

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA PARA PERSONAS CON CAPACIDADES ESPECIALES PARA EL INGRESO AL MUSEO DEL OBSERVATORIO ASTRONÓMICO DE QUITO DE LA EPN

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

ROBINSON MARCELO PÉREZ TULCÁN

robinson.perez@epn.edu.ec

DIRECTOR: Ing. Carlos Baldeón, MDI

carlos.baldeon@epn.edu.ec

COLABORADOR: Ing. David Benalcázar

david.benalcazarr@epn.edu.ec

JUNIO, 2017

CERTIFICACIÓN

Certifico que el presente trabajo fue TULCÁN, bajo nuestra supervisión.	desarrollado	por	ROBINSON	MARCELO	PÉREZ
				rlos Baldeón R DE PROY	
	С	OLA	Ing. D	avid Benalca	

DECLARACIÓN

Yo, **Robinson Marcelo Pérez Tulcán**, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondiente a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

Robinson Marcelo Pérez Tulcán

DEDICATORIA

A mi madre por ver nuestro esfuerzo y dedicación cumplidos con la finalización de este proyecto.

A mi hermano Daniel que me ha acompañado todos los días y estar presente en todos mis objetivos cumplidos.

A ti que toda tu vida serás mi pequeña, Odalys, para que marques tus propósitos sobre los nuestros y llegues aún más lejos que tus hermanos.

A mis abuelos por su ejemplo de constancia, humildad y unión hicieron crecer en mí un deseo de formación y superación en bien de mi familia.

A quienes formaron parte de esta etapa de mi vida, compañeros, amigos, que aportaron con sus consejos y compañía en este ciclo, los tengo presentes y cuenten conmigo en adelante.

A mis maestros y aulas de la Facultad de Ingeniería Mecánica comparto con ustedes este sueño cumplido que desde mi niñez me propuse conseguirlo.

A quien estará a mi lado siempre y me inspira a seguir adelante por un futuro venidero excepcional GM.

AGRADECIMIENTO

A la Escuela Politécnica Nacional, Facultad de Ingeniería Mecánica.

A mi director, Ing. Carlos Baldeón.

Al Dr. Ericsson López, Director del Observatorio Astronómico de Quito de la EPN.

Al Ing. David Benalcázar, Unidad de Mecánica, Observatorio Astronómico de Quito.

A mi Madre, ejemplo de lucha, fortaleza y superación constante.

ÍNDICE

CERTIFICACIÓN	i
DECLARACIÓN	ii
DEDICATORIA	iii
AGRADECIMIENTO	iv
ÍNDICE	V
ÍNDICE DE TABLAS	X
ÍNDICE DE FIGURAS	xiii
RESUMEN	XV
ABSTRACT	
INTRODUCCIÓN	
Objetivo General	
Objetivos Específicos	
1. MARCO TEÓRICO	2
1.1. Justificación	2
1.2. Enfoque al grupo de capacidades especiales	4
1.3. Capacidades especiales	4
1.3.1.Definición	4
1.3.1.1. Tipos de discapacidades	5
1.3.1.2. Discapacidad física	5
1.3.1.3. Discapacidad mental	
1.3.1.4. Discapacidad sensorial y de la comunicación	
1.3.2. Capacidades especiales consideradas para el diseño del sistema	5
1.4. Salvaescaleras	5
1.4.1.1. Tipos de salvaescaleras	6
1.4.1.2. Salvaescaleras vertical	6
1.4.1.3. Tipo oruga	6
1.5. Plataforma salvaescaleras inclinado	7
1.5.1.1. Silla salvaescaleras	8
Normativa referente al libre acceso de personas con capacidades especiales a instalaciones	8

1.7. Leyes referentes a las capacidades especiales en Ecuador	8
2. METODOLOGÍA	9
2.1. Determinación de las especificaciones de la máquina	10
2.1.1.Consideraciones para la determinación de las especificaciones	10
2.1.2.Casa de la calidad	11
2.1.2.1. Voz del Usuario	11
2.1.2.2. Voz del Ingeniero	11
2.1.3.Conclusiones de la Casa de la Calidad	12
2.1.3.1. Dimensiones del elevador	12
2.1.3.2. Seguridad	12
2.1.3.3. No ruidoso	12
2.1.3.4. Carga	12
2.1.4.Especificaciones Técnicas	12
3. DEFINICIÓN Y DISEÑO CONCEPTUAL	13
3.1. Determinación de los módulos	14
3.1.1.Selección del tipo de accionamiento del salvaescaleras	14
3.1.1.1. Sistemas de potencia para salvaescaleras	14
3.1.1.1.1. Sistema Eléctrico	14
3.1.1.1.2. Sistema Hidráulico	15
3.1.1.1.3. Sistema Neumático	15
3.1.1.2. Selección de alternativas según el tipo de accionamiento para el salvaescale	ras
	16
3.1.2.Nivel 1, Ingreso al salvaescaleras	19
3.1.2.1. Apertura de puerta	20
3.1.2.1.1. Sistema manual	20
3.1.2.1.2. Sistema neumático	21
3.1.2.1.3. Sistema eléctrico	21
3.1.2.2. Selección de alternativas para el ingreso al salvaescaleras	22
3.1.3.Nivel 2, equipo motriz del salvaescaleras	25
3.1.3.1. Motor reductor	25
3.1.3.2. Motor de altas revoluciones	26
3.1.3.3. Motor a pasos	26
3.1.4.Selección de alternativas según el tipo de accionamiento motriz para el	
salvaescaleras	27

3.1.5.Nivel 3, estructura	30
3.1.5.1. Bastidor de soporte lateral	30
3.1.5.2. Bastidor 3 apoyos	30
3.1.5.3. Bastidor central	31
3.1.5.4. Guías	32
3.1.5.4.1. Guías Internas	32
3.1.5.4.2. Guías con rodillos	33
3.1.5.4.3. Guías externas	33
3.1.5.5. Selección de alternativas según la estructura y guías para el salvaescaleras	32
3.1.6.Solución modular final	35
3.2. CÁLCULOS Y RESULTADOS	36
3.2.1.Consideraciones para el análisis de elementos mecánicos por método de elemen	
finitos	.36
3.2.1.1. Módulo static structural	36
3.2.1.2. Solver	36
3.2.1.3. Mallado del modelo	36
3.2.1.4. Postproceso	37
3.2.2.Dimensionamiento del salvaescaleras	37
3.2.2.1. Datos iniciales	37
3.2.2.1.1. Dimensiones de la canastilla	37
3.2.2.1.2. Dimensiones de la puerta	38
3.2.2.1.3. Velocidad de la canastilla	38
3.2.2.1.4. Coeficiente de seguridad para guías	39
3.2.2.2. Cálculo del polipasto	40
3.2.2.3. Cálculo en las poleas	41
3.2.2.4. Cálculo de la viga	44
3.2.2.5. Diseño de la viga	45
3.2.2.6. Simulación de la viga	46
3.2.2.7. Simulación de la canastilla	48
3.2.2.8. Diseño de la columna	50
3.2.2.9. Simulación de la columna	53
3.2.2.10. Cálculo para el motor reductor	55
3.2.2.11. Cálculo del eje de la chumacera	55
3.2.2.12. Selección del anillo de retención	56

3.2.2.13. Cálculo y selección de cable de tracción	56
3.2.2.14. Diseño del cable	56
3.2.2.14.1. Esfuerzo estático	56
3.2.2.14.2. Esfuerzo dinámico	57
3.2.2.15. Cálculo de la soldadura	57
3.2.2.16. Consideraciones geométricas de la placa base	60
3.2.2.17. Cálculo de cargas sobre el perno de anclaje	61
3.2.2.18. Diámetro mínimo de los pernos de anclaje	61
3.3. Análisis de modo de falla y sus efectos	62
3.4. COSTOS	66
3.4.1.Costo de la canastilla del salvaescaleras	66
3.4.1.1. Costos Mano de Obra Canastilla	66
3.4.1.2. Costo del material de la canastilla	67
3.4.1.3. Costo de Elementos Normalizados	68
3.4.1.4. Costo de Fabricación de la canastilla	68
3.4.2.Costos de la estructura del salvaescaleras	69
3.4.2.1. Costos mano de obra estructura	69
3.4.2.2. Costos materiales estructura	70
3.4.2.3. Costo de elementos normalizados	71
3.4.2.4. Costo de fabricación de la estructura	71
3.4.3. Costos del sistema motriz del salvaescaleras	71
3.4.3.1. Costo mano de obra sistema motriz	71
3.4.3.2. Costos materiales sistema motriz	72
3.4.3.3. Costo de elementos normalizados	73
3.4.3.4. Costo de fabricación del sistema motriz	73
3.4.4.Costo elementos de control	73
3.4.5. Costo total del salvaescaleras	74
CONCLUSIONES	75
BIBLIOGRAFIA	76
ANEXOS	77
ANEXO I. Casa de la Calidad	78
ANEXO II. Diagrama Funcional	79
ANEXO III. Manual de operación	80

ANEXO IV. Manual de mantenimiento	81
ANEXO V. Mantenimiento preventivo de salvaescaleras	82
ANEXO VI. Registro para revisión de cables de acero	84
ANEXO VII. Protocolo de pruebas	85
ANEXO VIII. Programación para cálculo de viga	89
ANEXO IX. Catálogo de chumaceras	92
ANEXO X. Catálogo de motor	93
ANEXO XI. Especificaciones generales de correas "G"	94
ANEXO XII. Especificaciones eje AISI 1018	95
ANEXO XIII. Especificaciones generales tubo estructural cuadrado	96
ANEXO XIV. Especificaciones plancha antideslizante	97
ANEXO XV. Especificaciones polea	98
ANEXO XVI. Especificaciones anillo de retención	99
ANEXO XVII. Hojas de procesos	100
ANEXO XVIII. WPS	102
ANEXO XIX.PLANOS	103

ÍNDICE DE TABLAS

Tabla 1. Personas con capacidades especiales motrices registradas en Quito I	4
Tabla 2. Especificaciones Técnicas del salvaescaleras	13
Tabla 3. Ventajas y desventajas del sistema de potencia eléctrico	14
Tabla 4. Ventajas y desventajas del sistema de potencia hidráulico	15
Tabla 5. Ventajas y desventajas del sistema de potencia neumático	16
Tabla 6. Ponderación de criterios, sistema de potencia	16
Tabla 7. Evaluación de las soluciones respecto a la longitud de carrera	17
Tabla 8. Evaluación de las soluciones respecto a la velocidad de funcionamiento	17
Tabla 9. Evaluación de las soluciones respecto al nivel de ruido	17
Tabla 10. Evaluación de las soluciones respecto al costo del equipo	18
Tabla 11. Evaluación de las soluciones respecto al mantenimiento	18
Tabla 12. Tabla de conclusiones respecto al sistema de potencia	18
Tabla 13. Ventajas y desventajas de apertura de puerta manual	21
Tabla 14.Ventajas y desventajas de apertura de puerta neumático	21
Tabla 15. Ventajas y desventajas de apertura de puertas eléctrico	22
Tabla 16. Ponderación de criterios, Apertura y cierre de puertas	23
Tabla 17. Evaluación de las soluciones respecta al peso	23
Tabla 18. Evaluación de las soluciones respecto a la velocidad de funcionamiento	23
Tabla 19. Evaluación de las soluciones respecto al nivel de ruido	24
Tabla 20.Evaluación de las soluciones respecto al costo del equipo	24
Tabla 21. Evaluación de las soluciones respecto al mantenimiento	24
Tabla 22. Tabla de conclusiones para el Nivel 1	25
Tabla 23. Ventajas y desventajas del motor reductor	26
Tabla 24.Ventajas y desventajas del motor de altas revoluciones	26
Tabla 25. Ventajas y desventajas del motor a pasos	27
Tabla 26. Ponderación de criterios, equipo motriz.	27
Tabla 27. Evaluación de las soluciones respecto al peso	28
Tabla 28. Evaluación de las soluciones respecto a la velocidad de funcionamiento	28
Tabla 29. Evaluación de las soluciones respecto al nivel de ruido	28
Tabla 30. Evaluación de las soluciones respecto al costo del equipo	29
Tabla 31.Evaluación de las soluciones respecto al mantenimiento	29
Tabla 32. Tabla de conclusiones para el nivel 2	29
Tabla 33 Ventaias y desventaias del bastidor de soporte lateral	30

Tabla 34. Ventajas y desventajas del bastidor de 3 apoyos	31
Tabla 35. Ventajas y desventajas del bastidor central	32
Tabla 36. Ventajas y desventajas de guías internas.	32
Tabla 37. Ventajas y desventajas con guías con rodillos.	33
Tabla 38. Ventajas y desventajas de guías externas.	32
Tabla 39. Combinación de soluciones para el nivel 3	32
Tabla 40. Soluciones para el nivel 3, Estructural	32
Tabla 41. Ponderación de criterios, Estructura	33
Tabla 42. Evaluación de las soluciones respecto al peso.	33
Tabla 43. Evaluación de las soluciones respecto a la estabilidad	34
Tabla 44. Evaluación de las soluciones respecto al nivel de ruido.	34
Tabla 45. Evaluación de las soluciones respecto al costo del equipo	34
Tabla 46. Evaluación de las soluciones respecto al mantenimiento	35
Tabla 47. Tabla de conclusiones para el nivel 3	35
Tabla 48. Relación entre la carga nominal y la superficie útil máxima de la cabina	37
Tabla 49. Coeficiente de seguridad para guías dadas por la norma EN EU 81-2001	39
Tabla 50. Esfuerzos admisibles para guías conforme a la Norma UNE EU 81- 2001	39
Tabla 51. Análisis de modos de falla y sus efectos.	64
Tabla 52. Costos Mano de Obra Canastilla	66
Tabla 53. Costo del material de la canastilla.	67
Tabla 54. Costo Elementos Normalizados canastilla	68
Tabla 55. Costo Fabricación canastilla	68
Tabla 56. Costos mano de obra estructura	69
Tabla 57. Costos materiales estructura	70
Tabla 58. Costo Elementos Normalizados Estructura.	71
Tabla 59. Costo Fabricación de estructura	71
Tabla 60. Costo mano de obra sistema motriz.	71
Tabla 61. Costos materiales sistema motriz	72
Tabla 62. Costo de elementos normalizados sistema motriz	73
Tabla 63. Costo de fabricación del sistema motriz	73
Tabla 64. Costo elementos de control	73
Tabla 65. Costo total del Salvaescaleras	74
Tabla 66. Parámetros del salvaescaleras diseñado.	81
Tabla 67. Check list mantenimiento preventivo sistema salvaescaleras	82
Tabla 68.Registro para revisión de cables de acero	84
Tabla 69. Formato de verificación visual del estado de los componentes	85

Tabla 70. Formato de verificación de dimensiones principales	85
Tabla 71. Formato de verificación de estado de los elementos al trabajar sin carga	85
Tabla 72. Formato de verificación de estado de los elementos al trabajar sin carga	85
Tabla 73. Formato de verificación para resultados obtenidos	86
Tabla 74. Verificación visual del estado de los componentes	86
Tabla 75. Verificación de dimensiones principales	86
Tabla 76. Verificación de estado de los elementos al trabajar sin carga	87
Tabla 77. Hoja de procesos del eje chumacera	100
Tabla 78. Hoja de procesos nervio para columna	101
Tabla 79. WPS	102

ÍNDICE DE FIGURAS

Figura 1. Observatorio Astronómico de Quito.	2
Figura 2. Espacio Físico del proyecto.	3
Figura 3. Vista Lateral espacio físico del proyecto.	3
Figura 4.Personas con capacidades especiales motrices registradas en Quito I	4
Figura 5. Salvaescaleras vertical.	6
Figura 6. Oruga salvaescaleras.	6
Figura 7. Salvaescaleras inclinado	7
Figura 8.Silla salvaescaleras.	8
Figura 9. Diagrama de flujo para la metodología aplicada	9
Figura 10. Esquema de un Motor eléctrico para salvaescaleras	14
Figura 11. Esquema de sistema hidráulico.	15
Figura 12. Esquema de salvaescaleras neumático.	16
Figura 13. Esquema representativo de altitud del sistema	19
Figura 14. Acceso posterior al museo	19
Figura 15. Gráfico del desplazamiento del salvaescaleras	20
Figura 16. Apertura de puerta, sistema manual	20
Figura 17. Apertura de puerta, sistema neumático	21
Figura 18. Apertura de puerta, sistema eléctrico	22
Figura 21. Motor a pasos	27
Figura 23. Bastidor de tres apoyos.	31
Figura 24. Bastidor central.	31
Figura 25. Guías de desplazamiento interno	32
Figura 26. Guías con rodillos.	33
Figura 27. Guía de desplazamiento externo.	33
Figura 28. Solución final del salvaescaleras	36
Figura 29. Geometría de la puerta	38
Figura 30. Configuración de polipasto utilizado	40
Figura 31. Diagrama de cuerpo libre polea fija	40
Figura 32. Diagrama de cuerpo libre polea móvil	40
Figura 33. Diagrama de cuerpo libre del cable	41
Figura 34. Diagrama de cuerpo libre viga	41
Figura 36. Análisis nodal de la polea	42
Figura 37. Mallado 2D de la polea móvil.	43

Figura 38. Simulación de esfuerzos 2D polea.	43
Figura 39. Mallado 3D de la polea móvil	44
Figura 40. Asignación de cargas en la polea 3D.	44
Figura 41. Diagrama de fuerzas actuantes sobre la viga	45
Figura 42. Diagrama de fuerza cortante que actúa sobre la viga.	45
Figura 43. Diagrama de momento flector que actúa sobre la viga	45
Figura 44. Mallado de la viga estructura.	47
Figura 45. Simulación de deformaciones en la viga.	47
Figura 46. Simulación de deformación elástica equivalente soportado por la viga	48
Figura 47. Mallado de la canastilla	49
Figura 48. Simulación de deformación total soportado por la canastilla	49
Figura 49. Simulación de la deformación elástica equivalente soportado en la cana	stilla.50
Figura 50. Geometría de la columna de soporte salvaescaleras	51
Figura 51. Diagrama de cuerpo libre de la columna	52
Figura 52. Mallado de la columna	53
Figura 53. Simulación de la deformación elástica equivalente en la columna	54
Figura 54. Simulación deformación total de la columna.	54
Figura 55. Esquema del eje de la chumacera.	56
Figura 56. Esquema de la soldadura.	57
Figura 57. Dimensionamiento de soldadura	60
Figura 59. Geometría de la placa base.	60
Figura 60. Salvaescaleras Vertical instalado	87
Figura 61. Vista Isométrica salvaescaleras vertical instalado	87

RESUMEN

El presente proyecto enfoca su estudio y aplicación en el mejoramiento de la accesibilidad de las personas con capacidades especiales a las instalaciones del Observatorio Astronómico de Quito. Inicia con una descripción acerca de las capacidades especiales en el Ecuador, datos estadísticos recogidos por el Consejo Nacional para la igualdad de Discapacidades (CONADIS) ente nacional en 2016, un estudio de la Norma Técnica Ecuatoriana INEN 2 299:2001, accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores y fuente de apoyo en la Norma Española UNE EN 81-40:2001, reglas de seguridad para la construcción e instalación de ascensores en cuanto consideraciones para este tipo de sistemas, se investiga sobre cuáles son los sistemas que cumplen con los requerimientos del cliente para luego plantear una serie de alternativas para elegir un modelo que sea de bajo costo de fabricación, operación, mantenimiento, que sea funcional y de buena calidad. La opción que más se ajusta a los requerimientos antes mencionados es un sistema salvaescaleras vertical se procede a realizar el diseño de cada una de las partes mecánicas y estructurales, tomando en cuenta las fuerzas que intervienen en el proceso, se definen los planos de detalle y planos de taller para la construcción de la máquina, se procede a la compra de elementos normalizados y a la fabricación de partes, tomando en cuenta el tipo de material más adecuado para la construcción, adjunto se elabora un análisis de modos de falla y sus efectos (AMEF) con el fin de proponer acciones correctivas y preventivas que eliminen riesgos o minimicen su frecuencia o sus efectos; junto a los costos de fabricación, materiales, mano de obra y elementos normalizados, se realiza el ensamblaje del sistema y se hace pruebas de funcionamiento obteniendo resultados de carga.

