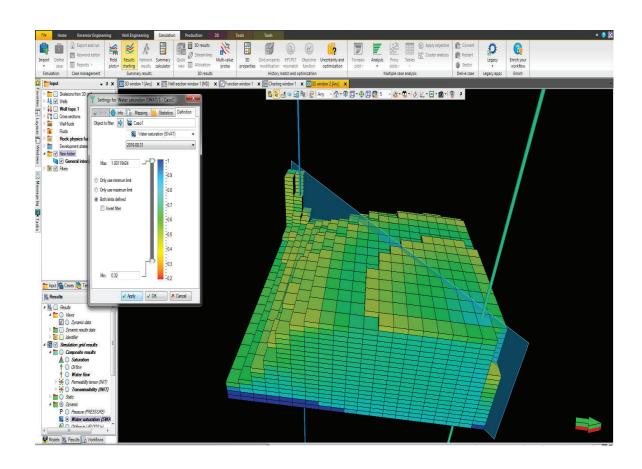

ANEXO 8 GRÁFICO DE LOS DOS POZOS Y DEL CONTACTO AGUA- PETRÓLEO EN EL CAMPO MR

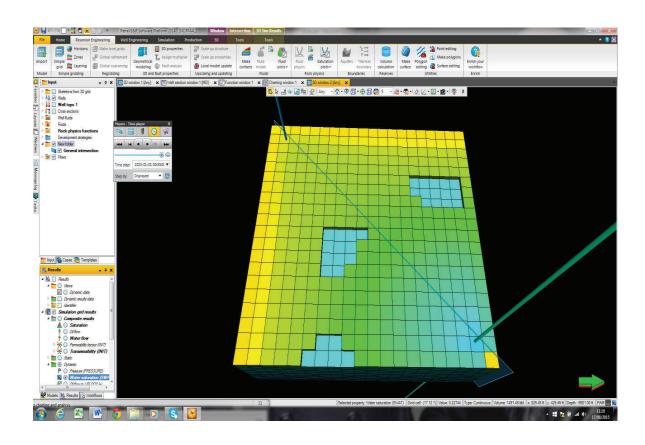

ANEXO 9 GRÁFICAS DEL FACTOR DE FORMACIÓN, VISCOSIDAD DEL PETRÓLEO Y CONTACTO AGUA PETRÓLEO

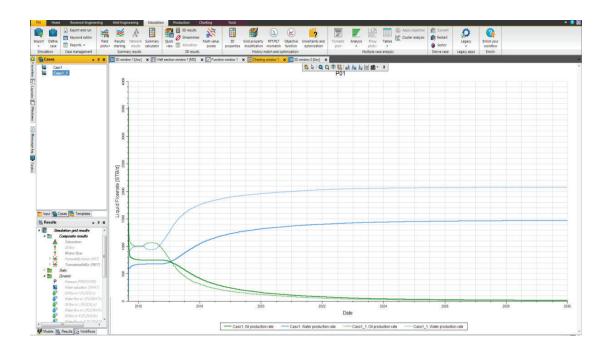

ANEXO 10 GRÁFICA DE LA SATURACION DE AGUA DE LOS POZOS P01 Y 101 DEL CAMPO MR


ANEXO 11 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN EL ESTADO INICIAL DE LOS POZOS P01 Y 01 DEL CAMPO MR


ANEXO 12 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA DESPUES DE LA FASE INICIAL DE LOS POZOS P01 Y 01 DEL CAMPO MR


ANEXO 13 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN LA FASE DE RUPTURA DE LOS POZOS P01 Y 01 DEL CAMPO MR


ANEXO 14 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA DESPUÉS EN LA FASE DE RUPTURA DE LOS POZOS PO1 Y 01 DEL CAMPO MR


ANEXO 15 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA DESPUÉS EN LA FASE DE RUPTURA DE LOS POZOS PO1 Y 01 DEL CAMPO MR

ANEXO 16 GRÁFICA TRIDIMENSIONAL DE LA SATURACION DEL AGUA EN LA FASE FINAL DE LA INUNDACIÓN DE LOS POZOS P01 Y 01 DEL CAMPO MR

