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Abstract

In this thesis we introduce a Multigrid Optimization Algorithm (MG/OPT) for the
numerical solution of a class of quasilinear variational inequalities of the second
kind, which involve the p-Laplacian operator and the L1-norm of the gradient. This
approach follows from the fact that the solution of the variational inequality is given
by the minimizer of a nonsmooth energy functional, Therefore, we proposed a Hu-
ber regularization of the functional and a finite element discretization for the prob-
lem. Further, we analyze the regularity of the discretized energy functional, and
we are able to prove that its Jacobian is slantly differentiable. This regularity prop-
erty is useful to analyze the convergence of the MG/OPT algorithm. In fact, we
demostrate that the algorithm is global convergent by using the mean value the-
orem for slantly differentiable functions. Finally, we analyze the performance of
the MG/OPT algorithm when used to simulate the visco-plastic flow of Bingham,
Casson and Herschel-Bulkley fluids in a pipe. Several numerical experiments are
carried out to show the main features of the proposed method.

viii



Chapter 1

Introduction

In this thesis we are concerned with the analysis, development and implementation
of a multigrid algorithm for the numerical solution of a class of variational inequal-
ities of the second kind: let Ω be an open and bounded set in R

n with Lipschitz
boundary ∂Ω, find u ∈ W

1,p
0 (Ω) such that

∫

Ω
|∇u|p−2(∇u,∇(v−u)) dx+ g

∫

Ω
|∇v| dx− g

∫

Ω
|∇u| dx ≥

∫

Ω
f (v−u) dx, ∀v ∈ W

1,p
0 (Ω),

(1.1)

where 1 < p < ∞, g > 0 and f ∈ Lq(Ω). Here, q = p
p−1 stands for the conjugate

exponent of p.

The numerical resolution of variational inequalities involving the p-Laplacian
constitutes an important research field. This operator is part of many mathematical
models and has been widely studied due to its importance in modelling physical
processes such as visco-plastic fluids flow, glaciology and diffusion and filtration
processes (see [2, 11]). These problems are related to a wide range of industrial ap-
plications that can be studied inside the large scale optimization framework. Large
scale problems involve a great amount of variables, thus, its numerical solution
could take long periods of computation when executing an algorithm.

We also know that a variational inequality corresponds to the necessary condi-
tion of an optimization problem. Particularly, the solution of the variational inequal-
ity (1.1) corresponds to a first order necessary optimality condition for the following
optimization problems.

min
u∈W

1,p
0 (Ω)

J(u) :=
1
p

∫

Ω
|∇u|p dx +

∫

Ω
|∇u| dx −

∫

Ω
f u dx. (1.2)

In consequence, throughout this work we will focus in the resolution of this op-
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timization problem. Since our problem involves the L1-norm, it corresponds to a
non-differentiable minimization problem. Then, we propose a local Huber regular-
ization technique to deal with the non-differentiable term. Further, we propose to
solve the optimization problem by using a multigrid optimization (MG/OPT) algo-
rithm. This algorithm was introduced as an efficient tool for large scale optimization
problems (see [25, 23]). In [23] a multigrid optimization method is also presented
for the optimization of systems governed by differential equations. The MG/OPT
method focuses in optimization problems which are discretized in different levels
of discretization generating a family of subproblems of different sizes. The idea of
the algorithm is to take advantage of the solutions of problems discretized in coarse
levels to optimize problems in fine meshes. The efficient resolution of coarse prob-
lems provide a way to calculate search directions for fine problems. Our purpose in
this work is to propose, implement and analyze the MG/OPT algorithm for the res-
olution of nonsmooth problems with a finite element scheme. As the name implies,
the application of the MG/OPT method involves an underlying optimization algo-
rithm at each level of discretization. Due to the limited regularity of the functional
J and the p- Laplacian involved therein, we propose a class of descent algorithms
such as the gradient method and a preconditioned descent algorithm (see [12]) as
the underlying optimization algorithms. Particularly, the preconditioned descent
algorithm was proposed to solve variational inequalities involving the p-Laplacian.
Hence, our aim is to take advantage of the computational efficiency of the multigrid
scheme and combine it with a suitable optimization algorithm for type problems
(1.2).

The main idea of the MG/OPT method consists in generate, recursively, search
directions through solutions of coarse problems to optimize the solution of fine
problems. Regarding to this, the combination of a globally convergent underlying
optimization algorithm with a line search technique, ensures the decay of the func-
tional value at each cycle or iteration. Thus, the multigrid optimization algorithm
is globally convergent. However, the convergence depends critically on whether
the search directions found at coarse levels are descent directions. Taking this into
account, we propose a convergence analysis of the method based on a general no-
tion of differentiability (slant differentiability) of the functional J. Then, in order to
prove global convergence of the MG/OPT algorithm, it is usual to require that the
differential of the functional satisfy the mean value theorem [25]. Thus, we focus
our analysis on the differentiability of functional J. However, the functional J is not
twice Gâteaux differentiable. Hence, we introduce a general notion of differentia-
bility and we propose to use the mean value theorem for slantly differentiable func-
tions [7] in order to prove convergence of the algorithm for problem (2.6). Finally,
we perform numerical experiments for solving the pipe flow of visco-plastic fluids
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such as Herschel-Bulkley, Bingham and Casson, which are modeled by variational
inequalities of the second kind.
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Chapter 2

Preliminary Results and Problem
Statement

2.1 Preliminary Results

2.1.1 Generalized Differentiability

In this section we introduce several concepts of differentiabilily: the concept of slant-
ing function, slant differentiability and the mean value theorem for slantly differen-
tiable funcions.

DEFINITION 2.1.1. Let X and Y be two normed spaces, D be a nonempty open set in

X and J : D ⊂ X → Y be a given mapping. For x ∈ D and h ∈ X, if the limit

J′(x)(h) := lim
t→0

J(x + th)− J(x)

t

exists, the function is said to be directionally differentiable. Further, J′(x)(h) is the

directional derivative of J at x in the direction h. If the directional derivative J′(x)(h)

exists for all h ∈ X and J′(x) is a linear and continuous operator from X to Y, then J

is said to be Gâteaux differentiable.

DEFINITION 2.1.2. Let X and Y be Banach spaces, and D be an open domain in X. A

function J : D ⊂ X → Y is said to be slantly differentiable at x ∈ D if there exists

a mapping J◦ : D → L(X, Y) such that the family {J◦(x + h)} of bounded linear

operators is uniformly bounded in the operator norm, for h sufficiently small, and

lim
h→0

J(x + h)− J(x)− J◦(x + h)h

‖h‖ = 0.
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The function J◦ is called a slanting function for J at x.

DEFINITION 2.1.3. A function J : D ⊂ X → Y is said to be slantly differentiable in

an open domain D0 ⊂ D if there exists a mapping J◦ : D → L(X, Y) such that J◦ is

a slanting function for J at every point x ∈ D0. In this case, J◦ is called a slanting

function for J in D0.

DEFINITION 2.1.4. Suppose that J◦ : D → L(X, Y) is a slanting function for J at x ∈ D.

We call the set

∂S J(x) := { lim
xk→x

J◦(xk)}

the slant derivative of J associated with J◦ at x ∈ D. Here, limxk→x J◦(xk) exists for

any sequence {xk} ⊂ D such that xk → x.

PROPOSITION 2.1.5.

1. If J is continuosly differentiable in D, we can set J◦(u) := J′(u) ∀u ∈ D. Thus,

J′ is a slanting function for J at every point of D.

2. A slantly differentiable function J at u can have infinitely many slanting func-

tions at u. If J◦ and H◦ are both slanting functions for J at u ∈ D, then

P◦ := λJ◦ + (1 − λ)H◦

is also a slanting function for J at u ∈ D, where λ ∈ [0, 1]. Moreover,

lim
h→0

‖J◦(u + h)h − H◦(u + h)h‖ = 0.

Proof. See [7, Sec.2]

Next, we present an important example of a slanting differentiable function that
will be useful in the subsequent sections.

EXAMPLE 2.1.6. [14, Sec.3, Lemma 3.1] Let g > 0 be a constant. The mapping

~z → max(g, γ|~z|)

from R
n to R is slantly differentiable on R

n. Further, the slant derivative of this

function is the characteristic function χAγ
(~z) defined by

χAγ
(~z) =





1, if~z ∈ Aγ,

0, if~z ∈ X \ Aγ,

where Aγ := {~z : γ|~z| ≥ g}
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We now present the mean value theorem for slantly differentiable functions (see
[7, Sec. 2, Cor. 2.7, p. 1207 ]). This is a key result when proving convergence of the
multigrid optimization method. The mean value theorem can be seen as a corollary
of the following theorem that states the necessary and sufficient condition for slant
differentiability.

THEOREM 2.1.7. An operator J : X → Y is slantly differentiable at x if and only if J is

Lipschitz continuous at x.

Proof. See [7, Sec. 2 ].

Before presenting the mean value theorem we need to introduce the following
lemma.

LEMMA 2.1.8. Let X be a normed space and h be a fixed element of X, h 6= 0. Then

there exists an element g ∈ X∗, where X∗ is the dual of X, such that

g(h) = ‖h‖ and ‖g‖ = 1.

THEOREM 2.1.9. (Mean value theorem for slantly differentiable funcions.) Let X and

Y be Banach spaces, and D be an open domain in X. Suppose that J : D ⊂ X → Y

is slantly differentiable at x. Then for any h 6= 0 such that x + h ∈ D, there exists a

slanting function for J at x such that

J(x + h)− J(x) = J◦(x + h)h.

Proof. Since J is slantly differentiable, we can construct a slanting function for J at
x. From Lemma 2.1.8, we know that for each h 6= 0 there exists a continuous linear
functional gh ∈ X∗ such that gh(h) = ‖h‖ and ‖gh‖ = 1. Then, we can define the
following slanting function

J◦(x + h) :=
(J(x + h)− J(x))

‖h‖ gh, (2.1)

thus, for each h 6= 0 we have that

J◦(x + h)h =
(J(x + h)− J(x))

‖h‖ gh(h)

= J(x + h)− J(x).

(2.2)

Now, it remains to prove that the family {J◦(x + h)} is uniformly bounded for h

sufficiently small.
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From (2.1) and for any z ∈ X we have that

J◦(x + h)z =
J(x + h)− J(x)

‖h‖ gh(z).

Hence, since gh ∈ X∗,

‖J◦(x + h)z‖ =
‖J(x + h)− J(x)‖

‖h‖ |gh(z)|

≤ ‖J(x + h)− J(x)‖
‖h‖ ‖gh‖‖z‖

=
‖J(x + h)− J(x)‖

‖h‖ ‖z‖.

Since we defined J◦ as a bounded linear operator on X into Y, we have that

sup
z 6=0

‖J◦(x + h)z‖
‖z‖ ≤ ‖J(x + h)− J(x)‖

‖h‖ ,

therefore

‖J◦(x + h)‖ ≤ ‖J(x + h)− J(x)‖
‖h‖ .

From Theorem 2.1.7 we know that J is Lipschitz continuous at x, then

‖J◦(x + h)‖ ≤ L.

2.1.2 Important Theorems in existence and uniqueness of the so-

lution

In what follows we present some important results needed when proving existence
and uniqueness of the solution of problem (1.1).

THEOREM 2.1.10. Let S ve a nonempty, convex, closed and bounded subset of a re-

flexive real Banach space, and let J : S → R be a continuous quasiconvex functional.

Then J has at least one minimal point on S.

Proof. See [Th. 2.12, Ch 2.][18]

LEMMA 2.1.11. Let S ve a nonempty, convex and closed subset of a real normed space.

If the functional J : S → R is continuous and quasiconvex, then J is weakly lower

7



semicontinuous.

Proof. See [Lemma. 2.11, Ch 2.][18]

THEOREM 2.1.12. Consider the function

J(u) = J1(u) + J2(u) (2.3)

where we assume that the functions Ji(u), i = 1, 2, are continuous, convex, and

lower semi-continuous in the weak topology. Further let

J(u) → +∞ as ‖u‖ → +∞, for all u ∈ W
1,p
0 (Ω). (2.4)

We assume that the function u → J1(u) is differentiable, but J2 is not necessarily

differentiable. Finally assume that J is strictly convex. Then the unique element

v ∈ W
1,p
0 (Ω) such that J(v) = inf

u∈W
1,p
0 (Ω)

J(u) is characterized by

J′1(v) · (u − v) + J2(u)− J2(v) ≥ 0 for all v ∈ W
1,p
0 (Ω). (2.5)

Proof. See [Th. 1.6, Ch.1][24]

2.2 Problem Statement

In this work, we are concerned with the numerical solution of the following class of
nonsmooth optimization problems:

min
u∈W

1,p
p (Ω)

J(u) :=
1
p

∫

Ω
|∇u|p dx + g

∫

Ω
|∇u| dx −

∫

Ω
f u dx. (2.6)

where 1 < p < ∞ , g > 0 and f ∈ Lq(Ω).

