ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

ESTUDIO COMPARATIVO DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE LOS EDIFICIOS METÁLICOS: LOAIZA, UNACH Y PLUS 1, USANDO LOS PROGRAMAS: RISA 3D, RCBE Y ETABS2015, UTILIZANDO EL NEC 15 COMO NORMA DE DISEÑO.

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL MENCIÓN ESTRUCTURAS

DIEGO BLADIMIR PAILLACHO CUÑAS diego.paillacho90@gmail.com

DIRECTOR: ING. JORGE RICARDO VINTIMILLA JARAMILLO MSc. jvintimillaj@gmail.com

Quito, Junio 2016

DECLARACIÓN

Yo, Diego Bladimir Paillacho Cuñas declaro que el trabajo aquí descrito es de mi autoría; que no ha sido presentado previamente para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional, puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido en la Ley de Propiedad Intelectual, por su reglamento y por la normatividad institucional vigente.

DIEGO BLADIMIR PAILLACHO CUÑAS

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Diego Bladimir Paillacho Cuñas, bajo mi supervisión.

> ING. JORGE VINTIMILLA MSc. DIRECTORA DEL PROYECTO

AGRADECIMIENTOS

Quiero agradecer a Dios por la fuerza que me ha brindado durante todo este tiempo.

A mis padres por todo su esfuerzo, amor, confianza y apoyo incondicional durante toda mi formación profesional.

A la Escuela Politécnica Nacional, la Facultad de Ingeniería Civil y Ambiental, a su cuerpo docente y administrativo por todos sus servicios prestados.

Al Ingeniero Jorge Vintimilla por todo su guía, apoyo y colaboración con la elaboración de este estudio.

Finalmente, a mis compañeros y amigos.

DEDICATORIA

Dedico el siguiente trabajo a:

Mis padres, Isidro Paillacho y Maria Cuñas por su confianza y apoyo incondicional durante toda mi formacion profecional.

Mis hermanos, Dario, Alison y Daniela que siempre estan a mi lado.

Mi familia, abuelitos, tios y primos que siempre me poyaron y prestado su ayuda.

De igual manera a mis compañeros y amigos mas cercanos.

CONTENIDO

DECLARACIÓN	II
CERTIFICACIÓN	III
AGRADECIMIENTOS	IV
DEDICATORIA	V
CONTENIDO	VI
ÍNDICE DE CUADROS	X
ÍNDICE DE FIGURAS	XIV
RESUMEN	XIX
ABSTRACT	XX
PRESENTACIÓN	XXI
CAPÍTULO 1. GENERALIDADES	1
1.1 INTRODUCCIÓN	1
1.2 OBJETIVOS	2
1.2.1 OBJETIVO GENERAL	2
1.2.2 OBJETIVOS ESPECÍFICOS	2
1.3 JUSTIFICACIÓN	2
1.4 DEFINICIÓN GENERAL PROYECTOS	3
1.4.1 EDIFICIO LOAIZA	3
1.4.2 EDIFICIO UNACH	7
1.4.3 EDIFICIO PLUS 1	10
CAPÍTULO 2. MATERIALES	14
2.1 ACERO COMO ELEMENTO ESTRUCTURAL	14
2.1.1 PROPIEDADES MECÁNICAS DEL ACERO ESTRUCTUR	RAL 14
2.1.2 VENTAJAS Y DESVENTAJAS EL ACERO COMO	MATERIAL
ESTRUCTURAL	15
2.1.3 TIPOS DE MIEMBROS ESTRUCTURALES DE ACERO	16
2.2 ELEMENTOS COMPUESTOS	17
2.2.1 VIGAS COMPUESTAS	17
2.2.2 COLUMNAS COMPUESTAS RELLENAS	20
2.3 NORMA DE DISEÑO NEC 2015	22
CAPÍTULO 3. CALCULOS Y PREDIMENSIONAMIENTO	

	3.1 PROPIEDADES DE LOS MATERIALES	. 24
	3.1.1 HIPÓTESIS DE CARGA	. 24
	3.2 EDIFICIO LOAIZA	. 25
	3.2.1 PREDIMENSIONAMIENTO LOSA	. 25
	3.2.2 PREDIMENSIONAMIENTO VIGUETAS	. 26
	3.2.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES	. 30
	3.2.4 PREDIMENSIONAMIENTO COLUMNAS	. 33
	3.3 EDIFICIO UNACH	. 35
	3.3.1 PREDIMENSIONAMIENTO LOSA	. 35
	3.3.2 PREDIMENSIONAMIENTO VIGUETAS	. 36
	3.3.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES	. 39
	3.3.4 PREDIMENSIONAMIENTO COLUMNAS	. 42
	3.4 EDIFICIO PLUS 1	. 43
	3.4.1 PREDIMENSIONAMIENTO LOSA	. 43
	3.4.2 PREDIMENSIONAMIENTO VIGUETAS	. 44
	3.4.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES	. 47
	3.4.4 PREDIMENSIONAMIENTO COLUMNAS	. 50
	3.5 PRUEBA Y COMPARATIVA DEL MODELAMIENTO DE COLUMNAS	DE
	SECCION COMPUESTA	. 51
	3.6 PRUEBA Y COMPARATIVA DEL MODELAMIENTO DE VIGAS	DE
	ACERO DE SECCION TRANSVERSAL I	. 56
	3.7 MODELAMIENTO DE LOSA	. 60
С	APÍTULO 4. CARACTERISTICAS DE LOS PROGRAMAS	. 61
	4.1 CARACTERISTICAS ETABS 2015	. 61
	4.2 CARACTERISTICAS RISA-3D	. 62
	4.3 CARACTERISTICAS RCBE	. 63
С	APÍTULO 5. MODELACIÓN EN LOS PROGRAMAS	. 64
	5.1 ETABS 2015	. 64
	5.1.1 DEFINIR UNIDADES	. 64
	5.1.2 DIMENSIONAMIENTO GRILLA	65
		. 00
	5.1.3 OPCIÓN DEFINIR	. 66
	5.1.3 OPCIÓN DEFINIR 5.1.4 OPCIÓN ASIGNAR	. 66 . 76
	5.1.3 OPCIÓN DEFINIR 5.1.4 OPCIÓN ASIGNAR 5.1.5 VISUALIZACIÓN DE RESULTADOS	. 66 . 76 . 80

5.2 RISA 3D	83
5.2.1 DEFINIR UNIDADES	
5.2.2 DEFINIR GRILLA	
5.2.3 CUADRO DE INGRESO DE DATOS DEL MODELO	85
5.2.4 CONDICIONES DE APOYO	
5.2.5 VISUALIZACIÓN DE RESULTADOS	
5.2.6 DISEÑO DE ELEMENTOS	
5.3 RCBE	100
5.3.1 VENTANA DE INICIO	100
5.3.2 DEFINIR GRILLA	101
5.3.3 DEFINIR UNIDADES	102
5.3.4 DEFINICIÓN SECCIONES	103
5.3.5 CARGAS ESTÁTICAS (GRAVITACIONALES Y LATERALE	ES) 105
5.3.6 COMBINACIONES DE CARGA	109
5.3.7 CONDICIONES DE APOYO	109
5.3.8 VISUALIZACIÓN DE RESULTADOS	111
CAPÍTULO 6. COMPARATIVA DE RESULATDOS Y COMPORT	AMIENTO
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS	114
6.1 RESULTADOS EDIFICIO LOAIZA	114 114
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH	114 114 125
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1	114 114 125 136
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1	114 114 125 136 147
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS.	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS 6.5.1 PROGRAMA ETBAS 2015	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1. 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS 6.5.1 PROGRAMA ETBAS 2015. 6.5.2 PROGRAMA RISA 3D	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1. 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS 6.5.1 PROGRAMA ETBAS 2015 6.5.2 PROGRAMA RISA 3D 6.5.3 PROGRAMA RCBE	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS 6.5.1 PROGRAMA ETBAS 2015 6.5.2 PROGRAMA RISA 3D 6.5.3 PROGRAMA ROBE CAPÍTULO 7. CONCLUCIONES Y RECOMENDACIONES 7.1 CONCLUSIONES	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO UNACH 6.4.2 EDIFICIO PLUS 1 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS 6.5.1 PROGRAMA ETBAS 2015 6.5.2 PROGRAMA RISA 3D 6.5.3 PROGRAMA RCBE CAPÍTULO 7. CONCLUCIONES Y RECOMENDACIONES 7.1 CONCLUSIONES 7.2 RECOMENDACIONES	
ESTRUCTURAL EN LOS DIFERENTES PROGRAMAS 6.1 RESULTADOS EDIFICIO LOAIZA 6.2 RESULTADOS EDIFICIO UNACH 6.3 RESULTADOS EDIFICIO PLUS 1. 6.4 DIFERENCIA PORCENTUAL 6.4.1 EDIFICIO LOAIZA. 6.4.2 EDIFICIO UNACH. 6.4.2 EDIFICIO PLUS 1. 6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS. 6.5.1 PROGRAMA ETBAS 2015. 6.5.2 PROGRAMA RISA 3D 6.5.3 PROGRAMA RISA 3D 6.5.3 PROGRAMA RCBE. CAPÍTULO 7. CONCLUCIONES Y RECOMENDACIONES. 7.1 CONCLUSIONES. 7.2 RECOMENDACIONES. REFERENCIAS BIBLIOGRÁFICAS.	

ANEXO No 1. FICHA TÉCNICA KUBILOSA	162
ANEXO No 2. MODELOS DEFINITIVOS COMPARACIÓN DE RESUL	TADO Y
DISEÑO EDIFCIO LOAIZA	164
ANEXO No 3. MODELOS DEFINITIVOS COMPARACIÓN DE RESUL	TADO Y
DISEÑO EDIFCIO UNACH	170
ANEXO No 4. MODELOS DEFINITIVOS COMPARACIÓN DE RESULT	ADOS Y
DISEÑO EDIFCIO PLUS 1	176
ANEXO No 5. RESUMEN DE RESULTADOS Y GRÁFICOS	182

ÍNDICE DE CUADROS

CUADRO 1.1 EDIFICIO LOAIZA4
CUADRO 1.2 EDIFICIO UNACH7
CUADRO 1.3 EDIFICIO PLUS 110
CUADRO 2.1 PROPIEDADES MECANICAS DEL ACERO ESTRUCTURAL14
CUADRO 3.1 PROPIEDADES DE LOS MATERIALES24
CUADRO 3.2 HIPÓTESIS DE CARGA24
CUADRO 3.3 CARACTERÍSTICAS DE LA PLACA COLABORANTE (DECK)25
CUADRO 3.4 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LA VIGUETA EDIFICIO LOAIZA
CUADRO 3.5 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO COMPUESTO EDIFICIO LOAIZA
CUADRO 3.6 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LAS VIGAS PRINCIPALES EDIFICIO LOAIZA
CUADRO 3.7 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNA EDIFICIO LOAIZA
CUADRO 3.8 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LA VIGUETA EDIFICIO UNACH
CUADRO 3.9 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO COMPUESTO EDIFICIO UNACH
CUADRO 3.10 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LAS VIGAS PRINCIPALES EDIFICIO UNACH40
CUADRO 3.11 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNA EDIFICIO UNACH
CUADRO 3.13 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO COMPUESTO EDIFICIO PLUS 1
CUADRO 3.14 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LAS VIGAS PRINCIPALES EDIFICIO PLUS 1
CUADRO 3.15 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNA EDIFICIO PLUS 1
CUADRO 3.16 COMPARACIÓN DE RESULTADOS OBTENIDOS MEDIANTE CALCULO Y PROGRAMAS (COLUMNAS)
CUADRO 3.17 COMPARACIÓN DE RESUTADOS OBTENIDOS MEDIANTE CALCULO Y PROGRAMAS (VIGAS)60

CUADRO 3.18 DESCRIPCIÓN Y NOMENCLATURA PARA LOS CÁLCUL DE LOSA EQUIVALENTE	.OS 60
CUADRO 5.1 CARGAS ESTÁTICAS	71
CUADRO 5.2 COEFICIENTE DEL CORTE BASAL EDIFICIO LOAIZA	72
CUADRO 5.3 COEFICIENTE DEL CORTE BASAL EDIFICIO UNACH	72
CUADRO 5.4 COEFICIENTE DEL CORTE BASAL EDIFICIO PLUS 1	73
CUADRO 5.5 VALORES DE k	73
CUADRO 5.6 HERRAMIENTAS DE DIBUJO ETABS 2015	76
CUADRO 5.7 HERRAMIENTAS PARA VISUALIZAR RESULTADOS ETABS2015	80
CUADRO 5.8 HERRAMIENTAS DE DISEÑO	82
CUADRO 5.9 HERRAMIENTAS DE DIBUJO RISA 3D	87
CUADRO 5.10 CARGAS ESTÁTICAS	89
CUADRO 5.11 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO LOAIZA CO AYUDA DEL PROGRAMA MICROSOFT EXCEL	ON 93
CUADRO 5.12 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO UNACH CO AYUDA DEL PROGRAMA MICROSOFT EXCEL	ON 93
CUADRO 5.13 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO PLUS1 CO AYUDA DEL PROGRAMA MICROSOFT EXCEL)N 94
CUADRO 5.14 PARÁMETROS DE DISEÑO	99
CUADRO 5.15 HERRAMIENTAS DE DIBUJO RCBE	103
CUADRO 5.16 CARGAS ESTÁTICAS	105
CUADRO 6.1 COMPARACIÓN DE RESULTADOS EDIFICIO LOAIZA	114
CUADRO 6.2 FUERZAS LATERALES Y CORTE BASAL	115
CUADRO 6.3 FUERZAS LATERALES Y CORTE BASAL	115
CUADRO 6.4 FUERZAS LATERALES Y CORTE BASAL	115
CUADRO 6.5 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X	117
CUADRO 6.6 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Z	117
CUADRO 6.7 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X	117
CUADRO 6.8 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y	118
CUADRO 6.9 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X	118

CUADRO 6.10 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y
CUADRO 6.11 COMPARACIÓN DE RESULTADOS EDIFICIO UNACH125
CUADRO 6.12 FUERZAS LATERALES Y CORTE BASAL
CUADRO 6.13 FUERZAS LATERALES Y CORTE BASAL126
CUADRO 6.14 FUERZAS LATERALES Y CORTE BASAL126
CUADRO 6.15 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.16 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Z
CUADRO 6.17 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.18 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y
CUADRO 6.19 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.20 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y
CUADRO 6.21 COMPARACIÓN DE RESULTADOS EDIFICIO PLUS 1136
CUADRO 6.22 FUERZAS LATERALES Y CORTE BASAL
CUADRO 6.23 FUERZAS LATERALES Y CORTE BASAL
CUADRO 6.24 FUERZAS LATERALES Y CORTE BASAL
CUADRO 6.25 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.26 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Z
CUADRO 6.27 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y
CUADRO 6.28 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN Y
CUADRO 6.29 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.30 CALCULO DE DERIVA MAXIMA INELASTICA DIRECCIÓN X
CUADRO 6.31 COMPARATIVA DE RESULTADOS EDIFICIO LOAIZA147
CUADRO 6.32 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO LOAIZA

CUADRO 6.33 COMPARATIVA DE RESULTADOS EDIFICIO
UNACH
CUADRO 6.34 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO
UNACH
CUADRO 6.35 COMPARATIVA DE RESULTADOS EDIFICIO PLUS 115
CUADRO 6.36 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO PLUS 1

ÍNDICE DE FIGURAS

FIGURA 1.2 PLANTA ARQUITECTÓNICA EDIFICIO LOAIZA5
FIGURA 1.3 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO LOAIZA6
FIGURA 1.4 CORTE LONGITUDINAL EDIFICIO UNACH
FIGURA 1.5 PLANTA ARQUITECTÓNICA EDIFICIO UNACH8
FIGURA 1.6 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO LOAIZA9
FIGURA 1.7 CORTE LONGITUDINAL EDIFICIO PLUS 111
FIGURA 1.8 PLANTA ARQUITECTÓNICA EDIFICIO PLUS 112
FIGURA 1.6 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO PLUS 113
FIGURA 2.1 PERFILES ESTÁNDAR LAMINADOS EN CALIENTE16
FIGURA 2.2 PERFILES DE LÁMINA DELGADA17
FIGURA 2.3 PLACA COLABORANTE
FIGURA 2.4 RAZON ANCHO-ESPESOR: ELEMENTOS EN COMPRESIÓN DE MIEMBRO EN FLEXIÓN
FIGURA 2.5 RAZON ANCHO – ESPESOR LIMITES PARA ELEMENTOS DE ACERO COMPRIMIDOS EN MIENBROS COMPUESTOS SUJETOS A FLEXIÓN
FIGURA 3.1 DISPOSICIÓN DE LAS VIGUETAS EDIFICIO LOAIZA26
FIGURA 3.2 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE UNA VIGUETA EDIFICIO LOAIZA27
FIGURA 3.3 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO LOAIZA)28
FIGURA 3.4 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE EL ELEMENTO COMPUESTO EDIFICIO LOAIZA29
FIGURA 3.5 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA DISEÑO DE SECCIONES COMPUESTAS (EDIFICIO LOAIZA)
FIGURA 3.6 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO LOAIZA
FIGURA 3.7 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA
PRINCIPAL EDIFICIO LOAIZA
FIGURA 3.8 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO LOAIZA)

FIGURA 3.9 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE COLUMNAS DE SECCION COMPUESTA FIGURA 3.11 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA FIGURA 3.12 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I FIGURA 3.13 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA FIGURA 3.14 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA DISEÑO DE SECCIONES COMPUESTAS FIGURA 3.15 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO FIGURA 3.16 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA PRINCIPAL EDIFICIO UNACH......40 FIGURA 3.17 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO UNACH)41 FIGURA 3.18 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE COLUMNAS DE SECCION COMPUESTA (EDIFICIO UNACH)......43 FIGURA 3.19 DISPOSICIÓN DE LAS VIGUETAS EDIFICIO PLUS 1......44 FIGURA 3.20 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE UNA VIGUETA EDIFICIO PLUS 1......45 FIGURA 3.21 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I FIGURA 3.22 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE EL ELEMENTO COMPUESTO EDIFICIO PLUS 1.......46 FIGURA 3.23 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCELPARA DISEÑO DE SECCIONES COMPUESTAS FIGURA 3.24 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO FIGURA 3.25 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA PRINCIPAL EDIFICIO PLUS 1......48 FIGURA 3.26 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT

EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO PLUS 1)
FIGURA 3.27 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT
EXCEL PARA PREDISENO DE COLUMNAS DE SECCION COMPUESTA (EDIFICIO PLUS1)
FIGURA 3.28 COLUMNA COMPÚESTA51
FIGURA 3.29 VIGA DE ACERO
FIGURA 5.1 PANTALLA PRINCIPAL ETABS 201564
FIGURA 5.2 VENTANA INICIO DE MODELACIÓN65
FIGURA 5.3 VENTANA INICIO DE MODELACIÓN DE GRILLA65
FIGURA 5.4 GRILLA66
FIGURA 5.5 DEFINICIÓN DE MATERIALES67
FIGURA 5.6 DEFINICIÓN DE SECCIÓN VIGAS Y VIGUETAS68
FIGURA 5.7 DEFINICIÓN DE SECCIÓN COLUMNAS68
FIGURA 5.8 DEFINICIÓN DE LOSA DE PLACA COLABORANTE DECK69
FIGURA 5.9 DEFINICIÓN DE SECCIONES MUROS70
FIGURA 5.10 DEFINICIÓN DE CARGAS ESTÁTICAS71
FIGURA 5.11 DEFINICIÓN DE CARGAS SISMICAS74
FIGURA 5.12 DEFINICIÓN DE CONBINACIONES DE CARGA74
FIGURA 5.13 DEFINICIÓN DE FUENTE DE MASA75
FIGURA 5.14 DEFINICIÓN APOYOS76
FIGURA 5.15 CONDICIONES DE APOYO DE LAS VIGUETAS77
FIGURA 5.16 ASIGNACIÓN DE CARGAS78
FIGURA 5.17 ASIGNACIÓN DE DIAFRAGMA HORIZONTAL78
FIGURA 5.18 DIBUJO COMPLETO ETABS 2015EDIFICIO LOAIZA79
FIGURA 5.19 DIBUJO COMPLETO ETABS 2015 EDIFICIO UNACH79
FIGURA 5.20 DIBUJO COMPLETO ETABS 2015 EDIFICIO PLUS 180
FIGURA 5.21 VISUALIZAR DESPLAZAMIENTO ETABS 201581
FIGURA 5.22 VISUALIZAR REACCIONES ETABS 2015
FIGURA 5.23 VISUALIZAR DIAGRAMAS ETABS 2015
FIGURA 5.24 PANTALLA PRINCIPAL RISA 3D
FIGURA 5.25 VENTANA DE SELECCIÓN DE UNIDADES
FIGURA 5.26 VENTANA DE DIBUJO DE GRILLA

FUGURA 5.29 DEFINICIÓN DE SECCIÓN VIGAS Y VIGUETAS	86
FIGURA 5.30 DEFINICIÓN DE SECCIÓN COLUMNAS	87
FIGURA 5.31 DIBUJAR ELEMENTOS	.88
FIGURA 5.32 DEFINICIÓN DE SECCIONES MUROS	88
FIGURA 5.33 DEFINICIÓN DE CARGAS ESTÁTICAS	89
FIGURA 5.34 DEFINICIÓN DE CARGAS ESTÁTICAS	90
FIGURA 5.35 DEFINICIÓN DE LOS DIAFRAGMAS	91
FIGURA 5.36 DEFINICIÓN DE COMBINACIONES DE CARGA	91
FIGURA 5.37 DEFINICIÓN DE CARGA SISMICA	92
FIGURA 5.38 INGRESO DE FUERZAS SISMICAS	94
FIGURA 5.39 DEFINICIÓN APOYOS	95
FIGURA 5.40 DIBUJO COMPLETO RISA 3D EDIFICIO LOAIZA	95
FIGURA 5.41 DIBUJO COMPLETO RISA 3D EDIFICIO UNACH	96
FIGURA 5.42 DIBUJO COMPLETO RIS 3D EDIFICIO PLUS 1	96
FIGURA 5.43 VENTA DE SELECION DE SOLUCIÓN	97
FIGURA 5.44 VENTA DE OPCIONES DE RESULTADOS	97
FIGURA 5.45 VISUALIZACIÓN DE RESULTADOS GRÁFICOS (DIAGRAMAS)	98
FIGURA 5.46 VISUALIZACIÓN DE RESULTADOS GRÁFICOS (DEFLEXIONES)	98
FIGURA 5.47 CÁLCULO DE LOS PERIODOS DE VIBRACIÓN RISA 3D	99
FIGURA 5.48 PANTALLA PRINCIPAL RCBE	.100
FIGURA 5.49 VENTANA DE INICIO	.101
FIGURA 5.50 VENTANA PARA CREAR NUEVA ESTRUCUTURA	.101
FIGURA 5.51 DEFINICIÓN DE LA GRILLA	.101
FIGURA 5.52 VENTANA DE SELECCIÓN DE UNIDADES	102
FIGURA 5.53 DIBUJAR ELEMENTOS COLUMNAS Y VIGAS	.103
FIGURA 5.54 DEFINICIÓN DE SECCIONES MUROS	.104
FIGURA 5.55 DEFINICIÓN DE LOSA	.104
FIGURA 5.56 DEFINICIÓN DE CARGAS ESTÁTICAS	
GRAVITACIONALES	105
FIGURA 5.57 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES EDIFIC LOAIZA	IO 106
FIGURA 5.58 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES EDIFIC UNACH	IO 107

FIGURA 5.59 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES I PLUS1	EDIFICIO 108
FIGURA 5.60 DEFINICIÓN DE COMBINACIONES DE CARGA	109
FIGURA 5.61 DEFINICIÓN APOYOS	109
FIGURA 5.62 DIBUJO COMPLETO RCEBE EDIFICIO LOAIZA	110
FIGURA 5.63 DIBUJO COMPLETO RCBE EDIFICIO UNACH	110
FIGURA 5.64 DIBUJO COMPLETO RCBE EDIFICIO PLUS 1	111
FIGURA 5.65 VENTAS DE SELECION DE SOLUCIÓN	112
FIGURA 5.66 VENTA DE OPCIONES DE RESULTADOS	112
FIGURA 5.67 VISUALIZACIÓN DE RESULTADOS GRÁFICOS	113

RESUMEN

El objetivo principal de este proyecto es realizar un estudio comparativo de análisis y diseño estructural en edificios metálicos usando programas que en la actualmente existen para análisis y diseño. Los programas, que facilitan y agilitan el proceso de cálculo, considerados para el presente estudio son: RISA 3D, RCBE y ETABS 2015.

Estos programas presentan variaciones en lo que respecta a su manejo y resultados, por tanto resulta necesario establecer cuan significativos e influyentes son estos cambios para el diseño de los elementos que conforman la estructura.

Para conocer las variaciones y factores que pueden modificar el diseño de los elementos estructurales se procederá a modelar tres diferentes estructuras con diferentes características cada una de estas edificaciones, las cuales variaran el número de pisos, el número de subsuelos y su geometría.

Para el estudio mencionado se contemplan los requerimientos que establece la actual norma ecuatoriana de la construcción NEC 2015 y el código AISC 360-10 como norma de diseño.

Finalmente, se presenta información de ventajas y desventajas del uso de cada programa, con los resultados se realizó una diferencia porcentual y se comparó el diseño de los elementos que presenta cada programa.

ABSTRACT

The main objective of this research is to conduct a comparative study of the structural analysis and design of steel buildings using the available software in the market. The programs, which facilitate and expedite the calculation process, considered for this study are: RISA 3D, RCBE and ETABS 2015.

These programs have different features to model and do not present the final results on a similar way. Therefore, it is necessary to establish how significant and influential these differences are in order to rely on the design of the structural elements.

To identify the variations and factors that can modify the design of the structural elements, it is modeled three different buildings with different characteristics each of one. The structures vary on the number of floors, number of underground levels and geometry.

For this project, the current Ecuadorian Construction Standard, NEC 2015, and the American Institute of Steel Construction Standard, AISC 360-10, are considered to design the different elements of the analyzed structures.

Finally, there is information with the advantages and disadvantages about the use of each software. With the results taken from the software, it was computed a percentual difference in order to compare the design of the elements, which the software shows.

PRESENTACIÓN

El presente estudio consta de 7 capítulos distribuidos de la siguiente manera:

En el capítulo 1 se presenta de manera introductoria y resumida lo que se va a realizar en el presente trabajo así como los objetivos y su justificación, además se presenta los objetos de estudios en una definición general de proyectos.

En el capítulo 2 se presenta los fundamentos teóricos que se utilizaran como: tipos de estructuras, materiales sus propiedades mecánicas, ventajas y desventajas, también se presenta toda la teoría con respecto a los elementos compuestos y la revisión de los requerimientos de los códigos de diseño.

En el capítulo 3 se presenta el cálculo y predimensionamiento de los elementos estructurales en estudio, para esto se tomo en cuenta los parámetros: propiedades de los materiales y las hipótesis de carga, así podemos dimensionar elementos: viguetas, vigas y columnas, también se realiza el cálculo de secciones equivalentes.

En el capítulo 4 se presenta las características, funciones y todo lo que puede realizar cada uno de los programas a utilizarse.

En el capítulo 5 se presenta una guía de como modelar las estructuras en cada programa, aquí se incluye la manera en la que se deben definir cada parámetro que va desde definir las unidades hasta como visualizar los resultados.

En el capítulo 6 se presenta los resultados obtenidos con cada programa y se realiza una comparación mediante una diferencia porcentual, además se presenta las ventajas y desventajas al modelar en cada programa.

En el capítulo 7 se presenta las conclusiones y recomendaciones seguidas por los anexos.

CAPÍTULO 1

GENERALIDADES

1.1 INTRODUCCIÓN

El estudio comparativo de análisis y diseño estructural es parte fundamental de la ingeniería civil, donde su principal objetivo es cumplir con requerimientos de seguridad, funcionalidad, serviciabilidad y estética, para cumplir estos requerimientos existen métodos de cálculo estructural que dependiendo de la geometría de la edificación se vuelven más complejos.

Actualmente existen varios programas para el análisis y diseño estructural de edificaciones, que facilitan y agilitan el proceso de cálculo. Estos programas presentan variaciones en lo que respecta a su manejo y resultados, por tanto resulta necesario establecer cuan significativos e influyentes son estos cambios en el diseño de los elementos que conforman la estructura.

Para conocer los factores que influye el cambio en los resultados entre los programas se realizará una comparación de análisis estructural de los edificios:

LOAIZA edificio cuyas características son: aporticado, con muros de corte, irregular en planta y regular en elevación, consta de: 1 subsuelo y 4 pisos. UNACH cuyas características son: aporticado, con muros de corte, irregular en planta y en elevación consta de: 1 subsuelo, 8 pisos incluida planta baja. PLUS 1 edificio cuyas características son: aporticado, con muros de corte, regular en planta y en elevación consta de: 5 subsuelos y 12 pisos.

Esto se realizará utilizando los programas: RISA 3D, RCBE y ETABS 2015 resolverá las incertidumbres en cuanto a lo que se refiere interpretación y precisión de resultados obtenidos, además de establecer capacidades y deficiencias que los paquetes computacionales poseen. Para el estudio mencionado se contemplan los requerimientos que establece la actual norma

ecuatoriana de la construcción NEC 15 y el código AISC 360-10 como norma de diseño.

1.2 OBJETIVOS

1.2.1 OBJETIVO GENERAL

Establecer información mediante un estudio comparativo de Análisis y Diseño estructural en edificios metálicos usando los programas: Risa 3D, RCBE y ETABS 2015, que ayude a estudiantes y profesionales de Ingeniera Civil-Estructural a conocer sus ventajas y desventajas.

1.2.2 OBJETIVOS ESPECÍFICOS

- Comparar las diferentes herramientas de diseño que brinda cada programa para entender su funcionamiento.
- Dar a conocer los diferentes programas y su importancia en el ámbito del diseño estructural.
- Establecer ventajas y desventajas del uso de los programas, identificando los motivos de diferencias, entendiendo con qué variables trabajó el programa y bajo qué circunstancias se recomendaría su uso.

1.3 JUSTIFICACIÓN

Este proyecto pretende comparar diferentes programas que existen para el análisis y diseño estructural en edificios metálicos mediante la modelación de los edificios: Loaiza, Plus 1 y Unach, usando los programas: Risa 3D, RCBE y ETABS 2015, ya que existen diferencias entre estos programas.

Con el desarrollo de este proyecto se ayudará a tener conocimiento de las herramientas que nos ofrece cada uno de los programas.

Al finalizar este proyecto y con los resultados obtenidos, se pueden proponer la implementación de estos programas en el curriculum académico con lo que se ayudara a los futuros ingenieros a tener más herramientas para el uso en su vida profesional.

1.4 DEFINICIÓN GENERAL PROYECTOS

Los proyectos que se tomaron como ejemplo para la realización de este trabajo son estructuras existentes.

La estructuración de estos edificios está compuesta por pórticos resistentes que se forman por la unión de: columnas tubulares y vigas de perfil "W", con muros de corte los cuales ayudan como arriostramieto a la estructura, este tipo de sistema estructural se le conoce como un sistema dual.

Tienen un sistema de losa de placa colaborante (Deck) que se apoya en vigas y viguetas.

Las cimentaciones de los edificios constan de zapatas aisladas o combinadas.

A continuación se describe los edificios:

1.4.1 EDIFICIO LOAIZA

1.4.1.1 Descripción Arquitectónica

El edificio LOAIZA es un edificio de departamentos, consta de 1 subsuelo y 5 plantas.

En planta el edificio tiene forma de un polígono irregular de 6 lados en forma de "L", en elevación se observa que tiene diferentes volados para cada piso por lo se considerara como un edificio irregular en elevación,

A continuación se muestra un cuadro con detalles del edificio:

CUADRO 1.1 EDIFICIO LOAIZA

Piso	Uso	Área
Quinta Planta N + 12.20	Ultima Losa tapa Gradas	146.67 m²
Cuarto Planta N + 9.15	Terraza	533.65 m²
Tercer Planta N + 6.10	Departamentos 7, 8 y 9	516.88 m²
Segundo Planta N + 3.05	Departamentos 4, 5 y 6	519.77 m²
Primer Planta N + 0.00	Departamentos 1, 2 y 3	777.87 m²
Subsuelo N – 3.50	Parqueadero	832.02 m²

FUENTE: Planos Arquitectónicos Edificio LOAIZA ELABORACIÓN: Diego Paillacho

FIGURA 1.1 CORTE LONGITUDINAL EDIFICIO LOAIZA

FUENTE: Planos Arquitectónicos Edificio LOAIZA ELABORACIÓN: Diego Paillacho

FIGURA 1.2 PLANTA ARQUITECTÓNICA EDIFICIO LOAIZA

FUENTE: Planos Arquitectónicos Edificio LOAIZA ELABORACIÓN: Diego Paillacho

FIGURA 1.3 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO LOAIZA

FUENTE: Planos Arquitectónicos Edificio LOAIZA ELABORACIÓN: Diego Paillacho

1.4.2 EDIFICIO UNACH

1.4.2.1 Descripción Arquitectónica

En el edificio UNACH funciona la Facultad de Ciencias de la Educación Humanas y Tecnológicas, de la Universidad Nacional de Chimborazo, consta: 1 subsuelo y 8 plantas.

