ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

ESPECTROS DE CONTROL PARA EL VALLE DE LOS CHILLOS

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL MENCIÓN ESTRUCTURAS

ANDREA ESTEFANÍA CHICAIZA BÓSQUEZ andrea.chicaiza@epn.edu.ec

DIRECTOR: ING. ROBERTO RODRIGO W. AGUIAR FALCONÍ PhD. rraguiar@espe.edu.ec

CO-DIRECTOR: ING. DIEGO ANDRÉS SOSA CAIZA MSc. diego.sosac@epn.edu.ec

Quito, Octubre 2016

DECLARACIÓN

Yo ANDREA ESTEFANÍA CHICAIZA BÓSQUEZ, declaro que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional, puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

ANDREA ESTEFANIA CHICAIZA BÓSQUEZ.

CERTIFICACIÓN

Certificamos que el presente trabajo fue desarrollado por ANDREA ESTEFANÍA CHICAIZA BÓSQUEZ, bajo nuestra supervisión.

ING. ROBERTO AGUIAR PhD. DIRECTOR DEL PROYECTO **ING. DIEGO SOSA MSc.** CO-DIRECTOR DEL PROYECTO

AGRADECIMIENTOS

A Dios por darme salud, fortaleza, sabiduría, por nunca abandonarme en momentos difíciles y por demostrarme que siempre estuvo conmigo.

A mi familia por confiar en mí y darme fuerzas en todo momento.

Al Doctor Roberto Aguiar por permitirme trabajar con él y dedicar su valioso tiempo en el desarrollo de este proyecto de investigación. A él mi respeto y admiración.

A los Ingenieros Diego Sosa y Diego Quizanga por haber aportado con sus sabios conocimientos y sugerencias para el feliz término de esta tesis.

A mi querida universidad, a todos quienes conforman la facultad de Ingeniería Civil y de manera especial a mis profesores por sus conocimientos y consejos impartidos a lo largo de mi formación profesional.

A la universidad de las Fuerzas Armadas que día tras día me recibió en sus instalaciones durante el transcurso de esta investigación.

Al personal del Instituto Nacional de Investigación Geológico Minero y Metalúrgico (INIGEMM), Secretaría Nacional de Planificación y Desarrollo (SENPLADES) e Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) por la información facilitada.

Y finalmente a todas las personas, quienes de alguna forma u otra han colocado un granito de arena para lograr mi objetivo.

DEDICATORIA

A Dios porque simplemente sin él nada de esto estaría pasando.

A mis padres Liria e Iván por ser el pilar más importante en mi vida, por demostrarme su apoyo y amor incondicional. De manera especial a ti madre mía, cuánto le agradezco a Dios por tenerte junto a nosotros, eres mi ejemplo de lucha constante. Te amo madrecita.

A mi hermano Alejandro por ser mi mayor motivación para salir adelante. Gracias por enseñarme el amor a la vida, las ganas de vivir y la lucha continua. Siempre estará en mí lo que un día alguien me dijo "Dios da las batallas más difíciles a sus mejores soldados". Sin duda somos sus mejores soldados y muy bendecidos con tenerte.

A mi abuelita Tránsito por despertarme todos los días con una llamada para llegar temprano a la universidad. Gracias por estar siempre pendiente de mí.

A mi hermana Karla, a mis abuelos Hugo, Adelaida y Alejandro, a mis tíos y familia en general por su apoyo brindado y por sus sabios consejos que hoy me han hecho ser la mujer que soy.

"Lo único imposible es aquello que no se intenta"

CONTENIDO

CAPÍTULO	D 1	1
INTRODU	CCIÓN	1
1.1 AN	TECEDENTES	1
1.2 SIS	MICIDAD HISTÓRICA DEL VALLE DE LOS CHILLOS	
RELACI	ONADOS A FALLAS LOCALES	2
1.3 DE	SCRIPCIÓN BREVE DE LOS SISMOS HISTÓRICOS QUE HAN	
AFECTA	ADO A QUITO Y PROBABLEMENTE AL VALLE	4
1.3.1	SISMO DE 1541	4
1.3.2	SISMO DE 1587	4
1.3.3	SISMO DE 1755	5
1.3.4	SISMO DE 1859	5
1.3.5	SISMO DE 1914	6
1.3.6	SISMO DE 1923	7
1.3.7	SISMO DE 1929	7
1.3.8	SISMO DE 1938	8
1.4 OB	JETIVOS	10
1.4.1	OBJETIVO GENERAL	10
1.4.2	OBJETIVOS ESPECÍFICOS	10
1.5 JUS	STIFICACIÓN	11
1.6 ME	TODOLOGÍA	16
CAPÍTUL	D 2	17
FALLAS G	EOLÓGICAS QUE PUEDEN AFECTAR AL VALLE DE LOS	
CHILLOS.		17
2.1 INT	RODUCCIÓN	17
2.2 DE	SCRIPCIÓN DE LAS FALLAS GEOLÓGICAS	18
2.2.1	ELEMENTOS Y CARACTERÍSTICAS DE UNA FALLA	
GEOL	ÓGICA	18
2.2.2	CLASIFICACIÓN GEOMÉTRICA DE LAS FALLAS	19

2.3 MAGNITUD MÁXIMA GENERADA POR EL SISTEMAS DE FALLA DE	
QUITO (SEGMENTO PUENGASÍ)	. 22
2.4 MAGNITUD MÁXIMA GENERADA POR LA FALLA MACHACHI	. 25
2.5 PERÍODOS DE RECURRENCIA	. 28
2.5.1 MODELO DEL TERREMOTO CARACTERÍSTICO	. 28
2.5.1.1 Período de recurrencia hallado con el modelo del Terremoto	
Característico para la Falla Puengasí	. 28
2.5.1.2 Período de recurrencia hallado con el modelo del Terremoto	
Característico para la Falla Machachi	. 29
2.5.2 MODELO DE GUTENBERG RICHTER MODIFICADO	. 30
2.5.2.1 Período de Recurrencia hallado con el modelo de Gutenberg	
Richter Modificado para las fallas de Puengasí y Machachi	. 31
CAPÍTULO 3	. 33
MODELOS DE MOVIMIENTO FUERTE	. 33
3.1 ECUACIONES DE ATENUACIÓN (GMPE'S)	. 33
3.2 CRITERIOS PARA LA SELECCIÓN Y EL AJUSTE DE LOS MODELOS	. 36
3.3 PARÁMETROS A USAR EN LAS ECUACIONES DE ATENUACIÓN	. 37
3.3.1 PARÁMETROS DE FUENTE	. 37
3.3.2 PARÁMETROS DE SITIO	. 38
3.3.3 PARÁMETROS DE TRAYECTORIA	. 38
3.4 MODELO DE CHIOU & YOUNGS 2013	. 40
3.4.1 INTRODUCCIÓN	. 40
3.4.2 LIMITACIONES DEL MODELO	. 42
3.4.3 ECUACIONES DEL MODELO	. 42
3.4.4 DESVIACIÓN ESTÁNDAR DEL MODELO	. 47
3.5 MODELO DE CAMPBELL & BOZORGNIA 2013	. 49
3.5.1 INTRODUCCIÓN	. 49
3.5.2 LIMITACIONES DEL MODELO	. 50
3.5.3 ECUACIONES DEL MODELO	. 51
3.5.3.1 Término Magnitud	. 51
3.5.3.2 Término Atenuación Geométrica	. 51
3.5.3.3 Término Tipo de falla	. 52

3.5.3.4Término Hanging-wall523.5.3.5Término Respuesta del sitio superficial533.5.3.6Término Respuesta de la Cuenca543.5.3.7Término Profundidad Hipocentral543.5.3.8Término Buzamiento de la ruptura553.5.3.9Término Atenuación Anelástica553.5.4DESVIACIÓN ESTÁNDAR DEL MODELO563.6ABRAHAMSON, SILVA Y KAMAI (2013)593.6.1INTRODUCCIÓN59
 3.5.3.5 Término Respuesta del sitio superficial
 3.5.3.6 Término Respuesta de la Cuenca
 3.5.3.7 Término Profundidad Hipocentral
 3.5.3.8 Término Buzamiento de la ruptura. 3.5.3.9 Término Atenuación Anelástica. 3.5.4 DESVIACIÓN ESTÁNDAR DEL MODELO. 3.6 ABRAHAMSON, SILVA Y KAMAI (2013). 59 3.6.1 INTRODUCCIÓN.
 3.5.3.9 Término Atenuación Anelástica
 3.5.4 DESVIACIÓN ESTÁNDAR DEL MODELO
3.6 ABRAHAMSON, SILVA Y KAMAI (2013)
3.6.1 INTRODUCCIÓN
3.6.2 LIMITACIONES DEL MODELO 59
3.6.3 ECUACIONES DEL MODELO 60
3.6.3.1 Modelo Base 60
3.6.3.2 Modelo Tipo de falla 61
3.6.3.3 Modelo Respuesta en el sitio 61
3.6.3.4 Modelo Hanging-wall
3.6.3.5 Modelo Profundidad al borde superior de la ruptura
3.6.3.6 Modelo Profundidad del suelo
3.6.3.7 Ajuste de réplicas
3.6.3.8 Modelo Regionalización
3.6.4 DESVIACION ESTANDAR DEL MODELO
CAPÍTULO 4
ZONIFICACIÓN DEL VALLE DE LOS CHILLOS 69
4.1 ÁREA DE ESTUDIO
4.1.1 CANTÓN RUMIÑAHUI
4.2 MALLA DE CÁLCULO
4.3 ÁREA DE ESTUDIO Y FALLAS GEOLÓGICAS
4.4 OBTENCIÓN DE LOS PARÁMETROS Rx, RRUP Y RJB 75
CAPÍTULO 5
ESPECTROS DE CONTROL RELACIONADOS A LAS FALLAS PUENGASÍ
Y MACHACHI
5.1 DEFINICIÓN ESPECTROS DE CONTROL 78

5.2 DEFINICIÓN ESPECTROS DE DISEÑO	78
5.3 DETALLE DEL PROGRAMA PARA LA OBTENCIÓN DE LOS	
ESPECTROS CON LOS MODELOS DE MOVIMIENTO FUERTE	79
5.4 OBTENCIÓN DE ESPECTROS DE CONTROL	80
5.4.1 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS	
CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA PUENGASÍ CON	
V _{S30} = 460 m/s	80
5.4.2 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS	
CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA PUENGASÍ CON	
V _{S30} = 300m/s	83
5.4.3 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS	
CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA MACHACHI CON	
V _{S30} = 460m/s	87
5.4.4 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS	
CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA MACHACHI CON	
V _{S30} = 300m/s	89
5.4.5 ESPECTROS PROMEDIOS ASOCIADOS A LAS DOS FALLAS	
PUENGASÍ Y MACHACHI CON V _{S30} 460 m/s	93
5.4.6 ESPECTROS PROMEDIOS ASOCIADOS A LAS DOS FALLAS	
PUENGASÍ Y MACHACHI CON V _{S30} 300m/s	96
5.4.7 RESUMEN DE ESPECTROS PROMEDIOS	99
CONCLUSIONES	102
RECOMENDACIONES	105
ANEXOS	112
ANEXO NO. 1	113
PARÁMETROS RRUP, RX Y RJB, PARA LOS 560 SITIOS ANALIZADOS	
RESPECTO A LA FALLA PUENGASÍ	113
ANEXO NO. 2	125
PARÁMETROS RRUP, RX Y RJB, PARA LOS 560 SITIOS ANALIZADOS	
RESPECTO A LA FALLA MACHACHI	125

ÍNDICE DE FIGURAS

FIGURA 1.1 EPICENTROS DE SISMOS ASOCIADOS A FALLAS LOCALES	
PARA LA ZONA DEL VALLE, PROFUNDIDAD FOCAL MENOR A 40 KM	2
FIGURA 1.2 EPICENTROS DE SISMOS ASOCIADOS A FALLAS LOCALES	
PARA LA ZONA DEL VALLE, PROFUNDIDAD FOCAL MAYOR A 40 KM	3
FIGURA 1.3 ISOSISTAS DEL SISMO DEL ANTISANA DEL 31 DE MAYO	
DE 1914	. 6
FIGURA 1.4 DAÑOS DEL SISMO DE 1938	. 8
FIGURA 1.5 ISOSISTA DEL SISMO DE 1938	. 9
FIGURA 1.6 ANTES Y DESPUÉS DEL EDIFICIO DEL IESS EN	
PORTOVIEJO	12
FIGURA 1.7 ANTES Y DESPUÉS DEL EDIFICIO DE LA MUTUALISTA	
PICHINCHA EN PORTOVIEJO	12
FIGURA 1.8 ANTES Y DESPUÉS DEL MUNICIPIO DEL CANTÓN JAMA	12
FIGURA 1.9 MAPA DE ISOSISTAS DEL SISMO 16 A	14
FIGURA 1.10 DERRUMBE EN LA AUTOPISTA RUMIÑAHUI	15
FIGURA 1.11 DAÑO EN VIVIENDA EN EL CANTÓN RUMIÑAHUI	15
FIGURA 2.1 PRINCIPALES FALLAS GEOLÓGICAS DEL ECUADOR	17
FIGURA 2.2 ELEMENTOS DE UNA FALLA GEOLÓGICA	18
FIGURA 2.3 CARACTERÍSTICAS DE UNA FALLA GEOLÓGICA	19
FIGURA 2.4 FALLA NORMAL	20
FIGURA 2.5 FALLA INVERSA	20
FIGURA 2.6 FALLA TRANSCURRENTE	21
FIGURA 2.7 FALLA OCULTA O CIEGA	21
FIGURA 2.8 MODELOS DE FALLAS CIEGAS INVERSAS DE QUITO	23
FIGURA 2.9 FALLA MACHACHI EC35	25
FIGURA 2.10 TASA ACUMULADA DE SISMOS PARA LAS FALLAS	
PUENGASÍ Y MACHACHI. MODELO GR-MODIFICADA	32
FIGURA 3.1 MAPA DE LA DISTRIBUCIÓN EPICENTRAL DE LOS	
335 EVENTOS SELECCIONADOS DE TODO EL MUNDO	35

FIGURA 3.2 REPRESENTACIÓN ESQUEMÁTICA DE LOS ÁNGULOS	
QUE DEFINEN EL TIPO DE FALLA, ASÍ COMO EL ANCHO DE FALLA	
(W), LONGITUD DE FALLA (L) Y ZTOR	38
FIGURA 3.3 REPRESENTACIÓN ESQUEMÁTICA DE LOS PARÁMETROS	
DE TRAYECTORIA Rx, RRUP, RJB PARA FALLAS TRANSCURRENTES,	
INVERSAS Y NORMALES	39
FIGURA 3.4 REGISTRO DE DATOS USADOS PARA EL MODELO CHIOU	
& YOUNGS (2013)	41
FIGURA 3.5 DISTRIBUCIÓN DE REGISTROS RESPECTO A LA	
MAGNITUD Y DISTANCIA MÁS CERCA A LA RUPTURA PARA EL	
MODELO DE CB13	50
FIGURA 4.1 DISTRITO METROPOLITANO DE QUITO Y RUMIÑAHUI	69
FIGURA 4.2 PARROQUIAS URBANAS Y RURALES DEL CANTÓN	
RUMIÑAHUI	70
FIGURA 4.3 MALLA DE CÁLCULO EN COORDENADAS UTM	71
FIGURA 4.4 MICROZONIFICACIÓN SÍSMICA DE QUITO	73
FIGURA 4.5 ÁREA DE ESTUDIO Y PLANO DE RUPTURA DE LAS	
FALLAS GEOLÓGICAS PUENGASÍ Y MACHACHI	74
FIGURA 4.6 BLOQUE LEVANTADO Y DEPRIMIDO EN UNA FALLA	
INVERSA	76
FIGURA 5.1 DESCRIPCIÓN DEL PROGRAMA PARA HALLAR LOS	
ESPECTROS EN CADA MODELO CY13, CB13 Y ASK13	79
FIGURA 5.2 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 460 m/s. SUELO TIPO C	80
FIGURA 5.3 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 460 m/s. SUELO TIPO C	81
FIGURA 5.4 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA	
ASOCIADOS A LA FALLA PUENGASÍ CON UN V _{S30} = 460 m/s. SUELO	
TIPO C	81
FIGURA 5.5 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 460 m/s. SUELO TIPO C	82
FIGURA 5.6 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 460 m/s. SUELO TIPO C	82

FIGURA 5.7 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 300 m/s. SUELO TIPO D 8	33
FIGURA 5.8 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 300 m/s. SUELO TIPO D 8	33
FIGURA 5.9 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA	
ASOCIADOS A LA FALLA PUENGASÍ CON UN V _{S30} = 300 m/s. SUELO	
TIPO D	34
FIGURA 5.10 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 300 m/s. SUELO TIPO D 8	34
FIGURA 5.11 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS	
A LA FALLA PUENGASÍ CON UN V _{S30} = 300 m/s. SUELO TIPO D 8	35
FIGURA 5.12 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS	
A LA FALLA MACHACHI CON UN V _{S30} = 460 m/s. SUELO TIPO C 8	37
FIGURA 5.13 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS	
A LA FALLA MACHACHI CON UN V_{S30} = 460 m/s. SUELO TIPO C	37
FIGURA 5.14 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA	
ASOCIADOS A LA FALLA MACHACHI CON UN V _{S30} = 460 m/s. SUELO	
TIPO C	38
FIGURA 5.15 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS	
A LA FALLA MACHACHI CON UN V_{S30} = 460 m/s. SUELO TIPO C	38
FIGURA 5.16 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS	
A LA FALLA MACHACHI CON UN V _{S30} = 460 m/s. SUELO TIPO C 8	39
FIGURA 5.17 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS	
A LA_FALLA MACHACHI CON UN V _{S30} = 300 m/s. SUELO TIPO D 8	39
FIGURA 5.18 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS	
A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D	90
FIGURA 5.19 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA	
ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO	
TIPO D	90
FIGURA 5.20 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS	
A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D)1
FIGURA 5.21 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS	
A LA FALLA MACHACHI CON UN V _{S30} = 300 m/s. SUELO TIPO D	<i>)</i> 1

FIGURA 5.22 ESPECTRO PROMEDIO PARA COTOGCHOA ASOCIADO	
A LAS DOS FALLAS Y V _{s30} 460 m/s. SUELO TIPO C	93
FIGURA 5.23 ESPECTRO PROMEDIO PARA RUMIPAMBA ASOCIADO	
A LAS DOS FALLAS Y Vs30 460 m/s. SUELO TIPO C	94
FIGURA 5.24 ESPECTRO PROMEDIO PARA SAN PEDRO DE TABOADA	
ASOCIADO A LAS DOS FALLAS Y Vs30 460 m/s. SUELO TIPO C	94
FIGURA 5.25 ESPECTRO PROMEDIO PARA SAN RAFAEL ASOCIADO	
A LAS DOS FALLAS Y Vs30 460 m/s. SUELO TIPO C	95
FIGURA 5.26 ESPECTRO PROMEDIO PARA SANGOLQUÍ ASOCIADO	
A LAS DOS FALLAS Y V _{s30} 460 m/s. SUELO TIPO C	95
FIGURA 5.27 ESPECTRO PROMEDIO PARA COTOGCHOA ASOCIADO	
A LAS DOS FALLAS Y V $_{\rm s30}$ 300 m/s. SUELO TIPO D	96
FIGURA 5.28 ESPECTRO PROMEDIO PARA RUMIPAMBA ASOCIADO	
A LAS DOS FALLAS Y V $_{\rm s30}$ 300 m/s. SUELO TIPO D	97
FIGURA 5.29 ESPECTRO PROMEDIO PARA SAN PEDRO DE TABOADA	
ASOCIADO A LAS DOS FALLAS Y Vs30 300 m/s. SUELO TIPO D	97
FIGURA 5.30 ESPECTRO PROMEDIO PARA SAN RAFAEL ASOCIADO	
A LAS DOS FALLAS Y V _{\$30} 300 m/s. SUELO TIPO D	98
FIGURA 5.31 ESPECTRO PROMEDIO PARA SANGOLQUÍ ASOCIADO	
A LAS DOS FALLAS Y V _{\$30} 300 m/s. SUELO TIPO D	98
FIGURA 5.32 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA	
FALLA PUENGASÍ PARA UN V _{S30} 460 m/s. SUELO TIPO C	99
FIGURA 5.33 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA	
FALLA PUENGASÍ PARA UN V _{S30} 300 m/s. SUELO TIPO D	99
FIGURA 5.34 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA	
FALLA MACHACHI PARA UN V _{S30} 460 m/s. SUELO TIPO C	. 100
FIGURA 5.35 RESUMEN ESPECTROS PROMEDIOS RESPECTO A LA	
FALLA MACHACHI PARA UN V _{S30} 300 m/s. SUELO TIPO	100

ÍNDICE DE CUADROS

CUADRO 2.1 SISTEMA DE FALLA QUITO	23
CUADRO 2.2 ÁREA DE RUPTURA, MAGNITUD MÁXIMA Y PERÍODO	
DE RECURRENCIA DE LA FALLA MACHACHI	29
CUADRO 2.3 PERÍODO DE RECURRENCIA, HALLADOS CON EL	
MODELO GUTENBERG Y RICHTER MODIFICADO PARA LAS FALLAS	
PUENGASÍ Y MACHACHI	32
CUADRO 3.1 COMPARACIÓN DE PARÁMETROS DE FUENTE, SITIO	
Y TRAYECTORIA ENTRE LOS MODELOS ASK13, CB13 Y CY13	40
CUADRO 3.2 COEFICIENTES INDEPENDIENTES DEL PERÍODO.	
MODELO CHIOU & YOUNGS (2013)	47
CUADRO 3.3 COEFICIENTES DEPENDIENTES DEL PERÍODO.	
MODELO CHIOU & YOUNGS (2013)	48
CUADRO 3.4 COEFICIENTES INDEPENDIENTES DEL PERÍODO.	
MODELO CAMPBELL & BORZOGNIA 2013	57
CUADRO 3.5 COEFICIENTES DEPENDIENTES DEL PERÍODO.	
MODELO CAMPBELL & BORZOGNIA 2013	58
CUADRO 3.6 BASE DE DATOS UTILIZADOS EN EL PROGRAMA	
ABRAHAMSON <i>ET AL</i> . (2013)	59
CUADRO 3.7 COEFICIENTES INDEPENDIENTES DEL PERÍODO.	
MODELO ABRAHAMSON <i>ET AL.</i> (2013)	67
CUADRO 3.8 COEFICIENTES DEPENDIENTES DEL PERÍODO.	
MODELO ABRAHAMSON <i>ET AL.</i> (2013)	68
CUADRO 4.1 GEOMETRÍA Y CARACTERÍSTICAS DE LAS FALLAS	
PUENGASÍ Y MACHACHI	75
CUADRO 4.2 PARÁMETROS RRUP, RX, RJB, Y FHW PARA LA PARROQUIA	
SAN RAFAEL ASOCIADO A LA FALLA PUENGASÍ	77
CUADRO 4.3 PARÁMETROS RRUP, RX, RJB, Y FHW PARA LA PARROQUIA	
SAN RAFAEL ASOCIADO A LA FALLA MACHACHI	77
CUADRO 5.1 FACTOR PARA ENCONTRAR EL SISMO MÁXIMO	
CONSIDERADO A PARTIR DEL SISMO DE DISEÑO DE LA NEC-15	. 101

RESUMEN

Este proyecto de investigación se ha enfocado en evaluar la peligrosidad sísmica local desde el punto de vista determinístico, a través de la obtención de espectros de control para la zona del valle, especialmente para las parroquias Cotogchoa, Rumipamba, San Pedro de Taboada, San Rafael y Sangolquí, asociados a los tipos de suelos C y D según la Norma Ecuatoriana de la Construcción 2015 (NEC-15).

Para ello, dos posibles escenarios sísmicos han sido planteados, el primero considerando el evento máximo generado por la ruptura del segmento Puengasí y el segundo debido a la falla Machachi, fallas que por su cercanía a la zona de estudio podrían causar efectos negativos en la población. Además, se ha obtenido los períodos de recurrencia, mediante los modelos del Terremoto Característico y Gutenberg-Richter Modificado.

Los modelos utilizados para encontrar los espectros de aceleración horizontal con 5% de amortiguamiento y para un nivel de confianza del 50% y 84% han sido los propuestos por Chiou & Youngs (2013), Campbell & Borzognia (2013) y Abrahamson, Silva y Kamai (2013), todos ellos aplicables para sismos corticales superficiales en regiones tectónicamente activas y pertenecientes al programa NGA-West2 del Pacific Earthquake Engineering Research Center's (PEER).

Finalmente, se ha obtenido un espectro promedio en base a los tres modelos para cada parroquia, considerando los dos posibles escenarios sísmicos evaluados en los dos tipos de suelo, y se lo ha comparado con el espectro reportado por la NEC-15.

ABSTRACT

This research has focused on evaluating local seismic hazard from a deterministic point of view by obtaining control spectra for the valley region especially for the parishes Cotogchoa, Rumipamba, San Pedro de Taboada, San Rafael and Sangolquí, associated with soil types C and D according to the "Norma Ecuatoriana de la Construcción 2015" (NEC-15).

For this purpose, two possible seismic scenarios have been set, the first is considering the maximum event generated by the rupture of fault segment Puengasí and the second is due to the Machachi fault, which because of proximity to the study area could cause negative effects on the population. In addition, recurrence periods have been obtained by the Characteristic Earthquake Model and Gutenberg -Richter Modified.

The models used to find horizontal acceleration spectra with 5% damping and a confidence level of 50% and 84% have been proposed by Chiou & Youngs (2013), Campbell & Borzognia (2013) and Abrahamson, Silva and Kamai (2013), all of them applicable for shallow crustal earthquakes in active tectonic regions and belonging to Pacific Earthquake Engineering Research Center's (PEER) NGA-West2 Program.

Finally, an average spectrum has been obtained based on the three models for each parish, considering two possible seismic scenarios evaluated in two soil types, and it has been compared to the spectrum reported by the NEC-15.

PRESENTACIÓN

El presente proyecto se desarrolla en cinco capítulos expuestos de la siguiente forma:

En el primer capítulo se presenta de manera introductoria, los antecedentes, la sismicidad histórica de Quito y del Valle, los objetivos, la justificación y la metodología del tema de investigación.

El segundo capítulo contiene los fundamentos teóricos sobre los elementos, características y tipos de fallas geológicas, asimismo se centra principalmente en el estudio de las fallas Puengasí y Machachi, de las cuales se obtiene la geometría, el terremoto máximo generado y el período de recurrencia mediante dos modelos, el Terremoto Característico y Gutenberg-Richter Modificado.

El tercer capítulo presenta los criterios de selección y ajuste de los modelos de movimiento fuerte, además de la descripción de las ecuaciones y limitaciones de los modelos propuestos por Chiou & Youngs (2013), Campbell & Borzognia (2013) y Abrahamson *et al.* (2013).

En el cuarto capítulo se expone la zona de estudio dividida en 560 sitios y se presenta en forma breve la obtención de los parámetros usados en los modelos citados como son R_x , R_{RUP} , R_{jb} y V_{s30} , este último tomado de varios estudios de suelos para Quito.

El capítulo quinto explica la forma en que se han obtenido los espectros para la zona de estudio y muestra los resultados.

Por último, se presentan las conclusiones y recomendaciones deducidas de los resultados.

CAPÍTULO 1

INTRODUCCIÓN

1.1 ANTECEDENTES

Ecuador es un país potencialmente sísmico por estar situado al borde de una zona de interacción entre dos placas tectónicas: Nazca y Continental donde la placa de Nazca se hunde por debajo de la placa Continental dando lugar al fenómeno de subducción. Este fenómeno al igual que la actividad de las fallas geológicas y los sismos de origen volcánico, han sido los responsables de los terremotos que se han venido suscitando en nuestro país.

El valle de los Chillos al estar ubicado en la provincia de Pichincha en una zona volcánica y sísmicamente activa, registra algunos acontecimientos sísmicos importantes uno de ellos fue el sismo del 9 de Agosto de 1938, conocido como el terremoto de los Chillos, el cual fue sentido fuertemente en las poblaciones de Alangasí, Sangolquí y el Tingo, donde muchas de las casas de adobe se destruyeron por completo y algunas casas de ladrillo resultaron con daños severos.

Se sabe que los terremotos son una clara muestra que la tierra continúa en movimiento, nada está estático, y que no se pueden predecir ni evitar, pero sí se puede trabajar para reducir en lo posible los daños que estos provocan.

Es por ello que se hace necesario evaluar el peligro sísmico de la zona mediante la obtención de espectros de control asociados a las fallas geológicas activas más cercanas, los mismos que servirán en trabajos futuros para determinar el desempeño sísmico de las estructuras del lugar.

1.2 SISMICIDAD HISTÓRICA DEL VALLE DE LOS CHILLOS RELACIONADOS A FALLAS LOCALES

Para conocer mejor la sismicidad producida en la zona de estudio debido a las fallas geológicas Machachi y Puengasí, se recurre a programas elaborados por CEINCI-LAB, contribuyendo a la vez con la actualización de su base de datos hasta junio de 2016, cabe mencionar que la información ha sido tomada de los registros del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y del Servicio Geológico de los Estados Unidos (USGS), obteniéndose lo siguiente:

La figura 1.1 muestra los epicentros de los sismos en la zona del Valle registrados entre los años 1541 y junio 2016, los mismos que están asociados a fallas locales con profundidad focal menor a 40 km, mientras que la figura 1.2 presenta los epicentros de los sismos con profundidad focal mayor a 40 km para la misma zona.

FIGURA 1.1 EPICENTROS DE SISMOS ASOCIADOS A FALLAS LOCALES PARA LA ZONA DEL VALLE, PROFUNDIDAD FOCAL MENOR A 40 KM

FUENTE: CEINCI-LAB

En la figura 1.1 se puede apreciar claramente que en la zona de estudio (recuadro color amarillo) existe el registro de dos sismos de magnitud Mw 5.9 en el año de 1929 y Mw 5.8 en 1938 (conocido como el Terremoto de los Chillos).

FIGURA 1.2 EPICENTROS DE SISMOS ASOCIADOS A FALLAS LOCALES PARA LA ZONA DEL VALLE, PROFUNDIDAD FOCAL MAYOR A 40 KM

FUENTE: CEINCI-LAB

Esta figura muestra que para una profundidad focal mayor a 40 km, en la zona se tiene el registro del sismo del año 1859 que tuvo una magnitud Mw 7.2 y causó mucho daño a la ciudad de Quito y sus alrededores, sin embargo en la zona de estudio (recuadro color amarillo) no se presenta algún evento.

Al comparar las dos figuras 1.1 y 1.2 se evidencia que en la zona existe gran influencia de sismos superficiales, que combinados con ciertos factores como la vulnerabilidad estructural pueden resultar muy peligrosos, es por eso su énfasis en este estudio.

1.3 DESCRIPCIÓN BREVE DE LOS SISMOS HISTÓRICOS QUE HAN AFECTADO A QUITO Y PROBABLEMENTE AL VALLE

1.3.1 SISMO DE 1541

Egred *et al.* (1959) menciona que este sismo fue sentido en la provincia de Quijos, probablemente en las cercanías del Antisana y fue un terremoto fuerte. Además señala que en varias partes se abrieron grietas en la tierra y se hundieron muchas casas de los indígenas.

Según datos estadísticos de los principales temblores en la República del Ecuador (1534-1958), la magnitud asociada a este evento fue 7.5 con epicentro en las coordenadas 0.5S y 78.2W en la provincia de Pichincha.

CERESIS (1985) hace referencia que la intensidad en el lugar fue de IX grados en escala MKS.

1.3.2 SISMO DE 1587

Sobre este sismo suscitado el 3 de septiembre del año 1587, Egred *et al.* (1959) menciona que tuvo lugar en Quito, fue un sismo muy fuerte que era casi imposible mantenerse en pie, se hundieron muchas casas e iglesias, aunque el número de muertos no fue considerable, pero sí fue el de los heridos.

Según Cevallos (1873), este sismo provocó la destrucción de muchos edificios, templos, quedando algunos inservibles, así como también causó muchas muertes.

Beauval *et al.* (2010) indican que este evento tuvo una magnitud alrededor de Mw 6.4 con epicentro en las coordenadas 0.05 N y 78.3W.

Del Pino & Yepes (1990) estimaron que la intensidad pudo haber llegado a Quito con VIII grados MKS.

1.3.3 SISMO DE 1755

Augusto Martínez en la nueva edición de la "Crónica de los fenómenos volcánicos y terremotos en el Ecuador" de T. Wolf, manifiesta lo siguiente acerca de este sismo: "Parece que este es el terremoto más considerable de todos los que han acaecido en Quito".

En Silgado (1985), un fragmento de una antigua carta del cabildo expresa que, este terremoto causó formidables estragos en templos, torres, chapiteles, conventos y monasterios, así como gran temor en todos los moradores que andaban confusos y atropellados por salir al campo en busca de seguridad.

En el mismo documento, una antigua Carta del Dr. Techo para el Consejo manifiesta:

"[...] violento movimiento de la tierra, que en un instante se destruyeron los edificios, y quedaron repentinamente sepultados en las ruinas de los templos, y casas crecido número de persona, sin averse exceptuado iglesia, ni convento que no se haya arruinado [...]" [sic] (Silgado, 1985, p.144).

A este evento se lo estimó en el grado IX MSK (Del Pino & Yepes, 1990).

1.3.4 SISMO DE 1859

El martes 22 de marzo de 1859 a las 8 y 30 minutos de la mañana, "...ocurre un espantoso sacudimiento de la tierra, que en 64 segundos deja la capital casi arruinada", M. Cueva., Apuntamientos Históricos.

Este sismo probablemente tuvo una magnitud de Mw 7.2 (Beauval *et al.*, 2010) y la intensidad de este evento se lo estimó en IX grados MSK en Quito (Del Pino & Yepes, 1990).

Se sabe también que este sismo produjo serias destrucciones en poblaciones y haciendas del valle de los Chillos, provocando grietas grandes en esta zona.

1.3.5 SISMO DE 1914

Este sismo se suscitó a las 8h. 29 m del domingo 31 de mayo, fue un movimiento de suelo fuerte y repentino, con ruido simultáneo. Fue sentido fuertemente en Latacunga, y en menor intensidad hasta Ibarra y por el sur de Riobamba. Su epicentro se localizó en Pullurima, a 42 kilómetros de Quito.

En el cráter del Pullurima se abrieron grietas profundas donde cayeron ganados, caballos y ovejas. A 33 kilómetros de distancia, en Cutuglahua, las casas de esa región sufrieron gravísimas averías (Como se cita en Egred *et al.*, 1959, p.11).

En la figura 1.3, se presenta las curvas isosistas de este sismo, donde se puede apreciar que para la zona del valle la intensidad fue de 6 MKS.

FIGURA 1.3 ISOSISTAS DEL SISMO DEL ANTISANA DEL 31 DE MAYO DE 1914

FUENTE: Singaucho (2009)

1.3.6 SISMO DE 1923

Este sismo afectó fuertemente a la población Machachi, Tambillo, Alóag, Aloasí, dejando algunos muertos. Produjo intensidades de V – VII (MKS) en Quito y pudo haberse originado en un ramal del sistema de fallamiento dextral que cruza la zona (Del Pino & Yepes, 1990).

Según datos estadísticos de los principales temblores en la República del Ecuador (1534-1958), la magnitud asociada a este evento fue 6.5 a 7 con epicentro en las coordenadas 0.4S y 78.3W en la provincia de Pichincha.

1.3.7 SISMO DE 1929

El 25 de julio de 1929 a las 3h. 45m., un fuerte movimiento sísmico de magnitud Mw 5.9 (Alvarado, 2012) con epicentro en las coordenadas 0.5 S y 78.48W, sacudió las localidades de Tambillo y Uyumbicho, registrándose algunos daños materiales entre ellos, casas total o parcialmente destruidas, averías en puentes y carreteras, teniéndose una intensidad para la zona de VIII (MKS).

En el caserío de Murco hubo algunas víctimas. "Las muertes causadas en aquel anejo se deben a la ninguna arquitectura de sus pobres casas", Iturralde.

Se piensa que este sismo fue posiblemente generado por la prolongación hacia el sur del sistema de fallas inversas de Quito (Egüez & Yepes, 1994).

Por su cercanía a la zona del valle es probable que la intensidad haya sido ligeramente menor a la registrada en Tambillo. Esto si es preocupante y justifica la investigación que se desarrolla en esta tesis para conocer de mejor forma la peligrosidad sísmica del lugar.