The minimizer of this nonsmooth energy functional is given by the solution
of a variational inequality of the second kind. In order to show this statement

let us introduce the following notation: F = 1
p

∫

Ω
|∇u|p dx −

∫

Ω
f u dx and G =

g
∫

Ω
|∇u| dx. It is clear that both functions are continuous and convex. Further,

from Lemma 2.1.11, and since every convex function is also quasiconvex, F and G

are weakly lower semicontinuous.

Next, problem (2.6) can be written as

J(u) =
1
p
‖u‖p

W
1,p
0

+ g
∫

Ω
|∇u| dx −

∫

Ω
f u dx.

8



Therefore, J(·) satisfies that

lim
‖u‖

W
1,p
0

→∞
J(u) = +∞. (2.7)

Note that, following Theorem 2.1.10, and because J is strictly convex, the minimizer
of (2.6) is characterized by the following variational inequality of the second kind:
find u ∈ W

1,p
0 (Ω) such that

〈Au, v − u〉+ gj(v)− gj(u) ≥ 0, ∀v ∈ W
1,p
0 (Ω)

where
〈Au, v〉 =

∫

Ω
|∇u|p−2(∇u · ∇v) dΩ −

∫

Ω
f v dx,

and
j(u) =

∫

Ω
|∇u| dx.

Here, 〈Au, v〉 stands for the derivative of F (u). In particular, the minimizer of the
functional F satisfies the Dirichlet problem for the p-Laplace operator. Following
[11], we know that F (u) is a strictly convex funcional and its gradient is given by
the following operator

A : W
1,p
0 (Ω) → W−1,q(Ω),

defined by

〈Au, v〉 =
∫

Ω
|∇u|p−2(∇u · ∇v)−

∫

Ω
f v dx dx, ∀v ∈ W

1,p
0 .

Here, W
1,p
0 (Ω) is the Sobolev space and W−1,q(Ω) is its dual space with q = p

p−1 .
Further, F (u) is twice Gâteaux differentiable [2] , with

F ′(u)(v) =
∫

Ω
|∇u|p−2(∇u · ∇v) dx −

∫

Ω
f v dx

= 〈Au, v〉 , ∀v ∈ W
1,p
0 ,

(2.8)

and

F ′′(u)(v, w) =
∫

Ω
|∇u|p−2(∇v,∇w) dx

+(p − 2)
∫

Ω
|∇u|p−4(∇u,∇v)(∇u,∇w) dx, ∀v, w ∈ W

1,p
0 .

(2.9)

Once we have analyzed the variational inequality, we will focus on the resolution
of (2.6) because our goal is to solve the minimization problem. In what follows we

9



summarize known results about the existence of a unique solution for this problem.

THEOREM 2.2.1. Let 1 < p < ∞. Then, problem (2.6) has a unique solution ū ∈
W

1,p
0 (Ω).

Proof. The space W
1,p
0 (Ω) is a reflexive Banach space if 1 < p < ∞. It is easy to verify

that J(·) is a continuous strictly convex functional. Then, Theorem 2.1.10 implies
that J has at least one minimal point. Further, from (2.7) and applying Theorem
2.1.12 we know that the minimal point found is the unique solution ū ∈ W

1,p
0 (Ω)

for problem (2.6).

2.2.1 Regularization and discretization

The minimization problem (2.6) involves a convex non-smooth functional. The
norm |∇y| in the second term leads us to a non-differentiable problem . We propose
a local Huber regularization procedure in order to solve this issue. This regulariza-
tion only changes locally the estructure of the functional, preserving the qualitative
properties. This regularization has been used in several contributions (see [12]).

Let us introduce, for γ > 0, the function ψγ : R
n → R as follows:

ψγ : z → ψγ(z) =





g|z| − g2

2γ i f |z| > g
γ

γ
2 |z|2 i f |z| ≤ g

γ .

The function ψγ corresponds to a local regularization of the Euclidean norm.
Thanks to this procedure we obtain the following regularized optimization problem

min
u∈W

1,p
0 (Ω)

Jγ(u) :=
1
p

∫

Ω
|∇u|p dx +

∫

Ω
ψγ(∇u) dx −

∫

Ω
f u dx. (2.10)

THEOREM 2.2.2. Let 1 < p < ∞ and γ > 0. Then, problem (2.10) has a unique

solution uγ ∈ W
1,p
0 (Ω). Also, the sequence {uγ} ⊂ W

1,p
0 (Ω) converges strongly in

W
1,p
0 (Ω) to the solution ū of problem (2.6) as γ → ∞.

Proof. See [12, Sec. 2].
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2.2.2 Finite element formulation

Let us introduce the finite element formulation of problem (2.10). Let Ωh be a trian-
gulation of the domain Ω , ne ∈ N the number of triangles Ti such that Ω̄h = ∪ne

i=1Ti

and n the number of nodes of the triangulation Ωh. For any two triangles, their
clousures are either disjoint or have a common vertex or a common edge. Finally,
let {Pj}j=1,··· ,n be the vertices (nodes) associated with Ωh. Taking this into account,
we define

Vh := {vh ∈ C(Ω̄h) : vh|Ti
∈ P1, ∀Ti ∈ Ωh},

where P1 is the space of continuous piecewise linear functions defined on Ωh. Then
the following space

V0
h = W

1,p
0 (Ω) ∩ Vh (2.11)

is the finite-dimensional space associated with the triangulation Ωh.

Considering the previous analysis, the finite element approximation of (2.10) is
formulated as follows

min
uh∈V0

h

Jγ,h(uh) :=
1
p

∫

Ωh

|∇uh|p dx +
∫

Ωh

ψγ(∇uh) dx −
∫

Ωh

f uh dx. (2.12)

In the following proposition we analyze the derivative of the discrete functional
Jγ,h(uh). This analysis will be crucial in the convergence discussion of the multigrid
algorithm presented in Chapter 4.

Hereafter, since we are working in finite dimensional spaces, the derivative J′h(uh)(vh)

can be rewritten, using the canonical basis of R
n, as the following product J′h(uh)(vh) =

n

∑
i=1

J′h(uh)(ei)v
i
h =

n

∑
i=1

∂J(uh)

∂ei
vi

h = ∇Jh(uh)
⊤vh (see [10, Sec. 1.1.2 b,c]). Also, we

adopt the notation:
◦
∇Jγ,h(uh) for a slanting function of ∇Jh(uh).

PROPOSITION 2.2.3. Let 1 < p < ∞. The functional Jγ,h(uh) is Gâteaux differentiable

with

∇Jγ,h(uh)
⊤vh :=

∫

Ωh

|∇uh|p−2∇uh ·∇vh dx+ g
∫

Ωh

γ(∇uh · ∇vh)

max(g, γ|∇uh|)
dx−

∫

Ωh

f vh dx ∀vh ∈ V0
h .

(2.13)
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Furthermore ∇Jγ,h(uh) is a slantly differentiable function with

◦
∇Jγ,h(uh)(vh, wh) :=

∫

Ωh

|∇uh|p−2∇vh · ∇wh dx

+(p − 2)
∫

Ωh

|∇uh|p−4(∇uh · ∇vh)(∇uh · ∇wh) dx

+
∫

Aγ

g
(∇vh · ∇wh)

|∇uh|
dx −

∫

Aγ

g
(∇uh · ∇vh)(∇uh · ∇wh)

|∇uh|3
dx

+
∫

Ωk−1\Aγ

γ(∇vh · ∇wh) dx, ∀vh, wh ∈ V0
h .

(2.14)

Proof. Let us decompose the funcional Jγ,h(uh) as follows.

Jγ,h(uh) := Fh(uh) + Gγ,h(∇uh), (2.15)

where
Fh(uh) :=

1
p

∫

Ωh

|∇uh|p dx −
∫

Ωh

f uh dx,

and
Gγ,h(∇uh) :=

∫

Ωh

ψγ(∇uh) dx.

As V0
h is a closed subspace of W

1,p
0 (Ω) (see [11, Sec. 3]), the properties of the func-

tional Jγ are inherited by the discrete functional Jγ,h. Hence, in what follows we
present the derivative of the functional Jγ,h(uh). From (2.8), we have that the deriva-
tive of the discrete functional Fh(uh) is given by

∇Fh(uh)
⊤vh =

∫

Ωh

|∇uh|p−2∇uh · ∇vh dx −
∫

Ωh

f vh dx, ∀vh ∈ V0
h . (2.16)

Next, let us analyse the functional Gγ,h(∇uh). It is known that Gγ,h is once Gâteaux
differentiable (see [12, Sec. 2.2]), and moreover, we know that

∇Gγ,h(∇uh)
⊤vh = g

∫

Aγ,h

∇uh · ∇vh

|∇uh|
dx + g

∫

Ωh\Aγ,h

γ(∇uh · ∇vh) dx, ∀vh ∈ V0
h ,

where
Aγ,h = {x ∈ Ωh : γ|∇uh(x)| ≥ g}.
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By using the max function, we can rewrite ∇Gγ,h(∇uh)vh in the following way.

∇G⊤
γ,h(∇uh)vh := g

∫

Ωh

γ(∇uh · ∇vh)

max(g, γ|∇uh|)
dx, ∀vh ∈ V0

h . (2.17)

Next, from (2.15), it follows that

∇Jγ,h(uh)
⊤vh := ∇Fh(uh)

⊤vh +∇Gγ,h(∇uh)
⊤vh, (2.18)

which, thanks to (2.17) and (2.16), implies that

∇Jγ,h(uh)
⊤vh :=

∫

Ωh

|∇uh|p−2∇uh · ∇vh dx + g
∫

Ωh

γ(∇uh · ∇vh)

max(g, γ|∇uh|)
dx

−
∫

Ωh

f vh dx ∀vh ∈ V0
h .

The last expression corresponds to the Gâteaux derivative of the discretized func-
tional Jγ,h(uh). Next, from Proposition 2.1.5 we have that ∇Jγ,h(uh)vh := J◦γ,h(uh)vh.

The second Gâteaux derivative of Jγ,h(uh) does not exist. In fact, the functional
∇Gγ,h(∇uh) is not Gâteaux differentiable since this functional involves the max
function. However, the max function is slantly differentiable when defined in finite
dimensional spaces (see Example 2.1.6). Thus, we can calculate the slant derivative

of ∇Gγ,h(∇uh), denoted by
◦
∇Gγ,h(∇uh), as follows.

|∇u| ≥ g
γ : Here, we have that

◦
∇Gγ,h(∇uh)(vh, wh) = g

∫

Aγ,h

γ(∇vh · ∇wh)

max(g, γ|∇uh|)
dx

− g
∫

Aγ,h

χAγ,h
(x) · γ(∇uh · ∇wh)

(max(g, γ|∇uh|))2|∇uh|
γ(∇uh · ∇vh) dx

= g
∫

Aγ,h

γ(∇vh · ∇wh)

γ|∇uh|
dx

− g
∫

Aγ,h

γ2(∇uh · ∇wh)(∇uh · ∇vh)

(γ|∇uh|))2|∇uh|
dx

= g
∫

Aγ,h

(∇vh · ∇wh)

|∇uh|
dx

− g
∫

Aγ,h

(∇uh · ∇wh)(∇uh · ∇vh)

|∇uh|3
dx,

13



where χAγ,h
is the slant derivative of function max(g, γ|∇uh|).

|∇u| < g
γ : Here, we have that

◦
∇Gγ,h(∇uh)(vh, wh) = g

∫

Ωh\Aγ,h

γ(∇vh · ∇wh)

max(g, γ|∇uh|)
dx

− g
∫

Ωh\Aγ,h

χAγ,h
(x) · γ(∇uh · ∇wh)

(max(g, γ|∇uh|))2|∇uh|
γ(∇uh · ∇vh) dx

= g
∫

Ωh\Aγ,h

γ(∇vh · ∇wh)

g
dx

=
∫

Ωh\Aγ,h

γ(∇vh · ∇wh) dx.

Then, the slant derivative of ∇Gγ,h(∇uh) reads as follows

◦
∇Gγ,h(uh)(vh, wh) =

∫

Aγ,h

g
(∇vh · ∇wh)

|∇uh|
−

∫

Aγ,h

g
(∇uh · ∇vh)(∇uh · ∇wh)

|∇uh|3

+
∫

Ωh\Aγ,h

γ(∇vh · ∇wh), ∀vh, wh ∈ V0
h .

(2.19)

On the other hand, from (2.9) we have that

∇2Fh(uh)(vh, wh) =
∫

Ωh

|∇uh|p−2∇vh · ∇wh

+(p − 2)
∫

Ωh

|∇u2|p−4(∇uh · ∇vh)(∇uh · ∇wh), ∀vh, wh ∈ V0
h .