Palabras clave:

Cable de acero, Capacidades Especiales, Construcción, Motor Eléctrico, Salvaescaleras, Sistema.

ABSTRACT

This project is a contribution for improvement of an access system for handicapped people at the entrance of Astronomic Observatory of Quito. It begins with a description about handicapped people in Ecuador, Statistical data collected by "Consejo Nacional para la igualdad de discapacidades" (CONADIS), in 2016. The Project provides a brief description of the Ecuadorian technical standard INEN 2 299:2001, accesibility for handicapped people and those with reduced movility Standars such as the UNE EN 81-40:2001 Safety and rules for the construction and installation of elevators as considerations for this type of systems have been applied. This research is looking for systems that meet customer requirements to propose a series of alternatives and choose a model with low fabrication, operation and mantenance cost; it should be functional and have high quality. The alternative that meet those requirements is a vertical stair type lift, the design of each mechanical and structural component is carried out. The construction drawing and worshop plans are provided. Normalized components were considered for construction. An analysis of failure modes and effects ha been conducted in order to come up with preventive and corrective actions; so that, reduce risks and their frequency of occurrence. Finally, the details for construction, materials, components and man hour cost are provided.

Keywords:

Steel cable, special capacities, construction, electric engine, chair saved, system.

INTRODUCCIÓN

La inclusión a nivel nacional de personas con capacidades especiales es un eje fundamental que el Estado busca incorporar; a fin de eliminar barreras tanto sociales como arquitectónicas; es así como las misiones Joaquín Gallegos Lara, Manuela Espejo, son algunas de las fundaciones gubernamentales que brindan ayuda a la población con ingresos económicos limitados, ciudadanos que utilizan de sillas de ruedas para su desempeño de labores y diario vivir o tienen discapacidad en sus extremidades inferiores registradas en el Consejo Nacional de Igualdad para las Discapacidades (CONADIS).

El museo del Observatorio Astronómico de Quito de la Escuela Politécnica Nacional (OAQ- EPN) en el afán de promover la participación activa de las personas con capacidades especiales en actividades educativas, culturales, artísticas, turísticas y recreativas busca garantizar condiciones de seguridad, autonomía, usabilidad mediante la eliminación de barreras físicas que impiden el acceso y uso de este espacio público en igualdad de condiciones que las demás personas.

Se requiere la implementación de un sistema adecuado que permita el acceso al Museo del Observatorio Astronómico de la EPN que cumpla con especificaciones normadas nacionalmente y garantice su correcto funcionamiento mediante las pruebas pertinentes.

Objetivo General

Diseñar y construir un sistema para personas con capacidades especiales para el ingreso al Museo del Observatorio Astronómico de Quito de la EPN.

Objetivos Específicos

Recopilar la información de las necesidades de ingreso para personas con capacidades especiales para el OAQ-EPN.

Construir el sistema para personas con capacidades especiales para el ingreso al Museo del OAQ-EPN.

Realizar las calificaciones respectivas para el diseño del sistema.

Desarrollar e implementar un plan de mantenimiento preventivo para el sistema.

1. MARCO TEÓRICO

1.1. Justificación

Según el informe Mundial sobre la Discapacidad, en su apartado, Crear entornos favorables1, cita:

"Se debe eliminar los obstáculos en los espacios públicos, transporte, información y comunicación y hacer posible que las personas con discapacidad participen en la educación, empleo y vida social, reduciendo así su aislamiento y dependencia. En todos los dominios, los requisitos fundamentales para abordar la accesibilidad y reducir las actitudes negativas son las normas de acceso; la cooperación entre los sectores público y privado; una organización líder responsable de la ejecución; la formación en accesibilidad; el diseño universal para los planificadores, arquitectos y diseñadores; la participación de los usuarios, y la educación pública". (OMS, 2011)

En el Reglamento Técnico de accesibilidad de las personas con capacidades especiales del INEN, capítulo V- acceso a la comunidad, Art. 9 literal 1. Se menciona que: "Todas las instituciones deberán implementar las facilidades del caso, para que las personas con discapacidad puedan estar informadas, pueden ejercer sus derechos y accesos a los servicios". (INEN, 2000)

Figura 1. Observatorio Astronómico de Quito. (Fuente: Propia)

Puesto que el ingreso principal al Museo del Observatorio Astronómico, Fig. 1 no permite la instalación del sistema ya que se vería afectada la fachada del edificio considerado como Construcción Patrimonial; se procede a verificar la existencia de un ingreso alterno

que cuente con el espacio físico adecuado para la construcción del proyecto, Fig. 2 y Fig. 3.

Figura 2. Espacio Físico del proyecto. (Fuente: Propia)

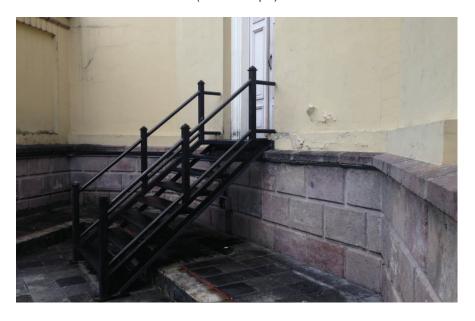


Figura 3. Vista Lateral espacio físico del proyecto. (Fuente: Propia)

Este espacio físico es óptimo para la construcción del sistema ya que permite el ingreso al museo del Observatorio Astronómico y además cuenta con su respectiva toma de energía eléctrica.

1.2. Enfoque al grupo de capacidades especiales

El proyecto se enfoca en personas con discapacidad física en sus extremidades inferiores, en la Tabla 1 se presenta un cuadro descriptivo de éstos separados en edad y género, proporcionado por el Consejo Nacional para la igualdad de discapacidades (CONADIS).

Tabla 1. Personas con capacidades especiales motrices registradas en Quito I.

Tipo de capacidad especial		Motriz		
Edad (group)	Femenino	Masculino	Total General	
0 a 3 años	96	103	199	
4 a 6 años	151	240	391	
7 a 12 años	305	383	688	
13 a 18 años	354	476	830	
19 a 29 años	1191	1343	2534	
30 a 65 años	2463	8302	10765	
mayores de 65 años	7103	2436	9539	
TOTAL	11663	13283	24946	

(Fuente: http://www.consejodiscapacidades.gob.ec/estadistica/index.html)

En la Fig. 4 se representa a las personas con discapacidad física según su género.

Figura 4.Personas con capacidades especiales motrices registradas en Quito I. (Fuente: http://www.consejodiscapacidades.gob.ec/estadistica/index.html)

1.3. Capacidades especiales

1.3.1. Definición

Una persona con capacidades especiales es toda aquella que, como consecuencia de una o más deficiencias físicas, mentales, intelectuales o sensoriales, con independencia

de la causa que la hubiera originado, ve restringido permanentemente su capacidad biológica, psicológica y asociativa para ejercer una o más actividades esenciales de la vida diaria, en la proporción que establezca el Reglamento". (Discapacidades, 2017)

1.3.1.1. Tipos de discapacidades

A continuación encontramos los diferentes tipos de discapacidades (OMS, 2011):

1.3.1.2. Discapacidad física

Pertenecen a este grupo las personas que presentan discapacidad para caminar, manipular objetos y de coordinación de movimientos para realizar actividades de la vida cotidiana. Siendo:

- Discapacidad en las extremidades inferiores.
- Tronco Cuello y cabeza.
- Discapacidad en las extremidades superiores.

1.3.1.3. Discapacidad mental

En este grupo se incluye a las personas que presentan discapacidad para aprender y para comportarse, tanto en actividades de la vida diaria como en su relación con otras personas.

1.3.1.4. Discapacidad sensorial y de la comunicación

Este grupo comprende las discapacidades para ver, oír y hablar.

1.3.2. Capacidades especiales consideradas para el diseño del sistema

Debido al mayor dimensionamiento del sistema a diseñar se considera a las personas que se encuentran dentro de las discapacidades en las extremidades inferiores, puntualmente a quienes para su desplazamiento utilizan sillas de ruedas.

1.4. Salvaescaleras

Según (Barreras, 2017) menciona lo siguiente:

El salvaescaleras es el mecanismo de transporte más adecuado para personas con capacidades especiales y adultos mayores con dificultad de movimiento en miembros inferiores, que tienen que desplazarse mediante sillas de ruedas. Permite autonomía para poder subir y bajar las escaleras de manera silenciosa, segura y cómoda. Este tipo de

equipo es la opción ideal para hacer accesibles los espacios públicos como son las tiendas, locales públicos, portales, restaurantes. Los salvaescaleras pueden instalarse en interiores y exteriores, son plegables, ocupan poco espacio y, sobretodo, son seguras.

1.4.1.1. Tipos de salvaescaleras

Entre los diferentes tipos de salvaescaleras podemos encontrar los siguientes:

1.4.1.2. Salvaescaleras vertical

Figura 5. Salvaescaleras vertical. (Fuente: http://www.salvaescalerascasado.es/clientes-salvaescaleras---ascensores_71793.html)

El desplazamiento de este tipo de salvaescaleras es en dirección vertical, Fig. 5, los controles electrónicos se encuentran ubicados en la misma plataforma y las paredes de acceso. Como principales características tienen una capacidad máxima de 250 kg, y su velocidad de avance es 0,15m/s con un recorrido máximo de 1m. El sistema es accionado por un sistema hidráulico con alimentación eléctrica.

1.4.1.3. Tipo oruga

Figura 6. Oruga salvaescaleras. (Fuente: https://www.ortopediamimas.com/eliminacion-de-barreras/orugas-salvaescaleras/1118-oruga-salvaescaleras-lg2004.html)

La oruga salvaescaleras, presentada en la Fig.6 es utilizada para el transporte de personas en silla de ruedas con ruedas posteriores, su uso se prioriza en escaleras con nieve, agua, hielo. Está compuesta por una columna de que hace la función de anclaje de la silla y de maniobra de la oruga salvaescaleras.

En la columna de mando se encuentran los comandos de control para la conducción de la oruga salvaescaleras móvil a oruga. Se compone de un sistema de seguridad mecánico de enganche de sillas de ruedas, su soporte de enganche de la silla de ruedas con bloqueo mecánico regulable en altura, su soporte de apoyo de las ruedas de la silla, su apoya cabeza es regulable, su conector eléctrico bipolar para la base, su empleo en escaleras con peldaños no paralelos.

1.5. Plataforma salvaescaleras inclinado

Figura 7. Salvaescaleras inclinado. (Fuente: http://ascensoresexcel.net/product-details/salvaescaleras-inclinados/)

La Plataforma Salvaescaleras, Fig. 7, representa la solución ideal para garantizar la accesibilidad a todo tipo de edificaciones, al permitir que las personas en sillas de ruedas o con movilidad reducida puedan subir sin tener la necesidad de cambiar de silla.

Siempre atento al confort y a la calidad de las soluciones que ofrece para la eliminación de las barreras arquitectónicas. La Plataforma Salvaescaleras es ideal para escaleras rectas o de pendiente constante, siendo su instalación sin ningún tipo de obra de albañilería, permitiendo instalarse a suelo, a suelo y pared o solo a pared, siendo su instalación tanto en interior de vivienda como a la intemperie.

1.5.1.1. Silla salvaescaleras

Figura 8.Silla salvaescaleras. (Fuente: http://www.salvaescaleras-elevadores.com/elba-v53-silla-salvaescaleras/)

Son sillas que tienen acoplado un motor, que es guiado sobre un riel anclado a la pared de la escalera, la trayectoria de esta riel es recto, curvo o de caracol, dependiendo el lugar de instalación, Fig. 8. Generalmente se utilizan en viviendas particulares para dar autonomía al usuario.

1.6. Normativa referente al libre acceso de personas con capacidades especiales a instalaciones

Se dispone de una Norma Técnica Ecuatoriana INEN y una Norma Española que puede servir de guía para el desarrollo del proyecto:

Norma Técnica Ecuatoriana INEN 2 299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores.

Norma Española UNE EN-81-40:2001. Reglas de seguridad para la construcción e instalación de ascensores.

1.7. Leyes referentes a las capacidades especiales en Ecuador

El Art. 53 De los grupos vulnerables, el Estado Ecuatoriano cita que establecerá medidas que:

Se garantice a las personas con discapacidad, la utilización de bienes y servicios, especialmente en las áreas de salud, educación, capacitación, inserción laboral y recreación; y medidas que eliminen las barreras de comunicación, así como las urbanísticas, arquitectónicas y de accesibilidad al transporte, que dificulten su movilización.

2. METODOLOGÍA

La metodología comprende métodos (software, normas, modelos numéricos) requeridos para obtener el resultado final.

Es necesario hacer un diagrama de flujo indicando el proceso y la información respectiva (capítulos y sub-capítulos) de la tesis.

Figura 9. Diagrama de flujo para la metodología aplicada. (Fuente: Propia)

En el capítulo 1, se presenta una recolección de datos e información del problema se detalla la introducción a los salvaescaleras, su aplicación y alcance hacia las personas con capacidades especiales, se detalla los módulos y el análisis de alternativas que genera los resultados que permite la elección de alternativa más viable.

El capítulo 2 detalla la metodología donde se ha estructurado el contenido de la presente tesis y su relación entre cada tema.

Para el desarrollo de la presente tesis se ha estudiado las recomendaciones especiales de la Norma ecuatoriana INEN 2 299:2001 y la norma española UNE-EU 81-2001 las cuales presenta las directrices, dimensionales señaladas en el capítulo 3 en Cálculos y resultados.

El capítulo 3 abarca los cálculos y simulaciones de la canastilla, dimensionamiento de las puertas, velocidad de las canastilla, coeficiente de seguridad para guías, cálculo de poleas, cálculo de vigas, cálculo de poleas, diseño de la columna, cálculo del cable de tracción, cálculo de soldadura, cálculo de pernos de anclaje.

Simulación: Para el análisis por elementos finitos utilizamos el Software Ansys APDL con modulo estructural versión estudiantil.

Capítulo 3.4 Se detallan costos de fabricación, costos directos e indirectos, costos de elementos normalizados, costos del sistema motriz, y costos del sistema estructural

Conclusiones: Se realiza la argumentación de los aspectos más relevantes sobre el desarrollo del presente proyecto de titulación.

Bibliografía: Se anexa las principales fuentes bibliográficas sobre las que nos basamos para el cálculo de los diferentes elementos mecánicos

Anexos. Se detalla la casa de la calidad la misma que es estudiada en el capítulo 2 , diagrama funcional, manual de operación, manual de mantenimiento, protocolo de pruebas, entre otros.

2.1. Determinación de las especificaciones de la máquina

2.1.1. Consideraciones para la determinación de las especificaciones

El presente proyecto tiene como objetivo principal el diseño y construcción de un sistema que permite el acceso a la primera planta del edificio del Museo del Observatorio Astronómico de Quito de la Escuela Politécnica Nacional.

De los sistemas descritos anteriormente, y por las condiciones del edificio, se implementará un sistema de salvaescaleras vertical.

Para el dimensionamiento del sistema nos basamos en las normas NTE INEN 2299 (2001) Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico. Ascensores y los apartados de las Normas Españolas UNE EN-81 que indican las consideraciones, especificaciones, clasificación, seguridad y mantenimiento de sistemas de elevación tanto para personas como carga.

2.1.2. Casa de la calidad

Para el diseño del salvaescaleras vertical, se toma en cuenta métodos del QFD (Quality Funtion Deployment), de tal manera que las necesidades críticas de los usuarios no sean omitidas.

El esquema de la casa de la calidad se encuentra en el ANEXO 1

2.1.2.1. Voz del Usuario

De acuerdo, a la información proporcionada con ayuda del personal del Observatorio Astronómico de Quito, el equipo debe cumplir con los requisitos:

Cumpla con la Norma Técnica.

Que sea de fácil uso.

Que sea económico.

Que tenga funcionamiento eléctrico.

Que no genere mucho ruido.

Que ocupe el espacio designado.

Que sea seguro para el usuario.

Que sea de bajo mantenimiento.

Que los repuestos sean de fácil obtención.

Que funcione al medio ambiente.

2.1.2.2. Voz del Ingeniero

Velocidad de transporte.

Capacidad de Carga.

Superficie.

Potencia del sistema.

Mecanismos de seguridad.

Bajo Mantenimiento.

Ciclos de uso.

Protección bajo condiciones climáticas adversas.

Materiales especiales para ambientes exteriores.

2.1.3. Conclusiones de la Casa de la Calidad

De las características técnicas relevantes podemos obtener:

2.1.3.1. Dimensiones del elevador

El dimensionamiento del salvaescaleras se encuentra basado en las siguientes normas:

UNE- EN 81: 40 "Reglas de seguridad para la construcción e instalación de ascensores. Salvaescaleras." su dimensionamiento y funcionalidad garantizan su uso en el espacio físico establecido.

Norma Técnica Ecuatoriana INEN 2299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores.

2.1.3.2. Seguridad

El salvaescaleras debe precautelar la seguridad del usuario y de posibles personas a su alrededor.

2.1.3.3. No ruidoso

El ruido emitido por el equipo no debe sobrepasar 45 dB(A) según la Ley de Gestión Ambiental y del Reglamento a la Ley de Gestión Ambiental para la Prevención y Control de la Contaminación Ambiental.

2.1.3.4. Carga

El elevador, debe soportar la carga de la persona con discapacidad más un acompañante.

2.1.4. Especificaciones Técnicas

Analizando los requerimientos se plantea las siguientes especificaciones de la máquina, Tabla 2.

Propone: C: Cliente P: Producción

R/D: R: Requerimiento D: Deseo

Tabla 2. Especificaciones Técnicas del salvaescaleras.

Empresa: Robinson Pérez	Cliente: Observatorio Astronómico de Quito EPN	ingreso especia	y C c les	construcción de un sistema para el de personas con capacidades al museo del Observatorio de Quito de la EPN		
Especificaciones						
Concepto	Fecha	Propon e	r/ d	Descripción		
Función	23/03/2017	С	R	el elevador debe subir una persona con capacidades especiales en sus miembros inferiores.		
Movimiento	23/03/2017	E	R	movimiento vertical		
Dimensiones	23/03/2017	c+e	R	carrera máxima 1430 [mm]		
Fuerzas	23/03/2017	E	R	carga máxima de 150 kg.		
Material	23/03/2017	С	D	materiales antioxidantes		
señales y control	23/03/2017	c+e	R D	panel de control control semiautomático		
seguridad y ergonomía	23/03/2017	c+e	D R	columnas guías, seguros		
Energía	23/03/2017	c+e	R	energía eléctrica		
aspectos legales	23/03/2017	E	R	cumplimiento de la norma ecuatoriana Norma Técnica Ecuatoriana INEN 2 299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores.		

E=estudiante C=cliente

(Fuente: Propia)

R=requerimiento

D=deseo

3. DEFINICIÓN Y DISEÑO CONCEPTUAL

Con el objetivo de identificar las funciones primarias y secundarias del salvaescaleras a diseñar se han establecido las siguientes funciones.