En planta tiene la forma de un polígono irregular y no tiene irregularidades en elevación, A continuación se muestra una tabla con detalles del edificio:

Piso	Uso	Área	
Octava Planta	Ultima Losa tapa	/8 10 m ²	
N + 30.57	gradas	40.10111	
Séptima Planta	Aulas	793 73 m²	
N + 26.83	7,0105	700.70 11	
Sexta Planta	Aulas	703 73 m²	
N + 23.09	Auldo	780.75111	
Quinta Planta	Aulas	800 42 m ²	
N + 19.35	7,0105	000.42 m	
Cuarto Planta	Aulas	800 42 m ²	
N + 15.61	7,0105	000.42 m	
Tercer Planta	Aulas	800 42 m ²	
N + 11.87	7,4140	000.42 m	
Segundo Planta	Cubículos	800 42 m ²	
N + 8.13	Gubicalos	000.42 111	
Primer Planta	Biblioteca y	793 73 m²	
N + 4.39	Cubículos	130.10 11	
Planta Baja	Sala de Espera	793 73 m²	
N + 0.65		700.70 111	
Subsuelo	Bodega	688 49 m²	
N – 3.09	Dodogu	000.40 m	

CUADRO 1.2 EDIFICIO UNACH

FUENTE: Planos Arquitectónicos Edificio LOAIZA ELABORACIÓN: Diego Paillacho

FIGURA 1.4 CORTE LONGITUDINAL EDIFICIO UNACH

FUENTE: Planos Arquitectónicos Edificio UNACH ELABORACIÓN: Diego Paillacho

FIGURA 1.5 PLANTA ARQUITECTÓNICA EDIFICIO UNACH

FUENTE: Planos Arquitectónicos Edificio UNACH ELABORACIÓN: Diego Paillacho

FIGURA 1.6 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO UNACH

FUENTE: Planos Arquitectónicos Edificio UNACH ELABORACIÓN: Diego Paillacho

1.4.3 EDIFICIO PLUS 1

1.4.3.1 Descripción Arquitectónica

El edificio Plus destinado al uso de oficinas, consta de 5 subsuelos y 12 plantas. Tiene forma rectangular por lo que se considerara regular en planta y a su vez es regular en elevación

A continuación se muestra una tabla detallando el edificio:

Piso	Uso	Área		
Décimo Segunda Planta N +37.85	Ultima Losa tapa gradas	67.67 m²		
Décimo Primera Planta N +34.10	Cuarto de Maquinas	67.76 m²		
Décima Planta N + 31.00	Terraza Comunal	315.48 m²		
Novena Planta N +27.90	Salón Comunal Oficinas	315.48 m²		
Octava Planta N +24.80	Oficinas	319.95 m²		
Séptima Planta N +21.70	Oficinas	319.95 m²		
Sexta Planta N +18.60	Oficinas	319.95 m²		
Quinta Planta N +15.50	Oficinas	319.95 m²		
Cuarto Planta N +12.40	Oficinas	319.95 m²		
Tercer Planta N +9.30	Oficinas	319.95 m²		
Segundo Planta N +6.20	Oficinas	319.95 m²		
Primer Planta N +3.10	Oficinas	266.70 m²		
Planta Baja N +0.00	Vestíbulo Oficinas	326.20 m²		
Subsuelo 1 N -2.90 y -3.75	Parqueadero	512.00 m²		
Subsuelo 2 N -5.80y -6.65	Parqueadero	512.00 m²		

CUADRO 1.3 EDIFICIO PLUS 1

CUADRO 1.3 CONTINUACIÓN

Subsuelo 3 N -8.70 y -9.55	Parqueadero	512.00 m²
Subsuelo 4 N -11.60 y -12.45	Parqueadero	512.00 m²
Subsuelo 5 N -14.50 y -15.35	Parqueadero	512.00 m²

FUENTE: Planos Arquitectónicos Edificio PLUS 1 ELABORACIÓN: Diego Paillacho

FIGURA 1.7 CORTE LONGITUDINAL EDIFICIO PLUS 1

FUENTE: Planos Arquitectónicos Edificio PLUS 1 ELABORACIÓN: Diego Paillacho

FIGURA 1.8 PLANTA ARQUITECTÓNICA EDIFICIO PLUS 1

FUENTE: Planos Arquitectónicos Edificio PLUS 1 ELABORACIÓN: Diego Paillacho

FIGURA 1.6 CONFIGURACION ESTRUCTURAL LOSA EDIFICIO PLUS 1

FUENTE: Planos Arquitectónicos Edificio PLUS 1 ELABORACIÓN: Diego Paillacho

CAPÍTULO 2

MATERIALES

2.1 ACERO COMO ELEMENTO ESTRUCTURAL

El acero estructural tiene una gran demanda en la Industria de la Construcción debido a que es un material que tiene propiedades estructurales importantes como son: su alta resistencia y su ductilidad. Es un material que se utiliza en múltiples construcciones por su rapidez de montaje como en Edificios, Puentes, Cubiertas, Torres, etc. Es una aleación elaborada industrialmente utilizando como materia prima básica el hierro y el carbono, además de otros metales en pequeña cantidad, que se funden en las proporciones adecuadas y a temperaturas estrictamente controladas.

2.1.1 PROPIEDADES MECÁNICAS DEL ACERO ESTRUCTURAL

Se presenta las principales propiedades mecánicas del acero estructural ya que estas son de gran importancia para el comportamiento de la estructura:

Esfuerzo de Fluencia mínimo específico (Fy)		
Resistencia a la tracción mínima especificada (Fu)		
Módulo de Elasticidad:	E = 29000 [ksi] E = 200000 [Mpa] E = 2043000 [kg/cm²]	
Módulo de Elasticidad por Corte:	G =11200 [ksi] G = 77200 [Mpa] G = 789110 [kg/cm²]	
Módulo de Poisson:	μ = 0.30	
Deformación unitaria en la rotura:	Eu = 1 [ksi] Eu = 1000[lb/plg²] Eu = 70.454545 [kg/cm²]	

CUADRO 2.1 PROPIEDADES MECANICAS DEL ACERO ESTRUCTURAL

ELABORACIÓN: Diego Paillacho

2.1.2 VENTAJAS Y DESVENTAJAS EL ACERO COMO MATERIAL ESTRUCTURAL

Sus principales ventajas son:

- Su alta resistencia por unidad de peso: Este índice identifica las posibilidades que tiene un material para ser un elemento estructural y para una estructura de acero implica que el peso es menor que el de otros materiales.
- **Uniformidad:** Las propiedades del acero estructural no cambian con el paso del tiempo.
- **Ductilidad:** El acero estructural tiene una capacidad de soporta grandes deformaciones sin fallar ante grandes esfuerzos de tensión.
- **Durabilidad:** Si el mantenimiento de la estructura de acero es buena esta puede durar indefinidamente.
- **Tenacidad:** Es la capacidad que tiene un material para absorber energía y el acero estructural es un material con alta tenacidad, es decir tiene una gran resistencia y ductilidad.
- Facilidades Constructivas: Permite prefabricaciones, existe uniformidad en las propiedades de los elementos, posibilidad de laminarse en grandes tamaños y formas, facilidad para unir diversos miembros por medio de varios tipos de conectores, soldadura y pernos.
- Facilidad de Montaje y Reutilización: Tiene una facilidad de desmontar y posibilidad de reutilizar los elementos estructurales.

Las principales desventajas son:

- Costo de mantenimiento alto: La mayoría de los elementos estructurales están expuestos al agua y viento por lo que son susceptibles a la corrosión y se debe dar periódicamente un mantenimiento.
- Necesidad de protección contra el fuego: Aun cuando algunos de estos elementos de acero estructural son incombustibles se debe dar una protección contra el fuego, porque durante un incendio la temperatura
puede aumentar hasta el punto en el que el acero pierde su resistencia y se comporta plásticamente. Además el acero estructural es un buen conductor de calor y este puede permitir que un incendio se propague.

 Susceptibilidad al pandeo: Entre más esbeltos sean los elementos a compresión, mayor es el peligro de pandeo, como el acero estructural tiene una alta resistencia por unidad de peso al utilizarse como columnas no resulta muy económico ya que debe usarse bastante material, para hacer más rígidas las columnas contra el posible pandeo.

2.1.3 TIPOS DE MIEMBROS ESTRUCTURALES DE ACERO

• Perfiles estándar laminados en caliente.

Los perfiles laminados en caliente se obtienen mediante el proceso de laminación el cual consiste en calentar previamente los lingotes de acero fundido a una temperatura que permita la deformación del lingote y de esta manera dar la forma del perfil.

Estos elementos estructurales son muy buenos debido a que tienen una gran uniformidad estructural, no poseen soldaduras o costuras y existe una mínima concentración de esfuerzos residual de tención.

FIGURA 2.1 PERFILES ESTÁNDAR LAMINADOS EN CALIENTE.

FUENTE: Catalogo DIPAC Manta.

• Perfiles de lámina delgada

Los perfiles de lámina delga conformadas en frio se realiza mediante el dobles de planchas planas sin cambiar su temperatura y se da forma dependendio de las especificaciones de diseño.

Estos elementos estructurales no tienen esfuerzos debido a enfriamiento, pero se reduce el limite de proporcionalidad y ductilidad del acero, son mucho mas livianos que los perfiles laminados y debido al conformado en frio estos elementos tienen esfuerzos residuales importantes.

FIGURA 2.5 PERFILES DE LÁMINA DELGADA.

FUENTE: Catalogo DIPAC Manta.

2.2 ELEMENTOS COMPUESTOS

Desde hace varias décadas se vio que se puede obtener un aumento importante de resistencia haciendo que los dos materiales trabajen en conjunto. Una viga de acero que actúa como sección compuesta con la losa puede, con frecuencia, resistir cargas mucho mayores que las que soportaría por sí sola, y la resistencia de una columna de acero ahogada en concreto, o de una sección tubular rellena de ese material, es también apreciablemente mayor que la de la sección de acero aislada o la de una columna de concreto del mismo tamaño.

Las hipótesis de diseño de los elementos compuestos en su mayoría se tomaran del libro "Diseño de Estructuras de Acero Construcción Compuesta" de Oscar de Buen López de Heredia.

2.2.1 VIGAS COMPUESTAS

En la construcción compuesta se usa la alta resistencia en compresión del concreto de una manera muy eficiente, pues se logra que una gran parte de la losa, o toda ella, trabaje en compresión, y el porcentaje del área de la viga de acero en tensión es mayor que si la viga estuviese sola, pues la contribución del concreto hace que suba el eje neutro de la sección.

Este sistema está compuesto por la losa de placa metálica colaborante (Deck) la cual está conectada a los patines superiores de las viguetas, con lo que aumenta apreciablemente el momento de inercia y la resistencia del sistema de piso.

2.2.1.1 Losa de Placa Metálica Colaborante (Deck)

Es un sistema de losa unidireccional que consta de una placa o lamina acanalada con corrugaciones que permite la adherencia del hormigón a este, y actúa como

refuerzo a momento positivo de la losa por lo que no necesita la colocación de varilla inferior.

El uso de este sistema es recurrente en la construcción ecuatoriana debido a la reducción de encofrados, de igual manera que reduce el tiempo de ejecución comparado con los sistemas de losas de hormigón macizas o alivianadas.

FIGURA 2.3 PLACA COLABORANTE

FUENTE: Kubiec - Conduit, Catalogo "Kubilosa"

2.2.1.2 Especificaciones técnicas para losas con Deck

El uso de este sistema consta de Placa Colaborante (Deck), Viguetas y Conectores de Corte con esto se obtiene un correcto funcionamiento.

Para realizar el análisis de la placa colaborante se utilizara las especificaciones de la Ficha Técnica propuestas por Kubiec – Conduit que se adjunta como Anexo número 1, la cual es diseñada y fabricada de acuerdo a la norma INEN 1623 (Perfiles Estructurales conformados en frio).

2.2.1.3 Elementos sometidos a Flexión

El código AISC clasifica a las secciones como compactas, no compactas o esbeltas.

Las disposiciones son las siguientes:

Para que una sección sea considera como compacta, sus alas deben estar continuamente conectadas al alma o las almas y la razón ancho-espesor de sus elementos comprimidos no debe exceder la razón ancho-espesor λp de la tabla B4.1b.

Si la razón ancho espesor de uno o más de uno de los elementos comprimidos excede λp , pero no supera λr de la tabla B4.1b, la sección se denomina no compacta.

Si la razón ancho-espesor de cualquier elemento comprimido excede λr , la

sección califica como esbelta¹.

La siguiente tabla B4.1b del código AISC muestra los límites ancho-espesor para la clasificación de las secciones.

FIGURA 2.4 RAZON ANCHO-ESPESOR: ELEMENTOS EN COMPRESIÓN DE MIEMBRO EN FLEXIÓN.

		Razones Ancho-Esp	oesor: Ele	TABLA B4 ementos en C	.1b ompresión o	de miembros en flexión		
2	8	Descripción del	Razón	Razo Ancho-Esp	ones esor Límite	Fiemplos		
	Ca	elemento	Espesor	λ ₂ (compacta- no compacta)	λ, (esbeito- no esbeito)	Clempios		
Elementos No-Atiesados	10	Flexión en alas de perfiles I laminados, canales y tes.	b/t	$0.38 \sqrt{\frac{E}{F_{\gamma}}}$	$1.0\sqrt{\frac{E}{F_{\gamma}}}$	$\frac{b_{1}}{1}t$		
	11	Alas de secciones I soldadas con doble y simple simetría.	b/t	$0.38\sqrt{\frac{E}{F_{\gamma}}}$	$0.95 \sqrt{\frac{k_c E}{F_L}}$	$-\underbrace{\prod_{i=1}^{n} \frac{b_{i,i}t}{h}}_{h} - \underbrace{\prod_{i=1}^{n} \frac{b_{i,i}t}{h}}_{h}$		
	12	Alas de ángulos simples	b/t	$0.54\sqrt{\frac{E}{F_y}}$	$0.91\sqrt{\frac{E}{F_{\gamma}}}$			
	13	Alas de toda doble t y canal en torno a su eje más débil.	b/t	$0.38\sqrt{\frac{E}{F_{\gamma}}}$	$1.0\sqrt{\frac{E}{F_{\gamma}}}$			
	14	Almas de tes	d/t	$0.84\sqrt{\frac{E}{F_y}}$	$1.03\sqrt{\frac{E}{F_y}}$	t		
	15	Almas de doble T simétricas y canales.	h/t_	$3.76\sqrt{\frac{E}{F_r}}$	$5.70\sqrt{\frac{E}{F_r}}$	teh tah		
61	16	Almas de secciones doble T con un solo eje de simetría.	h _u /t	$\frac{\frac{h_c}{h_p} \left(\frac{E}{F_r} \right)}{\left(0.54 \frac{M_p}{M_p} - 0.09 \right)^2} \leq \lambda_1$	$5.70\sqrt{\frac{E}{F_y}}$			
tos Atiesado:	17	Alas de secciones tubulares y secciones cajón de espesor uniforme.	b/t	$1.12\sqrt{\frac{E}{F_p}}$	$1.40\sqrt{\frac{E}{F_{y}}}$	(<u></u>)		
Elemento	18	Alas de sobre planchas y planchas diafragma entre líneas de conectores y soldadura.	b/t	$1.12\sqrt{\frac{E}{F_{\gamma}}}$	$1.40\sqrt{\frac{E}{F_{y}}}$			
	19	Almas de tubos rectangulares y secciones cajón.	h/t	$2.42\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_{f}}}$			
	20	Tubos redondos.	D/t	$0.07 \frac{E}{F_r}$	$0.31 \frac{E}{F_y}$	Q.		

FUENTE: Especificación ANSI/AISC 360-10 para Construcciones de Acero.

¹FUENTE: Especificación ANSI/AISC 360-10 para Construcciones de Acero.

El cálculo de resistencia nominal de flexión, Mn, se va aplicar a miembros de sección transversal I con simetría doble y canales flectados en torno a su eje mayor, teniendo almas y alas compactas, y se obtenido de acuerdo con:

$$M_n = M_p = F_y Z_x$$
 (2.1)

- F_y Tensión de fluencia mínima especificada del tipo de acero utilizado.
- Z_x Modulo de sección plástico en torno al eje x.

2.2.1.4 Vigas de Sección Compuesta

Para determinar las fuerzas en miembros y conexiones de estructuras con vigas compuestas se tiene en cuenta la sección efectiva en el instante en que se aplica cada incremento de carga.

Para lo cual en el presente trabajo se tomara como referencias la investigación del libro de: "Diseñó de Estructuras de Acero Construcción Compuesta de Oscar de Buen López de Heredia, Capitulo 8, secciones del 8.3.4 a la 8.3.8.1.1".

Con la revisión de dicha investigación se realizará el predimensionamiento de las viguetas indicado en el Capítulo 3.

2.2.2 COLUMNAS COMPUESTAS RELLENAS²

Para compresión, las secciones compuestas rellenas se clasifican como compactas, no compactas o esbeltas. Para que una sección califique como compacta, la máxima razón ancho-espesor entre sus elementos de acero sujetos a compresión no debe exceder la razón ancho-espesor límite, λp , de la Figura 2.15.

Para flexión, las secciones compuestas rellenas son clasificadas como compactas, no compactas y esbeltas. Para que una sección califique como compacta, la máxima razón ancho - espesor entre sus elementos de acero

² FUENTE: Especificación ANSI/AISC 360-10 para Construcciones de Acero.

sujetos a compresión no debe exceder la razón ancho-espesor límite, λp, de la Tabla I1.1b del código AISC.

FIGURA 2.5 RAZON ANCHO – ESPESOR LIMITES PARA ELEMENTOS DE ACERO COMPRIMIDOS EN MIENBROS COMPUESTOS SUJETOS A FLEXIÓN

TABLA I1.1b Razones Ancho-Espesor límites para elementos de acero comprimidos en miembros compuestos sujetos a flexión Para Uso con Sección I3.4						
Descripción del Elemento	Razón Ancho-espesor	λ _p Compacto/ No compacto	λ _γ No compacto/ Esbelto	Máximo Permitido		
Alas de secciones tubulares rectangulares (HSS) y de cajón de espesor uniforme	b/t	$2.26\sqrt{\frac{E}{F_y}}$	$3.00\sqrt{\frac{E}{F_{\gamma}}}$	$5.00\sqrt{\frac{E}{F_y}}$		
Almas de secciones tubulares rectangulares (HSS) y de cajón de espesor uniforme	D/t	$3.00\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$		
Secciones tubulares (HSS) redondas	D/t	$\frac{0.09E}{F_{\gamma}}$	$\frac{0.31E}{F_{y}}$	$\frac{0.31E}{F_y}$		

FUENTE: Especificación ANSI/AISC 360-10 para Construcciones de Acero.

Para miembros compuestos rellenos, el área transversal de la sección de acero deberá contener por lo menos un 1% del área total de sección compuesta.

Los miembros compuestos rellenos deberán ser clasificados para pandeo local de acuerdo con la Sección I1.4. AISC 360-10.

Resistencia de Compresión

La resistencia de compresión disponible de miembros compuestos rellenos con doble simetría cargados axialmente deberá ser determinada para el estado límite de pandeo por flexión basado en Sección I2.1b AISC 360-10 con las siguientes modificaciones:

Para secciones compactas:

$$\mathbf{P}_{\rm no} = \mathbf{P}_{\rm p} \tag{2.2}$$

$$P_{p} = F_{y}A_{s} + C_{2}f'_{c}\left(A_{c} + A_{sr}\frac{E_{s}}{E_{c}}\right)$$
(2.3)

C2 = 0,85 para secciones rectangulares y 0,95 para secciones circulares.

a) Cuando
$$\frac{P_{no}}{P_e} \le 2.25$$

$$P_n = P_{no} \left[0.658^{\frac{P_{no}}{P_e}} \right]$$
(2.4)

b) Cuando $\frac{P_{no}}{P_e} > 2.25$

$$P_n = 0.877 P_e$$
 (2.5)

Donde:

$$P_{no} = F_y A_s + F_{yr} A_{sr} + 0.85 f'_c A_c$$
 (2.6)

$$P_{e} = \pi^{2} (E I_{eff}) / (KL)^{2}$$
(2.7)

La rigidez efectiva de una sección compuesta rellena, Eleff, para todas las secciones debe ser de:

$$El_{eff} = E_{sls} + C_{3}E_{clc}$$
 (2.8)

$$C3 = 0.6 + 2\left(\frac{A_s}{A_{c+}A_s}\right) \le 0.9$$
(2.9)

- Pe Carga critica de pandeo elástico.
- A_c Área de concreto.
- A_s Área de la sección de acero.
- E_c Módulo de elasticidad del concreto.
- E_s Módulo de elasticidad del acero.
- F_y Tensión de fluencia mínima especificada de la sección de acero.
- Ic Momento de inercia de la sección de concreto sobre el eje neutro elástico de la sección compuesta.
- Is Momento de inercia del perfil de acero sobre el eje neutro elástico de la sección compuesta.
- K Factor de longitud efectiva.
- L Longitud no arriostrada lateralmente del miembro.
- f'c Resistencia a compresión especificada del concreto.
- C₃ Coeficiente para el cálculo de la rigidez efectiva de miembros compuestos rellenos en compresión.

2.3 NORMA DE DISEÑO NEC 2015.

Las disposiciones del código NEC 2015 presentan los requerimientos y metodologías que deben ser aplicadas al diseño sismo resistente en edificios complementando con normas extranjeras reconocidas. Esto pone a disposición de los calculistas, diseñadores y profesionales, las herramientas de cálculo, basadas en conceptos de Ingeniería Sísmica que les permiten la toma de

decisiones en la etapa de diseño.

Los capítulos que se consideraran en el presente trabajo son: capítulo **NEC-SE-CG** (Cargas no Sísmicas), trata de las cargas permanentes (principalmente debidas al peso propio), de las cargas variables (cargas vivas y cargas climáticas) y sus combinaciones, y el capítulo **NEC-SE-DS** (Peligro Sísmico), trata de los parámetros que se deben tomar en cuenta para el diseño Sismorresistente.

CAPÍTULO 3

CALCULOS Y PREDIMENSIONAMIENTO

3.1 PROPIEDADES DE LOS MATERIALES

CUADRO 3.1 PROPIEDADES DE LOS MATERIALES

PROPIEDADES DEL HORMIGÓN				
Resistencia a la compresión del Hormigón:	f 'c =	240 [kg/cm ²]		
Módulo de Elasticidad:	Ec =	13500 √ f 'c [kg/cm²]		
Peso Específico:	γ = 2	2,4 [T/m³]		
PROPIEDADES DEL ACERO A50				
Esfuerzo de Fluencia mínimo especí	fico:	Fy = 3520 [kg/cm ²]		
Resistencia a la tracción mínima especificada:		Fu = 4938 [kg/cm ²]		

ELABORACIÓN: Diego Paillacho

3.1.1 HIPÓTESIS DE CARGA

Los valores de carga que se muestran y que se consideran a continuación corresponden a los pesos de materiales y cargas más comunes que se presentan en una estructura.

CUADRO 3.2 HIPÓTESIS DE CARGA

Hipótesis de Ca	arga		
Carga Muerta			
Descripción	Valor	Unidad	FUENTE
Peso Deck	6,37	kg/m²	Kubiaa Canduit Sidha Téaniaa
Volumen de Hormigón	0,0695	m³/m²	Kubilosa"
Peso del Hormigón	166,80	kg/m²	Kubilosa .
Mampostería	200	kg/m²	Apuntes de clases Configuraciones Estructurales; Ing. Patricio Placencia.
Acabados y Otros	150	kg/m²	Apuntes de clases Estructuras de Acero II; Ing. Jorge Vintimilla.
Carga Muerta en Cubiertas	250	kg/m²	Ing. Jorge Vintimilla.

CUADRO 3.2 CONTINUACIÓN-

Carga Viva			
Carga Viva (Residencia)	200	kg/m²	Norma Ecuatoriana de la Construcción NEC15.
Carga Viva (Oficinas)	250	kg/m²	Norma Ecuatoriana de la Construcción NEC15.
Carga Viva (Aulas)	300	kg/m²	Norma Ecuatoriana de la Construcción NEC15.
Carga Viva (Cubierta)	150	kg/m²	Norma Ecuatoriana de la Construcción NEC15.

ELABORACIÓN: Diego Paillacho

3.2 EDIFICIO LOAIZA

3.2.1 PREDIMENSIONAMIENTO LOSA

Del Cuadro 3.2 obtenemos los valores para obtener la carga viva sobre impuesta:

1.Peso del Hormigón	=	166,80 kg/m ²
2. Mampostería	=	200,00 kg/m ²
3. Acabados y Otros	=	150,00 kg/m ²
4. Carga Viva	=	200,00 kg/m ²
Carga viva sobre impues	ta =	716,80 kg/m²

Con la obtención de la carga viva sobreimpuesta se procede a la selección de la losa tipo Deck que se utilizara la cual tendrá las siguientes características tomadas del Anexo número 1 y se muestran en el siguiente cuadro:

CARGA VIVA SOBRE IMPUESTA [kg/m ²]							ima L	uz sin	Ар	untalar		
Espesor Kubilosa	Espesor Losa	Separación entre apoyos [m]				1		1		2		3
[mm]	[cm]	1,6 1,8 2				Luz	uz Lu		5	Luces		
0,65	5	1940	1487 1164		4	1,58		2,1		1,94		
Propiedades del Panel												
Echocor [mm]	$D_{aca} \left[kg/m^2 \right]$	ls(+)	ls(-	+)	Ss(+)		Ss(+)		Vo	olumen		
Espesor [mm]	Peso [kg/m-]	[cm4/m]	[cm4/m]		[cm³/n	³/m] [cm³/m		n] H	Hormigón /m ²			
0,65	6,37	29,3),3 28,86 9,6		9,61		14,54	t	C),0695		

CUADRO 3.3 CARACTERÍSTICAS DE LA PLACA COLABORANTE (DECK)

FUENTE: Kubiec – Conduit, Ficha Técnica "Kubilosa" ELABORACIÓN: Diego Paillacho

3.2.2 PREDIMENSIONAMIENTO VIGUETAS

FIGURA 3.1 DISPOSICIÓN DE LAS VIGUETAS EDIFICIO LOAIZA

ELABORACIÓN: Diego Paillacho

Se considera viguetas de sección transversal I simplemente apoyadas, en estas se aplicara una Carga Mayorada (W_U) distribuida uniformemente a lo largo de la longitud de la vigueta, W_U es la carga que la vigueta tendrá que soportar antes de que trabaje como sección compuesta durante la construcción.

Con esto se calculara el momento en el centro de las viguetas (ecu. 3.2), luego se obtendra el modulo plástico de una sección de acero (ecu 3.3), la cual se comparara con el modulo plástico de una sección de acero comercial (sección transversal I) que se obtiene con la ayuda de un programa realizado en Microsoft Excel para el prediseño de secciones I, con esto se obtendra las dimensiones de la vigueta de sección transversal I.

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta (Construcción – Peso Losa Deck)	W _D	0,173	T/m²
Carga Viva	WL	0,200	T/m²
Carga Mayorada	Wu	Ecu. (3.1)	T/m
Ancho Colaborante a las Viguetas	a _C	1,8	m
Longitud de Viguetas	L	5,45	m
Solicitación de Momento	Mu	Ecu. (3.2)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.3)	CM ³

CUADRO 3.4 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LA VIGUETA EDIFICIO LOAIZA

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
(3.1)

Wu = 0,95

FIGURA 3.2 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE UNA VIGUETA EDIFICIO LOAIZA

ELABORACIÓN: Diego Paillacho

$$Mu = \frac{Wu * L^{2}}{8}$$
(3.2)

$$Mu = \frac{0.95*5.45^{2}}{8}$$

$$Mu = 3,53 [T-m]$$

$$Z_{x} = \frac{M_{u}}{\phi_{b}F_{y}}$$
(3.3)

$$Z_{x} = \frac{3,53 * 10^{3}}{0.9 * 35200}$$

Zx = 111,34 [cm³]

FIGURA 3.3 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO LOAIZA).

ELABORACIÓN: Diego Paillacho

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.3.

$$197,62 \ge 111,34$$

3.2.2.1 Verificación de las Viguetas como Elementos Compuestos

Una vez obtenidas las dimensiones de la vigueta de acero y el hormigón de la losa haya fraguado, este se convierte en un elemento compuesto, en esta actuara una Carga Mayorada (Wu), Wu es la carga total que tendrá que soportar el elemento compuesto, para el calculo de la máxima capacidad a momento que tiene el elemento compuesto se realizara un programa en Microsoft Excel.

CUADRO 3.5 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO

COMPUESTO EDIFICIO LOAIZA

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m²
Carga Viva	WL	0,200	T/m²
Carga Mayorada	Wu	Ecu. (3.4)	T/m
Ancho Colaborante a las Viguetas	a _C	1,8	М
Longitud de Viguetas	L	5,45	М
Solicitación de Momento	Mu	Ecu. (3.5)	T-m
Momento de Diseño	Mr	Fig. (3.5)	T-m

ELABORACIÓN: Diego Paillacho

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
(3.4)

Wu = 1,2*0,523*1,80 + 1,6*0,200*1,80

FIGURA 3.4 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE EL ELEMENTO COMPUESTO EDIFICIO LOAIZA

$$Mu = \frac{Wu * L^{2}}{8}$$
(3.5)
$$Mu = \frac{1.71*5.45^{2}}{8}$$

$$Mu = 6.33 [T-m]$$

FIGURA 3.5 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA DISEÑO DE SECCIONES COMPUESTAS (EDIFICIO LOAIZA).

ELABORACIÓN: Diego Paillacho

Se debe cumplir $Mr \ge Mu$

$$15,79 \ge 6,33$$

3.2.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES

Para el predimensionamiento de las vigas principales se considera únicamente las reacciones producidas por las viguetas que están simplemente apoyadas sobre estas, las reacciones serán el resultado del área colaborante que toma cada vigueta y que se transmite a las vigas principales como cargas puntuales. Consideraremos a las vigas principales como vigas con empotramiento perfecto con lo cual calculamos los momentos en la viga y tomamos el mayor momento, con esto obtendremos el modulo plástico de una sección de acero, la cual se comparara con el modulo plástico de una sección de acero comercial (sección transversal I) que se obtiene con la ayuda de un programa realizado en Microsoft Excel para el prediseño de secciones I, y se obtiene las dimensiones de la viga principal.

FIGURA 3.6 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO LOAIZA

ELABORACIÓN: Diego Paillacho

CUADRO 3.6 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LAS VIGAS PRINCIPALES EDIFICIO LOAIZA

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m ²
Carga Viva	WL	0,200	T/m ²
Carga Mayorada	Pu1	Ecu. (3.6)	Т
Carga Mayorada	Pu2	Ecu. (3.7)	Т
Área Colaborante	A _c 1	8,28	m²
Área Colaborante	A _C 2	7,87	m²
Longitud de Viga Principal	L	6,10	m
Separación entre cargas puntuales	а	1,60	m
Separación entre cargas puntuales	b	1,45	m
Solicitación de Momento	Mu	Ecu. (3.8) o Ecu. (3.9)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.10)	ст³

ELABORACIÓN: Diego Paillacho

$$Pu1 = 1,2*W_{D}*A_{c}1 + 1,6*W_{L}*A_{c}1$$
 (3.6)

Pu1 = 1,2*0,523*8,28 + 1,6*0,200*8,28

Pu1 = 7,85

$$Pu2 = 1,2*W_{D}*A_{c}2 + 1,6*W_{L}*A_{c}2$$
(3.7)

Pu2 = 7,46

FIGURA 3.7 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA PRINCIPAL EDIFICIO LOAIZA

ELABORACIÓN: Diego Paillacho

Momento en los extremos de una viga con empotramiento perfecto, con tres cargas puntuales (**figura 3.7**).

$$M = \frac{Pu2 * L}{8} + \frac{Pu1 * a * (L-a)}{L}$$

$$M = \frac{7,46 * 6,10}{8} + \frac{7,85 * 1,6 * (6,10-1,6)}{6,10}$$

$$M = 14,95 [T-m]$$
(3.8)

Momento en el centro de una viga con empotramiento perfecto, con tres cargas puntuales (**figura 3.7**).

$$M = \frac{Pu2 * L}{8} + \frac{Pu1 * a^2}{L}$$
(3.9)
$$M = \frac{7,46 * 6,10}{8} + \frac{7,85 * 1,6^2}{6,10}$$

$$M = 8,98 [T-m]$$

Como 14,95 > 8,98, el momento de solicitud es:

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.10.