1.3.8 SISMO DE 1938

Egred *et al.* (1959) menciona que el 9 de agosto, los sismógrafos del Observatorio Astronómico registraron desde las tres de la mañana, una serie de temblores que culminó con un sismo catastrófico a las 21h. 01m. 00s. (Nueve y un minuto de la noche), en que saltaron las agujas del sismógrafo y se rompieron partes del resorte de suspensión y piezas de precisión.

Según Beauval *et al.* (2010) este sismo tuvo una magnitud de Mw 5.8, con epicentro en las coordenadas 0.4S y 78.4W, en las cercanías de El Tingo y Alangasí; poblaciones que, en efecto resultaron completamente destruidas. En menor escala pero también sufrieron graves daños Sangolquí y Conocoto.

Además se sabe que este movimiento telúrico provocó la aparición de grandes y abundantes grietas en los terrenos, así como deslizamientos en cerros y taludes.

FIGURA 1.4 DAÑOS DEL SISMO DE 1938

FUENTE: Barona (2010)

En la figura 1.4 se tiene los daños que causó el sismo de 1938 en la población de Sangolquí, entre ellas casas de adobe apuntaladas para evitar su colapso y otras prácticamente destruidas, provocando zozobra y temor.

En la siguiente figura se muestra el mapa de isosistas en escala MSK. Se observa también que en la zona del valle la intensidad fue de 7.

FIGURA 1.5 ISOSISTA DEL SISMO DE 1938

1.3.9 SISMO DE 1955

Este terremoto que tuvo lugar en la provincia de Imbabura y Norte de Pichincha, dejó muchas viviendas (especialmente rurales) destruidas por completo, quedando inhabitables y la muerte de aproximadamente 20 personas y varios heridos. Además de gran cantidad de deslizamientos de cerros y taludes en las carreteras de Tuntaqui- Cotacachi, Cotacachi-Intag y Otavalo-Cotacachi.

1.4 OBJETIVOS

1.4.1 OBJETIVO GENERAL

Obtener espectros de control para el valle de los Chillos por efecto de un sismo de magnitud máxima asociados a las fallas Machachi y Puengasí, mediante las ecuaciones de atenuación GMPE'S (Ground Motion Prediction Ecuation) apropiadas para la zona de estudio.

1.4.2 OBJETIVOS ESPECÍFICOS

- Recopilar información técnica y experimental acerca del peligro sísmico en el Ecuador, especialmente en la provincia de Pichincha en la zona del valle.
- Conocer la geometría de las fallas Machachi y Puengasí, así como su magnitud máxima esperada (Mw) y el área de ruptura.
- Seleccionar las ecuaciones de atenuación apropiadas con el ambiente tectónico de la zona de estudio.
- Obtener los espectros de control con las ecuaciones de atenuación estudiadas para las parroquias de: San Rafael, San Pedro de Taboada, Cotogchoa, Sangolquí y Rumipamba para los tipos de suelo C y D, acorde a la clasificación de perfiles de suelos de la Norma Ecuatoriana de la Construcción 2015 (NEC-15).
- Comparar los espectros obtenidos con los espectros de diseño de la NEC-15.

1.5 JUSTIFICACIÓN

La construcción informal en el Ecuador se caracteriza por que muchas de estas son construidas por sus propietarios o por encargo a maestros de construcción sin el cumplimiento de normas, y sin un adecuado diseño sísmico, y si a esto se le suma la situación geodinámica del país, se hace necesario estar al día con nuevos conocimientos e información metodológica, de manera que ayuden a disminuir los niveles de daño ocasionados por fenómenos naturales como es el caso de los sismos, es por ello que es imprescindible tener un conocimiento del peligro sísmico y su cuantificación.

Una prueba de ello es el reciente sismo que se suscitó el día 16 de Abril de 2016 (16 A) a las 18h58 de magnitud 7.8 Mw, cuyo hipocentro se ubicó frente a Pedernales (Manabí), a 20 km de profundidad.

Según datos del IG-EPN (2016), el cantón Pedernales fue el más afectado, por lo que para este cantón y las zonas colindantes estimaron una intensidad de 8 EMS (Escala Macrosísmica Europea), catalogada básicamente como gravemente dañino.

En las ciudades de Portoviejo y Esmeraldas, se tuvo una intensidad de 7 EMS (dañino) según la información proporcionada, mientras que para el territorio restante de las provincias de Esmeraldas y Manabí y gran parte de las provincias de Guayas y Santo Domingo, la intensidad estimada fue 6 EMS (levemente dañino).

A continuación se muestran fotografías de las estructuras de las ciudades más afectadas por el terremoto del 16 A.

FIGURA 1.6 ANTES Y DESPUÉS DEL EDIFICIO DEL IESS EN PORTOVIEJO

FUENTE: Gabriela Luna y Google Maps

FIGURA 1.7 ANTES Y DESPUÉS DEL EDIFICIO DE LA MUTUALISTA PICHINCHA EN PORTOVIEJO

FUENTE: Gabriela Luna y Google Maps

FIGURA 1.8 ANTES Y DESPUÉS DEL MUNICIPIO DEL CANTÓN JAMA

FUENTE: Xavier Macías

La figura 1.6 muestra el edificio del IESS de Portoviejo con piso blando y a su derecha el mismo edificio reduciéndose a polvo y escombros producto del sismo del 16A, asimismo en la figura 1.7 se aprecia el edificio de la mutualista Pichincha también con piso blando y además excesivo peso en sus pisos superiores y a su derecha se observa que, después del sismo ocurrido este edificio quedó prácticamente inhabitable por lo que meses después se efectuó la implosión de esta edificación, y por último en figura 1.8 se presenta la estructura del municipio del Cantón de Jama, en la cual se evidencia claramente columnas demasiadas esbeltas y a su derecha esta edificación colapsada.

Estas figuras reflejan la vulnerabilidad que se tiene en las construcciones y si a esto se le suma la alta peligrosidad sísmica que tiene la zona, se ve reflejado el inminente riesgo sísmico que se presenta.

Se sabe que no se puede actuar sobre el peligro pero si se tiene un buen estudio de este y se aplican las normas de construcción, ciertamente la realidad podría haber sido otra.

Por otra parte, en cuanto a las provincias de la Sierra estimaron un valor de intensidad entre 4 y 5 EMS (ampliamente observado - fuerte) y finalmente, para las provincias orientales, la intensidad máxima considerada fue de 3 EMS (débil).

En la figura 1.9 se muestra el mapa de isosistas del sismo del 16 A, el cual resume lo descrito en el reporte del IG-EPN (2016).

Asimismo se puede apreciar en esta figura, que la zona del Valle de los Chillos también se vio afectada, estimándose una intensidad de alrededor de 4 EMS, catalogada como ampliamente observada y descrita de la siguiente forma: "El terremoto se percibe en interiores por muchas personas, pero al aire libre por muy pocas. Algunas personas se despiertan. El nivel de vibración no es alarmante. Traqueteo de ventanas, puertas y platos. Los objetos colgados se balancean".

13

FIGURA 1.9 MAPA DE ISOSISTAS DEL SISMO 16 A

En el valle, este movimiento telúrico, provocó desprendimientos de tierra en el puente 4 de la autopista General Rumiñahui, dejando así un carril cerrado, ver figura 1.10.

Según diario EL COMERCIO (2016) en Selva Alegre, en el cantón Rumiñahui, las ventanas y las puertas se movieron fuertemente. En algunas casas, los adornos se cayeron. En los conjuntos habitacionales las personas salieron de sus viviendas a las calles para evitar inconvenientes. Durante unos minutos hubo cortes de luz en este sector.

FUENTE: IG-EPN (2016)

De modo idéntico, en la página web del Municipio de Rumiñahui se menciona que en otras parroquias del cantón como en Cotogchoa se encontraron dos viviendas cuarteadas, mientras que en Sangolquí se verificaron daños en cuatro viviendas, dos de ellas con daños estructurales y las otras con leves averías, ver figura 1.11.

FIGURA 1.10 DERRUMBE EN LA AUTOPISTA RUMIÑAHUI

FUENTE: Diario EL COMERCIO (2016)

FIGURA 1.11 DAÑO EN VIVIENDA EN EL CANTÓN RUMIÑAHUI

FUENTE: Noticias Municipio Rumiñahui (2016)

Es así que el sismo del 16A que cobró más de 600 vidas humanas y millones de dólares, dejó una vez más en descubierto la precariedad de las construcciones y el inminente riesgo que presenta el país.

1.6 METODOLOGÍA

El presente proyecto pretende evaluar la peligrosidad sísmica desde el punto de vista determinístico para la zona del valle de los Chillos a través de la obtención de espectros de control en términos de aceleración horizontal y con un 5% de amortiguamiento.

Para ello se procede a determinar la geometría de las fallas geológicas en estudio, de tal manera que se obtiene parámetros como el ancho de falla, área de ruptura.

Asimismo se estima el tamaño del terremoto más grande que puede generarse por estas fallas mediante las relaciones de Leonard (2010) y el período de recurrencia por medio de los modelos del Terremoto Característico y Gutenberg - Richter Modificado.

Seguidamente se selecciona los modelos más adecuados para la predicción del movimiento del suelo, tomando en cuenta principalmente que sean apropiadas para el ambiente tectónico de la zona. Siendo los modelos elegidos: Campbell & Borzognia (2013), Chiou & Youngs (2013) y Abrahamson *et al.* (2013).

Posteriormente se crea una malla de 560 sitios repartidos en las cinco parroquias establecidas como son Cotogchoa, Rumipamba, San Pedro de Taboada, San Rafael y Sangolquí. De igual forma se necesita obtener el parámetro V_{s30} (velocidad de onda de corte a los 30 metros) en cada uno de estos sitios, sin embargo, en la zona no se cuenta con estudios que permitan determinarlo, por lo que se opta por los valores de V_{s30} para los tipos de suelo C (460 m/s) y D (300 m/s) tomados de varios estudios de suelos para Quito acorde a la clasificación de perfiles de suelos de la NEC-15.

De esta manera se obtienen los espectros más críticos para los tres modelos, siendo estos los que registren mayores aceleraciones espectrales dentro de cada parroquia, además se realiza un promedio de los tres modelos y finalmente se los compara con los espectros obtenidos en la NEC-15

CAPÍTULO 2

FALLAS GEOLÓGICAS QUE PUEDEN AFECTAR AL VALLE DE LOS CHILLOS

2.1 INTRODUCCIÓN

Ecuador es un país con una alta peligrosidad sísmica por encontrarse ubicado en el "Cinturón de fuego del Pacífico", región donde ocurren al menos el 90% de toda la sismicidad mundial cada año. Además del fenómeno de subducción que se tiene frente a las costas ecuatorianas, el Ecuador se encuentra atravesado por un conjunto de fallas geológicas inactivas y activas (ver figura 2.1), las cuales han sido las causantes de terremotos devastadores

FIGURA 2.1 PRINCIPALES FALLAS GEOLÓGICAS DEL ECUADOR

FUENTE: Kensaku Tamaki, Instituto de Investigación Oceánica, Universidad de Tokio

2.2 DESCRIPCIÓN DE LAS FALLAS GEOLÓGICAS

Se entiende por falla, una estructura tectónica a lo largo de la cual se ha producido una fractura y un desplazamiento diferencial de los materiales adyacentes.

En Sismología e Ingeniería Sísmica el interés se centra en las fallas activas y en las fallas capaces (Reiter, 1990), una falla es sísmicamente activa cuando hay constancia de que, en un tiempo determinado, ha sido causante de, al menos un terremoto. Mientras que el concepto de falla capaz según Chunga (2010) es aquella que deforma la superficie del terreno como consecuencia de altas tasas de movimientos crustales y la generación de fuertes terremotos con magnitud mayor igual a 6.

2.2.1 ELEMENTOS Y CARACTERÍSTICAS DE UNA FALLA GEOLÓGICA

FIGURA 2.2 ELEMENTOS DE UNA FALLA GEOLÓGICA

FUENTE: Tipos de fallas

http://elauladehistoria.blogspot.com/2015/09/tipos-de-fallas.html

La figura 2.2 muestra las partes con la que está conformada una falla geológica:

- Plano de falla: Plano o superficie a lo largo de la cual se desplazan los bloques que se separan en la falla.
- Bloques o labios de falla: Son las dos porciones de roca separadas por el plano de falla. Cuando el plano de falla es inclinado, el bloque que se halla

por encima del plano de falla se denomina 'bloque colgante' o 'levantado' y al que se encuentra por debajo, 'bloque yaciente' o 'hundido'.

- Salto o desplazamiento: Es la distancia neta y dirección en que se ha movido un bloque respecto del otro.
- Estrías de falla: Son irregularidades rectilíneas que pueden aparecer en algunos planos de falla. Indican la dirección de movimiento de la falla.

Mientras que la figura 2.3 muestra el ángulo de buzamiento y dirección de una falla.

Plano de falla Buzamiento Dirección N Salto de falla Labios de la falla

FIGURA 2.3 CARACTERÍSTICAS DE UNA FALLA GEOLÓGICA

FUENTE: La falla de San Andrés

http://cobaesgeo.foroactivo.com/t1246-bloque-iii-la-falla-de-san-andres

- Buzamiento: ángulo que forma el plano de falla con la horizontal.
- **Dirección:** ángulo que forma una línea horizontal contenida en el plano de falla con el eje norte-sur.

2.2.2 CLASIFICACIÓN GEOMÉTRICA DE LAS FALLAS

Las fallas geológicas pueden clasificarse de la siguiente manera:

• Falla Normal o falla con movimiento normal: En la cual uno de los bloques se mueve hacia abajo con respecto al otro bloque. Se genera en respuesta de esfuerzos de tensión, ver figura 2.4.
FIGURA 2.4 FALLA NORMAL

FUENTE: Fallas tectónicas

http://platea.pntic.mec.es/~cmarti3/GEO/tect/fallas/index.htm.

• Falla Inversa o falla con movimiento inverso: En la cual uno de los bloques se mueve hacia arriba con respecto al otro bloque. Se genera en respuesta de esfuerzos de compresión, ver figura 2.5.

Mientras que en las fallas normales la superficie de falla suele presentar un buzamiento elevado o ser prácticamente vertical, en las fallas inversas ese plano suele ser muy tendido, con buzamiento bajo.

FIGURA 2.5 FALLA INVERSA

FUENTE: Fallas tectónicas http://platea.pntic.mec.es/~cmarti3/GEO/tect/fallas/index.htm. Falla Transcurrente o falla de rumbo: El desplazamiento es paralelo al rumbo de falla. Se presenta cuando sólo hay desplazamiento en sentido horizontal, ver figura 2.6. El movimiento responde a fuerzas de cizalla horizontal que causan el desplazamiento lateral de un bloque respecto al otro.

FIGURA 2.6 FALLA TRANSCURRENTE

FUENTE: Fallas tectónicas

http://platea.pntic.mec.es/~cmarti3/GEO/tect/fallas/index.htm.

• Falla ciegas: Es una falla que no se extiende hacia la superficie. Se la conoce también como falla oculta, ver figura 2.7

FIGURA 2.7 FALLA OCULTA O CIEGA

FUENTE: Fallas ciegas

http://rsn.ucr.ac.cr/index.php/faq/geologia/2327-que-son-las-fallas-ciegas-u-ocultas.

La falla A mostrada en la figura 2.7 es una falla ciega que no aflora en la superficie.

2.3 MAGNITUD MÁXIMA GENERADA POR EL SISTEMAS DE FALLA DE QUITO (SEGMENTO PUENGASÍ)

Estudios de varios investigadores entre ellos Alvarado, Yepes, etc. en el año 2012 permitieron cuantificar la cinemática y la geometría del sistema de fallas de Quito, mediante análisis geológicos, geomorfológicos, geodésicos e información sismológica, dando como resultado la obtención de un modelo neotectónico integral de la deformación regional en Quito (Quizanga, 2015).

Según Yepes (2014), el sistema de fallas de Quito es una falla del tipo inversa, en la que uno de los bloques (el de Quito) se levanta respecto del otro (los valles) en contra de la fuerza de gravedad por fuerzas de compresión tectónica, razón por la cual Quito, a fuerza de sismos repetitivos en la historia geológica de su cuenca se levanta unos 400 metros sobre el nivel del Valle Interandino.

En Alvarado *et al.* (2014) se expresa que el sistema de fallas de Quito consiste en un sistema transcurrente con rumbo NS, y un ángulo de buzamiento de 55° hacia el oeste de una falla ciega inversa. Su afloramiento en la superficie es un segmento graduado de pliegues con una longitud superior a 60 km. Cada segmento individual tiene una compresión principal y una componente secundaria transcurrente dextral, evidenciado por una geometría tipo "enchelón". Del mismo modo menciona que la tasa de deslizamiento medido con GPS para este sistema de fallas varía entre 3.0 y 4.0 mm/año.

Además señala que en caso de acontecer una ruptura simultánea de todos los segmentos de la falla, como lo son Puengasí, Ilumbisí-La Bota, Carcelén-El Inca, Bellavista-Catequilla y Tangahuilla, con una longitud total de falla de 60 km y área de ruptura cerca de 720 km², podría suscitarse un evento de magnitud de 6.8 (RA) y 7.1 (SRL) según las ecuaciones de Leonard (2010), con un período de recurrencia posiblemente entre 195 y 235 años usando Wesnousky (1986).

Sin embargo, menciona también que una ruptura de los segmentos individuales del Sistema de Fallas de Quito es posible y que para la el segmento de falla Puengasí con una longitud de 22 km y área de ruptura de 259 km², podría generarse un evento de magnitud Mw 6.4, produciendo la mayor magnitud respecto de los demás segmentos, ver cuadro 2.1.

Sistema de Falla Quito	Área de ruptura	Magnitud	Longitud de ruptura	Magnitud	Período de recurrencia
Segmentos	(km²)	(RA)	(km)	(SRL)	(años)
Puengasí	259	6.4	22	6.4	188
llumbisí-La Bota	176	6.2	15	6.2	138
Carcelén-El Inca	82	5.9	7	5.7	105
Bellavista-Catequilla	191	6.3	17.5	6.3	183
Tangahuilla	108	6.0	12	6.0	115

CUADRO 2.1 SISTEMA DE FALLA QUITO

FUENTE: Alvarado et al. (2014)

En la figura 2.8 a la izquierda, se muestra el segmento Puengasí, donde se aprecia la longitud de superficie de ruptura (SRL), asimismo a la derecha se muestra la superficie del plano de falla, además de los focos de varios eventos ocurridos en el sistema de fallas de Quito.

FIGURA 2.8 MODELOS DE FALLAS CIEGAS INVERSAS DE QUITO

FUENTE: Alvarado et al. (2014); Rivas et al. (2014) y Aguiar et al. (2014)

Como se ha mencionado para este proyecto, la peligrosidad sísmica se va a evaluar mediante el método determinístico, considerando que un terremoto específico es el causante del mayor movimiento posible en el lugar de estudio, para ello es necesario introducir un conjunto de parámetros que permitan describir la falla que genera el terremoto entre ellas características físicas y morfológicas, así como la máxima magnitud a generar.

Es así que se procede a estimar el tamaño del terremoto más grande que puede ser generado por una falla en particular. Típicamente la magnitud se relaciona a la longitud de ruptura en superficie como una función del tipo de movimiento (Wells & Coppersmith, 1994).

Para hallar la magnitud máxima en función de la longitud de ruptura (SRL) y en función del área de ruptura (RA) para el segmento Puengasí, se han usado las ecuaciones propuestas por Leonard (2010) para fallas inversas:

$$Mw = 1.52 \log(SRL) + 4.4$$
(2.1)

$$Mw = 1.0 \log(RA) + 4$$
 (2.2)

Reemplazando las fórmulas descritas se ha obtenido la magnitud máxima asociada a la longitud de ruptura y área de ruptura para el segmento Puengasí.

 $Mw = 1.52 \log(22) + 4.4$ Mw = 6.4 (SRL) $Mw = 1.0 \log(259) + 4$ Mw = 6.4 (RA)

2.4 MAGNITUD MÁXIMA GENERADA POR LA FALLA MACHACHI

Soulas *et al.* (1991) identificaron esta falla por primera vez y se refirieron a ella como una parte del sistema de fallas Chingual – Pallatanga. La falla Machachi presenta depósitos de cangahua del Pleistoceno tardío y piedra pómez del Cuaternario además de ceniza proveniente del volcán Cotopaxi. Esta falla se observa claramente en el flanco NW del volcán Rumiñahui (Egüez & Yepes, 1994).

En su publicación Chunga (2010) se refiere a esta falla, como un nudo (zona de falla) sismogénico capaz de generar un sismo de magnitud mayor igual a 6.

En la figura 2.9, en el recuadro color rojizo se puede apreciar la falla Machachi (35), siendo esta del tipo transcurrente dextral según el Mapa de Fallas y Pliegues Cuaternarios de Ecuador (2003). Además se observa la cercanía que tiene a la zona del valle (recuadro color azul).

FIGURA 2.9 FALLA MACHACHI EC35

FUENTE: Mapa de Fallas y Pliegues Cuaternarios de Ecuador y Regiones Oceánicas Adyacentes (2003) Egüez et al. (2003) definieron la geometría de esta falla de la siguiente manera:

- Longitud: 22.72 km
- Rumbo promedio: N60°E±12°
- Buzamiento promedio: Desconocido.
- Sentido de movimiento: Dextral.
- Expresión Geomorfológica: Movimiento dextral a lo largo de la falla y asociados a fallas menores y secundarias normales y reversas.
- Velocidad de desplazamiento: Desconocido, probablemente <1 mm/año.

Debido a que la falla Machachi ha sido poco estudiada en comparación a la falla de Quito, lo cual ha conducido a la carencia de información geológica y sismológica, su geometría se la ha hallado mediante expresiones matemáticas.

De lo que se sabe, la falla Machachi es de tipo transcurrente dextral y como se desconoce el ángulo con el que buza, se ha investigado en los reportes del PEER (Pacific Earthquake Engineering Research Center), en donde afirman que para este tipo de fallas, estimar un buzamiento de 90° es una razonable asunción (Campbell & Borozgnia, 2013, p. 61), obteniéndose así un plano de falla vertical y un ángulo rake 180° para este tipo de falla, según menciona Lay y Wallace (1995) en la clasificación de los mecanismos de falla.

Así también en su tesis doctoral Rivas (2014) expresa que cuando no se tienen datos completos sobre la geometría de las fallas que permitan modelar de una forma precisa la ruptura, se recurre a modelarlas como un plano rectangular, con las simplificaciones que lo conlleva.

De esta forma se ha procedido a encontrar el ancho para este tipo de falla transcurrente mediante relaciones matemáticas expuestas en la tabla 5 de la publicación de Marck Leonard (2010), la misma que está en función de longitud de falla como se puede observar en la ecuación 2.3.

$$\log(W) = 0.667 * \log(L) + 1.18$$
(2.3)

De tal forma que se ha calculado un ancho de falla W=12.18 km y un área de ruptura igual a 276.78 km².

A continuación se ha determinado la magnitud máxima que puede generar esta falla utilizando igualmente las relaciones de Marck Leonard (2010) pero para fallas transcurrentes (Strike Slip), las cuales relacionan la longitud de ruptura (SRL) y el área de ruptura (RA).

$$Mw = 1.52 \log(SRL) + 4.33$$
(2.4)

$$Mw = 1.0 \log(RA) + 3.99$$
 (2.5)

Reemplazando se ha obtenido lo siguiente:

$$Mw = 1.52 \log(22.72) + 4.33$$
$$Mw = 6.4 (SRL)$$
$$Mw = 1.0 \log(276.78) + 3.99$$
$$Mw = 6.4 (RA)$$

Michetti *et al.* (2007), Serva (1994), Serva *et al.* (2007), Vittori *et al.* 2005, y Well & Copermisth (1994) estiman que la dimensión de la fuente sísmica capaz de generar un terremoto crustal con Mw=6 o VII≤ Intensidad (Io) ≤IX debería por lo menos tener una distribución espacial de aproximadamente 20 Km de largo y 10 Km de ancho. (Como se cita en Chunga, 2010, p.135), corroborándose de cierta manera los cálculos hechos para esta falla.

2.5 PERÍODOS DE RECURRENCIA

2.5.1 MODELO DEL TERREMOTO CARACTERÍSTICO

El período de recurrencia (Tr) es el tiempo que transcurre para que se dé un sismo con las mismas características. Este modelo propuesto por Wesnousky (1986), supone que en la falla solamente se producen rupturas completas en todo el plano de falla, haciendo que la falla solo se rompa con sismos de la misma magnitud y que ocurre con periodicidad perfecta cada Tr años, imposibilitando de este modo que en la falla se produzcan sismos de magnitud inferior a la determinada (Aguiar, 2015; Rivas, 2014).

$$T_{\rm r} = \frac{M_0}{\dot{M}_0} \tag{2.6}$$

$$\dot{M}_0 = \mu(\dot{u} \cdot A) \tag{2.7}$$

Donde:

- Tr: Período de Recurrencia en años.
- Mo: Momento sísmico.
- No: Tasa de acumulación del momento sísmico.
- μ: Módulo de deformación en rocas.
- ú: Tasa de movimiento de la falla.
- A: Área de ruptura.

2.5.1.1 Período de recurrencia hallado con el modelo del Terremoto Característico para la Falla Puengasí

Alvarado *et al.* (2014) indican que el segmento Puengasí tiene un área de ruptura de 259 km², con una tasa de movimiento de alrededor de 3 mm/año y un módulo de deformación en roca de 3x10¹⁰ Pascales.

Con estos datos y aplicando la ecuación 2.7 se ha obtenido una tasa de acumulación del momento sísmico de 2.36×10^{16} N.m/año.

Mientras que el momento sísmico que se liberaría en un terremoto de magnitud máxima ha sido despejado de la ecuación formulada en 1979 por Hanks y Kanamori:

$$Mw = \frac{2}{3}\log(Mo) - 10.7$$
 (2.8)

Donde Mo es igual a 4.46x10¹⁸ N.m, por lo que el período de recurrencia obtenido fue 188 años, ratificándose de esta manera los valores calculados por Alvarado *et al.* (2014) que se muestra en el cuadro 2.1 para Puengasí.

2.5.1.2 Período de recurrencia hallado con el modelo del Terremoto Característico para la Falla Machachi

De la misma forma se halla el período de recurrencia para la falla Machachi, obteniéndose un momento sísmico de Mo= $4.4668 * 10^{18}$ N.m y una tasa de acumulación del momento sísmico $\dot{M}_{o} = 8.3034 * 10^{15}$ Nm/año, la cual fue hallada con un módulo de deformación de rocas durante el sismo igual a $3x10^{10}$ Pascales, desplazamiento de la falla alrededor de 1mm/año y área de ruptura calculada de 276.78 km².

Teniéndose un período de recurrencia Tr= 538 años para esta falla.

En el cuadro 2.2 se resume lo expuesto.

CUADRO 2.2 ÁREA DE RUPTURA, MAGNITUD MÁXIMA Y PERÍODO DE RECURRENCIA DE LA FALLA MACHACHI

Segmento de falla	Área de Ruptura [RA] en km²	Longitud Superficial de Ruptura [SRL] en km	Magnitud (RA)	Magnitud (SRL)	Período de Recurrencia (años)
Machachi	276.78	22.72	6.4	6.4	538

ELABORACIÓN: Andrea Chicaiza B. (2016)

Como se ha mencionado, se ha obtenido el período de recurrencia para las dos fallas geológicas Puengasí y Machachi mediante el modelo del Terremoto Característico, es decir suponiendo que la falla sólo se romperá con sismos de magnitud máxima y con periodicidad perfecta, sin embargo otros autores presentan la posibilidad de que la falla produzca terremotos de menor magnitud con períodos de recurrencia diferentes como es el caso del modelo Gutenberg y Richter Modificado.

2.5.2 MODELO DE GUTENBERG RICHTER MODIFICADO

Los modelos de recurrencia definen el potencial sísmico de una falla, relacionando parámetros como la frecuencia y el tamaño de sismos ocurridos en una fuente determinada y en un tiempo (Aguiar *et al.*, 2016), esta cuantificación ya fue formulada por Charles Francis Richter y Beno Gutenberg en 1944 y modificada por Consentino *et al.* (1977), integrando parámetros como, la tasa acumulada de sismos $[\dot{N}(m)]$ para diferentes magnitudes, la tasa acumulada de sismos de magnitud mayor o igual a una magnitud mínima establecida $[\dot{N}_{Mmin}]$ y la proporción de grandes versus pequeños sismos [b o β], mostrada en la siguiente ecuación.

$$\dot{N}(m) = \dot{N}_{Mmin} \cdot \frac{e^{-\beta(m)} - e^{-\beta(Mmax)}}{(e^{-\beta(Mmin)} - e^{-\beta(Mmax)})}$$
(2.9)

Asimismo, la tasa de momento sísmico que se está acumulando en la falla \dot{M}_0 , será liberada por medio de sismos de diferente magnitud (suponiendo un modelo de recurrencia tipo GR), las cuales variarán desde una magnitud M_{min} , próxima a 0, y la magnitud M_{max} que vendrá definida por el tamaño del plano de falla. (Aguiar, 2015)

Se aplica la ecuación propuesta por Anderson (1979) que relaciona la tasa de momento acumulada con la tasa de momento que se libera.

$$\dot{M}o = \int_{Mmin}^{Mmax} \dot{n}(m)Mo(m)dm$$
(2.10)

Donde la tasa de momento sísmico que se está acumulando en la falla, será igual a la tasa simple de sismos $\dot{n}(m)$ que se producen al año de magnitudes entre (M_{min}, M_{max}) por el momento sísmico que se libera en cada uno de esos sismos *Mo* (*m*). (Aguiar, 2015).

El momento sísmico que se libera en sismos de diferente magnitud, se obtiene por medio de la expresión propuesta por Hanks y Kanamori (1979).

$$Mo(m) = e^{(c+dm)}$$
(2.11)

Donde, $c = 16.05 \ln(10) \text{ y } d = 1.5 \ln(10)$.

Reemplazando las ecuaciones 2.9, 2.11 en la ecuación 2.10 se tiene:

$$\dot{M}o = \int_{M\min}^{M\max} \dot{n}(m)Mo(m)dm = \int_{M\min}^{M\max} \dot{N}\min \cdot \beta \left[\frac{e^{-\beta m}}{(e^{-\beta(M\min)} - e^{-\beta(M\max)})} \right] e^{c+dm}dm$$
(2.12)
$$\dot{M}o = \frac{\dot{N}_{M\min} \cdot \beta}{(d-\beta)(e^{-\beta M\min - e^{-\beta M\max}})} \left[e^{-\beta M\max}Mo(M\max) - e^{-\beta M\min}Mo(M\min) \right]$$
(2.13)

Despejando N_{Mmin}, se tiene:

$$\dot{N}_{Mmin} = \frac{\dot{M}o(d-\beta)(e^{-\beta Mmin} - e^{-\beta Mmax})}{\beta[e^{-\beta Mmax}Mo(Max) - e^{-\beta Mmin}Mo(Mmin)]}$$
(2.14)

Donde Mo es la tasa de momento sísmico de la falla, Mo (Max) y Mo (Min) es el momento sísmico que se liberaría en los sismos de magnitud máxima y mínima respectivamente.

2.5.2.1 Período de Recurrencia hallado con el modelo de Gutenberg Richter Modificado para las fallas de Puengasí y Machachi

Con un valor de b=0.64 obtenido para la zona RI3 de la tabla 4.7 Parámetros de Sismicidad (Parra, 2016, p.102) y una tasa de deslizamiento para la falla Puengasí de 3 mm/año y para la falla Machachi de 1 mm/año.

Además suponiendo que la falla puede generar sismos con magnitudes mayores a M_{min} =4.0 hasta un M_{max} que es la magnitud máxima liberada en la falla obtenida con las relaciones de Leonard (2010) en función de la longitud o área del plano de ruptura. Se ha obtenido el cuadro 2.3 que expresa el período de recurrencia calculado por medio de este modelo.

CUADRO 2.3 PERÍODO DE RECURRENCIA, HALLADOS CON EL MODELO GUTENBERG Y RICHTER MODIFICADO PARA LAS FALLAS PUENGASÍ Y MACHACHI.

Rango de	Período de Recurrencia (Años)							
magnitudes (Mw)	PUENGASI	MACHACHI						
[5.0 - 5.5)	23-47	65-132						
[5.5 - 6.0)	57-146	161-409						
[6 - 6.3]	198-463	555-1299						
Mmax	999	2805						
IVIIIdX	(Mw6.4)	(Mw6.4)						

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 2.10 TASA ACUMULADA DE SISMOS PARA LAS FALLAS PUENGASÍ Y MACHACHI. MODELO GR-MODIFICADA

ELABORACIÓN: Andrea Chicaiza B. (2016)

La figura 2.10 expresa la tasa acumulada de sismos \dot{N} (m) en función de la magnitud. La inversa de esta tasa acumulada expresa el período de recurrencia para cada magnitud asociada a cada falla.

CAPÍTULO 3

MODELOS DE MOVIMIENTO FUERTE

3.1 ECUACIONES DE ATENUACIÓN (GMPE'S)

Las ecuaciones de atenuación describen el efecto producido en un sitio lejos de la fuente sísmica, involucrando parámetros como la distancia al hipocentro o al epicentro del sismo, la magnitud del evento, el medio en el que se propaga la onda, etc.

Estas ecuaciones se las obtienen realizando estudios de regresión sobre muestras de aceleraciones pico, en función de la distancia y la magnitud del sismo que lo originó, con el fin de estimar los parámetros de aceleración, velocidad y desplazamiento máximo del suelo esperados en un sitio, ante un sismo de cierta magnitud y distancia conocida INGEOMINAS *et al.* (2005).

Es así que la obtención de estas ecuaciones es de gran importancia en la ingeniería Civil, ya que permiten realizar un adecuado diseño sísmico, tomando en cuenta aspectos como el tipo de estructura, el lugar de emplazamiento y el posible evento sísmico a suscitarse.

La Nueva Generación de Relaciones de Atenuación del Movimiento del suelo para el Oeste de los Estados Unidos (NGA West) fue un programa desarrollado por el centro de investigación de Ingeniería Sísmica del Pacífico (PEER-Pacific Earthquake Engineering Research Center) en conjunto con el Servicio Geológico de los Estados Unidos (USGS) y el Centro de Terremotos del Sur de California (SCEC), cuyo objetivo fue desarrollar una nueva generación de relaciones de atenuación para sismos superficiales en regiones tectónicamente activas de corteza, el mismo que concluyó en el 2008 incluyendo una amplia base de datos de movimientos del suelo registrados en todo el mundo y un conjunto de GMPEs (Ground Motion Prediction Equations) para movimiento horizontal especialmente para el oeste de Estados Unidos.

Sin embargo vio necesario la actualización del programa Next Generation Attenuacion (NGA- West1) al programa NGA-West 2, el mismo que tiene por objetivos:(Campbell & Borzognia, 2013):

- Actualizar los modelos NGA-West1 para su utilización en sismos moderados y grandes.
- Extender los modelos a pequeñas magnitudes, tal como Mw 3.0.
- Desarrollar GMPEs (Ground Motion Prediction Ecuations) para la componente vertical.
- Desarrollar un modelo para ajustar el espectro de respuesta con 5% de amortiguamiento a valores de amortiguamiento entre 0.5% y 30%.
- Estudiar los efectos de directividad sísmica de la fuente.
- Desarrollar modelos para ajustar la componente horizontal media a una componente de polarización (direccionalidad).
- Desarrollar modelos para incorporar la incertidumbre epistémica.
- Actualizar los efectos de respuesta lineal y no lineal de sitio.
- Evaluar los efectos ocasionados por el bloque levantado (Hanging-wall).

La base de datos del proyecto de NGA-West2 amplía la base actual de movimiento del suelo de PEER NGA para incluir registros de terremotos corticales superficiales en regímenes tectónicos activos en todo el mundo.

Desde el 2003 numerosos eventos han ocurrido en todo el mundo, incluyendo el 2003 M6.6 Bam (Irán), 2004 M6 Parkfield (California), 2008 M7.9 Wenchuan (China), 2009 M6.3 L'Aquila (Italia), 2010 M7.2 El Mayor-Cucupah (California y México), 2010 M7 Darfield (Nueva Zelanda), 2011 M6.2 Christchurch (Nueva Zelanda) y varios terremotos corticales superficiales en Japón, entre otros eventos. La base de datos ampliada también incluye 21.336 registros de tres componentes de 600 eventos corticales superficiales con magnitud pequeña a moderada ubicada en California Ancheta *et al.* (2013).

La figura 3.1 muestra la distribución de las localizaciones del epicentro de los eventos corticales superficiales seleccionados en todo el mundo, incluida en la base de datos de NGA-West2. Círculo color azul son eventos en el NGA West 1 y de NGA-West2 estrellas color rojo.