Funciones primaria: Cumple la demanda del cliente.

Función secundaria: Ayuda en el desarrollo de las funciones primarias.

Se desarrolla 3 niveles para el análisis del equipo salvaescaleras.

- Nivel 0
- Nivel 1 Acceso y salida al salvaescaleras.
- Nivel 2 Equipo motriz.
- Nivel 3 Estructura

3.1. Determinación de los módulos

El diseño del sistema se basa en la Norma Técnica Ecuatoriana INEN 2 299:2001. "Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores".

3.1.1. Selección del tipo de accionamiento del salvaescaleras

Los elevadores salvaescaleras en el mercado tienen varios tipos de accionamiento, electrónico, eléctrico, hidráulico.

3.1.1.1. Sistemas de potencia para salvaescaleras

3.1.1.1.1. Sistema Eléctrico

Entre los sistemas de potencia que existen en el mercado se detalla a continuación información relevante del sistema eléctrico, Fig.10, así como un balance entre sus principales ventajas y desventajas descritas en la Tabla 3. Para detallar y encontrar su importancia.

Figura 10. Esquema de un Motor eléctrico para salvaescaleras. (Fuente:http://www.directindustry.es/prod/chiaphua-components/product-61070-575307.html)

Tabla 3. Ventajas y desventajas del sistema de potencia eléctrico.

Ventajas	Desventajas
Podemos escoger entre una gama de modelos y potencias.	Costo elevado.
Funcionamiento silencioso	Alto consumo eléctrico.
Velocidad de giro uniforme.	Alto costo de las reparaciones.
Buena fiabilidad.	
Útil para trayectorias cortas.	

(Fuente: Propia)

3.1.1.1.2. Sistema Hidráulico

En seguida se describe un segundo sistema de potencia que puede ser aprovechado en el sistema a diseñar, sistema hidráulico, Fig. 11, se utiliza como su componente principal aceite hidráulico sometido a cierta presión con el fin de garantizar una ascendencia de carga constante, de la misma manera que el sistema eléctrico sus ventajas y desventajas se encuentran descritas en la Tabla 4.

Figura 11. Esquema de sistema hidráulico. (Fuente:https://www.logismarket.com.mx/conveyors-y-componentes/mesa-hidraulica-tipo-tijera/2998737138-1179565883-p.html)

Tabla 4. Ventajas y desventajas del sistema de potencia hidráulico.

Ventajas	Desventajas
Movimiento lento.	Carrera de trabajo corta.
Potencia Regulable.	Fugas.
Movimiento rectilíneo que se acopla a nuestra necesidad.	Sistema más costoso.
Sistema Robusto.	Escape de fluidos.

(Fuente: Propia)

3.1.1.1.3. Sistema Neumático

Como última alternativa del sistema de potencia se encuentra el sistema neumático, Fig. 12, este sistema basa su potencia en la utilización de aire comprimido dependiendo la carga a ser levantada, se describen sus más relevantes ventajas y desventajas en la Tabla 5.

Figura 12. Esquema de salvaescaleras neumático. (Fuente: https://seysu.es/sealey-tool-rac/mesa-neumatica-elevadora-motos-365-kg-sealey-mc365a/gmx-niv310-con2124.htm)

Tabla 5. Ventajas y desventajas del sistema de potencia neumático.

Ventajas	Desventajas					
Movimiento Rectilíneo.	Funcionamiento ruidoso.					
Movimiento Lento.	Requiere de compresor y un sistema de almacenamiento para su funcionamiento.					
Buena potencia del sistema.	Costo moderado.					

(Fuente: Propia)

3.1.1.2. Selección de alternativas según el tipo de accionamiento para el salvaescaleras

Los criterios de selección se analizan bajo una ponderación adecuada Tabla 6. Según la relevancia de cada uno de ellos con el fin de determinar su orden jerárquico.

- Longitud de carrera
- Velocidad de funcionamiento
- Nivel de ruido
- · Costo del equipo
- Mantenimiento

Tabla 6. Ponderación de criterios, sistema de potencia.

CRITERIO	Longitud de carrera	Velocidad de funciona- miento	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	Ponde- ración
Longitud de carrera	Х	0	1	0	1	3	0,21
Velocidad de funcionamiento	1	X	1	1	1	4	0,29
Nivel de ruido	0	0	Χ	0	1	2	0,14
Costo del equipo	1	0	1	Х	1	4	0,29
Mantenimiento	0	0	0	0	Х	1	0,07
	Suma	14	1,00				

(Fuente: Propia)

Velocidad de funcionamiento= costo del equipo> longitud de carrera> nivel de ruido> mantenimiento.

En las Tablas 7 a la 11 se evalúan las posibles soluciones para el sistema de potencia, eléctrico (Solución 1), sistema hidráulico (Solución 2), sistema neumático (Solución 3); los valores asignados a cada solución son:

- 1 si el criterio de las filas es superior (>) que el de las columnas.
- 0,5 si los dos criterios que se comparan son equivalentes.
- 0 si el criterio de las filas es inferior (<) que el de las columnas.

Tabla 7. Evaluación de las soluciones respecto a la longitud de carrera.

Longitud de la carrera	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Х	1	1	3	0,50
Solución 2	0	Х	1	2	0,33
Solución 3	0	0	Х	1	0,17
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 2 > Solución 3.

Tabla 8. Evaluación de las soluciones respecto a la velocidad de funcionamiento.

Velocidad de funcionamiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Х	1	1	3	0,50
Solución 2	0	Х	1	2	0,33
Solución 3	0	0	Х	1	0,17
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 2 > Solución 3.

Tabla 9. Evaluación de las soluciones respecto al nivel de ruido.

Nivel de ruido	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Х	1	1	3	0,50
Solución 2	0	Х	0	1	0,17
Solución 3	0	1	Х	2	0,33
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 3 > Solución 2.

Tabla 10. Evaluación de las soluciones respecto al costo del equipo.

Costo del equipo	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	0	1	2	0,29
Solución 2	1	Χ	0	2	0,29
Solución 3	1	1	Х	3	0,43
			Suma	7	1,00

(Fuente: Propia)

Solución 3 > Solución 1=Solución 2

Tabla 11. Evaluación de las soluciones respecto al mantenimiento.

Mantenimiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	1	3	0,50
Solución 2	0	Χ	0	1	0,17
Solución 3	0	1	Х	2	0,33
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 3 > Solución 2.

Tabla 12. Tabla de conclusiones respecto al sistema de potencia.

Solución	Longitud de carrera	Velocidad de funciona- miento	Nivel de ruido	Costo del equipo	Manteni -miento	∑+1	PRIORI DAD
Solución 1	0,11	0,14	0,07	0,08	0,04	0,439	1
Solución 2	0,07	0,10	0,02	0,08	0,01	0,284	2
Solución 3	0,04	0,05	0,05	0,12	0,02	0,277	3

(Fuente: Propia)

Solución 1 > Solución 2 > Solución 3

Se concluye del análisis del método ordinal corregido de criterios ponderados descrito en la Tabla 12, que el sistema eléctrico es el más idóneo para la aplicación en el salvaescaleras.

El esquema representativo de la altitud del sistema a diseñar está claramente identificado la Fig. 13.

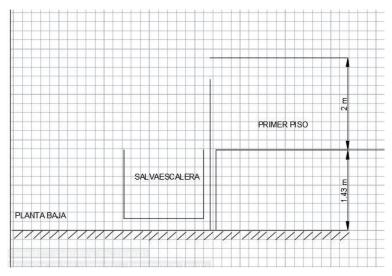


Figura 13. Esquema representativo de altitud del sistema. (Fuente: Propia)

3.1.2. Nivel 1, Ingreso al salvaescaleras

Debido a la arquitectura del Observatorio Astronómico de Quito se requiere de una rampa anexada para que la persona con discapacidad pueda acceder a las instalaciones, Fig. 14.



Figura 14. Acceso posterior al museo. (Fuente: Propia)

El salva escaleras eleva a la persona con discapacidad una altura de 1.43 metros hasta la puerta posterior tal como se muestra en la Fig.15.

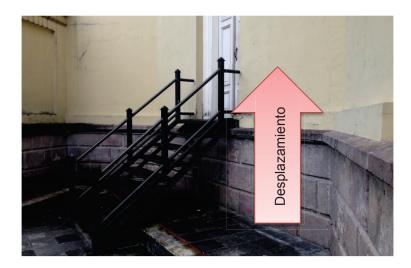


Figura 15. Gráfico del desplazamiento del salvaescaleras. (Fuente: Propia)

3.1.2.1. Apertura de puerta

La apertura para la persona con discapacidad debe brindarle la facilidad de ingreso al elevador de una manera cómoda.

3.1.2.1.1. Sistema manual

El sistema manual de apertura de puertas está compuesto por una puerta batiente hacia el interior con cerradura metálica que asegura su cierre de manera independiente, Fig. 16, las características relevantes a este sistema se detallan en la Tabla 13. Sus ventajas y desventajas para ser aplicables en el análisis del sistema.

Figura 16. Apertura de puerta, sistema manual. (Fuente: http://salvaescaleras-madrid.blogspot.com/)

Tabla 13. Ventajas y desventajas de apertura de puerta manual.

Ventajas	Desventajas
Costo asequible	Baja estética
Alta popularidad	Funcionamiento no automático
Fácil uso	Ruidoso sin un mantenimiento adecuado

3.1.2.1.2. Sistema neumático

Este sistema automático realiza el cierre y apertura de puertas de manera independiente ya que se acopla con sensores que detectan la proximidad del usuario, Fig. 17, además tiene acoplado cilindros neumáticos que facilitan el funcionamiento de este mecanismo; sus ventajas y desventajas se describen en la Tabla 14.

Figura 17. Apertura de puerta, sistema neumático. (Fuente: http://www.isaf-bus-components.com/spagnolo/puertaREN.htm)

Tabla 14. Ventajas y desventajas de apertura de puerta neumático.

Ventajas	Desventajas
Fácil uso	Costo elevado
Fácil acoplamiento	Baja estética
Movimiento extremadamente suave	Mayor volumen de equipo
	Mayor peso

(Fuente: Propia)

3.1.2.1.3. Sistema eléctrico

El sistema eléctrico de apertura de puertas eléctricas está compuesto de igual manera por una puerta batiente hacia el interior con cerradura metálica que se acopla a un sistema eléctrico de seguridad que facilitará el acceso al usuario de manera independiente, Fig. 18, se ha descrito las características relevantes a este sistema en la Tabla 15.

Figura 18. Apertura de puerta, sistema eléctrico. (Fuente: https://marcas.habitissimo.es/marca/mitsubishi-electric/distribuidores/alicante)

Tabla 15. Ventajas y desventajas de apertura de puertas eléctrico.

Ventajas	Desventajas
Bajo ruido	Costo elevado
Fácil uso	Dependiente de una fuente eléctrica para su funcionamiento
Fácil acoplamiento	Mayor volumen de equipo

(Fuente: Propia)

3.1.2.2. Selección de alternativas para el ingreso al salvaescaleras

Para determinar la alternativa idónea de este nivel se procede a enlistar los criterios que deben cumplir y su relevancia mediante la ponderación de cada uno de ellos descritos en la Tabla 16 para determinar su mayor prioridad respecto a los demás.

Criterios de selección

- Peso
- Velocidad de funcionamiento
- Nivel de ruido
- Costo del equipo
- Mantenimiento

Tabla 16. Ponderación de criterios, Apertura y cierre de puertas.

CRITERIO	Peso	Velocidad de funcionamiento	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	Pondera- ción
Peso	Χ	0	0	0	1	2	0,13
Velocidad de funcionamiento	1	Х	0	0	1	3	0,20
Nivel de ruido	1	1	Х	0	1	4	0,27
Costo del equipo	1	1	1	Х	1	5	0,33
Mantenimiento	0	0	0	0	Х	1	0,07
					Suma	15	1,00

Costo del equipo> nivel de ruido> velocidad de funcionamiento> peso> mantenimiento.

En las Tablas 17 a la 21 se evalúan las posibles soluciones para la apertura de puertas, sistema manual (Solución 1), sistema neumático (Solución 2), sistema eléctrico (Solución 3); los valores asignados a cada solución son:

- 1 si el criterio de las filas es superior (>) que el de las columnas.
- 0,5 si los dos criterios que se comparan son equivalentes.
- 0 si el criterio de las filas es inferior (<) que el de las columnas.

Tabla 17. Evaluación de las soluciones respecta al peso.

Peso	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	0	2	0,33
Solución 2	0	Χ	0	1	0,17
Solución 3	1	1	Х	3	0,50
			Suma	6	1,00

(Fuente: Propia)

Solución 3 > Solución 2 > Solución 1.

Tabla 18. Evaluación de las soluciones respecto a la velocidad de funcionamiento.

Velocidad de funcionamiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	1	3	0,50
Solución 2	0	Χ	0	1	0,17
Solución 3	0	1	Χ	2	0,33
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 2 > Solución 2

Tabla 19. Evaluación de las soluciones respecto al nivel de ruido.

Nivel de ruido	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Х	0	0	1	0,17
Solución 2	1	Х	0	2	0,33
Solución 3	1	1	Х	3	0,50
			Suma	6	1,00

Solución 3 > Solución 2 > Solución 1.

Tabla 20. Evaluación de las soluciones respecto al costo del equipo.

Costo del equipo	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	X	0	0	1	0,17
Solución 2	1	Х	1	3	0,50
Solución 3	1	0	Х	2	0,33
			Suma	6	1,00

(Fuente: Propia)

Solución 2 > Solución 3 > Solución 1.

Tabla 21. Evaluación de las soluciones respecto al mantenimiento.

Mantenimiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	X	0	0	1	0,17
Solución 2	1	X	0	2	0,33
Solución 3	1	1	Х	3	0,50
			Suma	6	1,00

(Fuente: Propia)

Solución 3 > Solución 2 > Solución 1.

Tabla 22. Tabla de conclusiones para el Nivel 1.

Solución	Peso	Velocidad de funciona- miento	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	PRIORIDAD
Solución 1	0,044	0,100	1,600	0,056	0,400	2,200	1
Solución 2	0,022	0,033	0,800	0,167	0,200	1,222	2
Solución 3	0,067	0,067	0,533	0,111	0,133	0,911	3

Solución 1 > Solución 2 > Solución 3.

Se concluye del análisis del método ordinal corregido de criterios ponderados Tabla 22. que el sistema manual de apertura de puertas es el más idóneo para el acceso y salida del personas con capacidades especiales a la canastilla del salvaescaleras.

3.1.3. Nivel 2, equipo motriz del salvaescaleras

3.1.3.1. Motor reductor

Un Motorreductor tiene acoplado un motor y un reductor de velocidad capaces de entregar velocidades de giro que pueden ser controladas robustamente, su aplicación es variada desde un Motorreductor capaz de variar la velocidad y sentido de giro de un reloj hasta enormes maquinarias agrícolas o excavadoras de túneles ,Fig. 19. Sus principales ventajas y desventajas se muestran en la Tabla 23.

Figura 19. Motor reductor. Fuente: https://www.roydisa.es/productos/reductores-watt-drive/)

Tabla 23. Ventajas y desventajas del motor reductor.

Ventajas	Desventajas				
Potencia suficiente para elevar la carga	Depende de la electricidad para su funcionamiento				
Diferentes reducciones de velocidad disponibles	Bajo control de revoluciones				
Sistema robusto	Bajo rendimiento				
Uso exterior					

3.1.3.2. Motor de altas revoluciones

Los motores de altas revoluciones son una nueva tecnología que presenta bajo niveles de rozamiento por lo tanto disminuye las posibilidades de sufrir desperfectos durante su funcionamiento por lo que su fiabilidad es elevada; este tipo de motores presenta un rendimiento térmico es 5 % más alto que en una turbina de gas de ciclo simple, Fig. 20. Ventajas adicionales de estos motores son presentados en la Tabla 24 y algunas de sus desventajas.

Figura 20. Motor de altas revoluciones (Fuente: https://library.e.abb.com/public/c405204c915a9069c1256ddd00346c5d/26-27%20M698%20-%20SPA.pdf)

Tabla 24. Ventajas y desventajas del motor de altas revoluciones.

Ventajas	Desventajas
Respuesta rápida	Difícil de controlar velocidad
Potencia acorde a la necesidad	Costoso
Bajo nivel de rozamiento	

(Fuente: Propia)

3.1.3.3. Motor a pasos

Este tipo de motores están constituidos normalmente por un rotor sobre el que van aplicados distintos imanes permanentes y por un cierto número de bobinas excitadoras bobinadas en su estator. Las bobinas son parte del estator y el rotor es un imán permanente. Toda la conmutación (o excitación de las bobinas) deber ser externamente manejada por un controlador, Fig. 21. Sus principales ventajas y desventajas se pueden observar en la descripción de la Tabla 25.

Figura 21. Motor a pasos. (Fuente: https://www.330ohms.com/products/motor-a-pasos-unipolar)

Tabla 25. Ventajas y desventajas del motor a pasos.

Ventajas	Desventajas
Control exacto en los movimientos	Elevado Costo
Potencia acorde a la necesidad	No existe mucha gama de motores
Buena repetitividad	Bajas revoluciones en potencias elevadas

3.1.4. Selección de alternativas según el tipo de accionamiento motriz para el salvaescaleras

El análisis de cada criterio para el equipo motriz se enlista en la Tabla 26 para determinar cuál de estos tiene mayor prioridad.

- Peso
- Velocidad de funcionamiento
- Nivel de ruido
- Costo del equipo
- Mantenimiento

Tabla 26. Ponderación de criterios, equipo motriz.

CRITERIO	Peso	Velocidad de funciona- miento	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	Ponderación
Peso	Χ	1	1	0	1	4	0,27
Velocidad de funcionamiento	0	Х	1	0	0	2	0,13
Nivel de ruido	0	0	Х	1	1	3	0,20
Costo del equipo	1	1	0	х	1	4	0,27
Mantenimiento	0	1	0	0	Х	2	0,13
					Suma	15	1,00

(Fuente: Propia)

Costo del equipo=Peso>nivel de ruido> velocidad de funcionamiento= mantenimiento.

En las Tablas 27 a la 31 se evalúan las posibles soluciones para el sistema motriz, motor reductor (Solución 1), motor de altas revoluciones (Solución 2), motor a pasos (Solución 3); los valores asignados a cada solución son:

- 1 si el criterio de las filas es superior (>) que el de las columnas.
- 0,5 si los dos criterios que se comparan son equivalentes.
- o si el criterio de las filas es inferior (<) que el de las columnas.

Tabla 27. Evaluación de las soluciones respecto al peso.

Peso	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	1	3	0,50
Solución 2	0	X	0	1	0,17
Solución 3	0	1	X	2	0,33
			Suma	6	1,00

(Fuente: Propia)

Solucion1 > Solución 3 > Solución 2.

Tabla 28. Evaluación de las soluciones respecto a la velocidad de funcionamiento.

Velocidad de funcionamiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	1	3	0,43
Solución 2	0	Χ	0	2	0,29
Solución 3	0	1	Χ	2	0,29
			Suma	7	1,00

(Fuente: Propia)

Solucion1 > Solución 2 = Solución 3.

Tabla 29. Evaluación de las soluciones respecto al nivel de ruido.

Nivel de ruido	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Χ	1	1	3	0,50
Solución 2	0	Х	1	2	0,33
Solución 3	0	0	Х	1	0,17
			Suma	6	1,00

(Fuente: Propia)

Solución 1 > Solución 2 > Solución 3.