3.2.4 PREDIMENSIONAMIENTO COLUMNAS

Para el predimensionamiento de las columnas se tiene que considera el peso que aporta cada área tributaria alrededor de cada columna en cada planta del edificio. En el presente trabajo se tomara una columna para predimensionar.

CUADRO 3.7 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNAEDIFICIO LOAIZA

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m²
Carga Viva	WL	0,200	T/m²
Carga Mayorada	Pu	Ecu. (3.11)	Т
Altura Columna	L	3,50	m
Área Tributaria (Planta1 a la Planta4)	A _T 1	30,67	m²
Área Tributaria Terraza	A _T 2	11,53	m²
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	3520	Kg/cm ²
Área de Acero	A _S	Ecu. (3.12)	Cm ²

ELABORACIÓN: Diego Paillacho

$$Pu = 1,2*W_{D}*(A_{T}1*4+A_{T}2) + 1,6*W_{L}*(A_{T}1*4+A_{T}2)$$
(3.11)

Pu = 1,2*0,523*(30,67*4+11,53) + 1,6*0,200*(30,67*4+11,53)

Pu = 127,20 [T] $A_s = \frac{P_u}{0.6 * F_y}$ (3.12)

 $A_{\rm s} = \frac{127,20}{0,6 * 3520} *1000$

As = 60,23 [cm²]

Como ya se mencionó en la sección **2.2.2** para miembros compuestos rellenos, el área transversal de la sección de acero deberá contener por lo menos un 1% del área total de sección compuesta, por lo que se tomara las siguientes dimensiones para la sección compuesta con la ayuda de un programa realizado en Microsoft Excel para el prediseño de columnas de sección compuesta. FIGURA 3.9 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE COLUMNAS DE SECCION COMPUESTA (EDIFICIO LOAIZA)

	Sección Compuesta						
		Date	os				
	┐	L [cm] =	350				
		B [cm]=	30				
t t		t [cm]=	0,8				
		H [cm]=	40				
	h	t [cm]=	0,8				
		Propiedad	es Acero				
		Fy [kg/cm ²]=	3520				
		Es [kg/cm ²]=	2043000				
		Propiedades	Hormigón				
		Ec [kg/cm ²]=	209141,101				
В		f'c [kg/cm²] =	240				
				1			
Propiedades Geomét	ricas	Patin	Patin Compa	<u>cta</u>			
Acero		λp=	54,45				
As [cm ²]= 109,4	4 OK (>1%)	b/t=	35,50				
Is [cm4]= 25991,	99						
Hormigón		Alma	<u>Alma Compa</u>	<u>cta</u>			
Ac [cm ²] = 1090,5	56	λp=	72,27				
Ic [cm4]= 134008	,01	h/t=	48,00				

ELABORACIÓN: Diego Paillacho

3.3 EDIFICIO UNACH

Para el predimensionamiento del Edifico Unach se seguirá el mismo procedimiento de la sección anterior (sección 3.2).

3.3.1 PREDIMENSIONAMIENTO LOSA

Del Cuadro 3.2 obtenemos los valores para obtener la carga viva sobre impuesta:

1.Peso del Hormigón	=	166,80 kg/m ²
2. Mampostería	=	200,00 kg/m ²
3. Acabados y Otros	=	150,00 kg/m ²
4. Carga Viva	=	300,00 kg/m ²
Carga viva sobre impuesta	=	816,80 kg/m ²

Se selecciona las características de la placa colaborante con la ayuda del cuadro3.3 que se realizó con los datos del Anexo1.

3.3.2 PREDIMENSIONAMIENTO VIGUETAS

Las viguetas estarán dispuestas como se muestra en la figura 3.10 y se procederá de igual forma que en la sección 3.1.2.

FIGURA 3.10 DISPOSICIÓN DE LAS VIGUETAS EDIFICIO UNACH

ELABORACIÓN: Diego Paillacho

CUADRO 3.8 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LA VIGUETA EDIFICIO UNACH

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta (Construcción – Peso Losa Deck)	W _D	0,173	T/m²
Carga Viva	WL	0,300	T/m²
Carga Mayorada	Wu	Ecu. (3.13)	T/m
Ancho Colaborante a las Viguetas	a _C	1,59	m
Longitud de Viguetas	L	5,95	m
Solicitación de Momento	Mu	Ecu. (3.14)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.15)	cm³

ELABORACIÓN: Diego Paillacho

Se obtienen la Carga Mayorada (ecu. 3.1):

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
 (3.13)

Wu = 1,2*0,173*1,59 + 1,6*0,300*1,59

Wu = 1,09

FIGURA 3.11 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE UNA VIGUETA EDIFICIO UNACH

ELABORACIÓN: Diego Paillacho

$$Mu = \frac{Wu * L^{2}}{8}$$
(3.14)

$$Mu = \frac{1,09*5,95^{2}}{8}$$

$$Mu = 4,83 [T-m]$$

$$Z_{x} = \frac{M_{u}}{\phi_{b}F_{y}}$$
(3.15)

$$Z_{x} = \frac{4,83 * 10^{3}}{0,9 * 35200}$$

$$Zx = 152,52 [cm^{3}]$$

FIGURA 3.12 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO UNACH)

ELABORACIÓN: Diego Paillacho

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.15.

$$212,00 \ge 152,52$$

3.3.2.1 Verificación de las Viguetas como Elementos Compuestos

CUADRO 3.9 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO COMPUESTO EDIFICIO UNACH

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m ²
Carga Viva	WL	0,300	T/m²
Carga Mayorada	Wu	Ecu. (3.16)	T/m
Ancho Colaborante a las Viguetas	a _C	1,59	М
Longitud de Viguetas	L	5,95	М
Solicitación de Momento	Mu	Ecu. (3.17)	T-m
Momento de Diseño	Mr	Fig. (3.14)	T-m

ELABORACIÓN: Diego Paillacho

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
 (3.16)

Wu = 1,2*0,523*1,59 + 1,6*0,300*1,59

Wu = 1,76

FIGURA 3.13 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE EL ELEMENTO COMPUESTO EDIFICIO UNACH Wu [T/m] 1,76

$$Mu = \frac{Wu * L^{2}}{8}$$
(3.17)
$$Mu = \frac{1.76*5.95^{2}}{8}$$

$$Mu = 7,79 [T-m]$$

FIGURA 3.14 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES COMPUESTAS (EDIFCIO UNACH).

]	l - Doble Simetría			
		Da Pati b1 [cm] = tf1 [cm] = b2 [cm] = tf2 [cm] = tw [cm] = tw [cm] = tw [cm] = fy [kg/cm²] = fc [kg/cm²] =	tos 8 0.5 8 0.5 ma 0.4 2043000 3520 240	
SECCÍON COMPUE	ESTA	ok ALN		АСТА
Apsu [cm²] = 4.00 Apin [cm²] = 4.00 Apin [cm²] = 4.00 Aalma [cm²] = 12.00 Atotal [cm²] = 20.00	Longitud de Viga [Separación entre V tc [cm] = hr [cm] = be [cm] = a [cm] =	[m] = /igas [cm] = 148.75 2.32	595 158.75 5 5.1	
Diseño Momento Positivo Mn	[T-m] = 17.21 [T-m] = 15.49	Caso 1 Ok		

ELABORACIÓN: Diego Paillacho

Se debe cumplir Mr \geq Mu: $15,49 \geq 7,79$

3.3.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES

Se realizará igual procedimiento de la sección 3.2.3.

FIGURA 3.15 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO UNACH

ELABORACIÓN: Diego Paillacho

CUADRO 3.10 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LAS VIGAS PRINCIPALES EDIFICIO UNACH

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m²
Carga Viva	WL	0,300	T/m²
Carga Mayorada	Pu	Ecu. (3.18)	Т
Área Colaborante	A _C	8,69	m²
Longitud de Viga Principal	L	6,35	m
Separación entre cargas puntuales	а	1,59	m
Solicitación de Momento	Mu	Ecu. (3.19) o Ecu. (3.20)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.21)	CM ³

ELABORACIÓN: Diego Paillacho

$$Pu = 1,2*W_{D}*A_{c} + 1,6*W_{L}*A_{c}$$
 (3.18)

Pu = 1,2*0,523*8,69 + 1,6*0,300*8,69

Pu = 9,63

FIGURA 3.16 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA PRINCIPAL EDIFICIO UNACH

ELABORACIÓN: Diego Paillacho

Momento en los extremos de una viga con empotramiento perfecto, con tres cargas puntuales (**figura 3.16**).

$$M = \frac{Pu * L}{8} + \frac{Pu * a * (L-a)}{L}$$
(3.19)

$$M = \frac{9.63 * 6.35}{8} + \frac{9.63 * 1.59 * (6.35 - 1.59)}{6.35}$$

Momento en el centro de una viga con empotramiento perfecto, con tres cargas puntuales (**figura 3.16**).

$$M = \frac{Pu * L}{8} + \frac{Pu * a^2}{L}$$
(3.20)

$$M = \frac{9,63 + 6,35}{8} + \frac{9,63 + 1,59^2}{6,35}$$

M = 11,46 [T-m]

Como 14,95 > 8,98, el momento de solicitud es:

Mu = 19,11 [T-m]

$$Z_{x} = \frac{M_{u}}{\phi_{b}F_{y}}$$
(3.21)

$$Z_{x} = \frac{19,11 * 10^{3}}{0,9 * 35200}$$

Zx = 603,11 [cm³]

FIGURA 3.17 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO UNACH).

ELABORACIÓN: Diego Paillacho

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.21.

41

3.3.4 PREDIMENSIONAMIENTO COLUMNAS

Se realizará igual procedimiento de la sección 3.2.4.

CUADRO 3.11 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNA EDIFICIO UNACH

Nomenclatura	Valor	Unidades
W _D	0,523	T/m²
WL	0,300	T/m²
Pu	Ecu. (3.22)	Т
L	3,74	m
A _T	28,37	m²
Fy	3520	Kg/cm²
A _S	Ecu. (3.23)	Cm ²
	Womenclatura WD WL Pu L AT Fy AS	Nomenclatura Valor W _D 0,523 W _L 0,300 Pu Ecu. (3.22) L 3,74 A _T 28,37 F _y 3520 A _S Ecu. (3.23)

ELABORACIÓN: Diego Paillacho

$$Pu = 1,2*W_{D}*(A_{T}*8) + 1,6*W_{I}*(A_{T}*8)$$
(3.22)

$$Pu = 1,2*0,523*(28,37*8) + 1,6*0,300*(28,37*8)$$

Pu = 251,47 [T]

$$A_{s} = \frac{P_{u}}{0.6 * F_{y}}$$
 (3.23)

$$A_{\rm s} = \frac{251,47}{0,6 * 3520} *1000$$

FIGURA 3.18 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE COLUMNAS DE SECCION COMPUESTA (EDIFICIO UNACH)

Sección Compuesta				
		Dat L [cm] = B [cm]= t [cm]= H [cm]= t [cm]=	05 374 45 0,8 45 0,8	
		Propiedad Fy [kg/cm ²]= Es [kg/cm ²]= Propiedades Ec [kg/cm ²]= f'c [kg/cm ²] =	es Acero 3520 2043000 Hormigón 209141,101 240	
Propiedades Geométri Acero As [cm²] = 141,44 Is [cm4] = 46068,8 Hormigón Ac [cm²] = 1883,50 Ic [cm4] = 295649,8	OK (> 1%)	Patin $\lambda p =$ b/t = Alma $\lambda p =$ h/t =	Patin Compare 54,45 54,25 Alma Compare 72,27 54,25	<u>.ta</u>

ELABORACIÓN: Diego Paillacho

3.4 EDIFICIO PLUS 1

Para el predimensionamiento del Edifico Plus 1 se seguirá el mismo procedimiento de las secciones anteriores (sección 3.2 y sección 3.3).

3.4.1 PREDIMENSIONAMIENTO LOSA

Del Cuadro 3.2 obtenemos los valores para obtener la carga viva sobre impuesta:

1.Peso del Hormigón	=	166,80	kg/m ²
2. Mampostería	=	200,00	kg/m ²
3. Acabados y Otros	=	150,00	kg/m ²
4. Carga Viva	=	250,00	kg/m²
Carga viva sobre impuesta	=	766,80	kg/m²

Seleccionamos las características de la placa colaborante con la ayuda del cuadro3.3 que se realizó con la ayuda del Anexo1.

3.4.2 PREDIMENSIONAMIENTO VIGUETAS

Las viguetas estarán dispuestas como se muestra en la figura 3.12 y se procederá de igual forma que en la sección 3.1.2.

FIGURA 3.19 DISPOSICIÓN DE LAS VIGUETAS EDIFICIO PLUS 1

ELABORACIÓN: Diego Paillacho

CUADRO 3.12 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE LA VIGUETA EDIFICIO PLUS 1

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta (Construcción)	W _D	0,173	T/m²
Carga Viva	WL	0,250	T/m ²
Carga Mayorada	Wu	Ecu. (3.24)	T/m
Ancho Colaborante a las Viguetas	a _C	1,63	m
Longitud de Viguetas	L	5,07	m
Solicitación de Momento	Mu	Ecu. (3.25)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.26)	CM ³

ELABORACIÓN: Diego Paillacho

Se obtienen la Carga Mayorada (ecu. 3.1):

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
(324)

Wu = 1,2*0,173*1,63 + 1,6*0,250*1,63

FIGURA 3.20 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE UNA VIGUETA EDIFICIO PLUS 1

$$Mu = \frac{W_{U} * L^{2}}{8}$$
(3.25)

$$Mu = \frac{0.99 * 5.07^{2}}{8}$$

$$Mu = 3,18 [T-m]$$

$$Z_{x} = \frac{M_{U}}{\phi_{b}F_{y}}$$
(3.26)

$$Z_{x} = \frac{3,18 * 10^{3}}{0.9 * 35200}$$

$$Zx = 100,48 [cm^{3}]$$

ELABORACIÓN: Diego Paillacho

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.26.

$$236,88 \ge 100,48$$

3.4.2.1 Verificación de las Viguetas como Elementos Compuestos

CUADRO 3.13 NOMENCLATURA PARA EL CALCULO DEL ELEMENTO COMPUESTO EDIFICIO PLUS 1

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m²
Carga Viva	WL	0,250	T/m²
Carga Mayorada	Wu	Ecu. (3.27)	T/m
Ancho Colaborante a las Viguetas	a _C	1,63	m
Longitud de Viguetas	L	5,07	m
Solicitación de Momento	Mu	Ecu. (3.28)	T-m
Momento de Diseño	Mr	Fig. (3.23)	T-m

ELABORACIÓN: Diego Paillacho

$$Wu = 1,2^*W_D^*a_c + 1,6^*W_L^*a_c$$
 (3.27)

Wu = 1,68

FIGURA 3.22 REPRESENTACIÓN GRAFICA DE LA CARGA DISTRIBUIDA UNIFORME SOBRE EL ELEMENTO COMPUESTO EDIFICIO PLUS 1

$$Mu = \frac{Wu * L^{2}}{8}$$
(3.28)
$$Mu = \frac{1.68* 5.07^{2}}{8}$$

$$Mu = 5.38 [T-m]$$

FIGURA 3.23 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA DISEÑO DE SECCIONES COMPUESTAS (EDIFICIO PLUS 1)

ELABORACIÓN: Diego Paillacho

Se debe cumplir $Mr \ge Mu$

$16,\!58\geq5,\!38$

3.4.3 PREDIMENSIONAMIENTO VIGAS PRINCIPALES

FIGURA 3.24 DISPOSICIÓN DE LAS VIGAS PRINCIPALES EDIFICIO PLUS 1

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m ²
Carga Viva	WL	0,250	T/m ²
Carga Mayorada	Pu	Ecu. (3.29)	Т
Área Colaborante	A _C	8,62	m²
Longitud de Viga Principal	L	9,89	m
Separación entre cargas puntuales	а	1,63	m
Solicitación de Momento	Mu	Ecu. (3.30) o Ecu. (3.31)	T-m
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	35200	T/m²
Factor de Resistencia	φ _b	0,9	
Módulo de Sección Plástico entrono al eje X	Z _x	Ecu. (3.32)	CM ³

ELABORACIÓN: Diego Paillacho

$$Pu = 1,2*W_{D}*A_{c} + 1,6*W_{L}*A_{c}$$
(3.29)

Pu = 1,2*0,523*8,62 + 1,6*0,250*8,62

Pu = 8,86

FIGURA 3.25 REPRESENTACIÓN GRAFICA DE LAS CARGAS SOBRE UNA VIGA PRINCIPAL EDIFICIO PLUS 1

ELABORACIÓN: Diego Paillacho

Momento en los extremos de una viga con empotramiento perfecto, con cinco cargas puntuales (**figura 3.25**).

$$M = \frac{Pu * L}{8} + \frac{Pu * a * (L-a)}{L} + \frac{Pu * 2a * (L-2a)}{L}$$
(3.30)
$$M = \frac{8,86 * 9,89}{8} + \frac{8,86 * 1,63 * (9,89-1,63)}{9,89} + \frac{8,86 * 2 * 1,63 * (9,89-2*1,63)}{9,89}$$
$$M = 42,38 [T-m]$$

Momento en el centro de una viga con empotramiento perfecto, con cinco cargas puntuales (**figura 3.25**).

$$M = \frac{Pu * L}{8} + \frac{Pu * a^2}{L} + \frac{Pu * (2a)^2}{L}$$
(3.31)

$$M = \frac{8,86 * 9,89}{8} + \frac{8,86 * 1,63^2}{9,89} + \frac{8,86 * (2^{*}1,63)^2}{9,89}$$

M = 22,85 [T-m]

Como 14,95 > 8,98, el momento de solicitud es:

Mu = 42,38 [T-m]

$$Z_{x} = \frac{M_{u}}{\varphi_{b}F_{y}}$$
(3.32)

$$Z_{x} = \frac{42,38 * 10^{3}}{0,9 * 35200}$$

Zx = 1337,63 [cm³]

FIGURA 3.26 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE SECCIONES I (EDIFICIO PLUS 1)

ELABORACIÓN: Diego Paillacho

Se debe cumplir que el momento plástico de la sección de acero obtenido con el programa en Excel sea mayor al obtenido con la ecu. 3.32.

 $1791,\!50 \geq 1337,\!63$

3.4.4 PREDIMENSIONAMIENTO COLUMNAS

Se realizará igual procedimiento de la sección 3.2.4 y sección 3.3.4.

CUADRO 3.15 NOMENCLATURA PARA EL PREDIMENSIONAMIENTO DE UNA COLUMNA EDIFICIO PLUS 1

Descripción	Nomenclatura	Valor	Unidades
Carga Muerta	W _D	0,523	T/m²
Carga Viva	WL	0,250	T/m ²
Carga Mayorada	Pu	Ecu. (3.33)	Т
Altura Columna	L	2,90	m
Área Tributaria (Subsuelos 1-5)	A _T 1	36,29	m²
Área Tributaria (Planta1 a la Planta10)	A _T 2	31,27	m²
Esfuerzo del Acero de Fluencia del Acero Estructural	Fy	3520	Kg/cm ²
Área de Acero	A _S	Ecu. (3.34)	Cm ²

ELABORACIÓN: Diego Paillacho

$$Pu = 1,2*W_{D}*(A_{T}1*5 + A_{T}2*10) + 1,6*W_{L}*(A_{T}1*5 + A_{T}2*10)$$
(3.33)

Pu = 1,2*0,523*(36,29*5 + 31,27*10) + 1,6*0,250*(36,29*5 + 31,27*10)

Pu1 = 507,89 [T]

$$A_s = \frac{P_u}{0.6 * F_y}$$
(3.34)

 $A_{\rm s} = \frac{507,89}{0,6 * 3520} *1000$

A_S = 240,48 [cm²]

FIGURA 3.27 INTERFAZ DEL PROGRAMA REALIZADO EN MICROSOFT EXCEL PARA PREDISEÑO DE COLUMNAS DE SECCION COMPUESTA (EDIFICIO PLUS1)

ELABORACIÓN: Diego Paillacho

3.5 PRUEBA Y COMPARATIVA DEL MODELAMIENTO DE COLUMNAS DE SECCION COMPUESTA

En esta sección se revisará la forma de modelar una columna de sección compuesta (Columna metálica hueca rellena de hormigón) en los programas RISA 3D y RCBE debido a que los programa no poseen elementos de sección compuesta, para esto se realizará una comparación entre un método numérico y los resultados obtenidos mediante el software ETABS 2015, RISA 3D y RCBE para obtener los desplazamientos, rigideces y el peso de la columna.

FIGURA 3.28 COLUMNA COMPUESTA

ELABORACIÓN: Diego Paillacho
Ecuación de desplazamiento:

$$\Delta = \frac{P L^3}{3EI}$$
(3.35)

Donde:

P: Carga Puntual.

L: Altura de la Columna.

E: Modulo de Elasticidad de la Columna.

I: Momento de Inercia de la Columna.

Ecuación de Rigidez:

$$\mathbf{K} = \frac{3\mathsf{E}\mathsf{I}}{\mathsf{L}^3} \tag{3.36}$$

Donde:

L: Altura de la Columna.

E: Modulo de Elasticidad de la Columna.

I: Momento de Inercia de la Columna.

Para calcular el desplazamiento y rigidez de la columna compuesta se utilizara el módulo de elasticidad de un material base, el hormigón. Para lo cual se llevará a cabo la sección trasformada de la sección compuesta, para esto se transforma el área de acero en área equivalente de hormigón de esta manera la sección compuesta tendrá un momento de inercia en función de la sección de hormigón para lo cual se utilizara la siguiente ecuación propuesta (3.37), (**n** es la relación de los modulos de elasticidad de los materiales de la sección compuesta).

$$I_{tr} = n^* I_s + I_c$$
 (3.37)

1. Módulos de elasticidad de los Materiales.

$$E_s = 2043000 \text{ [kg/cm2]}$$

 $E_c = 209141,10 \text{ [kg/cm2]}$

2. Momentos de Inercia del Acero y Hormigón.

Memento de Inercia de la sección de Hormigón:

$$I_{c} = \frac{bh^{3}}{12}$$
(3.38)
$$I_{c} = \frac{(24)(24)^{3}}{12} = 27648 \text{ [cm4]}$$

Memento de Inercia de la sección de Acero:

$$I_{s} = \frac{bh^{3}}{12} - I_{c}$$
(3.39)

$$\mathbf{I}_{s} = \frac{(25)(25)^{3}}{12} - 27648 = 4904,08 \text{ [cm}^{4}\text{]}$$

Calculo de "n"

$$\mathbf{n} = \frac{2043000}{209141,10} = 9,77$$

$$I_{tr} = 9,77*4904,08 + 27648 = 75553,65 [cm4]$$

3. Calculo de Desplazamiento.

$$\Delta = \frac{1000 * 350^3}{3*209141, 10*75553, 65} = 9,04 \text{ [mm]}$$

4. Calculo de Rigidez.

$$\mathbf{K} = \frac{3 * 209141, 10 * 75553, 65}{350^3} = 1105, 63 \text{ [kg/cm]}$$

5. Desplazamiento obtenido con el programa ETABS 2015.

$$\Delta = 9,10 \, [mm]$$

6. Calculo de Rigidez de la columna.

$$\mathbf{K}_{\mathbf{ETABS \ 2015}} = \frac{1000}{0.91} = 1098.90 \ [\text{kg/cm}]$$

7. Desplazamiento obtenido con el programa RISA 3D.

$$\Delta = 9,07 \,[\text{mm}]$$

8. Calculo de Rigidez de la columna.

$$\mathbf{K}_{\mathbf{RISA3D}} = \frac{1000}{0,907} = 1102,53 \, [\text{kg/cm}]$$

9. Desplazamiento obtenido con el programa RCBE.

$$\Delta = 9,11 \, [mm]$$

10. Calculo de Rigidez de la columna.

$$\mathbf{K}_{\mathbf{RCBE}} = \frac{1000}{0,911} = 1097,69 \ [\text{kg/cm}]$$

Calculo del peso de la Columna

Para esto primero se obtendra un área equivalente de la columna de la sección transformada que poseerá el mismo peso de la columna de sección compuesta.

$$\mathbf{A}_{eq} = \frac{\mathbf{P}_{SC}}{\delta_c} \tag{3.40}$$

$$\mathbf{Psc} = \delta_c A_c + \delta_s A_s \tag{3.41}$$

Donde:

- Psc: Peso Sección Compuesta por metro.
- δ_c: Peso específico del Hormigón.
- δ_s : Peso específico del Acero. A_c: Área de Hormigón
- A_s: Área de Acero

1. Calculo del peso de la Sección Compuesta por metro.

Peso específico del Hormigón $= 2,4 [t/m^3]$ Peso específico del Acero $= 7,849 [t/m^3]$ Área de Hormigón $= 576 [cm^2]$ Área de Acero $= 49 [cm^2]$

$$\mathbf{Psc} = \frac{576^{*}2,4 + 49^{*}7,849}{100^{2}} = 0,176[\text{T/m}]$$

2. Calculo del Área Equivalente de la sección transformada.

A_{eq} =
$$\frac{0,176}{2.4}$$
 * 100² = 736,25 [cm²]

3. Peso de la columan de la seccion trasformada:

$$\mathbf{P_{ctr}} = A_{eq} \, \delta_c \, \mathbf{h} \tag{3.42}$$

Donde:

P_{Ctr}: Peso de la columna transformada.

h: Altura de la columna

$$\mathbf{P_{ctr}} = \frac{736,25}{100^2} * 2,4 * 3,5 * 1000 = 618,45 \text{ [kg]}$$

4. Peso obtenido con el programa ETABS 2015:

Peso de la Columna Compuesta = 618,45 [kg]

5. Peso obtenido con el programa RISA 3D:

Peso de la Columna Compuesta = 618,45 [kg]

6. Peso obtenido con el programa RCBE:

Peso de la Columna Compuesta = 618,5 [kg]

CUADRO 3.16 COMPARACIÓN DE RESULTADOS OBTENIDOS MEDIANTE CALCULO Y PROGRAMAS (COLUMNAS)

		ETABS	RISA		Dif	erencia Porce	ntual
	Calculo	2015	3D	RCBE	ETAB2015 /CALCULO	RISA 3D /CALCULO	RCBE /CALCULO
Desplazamiento [mm]	9,04	9,1	9,07	9,11	0,66%	0,33%	0,77%
Rigidez [kg/cm]	1105,63	1098,9	1102,53	1097,69	0,61%	0,28%	0,72%
Peso [kg]	618,45	618,45	618,45	618,5	0,00%	0,00%	0,01%

ELABORACIÓN: Diego Paillacho

3.6 PRUEBA Y COMPARATIVA DEL MODELAMIENTO DE VIGAS DE ACERO DE SECCION TRANSVERSAL I

En esta sección se revisará la forma de modelar una viga de acero de sección transversal I en el programa RCBE debido a que el programa no posee elementos metálicos, para esto se realizará una comparación entre un método numérico y los resultados obtenidos mediante el software ETABS 2015 y RCBE para obtener los desplazamientos, rigideces y el peso de la viga.

FIGURA 3.29 VIGA DE ACERO

ELABORACIÓN: Diego Paillacho

Calculo de desplazamiento y Rigidez de una viga en volado al aplicar una fuerza.

Ecuación de desplazamiento:

$$\Delta = \frac{P L^3}{3EI}$$
(3.43)

Donde:

P: Carga Puntual.

- L: Longitud de la Viga.
- E: Modulo de Elasticidad de la Viga.
- I: Momento de Inercia de la Viga.

Ecuación de Rigidez:

$$\mathbf{K} = \frac{3\mathsf{E}\mathsf{I}}{\mathsf{L}^3} \tag{3.44}$$

Donde:

L: Altura de la Viga.

E: Modulo de Elasticidad de la Viga.

I: Momento de Inercia de la Viga.

Para calcular el desplazamiento y rigidez de la viga se utilizara el módulo de elasticidad de un material base, el hormigón. Se procederá a realizar los cálculos de forma similar a lo que se realizó para el cálculo de las columnas equivalentes. Para lo cual se llevará a cabo la sección trasformada de la viga de acero, para esto se transforma el área de acero en área equivalente de hormigón de esta manera se tendrá un momento de inercia en función de la sección de hormigón para lo cual se utilizara la ecuación (3.48), pero únicamente se tomara de esta ecuación las variables que están en función de la sección de acero (n*Is) debido a que la viga en su totalidad es conformada por acero y esto hace nulo la participación de las variables de hormigón (Ic) en la ecuación, quedando así la ecuación (3.5).

Donde:

Itr: Momento de Inercia de las sección transformada.

- n: Relación entre los módulos de elasticidad del acero y hormigón.
- Is: Momento de Inercia de la viga de acero.
- 1. Módulos de elasticidad de los Materiales.

$$E_s = 2043000 [kg/cm^2]$$

$$E_c = 209141, 10 [kg/cm^2]$$

2. Momentos de Inercia del Acero y Hormigón.

Memento de Inercia de la Viga de Acero (Obtenido de las propiedades de la sección dadas por el programa ETABS 2015)

Calculo de "n"

$$\mathbf{n} = \frac{2043000}{209141,10} = 9,77$$

$$I_{tr} = 9,77*5588,90 = 54595,29 [cm4]$$

3. Calculo de Desplazamiento.

$$\Delta = \frac{1000 * 400^3}{3*209141, 10*54595, 29} = 1.87 \text{ [cm]}$$

4. Calculo de Rigidez.

$$\mathbf{K} = \frac{3 * 209141, 10 * 54595, 29}{400^3} = 535.22 \, [kg/cm]$$

5. Desplazamiento obtenido con el programa ETABS 2015.

$$\Delta = 1,89 \, [cm]$$

6. Calculo de Rigidez de la viga.

Ketabs 2015 =
$$\frac{1000}{1,89}$$
 = 529.10 [kg/cm]

7. Desplazamiento obtenido con el programa RCBE.

$$\Delta = 1,93$$
 [cm]

8. Calculo de Rigidez de la viga.

$$\mathbf{K}_{\mathbf{RCBE}} = \frac{1000}{1,93} = 518.13 \, [\text{kg/cm}]$$

Calculo del peso de la Viga

Para esto primero obtendremos un área equivalente de la viga de la sección transformada que poseerá el mismo peso de la viga de acero.

$$\mathbf{A}_{eq} = \frac{\mathsf{P}_v}{\bar{\mathsf{o}}_c} \tag{3.46}$$

$$\mathbf{P}_{\mathbf{V}} = \delta_{s} A_{s} \tag{3.47}$$

Donde:

- Pv: Peso Viga acero por metro.
- δ_s : Peso específico del Acero.
- As: Área transversal de la Viga de Acero
- 1. Calculo del peso de la Viga de acero por metro.
- Peso específico del Acero= 7,849 [t/m³]Área transversal de la Viga de Acero= 29,5 [cm²]

$$\mathbf{P}_{\mathbf{V}} = \frac{29,5^{*}7,849}{100^{2}} = 0,0231 \text{ [T/m]}$$

2. Calculo del Área Equivalente de la sección transformada.

A_{eq} =
$$\frac{0,0231}{2.4}$$
 * 100² = 96,48 [cm²]

3. Peso de la Viga de la seccion trasformada:

$$\mathbf{P}_{\mathbf{Vtr}} = \mathbf{A}_{eq} \, \delta_c \, \mathbf{L} \tag{3.48}$$

Donde:

P_{Vtr}: Peso de la Viga transformada.

L: Longitud de la Viga

$$\mathbf{P}_{\mathbf{Vtr}} = \frac{96,48}{100^2} * 2,4 * 4 * 1000 = 92,61 \text{ [kg]}$$

4. Peso obtenido con el programa ETABS 2015:

Peso de la Viga de Acero = 92,61 [kg]

5. Peso obtenido con el programa RCBE:

Peso de la Viga de Acero =92,61 [kg]

CUADRO 3.17 COMPARACIÓN DE RESULTADOS OBTENIDOS MEDIANTE CALCULO Y PROGRAMAS (VIGAS)

	Calcula	ETABS	PCPE	Diferencia P	orcentual
	Calculo	2015	RCDE	ETAB2015/CALCULO	RCBE/CALCULO
Desplazamiento [cm]	1,87	1,89	1,93	1,07%	3,21%
Rigidez [kg/cm]	535,22	529,1	518,13	1,16%	3,30%
Peso [kg]	92,61	92,61	92,61	0,00%	0,00%

ELABORACIÓN: Diego Paillacho

3.7 MODELAMIENTO DE LOSA

En esta sección se revisará la forma de modelar las losas en el programa RCBE esto debido a que el programa no posee una opción para modelar losas Deck a detalle con las especificaciones del Anexo 1, pero posee una opción de modelar losas macizas en una dirección que reparte la carga de una forma muy similar a lo que hace el programa ETABS 2015, con esto se procede a calcular la altura de una losa equivalente maciza lo cual significa que tendrá el mismo peso por metro cuadrado que una losa de tipo Deck.