FIGURA 3.1 MAPA DE LA DISTRIBUCIÓN EPICENTRAL DE LOS 335 EVENTOS SELECCIONADOS DE TODO EL MUNDO

FUENTE: Ancheta et al. (2013)

Para satisfacer las necesidades de la comunidad de la ingeniería Sísmica, los modelos de NGA-West2 necesitan cumplir los siguientes requerimientos: (Campbell & Borzognia, 2013):

- Deben incluir intensidades medibles de movimiento del suelo como: PGA, PGV o el espectro de pseudo-aceleración absoluta horizontal para el 5% de amortiguamiento (PSA) en períodos comprendidos entre 0 y 10 segundos.
- Deben evaluar la componente media horizontal definida como la dirección de rotación media (RotD50), así como la componente horizontal para la máxima dirección de rotación (RotD100) aunque este último requerimiento es cubierto por los grupos de trabajo de direccionalidad del proyecto NGA-West2.

- Ser válidos para sismos corticales poco profundos, con mecanismos de falla inversa, normal o transcurrente en regiones tectónicamente activas.
- Ser válidas para magnitudes entre 3.0 8.5, y distancias del sitio a la fuente entre 0 - 200 km.
- Deben incorporar la velocidad media de la onda de corte en los primeros 30 metros de profundidad (V_{s30}), como un parámetro del sitio de interés.

3.2 CRITERIOS PARA LA SELECCIÓN Y EL AJUSTE DE LOS MODELOS

Debido a que en los últimos años se han desarrollado decenas de ecuaciones que han servido para la predicción de movimientos del suelo, se hace necesario tomar algunos criterios para rechazar las ecuaciones de la lista completa de los modelos candidatos capaces, según lo que indica Cotton *et al.* (2006).

- El modelo es de un régimen tectónico claramente irrelevante.
- El modelo no ha sido publicado en una revista internacional.
- La documentación del modelo y su conjunto de datos es insuficiente.
- El modelo ha sido reemplazado por más recientes publicaciones.
- El rango de frecuencia del modelo no es apropiado para la aplicación de la ingeniería.
- El modelo tiene una forma funcional inapropiada.
- El método de regresión o los coeficientes son inapropiados.

Como son numerosas las ecuaciones de atenuación que se han desarrollado a nivel mundial, se hace muy necesario validarlas para el caso de nuestro país, para ello se ha tomado en consideración el trabajo de tesis de Pregrado de Taipe (2013), el cual concluye que los modelos de Chiou & Youngs (CY08) y Campbell & Borzognia (CB08) son buenos candidatos para ser utilizados en eventos corticales (intra placa superior), teniendo en cuenta sus limitaciones y de igual forma el trabajo de tesis de Maestría de Quizanga (2015), el cual aplica los modelos de atenuación Chiou &

Youngs (2013), Campbell & Borzognia (2013) y Abrahamson *et al.* (2013) para la zona de Quito.

Por lo antes indicado, las ecuaciones que han sido elegidas tomando en cuenta que han sido desarrolladas para sismos superficiales en regiones tectónicamente activas de corteza, fueron las siguientes:

- Chiou & Youngs 2013 (CY13)
- Campbell & Borzognia 2013 (CB13)
- Abrahamson et al. 2013 (ASK13)

3.3 PARÁMETROS A USAR EN LAS ECUACIONES DE ATENUACIÓN

3.3.1 PARÁMETROS DE FUENTE

- ✓ Mw: Magnitud momento.
- ✓ W: Ancho del plano de ruptura (km).
- \checkmark **Dip** (δ): Ángulo de buzamiento promedio del plano de ruptura (°).
- Rake (λ): Ángulo entre la dirección de deslizamiento en el plano de falla y la orientación de la falla en la superficie de la Tierra (°).
- ✓ **Z**TOR: Profundidad hasta el borde superior del plano de ruptura (km).
- ✓ Zhyp: Profundidad hipocentral (focal) del sismo (km).
- ✓ **F**_{RV}: Variable indicadora que representa fallas inversas e inversas oblicuas, donde F_{RV}=1 para 30°< λ < 150° y F_{RV}=0 para otros mecanismos de falla.
- ✓ F_{NM} : Variable indicadora que representa fallas normales y normales oblicuas donde F_{NM} =1 para -150°< λ< -30 ° y F_{NM} =0 en otros mecanismos de falla
- ✓ F_{AS}: Variable que indica la clase del terremoto, si es una réplica F_{AS} toma el valor de 1 y si es un evento sísmico principal F_{AS} igual a 0.
- ✓ **F**_{Hw}: Variable del efecto Hanging-wall.

3.3.2 PARÁMETROS DE SITIO

- ✓ V_{s30}: Velocidad de la onda de corte a los primeros 30 metros del suelo (m/s).
- ✓ A1100 (g): Valor previsto de PGA sobre roca a una velocidad media de onda de corte V_{S30} =1100 m/s
- ✓ Z_{2.5}: Profundidad debajo del sitio de interés a la cual se halla una velocidad de onda de corte V_s= 2.5 km/s (km).
- ✓ Z_{1.0}: Profundidad a la que la velocidad de la onda de corte es V_s= 1.0 km/s (km).

3.3.3 PARÁMETROS DE TRAYECTORIA

- ✓ **Rrup**: Distancia más cercana del sitio al plano de ruptura (km).
- **Rjb**: Distancia horizontal más cercana a la proyección del plano de ruptura en la superficie (km).
- Rx: Distancia horizontal más cercana (proyección en la superficie) al borde superior del plano de ruptura medido perpendicularmente desde la dirección del rumbo promedio (km).

En las figuras 3.2 y 3.3 se ilustran los parámetros descritos obtenidos del programa NGA West 2, PEER.

FIGURA 3.2 REPRESENTACIÓN ESQUEMÁTICA DE LOS ÁNGULOS QUE DEFINEN EL TIPO DE FALLA, ASÍ COMO EL ANCHO DE FALLA (W), LONGITUD DE FALLA (L) Y Z_{TOR}

FIGURA 3.3 REPRESENTACIÓN ESQUEMÁTICA DE LOS PARÁMETROS DE TRAYECTORIA R_x, R_{rup}, R_{jb} PARA FALLAS TRANSCURRENTES, INVERSAS Y NORMALES

FUENTE: Programa NGA West 2 (2014)

En la figura 3.2 se exponen los distintos parámetros que definen a la falla y que son datos fundamentales en las ecuaciones de movimiento fuerte, entre ellos está el ángulo de buzamiento y ángulo rake, el ancho, longitud de la falla y la profundidad hasta el borde superior del plano de ruptura.

De igual forma la figura 3.3 muestra que para fallas Transcurrentes se tiene un plano de falla vertical, donde la distancia R_x es igual a la distancia R_{jb} ambas positivas, mientras que para fallas Inversas y Normales se tiene un plano de falla inclinado, donde R_x es positiva si el sitio en análisis se localiza en el bloque levantado y negativa si está en el bloque deprimido.

El cuadro 3.1 presenta una comparación entre los parámetros a utilizarse en cada una de las ecuaciones de atenuación establecidas:

CUADRO 3.1 COMPARACIÓN DE PARÁMETROS DE FUENTE, SITIO Y TRAYECTORIA ENTRE LOS MODELOS ASK13, CB13 Y CY13

PARÁMETROS	ASK13	CB13	CY13
Mw	х	х	х
Ztor (km)	х	х	х
Tipo de Falla	F_{RV}, F_{NM}, SS	F _{RV} ,F _{NM} ,SS	F _{RV} ,F _{NM} ,SS
Dip (deg)	х	х	х
W (km)	х	х	-
R rup(km)	х	х	х
Rjb (km)	х	х	х
Rx (km)	х	х	х
Ryo (km)	х	-	-
Efecto Hanging wall	х	х	х
V _{S30} (m/s)	х	х	х
V _{S30} para roca (m/s)	1100	1100	1130
Profundidad Vs (km)	Z _{1.0}	Z _{2.5}	Z _{1.0}
Distancia hipocentral (km)	-	Z _{hyp}	-
Término de Directividad	-	(Z _{hyp})	DDPP
Variaciones regionales	х	х	х
Factor Réplica	F _{AS}	-	-

FUENTE: Seyhan, PEER (2014)

3.4 MODELO DE CHIOU & YOUNGS 2013

3.4.1 INTRODUCCIÓN

Como parte de la actualización del programa NGA West, Brian S.J. Chiou & Robert R. Youngs reformaron su modelo propuesto Chiou & Youngs (2008) relacionando parámetros como el efecto del tipo de falla, ajuste del Hanging wall, ajuste de la profundidad y tope de la ruptura, el efecto de la profundidad de sedimentos y la inclusión de dos términos: el ángulo de buzamiento y la directividad de la ruptura.

En Chiou & Youngs (2008), los autores utilizaron una combinación de un conjunto de datos empíricos provenientes principalmente de registros sísmicos de California, Taiwán y Turquía con datos limitados de Irán, Italia y Japón.

El PEER NGA West2 en su base de datos incluye más datos de sismos en Italia y Japón, así como también registros de sismos en Nueva Zelanda y China (Wenchuan).

La base de datos de este modelo después de haber pasado por una selección rigurosa, está conformada por 12444 registros provenientes de 300 sismos. Entre estos 2587 registros fueron seleccionados de 18 sismos de regiones no pertenecientes a California.

La siguiente figura muestra la dispersión de magnitudes vs distancias distribuidas para las diferentes regiones.

FIGURA 3.4 REGISTRO DE DATOS USADOS PARA EL MODELO CHIOU & YOUNGS (2013)

FUENTE: Chiou & Youngs (2013)

3.4.2 LIMITACIONES DEL MODELO

El modelo es aplicable para sismos superficiales en regiones tectónicamente activas de corteza, con las siguientes limitaciones (Chiou & Youngs, 2013):

- > $3.5 \le Mw \le 8.5$ para sismos generados en fallas Transcurrentes.
- > $3.5 \le$ Mw ≤ 8.0 para sismos generados en fallas Inversas y Normales.
- \succ Z_{TOR} ≤ 20km.
- \succ 0≤ R_{RUP} ≤ 300 km.
- > 180 m/seg ≤ V_{S30} ≤ 1500 m/seg.

3.4.3 ECUACIONES DEL MODELO

La ecuación está dada por:

$$\begin{split} \ln\left(y_{ref_{ij}}\right) &= c_{1} + \left\{c_{1a} + \frac{c_{1c}}{\cosh\left(2\max(M_{i} - 4.5, 0)\right)}\right\} F_{RVi} \\ &+ \left\{c_{1b} + \frac{c_{1d}}{\cosh\left(2\max(M_{i} - 4.5, 0)\right)}\right\} F_{NMi} \\ &+ \left\{c_{7} + \frac{c_{7b}}{\cosh\left(2\max(M_{i} - 4.5, 0)\right)}\right\} \Delta Z_{tori} \\ &+ \left\{c_{11} + \frac{c_{11b}}{\cosh\left(2\max(M_{i} - 4.5, 0)\right)}\right\} (\cos\delta_{i})^{2} + c_{2}(M_{i} - 6) \\ &+ \frac{c_{2} - c_{3}}{c_{n}} \ln\left(1 + e^{Cn(c_{M} - M_{i})}\right) \\ &+ c_{4}\ln\left(R_{RUPij} + c_{5}\cosh(c_{6}\max(M_{i} - c_{HM}, 0))\right) \\ &+ (c_{4a} - c_{4})\ln\left(\sqrt{R_{RUPij}^{2} + c_{RB}^{2}}\right) + \left\{c_{\gamma 1} + \frac{c_{\gamma 2}}{\cosh\left(\max(M_{i} - c_{\gamma 3}, 0)\right)}\right\} R_{RUPij} \\ &+ c_{8}\max\left(1 + \frac{\max(R_{RUPij} - 40, 0)}{30}, 0\right) \min\left(\frac{\max(M_{i} - 5.5, 0)}{0.8}, 1\right) e^{-c_{6a}(M_{i} - C_{6b})^{2}} \Delta_{DPPij} \\ &+ c_{9} F_{HWij}\cos\delta\left\{c_{9a} + (1 - c_{9a}) \tanh\left(\frac{R_{xij}}{c_{9b}}\right)\right\} \left\{1 - \frac{\sqrt{R_{jBij}^{2} + Z_{TORi}^{2}}{R_{RUPij} + 1}\right\}$$
(3.1)

$$\ln(y_{ij}) = \ln(y_{ref_{ij}}) + \phi_1 \min\left(\ln\left(\frac{Vs_{30\,j}}{1130}\right), 0\right)$$
$$+\phi_2(e^{\phi_3(\min(Vs_{30,1130}) - 360)} - e^{\phi_3(1130 - 360)})\ln\left(\frac{y_{ref_{ij}} + \phi_4}{\phi_4}\right)$$
$$+\phi_5\left(1 - e^{-\Delta Z_{1.0}/\phi_6}\right) + \eta_i + \varepsilon_{ij}$$
(3.2)

Donde,

M: Magnitud de Momento.

R_{RUP}: Distancia más cercana al plano de ruptura (km).

R_{JB}: Distancia Joyner Boore al plano de ruptura (km).

R_x: Distancia horizontal más cercana (proyección en la superficie) al borde superior del plano de ruptura medido perpendicularmente desde la dirección del rumbo promedio (km).

F_{HW}: Factor de Hanging Wall: 1 Si $R_x \ge 0$ y $0 R_x \le 0$.

δ: Ángulo de buzamiento (°).

ZTOR: Profundidad hasta el borde superior del plano de ruptura (km).

F_{RV}: Factor de mecanismo de falla inversa o inversa oblicua: 1 Si $30^{\circ} \le \lambda \le 150^{\circ}$ y 0 en otros casos.

F_{NM}: Fallas normales: 1 Si -120° $\leq \lambda \leq$ -60° y 0 en otros casos.

V_{s30:} Velocidad de onda de corte a los 30 metros superiores del suelo (m/s).

Z_{1.0}: Profundidad cuando la velocidad de onda de corte es 1.0 km/seg (m).

Δ**Z**_{1.0}: Parámetro de variación de Z_{TOR} (m).

DPP: Parámetro del efecto de directividad.

 Δ **DPP**:Parámetro de variación de DPP.

y_{ref ii}: Aceleración del suelo en roca, expresada como coeficiente de la gravedad.

y_{ij}: Aceleración del suelo teniendo en cuenta las condiciones de sitio.

εi: Factores que toman en cuenta la variabilidad de los factores de amplificación por efecto del tipo de suelo (Chiou & Youngs, 2008).

A continuación se detallan los términos que intervienen en el modelo.

En varios análisis exploratorios de la base de datos de NGA-West2, los autores han observado que el ajuste del movimiento del suelo puede ser diferente para magnitudes comprendidas entre 3 y 5.5 respecto a magnitudes mayores a 5.5, por lo que ellos seleccionaron la siguiente función, modelando así las diferencias observadas.

$$f(M_i) = \left\{ \alpha + \frac{\beta}{\cosh[2 \cdot \max(M_i - 4.5, 0)]} \right\}$$
(3.3)

Con esta ecuación se restringe la influencia de eventos de magnitud moderada (3<M<5.5) debido a eventos de gran magnitud (M≥5.5).

Los autores también notaron diferencias debido a los efectos del estilo de falla para eventos de magnitud moderada y de gran magnitud, por lo que los términos que simulan estas diferencias para fallas del tipo inversa y normal respectivamente son los siguientes:

$$\left\{c_{1a} + \frac{c_{1c}}{\cosh(2\max(M_i - 4.5, 0))}\right\}F_{RVi}$$
(3.4)

$$\left\{c_{1b} + \frac{c_{1d}}{\cosh(2\max(M_i - 4.5, 0))}\right\} F_{NMi}$$
(3.5)

Por otro lado para modelar los efectos de la profundidad hasta el borde superior del plano de ruptura, los autores utilizaron la siguiente relación:

$$\left\{c_{7} + \frac{c_{7b}}{\cosh(2\max(M_{i} - 4.5, 0))}\right\} \Delta Z_{tori}$$
(3.6)

Los autores en la ecuación 3.6 han introducido la dependencia de la magnitud del sismo mediante el coeficiente c7 y ΔZ_{TOR} .

$$\Delta Z_{\text{TOR}} = Z_{\text{TOR}} - E[Z_{\text{TOR}}]$$
(3.7)

Donde:

ZTOR: Profundidad al borde superior observado para una determinada falla.

[*ZTOR*]: Valor medio que se halla con las ecuaciones siguientes que están en función del tipo de falla y magnitud:

• Para fallas inversas e inversas oblicuas:

$$Z_{\text{TOR}} = \max[2.704 - 1.226 \max (M - 5.849, 0), 0]^2$$
(3.8)

• Para fallas normales y transcurrentes.

$$Z_{\text{TOR}} = \max[2.673 - 1.136 \max (M - 4.970, 0), 0]^2$$
(3.9)

Respecto a la profundidad de sedimentos, los autores utilizaron el parámetro $Z_{1.0}$ que es la profundidad cuando la velocidad de onda de corte es 1.0 km/seg y V_{s30} (velocidad de onda de corte a los 30 primeros metros) para modelar la amplificación del movimiento superficial debido a la condición local del sitio, es así que seleccionaron la siguiente forma funcional:

$$\phi_5 \left(1 - e^{-\Delta Z_{1.0}/\phi_6} \right) \tag{3.10}$$

Para el cálculo de la profundidad de Z_{1.0} es hallada con las siguientes ecuaciones obtenidas para California y Japón respectivamente:

$$\ln(z_{1.0}) = \frac{-7.15}{4} \ln\left(\frac{V_{s30}^4 + 571^4}{1360^4 + 571^4}\right)$$
(3.11)

$$\ln(z_{1.0}) = \frac{-5.23}{2} \ln\left(\frac{V_{530}^4 + 412^4}{1360^4 + 412^4}\right)$$
(3.12)

De modo que para la obtención de $\Delta Z_{1,0}$ se resta el valor de la profundidad $Z_{1,0}$ observado en el sitio de interés menos el promedio del valor Z_1 .

Para modelar el efecto del hanging-wall, los autores en su modelo del 2008 demostraron que en sitios localizados en el hanging-wall se tiene una amplificación

del movimiento del suelo y que además se incrementa cuando aumenta el valor absoluto de Rx, esto está expresado en la siguiente relación:

$$c_{9} F_{HWij} \cos \left\{ c_{9a} + (1 - c_{9a}) \tanh \left(\frac{R_{xij}}{c_{9b}} \right) \right\} \left\{ 1 - \frac{\sqrt{R_{JBij}^2 + Z_{TORi}^2}}{R_{RUPij} + 1} \right\}$$
(3.13)

Así también, los autores consideraron el efecto del ángulo de buzamiento, donde en varios análisis exploratorios encontraron que para magnitudes moderadas, disminuyeron sistemáticamente con la disminución del ángulo de buzamiento, pero para magnitudes grandes ellos no encontraron dependencia. La forma de modelación es la siguiente:

$$\left\{c_{11} + \frac{c_{11b}}{\cosh(2\max(M_i - 4.5, 0))}\right\} (\cos\delta_i)^2$$
(3.14)

Donde el coeficiente C₁₁ se fija en 0 para todos los períodos.

De igual forma, tomaron en cuenta el efecto de directividad para esta actualización ya que en su modelo anterior CY08 no lo hicieron, para ello introdujeron una nueva variable llamada ΔDPP el mismo que se obtiene de la variación entre un valor observado y otro calculado. Por lo que para modelar este efecto adoptaron la formulación de Spudich y Chiou (2013).

$$f_D = C_8 f_R f_M e^{-C_{8a}(M - C_{8b})^2} \Delta DPP$$
 (3.15)

Donde la función f_R y f_M son también tomadas de Spudich.

$$f_{\rm R} = \max\left(1 + \frac{\max(R_{\rm RUP} - 40,0)}{30}, 0\right)$$
 (3.16)

$$f_{\rm M} = \min\left(1 + \frac{\max(M_i - 5.5, 0)}{0.8}, 1\right)$$
 (3.17)

Debido a la falta de información, la directividad para M< 5.7 no pudo ser investigada en esta actualización, por lo que los autores asumen que el efecto de directividad para magnitudes menor a 5.5 es insignificante.

3.4.4 DESVIACIÓN ESTÁNDAR DEL MODELO

La terminología actual para expresar la desviación estándar utiliza el símbolo: τ para inter eventos y ϕ para intra eventos y con el símbolo σ para usar la variabilidad aleatoria total como es:

$$\sigma_{\rm T}^2 = (1 + NL_{\rm o})^2 \tau^2 + \sigma_{\rm NLo}^2$$
(3.18)

$$\tau = \tau_1 + \frac{\tau_2 - \tau_1}{2.25} (\min(\max(M, 5), 7.25) - 5)$$
(3.19)

$$\sigma_{\rm NLo} = (\sigma_1 + \frac{\sigma_2 - \sigma_1}{2.25})(\min(\max(M, 5), 7.25) - 5)\sqrt{\sigma_3 F_{\rm inferred} + 0.7 F_{\rm Measured} + (1 + NL_o)^2}$$
(3.20)

$$NL_{o} = \phi_{2} \left(e^{\phi_{3} \left(\min(Vs_{30}, 1130) - 360 \right)} - e^{\phi_{3} (1130 - 360)} \right) \left(\frac{y_{ref}}{y_{ref} + \phi_{4}} \right)$$
(3.21)

Donde:

τ,σ: Coeficientes dependientes del período indicados en el cuadro 3.3 F_{Inferred}: Es 1 si el valor de V_{s30} se deduce a partir de la geología, de lo contrario 0. F_{Measured}: Es 1 si el valor de V_{s30} fue medido en sitio, de lo contrario 0.

El cuadro 3.2 muestra los coeficientes independientes del período empleados en este modelo, mientras que el cuadro 3.3 expone los coeficientes dependientes del período y los coeficientes empleados en la desviación estándar.

CUADRO 3.2 COEFICIENTES INDEPENDIENTES DEL PERÍODO. MODELO CHIOU & YOUNGS (2013)

c2	c4	c4a	cRB	с8	c8a
1.06	-2.1	-0.5	50	0.2153	0.2695

FUENTE: Chiou & Youngs (2013)

CUADRO 3.3 COEFICIENTES DEPENDIENTES DEL PERÍODO. MODELO CHIOU & YOUNGS (2013)

T (seg)	c1	c1a	c1b	c1c	c1d	cn	сM	c3	c5	cHM	c6	c7	c7b	c8b	c9	c9a	c9b
0.01	-1.5070	0.1650	-0.3729	-0.1650	0.1977	16.0875	4.9993	1.9636	6.4551	3.0956	0.4893	0.0352	0.0462	0.4833	0.9228	0.1202	6.8607
0.02	-1.4788	0.1650	-0.3772	-0.1650	0.2180	15.7118	4.9993	1.9636	6.4551	3.0963	0.4892	0.0352	0.0472	1.2144	0.9296	0.1217	6.8697
0.03	-1.3116	0.1650	-0.4429	-0.1650	0.3484	15.8819	4.9993	1.9636	6.4551	3.0974	0.4890	0.0352	0.0533	1.6421	0.9396	0.1194	6.9113
0.04	-1.1159	0.1650	-0.5122	-0.1650	0.4733	16.4556	4.9993	1.9636	6.4551	3.0988	0.4888	0.0352	0.0596	1.9456	0.9661	0.1166	7.0271
0.05	-0.9464	0.1650	-0.5544	-0.1650	0.5433	17.6453	4.9993	1.9636	6.4551	3.1011	0.4884	0.0352	0.0639	2.1810	0.9794	0.1176	7.0959
0.075	-0.6749	0.1650	-0.5929	-0.1650	0.5621	20.1772	5.0031	1.9636	6.4551	3.1094	0.4872	0.0352	0.0630	2.6087	1.0260	0.1171	7.3298
0.1	-0.5735	0.1650	-0.5760	-0.1650	0.4633	19.9992	5.0172	1.9636	6.8305	3.2381	0.4854	0.0352	0.0532	2.9122	1.0177	0.1146	7.2588
0.12	-0.5439	0.1650	-0.5583	-0.1650	0.4000	18.7106	5.0315	1.9795	7.1333	3.3407	0.4837	0.0352	0.0452	3.1045	1.0008	0.1128	7.2372
0.15	-0.5543	0.1650	-0.5345	-0.1650	0.3337	16.6246	5.0547	2.0362	7.3621	3.4300	0.4808	0.0352	0.0345	3.3399	0.9801	0.1106	7.2109
0.17	-0.5933	0.1650	-0.5188	-0.1650	0.2961	15.3709	5.0704	2.0823	7.4365	3.4688	0.4787	0.0352	0.0283	3.4719	0.9652	0.1150	7.2491
0.2	-0.6865	0.1650	-0.4944	-0.1650	0.2438	13.7012	5.0939	2.1521	7.4972	3.5146	0.4755	0.0352	0.0202	3.6434	0.9459	0.1208	7.2988
0.25	-0.8720	0.1650	-0.4517	-0.1650	0.1620	11.2667	5.1315	2.2574	7.5416	3.5746	0.4706	0.0352	0.0090	3.8787	0.9196	0.1208	7.3691
0.3	-1.0558	0.1650	-0.4122	-0.1650	0.0881	9.1908	5.1670	2.3440	7.5600	3.6232	0.4665	0.0352	-0.0004	4.0711	0.8829	0.1175	6.8789
0.4	-1.3800	0.1650	-0.3532	-0.1650	-0.0287	6.5459	5.2317	2.4709	7.5735	3.6945	0.4607	0.0352	-0.0155	4.3745	0.8302	0.1060	6.5334
0.5	-1.6472	0.1650	-0.3101	-0.1650	-0.1158	5.2305	5.2893	2.5567	7.5778	3.7401	0.4571	0.0352	-0.0278	4.6099	0.7884	0.1061	6.5260
0.75	-2.1421	0.1650	-0.2219	-0.1650	-0.2708	3.7896	5.4109	2.6812	7.5808	3.7941	0.4531	0.0352	-0.0477	5.0376	0.6754	0.1000	6.5000
1	-2.5266	0.1650	-0.1694	-0.1650	-0.3527	3.3024	5.5106	2.7474	7.5814	3.8144	0.4517	0.0352	-0.0559	5.3411	0.6196	0.1000	6.5000
1.5	-3.0655	0.1650	-0.1376	-0.1650	-0.3454	2.8498	5.6705	2.8161	7.5817	3.8284	0.4507	0.0352	-0.0630	5.7688	0.5101	0.1000	6.5000
2	-3.4114	0.1645	-0.1218	-0.1645	-0.2605	2.5417	5.7981	2.8514	7.5818	3.8330	0.4504	0.0352	-0.0665	6.0723	0.3917	0.1000	6.5000
3	-3.8330	0.1168	-0.1053	-0.1168	-0.0914	2.1488	5.9983	2.8875	7.5818	3.8361	0.4501	0.0160	-0.0516	6.5000	0.1244	0.1000	6.5000
4	-4.1207	0.0732	-0.1008	-0.0732	-0.0306	1.8957	6.1552	2.9058	7.5818	3.8369	0.4501	0.0160	-0.0516	6.5000	0.1244	0.1000	6.5000
5	-4.3438	0.0484	-0.0996	-0.0484	-0.0129	1.7228	6.2856	2.9169	7.5818	3.8376	0.4500	0.0029	-0.0424	7.0389	0.0000	0.1000	6.5000
7.5	-4.7493	0.0220	-0.0994	-0.0220	-0.0014	1.5737	6.5428	2.9320	7.5818	3.8380	0.4500	0.0007	-0.0348	7.4666	0.0000	0.1000	6.5000
10	-5.0370	0.0124	-0.1000	-0.0124	0.0001	1.5265	6.7415	2.9396	7.5818	3.8380	0.4500	0.0003	-0.0253	7.7700	0.0000	0.1000	6.5000

CUADRO 3.3 CONTINUACIÓN

T (seg)	c11	c11b	cγ1	сү2	сүЗ	ф1	ф2	ф3	ф4	ф5	ф6	τ1	τ2	σ1	σ2	σ3
0.01	0.0000	-0.4536	-0.0071	-0.0068	4.1293	-0.5210	-0.1417	-0.0070	0.1022	0.0000	300.0000	0.4010	0.2470	0.5530	0.4106	0.8000
0.02	0.0000	-0.4536	-0.0072	-0.0069	4.0715	-0.5055	-0.1364	-0.0073	0.1084	0.0000	300.0000	0.4080	0.2420	0.5567	0.4107	0.8000
0.03	0.0000	-0.4536	-0.0075	-0.0072	4.0009	-0.4368	-0.1403	-0.0074	0.1199	0.0000	300.0000	0.4320	0.2320	0.5676	0.4136	0.8000
0.04	0.0000	-0.4536	-0.0079	-0.0075	3.9647	-0.3752	-0.1591	-0.0070	0.1336	0.0000	300.0000	0.4460	0.2460	0.5816	0.4197	0.8000
0.05	0.0000	-0.4536	-0.0083	-0.0075	3.9832	-0.3469	-0.1862	-0.0065	0.1489	0.0000	300.0000	0.4670	0.2750	0.5933	0.4265	0.8000
0.075	0.0000	-0.4536	-0.0093	-0.0066	4.1949	-0.3747	-0.2538	-0.0057	0.1906	0.0000	300.0000	0.4860	0.4190	0.5976	0.4544	0.8000
0.1	0.0000	-0.4536	-0.0097	-0.0055	4.4844	-0.4440	-0.2943	-0.0056	0.2307	0.0000	300.0000	0.4680	0.4270	0.5868	0.4761	0.8000
0.12	0.0000	-0.4536	-0.0098	-0.0048	4.6730	-0.4895	-0.3077	-0.0057	0.2532	0.0000	300.0000	0.4530	0.3840	0.5892	0.4795	0.8000
0.15	0.0000	-0.4536	-0.0098	-0.0039	4.8266	-0.5477	-0.3113	-0.0058	0.2665	0.0000	300.0000	0.4170	0.2970	0.5892	0.4798	0.8000
0.17	0.0000	-0.4536	-0.0097	-0.0033	4.8670	-0.5922	-0.3062	-0.0060	0.2651	0.0000	300.0000	0.4030	0.2560	0.5877	0.4839	0.8000
0.2	0.0000	-0.4440	-0.0095	-0.0027	4.8796	-0.6693	-0.2927	-0.0061	0.2553	0.0000	300.0000	0.3860	0.2310	0.5799	0.4848	0.8000
0.25	0.0000	-0.3539	-0.0089	-0.0021	4.8371	-0.7766	-0.2662	-0.0064	0.2315	0.0000	300.0000	0.3690	0.2070	0.5643	0.4796	0.7999
0.3	0.0000	-0.2688	-0.0083	-0.0018	4.7579	-0.8501	-0.2405	-0.0067	0.2073	0.0010	300.0000	0.3680	0.1980	0.5525	0.4813	0.7997
0.4	0.0000	-0.1793	-0.0073	-0.0013	4.5523	-0.9431	-0.1975	-0.0071	0.1655	0.0040	300.0000	0.3760	0.1700	0.5338	0.4824	0.7988
0.5	0.0000	-0.1428	-0.0065	-0.0011	4.4049	-1.0044	-0.1633	-0.0074	0.1338	0.0100	300.0000	0.3750	0.1710	0.5228	0.4837	0.7966
0.75	0.0000	-0.1138	-0.0051	-0.0011	4.2079	-1.0602	-0.1028	-0.0081	0.0852	0.0340	300.0000	0.3880	0.1780	0.4870	0.5089	0.7792
1	0.0000	-0.1062	-0.0043	-0.0012	4.0126	-1.0941	-0.0699	-0.0084	0.0586	0.0670	300.0000	0.4340	0.2330	0.4699	0.5158	0.7504
1.5	0.0000	-0.1020	-0.0030	-0.0017	3.6733	-1.1142	-0.0425	-0.0077	0.0318	0.1430	300.0000	0.4960	0.2180	0.4452	0.5326	0.7136
2	0.0000	-0.1009	-0.0023	-0.0022	3.5073	-1.1154	-0.0302	-0.0048	0.0197	0.2030	300.0000	0.5110	0.2310	0.4221	0.5335	0.7035
3	0.0000	-0.1003	-0.0013	-0.0031	3.4748	-1.1081	-0.0129	-0.0018	0.0096	0.2770	300.0000	0.4770	0.2750	0.4135	0.4866	0.7006
4	0.0000	-0.1003	-0.0013	-0.0031	3.4748	-1.0603	-0.0016	-0.0015	0.0054	0.3090	300.0000	0.5160	0.3300	0.3982	0.4769	0.7001
5	0.0000	-0.1001	-0.0010	-0.0038	3.5479	-0.9872	0.0000	-0.0014	0.0032	0.3210	300.0000	0.5080	0.3370	0.3857	0.4552	0.7000
7.5	0.0000	-0.1000	-0.0010	-0.0038	3.5954	-0.8274	0.0000	-0.0014	0.0011	0.3290	300.0000	0.4340	0.3290	0.3641	0.4467	0.7000
10	0.0000	-0.1000	-0.0010	-0.0037	3.6253	0.7053	0.0000	-0.0014	0.0005	0.3300	300.0000	0.3320	0.4040	0.3495	0.3973	0.7000

FUENTE: Chiou & Youngs (2013)

3.5 MODELO DE CAMPBELL & BOZORGNIA 2013

3.5.1 INTRODUCCIÓN

Este modelo es la actualización de Campbell & Borzognia (2008), en el cual se incluía términos y variables predictoras que modelaban el ajuste de la magnitud, atenuación geométrica, tipo de falla, efectos de hanging wall, respuesta lineales y no lineales del sitio de poca profundidad y respuesta de la cuenca. Y que en este modelo actualizado (2013) además se añade nuevos términos y variables predictoras; incluyendo un nuevo modelo del hanging wall, y relacionando parámetros como: profundidad hipocentral, buzamiento de la ruptura, dependencia regional en cuanto a la respuesta lineal de sitios superficiales y respuesta de la cuenca; dependencia regional de la atenuación anelástica y desviaciones estándar entre y dentro del evento.

La base de datos de este modelo está conformada por un total de 15521 registros provenientes de 322 sismos. Estos incluyen 7208 registros cercanos a la fuente (Rrup<80 km) provenientes de 282 sismos de California y de todo el mundo y 8313 registros lejanos a la fuente (80<Rrup≤500 km) provenientes de 276 sismos con magnitudes entre 3 y 7.9.

En su modelo anterior CB08 se utilizaron solamente 1561 registros provenientes de 64 sismos con magnitudes entre 4.3 y 7.9. La distribución de estos registros respecto a la magnitud y distancia se muestra en la figura.3.5

En cuanto a la forma funcional de los términos matemáticos usados en este modelo, los autores expresan que fueron desarrollados o confirmados utilizando técnicas de exploración de datos, tales como el análisis de los residuos, además que se han desarrollado o se han seleccionado a través de numerosas iteraciones para capturar las tendencias observadas en los datos de registros del movimiento del suelo.

FIGURA 3.5 DISTRIBUCIÓN DE REGISTROS RESPECTO A LA MAGNITUD Y DISTANCIA MÁS CERCA A LA RUPTURA PARA EL MODELO DE CB13

FUENTE: Campbell & Borzognia (2013)

3.5.2 LIMITACIONES DEL MODELO

El modelo CB13 es aplicable en sismos superficiales producidos en la corteza continental alrededor del mundo y en regiones tectónicamente activas, tiene en cuenta las siguientes limitaciones:

- > $3.3 \le M \le 8.5$ para sismos generados en fallas Transcurrentes.
- > $3.3 \le M \le 8.0$ para sismos generados en fallas Inversas.
- > $3.3 \le M \le 7.5$ para sismos generados en fallas Normales.
- \succ 0 ≤ R_{RUP} ≤ 300 km
- \succ 0 ≤ Z_{TOR} ≤ 20km
- ➤ 150 m/seg ≤ V_{S30} ≤ 1500 m/seg
- \succ 0 ≤ Z_{2.5} ≤ 10km.
- \succ 0 ≤ Z_{HYP} ≤ 20 km.
- > 15° ≤ δ ≤ 90°.

3.5.3 ECUACIONES DEL MODELO

La ecuación está dada por:

$$\ln Y = \begin{cases} \ln PGA; Y < PGA, T < 0.25\\ f_{mag} + f_{dis} + f_{flt} + f_{hng} + f_{site} + f_{sed} + f_{hyp} + f_{dip} + f_{ant}; En otros casos \end{cases}$$
(3.22)

Donde los términos representan el ajuste de movimiento del suelo con respecto a la magnitud del terremoto, (aparente) atenuación geométrica, tipo de falla, geometría del hanging-wall, la respuesta superficial del sitio, respuesta de la cuenca, la profundidad del hipocentro, ángulo de buzamiento y (aparente) atenuación anelástica.