Tabla 30. Evaluación de las soluciones respecto al costo del equipo.

Costo del equipo	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	X	0	0	1	0,17
Solución 2	1	X	0	2	0,33
Solución 3	1	1	X	3	0,50
			Suma	6	1,00

(Fuente: Propia)

Solución 3 > Solución 2 > Solución 1.

Tabla 31. Evaluación de las soluciones respecto al mantenimiento.

Mantenimiento	Solución 1	Solución 2	Solución 3	∑+1	Ponderación
Solución 1	Х	0	0	1	0,17
Solución 2	1	Х	0	2	0,33
Solución 3	1	1	Х	3	0,50
			Suma	6	1,00

(Fuente: Propia)

Solución 3 > Solución 2 > Solución 1.

Tabla 32. Tabla de conclusiones para el nivel 2.

Solución	Peso	Velocidad de funciona- miento	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	PRIORIDAD
Solución 1	0,133	0,057	0,100	0,044	0,022	0,36	1
Solución 2	0,044	0,038	0,067	0,089	0,044	0,28	3
Solución 3	0,089	0,038	0,033	0,133	0,067	0,36	2

(Fuente: Propia)

: Propia)

Solución 1 = Solución 2 > Solución 3

Se concluye del análisis del método ordinal corregido de criterios ponderados que el sistema motor reductor es el más idóneo en el equipo motriz para la aplicación en el salvaescaleras tras un análisis de cada evaluación.

3.1.5. Nivel 3, estructura

3.1.5.1. Bastidor de soporte lateral

El bastidor de soporte lateral se encuentra anclado a la trayectoria del salvaescaleras siendo su único soporte la pared posterior (Fig. 22),las principales ventajas y desventajas respecto este bastidor se describen en la Tabla 33.

Figura 22. Bastidor de soporte lateral. (Fuente: http://www.imcaelevacion.es/salvaescaleras.html)

Tabla 33. Ventajas y desventajas del bastidor de soporte lateral.

Ventajas	Desventajas
Mayor comodidad	Requiere mayor cantidad de soportes
Requiere de menos potencia para su uso	Costo elevado
Mayor automatización	

(Fuente: Propia)

3.1.5.2. Bastidor 3 apoyos

Este bastidor se encuentra anclado tanto a la pared de la instalación como a las escaleras metálicas, Fig.23. Posibilita la implementación de puertas laterales y un soporte de lado frontal del sistema. Las ventajas y desventajas de este bastidor se encuentran descritas en la Tabla 34.

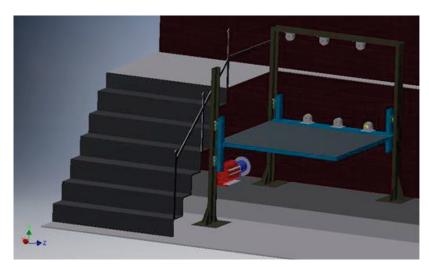


Figura 23. Bastidor de tres apoyos. (Fuente: Propia)

Tabla 34. Ventajas y desventajas del bastidor de 3 apoyos.

Ventajas	Desventajas
Estabilidad austera	Mayor volumen
Menor tiempo de elevación	Deja sin un punto de apoyo al elevador
Liviano	Costo moderado

3.1.5.3. Bastidor central

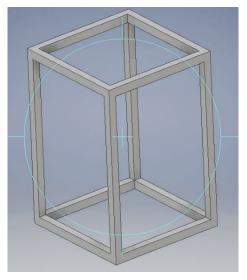


Figura 24. Bastidor central. (Fuente: http://www.beltek.com.ar/portfolio/bastidores/)

Un bastidor central es aquella estructura rígida en el que su sistema se sujeción se encuentra suspendido en el centro de la misma, ofrece mayor estabilidad y un total

cubrimiento tanto lateral como posterior. La Figura 24. Indica el esquema y geometría de este tipo de bastidor. En la Tabla 35. Se encuentran detalladas las ventajas y desventajas que este bastidor presenta.

Tabla 35. Ventajas y desventajas del bastidor central.

Ventajas	Desventajas
Estructura rígida	Costo moderado
Bajo peso comparado con el lateral	Fabricación inestable
Distribución de carga uniforme	
Bajo mantenimiento	

(Fuente: Propia)

3.1.5.4. Guías

Se describirá a continuación las guías internas, externas y rodillos que se pueden utilizar en el desplazamiento de la canastilla.

3.1.5.4.1. **Guías Internas**

Guías internas de cojinetes de bolas de extracción total fabricada en acero laminado en frío bajo en carbono con un baño galvanizado (pasivado azul) de gran resistencia a la corrosión. Estas guías aportan al desplazamiento del bastidor por el riel. También pueden estar compuestas de un canal en G y ruedas de poliuretano, Fig. 25, que soporten la carga de la estructura y la carga operacional del sistema salvaescaleras. Las ventajas y desventajas de estas guías se encuentran detalladas en la Tabla 36.

Figura 25. Guías de desplazamiento interno. (Fuente: http://eurex.informaticausb.com/distribuidores/)

Tabla 36. Ventajas y desventajas de guías internas.

Ventajas	Desventajas
Distribución uniforme de cargas	Requiere columnas más rígidas
Menor mantenimiento	
Menor volumen	

(Fuente: Propia)

3.1.5.4.2. Guías con rodillos

Su diseño robusto y separación establecida de cada rodillo ofrece soluciones de guías longitudinales y transversales personalizados para cargas de hasta 1500 kg. Fig. 26. La Tabla 37. Señala las ventajas y desventajas más relevantes a este tipo de guías.

Figura 26. Guías con rodillos. (Fuente: https://spanish.alibaba.com/product-detail/plastic-conveyor-roller-guard-rails-guide-rail-roller-619663957.html)

Tabla 37. Ventajas y desventajas con guías con rodillos.

Ventajas	Desventajas
Distribución de Carga Uniforme	Coste elevado
Fácil de instalar	Mayor mantenimiento
Disponibilidad en el mercado local	Genera ruido

(Fuente: Propia)

3.1.5.4.3. Guías externas

Es un innovador sistema de deslizamiento al ras de pared, con guías y carros exteriores de diseño refinado en el cual los dos carros circulares dejan ver la rotación del mecanismo con movimiento de la estructura, Fig. 27. Las ventajas y desventajas de guías exteriores se nombran en la Tabla 38.

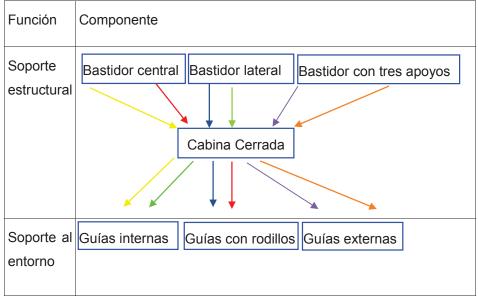

Figura 27. Guía de desplazamiento externo. (Fuente: http://eurex.informaticausb.com/distribuidores/)

Tabla 38. Ventajas y desventajas de guías externas.

Ventajas	Desventajas
Alta fiabilidad	Costo elevado
Bajo desgaste	Calidad baja
Fácil mantenimiento	

3.1.5.5. Selección de alternativas según la estructura y guías para el salvaescaleras

Tabla 39. Combinación de soluciones para el nivel 3.

(Fuente: Propia)

Para el nivel estructural se realizan las posibles combinaciones entre el soporte estructural que son los bastidores y el soporte al entorno que corresponden a los tipos de guías presentadas en la Tabla 39. Las seis posibles soluciones para el nivel estructural se encuentran descritas en la Tabla 40.

Tabla 40. Soluciones para el nivel 3, Estructural.

Solución	Soporte estructural		Soporte al entorno
1	bastidor central	cabina cerrada	guías internas
2	bastidor lateral	cabina cerrada	guías con rodillos
3	bastidor de tres apoyos	cabina cerrada	guías externas
4	bastidor central	cabina cerrada	guías con rodillos
5	bastidor lateral	cabina cerrada	guías internas
6	bastidor de tres apoyos	cabina cerrada	guías externas

(Fuente: Propia).

Para determinar la alternativa idónea de este nivel se procede a enlistar los criterios que deben cumplir y su relevancia mediante la ponderación de cada uno de ellos descritos en la Tabla 41 para determinar su mayor prioridad respecto a los demás.

Tabla 41. Ponderación de criterios, Estructura.

CRITERIO	Peso	Estabili- dad	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	Pondera- Ción
Peso	Х	0	1	1	1	4	0,27
Estabilidad	1	Х	1	1	1	5	0,33
Nivel de ruido	0	0	Χ	0	0	1	0,07
Costo del equipo	0	0	1	X	0,5	2,5	0,17
Mantenimiento	0	0	1	0.5	X	2,5	0,17
	•			•	Suma	15	1,00

(Fuente: Propia).

Estabilidad> Peso> Costo del equipo=Mantenimiento> Nivel de Ruido.

En las Tablas 42 a la 46 se evalúan las posibles soluciones respecto a los criterios para el nivel estructural, los valores asignados a cada solución son:

- 1 si el criterio de las filas es superior (>) que el de las columnas.
- 0,5 si los dos criterios que se comparan son equivalentes.
- 0 si el criterio de las filas es inferior (<) que el de las columnas.

Tabla 42. Evaluación de las soluciones respecto al peso.

Peso	Sol. 1	Sol. 2	Sol. 3	Sol. 4	Sol. 5	Sol. 6	∑+1	Ponderación
Sol. 1	Х	0	0	0,5	0	1	2,5	0,12
Sol. 2	1	Х	0	1	0,5	1	4,5	0,21
Sol. 3	1	1	Х	0	1	0,5	4,5	0,21
Sol. 4	0,5	0	1	Χ	0	1	3,5	0,17
Sol. 5	1	0,5	0	1	Х	1	4,5	0,21
Sol. 6	0	0	0,5	0	0	Х	1,5	0,07
			•			Suma	21	1,00

(Fuente: Propia).

Solución 3= Solución 2= Solución 5> Solución 4> Solución 1> Solución 6.

Tabla 43. Evaluación de las soluciones respecto a la estabilidad.

Estabilidad	Sol. 1	Sol. 2	Sol. 3	Sol. 4	Sol. 5	Sol. 6	∑+1	Ponderación
Sol. 1	Х	1	0,5	1	0,5	1	5	0,22
Sol. 2	1	Х	0	0,5	0	0	2,5	0,11
Sol. 3	0,5	1	Х	1	0,5	1	5	0,22
Sol. 4	1	0,5	0	Χ	0	0	2,5	0,11
Sol. 5	0,5	1	0,5	1	Х	1	5	0,22
Sol. 6	0	1	0	1	0	Х	3	0,13
	•	•	suma	23	1,00			

Solución 1= Solución 3= Solución 5> Solución 6> Solución 4> Solución 2.

Tabla 44. Evaluación de las soluciones respecto al nivel de ruido.

Nivel de ruido	Sol. 1	Sol. 2	Sol. 3	Sol. 4	Sol. 5	Sol. 6	∑+1	Ponderación
Sol. 1	Х	1	0	1	1	0	4	0,19
Sol. 2	0	Х	0	1	0	0	2	0,10
Sol. 3	1	1	Х	1	1	1	6	0,29
Sol. 4	0	0	0	Х	0	0	1	0,05
Sol. 5	0	1	0	1	Χ	1	4	0,19
Sol. 6	1	1	0	1	0	Х	4	0,19
	1			1		Suma	21	1,00

(Fuente: Propia).

Solución 3> Solución 1= Solución 5= Solución 6> Solución 2> Solución 4.

Tabla 45. Evaluación de las soluciones respecto al costo del equipo.

Costo del equipo	Sol. 1	Sol. 2	Sol. 3	Sol. 4	Sol. 5	Sol. 6	∑+1	Ponderación
Sol. 1	Х	0	0	0	1	1	3	0,14
Sol. 2	1	Х	1	0	1	1	5	0,24
Sol. 3	1	0	Х	0	0	0	2	0,10
Sol. 4	1	1	1	Х	1	1	6	0,29
Sol. 5	0	0	0	1	Х	0	2	0,10
Sol. 6	0	0	1	0	1	Х	3	0,14
	•	•		•	•	Suma	21	1,00

(Fuente: Propia).

Solución 4> Solución 2> Solución 1> Solución 6> Solución 5= Solución 3.

Tabla 46. Evaluación de las soluciones respecto al mantenimiento.

Mantenimiento	Sol. 1	Sol. 2	Sol. 3	Sol. 4	Sol. 5	Sol. 6	∑+1	Ponderación
Sol. 1	Х	0	0	1	0	1	3	0,14
Sol. 2	1	Х	0	1	1	0	4	0,18
Sol. 3	1	1	Х	1	1	1	6	0,27
Sol. 4	0	0	0	Х	1	0	2	0,09
Sol. 5	1	0	0	0	Х	0	3	0,14
Sol. 6	0	1	0	1	1	Х	4	0,18
						Suma	22	1,00

Solución 3> Solución 6= Solución 2> Solución 5= Solución 1> Solución 4.

Tabla 47. Tabla de conclusiones para el nivel 3.

Solución	Peso	estabilidad	Nivel de ruido	Costo del equipo	Manteni- miento	∑+1	PRIORI- DAD
Solución 1	0,03	0,07	0,01	0,02	0,02	0,163	4
Solución 2	0,06	0,04	0,01	0,04	0,03	0,170	3
Solución 3	0,06	0,07	0,02	0,02	0,05	0,210	1
Solución 4	0,04	0,04	0,00	0,05	0,02	0,147	5
Solución 5	0,06	0,07	0,01	0,02	0,02	0,181	2
Solución 6	0,02	0,04	0,01	0,02	0,03	0,129	6

(Fuente: Propia).

Solución 3> Solución 5> Solución 2> Solución 1> Solución 4> Solución 6.

Se concluye del análisis del método ordinal corregido de criterios ponderados que la solución es el bastidor de 3 apoyos, cabina cerrada, rieles internos, cumplen perfectamente los criterios de evaluación.

3.1.6. Solución modular final

Como resultado de todos los métodos de análisis ponderal, en la Fig. 28 se presenta la solución final para el sistema salvaescaleras vertical.

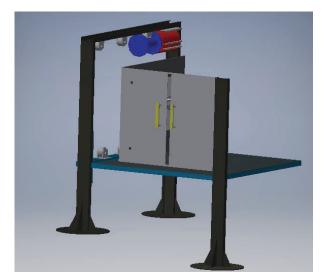


Figura 28. Solución final del salvaescaleras (Fuente: Propia).

3.2. CÁLCULOS Y RESULTADOS

3.2.1. Consideraciones para el análisis de elementos mecánicos por método de elementos finitos

Se emplea el software ANSYS 16.01, con su módulo Workbench ya que es muy idóneo para la simulación el cual nos permite analizar los diferentes fenómenos en los componentes, así como también una amplia variedad de configuración del mallado y tipos de análisis.

3.2.1.1. Módulo static structural

Es el módulo en el cual la geometría será importada de Inventor con extensión IGES será leída e interpretada por el programa para su respectivo estudio.

3.2.1.2. Solver

Nos permite la resolución de las ecuaciones generadas en el mallado de los elementos, tomando en cuenta el número de iteraciones hasta llegar a la convergencia de la solución.

3.2.1.3. Mallado del modelo

Para el mallado del modelo se escoge, de preferencia geometrías cubicas, para agilizar el uso de recursos en el ordenador.

3.2.1.4. Postproceso

Se analiza detenidamente los datos entregados por el programa y su validación con cálculos exactos, constatando la veracidad de los resultados, dentro de los parámetros de error de entre el 5 al 20 por ciento de diferencia entre ellos.

3.2.2. Dimensionamiento del salvaescaleras

3.2.2.1. Datos iniciales

3.2.2.1.1. Dimensiones de la canastilla

En base a la Norma INEN se establecen las dimensiones recomendadas para la construcción de la base de la canastilla útil. (INEN, Norma Técnica Ecuatoriana INEN 2 299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores., 2001):

Ancho: 1,2 [m]

Largo: 1,0 [m]

Según la norma UNE EN 81-2001 (UNE-EN, 2001) se debe realizar una relación entre el área útil y el número de personas que se alojan en la cabina, si se dispone de un área útil de 1.4 [m²] se requiere de un sistema salvaescaleras que soporte hasta 150 [kg] de carga útil, por lo tanto se tiene una carga nominal de 300 [kg] que representa la suma entre la carga útil y la masa de la parte estructural del sistema. La Tabla 48. Presenta la superficie útil máxima de la cabina del salvaescaleras.

Tabla 48. Relación entre la carga nominal y la superficie útil máxima de la cabina.

Carga	Superficie útil	Carga	Superficie útil máxima de cabina [m²]
Nominal	máxima de cabina	nominal	
(masa) [kg]	[m²]	(masa) [kg]	
100 ¹ 180 ² 225 300 375 400 450 525 600	0,37	900	2,20
	0,58	975	2,35
	0,7	1000	2,40
	0,9	1050	2,50
	1,1	1125	2,65
	1,17	1200	2,80
	1,30	1250	2,90
	1,45	1275	2,95
	1,60	1350	3,10

¹Mínimo para un ascensor de una persona.

Para cargas intermedias se determina la superficie por interpolación lineal.

(Fuente: http://www.facara.com.ar/normativas/europa/EN81-2001.pdf).

²Mínimo para un ascensor de dos personas.

³Por encima de 2500 [kg] añadir 0,16[m²] por cada 100 [kg] más.

El área útil dada por la NTE es de 1,2 [m²] y por la UNE para una carga nominal de 300 [kg.] requiere una superficie útil de 0,9 [m²], siendo el área útil del salvaescaleras de 1,4 [m²] con el fin de dar cumplimiento a ambas normas.

Las paredes deben tener un pasamanos a 0.9 metros del nivel del piso de la canastilla, además debe resistir a los ensayos solicitados en la norma UNE 81-2001.

3.2.2.1.2. Dimensiones de la puerta

La puerta del salvaescaleras tiene un sistema manual de apertura que permite al usuario el libre ingreso al salvaescaleras, Fig. 29, su posterior posicionamiento y cierre de las puertas.

1295 x1000[mm].

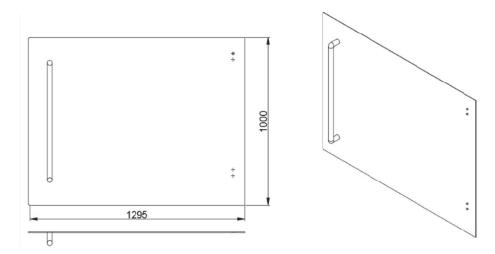


Figura 29. Geometría de la puerta. (Fuente: Propia).

3.2.2.1.3. Velocidad de la canastilla

La velocidad de la canastilla es determinada experimentalmente ya que se cuenta con un motor reductor que cuenta con 10 metros de cable de acero y el tiempo que demora en enroscar fue de 11,11 [s]. Por lo tanto, se tiene un valor de velocidad de:

v = 0.9 [m/s].

Este valor debe ser comprobado en conjunto con el arreglo de poleas ya que presentará una variación debido al diámetro y número de poleas.

Según la norma UNE- EN (UNE-EN, 2001); si excede el 115% de la velocidad nominal, entonces debemos usar un paracaídas si la velocidad nominal es menor a 0.8 [m/s] se detiene de inmediato, si es mayor a 1[m/s] entonces es progresivo.

3.2.2.1.4. Coeficiente de seguridad para guías

La resistencia de las guías, sus uniones y sus fijaciones deben ser suficientes para soportar las cargas y fuerzas que se someten para asegurar un correcto funcionamiento del salvaescaleras.