CUADRO 3.18 DESCRIPCIÓN Y NOMENCLATURA PARA LOS CÁLCULOS DE LOSA EQUIVALENTE

Descripción	Nomenclatura	Valor	Unidades
Peso Losa Deck/m ²	Wdeck	173,17	kg/m²
Peso específico del hormigón	δ _c	2400	kg/m³
Altura losa Equivalente	h _{eq}	Ec. (3.49)	cm

ELABORACIÓN: Diego Paillacho

$$h_{eq} = \frac{W_{deck}}{\delta_c}$$
(3.49)

$$h_{eq} = \frac{173,17}{2400} * 100 = 7.215 \text{ [cm]}$$

CAPÍTULO 4

CARACTERISTICAS DE LOS PROGRAMAS

4.1 CARACTERISTICAS ETABS 2015³

- ETABS Programa de Análisis Tridimensional Extendido y diseño de Edificaciones.
- Definición de manera automática o manual las características de los materiales.
- Amplia base de datos de secciones de acero, posibilidad de crear secciones de hormigón o madera, consta de un editor con el cual se puede crear cualquier forma de sección y también se puede crear secciones compuestas.
- Plantillas predefinidas de sistemas de losas planas, losas en una dirección, losas reticulares o con nervaduras y casetones, cubiertas, etc.
- Definición de Diafragmas de Pisos Rígidos, Semirrígidos y Flexibles.
- Categoría de Cargas Independientes, posibilidad de cargar elementos por losas mediante sistemas de Pisos, Áreas, Elementos, Nodos etc.
- Calculo automático de coordenadas de centros de masas (Xm, Ym).
- Calculo automático de coordenadas de centros de rigideces (Xt, Yt).
- Calculo automático de fuerzas sísmicas, sus excentricidades y aplicación en el centro de masas.
- Calculo automático de masas del edificio a partir de los casos de carga elegidos.
- Análisis Sísmico Estático y Modal Dinámico con espectros variables de Diseño.
- Calculo automático de Frecuencias, Modos de Vibración, Deformaciones.
- Animación de las Deformaciones y Modos de Vibración de la Estructura.

³ FUENTE: Computers & Structures, Inc. (http://www.csimexico.mx/software/etabs).

4.2 CARACTERISTICAS RISA-3D⁴

- Solucionador acelerado para análisis estático.
- Análisis estático considerando el efecto P-Delta.
- Análisis dinámico y con espectro de respuesta múltiple.
- Inclusión automática de compensación de masas (5% o definido por el usuario) para análisis dinámico.
- Modelamiento real de elementos físicos. (Los elementos están advertidos de la existencia de nodos interiores).
- Modelamiento automático de diafragmas rígidos.
- Cargas de área con distribución axial o biaxial.
- Resortes que operan en un sentido para suelos de cimentación, y con generación automática.
- Cálculo de desplazamientos de entrepiso absoluto o relativo.
- Cálculo automático del peso propio de elementos y elementos finitos.
- Optimización del diseño para concreto, acero laminado, soldado o plegado, mampostería, madera y aluminio.
- Detallamiento de vigas de concreto (Rectangular, T y L).
- Diagramas de interacción para columnas de concreto.
- Diseño de refuerzo completo para muros de concreto fuera o dentro del plano y muros de carga.

⁴ FUENTE: RISA. (http://www.risaespanol.com/p_3dspecs.html#).

4.3 CARACTERISTICAS RCBE⁵

- RCBE es un software de ingeniería estructural para el análisis y diseño de edificios en 3D.
- Funcionalidad para adicionar y remover pisos, insertar y remover pórticos (ejes), remover y adicionar nudos, etc. Ademas, es posible modificar las coordenadas X,Y,Z de nudos individuales permitiendo modelar niveles de cimentación variable, pisos inclinados, vigas inclinadas, etc.
- El usuario puede especificar cuales son los pórticos o elementos estructurales que resisten las fuerzas laterales. A cada uno de los elementos se les puede asignar una propiedad que indica a que sistema estructural pertenece. Un elemento dado puede pertenecer al sistema de resistencia lateral solamente, al sistema de resistencia vertical solamente, o a los dos sistemas estructurales.
- Permite realizar diseños mas económicos en conformidad con reglamentos sísmicos recientes.
- Los muros se pueden modelar usando tres tipos de elementos finitos.
 Elemento tipo cascarón (shell), elemento tipo membrana (membrane), y elemento tipo placa (plate).
- El análisis P-Delta se realiza en forma exacta incorporando directamente en la formulación de la matriz de rigidez de cada elemento la corrección de rigidez geométrica.
- Es posible tener en cuenta los efectos de los esfuerzos iniciales en las frecuencias naturales y modos de vibración del modelo estructural.

⁵ FUENTE: EngSolutions, Inc.

CAPÍTULO 5

MODELACIÓN EN LOS PROGRAMAS

5.1 ETABS 2015

Para el estudio de estructuras complejas es necesario empezar reconociendo las herramientas útiles del programa Etabs 2015, por ello a continuación se muestra la ventana principal del programa esto ayudará a familiarizarse con el programa.

FIGURA 5.1 PANTALLA PRINCIPAL ETABS 2015

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.1 DEFINIR UNIDADES

Para modelar en el programa Etabs se debe definir primero las unidades con las que se va a trabajar, para el presente trabajo se adoptaron las unidades métricas.

FIGURA 5.2 VENTANA INICIO DE MODELACIÓN

Use Saved User Default Settings		0
Use Settings from a Model File		0
Use Built-in Settings With:		
Display Units	Metric SI	• 1
Steel Section Database	AISC14	•
Steel Design Code	AISC 360-10	- 0
Concrete Design Code	ACI 318-14	- 0
	Use Saved User Default Settings Use Settings from a Model File Use Built-in Settings With: Display Units Steel Section Database Steel Design Code Concrete Design Code	Use Saved User Default Settings Use Settings from a Model File Use Built-in Settings With: Display Units Metric SI Steel Section Database AISC 14 Steel Design Code AISC 360-10 Concrete Design Code ACI 318-14

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.2 DIMENSIONAMIENTO GRILLA

En este paso se define los ejes y la distancia entre estos, en dirección X e Y, de igual manera que el número de pisos y su altura según la necesidad del modelo Estructural.

FIGURA 5.3 VENTANA INICIO DE MODELACIÓN DE GRILLA

Grid Dimensions (Plan)			S	tory Dimensions			
Uniform Grid Spacing				Simple Story Data			
Number of Grid Lines in X Direction		4		Number of Stories		4	
Number of Grid Lines in Y Direction		4		Typical Story Height		3	m
Spacing of Grids in X Direction		6	m	Bottom Story Height		3	m
Spacing of Grids in Y Direction		6	m				
Specify Grid Labeling Options	1	Grid Labels					
Custom Grid Spacing				Custom Story Data			
Specify Data for Grid Lines	[Edit Grid Data		Specify Custom Stor	y Data	Edit Story	Data
Add Structural Objects							
Blank Grid Only	Steel Deck	Staggered Truss	Flat	Slab Flat Slab w Perimeter Be	ith Waffle s ams	Slab Two Rib	o Way or bed Slab
		ОК	Can	ncel			

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.4 GRILLA

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.3 OPCIÓN DEFINIR

En la barra de herramientas exite la opción *"Define"* de la cual se despliega varias opciones con las cuales el usaurio puede definir las condicones del modelo Estrucutral como:

5.1.3.1 Materiales

La opción "*Define > Material Properties…*" despliega varias opciones de materiales predefinidos por el programa los cuales el usuario puede modificar o crear nuevos materiales.

Los materiales que se definen el presente trabajo son:

- Acero Estructural A50
- Hormigón Simple de f'c=240 kg/cm²

FIGURA 5.5 DEFINICION DE MA	TERIALES
Material Property Data	Material Property Data
0*	

Material Marie ASU			Material Name	fc=240		
Material Type Steel		•	Material Type	Concrete		•
Directional Symmetry Type	ńc	•	Directional Symmetry Type	Isotropic		•
Material Display Color	Change	T	Material Display Color		Change	5
Material Notes	Modify/Show Notes	j .	Material Notes	Modify	/Show Notes	
Material Weight and Mass			Material Weight and Mass			
Specify Weight Density C	Specify Mass Density		Specify Weight Density	O Spe	cify Mass Density	
Weight per Unit Volume	7,849	tonf/m ³	Weight per Unit Volume		2,4	tonf/m ³
Mass per Unit Volume	0,80038	tonf-s²/mª	Mass per Unit Volume		0.244732	tonf-s²/m*
Mechanical Property Data			Mechanical Property Data			
Modulus of Elasticity, E	20430000	tonf/m ²	Modulus of Elasticity, E		2091411,01	tonf/m ²
Poisson's Ratio, U	0,3		Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A	0.0000117	1/C	Coefficient of Thermal Expansion,	A	0.0000099	1/C
Shear Modulus, G	7857692,31	tonf/m²	Shear Modulus, G		871421,25	tonf/m ²
Design Property Data			Design Property Data			
Modify/Show Material Pr	operty Design Data]	Modify/Show	Material Property	Design Data	
Advanced Material Property Data			Advanced Material Property Data			
Nonlinear Material Data	Material Damping F	Properties	Nonlinear Material Data		Material Damping P	roperties
Time Dependent	Properties		Time	Dependent Prop	erties	

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.3.2 Secciones

La opción "*Define > Section Properties…*" despliega varias opciones de secciones que conforman la estructura.

Los elementos principales que conforman la estructura y que se definirán en el presente trabajo son: Vigas, Viguetas, Columnas, Losa de placa colaborante Deck, Diafragmas, Muros de Corte y Muros de subsuelo.

El programa ya contiene secciones con dimensiones estándar o el usuario puede personalizar las dimensiones, las mismas que se utilizaran para definir los elementos de la estructura ya mencionados.

Para definir las secciones de vigas y viguetas se utilizara la opción "*Define* > *Section Properties…* > *Frame Sections…*" y serán secciones tipo "l" de Acero Estructural A50, a las cuales se deberá revisar los límites de esbeltez (relación ancho – espesor) de alma y patín, especificados en el Capítulo 2 sección 2.3.1.3.

Property Name	VP120x8x350x5			
Material	A50		•	2
Display Color		Change		3
Notes	Modify/S	how Notes		ě –
ihape				
Section Shape	Steel I/Wide Flan	ige	•	
ection Property Source				
Source: User Defined				
				Property Modifiers
ection Dimensions		100000		Modify/Show Modifiers.
Total Depth		0,366	m	Currently Default
Top Flange Width		0,12	m	
		0,008	m	
Top Flange Thickness		0,005	m	
Top Flange Thickness Web Thickness		0.10	m	
Top Flange Thickness Web Thickness Bottom Flange Width		0,12		
Top Flange Thickness Web Thickness Bottom Flange Width Bottom Flange Thickness		0,008	m	
Top Range Thickness Web Thickness Bottom Range Width Bottom Range Thickness Fillet Radius		0,12 0,008 0	m	ОК

FIGURA 5.6 DEFINICIÓN DE SECCIÓN VIGAS Y VIGUETAS

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

> Para las columnas se utilizará de igual manera "*Define > Section Properties…> Frame Sections…*" y la opción de sección compuesta, columnas tubulares huecas de acero rellenas de hormigón, se utilizará Acero A50 y Hormigón de f'c= 240 kg/cm².

FIGURA 5.7 DEFINICIÓN DE SECCIÓN COLUMNAS

A50 Modify Filled Steel Tul urce	Change Show Notes		3
Filed Seel Tul urce	Change Show Notes		3
Filed Steel Tul	show Notes	-	3
Filled Steel Tu urce	2	•	
Filled Steel Tul urce fined	2	•	
urce fined			
fined			
			Property Modifiers
	0,4	m	Modify/Show Modifi
	0,3	m	Currentay Deridu
s	0,008	m	
	0,008	m	
	0	m	
Show Section Properties			
	0		m

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

Se utilizara para la Losa la opción "*Define > Section Properties...>* Deck

Sections...", en la cual se ingresara las características que ya se mencionaron en el Capítulo 3 sección 3.2.2 y Anexo1, adicional a esto se definirá la losa como un elemento tipo membrana para que la carga sea trasmitida correctamente a las vigas.

		/,
Peck Property Data	l Deck	
CI D		
Property Name	LosaDeck	
Туре	Filed	0
Slab Material	fc=240	
Deck Material	A50	
Modeling Type	Membrane	
Modifiers (Currently User Specified)	Modify/Show	í
Display Color	Change	i.
Property Notes	Modify/Show	
Property Data		
Slab Depth, tc	0,05	m
Rib Depth, hr	0,051	m
Rib Width Top, wrt	0,186	m
Rib Width Bottom, wrb	0,12	m
Rib Spacing, sr	0,331	m
Deck Shear Thickness	0,0075	m
Deck Unit Weight	0,006	tonf/r
Shear Stud Diameter	0,019	m
Shear Stud Height, hs	0,08	m
Shear Stud Tensile Strength, Fu	42000	tonf/r

FIGURA 5.8 DEFINICIÓN DE LOSA DE PLACA COLABORANTE DECK

Para definir los Muros de Corte y Muros de Subsuelo se utiliza la opción "Define > Section Properties...> Wall Sections...", se definirá el espesor de los muros, será un elemento tipo Shell-Thin y tendrá por material Hormigón de f'c= 240 kg/cm².

La NEC 2015 en el capítulo de "*Peligro Sísmico sección 6.1.6.Modelación Estructural*" establece el valor para la inercia de las secciones agrietada en muros estructurales de hormigón armado $I_g = 0,6$ la misma que se aplicara de la siguiente manera:

Edificio Loaiza: 2 primeros pisos.

Edificio Unach: Subsuelo y los 2 primeros pisos.

Edificio Plus 1: El primer subsuelo y los 3 primeros pisos.

FIGURA 5.9 DEFINICIÓN DE SECCIONES MUROS

General Data			
Property Name	Dia	fragma	
Property Type	Sp	ecified	•
Wall Material	for	=240	•
Modeling Type	Sh	ell-Thin	•
Modifiers (Currently De	efault)	Modify/Show	
Display Color		Change	
Property Notes		Modify/Show	
Property Data			
Thickness Shell Assignment - Property/Stiffin	OK Stiffness Modifiers	0.2 Cancel	m
Shell Assignment - Property/Stiffin Membrane f	OK Stiffness Modifiers ess Modifiers for Ana '11 Direction	0.2 Cancel	, m
Shell Assignment - Property/Stiffin Membrane f Membrane f	OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 22 Direction	0.2 Cancel	, n
Shell Assignment - Property/Stiffin Membrane f Membrane f	OK Stiffness Modifier ess Modifiers for Ana 11 Direction 22 Direction 12 Direction	0.2 Cancel s ysis 1 1 1 1	
Shell Assignment - Property/Stiffing Membrane f Membrane f Bending m1	OK Stiffness Modifier ess Modifiers for Ana 11 Direction 12 Direction 1 Direction	0.2 Cancel ysis 1 1 1 1 1 1 1 1 1	
Thickness Shell Assignment - Property/Stiffin Membrane f Membrane f Bending m1 Bending m2	OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 12 Direction 1 Direction 2 Direction 2 Direction	0.2 Cancel ysis 1 1 1 1 0.6	
Thickness Shell Assignment - Property/Stiffin Membrane f Membrane f Bending m1 Bending m2 Bending m1	OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 22 Direction 1 Direction 2 Direction 2 Direction 2 Direction	0.2 Cancel ysis 1 1 1 0.6 0.6 0.6 	, m
Thickness Shell Assignment - Property/Stiffn Membrane f Membrane f Bending m1 Bending m2 Bending m1 Shear v13 [OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 22 Direction 1 Direction 2 Direction 2 Direction 2 Direction Direction	0.2 Cancel ysis 1 1 1 0.6 0.6 1 1 1 1 1 1 1 1 1	
Thickness Shell Assignment - Property/Stiffin Membrane f Membrane f Bending m1 Bending m2 Bending m1 Shear v13 [Shear v23 [OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 22 Direction 1 Direction 2 Direction 2 Direction 2 Direction Direction	0.2 Cancel ysis 1 1 1 1 0.6 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Thickness Shell Assignment - Property/Stiffin Membrane f Membrane f Bending m1 Bending m2 Bending m1 Shear v13 [Shear v23 [Mass	OK Stiffness Modifiers ess Modifiers for Ana 11 Direction 22 Direction 11 Direction 2 Direction 2 Direction 2 Direction Direction Direction	0.2 Cancel ysis 1 1 1 0.6 0.6 1 1 1 1 1 1 1 1 1	

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.3.3 Cargas Estáticas (Gravitacionales y Laterales)

Para definir las cargas estáticas utilizaremos la opción "*Define > Load Patterns…*" en la cual estableceros los siguientes estados de carga:

Nombre	Descripción	Тіро	Opción
Dead	Peso propio de los Elementos	Dead	
L	Carga Viva	Live	
D	Carga Muerta Sobreimpuesta	Superimposed Dead	
Ex+	Sismo Actuante en la dirección X excentricidad positiva.	Seismic	User Coefficient
Ex-	Sismo Actuante en la dirección X excentricidad negativa.	Seismic	User Coefficient
Ey+	Sismo Actuante en la dirección Y excentricidad positiva.	Seismic	User Coefficient
Ey-	Sismo Actuante en la dirección Y excentricidad negativa.	Seismic	User Coefficient

CUADRO 5.1 CARGAS ESTÁTICAS

FUENTE: ETABS 2015

ELABORACIÓN: Diego Paillacho

FIGURA 5.10 DEFINICIÓN DE CARGAS ESTÁTICAS

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

Como se observa en la figura 5.10 la carga de nombre *"Dead"* es la única multiplicada con un factor de 1 con esto el programa considera el peso propio de los elementos.

Las cargas sísmicas se definirán según los requerimientos del código NEC2015, con lo cual calcularemos el coeficiente para el cálculo del Corte Basal, el cual se define en la opción *"Modify Lateral Load…"* que se puede ver en la figura 5.10, se dará una dirección diferente a las cargas sísmicas.

Aná	lisis Sísmi	со	
Descripción	Símbolo	Valor	Fuente
Factor de Zona Sísmica	Z =	0,40	
Clasificación de Perfil de Suelo	Tipo =	D	
	Fa=	1,20	
Coeficientes de Amplificación Dinámica	Fd=	1,19	
· · · · · · · · · · · · · · · · · · ·	Fs=	1,28	
Período Fundamental de Vibración	T =	0,48	
Altura máxima	hn =	12,20	
Tino de Arrigetromiente	Ct =	0,073	
l ipo de Arriostramiento	α =	0,75	
Exponente de la Ecuación de Sa	r =	1,00	Norma Ecuatoriana de la
Coeficiente de Región	n =	2,48	Construccion 2015, Capitulo
Aceleración Espectral	Sa=	1,19	NEC-3E-D3 (Feligio Sistilico).
Período límite de vibración en el espectro sísmico elástico	Tc=	0,70	
Factor de Importancia	=	1,00	
Coeficiente de Configuración Estructural en Planta	Ф _Р =	0,90	
Coeficiente de Configuración Estructural en Elevación	Φ _E =	1,00	
Factor de Reducción de Respuesta Estructural	R =	7,00	
Coeficiente de Corte Basal	% V =		0,189

CUADRO 5.2 COEFICIENTE DEL CORTE BASAL EDIFICIO LOAIZA

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015 ELABORACIÓN: Diego Paillacho

CUADRO 5.3 COEFICIENTE DEL CORTE BASAL EDIFICIO UNACH

	Anális	sis Sísn	nico
Descripción	Símbolo	Valor	Fuente
Factor de Zona Sísmica	Z =	0,40	
Clasificación de Perfil de Suelo	Tipo =	D	
Confinientes de Amerilificación	Fa=	1,20	
Dinámica	Fd=	1,19	
Dinamica	Fs=	1,28	Norma Ecuatoriana de la Construccion
Período Fundamental de Vibración	T =	0,95	2015, Capitulo NEC-SE-DS (Peligro Sísmico).
Altura máxima	hn =	30,57	
Tipo de Arriostramiento	Ct =	0,073	
Tipo de Amostramiento	α =	0,75	
Exponente de la Ecuación Sa	r =	1,00	
Coeficiente de Región	n =	2,48	
Aceleración Espectral	Sa=	0,88	
Período límite de vibración en el espectro sísmico elástico	Tc=	0,70	
Factor de Importancia	=	1,00	

CUADRO 5.3 CONTINUACIÓN

Coeficiente de Corte Basal	% V =		0.125
Respuesta Estructural	N -	7,00	
Factor de Reducción de	D -	7.00	
Estructural en Elevación	₩ E =	1,00	
Coeficiente de Configuración	Ф г -	1 00	
Estructural en Planta	ΨP=	1,00	
Coeficiente de Configuración	ф.,	1 00	

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015

ELABORACIÓN: Diego Paillacho

CUADRO 5.4 COEFICIENTE DEL CORTE BASAL EDIFICIO PLUS 1

Aná	lisis Sísmi	со	
Descripción	Símbolo	Valor	Fuente
Factor de Zona Sísmica	Z =	0,40	
Clasificación de Perfil de Suelo	Tipo =	D	
	Fa=	1,20	
Coeficientes de Amplificación Dinámica	Fd=	1,19	
	Fs=	1,28	
Período Fundamental de Vibración	T =	1,11	
Altura máxima	hn =	37,85	
	Ct =	0,073	
lipo de Arriostramiento	α =	0,75	
Exponente de la Ecuación de Sa	r =	1,00	Norma Ecuatoriana de la
Coeficiente de Región	n =	2,48	Construccion 2015, Capitulo
Aceleración Espectral	Sa=	0,75	NEC-SE-DS (Peligio Sistilico).
Período límite de vibración en el espectro sísmico elástico	Tc=	0,70	
Factor de Importancia	=	1,00	
Coeficiente de Configuración Estructural en Planta	Ф _{Р =}	1,00	
Coeficiente de Configuración Estructural en Elevación	Φ _E =	1,00	
Factor de Reducción de Respuesta Estructural	R =	7,00	
Coeficiente de Corte Basal	% V =		0,107

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015 ELABORACIÓN: Diego Paillacho

> Para una mejor distribución de fuerzas verticales utilizando el coeficiente de corte basal y para que se asemeje a una distribución lineal (triangular), similar al modo fundamental de vibración, se introduce un coeficiente k que depende del período fundamental de vibración Ta, la NEC 2015.

CUADRO 5.5 VALORES DE k

Valores de T (s)	k
≤ 0.5	1
0.5 < T ≤ 2.5	0.75 + 0.50 T
> 2.5	2

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015

Edificio Loaiza:	k = 1
Edificio Unach:	k = 1,22
Edificio Plus 1:	k = 1,31

FIGURA 5.11 DEFINICIÓN DE CARGAS SISMICAS

Direction and Eccentricity	Factors	0.100
	Base Shear Coefficient,	C 0,189
X Dir + Eccentricity Y Dir +	Eccentricity Building Height Exp., K	1
Ecc. Ratio (All Diaph.) 0,05	Story Range Top Story	Story5
Overwrite Eccentricities	Bottom Story	Base

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.3.4 Combinaciones de Carga

Se define en la opción "*Define > Load Combinations…*", aquí se crearan las combinaciones según las disposiciones del Código NEC 2015, también se creó combinaciones que se utilizaran únicamente para el diseño de las viguetas que son elementos de sección compuesta.

FIGURA 5.12 DEFINICIÓN DE CONBINACIONES DE CARGA

ombinations	Click to:
1,2D+1,6L 1,2D+1,4Ex	Add New Combo
1,2D+L+Ex+ 1,2D+L+Ex+ 1,2D+L+Ev-	Add Copy of Combo
1,2D+L+Ey+ 1,2D+L+Ex-	Modify/Show Combo
1.2D+L- Ex+ 1.2D+L- Ey- 1.2D+L- Ey-	Delete Combo
Construcción(viguetas) D+L	Add Default Design Combos
Envolvente Peso	Convert Combos to Nonlinear Cases

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho Para definir esto tomamos la opción "*Define > Mass Source…*", este ítem se refiere a la carga sísmica reactiva, se selecciona *"Modify/Show Mass Soruce…*".

mass sources	Click to:
MsSrc1	Add New Mass Source
	Add Copy of Mass Source
	Modify/Show Mass Source
	Delete Mass Source
	Default Mass Source
	MsSrc1 -
OK ss Source Data	Cancel
OK ss Source Data	Cancel
ss Source Data Mass Source Name MsSrc1	Cancel Cancel Mass Multipliers for Load Patterns Load Pattern Multiplier
SS Source Data Mass Source Name MSSrc1 ASS Source	Cancel Mass Multipliers for Load Patterns Load Pattern Multiplier D Add
OK ss Source Data Mass Source Name MsSrc1 ass Source Element Self Mass	Cancel Mass Multipliers for Load Patterns Load Pattern Multiplier D 1 Add D Dead 1 Modify
COK ss Source Data Mass Source Name Mass Source Element Self Mass Additional Mass	Cancel Mass Multipliers for Load Patterns Load Pattern Dead 1 Add Modify Delete
CK ss Source Data Mass Source Name MsSrc1 ass Source Element Self Mass Additional Mass Specified Load Patterns	Cancel Mass Multipliers for Load Patterns Load Pattern D Add Modify Delete
String of the second	Cancel Mass Multipliers for Load Patterns Load Pattern Dead 1 Add Modify Delete Mass Options
Additional Mass Additional Mas	Cancel
Additional Mass Source Name MsSrc1 ass Source Element Self Mass Additional Mass Specified Load Patterns Adjust Diaphragm Lateral Mass to Move Mass Centroid Move Direction (counterclockwise from +X) Move (ratio to diaphragm dimension in move direction)	Cancel Mass Multipliers for Load Patterns Load Pattern Multiplier D I Dead I Mass Options Include Lateral Mass Include Vertical Mass

FIGURA 5.13 DEFINICIÓN DE FUENTE DE MASA

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

Una vez que ya se ha definido los materiales y las secciones se procede a dibujar la estructura para lo cual el programa ETABS 2015 tiene herramientas que permite un modelado rápido y fácil.

CUADRO 5.6 HERRAMIENTAS DE DIBUJO ETABS 2015

Icono	Herramientas para dibujar elementos Tipo Frame
1	Dibuja un objeto de línea en detalle en una vista en planta, elevación o 3D.
\mathbf{N}	Dibuja un objeto de línea de forma rápida en una vista en planta, elevación o 3D al hacer clic sobre una línea de la grilla.
[]	Dibuja una columna en cualquier ubicación siempre que esté una vista en planta.
	Dibuja de forma rápida las vigas secundarias dentro de un cuadrante limitado por líneas de grilla.
Icono	Herramientas para dibujar elementos Tipo Área
	Dibuja un objeto área en detalle en una vista en planta, elevación o 3D.
	Dibuja un objeto área rectangular en una vista en planta o elevación al definir dos esquinas.
	Dibuja de forma rápida áreas dentro de un cuadrante limitado por líneas de grilla.

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.4 OPCIÓN ASIGNAR

Una vez se tiene realizado el dibujo de la estructura se procede a asignar las propiedades correspondientes a cada uno de los elementos, para lo cual en la opción *"Assign"* nos presenta opciones para asignar restricciones, secciones, cargas, diafragmas entre otras propiedades para cada elemento estructural.

5.1.4.1 Condiciones de Apoyo

Iremos la opción *"Assign > Join > Restraints"*, y seleccionaremos la opción empotrado.

FIGURA 5.14 DEFINICIÓN APOYOS

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.4.2 Secciones

Una vez que tenemos dibujada la estructura se asigna la sección correspondiente a cada elemento con la opción *"Assign > Frame"* para elementos tipo línea o *"Assign > Shell"* elemento tipo área.

Existe una consideración que se debe realizar una vez que se tiene dibujadas las viguetas, como ya se mencionó en el predimensionamiento de las viguetas se considerara a estos elementos como vigas simplemente apoyadas para lo cual se debe seleccionar las viguetas y utilizar la opción *"Assign > Frame > Release/Partial Fixiti..."* donde se cambian las condiciones de apoyo de las viguetas como se muestra en la siguiente figura:

Frame Assignment - Release	s/Part	tial Fixi	ty		
Frame Releases	Rele	ase	Frame Pa	rtial Fixity Springs	
Axial Load	Juan	Ena	Jldit		tonf/m
Shear Force 2 (Major)			-	-	tonf/m
Shear Force 3 (Minor)				_	tonf/m
Torsion					tonf-m/rad
Moment 22 (Minor)			0	0	tonf-m/rad
Moment 33 (Major)		V	0	0	tonf-m/rad
No Releases					
	0	ж	Close	Apply	
	Frame Assignment - Release Frame Releases Axial Load Shear Force 2 (Major) Shear Force 3 (Minor) Torsion Moment 22 (Minor) Moment 33 (Major) No Releases	Frame Assignment - Releases/Part	Frame Assignment - Releases/Partial Fixit Frame Releases Start End Axial Load Shear Force 2 (Major) Shear Force 3 (Minor) Torsion Moment 22 (Minor) No Releases	Frame Assignment - Releases/Partial Fixity Frame Releases Release Start End Start Axial Load Shear Force 2 (Major) Torsion Moment 22 (Minor) No Releases OK Close	Frame Assignment - Releases/Partial Fixity Frame Releases Release Frame Partial Fixity Springs Start End Axial Load Image: Start End Shear Force 2 (Major) Image: Start End Torsion Image: Start End Moment 22 (Minor) Image: Start End No Releases Image: Start End OK Close Apply

FIGURA 5.15 CONDICIONES DE APOYO DE LAS VIGUETAS

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.4.3 Cargas

La asignación de cargas vivas y muertas se realizará mediante una carga distribuida en los elementos tipo losas, ya que estos elementos son de tipo membrana y se encargan de repartir las cargas a todos los elementos en las que se encuentre apoyada.

Para realizar la asignación de carga se debe seleccionar previamente todos los elementos a los que se va a asignar las cargas, para esto se utiliza la opción *"Assign > Shell Loads > Uniform..."* en la cual se ingresa

el tipo de carga y su magnitud.

Al asignar las cargas se debe tener en cuenta lo siguiente:

ETABS 2015 considera el peso propio de los elementos dibujados por lo que al ingresar la magnitud de la carga muerta esta debe ser solo el peso de la carga sobre impuesta: Mampostería, Acabados y Otros (cuadro 3.2)

FIGURA 5.16 ASIGNACIÓN DE CARGAS

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.4.4 Diafragma Horizontal

El sistema de piso de la estructura se debe considerar como un diafragma horizontal rígido, de esta manera todas los elementos tipo área se combinaran en un solo elemento, esto es necesario para que el programa pueda asignar las cargas horizontales en el centro de gravedad del diafragma horizontal.

Para asignar un diafragma horizontal se selecciona previamente todos los elementos de un mismo piso y se utiliza la opción *"Assign > Shell > Diaphragms..."*, se da un nombre a este diafragma y se selecciona la opción rígido, se conviene colocar un diafragma distinto para cada piso.

FIGURA 5.17 ASIGNACIÓN DE DIAFRAGMA HORIZONTAL

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.18 DIBUJO COMPLETO ETABS 2015 EDIFICIO LOAIZA

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.19 DIBUJO COMPLETO ETABS 2015 EDIFICIO UNACH

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.20 DIBUJO COMPLETO ETABS 2015 EDIFICIO PLUS 1

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.5 VISUALIZACIÓN DE RESULTADOS

Una vez terminado el modelo el programa podrá efectuar el análisis para esto podemos usar la opción *"Analyze > Run Analysis"* o dar clic en el icono de la barra de herramientas, o simplemente presionar la tecla **F5.**

Para poder observar los resultados se puede utilizar los siguientes iconos:

2015	
Icono	Herramientas para visualizar resultados
Ч	Permite visualizar los desplazamientos que se producen en la estructura debido a la aplicación de diferentes casos de cargas, combinaciones cargas y modos de vibración.
4.	Permite visualizar las reacciones en las restricciones que se colocaron en la estructura, estas reacciones son resultantes de la aplicación de las diferentes cargas, combinaciones de carga y modos de vibración.
M	Permite visualizar los diagramas de Fuerzas, Momento, Cortante, Axial y Torsión que se presentan en los diferentes elementos de la estructura debido a la aplicación de diferentes casos de cargas, combinaciones cargas y modos de vibración
š	Permite visualizar la distribución de esfuerzos que se presentan en los elementos losas y muros de la estructura debido a la aplicación de diferentes casos de cargas, combinaciones cargas y modos de vibración

CUADRO 5.7 HERRAMIENTAS PARA VISUALIZAR RESULTADOS ETABS 2015

FUENTE: ETABS 2015

ELABORACIÓN: Diego Paillacho

FIGURA 5.21 VISUALIZAR DESPLAZAMIENTO ETABS 2015

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.22 VISUALIZAR REACCIONES ETABS 2015

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.23 VISUALIZAR DIAGRAMAS ETABS 2015

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.1.6 DISEÑO DE ELEMENTOS

En el siguiente cuadro se observa las opciones de diseño que posee el programa:

CUADRO 5.8 HERRAMIENTAS DE DISEÑO

FUENTE: ETABS 2015 ELABORACIÓN: Diego Paillacho

5.2 RISA 3D

Se empezará reconociendo las herramientas útiles del programa Risa 3D, por ello a continuación se muestra la ventana principal del programa esto ayudará a familiarizarnos con el programa.