3.5.3.1 Término Magnitud

$$f_{mag} = \begin{cases} c_0 + c_1 M; & M \le 4.5 \\ c_0 + c_1 M + c_2 (M - 4.5); & 4.5 < M \le 5.5 \\ c_0 + c_1 M + c_2 (M - 4.5) + c_3 (M - 5.5); & 5.5 < M \le 6.5 \\ c_0 + c_1 M + c_2 (M - 4.5) + c_3 (M - 5.5) + c_4 (M - 6.5); & M > 6.5 \end{cases}$$
(3.23)

Este término toma en cuenta cuatro intervalos de magnitud, cubriendo de esta manera magnitudes grandes y pequeñas.

3.5.3.2 Término Atenuación Geométrica

$$f_{dis} = (c_5 + c_6 M) ln \left(\sqrt{R_{RUP}^2 + c_7^2} \right)$$
 (3.24)

Este término relaciona la distancia entre la fuente y el sitio, f_{dis} incluye la dependencia de la magnitud en la atenuación geométrica mediante el coeficiente c6. Este coeficiente es bien limitado y varía aproximadamente 0.14 en períodos largos a 0.25 en períodos cortos.

$$f_{flt} = f_{flt,F} f_{flt,M}$$
(3.25)

$$f_{flt,F} = c_8 F_{RV} + c_9 F_{NM}$$
(3.26)

$$f_{\rm flt,F} = \begin{cases} 0; & M \leq 4.5 \\ M - 4.5; & 4.5 < M \leq 5.5 \\ 1; & M > 5.5 \end{cases} \tag{3.27}$$

Este término toma en cuenta los tipos de falla tanto inversa con el coeficiente c8, como normal con el coeficiente c9, se sabe que para una fallas inversas FRV toma el valor de 1 y para otras fallas 0, y F_{NM} es 1 para fallas normales y otro tipo de falla 0.

Además considera que los efectos del tipo de falla no son los mismos para sismos de gran magnitud que para sismos de pequeña magnitud, según lo indican sus estudios, razón por la cual expone el término f_{flt,M} donde toma en cuenta estas pequeñas magnitudes.

~

3.5.3.4 **Término Hanging-wall**

$$f_{hng} = c_{10} f_{hng,R_X} f_{hng,R_{RUP}} f_{hng,M} f_{hng,Z} f_{hng,\delta}$$
(3.28)

~

$$f_{hng,R_X} = \begin{cases} 0; & R_X < 0\\ f_1(R_X); & 0 \le R_X < R_1\\ max[f_2(R_X), 0]; & R_X \ge R_1 \end{cases}$$
(3.29)

$$f_1(R_X) = h_1 + h_2 \left(\frac{R_X}{R_1}\right) + h_3 \left(\frac{R_X}{R_1}\right)^2$$
 (3.30)

$$f_{2}(R_{X}) = h_{4} + h_{5} \left(\frac{R_{X} - R_{1}}{R_{2} - R_{1}}\right) + h_{6} \left(\frac{R_{X} - R_{1}}{R_{2} - R_{1}}\right)^{2}$$
(3.31)

$$R_1 = W\cos(\delta) \tag{3.32}$$

$$R_2 = 62M - 350 \tag{3.33}$$

$$f_{\text{hng},R_{\text{RUP}}} = \begin{cases} 1; & R_{\text{RUP}} = 0\\ \frac{(R_{\text{RUP}} - R_{\text{RJB}})}{R_{\text{RUP}}}; & R_{\text{RUP}} > 0 \end{cases}$$
(3.35)

$$f_{hng,M} = \begin{cases} 0; & M \le 5.5\\ (M - 5.5)[1 + a_2(M - 6.5)]; & 5.5 < M \le 6.5\\ 1 + a_2(M - 6.5); & M > 6.5 \end{cases}$$
(3.36)

$$f_{hng,Z} = \begin{cases} 1 - 0.06Z_{TOR}; & Z_{TOR} \le 16.66\\ 0; & Z_{TOR} > 16.66 \end{cases}$$
(3.36)

$$f_{hng,\delta} = (90 - \delta)/45$$
 (3.37)

Este término toma en cuenta el ancho de la falla (W), ángulo de buzamiento (δ), Magnitud (M), distancias R_x, R_{rup}, R_{jb} y la profundidad de la falla hasta el borde superior del plano de ruptura (Z_{tor}) en la amplificación del movimiento del suelo por el efecto del Hanging-wall.

El término f_{hng,R} se incluye para modelar la dependencia de la distancia en el hanging-wall, permite suavizar la transición entre el hangig-wall al foot-wall evitando así la predicción violenta de movimientos del suelo en sitios localizados a lo largo de la traza de falla.

3.5.3.5 Término Respuesta del sitio superficial

$$f_{\text{site}} = f_{\text{site},G} + S_J f_{\text{site},J}$$
(3.38)

$$f_{\text{site,G}} = \begin{cases} c_{11} \ln\left(\frac{V_{\text{S30}}}{k_1}\right) + k_2 \left\{ \ln\left[A_{1100} + c\left(\frac{V_{\text{S30}}}{k_1}\right)^n\right] - \ln[A_{1100} + c] \right\}; \ V_{\text{S30}} \le k_1 \\ (c_{11} + k_2 n) \ln\left(\frac{V_{\text{S30}}}{k_1}\right); & V_{\text{S30}} > k_1 \end{cases}$$
(3.39)

$$f_{\text{site,J}} = \begin{cases} (c_{12} + k_2 n) \left[\ln \left(\frac{V_{S30}}{k_1} \right) - \ln \left(\frac{200}{k_1} \right) \right]; V_{S30} \le 200 \\ (c_{13} + k_2 n) \ln \left(\frac{V_{S30}}{k_1} \right); & \text{los demás} \end{cases}$$
(3.40)

El término f _{site} es una función dependiente de las condiciones lineales y no lineales del suelo, se compone de dos términos, f_{site,G} determina el comportamiento del suelo en el sitio relacionándolo con el parámetro V_{s30} (velocidad de onda de corte en los 30 primeros metros) y la aceleración máxima del suelo sobre roca con Vs=1100 m/s (A 1100), mientras que el término f _{site,J}, está relacionado específicamente para Japón por medio del factor Sj.

Mediante los coeficientes k₁, k₂, n y c, los autores describen el comportamiento no lineal del suelo.

3.5.3.6 Término Respuesta de la Cuenca

$$f_{sed} = \begin{cases} (c_{14} + c_{15}S_J)(Z_{2.5} - 1); & Z_{2.5} \le 1\\ 0; & 1 < Z_{2.5} \le 3\\ c_{16}k_3e^{-0.75}[1 - \exp(-0.25(Z_{2.5} - 3)]; & Z_{2.5} > 3 \end{cases}$$
(3.41)

El término f _{sed} es una función dependiente del sedimento superficial y el efecto de cuenca 3D. Esta función consta de tres intervalos que depende de la profundidad del sedimento $Z_{2.5}$, los autores utilizaron este término debido a que este parámetro caracteriza de mejor manera las profundidades de las cuencas en California comparado a la profundidad $Z_{1.0}$.

3.5.3.7 Término Profundidad Hipocentral

$$f_{\rm hyp} = f_{\rm hyp,H} f_{\rm hyp,M} \tag{3.42}$$

$$f_{hyp,H} = \begin{cases} 0; & Z_{HYP} \le 7 \\ Z_{HYP} - 7; & 7 < Z_{HYP} \le 20 \\ 13; & Z_{HYP} > 20 \end{cases}$$
(3.43)

$$f_{hyp,M} = \begin{cases} c_{17}; & M \le 5.5\\ [c_{17} + (c_{18} - c_{17})(M - 5.5)]; & 5.5 < M \le 6.5\\ c_{18}; & M > 6.5 \end{cases}$$
(3.44)

Los autores analizaron que el registro de las magnitudes pequeñas de la base de datos del NGA-West2 muestra claramente que hay un fuerte aumento en el movimiento del suelo cuando la profundidad hipocentral es mayor a 7 km por lo que decidieron añadir este nuevo término f_{hyp}.

El término $f_{hyp,H}$ toma en cuenta la profundidad focal Z_{hyp} debido a que si se usa Z_{tor} en sismos de gran magnitud se obtienen diferencias significativas en comparación con Z_{hyp} , lo que no sucede para sismos pequeños ya que se tiene el mismo comportamiento si se utiliza Z_{tor} y Z_{hyp} .

El término $f_{hyp,M}$, considera la dependencia de la magnitud del sismo, se ha encontrado que el movimiento del suelo es mayor en eventos de pequeña magnitud (en períodos cortos) en comparación a los eventos de gran magnitud, y para ello emplearon coeficientes como c₁₇ y c₁₈.

3.5.3.8 Término Buzamiento de la ruptura.

$$f_{\rm dip} = \begin{cases} c_{19}\delta; & M \le 4.5\\ c_{19}(5.5 - M)\delta; & 4.5 < M \le 5.5\\ 0; & M > 5.5 \end{cases}$$
(3.45)

Los autores han determinado que para pequeñas magnitudes no muestra una dependencia en el mecanismo focal, sino más bien muestra una fuerte dependencia del ángulo de buzamiento de la ruptura, para lo cual utilizan el término f _{dip} y lo modelan por medio del coeficiente c19, mientras que para magnitudes de sismos grandes se hace despreciable.

3.5.3.9 Término Atenuación Anelástica

$$f_{ant} = \begin{cases} (c_{20} + \Delta c_{20})(R_{RUP} - 80); & R_{RUP} > 80 \text{ km} \\ 0; & R_{RUP} \le 80 \text{ km} \end{cases}$$
(3.46)

La atenuación anelástica es la disminución no lineal del movimiento del suelo a grandes distancias.
Los autores han determinado que a mayores distancias, más allá de los 80 km existe una fuerte dependencia de la atenuación, por lo que esta observación se lo relaciona con los coeficientes c_{20} y Δc_{20} .

Los autores han incluido este término para estimar el movimiento del suelo en aquellos sitios que se encuentran en regiones de baja sismicidad y que pueden verse afectados por grandes sismos lejanos.

3.5.4 DESVIACIÓN ESTÁNDAR DEL MODELO

Los autores definieron el modelo aleatorio de la siguiente manera:

$$y_{ii} = Y_{ij} + \eta_i + \varepsilon_{ij} \tag{3.47}$$

Donde ni es el valor residual inter-evento (entre eventos) del evento i, Yij es la aceleración espectral media y ɛij es el valor residual intra-evento (dentro del evento) para el registro j del evento i.

Las variables aleatorias $\eta i y \epsilon i j$ tienen una media de cero y las desviaciones estándar $\tau_{Iny} y \not o_{Iny}$ representan las respuestas lineales del sitio inter-evento e intraevento:

$$\tau_{\text{lny}} = \begin{cases} \tau_1; & M \le 4.5 \\ \tau_1 + (\tau_1 - \tau_2)(5.5 - M); & 4.5 < M < 5.5 \\ \tau_2; & M \ge 5.5 \end{cases}$$
(3.48)

Donde τ_i y ϕ_i son desviaciones estándar derivadas empíricamente.

El modelo final de desviaciones estándar que incorporan los efectos no lineales de la respuesta del suelo está dado por las ecuaciones siguientes:

$$\tau = \sqrt{\tau_{\ln Y_B}^2 + \alpha^2 \cdot \tau_{\ln PGA_B}^2 + 2\alpha \cdot \rho_{\ln PGA,\ln Y} \cdot \tau_{\ln Y_B} \cdot \tau_{\ln PGA_B}}$$
(3.50)

$$\phi = \sqrt{\phi_{\ln Y_B}}^2 + \phi_{\ln AF}^2 + \alpha^2 \cdot \phi_{\ln PGA_B}^2 + 2\alpha \cdot \rho_{\ln PGA, \ln Y} \cdot \phi_{\ln Y_B} \cdot \phi_{\ln PGA_B}$$
(3.51)

Donde $\tau_{\ln Y_B} = \tau_{\ln Y}$, $\tau_{\ln PGA_B} = \tau_{\ln PGA}$ son la desviación estándar entre-eventos para las medidas de intensidad de interés en la base del perfil de sitio, y $\phi_{\ln Y_B} = (\phi_{\ln Y}^2 - \phi_{\ln AF}^2)^{0.5}$ y $\phi_{\ln PGA_B} = (\phi_{\ln PGA}^2 - \phi_{\ln AF}^2)^{0.5}$ son la desviación estándar intra-eventos.

El parámetro $\phi_{\ln AF}$ es la desviación estándar del logaritmo de la función f_{site} y $\rho_{ln_{PGA,lnY}}$ es el coeficiente de correlación entre los valores residuales intra-evento; α es la relación de linealidad entre f_{site} y ln(A_{1100}), calculada a partir de la derivada parcial:

$$\propto = \frac{\partial f_{site}}{\partial ln A_{1100}} = \begin{cases} k_2 \cdot A_{1100} \left\{ \left[A_{1100} + c \left(\frac{V_{s30}}{k_1} \right)^n \right]^{-1} - \left[A_{1100} + c \right]^{-1} \right\}; V_{s30} < k_1 \\ 0; \\ V_{s30} \ge k_1 \end{cases}$$
(3.52)

La desviación estándar total se obtiene a través la raíz cuadrada de la suma de los cuadrados de las desviaciones inter-evento e intra-evento.

$$\sigma = \sqrt{\tau^2 + \emptyset^2} \tag{3.53}$$

El cuadro 3.4 muestra los coeficientes independientes del período empleados en este modelo, mientras que el cuadro 3.5 muestra los coeficientes dependientes del período y los coeficientes empleados en la desviación estándar.

CUADRO 3.4 COEFICIENTES INDEPENDIENTES DEL PERÍODO. MODELO CAMPBELL & BORZOGNIA 2013

FUENTE: Campbell & Borzognia (2013)

CUADRO 3.5 COEFICIENTES DEPENDIENTES DEL PERÍODO. MODELO CAMPBELL & BORZOGNIA 2013

T (seg)	CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	k1	k2	k3
PGA	-4.346	0.984	0.537	-1.499	-0.496	-2.773	0.248	6.768	0.000	-0.212	0.720	1.090	2.186	1.420	-0.006	-0.202	0.393	0.098	0.033	0.008	865	-1.186	1.839
0.01	-4.292	0.977	0.533	-1.485	-0.499	-2.773	0.248	6.753	0.000	-0.214	0.720	1.094	2.191	1.416	-0.007	-0.207	0.390	0.098	0.033	0.008	865	-1.186	1.839
0.02	-4.271	0.976	0.549	-1.488	-0.501	-2.772	0.247	6.502	0.000	-0.208	0.730	1.149	2.189	1.453	-0.017	-0.199	0.387	0.101	0.033	0.008	865	-1.219	1.840
0.03	-3.963	0.931	0.628	-1.494	-0.517	-2.782	0.246	6.291	0.000	-0.213	0.759	1.290	2.164	1.476	-0.042	-0.202	0.378	0.110	0.033	0.008	908	-1.273	1.841
0.05	-3.475	0.887	0.674	-1.388	-0.615	-2.791	0.240	6.317	0.000	-0.244	0.826	1.449	2.138	1.549	-0.066	-0.339	0.295	0.123	0.027	0.008	1054	-1.346	1.843
0.08	-3.293	0.902	0.726	-1.469	-0.596	-2.745	0.227	6.861	0.000	-0.266	0.815	1.535	2.446	1.772	-0.079	-0.404	0.322	0.117	0.029	0.008	1086	-1.471	1.845
0.10	-3.666	0.993	0.698	-1.572	-0.536	-2.633	0.210	7.294	0.000	-0.229	0.831	1.615	2.969	1.916	-0.029	-0.416	0.384	0.100	0.033	0.007	1032	-1.624	1.847
0.15	-4.866	1.267	0.510	-1.669	-0.490	-2.458	0.183	8.031	0.000	-0.211	0.749	1.877	3.544	2.161	0.064	-0.407	0.417	0.076	0.039	0.007	878	-1.931	1.852
0.20	-5.411	1.366	0.447	-1.750	-0.451	-2.421	0.182	8.385	0.000	-0.163	0.764	2.069	3.707	2.465	0.097	-0.311	0.404	0.057	0.044	0.007	748	-2.188	1.856
0.25	-5.962	1.458	0.274	-1.711	-0.404	-2.392	0.189	7.534	0.000	-0.150	0.716	2.205	3.343	2.766	0.144	-0.172	0.466	0.044	0.046	0.006	654	-2.381	1.861
0.30	-6.403	1.528	0.193	-1.770	-0.321	-2.376	0.195	6.990	0.000	-0.131	0.737	2.306	3.334	3.011	0.160	-0.084	0.528	0.032	0.051	0.005	587	-2.518	1.865
0.40	-7.566	1.739	-0.020	-1.594	-0.426	-2.303	0.185	7.012	0.000	-0.159	0.738	2.398	3.544	3.203	0.141	0.085	0.540	0.021	0.043	0.004	503	-2.657	1.874
0.50	-8.379	1.872	-0.121	-1.577	-0.440	-2.296	0.186	6.902	0.000	-0.153	0.718	2.355	3.016	3.333	0.147	0.233	0.638	0.009	0.041	0.004	457	-2.669	1.883
0.75	-9.841	2.021	-0.042	-1.757	-0.443	-2.232	0.186	5.522	0.000	-0.090	0.795	1.995	2.616	3.054	0.176	0.411	0.776	-0.008	0.042	0.004	410	-2.401	1.906
1.00	-11.011	2.180	-0.069	-1.707	-0.527	-2.158	0.169	5.650	0.000	-0.105	0.556	1.447	2.470	2.562	0.259	0.479	0.771	-0.013	0.043	0.004	400	-1.955	1.929
1.50	-12.469	2.270	0.047	-1.621	-0.630	-2.063	0.158	5.795	0.000	-0.058	0.480	0.330	2.108	1.453	0.288	0.566	0.748	-0.019	0.038	0.004	400	-1.025	1.974
2.00	-12.969	2.271	0.149	-1.512	-0.768	-2.104	0.158	6.632	0.000	-0.028	0.401	-0.514	1.327	0.657	0.311	0.562	0.763	-0.026	0.025	0.004	400	-0.299	2.019
3.00	-13.306	2.150	0.368	-1.315	-0.890	-2.051	0.148	6.759	0.000	0.000	0.206	-0.848	0.601	0.367	0.348	0.534	0.686	-0.031	0.024	0.003	400	0.000	2.110
4.00	-14.020	2.132	0.726	-1.506	-0.885	-1.986	0.135	7.978	0.000	0.000	0.105	-0.793	0.568	0.306	0.375	0.522	0.691	-0.041	0.010	0.006	400	0.000	2.200
5.00	-14.558	2.116	1.027	-1.721	-0.878	-2.021	0.140	8.538	0.000	0.000	0.000	-0.748	0.356	0.268	0.338	0.477	0.670	-0.028	0.003	0.008	400	0.000	2.291
7.50	-15.509	2.223	0.169	-0.756	-1.077	-2.179	0.178	8.468	0.000	0.000	0.000	-0.664	0.075	0.374	0.375	0.321	0.757	-0.021	0.005	0.003	400	0.000	2.517
10.00	-15.975	2.132	0.367	-0.800	-1.282	-2.244	0.194	6.564	0.000	0.000	0.000	-0.576	-0.027	0.297	0.351	0.174	0.621	0.001	0.010	0.005	400	0.000	2.744

CUADRO 3.5 CONTINUACIÓN

T ()	-2	64	1.2	1.2	h.4	h.C.	h.c.	620	ΔC20		-1	-2	14	12	dinAf d	4.	M≤	4.5	M	≥5	ρlnPGA,ln	
I (seg)	az	ΠI	nz	ns	n4	ns	пь	C20	CA	JP	CH		τ2	φι	φΖ	φιηΑτ	φc	σ	σarb	σ	σarb	Y
PGA	0.167	0.241	1.474	-0.715	1.000	-0.337	-0.270	-0.006	0.000	-0.004	0.004	0.404	0.325	0.734	0.492	0.300	0.166	0.838	0.854	0.590	0.613	1.000
0.01	0.168	0.242	1.471	-0.714	1.000	-0.336	-0.270	-0.006	0.000	-0.004	0.004	0.417	0.326	0.738	0.496	0.300	0.166	0.848	0.864	0.594	0.617	0.999
0.02	0.166	0.244	1.467	-0.711	1.000	-0.339	-0.263	-0.006	0.000	-0.004	0.004	0.446	0.344	0.747	0.503	0.300	0.165	0.870	0.886	0.609	0.631	0.989
0.03	0.167	0.246	1.467	-0.713	1.000	-0.338	-0.259	-0.006	0.000	-0.003	0.004	0.508	0.377	0.777	0.520	0.300	0.162	0.928	0.942	0.642	0.662	0.963
0.05	0.173	0.251	1.449	-0.701	1.000	-0.338	-0.263	-0.006	0.000	-0.004	0.004	0.504	0.418	0.782	0.535	0.300	0.158	0.930	0.943	0.679	0.697	0.922
0.08	0.198	0.260	1.435	-0.695	1.000	-0.347	-0.219	-0.007	0.000	-0.004	0.004	0.445	0.426	0.769	0.543	0.300	0.170	0.888	0.904	0.690	0.711	0.898
0.10	0.174	0.259	1.449	-0.708	1.000	-0.391	-0.201	-0.007	0.000	-0.003	0.004	0.382	0.387	0.769	0.543	0.300	0.180	0.859	0.878	0.667	0.691	0.890
0.15	0.198	0.254	1.461	-0.715	1.000	-0.449	-0.099	-0.007	0.000	-0.003	0.004	0.339	0.338	0.761	0.552	0.300	0.186	0.833	0.854	0.647	0.673	0.871
0.20	0.204	0.237	1.484	-0.721	1.000	-0.393	-0.198	-0.006	0.000	-0.003	0.004	0.340	0.316	0.744	0.545	0.300	0.191	0.818	0.840	0.630	0.658	0.852
0.25	0.185	0.206	1.581	-0.787	1.000	-0.339	-0.210	-0.006	0.000	-0.003	0.004	0.340	0.300	0.727	0.568	0.300	0.198	0.803	0.827	0.642	0.672	0.831
0.30	0.164	0.210	1.586	-0.795	1.000	-0.447	-0.121	-0.005	0.000	-0.004	0.003	0.356	0.264	0.690	0.593	0.300	0.206	0.776	0.803	0.649	0.681	0.785
0.40	0.160	0.226	1.544	-0.770	1.000	-0.525	-0.086	-0.004	0.000	-0.003	0.003	0.379	0.263	0.663	0.611	0.300	0.208	0.764	0.792	0.665	0.697	0.735
0.50	0.184	0.217	1.554	-0.770	1.000	-0.407	-0.281	-0.003	0.000	-0.003	0.003	0.430	0.326	0.606	0.633	0.300	0.221	0.743	0.775	0.712	0.746	0.628
0.75	0.216	0.154	1.626	-0.780	1.000	-0.371	-0.285	-0.002	0.000	-0.003	0.002	0.470	0.353	0.579	0.628	0.300	0.225	0.746	0.779	0.720	0.754	0.534
1.00	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	-0.001	0.000	-0.003	0.001	0.497	0.399	0.541	0.603	0.300	0.222	0.735	0.768	0.723	0.756	0.411
1.50	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	-0.002	0.000	0.499	0.400	0.529	0.588	0.300	0.226	0.727	0.761	0.711	0.746	0.331
2.00	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	-0.001	0.000	0.500	0.417	0.527	0.578	0.300	0.229	0.726	0.761	0.713	0.749	0.289
3.00	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	0.000	0.000	0.543	0.393	0.521	0.559	0.300	0.237	0.753	0.789	0.683	0.723	0.261
4.00	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	0.000	0.000	0.534	0.421	0.502	0.551	0.300	0.237	0.733	0.770	0.693	0.732	0.200
5.00	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	0.000	0.000	0.523	0.438	0.457	0.546	0.300	0.271	0.695	0.746	0.700	0.751	0.174
7.50	0.596	0.117	1.616	-0.733	1.000	-0.128	-0.756	0.000	0.000	0.000	0.000	0.466	0.438	0.441	0.543	0.300	0.290	0.642	0.704	0.698	0.756	0.174
10 00	0.596	0 117	1 6 1 6	-0 733	1 000	-0 128	-0 756	0.000	0.000	0.000	0.000	0 409	0.322	0 734	0 4 9 2	0.300	0 166	0.840	0.856	0.588	0.611	1 000

FUENTE: Campbell & Borzognia (2013).

Nota: CA representa California y regiones tectónicamente activas similares, JP representa Japón e Italia, y CH representa el este de China (coeficientes calculados en base al sismo Wenchuan, China de 2008).

3.6 ABRAHAMSON, SILVA Y KAMAI (2013)

3.6.1 INTRODUCCIÓN

Este modelo presenta los siguientes cambios respecto al modelo AS08: (1) el término de la respuesta no lineal del sitio se basa en la aceleración espectral en roca, (2) la magnitud ha sido ajustada para M<5, (3) el efecto del hanging wall ha sido ajustada con la magnitud, ángulo de buzamiento y distancias, (4) el tipo de fallas es dado por una función dependiente de la magnitud y (5) se ha modificado el ajuste de z_1 .

La base de datos para la versión 2013, consta de 15750 registros de 326 sismos, como se lo puede apreciar en el cuadro siguiente.

CUADRO 3.6 BASE DE DATOS UTILIZADOS EN EL PROGRAMA ABRAHAMSON *ET AL.* (2013)

No. Región	Región	No. De sismos	Rango de Magnitud	Total No. De Registros
1	California	274	3.1-7.3	12044
2	Otros WUS	2	5.1-7.9	7
3	Taiwan	6	5.9-7.6	1535
4	Italia	25	4.0-6.9	175
5	Medio Oriente	5	6.6-7.5	43
6	America Central	0		0
7	Nueva Zelanda	2	6.2-7.0	72
8	Europa (excluyendo Italia y Grecia)	1	7.1	6
9	China	4	4.8-7.9	158
10	Japón	5	6.1-6.9	1700
11	Grecia	1	6.4	3
12	Otros	1	6.2	5

FUENTE: Abrahamson et al. (2013)

3.6.2 LIMITACIONES DEL MODELO

El modelo ASK13 se considera válido en sismos superficiales originados en la corteza, alrededor del mundo y en regiones tectónicamente activas, por lo cual, se aplican las siguientes condiciones:

- > 3≤M≤8.5
- ➢ 0≤R_{rup} ≤300 km
- ➤ 180 m/s ≤V_{s30}≤1500 m/s
- \blacktriangleright Z TOR \leq 20 km

3.6.3 ECUACIONES DEL MODELO

La ecuación general para la componente horizontal media del movimiento del suelo, está dada por la siguiente ecuación:

$$lnSa(g) = f_{1}(M, R_{RUP}) + F_{RV}f_{7}(M) + F_{N}f_{8}(M) + F_{AS}f_{11}(CR_{jb}) + f_{5}(\widehat{Sa}_{1100}, V_{s30}) + F_{HW}f_{4}(R_{jb}, R_{rup}, R_{Rx}, R_{y0}, W, dip, Z_{TOR}, M) + f_{6}(Z_{TOR}) + f_{10}(Z_{1.0}, V_{S30}) + Regional(V_{s30}, R_{rup})$$
(3.54)

Donde Sa es la aceleración espectral expresada como un coeficiente de la gravedad.

3.6.3.1 Modelo Base

$$= \begin{cases} a_{1} + a_{5}(M - M_{1}) + a_{8}(8.5 - M)^{2} + [a_{2} + a_{3}(M - M_{1})]\ln(R) + a_{17}R_{rup}; M > M1_{1} \\ a_{1} + a_{4}(M - M_{1}) + a_{8}(8.5 - M)^{2} + [a_{2} + a_{3}(M - M_{1})]\ln(R) + a_{17}R_{rup}; M_{2} \le M < M_{1} \\ a_{1} + a_{4}(M_{2} - M_{1}) + a_{8}(8.5 - M_{2})^{2} + a_{6}(M - M_{2}) + a_{7}(M - M_{2})^{2} + \\ [a_{2} + a_{3}(M_{2} - M_{1})]\ln(R) + a_{17}R_{rup}; M < M_{2} \end{cases}$$
(3.55)

Donde,

$$R = \sqrt{R_{rup}^{2} + c_{4M}^{2}}$$
(3.56)

Basados en los resultados de regresión preliminares para el ajuste de magnitudes, los autores obtuvieron valores constantes de M_1 =6.75 y M_2 =5.0.

$$c_{4M}(M) = \begin{cases} c_4; & M > 5\\ c_4 - (c_4 - 1)(5 - M); & 4 < M \le 5\\ 1; & M \le 4 \end{cases}$$
(3.57)

 c_{4M} Es un parámetro ficticio de profundidad, se reduce a 1km en pequeñas magnitudes.

3.6.3.2 Modelo Tipo de falla

$$f_7(M) = \begin{cases} a_{11}; & M > 5.0\\ a_{11}(M-4); & 4.0 \le M \le 5.0\\ 0; & M < 4.0 \end{cases}$$
(3.58)

$$f_8(M) = \begin{cases} a_{12}; & M > 5.0\\ a_{12}(M-4); & 4..0 \le M \le 5.0\\ 0; & M < 4.0 \end{cases}$$
(3.59)

Este término depende de la magnitud del sismo, y está en función de los tipos de fallas, para fallas inversas interviene el término f7 y para normales el término f8.

Dado que los autores no hallaron diferencias significativas entre los tipos de fallas para pequeñas magnitudes es despreciable como se puede observar para magnitudes menores a 4.0, por el contrario para magnitudes mayores a 5.0 se torna importante este valor.

3.6.3.3 Modelo Respuesta en el sitio

$$f_{5}(\hat{S}a_{1100}, V_{s30} *) = \begin{cases} a_{10} \cdot \ln\left(\frac{V_{s30} *}{V_{LIN}}\right) - b \cdot \ln(\hat{S}a_{1100} + c) + b \cdot \ln(\hat{S}a_{1100} + c \cdot \left(\frac{V_{s30} *}{V_{LIN}}\right)^{n}); V_{s30} < V_{LIN} \\ (a_{10} + b \cdot n) \cdot \ln\left(\frac{V_{s30} *}{V_{LIN}}\right); & V_{s30} \ge V_{LIN} \end{cases}$$

$$(3.60)$$

$$V_{s30} * = \begin{cases} V_{s30}; V_{s30} < V_1 \\ V_1; V_{s30} \ge V_1 \end{cases}$$
(3.61)

$$V_{1} = \begin{cases} 1500; & T \le 0.5 \text{ seg} \\ \exp\left[-0.35 \ln\left(\frac{T}{0.5}\right) + \ln(1500)\right]; & 0.5 < T < 3 \text{ seg} \\ 800; & T \ge 3 \text{ seg} \end{cases}$$
(3.62)

Este término toma en cuenta la amplificación del sitio mediante el valor de V_{s30} usando la aceleración espectral media en roca (\widehat{Sa}_{1100}) y la respuesta no lineal del suelo. La respuesta no lineal del suelo se la modela mediante los coeficientes b, c, n, V_{LIN}.

3.6.3.4 Modelo Hanging-wall

El efecto del Hanging-wall está en función del ángulo de buzamiento, la magnitud del sismo, la locación sobre la ruptura, la profundidad de la falla y distancias fuera del sitio de la falla.

$$f_4(R_{jb}, R_{rup}, R_x, R_{yo}, dip, Z_{TOR}, M)$$

= $a_{13}T_1(dip)T_2(M)T_3(R_x, W, dip)T_4(Z_{TOR})T_5(R_x, R_{yo})$ (3.63)

Donde,

$$T_{1}(dip) = \begin{cases} \frac{90 - dip}{45} ; dip > 30\\ \frac{60}{45} ; dip < 30 \end{cases}$$
(3.64)

$$T_{2}(M) = \begin{cases} 1 + a_{2HW}(M - 6.5); & M \ge 6.5\\ 1 + a_{2HW}(M - 6.5) - (1 - a_{2HW})(M - 6.5)^{2}; & 5.5 < M < 6.5 \text{ (3.65)}\\ 0; & M \le 5.5 \end{cases}$$

$$T_{3}(R_{X}) = \begin{cases} h_{1} + h_{2}\left(\frac{R_{x}}{R_{1}}\right) + h_{2}\left(\frac{R_{x}}{R_{1}}\right)^{2}; & R_{x} < R_{1} \\ 1 - \left(\frac{R_{x} - R_{1}}{R_{2} - R_{1}}\right); & R_{1} \le R_{x} \le R_{2} \\ 0; & R_{x} > R_{2} \end{cases}$$
(3.66)

$$T_{4}(Z_{\text{TOR}}) = \begin{cases} 1 - \frac{Z_{\text{TOR}}^{2}}{100}; & Z_{\text{TOR}} \le 10 \text{ km} \\ 0; & Z_{\text{TOR}} \ge 10 \text{ km} \end{cases}$$
(3.67)

$$T_{5}(R_{x}, R_{yo}) = \begin{cases} 1; & R_{yo} < R_{y1} \\ 1 - \frac{R_{yo} - R_{y1}}{5}; & R_{yo} - R_{y1} < 5 \\ 0; & R_{yo} - R_{y1} \ge 5 \end{cases}$$
(3.68)

Donde $R_1 = Wcos(dip)$, $R_2 = 3R_1$, $R_{y1} = R_x tan(20)$, $h_1 = 0.25$, $h_2 = 1.5 y h_3 = -0.75$

Si la distancia Ry0 no está disponible, la función T5 se puede calcular como:

$$T_{5}(R_{jb}) = \begin{cases} 1; & R_{jb} = 0\\ 1 - \frac{R_{jb}}{30}; & R_{jb} < 30\\ 0; & R_{jb} \ge 30 \end{cases}$$
(3.69)

El término T₁ corresponde al efecto Hanging wall en el buzamiento del plano de ruptura (dip), T₂ en la magnitud del sismo y se lo modela mediante el coeficiente $a_{2HW} = 0.2$ que es el mismo para todos los períodos, T₃ en la distancia horizontal del sitio a la ruptura R_x, T₄ en la profundidad hasta el borde superior de la ruptura Z_{TOR} y T₅ en la distancia horizontal a la ruptura R_{jb} modelados a través de los valores de h₁, h₂, h₃, R₂ y R_{y1}.

El coeficiente a₁₃ representa la máxima amplitud del efecto hanging-wall, el cual se definió a partir de un sismo de M=6.5, dip=45 y Z_{TOR} =0.

3.6.3.5 Modelo Profundidad al borde superior de la ruptura.

$$f_6(Z_{\text{TOR}}) = \begin{cases} a_{15} \frac{Z_{\text{TOR}}}{20} ; & Z_{\text{TOR}} < 20 \text{ km} \\ a_{15}; & Z_{\text{TOR}} \ge 20 \text{ km} \end{cases}$$
(3.70)

Basados en varias evaluaciones preliminares, los autores observaron que hay algunas pruebas que indican una reducción de la dependencia de la profundidad a profundidades someras, por lo cual, en este término utilizan una escala lineal en todas las profundidades por la simplicidad. Además debido a que existen insuficientes registros con profundidades Z_{TOR} mayores a 20 km, se establece una función dentro de los 20 km y otro más allá de los 20 km.

3.6.3.6 Modelo Profundidad del suelo

Las evaluaciones mostraron que el ajuste de Z1 depende del valor V_{s30} .

Los autores utilizaron un enfoque no paramétrico para modelar esta dependencia:

$$f_{10}(Z_{1}, V_{S30}) = \begin{cases} a_{43} ln\left(\frac{z_{1} + 0.01}{z_{1,ref} + 0.01}\right); & V_{S30} \leq 200 \\ a_{44} ln\left(\frac{z_{1} + 0.01}{z_{1,ref} + 0.01}\right); & 200 < V_{S30} \leq 300 \\ a_{45} ln\left(\frac{z_{1} + 0.01}{z_{1,ref} + 0.01}\right); & 300 < V_{S30} \leq 500 \\ a_{46} ln\left(\frac{z_{1} + 0.01}{z_{1,ref} + 0.01}\right); & 500 < V_{S30} \end{cases}$$
(3.71)

Para obtener el valor de Z_1 (km), los autores adoptaron las relaciones desarrolladas por Chiou y Youngs (2013) como función de V_{s30} :

$$Z_{1,ref} = \frac{1}{1000} \exp\left(-\frac{7.67}{4} \ln\left(\frac{V_{s30}^{4} + 610^{4}}{1360^{4} + 610^{4}}\right)\right); \text{ para California}$$
(3.72)

$$Z_{1,ref} = \frac{1}{1000} \exp\left(-\frac{5.23}{2} \ln\left(\frac{V_{s30}^{4} + 412^{4}}{1360^{4} + 412^{4}}\right)\right); \text{ para Japón}$$
(3.73)

3.6.3.7 Ajuste de réplicas

$$f_{11}(CR_{jb}) = \begin{cases} a_{14}; & CR_{jb} \le 5\\ a_{14} \left[1 - \frac{CR_{jb} - 5}{10} \right]; & 5 < CR_{jb} < 15\\ 0; & CR_{jb} > 15 \end{cases}$$
(3.74)

Previos estudios como el de AS08, han hallado que en pequeños períodos las ordenadas espectrales de las réplicas son menores a las de los sismos principales. Los autores definen como Clase 2 a los eventos réplicas, mientras que para eventos Clase 1 se refiere a los sismos principales.