Algunos requerimientos de las guías para garantizar un funcionamiento óptimo del salvaescaleras, son:

Debe asegurarse el guiado de la canastilla y de la masa de equilibrio.

Las deformaciones deben limitarse hasta el punto de:

No debe ocurrir un desbloqueo involuntario de las puertas,

No debe afectar el funcionamiento de los dispositivos de seguridad,

No debe ser posible que unas partes móviles puedan colisionar con otras.

Se presenta los coeficientes de seguridad que deben ser tomados en cuenta son presentados en la Tabla 39.

Tabla 49. Coeficiente de seguridad para guías dadas por la norma EN EU 81-2001

Casos de carga	Alargamiento (A5)	Coeficiente de seguridad
	A5 ≥12%	2,25
Carga en uso normal	8% ≤ A5≤12%	3,75

(Fuente: http://www.facara.com.ar/normativas/europa/EN81-2001.pdf).

Materiales con alargamiento menor del 8% se consideran demasiado frágiles y no deben utilizarse.

Para guías conformes a la Norma ISO 7465, pueden utilizarse los valores σ_{adm} de la tabla que se indica en la Tabla 50.

Tabla 50. Esfuerzos admisibles para guías conforme a la Norma UNE EU 81-2001.

Valores en [N/m²]			
		Rm	
Casos de carga	370	440	520

(Fuente: http://www.facara.com.ar/normativas/europa/EN81-2001.pdf).

3.2.2.2. Cálculo del polipasto

Usaremos para el elevador un polipasto factorial, presentado su configuración en la Fig. 30.

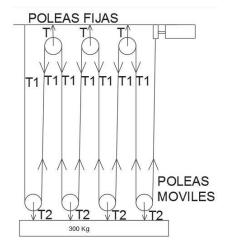


Figura 30. Configuración de polipasto utilizado. (Fuente: Propia).

Análisis estático del polipasto, aplicamos la sumatoria de fuerzas en el eje Y en cada polea fija y móvil del sistema incluido la tensión en el cable del motor para obtener.

De acuerdo al diagrama de cuerpo libre de la polea fija, Fig. 31, se cumple que:

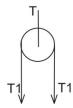


Figura 31. Diagrama de cuerpo libre polea fija. (Fuente: Propia).

$$\sum Fy = 0$$
$$T - 2T_1 = 0$$

De la misma manera para el diagrama de cuerpo libre de la polea móvil, Fig. 32 se cumple que:

Figura 32. Diagrama de cuerpo libre polea móvil (Fuente: Propia).

$$\sum Fy = 0$$
$$2T_1 - T_2 = 0$$

Al igual que en el diagrama de cuerpo libre del cable del motor, Fig. 33, se cumple que:

Figura 33. Diagrama de cuerpo libre del cable (Fuente: Propia).

$$\sum Fy = 0$$

$$T_1 - P_1 = 0$$

$$T_1 = P_1$$

De acuerdo al diagrama de cuerpo libre de la viga de la canastilla, Fig. 34, se cumple que:

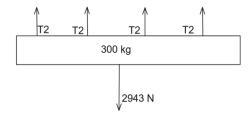


Figura 34. Diagrama de cuerpo libre viga. (Fuente: Propia).

$$3T_2 - 2943 [N] + T_2 = 0$$

$$T_2 = 735,75 [N]$$

$$T_1 = 367,875 [N]$$

$$P_1 = 367,875 [N]$$

$$T = 2(367,875) = 735,75 [N]$$

3.2.2.3. Cálculo en las poleas

En la figura anterior, Fig. 32 se muestra el diagrama de cuerpo libre en la polea móvil para guiar el cálculo respecto a la acción de las fuerzas que soporta.

En el anexo XV se tiene la polea acanalada A899 con un área interior de 14 [mm²], tenemos un esfuerzo permisible de:

$$\sigma_{polea} = \frac{T_2}{Ainterior} = \frac{735,75 [N]}{14 [mm^2]} = 52,55 MPa.$$

Esfuerzo de Von Misses

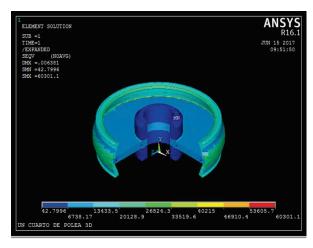


Figura 35. Simulación comportamiento polea 3D (Fuente: Propia)

Se realiza una simulación de la polea que soporte un esfuerzo máximo de 52,55[MPa], una carga de 75 [kg] con un diámetro interno de 10[mm] y un diámetro externo de 40 [mm].

El mallado que se utiliza para la polea móvil, Fig. 39, determina que el número de elementos del mallado son 34505 y el tipo de malla aplicada es tetraédrico.

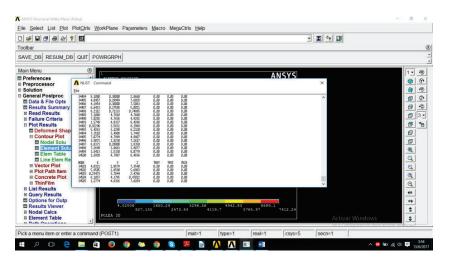


Figura 36. Análisis nodal de la polea (Fuente: Propia)

Se procede a tener dos tipos de resultados de la simulación en 2D, Fig. 37, es decir, tomando una sección de la polea con el fin de optimizar el uso de recursos

computacionales, donde los resultados serán no distantes al obtenido donde su mallado será rectangular, Fig.37 y una simulación 3D, Fig. 38, que converge a una mejor solución ya que el mallado será tetraédrico, Fig. 40 y analizará la geometría completa de la polea.

Resultado sólido 3D 43656,35 psi= 60,30 MPa.

Resultado sólido 2D 10732,79 psi= 56,74 MPa.

Resultado analítico: 52,55 MPa.

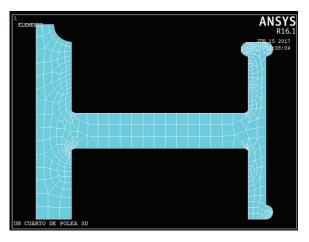


Figura 37. Mallado 2D de la polea móvil. (Fuente: Propia)

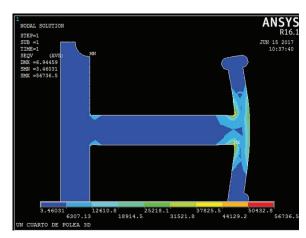


Figura 38. Simulación de esfuerzos 2D polea. (Fuente: Propia)

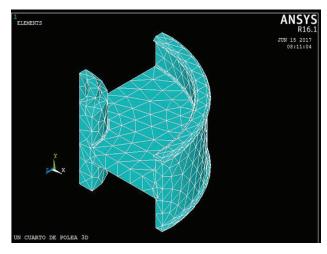


Figura 39. Mallado 3D de la polea móvil. (Fuente: Propia)

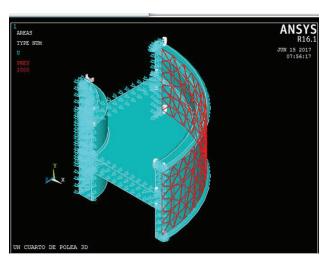


Figura 40. Asignación de cargas en la polea 3D. (Fuente: Propia)

Sy=393MPa, de fundición gris ASTM 40

$$n_{2D} = \frac{393 MPa}{56,74 MPa} = 6,93$$

$$n_{3D} = \frac{393 MPa}{60,34 MPa} = 6,51$$

$$n_{calculado} = \frac{393 MPa}{52,55 MPa} = 7,48$$

3.2.2.4. Cálculo de la viga

Tomaremos el acero A36 que es el más común en nuestro mercado con una resistencia a la fluencia Sy=36 ksi. Las magnitudes de las fuerzas actuantes sobre la viga se presentan en la Fig. 41.

Figura 41. Diagrama de fuerzas actuantes sobre la viga. (Fuente: Propia).

3.2.2.5. Diseño de la viga

El diseño estructural aplicado en viga y columna se basa en la norma AISC que plantea dos métodos de cálculo para elementos estructurales, que deben ser aplicados de manera independiente, y siendo válido la aplicación de cualquiera de ellos.

El diseño AISC- ASD, diseño por esfuerzo permisible o método del diseño elástico.

El diseño AISC- LRFD, load and resistance factor design.

El diseño que se utiliza en este apartado es el AISC-ASD, indica que los esfuerzos admisibles no deben ser sobrepasados por cargas de trabajo y son calculados en secciones críticas de un elemento estructural dado que este método toma como su comportamiento como elástico.

Todo elemento diseñado por este método se considera como diseño optimo si los esfuerzos de trabajo no sobrepasan los esfuerzos permisibles.

Los diagramas de fuerza cortante y momento flector que actúan sobre la viga se presentan en las Figuras 42 y 43, respectivamente.

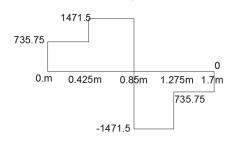


Figura 42. Diagrama de fuerza cortante que actúa sobre la viga. (Fuente: Propia).

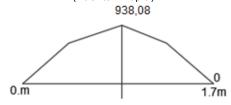


Figura 43. Diagrama de momento flector que actúa sobre la viga. (Fuente: Propia).

$$\delta m = \frac{M}{Sv} \le [\delta] = \frac{Sy}{Fs}$$

Siendo,

 δm : Esfuerzo máximo [MPa].

M: Momento Máximo 938,08 [N*m].

Sy: Resistencia a la fluencia 36 [KSI] = 250 [GPa]).

Fs: Factor de seguridad teórico asumido 2.

S: Módulo de la sección [cm³]

$$\frac{Sy}{Fs} = [\delta m \acute{a}x]$$

$$\frac{36}{2} = [\delta \text{máx}]$$

$$[\delta m \acute{a}x] = [18 \text{ Ksi}]$$

$$S \ge \frac{Mx}{\delta m}$$

$$S \ge \frac{93808 [N * cm]}{12410.56 [\frac{N}{cm^2}]}$$

$$S = 7 [cm^3] = 0.427 [pulg^3]$$

S= 0.427 [pulg³] es el módulo de la sección teórico por lo que, en la norma AISC se obtiene como más cercano un S*=0.668 [pulg³] correspondiente a un tubo cuadrado de 2"x2", por lo que el factor de seguridad real será:

$$Fs = \frac{S*}{S} = \frac{0,668}{0,427} = 1,56$$

3.2.2.6. Simulación de la viga

La malla aplicada a la viga calcula un número de elementos del mallado 640, con el tipo de malla aplicada cuadrada, Fig. 44.

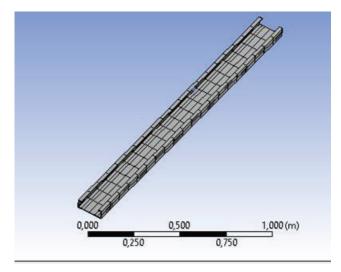


Figura 44. Mallado de la viga estructura. (Fuente: Propia).

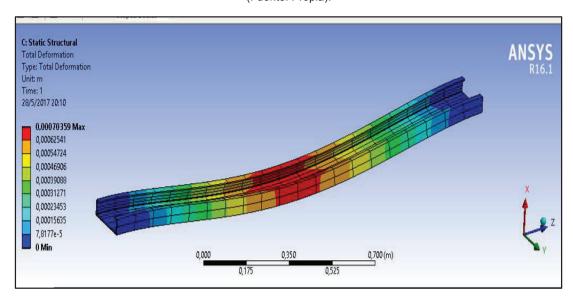


Figura 45. Simulación de deformaciones en la viga.

A continuación se presenta el cálculo del esfuerzo:

 $\delta von\ misses = \varepsilon * E$

Siendo:

δvon misses: Esfuerzo máximo.

ε: Deformación elástica equivalente. (0,000239).

Sy: resistencia a la fluencia para el acero estructural (250 [GPa]).

E: módulo de elasticidad acero estructural (210 x 10⁶ [Pa]).

 δ von misses = 0,000239 * 210 x 10⁶

δvon misses = 50,2 [MPa]

El factor de seguridad para el esfuerzo de von misses calculado es:

$$Fs = \frac{Sy}{\delta \text{von misses}}$$
$$Fs = \frac{250 \times 10^6}{50,2 \times 10^6}$$
$$Fs = 5$$

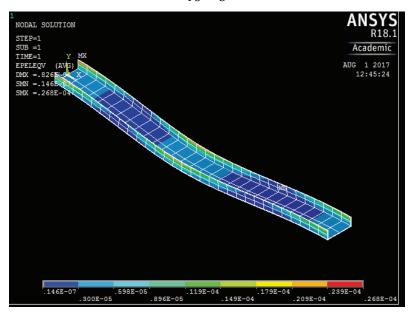


Figura 46. Simulación de deformación elástica equivalente soportado por la viga. (Fuente: Propia).

Al analizar el comportamiento de la viga a través del método del elementos finitos ocupando el software ANSYS y su módulo WORKBENCH, la geometría es realizada en inventor 2016 y exportada para su respectivo análisis, la malla escogida es cuadrilátero cuadrático para un mejor análisis de la deformación que se ajusta a las necesidades del análisis del diseño, Fig. 44, posteriormente se ha insertado condiciones de frontera para una carga puntual = 300 [kg] soportada en el punto medio de la viga, de igual manera que en la canastilla la deformación máxima de 0,00070359 [m]= 0,70[mm] en el punto medio de la viga siendo el más crítico para el análisis, Fig.45 y una deformación elástica equivalente a 0,000239, Fig.46.

3.2.2.7. Simulación de la canastilla

El mallado que se utiliza para la canastilla, Fig. 47, determina que el número de elementos del mallado son 6897 y el tipo de malla aplicada es triangular.

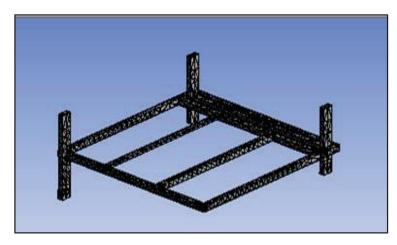


Figura 47. Mallado de la canastilla. (Fuente: Propia)

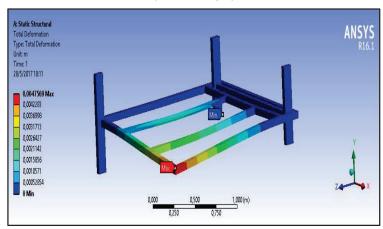


Figura 48. Simulación de deformación total soportado por la canastilla. (Fuente: Propia)

A continuación se presenta el cálculo del esfuerzo de von misses a partir de la deformación plástica equivalente simulado en la Fig. 49:

$$δ$$
von misses = $ε * E$

Siendo:

δvon misses: esfuerzo máximo.

 ϵ : deformación elástica equivalente. (0,00026).

Sy: resistencia a la fluencia para el acero estructural (250 [GPa]).

E: módulo de elasticidad acero estructural (210 x 10⁶ [Pa]).

 δ von misses = 0,00026 * 210 x 10⁶

δvon misses = 54,6 [MPa]

El factor de seguridad para el esfuerzo de von misses calculado es:

$$Fs = \frac{Sy}{\delta von \ misses}$$

$$Fs = \frac{250 \times 10^6}{54.6 \times 10^6}$$
$$Fs = 4.5$$

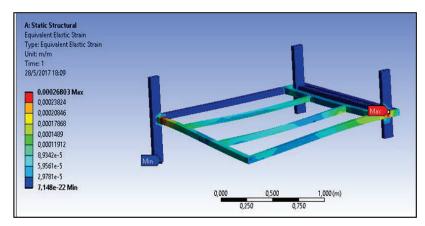


Figura 49. Simulación de la deformación elástica equivalente soportado en la canastilla. (Fuente: Propia).

Se analiza el comportamiento de la canastilla a través del método del elementos finitos ocupando el software ANSYS y su módulo WORKBENCH, la geometría es realizada en inventor 2016 y exportada para su respectivo análisis, la malla escogida es triangular que se ajusta a las necesidades del análisis del diseño,Fig.47, posteriormente se asigna condiciones de frontera una carga = 300 [kg] soportes fijos en los extremos dando una deformación máxima de 0,00475 [m]= 4,75[mm] en el extremo libre de un soporte, Fig. 48, una deformación elástica equivalente de 0,00026 (Fig. 49).

3.2.2.8. Diseño de la columna

Dado que la columna en un elemento axial sometido a compresión, donde su longitud y su ancho son de grandes proporciones, el cual permite sostener el peso de una estructura. Debido a las condiciones de la columna también es diseñada a flexión o la combinación de ambas denominada flexo-compresión.

Al efecto geométrico de la columna se llama esbeltez y es un factor imprescindible ya que la falla depende de éste. Para columnas poco esbeltas, llamadas también columnas cortas, la falla produce aplastamiento. Para columnas más esbeltas, llamadas columnas largas se produce falla por pandeo, el diseño considerado en este análisis será columna corta.

El peso sobre la columna es de 150 [kg] donde el área normal es tomada de una correa G de 15*5*2 con un espesor de 3[mm], Fig. 50.

El diagrama de cuerpo libre de una sección del bastidor indica la acción de cada fuerza que actúa sobre ella, Fig. 51.

$$\delta$$
max = P/An

δmax: Esfuerzo máximo [Ksi].

P: Carga máxima sobre la columna [kg.].

An: Área útil de la columna [cm²].

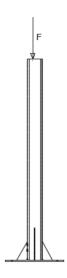


Figura 50. Geometría de la columna de soporte salvaescaleras (Fuente: Propia).

$$Fs = \frac{Sy}{\delta m \acute{a}x}$$

Fs: Factor de seguridad.

Sy: Esfuerzo último a la fluencia del acero A36 [Ksi]

δmáx: Esfuerzo máximo [Ksi].

$$Fs = 4.5$$

 δ máx = 8 [Ksi]

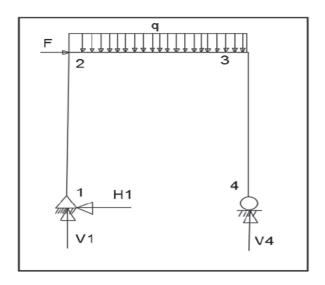


Figura 51. Diagrama de cuerpo libre de la columna. (Fuente: Propia).

$$\Sigma FH = 0$$

$$V - H1 = 0$$

$$V = H1$$

$$\Sigma Fv = 0$$

$$V1 + V4 = 0$$

$$V1 + V4 = 300[kg]$$

$$V1 = 0.3[T/m] * (1.7)[m] - V4$$

$$V1 = 0.144[T] = 0.288[Klb]$$

$$\Sigma M1 = 0$$

$$\frac{q * L^2}{2} - 0.15x2 + V4x1.7[m] = 0$$

$$V4 = \frac{(-q * L^2}{2} + 0.15x2)}{1.7}$$

$$V4 = 0.36[T]$$

Para diseño:

$$1-22[m] = 78.74[pulg]$$
 $K12 = 1.7/2 = 0.85$
 $\lambda < 200$
 KL
 $rmin < 200$

rmin > 0.85x78.74 200 rmin = 0.334 TablasAISCPerfilC6x8.2 rmin = 0.537 $\lambda = 1.25x78.74$ $\lambda = 183$ $\lambda = 183 < 200 Si cumple$

3.2.2.9. Simulación de la columna

De manera similar, se examina el comportamiento de la columna por medio del método del elementos finitos ocupando el software ANSYS y su módulo WORKBENCH, la geometría es realizada en inventor 2016 y exportada para su respectiva interpretación, la malla escogida es triangular para un mejor análisis de la deformación que se ajusta a las necesidades del análisis del diseño, posteriormente se ha insertado la carga puntual = 300 [kg] soportada en la parte superior de la columna, de igual manera que en los anteriores elementos mecánicos investigados la deformación máxima de 0,000058494 [m]= 0,59[mm] en el punto superior de la columna,Fig.54, una deformación máxima equivalente de1,6327x10-5 Fig.53.