FIGURA 5.24 PANTALLA PRINCIPAL RISA 3D

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.1 DEFINIR UNIDADES

Primero definimos las unidades utilizando el icono y nos aparecer una ventana en la cual nosotros podemos definir las unidades de:

- Los Elementos "Propiedades Geométricas y Mecánicas".
- Las Fuerzas
- Los Esfuerzos y
- Las Deformaciones

Las unidades que se tomaron son las que se muestra en la siguiente figura:

FIGURA 5.25 VENTANA DE SELECCIÓN DE UNIDADES

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.2 DEFINIR GRILLA

En este paso se define los ejes y la distancia entre estos, pero para esto cabe mencionar que el programa RISA 3D tiene una notación diferente de las direcciones de los ejes globales en elevación tenemos el eje "Y" y en planta los ejes "X" y "Z", el usuario puede trabajar únicamente con una grilla definida ya sea en elevación con los ejes "XY", "ZY" o en planta ejes "XZ". Esto se define utilizando el icono interesto de la barra de herramientas o utilizando cuadro de Ingreso de Datos del Modelo el cual nos muestra una ventana como la que se muestra en la siguiente figura:

Drawing Grids						
Drawing Grid Snap To Options Import DXF						
Drawing Grid Origin (m) Grid Plane X 0 Y 0 Z 0 Click on a location to relocate Origin C XY • XZ C YZ						
Rectangular Grid Increments XAxis (m) ZAxis (m)						
Skew Angle 0 deg						
C Radial Grid Parameters						
Start Angle 0 deg						
Angle Increments 8@22.5 deg						
Radial Increments 10,10@.61 m						
Save and Recall Grid Settings						
Drawing Grid 1						
Save Current Grid						
Show Grid As Lines Points Dk Cancel Help						

FIGURA 5.26 VENTANA DE DIBUJO DE GRILLA

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.3 CUADRO DE INGRESO DE DATOS DEL MODELO

En la cual se muestra varias opciones con las cuales el usaurio puede definir las condicones del modelo Estrucutral como:

FIGURA 5.27 CUADRO DE INGRESO DE DATOS DEL MODELO

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.3.1 Materiales

La opción *"Materials"* despliega varias opciones de materiales predefinidos por el programa los cuales el usuario puede modificar o crear nuevos materiales.

Los materiales que se definen el presente trabajo son:

- Acero Estructural A50
- Hormigón Simple de f'c=240 kg/cm²

FIGURA 5.28 DEFINICIÓN DE MATERIALES

, \land Hot Ro	🗼 Hot Rolled Steel Properties 📃 💷 💌									
Hot Rolled Cold Formed Wood Concrete Masonry Aluminum General										
	Label	E [ksi]	G [ksi]	Nu Therm	n Density	[mt/m^3]	Yield[kg/mm^2]	Ry I	Fu[kg/mm^2]	Rt
7	A50	29185.7	11273	.3 1.17	7.8	49	35.2	1.5	49.3	1.2
🔶 Concrete Properties										
Hot Rolled Cold Formed Wood Concrete Masonry Aluminum General										
	Label	E [ksi]	G [ksi]	Nu	Therm	Densit.	fc[kg/mm^2]	Lambd	a Flex St	Shear
1	f'c=240	2988	1245	.2	1.08	2.4	2.4	1	42.184	42.184
🔞 General Material Properties 📃 🗖 💽										
Hot Rolled Cold Formed Wood Concrete Masonry Aluminum General										
	Label	E [ksi]	G [ksi]	Nu	Therm	Densit.				
1	Diafragmas	2988	1245	.2	1.08	2.4				

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.3.2 Secciones

La opción "Section Sets" despliega varias opciones de secciones que conforman la estructura.

Los elementos principales que conforman la estructura y que se definirán en el presente trabajo son: Vigas, Viguetas, Columnas, Losa de placa colaborante Deck, Diafragmas, Muros de Corte y Muros de subsuelo.

El programa ya contiene secciones con dimensiones estándar o el usuario puede personalizar las dimensiones, las mismas que se utilizaran para definir los elementos de la estructura ya mencionados.

FUGURA 5.29 DEFINICIÓN DE SECCIÓN VIGAS Y VIGUETAS

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Para ingresar las columnas debido a que el programa RISA 3D no tiene una opción de secciones compuestas se utilizara las propiedades de las secciones equivalentes que se calcularon como se indicó con anterioridad en la **sección 3.5** con las que se creara secciones de forma arbitrarias en las que se ingresara las propiedades calculadas y tendrán propiedades mecánicas del hormigón de f'c= 240 [kg/cm²].

FIGURA 5.30 DEFINICIÓN DE SECCIÓN COLUMNAS

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Una vez definido los materiales y las secciones procedemos a dibujar la estructura para lo cual el programa Risa 3D tiene las siguientes herramientas.

CUADRO 5.9 HERRAMIENTAS DE DIBUJO RISA 3D

Icono	Herramientas de dibujo
7	Dibuja un objeto de línea (Vigas, Viguetas, Columnas) en detalle en una vista en planta, elevación o 3D.
F	Dibuja un objeto área (Muros) en detalle en elevación o 3D.
4	Dibuja las restricciones que posee la estructura.
P	Asigna la carga de área de la losa.
₿ ◆ ₽	Mueve miembros seleccionados a coordenadas especificadas por el usuario.
R◆R	Copia miembros seleccionados a coordenadas especificadas por el usuario.
	Selecciona y habilita todos los miembros del modelo.
H	Selecciona y habilita todos los miembros del modelo que se encuentre dentro del cuadro dibujado por esta opción.
	Selecciona y habilita todos los miembros del modelo que se encuentre dentro de una figura regular o irregular dibuiado por esta opción
**	Selecciona y habilita todos los miembros del modelo que se encuentre señalados con una línea trazada con esta opción.
CUADRO 5.9 CONTUNUACIÓN-

	Quita la selección y deshabilita todos los miembros del modelo.
E E	Quita la selección y deshabilita todos los miembros del modelo que se encuentre
	dentro del cuadro dibujado por esta opción.
	Quita la selección y deshabilita a todos los miembros del modelo que se
	encuentre dentro de una figura regular o irregular dibujado por esta opción.
1	Quita la selección y deshabilita a todos los miembros del modelo que se
	encuentre señalados con una línea trazada con esta opción.
1	Invierte la selección.
2	Bloque el modelo permitiendo trabajar en los miembros que se encuentren
	seleccionados y habilitados.

FUENTE: RISA 3D

ELABORACIÓN: Diego Paillacho

Para dibujar los elementos vigas, viguetas y columnas se utiliza el icono

de la barra de herramientas.

FIGURA 5.31 DIBUJAR ELEMENTOS

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Para definir los Muros de Corte y Muros de Subsuelo se utiliza el icono

de la barra de herramientas, se definirá el espesor de los muros, tendrá por material Diafragma "Hormigón de f'c= 240 kg/cm²".

FIGURA 5.32 DEFINICIÓN DE SECCIONES MUROS

Draw Wall Panels	×							
Draw Wall Panels Modify Wall Panels								
Material © Masonry © Wood	Wall Panel Label Prefix WP Joint Label Prefix N							
C Concrete	Thickness 25 cm Design Rule Typical 💌							
Material Set Diafragmas 💌 Create Wall Panets by Cicking On Gird Areas? C Keep this dialog open Apply Dioce Help								

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho El programa RISA 3D no tiene una opción para crear una losa de tipo Deck y debido a que en el presente trabajo las estructuras analizadas tiene losa tipo Deck se procede a realizar lo siguiente:

Se utilizará el icono de la barra de herramienta que aplica una carga de área tipo membrana la cual reparte la carga de la misma manera que se espera de una losa tipo Deck.

También se puede indicar la dirección de la losa que posea la estructura es decir una dirección o dos direcciones, para esto primero se debe definir los estados de carga estáticos.

5.2.3.3 Cargas Estáticas (Gravitacionales y Laterales)

Para definir las cargas estáticas utilizaremos la opción "*Basic Load Cases*" en la cual estableceros los siguientes estados de carga:

CUADRO 5.10 CARGAS ESTÁTICAS

Nombre	Descripción	Tipo
Dead	Peso propio de los Elementos	DL
D	Carga Muerta Sobreimpuesta	DL
L	Carga Viva	LL
Earthquake Load Z Plus X Eccentr	Sismo en la dirección Z excentricidad positiva	ELZ+X
Earthquake Load Z Minus X Eccent	Sismo en la dirección Z excentricidad negativa	ELZ-X
Earthquake Load X Plus Z Eccentr	Sismo en la dirección X excentricidad positiva	ELX+Z
Earthquake Load X Minus Z Eccent	Sismo en la dirección X excentricidad negativa	ELX-Z

FUENTE: RISA 3D

ELABORACIÓN: Diego Paillacho

FIGURA 5.33 DEFINICIÓN DE CARGAS ESTÁTICAS

ſ	, 🍬 Basic	Load Cases										
L		BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distrib	Area(M	Surfac	
L	1	Dead	DL		-1					1		-
L	2	D	DL							121		_
L	3	L	LL							121		
L	4	Earthquake Load Z Plus X Eccentr	ELZ+X				5					
L	5	Earthquake Load Z Minus X Eccent	ELZ-X				5					
L	6	Earthquake Load X Plus Z Eccentr	ELX+Z				5					
1	7	Earthquake Load X Minus Z Eccent	ELX-Z				5					-
1		1	1								,,	_

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Como se observa en la figura 5.33 la carga de nombre *"Dead"* es la única multiplicada con un factor de -1 con esto el programa considera el peso propio de los elementos.

Una vez definido esto se procede a colocar la losa, la forma de indicar la dirección de la losa es en la opción *"Distribution"*, se puede colocar dos direcciones *"Two Way"* o una dirección *"A-B, B-C, C-D, A-D, A-C"*, para el presente trabajo se considerara una losa en una dirección que es la que puede representar mejor a una losa tipo Deck, la dirección será paralela

a la opción que se escoja, la figura rightarrow c indica la forma en la que se debe asignar la carga ya que esta se va asignando por paneles dando click en cada esquina del panel, dependiendo en la esquina del panel que se empiece dando click este se convertirá en el punto A y el que sigue B y así hasta completar el punto D.

Como se quiere representar las acciones producidas al utilizar una losa tipo Deck se debe ingresa el valor de la carga muerta sobreimpuesta en la casilla *"Magnitud"* este valor debe incluir el peso de la lámina de la losa Deck mas el peso del hormigón que se obtuvo del Anexo 1.

FIGURA 5.34 DEFINICIÓN DE CARGAS ESTÁTICAS

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Para asignar las cargas sísmicas estáticas se debe realizar lo siguiente:

Primero en el programa Risa 3D se debe definir los Diafragmas Horizontales, para esto utilizaremos la opción *"Diaphragms"* del cuadro de ingreso de datos del modelo, aquí lo único que se debe realizar es colocar el nombre de un *"Joint"* (articulación) que pertenezca al piso que se desea que sea considerar un diafragma horizontal, con esto el programa reconocerá a todos los puntos del piso perteneciente a este diafragma.

FIGURA 5.35 DEFINICIÓN DE LOS DIAFRAGMAS

🔶 Rigid Diaphragms							
	Joint Label	Plane	Туре	Inactive			
1	N185	ZX	Membrane				
2	N186	ZX	Membrane				
3	N187	ZX	Membrane				
4	N188	ZX	Membrane				
5	N194	ZX	Membrane				

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Luego se realizará las combinaciones de carga con la opción *"Load Combinations"* del cuadro de ingreso de datos del modelo y se crearan las combinaciones.

FIGURA 5.36 DEFINICIÓN DE COMBINACIONES DE CARGA

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Posterior a esto se utilizara una herramienta muy útil del Programa risa 3D que es encuentra en *"Barra de Menus > Insert > Seismic Load..."*, la cual nos ayudara al cálculo de las fuerzas laterales, el programa calcula el peso de la estructura utilizando una combinación de carga para lo cual se creó una combinación de carga "CM" la cual contiene la carga sísmica reactiva.

El programa Risa 3D puede calcular las fuerzas sísmicas utilizando los códigos predefinidos en el programa pero no contiene el código ecuatoriano NEC15, por lo tanto se procede a hacer lo siguiente:

Se selecciona la combinación de carga en la opción *"Seismic Weight LC"*, damos click en *"Calc Loads"* y el programa calcula: pesos por diafragmas

definidos, fuerzas laterales, centro de gravedad y excentricidades, luego presionamos *"OK".*

El programa creara las cargas sísmicas pero estas no serán las verdaderas ya que estas están calculadas con los parámetros de los códigos predefinidos en el programa Risa 3D.

Una vez que el programa calcula las fuerzas sísmicas no permite la edición de estas fuerzas por lo que se debe realizar una copia de estas fuerzas en un cuadro diferente para que de esta forma se puedan editar y se pueda colocar las fuerzas sísmicas calculadas con el código NEC15, para esto damos click derecho en la carga que creó el programa y utilizamos la opción *"Copy Basic Load Case"* con esto el programa copia todos los parámetros de estas cargas (coordenadas de centro de masa y coordenadas de excentricidades) y ya no se debe realizar esto manualmente.

FIGURA 5.37 DEFINICIÓN DE CARGA SISMICA

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Una vez que se tiene definidas las cargas sísmicas estas ya se pueden editar y colocaremos las cargas sísmicas calculadas según los requerimientos del código NEC 2015, utilizando los datos obtenidos en los cuadros 5.11, cuadros 5.12 y cuadros 5.13 de cada uno de los edificios.

Para el cálculo de las fuerzas sísmicas utilizaremos los pesos obtenidos del Programa Risa 3D.

CUADRO 5.11 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO LOAIZA CON AYUDA DEL PROGRAMA MICROSOFT EXCEL

Planta	Peso
5	63,957
4	312,917
3	319,351
2	320,813
1	525,427
W ITon1 =	15/2 /65

291,452

Pesos obtenidos del Programa Risa 3D

Planta	Pi [Ton]	hi [m]	Hi [m]	Pi*Hi^k	Pi*hi/∑Pi*hi	Fi	V
5	63,957	3,05	15,7	1004,1249	0,084	24,452	24,452
4	312,917	3,05	12,65	3958,40005	0,331	96,393	120,844
3	319,351	3,05	9,6	3065,7696	0,256	74,656	195,500
2	320,813	3,05	6,55	2101,32515	0,176	51,170	246,670
1	525,427	3,5	3,5	1838,9945	0,154	44,782	291,452
Σ	1542,465			11968,6142			

V [Ton] =

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015 ELABORACIÓN: Diego Paillacho

CUADRO 5.12 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO UNACH CON AYUDA DEL PROGRAMA MICROSOFT EXCEL

Planta	Peso
8	28.625
7	456.460
6	513.576
5	513.113
4	513.365
3	513.561
2	513.556
1	514.067

Pesos obtenidos del Programa Risa 3D

W [Ton] =	3,566.323
V [Ton] =	446.128

Planta	Pi [Ton]	hi [m]	Hi [m]	Pi*Hi^k	Pi*hi/∑Pi*hi	Fi	V
8	28.625	3.74	29.92	1836.98657	0.018	8.111	8.111
7	456.460	3.74	26.18	24874.2666	0.246	109.831	117.942
6	513.576	3.74	22.44	23172.5523	0.229	102.317	220.259
5	513.113	3.74	18.7	18519.2029	0.183	81.770	302.029
4	513.365	3.74	14.96	14098.2831	0.140	62.250	364.280
3	513.561	3.74	11.22	9916.09484	0.098	43.784	408.064
2	513.556	3.74	7.48	6035.41678	0.060	26.649	434.713
1	514.067	3.74	3.74	2585.34598	0.026	11.415	446.128
Σ	3566.323			101038.149			

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015 ELABORACIÓN: Diego Paillacho

CUADRO 5.13 CÁLCULO DE FUERZAS SÍSMICAS EDIFICIO PLUS1 CON AYUDA DEL PROGRAMA MICROSOFT EXCEL

Peso
71.88
68.537
225.673
225.673
225.673
225.673
225.673
225.673
225.673
225.673
225.67
219.64

Pesos obtenidos del Programa Risa 3D

W [Ton] =	2,391.111
V [Ton] =	254.836

Planta	Pi [Ton]	hi [m]	Hi [m]	Pi*Hi^k	Pi*hi/∑Pi*hi	Fi	V
12	71.880	3.75	37.85	8300.68693	0.074	18.817	18.817
11	68.537	3.1	34.1	6905.73121	0.061	15.655	34.472
10	225.673	3.1	31	20075.4195	0.179	45.510	79.982
9	225.673	3.1	27.9	17492.8409	0.156	39.655	119.637
8	225.673	3.1	24.8	14997.0157	0.133	33.997	153.634
7	225.673	3.1	21.7	12595.3527	0.112	28.553	182.187
6	225.673	3.1	18.6	10297.0302	0.092	23.343	205.530
5	225.673	3.1	15.5	8113.78342	0.072	18.393	223.923
4	225.673	3.1	12.4	6061.26999	0.054	13.741	237.664
3	225.673	3.1	9.3	4161.7	0.037	9.434	247.098
2	225.670	3.1	6.2	2449.72108	0.022	5.553	252.651
1	219.640	3.1	3.1	963.636027	0.009	2.185	254.836
Σ	2391.111			112414.188			

FUENTE: Norma Ecuatoriana de la Construcción NEC 2015 ELABORACIÓN: Diego Paillacho

FIGURA 5.38 INGRESO DE FUERZAS SISMICAS

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Poin	t Distrib	Ingr		as fuorza
1	Dead	DL		-1							
2	D	DL	(SISI	licas calc	
3	L	LL	, 🏟 , Joint	Loads and I	Enforced D	isplacem	ents	(me	IOS	requerim	ientos de
4	Earthquake Load Z Plus X Eccentr	ELZ+X		BLC 4'Ear	thouake L	oad 7 Plu	is) ▼ 1	Vext BLC Pre	codi	go NEC20	015.
5	Earthquake Load Z Minus X Eccent	ELZ-X		1							
6	Earthquake Load X Plus Z Eccentr	ELX+Z		Joint La	abel	L,D,M	Directi	Magnitude(m	t,mt-m)		
7	Earthquake Load X Minus Z Eccent	ELX-Z	1	N58	0	L	Z	25.39 /			
8		None	2	N58	1	L	Z	99.59	4		
9	5	None	3	N58	2	L	Z	78.03	4		
10		None	4	N58	3	L	Z	53.48	8		
11		None	5	N584	IA	L	Z	47.44			
12		None									
13		None									
14		None					1	1 1			
40		None	1 8			-	-			· ·	

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.4 CONDICIONES DE APOYO

Utilizaremos el icono de la barra de herramientas que permite dar las condiciones de apoyo a la estructura.

FIGURA 5.39 DEFINICIÓN APOYOS

Modify Boundary	Conditions for	the Selected Jo	ints	×
Joints Subgra	de Springs			
X Translation	Reaction	•	mt/cm	₩ Use?
Y Translation	Reaction	•	mt/cm	▼ Use?
Z Translation	Reaction	•	mt/cm	I Use ?
× Rotation	Reaction	•	k-ft/rad	I ✓ Use?
Y Rotation	Reaction	•	k-ft/rad	I ✓ Use?
Z Rotation	Reaction	•	k-ft/rad	⊡ Use ?
K Free What	Fixed happens when Keep this dialog Apply Entries to / Apply Entries by	Pinned Apply is pressed? open All Selected Joints Clicking/Boxing Jo	Roller Dints	
Apply	Clear Use	Close	He	elp

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

FIGURA 5.40 DIBUJO COMPLETO RISA 3D EDIFICIO LOAIZA

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

FIGURA 5.41 DIBUJO COMPLETO RISA 3D EDIFICIO UNACH

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

FIGURA 5.42 DIBUJO COMPLETO RIS 3D EDIFICIO PLUS 1

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.5 VISUALIZACIÓN DE RESULTADOS

Una vez terminado el modelo el programa podrá efectuar el análisis, para esto podemos usar la opción *"Solve"* de la barra de menús o dar clic en el icono de la barra de herramientas, inmediatamente se aparece una ventana en la cual existe varias opciones como se muestra en la siguiente figura:

FIGURA 5.43 VENTA DE SELECION DE SOLUCIÓN

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Al momento que el programa termina de analizar la estructura nos aparecerá una ventana con opciones para observar los resultados.

FIGURA 5.44 VENTA DE OPCIONES DE RESULTADOS

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Para poder visualizar a detalle los diagramas de fuerzas y el diseño de cada elemento se utiliza el siguiente icono Detail este icono aparece una vez ejecutado el análisis y para poder observar los resultados gráficos en todo el modelo se utiliza el icono el cual nos permite tener un control en la visualización de todo el modelo como se indica en la siguiente figura:

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

FIGURA 5.46 VISUALIZACIÓN DE RESULTADOS GRÁFICOS (DEFLEXIONES)

Set Options for Current View	
Set Options for Current View Visualización de las deformaciones de los elementos debido a las cargas o la combinación de cargas. Magnification Factor: 40 Include Undeflected Shape Animate This Deflected Shape Animate This Deflected Shape Number of Animation Frames: 7 Combination To Use For Results Display: 4: 1.20+1.6L	Visualizar los elementos sin su deformación Selección de la carga o caso de combinación de carga del cual se desea conocer los resultados.

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

Para poder observar los resultados de Periodo de Vibración el Programa RISA 3D se necesita especificar la carga sísmica reactiva, para lo cual se creó una combinación que contenga esta carga. Para poder observar los resultados de periodos de vibración se debe indicar al programa que realice la solución dinámica mostrada en la figura 5.43.

En la siguiente figura se muestra como se debe solicitar al programa RISA 3D el cálculo de los periodos de vibración. Dynamics Eigensolution - Número de Modos Resultados Periodos de Vibración Number of Modes: 10 🛨 que se desea calcular Load Combination for Mass: 2: Carga Reactiva -- Selección de la Participación de masas en las direcciones X, Y, Z Carga Sísmica 💿 Freq ncies and Participation Reactiva SZ Particip... Mode Freque... Period ... SX Partic. . SY Parti.. Response Spectra Analysis Combination Method: CQC
Damping Ratio(% 5
Calc Residual Mass?
Cutoff Freq (Hz): 33 1 1.262 .792 .011 - Factor de 1.263 .792 2 .019 Amortiquamiento 1.263 .792 1.264 .791 .071 4 X Direction Analysis? 2.622 5 .381 .361 49.479 Spectra to be Used: UBC 97, Parametric Design Spectra 2.768 .098 6 46 .353 2.836 7 Y Direction Analysis? El Programa RISA 3D despliega un listado de Spectra to be Used: UBC 97, Parametric Design Spectra 💌 periodos, y el periodo de vibración fundamental de la estructura es aquel que tenga mayor Z Direction Analysis? participación de masa en dirección X o Z. Spectra to be Used: UBC 97, Parametric Design Spectra Start Solution Cancel Help

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

5.2.6 DISEÑO DE ELEMENTOS

En el siguiente cuadro se observa las opciones de diseño que posee el programa:

CUADRO 5.14 PARÁMETROS DE DISEÑO

El icono en la barra de herramientas permite seleccionar los códigos de la base de datos del programa para el diseño de los elementos con diferentes materiales, se diseñaran únicamente los elementos que tengan definidos los códigos.	Se puede tener control en el diseño de las secciones de acero para esto se debe dar doble clic en el elemento que quiere diseñar y se pueden modificar los parámetros que se observan en la imagen, con esto únicamente se debe ejecutar el
Description Solution Codes Concrete Seismic Footings	análisis y el programa diseña automáticamente los
Adjust Stiffness	elementos
HR Steel : AISC 14th (360-10): LRFD Yes (Iterative) -	Information for Member M407
Connections : None	General End Releases Properties Design Detailing
CF Steel : None Temperature	Unbraced Lengths Flexural Parameters
Wood: None <100F -	Lb zz m
Concrete : None	Lcomp top m
Masonry: None	L Comp bot m
Aluminum : None	
	Effective Length Factors
	K JY
	Direct Analysis Seismic Design Rule
Save as Defaults	
Aceptar Cancelar Aplicar Ayuda	Aceptar Cancelar Apicar Ayuda

FUENTE: RISA 3D ELABORACIÓN: Diego Paillacho

FIGURA 5.47 CÁLCULO DE LOS PERIODOS DE VIBRACIÓN RISA 3D

5.3 RCBE

Se empezará reconociendo las herramientas útiles del programa RCBE, por ello a continuación se muestra la ventana principal del programa esto ayudará a familiarizarnos con el programa.

FIGURA 5.48 PANTALLA PRINCIPAL RCBE

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

5.3.1 VENTANA DE INICIO

Al iniciar el programa nos aparece una ventana en la cual se nos pide ingresar los datos de:

- Nombre de la Empresa
- Nombre de Usuario
- El País en el que se Encuentra.

Estos datos son necesarios para que el programa se ejecute de lo contrario el programa no se ejecutara, esto se debe a que el programa necesita estos datos para genera reportes con un encabezado en el que incluye dichos datos.

FIGURA 5.49 VENTANA DE INICIO

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

5.3.2 DEFINIR GRILLA

Una vez ingresado los datos en la ventana de inicio se aparece la ventana que se indica en la figura5., nos muestra opciones de crear una estructura nueva o abrir una existente, elegimos la opción *"3D Frame / Wall", luego* se define el número de pisos de la estructura y la altura entre pisos, la forma regular o irregular en planta de la estructura y el número de ejes y la distancia entre estos en este paso se debe ser cuidadoso ya que si se ingresa de manera errónea los datos y se genera la grilla no se podrá efectuar cambios en esta y se debe realizar todo el proceso nuevamente.

FIGURA 5.50 VENTANA PARA CREAR NUEVA ESTRUCUTURA

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

FIGURA 5.51 DEFINICIÓN DE LA GRILLA

Building Wizard		Building Wizard		
Elevation Story Information Number of stories : 5 Story heights, (m) : 1 2 Input height between g	n 3 4 5 b round floor and second floor	Select type of architecture	e gid: C Radal	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Help Cancel	Back <u>N</u> ext	Help	Cancel <back< th=""><th>Create</th></back<>	Create

Building Wizard		Building Wizard	
Plan View	Longitudinal Frame Information Number of longitudinal frames 11 Spacing between frames, (m): A - B B - C C - D D - E E - F Image: Ima	Plan View	Transversal Frame Information Number of transversal frames. 8 9 1 - 2 -3 1 - 2 -3 3 - 4 -5 5 pacing between trames, (m) : 1 - 2 -3 9 - • • • • • • • • • • • • • •
Help	Cancel <back next=""> Create</back>	Help	Cancel <back next=""> Create</back>

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

Una vez que se define los valores de la grilla el programa dibuja de manera automática los elementos de la primera planta de la estructura la cual nosotros podemos cambiar según el requerimiento de la estructura.

5.3.3 DEFINIR UNIDADES

Podemos definir las unidades utilizando la opción "*View* > *Options…*" de la barra de menú, seleccionamos esto y nos aparecerá una ventana en la cual se puede observar:

- La Unidad de Sistema que utilizara el programa.
- Los parámetros de análisis y diseño del programa.

Las unidades que se tomaron son las establecidas por defecto en el programa (Sistema Métrico), en el caso de los parámetros de análisis se utilizara las propiedades mecánicas que se establecieron con anterioridad para el hormigón de f'c=240 [kg/cm²], para los parámetros de diseño cabe mencionar que los parámetros de diseño son únicamente para realizar diseño en hormigón armado ya que el programa no posee parámetros de diseño en Acero.

FIGURA 5.52 VENTANA DE SELECCIÓN DE UNIDADES

ettingi Analysis Design Detailing				
System of Units		Metric		-
Country		Ecuador	-	
Zoom Factor		1		
Show (+) shear on compression	/tension fiber. =	Tension	-	
Show (+) moment on compression	n/tension fiber =	Compression	•	
Floors				
COLORS				
Azes				
L-Frames				
T-Frames				
Nodes				
Members				
	Huberson of Children	1.0		
Defends and the second	04	Cinc		Course .

5.3.4 DEFINICIÓN SECCIONES

Para definir las sesiones de los elementos de la estructura se utilizara las propiedades de las secciones equivalentes que se calcularon como se indicó con anterioridad en la **sección 3.5** y se ingresara las propiedades calculadas y tendrán propiedades mecánicas del "Hormigón de f'c= 240 kg/cm²" esto debido a que el programa RCBE no tiene una opción de secciones compuestas ni posee secciones de acero.

Para dibujar la estructura el programa RCBE tiene las siguientes herramientas:

CUADRO 5.15 HERRAMIENTAS DE DIBUJO RCBE

Icono	Herramientas de dibujo
M	Permite Editar las propiedades de los pisos de la estructura o Insertar nuevos pisos en la
Ì	estructura.
***	Permite Editar los ejes de la estructura.
###	Permite Editar las intersecciones de los ejes de la estructura.
Ⅲ	Permite Editar o Insertar los nudos de estructura en la intersección de los ejes.
Ĩ	Permite editar o dibujar las Columnas con una vista en planta, elevación o 3D.
	Permite editar o dibujar las Vigas con una vista en planta, elevación o 3D.
	Permite editar o dibujar Muros con una vista en planta, elevación o 3D.
	Permite editar o dibujar Losas con una vista en planta o 3D.
4	Permite editar o dibujar las restricciones que posee la estructura.

FUENTE: RCBE

ELABORACIÓN: Diego Paillacho

Al momento de dibujar los elementos vigas, viguetas y columnas se cambiaran las propiedades que se muestran a continuación en la figura 5.53.

Co	lumnas	 Vigas				
Edit columns 🛛 🗶	Column properties 🛛 🗴	Edit beams 🛛 🗙	Beam prop	erties 🛛 🗴		
- Command -	B-6 4	Command	B(vt-vu")	5		
• Existing columns	Alignm, D3 Centered	 Existing beams 	Top, D3	+20 cm 🔺		
C Add a column	Cover, d'5 cm	C Add a beam	Cover, d'	5 cm		
- Selection	Modulus, E 209141 Kg/c	- Selection	Modulus, E	209141 Kg/c		
Single column	Connection Rigid i & j	 Single beam 	Connection	Rigid i & j		
C Columns up	Length, L 3.05 m	C Beams up	Length, L	0.9 m		
C Columns down	Area, A 1448 cm2	🔿 Beams down	Area, A	120 cm2		
C Story columns	Inertia, 12 236433 cm4	C Floor beams	Inertia, 12	77556 cm4		
C Story L-Frame cols	Inertia, I3 387911 cm4	C Floor bay beams	Inertia, 13	2254 cm4		
C Story T-Frame cols	Torsion, J 189900 cm4	C Floor frame beams	Torsion, J	343 cm4		
C L-Frame columns	Step 0 🔹	C Frame beams	Step	0 -		
C T-Frame columns	Assign Remove		Assign	Remove		

FIGURA 5.53 DIBUJAR ELEMENTOS COLUMNAS Y VIGAS

Para dibujar los Muros de Corte y Muros de Subsuelo se define el tipo de elemento "Tipo Shell" y el espesor de los muros, estos tendrá las propiedades mecánicas del "Hormigón de f'c= 240 kg/cm²".

FIGURA 5.54 DEFINICIÓN DE SECCIONES MUROS

FUENTE: RCBE

ELABORACIÓN: Diego Paillacho

Como ya se mencionó en la **sección 3.7** para definir las Losas en el programa RCBE se utilizará una losa equivalente maciza con las propiedades del "Hormigón f'c=240kg/cm²". Al momento de ingresar las propiedades de la losa maciza (altura de la losa) el programa RCBE también nos pide ingresar el valor de las cargas que la losa trasmitirá a los elementos de la estructura, estas cargas son: carga viva y carga muerta sobreimpuesta.