(2.20)
Hence, from (2.18), we obtain the slant derivative of ∇Jγ,h(uh)

⊤vh as follows

◦
∇J(uh)(vh, wh) = ∇2Fh(uh)(vh · wh)

+
◦
∇Gγ,h(∇uh)(vh · wh) ∀vh, wh ∈ V0

h ,
(2.21)
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which, thanks to (2.19), (2.20) and (2.21), yields that

◦
∇J(uh)(vh, wh)=

∫

Ωh

|∇uh|p−2∇vh∇wh dx

+(p − 2)
∫

Ωh

|∇uh|p−4(∇uh · ∇vh)(∇uh · ∇wh) dx

+
∫

Aγ

g
(∇vh · ∇wh)

|∇uh|
dx −

∫

Aγ

g
∇uh · ∇vh(∇uh · ∇wh)

|∇uh|3
dx

+
∫

Ωk−1\Aγ

γ(∇vh · ∇wh) dx, ∀vh, wh ∈ V0
h .

(2.22)
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Chapter 3

Multigrid Methods

In this chapter we present the multgrid (MG) methods for solving discretized partial
differential equations. This methods constitutes the basis of the multigrid optimiza-
tion algorithm that will be applied in the development of this thesis. As the name
implies, in the multigrid methods we work with problems discretized in different
grids or meshes of several sizes. The method involves the application of an iter-
ative method for solving the discrete partial differential equation. Then, the two
main ideas of the algorithm is to take advantage of the smoothing effect that sev-
eral iterative methods have on the error of an approximated solution and, using the
size of the grids, to approximate this smooth error on a coarse grid in order to cor-
rect quantities. In what follows we explain these two considerations introducing
the multigrid method for the discretized Poisson problem with Dirichlet boundary
conditions.

−∆huh(x, y) = fh(x, y) in Ωh

uh(x, y) = gh(x, y) on ∂Ωh

(3.1)

where Ω ⊂ R
2, h = 1

n , with n ∈ N.

There is a wide range of iterative methods to solve this particular problem, we
can enumerate the Gauss-Seidel, Jacobi, Conjugate gradient and SOR methods among
others. Let us denote by IM (Iteration Method) the iteration formula of any method
and ul

h the aproximation of uh(xi, yj) at iteration l. Then, we have

ul+1
h (xi, yj) = IM(ul

h(xi, yj), fh)

where (xi, yj) ∈ Ωh. If we apply the previous equation to the Poisson problem a
few times, the error of the aproximation vl

h(xi, yj) = uh(xi, yj)− ul
h(xi, yj) becomes

smooth. Hence, the iteration formula can be interpreted as an error averaging pro-
cess. Classical iterative methods have the property of smoothing the error for dis-
crete elliptic problems [29, Sec 1.5]. The second main property of the multigrid ap-
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proach consists in approximating the error on a coarse grid, this procedure is less
expensive due to the fact that we have fewer grid points. It is called the coarse grid

correction procedure.

Let us illustrate the smoothing process and the coarse grid principle by looking
at the error vh(x, y). Since it is a function of x and y we can rewrite it as follows:

vh(x, y) =
n−1

∑
k,m=1

αk,m sin kπx sin mπy. (3.2)

Here, the functions

ϕk,m
h (x, y) = sin kπx sin mπy (k, m = 1, · · · , n − 1) (3.3)

are the discrete eigenfunctions of the discrete operator ∆h. Then, the error has high
frequency and low frequency components. We call high frequency components to
the following functions:

αk,m sin kπx sin mπy with k or m large (3.4)

and low frequency components to

αk,m sin kπx sin mπy with k or m small (3.5)

The error becomes smooth because the high frequency components become small
after some iterations steps of the iterative method. On the other hand, the low fre-
quency components hardly change.

The coarse grid principle is explained as follows: let us consider the Poisson
problem on a grid Ωh with mesh size h = 1

n . Since we have to approximate the error
on a coarse grid, we consider the coarser grid ΩH with mesh size H = 2h, which
is always used in the multigrid framework. Then, we observe that the following
eigenfunctions coincide on ΩH in the following sense [29, Sec. 1.5.2]:

ϕk,m(x, y) = −ϕn−k,m(x, y) = −ϕk,n−m(x, y) = ϕn−k,n−m(x, y) for (x, y) ∈ Ω2h.

Then, the previous eigenfunctions cannot be distinguished on ΩH. Thus, we can
redefine the components of the error as follows:

• low frequency if max(k, m) < n
2 ,

• high frequency if n
2 ≤ max(k, m) < n.

For k or m = n
2 , the components ϕk,m vanish on Ω2h. Then, we can approximate the
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error on a coarser grid.

3.1 Multigrid for differential problems

3.1.1 Two-grid scheme

In what follows we present the multigrid algorithm for solving the Poisson problem
(3.1), we introduce the smoothing procedure and the coarse grid correction prici-
ples as the fundamental ideas inside the multigrid approach. In order to illustrate
the method we work with two grids and use the matrix notation Ah instead of the
operator −∆h with the Dirichlet boundary coditions. For simplicity, we drop the
dependence of the pair (xi, yj). Then we have the system

Ahuh = fh. (3.6)

Using an iterative method with a smoothing property we have, after a few (ν1) iter-
ations of the method, an approximated solution uν1

h . The error is denoted by

vh = uh − uν1
h

and the residual is given by
rh = fh − Ahuν1

h . (3.7)

Then, we have the residual equation

Ahvh = rh. (3.8)

Since uh = uν1
h + vh, the residual equation (3.8) is equivalent to (3.6), however, vh

and rh are smooth. Then, without any important loss of information, vh can be
approximated on a coarse level as the solution of a coarse problem defined by

AHvH = rH, (3.9)

where H = 2h is the size of the coarse mesh. As we can see from the previous
system, we need to redefine the residual in the coarser mesh. Thus, we introduce
the fine-to-coarse grid transfer operator IH

h , which is a restriction operator that transfers
information from the fine grid to the coarser one. Then we have that rH = IH

h rh. On
the other hand, AH corresponds to the −∆H operator discretized on the mesh with
size H. If we solve system (3.9) we obtain vH, which can be seen as an approximation
of vh on a coarse grid, i.e., an smooth approximation of the error of the solution in
a coarse grid. Hence, we can interpolate this correction to the fine grid through
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the coarse-to-fine grid transfer operator Ih
H. Since we have that uh = uν1

h + vh, we can
update the solution and compute a new approximation as follows

unew
h = uν1

h + Ih
Hvh. (3.10)

Taking into account the previous disscusion, we present the twogrid algorithm. Let
us recall that the application of any iterative method (with smoothing properties) to
solve problem (3.9) is denoted by ul

h = IM(ul−1
h , fh). In the literature, it is usual to

denote this smothing procedure as ul
h = S(ul−1

h , fh). Finally, the two-grid algorithm
reads as follows:

Algorithm 1 Two-grid method for solving Ahuh = fh.

Pre-smoothing
• Compute uν1

h applying ν1 iterations of an iterative method:

uℓ
h = IM(uℓ−1

k , fh), ℓ = 1, . . . , ν1.

Coarse-grid correction
• Computation of the residual: rh = fh − Ahuν1

h

• Restrict: rH = IH
h rh.

• Solve: AHvH = rH on ΩH.

• Interpolate the correction: v̂h = Ih
HvH.

• Compute the corrected approximation: uν1+1
h = uν1

h + v̂h.
Post-optimization

• Apply ν2 iterations of an iterative algorithm:

ul
h = IM(ul−1

h , fh), ℓ = ν1 + 2, . . . , ν1 + ν2 + 1.

In the coarse-grid correction procedure, when interpolating the correction v̂h =

Ih
HvH, the procedure may introduce some errors. Then, it is necessary to apply ν2

iterations of the smoothing process.

3.1.2 Multigrid scheme

The two-grid method corresponds to the basis of the multigrid, MG, algorithm.
However, the two-grid scheme is not widespread used in practice due to the fact
that the coarse problem is still very large. Even more, there is no need to solve
the coarse system (3.9) exactly. Since the residual equation in the coarse space has
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the same form as system (3.6), we can use an approximation to vH. The idea of
the multigrid algorithm is to apply the two-grid scheme in order to determine an
approximation to vH. This means that we have to introduce an even coarser grid
and coarser problem. In the multigrid algorithm, the previous idea is applied recur-
sively until an specific coarsest grid, where the residual equation is solved by any
method (even a direct method) because it is inexpensive to solve in the few points
of the coarsest grid.

In order to present the multigrid algorithm, we first need to introduce a sequence
of partitions {Ωk}k=0,...,m of Ωh such that the mesh size of the grids satisfies that
hk =

1
2 hk−1. Then, Ω0 corresponds to the coarsest grid and Ωm is the finest one. Also,

the multigrid approach involves several auxiliary operators. As we are working
with a set of meshes and the algorithm runs at each level of discretization, we need
to transfer information among the different grids. Hence, we introduce the fine-

to-coarse grid transfer operator, Ik−1
k , and the coarse-to-fine grid transfer operator, Ik

k−1.
Given a coarse mesh denoted by Ωk−1, we can obtain a finer mesh Ωk by regular
subdivision. As the name implies, the coarse-to-fine grid transfer operator transfers
information from the coarse mesh Ωk to the finer mesh Ωk−1. It is also called the
prolongation operator. The fine-to-coarse grid transfer operator or restriction operator
transfers information from the fine grid to the coarser one. Once we have introduced
the auxiliary operators we are ready to introduce the multigrid algorithm.
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Algorithm 2 Multigrid algorithm for solving Akuk = fk.

If k = 0, solve Akuk = fk directly.
Pre-smoothing

• Compute uν1
k applying ν1 iterations of an iterative method:

uℓ
k = IM(uℓ−1

k , fh), ℓ = 1, . . . , ν1.

Coarse-grid correction
• Computation of the residual: rk = fk − Akuν1

k

• Restrict: rk−1 = Ik−1
k rk.

Compute an approximated solution vk−1 of the residual equation

Ak−1vk−1 = rk−1

on Ωk−1 by performing k-grid cycles as follows:

• Set vk−1 = 0

• Call γ times the MG scheme to solve Ak−1vk−1 = rk−1.

• Interpolate the correction: vk = Ik
k−1vk−1.

• Compute the corrected approximation: uν1+1
k = uν1

k + vk.

Post-optimization
• Apply ν2 iterations of an iterative algorithm:

ul
k = IM(ul−1

k , fh), ℓ = ν1 + 2, . . . , ν1 + ν2 + 1.

In the multigrid scheme we introduce the cycle index γ, which corresponds to
the number of times the multigrid scheme is applied to obtain a good aproximation
to the solution of Ak−1vk−1 = rk−1. When γ = 1 the multigrid scheme is called
V-cycle, in the case γ = 2 we refer it as the W-cycle (see Figure 3.1).

Figure 3.1: MG scheme with four grids. Left: γ = 1, right: γ = 2 [29, Sec. 2.4].
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3.1.3 Full multigrid scheme

The main idea of the full multigrid, FMG, scheme is to provide a good initial ap-
proximation at each level k of discretization, i.e., at each grid Ωk, we start with a
good approximation. Given a discrete problem, the FMG scheme uses nested itera-
tions starting from a coarse grid, at this level, since we have few points in the grid,
we can inexpensively solve the discrete problem. Then, the algorithm interpolates
this solution to the next finer grid. The interpolated solution corresponds to the first
guess at this new level. The algorithm repeats this process up to a certain finest
grid. It is important to recall that, at each level of discretization, we perform a few,
r, cycles of the MG scheme. The structure of the FMG is presented in Figure 3.2.

Figure 3.2: FMG scheme with r = 1 and γ = 1 [29, Sec. 2.6].

As we can see from Figure 3.2, the FMG scheme involves an interpolator oper-
ator that will be denoted by Πk

k−1, generally speaking, this operator is of a higher
accuracy than the operator Ik

k−1. However, if no such accuracy is needed, one can
use the coarse-to-fine grid transfer operator, Ik

k−1. In what follows we present the FMG
algorithm.

Algorithm 3 Full multigrid algorithm for solving Akuk = fk.

For k = 0, solve Akuk = fk, providing uFMG
k = u0.

For k = 1, 2, · · · , m:

• u0
k := Πk

k−1uFMG
k−1

• Apply r times MG γ-cycles to solve Akuk = fk initialized with u0
k.

• uk = uFMG
k .
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3.1.4 Multigrid methods for nonlinear problems, FAS scheme

The multigrid algorithm can also be applied to nonlinear problems. The most com-
mon multigrid algorithm in the nonlinear framework is the full approximation scheme,
FAS [3]. The structure of this algorithm constitutes the basis for the multigrid opti-
mization method and other advanced multigrid techniques [29, Sec. 5.3.7]. In what
follows we briefly present the FAS idea for solving the nonlinear differential equa-
tion:

Nk(uk) = fk, (3.11)

where Nh(·) is a discrete nonlinear differential operator. At the starting point of
the FAS algorithm we apply a few times a nonlinear iterative method (or a relax-
ation type method [29, Sec 5.3.2]), for solving problem (3.11). As we know from the
previous sections, this procedure corresponds to the smoothing process of the error
and it is denoted by uk = IM(uk, f ). Since we apply this process only a few times
we obtain an approximated solution ũk. Thus, the desired solution uk is given by
uk = ũk + vk, where vk is the error at level k. Hence, we rewrite the problem as
follows.