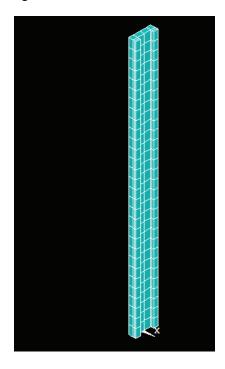


Figura 52. Mallado de la columna (Fuente: Propia)

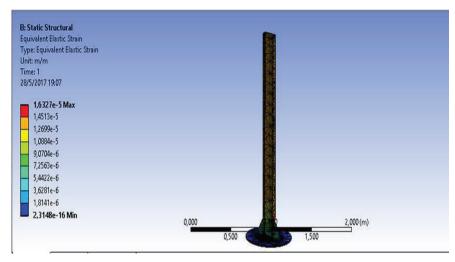


Figura 53. Simulación de la deformación elástica equivalente en la columna. (Fuente: Propia).

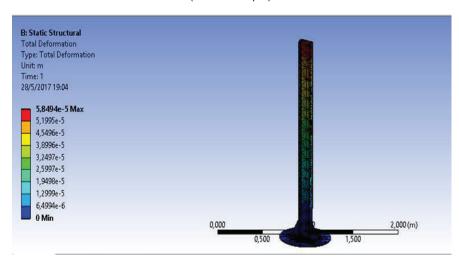


Figura 54. Simulación deformación total de la columna. (Fuente: Propia)

A continuación se presenta el cálculo del esfuerzo de von misses a partir de la deformación plástica equivalente simulado en la Fig.53:

δvon misses = ε * Ε

Siendo:

δvon misses: esfuerzo máximo.

 ϵ : deformación elástica equivalente. (1,4513x10-5).

Sy: resistencia a la fluencia para el acero estructural (250 [GPa]).

E: módulo de elasticidad acero estructural (210 x 10⁶ [Pa]).

 δ von misses = 1,4513x10⁻⁵ * 210 x 10⁶

 δ von misses = 30,45[MPa]

El factor de seguridad para el esfuerzo de von misses calculado es:

$$Fs = \frac{Sy}{\delta von \text{ misses}}$$
$$Fs = \frac{250 \times 10^6}{30,45 \times 10^6}$$
$$Fs = 8,21$$

3.2.2.10. Cálculo para el motor reductor

$$P = \frac{Q \times V}{75m}$$

Potencia teórica

Q: carga total (Personas + canastilla) 300[kg.]

V: velocidad de la canastilla 0,14[m/s]

m: factor de eficiencia del motor 0,85

$$P = 0.65 [KW]$$

Por lo tanto, la potencia teórica requerida es de 0.65 [KW].

$$Fs = \frac{\text{Potencia real}}{\text{Potencia teórica}}$$

Fs: factor de seguridad

En el mercado se encuentra un motor reductor con potencia de 2 [KW] o de 2.98 [HP].

$$Fs = \frac{2}{0,65}$$

$$Fs = 3.06$$

Entonces el factor de seguridad es:

$$Fs = 3$$

3.2.2.11. Cálculo del eje de la chumacera

El cálculo del eje que conecta la rueda de poliuretano y la chumacera inicia con el esquema que se presenta en la Fig. 53, indicando las dimensiones del eje y su diagrama de cuerpo libre con el fin de conocer todas las fuerzas y momentos a los que se somete el mismo, Fig. 54, y proceder con la aplicación de la teoría del máximo esfuerzo axial

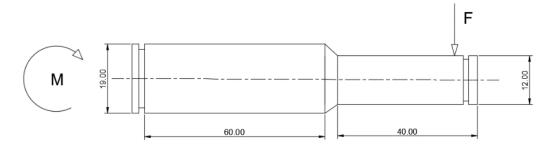


Figura 55. Esquema del eje de la chumacera. (Fuente: Propia)

$$\sum$$
Fy = ma
Rya - Ryb = ma
Rya = 2949[N]
 \sum M = 0
M = -442.35[N. m]

Nota: no trasmite torsión porque la chumacera y la rueda tienen rodamientos.

3.2.2.12. Selección del anillo de retención

El diámetro para la retención del eje se encuentra determinado por medio del Anexo XV, el anillo de retención exterior para un eje de diámetro 12 [mm] es E-11.

3.2.2.13. Cálculo y selección de cable de tracción

Para realizar la selección del cable de tracción partimos de un cable propuesto de 5,7 [mm] de diámetro.

d: diámetro del cable propuesto.

Dr: Diámetro referencia para catálogo Cables León.

Área =
$$0.4*Dr^2$$

3.2.2.14. Diseño del cable

3.2.2.14.1. Esfuerzo estático

$$\delta = \frac{P}{Am}$$

δ: Esfuerzo estático [MPa].

Am: Área media del cable 0,13[cm²].

$$\delta = 18.86 [Mpa]$$

3.2.2.14.2. Esfuerzo dinámico

$$\delta din\'amico = \frac{\delta est.*~a}{g}$$

a: aceleración del sistema 0,02 [m/s²].

g: gravedad 9,81 [m/s²].

$$\delta din\'amico = 0.0038 [MPa]$$

 δ total = δ dinamico + δ estatico.

 δ total = 18.86[Mpa].

3.2.2.15. Cálculo de la soldadura

Este cálculo se justifica ya que la totalidad de la estructura es soldada por lo tanto se analiza desde el siguiente esquema, Fig. 56.

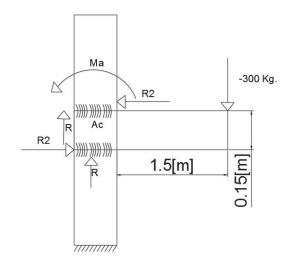


Figura 56. Esquema de la soldadura. (Fuente: Propia)

Corte primario

$$2R - 3000[N] = 0$$

$$R = \frac{3000}{2} [N]$$

$$R = 1500 [N]$$

Corte secundario

$$R_2(0.15 [m]) = M_a$$

$$R_2 = \frac{M_a}{0.15} = \frac{4500}{0.15} = 30000[N]$$

$$R_2 = 30000[N]$$

Al comparar entre R= 1500[N] que representa al corte primario y R₂= 30000[N] que representa al corte secundario, tenemos que el corte secundario es dominante.

Cálculo del esfuerzo teórico

$$\delta = \frac{\sqrt{R_2^2 + R^2}}{A_c}$$

$$\delta = \frac{\sqrt{R_2^2 + R^2}}{A_c}$$

δ Esfuerzo teórico [pa].

Ac área de corte [m²].

$$\delta = \frac{\sqrt{30000^2 + 1500^2}}{A_c}$$

$$\delta = \frac{30007}{A_c}$$

$$\frac{\delta adm}{\delta} = 1$$

Para el cálculo del área corte con datos del electrodo E6011, se procede con el cálculo de la resistencia a la fluencia por tracción y cortante utilizando las fórmulas siguientes:

$$S_{vt} = 0.75 * S_{ut}$$

Siendo

 S_{yt} Resistencia a la fluencia de tracción, 60[Ksi] para el electrodo E6011.

0,75 Factor constante.

 S_{ut} Resistencia última de fluencia [Ksi].

$$S_{vt} = 0.75 * 60[Ksi]$$

$$S_{yt} = 45 [Ksi]$$

$$S_{yc} = 0.6 * S_{yt}$$

 S_{yc} Resistencia a la fluencia por cortante [Ksi].

0,6 Factor constante.

 S_{yt} Resistencia a la fluencia de tracción, 60[Ksi] para el electrodo E6011.

$$S_{vc} = 0.6 * 45[Ksi]$$

$$S_{yc} = 27[Ksi]$$

Cálculo del esfuerzo admisible

$$\delta adm = \frac{S_{yc}}{Fs}$$

δadm Esfuerzo admisible [psi].

Fs Factor de seguridad asumido 2,2.

$$\delta adm = \frac{27000}{2,2}$$

$$\delta adm = 12227 [psi] = 8,43 \times 10^{6} [Pa]$$

$$\frac{\delta adm}{\delta} = 1$$

$$\frac{8,43 \times 10^6}{\frac{30007}{A_c}} = 1$$

$$A_c = 3,55x \ 10^{-9} [m^2]$$

Si el ancho es 3,05 [mm], la longitud de soldadura es:

$$L_c = \frac{A_C}{3,05} = \frac{355}{3,05} = 116 \ [mm]$$

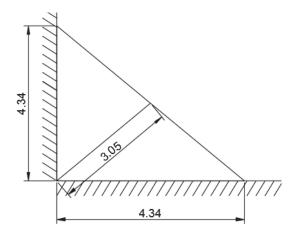


Figura 57. Dimensionamiento de soldadura. (Fuente: Propia)

3.2.2.16. Consideraciones geométricas de la placa base

Se propone para el diseño una placa circular de diámetro 300[mm] y la utilización de 6 pernos de anclaje de 12[mm] de diámetro distribuidos de forma circular, Fig. 59.

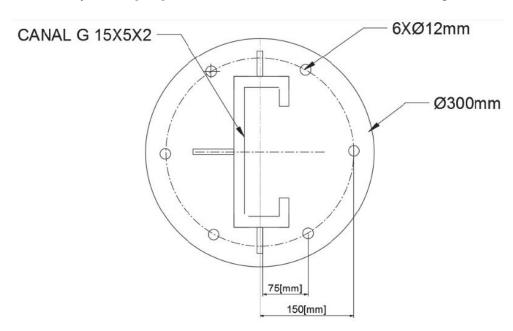


Figura 58. Geometría de la placa base. (Fuente: Propia)

3.2.2.17. Cálculo de cargas sobre el perno de anclaje

La carga a analizar en el diseño del perno de anclaje es la carga axial actuante sobre el mismo, se analizan dos consideraciones en la Fig. 59, la acción de los pernos al ascender y la acción de los pernos al descender, por lo que, se analizará la acción de (3) pernos por la consideración mencionada.

$$P1 (0,15) = 2 P2 (0,075)$$

$$P1 (0,15) = P2 (0,15)$$

$$P1 = P2 = P$$

$$P = \frac{M}{0,15 + 2 (0,075)}$$

$$P = \frac{450[N * m]}{0,3[m]}$$

P: carga de diseño [N].

M: momento ejercido sobre el perno 450[N*m].

3.2.2.18. Diámetro mínimo de los pernos de anclaje

Se escoge un perno estructural ASTM A325 de diámetro 12[mm], con una resistencia última a la fluencia de Syt= 5700 [Kg/cm²], por lo que, la resistencia a la fluencia de tracción del perno será:

$$S_{vt} = 0.75 * S_{ut}$$

Siendo

 S_{vt} Resistencia a la fluencia de tracción, 5700 [Kg/cm²].

0,75 Factor constante.

 S_{ut} Resistencia última de fluencia [Ksi].

$$S_{vt} = 0.75 * 5700$$

$$S_{yt} = 45 [Ksi]$$

$$Ft = 0.6 x Sy$$

$$Ft = 0.6 x 5700 \left[\frac{kg}{cm2} \right]$$

$$Ft = 48.63 [Ksi]$$

El esfuerzo real sobre el perno de anclaje viene dado por:

$$ft = \frac{P}{\frac{\pi * \emptyset p^2}{4}}$$

$$ft = \frac{0.3[klb]}{\frac{\pi * 0.5^2 inch^2}{4}}$$

$$ft = 1.52 [Ksi]$$

Con esto se cumple que:

Se verifica así que el diámetro mínimo del perno de anclaje es de ½ [inch].

3.3. Análisis de modo de falla y sus efectos

O simplemente AMEF, es una herramienta que identifica y evalúa posibles formas en las que un diseño, sistema, proceso o servicio puede fallar, jerarquiza los riesgos y propone acciones preventivas y correctivas que elimine o minimice su frecuencia o sus efectos al cliente. Este análisis tiene los siguientes beneficios:

Reduce el tiempo y coste de desarrollo de un producto.

Aumenta la calidad real y percibida.

Identifica y jerarquiza las debilidades y modos de falla de un proceso.

Propone acciones que minimicen o eliminen los modos de falla, sus efectos y causas.

Prioriza recursos disponibles.

Reduce el número de modificaciones en las fases finales del desarrollo de un prototipo.

AMEF de proceso: se usa para analizar los procesos de manufactura y ensamble, enfocado a la incapacidad de producir el requerimiento que se pretende, un defecto.

AMEF de diseño: Utilizado para el análisis de componentes de diseños. Se enfoca hacia modelos asociados con la funcionalidad de un componente, después de que las funciones sean definidas, o antes de ser entregado el diseño, La Tabla 51 plantea un AMEF para el diseño del sistema en base a los siguientes puntos:

Determinar el producto o proceso a analizar.

Determinar los posibles modos de falla.

Listar los efectos de cada potencial modo de falla.

Asignar el grado de severidad de cada efecto, siendo la severidad la consecuencia a la que ocurra la falla.

Asignar el grado de ocurrencia de cada modo de falla, siendo la ocurrencia a la probabilidad de esta falla ocurra.

Asignar el grado de detección de cada modo de falla. Detección a la probabilidad de que la falla sea detectada antes de llegar al cliente.

Calcular el NPR, número prioritario de riesgo, de cada efecto NPR= Ocurrencia x Severidad x Detección.

Tomar acciones para eliminar o reducir el riesgo del modo de falla.

Calcular el nuevo resultado del NPR para revisar si el riesgo ha sido eliminado o reducido.

Tabla 51. Análisis de modos de falla y sus efectos.

torio			NPR final						
servat			D detección						
sqO I			O ocurrencia						
ep oe			G gravedad						
eso al muse			Acción Tomada						
para el ingr			Responsable	EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ
Diseño y construcción de un sistema para personas con capacidades especiales para el ingreso al museo del Observatorio Astronómico de Quito de la EPN			Acciones recomendadas	cambio de rodamiento	pintura de protección	refuerzo de estructura	refuerzo de bastidor	relé térmico	lubricación
s con c			NPR inicial	125	160	112	06	135	81
rsona Astro			D detección	5	5	4	5	5	က
ra pei			O ocurrencia	5	8	4	2	3	ю
ла ра			G gravedad	5	4	7	6	6	6
cción de un sisten	nica		Método de detección	Visual	Visual	medición/visual	medición/visual	medición de temperatura y amperaje	medición de amperaje y resistencia de bobinados
Diseño y constru	Unidad de Mecánica	Robinson Pérez	Causas	desgaste excesivo	condiciones ambientales	sobrecarga	sobrecarga	acumulación de polvo	falta de mantenimiento
:nlo):	ea):	persona):	Efecto	descentrami ento	perdida de propiedades mecánicas	perdida de estabilidad de la estructura	perdida de estabilidad de la estructura	cables fundidos	paro del motor
Nombre del Sistema (Título):	Responsable (Dpto. / Área):	Responsable de AMFE (persona):	Modo de Fallo	daño en el rodamiento	oxidación elementos	pandeo excesivo	pandeo excesivo	sobrecalenta miento	Desgaste
Nombre	Respons	Respons	Función o Componente del diseño	Chui	maceras	Columna	Bastidor	N	Notor

EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ	EPN- OAQ
sobredimensionar	lubricación adecuada	sobredimensionar	Iubricación adecuada	sobredimensionar	sobredimensionar
30	06	54	125	168	200
1	3	3	5	2	4
3	3	3	2	9	5
10	10	9	2	4	10
Visual	Visual	Visual	medición/visual / auditivo	Visual	medición/Visual
acumulación de polvo	Sobrecarga	Sobrecarga	falta de mantenimiento	Sobrecarga	Sobrecarga
fractura del pasador	ruptura del Torón	fractura del eje	desgaste	fractura	Fractura
Atascamiento	Desgaste	Descentrado	falta de Iubricación	Ludimiento	Ludimiento
Polea	Cable	Eje	Ruedas	Pernos	Pernos de anclaje

Valores de G entre 1 y 10; Valores de O entre 1 y 10; Valores de D entre 10 y 1 (Fuente: Propia)

3.4. COSTOS

Los costos de los elementos para el sistema salvaescaleras se describen, a continuación:

3.4.1. Costo de la canastilla del salvaescaleras

3.4.1.1. Costos Mano de Obra Canastilla

Tabla 52. Costos Mano de Obra Canastilla.

Maquinaria	lad	Solda	idura	Dobla	dora	Tor	no	Tala	dro	Oper gene		0.1	
Costo HHM [\$]	Cantidad	1:	5	4		8	3	4		2		Sub- total	Total
Pieza	O	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]		
Soporte base	1	1,00	15,00	0,00	0,00	0,00	0,00	0,25	1,00	0,50	1,00	17,00	17,00
Plancha	1	0,50	7,50	0,00	0,00	0,00	0,00	0,50	2,00	0,50	1,00	10,50	10,50
Polea fija	3	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	0,25	0,50	4,25	12,75
Soportes lat. Base	3	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	1,00	2,00	5,75	17,25
Pasamanos	2	0,25	3,75	0,50	2,00	0,00	0,00	0,00	0,00	1,00	2,00	7,75	15,50
Soporte lateral pared	2	1,00	15,00	0,00	0,00	0,00	0,00	0,50	2,00	0,50	1,00	18,00	36,00
Eje de rueda condu.	3	0,00	0,00	0,00	0,00	1,50	12,00	0,00	0,00	0,00	0,00	12,00	36,00
Puerta	1	0,00	0,00	1,00	4,00	0,00	0,00	0,00	0,00	0,00	0,00	4,00	4,00
Caucho de descanso	4	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,50	1,00	1,00	4,00
Total		3,25	48,75	1,50	6,00	1,50	12,00	1,25	5,00	4,25	8,50	80,25	153,00

3.4.1.2. Costo del material de la canastilla

Tabla 53. Costo del material de la canastilla.