3.6.3.8 Modelo Regionalización

Los autores definieron este término en función del valor de V_{s30} y evaluando el efecto de distancia a la fuente en tres países, como lo son Taiwán mediante el coeficiente a₂₅, China con el coeficiente a₂₈ y Japón con el a₂₉.

$$\begin{aligned} \text{Regional}(V_{S30}, R_{\text{RUP}}) \\ &= F_{\text{TW}}(f_{11}(V_{s30}) + a_{25}R_{\text{rup}}) + F_{\text{CN}}(a_{28}R_{\text{rup}}) + F_{\text{JP}}(f_{12}(V_{s30})) \\ &+ a_{29}R_{\text{rup}}) \end{aligned} \tag{3.75}$$

Donde F_{TW} = 1.0 para Taiwán y 0 para otras regiones, F_{CN} =1.0 para China y 0 para otras regiones y F_{JP} =1.0 para Japón y 0 para otras regiones.

El ajuste lineal de V_{s30} en el modelo base es descrito por los coeficientes a_{10} +bn y para Taiwán por medio del coeficiente a_{13} .

$$f_{11}(V_{S30}) = a_{31} ln\left(\frac{V_{S30}}{V_{LIN}}\right)$$
(3.76)

Para Japón se realiza el ajuste mediante los coeficientes a₃₆ hasta el coeficiente a₄₂

$$f_{12}(V_{S30}) = \begin{cases} a_{36}; & V_{S30} < 200 \text{ m/s} \\ a_{37}; & 200 \le V_{S30} < 300 \text{ m/s} \\ a_{38}; & 300 \le V_{S30} < 400 \text{ m/s} \\ a_{39}; & 400 \le V_{S30} < 500 \text{ m/s} \\ a_{40}; & 500 \le V_{S30} < 700 \text{ m/s} \\ a_{41}; & 700 \le V_{S30} < 1000 \text{ m/s} \\ a_{42}; & V_{S30} \ge 1000 \text{ m/s} \end{cases}$$
(3.77)

En China no se ha encontrado efectos relacionados a V_{s30} , debido al número limitado de registros en este país.

Los valores de V_{s30} entre 400 y 500 fueron seleccionados como una referencia y el coeficiente a_{39} fue igualado a cero para normalizar la amplificación sitio en relación con el modelo base.

3.6.4 DESVIACIÓN ESTÁNDAR DEL MODELO

La desviación estándar lineal para intra-eventos e inter-eventos depende de la magnitud del sismo:

Intra-evento:

$$\emptyset_{A,L}(M) = \begin{cases}
S_1; & M < 4 \\
S_1 + \frac{S_2 - S_1}{2}(M - 4); 4 \le M \le 6 \\
S_2; & M > 6
\end{cases}$$
(3.78)

Inter-evento:

$$\tau_{A,L}(M) = \begin{cases} S_3; & M < 5\\ S_3 + \frac{S_4 - S_3}{2}(M - 5); & 5 \le M \le 7\\ S_4; & M > 7 \end{cases}$$
(3.79)

La desviación estándar intra-evento para Japón es más alta que para California y Taiwán. De manera que para Japón es:

$$\phi_{A-JP}(R_{rup}) = \begin{cases} s_5; & R_{rup} < 30\\ s_5 + \frac{s_6 - s_5}{50}(R_{rup} - 30); 30 \le R_{rup} \le 80\\ s_6; & R_{rup} > 80 \end{cases}$$
(3.80)

La desviación estándar del movimiento en roca $Ø_{(B)}$ es igual a:

Donde:

 $Ø_{A,L}$: Desviación estándar lineal intra-evento en suelo

Ø_{Amp}: Desviación estándar de la amplificación del sitio

T : Periodo espectral. Se asume $\phi_{Amp}(T)=0.4$ para todos los períodos.

Para la variabilidad inter eventos, la desviación estándar del movimiento en roca es la misma a desviación estándar del rango lineal:

$$\tau_{\rm B}({\rm M},{\rm T}) = \tau_{{\rm A},{\rm L}}({\rm M},{\rm T})$$
 (3.82)

Es así que, la desviación estándar para el intra-evento debido a los efectos de la no linealidad del suelo, está dada por:

$$\emptyset \left(\mathrm{T}, \mathrm{M}, \hat{\mathrm{S}} \mathrm{a}_{1100}, \mathrm{V}_{\mathrm{S}30} \right) = \left[\emptyset_{\mathrm{B}}^{2} (\mathrm{M}, \mathrm{T}) \cdot \left(1 + \frac{\partial \mathrm{In} \operatorname{Amp}(\mathrm{T}, \hat{\mathrm{S}} \mathrm{a}_{1100}, \mathrm{V}_{\mathrm{S}30})}{\partial \mathrm{In} \operatorname{S} \mathrm{a}_{1100}} \right)^{2} + \left. \emptyset_{\mathrm{Amp}}^{2} (\mathrm{T}) \right]^{1/2}$$
(3.83)

Y la desviación estándar para el inter- evento es:

$$\tau \left(T, M, \hat{S}a_{1100}, V_{s30} \right) = \tau_{B}(M, T) \cdot \left(1 + \frac{\partial \ln \operatorname{Amp}(T, \hat{S}a_{1100}, V_{s30})}{\partial \ln Sa_{1100}} \right)$$
(3.84)

Donde,

$$\frac{\partial \ln \operatorname{Amp}(T, \hat{S}a_{1100}, V_{s30})}{\partial \ln Sa_{1100}} = \begin{cases} 0; & V_{s30} \ge V_{\text{Lin}} \\ \frac{-b(T)\hat{S}a_{1100}}{\hat{S}a_{1100} + c} + \frac{b(T)\hat{S}a_{1100}}{\hat{S}a_{1100} + c} (\frac{V_{s30}}{V_{\text{Lin}}})^n; & V_{s30} < V_{\text{Lin}} \end{cases}$$
(3.85)

El cuadro 3.7 muestra los coeficientes independientes del período empleados en este modelo, mientras que el cuadro 3.8 expone los coeficientes dependientes del período y los coeficientes empleados en la desviación estándar.

CUADRO 3.7 COEFICIENTES INDEPENDIENTES DEL PERÍODO. MODELO ABRAHAMSON *ET AL.* (2013)

M2	a4	a5	а7	n	С
5	-0.1	-0.41	0	1.5	2.4

FUENTE: Abrahamson et al. (2013)

CUADRO 3.8 COEFICIENTES DEPENDIENTES DEL PERÍODO. MODELO ABRAHAMSON *ET AL.* (2013)

T (seg)	VLIN	b	c4	M1	a1	a2	a3	a6	a8	a10	a11	a12	a13	a14	a15	a17	a43
PGA	660	-1.470	6.000	6.750	0.464	-0.790	0.281	2.280	0.000	1.735	0.000	-0.100	0.600	-0.300	1.100	-0.007	0.100
0.01	660	-1.470	6.000	6.750	0.464	-0.790	0.281	2.280	0.000	1.735	0.000	-0.100	0.600	-0.300	1.100	-0.007	0.100
0.02	680	-1.460	6.000	6.750	0.473	-0.790	0.281	2.280	0.000	1.718	0.000	-0.100	0.600	-0.300	1.100	-0.007	0.100
0.03	770	-1.390	6.000	6.750	0.457	-0.790	0.281	2.250	0.000	1.615	0.000	-0.100	0.600	-0.300	1.100	-0.007	0.100
0.05	800	-1.220	6.000	6.750	0.652	-0.790	0.281	2.180	0.000	1.358	0.000	-0.100	0.600	-0.300	1.100	-0.008	0.100
0.08	800	-1.150	6.000	6.750	0.950	-0.790	0.278	2.130	0.000	1.258	0.000	-0.100	0.600	-0.300	1.100	-0.009	0.100
0.10	800	-1.230	5.900	6.750	1.160	-0.790	0.270	2.140	0.000	1.310	0.000	-0.100	0.600	-0.300	1.100	-0.010	0.100
0.15	740	-1.590	5.800	6.750	1.487	-0.790	0.258	2.190	-0.029	1.660	0.000	-0.100	0.600	-0.300	1.100	-0.010	0.100
0.20	590	-2.010	5.700	6.750	1.712	-0.790	0.250	2.250	-0.050	2.220	0.000	-0.100	0.600	-0.300	1.100	-0.008	0.100
0.25	495	-2.410	5.600	6.750	1.796	-0.790	0.242	2.300	-0.066	2.770	0.000	-0.100	0.600	-0.240	1.100	-0.007	0.100
0.30	430	-2.760	5.500	6.750	1.849	-0.790	0.239	2.350	-0.079	3.250	0.000	-0.100	0.600	-0.190	1.030	-0.006	0.100
0.40	360	-3.280	5.200	6.750	1.825	-0.790	0.231	2.450	-0.099	3.990	0.000	-0.100	0.580	-0.110	0.920	-0.004	0.100
0.50	340	-3.600	4.800	6.750	1.768	-0.790	0.230	2.550	-0.115	4.450	0.000	-0.100	0.560	-0.040	0.840	-0.003	0.100
0.75	330	-3.800	4.400	6.750	1.543	-0.790	0.230	2.650	-0.144	4.750	0.000	-0.100	0.530	0.070	0.680	-0.003	0.140
1.00	330	-3.500	4.000	6.750	1.292	-0.790	0.230	2.700	-0.165	4.300	0.000	-0.100	0.500	0.150	0.570	-0.002	0.170
1.50	330	-2.400	3.750	6.750	0.855	-0.790	0.230	2.750	-0.194	2.650	0.000	-0.100	0.420	0.270	0.420	-0.002	0.220
2.00	330	-1.000	3.500	6.750	0.521	-0.790	0.230	2.750	-0.214	0.550	0.000	-0.100	0.350	0.350	0.310	-0.001	0.260
3.00	330	0.000	3.250	6.820	0.160	-0.790	0.230	2.750	-0.243	-0.950	0.000	-0.100	0.200	0.460	0.160	-0.001	0.340
4.00	330	0.000	3.000	6.920	-0.070	-0.790	0.230	2.750	-0.264	-0.950	0.000	-0.100	0.000	0.540	0.050	-0.001	0.410
5.00	330	0.000	3.000	7.000	-0.410	-0.756	0.230	2.750	-0.270	-0.930	0.000	-0.100	0.000	0.610	-0.040	-0.001	0.510
6.00	330	0.000	3.000	7.060	-0.838	-0.700	0.230	2.750	-0.270	-0.910	0.000	-0.100	0.000	0.650	-0.110	-0.001	0.550
7.50	330	0.000	3.000	7.150	-1.433	-0.620	0.230	2.750	-0.270	-0.875	0.000	-0.100	0.000	0.720	-0.190	-0.001	0.550
10.00	330	0.000	3.000	7.250	-2.368	-0.515	0.230	2.750	-0.270	-0.800	0.000	-0.100	0.000	0.800	-0.300	-0.001	0.420

CUADRO 3.8 CONTINUACIÓN

														Vs30			
T (seg)	a44	a45	a46	a25	a28	a29	a31	a36	a37	a38	a40	a41	a42	estir	nado	s3	s4
														s1	s2		
PGA	0.050	0.000	-0.050	-0.002	0.003	-0.003	-0.150	0.265	0.337	0.188	0.088	-0.196	0.044	0.754	0.520	0.470	0.360
0.01	0.050	0.000	-0.050	-0.002	0.003	-0.003	-0.150	0.265	0.337	0.188	0.088	-0.196	0.044	0.754	0.520	0.470	0.360
0.02	0.050	0.000	-0.050	-0.002	0.002	-0.003	-0.148	0.255	0.328	0.184	0.088	-0.194	0.061	0.760	0.520	0.470	0.360
0.03	0.050	0.000	-0.050	-0.002	0.002	-0.003	-0.145	0.249	0.320	0.180	0.093	-0.175	0.162	0.781	0.520	0.470	0.360
0.05	0.050	0.000	-0.050	-0.002	0.003	-0.003	-0.133	0.202	0.289	0.167	0.133	-0.090	0.451	0.810	0.530	0.470	0.360
0.08	0.050	0.000	-0.050	-0.003	0.003	-0.003	-0.135	0.126	0.275	0.173	0.186	0.090	0.506	0.810	0.540	0.470	0.360
0.10	0.050	0.000	-0.050	-0.003	0.004	-0.003	-0.113	0.022	0.256	0.189	0.160	0.006	0.335	0.810	0.550	0.470	0.360
0.15	0.050	0.000	-0.050	-0.004	0.003	-0.003	0.038	-0.136	0.162	0.108	0.068	-0.156	-0.084	0.801	0.560	0.470	0.360
0.20	0.050	0.000	-0.030	-0.003	0.003	-0.003	0.078	-0.078	0.224	0.115	0.048	-0.274	-0.178	0.789	0.565	0.470	0.360
0.25	0.050	0.000	0.000	-0.003	0.002	-0.004	0.074	0.037	0.248	0.122	0.055	-0.248	-0.187	0.770	0.570	0.470	0.360
0.30	0.050	0.030	0.030	-0.003	0.002	-0.004	0.255	-0.091	0.203	0.096	0.073	-0.203	-0.159	0.740	0.580	0.470	0.360
0.40	0.070	0.060	0.060	-0.002	0.001	-0.005	0.214	0.129	0.232	0.123	0.143	-0.154	-0.023	0.699	0.590	0.470	0.360
0.50	0.100	0.100	0.090	-0.002	0.001	-0.005	0.154	0.310	0.252	0.134	0.160	-0.159	-0.029	0.676	0.600	0.470	0.360
0.75	0.140	0.140	0.130	-0.001	0.001	-0.004	0.079	0.505	0.208	0.129	0.158	-0.141	0.061	0.631	0.615	0.470	0.360
1.00	0.170	0.170	0.140	-0.001	0.001	-0.003	0.048	0.358	0.208	0.152	0.145	-0.144	0.062	0.609	0.630	0.470	0.360
1.50	0.210	0.200	0.160	0.000	0.001	-0.002	-0.016	0.131	0.108	0.118	0.131	-0.126	0.037	0.578	0.640	0.470	0.360
2.00	0.250	0.220	0.160	0.000	0.000	-0.002	-0.120	0.123	0.068	0.119	0.083	-0.075	-0.143	0.555	0.650	0.470	0.360
3.00	0.300	0.230	0.160	0.000	0.000	-0.002	-0.272	0.109	-0.023	0.093	0.070	-0.021	-0.028	0.548	0.640	0.470	0.360
4.00	0.320	0.230	0.140	0.000	0.000	-0.002	-0.296	0.135	0.028	0.084	0.101	0.072	-0.097	0.527	0.630	0.470	0.360
5.00	0.320	0.220	0.130	0.000	0.000	-0.002	-0.272	0.189	0.031	0.058	0.095	0.205	0.015	0.505	0.630	0.470	0.360
6.00	0.320	0.200	0.100	0.000	0.000	-0.002	-0.252	0.215	0.024	0.065	0.133	0.285	0.104	0.477	0.630	0.470	0.360
7.50	0.290	0.170	0.080	0.000	0.000	-0.002	-0.134	0.166	-0.061	0.009	0.151	0.329	0.299	0.457	0.630	0.470	0.360
10.00	0.220	0.140	0.080	0.000	0.000	-0.002	-0.022	0.092	-0.159	-0.050	0.124	0.301	0.243	0.429	0.630	0.470	0.360

FUENTE: Abrahamson et al. (2013)

CAPÍTULO 4

ZONIFICACIÓN DEL VALLE DE LOS CHILLOS

4.1 ÁREA DE ESTUDIO

El valle de los Chillos, está ubicado al suroriente del Distrito Metropolitano de Quito, provincia de Pichincha, a una altura aproximadamente de 2500 msnm. Tiene una longitud aproximada de 14km en dirección Sur-Norte y 18 km en dirección Este-Oeste.

Cuenta con dos administraciones municipales; la administración zonal de los Chillos que corresponde al municipio de Quito y la administración municipal del Cantón Rumiñahui., ver figura 4.1.

Limita al Norte: con el cerro Ilaló. Sur: con los volcanes Pasochoa y Sincholagua. Este: con el volcán Antisana y Oeste: con la loma de Puengasí.

FIGURA 4.1 DISTRITO METROPOLITANO DE QUITO Y RUMIÑAHUI

4.1.1 CANTÓN RUMIÑAHUI

El Cantón Rumiñahui fue fundado el 31 de mayo de 1938, su cabecera cantonal es la ciudad de Sangolquí, tiene una extensión de 139 km², lo que lo convierte en uno de los cantones más pequeños de la República del Ecuador, cuenta con tres parroquias urbanas que son: Sangolquí, San Pedro de Taboada y San Rafael; y dos rurales: Cotogchoa y Rumipamba, ver figura 4.2.

Limita al Norte: con el cantón Quito y el cerro Ilaló. Sur: con el monte Pasochoa y el Cantón Mejía. Este: con el cantón Quito, Río San Pedro, El Tingo y Oeste: con el cantón Quito.

FIGURA 4.2 PARROQUIAS URBANAS Y RURALES DEL CANTÓN RUMIÑAHUI

FUENTE: Municipio del Cantón Rumiñahui **ELABORACIÓN**: Andrea Chicaiza B. (2016)

4.2 MALLA DE CÁLCULO

Para la determinación de los espectros de control se ha creado una malla de puntos con una separación de 500 metros en los dos sentidos Norte-Sur y Este-Oeste dentro de la zona definida, obteniéndose un total de 560 puntos, ver figura 4.3.

FIGURA 4.3 MALLA DE CÁLCULO EN COORDENADAS UTM

ELABORACIÓN: Andrea Chicaiza B. (2016)

En la figura 4.3 se puede apreciar que se establecen 142 sitios para la parroquia Cotogchoa, 173 sitios para Rumipamba, 24 sitios para San Pedro de Taboada, 12 sitios para San Rafael y 209 sitios para Sangolquí, dando un total de 560 sitios.

Por otra parte, en vista que la zona no cuenta con estudios que puedan determinar el parámetro V_{s30} para cada uno de los 560 sitios obtenidos, se ha recurrido a la tesis de Maestría de Quizanga (2015), la cual muestra una compilación de informes técnicos sobre la obtención de este parámetro en Quito, entre ellos se puede mencionar:

- Estudios geofísicos a detalle realizados por el metro de Quito.
- Estudios para el proyecto "Reforzamiento sísmico de las edificaciones de los centros educativos municipales del Distrito metropolitano de Quito" (Planman, 2012).
- "Microzonificación sísmica de Quito" (ERN, 2012).
- Estudio "Microzonificación sísmica de los suelos del distrito metropolitano de la ciudad de Quito" realizado por Valverde *et al.* (2002).

El trabajo realizado por Valverde *et al.* (2002), presenta un mapa de microzonificación sísmica en el que se aprecia que la ciudad de Quito y una parte del Valle (ver figura 4.4), está conformada por tres tipos de suelos S1 (suelo muy duro, con velocidad de la onda de corte mayor a 750 m/s), S2 (suelo duro) y S3 (suelo blando, con períodos de vibración mayor a 0.6 segundos), según los tipos de perfiles de suelo de la antigua norma CEC 2000.

Dado que el CEC 2000 no señalaba recomendaciones concretas de valores de V_{s30} para los diferentes perfiles de suelo mencionados, Quizanga en su tesis (2015) comparó los estudios de suelo realizados por el ERN, PLANMAN, METRO, sobre el estudio de microzonificación de Valverde *et al.* (2002), dando como resultados que para suelos tipo S1 se tiene un valor representativo de V_{s30} 460 m/s, para suelo tipo S2 un valor de V_{s30} 300 m/s y para S3 un V_{s30} 200 m/s.

FIGURA 4.4 MICROZONIFICACIÓN SÍSMICA DE QUITO

FUENTE: Valverde et al. (2002)

Si bien se puede observar en la figura 4.4, se tiene una parte que engloba el valle y recae en suelos tipo S1 y S2. De manera que, para este proyecto se ha decidido hallar los espectros de control para las velocidades de onda de corte V_{s30} 460 y 300 m/s que según la clasificación de suelos de la NEC-15, pertenece a los tipos de suelo C y D respectivamente.

De esta manera, para cada punto de la malla se han obtenido los espectros de respuesta en aceleración mediante los modelos seleccionados Chiou & Youngs (2013), Campbell & Borzognia (2013) y Abrahamson *et al.* (2013), asociados a las fallas en estudio y tipo de suelo dado, teniéndose un total de 6720 espectros, de los cuales se han escogido los más críticos para cada parroquia, siendo estos los de mayores aceleraciones espectrales.

4.3 ÁREA DE ESTUDIO Y FALLAS GEOLÓGICAS

En la figura 4.5 se muestran los 560 sitios distribuidos en las parroquias del cantón y los planos de ruptura tanto inclinado y vertical de las fallas geológicas Puengasí y Machachi, respectivamente.

FIGURA 4.5 ÁREA DE ESTUDIO Y PLANO DE RUPTURA DE LAS FALLAS GEOLÓGICAS PUENGASÍ Y MACHACHI.

ELABORACIÓN: Andrea Chicaiza B. (2016)

Se podría inferir preliminarmente que los sitios ubicados en las parroquias de San Rafael y San Pedro de Taboada y una parte de Sangolquí, debido a la cercanía a la falla Puengasí, se obtendrían altas respuestas en aceleración, mientras que debido a la falla Machachi para estas mismas parroquias se alcanzarían bajas respuestas en aceleración. Entre tanto que para los sitios ubicados en las parroquias de Rumipamba, Cotogchoa y la parte baja de Sangolquí según el mapa (figura 4.5), se obtendrían altas aceleraciones espectrales asociadas a la falla Machachi y bajas aceleraciones en comparación con la falla Puengasí. Estas deducciones que se hacen son aproximadas ya que también interviene decisivamente la geología.

4.4 OBTENCIÓN DE LOS PARÁMETROS R_x, R_{RUP} y R_{jb}

Para poder aplicar los modelos de ecuaciones de atenuación antes mencionadas es necesario también obtener los siguientes parámetros de trayectoria:

- R_x, Distancia horizontal más cercana (proyección en la superficie) al borde superior del plano de ruptura medido perpendicularmente desde la dirección del rumbo promedio (km).
- **R**_{RUP}, Distancia más cercana del sitio al plano de ruptura (km).
- **R**_{JB} Distancia horizontal más cercana a la proyección del plano de ruptura en la superficie (distancia Joyner-Boore) (km).

Para ello se ha definido el plano de falla de Puengasí y Machachi tomando en cuenta la geometría y características de cada una y asumiendo que el hipocentro se encuentra ubicado en el centroide del plano. (Campbell & Borzognia, 2013, p.62), ver cuadro 4.1.

CUADRO 4.1 GEOMETRÍA Y CARACTERÍSTICAS DE LAS FALLAS PUENGASÍ Y MACHACHI.

FALLA	TIPO DE FALLA	RAKE(°)	DIP(°)	Mw	LONGITUD (km)	AREA (km ²)	ANCHO W (km)
Puengasí	Inversa	90.00	55.00	6.40	22.00	259.00	11.77
Machachi	Transcurrente	180.00	90.00	6.70	22.72	276.78	12.18

ELABORACIÓN: Andrea Chicaiza B. (2016)

En el capítulo 3 en la figura 3.3 se presentó esquemáticamente los parámetros de trayectoria R_X, R_{RUP}, R_{JB} para los diferentes tipos de fallas Transcurrente, Inversas y Normales.

En este caso es importante mencionar que se ha elaborado dos programas de cálculo para hallar estos parámetros tanto para el tipo de falla Inversa (falla Puengasí) como para la falla Transcurrente (falla Machachi)

Por otro lado, dado que la mayoría de las ecuaciones de los modelos de movimiento fuerte toman en cuenta el efecto del hanging-wall, es decir el bloque que se levanta respecto a otro en una falla (ver figura 4.6), es necesario evaluar este parámetro.

Si el sitio de interés se encuentra en el bloque levantado, F_{HW} será igual a 1, mientras que si se encuentra el bloque deprimido F_{HW} será igual a 0. Y si la falla tiene un ángulo de buzamiento δ = 90° el valor de F_{HW} será igual a 0 (Cuaical, 2013).

FIGURA 4.6 BLOQUE LEVANTADO Y DEPRIMIDO EN UNA FALLA INVERSA.

FUENTE: Apuntes de "Geología" del grado de Biología. http://mriomoros.blogspot.com/2011/10/fallas.html.

De esta forma se han obtenido los parámetros para cada sitio, y debido a que son 560 puntos, sólo se mostrarán los obtenidos para la parroquia de San Rafael, los demás se adjuntarán en anexos, ver cuadro 4.2 y 4.3.

CUADRO 4.2 PARÁMETROS R_{RUP}, R_X, R_{JB}, Y F_{HW} PARA LA PARROQUIA SAN RAFAEL ASOCIADO A LA FALLA PUENGASÍ.

ID		Coor	rd. UTM	R our (km)	R _v (km)	Rkm)	FHW	
		X (m)	Y (m)				1 1 1 1 1 1	
340	SAN RAFAEL	782500	9967500	7.713	-6.524	6.524	0	
341	SAN RAFAEL	782500	9967000	7.833	-6.665	6.665	0	
342	SAN RAFAEL	783000	9967000	8.245	-7.145	7.145	0	
343	SAN RAFAEL	782500	9966500	7.953	-6.806	6.806	0	
344	SAN RAFAEL	783000	9966500	8.367	-7.286	7.286	0	
345	SAN RAFAEL	783500	9966500	8.788	-7.765	7.765	0	
346	SAN RAFAEL	783000	9966000	8.491	-7.427	7.427	0	
347	SAN RAFAEL	783500	9966000	8.913	-7.907	7.907	0	
348	SAN RAFAEL	784000	9966000	9.341	-8.386	8.386	0	
349	SAN RAFAEL	783000	9965500	8.614	-7.568	7.568	0	
350	SAN RAFAEL	784000	9965500	9.468	-8.527	8.527	0	
351	SAN RAFAEL	784500	9965500	9.902	-9.007	9.007	0	

ELABORACIÓN: Andrea Chicaiza B. (2016)

CUADRO 4.3 PARÁMETROS R_{RUP}, R_X, R_{JB}, Y F_{HW} PARA LA PARROQUIA SAN RAFAEL ASOCIADO A LA FALLA MACHACHI.

ID		Coor	d. UTM	R nun (km)	R _v (km)	Rkm)	FH\\/
		X (m)	Y (m)		• • • • • • • • • • • • • • • • • • • •		
340	SAN RAFAEL	782500	9967500	20.796	20.766	20.766	0
341	SAN RAFAEL	782500	9967000	20.296	20.266	20.266	0
342	SAN RAFAEL	783000	9967000	20.304	20.274	20.274	0
343	SAN RAFAEL	782500	9966500	19.797	19.766	19.766	0
344	SAN RAFAEL	783000	9966500	19.805	19.774	19.774	0
345	SAN RAFAEL	783500	9966500	19.825	19.795	19.795	0
346	SAN RAFAEL	783000	9966000	19.306	19.274	19.274	0
347	SAN RAFAEL	783500	9966000	19.327	19.295	19.295	0
348	SAN RAFAEL	784000	9966000	19.361	19.329	19.329	0
349	SAN RAFAEL	783000	9965500	18.807	18.775	18.775	0
350	SAN RAFAEL	784000	9965500	18.863	18.831	18.831	0
351	SAN RAFAEL	784500	9965500	18.911	18.879	18.879	0

ELABORACIÓN: Andrea Chicaiza B. (2016)

De los cuadros obtenidos 4.2 y 4.3 se aprecia que respecto a la falla Puengasí las distancias son más cortas en comparación a las distancias halladas respecto a la falla Machachi, esto es por la cercanía que la parroquia San Rafael presenta respecto a esta falla.

CAPÍTULO 5

ESPECTROS DE CONTROL RELACIONADOS A LAS FALLAS PUENGASÍ Y MACHACHI

5.1 DEFINICIÓN ESPECTROS DE CONTROL

Se han denominado espectros de control porque es fundamental que en las estructuras diseñadas con la Norma Ecuatoriana de la Construcción del 2011 o 2015 se verifique su desempeño ante estos espectros. Las estructuras diseñadas con normativas anteriores tienen más obligación de ser revisadas su desempeño estructural con estos espectros. (Aguiar, 2015).

La obtención de estos espectros permite hacer énfasis en el comportamiento esperado que tendrá la estructura, así como el control de daños estructurales y no estructurales y los niveles de seguridad establecidos.

5.2 DEFINICIÓN ESPECTROS DE DISEÑO

El espectro de diseño puede representarse mediante un espectro de respuesta basado en las condiciones geológicas, tectónicas, sismológicas y del tipo de suelo asociadas con el sitio de emplazamiento de la estructura. (NEC, 2015)

Es un espectro de tipo elástico para una fracción de amortiguamiento respecto al crítico del 5%, utilizado con fines de diseño para representar los efectos dinámicos del sismo de diseño.

5.3 DETALLE DEL PROGRAMA PARA LA OBTENCIÓN DE LOS ESPECTROS CON LOS MODELOS DE MOVIMIENTO FUERTE

En la figura 5.1 se describe en forma breve el procedimiento de cálculo de los espectros desarrollados para los tres modelos de movimiento fuerte, cabe mencionar que las variables de sus ecuaciones fueron descritas en el capítulo 3.

FIGURA 5.1 DESCRIPCIÓN DEL PROGRAMA PARA HALLAR LOS ESPECTROS EN CADA MODELO CY13, CB13 Y ASK13

ELABORACIÓN: Andrea Chicaiza B. (2016)

5.4 OBTENCIÓN DE ESPECTROS DE CONTROL

Para cada modelo CY13, CB13 y ASK13 se han obtenido los espectros críticos, siendo aquellos que registren mayores aceleraciones horizontales dentro de cada parroquia y que han sido asociados a las fallas geológicas Puengasí y Machachi y a un tipo de suelo dado (C y D). Conjuntamente se ha obtenido el espectro promedio entre los tres modelos indicados y además se ha ploteado el espectro del NEC-15.

El nivel de confianza esperado en la obtención de estos espectros es del 50%, cuando no se considera la desviación estándar (línea continua) y 84% cuando se la incluye una vez (línea discontinua).

5.4.1 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA PUENGASÍ CON V_{S30}= 460 m/s

FIGURA 5.2 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.3 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.4 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30} = 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.5 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.6 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 460 M/S. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

5.4.2 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA PUENGASÍ CON V_{S30}= 300m/s

FIGURA 5.7 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.8 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.9 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.10 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.11 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS A LA FALLA PUENGASÍ CON UN V_{S30}= 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

Para un evento de magnitud Mw 6.4 generado por la falla Puengasí y para un suelo tipo C y D con velocidad de onda de corte 460 m/s y 300 m/s respectivamente, se han obtenido las figuras 5.2 a 5.11, de las que se tiene las siguientes deducciones:

- Para un nivel de confianza del 50% los tres modelos son similares entre sí mientras que para un nivel de confianza del 84% los tres modelos difieren notablemente entre sí.
- Los modelos que registran mayores aceleraciones espectrales tanto para los dos niveles de confianza son Chiou & Youngs (2013) y Abrahamson *et al.* (2013) mientras que el modelo Campbell & Borzognia (2013) registra las aceleraciones más bajas.
- Para suelo tipo C, las parroquias que registran las mayores aceleraciones espectrales corresponden a San Pedro de Taboada, San Rafael y Sangolquí con una aceleración espectral máxima de 0.9 (g) para un nivel de confianza

del 50%, mientras que para el nivel de confianza del 84% se registran aceleraciones máximas entre 1.7 a 1.9 (g) concernientes a un período de 0.2 segundos.

- Para suelo tipo D, las parroquias que registran las mayores aceleraciones espectrales también corresponden a San Pedro de Taboada, San Rafael y Sangolquí con aceleraciones entre 0.9 a 1 (g) para un nivel de confianza del 50%, mientras que para un nivel de confianza del 84% se registran aceleraciones máximas entre 1.7 a 1.8 (g), pertenecientes a un período de 0.3 segundos.
- Además se puede observar que el período donde se registran las mayores aceleraciones para cada parroquia está en el rango de 0.2 a 0.3 segundos, siendo las construcciones de 2 a 4 pisos aproximadamente las que se verían afectadas en mayor grado por este evento, edificaciones que son muy típicas en la zona.
- Asimismo, es muy importante mencionar que los espectros obtenidos para un nivel de confianza del 84% para todas las parroquias a excepción del espectro hallado en Rumipamba, superan a las ordenadas espectrales del NEC15 en los períodos comprendidos entre 0.1 a 0.5 segundos para suelo tipo C y 0.1 a 0.7 segundos para suelo tipo D aproximadamente, entretanto que para un nivel de confianza del 50% se ven cubiertos por este.

5.4.3 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA MACHACHI CON V_{S30}= 460m/s

FIGURA 5.12 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.13 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30}= 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.14 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

 $\label{eq:Figura 5.15} \mbox{ Espectros críticos para san rafael asociados a la falla machachi con un V_{S30}= 460 \mbox{ m/s}. \mbox{ Suelo Tipo C}$

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.16 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 460 m/s. SUELO TIPO C.

ELABORACIÓN: Andrea Chicaiza B. (2016)

5.4.4 ESPECTROS CRÍTICOS HALLADOS CON LOS MODELOS CY13, CB13 Y ASK13 ASOCIADOS A LA FALLA MACHACHI CON V_{S30}= 300m/s

FIGURA 5.17 ESPECTROS CRÍTICOS PARA COTOGCHOA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D.

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.18 ESPECTROS CRÍTICOS PARA RUMIPAMBA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.19 ESPECTROS CRÍTICOS PARA SAN PEDRO DE TABOADA ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D.

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.20 ESPECTROS CRÍTICOS PARA SAN RAFAEL ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D.

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.21 ESPECTROS CRÍTICOS PARA SANGOLQUÍ ASOCIADOS A LA FALLA MACHACHI CON UN V_{S30} = 300 m/s. SUELO TIPO D.

ELABORACIÓN: Andrea Chicaiza B. (2016)
Para un evento de magnitud Mw 6.4 generado por la falla Machachi y para un suelo tipo C y D con velocidad de onda de corte 460 m/s y 300 m/s respectivamente, se han obtenido las figuras 5.12 a 5.21, de las que se tiene las siguientes deducciones:

- Para un nivel de confianza del 50% los tres modelos son muy similares entre sí mientras que para un nivel de confianza del 84% solo los modelos CB13 y AKS13 son similares entre sí.
- El modelo que registra mayores aceleraciones espectrales tanto para los dos niveles de confianza es Chiou & Youngs (2013).
- Para suelo tipo C, las parroquias que registran las mayores aceleraciones espectrales corresponden a Rumipamba, Cotogchoa y Sangolquí con aceleraciones espectrales entre 1.1 a 1.5 (g) para un nivel de confianza del 50%, mientras que para un nivel de confianza del 84% se registran aceleraciones entre 2.2 a 3 (g) concernientes a un período de 0.2 segundos.
- Para suelo tipo D, las parroquias que registran las mayores aceleraciones espectrales también corresponden a Rumipamba, Cotogchoa y Sangolquí con aceleraciones entre 1.1 a 1.4 (g) para un nivel de confianza del 50%, mientras que para un nivel de confianza del 84% se registran aceleraciones entre 2 a 2.6 (g) pertenecientes a un período de 0.3 segundos.
- Además se puede observar que el período donde se registran las mayores aceleraciones para cada parroquia está en el rango de 0.2 a 0.3 segundos, siendo las construcciones de 2 a 4 pisos aproximadamente las que se verían afectadas en mayor grado por este evento, edificaciones que son muy típicas en la zona.
- Asimismo, es muy importante mencionar que los espectros obtenidos para un nivel de confianza del 84% para casi todas las parroquias exceptuando San Pedro de Taboada y San Rafael, superan a las ordenadas espectrales

del NEC15 en todos los períodos, entretanto que para un nivel de confianza del 50% todos se ven cubiertos por este.