FIGURA 5.55 DEFINICIÓN DE LOSA

	abs mmand Existing slabs Add a slab panel (ection	Slab pr	operties De Slab typ O	Pe 1 Add	
Add new slab type		Add new sl	ab type		ε
Which floor system	will the new slab be?	Properti	es for automatic	c load compu	Itation
C 1: One-way jois	it slab	Reinf	orc. direction	: Longitudinal	•
	Ь	Slab	hickness 7	7.215 cm	
C 3: Two-way jois	st slab	Unit v	veight 2	2400 Kg/m3	
C 4: Two-way sla	ь	Supe	rimposed DL 🛛 🗍	350 Kg/m2	
C 5: One-way de	ck on secondary beams	Live	oad, LL 2	200 Kg/m2	
<u>0</u> K	Cancel		<u>0</u> K	Cancel]
	Slab Properties an	id Load Data	5	x	
		Name	Slab type 1 🔺		
	Slab type 1 Slab type 2	Slab system	2: One-way s	1	
		Reinf. direction	1: Longitudin		
		Ef.thickness, tv	7.215 cm		
		Er.thickness, t1	7.215 cm		
		Ethickness t/			
		Er.thickness, t2 Unit weight	2400 Kg/m3		
		Er.thickness, t2 Unit weight Superimposed DL	2400 Kg/m3 350 Kg/m2		

5.3.5 CARGAS ESTÁTICAS (GRAVITACIONALES Y LATERALES)

Para definir las cargas estáticas el programa RCBE posee la opción "*Load* > *Automatic*" en la cual el programa automáticamente puede establecer las siguientes estados de carga:

Nombre	Descripción	Тіро
SELFW	Peso propio de los Elementos	D0
DEAD	Carga Muerta Sobreimpuesta	DL
LIVE	Carga Viva	LL
EQUAKE X1	Sismo en la dirección X excentricidad positiva	EQX1
EQUAKE X2	Sismo en la dirección X excentricidad negativa	EQX2
EQUAKE Y1	Sismo en la dirección Y excentricidad positiva	EQY1
EQUAKE Y2	Sismo en la dirección Y excentricidad negativa	EQY2

CUADRO 5.16 CARGAS ESTÁTICAS

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

> Como ya se mencionó previamente el programa RCBE trabaja únicamente con elementos de hormigón y debido a esto para asignar la carga por peso propio de los elementos el programa nos preguntara el valor de la densidad del hormigón de los elementos columnas, vigas y muros.

> Para la asignar la carga muerta sobreimpuesta y carga viva el programa utiliza los valores de las cargas que se ingresaron con anterioridad al momento de definir la losa y realiza la distribución de estas cargas.

FIGURA 5.56 DEFINICIÓN DE CARGAS ESTÁTICAS GRAVITACIONALES

Para asignar las cargas estáticas laterales el programa RCBE posee varios códigos en su base de datos para el cálculo de fuerzas laterales pero no posee el código Ecuatoriano, debido a esto y por recomendación del Ing. Jorge Vintimilla se utilizara el código Peruano ya que este código es muy similar al código Ecuatoriano. Para que el resultado del cálculo de las fuerzas laterales con el código Peruano sea similares a los que se obtendría con el código Ecuatoriano se procederá a modificar algunos valores de los parámetros que toma en cuenta el código Peruano, de tal manera que el valor del porcentaje que se toma de la carga reactiva de la estructura sea aproximadamente igual para ambos códigos, dicho de otra forma debe tratarse de que se cumpla lo siguiente:

$$\frac{\text{ZUCS}}{\text{R}}\cong\frac{\text{ISa(Ta)}}{\text{R} \emptyset_{\text{P}} \emptyset_{\text{E}}}$$

FIGURA 5.57 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES EDIFICIO LOAIZA

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

FIGURA 5.58 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES EDIFICIO UNACH

2. Se define la Masa	2. Numero de Subsuelos
4. Parameters	Reduction in R for Irregular Buildings:
Seismic zone factor, Z = 0.4 ZONE 3 2 1 Z 0.4 0.3 0.15	LLEVATION IRREGULARITIES PLAN IRREGULARITIES Stiffness Torsional Mass Reentrant corners Geometrical Diaph.Discontinuity
Importance / Use factor, U = 1.0	Reduction factor: 1.0
A - Essential facilities1.5B - Important buildings1.3C - Common buildings1.0	TYPE OF BUILDING FACTOR Regular building 1.0 Irregular building 0.75
D - Minor buildingss (*) Site coefficient, S = 1.1	
TYPE SOIL PROPERTIES S Coef.	4. Calculo del Corte Basal
S1 Rock or very rigid soll 1.0 S2 Intermediate soils 1.2 S3 Flexible soils 1.4	TOTAL BASE SHEAR
S4 Exceptional conditions (*)	Building Weight, W, (ton) = 3661.1
Soil related period, Tp, (sec) $\dots = 4$ Soil type S1 S2 S3 S4	Zone factor, Z = .4 Importance factor, U = 1 Site coefficient, S = 1.1 Soil related period, Tp = .4
Seismic reduction coefficient, R = 7 7	.on X-direction Y-direction Seismic reduc, coef, R = 7 7 Pariod T (mc) = 5 5
T = bp/ 25 = 95 95	2.5 (Tp/T) = 2
T = hn/60 = .5 .5	(Z U S C / R) = .126 .126

FIGURA 5.59 DEFINICIÓN DE CARGAS ESTÁTICAS LATERALES EDIFICIO PLUS1

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

Nota: Para la asignación de las cargas laterales estáticas para el edificio Plus 1 se debe considero lo siguiente:

Al ingresar el número de subsuelos que posee la estructura se ingresó 27 a pesar de que la estructura solo posee 5 subsuelos, esto porque en la modelación se debió crear varios pisos auxiliares y el programa no diferenciar entre estos pisos auxiliares.

5.3.6 COMBINACIONES DE CARGA

Luego se realizará las combinaciones de carga con la opción *"LoadComb"* de la barra de menús y se crearan las combinaciones de carga que dispone el código NEC 2015:

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

5.3.7 CONDICIONES DE APOYO

Utilizaremos el icono 🥙 de la barra de herramientas que permite dar las condiciones de apoyo a la estructura.

FIGURA 5.61 DEFINICIÓN APOYOS

FIGURA 5.62 DIBUJO COMPLETO RCBE EDIFICIO LOAIZA

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

FIGURA 5.63 DIBUJO COMPLETO RCBE EDIFICIO UNACH

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

FIGURA 5.64 DIBUJO COMPLETO RCBE EDIFICIO PLUS 1

5.3.8 VISUALIZACIÓN DE RESULTADOS

Una vez terminado el modelo el programa podrá efectuar los siguientes análisis:

- Análisis Estático con la opción *"Analysis > Estatic"* de la barra de menús o dar clic en el icono de la barra de herramientas.
- Análisis de Periodos de Vibración con la opción *"Analysis > Modes/freq"* de la barra de menús o dar clic en el icono de la barra de herramientas.

Análisis Estático	Periodos de Vibración
Static Analysis 🔹	Modes and Frequency Analysis
Order C Linear analysis C P-Delta analysis	Number of modes to be computed : 3 Drder C Linear analysis C P-Delta analysis
Type Conventional, one-step total analysis	✓ Inhibit vertical modes □K Cancel
Incremental, automated construction steps Incremental, user defined construction steps	Mass Matrix
Compute redundancy factor	D0 DL LL 1 1 0 Selección de Carga Sísmica Reactiva

ELABORACIÓN: Diego Paillacho

Al terminar de analizar la estructura se aparece una ventana que nos indica si el análisis se ha realizado con éxito o si hubo errores.

FIGURA 5.66 VENTA DE OPCIONES DE RESULTADOS

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

Para poder observar los resultados gráficos se debe realizar de los siguientes pasos:

- Selección del Caso de Carga o Combinación de Carga y

- Selección del resultado que se quiere observar (deformaciones, diagramas de Momento, Corte etc...)

FUENTE: RCBE

FUENTE: RCBE ELABORACIÓN: Diego Paillacho

FIGURA 5.67 VISUALIZACIÓN DE RESULTADOS GRÁFICOS

CAPÍTULO 6

COMPARATIVA DE RESULATDOS Y COMPORTAMIENTO ESTRUCTURAL EN LOS **DIFERENTES PROGRAMAS**

6.1 RESULTADOS EDIFICIO LOAIZA

Ā
<u>A</u>
Õ
S
Ĕ
ш
S
ă
Ā
÷
ຣ
Ш
ш
Ω
Š
S
Ă
A R
Ę
2
8
$\sum_{i=1}^{n}$
0
R
9
D
0

ETABS 2015	RISA 3D	RCBE
Peso de la Estructura = 1637,67 T Carga Reactiva = 1545,41 T Corte Basal = 292,08 T	Peso de la Estructura = 1634,99 T Carga Reactiva = 1542,47 T Corte Basal = 291,44 T	Peso de la Estructura = 1648,16 T Carga Reactiva = 1647,90 T Corte Basal = 313,93 T
ARCHIVOS DE SALIDA CON RESULTADOS DE: PESO DE LA ESTRUCTURA, CARGA REACTIVA Y CORTE BASAL ETABS 2015	ARCHIVOS DE SALIDA CON RESULTADOS DE: PESO DE LA ESTRUCTURA, CARGA REACTIVA Y CORTE BASAL RISA 3D	ARCHIVOS DE SALIDA CON RESULTADOS DE: PESO DE LA ESTRUCTURA, CARGA REACTIVA Y CORTE BASAL RCBE
Base Reactions IA 4 33 de 33 > >I Reload Apply	Seismic Generation Force Results Floor Level Height (mt) (m)	EQUIVALENT FORCES: X-DIR
Load FX FY FZ Case/Combo tonf tonf tonf 1120-L-Ey+ 0 292.1721 243.15787 Peeo 0 0 163.4108	Diaphragm: 15.7 63.957 Diaphragm: 2 12.65 312.917 Diaphragm: 2 9.6 319.351 Diaphragm: 3 9.6 319.351 Diaphragm: 6.55 320.813 Diaphragm: Diaphragm: 5.55 55.427 Diaphragm	Floor Height Weigth Wi Hi Force i Hi Wi Fi - (m) (ton) 2WJ Hj (ton)
Auto Seismio - User Coefficients	Totals 1034.922	6 15.69 75.90 0.094 2351 5 12.64 333.2 0.332 104.22
0.189 1 1545.4057 292.0817	(a) Joint Reactions (By Combination) (a) Loint Reactions (By Combination) (a) Loint Label X (mg) Y (mg) Z (mg) (a) R V PEGA - JOINT - JOINT - Z (mg)	4 9.60 323.4 0.244 76.600 3 6.55 324.1 0.167 52.428 2 3.50 591.3 0.163 51.17
FUENTE: ETABS 2015	132 0 0 0 291.442	Σ 1648.16 313.93
	FUENTE: RISA 3D	FUENTE: RCBE

SUADRO 6.1	CONTINU	ACIÓN –											
	ETABS 20	15				RISA 3D					RCBE		
CUADRO 6.2 CORTE BASAL	FUERZAS	LATERALE:	≻ s	CUAD CORT	IRO 6.3 E BASAL	FUERZAS	LATERALE	≻ Si	CUADRO CORTE B	6.4 F ASAL	UERZAS	LATERALE	≻ S
Piso	Fi[T]	Vi [T]			Piso	Fi[T]	Vi [T]			oiso	Fi[T]	Vi [T]	
Quinta Planta	24.49	24.49			Quinta Planta	24.45	24.45		QĘ	uinta Ianta	29.51	29.51	
Cuarta Planta	96.71	121.21		I	Cuarta Planta	96.39	120.84		ŌĒ	uarta lanta	104.22	133.73	
Tercera Planta	74.90	196.11			Tercera Planta	74.66	195.50		μ	ercera lanta	76.60	210.33	
Segunda Planta	51.24	247.34			Segunda Planta	51.17	246.67		Ъ е́	gunda lanta	52.43	262.76	
Primera Planta	44.83	292.17			Primera Planta	44.78	291.45		P P	imera Ianta	51.17	313.93	
FUENTE: ETAB	S 2015		_	FUEN	TE: RISA 3	ßD			FUENTE:	RCBE			
Peric Peric Peric	odo Modo 1 : odo Modo 2 : odo Modo 3 :	= 0.36 = 0.234 = 0.153			Perioc Perioc Perioc	to Modo 1 = Jo Modo 2 = Jo Modo 3 =	= 0.381 = 0.254 = 0.205			Periodc Periodc Periodc	Modo 1 = 0 Modo 2 = 0 Modo 3 =	0.399 0.258 0.103	
ARCHIVOS DE DE PERIODOS	SALIDA CO MODALES	<u>N RESULTAI</u>	SOC	ARCH DE PE	IVOS DE S	SALIDA CO	N RESULTA	SOQ	ARCHIVC DE PERIC	<u>S DE S/</u> DOS M	ALIDA COI ODALES	N RESULTA	DOS
Mata Decision Peerse H 4 (3) 44.2 (b) H Read Cone 1 Mode Cone 2 (b) H Read Cone 2 (b)	Apply Apply (14) (14) (14) (14) (14) (14) (14) (14)	Medal Orector Fraction 01 02 03 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Off Trequencies and Painting Temperature Painting 1 </td <td>Parallel Schanne, Sch</td> <td>All All All 911 01 22 24 913 01 44 24 913 03 44 24 914 014 014 014 914 014 014 014 914 031 031 031 914 031 031 031 914 031 031 031 914 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 033 033 031 914 031 031 031 915 045 045 045</td> <td></td> <td>Modal Information Moda Frequency No Fit 2 2 2 3 3 2 67 FUENTE:</td> <td>Recipied Parts</td> <td>icaX BarticpX GeneVic </td> <td>ax Genthaart WeETK </td> <td>Meffy tom 31.15 10.26 10.26</td>	Parallel Schanne, Sch	All All All 911 01 22 24 913 01 44 24 913 03 44 24 914 014 014 014 914 014 014 014 914 031 031 031 914 031 031 031 914 031 031 031 914 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 031 031 031 915 033 033 031 914 031 031 031 915 045 045 045		Modal Information Moda Frequency No Fit 2 2 2 3 3 2 67 FUENTE:	Recipied Parts	icaX BarticpX GeneVic 	ax Genthaart WeETK 	Meffy tom 31.15 10.26 10.26

CUADRO	6.1 CONTINU	JACIÓN 115	1		RISA 31				RCRF		
		2									
DESPLAZ/	AMIENTOS DE	L POF	RTICO 4	DESPLAZ/	AMIENTOS DEI	L POR	TICO 4	DESPLAZ/	AMIENTOS DEI	L POR	TICO 4
"DIRECCIÓ	<u> N X - SISMO E</u>	"X N		"DIRECCIÓ	ÓN Z - SISMO EI	~Ζ Ζ		"DIRECCIÓ	N X - SISMO EI	× ۲	
(93)- (93)-		1 Alexi 38 1 Bitry 6 1 Bitry 6	<u>9</u> 8:	a a a a a a a a a a a a a a a a a a a	A Just Toffware Up, Consumption A Line Toffware Up, Consumption A Line Toffware Line Line A L	100 X ROM Y RUM Z RUM	Instance lana verseensoons verseensoons verseensoonsoons verseensoonsoons verseensoonsoons verseensoonsoons verseensoonsoonsoonsoonsoonsoonsoonsoonsoon			Nodal displacements	
			Barris Barris				Economic Construction construction construction construction	6.		tc - 0.008.cm ex 0.0022 * ey 0.0402 * ez 0.0197 *	
			lawyo baryo								
	0		Service Servic	, inst	and the second se						
FUENTE: E	ETABS 2015	i i		FUENTE: F	RISA 3D			FUENTE: F	RCBE		
CUADRO	6.5 CALCUL		DERIVA	CUADRO	6.6 CALCUL	O DE	DERIVA	CUADRO	6.7 CALCUL		DERIVA
			<				۲				
Piso	Desplazamiento X [mm]	$\Delta \mathbf{E}$	ΔM	Piso	Desplazamiento Z [mm]	$\Delta \mathbf{E}$	ΔM	Piso	Desplazamiento X [mm]	$\Delta \mathbf{E}$	ΔM
Quinta Planta	13.919	0.0011	0.0058	Quinta Planta	15.814	0.0012	0.0065	Quinta Planta	15.444	0.0012	0.0061
Cuarta Planta	10.562	0.0012	0.0063	Cuarta Planta	12.044	0.0014	0.0072	Cuarta Planta	11.907	0.0013	0.0068
Tercera Planta	6.879	0.0012	0.0062	Tercera Planta	7.890	0.0013	0.0071	Tercera Planta	7.939	0.0013	0.0069
Segunda Planta	3.273	0.0009	0.0048	Segunda Planta	3.776	0.0011	0.0056	Segunda Planta	3.935	0.0011	0.0056
Primera Planta	0.497	0.0001	0.0007	Primera Planta	0.543	0.0002	0.0008	Primera Planta	0.694	0.0002	0.0010
FUENTE: E	ETABS 2015			FUENTE: F	RISA 3D			FUENTE: F	RCBE		
	NOTA:	Cálculos	de los cua	idros (6.5, 6.	6 y 6.7) realizad	os según	lo especifi	cado en la s	ección 2.3.3.9.		

				r						1	1	
		TICO B		DERIVA	$\Delta \mathbf{M}$	0.0030	0.0034	0.0033	0.0030	0.0003		
		L POR	MARRANA 13 13 13 13 13 13 13 13 13 13	O DE ECCIÓN	$\Delta \mathbf{E}$	0.0006	0.0007	0.0006	0.0006	0.0001		
	RCBE	AMIENTOS DE ÓN Y - SISMO EI	SCBF	6.10 CALCUL	Desplazamiento Y [mm]	7.542	5.797	3.812	1.915	0.177	RCBE	sección 2.3.3.9.
		DESPLAZ/ "DIRECCIÓ		CUADRO MAXIMA IN	Piso	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta	FUENTE: F	ficado en la
		TICO B	American and a second and a sec	DERIVA X	$\Delta \mathbf{M}$	0.0030	0.0033	0.0031	0.0024	0.0005		I lo especi
	0	L POR N X"		DE L	$\Delta \mathbf{E}$	0.0006	0.0006	0.0006	0.0005	0.0001		dos según
	RISA 31	AMIENTOS DE DN X - SISMO E		6.9 CALCUL	Desplazamiento X [mm]	7.221	5.453	3.543	1.740	0.332	RISA 3D) y 6.10) realizad
		DESPLAZ/ "DIRECCIÓ		CUADRO MAXIMA IN	Piso	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta	FUENTE: F	dros (6.8, 6.9
1		TICO B		DERIVA	$\Delta \mathbf{M}$	0.0027	0.0029	0.0027	0.0021	0.0004		de los cua
JACIÓN	15	L POR		O DE RECCIÓN	$\Delta \mathbf{E}$	0.0005	0.0005	0.0005	0.0004	0.0001		Cálculos
6.1 CONTINI	ETABS 2(ETABS 20	0 000000000000000000000000000000000000	6.8 CALCUL	Desplazamiento Y [mm]	6.299	4.739	3.067	1.498	0.295	ETABS 2015	NOTA:
CUADRO		DESPLAZ/ "DIRECCIÓ		CUADRO MAXIMA IN	Piso	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta	FUENTE: E	

UNACH	
EDIFICIO	
ULTADOS	
6.2 RESU	

UNACH
EDIFICIO
TADOS E
E RESUL
ACIÓN D
COMPAR
RO 6.11 (
CUADF

CUADRO 6.11 COMPARACION DE RE	SULTADOS EDIFICIO UNACH	
ETABS 2015	RISA 3D	RCBE
Peso de la Estructura = 4293,98 T	Peso de la Estructura = 4266,04 T	Peso de la Estructura = 4306,91 T
Carga Reactiva = 3585,91 T	Carga Reactiva = 3566,32 T	Carga Reactiva = 3661,10 T
Corte Basal = 448,24 T	Corte Basal = 446,28 T	Corte Basal = 459,78 T
ARCHIVOS DE SALIDA CON RESULTADOS	ARCHIVOS DE SALIDA CON RESULTADOS	ARCHIVOS DE SALIDA CON RESULTADOS
DE: PESO DE LA ESTRUCTURA, CARGA DEACTIVA V CODTE DASAL ETADE 2015	DE: PESO DE LA ESTRUCTURA, CARGA	DE: PESO DE LA ESTRUCTURA, CARGA
	KEAUTIVA Y CURLE BASAL RISA 3D	REACTIVA Y CORTE BASAL RCBE
Base Reactions	Seismic Generation Force Results	
I 4 4 31 de 31 ▷ ▷1 Reload Apply	Floor Level Height Weight	Weigth EQUIVALENT FORCES: X-DIR Wi
Load FX FY FZ Case/Combo tonf tonf tonf	(m) (m1) (m1) Diaphragm:1 33.66 28.625	(ton) Floor Height Weigth Wi Hi Force i Hi Wi Fi
1.2D+L-Ey+ -1.581E-06 448.2388 6838.9335	Diaphragm : 2 29.92 456.46	- (m) (ton) ΣW_{j} Hj (ton)
Peso 0 0 4293.9797	Diaphragm: 3 26.18 513.576	33.81
	Diaphragm : 4 22.44 513.113	517.0 10 29.92 33.81 0.018 8.28
At the Seismic - Iser Coefficients	Diaphragm : 5 18.7 513.365 Diaphradm : 6 14.96 513 561	514.1 8 22.44 517.2 0.210 96.652
	Diaphragm: 7 11.22 513.556	518.9 7 18.70 518.1 0.175 80543
C K Weight Used Base Shear A tonf	Diaphragm : 8 7.48 514.067	518.8 5 11.22 518.9 0.105 48.326
0.125 1.22 3585.9105 448.2388	Diaphragm : 9 3.74 545.545	518.0 4 7.48 518.8 0.070 32216 3 3.74 518.0 0.035 16.00
	Base 155.165	645.8 2 0.0 0.0 0.0 0.0 0.0
	Totals 4266.035	4306.01
		200111 20011
	▲ Joint Reactions (By Combination) ▲ Doint LC Joint Label X [mt] Y [mt] Z [mt]	FUENTE: RCBE
	178 6 WP84 31.44 530.463 -2.765 179 6 Totals: 01 0 446.275	
	FUENTE: RISA 3D	

CUADRO 6.11	CONTINU	IACIÓN –							1
Ш	FABS 201	5		RISA 3D			RCBE		
CUADRO 6.12 CORTE BASAL	FUERZAS	LATERALES Y	CUADRO 6.13 CORTE BASAL	FUERZAS L	ATERALES Y	CUADRO 6.14 CORTE BASAL	FUERZAS	LATERALES Y	
Planta	Fi[T]	Vi[T]	Planta	Fi[T]	Vi [T]	Planta	Fi [T]	Vi [T]	
Octava Planta	8.24	8.24	Octava Planta	8.11	8.11	Octava Planta	8.28	8.28	
Séptima Planta	102.35	110.59	Séptima Planta	109.83	117.94	Séptima Planta	112.76	121.04	
Sexta Planta	105.11	215.70	Sexta Planta	102.32	220.26	Sexta Planta	96.65	217.69	
Quinta Planta	84.07	299.77	Quinta Planta	81.77	302.03	Quinta Planta	80.54	298.24	
Cuarta Planta	64.04	363.81	Cuarta Planta	62.25	364.28	Cuarta Planta	64.89	363.13	
Tercera Planta	45.10	408.91	Tercera Planta	43.78	408.06	Tercera Planta	48.33	411.46	
Segunda Planta	27.51	436.42	Segunda Planta	26.65	434.71	Segunda Planta	32.22	443.67	
Primera Planta	11.82	448.23	Primera Planta	11.42	446.13	Primera Planta	16.11	459.78	
FUENTE: ETABS	3 2015		FUENTE: ETABS	2015		FUENTE: ETABS	2015		
Perioc	to Modo 1 = to Modo 2 =	1,35 1,09	Period	o Modo 1 = 1 o Modo 2 = 0	,173 ,879	Periodo	o Modo 1 = o Modo 2 =	1,124 0,861	
Perioc	io Modo 3 =	0,844	Period	o Modo 3 = 0	,286	Periodo	o Modo 3 =	0,815	
ARCHIVOS DE S DE PERIODOS N	ALIDA CON 10DALES	I RESULTADOS	ARCHIVOS DE S DE PERIODOS N	ALIDA CON I 10DALES	RESULTADOS	ARCHIVOS DE S DE PERIODOS N	ALIDA CON 10DALES	I RESULTADOS	
Model Drescen Factors (4 4 12 - 42.11 b M febrad Appl Com 10 0 0000 0 0000 0 0000 0 0 0000 0 00000 0 0 0000 0 0000 0 0 0000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 000000 0 00000000		M Dheavon fiscana UV 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Application Application A A Application A A Application A Application Application Application Application	tion Teriod SY Partic. SY 1686 1686 1486 1430 1173 65.504 879 556 286 286 284 284 284 284	Part. 22 Partoc Part. 22 Partoc 0.07 0.07 0.07 0.03 0.03 355 442 1512 553 442 03 03 03 03	Modal Information Factor Pactor Pactor	ticyX ParticyY Gendlas 	00 Genthawar Weefox Weefor - con con - con con - 1.12 157.47 11.47 - 1.13 157.48 1882.81 - 1.11 97.39 296.16	
			13 13 3533 14 14 14 3533 15 16 16 3456 16 17 17 3056 17 17 3056 3056 18 16 17 3056 17 17 3056 3056 18 16 17 3056 17 16 16 3056 18 18 18 3056 18 18 18 3056	283 283 271 271 269 269	07 169 078 013 078 013 13.405 035 13.405 055 7.301				

CUADRO 6.1	1 CONTIN ETABS 20	IUACIÓ			RISA 3				RCBE		
DESPLAZAMII "DIRECCIÓN)	ENTOS DEI < - SISMO EN	NX"	TICO 2	DESPLAZ/ "DIRECCIÓ	AMIENTOS DE ÓN Z - SISMO E	L POR N Z"	TICO 2	DESPLAZ/ "DIRECCIÓ	AMIENTOS DEL ÓN X - SISMO EN	NX	TICO 2
FUENTE: ETA	BS 2015				All of the second secon		A more than the second se	FUENTIES FOR	CBE		
CUADRO 6.1 MAXIMA INEL	I5 CALCUL ASTICA DIRE	O DE ECCIÓN	DERIVA X	CUADRO MAXIMA IN	6.16 CALCUI VELASTICA DIR	LO DE LECCIÓN	DERIVA Z	CUADRO MAXIMA IN	6.17 CALCUL VELASTICA DIRE	O DE ECCIÓN)	DERIVA
Piso De	splazamiento X [mm]	ΔE	ΔM	Piso	Desplazamiento Z [mm]	ΔE	ΔM	Piso	Desplazamiento X [mm]	ΔE	ΔM
Octava Planta	85.565	0.0024	0.0126	Octava Planta	96.614	0.0022	0.0118	Octava Planta	70.231	0.0018	0.0093
Séptima Planta	76.570	0.0031	0.0165	Séptima Planta	88.223	0.0034	0.0179	Séptima Planta	63.579	0.0026	0.0135
Sexta Planta	64.801	0.0033	0.0172	Sexta Planta	75.459	0.0036	0.0189	Sexta Planta	53.970	0.0027	0.0142
Quinta Planta	52.538	0.0033	0.0175	Quinta Planta	61.971	0.0037	0.0195	Quinta Planta	43.826	0.0028	0.0146
Cuarta Planta	40.079	0.0033	0.0171	Cuarta Planta	48.090	0.0037	0.0193	Cuarta Planta	33.391	0.0028	0.0145
Tercera Planta	27.909	0.0030	0.0157	Tercera Planta	34.332	0.0034	0.0180	Tercera Planta	23.065	0.0026	0.0134
Segunda Planta	16.759	0.0025	0.0130	Segunda Planta	21.489	0.0029	0.0154	Segunda Planta	13.495	0.0021	0.0112
Primera Planta	7.496	0.0020	0.0105	Primera Planta	10.506	0.0028	0.0147	Primera Planta	5.511	0.0015	0.0077
FUENTE: ETA	BS 2015			FUENTE: F	RISA 3D			FUENTE: F	RCBE		
	NOTA: C	álculos d∈	e los cuadr	os (6.15, 6.	16 y 6.17) realiza	ados segú	n lo espec	ificado en la	a sección 2.3.3.9.		