	Correa G A36		Pletina A36	Tol al calor	alor	Tubo cuadrado A- 36 Tipo "N"	bo ado A-	Ángulo A-36	A-36	Ángulo A-36		Tubo estructural A-36	oo ral A-36	Eje AISI 1018	31 1018	Plancha A- 36	A- 36	Total
[mm] 150	150 X 50 X 20 X 4		100 X 9 X 6000	1220 X 2440 × 1,50		50 X 50 X 3 X 6000	50 X 3 X 6000	30 X 30 X 4 X 6000	X 4 X 0	50 X 50 X 3 X 6000	X 3 X	Diámetro 1" x 6000	70 1" x	Diàm. 12 X 6000	2 X 6000	Diám. 200 X	0 X 4	
Costo unitario 7,4%	7,42 [\$/m]	9,41 [\$/m]	[\$/m]	13,1 [\$/m]		4,52 [\$/m]		2,565 [\$/m]		3,50 [\$/m]		3,55 [\$/m]	-	80 [\$/m]		30 [\$/m]		[\$]
Cant	nt [\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	
Soporte base 0,00	00'0 00	00'0 C	00'0	00'0	00'0	00'9	27,12	4,50	11,54	00'0	00,00	00'00	00'0	00'0	00'0	00,00	00,00	38,66
Plancha 0,00	00'0 00	00'0 C	00'0	2,08	27,2	00,00	00,00	0,00	0,00	00'0	00,00	00,00	00,00	00'0	00'0	00,00	00,00	27,25
Polea fija 0,00	00,00	00'0 C	00,00	00,00	0,00	0,00	00,00	0,00	0,00	00'0	0,00	00,00	0,00	0,30	24,00	0,00	0,00	24,00
Soportes lat. Base 0,00	00,00	00'0 C	00,00	00,00	0,00	0,00	0,00	2,00	12,83	00'0	0,00	00,00	0,00	00'0	00,00	0,00	0,00	12,83
Pasamanos 0,00	00'0 00	00'0 C	00'0	00'0	00'0	00,00	00,00	0,00	00,00	00'0	00,00	6,00	21,30	00'0	00'0	00,00	00,00	21,30
Soporte lateral pared 0,00	00'0 00	00'0 C	00'0	00'0	00,00	00,00	00,00	0,00	0,00	2,00	7,00	4,00	14,20	00'0	00'0	00,00	00,00	21,20
Eje de rueda condu. 0,00	00'0 00	00'0 C	00'0	00'0	00,00	00,00	00,00	0,00	0,00	00'0	00,00	00'00	00'0	06'0	72,00	00,00	00,00	72,00
Puerta 0,00	00'0 00	00'0 C	00'0	00'0	00'0	00,00	00,00	0,00	0,00	00'0	00,00	4,00	14,20	00'0	00'0	00,00	00,00	14,20
Caucho de descanso 0,00	00'0 00	0) 1,50	14,12	00,00	00'0	0,00	00,00	0,00	0,00	00'0	0,00	00,00	0,00	00'0	00'0	0,00	0,00	14,12
Total 0,00	00'0 00	0 1,50	14,12	2,08	27,2	00'9	27,12	9,50	24,37	2,00	7,00	14,00	49,70	1,20	00'96	00,00	00,00	245,55

(Fuente: Propia)

3.4.1.3. Costo de Elementos Normalizados

Tabla 54. Costo Elementos Normalizados canastilla.

material	dimensión/ capacidad	cantidad	valor unitario [\$]	valor total [\$]
anillo de retención	12 [mm]	14	0,93	13,02
perno exagonal	5/16" x 1 1/2"	24	0,09	2,27
arandela plana	5/16"	50	0,06	3,00
arandela presión	5/16"	30	0,01	0,30
chumaceras pared	12[mm]	3	6,47	19,41
rueda poliuretano	3/4" / 150 [kg]	8	7,23	57,84
Paredes laterales	1,40 x 1,70	2	75,00	150,00
accesorios vidrio templado	soportes, manijas	1	75	75,00
Bisagra metálica	N/A	6	2,00	12,00
Pasamanos acero inoxidable	150 x 20 [mm]	1	12,00	12,00
			Total	344,84

(Fuente: Propia)

3.4.1.4. Costo de Fabricación de la canastilla

Tabla 55. Costo Fabricación canastilla.

Rubro	valor [\$]
Mano de Obra	153,00
Materiales	245,55
Elementos Normalizados	344,84
Subtotal	743,39
Montaje (15%)	111,51
Imprevistos (10%)	74,34
Total	929,24

3.4.2. Costos de la estructura del salvaescaleras

3.4.2.1. Costos mano de obra estructura

Tabla 56. Costos mano de obra estructura

Maquinaria	lad	Solda	idura	Dobla	dora	Tor	no	Tala	dro	Opera gene		Sub-	Total
Costo HHM [\$]	Cantidad	1	5	4		8		4		2		total [\$]	Total
Pieza)	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	1.1	
placa base	3	1,00	15,00	0,00	0,00	0,00	0,00	0,25	1,00	1,00	2,00	18,00	54,00
Nervaduras	12	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,75	45,00
Riel vertical	3	1,00	15,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	15,00	45,00
viga poleas	1	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,75	3,75
correa	1	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,75	3,75
polea fija	3	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	0,25	0,50	4,25	12,75
Total		3,00	45,00	0,00	0,00	0,00	0,00	0,25	1,00	1,25	2,50	48,50	164,25

3.4.2.2. Costos materiales estructura

Tabla 57. Costos materiales estructura.

Pieza	Correa G A36	G A36	Pletina A36	a A36	Tolalc	al calor	Tubo cuadrado A- 36 Tipo "N"		Ángulo A-36 Ángulo A-36	A-36	Ángulo	A-36	Tubo estructural A-36		Eje AISI 1018	11018	Plancha A- 36	1 A- 36	Tot
[mm]	150 X 50 X 20 X 4	0 X 20 4	100 X 9 X 6000	0009 X	1220 X 2440 x 1,50		50 X 50 X 3 X 30 X 30 X 4 X 50 X 50 X 3 X 6000 6000	× a ×	30 X 30 X 6000	X 4 X	50 X 50 X 6000	× 3 × 0	Diámetro 1" x 6000	ro 1"	Diàm. 12 X 6000	12 X 0	Diám. 200 X 4	00 X 4	<u>2</u>
Costo unitario	7,42 [\$/m]	\$/m]	9,41 [\$/m]	\$/m]	13,1 [\$/m]	/m]	4,52 [\$/m]	[m/	2,565 [\$/m]	[m/s	3,50 [\$/m]	[m/	3,55 [\$/m]	/m]	80 [\$/m]	[m/	30 [\$/m]	[m/	[\$]
	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]		Cant	[\$]	Cant	[\$]	Cant	[\$]	Cant	[\$]
placa base	0,00	00'0	2,00	18,82	0,00	0,00	0,00	00,00	0,00	0,00	00'0	00,00	00'0	00,00	00'0	00'00	2,00	00'09	78,82
Nervaduras	00'0	00'0	2,00	18,82	0,00	0,00	0,00	0,00	0,00	0,00	00'0	0,00	00'0	0,00	00'0	00,00	2,00	00'09	78,82
Riel vertical	7,50	55,65	3,00	28,23	0,00	0,00	00,0	0,00	0,00	0,00	0,50	1,75	00'0	00,00	00'0	00,00	0,00	0,00	85,63
viga poleas	1,60	11,87	00'0	0,00	0,00	0,00	00,0	0,00	0,00	0,00	00'0	0,00	00'0	00,00	00'0	00'00	0,00	0,00	11,87
Correa	1,60	11,87	00'0	00,00	0,00	0,00	0,00	0,00	0,00	0,00	00'0	0,00	00'0	00,00	00'0	00,00	0,00	0,00	11,87
polea fija	2,10	15,58	00'0	00,00	0,00	0,00	00,0	0,00	0,00	0,00	00'0	0,00	00'0	00,00	00'0	00,00	0,00	0,00	15,58
Total	12,80	94,98	7,00	65,87	0,00	0,00	0,00	0,00	0,00	0,00	0,50	1,75	00'0	0,00	00'0	0,00	4,00	120,00 282,60	282,60

(Fuente: Propia)

3.4.2.3. Costo de elementos normalizados

Tabla 58. Costo Elementos Normalizados Estructura.

Material	dimensión	Cant.	valor unitario [\$]	valor total [\$]
perno exagonal	3/8" x 3"	24	0,60	14,40
perno expansión	1/2"x 4"	22	0,60	13,20
plancha antideslizante	1,5mm aluminio	1	46,10	46,10
			Total	73,71

(Fuente: Propia)

3.4.2.4. Costo de fabricación de la estructura

Tabla 59. Costo Fabricación de estructura.

Rubro	valor [\$]
Mano de Obra	164,25
Materiales	282,60
Elementos Normalizados	73,71
Subtotal	520,56
Montaje (15%)	78,08
Imprevistos (10%)	52,06
Total	650,70

(Fuente: Propia)

3.4.3. Costos del sistema motriz del salvaescaleras

3.4.3.1. Costo mano de obra sistema motriz

Tabla 60. Costo mano de obra sistema motriz.

Maquinaria	antidad	Solda	dura	Dobla	dora	Tor	no	Tala	dro	Oper gene		Sub- total	Total
Costo HHM [\$]	anti	15	5	4		8	}	4		2		[\$]	[\$]
Pieza	S	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]	Cant.	[\$]		
cable de tensión	6	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	2,00	2,00	12,00
polea fija	1	0,25	3,75	0,00	0,00	0,00	0,00	0,00	0,00	1,00	2,00	5,75	5,75
placa base	1	0,00	0,00	0,00	0,00	0,00	0,00	1,00	4,00	1,00	2,00	6,00	6,00
Total		0,25	3,75	0,00	0,00	0,00	0,00	1,00	4,00	3,00	6,00	13,75	23,75

3.4.3.2. Costos materiales sistema motriz

Tabla 61. Costos materiales sistema motriz

		1			0.	0.	-
Total		[\$]	[\$]	7,10	4,52	78,82	90,44
na A-	200 X	[m/	Cant	00,00	00'0	60,00	60,00
Plancha A- 36	Diám. 200 X 4	30 [\$/m]	[\$]	00,00	00,00	2,00	2,00
AISI 18	12 X 00	[w/,	Cant	00'0	00'0	00'0	0,00
Eje AISI 1018	Diàm. 12 X 6000	[m/\$] 08	[\$]	00,00	00'0	00'0	0,00
o ıral A-	o 1" x 0	[m/s	Cant	7,10	00'00	00,00	7,10
Tubo estructural A- 36	Diámetro 1" x 6000	3,55 [\$/m]	[\$]	2,00	00'0	00'0	2,00
o A-36	00 00	[w/\$]	Cant	00,00	00,00	00'0	0,00
Ángulo A-36	50 X 50 X 3 X 6000	3,50 [\$/m]		00,0	00'0	00'0	00,00
9 A-	0 X 4	[m/\$]	[\$]	00,00	00'0	00'0	0,00
Ángulo A- 36	30 X 30 X 4 X 6000	2,565 [\$/m]	Cant	00'0	00'0	00'0	00'0
oo Ido A- o "N"	0 X 3	[m/\$	[\$]	0,00	4,52	00,00	4,52
Tubo cuadrado A- 36 Tipo "N"	50 X 50 X 3 X 6000	4,52 [\$/m]	Cant	00,00	1,00	00,00	1,00
calor	1,50	[m/\$]	[\$]	00,00	00,00	00,00	00'0
Tol al calor	1220 X × 1,	13,1	Cant	00,00	00'0	00'0	00'0
1 A36	X 6.	[m/\$	[\$]	00'0	00'0	18,82	2,00 18,82
Pletina A36	100 X 9 X 6000	9,41 [\$/m]	Cant	00'0	00,00	2,00	2,00
3 A36) X 20	[m/s	[\$]	00'0	00,00	00'0	0,00
Correa G A36	150 X 50 X 20 X 4	7,42 [\$/m]	Cant	00,00	00,00	00,00	00,00
Pieza	[ww]	Costo		cable de tensión	polea fija	placa base	Total

(Fuente: Propia)

3.4.3.3. Costo de elementos normalizados

Tabla 62. Costo de elementos normalizados sistema motriz

Material	Dimensión	cant	valor unitario [\$]	valor total [\$]
Acanalada	3" /350[kg]	1	7,65	7,65
Acanalada	2" 250 [kg]	6	5,35	32,10
cable	calibre 10 12metros	12	3,00	36,00
motor reductor	1000[w]	1	220,00	220,00
freno de cable	n/a	1	30	30,00
	325,75			

(Fuente: Propia)

3.4.3.4. Costo de fabricación del sistema motriz

Tabla 63. Costo de fabricación del sistema motriz

Rubro	valor [\$]
Mano de Obra	23,75
Materiales	90,44
Elementos Normalizados	325,75
Subtotal	439,94
Montaje (15%)	65,99
Imprevistos (10%)	43,99
Total	549,92

(Fuente: Propia)

3.4.4. Costo elementos de control

Tabla 64. Costo elementos de control

elemento	cant	valor unitario [\$]	valor total [\$]
Botonera de cabina	3	12,36	37,08
botonera de piso	2	20,64	41,28
fuente de alimentación	1	105,00	105,00
Plc	1	210,00	210,00
módulo plc digital	1	200,00	158,86
módulo plc analógico	1	280,00	85,37
relé térmico	1	49,64	49,64
variador de frecuencia	1	269,54	269,54
fin de carrera	4	21,00	84,00
Contactor	3	23,67	71,01
	Total		1111,78

3.4.5. Costo total del salvaescaleras

Tabla 65. Costo total del Salvaescaleras

Rubro	valor [\$]
Costo de la Canasta	929,24
Costo de la Estructura	650,70
Costo del Sistema Motriz	549,92
Costo de Elementos Electrónicos	1111,78
Subtotal	3241,64
Costo diseño (15%)	486,25
Total	3727,89

CONCLUSIONES

El sistema salvaescaleras instalado en el museo permite el ingreso de personas con discapacidad motriz en sus extremidades inferiores a las instalaciones, los datos técnicos se encuentran establecidos en el apartado tres del presente trabajo y los factores de seguridad en el diseño de columnas, vigas, soportes, tensión de cable van desde el valor de 3 a fin de salvaguardar la integridad de las personas.

El uso de programas CAD permite que el trabajo del diseñador sea más rápido, evita errores y su aplicación establece un mejor entendimiento de los procesos involucrados en el diseño del sistema.

El sistema salvaescaleras satisface las necesidades requeridas por el cliente y fue construido bajo las normas: UNE- EN 81: 40 "Reglas de seguridad para la construcción e instalación de ascensores. Salvaescaleras." su dimensionamiento y funcionalidad garantizan su uso en el espacio físico establecido y Norma Técnica Ecuatoriana INEN 2 299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores.

Mediante la comparación del sistema de potencia desarrollado en el apartado: Definición y Diseño Conceptual, se establece que, brinda mejor capacidad de carga como control de velocidad de ascenso y descenso y mayor accesibilidad el uso de cables de acero.

El cumplimiento del protocolo de pruebas establece un desempeño óptimo del sistema diseñado, que prevalecerá en el tiempo si se da seguimiento al plan de mantenimiento preventivo del sistema.

Se ha incrementado un 10% en los costos de fabricación de elementos mecánicos para cubrir rubros imprevistos en la construcción del sistema.

BIBLIOGRAFIA

- Barreras, V. S. (2017). *Validación sin barreras*. Obtenido de Validación sin barreras: http://ca.validasinbarreras.com/blog/post/plataformas-salvaescaleras/
- Conadis. (2017). Consejo Nacional para la igualdad de Discapacidades. Obtenido de Consejo Nacional para la igualdad de Discapacidades: http://www.consejodiscapacidades.gob.ec/estadistica/index.html
- Discapacidades, C. N. (2017). *CONADIS*. Obtenido de CONADIS: http://www.consejodiscapacidades.gob.ec/la-institucion/
- INEN. (2000). NTE INEN 2 239:2000 Accesibilidad de las personas al medio fisico, señalización (1ª ed. ed.). Quito, Ecuador: INEN.
- INEN. (2001). Norma Técnica Ecuatoriana INEN 2 299:2001. Accesibilidad de las personas con discapacidad y movilidad reducida al medio físico, Ascensores. Quito: INEN.
- OMS. (2011). *Resumen Informe Mundial sobre la Discapacidad* (1ª ed. ed.). Ginegra, Suiza: Ediciones OMS.
- UNE-EN. (2001). UNE- EN 81: 40 "Reglas de seguridad para la construcción e instalación de ascensores. Salvaescaleras.". Barcelona.
- Riba C. (2002); Diseño Concurrente, Barcelona, España: Ediciones UPC.
- Shigley J (1997); *Diseño de Ingeniería Mecánica*, Michigan, Estados Unidos: McGraw-Hill.
- Brockenbrough R. (1997), *Diseño de estructuras de acero, tomo 3*, Alemania: McGraw-Hill.
- Gere J. (2009). Mecánica de Materiales. México: Cengage Learning.
- Vargas J. (2003); *Guía de fundamentos del dibujo industrial*; Carrera de Ingeniería Mecánica.
- Carrobles, M. & Rodríguez, F. (2002). *Manual de la mecánica industrial, Neumática e hidráulica*. Madrid: Cultural S.A.
- Timoshenko & Geer. (1995). Resistencia de materiales. México: McGraw-Hill.
- Norton R. (2006); Diseño de maquinaria, Michigan, Estados Unidos: McGraw-Hill.

ANEXOS

ANEXO I. Casa de la Calidad

ANEXO II. Diagrama Funcional

ANEXO III. Manual de operación

- 1.- Observar que todos los componentes se encuentren en correcto estado antes de encender el equipo.
- 2.- Verificar que el elevador se encuentre conectada a la fuente eléctrica adecuada de 110 V.
- 3.- Observar que no exista ningún objeto obstruyendo la entrada o las botoneras
- 4.-Encender el equipo pulsando el botón verde "on".
- 5.- Ingresar al elevador y cerrar la puerta.
- 6.- Presione el botón arriba o abajo según sea el caso.
- 8.-Para detener el equipo de emergencia presione el botón rojo, y comuníquese con el personal de la Unidad de Mecánica.

Nota: Si la máquina presenta algún atascamiento o desperfecto presione el botón de emergencia y verifique la causa del mal funcionamiento.

ANEXO IV. Manual de mantenimiento

Manual de Mantenimiento

- La máquina siempre debe estar limpia, libre de impurezas y de humedad excesiva para evitar la corrosión de la misma.
- Cada vez que se utilice la máquina se debe verificar el estado de la banda.
- El cable eléctrico debe estar conectado a la fuente eléctrica adecuada.
- El cable eléctrico no debe presentar ningún desperfecto.
- Se debe engrasar las chumaceras cada seis meses.
- Verifique que la integridad de todos los elementos periódicamente.

Precauciones de seguridad

- En caso de cualquier avería esta debe ser reparada solo por personal técnico de la unidad de Mecánica.
- No utilizar la máquina para otro fin para el que fue diseñada, ya que puede causar averías a la máquina y accidentes en los usuarios.
- No abrir la tapa de protección mientras la máquina esté funcionando.
- Bajo ningún motivo topar las poleas o banda en funcionamiento de la máquina.
- La conexión eléctrica puede ser manipulada solo por personal técnico autorizado con la finalidad de evitar choques eléctricos e incluso la muerte.

Especificaciones técnicas

Tabla 66. Parámetros del salvaescaleras diseñado.

Parámetros	Valores
Tipo de motor	Monofásico 110 V 1/4 hp a 1753 rpm
N rev en el eje	330 rpm
Numero de ciclos hora	20
Tipo de encendido	Automático
Tipo de voltaje	Corriente Alterna 110V
Carrera	1.43 metros
Capacidad de carga	150kg

ANEXO V. Mantenimiento preventivo de salvaescaleras

Tabla 67. Check list mantenimiento preventivo sistema salvaescaleras

			MANTENIMIENTO					
N	Componente	Inspección Visual	Comprobación de Funcionamiento	Medición	Limpieza	Lubricación		
0	Presentación con el/ los encargado (s) del salv	vaescaleras	Х					
1	Interior de la cabina indicadores de posición		Х	Х		Χ		
2	Dispositivo de seguridad ingreso			Х	Х			
3	Botoneras de llamada inferior y superior		Х	Х		Χ		
4	Bitácora		Х					
5	Conexiones de tablero contactores relevad eléctricas	dores y protecccion	es X	х		Х		
6	Selector		Х	Х		Х		
7	Motor: Nivelación de aceite cojinetes y fijación	de poleas	Х			Х	Х	
8	Reductor: Juego axial, Rodamiento, nivel de a		Х		Х	Χ	Х	
9	Interruptores de final de carrera			Х	Х			
10	Regulador de velocidad	Х	Х		Χ			
11	Fijación de cabina	Х		Х				
12	Fijación de la suspensión de la cabina y conta	ctos de cables flojo	Х	Х		Х		
13	Fijación de rieles	•	Х		Х	Х		
14	Fijación de poleas		Х		Х	Х	Х	
15	Cables de suspensión tensión y condición		Х		Х			
16	Contactos de puerta			Х	Х	Х		
17	Acoplamiento de puerta y cabina		Х	х	х			
18	Polea tensora del cable del limitador de eléctrico	oto	х	х	Х			
19	Informar sobre sugerencias y recomendacione	es si existen	Х					
	nte: Propia) ervaciones:							
	Fecha de inspección:							
	Fecha próxima inspección:							
	Responsable fecha de ejecución seguimiento							

Detalles

Prepare los documentos y herramientas necesarios así como el equipamiento de seguridad.