5.4.5 ESPECTROS PROMEDIOS ASOCIADOS A LAS DOS FALLAS PUENGASÍ Y MACHACHI CON V_{\$30} 460 m/s

Estos espectros se han obtenido en base al promedio de las aceleraciones espectrales de los tres modelos CY13, CB13 y ASK13 para cada parroquia.

Las figuras 5.22 a la 5.26 muestran el espectro promedio evaluado en suelo tipo C (V_{s30} 460 m/s) y que a la vez ha sido hallado para las dos fallas (Puengasí y Machachi). Conjuntamente se ha ploteado el espectro de la NEC-15.

Las líneas discontinuas representan un nivel de confianza del 84% mientras que las líneas continuas un nivel del 50%.

FIGURA 5.22 ESPECTRO PROMEDIO PARA COTOGCHOA ASOCIADO A LAS DOS FALLAS Y V_{s30} 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.23 ESPECTRO PROMEDIO PARA RUMIPAMBA ASOCIADO A LAS DOS FALLAS Y Vs30 460 m/s. SUELO TIPO C

FIGURA 5.24 ESPECTRO PROMEDIO PARA SAN PEDRO DE TABOADA ASOCIADO A LAS DOS FALLAS Y V_{\$30} 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.25 ESPECTRO PROMEDIO PARA SAN RAFAEL ASOCIADO A LAS DOS FALLAS Y Vs30 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.26 ESPECTRO PROMEDIO PARA SANGOLQUÍ ASOCIADO A LAS DOS FALLAS Y V_{\$30} 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

5.4.6 ESPECTROS PROMEDIOS ASOCIADOS A LAS DOS FALLAS PUENGASÍ Y MACHACHI CON V₈₃₀ 300 m/s

Estos espectros se han obtenido en base al promedio de las aceleraciones espectrales de los tres modelos CY13, CB13 y ASK13 para cada parroquia.

Las figuras 5.27 a la 5.31 muestran el espectro promedio evaluado en suelo tipo D (V_{s30} 300 m/s) y que a la vez ha sido hallado para las dos fallas (Puengasí y Machachi). Conjuntamente se ha ploteado el espectro de la NEC-15.

Las líneas discontinuas representan un nivel de confianza del 84% mientras que las líneas continuas un nivel del 50%.

FIGURA 5.27 ESPECTRO PROMEDIO PARA COTOGCHOA ASOCIADO A LAS DOS FALLAS Y Vs30 300 m/s. SUELO TIPO D

ESPECTROS PARROQUIA COTOGCHOA Vs30= 300 m/s

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.28 ESPECTRO PROMEDIO PARA RUMIPAMBA ASOCIADO A LAS DOS FALLAS Y V_{s30} 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

 $\label{eq:Figura 5.29} \mbox{ ESPECTRO PROMEDIO PARA SAN PEDRO DE TABOADA ASOCIADO A LAS DOS FALLAS Y V_{s30} 300 m/s. SUELO TIPO D$

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.30 ESPECTRO PROMEDIO PARA SAN RAFAEL ASOCIADO A LAS DOS FALLAS Y Vs30 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.31 ESPECTRO PROMEDIO PARA SANGOLQUÍ ASOCIADO A LAS DOS FALLAS Y V_{s30} 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

5.4.7 RESUMEN DE ESPECTROS PROMEDIOS

A continuación se muestra otra forma de presentar los resultados, en este caso un resumen de los espectros promedios por falla y tipo de suelo.

FIGURA 5.32 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA FALLA PUENGASÍ PARA UN V_{S30} 460 m/s. SUELO TIPO C.

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.33 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA FALLA PUENGASÍ PARA UN V_{S30} 300 m/s. SUELO TIPO D

ELABORACIÓN: Andrea Chicaiza B. (2016)

FIGURA 5.34 RESUMEN ESPECTROS PROMEDIO RESPECTO A LA FALLA MACHACHI PARA UN V_{S30} 460 m/s. SUELO TIPO C

ELABORACIÓN: Andrea Chicaiza B. (2016)

ELABORACIÓN: Andrea Chicaiza B. (2016)

De los espectros obtenidos de las figuras 5.32 a 5.35 se puede acotar que la falla Machachi genera mayores aceleraciones espectrales en las parroquias de Cotogchoa, Rumipamba y Sangolquí, siendo estas entre 1.2 (g) a 2.3 (g) dependiendo el nivel de confianza que se quiera evaluar (50% y 84% respectivamente) mientras que debido a la falla Puengasí, las parroquias San Rafael, San Pedro de Taboada y también Sangolquí registran aceleraciones entre 0.9 (g) a 1.6 (g), igualmente dependiendo el nivel de confianza que se evalúe 50% y 84%.

Por último, en el cuadro 5.1 se muestra los valores más críticos de PGA obtenidos para cada parroquia debido a los eventos originados por las fallas Puengasí y Machachi evaluados en los dos tipos de suelos y para un nivel de confianza del 84%, conjuntamente se expone el PGA hallado mediante la norma NEC-15.

CUADRO 5.1 FACTOR PARA ENCONTRAR EL SISMO MÁXIMO CONSIDERADO A PARTIR DEL SISMO DE DISEÑO DE LA NEC-15.

PGA							
Modelos de Movimiento Fuerte							(Promedio/
Rumipamba	Cotogchoa	San Pedro de Taboada	San Rafael	Sangolquí	Promedio	Diseño NEC-15	Diseño NEC-15)
0.90	0.82	0.63	0.61	0.65	0.72	0.48	1.50

ELABORACIÓN: Andrea Chicaiza B. (2016)

De esta manera se determina un factor de 1.5 para encontrar el sismo máximo considerado a partir del sismo de diseño la NEC-15 para esta zona.

CONCLUSIONES

Una vez finalizado el proyecto sobre la obtención de espectros de control para la zona del Valle de los Chillos en especial para las parroquias Cotogchoa, Rumipamba, San Pedro de Taboada, San Rafael y Sangolquí, se manifiestan las siguientes conclusiones:

- Los sismos corticales superficiales que se podrían esperar en el valle de los Chillos, producto de las fallas geológicas Puengasí y Machachi corresponden a una magnitud máxima de Mw 6.4, presentando un peligro inminente para la zona.
- Los períodos de recurrencia para las magnitudes máximas generadas por las fallas Puengasí (Mw 6.4) y Machachi (Mw 6.4) mediante el modelo del Terremoto Característico son 188 y 538 años respectivamente, mientras que con el Modelo de Gutenberg - Richter Modificado se obtienen 999 y 2805 años.

Los períodos de recurrencia obtenidos mediante el Modelo de Gutenberg y Richter Modificado son mucho mayores a los obtenidos con el Modelo del Terremoto Característico, esto se debe a que el modelo del Terremoto Característico considera que la falla solo puede romperse con sismos de magnitud característica (máxima) y con periodicidad perfecta, entre tanto que Gutenberg - Richter Modificado considera que esta liberación de energía puede darse en sismos de menor magnitud y con diferentes períodos de recurrencia.

 Los modelos que registran similares aceleraciones espectrales debido al evento generado por la falla Puengasí (falla inversa) y para los dos niveles de confianza 50% y 84% son Chiou & Youngs (2013) y Abrahamson *et al.* (2013), mientras que debido a la falla Machachi (falla transcurrente) son los modelos Abrahamson *et al.* (2013) y Campbell & Borzognia (2013). Por lo que se debe tomar a consideración estos modelos en la determinación de espectros para la zona del valle.

- Las parroquias que registran las mayores aceleraciones espectrales debido al evento sísmico generado por la falla Puengasí y tomando en cuenta un nivel de confianza del 84% son San Pedro de Taboada, San Rafael y Sangolquí, con aceleraciones espectrales cercanas a 1.6 (g) y un PGA de 0.6 (g), teniéndose un incremento del 30% respecto a las obtenidas mediante la norma.
- Entre tanto que las parroquias que registran las mayores aceleraciones espectrales debido al evento sísmico generado por la falla Machachi y tomando en cuenta un nivel de confianza 84% son Cotogchoa, Rumipamba y Sangolquí, con aceleraciones espectrales cercanas a 2.3 (g) y un PGA de 0.8 (g), teniéndose un incremento del 70% respecto a las obtenidas mediante la norma.
- Las mayores aceleraciones espectrales se alcanzan en los períodos 0.2 y 0.3 segundos, por lo que las edificaciones de 2 a 4 pisos aproximadamente serán las que reciban mayores fuerzas sísmicas producto de los eventos originados por estas fallas en los dos tipos de suelo C y D, cabe recalcar que estas construcciones son muy típicas en la zona de estudio.
- De los dos posibles escenarios sísmicos planteados producto de las dos fallas cercanas a la zona de estudio, el caso más crítico será cuando se produzca el evento debido a la falla Machachi ya que parroquias como Cotogchoa y Rumipamba, soportarían aceleraciones mayores a 2 (g) aunque también se debe tener en cuenta el período de recurrencia que la misma tendrá, pese a esto de cierta forma es preocupante porque el espectro obtenido por la NEC 15 no cubre estos valores.

 Se sugiere verificar el desempeño sísmico esperado de las estructuras del lugar con el espectro máximo considerado que es el que se expone en esta investigación para un nivel de confianza del 84%, el cual ha sido determinado para esta zona, como 1.5 veces más que el espectro del sismo de diseño obtenido por la NEC-15.

RECOMENDACIONES

Asimismo una vez concluida la investigación se formulan las siguientes recomendaciones:

- Este estudio está orientado a que la comunidad comprenda que vive en una zona de alta peligrosidad sísmica y se tienen que tomar medidas que permitan reducir los niveles de daño que puedan ocasionar estos eventos sísmicos, tales como el reforzamiento de las estructuras del lugar o a su vez que las edificaciones a construirse sean diseñadas cumpliendo las normas y con adecuados diseños sísmicos.
- Es importante que la zona del valle cuente con estudios de microzonificación sísmica, ya que este tipo de información es fundamental en la evaluación del peligro. De esta manera se evitaría adaptar ciertos parámetros del suelo provenientes de otras zonas.
- Asimismo se sugiere estudios geológicos actualizados que contengan más información sobre algunas fallas del Ecuador, entre ellas cabe mencionar la falla Machachi, ya que estos modelos de movimiento fuerte toman en cuenta sus características físicas y morfológicas.
- Por último se incentiva a realizar estudios de peligrosidad sísmica para todas las regiones de nuestro querido Ecuador pues como se ha manifestado en el desarrollo de este proyecto de investigación, somos un país potencialmente sísmico.

REFERENCIAS BIBLIOGRÁFICAS

- Abrahamson N., Silva W. y R. Kamai, (2013), <u>Update of the AS08 Ground-</u> <u>Motion Prediction Equations Based on the NGA-West2 Data Set</u>, Berkeley, Pacific Earthquake Engineering Research Center, p 143.
- Aguiar R., (2003), <u>Análisis sísmico por desempeño</u>, Centro de Investigaciones Científicas, Escuela Politécnica del Ejército, Sangolquí, p. 171-194.
- Aguiar R., (2008), <u>Análisis sísmico de edificios</u>, Centro de Investigaciones Científicas, Escuela Politécnica del Ejército, Sangolquí, p. 1-28.
- Aguiar R., Mora D., y M. Rodríguez, (2016, Junio), "Análisis de una estructura con disipadores sometidos a espectros de diseño y de control", <u>Revista</u> <u>Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería,</u> pp. 8.
- Aguiar R. y Castro C, (2009), "Ley de atenuación para estudios de peligrosidad sísmica del Ecuador", <u>Revista Ciencia</u>, Universidad de Fuerzas Armadas, ESPE, 12 (2), pp. 126-149.
- Aguiar R. y Castro C., (2009), "Magnitud máxima en zonas fuentes para estudios de peligrosidad sísmica del Ecuador", <u>Revista Ciencia</u>, Universidad de Fuerzas Armadas, ESPE, 12 (2), pp. 111-125.
- Aguiar R., (2015), <u>Espectros de Control para la ciudad de Quito</u>, Centro Internacional de Métodos Numéricos, CIMNE, Monografías de Ingeniería Sísmica, IS-72, Universidad Politécnica de Cataluña, p. 104.

- Aguiar R., Rivas A., Benito M., Gaspar-Escribano J., Trujillo S., Arciniegas S., Villalba P. y H. Parra, (2014), "Aceleraciones registradas y calculadas del sismo del 12 de agosto de 2014 en Quito", <u>Revista Ciencia</u>, Universidad de Fuerzas Armadas, ESPE, 16 (2), pp. 139-153.
- Aguiar R., Rivas A, Caiza P y D. Quizanga, (2016), "Control Spectra for Quito", <u>Journal Nat. Hazards Earth Syst. Sci</u>, pp. 19.
- 10. Alvarado A., (2012), <u>Néotectonique et cinématique de la déformation</u> <u>continentale en Equateur</u>, PhD thesis, Université de Grenoble, Grenoble, France, p 261. http://tel.archives-ouvertes.fr/tel-00870332
- 11. Alvarado A., Audin L., Nocquet M., Lagreulet S., Segovia M., Font Y., Lamarque G., Yepes H., Mothes P., Rolandone F., Jarrín P. y X. Quidelleur , (2014), "Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity", <u>AGU PUBLICATIONS</u>, pp. 17.
- 12. Ancheta T., Darragh R., Stewart J., Seyhan E., Silva W., Chiou B., Wooddell K., Graves R., Kottke A., Boore D., Kishida T. y J. Donahue, (2013), <u>PEER NGAWEST-2 Database</u>, Berkeley, Pacific Earthquake Engineering Research Center, p. 136.
- Barona D., (2010), <u>Vulnerabilidad sísmica del Centro Histórico de Sangolquí</u>, Tesis de Grado, Universidad de las Fuerzas Armadas, ESPE, p. 143.
- 14. Campbell K. y Y. Borzognia, (2013), <u>NGA-West2 Campbell-Bozorgnia</u> <u>Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-</u> <u>Damped Elastic Pseudo-Acceleration Response Spectra for Periods</u> <u>Ranging from 0.01 to 10 sec</u>, Berkeley, Pacific Earthquake Engineering Research Center, p. 75.

- CEC, (2000), <u>Código Ecuatoriano de la Construcción</u>, Colegio de Ingenieros Civiles de Pichincha, Quito.
- 16.CERECIS, (1985), <u>Terremotos destructivos en América del Sur: 1530 –</u> <u>1894</u>, Lima, PE, p. 314.
- 17. Cevallos P., (1873), <u>Resumen de la Historia del Ecuador desde su orijen</u> <u>hasta1845</u>, v. 6, Lima, p. 252 – 356. http://books.google.com
- 18. Chiou B. y R. Youngs, (2013), <u>Update of the Chiou and Youngs NGA Ground</u> <u>Motion Model for Average Horizontal Component of Peak Ground Motion and</u> <u>Response Spectra</u>, Berkeley, Pacific Earthquake Engineering Research Center, p. 78.
- 19. Chunga K., Michetti A., Gorshkov A., Panza G., Soloviev A. y C. Martillo, (2010), "Aplicación del método de zonación morfo-estructural para identificar nudos sismogénicos en la región costera y cadenas montañosas de los andes septentrionales del Ecuador", <u>Acta Oceanográfica del Pacífico</u>, 16 (1), pp. 144.
- 20. Cotton F., Scherbaum F., Bommer J. y H. Bungum, (2006), "Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites", <u>Journal of Seismology</u>, 10 (2), pp. 137-156.
- 21. Cuaical D., (2013), <u>Peligrosidad sísmica del Golfo de Guayaquil</u>, Tesis de Grado, Universidad de las Fuerzas Armadas, ESPE, p.161.
- 22. Del Pino I. y H. Yepes, (1990), <u>Apuntes para una Historia Sísmica de Quito:</u> <u>Problemática y Perspectivas, serie Quito</u>, I. Municipio de Quito y Junta de Andalucía, Min. De Asuntos Exteriores de España, Quito, p. 67-100.

- 23. Egred J., (2010), <u>Isosistas del sismo registrado en el Valle de los Chillos</u>, Entregados personalmente a Diego Barona en el Instituto Geofísico de la Escuela Politécnica Nacional, Quito.
- 24. Egred J., Ruales E., Vaquero H., Suarez R., Mena L. y C. Molina, (1959), Breve Historia de los principales terremotos en la República del Ecuador <u>1534-1958</u>, Quito, Fray Jodoco Ricke, p. 25 más Anexos.
- 25. Egüez A. y H. Yepes, (1994), <u>Estudio Neotectónico y de Peligro Sísmico para</u> <u>el Provecto Hidroeléctrico Toachi</u>, INECEL, p. 63.
- 26. Egüez A., Alvarado A., Yepes H., Machette M., Costa C. y R. Dart, (2003), Database and map of Quaternary faults and Fonds of Ecuador and its offshore regions, U.S. Geological Survey, Open-File Report 03-289, p. 77.
- 27. <u>Fuerte temblor alarma Quito y otros puntos de país</u>, (16 de abril de 2016), El Comercio. http://www.elcomercio.com
- 28.IG-EPN, (2016), <u>Evaluación de intensidades sismo en Pedernales.</u> http://www.igepn.edu.ec
- 29. Nuñez A., Calvache M., Alvarado C. et al., (2005), <u>Estudio de</u> <u>Microzonificación Sísmica de Santiago de Cali,</u> Ministerio de Minas y Energía, INGEOMINAS, Bogotá, p. 51.
- 30. Jaramillo S., (2015), <u>Espectros de Control para el centro norte de Quito</u>. Tesis de Grado, Universidad de las Fuerzas Armadas, ESPE, p. 126.
- 31.Leonard M., (2010), <u>Earthquake fault scaling: Self consistent relating of</u> <u>rupture length width, average displacement, and moment release</u>, Bulletin of the Seismological Society of America, 100 (5A), pp. 1971–1988.

- 32.NEC, (2015), <u>Norma Ecuatoriana de la Construcción</u>, Ministerio de Desarrollo Urbano y Vivienda, MIDUVI.
- 33. Noticias Rumiñahui, (17 Abril 2016), <u>Rumiñahui sin daños considerados, tras</u> <u>terremoto</u>, Gobierno Municipal de Rumiñahui. http://www.ruminahui.gob.ec
- Ortiz O., (2013), <u>Sismotectónica y peligrosidad sísmica en Ecuador</u>, Tesis de Maestría, Universidad Complutense de Madrid, Madrid, p. 46.
- 35. Parra H., (2016), <u>Desarrollos metodológicos y aplicaciones hacia el cálculo</u> <u>de la peligrosidad sísmica en el ecuador continental y estudio de riesgo</u> <u>sísmico en la ciudad de Quito</u>, Tesis Doctoral, Universidad Politécnica de Madrid, p. 242.
- 36. Quishpe D. y M. Quishpe, (2011), <u>Espectros para el Distrito Metropolitano de</u> <u>Quito asociados a las fallas de: Quito y Nanegalito</u>, Tesis de Grado, Universidad de las Fuerzas Armadas, ESPE, p. 172.
- 37. Quizanga D., (2015), <u>Espectros específicos para la ciudad de Quito en</u> <u>función de fallas ciegas inversas</u>, Tesis de Maestría, Escuela Politécnica Nacional, Quito, p. 170.
- 38. Rivas A., (2014). <u>Contribución metodológica para incorporar fallas activas en</u> <u>la modelización de la fuente dirigida a estimaciones de peligrosidad sísmica</u>. Aplicación al sur de España. Tesis Doctoral., Universidad Politécnica de Madrid, 235 p.
- Rivas A., Aguiar R., Benito M. B., Gaspar J., y H. Parra, (2014), "Determinación del período de recurrencia y magnitud máxima para el control de las estructuras en el rango elástico ante un sismo asociado a las fallas inversas de Quito", <u>Revista Internacional de Ingeniería de Estructuras</u>, 19 (2), pp. 201-217.

- 40. Singaucho J., (2009), <u>Mapa de máximas intensidades sísmicas del Ecuador.</u> <u>Criterios estructurales para mejorar la estimación de intensidades</u>, Tesis de Grado, Escuela Politécnica Nacional, Quito, p. 170.
- 41. Soulas J.P., Egüez A., Yepes H. y H. Pérez, (1991), <u>Tectónica activa y riesgo</u> <u>sísmico en los Andes Ecuatorianos y el extremo sur de Colombia</u>, Bol. Geol. Ecuat., 2 (1), pp. 3–11.
- 42. Taipe L., (2013), <u>Análisis de las ecuaciones de predicción de movimiento de suelo para el Ecuador utilizando datos registrados durante el período 2000-2011 en estaciones de banda ancha y acelerógrafos</u>, Tesis de Grado, Escuela Politécnica Nacional, Quito, p. 148.
- 43. Valverde J., Fernández J., Jiménez E., Vaca T. y F. Alarcón, (2002), <u>Microzonificación sísmica de los suelos del Distrito Metropolitano de la</u> <u>ciudad de Quito</u>, Escuela Politécnica Nacional, Municipio del Distrito Metropolitano de Quito, Quito, p. 146 más Anexos.
- 44. Wells D. y K. Coppersmith, (1994), <u>New empirical relationships among</u> <u>magnitude. rupture length. rupture width. rupture area. and surface</u> <u>displacement</u>, Bulletin of Seismological Society of America, 84 (4), pp. 974-1002.
- 45. Wesnousky S., (1986), <u>Earthquakes, Quaternary faults, and seismic hazard</u> in California, J. Geophys, Res., 91 (B12), pp. 12587-12631.
- 46. Yepes H., (15 de agosto 2014), <u>Breve reseña de los sismos provenientes de</u> <u>la falla geológica de Quito que han afectado a la Capital</u>, Instituto Geofísico Escuela Politécnica Nacional. <u>https://www.igepn.edu.ec</u>

ANEXOS

ANEXO No. 1

PARÁMETROS R_{RUP}, R_X y R_{JB}, PARA LOS 560 SITIOS ANALIZADOS RESPECTO A LA FALLA PUENGASÍ.

		Coor	d. UTM	R(km)	D (km)	D (km)
U	PARROQUIA	X (m)	Y (m)	- к _{RUP} (кт)	R _X (KM)	R _{jb} (KM)
1	COTOGCHOA	782500	9960000	9.572	-8.642	8.642
2	COTOGCHOA	783000	9960000	10.007	-9.122	9.122
3	COTOGCHOA	783500	9960000	10.446	-9.601	9.601
4	COTOGCHOA	782500	9959500	9.699	-8.783	8.783
5	COTOGCHOA	783000	9959500	10.136	-9.263	9.263
6	COTOGCHOA	783500	9959500	10.576	-9.743	9.743
7	COTOGCHOA	784000	9959500	11.019	-10.222	10.222
8	COTOGCHOA	782500	9959000	9.827	-8.924	8.924
9	COTOGCHOA	783000	9959000	10.265	-9.404	9.404
10	COTOGCHOA	783500	9959000	10.706	-9.884	9.884
11	COTOGCHOA	784000	9959000	11.150	-10.363	10.363
12	COTOGCHOA	784500	9959000	11.597	-10.843	10.843
13	COTOGCHOA	782500	9958500	9.956	-9.066	9.066
14	COTOGCHOA	783000	9958500	10.394	-9.545	9.545
15	COTOGCHOA	783500	9958500	10.837	-10.025	10.025
16	COTOGCHOA	784000	9958500	11.282	-10.505	10.505
17	COTOGCHOA	782500	9958000	10.085	-9.207	9.207
18	COTOGCHOA	783000	9958000	10.524	-9.687	9.687
19	COTOGCHOA	783500	9958000	10.967	-10.166	10.166
20	COTOGCHOA	784000	9958000	11.413	-10.646	10.646
21	COTOGCHOA	782000	9957500	9.780	-8.872	8.872
22	COTOGCHOA	782500	9957500	10.214	-9.349	9.349
23	COTOGCHOA	783000	9957500	10.654	-9.828	9.828
24	COTOGCHOA	783500	9957500	11.098	-10.307	10.307
25	COTOGCHOA	784000	9957500	11.545	-10.787	10.787
26	COTOGCHOA	784500	9957500	11.995	-11.267	11.267
27	COTOGCHOA	782000	9957000	9.932	-9.039	9.039
28	COTOGCHOA	782500	9957000	10.360	-9.508	9.508
29	COTOGCHOA	783000	9957000	10.794	-9.979	9.979
30	COTOGCHOA	783500	9957000	11.234	-10.453	10.453
31	COTOGCHOA	784000	9957000	11.678	-10.930	10.930
32	COTOGCHOA	784500	9957000	12.127	-11.408	11.408
33	COTOGCHOA	785000	9957000	12.580	-11.888	11.888
34	COTOGCHOA	781500	9956500	9.693	-8.776	8.776
35	COTOGCHOA	782000	9956500	10.106	-9.231	9.231
36	COTOGCHOA	782500	9956500	10.527	-9.690	9.690
37	COTOGCHOA	783000	9956500	10.955	-10.153	10.153
38	COTOGCHOA	783500	9956500	11.388	-10.619	10.619
39	COTOGCHOA	784000	9956500	11.827	-11.088	11.088
40	COTOGCHOA	784500	9956500	12.271	-11.560	11.560
41	COTOGCHOA	785000	9956500	12.718	-12.034	12.034
42	COTOGCHOA	781500	9956000	9.897	-9.001	9.001
43	COTOGCHOA	782000	9956000	10.302	-9.445	9.445
44	COTOGCHOA	782500	9956000	10.715	-9.894	9.894
45	COTOGCHOA	783000	9956000	11.136	-10.348	10.348
46	COTOGCHOA	783500	9956000	11.563	-10.806	10.806
47	COTOGCHOA	784000	9956000	11.995	-11.267	11.267
48	COTOGCHOA	784500	9956000	12.432	-11.732	11.732
49	COTOGCHOA	785000	9956000	12.874	-12,199	12,199
50	COTOGCHOA	781500	9955500	10.121	-9.247	9.247

Parámetros R_{RUP} , R_X y R_{JB} , para los 560 sitios analizados respecto a la falla Puengasí.

П		Coor	d. UTM	R _{RUP} (km)	B., (km)	R _{jb} (km)
U	PARROQUIA	X (m)	Y (m)			
51	COTOGCHOA	782000	9955500	10.518	-9.680	9.680
52	COTOGCHOA	782500	9955500	10.923	-10.119	10.119
53	COTOGCHOA	783000	9955500	11.336	-10.563	10.563
54	COTOGCHOA	783500	9955500	11.755	-11.012	11.012
55	COTOGCHOA	784000	9955500	12.181	-11.465	11.465
56	COTOGCHOA	784500	9955500	12.612	-11.922	11.922
57	COTOGCHOA	785000	9955500	13.048	-12.382	12.382
58	COTOGCHOA	785500	9955500	13.488	-12.845	12.845
59	COTOGCHOA	781500	9955000	10.365	-9.514	9.514
60	COTOGCHOA	782000	9955000	10.753	-9.935	9.935
61	COTOGCHOA	782500	9955000	11.150	-10.362	10.362
62	COTOGCHOA	783000	9955000	11.554	-10.797	10.797
63	COTOGCHOA	783500	9955000	11.966	-11.236	11.236
64	COTOGCHOA	784000	9955000	12.384	-11.681	11.681
65	COTOGCHOA	784500	9955000	12.808	-12.130	12.130
66	COTOGCHOA	785000	9955000	13.238	-12.582	12.582
67	COTOGCHOA	785500	9955000	13.672	-13.038	13.038
68	COTOGCHOA	781500	9954500	10.627	-9.798	9.798
69	COTOGCHOA	782000	9954500	11.006	-10.207	10.207
70	COTOGCHOA	782500	9954500	11.393	-10.624	10.624
71	COTOGCHOA	783000	9954500	11.790	-11.048	11.048
72	COTOGCHOA	783500	9954500	12.193	-11.478	11.478
73	COTOGCHOA	784000	9954500	12.604	-11.914	11.914
74	COTOGCHOA	784500	9954500	13.021	-12.354	12.354
75	COTOGCHOA	785000	9954500	13.444	-12.799	12.799
76	COTOGCHOA	785500	9954500	13.872	-13.247	13.247
77	COTOGCHOA	781500	9954000	10.906	-10.100	10.100
78	COTOGCHOA	782000	9954000	11.275	-10.497	10.497
79	COTOGCHOA	782500	9954000	11.654	-10.903	10.903
80	COTOGCHOA	783000	9954000	12.041	-11.316	11.316
81	COTOGCHOA	783500	9954000	12.437	-11.737	11.737
82	COTOGCHOA	784000	9954000	12.840	-12.163	12.163
83	COTOGCHOA	784500	9954000	13.250	-12.594	12.594
84	COTOGCHOA	785000	9954000	13.665	-13.031	13.031
85	COTOGCHOA	785500	9954000	14.086	-13.472	13.472
86	COTOGCHOA	781500	9953500	11.199	-10.416	10.416
87	COTOGCHOA	782000	9953500	11.559	-10.802	10.802
88	COTOGCHOA	782500	9953500	11.929	-11.197	11.197
89	COTOGCHOA	783000	9953500	12.308	-11.600	11.600
90	COTOGCHOA	783500	9953500	12.695	-12.010	12.010
91	COTOGCHOA	784000	9953500	13.090	-12.427	12.427
92	COTOGCHOA	784500	9953500	13.492	-12.850	12.850
93	COTOGCHOA	785000	9953500	13.901	-13.278	13.278
94	COTOGCHOA	781000	9953000	11.169	-10.383	10.383
95	COTOGCHOA	781500	9953000	11.508	-10.747	10.747
96	COTOGCHOA	782000	9953000	11.858	-11.121	11.121
97	COTOGCHOA	782500	9953000	12.219	-11.505	11.505
98	COTOGCHOA	783000	9953000	12.589	-11.898	11.898
99	COTOGCHOA	783500	9953000	12.968	-12.298	12.298
100	COTOGCHOA	784000	9953000	13.355	-12.705	12.705

חו		Coor	d. UTM	D (lam) D (lam)		P (km)
U	PARROQUIA	X (m)	Y (m)	r _{RUP} (KIII)	rx (κιτι)	rc _{jb} (KIII)
101	COTOGCHOA	784500	9953000	13.749	-13.119	13.119
102	COTOGCHOA	781000	9952500	11.499	-10.738	10.738
103	COTOGCHOA	781500	9952500	11.829	-11.090	11.090
104	COTOGCHOA	782000	9952500	12.170	-11.453	11.453
105	COTOGCHOA	782500	9952500	12.522	-11.826	11.826
106	COTOGCHOA	783000	9952500	12.883	-12.209	12.209
107	COTOGCHOA	783500	9952500	13.254	-12.599	12.599
108	COTOGCHOA	784000	9952500	13.633	-12.997	12.997
109	COTOGCHOA	784500	9952500	14.019	-13.402	13.402
110	COTOGCHOA	781000	9952000	11.842	-11.104	11.104
111	COTOGCHOA	781500	9952000	12.162	-11.445	11.445
112	COTOGCHOA	782000	9952000	12.494	-11.797	11.797
113	COTOGCHOA	782500	9952000	12.837	-12.160	12.160
114	COTOGCHOA	783000	9952000	13.190	-12.532	12.532
115	COTOGCHOA	783500	9952000	13.552	-12.912	12.912
116	COTOGCHOA	784000	9952000	13.923	-13.301	13.301
117	COTOGCHOA	784500	9952000	14.302	-13.697	13.697
118	COTOGCHOA	781500	9951500	12.507	-11.810	11.810
119	COTOGCHOA	782000	9951500	12.830	-12.152	12.152
120	COTOGCHOA	782500	9951500	13.164	-12.504	12.504
121	COTOGCHOA	783000	9951500	13.508	-12.866	12.866
122	COTOGCHOA	783500	9951500	13.862	-13.237	13.237
123	COTOGCHOA	782000	9951000	13.176	-12.517	12.517
124	COTOGCHOA	782500	9951000	13.501	-12.859	12.859
125	COTOGCHOA	783000	9951000	13.837	-13.211	13.211
126	COTOGCHOA	781500	9950500	13.225	-12.569	12.569
127	COTOGCHOA	782000	9950500	13.531	-12.890	12.890
128	COTOGCHOA	782500	9950500	13.848	-13.223	13.223
129	COTOGCHOA	783000	9950500	14.176	-13.566	13.566
130	COTOGCHOA	781000	9950000	13.312	-12.660	12.660
131	COTOGCHOA	781500	9950000	13.598	-12.960	12.960
132	COTOGCHOA	782000	9950000	13.896	-13.272	13.272
133	COTOGCHOA	782500	9950000	14.205	-13.596	13.596
134	COTOGCHOA	781000	9949500	13.701	-13.068	13.068
135	COTOGCHOA	781500	9949500	13.979	-13.359	13.359
136	COTOGCHOA	782000	9949500	14.268	-13.662	13.662
137	COTOGCHOA	782500	9949500	14.570	-13.976	13.976
138	COTOGCHOA	780500	9949000	13.839	-13.213	13.213
139	COTOGCHOA	781000	9949000	14.096	-13.483	13.483
140	COTOGCHOA	781500	9949000	14.366	-13.765	13.765
141	COTOGCHOA	780500	9948500	14.248	-13.641	13.641
142	COTOGCHOA	781000	9948500	14.498	-13.902	13.902
143	RUMIPAMBA	788000	9955500	15.744	-15.197	15.197
144	RUMIPAMBA	788500	9955500	16.203	-15.672	15.672
145	RUMIPAMBA	788000	9955000	15.902	-15.360	15.360
146	RUMIPAMBA	788500	9955000	16.357	-15.831	15.831
147	RUMIPAMBA	787500	9954500	15.626	-15.074	15.074
148	RUMIPAMBA	788000	9954500	16.073	-15.538	15.538
149	RUMIPAMBA	788500	9954500	16.524	-16.004	16.004
150	RUMIPAMBA	786000	9954000	14.512	-13.917	13.917

חו	PARROOUIA	Coor	Coord. UTM		R. (km)	P (km)
	PANIOQUIA	X (m)	Y (m)			м _{jb} (кш)
151	RUMIPAMBA	786500	9954000	14.943	-14.365	14.365
152	RUMIPAMBA	787000	9954000	15.378	-14.817	14.817
153	RUMIPAMBA	787500	9954000	15.817	-15.272	15.272
154	RUMIPAMBA	788000	9954000	16.259	-15.730	15.730
155	RUMIPAMBA	788500	9954000	16.704	-16.190	16.190
156	RUMIPAMBA	785500	9953500	14.315	-13.711	13.711
157	RUMIPAMBA	786000	9953500	14.734	-14.148	14.148
158	RUMIPAMBA	786500	9953500	15.159	-14.590	14.590
159	RUMIPAMBA	787000	9953500	15.588	-15.035	15.035
160	RUMIPAMBA	787500	9953500	16.021	-15.483	15.483
161	RUMIPAMBA	788000	9953500	16.458	-15.935	15.935
162	RUMIPAMBA	788500	9953500	16.898	-16.389	16.389
163	RUMIPAMBA	785000	9953000	14.150	-13.539	13.539
164	RUMIPAMBA	785500	9953000	14.557	-13.964	13.964
165	RUMIPAMBA	786000	9953000	14.970	-14.393	14.393
166	RUMIPAMBA	786500	9953000	15.388	-14.828	14.828
167	RUMIPAMBA	787000	9953000	15.811	-15.266	15.266
168	RUMIPAMBA	787500	9953000	16.238	-15.708	15.708
169	RUMIPAMBA	788000	9953000	16.669	-16.153	16.153
170	RUMIPAMBA	785000	9952500	14.413	-13.813	13.813
171	RUMIPAMBA	785500	9952500	14.813	-14.230	14.230
172	RUMIPAMBA	786000	9952500	15.218	-14.652	14.652
173	RUMIPAMBA	786500	9952500	15.630	-15.078	15.078
174	RUMIPAMBA	787000	9952500	16.046	-15.509	15.509
175	RUMIPAMBA	787500	9952500	16.467	-15.944	15.944
176	RUMIPAMBA	788000	9952500	16.892	-16.383	16.383
177	RUMIPAMBA	785000	9952000	14.687	-14.099	14.099
178	RUMIPAMBA	785500	9952000	15.080	-14.508	14.508
179	RUMIPAMBA	786000	9952000	15.479	-14.922	14.922
180	RUMIPAMBA	786500	9952000	15.883	-15.341	15.341
181	RUMIPAMBA	787000	9952000	16.293	-15.765	15.765
182	RUMIPAMBA	787500	9952000	16.708	-16.193	16.193
183	RUMIPAMBA	788000	9952000	17.127	-16.626	16.626
184	RUMIPAMBA	784000	9951500	14.225	-13.617	13.617
185	RUMIPAMBA	784500	9951500	14.596	-14.004	14.004
186	RUMIPAMBA	785000	9951500	14.974	-14.397	14.397
187	RUMIPAMBA	785500	9951500	15.359	-14.798	14.798
188	RUMIPAMBA	786000	9951500	15.751	-15.204	15.204
189	RUMIPAMBA	786500	9951500	16.149	-15.616	15.616
190	RUMIPAMBA	787000	9951500	16.552	-16.032	16.032
191	RUMIPAMBA	787500	9951500	16.960	-16.454	16.454
192	RUMIPAMBA	788000	9951500	17.373	-16.879	16.879
193	RUMIPAMBA	783500	9951000	14.183	-13.573	13.573
194	RUMIPAMBA	784000	9951000	14.538	-13.943	13.943
195	RUMIPAMBA	784500	9951000	14.901	-14.321	14.321
196	RUMIPAMBA	785000	9951000	15.271	-14.707	14.707
197	RUMIPAMBA	785500	9951000	15.649	-15.099	15.099
198	RUMIPAMBA	786000	9951000	16.034	-15.497	15.497
199	RUMIPAMBA	786500	9951000	16.425	-15.901	15.901
200	RUMIPAMBA	787000	9951000	16.821	-16.310	16.310