Nk(ũk + vk) = fk.

If we define the residual as rk = fk − Nk(ũk), we can write the correction equation in
the following way.

Nk(ũk + vk)− Nk(ũk) = rk. (3.12)

Now, let’s represent ũk + vk on the coarse grid in terms of the coarse-grid variable

ûk−1 := Îk−1
k ũk + vk−1.

Here, in contrast to the multigrid scheme, we perform a restriction procedure
of the approximated solution ũk through the operator Îk−1

k . This operator may be
different from Ik−1

k [29, Sec. 5.3.4]. In the same way, we formulate equation (3.12)
on the coarse level by replacing Nk(·) by Nk−1(·), ũk by Ik−1

k ũk, and rk by Ik−1
k rk =

Ik−1
k ( fk − Nk(ũk)). Finally, we get the FAS equation:

Nk−1(ûk−1) = Ik−1
k ( fk − Nk(ũk)) + Nk−1(Ik−1

k ũk). (3.13)

This equation can be rewritten as follows

Nk−1(ûk−1) = Ik−1
k fk + τk−1

k ,

where
τk−1

k = Nk−1(Ik−1
k ũk)− Ik−1

k Nk(ũk),
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this term is called fine-to-coarse residual correction. Then, a simple but important fact
is that the fine grid is now used as a mechanism for calculating the correction τk−1

k to
the FAS equation. The next step consists in the coarse-grid correction: the interpola-
tion Ik

k−1ûk−1 introduces errors of the full solution ûk−1 instead of only the error vk−1

as in the multigrid scheme. For this reason, the following coarse-grid correction is
used

uk = ũk + Ik
k−1(ûk−1 − Ik−1

k ũk).

Algorithm 4 FAS scheme for solving Nk(uk) = fk

if k = 0 then
solve Nk(uk) = fk directly.

end if
Pre-smoothing steps:
ul

k = S(ul−1
k , fk), for l =, 1, · · · , ν1.

Coarse grid correction:

• Computation of the residual: rk = fk − Nkuν1
k .

• Restriction of the residual: rk−1 = Ik−1
k rk.

• Set uk−1 = Ik−1
k u

(ν1)
k .

• Set fk−1 = rk−1 + Nk−1(uk−1).

• Call γ̂ times the FAS scheme to solve Nk−1(uk−1) = fk−1.

• Compute the corrected approximation: uν1+1
k = u

(ν1)
k + Ik

k−1(uk−1 −
Ik−1
k u

(ν1)
k ).

Post-smoothing steps on the fine grid:
u
(l)
k = S(u

(l−1)
k , fk), for l = ν1 + 2, · · · , ν1 + ν2 + 1.

For further details of the FAS scheme we refer the reader see [3]. Considering
the scheme of the FAS method, in the next chapter we introduce the multigrid opti-
mization, MG/OPT algorithm.
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Chapter 4

Multigrid for optimization problems,
MG/OPT

In this chapter, we present the multigrid optimization (MG/OPT) algorithm for
solving the discretized and regularized optimization problem (2.12). The MG/OPT
method corresponds to a nonlinear programming adaptation of the full approxima-

tion scheme, FAS (see [3, 29]). The multigrid subproblems arising from the differ-
ent discretization levels are nonlinear optimization problems [23]. The MG/OPT
method was introduced as an efficient tool for large scale optmization problems (see
[25, 23]). In fact, the idea of the algorithm is to take advantage of the solutions of
problems discretized in coarse meshes to compute search directions for finer prob-
lems. The efficient resolution of coarse problems provide a way to calculate search
directions for large optimization problems.

4.1 Transfer operators

In order to present the algorithm, we shall introduce the following preliminaries.
Let {Ωk}k=0,...,m be a sequence of partitions of Ωh. As usual, Ωk is obtained from
Ωk−1 by a regular subdivision: the procedure joins the edge midpoints of any tri-
angle in mesh Ωk−1 by edges, and forms the new triangles of Ωk (see Figure 4.1).
This procedure guarantees that the discretization parameters hk and hk−1 satisfy
that hk = 1

2 hk−1. Then we have that Ωk−1 ⊂ Ωk. Furthermore, let V0
k be the FEM

space associated to Ωk, we have that V0
k−1 ⊂ V0

k , for k = 1, . . . , m (see, for instance,
[2, 13, 22]).
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Figure 4.1: Regular subdivision of meshes (from left to right): Ω0, Ω1 and Ω2.

In this work we use the mesh data structure and the transfer operators presented
in [13, Ch. 6, Ch. 13] to implement the operators Ik−1

k and Ik
k−1. This data structure

describes the linear Lagrange triangles of a mesh and allows us to recover the in-
dex of a given node and identify its node parents in any mesh created by regular
subdivision. Taking this into account, we are ready to introduce the transfer oper-
ators. For the coarse-to-fine grid transfer operador, Ik

k−1, let denote ~vk−1 as the vector
containing the nodal values of a piecewise linear function on Ωk−1. The idea of this
operator is to obtain the vector ~vk that contains the nodal values of the piecewise
linear function on Ωk. Let us illustrate the procedure in a single triangle. Suppose
that we have the nodal values of its three nodes. If we refine it we obtain four trian-
gles and six nodes as is shown in Figure 4.2. In order to obtain the nodal values of
the midpoints with indexes 4, 5 and 6, we compute the average of the extreme nodes
values. For instance, the value of the node with index 4 is the average of the nodal
values with indexes 1 and 2. This procedure is repeated for all the midpoints on the
finer mesh Ωk

Figure 4.2: Refinement of a single triangle

Due to the fact that each node in Ωk either belongs to Ωk−1 or is the midpoint
of an edge in Ωk−1, the transfer algorithm computes the vector of nodal values for
inner and boundary nodes denoted by v̌k on Ωk. At the end, the algorithm extracts
the components corresponding to the boundary nodes to obtain ~vk.
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Next, we present the algorithm to compute ~vk. Let Nk be the vector that contains
the indices of nodes in Ωk that are not in Ωk−1.

Algorithm 5 Coarse-to-fine grid transfer operador Ik
k−1

1. Copy the components of ~vk−1 that corresponds to the components of v̌k.

2. For i ∈ Nk do

(v̌k)i =
1
2

(
(v̌k)iend1

+ (v̌k)iend2

)
.

3. Extract the components of v̌k corresponding to the boundary nodes and finally
obtain ~vk, (the inner nodes of v̌k).

Here iend1
and iend2 denote the indices of the endpoints of the edge in Ωk−1 of

which (v̌k)i is the midpoint.

For the fine-to-coarse grid transfer operador, Ik−1
k , let us recall that the vector ~vk

contains the nodal values of a piecewise linear function on Ωk. Then, the vector
with the nodal values of a piecewise linear function associated to the indices in Nk

will be denoted as v̌k. In this case, we perform the inverse procedure than the stated
before. We present the following algorithm in orer to illustrate it.

Algorithm 6 Fine-to-coarse grid transfer operador Ik−1
k

1. Copy the components of ~vk that corresponds to the components of v̌k.

2. Initialize to zero the other components of v̌k.

3. For i ∈ Nk do

(v̌k)iend1
=

1
2
(v̌k)i ,

(v̌k)iend2
=

1
2
(v̌k)i ,

4. Extract the components of v̌k corresponding to the nodes in Ωk−1, except the
boundary nodes, to obtain ~vk−1.

The mesh data structure implemented allows us to copy and extract nodes from
any specific discretization. We refer the reader to see [13, Ch. 13, sec. 13.2.1] for a
detailed explanation of the transfer operators.
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In multigrid schemes is standard to assume that

Ik−1
k = c

(
Ik
k−1

)T
,

where c is a constant. In our case, the restriction and prolongation operators satisfy
the condition (see [13, Sec. 13.2.1, p. 294])

Ik−1
k =

(
Ik
k−1

)T
. (4.1)

4.2 MG/OPT Algorithm

Once we have introduced the interpolation operators, we are ready to discuss the
MG/OPT method for problem (2.12). In order to understand the link between the
FAS structure and the MG/OPT scheme, we present one iteration loop for the two-
grid optimization algorithm ([4, Sec.6]). As we are working only with two grids, the
finest grid is Ω1 and the coarsest one is denoted by Ω0. Therefore the solutions u1

and u0 correspond to the solutions in the grids Ω1 and Ω0 respectively.

In the two-grid algorithm, at the coarsest grid, k = 0, we solve

min
uk

Jγ,k(uk),

otherwise, we apply ν1 iterations of an optimization algorithm to the problem and
obtain an approximated solution uν1

1 . Consequently the desired solution u1 is given
by u1 = uν1

1 + e1, for some error e1, and the problem

min
u1

Jγ,1(u1)

is equivalent to solving ∇Jγ,1(u1) = 0. Thus, we can write the problem as follows

∇Jγ,1(u
ν1
1 + e1) = 0

or
∇Jγ,1(u

ν1
1 + e1)−∇Jγ,1(u

ν1
1 ) = −∇Jγ,1(u

ν1
1 ). (4.2)

Now, following the idea of the FAS scheme, our aim is to present this problem on
the coarsest grid. Therefore, we restrict uν1

1 + e1 to the grid Ω0 as follows

u0 = I0
1 uν1

1 + e0.

Then, we can represent (4.2) on Ω0. The main idea is to obtain the structure of
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the FAS equation (3.13) in order to take advantage of the FAS algorithm’s scheme.
Hence, we formulate equation (4.2) on the coarse level by applying the operator I0

1

to the right-hand side. The left-hand side is represented by ∇Jγ,0(·) and applying I0
1

to uν1
1 . Then, the equation reads as

∇Jγ,0(u0)−∇Jγ,0(I0
1 uν1

1 ) = −I0
1∇Jγ,1(u

ν1
1 ). (4.3)

If we denote
τ0 = ∇Jγ,0(I0

1 uν1
1 )− I0

1∇Jγ,1(u
ν1
1 ),

then we have the following equation:

∇Jγ,0(u0) = τ0. (4.4)

At this point, solving the previous equation is equivalent to solving the optimization
problem

min
u0

(Jγ,0(u0)− f⊤0 u0),

where f0 = τ0 in the grid Ω0. Suppose that the solution to the problem in the
coarsest grid is u0. Then, the next step is called the coarse-to-fine minimization step
and consists in performing a line search procedure

u1 = uν1
1 + αI1

0(u0 − I0
1 uν1

1 ). (4.5)

Where α is the step size and the descent direction is I1
0(u0 − I0

1 uν1
1 ). In the last step we

apply ν2 iterations of an optimization algorithm to the original problem inicialized
with u1. Finally, we obtain uν1+ν2+1

1 . At this point, we can compare the scheme
presented with the FAS algorithm. An important but simple fact is that MG/OPT
algorithm is a programming adaptation of the FAS scheme.

Once we have introduced the algorithm for two grids we first make some com-
ments before introducing the multigrid algorithm. MG/OPT is related to different
optimization techniques ranging from the gradient method to quasi Newton meth-
ods to solve the problems at each level. The multigrid for optimization approach
makes minimal requests about the underlying optimization algorithm. However, it
is important to highlight that at each level of discretization we need to find an esti-
mated solution for the minimization subproblem. Then, the election of the underly-
ing optimization algorithm is not trivial and depends on the inner characteristics of
the optimization problem. As our goal is to solve problem (2.12), we use a class of
descent algorithms as the underlying algorithm. This choice was made based on the
structure of problem (2.12). As the p - Laplacian is involved in the functional, we
have to consider that its finite element approximation derives in a highly nonlinear
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and degenerate finite dimensional problem [16]. Also, the functional Jγ,h involves a
semismooth regular function. Then, the class of descent algorithms chosen is suit-
able to deal with this issue. As we mentioned before, the main idea of the MG/OPT
algorithm is to use coarse problems to generate, recursively, search directions for
finer problems. Then, a line search procedure, along with the underlying opimiza-
tion algorithm is used to improve the solution on each level of discretization.

In what follows we present the MG/OPT algorithm. The underlying optimiza-
tion algorithm will be denoted by Sopt inside the multigrid approach. The initial
discretized problem is given on the finest grid. To facilitate the implementation of
the algorithm, the MG/OPT scheme is presented in a recursive formulation. Hence,
we introduce the following slightly different notation for the optimization problem

min
uk

(
Ĵγ,k(uk)− f⊤k uk

)
.