CUADRO	6.11 CONTIN	<u>UACIÓ</u>	I Z								
	EIABS ZI	CI.C			KIJA JI				RUBE		
DESPLAZ#	MIENTOS DE	L POR	TICO D	DESPLAZ	AMIENTOS DE	L POR	TICO D	DESPLAZ/	AMIENTOS DEL	- POR	ICO D
"DIRECCIÓ	NY - SISMO E	<u>Ν</u> Υ"		"DIRECCI(<u> </u>	N X"		"DIRECCIO	ÓN Y - SISMO EN	١٢"	
L					And the forements of the forement of the forem		An and a second				
FUENTE: E	ETABS 2015			FUENTE: I	RISA 3D	101]	FUENTE	RCBE		
CUADRO MAXIMA IN	6.18 CALCUI IELASTICA DIR	LO DE ECCIÓN	DERIVA Y	CUADRO MAXIMA II	6.19 CALCUI	LO DE LECCIÓN J	DERIVA X	CUADRO MAXIMA IN	6.20 CALCUL	O DE ECCIÓN Y	DERIVA
Piso	Desplazamiento Y [mm]	$\Delta \mathbf{E}$	ΔM	Piso	Desplazamiento X [mm]	JΔ	$\Delta \mathbf{M}$	Piso	Desplazamiento Y [mm]	ΔE	ΔM
Octava Planta	41.739	0.0009	0.0048	Octava Planta	52.771	0.0011	0.0058	Octava Planta	42.676	0.0008	0.0044
Séptima Planta	38.334	0.0016	0.0082	Séptima Planta	48.638	0.0020	0.0103	Séptima Planta	39.515	0.0015	0.0081
Sexta Planta	32.521	0.0016	0.0086	Sexta Planta	41.320	0.0020	0.0107	Sexta Planta	33.734	0.0017	0.0090
Quinta Planta	26.386	0.0016	0.0085	Quinta Planta	33.717	0.0020	0.0107	Quinta Planta	27.338	0.0017	0.0090
Cuarta Planta	20.296	0.0016	0.0082	Cuarta Planta	26.073	0.0020	0.0104	Cuarta Planta	20.891	0.0017	0.0087
Tercera Planta	14.440	0.0014	0.0075	Tercera Planta	18.671	0.0018	0.0095	Tercera Planta	14.690	0.0015	0.0081
Segunda Planta	9.118	0.0012	0.0063	Segunda Planta	11.886	0.0015	0.0081	Segunda Planta	8.928	0.0013	0.0069
Primera Planta	4.608	0.0012	0.0065	Primera Planta	6.109	0.0016	0.0086	Primera Planta	4.037	0.0011	0.0057
FUENTE: E	TABS 2015			FUENTE: I	RISA 3D			FUENTE: F	RCBE		
	NOTA: C	álculos de	e los cuadr	ros (6.18, 6.	19 y 6.20) realiza	ados segú	n lo espec	ificado en la	a sección 2.3.3.9.		
]

1
\mathcal{O}
4
Ĭ
U
T.
(\mathbf{T})
\mathcal{O}
0
ă
5
$\overline{\mathbf{v}}$
Ξ
2
3
Ġ

S
\supset
2
Ë
2
\overline{O}
ш
$\overline{\Box}$
Ш
S
Õ
Ò
Ā
\supset
ŝ
2
H
-
3
ñ
Q
2
₽
Б
Σ
Ō
\circ
$\sum_{i=1}^{n}$
2
9
0
Ř
4
ธ

UADRO 6.21 COMPARACIÓN DE RESU	JLTADOS EDIFICIO PLUS 1	
ETABS 2015	RISA 3D	RCBE
Peso de la Estructura = 4924,26 T	Peso de la Estructura = 4833,39 T	Peso de la Estructura = 4445,52 T
Carga Reactiva = 2409,85 T	Carga Reactiva = 2391,11 T	Carga Reactiva = 2381,00 T
Corte Basal = 265,08 T	Corte Basal = 254,82 T	Corte Basal = 259,16 T
RCHIVOS DE SALIDA CON RESULTADOS AF	CCHIVOS DE SALIDA CON RESULTADOS	ARCHIVOS DE SALIDA CON RESULTADOS
EACTIVA Y CORTE BASAL ETABS 2015	EACTIVA Y CORTE BASAL RISA 3D	<u>DE: PESO DE LA ESIRUCIURA, CARGA</u> REACTIVA Y CORTE BASAL RCBE
Base Reactions	Seismic Generation Force Results	EQUIVALENT FORCES: X-DIR
I4 4 26 b bit Reload Apply	Floor Level Height Weight	Floor Haight Waight Wi Hi Forca
Load FX FY FZ Case/Combo torf torf torf	(m) (m1) (m1) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2	
1.2D + L - Ey- 0 265.0832 7303.7549	Diaphragm: 2 48.6 68.537	- (m) (ton) ΣW j Hj (ton)
■ Peso 0 0 4924.2602	Diaphragm : 3 45.5 225.673	
Auto Seismic - User Coefficients	Diaphragm: 4 42.4 225.073	18 37.84 70.87 0.062 16.068 17 34.09 65.87 0.052 13.75
C K · Weight Used Base Shear - tonf	Diaphragm: 6 36.2 225.673	16 31.00 224.7 0.161 41.724
0.11 1.31 2409.8472 265.0832	Diaphragm : 7 33.1 225.673	15 27.89 224.7 0.145 37.577 14 24.79 224.7 0.129 33.431
UENTE: ETABS 2015	Diaphragm: 8 30 225.673 Dianhranm: 9 26.0 275.673	13 21.70 224.7 0.113 29.284
	Diaphragm: 10 23.8 225.673	12 18.60 224.7 0.097 25.138 11 15.50 224.7 0.081 20002
	Diaphragm : 11 20.7 225.67	10 12.39 224.7 0.064 16.586
	Diaphragm: 12 17.6 219.64	9 9.30 224.7 0.048 12.439
	Totals 24833.395	7 3.09 221.2 0.016 4.146
		2000 2000 46
	🐞 loint Reactions (Bv Combination)	01.8C2 10C2 7
	LC Joint Label X [mt] Y [mt] Z [mt]	FUENTE: RCBE
	23 6 WP224A 153 255.371 75.779 24 6 Totals: .004 0 254.818	
	JENTE: RISA 3D	
	Init Reactions (By Combination) Ximut Yimut Zimut Image: Sec. 371 LC Joint Label Ximut Zimut 23 6 WP224A -153 -256.371 75.779 24 6 Totals: .004 0 254.818 24 6 Totals: .004 0 254.818	FUENTE: RCBE

CUADRO 6.2	1 CONINUA	ACIÓN –							
	ETABS 201	5		RISA 3D			RCBE		<u> </u>
CUADRO 6.22	FUERZAS	LATERALES Y	CUADRO 6.23	FUERZAS I	LATERALES Y	CUADRO 6.24	FUERZAS	LATERALES Y	
CORTE BASAL			CORTE BASAL			CORTE BASAL			
Planta	Fi[T]	Vi [T]	Planta	Fi[T]	Vi [T]	Planta	Fi[T]	Vi [T]	
12° Planta	13.38	13.38	12° Planta	18.82	18.82	12° Planta	16.07	16.07	
11° Planta	17.62	31.00	11° Planta	15.65	34.47	11° Planta	13.48	29.55	
10° Planta	46.86	77.86	10° Planta	45.51	79.98	10° Planta	41.72	71.27	
9° Planta	42.50	120.37	9° Planta	39.66	119.64	9° Planta	37.58	108.85	
8° Planta	36.43	156.79	8° Planta	34.00	153.63	8° Planta	33.43	142.28	
7° Planta	30.58	187.37	7° Planta	28.55	182.19	7° Planta	29.28	171.56	
6° Planta	24.99	212.36	6° Planta	23.34	205.53	6° Planta	25.14	196.70	
5° Planta	19.68	232.04	5° Planta	18.39	223.92	5° Planta	20.99	217.69	
4° Planta	14.69	246.74	4° Planta	13.74	237.66	4° Planta	16.59	234.28	
3° Planta	10.08	256.81	3° Planta	9.43	247.10	3° Planta	12.44	246.72	
2° Planta	5.93	262.74	2° Planta	5.55	252.65	2° Planta	8.29	255.01	
1° Planta	2.34	265.08	1° Planta	2.18	254.84	1° Planta	4.15	259.16	
FUENTE: ETAE	3S 2015		FUENTE: ETAB	S 2015		FUENTE: ETAB	S 2015		
Perio	do Modo 1 =	1,242	Period	do Modo $1 = 2$	1,132	Period	do Modo 1 =	1,241	
Perio	ado Modo 2 =	0,872 0,872	Perioo	do Modo 2 = (,748	Perio	ao Modo z = do Modo 3 =	0,521	
ARCHIVOS DE DE PERIODOS	SALIDA CON MODALES	N RESULTADOS	ARCHIVOS DE (DE PERIODOS I © Frequencies and Participati Mode Freque.	SALIDA CON MODALES	RESULTADOS	ARCHIVOS DE (DE PERIODOS Modal Information Nota Fragmany Particid Ta	SALIDA CON MODALES	A RESULTADOS	
Model 2 Noces 2 Noces 3 Noces 4 Noces 6 Noces 6 Noces 7 Noces 1 Noces	9,940 0036 0.951 2,277 0.177 0.005 1,211 0.045 0.045 1,221 0.045 0.026 1,122 0.045 0.026 1,121 0.038 0.045 1,111 1.028 0.045 0.045 1,111 1.028 0.045 0		- -	748 9.31 356 9.31 .356 9.31 .264 0.665 264 .015 235 796	16.298 139 9.786 .069 .391	TO THE STORE	-0.33 -1.32 0.0 -1.31 0.56 0.3 0.12 0.16 0.5	0.96 134-06 1775,23 0.07 1795.07 1761.31 2.10 138.87 12.00	
FUENTE: ETAE	3S 2015			Č					

UADRO	6.21 CONTIN	NUACIÓ 115	- N		RISA 31				RCRF		
		2									
DESPL/	VZAMIENTOS D	EL POR	TICO C v"	DESPLA	ZAMIENTOS DI	EL PORT	ICO C	DESPLA	ZAMIENTOS DE	EL PORT	CO C
5		0000 0001 0001 0000 0000 0000 0000 000	<	5			J				1
		i i i i i i i i i i i i i i i i i i i									
FUENTE:	ETABS 2015]		FUENTE: F	RISA 3D		1	FUENTE: F	RCBE		
CUADRO MAXIMA II	6.25 CALCUI	LO DE ECCIÓN	DERIVA X	CUADRO MAXIMA IN	6.26 CALCUI	LO DE ECCIÓN	DERIVA Z	CUADRO MAXIMA IN	6.27 CALCUL	O DE ECCIÓN	DERIVA /
Piso	Desplazamiento X [mm]	ΔE	ΔM	Piso	Desplazamiento Z [mm]	ΔE	ΔM	Piso	Desplazamiento Y [mm]	ΔE	MA
12° Planta	81.447	0.0024	0.0128	12° Planta	63.106	0.0021	0.0112	12° Planta	73.226	0.0022	0.0113
11° Planta	72.271	0.0024	0.0129	11° Planta	55.116	0.0021	0.0112	11° Planta	65.159	0.0022	0.0113
10° Planta	64.683	0.0024	0.0129	10° Planta	48.519	0.0021	0.0112	10° Planta	58.491	0.0022	0.0114
9° Planta	57.092	0.0024	0.0129	9° Planta	41.920	0.0021	0.0111	9° Planta	51.784	0.0022	0.0114
8° Planta	49.497	0.0024	0.0128	8° Planta	35.359	0.0021	0.0109	8° Planta	45.078	0.0022	0.0113
7° Planta	41.962	0.0027	0.0142	7° Planta	28.918	0.0020	0.0105	7° Planta	38.413	0.0021	0.0111
6° Planta	33.580	0.0020	0.0103	6° Planta	22.707	0.0019	0.0099	6° Planta	31.859	0.0020	0.0107
5° Planta	27.470	0.0022	0.0113	5° Planta	16.872	0.0017	0.0090	5° Planta	25.515	0.0019	0.0102
4° Planta	20.780	0.0020	0.0103	4° Planta	11.580	0.0015	0.0077	4° Planta	19.506	0.0018	0.0094
3° Planta	14.676	0.0017	0.0090	3° Planta	7.026	0.0012	0.0061	3° Planta	13.975	0.0016	0.0083
2° Planta	9.347	0.0014	0.0074	2° Planta	3.421	0.0008	0.0041	2° Planta	9.093	0.0013	0.0068
1° Planta	4.997	0.0010	0.0055	1° Planta	0.996	0.0003	0.0017	1° Planta	5.054	0.0016	0.0086
FUENTE:	ETABS 2015			FUENTE: F	RISA 3D			FUENTE: F	RCBE		
	NOTA: C	álculos d	le los cuadr	ros (6.25, 6.2	26 y 6.27) realiz:	ados segú	in lo espec	cificado en la	1 sección 2.3.3.9.		

UADRO	6.21 CONTIN	<u> NUACIÓ</u>	I Z								
	ETABS 2(015			RISA 31	0			RCBE		
DESPL/ "DIF	<u>AZAMIENTOS D</u> RECCIÓN Υ - SI	EL PORT	<u>гісо 3</u> Ү"	DESPLA "DIF	<u>ZAMIENTOS D</u> <u>ECCIÓN X - SI</u>	EL PORT	1CO 3 X"	DESPLA "DIF	ZAMIENTOS DE RECCIÓN X - SIS	EL PORT SMO EN X	CO 3
		Example 1 Example 1					v. 33				
FUENTE:	ETABS 2015	-		FUENTE: F	RISA 3D	-	1	FUENTE: F	RCBE		
CUADRO MAXIMA II	6.28 CALCUI VELASTICA DIR	LO DE RECCIÓN	DERIVA Y	CUADRO MAXIMA IN	6.29 CALCUI	LO DE RECCIÓN	DERIVA X	CUADRO MAXIMA IN	6.30 CALCUL	O DE ECCIÓN >	DERIVA
Piso	Desplazamiento Y [mm]	ΔE	ΔM	Piso	Desplazamiento X [mm]	ΔE	ΔM	Piso	Desplazamiento X [mm]	ΔE	ΔM
12° Planta	62.101	0.0017	0.0090	12° Planta	51.381	0.0016	0.0084	12° Planta	61.163	0.0017	0.0091
11° Planta	55.642	0.0017	0.0092	11° Planta	45.402	0.0016	0.0085	11° Planta	54.680	0.0017	0.0091
10° Planta	50.223	0.0018	0.0093	10° Planta	40.407	0.0016	0.0085	10° Planta	49.313	0.0017	0.0090
9° Planta	44.739	0.0018	0.0095	9° Planta	35.400	0.0016	0.0086	9° Planta	43.978	0.0018	0.0093
8° Planta	39.102	0.0018	0.0097	8° Planta	30.299	0.0017	0.0087	8° Planta	38.508	0.0018	0.0094
7° Planta	33.376	0.0019	0.0097	7° Planta	25.178	0.0016	0.0085	7° Planta	32.963	0.0018	0.0094
6° Planta	27.639	0.0018	0.0095	6° Planta	20.133	0.0016	0.0082	6° Planta	27.403	0.0018	0.0093
5° Planta	22.001	0.0017	0.0092	5° Planta	15.290	0.0014	0.0076	5° Planta	21.920	0.0017	0.0090
4° Planta	16.591	0.0016	0.0085	4° Planta	10.797	0.0013	0.0067	4° Planta	16.631	0.0016	0.0084
3° Planta	11.560	0.0014	0.0076	3° Planta	6.819	0.0011	0.0055	3° Planta	11.671	0.0014	0.0076
2° Planta	7.081	0.0012	0.0064	2° Planta	3.545	0.0008	0.0040	2° Planta	7.210	0.0012	0.0064
1° Planta	3.325	0.0009	0.0048	1° Planta	1.182	0.0004	0.0020	1° Planta	3.412	0.0011	0.0058
FUENTE:	ETABS 2015			FUENTE: F	RISA 3D			FUENTE: F	RCBE		
	NOTA: C	tálculos d	e los cuadr	os (6.28, 6.2	29 y 6.30) realiz	ados segú	in lo espec	cificado en la	a sección 2.3.3.9.		

6.4 DIFERENCIA PORCENTUAL

A continuación se realizará una comparación de los resultados obtenidos con los diferentes programas, esto nos ayudara más adelante en el capítulo de conclusiones para poder explicar el porqué de las diferencias o similitudes entre los resultados.

6.4.1 EDIFICIO LOAIZA

ΡΔΒάΜΕΤΒΟ Δ	,	VALORES		DIFEREN	ICIA PORCENT	UAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	1637.67	1634.99	1648.16	0.16%	0.64%	0.81%
Carga Reactiva [T]	1545.41	1542.47	1647.9	0.19%	6.63%	6.84%
Corte Basal [T]	292.08	291.44	313.93	0.22%	7.48%	7.72%
		Fuerzas	Laterales	[T]		
Quinta Planta	24.49	24.45	29.51	0.17%	20.48%	20.69%
Cuarta Planta	96.71	96.39	104.22	0.33%	7.76%	8.12%
Tercera Planta	74.90	74.66	76.6	0.33%	2.27%	2.60%
Segunda Planta	51.23	51.17	52.43	0.12%	2.34%	2.46%
Primera Planta	44.83	44.78	51.17	0.12%	14.13%	14.26%
Periodo Fundamental [s]	0.36	0.381	0.399	5.83%	10.83%	4.72%
MOMEN	ITOS – VIG	GA PORTIC	O 4 ENTR	RE EJES (C-E)	5° PISO	
	C	OMBINAC	ION 1.2D	+ 1.6L		
Momento izq. [T-m]	4.37	5.41	5.46	23.80%	24.94%	0.92%
Momento cen. [T-m]	3.06	3.43	2.92	12.09%	4.79%	17.47%
Momento der. [T-m]	2.1	2.41	2.3	14.76%	9.52%	4.78%
	CC	OMBINACIO	ON 1.2D +	L – Ex		
Momento izq. [T-m]	4.98	5.99	6.5	20.28%	30.52%	8.51%
Momento cen. [T-m]	2.79	3.09	2.73	10.75%	2.20%	13.19%
Momento der. [T-m]	0.72	0.95	0.42	31.94%	71.43%	126.19%

CUADRO 6.31 COMPARATIVA DE RESULTADOS EDIFICIO LOAIZA

ELABORACIÓN: Diego Paillacho

CUADRO 6.32 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO LOAIZA

DESPLAZAMIENTOS - PORTICO 4	RISA 3D RCBE Diferencia Porcentual	Desplaza. Z ΔE ΔM Desplaza. X ΔE ΔM ETABS2015/ ETABS2015/ RISA3D/ [mm] [mm] ΔM [mm] RISA3D RCBE RCBE	55 13.92 0.0011 0.0058 15.44 0.0012 0.0061 12.30% 6.59% 5.36%	2 10.56 0.0012 0.0063 11.91 0.0013 0.0068 12.79% 4.69% 7.74%	71 6.88 0.0012 0.0062 7.94 0.0013 0.0069 14.09% 2.75% 11.04%	56 3.27 0.0009 0.0048 3.94 0.0011 0.0056 16.46% 0.25% 16.75%	0.50 0.0001 0.0007 0.69 0.0002 0.0010 9.26% 27.81% 39.64%	DESPLAZAMIENTOS - PORTICO B	RISA 3D RCBE Diferencia Porcentual	Desplaza. X ΔE ΔM Desplaza. Y ΔE ΔM ETABS2015/ ETABS2015/ RISA3D/ [mm] M [mm] ΔE ΔM RISA3D RCBE RCBE	30 6.299 0.0005 0.0027 7.542 0.0006 0.0030 13.33% 1.32% 11.86%	33 4.739 0.0005 0.0029 5.797 0.0007 0.0034 14.23% 3.93% 18.72%	31 3.067 0.0005 0.0027 3.812 0.0006 0.0033 14.91% 5.21% 20.91%	24 1.498 0.0004 0.0021 1.915 0.0006 0.0030 17.04% 23.44% 44.47%	05 0.295 0.0001 0.017 0.0001 0.0003 12.54% 87.57% 66.67%
	RCBE	ΔE	0.0012 (0.0013 (0.0013 (0.0011 (0.0002 (RCBE	ΔE	0.0006 0	0.0007 0	0.0006 0	0.0006 0	0.0001 0
PORTICO 4		Desplaza. X [mm]	15.44	11.91	7.94	3.94	0.69	ORTICO B		Desplaza. Y [mm]	7.542	5.797	3.812	1.915	0.177
ENTOS - F		MA	0.0058	0.0063	0.0062	0.0048	0.0007	ENTOS - P		ΜΔ	0.0027	0.0029	0.0027	0.0021	0.0004
LAZAMI	RISA 3D	AE	0.0011	0.0012	0.0012	0.0009	0.0001	LAZAMI	RISA 3D	ΔE	0.0005	0.0005	0.0005	0.0004	0.0001
DESF		Desplaza. Z [mm]	13.92	10.56	6.88	3.27	0.50	DESP		Desplaza. X [mm]	6.299	4.739	3.067	1.498	0.295
		ΔM	0.0065	0.0072	0.0071	0.0056	0.0008			ΔM	0.0030	0.0033	0.0031	0.0024	0.0005
	BS 2015	AE	0.0012	0.0014	0.0013	0.0011	0.0002		BS 2015	AE	0.0006	0.0006	0.0006	0.0005	0.0001
	ETA	Desplaza. X [mm]	15.81	12.04	7.89	3.78	0.54		ETA	Desplaza. Y [mm]	7.221	5.453	3.543	1.74	0.332
		Piso	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta			Piso	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta

UICOU Lamacio

6.4.2 EDIFICIO UNACH

CUADRO 6.33 COMPARATIVA	DE RESULTADOS	EDIFICIO UNACH
-------------------------	----------------------	----------------

ΡΔΡΑΜΕΤΡΟ Δ	· ۱	ALORES	6	DIFEREI	NCIA PORCEN	TUAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015 /RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	4293.98	4266.04	4306.91	0.65%	0.30%	0.96%
Carga Reactiva [T]	3585.91	3566.32	3661.1	0.55%	2.10%	2.66%
Corte Basal [T]	448.24	445.28	459.78	0.66%	2.57%	3.26%
		Fuerza	s Laterales	5 [T]		
Octava Planta	8.24	8.11	8.28	1.57%	0.52%	2.10%
Séptima Planta	102.35	109.83	112.76	7.31%	10.17%	2.67%
Sexta Planta	105.11	102.32	96.65	2.73%	8.75%	5.86%
Quinta Planta	84.07	81.77	80.54	2.81%	4.38%	1.52%
Cuarta Planta	64.04	62.25	64.89	2.88%	1.33%	4.25%
Tercera Planta	45.10	43.78	48.33	3.02%	7.15%	10.38%
Segunda Planta	27.51	26.65	32.22	3.21%	17.12%	20.89%
Primera Planta	11.82	11.42	16.11	3.48%	36.30%	41.05%
Periodo Fundamental [s]	1.35	1.173	1.124	15.09%	20.11%	4.36%
MOME	NTOS – VIO	GA PORT	ICO 2 ENT	RE EJES(D - E) 7° PISO	
	(COMBINA	CION 1.2D	+ 1.6L		
Momento izq. [T-m]	2.87	4.05	4.08	41.11%	42.16%	0.74%
Momento cen. [T-m]	1.62	1.9	1.42	17.28%	14.08%	33.80%
Momento der. [T-m]	2.6	3.35	3.17	28.85%	21.92%	5.68%
	С	OMBINAC	CION 1.2D	+ L + Ex		
Momento izq. [T-m]	3.37	4.16	3.36	23.44%	0.30%	23.81%
Momento cen. [T-m]	1.37	1.6	1.2	16.79%	14.17%	33.33%
Momento der. [T-m]	7.72	10.05	9.47	30.18%	22.67%	6.12%

ELABORACIÓN: Diego Paillacho

CUADRO 6.34 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO UNACH

				DES	PLAZAM	IENTOS -	PORTICO 2					
	ET,	ABS 201	2		RISA 3D			RCBE		Difere	ncia Porcer	itual
Piso	Desplaza. X [mm]	AE	MA	Desplaza. Z [mm]	ΔE	MA	Desplaza. X [mm]	ΔE	MA	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Octava Planta	85.57	0.0024	0.0126	96.61	0.0022	0.0118	70.23	0.0018	0.0093	7.20%	35.22%	26.14%
Séptima Planta	76.57	0.0031	0.0165	88.22	0.0034	0.0179	63.58	0.0026	0.0135	8.45%	22.48%	32.83%
Sexta Planta	64.80	0.0033	0.0172	75.46	0.0036	0.0189	53.97	0.0027	0.0142	9.99%	20.89%	32.97%
Quinta Planta	52.54	0.0033	0.0175	61.97	0.0037	0.0195	43.83	0.0028	0.0146	11.41%	19.40%	33.02%
Cuarta Planta	40.08	0.0033	0.0171	48.09	0.0037	0.0193	33.39	0.0028	0.0145	13.05%	17.86%	33.24%
Tercera Planta	27.91	0.0030	0.0157	34.33	0.0034	0.0180	23.07	0.0026	0.0134	15.18%	16.51%	34.20%
Segunda Planta	16.76	0.0025	0.0130	21.49	0.0029	0.0154	13.50	0.0021	0.0112	18.57%	16.02%	37.56%
Primera Planta	7.50	0.0020	0.0105	10.51	0.0028	0.0147	5.51	0.0015	0.0077	40.15%	36.02%	90.64%
				DES	PLAZAM	IENTOS -	PORTICO D	•				
	ET,	ABS 201	2		RISA 3D			RCBE		Difere	ncia Porcer	Itual
Piso	Desplaza. Y [mm]	AE	MA	Desplaza. X [mm]	ΔE	ΔM	Desplaza. Y [mm]	ΔE	MA	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Octava Planta	41.74	0.0009	0.0048	52.77	0.0011	0.0058	42.68	0.0008	0.0044	21.38%	7.72%	30.75%
Séptima Planta	38.33	0.0016	0.0082	48.64	0.0020	0.0103	39.52	0.0015	0.0081	25.89%	0.55%	26.59%
Sexta Planta	32.52	0.0016	0.0086	41.32	0.0020	0.0107	33.73	0.0017	0600.0	23.93%	4.25%	18.87%
Quinta Planta	26.39	0.0016	0.0085	33.72	0.0020	0.0107	27.34	0.0017	0600.0	25.52%	5.86%	18.57%
Cuarta Planta	20.30	0.0016	0.0082	26.07	0.0020	0.0104	20.89	0.0017	0.0087	26.40%	5.89%	19.37%
Tercera Planta	14.44	0.0014	0.0075	18.67	0.0018	0.0095	14.69	0.0015	0.0081	27.49%	8.27%	17.75%
Segunda Planta	9.12	0.0012	0.0063	11.89	0.0015	0.0081	8.93	0.0013	0.0069	28.09%	8.45%	18.11%
Primera Planta	4.61	0.0012	0.0065	6.11	0.0016	0.0086	4.04	0.0011	0.0057	32.57%	14.14%	51.33%
ELABORACI	ÓN: Diego F	aillacho										

6.4.2 EDIFICIO PLUS 1

ΡΑΡ ΆΜΕΤΡΟ Λ		VALORES	6	DIFEREI		TUAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015 /RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	4924.26	4833.39	4445.52	1.88%	10.77%	8.72%
Carga Reactiva [T]	2409.85	2391.11	2381	0.78%	1.21%	0.42%
Corte Basal [T]	265.08	254.82	259.16	4.03%	2.28%	1.70%
		Fuerza	s Laterales	s [T]		
12° Planta	13.38	21.00	16.07	56.92%	20.10%	30.66%
11° Planta	17.62	17.61	13.48	0.08%	30.79%	30.68%
10° Planta	46.86	51.57	41.72	10.06%	12.30%	23.60%
9° Planta	42.50	45.31	37.58	6.59%	13.11%	20.57%
8° Planta	36.43	39.20	33.43	7.61%	8.96%	17.25%
7° Planta	30.58	33.26	29.28	8.77%	4.43%	13.59%
6° Planta	24.99	27.52	25.14	10.13%	0.59%	9.48%
5° Planta	19.68	21.99	20.99	11.75%	6.67%	4.77%
4° Planta	14.69	16.72	16.59	13.78%	12.89%	0.78%
3° Planta	10.08	11.74	12.44	16.44%	23.42%	5.99%
2° Planta	5.93	7.13	8.29	20.30%	39.95%	16.33%
1° Planta	2.34	2.96	4.15	26.28%	76.95%	40.12%
Periodo Fundamental [s]	1.35	1.173	1.124	15.09%	20.11%	4.36%
MOMEN	NTOS – VIG	GA PORTI	CO C ENT	RE EJES(1 - 2)) 15° PISO	
	(COMBINA	CION 1.2D) + 1.6L		
Momento izq. [T-m]	4.47	2.55	2.66	75.29%	68.05%	4.31%
Momento cen. [T-m]	2.37	2.77	2.41	16.88%	1.69%	14.94%
Momento der. [T-m]	1.86	3.34	4.91	79.57%	163.98%	47.01%
	С	OMBINAC	CION 1.2D	+ L – Ex		
Momento izq. [T-m]	7.42	4.45	7.88	66.74%	6.20%	77.08%
Momento der. [T-m]	14.85	13.25	16.68	12.08%	12.32%	25.89%
ABORACIÓN: Diego	Paillacho	· · · ·				

CUADRO 6.35 COMPARATIVA DE RESULTADOS EDIFICIO PLUS 1

ΕL egc

					DESPLAZAI	MIENTOS - PO	DRTICO C					
	Ē	TABS 2015			RISA 3D			RCBE		Dife	rencia Porcentu	la
Piso	Desplaza. X [mm]	AE	ΔM	Desplaza. Z [mm]	JΔ	ΜΔ	Desplaza. X [mm]	ΔE	ΔM	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
12° Planta	81.45	0.0024	0.0128	63.11	0.0021	0.0112	73.23	0.0022	0.0113	14.84%	13.74%	0.96%
11° Planta	72.27	0.0024	0.0129	55.12	0.0021	0.0112	65.16	0.0022	0.0113	15.03%	13.81%	1.08%
10° Planta	64.68	0.0024	0.0129	48.52	0.0021	0.0112	58.49	0.0022	0.0114	15.03%	13.18%	1.64%
9° Planta	57.09	0.0024	0.0129	41.92	0.0021	0.0111	51.78	0.0022	0.0114	15.76%	13.25%	2.21%
8° Planta	49.50	0.0024	0.0128	35.36	0.0021	0.0109	45.08	0.0022	0.0113	16.98%	13.05%	3.48%
7° Planta	41.96	0.0027	0.0142	28.92	0.0020	0.0105	38.41	0.0021	0.0111	34.97%	27.90%	5.52%
6° Planta	33.58	0.0020	0.0103	22.71	0.0019	0.0099	31.86	0.0020	0.0107	4.70%	3.84%	8.72%
5° Planta	27.47	0.0022	0.0113	16.87	0.0017	0600.0	25.52	0.0019	0.0102	26.42%	11.33%	13.55%
4° Planta	20.78	0.0020	0.0103	11.58	0.0015	0.0077	19.51	0.0018	0.0094	34.03%	10.35%	21.45%
3° Planta	14.68	0.0017	0.0090	7.03	0.0012	0.0061	13.98	0.0016	0.0083	47.83%	9.16%	35.42%
2° Planta	9.35	0.0014	0.0074	3.42	0.0008	0.0041	9.09	0.0013	0.0068	79.41%	7.72%	66.56%
1° Planta	5.00	0.0010	0.0055	1.00	0.0003	0.0017	5.05	0.0016	0.0086	225.75%	55.77%	407.43%
					DESPLAZA	MIENTOS - PO	DRTICO 3					
	Ш	TABS 2015			RISA 3D			RCBE		Dife	rencia Porcentua	le I
Piso	Desplaza. Y [mm]	AE	ΔM	Desplaza. X [mm]	JΔ	ΔM	Desplaza. Y [mm]	ΔE	ΔM	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
12° Planta	62.10	0.0017	0.0090	51.38	0.0016	0.0084	61.16	0.0017	0.0091	8.03%	0.37%	8.43%
11° Planta	55.64	0.0017	0.0092	45.40	0.0016	0.0085	54.68	0.0017	0.0091	8.49%	0.97%	7.45%
10° Planta	50.22	0.0018	0.0093	40.41	0.0016	0.0085	49.31	0.0017	0600.0	9.52%	2.79%	6.55%
9° Planta	44.74	0.0018	0.0095	35.40	0.0016	0.0086	43.98	0.0018	0.0093	10.51%	3.06%	7.23%
8° Planta	39.10	0.0018	0.0097	30.30	0.0017	0.0087	38.51	0.0018	0.0094	11.82%	3.27%	8.28%
7° Planta	33.38	0.0019	0.0097	25.18	0.0016	0.0085	32.96	0.0018	0.0094	13.71%	3.18%	10.21%
6° Planta	27.64	0.0018	0.0095	20.13	0.0016	0.0082	27.40	0.0018	0.0093	16.43%	2.84%	13.21%
5° Planta	22.00	0.0017	0.0092	15.29	0.0014	0.0076	21.92	0.0017	0600.0	20.40%	2.28%	17.72%
4° Planta	16.59	0.0016	0.0085	10.80	0.0013	0.0067	16.63	0.0016	0.0084	26.47%	1.43%	24.69%
3° Planta	11.56	0.0014	0.0076	6.82	0.0011	0.0055	11.67	0.0014	0.0076	36.83%	0.42%	36.26%
2° Planta	7.08	0.0012	0.0064	3.55	0.0008	0.0040	7.21	0.0012	0.0064	28.93%	1.13%	60.73%
1° Planta	3.32	0.0009	0.0048	1.18	0.0004	0.0020	3.41	0.0011	0.0058	137.43%	21.58%	188.66%
ELABORACI	IÓN: Diego F	aillacho										

CUADRO 6.36 DIFERENCIA PORCENTUAL – DESPLAZAMIENTOS EDIFICIO PLUS 1

6.5 VENTAJAS Y DESVENTAJAS DE LOS PROGRAMAS

6.5.1 PROGRAMA ETBAS 2015

Ventajas

- Interfaz de usuario fácil de entender y utilizar.
- Se puede definir una grilla en tres dimensiones (X, Y, Z).
- Posee diferentes materiales (hormigón, acero, elementos compuestos) para modelar una estructura.
- Facilidad de crear cualquier material.
- Modelación de diferentes sistemas de piso (losa alivianada, losa maciza, Deck).
- Posee varias vistas del modelo en elevación y planta.
- Posibilidad de declarar nudos rígidos de manera automática.
- Facilidad del ingreso de inercias agrietadas.
- Ingreso de Fuerzas Laterales mediante: calculo automático utilizando el coeficiente de Corte Basal o ingreso de fuerzas calculadas manualmente (Coeficiente y fuerzas laterales calculadas utilizando el Código NEC2015).
- Facilidad al momento de cambiar las dimensiones y geometría de las secciones de la Estructura.
- Declaración fácil y rápida de excentricidad Torsional.
- Permite modelar cualquier tipo de Sistema Estructural.
- Permite rigidizar cualquier sistema de piso de manera rápida.
- Calculo automático de masas de entrepiso.
- Calculo automático de Centros de Masas y Rigidez.
- Se puede crear una envolvente de las combinaciones del código.
- Permite una visualización de datos muy amplia y rápida.

Desventajas

- Posee varios códigos en su base de datos pero no el código Ecuatoriano.
- Es complicado modelar estructuras muy irregulares.
- Al modelar estructuras que posee subsuelos el programa no considera al subsuelo como una sección de la estructura sumamente rígida y presenta deformaciones laterales mínimas en los subsuelos.
- No diseña vigas compuestas a momento negativo.

6.5.2 PROGRAMA RISA 3D

Ventajas

- Posee diferentes materiales (hormigón, acero, madera) para modelar una estructura.
- Facilidad de crear cualquier material.
- Ingreso de Fuerzas Laterales mediante calculo manual (utilizando el Código NEC2015).
- Calculo automático de excentricidad Torsional.
- Permite modelar cualquier tipo de Sistema Estructural.
- Permite rigidizar el sistema de piso de manera rápida.
- Calculo automático de masas de entrepiso.
- Calculo automático de Centros de Masas y Rigidez.

Desventajas

- Interfaz de usuario un poco complicada.
- No permite definir secciones compuestas.
- Dificultad al momento de cambiar las dimensiones y geometría de las secciones de la Estructura.
- Posee varios códigos en su base de datos pero no el código Ecuatoriano.
- Es complicado el modelar las estructuras ya que no se puede definir una grilla en tres dimensiones.
- No posee losas Tipo Deck.
- No se puede ingresar el Coeficiente de Corte Basal para el cálculo de las fuerzas laterales.
- No posee vistas rápidas de elevación y planta de la estructura.
- Al modelar estructuras que posee subsuelos el programa no considera al subsuelo como una sección de la estructura sumamente rígida y presenta deformaciones laterales en los subsuelos que generan desplazamientos excesivos en los pisos superiores.
- La visualización de los datos es muy amplia pero no se puede observar de una manera rápida y sencilla.