חו		Coor	d. UTM	R (km) R (km)		R. (km)
U	PARROQUIA	X (m)	Y (m)			r _{jb} (rin)
201	RUMIPAMBA	787500	9951000	17.223	-16.725	16.725
202	RUMIPAMBA	788000	9951000	17.630	-17.144	17.144
203	RUMIPAMBA	783500	9950500	14.514	-13.918	13.918
204	RUMIPAMBA	784000	9950500	14.861	-14.280	14.280
205	RUMIPAMBA	784500	9950500	15.216	-14.649	14.649
206	RUMIPAMBA	785000	9950500	15.579	-15.026	15.026
207	RUMIPAMBA	785500	9950500	15.950	-15.410	15.410
208	RUMIPAMBA	786000	9950500	16.327	-15.800	15.800
209	RUMIPAMBA	786500	9950500	16.711	-16.197	16.197
210	RUMIPAMBA	787000	9950500	17.101	-16.599	16.599
211	RUMIPAMBA	787500	9950500	17.497	-17.006	17.006
212	RUMIPAMBA	783000	9950000	14.525	-13.929	13.929
213	RUMIPAMBA	783500	9950000	14.854	-14.273	14.273
214	RUMIPAMBA	784000	9950000	15.193	-14.625	14.625
215	RUMIPAMBA	784500	9950000	15.541	-14.986	14.986
216	RUMIPAMBA	785000	9950000	15.897	-15.355	15.355
217	RUMIPAMBA	785500	9950000	16.260	-15.731	15.731
218	RUMIPAMBA	786000	9950000	16.631	-16.114	16.114
219	RUMIPAMBA	786500	9950000	17.008	-16.503	16.503
220	RUMIPAMBA	787000	9950000	17.391	-16.897	16.897
221	RUMIPAMBA	783000	9949500	14.881	-14.301	14.301
222	RUMIPAMBA	783500	9949500	15.203	-14.636	14.636
223	RUMIPAMBA	784000	9949500	15.535	-14.980	14.980
224	RUMIPAMBA	784500	9949500	15.875	-15.333	15.333
225	RUMIPAMBA	785000	9949500	16.224	-15.693	15.693
226	RUMIPAMBA	785500	9949500	16.580	-16.061	16.061
227	RUMIPAMBA	786000	9949500	16.943	-16.436	16.436
228	RUMIPAMBA	786500	9949500	17.314	-16.818	16.818
229	RUMIPAMBA	782000	9949000	14.649	-14.059	14.059
230	RUMIPAMBA	782500	9949000	14.942	-14.364	14.364
231	RUMIPAMBA	783000	9949000	15.246	-14.681	14.681
232	RUMIPAMBA	783500	9949000	15.561	-15.007	15.007
233	RUMIPAMBA	784000	9949000	15.885	-15.343	15.343
234	RUMIPAMBA	784500	9949000	16.218	-15.687	15.687
235	RUMIPAMBA	785000	9949000	16.559	-16.040	16.040
236	RUMIPAMBA	785500	9949000	16.908	-16.400	16.400
237	RUMIPAMBA	786000	9949000	17.265	-16.767	16.767
238	RUMIPAMBA	786500	9949000	17.628	-17.141	17.141
239	RUMIPAMBA	781500	9948500	14.761	-14.176	14.176
240	RUMIPAMBA	782000	9948500	15.036	-14.462	14.462
241	RUMIPAMBA	782500	9948500	15.322	-14.759	14.759
242	RUMIPAMBA	783000	9948500	15.619	-15.067	15.067
243	RUMIPAMBA	783500	9948500	15.926	-15.385	15.385
244	RUMIPAMBA	784000	9948500	16.243	-15.713	15.713
245	RUMIPAMBA	784500	9948500	16.568	-16.049	16.049
246	RUMIPAMBA	785000	9948500	16.903	-16.394	16.394
247	RUMIPAMBA	785500	9948500	17.245	-16.747	16.747
248	RUMIPAMBA	786000	9948500	17.595	-17.107	17.107
249	RUMIPAMBA	786500	9948500	17.951	-17.474	17.474
250	RUMIPAMBA	780000	9948000	14.434	-13.835	13.835

חו		Coor	d. UTM	P (km) P (km)		P (km)
	FANNOQUIA	X (m)	Y (m)		Γχ (κπ)	n _{jb} (nii)
251	RUMIPAMBA	780500	9948000	14.663	-14.074	14.074
252	RUMIPAMBA	781000	9948000	14.906	-14.327	14.327
253	RUMIPAMBA	781500	9948000	15.162	-14.593	14.593
254	RUMIPAMBA	782000	9948000	15.430	-14.871	14.871
255	RUMIPAMBA	782500	9948000	15.709	-15.160	15.160
256	RUMIPAMBA	783000	9948000	15.998	-15.460	15.460
257	RUMIPAMBA	783500	9948000	16.298	-15.770	15.770
258	RUMIPAMBA	784000	9948000	16.608	-16.090	16.090
259	RUMIPAMBA	784500	9948000	16.926	-16.419	16.419
260	RUMIPAMBA	785000	9948000	17.254	-16.756	16.756
261	RUMIPAMBA	785500	9948000	17.589	-17.101	17.101
262	RUMIPAMBA	786000	9948000	17.932	-17.454	17.454
263	RUMIPAMBA	786500	9948000	18.283	-17.813	17.813
264	RUMIPAMBA	781000	9947500	15.320	-14.757	14.757
265	RUMIPAMBA	781500	9947500	15.569	-15.015	15.015
266	RUMIPAMBA	782000	9947500	15.829	-15.285	15.285
267	RUMIPAMBA	782500	9947500	16.101	-15.567	15.567
268	RUMIPAMBA	783000	9947500	16.384	-15.859	15.859
269	RUMIPAMBA	783500	9947500	16.677	-16.162	16.162
270	RUMIPAMBA	784000	9947500	16.980	-16.474	16.474
271	RUMIPAMBA	784500	9947500	17.292	-16.795	16.795
272	RUMIPAMBA	785000	9947500	17.612	-17.125	17.125
273	RUMIPAMBA	785500	9947500	17.941	-17.463	17.463
274	RUMIPAMBA	786000	9947500	18.277	-17.808	17.808
275	RUMIPAMBA	782000	9947000	16.235	-15.705	15.705
276	RUMIPAMBA	782500	9947000	16.500	-15.979	15.979
277	RUMIPAMBA	783000	9947000	16.776	-16.264	16.264
278	RUMIPAMBA	783500	9947000	17.062	-16.559	16.559
279	RUMIPAMBA	784000	9947000	17.358	-16.864	16.864
280	RUMIPAMBA	784500	9947000	17.663	-17.178	17.178
281	RUMIPAMBA	785000	9947000	17.977	-17.500	17.500
282	RUMIPAMBA	785500	9947000	18.299	-17.831	17.831
283	RUMIPAMBA	786000	9947000	18.629	-18.169	18.169
284	RUMIPAMBA	782500	9946500	16.904	-16.396	16.396
285	RUMIPAMBA	783000	9946500	17.174	-16.673	16.673
286	RUMIPAMBA	783500	9946500	17.453	-16.961	16.961
287	RUMIPAMBA	784000	9946500	17.743	-17.259	17.259
288	RUMIPAMBA	784500	9946500	18.041	-17.566	17.566
289	RUMIPAMBA	785000	9946500	18.349	-17.882	17.882
290	RUMIPAMBA	785500	9946500	18.665	-18.205	18.205
291	RUMIPAMBA	786000	9946500	18.988	-18.537	18.537
292	RUMIPAMBA	782000	9946000	17.060	-16.557	16.557
293	RUMIPAMBA	782500	9946000	17.313	-16.817	16.817
294	RUMIPAMBA	783000	9946000	17.576	-17.088	17.088
295	RUMIPAMBA	783500	9946000	17.850	-17.369	17.369
296	RUMIPAMBA	784000	9946000	18.133	-17.660	17.660
297	RUMIPAMBA	784500	9946000	18.425	-17.960	17.960
298	RUMIPAMBA	785000	9946000	18.726	-18.269	18.269
299	RUMIPAMBA	782000	9945500	17.480	-16.989	16.989
300	RUMIPAMBA	782500	9945500	17.727	-17.243	17.243

חו		Coord. UTM		D (km)	R _v (km)	R. (km)
U		X (m)	Y (m)			r _{jb} (riii)
301	RUMIPAMBA	783000	9945500	17.984	-17.507	17.507
302	RUMIPAMBA	783500	9945500	18.251	-17.782	17.782
303	RUMIPAMBA	784000	9945500	18.528	-18.066	18.066
304	RUMIPAMBA	784500	9945500	18.815	-18.359	18.359
305	RUMIPAMBA	782000	9945000	17.904	-17.425	17.425
306	RUMIPAMBA	782500	9945000	18.145	-17.672	17.672
307	RUMIPAMBA	783000	9945000	18.396	-17.930	17.930
308	RUMIPAMBA	783500	9945000	18.658	-18.198	18.198
309	RUMIPAMBA	784000	9945000	18.929	-18.476	18.476
310	RUMIPAMBA	782000	9944500	18.332	-17.864	17.864
311	RUMIPAMBA	782500	9944500	18.567	-18.105	18.105
312	RUMIPAMBA	783000	9944500	18.813	-18.357	18.357
313	RUMIPAMBA	783500	9944500	19.069	-18.619	18.619
314	RUMIPAMBA	782000	9944000	18.763	-18.306	18.306
315	RUMIPAMBA	782500	9944000	18.993	-18.542	18.542
316	SAN PEDRO DE TABOADA	782500	9966000	8.074	-6.947	6.947
317	SAN PEDRO DE TABOADA	782000	9965500	7.785	-6.609	6.609
318	SAN PEDRO DE TABOADA	782500	9965500	8.196	-7.089	7.089
319	SAN PEDRO DE TABOADA	781500	9965000	7.500	-6.270	6.270
320	SAN PEDRO DE TABOADA	782000	9965000	7.905	-6.750	6.750
321	SAN PEDRO DE TABOADA	782500	9965000	8.319	-7.230	7.230
322	SAN PEDRO DE TABOADA	783000	9965000	8.739	-7.709	7.709
323	SAN PEDRO DE TABOADA	782000	9964500	8.026	-6.891	6.891
324	SAN PEDRO DE TABOADA	782500	9964500	8.442	-7.371	7.371
325	SAN PEDRO DE TABOADA	782000	9964000	8.148	-7.033	7.033
326	SAN PEDRO DE TABOADA	782500	9964000	8.565	-7.512	7.512
327	SAN PEDRO DE TABOADA	781000	9963500	7.453	-6.215	6.215
328	SAN PEDRO DE TABOADA	781500	9963500	7.858	-6.694	6.694
329	SAN PEDRO DE TABOADA	782000	9963500	8.270	-7.174	7.174
330	SAN PEDRO DE TABOADA	782500	9963500	8.689	-7.653	7.653
331	SAN PEDRO DE TABOADA	780500	9963000	7.174	-5.876	5.876
332	SAN PEDRO DE TABOADA	781000	9963000	7.571	-6.356	6.356
333	SAN PEDRO DE TABOADA	781500	9963000	7.978	-6.835	6.835
334	SAN PEDRO DE TABOADA	782000	9963000	8.393	-7.315	7.315
335	SAN PEDRO DE TABOADA	782500	9963000	8.814	-7.795	7.795
336	SAN PEDRO DE TABOADA	781500	9962500	8.100	-6.977	6.977
337	SAN PEDRO DE TABOADA	782000	9962500	8.516	-7.456	7.456
338	SAN PEDRO DE TABOADA	782500	9962500	8.939	-7.936	7.936
339	SAN PEDRO DE TABOADA	782000	9962000	8.640	-7.597	7.597
340	SAN RAFAEL	782500	9967500	7.713	-6.524	6.524
341	SAN RAFAEL	782500	9967000	7.833	-6.665	6.665
342	SAN RAFAEL	783000	9967000	8.245	-7.145	7.145
343	SAN RAFAEL	782500	9966500	7.953	-6.806	6.806
344	SAN RAFAEL	783000	9966500	8.367	-7.286	7.286
345	SAN RAFAEL	783500	9966500	8.788	-7.765	7.765
346	SAN RAFAEL	783000	9966000	8.491	-7.427	7.427
347	SAN RAFAEL	783500	9966000	8.913	-7.907	7.907
348	SAN RAFAEL	784000	9966000	9.341	-8.386	8.386
349	SAN RAFAEL	783000	9965500	8.614	-7.568	7.568
350	SAN RAFAEL	784000	9965500	9.468	-8.527	8.527

		Coor	d. UTM	D (km)) R _v (km)	P (km)
U	PARROQUIA	X (m)	Y (m)	r _{RUP} (KM)	к _х (кт)	R _{jb} (KM)
351	SAN RAFAEL	784500	9965500	9.902	-9.007	9.007
352	SANGOLQUI	783500	9965500	9.039	-8.048	8.048
353	SANGOLQUI	785000	9965500	10.341	-9.487	9.487
354	SANGOLQUI	783500	9965000	9.165	-8.189	8.189
355	SANGOLQUI	784000	9965000	9.596	-8.669	8.669
356	SANGOLQUI	784500	9965000	10.031	-9.148	9.148
357	SANGOLQUI	785000	9965000	10.470	-9.628	9.628
358	SANGOLQUI	785500	9965000	10.913	-10.108	10.108
359	SANGOLQUI	783000	9964500	8.864	-7.851	7.851
360	SANGOLQUI	783500	9964500	9.291	-8.330	8.330
361	SANGOLQUI	784000	9964500	9.723	-8.810	8.810
362	SANGOLQUI	784500	9964500	10.160	-9.290	9.290
363	SANGOLQUI	785000	9964500	10.600	-9.769	9.769
364	SANGOLQUI	785500	9964500	11.044	-10.249	10.249
365	SANGOLQUI	786000	9964500	11.490	-10.728	10.728
366	SANGOLQUI	783000	9964000	8.989	-7.992	7.992
367	SANGOLQUI	783500	9964000	9.418	-8.472	8.472
368	SANGOLQUI	784000	9964000	9.852	-8.951	8.951
369	SANGOLQUI	784500	9964000	10.289	-9.431	9.431
370	SANGOLQUI	785000	9964000	10.731	-9.910	9.910
371	SANGOLQUI	785500	9964000	11.175	-10.390	10.390
372	SANGOLQUI	786000	9964000	11.622	-10.870	10.870
373	SANGOLQUI	786500	9964000	12.072	-11.349	11.349
374	SANGOLQUI	783000	9963500	9.115	-8.133	8.133
375	SANGOLQUI	783500	9963500	9.545	-8.613	8.613
376	SANGOLQUI	784000	9963500	9.980	-9.092	9.092
377	SANGOLQUI	784500	9963500	10.419	-9.572	9.572
378	SANGOLQUI	785000	9963500	10.861	-10.052	10.052
379	SANGOLQUI	785500	9963500	11.307	-10.531	10.531
380	SANGOLQUI	786000	9963500	11.755	-11.011	11.011
381	SANGOLQUI	786500	9963500	12.205	-11.491	11.491
382	SANGOLQUI	787000	9963500	12.658	-11.970	11.970
383	SANGOLQUI	783000	9963000	9.241	-8.274	8.274
384	SANGOLQUI	783500	9963000	9.673	-8.754	8.754
385	SANGOLQUI	784000	9963000	10.109	-9.234	9.234
386	SANGOLQUI	784500	9963000	10.549	-9.713	9.713
387	SANGOLQUI	785000	9963000	10.992	-10.193	10.193
388	SANGOLQUI	785500	9963000	11.438	-10.673	10.673
389	SANGOLQUI	786000	9963000	11.887	-11.152	11.152
390	SANGOLQUI	786500	9963000	12.338	-11.632	11.632
391	SANGOLQUI	787000	9963000	12.791	-12.111	12.111
392	SANGOLQUI	787500	9963000	13.246	-12.591	12.591
393	SANGOLQUI	783000	9962500	9.368	-8.416	8.416
394	SANGOLQUI	783500	9962500	9.801	-8.895	8.895
395	SANGOLQUI	784000	9962500	10.238	-9.375	9.375
396	SANGOLQUI	784500	9962500	10.679	-9.854	9.854
397	SANGOLQUI	785000	9962500	11.123	-10.334	10.334
398	SANGOLQUI	785500	9962500	11.570	-10.814	10.814
399	SANGOLQUI	786000	9962500	12.020	-11.293	11.293
400	SANGOLQUI	786500	9962500	12.471	-11.773	11.773

	DARROOUIIA	Coor	d. UTM	D (km)	D (km)	P (km)
U	PARROQUIA	X (m)	Y (m)	r _{RUP} (KIII)	к _х (ктт)	rc _{jb} (Km)
401	SANGOLQUI	787000	9962500	12.925	-12.253	12.253
402	SANGOLQUI	782500	9962000	9.065	-8.077	8.077
403	SANGOLQUI	783000	9962000	9.495	-8.557	8.557
404	SANGOLQUI	783500	9962000	9.929	-9.036	9.036
405	SANGOLQUI	784000	9962000	10.368	-9.516	9.516
406	SANGOLQUI	784500	9962000	10.809	-9.996	9.996
407	SANGOLQUI	785000	9962000	11.254	-10.475	10.475
408	SANGOLQUI	785500	9962000	11.702	-10.955	10.955
409	SANGOLQUI	786000	9962000	12.152	-11.435	11.435
410	SANGOLQUI	786500	9962000	12.605	-11.914	11.914
411	SANGOLQUI	787000	9962000	13.059	-12.394	12.394
412	SANGOLQUI	787500	9962000	13.515	-12.874	12.874
413	SANGOLQUI	782000	9961500	8.765	-7.739	7.739
414	SANGOLQUI	782500	9961500	9.191	-8.218	8.218
415	SANGOLQUI	783000	9961500	9.622	-8.698	8.698
416	SANGOLQUI	783500	9961500	10.058	-9.178	9.178
417	SANGOLQUI	784000	9961500	10.497	-9.657	9.657
418	SANGOLQUI	784500	9961500	10.940	-10.137	10.137
419	SANGOLQUI	785000	9961500	11.386	-10.617	10.617
420	SANGOLQUI	785500	9961500	11.835	-11.096	11.096
421	SANGOLQUI	786000	9961500	12.285	-11.576	11.576
422	SANGOLQUI	786500	9961500	12.738	-12.055	12.055
423	SANGOLQUI	787000	9961500	13.193	-12.535	12.535
424	SANGOLQUI	787500	9961500	13.650	-13.015	13.015
425	SANGOLQUI	781500	9961000	8.467	-7.400	7.400
426	SANGOLQUI	782000	9961000	8.890	-7.880	7.880
427	SANGOLQUI	782500	9961000	9.317	-8.360	8.360
428	SANGOLQUI	783000	9961000	9.750	-8.839	8.839
429	SANGOLQUI	783500	9961000	10.187	-9.319	9.319
430	SANGOLQUI	784000	9961000	10.627	-9.798	9.798
431	SANGOLQUI	784500	9961000	11.071	-10.278	10.278
432	SANGOLQUI	785000	9961000	11.518	-10.758	10.758
433	SANGOLQUI	785500	9961000	11.967	-11.237	11.237
434	SANGOLQUI	786000	9961000	12.419	-11.717	11.717
435	SANGOLQUI	786500	9961000	12.872	-12.197	12.197
436	SANGOLQUI	787000	9961000	13.327	-12.676	12.676
437	SANGOLQUI	787500	9961000	13.784	-13.156	13.156
438	SANGOLQUI	788000	9961000	14.243	-13.636	13.636
439	SANGOLQUI	781500	9960500	8.591	-7.541	7.541
440	SANGOLQUI	782000	9960500	9.015	-8.021	8.021
441	SANGOLQUI	782500	9960500	9.444	-8.501	8.501
442	SANGOLQUI	783000	9960500	9.878	-8.980	8.980
443	SANGOLQUI	783500	9960500	10.316	-9.460	9.460
444	SANGOLQUI	784000	9960500	10.758	-9.940	9.940
445	SANGOLQUI	784500	9960500	11.202	-10.419	10.419
446	SANGOLQUI	785000	9960500	11.650	-10.899	10.899
447	SANGOLQUI	785500	9960500	12.100	-11.379	11.379
448	SANGOLQUI	786000	9960500	12.552	-11.858	11.858
449	SANGOLQUI	786500	9960500	13.006	-12.338	12.338
450	SANGOLQUI	787000	9960500	13.462	-12.818	12.818

חו		Coor	d. UTM	D (km)	R. (km)	P (km)
U	PARROQUIA	X (m)	Y (m)	r _{RUP} (KIII)	κ _χ (κιιι)	rc _{jb} (km)
451	SANGOLQUI	787500	9960500	13.919	-13.297	13.297
452	SANGOLQUI	788000	9960500	14.378	-13.777	13.777
453	SANGOLQUI	781500	9960000	8.715	-7.683	7.683
454	SANGOLQUI	782000	9960000	9.141	-8.162	8.162
455	SANGOLQUI	784000	9960000	10.888	-10.081	10.081
456	SANGOLQUI	784500	9960000	11.334	-10.561	10.561
457	SANGOLQUI	785000	9960000	11.782	-11.040	11.040
458	SANGOLQUI	785500	9960000	12.233	-11.520	11.520
459	SANGOLQUI	786000	9960000	12.685	-11.999	11.999
460	SANGOLQUI	786500	9960000	13.140	-12.479	12.479
461	SANGOLQUI	787000	9960000	13.596	-12.959	12.959
462	SANGOLQUI	787500	9960000	14.054	-13.438	13.438
463	SANGOLQUI	788000	9960000	14.514	-13.918	13.918
464	SANGOLQUI	788500	9960000	14.974	-14.398	14.398
465	SANGOLQUI	781000	9959500	8.418	-7.344	7.344
466	SANGOLQUI	781500	9959500	8.840	-7.824	7.824
467	SANGOLQUI	782000	9959500	9.267	-8.304	8.304
468	SANGOLQUI	784500	9959500	11.466	-10.702	10.702
469	SANGOLQUI	785000	9959500	11.914	-11.181	11.181
470	SANGOLQUI	785500	9959500	12.366	-11.661	11.661
471	SANGOLQUI	786000	9959500	12.819	-12.141	12.141
472	SANGOLQUI	786500	9959500	13.274	-12.620	12.620
473	SANGOLQUI	787000	9959500	13.731	-13.100	13.100
474	SANGOLQUI	787500	9959500	14.189	-13.580	13.580
475	SANGOLQUI	788000	9959500	14.649	-14.059	14.059
476	SANGOLQUI	788500	9959500	15.110	-14.539	14.539
477	SANGOLQUI	789000	9959500	15.572	-15.019	15.019
478	SANGOLQUI	781500	9959000	8.965	-7.965	7.965
479	SANGOLQUI	782000	9959000	9.394	-8.445	8.445
480	SANGOLQUI	785000	9959000	12.047	-11.323	11.323
481	SANGOLQUI	785500	9959000	12.499	-11.802	11.802
482	SANGOLQUI	786000	9959000	12.953	-12.282	12.282
483	SANGOLQUI	786500	9959000	13.409	-12.762	12.762
484	SANGOLQUI	787000	9959000	13.866	-13.241	13.241
485	SANGOLQUI	787500	9959000	14.325	-13.721	13.721
486	SANGOLQUI	788000	9959000	14.785	-14.201	14.201
487	SANGOLQUI	788500	9959000	15.246	-14.680	14.680
488	SANGOLQUI	789000	9959000	15.708	-15.160	15.160
489	SANGOLQUI	789500	9959000	16.172	-15.639	15.639
490	SANGOLQUI	782000	9958500	9.521	-8.586	8.586
491	SANGOLQUI	784500	9958500	11.730	-10.984	10.984
492	SANGOLQUI	785000	9958500	12.180	-11.464	11.464
493	SANGOLQUI	785500	9958500	12.632	-11.944	11.944
494	SANGOLQUI	786000	9958500	13.087	-12.423	12.423
495	SANGOLQUI	786500	9958500	13.543	-12.903	12.903
496	SANGOLQUI	787000	9958500	14.001	-13.382	13.382
497	SANGOLQUI	787500	9958500	14.460	-13.862	13.862
498	SANGOLQUI	788000	9958500	14.920	-14.342	14.342
499	SANGOLQUI	788500	9958500	15.382	-14.821	14.821
500	SANGOLQUI	789000	9958500	15.845	-15.301	15.301

	DADDOOLIIA	Coor	d. UTM			
U	PARROQUIA	X (m)	Y (m)	R _{RUP} (KM)	R _X (km)	R _{jb} (KM)
501	SANGOLQUI	789500	9958500	16.308	-15.781	15.781
502	SANGOLQUI	782000	9958000	9.649	-8.727	8.727
503	SANGOLQUI	784500	9958000	11.862	-11.125	11.125
504	SANGOLQUI	785000	9958000	12.313	-11.605	11.605
505	SANGOLQUI	785500	9958000	12.766	-12.085	12.085
506	SANGOLQUI	786000	9958000	13.221	-12.564	12.564
507	SANGOLQUI	786500	9958000	13.678	-13.044	13.044
508	SANGOLQUI	787000	9958000	14.136	-13.524	13.524
509	SANGOLQUI	787500	9958000	14.595	-14.003	14.003
510	SANGOLQUI	788000	9958000	15.056	-14.483	14.483
511	SANGOLQUI	788500	9958000	15.518	-14.963	14.963
512	SANGOLQUI	789000	9958000	15.981	-15.442	15.442
513	SANGOLQUI	789500	9958000	16.445	-15.922	15.922
514	SANGOLQUI	785000	9957500	12.446	-11.746	11.746
515	SANGOLQUI	785500	9957500	12.900	-12.226	12.226
516	SANGOLQUI	786000	9957500	13.355	-12.706	12.706
517	SANGOLQUI	786500	9957500	13.812	-13.185	13.185
518	SANGOLQUI	787000	9957500	14.271	-13.665	13.665
519	SANGOLQUI	787500	9957500	14.731	-14.145	14.145
520	SANGOLQUI	788000	9957500	15.192	-14.624	14.624
521	SANGOLQUI	788500	9957500	15.654	-15.104	15.104
522	SANGOLQUI	789000	9957500	16.118	-15.583	15.583
523	SANGOLQUI	789500	9957500	16.582	-16.063	16.063
524	SANGOLQUI	790000	9957500	17.047	-16.543	16.543
525	SANGOLQUI	785500	9957000	13.034	-12.367	12.367
526	SANGOLQUI	786000	9957000	13.490	-12.847	12.847
527	SANGOLQUI	707000	9957000	13.947	-13.320	13.320
520	SANGOLQUI	707000	9957000	14.400	-13.000	14.000
529	SANGOLOUI	707500	9957000	14.007	-14.200	14.200
531	SANGOLOUI	788500	9957000	15.320	-14.703	15 245
532	SANGOLOUI	789000	9957000	16 254	-15.245	15 725
533	SANGOLOUI	789500	9957000	16 719	-16 204	16 204
534	SANGOLOUI	785500	9956500	13 170	-12 510	12 510
535	SANGOLQUI	786000	9956500	13.624	-12.988	12.988
536	SANGOLQUI	786500	9956500	14.082	-13.468	13.468
537	SANGOLQUI	787000	9956500	14.542	-13.947	13.947
538	SANGOLQUI	787500	9956500	15.002	-14.427	14.427
539	SANGOLQUI	788000	9956500	15.464	-14.907	14.907
540	SANGOLQUI	788500	9956500	15.927	-15.386	15.386
541	SANGOLQUI	789000	9956500	16.391	-15.866	15.866
542	SANGOLQUI	785500	9956000	13.321	-12.669	12.669
543	SANGOLQUI	786000	9956000	13.770	-13.141	13.141
544	SANGOLQUI	786500	9956000	14.224	-13.615	13.615
545	SANGOLQUI	787000	9956000	14.680	-14.091	14.091
546	SANGOLQUI	787500	9956000	15.139	-14.569	14.569
547	SANGOLQUI	788000	9956000	15.600	-15.048	15.048
548	SANGOLQUI	788500	9956000	16.063	-15.527	15.527
549	SANGOLQUI	789000	9956000	16.528	-16.007	16.007
550	SANGOLQUI	/86000	9955500	13.933	-13.311	13.311
551	SANGOLQUI	786500	9955500	14.381	-13.780	13.780
552	SANGOLQUI	/8/000	9955500	14.832	-14.250	14.250
553	SANGULQUI	796000	990000	10.28/	-14./22	14./22
555		786500	9955000	14.111	13.490	13.490
556		787000	9955000	15,000	-14 424	14 / 2/
557		787500	9955000	15.000	-14.424 -14 901	14.901
558	SANGOLOUI	786000	9945000	20 101	-19 675	19 675
559	SANGOLOUI	786500	9945000	20.414	-19 995	19 995
560	SANGOLQUI	787000	9945000	20.734	-20.322	20.322

ANEXO No. 2

PARÁMETROS RRUP, RX y RJB, PARA LOS 560 SITIOS ANALIZADOS RESPECTO A LA FALLA MACHACHI.

ID	PARROQUIA	Coor	Coord. UTM		R _v (km)	R. km
		X (m)	Y (m)			
1	COTOGCHOA	782500	9960000	13.312	13.267	13.267
2	COTOGCHOA	783000	9960000	13.324	13.278	13.278
3	COTOGCHOA	783500	9960000	13.354	13.309	13.309
4	COTOGCHOA	782500	9959500	12.814	12.767	12.767
5	COTOGCHOA	783000	9959500	12.826	12.779	12.779
6	COTOGCHOA	783500	9959500	12.857	12.810	12.810
7	COTOGCHOA	784000	9959500	12.908	12.861	12.861
8	COTOGCHOA	782500	9959000	12.316	12.267	12.267
9	COTOGCHOA	783000	9959000	12.328	12.279	12.279
10	COTOGCHOA	783500	9959000	12.361	12.312	12.312
11	COTOGCHOA	784000	9959000	12.414	12.365	12.365
12	COTOGCHOA	784500	9959000	12.486	12.438	12.438
13	COTOGCHOA	782500	9958500	11.818	11.767	11.767
14	COTOGCHOA	783000	9958500	11.831	11.780	11.780
15	COTOGCHOA	783500	9958500	11.865	11.814	11.814
16	COTOGCHOA	784000	9958500	11.920	11.869	11.869
17	COTOGCHOA	782500	9958000	11.320	11.267	11.267
18	COTOGCHOA	783000	9958000	11.334	11.280	11.280
19	COTOGCHOA	783500	9958000	11.369	11.316	11.316
20	COTOGCHOA	784000	9958000	11.427	11.374	11.374
21	COTOGCHOA	782000	9957500	10.831	10.775	10.775
22	COTOGCHOA	782500	9957500	10.823	10.767	10.767
23	COTOGCHOA	783000	9957500	10.837	10.781	10.781
24	COTOGCHOA	783500	9957500	10.874	10.818	10.818
25	COTOGCHOA	784000	9957500	10.934	10.879	10.879
26	COTOGCHOA	784500	9957500	11.016	10.961	10.961
27	COTOGCHOA	782000	9957000	10.335	10.276	10.276
28	COTOGCHOA	782500	9957000	10.325	10.267	10.267
29	COTOGCHOA	783000	9957000	10.340	10.282	10.282
30	COTOGCHOA	783500	9957000	10.379	10.321	10.321
31	COTOGCHOA	784000	9957000	10.442	10.384	10.384
32	COTOGCHOA	784500	9957000	10.528	10.471	10.471
33	COTOGCHOA	785000	9957000	10.637	10.580	10.580
34	COTOGCHOA	781500	9956500	9.873	9.812	9.812
35	COTOGCHOA	782000	9956500	9.838	9.776	9.776
36	COTOGCHOA	782500	9956500	9.828	9.767	9.767
37	COTOGCHOA	783000	9956500	9.844	9.782	9.782
38	COTOGCHOA	783500	9956500	9.885	9.824	9.824
39	COTOGCHOA	784000	9956500	9.951	9.890	9.890
40	COTOGCHOA	784500	9956500	10.041	9.981	9.981
41	COTOGCHOA	785000	9956500	10.156	10.096	10.096
42	COTOGCHOA	781500	9956000	9.379	9.314	9.314
43	COTOGCHOA	782000	9956000	9.342	9.277	9.277
44	COTOGCHOA	782500	9956000	9.332	9.267	9.267
45	COTOGCHOA	783000	9956000	9.348	9.283	9.283
46	COTOGCHOA	783500	9956000	9.391	9.327	9.327
47	COTOGCHOA	784000	9956000	9,461	9.397	9.397
48	COTOGCHOA	784500	9956000	9.556	9,492	9,492
49	COTOGCHOA	785000	9956000	9,676	9.613	9 613
· -						5.5.0

9955500

Parámetros R_{RUP}, R_X y R_{JB}, para los 560 sitios analizados respecto a la falla Machachi.