We set fk = 0 at the finest level k = m. Ĵγ,k corresponds to the functional Jγ dis-
cretized at each level k = 1, . . . , m. Summarizing, the algorithm is presented as
follows.
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Algorithm 7 MG/OPT recursive(ν1, ν2).

if k = 0 then, solve minuk

(
Ĵγ,k(uk)− f⊤k uk

)
and return.

end if
Otherwise, k > 0.
Pre-optimization: Apply ν1 iterations of the optimization algorithm to the prob-
lem at level k.

uℓ
k = Sopt(u

ℓ−1
k ), ℓ = 1, . . . , ν1.

Coarse-grid correction.
• Restrict: uν1

k−1 = Ik−1
k uν1

k .

• Compute the fine-to-coarse gradient correction:

τk−1 := ∇ Ĵγ,k−1(u
ν1
k−1)− Ik−1

k ∇ Ĵγ,k(u
ν1
k ).

• Define fk−1 := Ik−1
k fk + τk−1 and apply one cycle of MGOPT(ν1, ν2) to

min
uk−1

(
Ĵγ,k−1(uk−1)− f⊤k−1uk−1

)

to obtain ũk−1.
Coarse-to-fine minimization.

• Prolongate error: e := Ik
k−1(ũk−1 − uν1

k−1).

• Line search in e direction to obtain a step size αk.

• Calculate the coarse-to-fine minimization step: uν1+1
k = uν1

k + αke.

Post-optimization: Apply ν2 iterations of the optimization algorithm to the prob-
lem at level k.

uℓ
k = Sopt(u

ℓ−1
k ), ℓ = ν1 + 2, . . . , ν1 + ν2 + 1.

The algorithm presented above contemplates one iteration of a V-cycle initialized
with a rough estimate of the solution on the finest grid.

4.3 Convergence Analysis

In this section, we discuss the convergence properties of Algorithm 7. Following
[23, 25], we can state that the global convergence of the underlying optimization
algorithm ensures global convergence of the MG/OPT method. This comes from the
fact that if we have an approximated solution (given by the underlying optimization
algorithm) at each discretization level, the algorithm generates search directions for
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problems discretized in finer meshes. Once we have the descent direction, a line
search procedure is used to improve the solution at each finer problem.

In the classic convergence analysis of the MG/OPT methods [23, 25, 4], the three
following conditions are critical.

1. The optimization problem keeps the convexity property at each level of dis-
cretization.

2. The subproblems
min
uk−1

(
Ĵγ,k−1(uk−1)− f⊤k−1uk−1

)
(4.6)

are solved accurately enough.

3. The transfer operators satisfy the standard condition Ik−1
k = c

(
Ik
k−1

)T
.

These last conditions are helpful to prove that the search direction provided by the
MG/OPT algorithm is indeed a descent direction, i.e., e satisfies that ∇Jγ,k(uk)

⊤e <

0, ∀k = 0, · · ·m. Further, the convexity condition is key to prove that the Hessian
is positive definite. However, in our case, the usual Hessian does not exists. We will
use the slantly differentiability of the functional Jγ,h to perform our convergence
analysis.

Next, we state some comments about the previous conditions in our problem.
The coarse grids subproblems correspond to the discrete optimization problem over
the nested spaces V0

k−1 ⊂ V0
k . Hence, the inclusion preserves the convexity of the

subproblems.

Since we perform a few iterations of a suitable globally convergent optimization
algorithm (Sopt), we ensure that the subproblems minuk−1

(
Ĵγ,k−1(uk−1)− f⊤k−1uk−1

)

are solved accurately enough. Finally, (4.24) yields that Ik−1
k =

(
Ik
k−1

)T
.

Let us recall that the descent direction for the MG/OPT algorithm is denoted
by e and search directions of the underlying optimization algorithm, (inside the
MG/OPT loop) are denoted by wk.

Once we have discussed the convergence conditions, we introduce the following
theorem of convergence for the MG/OPT Algorithm 7.

THEOREM 4.3.1. Suppose that the following hypothesis are satisfied:

• The optimization algorithm, Sopt, applied to an optimization problem of any

resolution, is globally convergent, i.e.,

lim
k→∞

‖∇Jγ,h(uk)‖ = 0. (4.7)
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• At least one of the parameters ν1 or ν2 is positive.

• The search direction e = Ik
k−1(ũk−1 − uν1

k−1) is a descent direction.

Then, MG/OPT algorithm is globally convergent in the same sense than (4.7).

Proof. The global convergence of the underlying optimization algorithm ensures the
global convergence of MG/OPT since the approximated solution given at each level
improves at every cycle of the multigrid optimization algorithm. Hence, we need
to guarantee that the direction e, provided by the MG/OPT algorithm, is a descent
direction. i.e., we have to prove that

∇Jγ,k(u
ν1
k )⊤e < 0, ∀ k = 0, · · ·m. (4.8)

From this point, for the sake of readiness of the proof, we drop the subscript γ. First
note that, if we solve

min
uk−1

(
Jk−1(uk−1)− τ⊤

k−1uk−1

)

exactly, then
∇Jk−1(ũk−1)− τk−1 = 0.

Since we are solving the problem approximately (or accurately enough), then we
have that

∇Jk−1(ũk−1)− τk−1 = z, (4.9)

for some z as small as the algorithm accuracy allows us. From Algorithm 3 we have
that

τk−1 := ∇Jk−1(u
ν1
k−1)− Ik−1

k ∇Jk(u
ν1
k ).

Hence, we can rewrite (4.9) as follows

∇Jk−1(ũk−1) = ∇Jk−1(u
ν1
k−1)− Ik−1

k ∇Jk(u
ν1
k ) + z. (4.10)

Thus, from (4.10) we have that

∇Jk(u
ν1
k )⊤e = ∇Jk(u

ν1
k )⊤ Ik

k−1(ũk−1 − uν1
k−1)

= ∇Jk(u
ν1
k )⊤(Ik−1

k )⊤(ũk−1 − uν1
k−1)

= (Ik−1
k ∇Jk(u

ν1
k ))⊤(ũk−1 − uν1

k−1)

= (∇Jk−1(u
ν1
k−1)−∇Jk−1(ũk−1) + z)⊤(wk−1)

= (∇Jk−1(u
ν1
k−1)−∇Jk−1(ũk−1))

⊤(wk−1) + z⊤wk−1,

(4.11)

where
wk−1 = ũk−1 − uν1

k−1.

33



Next, let us focus on the two first terms in the right-hand side of (4.11).

(∇Jk−1(u
ν1
k−1)−∇Jk−1(ũk−1))

⊤wk−1 = ∇Jk−1(u
ν1
k−1)

⊤wk−1 −∇Jk−1(ũk−1)
⊤wk−1.

(4.12)
We know, from Proposition 2.2.3, that ∇Jk−1 is slantly differentiable. Thus, Theorem
2.1.9 and Proposition 2.1.5 allow us to state that

−(∇Jk−1(u
ν1
k−1)−∇Jk−1(ũk−1))

⊤wk−1 = (∇Jk−1(ũk−1)−∇Jk−1(u
ν1
k−1))

⊤wk−1

=
◦
∇Jk−1(ũk−1)(wk−1, wk−1),

(4.13)

where
◦
∇Jk−1(ũk−1) is given by (2.14). Furthermore, following the decompostition

presented in (2.21), we know that

◦
∇Jk−1(ũk−1)(wk−1, wk−1) = ∇2Fk−1(ũk−1)(wk−1, wk−1)+

◦
∇Gk−1(ũk−1)(wk−1, wk−1),

(4.14)
It is well known that F is a strictly convex functional, which implies that ([5, 2, 11,
12])

∇2Fk−1(ũk−1)(wk−1, wk−1) ≥ 0, ∀wk−1 ∈ V0
k−1 \ {0}. (4.15)

Next, let us recall the expression
◦
∇Gk−1(ũk−1)(wk−1, wk−1) given by

◦
∇Gk−1(ũk−1)(wk−1, wk−1) =

∫

Aγ,h

g
(∇wk−1 · ∇wk−1)

|∇ũk−1|
−

∫

Aγ,h

g
(∇ũk−1 · ∇wk−1)

2

|∇ũk−1|3

+
∫

Ωk−1\Aγ,h

γ(∇wk−1 · ∇wk−1), ∀wk−1 ∈ V0
k−1.

(4.16)
Applying Cauchy-Schwarz to the right hand side in (4.16), we have that

∫

Aγ

g
(∇ũk−1 · ∇wk−1)

2

|∇ũk−1|3
≤

∫

Aγ

g
|∇ũk−1|2|∇wk−1|2

|∇ũk−1|3

=
∫

Aγ

g
|∇wk−1|2
|∇ũk−1|

=
∫

Aγ

g
(∇wk−1 · ∇wk−1)

|∇ũk−1|
,

which implies that

(
◦
∇Gk−1(ũk−1)(wk−1, wk−1)) ≥

∫

Ωk−1\Aγ

γ(∇wk−1 · ∇wk−1) > 0, since wk−1 6= 0.

(4.17)
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Summarizing (4.13), (4.14), (4.15) and (4.17) yield that

(∇Jk−1(u
ν1
k−1)−∇Jk−1(ũk−1))wk−1 < 0. (4.18)

To check that e is a descent direction, we still need to prove that the third term of the
right hand side in (4.11) satifies that

z⊤wk−1 = z⊤(ũk−1 − uν1
k−1) < 0.

Note that ũk−1 is the solution of the problem

min
uk−1

(
Jk−1(uk−1)− τ⊤

k−1uk−1

)
.

Therefore,
Jk−1(ũk−1)− τ⊤

k−1ũk−1 < Jk−1(u
ν1
k−1)− τ⊤

k−1uν1
k−1,

which is equivalent to

Jk−1(ũk−1)− Jk−1(u
ν1
k−1) < τ⊤

k−1(ũk−1 − uν1
k−1), (4.19)

since the optimization algorithm was inicialized with uν1
k−1. Further, the functional

Jk−1 is also slantly differentiable since it is Gâteaux differentiable and, moreover
J◦k = ∇Jk (see Proposition 2.1.5). Thus, we can take its Gâteaux derivative as a
slanting function of Jk−1. Then again, from Theorem 2.1.9, we have that

(Jk−1(ũk−1)− Jk−1(u
ν1
k−1)) = ∇Jk−1(ũk−1)

⊤(wk−1). (4.20)

Hence, from the inequality (4.19) and equation (4.20) we have that

∇Jk−1(ũk−1)(wk−1) < τ⊤
k−1(ũk−1 − uν1

k−1)

= τ⊤
k−1wk−1

which implies that
∇Jk−1(ũk−1)wk−1 − τ⊤

k−1wk−1 < 0. (4.21)

Next, from (4.9) and (4.21) we obtain that

z⊤wk−1 < 0. (4.22)

Then, from (4.11), (4.18) and (4.22) we have that

∇Jk(u
ν1
k )⊤e < 0,
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and we can conclude that e is a descent direction.

Finally, if at least one of the parameters ν1 or ν2 is positive, at least one iter-
ation of the optimization algorithm is performed at every cycle of the MG/OPT.
Consequently, as the underlying optimization algorithm is globally convergent, the
multigrid optimization algorithm is globally convergent.

4.4 Implementation

4.4.1 Optimization algorithm

In this section, we briefly discuss the underlying optimization algorithms. We im-
plement the MG/OPT algorithm using two versions of the steepest descent algo-
rithm: the gradient method [26] and the preconditioned descent algorithm proposed
in [12].

Generally speaking, a descent method starts with an inicial point u0 and, with
information of first order, the algorithm finds directions that lead us to the minimum
of the objective functional. Also, the method must find the length of the step along
the choosen direction. The basic idea consists in finding αr and wr such that:

J(ur + αrwr) < J(ur), for αr > 0

in each iteration of the method. The descent direction corresponds to wk, and αk is
the length step. In other words, descent methods works by finding wk such that:

∇J(ur)
⊤wr < 0.

and the approximation of the solution, in each step, is given by:

ur+1 = ur + αrwr. (4.23)

In the gradient method, the search direction wr is determined by

wr = −∇J(ur).

On the other hand, the search direction wr of the preconditioned descent algorithm
for problem (2.10) is calculated taking into account the difficulties associated to the
structure of the p-Laplace operator . In order to deal with this issues, in [16] a pre-
conditioner is implemented for the computation of the search direction for the p-
Laplacian problem in finite dimension. In [12] a preconditioned descent algorithm
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is presented in function spaces but, for problem (2.10) .The idea of the precondi-
tioner is to determine the search direction by solving the following equation

Pr(wr, vr) = −∇J(ur)
⊤vr, ∀vr ∈ V0

h ,

where the form Pr : V0
h × V0

h → R is chosen as a variational approximation of the
p-Laplace operator. In what follows we present a general descent algorithm.

Algorithm 8 General descent algorithm

1: Initialize u0 ∈ V0
h and set r = 0.

2: for r = 1, 2, · · · do

1. if ∇J(ur) = 0 then, STOP.