6.5.3 PROGRAMA RCBE

Ventajas

- Interfaz de usuario fácil de entender y utilizar.
- Se puede definir una grilla en tres dimensiones (X, Y, Z).
- Rápida modelación de estructuras regulares.
- Posee vistas rápidas de elevación y planta de la estructura.
- Calculo automático de excentricidad Torsional.
- Permite modelar cualquier tipo de Sistema Estructural.
- Rigidiza el sistema de piso de manera automática.
- Calculo automático de masas de entrepiso.
- Calculo automático de Centros de Masas y Rigidez.
- Al modelar estructuras que posee subsuelos el programa puede considera al subsuelo como una sección de la estructura sumamente rígida y presenta deformaciones laterales en los subsuelos mínimas.

Desventajas

- Posee únicamente el material hormigón.
- No permite definir secciones compuestas.
- Posee varios códigos en su base de datos pero no el código Ecuatoriano.
- Es complicado el modelar estructuras irregulares debido a que se debe editar las dimensiones de la grilla y esto es requiere mucho tiempo.
- Dificultad al momento de cambiar las dimensiones y geometría de las secciones de la Estructura ya que se debe seleccionar de elemento en elemento para modificar sus propiedades.
- Divide automáticamente los elementos en los nudos generados al momento de realizar la grilla, esto no es muy conveniente ya que dificulta el visualizar los resultados.
- Posee losas Tipo Deck pero no se pueden editar todas las propiedades que posee esta losa.
- No se puede ingresar el Coeficiente de Corte Basal para el cálculo de las fuerzas laterales.
- La visualización de los datos es muy amplia pero no se puede observar de una manera rápida y sencilla.

CAPÍTULO 7

CONCLUCIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

Después de haber realizado la modelación de los edificios en cada programa, obtener los resultados y realizar la comparación del análisis y diseño de los elementos estructurales de cada edificio, se puede señalar aspectos que son importantes para el correcto uso de los programas.

Primero mencionare que de los 3 programas utilizados (ETABS 2015, RISA 3D Y RCBE) para la realización del presente trabajo, el programa que posee una leve ventaja entre estos es el programa ETABS 2015 que es uno de los programas que se ha utilizado en la carrera, es la mejor opción para modelar cualquier tipo edificación por presentar facilidad de manejo y poseer mayor número de herramientas para el análisis y diseño.

Al modelar las edificaciones en los programas y obtener los resultados se puede apreciar que los programas al poseer o no ciertas herramientas que permite definir parámetros como: materiales, elementos compuestos, losas, nudos rígidos, diafragmas horizontales, fuerzas sísmicas y número de subsuelos, todos estos parámetros modifican los resultados obtenidos entre estos programas.

Se puede definir de manera muy fácil el tipo de material que se va a usar para modelar en el programa ETABAS 2015 y RISA 3D pero no se puede definir el tipo de material en el programa RCBE debido a que es un programa de análisis y diseño en hormigón, pero pese a esto se puede realizar el análisis en el programa RCBE lo único que se debe realizar es la modificación de las propiedades mecánicas del material predefinido en el programa, modificando su densidad y módulo de elasticidad.

En los programas RISA 3D Y RCBE que no poseen elementos compuestos y con la finalidad de que no presente grandes variaciones al comparar los resultados se debe crear una sección equivalente que posea una rigidez y peso similar o igual a la del elemento compuesto, como se especifica en la **sección 3.5** del presente trabajo, con esto se genera una sección prismática a la cual se le dará dichas características mediante la modificación de sus inercias, área transversal, densidad y módulo de elasticidad, para el caso de las secciones equivalentes en columnas se puede observar los resultados en el **cuadro 3.16** del ejemplo que se da en la **sección 3.5** que la diferencia porcentual de rigideces entre lo calculado y lo obtenido con los programas no es mayor al **1%**, mientras que en el programa RCBE también se tuvo que realizar un procedimiento parecido para las vigas y viguetas debido a lo mencionado en el párrafo anterior (RCBE realiza análisis estructural con elementos

de hormigón), y se realizó lo especificado en la **sección 3.6** de igual manera con un ejemplo cuyos resultados se pueden observar en el **cuadro 3.17** y se aprecia que la diferencia porcentual de rigideces en estos elementos aumento a un máximo de **3.30%**, por lo tanto se puede concluir que el uso de secciones equivalentes en los programas que no poseen secciones compuestas permitirá un análisis similar.

La comparación de resultados que se realiza en la **sección 6.4 Diferencia Porcentual**, en los cuadros que se presentan en esta sección (del **cuadro 6.31** al **cuadro 6.36**) se puede apreciar que no existe mayor diferencia en los parámetros: Peso de la estructura, Carga reactiva y Corte Basal, excepto en el edificio PLUS 1, en el cual el Peso de la Estructura es muy diferente y esto es debido a que en el programa RCBE no se puede colocar losa inclinadas, estas losas son parte del subsuelo por lo que no influye en la Carga Reactiva ni el Corte Basal.

En la distribución de las Fuerzas laterales se puede apreciar que el haber modelado los edificios con tapa gradas distorsiona esta distribución, esto se puede apreciar con mayor facilidad en el edificio Plus 1, esta distorsión también se debe a las diferentes maneras de ingresar las fuerzas laterales que posee cada programa como se indica en el **Capítulo 5.**

La diferencia que existen entre resultados de fuerzas internas de los elementos vigas y columnas que se puede observar en los resultados visuales y numéricos de los **cuadro 6.1**, **cuadro6.11**, **cuadro 6.21** y **cuadro 6.31** al **cuadro 6.36**, se debe a la manera en que se modela en los programas, en el programa ETABS 2015 se utilizó la opción nudos rígidos lo cual reduce la longitud de los elementos y por ende se obtienen valores menores de fuerzas internas que en los programas RISA 3D y RCBE, mientras que los resultados entre estos 2 programas son más similares.

Se puede concluir que la diferencia entre derivas de piso de los pórticos que se tomaron como ejemplo en cada edificio se debe a 3 factores.

El primer factor es el modelamiento de las losas, en el programa ETABS 2015 se puede modelar cualquier tipo de losa con las características que el usuario desee es nuestro caso se utilizó losas tipo Deck la cual se encarga de repartir la carga, mientras que en el programa RISA 3D no se pudo representar físicamente la losa sino que se utilizó una membrana que representa la losa y es la que se encarga de repartir la carga, y en el programa RCBE se puede modelar la losa pero no posee una losa tipo Deck así que se debe ingresar una losa con una altura equivalente como se indica en la **sección 3.7** del presente trabajo y esta repartirá la carga.

El segundo factor es la consideración de los subsuelos como una zona rígida, y el único programa que considera los subsuelos de esta forma es el RCBE.

Por último esta la altura de la edificación como se explicó anteriormente en los programas RISA 3D y RCBE se utilizó para modelar las columnas secciones equivalentes y si bien se demostró que la diferencia porcentual no es muy significativa conforme el edificio sea de mayor altura esta diferencia seguirá creciendo como se observa en los resultados de los edificios Unach y Plus 1.

La diferencia de resultados del periodo fundamental de un mismo edificio entre los programas se debe a lo referido en el párrafo anterior, además de haberse modelado con las losas tapa gradas.

Por recomendaciones del Ingeniero Jorge Vintimilla a los modelos originales se les retiro las losas tapa gradas para que se dé una mejor distribución de las fuerzas laterales y obtener un periodo fundamental menor, también se cambió las viguetas que en un principio se consideraron como vigas simplemente apoyadas a vigas continuas, además de estas modificaciones también en el programa ETABS 2015 se modelara sin nudos rígidos para que haya mayor similitud de resultados de fuerzas internas entre los programas, los resultados y modelos con estas modificaciones se encuentran en la sección **Anexos**.

Debido a esto las secciones de los elementos estructurales se modificaron, los mayores cambios se dieron en el edificio Unach ya que en este edificio se debió aumentar diafragmas para controlar el problema de torsión en planta y en el edificio Plus 1 se cambió de posición todo un eje de columna y se dio otra disposición a los diafragmas, y en todos los edificios las secciones de las viguetas se redujeron debido a que el momento máximo que una viga continua debe soporta es menor (entre 25% – 37,5%) que para una viga simplemente apoyada, esto se compensa debido a que este momento no va a ser soportado únicamente por la viga sino que va a tener colaboración de la losa, esta colaboración aumenta la capacidad a la viga en un 30% este valor es una recomendación del Ingeniero Jorge Vintimilla.

Con las nuevas modificaciones se puede evidenciar en los resultados (**Anexos 2, 3** y **4**) de los parámetros: Peso de la estructura, Carga reactiva y Corte Basal, para el programa ETABS 2015 se aumenta la diferencia porcentual con respecto a los otros programas y a lo obtenido con anterioridad, porque el programa estaría tomando dos veces el peso del material en las uniones viga – columna, pero se mantiene la diferencia porcentual de peso de la estructura para el edificio PLUS 1 por la misma razón que se explicado con anterioridad.

La diferencia porcentual en la distribución de fuerzas laterales mejoro con estas modificaciones y si aún se mantiene una diferencia grande es debido a lo explicado con anterioridad acerca de la manera en que el programa obtuvo estas fuerzas.

El periodo fundamental y las derivas de piso de los pórtico de las estructuras tiene una mejora al haber retirado las losas tapa gradas de los edificios, pero para el edificio Plus 1 se observa diferencias porcentuales grandes y esto ocurre por los 3 factores (modelación de losas, subsuelos y altura del edificio) mencionados en un párrafo anterior.

Las fuerzas internas en los elementos mejoraron pero aún se tiene una diferencia porcentual grande esto se debe en gran parte a los 3 factores mencionado en el párrafo anterior, pero se puede concluir que adicional a estos existe una parámetro que influye de mayor forma en los resultados de fuerzas internas, derivas y periodo

fundamental, tiene que ver con la excentricidad accidental, esto se debe a que cada programa lo define e interpreta de diferente manera, los programas ETABS 2015 y RISA 3D permite introducir el coeficiente de excentricidad accidental que establece el código NEC 2015 que es el 5% de la mayor longitud en planta del piso, el programa ETABS 2015 y el programa RISA 3D se puede ingresar este coeficiente, en el caso del programa RCBE presenta diferentes opciones de excentricidades por ejemplo toma el 5% de la mayor longitud en planta del edificio y a este valor le suma o resta la excentricidad estática la cual el programa define como la diferencia entre el centro de masa y el centro de rigidez.

7.2 RECOMENDACIONES

En la modelación de edificios es mejor considerar nudos rígidos ya que esto reduce las fuerzas internas en los elementos, con esto se podrá reducir las secciones de los elementos y tener una estructura mucho más liviana lo cual mejora el diseño Sismorresistente y podría reducir costos en la construcción.

Es mejor considerar a las viguetas como vigas continuas y no simplemente apoyadas por la reducción de fuerzas internas en las mismas y la reducción de sección por ende reducción de costos.

Al ingresar las fuerzas laterales es preferible ingresar manualmente las fuerzas y no permitir que el programa calcule.

Al considerar la excentricidad accidental es mejor realizar el cálculo según como especifica el código NEC 2015 y no permitir que el programa calcule.
REFERENCIAS BIBLIOGRÁFICAS

- Kubiec-Conduit, (s.f.), <u>Catalogo "Kubilosa"</u>. Quito, Ecuador.
- American Institute of Steel Construction, (2010), <u>Specification for Structural</u> <u>Steel Buildings</u>. Chicago, Illinois.
- Norma Ecuatoriana de la Construcción, (2015).
- Buen López O., (2004), <u>Diseño de Estructuras de Acero Construcción</u> <u>Compuesta</u>. México D.F., Fundación ICA.
- Crisafulli F, (2014), <u>Diseño Sismorresistente de Construcciones de Acero</u>. Mendoza, Argentina.
- Tisalema M, (2004), <u>Diseño estructural de un edificio de 15 pisos de estructuras</u> metálicas con aplicación del programa SAP 2000 aplicando el método LRFD. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
- Armenta J, Mendoza E y A Ramírez, (2007), <u>Análisis Comparativo (Staad Pro</u> 2006 vs Etabs V.9.0) de superestructura para diseño de edificios de 8 niveles con columnas de sección compuesta y trabes metálicas ubicado en la zona IIIa según RCDF 2004. Escuela Superior de Ingeniería y Arquitectura Unidad Zacatenco, México D.F.

ANEXOS

FICHA TÉCNICA KUBILOSA

MODELOS DEFINITIVOS

COMPARACIÓN DE RESULTADO Y DISEÑO EDIFCIO LOAIZA

MODELO DEFINITIVO EDIFICIO LOAIZA - ETABS 2015

MODELO DEFINITIVO EDIFICIO LOAIZA - RISA 3D

MODELO DEFINITIVO EDIFICIO LOAIZA - RCBE

ΡΔΡΑΜΕΤΡΟ Δ	,	VALORES		DIFEREN	ICIA PORCENT	UAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	1508.95	1469.38	1474.47	2.69%	2.34%	0.35%
Carga Reactiva [T]	1423.21	1383.52	1474.47	2.87%	3.60%	6.57%
Corte Basal [T]	268.99	261.42	280.85	2.89%	4.41%	7.43%
		Fuerzas	s Laterale	s [T]		
Cuarta Planta	86.14	82.10	91.56	4.92%	6.29%	11.52%
Tercera Planta	81.30	78.37	80.32	3.73%	1.22%	2.49%
Segunda Planta	53.98	53.66	54.77	0.60%	1.45%	2.06%
Primera Planta	47.57	47.29	53.92	0.59%	13.36%	14.03%
Periodo Fundamental [s]	0.327	0.337	0.348	3.06%	6.42%	3.26%
MOME	ENTOS – V	IGA PORTI	CO 4 EN	TRE EJES (C-E)	4° PISO	
		COMBINA	CION 1.2	D + 1.6L		
Momento izq. [T-m]	2.749	2.652	2.53	3.66%	8.66%	4.82%
Momento cen. [T-m]	3.035	3.033	2.724	0.07%	11.42%	11.34%
Momento der. [T-m]	4.312	4.315	4.144	0.07%	4.05%	4.13%
	(COMBINAC	ION 1.2D	+ L – Ex		
Momento izq. [T-m]	2.293	2.131	1.867	7.60%	22.82%	14.14%
Momento cen. [T-m]	2.584	2.576	2.282	0.31%	13.23%	12.88%
Momento der. [T-m]	4.189	4.242	4.277	1.27%	2.10%	0.83%

DIFERENCIA PORCENTUAL

				DESF	LAZAMI	ENTOS - F	DRTICO 4		-			
	ETA	ABS 2015			RISA 3D			RCBE		Difere	ncia Porcer	itual
Piso	Desplaza. X [mm]	ΔE	ΔM	Desplaza. Z [mm]	ΔE	MA	Desplaza. X [mm]	AE	ΔM	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Cuarta Planta	9.60	0.0011	0.0056	10.41	0.0011	0.0059	10.99	0.0012	0.0062	6.53%	11.15%	4.33%
Tercera Planta	6.37	0.0011	0.0056	6.96	0.0012	0.0061	7.40	0.0012	0.0064	%80.8	12.74%	4.32%
Segunda Planta	3.09	0.0009	0.0045	3.42	0.0010	0.0051	3.70	0.0010	0.0053	11.75%	16.77%	4.49%
Primera Planta	0.46	0.0002	0.0008	0.48	0.0002	0.0008	0.63	0.0002	0.0011	4.35%	36.09%	30.42%
				DESF	LAZAMI	ENTOS - F	ORTICO B					
	ETA	ABS 2015		_	RISA 3D			RCBE		Difere	ncia Porcer	itual
Piso	Desplaza. Y [mm]	ΔE	ΔM	Desplaza. X [mm]	ΔE	MA	Desplaza. Y [mm]	ΔE	MA	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Cuarta Planta	4.18	0.0005	0.0025	4.60	0.0005	0.0027	5.12	0.0006	0.0030	8.33%	19.10%	9.94%
Tercera Planta	2.74	0.0005	0.0024	3.04	0.0005	0.0026	3.41	0.0005	0.0029	10.43%	21.45%	9.97%
Segunda Planta	1.36	0.0004	0.0019	1.52	0.0004	0.0021	1.73	0.0005	0.0024	12.48%	26.79%	12.72%
Primera Planta	0.27	0.0001	0.0005	0.29	0.0001	0.0005	0.35	0.0001	0.0006	8.52%	28.89%	18.77%

		(CUADR	O CON	1PA	RATI	VO DE 1	DISEÑO		
		VIG	UETA PR	IMER P	LAN		NEL-EJE	S (C-E Y 1-	2)	
			```	liga: Pa	Alma	s = 6 a = 25	0x5 [mm 0x5 [mm	]		
					ETA	BS 201	5			
Maximo Moment Moment Capacid	momen o reque o de dis ad: 1.01	to por co rido : Mu eño: Mr I8	0mbnacior [T- m] = 4 [T- m] = 4	n: 1.2 D · 4.693 4.609 Parameter	+ 1.6 s for La	ateral Tors	sion Buckling			
				_	Litte	K Itb	C b			
				_	0.1	1	1			
				Demand/Ca	pacity	(D/C) Rati	o Eqn.(H1-1b)	)		
			D/C Rati 1.018 =	o = =	(P,/2P	<b>P_c) + (M</b> _{r33} ) 0 + 1	/M _{c33} ) + (M _{r22} /I .018 + 0	M _{c22} )		
				Axia	al Force	e and Cap	acities			
		•	P . Force (to	nf) φP	_{nc} Capa	city (tonf)	φP _{nt} C	Capacity (tonf)	-	
			0		43.0	629		58.608	-	
				Mo	oments	and Capa	cities	4 M M - 1	(1	-
		Major Bending	4.6	926	φΝ	4.609	y (tont-m) 94	фМ _п NO L _{ТВС} 4.898	5 ( <b>tont-m</b> )	-
		Minor Bending	(	)		0.308	15			-
					She	ar Design			_	
			Maior Shear	V Force (	(tonf)	φV "C	apacity (tonf)	O.207	-	
			Minor Shear	0			11.4048	0	-	
					RI					
Maximo	momen	to por co	mbnacior	n: 1.2 D ·	+ 1.6					
Moment	o reque	rido : Mu	[T-m] = 4	4.647						
Capacid	o de dis ad: 1.00	eno: Mr )5	[1 - m] = 2	4.022						
	AISC 1	4th(360	-10): LRF	D Code	Che	eck				
	Direct A	Analysis N	lethod							
	Location	naing Che n	CK 1.005 0 m			Locati	near Check on	0.184 (y) 0 m	)	
	Equatio	n	H1-1b			Max D	efl Ratio	L/236		
	Bending Bending	g Flange g Web	Comp Comp	act act		Comp Comp	ression Fla ression We	ange Non-Slei eb Slender	nder	Qs=1 Qa=.858
					3	/-у	Z-Z			
	Fy phi*Pno phi*Pnt	35.2 kg 48.032 58.608	g/mm^2 ? mt } mt	Lb KL/r		54 m 27.177	.54 i 2.87	m '9		
	phi*Mny	.309 m	nt-m	L Co War	mp F	lange	.54 m 32 246 m			
	phi*Vny	27.456	5 mt	L-tor	que	gui	.54 m			
	phi*Vnz	11.405	5 mt	Tau_	_b		1			
	00									
					R	CBE				
	Desve	entaja d	el progra	ama no	rea	iliza d	iseño de	e seccione	s de	acero.



## **MODELOS DEFINITIVOS**

# COMPARACIÓN DE RESULTADO Y DISEÑO EDIFCIO UNACH



#### MODELO DEFINITIVO EDIFICIO UNACH - ETABS 2015

MODELO DEFINITIVO EDIFICIO UNACH - RISA 3D



MODELO DEFINITIVO EDIFICIO UNACH - RCBE



ΡΔΒΆΜΕΤΒΟ Δ	\ \	VALORES	6	DIFEREI		TUAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015 /RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	4636.23	4548.65	4598	1.93%	0.83%	1.09%
Carga Reactiva [T]	3886.03	3808.14	3931.52	2.05%	1.17%	3.24%
Corte Basal [T]	536.27	525.36	541.22	2.08%	0.92%	3.02%
		Fuerza	s Laterales	s [T]	•	•
Séptima Planta	128.66	124.89	135.3	3.02%	5.16%	8.33%
Sexta Planta	125.02	122.82	115.82	1.79%	7.94%	6.05%
Quinta Planta	100.73	98.96	96.877	1.79%	3.98%	2.15%
Cuarta Planta	77.41	76.07	77.393	1.76%	0.03%	1.74%
Tercera Planta	55.15	54.19	57.91	1.77%	5.01%	6.86%
Segunda Planta	34.19	33.59	38.967	1.80%	13.97%	16.02%
Primera Planta	15.11	14.84	19.483	1.80%	28.98%	31.30%
Periodo Fundamental [s]	1.037	1.094	1.021	5.50%	1.57%	7.15%
MOME	NTOS – VI	GA PORT	ICO2 ENTI	RE EJES(D - E	) 7° PISO	
	(	COMBINA	CION 1.2D	) + 1.6L		
Momento izq. [T-m]	3.636	4.114	4.258	13.15%	17.11%	3.50%
Momento cen. [T-m]	1.712	1.899	1.426	10.94%	20.04%	33.17%
Momento der. [T-m]	3.328	3.287	2.992	1.26%	11.24%	9.86%
	С	OMBINAC	CION 1.2D	+ L + Ex		
Momento izq. [T-m]	2.106	2.96	2.316	40.56%	9.98%	27.81%
Momento cen. [T-m]	1.444	1.599	1.2	10.75%	20.32%	33.25%
Momento der. [T-m]	7.980	9.19	8.42	15.17%	5.52%	9.14%

### DIFERENCIA PORCENTUAL

	ncia Porcentual	ETABS2015/ RISA3D/ RCBE RCBE	29.95% 48.98%	28.20% 48.34%	26.40% 47.70%	24.65% 47.34%	23.22% 47.86%	22.43% 62.79%	26.79% 41.54%		ncia Porcentual	ETABS2015/ RISA3D/ RCBE RCBE	2.29% 16.64%	1.99% 16.23%	1.13% 15.68%	0.29% 14.93%	1.52% 13.92%	3.72% 12.33%	14.09% 6.97%
	Difere	ETABS2015/ RISA3D	14.65%	15.72%	16.85%	18.20%	19.99%	32.96%	11.63%		Difere	ETABS2015/ RISA3D	14.03%	13.96%	14.38%	14.60%	15.65%	16.51%	22.04%
		ΜΔ	0.0121	0.0126	0.0129	0.0127	0.0117	0.0096	0.0062			MA	0.0060	0.0061	0.0061	0.0058	0.0052	0.0043	0.0030
0	RCBE	ΔE	0.0023	0.0024	0.0025	0.0024	0.0022	0.0018	0.0012	0	RCBE	ΔE	0.0011	0.0012	0.0012	0.0011	0.0010	0.0008	0.0006
PORTICO 2		Desplaza. X [mm]	55.91	47.29	38.29	29.11	20.08	11.78	4.92	PORTICO I		Desplaza. Y [mm]	26.54	22.27	17.91	13.58	9.44	5.70	2.61
IENTOS -		ΔM	0.0180	0.0187	0.0190	0.0187	0.0172	0.0157	0.0087	IENTOS - I		ΜΔ	0.0070	0.0071	0.0070	0.0067	0.0060	0.0049	0.0032
PLAZAM	RISA 3D	ΔE	0.0034	0.0036	0.0036	0.0036	0.0033	0.0030	0.0017	PLAZAM	<b>RISA 3D</b>	ΔE	0.0013	0.0014	0.0013	0.0013	0.0011	0.0009	0.0006
DES		Desplaza. Z [mm]	85.57	72.73	59.39	45.82	32.52	20.25	9.08	DES		Desplaza. X [mm]	30.74	25.76	20.69	15.68	10.92	6.66	3.19
		ΔM	0.0157	0.0162	0.0163	0.0158	0.0144	0.0118	0.0078			MA	0.0061	0.0062	0.0061	0.0058	0.0052	0.0042	0.0026
	ABS 2015	ΔE	0:0030	0.0031	0.0031	0:0030	0.0027	0.0022	0.0015		ABS 2015	ΔE	0.0012	0.0012	0.0012	0.0011	0.0010	0.0008	0.0005
	ET/	Desplaza. X [mm]	71.24	60.04	48.51	36.90	25.65	15.42	7.02		ET	Desplaza. Y [mm]	26.61	22.24	17.79	13.41	9.26	5.58	2.60
		Piso	Séptima Planta	Sexta Planta	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta			Piso	Séptima Planta	Sexta Planta	Quinta Planta	Cuarta Planta	Tercera Planta	Segunda Planta	Primera Planta





# **MODELOS DEFINITIVOS**

# COMPARACIÓN DE RESULTADOS Y DISEÑO EDIFCIO PLUS 1



MODELO DEFINITIVO EDIFICIO UNACH - ETABS 2015

#### MODELO DEFINITIVO EDIFICIO UNACH - RISA 3D



#### MODELO DEFINITIVO EDIFICIO UNACH - RCBE



ΡΔΒΆΜΕΤΒΟ Δ	۱ ۱	VALORES	6	DIFERE		TUAL
COMPARAR	ETABS 2015	RISA 3D	RCBE	ETABS2015 /RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
Peso Estructura [T]	4843.31	4696.17	4376.66	3.13%	10.66%	7.30%
Carga Reactiva [T]	2274.58	2247.40	2219.08	1.21%	2.50%	1.28%
Corte Basal [T]	282.05	278.21	274.34	1.38%	2.81%	1.41%
		Fuerza	s Laterales	s [T]		
10° Planta	50.78	49.99	50.49	1.57%	0.57%	1.00%
9° Planta	50.95	50.26	45.49	1.39%	12.01%	10.47%
8° Planta	44.08	43.48	40.49	1.38%	8.87%	7.38%
7° Planta	37.41	36.90	35.23	1.38%	6.18%	4.74%
6° Planta	30.95	30.53	30.24	1.37%	2.35%	0.96%
5° Planta	24.73	24.40	25.24	1.36%	2.08%	3.46%
4° Planta	18.79	18.54	20.25	1.35%	7.75%	9.20%
3° Planta	13.19	13.02	15.23	1.34%	15.41%	16.95%
2° Planta	8.01	7.91	9.99	1.32%	24.64%	26.28%
1° Planta	3.23	3.18	4.72	1.34%	46.14%	48.09%
Periodo Fundamental [s]	1.314	1.188	1.349	10.61%	2.66%	13.55%
MOMEN	ITOS – VIG	GA PORTI	CO D ENT	RE EJES(1 - 2	)10° PISO	
	(	COMBINA	CION 1.2D	) + 1.6L		
Momento izq. [T-m]	7.060	6.416	5.51	10.04%	28.14%	16.44%
Momento cen. [T-m]	3.454	3.936	3.397	13.94%	1.69%	15.87%
Momento der. [T-m]	6.102	6.988	7.506	14.51%	23.00%	7.41%

### **DIFERENCIA PORCENTUAL**

DESPLAZA ETABS 2015 Desplaza. Z AF Desplaza. Z AF	TABS 2015 DESPLAZA ABS 2015 RISA 3D AF AM Desplaza. Z AF	DESPLAZA RISA 3D AM Desplaza. Z AF	DESPLAZA RISA 3D Desplaza. Z	DESPLAZA RISA 3D		MIENTOS - PC	RTICO C Desplaza. X	RCBE	V	Dife ETABS2015/	rencia Porcentu ETABS2015/	al RISA3D/
riso	[mm]	<b>de</b>	MIZ	[mm]	AE	MD	[mm]	AE	AIM	<b>RISA3D</b>	RCBE	RCBE
10° Planta	91.14	0.0030	0.0155	70.11	0.0027	0.0142	67.19	0.0022	0.0115	9.46%	34.72%	23.08%
9° Planta	81.96	0.0030	0.0159	61.72	0.0028	0.0146	60.38	0.0023	0.0120	9.10%	32.82%	21.75%
8° Planta	72.56	0.0031	0.0162	53.10	0.0028	0.0148	53.30	0.0023	0.0123	%6£.6	31.25%	19.98%
7° Planta	63.00	0.0031	0.0163	44.37	0.0028	0.0148	46.02	0.0024	0.0126	10.41%	29.60%	17.38%
6° Planta	53.36	0.0031	0.0162	35.63	0.0027	0.0144	38.58	0.0024	0.0126	12.54%	28.28%	13.99%
5° Planta	43.79	0.0030	0.0158	27.13	0.0026	0.0135	31.12	0.0024	0.0124	16.35%	27.38%	9.48%
4° Planta	34.49	0.0028	0.0149	19.14	0.0023	0.0121	23.82	0.0022	0.0117	23.11%	27.24%	3.36%
3° Planta	25.70	0.0026	0.0135	12.00	0.0019	0.0100	16.91	0.0020	0.0105	35.72%	28.33%	5.76%
2° Planta	17.71	0.0022	0.0117	6.11	0.0014	0.0071	10.69	0.0017	0.0088	65.59%	33.06%	24.44%
1° Planta	10.78	0.0019	0.0098	1.93	0.0006	0.0033	5.48	0.0012	0.0063	201.30%	57.05%	91.84%
					DESPLAZA	MIENTOS - PO	DRTICO 3					
	ш	<b>TABS 2015</b>			<b>RISA 3D</b>			RCBE		Dife	rencia Porcentu	al
Piso	Desplaza. Y [mm]	$\nabla \mathbf{E}$	M	Desplaza. X [mm]	$\Delta \mathbf{E}$	ΔM	Desplaza. Y [mm]	ΔE	ΔM	ETABS2015/ RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
10° Planta	90.62	0.0024	0.0127	99.68	0.0030	0.0155	70.63	0.0018	0.0095	22.11%	34.31%	64.00%
9° Planta	83.12	0.0027	0.0140	90.52	0.0032	0.0170	65.05	0.0020	0.0106	21.28%	32.06%	60.16%
8° Planta	74.84	0.0030	0.0155	80.48	0.0035	0.0186	58.78	0.0023	0.0119	19.92%	30.31%	56.27%
7° Planta	65.67	0.0032	0.0169	69.48	0.0038	0.0201	51.74	0.0025	0.0132	18.68%	28.38%	52.35%
6° Planta	55.69	0.0034	0.0179	57.64	0.0040	0.0209	43.97	0.0027	0.0141	16.80%	26.98%	48.31%
5° Planta	45.10	0.0035	0.0183	45.27	0.0040	0.0210	35.63	0.0028	0.0146	14.83%	25.29%	43.87%
4° Planta	34.30	0.0034	0.0178	32.87	0.0038	0.0199	27.01	0.0027	0.0144	11.64%	24.04%	38.49%
3° Planta	23.77	0.0031	0.0162	21.11	0.0033	0.0173	18.52	0.0025	0.0132	6.74%	22.96%	31.25%
2° Planta	14.18	0.0025	0.0132	10.88	0.0024	0.0128	10.72	0.0020	0.0107	3.11%	23.36%	19.64%
1° Planta	6.36	0.0017	0.0087	3.29	0.0011	0.0056	4.38	0.0012	0.0064	55.78%	36.76%	13.91%





# **RESUMEN DE RESULTADOS Y GRÁFICOS**

	Darámotro a		Valores			Error	
	Comparar	ETABS 2015	RISA 3D	RCBE	ETABS2015 /RISA3D	ETABS2015/ RCBE	RISA3D/ RCBE
ez	Peso Estructura [ T ]	1508.95	1469.38	1474.47	2.69%	2.34%	0.35%
ibo	Carga Reactiva [ T ]	1423.21	1383.52	1474.47	2.87%	3.60%	6.57%
0 P	Corte Basal [ T ]	268.99	261.42	280.85	2.89%	4.41%	7.43%
ioiitik	Periodo Fundamental [ T ]	0.327	0.337	0.348	3.06%	6.42%	3.26%
Ed	Máxima deriva	0.0072	0.0078	0.0079	%09'2	8.93%	1.24%
Ч	Peso Estructura [ T ]	4636.23	4548.65	4598	1.93%	%830	1.09%
nad	Carga Reactiva [ T ]	3886.03	3808.14	3931.52	2.05%	1.17%	3.24%
U o	Corte Basal [ T ]	536.27	525.36	541.22	2.08%	0.92%	3.02%
ioifik	Periodo Fundamental [ T ]	1.037	1.094	1.021	%09.3	1.57%	7.15%
E	Máxima deriva	0.01672	0.0180	0.0167	7.65%	0.13%	7.78%
٢	Peso Estructura [ T ]	4843.31	4696.17	4376.66	3.13%	10.66%	7.30%
snj	Carga Reactiva [ T ]	2274.58	2247.40	2219.08	1.21%	2.50%	1.28%
d 0	Corte Basal [ T ]	282.05	278.21	274.34	1.38%	2.81%	1.41%
ioifit	Periodo Fundamental [ T ]	1.314	1.188	1.349	10.61%	2.66%	13.55%
E	Máxima deriva	0.02160	0.0215	0.0166	%28.0	30.14%	29.67%

# **CUADRO RESUMEN DE RESULTADOS**