ANEXO 17 GRÁFICA DE LA INYECCIÓN PROGRAMADA DE AGUA DE LOS POZOS P01 Y 01 DEL CAMPO MR CON UNA PRESIÓN DE FONDO FLUYENTE DE 2000 Y 2500; Y UN CAUDAL DE INYECCIÓN DE 1500 Y 2000

SIMBOLOGÍA

Símbolo	Significado
A	Área, acres
βο	Factor volumétrico del petróleo, STB / bbl
eta_g	Factor volumétrico del gas, STB / bbl
β_{W}	Factor volumétrico del agua, STB / bbl
eta_{oi}	Factor volumétrico inicial del petróleo, STB / bbl
Co	Calor específico del petróleo, BTU/lb-F
Cg	Calor específico gas, BTU/lb-F
Cw	Calor específico agua, BTU/lb-F
D	Profundidad, ft
δ_f	Densidad de la formación, lb/ft ³
δ_{o}	Densidad del petróleo, lb/ft3
δ_{W}	Densidad del agua, lb/ft ³
E _D	Eficiencia de desplazamiento, fracción
E _{A\$}	Eficiencia de barrido areal u horizontal, fracción
E _{V\$}	Eficiencia de barrido vertical, fracción
h	Espesor de la formación, ft
ht	Espesor de la arena, ft
lst	Inyección de vapor, BPD
k	Permeabilidad de la formación, md
Kefec	Permeabilidad efectiva, md
k_r	Permeabilidad relativa, md
ko	Permeabilidad del petróleo, md
kw	Permeabilidad del agua, md
K _{hob}	Conductividad térmica, BTU/h-ft-F
λ	Movilidad
M	Relación de movilidad
Ms	Capacidad calorífica de la arena, BTU/ft³-F
M_{ob}	Capacidad calorífica de la arena, BTU/ft³-F

N Petróleo original en sitio, bls

N_c Número capilar

Ø Porosidad, fracciónΘ Ángulo de contacto, °

σ Tensión interfacial

σ_{ow} Tensión interfacial entre el fluido desplazante y el fluido

desplazado

POES Petróleo original in situ, bls
Pb Presión de burbuja, psi

Pr Presión del reservorio. psi

Pc Presión capilar, psi

Ps Presión de sobrecarga, psi

Pp Presión de poro, psi
Pfr Presión de fractura, psi
Pwf Presión de fondo, psi

Pe Presión del límite exterior, psi Pw Presión de fondo de pozo, psi

q Caudal, bbl/día

q_b Caudal presión de burbuja, bbl/día

qmaxCaudal máximo, bbl/díaqoCaudal de petróleo, bbl/díaqwCaudal de agua, bbl/día

q_{sf} Caudal en superficie, bbl/día Q_i Caudal de inyección, bbl/día

Rs Relación gas petróleo en solución, scf/bbl

RGP Relación gas-petróleo, PCN/BN WOR Relación agua-petróleo, BN/BN

r Radio entre las rocas, ft

 r_e Radio de drenaje, ft r_w Radio del pozo, ft

rh Radio calentado por el vapor, ft

S Saturación, fracción

S₀ Saturación del petróleo, fracción

S_g Saturación del gas, fracción S_w Saturación del agua, fracción

t_s Tiempo de tránsito de corte, µseg/ft

t_c Tiempo de tránsito compresional, µseg/ft

Ts Temperatura de saturación, °F

Tr Temperatura original del yacimiento, °F

μ Viscosidad, cp

 μ_0 Viscosidad del petróleo, cp μ_W Viscosidad del agua, cp

 μ_{oc} Viscosidad a temperatura promedio del reservorio, cp

 V_t Volumen total del fluido, bbl V_p Volumen poroso, acre*ft V_o Volumen del petróleo, bls

 $\begin{array}{ll} V_g & & \text{Volumen del gas, bls} \\ V_f & & \text{Volumen del fluido, bls} \\ V_{roca} & & \text{Volumen de roca, acre-ft} \end{array}$

X Eficiencia de la calidad del vapor inyectado