2. end if

3. Find a descent direction wr.

4. Perform an efficient line search technique to obtain αr.

5. Update ur+1 := ur + αrwr and set r = r + 1.

6. end for

Global convergence discussion

The global convergence of a descent algorithm depends on the admissibility of the
search direction wr [15, Sec. 2.2.1], in the case of the preconditioned descent algo-
rithm the search direction depends on how Pr is defined.

DEFINITION 4.4.1. Admissibility of the search direction:

∇J(ur)⊤wr

‖wr‖
k→∞

−→ 0 =⇒ ‖∇J(ur)‖
k→∞

−→ 0 (4.24)

Thus, the preconditioned descent algorithm is considered and analyzed in two
separated cases, when 1 < p < 2 and p ≥ 2 because, as it is known, the behaviour
of J depends on the value of p.

Case 1 < p < 2

The 1 < p < 2 case is analyzed in function spaces, then we use the notation
J′(u) for the derivative of functional J(u). In what follows we summarize the main
results presented in [12] for proving global convergence of the preconditioned de-
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scent algorithm. First, the author introduce the following Hilbert space.

THEOREM 4.4.2. Let 1 < p < 2, ǫ > 0 and u ∈ W
1,p
0 (Ω). Then, Hu

0 (Ω) is a Hilbert

space with the inner product

(z, w)Hu
0
=

∫

Ω
(ǫ + |∇u|)p−2(∇z,∇w)dx.

Furthermore, the following inclusion holds, with continuous injections

H1
0(Ω) ⊂ Hu

0 (Ω) ⊂ W
1,p
0 (Ω).

Proof. [12, Sec. 3.1]

The preconditioned algorithm considers the function space Hû
0 (Ω), for some

suitable û ∈ W
1,p
0 (Ω) and defines the form Pr as follows.

Pr(w, v) :=
∫

Ω
(ǫ + |∇û|)p−2(∇w,∇v)).

As we mentioned before, the finite element approximation of the p- Laplacian
derives in a degenerate algebraic system then, the parameter ǫ helps to deal with
this issue when ∇û = 0.

Next, since Hû
0 (Ω) ⊂ W

1,p
0 (Ω), the author define the restriction of J′(û) to Hû

0 (Ω)

by Ĵ′(û) and states that

〈
Ĵ′(u), v

〉
Hû∗

0 ,Hû
0
=

〈
J′(u), v

〉
W−1,p′ ,W1,p

0
∀v ∈ Hû

0 (Ω),

where Ĵ′(û) ∈ Hû
0 (Ω)∗. Then, the following variational equation is presented

∫

Ω
(ǫ + |∇û|)p−2(∇w,∇v))dx = −

〈
Ĵ′(u), v

〉
Hû∗

0 ,Hû
0

, ∀v ∈ Hû
0 (Ω) (4.25)

and the author proves the existence of a unique w in Hû
0 (Ω) ⊂ W

1,p
0 (Ω) that verifies

(4.25). With this result, the algorithm proposed finds a direction wr ∈ Hur
0 (Ω) ⊂

W
1,p
0 (Ω) by solving the following variational equation

∫
Ω
(ǫ + |∇ur|)p−2(∇wr,∇v)dx = −

〈
Ĵ′γ(ur), v

〉
Hur∗

0 ,Hur
0

= −
∫

Ω
|∇ur|p−2(∇ur,∇v)dx − gγ

∫
Ω

(∇ur,∇v)
max(g,γ|∇ur|)dx

+
∫

Ω
f vdx, ∀v ∈ Hur

0 (Ω).
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The direction found satisfy the following condition.

〈
Ĵ′γ(uk), v

〉
H

uk∗
0 ,H

uk
0

=
〈

J′γ(uk), v
〉

W−1,p′ ,W1,p
0

< 0.

Then, the search direction is a descent direction. The author, also shows the ad-
missibility of wr and thanks to this result, the global convergence of the algorithm
is also proved. In order to prove the admissibility of the search direction, the au-
thor assumes that, using interpolation theory, there exists q, 1 < p < q < 2, such
that ∪j∈N H

uj

0 (Ω) ⊂ W
1,q
0 (Ω) ⊂ W

1,p
0 (Ω). Hence, a sequence {ul} generated by

Algorithm 8 with wr given by solving (4.25), yields that {ul} ∈ ∪j∈N H
uj

0 (Ω) ⊂
W

1,q
0 (Ω) ⊂ W

1,p
0 (Ω). Furthermore, the admissibility of wr is proved by the follow-

ing result.

PROPOSITION 4.4.3. Let {ul} be the sequence generated by Algorithm 8 and suppose

that the step length αk satisfies the Wolfe-Powell conditions:

J(ur + αwr) ≤ J(ur) + σ1αr

〈
J′(ur), wr

〉
W−1,p′ ,W1,p

0
, (4.26)

〈
J′(ur + αwr), wr

〉
W−1,p′ ,W1,p

0
≥ σ2

〈
J′(ur), wr

〉
W−1,p′ ,W1,p

0
. (4.27)

Furthermore, let us suppose that exists q, 1 < p < q < 2, such that ∪j∈N H
uj

0 (Ω) ⊂
W

1,q
0 (Ω) ⊂ W

1,p
0 (Ω). Then, the Zoutendijk codition is verified, i.e.,

∞

∑
k=0

cos2φr = ∞, (4.28)

where cosφr = −
〈J′(ur),wr〉

W−1,p′ ,W1,p
0

‖J′(ur)‖
W−1,p′ ‖wr‖

W
1,p
0

.

Proof. [12, Sec.3]

The last result shows the admissibility of wr. Finally, the global convergence of
the algorithm is given by the following theorem.

THEOREM 4.4.4. Let {ur} be the sequence generated by Algorithm 8 and suppose that

the step lenght αr satisfies the Wolfe-Powell coditions (4.26) and (4.4.3). Then, the

sequence {ur} converges to the uniquely determined global minimum of J.

Proof. [12, Sec. 3, Th. 3.8]

For a deeper analysis of the algorithm and the proofs of the previous results, see
[12] and the references cited there in.
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Case p ≥ 2

For the p ≥ 2 case, the author shows that it is not natural to construct a descent
direction in function spaces due to the structure of the problem and because there
exist regularity issues regarding the search direction. Then, it is considered that the
best solution is to analyze the problem with a ”discretize then optimize" approach.
Thus, it is proposed a preconditioned algorithm in finite dimension spaces, i.e., it is
proposed to find a search direction wr,h, for the discrete problem (2.12), by solving

∫
Ω
(∇wr,h,∇v)dx = −∇ Ĵh(ur,h)

⊤v

= −
∫

Ω
|∇ur,h|p−2(∇ur,h,∇vr)dx − gγ

∫
Ω

(∇ur,h,∇vr)
max(g,γ|∇ur,h|)dx

+
∫

Ω
f vdx, ∀v ∈ V0(Ω).

(4.29)
In this case, it is known [6] that

V0
h ⊂ W

1,p
0 (Ω) ⊂ H1

0(Ω).

Thanks to this result, one can consider Vh
0 a Hilbert space with the norm induced by

H1
0(Ω). This constitutes a key result for the existence of a unique solution wr,h ∈ V0

h

for equation (4.29). In [12] it is proved that this unique solution wr,h is an admissible
descent direction for ∇Jh(ur,h). Hence,

Pr(wr,h, vr) =
∫

Ω
(∇wr,h,∇vr)dx.

Finally, the following result is presented.

PROPOSITION 4.4.5. The equation (4.29) has a unique solution wr,h ∈ V0
h (Ω). Fur-

thermore, this solution wh
k is an admissible direction (satisfies condition (4.24)) for

∇Jh(ur,h) and satisfies

∇Jh(ur)
⊤wr,h < 0, ∀r ∈ N.

Proof. [12, Sec. 3.2]

With this last result the author concludes that the algorithm is globally conver-
gent.

We have summarized the main results presented in [12]. As it was discussed
above, the analysis of the search direction for the 1 < p < 2 case was carried out
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in function spaces and for p ≥ 2 it was analyzed with a ”discretize then optimize"
approach in finite dimension spaces. Since the multigrid optimization algorithm is
defined in finite dimension spaces, we present the preconditioned descent algorithm
in finite dimension as well. Thus, the general preconditioned descent algorithm
reads as follows.

Algorithm 9 General Preconditioned descent algorithm

1: Initialize u0 ∈ V0
h and set r = 0.

2: for r = 1, 2, · · · do

1. if ∇J(ur,h) = 0 then, STOP.

2. end if

3. Find a descent direction wr,h by solving the following equation

Pr(wr,h, v) = −∇J(ur,h)
⊤v, ∀v ∈ V0

h ,

if 1 < p < 2,

Pr(wr,h, v) =
∫

Ωh

(ǫ + |∇ur,h|)p−2∇wr,h∇v dx, ∀v ∈ V0
h ,

else if p > 2,

Pr(wr,h, v) =
∫

Ωh

∇wr,h∇v dx, ∀v ∈ V0
h ,

end.

4. Perform an efficient line search technique to obtain αr.

5. Update ur+1,h := ur,h + αrwr,h and set r = r + 1.

6. end for

For a deeper analysis of the algorithm, see [12, Sec. 3] and the references therein.

4.4.2 Line search strategy

We propose to use a line search algorithm in order to choose the steph lenght αr.
This strategy selects the step by backtracking. i.e., the procedure starts with αr = 1,
if ur+1 = ur + wr does not satisfy the descent condition on J(ur+1), the strategy is
to reduce (or backtrack) αr until ur+1 = ur + αrwr satisfies the descent condition. In
this section, we describe a line search algorithm proposed in [8, Sec. 6.3.2] which
uses polynomial models of the objective functional for backtracking.

41



First, let us introduce the following function

ϕr(α) := J(ur + αwk)

Initially, we know that

ϕr(0) = J(ur) and ϕ′
r(0) = ∇J(ur)

⊤wr. (4.30)

If we start with α = 1, we have that

ϕr(1) = J(ur + wr). (4.31)

Then, if ϕr(1) does not satisfy the descent condition

ϕr(1) > ϕr(0) + σϕ′
r(0),

the algorithm construct the backtracking function ϕr, using (4.30) and (4.31), with
the following quadratic model

m2(α) := (ϕr(1)− ϕr(0)− ϕ′
r(0))α

2 + ϕ′
r(0)α + ϕr(0).

The stationary point ᾱ2 of m2 is given by

ᾱ2 =
−ϕ′

r(0)
2(ϕr(1)− ϕr(0)− ϕ′

r(0))
, (4.32)

furthermore, we have that

m′′
2 (α) = 2(ϕr(1)− ϕr(0)− ϕ′

r(0)) > 0

due to the fact that ϕr(1) > ϕr(0) + σϕ′
r(0) > ϕr(0) + ϕ′

r(0). Therefore, we can
conclude that ᾱ2 = arg min ϕr(α). Also, ᾱ2 > 0, because ϕ′

r(0) < 0. Then, we take
αr = ᾱ2.

Now, from (4.32) and since ϕr(1) > ϕr(0) + σϕ′
r(0) we have

ᾱ2 <
1

2(1 − σ)
.

In fact, if ϕr(1) ≥ ϕr(0), then ᾱ ≤ 1
2 . Hence, (4.32) gives an implicit upper bound

of ≈ 1
2 for ᾱ2 on the first backtrack. Morover, if ϕr(1) is much larger than ϕr(0), ᾱ

can be very small. Then, ϕr(α) can be poorly modeled by m2 and the steps can be
very small. Therefore, the algorithm impose a lower bound of 1

10 . Now, suppose
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that σ(ᾱ2) does not satisfy the following Wolfe-Powell condition

J(ur + αwr) ≤ J(ur) + σ∇J(ur)
⊤wk, (4.33)

then, we need to backtrack again. However, we have the following information
available ϕr(0) = J(ur), ϕ′

r(0) = ∇J(ur)⊤wr and the last two values of ϕ(α). Fol-
lowing the same previous idea, now we can model ϕ by a cubic model as follows:
let αp and α2p be the last two previous values of αr, the cubic model is given by

m3(α) := cα3 + dα2 + ϕ′
r(0)α + ϕr(0),

where

(
c

d

)
=

1
αp − α2p




1
α2

p

−1
α2

2p
−α2p

α2
p

αp

α2
2p




(
ϕr(αp)− αr(0)− α′r(0)αp

αr(α2p)− αr(0)− α′r(0)α2p.