ID	PARROQUIA	Coord. UTM		D (km)	$P_{(km)}$	D (m)
		X (m)	Y (m)		Γ\χ (ΝΠΤ)	- Njb(KIII)
51	COTOGCHOA	782000	9955500	8.846	8.777	8.777
52	COTOGCHOA	782500	9955500	8.835	8.767	8.767
53	COTOGCHOA	783000	9955500	8.853	8.784	8.784
54	COTOGCHOA	783500	9955500	8.898	8.830	8.830
55	COTOGCHOA	784000	9955500	8.971	8.904	8.904
56	COTOGCHOA	784500	9955500	9.072	9.005	9.005
57	COTOGCHOA	785000	9955500	9.198	9.132	9.132
58	COTOGCHOA	785500	9955500	9.349	9.285	9.285
59	COTOGCHOA	781500	9955000	8.392	8.320	8.320
60	COTOGCHOA	782000	9955000	8.351	8.278	8.278
61	COTOGCHOA	782500	9955000	8.339	8.267	8.267
62	COTOGCHOA	783000	9955000	8.358	8.285	8.285
63	COTOGCHOA	783500	9955000	8.406	8.334	8.334
64	COTOGCHOA	784000	9955000	8.484	8.412	8.412
65	COTOGCHOA	784500	9955000	8.589	8.519	8.519
66	COTOGCHOA	785000	9955000	8.723	8.653	8.653
67	COTOGCHOA	785500	9955000	8.882	8.814	8.814
68	COTOGCHOA	781500	9954500	7.900	7.823	7.823
69	COTOGCHOA	782000	9954500	7.856	7.779	7.779
70	COTOGCHOA	782500	9954500	7.844	7.767	7.767
71	COTOGCHOA	783000	9954500	7.864	7.786	7.786
72	COTOGCHOA	783500	9954500	7.915	7.838	7.838
73	COTOGCHOA	784000	9954500	7.997	7.921	7.921
74	COTOGCHOA	784500	9954500	8.109	8.035	8.035
75	COTOGCHOA	785000	9954500	8.251	8.177	8.177
76	COTOGCHOA	785500	9954500	8.419	8.347	8.347
77	COTOGCHOA	781500	9954000	7.409	7.327	7.327
78	COTOGCHOA	782000	9954000	7.362	7.280	7.280
79	COTOGCHOA	782500	9954000	7.349	7.267	7.267
80	COTOGCHOA	783000	9954000	7.370	7.288	7.288
81	COTOGCHOA	783500	9954000	7.425	7.343	7.343
82	COTOGCHOA	784000	9954000	7.513	7.432	7.432
83	COTOGCHOA	784500	9954000	7.632	7.552	7.552
84	COTOGCHOA	785000	9954000	7.782	7.704	7.704
85	COTOGCHOA	785500	9954000	7.960	7.884	7.884
86	COTOGCHOA	781500	9953500	6.919	6.832	6.832
87	COTOGCHOA	782000	9953500	6.869	6.781	6.781
88	COTOGCHOA	782500	9953500	6.855	6.767	6.767
89	COTOGCHOA	783000	9953500	6.878	6.789	6.789
90	COTOGCHOA	783500	9953500	6.936	6.849	6.849
91	COTOGCHOA	784000	9953500	7.030	6.944	6.944
92	COTOGCHOA	784500	9953500	7.158	7.073	7.073
93	COTOGCHOA	785000	9953500	7.317	7.234	7.234
94	COTOGCHOA	781000	9953000	6.523	6.430	6.430
95	COTOGCHOA	781500	9953000	6.431	6.337	6.337
96	COTOGCHOA	782000	9953000	6.377	6.282	6.282
97	COTOGCHOA	782500	9953000	6.362	6.267	6.267
98	COTOGCHOA	783000	9953000	6.387	6.291	6.291
99	COTOGCHOA	783500	9953000	6.450	6.355	6.355
100	COTOGCHOA	784000	9953000	6.550	6.457	6.457
		Coord. UTM		R pup (km)	R. (km)	R. (km)
-----	-----------	------------	---------	------------	---------	--------------------------
		X (m)	Y (m)			i s _{jb(} riii)
101	COTOGCHOA	784500	9953000	6.687	6.596	6.596
102	COTOGCHOA	781000	9952500	6.045	5.944	5.944
103	COTOGCHOA	781500	9952500	5.945	5.843	5.843
104	COTOGCHOA	782000	9952500	5.887	5.783	5.783
105	COTOGCHOA	782500	9952500	5.871	5.767	5.767
106	COTOGCHOA	783000	9952500	5.897	5.793	5.793
107	COTOGCHOA	783500	9952500	5.965	5.863	5.863
108	COTOGCHOA	784000	9952500	6.074	5.973	5.973
109	COTOGCHOA	784500	9952500	6.221	6.123	6.123
110	COTOGCHOA	781000	9952000	5.570	5.460	5.460
111	COTOGCHOA	781500	9952000	5.462	5.350	5.350
112	COTOGCHOA	782000	9952000	5.398	5.285	5.285
113	COTOGCHOA	782500	9952000	5.380	5.267	5.267
114	COTOGCHOA	783000	9952000	5.409	5.296	5.296
115	COTOGCHOA	783500	9952000	5.483	5.372	5.372
116	COTOGCHOA	784000	9952000	5.601	5.492	5.492
117	COTOGCHOA	784500	9952000	5.760	5.654	5.654
118	COTOGCHOA	781500	9951500	4.981	4.858	4.858
119	COTOGCHOA	782000	9951500	4.911	4.787	4.787
120	COTOGCHOA	782500	9951500	4.892	4.767	4.767
121	COTOGCHOA	783000	9951500	4.923	4.799	4.799
122	COTOGCHOA	783500	9951500	5.005	4.882	4.882
123	COTOGCHOA	782000	9951000	4.428	4.289	4.289
124	COTOGCHOA	782500	9951000	4.406	4.267	4.267
125	COTOGCHOA	783000	9951000	4.441	4.303	4.303
126	COTOGCHOA	781500	9950500	4.035	3.882	3.882
127	COTOGCHOA	782000	9950500	3.948	3.792	3.792
128	COTOGCHOA	782500	9950500	3.924	3.767	3.767
129	COTOGCHOA	783000	9950500	3.963	3.808	3.808
130	COTOGCHOA	781000	9950000	3.736	3.570	3.570
131	COTOGCHOA	781500	9950000	3.573	3.399	3.399
132	COTOGCHOA	782000	9950000	3.475	3.296	3.296
133	COTOGCHOA	782500	9950000	3.447	3.267	3.267
134	COTOGCHOA	781000	9949500	3.307	3.119	3.119
135	COTOGCHOA	781500	9949500	3.122	2.922	2.922
136	COTOGCHOA	782000	9949500	3.009	2.801	2.801
137	COTOGCHOA	782500	9949500	2.977	2.767	2.767
138	COTOGCHOA	780500	9949000	3.094	2.892	2.892
139	COTOGCHOA	781000	9949000	2.888	2.670	2.670
140	COTOGCHOA	781500	9949000	2.689	2.454	2.454
141	COTOGCHOA	780500	9948500	2.679	2.443	2.443
142	COTOGCHOA	781000	9948500	2.479	2.222	2.222
143	RUMIPAMBA	788000	9955500	10.438	10.380	10.380
144	RUMIPAMBA	788500	9955500	10.713	10.656	10.656
145	RUMIPAMBA	788000	9955000	10.022	9.961	9.961
146	RUMIPAMBA	788500	9955000	10.308	10.249	10.249
147	RUMIPAMBA	787500	9954500	9.333	9.268	9.268
148	RUMIPAMBA	788000	9954500	9.614	9.551	9.551
149	RUMIPAMBA	788500	9954500	9.911	9.850	9.850
150	RUMIPAMBA	786000	9954000	8.165	8.091	8.091

	Coord. UTI		d. UTM	P_{-} (km)	P. (km)	P. km)
U	FARROQUIA	X (m)	Y (m)			n _{jb(} kiii)
151	RUMIPAMBA	786500	9954000	8.395	8.323	8.323
152	RUMIPAMBA	787000	9954000	8.648	8.578	8.578
153	RUMIPAMBA	787500	9954000	8.922	8.854	8.854
154	RUMIPAMBA	788000	9954000	9.214	9.149	9.149
155	RUMIPAMBA	788500	9954000	9.524	9.461	9.461
156	RUMIPAMBA	785500	9953500	7.506	7.426	7.426
157	RUMIPAMBA	786000	9953500	7.724	7.645	7.645
158	RUMIPAMBA	786500	9953500	7.966	7.890	7.890
159	RUMIPAMBA	787000	9953500	8.232	8.159	8.159
160	RUMIPAMBA	787500	9953500	8.519	8.448	8.448
161	RUMIPAMBA	788000	9953500	8.825	8.757	8.757
162	RUMIPAMBA	788500	9953500	9.149	9.082	9.082
163	RUMIPAMBA	785000	9953000	6.857	6.769	6.769
164	RUMIPAMBA	785500	9953000	7.059	6.973	6.973
165	RUMIPAMBA	786000	9953000	7.290	7.206	7.206
166	RUMIPAMBA	786500	9953000	7.546	7.466	7.466
167	RUMIPAMBA	787000	9953000	7.827	7.749	7.749
168	RUMIPAMBA	787500	9953000	8.128	8.053	8.053
169	RUMIPAMBA	788000	9953000	8.448	8.376	8.376
170	RUMIPAMBA	785000	9952500	6.404	6.308	6.308
171	RUMIPAMBA	785500	9952500	6.619	6.527	6.527
172	RUMIPAMBA	786000	9952500	6.865	6.776	6.776
173	RUMIPAMBA	786500	9952500	7.137	7.051	7.051
174	RUMIPAMBA	787000	9952500	7.432	7.351	7.351
175	RUMIPAMBA	787500	9952500	7.749	7.671	7.671
176	RUMIPAMBA	788000	9952500	8.084	8.009	8.009
177	RUMIPAMBA	785000	9952000	5.957	5.855	5.855
178	RUMIPAMBA	785500	9952000	6.189	6.090	6.090
179	RUMIPAMBA	786000	9952000	6.450	6.356	6.356
180	RUMIPAMBA	786500	9952000	6.739	6.649	6.649
181	RUMIPAMBA	787000	9952000	7.051	6.965	6.965
182	RUMIPAMBA	787500	9952000	7.385	7.302	7.302
183	RUMIPAMBA	788000	9952000	7.736	7.657	7.657
184	RUMIPAMBA	784000	9951500	5.134	5.015	5.015
185	RUMIPAMBA	784500	9951500	5.307	5.192	5.192
186	RUMIPAMBA	785000	9951500	5.520	5.410	5.410
187	RUMIPAMBA	785500	9951500	5.769	5.663	5.663
188	RUMIPAMBA	786000	9951500	6.049	5.948	5.948
189	RUMIPAMBA	786500	9951500	6.356	6.260	6.260
190	RUMIPAMBA	787000	9951500	6.686	6.595	6.595
191	RUMIPAMBA	787500	9951500	7.037	6.950	6.950
192	RUMIPAMBA	788000	9951500	7.404	7.322	7.322
193	RUMIPAMBA	783500	9951000	4.531	4.396	4.396
194	RUMIPAMBA	784000	9951000	4.673	4.542	4.542
195	RUMIPAMBA	784500	9951000	4.863	4.737	4.737
196	RUMIPAMBA	785000	9951000	5.095	4.975	4.975
197	RUMIPAMBA	785500	9951000	5.363	5.249	5.249
198	RUMIPAMBA	786000	9951000	5.663	5.556	5.556
199	RUMIPAMBA	786500	9951000	5.990	5.888	5.888
200	RUMIPAMBA	787000	9951000	6.340	6.244	6.244

	PARROQUIA	Coord. UTM		D (km)	D (km)	P. km)
U		X (m)	Y (m)			ις _{jb} (κιτι)
201	RUMIPAMBA	787500	9951000	6.708	6.617	6.617
202	RUMIPAMBA	788000	9951000	7.093	7.007	7.007
203	RUMIPAMBA	783500	9950500	4.064	3.912	3.912
204	RUMIPAMBA	784000	9950500	4.222	4.076	4.076
205	RUMIPAMBA	784500	9950500	4.431	4.292	4.292
206	RUMIPAMBA	785000	9950500	4.684	4.553	4.553
207	RUMIPAMBA	785500	9950500	4.975	4.852	4.852
208	RUMIPAMBA	786000	9950500	5.297	5.182	5.182
209	RUMIPAMBA	786500	9950500	5.645	5.537	5.537
210	RUMIPAMBA	787000	9950500	6.014	5.913	5.913
211	RUMIPAMBA	787500	9950500	6.402	6.307	6.307
212	RUMIPAMBA	783000	9950000	3.491	3.314	3.314
213	RUMIPAMBA	783500	9950000	3.605	3.434	3.434
214	RUMIPAMBA	784000	9950000	3.782	3.619	3.619
215	RUMIPAMBA	784500	9950000	4.014	3.861	3.861
216	RUMIPAMBA	785000	9950000	4.292	4.149	4.149
217	RUMIPAMBA	785500	9950000	4.608	4.475	4.475
218	RUMIPAMBA	786000	9950000	4.954	4.830	4.830
219	RUMIPAMBA	786500	9950000	5.324	5.210	5.210
220	RUMIPAMBA	787000	9950000	5.715	5.608	5.608
221	RUMIPAMBA	783000	9949500	3.029	2.822	2.822
222	RUMIPAMBA	783500	9949500	3.159	2.962	2.962
223	RUMIPAMBA	784000	9949500	3.360	3.175	3.175
224	RUMIPAMBA	784500	9949500	3.619	3.448	3.448
225	RUMIPAMBA	785000	9949500	3.925	3.768	3.768
226	RUMIPAMBA	785500	9949500	4.268	4.124	4.124
227	RUMIPAMBA	786000	9949500	4.639	4.507	4.507
228	RUMIPAMBA	786500	9949500	5.033	4.912	4.912
229	RUMIPAMBA	782000	9949000	2.557	2.309	2.309
230	RUMIPAMBA	782500	9949000	2.520	2.267	2.267
231	RUMIPAMBA	783000	9949000	2.580	2.334	2.334
232	RUMIPAMBA	783500	9949000	2.732	2.501	2.501
233	RUMIPAMBA	784000	9949000	2.962	2.751	2.751
234	RUMIPAMBA	784500	9949000	3.253	3.062	3.062
235	RUMIPAMBA	785000	9949000	3.590	3.418	3.418
236	RUMIPAMBA	785500	9949000	3.962	3.807	3.807
237	RUMIPAMBA	786000	9949000	4.360	4.219	4.219
238	RUMIPAMBA	786500	9949000	4.777	4.648	4.648
239	RUMIPAMBA	781500	9948500	2.283	2.001	2.001
240	RUMIPAMBA	782000	9948500	2.127	1.821	1.821
241	RUMIPAMBA	782500	9948500	2.081	1.767	1.767
242	RUMIPAMBA	783000	9948500	2.154	1.853	1.853
243	RUMIPAMBA	783500	9948500	2.334	2.059	2.059
244	RUMIPAMBA	784000	9948500	2.600	2.356	2.356
245	RUMIPAMBA	784500	9948500	2.927	2.712	2.712
246	RUMIPAMBA	785000	9948500	3.298	3.109	3.109
247	RUMIPAMBA	785500	9948500	3.699	3.532	3.532
248	RUMIPAMBA	786000	9948500	4.122	3.973	3.973
249	RUMIPAMBA	786500	9948500	4.561	4.426	4.426
250	RUMIPAMBA	780000	9948000	2.474	2.216	2.216

	PARROQUIA	Coord. UTM		P (km)	P. (km)	R. km)
U		X (m)	Y (m)			i s _{jb(} riii)
251	RUMIPAMBA	780500	9948000	2.278	1.995	1.995
252	RUMIPAMBA	781000	9948000	2.087	1.774	1.774
253	RUMIPAMBA	781500	9948000	1.902	1.552	1.552
254	RUMIPAMBA	782000	9948000	1.734	1.341	1.341
255	RUMIPAMBA	782500	9948000	1.678	1.268	1.268
256	RUMIPAMBA	783000	9948000	1.768	1.384	1.384
257	RUMIPAMBA	783500	9948000	1.983	1.650	1.650
258	RUMIPAMBA	784000	9948000	2.289	2.008	2.008
259	RUMIPAMBA	784500	9948000	2.655	2.417	2.417
260	RUMIPAMBA	785000	9948000	3.059	2.855	2.855
261	RUMIPAMBA	785500	9948000	3.488	3.310	3.310
262	RUMIPAMBA	786000	9948000	3.934	3.777	3.777
263	RUMIPAMBA	786500	9948000	4.391	4.251	4.251
264	RUMIPAMBA	781000	9947500	1.722	1.325	1.325
265	RUMIPAMBA	781500	9947500	1.558	1.104	1.104
266	RUMIPAMBA	782000	9947500	1.410	0.883	0.883
267	RUMIPAMBA	782500	9947500	1.341	0.769	0.769
268	RUMIPAMBA	783000	9947500	1.452	0.948	0.948
269	RUMIPAMBA	783500	9947500	1.708	1.307	1.307
270	RUMIPAMBA	784000	9947500	2.055	1.737	1.737
271	RUMIPAMBA	784500	9947500	2.456	2.197	2.197
272	RUMIPAMBA	785000	9947500	2.888	2.671	2.671
273	RUMIPAMBA	785500	9947500	3.339	3.153	3.153
274	RUMIPAMBA	786000	9947500	3.802	3.640	3.640
275	RUMIPAMBA	782000	9947000	1.182	0.434	0.434
276	RUMIPAMBA	782500	9947000	1.133	0.273	0.273
277	RUMIPAMBA	783000	9947000	1.262	0.619	0.619
278	RUMIPAMBA	783500	9947000	1.549	1.091	1.091
279	RUMIPAMBA	784000	9947000	1.926	1.581	1.581
280	RUMIPAMBA	784500	9947000	2.349	2.076	2.076
281	RUMIPAMBA	785000	9947000	2.797	2.572	2.572
282	RUMIPAMBA	785500	9947000	3.261	3.070	3.070
283	RUMIPAMBA	786000	9947000	3.734	3.568	3.568
284	RUMIPAMBA	782500	9946500	1.124	0.235	0.235
285	RUMIPAMBA	783000	9946500	1.255	0.605	0.605
286	RUMIPAMBA	783500	9946500	1.544	1.084	1.084
287	RUMIPAMBA	784000	9946500	1.921	1.576	1.576
288	RUMIPAMBA	784500	9946500	2.345	2.072	2.072
289	RUMIPAMBA	785000	9946500	2.794	2.569	2.569
290	RUMIPAMBA	785500	9946500	3.258	3.067	3.067
291	RUMIPAMBA	786000	9946500	3.732	3.566	3.566
292	RUMIPAMBA	782000	9946000	1.193	0.462	0.462
293	RUMIPAMBA	782500	9946000	1.295	0.684	0.684
294	RUMIPAMBA	783000	9946000	1.435	0.922	0.922
295	RUMIPAMBA	783500	9946000	1.693	1.288	1.288
296	RUMIPAMBA	784000	9946000	2.043	1.723	1.723
297	RUMIPAMBA	784500	9946000	2.446	2.185	2.185
298	RUMIPAMBA	785000	9946000	2.880	2.662	2.662
299	RUMIPAMBA	782000	9945500	1.428	0.911	0.911
300	RUMIPAMBA	782500	9945500	1.578	1.132	1.132

		Coor	d. UTM	R _{RUP} (km)	D (km)	R _{jb(} km)
U		X (m)	Y (m)			
301	RUMIPAMBA	783000	9945500	1.744	1.353	1.353
302	RUMIPAMBA	783500	9945500	1.962	1.625	1.625
303	RUMIPAMBA	784000	9945500	2.271	1.988	1.988
304	RUMIPAMBA	784500	9945500	2.640	2.400	2.400
305	RUMIPAMBA	782000	9945000	1.748	1.359	1.359
306	RUMIPAMBA	782500	9945000	1.925	1.580	1.580
307	RUMIPAMBA	783000	9945000	2.111	1.802	1.802
308	RUMIPAMBA	783500	9945000	2.310	2.031	2.031
309	RUMIPAMBA	784000	9945000	2.577	2.331	2.331
310	RUMIPAMBA	782000	9944500	2.116	1.808	1.808
311	RUMIPAMBA	782500	9944500	2.308	2.029	2.029
312	RUMIPAMBA	783000	9944500	2.504	2.250	2.250
313	RUMIPAMBA	783500	9944500	2.705	2.471	2.471
314	RUMIPAMBA	782000	9944000	2.510	2.256	2.256
315	RUMIPAMBA	782500	9944000	2.710	2.477	2.477
316	SAN PEDRO DE TABOADA	782500	9966000	19.298	19.266	19.266
317	SAN PEDRO DE TABOADA	782000	9965500	18.804	18.772	18.772
318	SAN PEDRO DE TABOADA	782500	9965500	18.799	18.766	18.766
319	SAN PEDRO DE TABOADA	781500	9965000	18.324	18.291	18.291
320	SAN PEDRO DE TABOADA	782000	9965000	18.305	18.272	18.272
321	SAN PEDRO DE TABOADA	782500	9965000	18.300	18.266	18.266
322	SAN PEDRO DE TABOADA	783000	9965000	18.308	18.275	18.275
323	SAN PEDRO DE TABOADA	782000	9964500	17.806	17.772	17.772
324	SAN PEDRO DE TABOADA	782500	9964500	17.800	17.766	17.766
325	SAN PEDRO DE TABOADA	782000	9964000	17.307	17.272	17.272
326	SAN PEDRO DE TABOADA	782500	9964000	17.301	17.266	17.266
327	SAN PEDRO DE TABOADA	781000	9963500	16.864	16.828	16.828
328	SAN PEDRO DE TABOADA	781500	9963500	16.829	16.793	16.793
329	SAN PEDRO DE TABOADA	782000	9963500	16.808	16.772	16.772
330	SAN PEDRO DE TABOADA	782500	9963500	16.802	16.766	16.766
331	SAN PEDRO DE TABOADA	780500	9963000	16.419	16.382	16.382
332	SAN PEDRO DE TABOADA	781000	9963000	16.367	16.330	16.330
333	SAN PEDRO DE TABOADA	781500	9963000	16.331	16.294	16.294
334	SAN PEDRO DE TABOADA	782000	9963000	16.309	16.272	16.272
335	SAN PEDRO DE TABOADA	782500	9963000	16.304	16.266	16.266
336	SAN PEDRO DE TABOADA	781500	9962500	15.833	15.794	15.794
337	SAN PEDRO DE TABOADA	782000	9962500	15.811	15.773	15.773
338	SAN PEDRO DE TABOADA	782500	9962500	15.805	15.766	15.766
339	SAN PEDRO DE TABOADA	782000	9962000	15.312	15.273	15.273
340	SAN RAFAEL	782500	9967500	20.796	20.766	20.766
341	SAN RAFAEL	782500	9967000	20.296	20.266	20.266
342	SAN RAFAEL	783000	9967000	20.304	20.274	20.274
343	SAN RAFAEL	782500	9966500	19.797	19.766	19.766
344	SAN RAFAEL	783000	9966500	19.805	19.774	19.774
345	SAN RAFAEL	783500	9966500	19.825	19.795	19.795
346	SAN RAFAEL	783000	9966000	19.306	19.274	19.274
347	SAN RAFAEL	783500	9966000	19.327	19.295	19.295
348	SAN RAFAEL	784000	9966000	19.361	19.329	19.329
349	SAN RAFAEL	783000	9965500	18.807	18.775	18.775
350	SAN RAFAEL	784000	9965500	18.863	18.831	18.831

	PARROQUIA	Coord. UTM		P (km)	P. (km)	R. km)
U		X (m)	Y (m)			rj _{b(} rin)
351	SAN RAFAEL	784500	9965500	18.911	18.879	18.879
352	SANGOLQUI	783500	9965500	18.828	18.796	18.796
353	SANGOLQUI	785000	9965500	18.972	18.940	18.940
354	SANGOLQUI	783500	9965000	18.330	18.297	18.297
355	SANGOLQUI	784000	9965000	18.366	18.333	18.333
356	SANGOLQUI	784500	9965000	18.415	18.382	18.382
357	SANGOLQUI	785000	9965000	18.477	18.445	18.445
358	SANGOLQUI	785500	9965000	18.553	18.521	18.521
359	SANGOLQUI	783000	9964500	17.809	17.775	17.775
360	SANGOLQUI	783500	9964500	17.832	17.798	17.798
361	SANGOLQUI	784000	9964500	17.868	17.835	17.835
362	SANGOLQUI	784500	9964500	17.919	17.885	17.885
363	SANGOLQUI	785000	9964500	17.983	17.950	17.950
364	SANGOLQUI	785500	9964500	18.061	18.028	18.028
365	SANGOLQUI	786000	9964500	18.153	18.119	18.119
366	SANGOLQUI	783000	9964000	17.310	17.275	17.275
367	SANGOLQUI	783500	9964000	17.334	17.299	17.299
368	SANGOLQUI	784000	9964000	17.371	17.337	17.337
369	SANGOLQUI	784500	9964000	17.423	17.389	17.389
370	SANGOLQUI	785000	9964000	17.489	17.455	17.455
371	SANGOLQUI	785500	9964000	17.570	17.535	17.535
372	SANGOLQUI	786000	9964000	17.663	17.629	17.629
373	SANGOLQUI	786500	9964000	17.771	17.737	17.737
374	SANGOLQUI	783000	9963500	16.812	16.776	16.776
375	SANGOLQUI	783500	9963500	16.836	16.800	16.800
376	SANGOLQUI	784000	9963500	16.875	16.839	16.839
377	SANGOLQUI	784500	9963500	16.928	16.892	16.892
378	SANGOLQUI	785000	9963500	16.996	16.960	16.960
379	SANGOLQUI	785500	9963500	17.078	17.043	17.043
380	SANGOLQUI	786000	9963500	17.175	17.140	17.140
381	SANGOLQUI	786500	9963500	17.286	17.251	17.251
382	SANGOLQUI	787000	9963500	17.410	17.375	17.375
383	SANGOLQUI	783000	9963000	16.313	16.276	16.276
384	SANGOLQUI	783500	9963000	16.338	16.301	16.301
385	SANGOLQUI	784000	9963000	16.378	16.341	16.341
386	SANGOLQUI	784500	9963000	16.433	16.396	16.396
387	SANGOLQUI	785000	9963000	16.503	16.466	16.466
388	SANGOLQUI	785500	9963000	16.588	16.551	16.551
389	SANGOLQUI	786000	9963000	16.687	16.651	16.651
390	SANGOLQUI	786500	9963000	16.801	16.765	16.765
391	SANGOLQUI	787000	9963000	16.929	16.893	16.893
392	SANGOLQUI	787500	9963000	17.070	17.035	17.035
393	SANGOLQUI	783000	9962500	15.815	15.776	15.776
394	SANGOLQUI	783500	9962500	15.840	15.802	15.802
395	SANGOLQUI	784000	9962500	15.881	15.843	15.843
396	SANGOLQUI	784500	9962500	15.938	15.900	15.900
397	SANGOLQUI	785000	9962500	16.010	15.973	15.973
398	SANGOLQUI	785500	9962500	16.098	16.060	16.060
399	SANGOLQUI	786000	9962500	16.200	16.163	16.163
400	SANGOLQUI	786500	9962500	16.317	16.280	16.280

	PARROQUIA	Coord. UTM		P (km)	P. (km)	R. km)
U		X (m)	Y (m)			rj _{b(} riii)
401	SANGOLQUI	787000	9962500	16.449	16.412	16.412
402	SANGOLQUI	782500	9962000	15.306	15.266	15.266
403	SANGOLQUI	783000	9962000	15.316	15.277	15.277
404	SANGOLQUI	783500	9962000	15.342	15.303	15.303
405	SANGOLQUI	784000	9962000	15.385	15.346	15.346
406	SANGOLQUI	784500	9962000	15.444	15.405	15.405
407	SANGOLQUI	785000	9962000	15.518	15.479	15.479
408	SANGOLQUI	785500	9962000	15.608	15.570	15.570
409	SANGOLQUI	786000	9962000	15.714	15.676	15.676
410	SANGOLQUI	786500	9962000	15.835	15.797	15.797
411	SANGOLQUI	787000	9962000	15.970	15.932	15.932
412	SANGOLQUI	787500	9962000	16.120	16.083	16.083
413	SANGOLQUI	782000	9961500	14.814	14.773	14.773
414	SANGOLQUI	782500	9961500	14.807	14.766	14.766
415	SANGOLQUI	783000	9961500	14.818	14.777	14.777
416	SANGOLQUI	783500	9961500	14.845	14.804	14.804
417	SANGOLQUI	784000	9961500	14.889	14.848	14.848
418	SANGOLQUI	784500	9961500	14.950	14.909	14.909
419	SANGOLQUI	785000	9961500	15.027	14.986	14.986
420	SANGOLQUI	785500	9961500	15.120	15.080	15.080
421	SANGOLQUI	786000	9961500	15.229	15.189	15.189
422	SANGOLQUI	786500	9961500	15.353	15.314	15.314
423	SANGOLQUI	787000	9961500	15.493	15.454	15.454
424	SANGOLQUI	787500	9961500	15.647	15.609	15.609
425	SANGOLQUI	781500	9961000	14.340	14.297	14.297
426	SANGOLQUI	782000	9961000	14.315	14.273	14.273
427	SANGOLQUI	782500	9961000	14.309	14.266	14.266
428	SANGOLQUI	783000	9961000	14.320	14.277	14.277
429	SANGOLQUI	783500	9961000	14.348	14.306	14.306
430	SANGOLQUI	784000	9961000	14.393	14.351	14.351
431	SANGOLQUI	784500	9961000	14.456	14.414	14.414
432	SANGOLQUI	785000	9961000	14.536	14.494	14.494
433	SANGOLQUI	785500	9961000	14.632	14.591	14.591
434	SANGOLQUI	786000	9961000	14.745	14.703	14.703
435	SANGOLQUI	786500	9961000	14.873	14.832	14.832
436	SANGOLQUI	787000	9961000	15.017	14.977	14.977
437	SANGOLQUI	787500	9961000	15.177	15.137	15.137
438	SANGOLQUI	788000	9961000	15.350	15.311	15.311
439	SANGOLQUI	781500	9960500	13.842	13.799	13.799
440	SANGOLQUI	782000	9960500	13.817	13.773	13.773
441	SANGOLQUI	782500	9960500	13.810	13.767	13.767
442	SANGOLQUI	783000	9960500	13.821	13.778	13.778
443	SANGOLQUI	783500	9960500	13.851	13.807	13.807
444	SANGOLQUI	784000	9960500	13.898	13.854	13.854
445	SANGOLQUI	784500	9960500	13.963	13.919	13.919
446	SANGOLQUI	785000	9960500	14.045	14.002	14.002
447	SANGOLQUI	785500	9960500	14.145	14.102	14.102
448	SANGOLQUI	786000	9960500	14.261	14.219	14.219
449	SANGOLQUI	786500	9960500	14.394	14.352	14.352
450	SANGOLQUI	787000	9960500	14.543	14.501	14.501

		Coord. UTM		R pup (km)	R. (km)	R. km)
U		X (m)	Y (m)			rj _{b(} rin)
451	SANGOLQUI	787500	9960500	14.707	14.666	14.666
452	SANGOLQUI	788000	9960500	14.887	14.846	14.846
453	SANGOLQUI	781500	9960000	13.345	13.300	13.300
454	SANGOLQUI	782000	9960000	13.319	13.274	13.274
455	SANGOLQUI	784000	9960000	13.403	13.358	13.358
456	SANGOLQUI	784500	9960000	13.470	13.425	13.425
457	SANGOLQUI	785000	9960000	13.555	13.511	13.511
458	SANGOLQUI	785500	9960000	13.659	13.614	13.614
459	SANGOLQUI	786000	9960000	13.779	13.735	13.735
460	SANGOLQUI	786500	9960000	13.917	13.873	13.873
461	SANGOLQUI	787000	9960000	14.071	14.028	14.028
462	SANGOLQUI	787500	9960000	14.241	14.198	14.198
463	SANGOLQUI	788000	9960000	14.426	14.384	14.384
464	SANGOLQUI	788500	9960000	14.626	14.584	14.584
465	SANGOLQUI	781000	9959500	12.894	12.848	12.848
466	SANGOLQUI	781500	9959500	12.848	12.801	12.801
467	SANGOLQUI	782000	9959500	12.821	12.774	12.774
468	SANGOLQUI	784500	9959500	12.978	12.931	12.931
469	SANGOLQUI	785000	9959500	13.067	13.020	13.020
470	SANGOLQUI	785500	9959500	13.174	13.128	13.128
471	SANGOLQUI	786000	9959500	13.299	13.253	13.253
472	SANGOLQUI	786500	9959500	13.441	13.396	13.396
473	SANGOLQUI	787000	9959500	13.600	13.556	13.556
474	SANGOLQUI	787500	9959500	13.776	13.732	13.732
475	SANGOLQUI	788000	9959500	13.967	13.924	13.924
476	SANGOLQUI	788500	9959500	14.174	14.131	14.131
477	SANGOLQUI	789000	9959500	14.395	14.352	14.352
478	SANGOLQUI	781500	9959000	12.351	12.302	12.302
479	SANGOLQUI	782000	9959000	12.323	12.274	12.274
480	SANGOLQUI	785000	9959000	12.578	12.530	12.530
481	SANGOLQUI	785500	9959000	12.690	12.642	12.642
482	SANGOLQUI	786000	9959000	12.819	12.772	12.772
483	SANGOLQUI	786500	9959000	12.967	12.920	12.920
484	SANGOLQUI	787000	9959000	13.132	13.086	13.086
485	SANGOLQUI	787500	9959000	13.314	13.268	13.268
486	SANGOLQUI	788000	9959000	13.512	13.467	13.467
487	SANGOLQUI	788500	9959000	13.725	13.681	13.681
488	SANGOLQUI	789000	9959000	13.953	13.910	13.910
489	SANGOLQUI	789500	9959000	14.195	14.152	14.152
490	SANGOLQUI	782000	9958500	11.826	11.775	11.775
491	SANGOLQUI	784500	9958500	11.996	11.945	11.945
492	SANGOLQUI	785000	9958500	12.091	12.041	12.041
493	SANGOLQUI	785500	9958500	12.207	12.157	12.157
494	SANGOLQUI	786000	9958500	12.342	12.293	12.293
495	SANGOLQUI	786500	9958500	12.495	12.447	12.447
496	SANGOLQUI	787000	9958500	12.666	12.619	12.619
497	SANGOLQUI	787500	9958500	12.855	12.808	12.808
498	SANGOLQUI	788000	9958500	13.060	13.013	13.013
499	SANGOLQUI	788500	9958500	13.280	13.235	13.235
500	SANGOLQUI	789000	9958500	13.516	13.471	13.471

		Coord. UTM		P	P (km)	Pkm)
		X (m)	Y (m)	IX RUP (KIII)		i Sjb(Ki i i)
501	SANGOLQUI	789500	9958500	13.765	13.721	13.721
502	SANGOLQUI	782000	9958000	11.328	11.275	11.275
503	SANGOLQUI	784500	9958000	11.506	11.453	11.453
504	SANGOLQUI	785000	9958000	11.605	11.553	11.553
505	SANGOLQUI	785500	9958000	11.726	11.674	11.674
506	SANGOLQUI	786000	9958000	11.866	11.815	11.815
507	SANGOLQUI	786500	9958000	12.025	11.975	11.975
508	SANGOLQUI	787000	9958000	12.203	12.154	12.154
509	SANGOLQUI	787500	9958000	12.399	12.350	12.350
510	SANGOLQUI	788000	9958000	12.611	12.563	12.563
511	SANGOLQUI	788500	9958000	12.839	12.792	12.792
512	SANGOLQUI	789000	9958000	13.083	13.036	13.036
513	SANGOLQUI	789500	9958000	13.340	13.295	13.295
514	SANGOLQUI	785000	9957500	11.121	11.066	11.066
515	SANGOLQUI	785500	9957500	11.246	11.192	11.192
516	SANGOLQUI	786000	9957500	11.392	11.339	11.339
517	SANGOLQUI	786500	9957500	11.558	11.506	11.506
518	SANGOLQUI	787000	9957500	11.743	11.692	11.692
519	SANGOLQUI	787500	9957500	11.946	11.896	11.896
520	SANGOLQUI	788000	9957500	12.166	12.117	12.117
521	SANGOLQUI	788500	9957500	12.403	12.354	12.354
522	SANGOLQUI	789000	9957500	12.655	12.607	12.607
523	SANGOLQUI	789500	9957500	12.921	12.874	12.874
524	SANGOLQUI	790000	9957500	13.201	13.155	13.155
525	SANGOLQUI	785500	9957000	10.769	10.712	10.712
526	SANGOLQUI	786000	9957000	10.921	10.866	10.866
527	SANGOLQUI	786500	9957000	11.094	11.039	11.039
528	SANGOLQUI	787000	9957000	11.287	11.233	11.233
529	SANGOLQUI	787500	9957000	11.498	11.445	11.445
530	SANGOLQUI	788000	9957000	11.726	11.675	11.675
531	SANGOLQUI	788500	9957000	11.971	11.921	11.921
532	SANGOLQUI	789000	9957000	12.232	12.182	12.182
533	SANGOLQUI	789500	9957000	12.507	12.459	12.459
534	SANGOLQUI	785500	9956500	10.293	10.234	10.234
535	SANGOLQUI	786000	9956500	10.452	10.394	10.394
536	SANGOLQUI	786500	9956500	10.633	10.576	10.576
537	SANGOLQUI	787000	9956500	10.834	10.778	10.778
538	SANGOLQUI	787500	9956500	11.053	10.999	10.999
539	SANGOLQUI	788000	9956500	11.291	11.237	11.237
540	SANGOLQUI	788500	9956500	11.545	11.493	11.493
541	SANGOLQUI	789000	9956500	11.815	11.764	11.764
542	SANGOLQUI	785500	9956000	9.820	9.758	9.758
543	SANGOLQUI	786000	9956000	9.987	9.926	9.926
544	SANGOLQUI	786500	9956000	10.176	10.116	10.116
545	SANGOLQUI	787000	9956000	10.385	10.327	10.327
546	SANGOLQUI	787500	9956000	10.614	10.557	10.557
547	SANGOLQUI	788000	9956000	10.861	10.806	10.806
548	SANGOLQUI	788500	9956000	11.126	11.071	11.071
549	SANGOLQUI	789000	9956000	11.406	11.353	11.353
550	SANGOLQUI	786000	9955500	9.525	9.461	9.461
551	SANGOLQUI	786500	9955500	9.723	9.660	9.660
552	SANGOLQUI	787000	9955500	9.942	9.881	9.881
553	SANGOLQUI	787500	9955500	10.181	10.121	10.121
554	SANGOLQUI	786000	9955000	9.067	9.000	9.000
555	SANGOLQUI	786500	9955000	9.274	9.209	9.209
556	SANGOLQUI	787000	9955000	9.504	9.440	9.440
557	SANGOLQUI	787500	9955000	9.753	9.691	9.691
558	SANGOLQUI	786000	9945000	4.108	3.958	3.958
559	SANGOLQUI	786500	9945000	4.548	4.413	4.413
560	SANGOLQUI	787000	9945000	4.999	4.877	4.877