)

The minimizer of the cubic model is given by

α̃3 =
−d +

√
d2 − 3cϕ′

r(0)
3c

(4.34)

If ϕ(αp) ≥ ϕ(0), then α̃3 <
2
3 αp, however, as this reduction is considered too small

[8], the upper bound of 0.5 is imposed, i.e. αr =
1
2 αp. Also, if α̃3 is a small fraction of

αr, once again the lower bound of 1
10 is imposed and the algorithm sets αk =

1
10 αp .
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Chapter 5

Numerical Experiments

In this section we present the application of the MG/OPT method to numerical sim-
ulation of the steady flow of viscoplastic fluids. These materials are characterized
by the existence of a yield stress [9, 12, 17]. This implies that the viscoplastic ma-
terial exhibits no deformation if the shear stress imposed does no exceed the yield
stress, i.e., it behaves as an ideal rigid solid. On the other hand, if the shear stress
overpasses the yield stress, the material will deform as a nonlinear viscous fluid in
most of the cases. In fact, Herschel - Bulkley and Casson fluids present a nonlinear
stress-shear rate relationship, while Bingham fluids behave as a viscous fluid with
linear stress-shear rate relationship (see Figure 5.1). Summarizing, the existence of
the yield stress makes the flow of these materials to present rigid zones, known as
the plug flow, and yielded zones.

Figure 5.1: Viscoplastic models
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In this work we simulate the pipe flow for the classic viscoplastic models: Herschel-
Bulkley, Bingham and Casson. The three models fit the kind of nonsmooth opti-
mization problems under study. In fact, it is well known that the velocity field of
the flow across the cross-section of a pipe can be approximated by the solution of
the following discretized minimization problem:

min
uh∈V0

h

Jh(uh) := φ(∇uh) +
∫

Ωh

ψγ(∇uh) dx −
∫

Ωh

f uh dx, (5.1)

where

φ(∇uh) =





1
p

∫

Ωh

|∇uh|p dx, for Herschel-Bulkley model

1
2

∫

Ωh

|∇uh|2 dx, for Bingham model

1
2

∫

Ωh

|∇uh|2 dx +
4
3
√

g
∫

Ωh

|∇uh|
3
2 dx, for Casson model.

In the coming numerical experiments, we present the results of the MG/OPT al-
gorithm applied to the numerical solution of (5.1). For the computations in the
MG/OPT algorithm we implement a V-cycle scheme with ν1 = ν2 = 2 as the pre
and post optimization iterations. In all algorithms the stopping criteria is fixed at a
tolerance of 10−7. We perform the numerical experiments in two types of domains:
unit square and unit circle. Also, we compare the performance of the MG/OPT algo-
rithm with the performance of the underlying optimization algorithm when solving
the same problem in the finest grid.

In the following tables we summarize the information of the different grids used
at each level k of the V-cycle implemented for the MG/OPT algorithm.

Mesh (Ωk) Nodes (nk) Elements (ne)
Ω6 8321 16384
Ω5 2113 4096
Ω4 545 1024
Ω3 145 256
Ω2 41 64
Ω1 13 16

Table 5.1: Unit circle mesh information.
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Mesh (Ωk) Nodes (nk) Elements (ne)
Ω5 4225 8192
Ω4 1089 2048
Ω3 289 512
Ω2 81 128
Ω1 25 32

Table 5.2: Unit square mesh information.

5.0.1 Herschel-Bulkley: case 1 < p < 2

Herschel-Bulkley fluids are power-law materials with plasticity. The behaviour of
these fluids depends on the value of p, which plays the role of the flow index. If
1 < p < 2 the material exhibits a pseudoplastic or shear-thinning behaviour. On
the other hand, if p > 2 the behaviour is shear-thickening (see Figure 5.1). Thanks
to this index, the power-law model has been widely used to characterize several
materials that include liquid foams, whipped cream, fluid foods, silly putty and
some polymers [?].

In the following experiments, we compute the velocity field for a Herschel-Bulkley
material for 1 < p < 2 in a pipe, considering circle and square cross sections. In
these experiments we stablished the preconditioned descent algorithm (see [12]) as
the underlying optimization algorithm Sopt. We set ǫ = 10−6.

Experiment 1

In this experiment we set the following parameters, p = 1.75 and f = 1. In Table 5.3,
each row represents one experiment. For each experiment, we present the finest and
coarsest mesh, the number of V-cycles of the MG/OPT algorithm until the stopping
tolerance is achieved, the tolerance reached and the execution time of the algorithm
i.e., the CPU time when the stopping criteria is achieved.
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g Finest m. Coarsest m. V-cycles |∇J⊤γ e| Time(s) Plug flow vel.
Ω6 Ω1 11 7.38e-07 965.49 0.0527

0.2 Ω5 Ω1 15 3.75e-07 258.9 0.0520
Ω4 Ω1 13 4.70e-07 51.2 0.0523
Ω3 Ω1 10 3.75e-07 10.04 0.0522
Ω6 Ω1 26 1.08e-07 3914.61 0.0043

0.4 Ω5 Ω1 17 3.79e-07 329.07 0.0046
Ω4 Ω1 13 7.23e-07 51.33 0.0047
Ω3 Ω1 23 5.00 e-07 24.07 0.0037

Table 5.3: Results of the resolution of problem (5.1) with p = 1.75, γ = 103 and
f = 1.

This experiment was initialized with the solution of the Poisson problem, −∆uh =

f . From Table 5.3 we can notice that the number of V-cycles is similar when solving
the problem at the different levels of discretization. In Figure 5.3 we can see the
decay of the norm |∇J⊤γ e|. It behaves typically as in a steepest descent algorithm.
However, it decays faster in the last iterations. This behaviour is inherited from the
preconditioned descent algorithm (see [12, Sec. 4.3.1]). The resulting velocity field
is displayed in Figure 5.2. The flattening of the velocity in the center of the pipe
corresponds to the plug flow velocity, where the material presents rigid zones.

Figure 5.2: Calculated velocity u for mesh
Ω6. Parameters: p = 1.75, g = 0.2, γ = 103

and ǫ = 10−6

Figure 5.3: Calculated |∇J⊤γ e| for mesh Ω6
and g = 0.2.

In Tables 5.4, 5.5, 5.6 and 5.7, we present the performance of the line search glob-
alization technique, described in Section 4.4.2, in 4 V-cycles randomly chosen for
Experiment 1. We consider g = 0.2, Ω6 as the finest mesh and Ω1 as the coarsest
one. The experiment finished after 11 V-cycles, and we perform 5 line search proce-
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dures at each cycle. Also, the second column of each table let us observe that e is,
indeed, a descent direction at each level.

Updating ∇Jγ,k(u
ν1
k )⊤e αk l.s it

Ω1 -Ω2 -1.36e-11 1 0
Ω2 -Ω3 -8.75e-09 1 0
Ω3 -Ω4 -1.20e-05 1 0
Ω4 -Ω5 -0.0013 0.2040 1
Ω5 -Ω6 -0.0108 0.2673 1

Table 5.4: Line search for V-cycle 1

Updating ∇Jγ,k(u
ν1
k )⊤e αk l.s it

Ω1 -Ω2 -1.95e-08 1 0
Ω2 -Ω3 -2.50e-05 0.2228 1
Ω3 -Ω4 -0.0012 0.0121 3
Ω4 -Ω5 -2.29e-04 0.0135 3
Ω5 -Ω6 -6.99e-05 0.0232 3

Table 5.5: Line search for V-cycle 4

Updating ∇Jγ,k(u
ν1
k )⊤e αk l.s it

Ω1 -Ω2 -1.04e-08 1 0
Ω2 -Ω3 -5.38e-06 0.2758 1
Ω3 -Ω4 -1.41e-04 0.1493 1
Ω4 -Ω5 -1.49e-04 0.0067 4
Ω5 -Ω6 -1.84e-05 0.0722 2

Table 5.6: Line search for V-cycle 7

Updating ∇Jγ,k(u
ν1
k )⊤e αk l.s it

Ω1 -Ω2 -4.47e-09 1 0
Ω2 -Ω3 -1.70e-06 1 0
Ω3 -Ω4 -8.52e-05 0.0194 2
Ω4 -Ω5 -2.44e-05 0.0119 3
Ω5 -Ω6 -7.29e-06 0.0619 2

Table 5.7: Line search for V-cycle 10
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Experiment 2: Comparison between MG/OPT and descent algorithms

In this experiment, we compare the behaviour of the MG/OPT approach versus
an optimization algorithm for solving the same problem in the finest grid. In the
MG/OPT method these optimization algorithms were used as the underlying opti-
mization algorithms as well. In the following tables we compare the CPU time and
the stopping criteria registered for solving the problem described in the previous
experiment. Once again, in Tables 5.8 and 5.9 we compare one experiment at each
row based on the election of the finest grid.

Time (s)

Mesh MG/OPT Gradient method
Ω4 196.76 -
Ω3 73.57 2883.55

Table 5.8: Time comparison, Experiment 1

|∇J⊤γ e|
Mesh MG/OPT Gradient method

Ω4 3.76e-07 -
Ω3 2.09e-07 9.92e-07

Table 5.9: Norm |∇J⊤γ e|comparison, Experiment 1.

As it was expected, it is shown that the MG/OPT performance is more efficient
than the descent gradient method. Even if the gradient algorithm is stablished as the
underlying optimization algorithm of the MG/OPT. In what follows we present the
same comparison criteria for the preconditioned descent algorithm and the multi-
grid optimization scheme.

Time (s)

Mesh MG/OPT preconditioned descent algorithm
Ω6 965.49 2146.37
Ω5 258.95 71.67
Ω4 51.23 63.11
Ω3 10.04 8.30

Table 5.10: Time comparison, Experiment 1
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|∇J⊤γ e|
Mesh MG/OPT preconditioned descent algorithm

Ω6 7.38e-07 9.35e-07
Ω5 3.75e-07 3.26e-07
Ω4 4.70e-07 9.52e-07
Ω3 3.75e-07 7.84e-07

Table 5.11: Norm |∇J⊤γ e|comparison, Experiment 1

From Tables 5.10 and 5.11 we see that the MG/OPT performs better when reach-
ing the stopping criteria in all cases. The CPU time registered and the tolerance
reached are better when working with the MG/OPT algorithm than with the pre-
conditioned descent algorithm at the finest grid Ω6. In this case, CPU time decreases
almost in half. However, we can not achieve CPU time savings in all the resolution
levels. An interesting case is shown in Table 5.10, in this case, the preconditioned de-
scent algorithm achieves the convergence tolerance in less time than the MG/OPT
algorithm when working with the finest level Ω5. However, in the bigger mesh Ω6,
which its size satisfy that h6 = 1

2 h5, we reduced the time convergence to half.

Experiment 3

In this experiment, we set p = 1.5 and f = 1. We tested the algorithm with two
different values of g. At higher values of g the plug flow zone is bigger and the
execution time of the algorithm increases. Also, as in the previous experiment, the
number of iterations is very stable as the mesh resolution is higher. This results are
shown in Table 5.12.

g Finest m. Coarsest m. V-cycles |∇J⊤γ e| Time(s) Plug flow vel.
Ω6 Ω1 5 8.28e-08 387.50 0.0428

0.1 Ω5 Ω1 5 2.46e-08 83.34 0.0427
Ω4 Ω1 3 2.68e-07 11.52 0.0427
Ω3 Ω1 4 5.45e-07 4.02 0.0422
Ω6 Ω1 7 1.29e-07 683.96 9.08e-04

0.4 Ω5 Ω1 6 1.63e-07 94.38 9.71e-04
Ω4 Ω1 8 2.57e-08 29.23 8.85e-04
Ω3 Ω1 12 3.02e-07 10.63 7.95e-04

Table 5.12: Results of the resolution of problem (5.1) with p = 1.5, γ = 103 and
f = 1.
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Figure 5.4: Calculated velocity u for mesh
Ω6. Parameters: p = 1.5, g = 0.1, γ = 103

and ǫ = 10−6
Figure 5.5: Calculated |∇Jγe| for mesh Ω6.

The resulting velocity function is displayed in Figure 5.4 for g = 0.1. Here, we
can see that the shear stress transmitted by a fluid layer decreases toward the center
of the pipe, which provokes the solid-rigid movement in that area. In Figure 5.5 the
decay of the norm |∇Jγe| is plotted in a logarithmic scale.

Experiment 4

For this experiment, we present the behaviour of the algorithm in the unit square
domain for the following parameters: p = 1.25, g = 0.2, γ = 103 and f = 3. In
Figure 5.6, we can see that in a square domain, the plug flow region is bigger due
to the complexity of the domain. In this case, we obtained better results initializing
the algorithm with an estimated solution given by one iteration of the full multigrid
(FMG) scheme (see [29, Sec. 2.6]) at all refinement levels. We denote by r the number
of MG/OPT cycles inside the FMG approach. All these results are presented in Table
5.13.

Finest mesh Coarsest mesh V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω5 Ω1 1 1 2.07e-07 101.74 0.011
Ω4 Ω1 2 1 4.83e-08 26.88 0.011
Ω3 Ω1 2 1 7.31e-08 6.88 0.010

Table 5.13: Results of the resolution of problem (5.1) with p = 1.25, g = 0.2, γ = 103

and f = 3.
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Figure 5.6: Calculated velocity u for mesh Ω5. Parameters: p = 1.25, g = 0.2, γ = 103 and f = 3

Experiment 5: Comparison between MG/OPT and descent algorithms

In this experiment, we compare the behaviour of the MG/OPT algorithm versus
the preconditioned descent algorithm for solving the same problem described in
Experiment 4, in the finest grid.

Time (s)

Mesh MG/OPT preconditioned descent algorithm
Ω5 101.74 143.53
Ω4 26.88 28.08
Ω3 6.88 8.09

Table 5.14: Time comparison, Experiment 4

|∇J⊤γ e|
Mesh MG/OPT preconditioned descent algorithm

Ω5 2.07e-07 1.38e-07
Ω4 4.83e-08 5.94e-07
Ω3 7.31e-08 7.82e-08

Table 5.15: Norm |∇J⊤γ e| comparison, Experiment 4

Tables 5.14 and 5.15 show that we have CPU time savings at all resolution levels.
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Particularly, we can see a significant reduction of time at the highest resolution level
Ω5. The time reduction with respect to the execution time of the preconditioned al-
gorithm is about of the 30%. Regarding the tolerance order achieved at the stopping
criteria, both algorithms behaves similarly, with a slight advantage of the MG/OPT
method.

5.0.2 Herschel-Bulkley: case p ≥ 2

Experiment 6

We now analyze the behaviour of the MG/OPT algorithm in the case p > 2. The
fact that p increases usually implies instabilities in the performance of the numerical
algorithms (see [5, 2, 11, 16]). Also high values of g are difficult to consider, since the
fluid presents more rigid zones along the cross section of the pipe.

Unlike the previous cases, where the MG/OPT algorithm was initialized with
the solution of the Poisson problem, in this case we initialize the MG/OPT algorithm
with an approximated solution given by the full multigrid (FMG) scheme. In the
FMG scheme we apply r MG/OPT cycles at each level of the algorithm. We set the
tolerance in 10−7 and the parameters p = 4, γ = 103 and f = 3.

g Finest m. Coarsest m. V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω5 Ω1 8 1 9.22e-07 398.47 0.258

0.2 Ω4 Ω1 31 1 3.48e-07 301.23 0.258
Ω3 Ω1 9 2 3.11e-07 21.84 0.258
Ω5 Ω1 175 2 5.59e-07 7826.02 0.153

0.4 Ω4 Ω1 51 2 1.80e-07 455.72 0.154
Ω3 Ω1 28 2 8.33e-07 58.47 0.154

Table 5.16: MG/OPT results of problem (5.1) with p = 4, γ = 103 and f = 3.

The last column of Table 5.16 helps us to test the accuracy of the algorithm when
estimating the plug flow velocity with different mesh sizes. The resulting velocity
field is displayed in Figure 5.7. Now we are in the case of a shear-thickening mate-
rial. Since the shear stress transmitted by a fluid layer decreases toward the center
of the pipe, the velocity takes a conical form. The residual presented in Figure 5.8
shows local convergence in the last iterations.
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Figure 5.7: Calculated velocity u for mesh
Ω5. Parameters: p = 4, g = 0.2, γ = 103.

Figure 5.8: Calculated |∇Jγe| for mesh Ω5.

5.0.3 Bingham

Bingham fluids are viscoplastic materials that can be seen as a particular case of the
Herschel-Bulkley model when p = 2. The main characteristic of Bingham fluids
is that when the shear stress exceeds the yield stress, the material presents a linear
stress-shear rate relationship (see Figure 5.1).

Experiment 7

The following experiment was carried out in a circular geometry representing the
cross section of a pipe, and we consider the following parameters: p = 2, γ = 103

and f = 1. In Table 5.17, we can see an example of the algorithm accuracy when
determining the plug flow velocity using different mesh sizes. When finer grids are
used, there is no difference in the plug flow velocity and we obtain a faster decay of
the norm |∇J⊤γ e|. The resulting velocity function is displayed in Figure 5.9, and we
can see the classic behaviour of these materials.

g Finest m. Coarsest m. V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω5 Ω1 94 1 4.18e-07 1723.07 0.090

0.2 Ω4 Ω1 13 1 4.96e-07 60.02 0.090
Ω3 Ω1 17 1 6.79e-07 18.64 0.089

Table 5.17: MG/OPT results for problem (5.1) with p = 2, γ = 103 and f = 1.
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Figure 5.9: Calculated velocity u for mesh Ω5. Parameters: p = 2, g = 1, γ = 103

Experiment 8

As g increases, the plug flow zone increases as well. Thus, we test the MG/OPT
algorithm with g = 1 to show this phenomenon in a square cross section. In this
experiment we fix the parameters γ = 103 and f = 10, and we set the tolerance
in 10−5. This experiment was initialized with an estimated solution given by the
FMG scheme with r MG/OPT cycles at all levels of refinement. In Figures 5.10 and
5.11 we can notice the difference of the plug flow zone when g = 1 and g = 0.2,
respectively. Also, the execution time when solving this experiment is longer when
g = 1 than g = 0.2. This fact is due to the increasing plug flow and the complexity
of the geometry.

g Finest m. Coarsest m. V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω5 Ω2 2 1 9.42e-05 152.95 0.2920

1 Ω4 Ω1 8 1 9.13e-05 85.7 0.2920
Ω3 Ω1 3 2 7.57e-05 9.4 0.2925
Ω5 Ω2 0 1 9.83e-06 56.26 0.6326

0.2 Ω4 Ω1 0 1 4.88e-05 10.87 0.6319
Ω3 Ω1 0 1 4.93e-05 9.93 0.6319

Table 5.18: MG/OPT results of problem (5.1) with p = 2, g = 1, γ = 103 and f = 10.

An interesting fact in Experiment 8 is exhibited in the fourth column of Ta-
ble 5.18 for g = 0.2. Since g is small the contribution of the less regular compo-
nent

∫
Ω

ψγ(∇u) dx of the functional decreases, therefore the plug flow zone is not
big with respect to the cross section area. Hence, the minimization problem was
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uniquely solved by one iteration of the FMG scheme, i.e., the algorithm reached the
convergence tolerance in only one iteration.

Figure 5.10: Calculated velocity u for mesh
Ω5. Parameters: p = 2, g = 1, γ = 103

Figure 5.11: Calculated velocity u for mesh
Ω5. Parameters: p = 2, g = 0.2, γ = 103

Experiment 9: Comparison between MG/OPT and Descent algorithms

In this experiment, we compare the behaviour of the MG/OPT algorithm and the
preconditioned descent algorithm when solving the same problem at the finest grid.
In Tables 5.19 and 5.20, we compare the CPU time and the stopping criteria regis-
tered for Experiment 8, with parameters p = 2, g = 1, γ = 103 and f = 10.

|∇J⊤γ e|
Mesh MG/OPT preconditioned descent algorithm

Ω5 9.42e-05 5.62e-05
Ω4 9.13e-05 9.87e-05
Ω3 7.570e-05 5.61e-05

Table 5.19: Norm |∇J⊤γ e| comparison.

Time (s)

Mesh MG/OPT preconditioned descent algorithm
Ω5 152.95 170.79
Ω4 85.7 103.44
Ω3 9.4 7.6

Table 5.20: Time comparison.
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From Tables 5.19 and 5.20, we can conclude that we can not achieve a decrease of
the norm |∇J⊤γ e| with respect to the results obtained by the preconditioned descent
algorithm. However, in almost all discretization levels, we have CPU time savings
of around the 14% with the MG/OPT algorithm with respect to the execution time
of the preconditioned descent algorithm.

5.0.4 Casson

The Casson model is a viscoplastic model that was first developed for modeling
printing inks. However, it has also been used to model food flow behaviour such as
chocolate and cocoa products [28], and has been applied to biorheology models like
hemodynamics and viscometric flows [32].

Experiment 10

In Tables 5.21 and 5.22, we present the results for the Casson fluid flow in a square
and circle cross sections, respectively . Both experiments are set with the following
parameters: γ = 103 , f = 1 and tolerance 10−7. The experiments are initialized
with a FMG approximated solution.

g Finest m. Coarsest m. V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω5 Ω2 2 2 6.59e-07 321.98 2.68e-04

0.2 Ω5 Ω1 4 2 3.23e-07 458.00 2.36e-04
Ω4 Ω1 1 2 7.50e-07 50.03 2.03e-04
Ω3 Ω1 6 2 6.066e-07 28.55 2.06e-04

Table 5.21: MG/OPT results of problem (5.1) with γ = 103 and f = 1.
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g Finest m. Coarsest m. V-cycles r |∇J⊤γ e| Time(s) Plug flow vel.
Ω6 Ω2 18 2 9.78e-07 3138.30 0.0150
Ω6 Ω1 30 2 3.25e-08 4553.74 0.0150

0.2 Ω5 Ω1 27 2 9.11e-07 829.65 0.0150
Ω4 Ω1 36 2 6.78e-07 243.84 0.0148
Ω3 Ω1 33 2 1.31e-07 56.65 0.0146
Ω6 Ω2 0 2 6.50e-07 377.85 4.91e-04
Ω6 Ω1 1 2 2.60e-07 528.69 4.79e-04

0.4 Ω5 Ω1 6 2 5.59e-07 220.84 4.89e-04
Ω4 Ω1 9 2 1.67e-07 59.43 4.85e-04
Ω3 Ω1 6 2 1.034e-07 11.04 4.54e-04

Table 5.22: MG/OPT results of problem (5.1) with γ = 103 and f = 1.

In these experiments we notice that, if we choose Ω6 as the finest mesh and
Ω2 as the coarsest one instead of Ω1, the algorithm is executed in less time for the
same amount of nodes. Moreover, for the parameter g = 0.4, the algorithm only
needs 2 iterations of the FMG scheme to reach the stopping tolerance of 10−7. This
behaviour tells us, at least experimentally, that beyond a number of grids used in
the multigrid cycles we can not achieve more CPU time savings.

Figure 5.12: Calculated velocity u for mesh
Ω6. Parameters: g = 0.2, γ = 103

Figure 5.13: Calculated velocity u for mesh
Ω6. Parameters: g = 0.2, γ = 103

Experiment 11: Comparison between MG/OPT and Descent algorithms

In this experiment, we present the results of solving the same problem at the finest
grid with the preconditioned descent algorithm and the MG/OPT algorithm. In the
following tables we compare the results from Experiment 10, with g = 0.4, based on
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the CPU time and the stopping criteria registered.

|∇J⊤γ e|
Mesh MG/OPT preconditioned descent algorithm

Ω6 − Ω2 6.50e-07 9.8e-07
Ω6 − Ω1 2.60e-07 9.8e-07

Ω5 5.59 e-07 9.77e-07
Ω4 1.67e-07 9.14e-07
Ω3 1.34e-07 9.66e-07

Table 5.23: Norm |∇J⊤γ e| comparison.

Time (s)

Mesh MG/OPT preconditioned descent algorithm
Ω6 − Ω2 337.85 2804.14
Ω6 − Ω1 528.69 2804.14

Ω5 220.84 464.57
Ω4 59.43 100.51
Ω3 11.04 19.02

Table 5.24: Time comparison.

From Table 5.24, we can conclude that at all discretization levels, we have sig-
nificant CPU time savings with the MG/OPT algorithm. The average of the time
reduction regarding to the execution time of the preconditioned descent algorithm
is about the 45% for meshes Ω5, Ω4 and Ω3. Particularly at the finest level Ω6 (with
a V-cycle with no more than five grids), the time reduction with respect to the time
of the preconditioned descent algorithm is about the 87.9%. Also, from Table 5.23,
we notice that the MG/OPT algorithm reaches smaller values for the norm |∇J⊤γ e|,
at all the refinement levels, than the preconditioned descent algorithm.
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Chapter 6

Conclusions

6.1 Conclusions and Outlook

We proposed and analyzed a multigrid for optimization (MG/OPT) algorithm for
the numerical solution of a class of quasilinear variational inequalities of the sec-
ond kind. We analyzed the variational inequality via the minimization of the as-
sociated energy functional. First, we regularized the non-differentiable part of the
energy by using a Huber regularization approach. Next, we proposed a finite el-
ement discretization for the problem, and we deeply analyzed the differentiability
of the functional. In particular, we proved that the Jacobian of the discretized func-
tional is slantly differentiable. The MG/OPT algorithm was presented and all of the
involved transfer operators analyzed. The convergence of the MG/OPT algorithm
was stablished by using the mean value theorem for slantly differentiable functions
and the global convergence of the underlying optimization algorithms. The main
issues regarding the implementation of the algorithm were explained, and we de-
scribed the type of global convergent deepest descent methods used as underlying
optimization algorithms. We showed that several classical models for viscoplastic
flow correspond to the class of variational inequalities under study. Therefore, we
focussed the numerical experiments on this kind of problems. Particularly, we com-
puted the solution for the Herschel-Bulkley, Bingham and Casson models.
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