Inicie la actividad o el sistema de seguimiento del mantenimiento que corresponda.

Preguntar si se ha observado algún comportamiento inusual del salvaescaleras desde la

	última ravialón
	última revisión.
	Verificar la botonera bien instalada. El piso está en buen estado y no supone riesgo de
1	tropiezo, los interiores de la cabina (pasamanos, vidrio). Están bien fijados y libres de daño,
_	placa de capacidad colocada, correcta y en buen estado.
2	¿Funcionan correctamente todos los dispositivos de seguridad de puertas.
3	Comprobar existencia del libro de registro de visitas y averías, asi como sus actualizaciones.
	Comprobar que los tornillos de las terminales estén suficientemente apretados.
4	Comprobar la limpieza y funcionamiento de los contactos de baja tensión.
	Fusibles: Controlar su calibración, si no es la adecuada, reponer.
	Contactores: Comprobar el estado de conexiones y contactos. Cambiar si es necesario.
5	Comprobar estado, ajustar y limpiar componentes.
	Verificar estado, funcionamiento y engrase de casquillos o rodamientos del eje del motor y
	soporte.
6	Engrasar si es preciso y limpiar.
	Verificar la inexistencia de fugas de aceite. Reparar si es el caso.
	Si en funcionamiento existe cualquier ruido excesivo. Localizar la zona de origen usando un
	destornillador a modo de amplificador.
	PRECAUCIÓN. ASEGURAR LA NO MOVILIDAD DEL SALVAESCALERAS
	Verificar estado de rodamientos. Notificar cambio en caso de juego axial o radial excesivo)
7	Comprobar juego de acoplamiento elástico entre eje de motor y eje de tornillo sinfín.
	Palpar al reductor para detectar la existencia de vibraciones excesivas.
	Verificar el nivel de aceite en el reductor, rellenar si es preciso.
	Verificar la inexistencia de fugas de aceite. Reparar si es el caso.
8	Limpiar carcasa del reductor.
"	Si en funcionamiento existe cualquier ruido excesivo, localizar la zona de origen usando un
	destornillador como amplificador.
9	Comprobar la alineación mecánica, la distancia de activación y el correcto funcionamiento de
	los interruptores de seguridad.
10	Verificar el libre movimiento de las partes móviles, lubricando los ejes de giro si es necesario.
	Verificar el estado de la garganta de la polea.
11	Verificar que todos los tornillos de fijación de los paneles de la cabina estén bien apretados.
	Comprobar si los tornillos de la placa están suficientemente apretados, verificar si el cable
12	está asegurado correctamente y si su tensión es uniforme. Lubricar la polea y verificar la
	distancia y la fijación de las protecciones de los cables.
13	Comprobar el apriete de los soportes de rieles y/o guías de salvaescaleras.
14	Verificar que el cable no tenga demasiada holgura en el descanso de la polea.
15	Inspeccionar que no exista daño en los cables (hilos rotos, aplastamientos, etc.) medir la
	tensión de los cables debe ser uniforme.
16	Revisar operación de puerta de cabina, verificar la alineación y giro, observar si algún
	componente del operador, corredera y rodajas limpias. Verificar estado de topes y muelles.
17	Revisar el correcto contacto, revisar que no exista ningún tipo de puente, reapretar las
_ ' <i>'</i>	conexiones, que estén a plomo revisar el estado de resortes y realizar limpiezas.
18	Verificar la posición de la polea y su funcionalidad, comprobar el funcionamiento del contacto
	de seguridad.
19	Verificar el estado de los anclajes, no presenta daños, pernos apretados.
	Complementar y firmar el registro adhesivo y colocarlo en la cabina. Quitar las indicaciones
20	de Salvaescaleras en mantenimiento. Comentarios si es necesario y recabar su firma. Llevar
	a cabo los trabajos administrativos.

ANEXO VI. Registro para revisión de cables de acero

Área/	Sección:	N° de ider	ntificación:		_
	Inspección realizada por:	Firma:	Inspección por:	revisada	Firma:
NIO	LIOTA DE QUEQUEO				0 11 11 11
N°	LISTA DE CHEQUEO	Nivel de ate	ención 1=estal	ole; 2= critico;	3= altamente crítico.
1	Cables de acero Eslingas/ estribos	Nivel de Atención	Cond subesi		Medidas Correctivas
1.1	Alambres Cortados				
1.2	Alambres Desgastados				
1.3	Medición del diámetro del cable				
1.4	Cocas/ Distorsión de alambres y torones.				
1.5	Estiramiento/ Alargamiento del cable.				
1.6	Corrosión				
1.7	Falta de lubricación(sequedad)				
1.8	Fatiga (Picadura de alambres)				
1.9	Torcimiento				
1.10	Abuso mecánico				
1.11	Aflojamiento de torones "jaula de pajaros"				
1.12	Condiciones de alma o soporte central				
	Otra condiciones				
(Fuer	nte: Propia)				
Obse	rvaciones:				
	Fecha de inspección:				
	'				
	Fecha próxima inspección:				

ANEXO VII. Protocolo de pruebas

Proto	colo de	pruebas	para salvae	scale	ras tipo v	vertical para personas con
			capacida	des e	speciale	es .
Interventor	1:					
Interventor 2	2:					
1 Verificac	ión visu	ual de todo	s los compo	nente	s:	
Tabla 69. For	rmato de	e verificació	n visual del es	stado (de los com	iponentes.
Elemento	Buen	o Malo	Regular			
(Fuente: Propi	a)					
2 Verifica	ción de	dimensio	nes princip	ales		
Tabla 70. For	rmato de	e verificació	n de dimensic	nes p	rincipales.	
Dimensi	ón	Diseño	Prototipo	Ace Si	ptación No	
Largo total	(mm)			<u> </u>		

Altura total (mm) (Fuente: Propia)

Ancho total (mm)

3.- Trabajo sin carga

Tabla 71. Formato de verificación de estado de los elementos al trabajar sin carga.

Elemento	Bueno	Malo	Regular

(Fuente: Propia)

4.- Trabajo con carga

Tabla 72. Formato de verificación de estado de los elementos al trabajar sin carga.

Elemento	Bueno	Malo	Regular

5.- Resultados obtenidos

Tabla 73. Formato de verificación para resultados obtenidos.

	RES			
Ensayo	Aprueba	No aprueba	Tiempo	Observación
1				
2				
3				

(Fuente: Propia)		
(Fuente: Propia) Observación		
Atentamente,		
Interventor 1	Interventor 2	

Resultados pruebas de campo

1. Verificación visual de todos los componentes :

Tabla 74. Verificación visual del estado de los componentes.

Elemento	Estado		
	Bueno	malo	
Motor	Χ		
Bandas	Х		
Poleas	Х		
Canastilla	Х		
Ejes	Х		
Cable	Χ		
Columnas	Х		

(Fuente: Propia)

2. Verificación de dimensiones principales

Tabla 75. Verificación de dimensiones principales.

			Aceptación	
Dimensión	Diseño	Prototipo	Si	No
Largo total (mm)	1705	1700	Х	
Ancho total (mm)	1490	1500	Х	
Altura total (mm)	2010	2000	Χ	

3. Trabajo sin carga

Tabla 76. Verificación de estado de los elementos al trabajar sin carga.

Elemento	Bueno	Malo	Regular
Motor	X		
Puertas	Х		
Estructura	Х		
Poleas	Х		

Figura 59. Salvaescaleras Vertical instalado. (Fuente: Propia)

Figura 60. Vista Isométrica salvaescaleras vertical instalado. (Fuente: Propia)

4. Trabajo con carga

Estado de los elementos			
Elemento	Bueno	Malo	Regular
Motor	Х		
Puertas	Χ		
Estructura	Х		
Poleas	Χ		
Canastilla	X		

Observaciones			
La máquina cumple sa Observatorio Quito	oruebas de campo, y los Astronómico	requerimientos	del de
	 		_
Atentamente			
Interventor 1	Interventor 2		

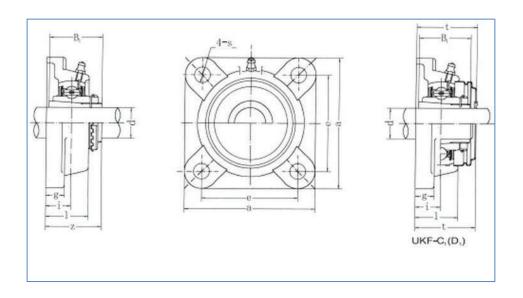
ANEXO VIII. Programación para cálculo de viga

```
FINISH
/CLEAR
¡Viga en Voladizo
¡Preferencias de Calculo
/NOPR
KEYW,PR_SET,1
KEYW,PR STRUC,1
KEYW,PR_FLUID,0
KEYW,PR_MULTI,0
/GO
<u>|</u>*
/COM,
/COM,Preferences for GUI filtering have been set to display:
/COM, Structural
iTITULO DE LA VENTANA
/TITLE, VIGA EN VOLADIZO
¡ETAPA DE PREPROCESO
¡Entra al preprocesador
/PREP7
ET,1,BEAM188
iDENIFIR LA SECCION
SECTYPE, 1, BEAM, I, SECCIÓN1, 0
SECOFFSET, CENT
SECDATA,50,50,100,6.8,6.8,4.5,0,0,0,0,0,0
!*
MPTEMP,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,210000
MPDATA,PRXY,1,,0.3
!CREACION DE KEYPOINTS
K,1,0,0,0,
```

```
K,2,1700,0,0,
K,3,1700,100,0,
K,4,1700,0,300,
K,5,0,0,300,
iCREACION DE LINEA
LSTR,
     1,
          2
LSTR,
     4,
!USO
                           DEL
                                                     MESH
CM,_Y,LINE
LSEL, , , , 1
CM,_Y1,LINE
CMSEL,S,_Y
!*
!*
CMSEL,S,_Y1
LATT,1, ,1, ,
          3, ,1
CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Y1
!*
                                    TAMAÑO
                                                       DE
!INGRESAR
                     EL
FLST,5,1,4,ORDE,1
FITEM,5,1
CM,_Y,LINE
LSEL, , , , P51X
CM,_Y1,LINE
CMSEL,,_Y
LESIZE,_Y1, , ,20, , , , ,1
!*
LMESH, 1
!MALLADO
/UI,MESH,OFF
```

VER ELEMENTOS FINITOS

!VER ELEMENTOS FINITOS /SHRINK,0 /ESHAPE,1.0 /EFACET,1 /RATIO,1,1,1 /CFORMAT,32,0 /REPLOT ¡VISTA ISOMETRICA **¡FIN DEL PREPROCESO ¡ENTRAR AL SOLUTION FINISH** /SOL !VISTA ISOMETRICCA **!ENTRAR AL SOLUTION FINISH** /SOL TIPO DE ANALISIS ANTYPE,0 iDEFINCION DE APOYO FLST,2,1,3,ORDE,1 FITEM,2,1 * /GO DK,P51X, , , ,0,ALL, , , , , , ¡ASIGNAR CARGA EXTERNA FK,P51X,FY,-500 **i**SOLUCIÓN SOLVE **FINISH**


¡ENTRA EN EL POSTPROCESADOR

/POST1

FINISH /POST1

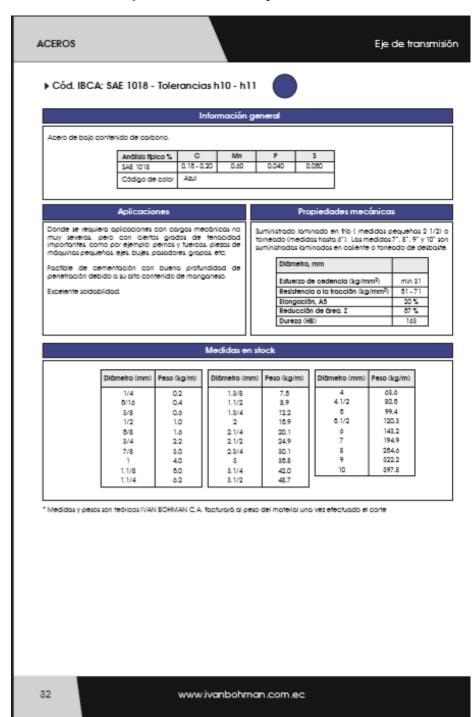
!!! VON MISES

ANEXO IX. Catálogo de chumaceras

Unit NO		Dimensions mm in.												
Unit NO.	d	a	e	i	g	I	S	z	t	B1	mm inch	Bearing No.		
UKF205;H2305	20	95	70	16	14	27	12	35.5	40	35	M10	UK205:H2305		
UKF205;HE2305	3/4	3-3/4	2-3/4	5/8	35/64	1-1/16	15/32	1-25/64	1-9/16	1.38	3/8	UK205:HE2305		
UKF206;H2306	25	108	83	18	14	31	12	39	44.5	38	M10	UK206:H2306		
UKF206;HS2306	7/8	4-1/4	3-17/64	45/64	35/64	1-7/32	15/32	1-17/32	1-3/4	1.5	3/8	UK206;HS2306		
UKF206;HE2306	1	4-1/4	3-17/64	45/64	35/64	1-7/32	15/32	1-17/32	1-3/4	1.5	3/8	UK206;HE2306		
UKF207;H2307	30	117	92	19	16	34	14	42.5	48.5	43	M12	UK207;H2307		
UKF207;HS2307	1-1/8	4-39/64	3-5/8	3/4	5/8	1-11/32	35/64	1-43/64	1-29/32	1.69	7/16	UK207;HS2307		
UKF208:H2308	35	130	102	21	16	36	16	46.5	55.5	46	M14	UK208:H2308		
UKF208;HE2308	1-1/4	5-1/8	4-1/64	53/64	5/8	1-27/64	5/8	1-53/64	2-3/16	1.81	1/2	UK208:HE2308		
UKF208:HS2308	1-3/8	5-1/8	4-1/64	53/64	5/8	1-27/64	5/8	1-53/64	2-3/16	1.81	1/2	UK208:HS2308		
UKF209;H2309	40	137	105	22	18	38	16	48.5	56.5	50	M14	UK209:H2309		
UKF209:HA2309	1-7/16	5-13/32	4-9/64	55/64	23/32	1-1/2	5/8	1-29/32	2-7/32	1.97	1/2	UK209;HA2309		
UKF209;HE2309	1-1/2	5-13/32	4-9/64	55/64	23/32	1-1/2	5/8	1-29/32	2-7/32	1.97	1/2	UK209;HE2309		
UKF209;HS2309	1-5/8	5-13/32	4-9/64	55/64	23/32	1-1/2	5/8	1-29/32	2-7/32	1.97	1/2	UK209;HS2309		

ANEXO X. Catálogo de motor

CARACTERÍSTICAS DE DESEMPEÑO


Série BK - monofásico 60 Hz

POTENCIA (CV)	CARCAZA (ABNT)	ROTACIÓN (rpm)	Corriente nominal en 220V (A)	Corriente partida en 220V (A)	Conjugado nominal Cn (kgm)	Conjugado de partida Cp/Cn (%)	Conjugado maximo Cmáx/Cn (%)	Ren- dimiento 17%	Factor de potencia Cos	Capacitor (µf) 110/220v	GD2 del rotor (kgm²)	Masa (kg)
2 POLOS			W// FF								1	
1/8	56a	3240	0.80	2.1	0.026	80	240	53	0.98	16	0.0007	3.35
1/6	56b	3000	1.1	1.85	0.038	80	210	52	0.97	20	0.0007	3.4
1/4	63a	3390	1.65	5.5	0.056	100	230	51	0.99	25	0.0009	4.5
1/3	63b	3350	2.1	6.6	0.072	95	210	55	0.96	30	0.0014	4.9
1/2	71a	3420	2.75	10.5	0.105	70	200	62,5	0.97	35	0.0022	9.0
3/4	71b	3350	4.2	18.0	0.160	65	210	65	0.92	40	0.0025	10.0
1.0	80a	3410	5.3	22.0	0.210	55	230	68,5	0.95	50	0.0048	13.5
1.5	80b	3350	7.6	32.0	0.320	49	215	73	0.90	60	0.0056	15.0
2.0	80c	3360	9.7	40.0	0.426	40	205	73	0.94	60	0.0056	16.0
2.0	905	3360	10	42.0	0.42	39	210	73	0.92	50	0.0100	20.0
2.5	90L	3450	12.3	65.0	0.52	38	235	74	0.92	60	0.012	21.0
3.0	90L	3430	15.7	78.0	0.63	38	220	74	0.86	2X35	0.012	22.0
4 POLOS										2		
1/12	56a	1660	0.95	2.2	0.035	100	225	41	0.72	10	0.0007	3.3
1/8	56b	1620	1.0	2.2	0.035	81	215	50	0.84	12	0.0007	3.3
1/6	63a	1670	1.1	3.1	0.071	84	205	53	0.97	16	0.0014	4.8
1/4	63b	1620	1.7	4.1	0.111	80	180	52	0.95	20	0.0014	4.8
1/3	71a	1600	2.2	5.5	0.149	72	150	53	0.96	25	0.0035	9.0
1/2	71b	1620	3.2	9.5	0.22	67	150	59	0.89	30	0.0041	9.6
3/4	80a	1640	4.4	14	0.32	50	160	62,5	0.91	40	0.0087	14.0
1.0	80b	1670	5.4	20	0.42	50	170	65	0.95	60	0.0094	14.7
1.5	905	1680	8.0	30	0.65	45	160	67	0.94	60	0.0180	19.8
2.0	90L	1720	10.5	49	0.84	38	230	70	0.91	60	0.0250	24.0
2.5	90L	1705	12.0	59	1.07	38	195	74	0.94	2x60	0.0250	24.8

ANEXO XI. Especificaciones generales de correas "G"

ANEXO XII. Especificaciones eje AISI 1018

ANEXO XIII. Especificaciones generales tubo estructural

ANEXO XIV. Especificaciones plancha antideslizante

ANEXO XV. Especificaciones polea

ANEXO XVI. Especificaciones anillo de retención

Tolerancias ISO para orificios (DIN ISO 286-2) - Lubrication holes ISO clearance

	3.5	Campo dimensional toórico en mm / Dimensional range mm																										
Sigla Designation	Diferenda beórica Theoric Deviation	mis do 3 over J mis do 6 over 6	6 10	10 18	18 30	30 40	10 50	50 65	65 80	80 100	100		140 160	160 180	180 200	200 225	225 250	250 280	280 315	315 355	355 400	400 450	450 500	200	560 630	630 710	710 800	900 100
	5 f	and control										Diffe	rencia	s en p	m/L	leviat	ion µn											
E 6	sup.	+28 +20	+34 +25	+43 +32	+53 +40		56 50		79 60		94 72		+110			+129 +100			42 10	+1		+1	75 35	+1		+2		+226 +170
E 7	sup. int.	+32 +20	+40 +25	+50 +32	+61	+1	75 50		90 60	+1	07 72		+125		Į.	+146		+1 +1	62 10	+182		+1		+215 +145		+2		+260 +170
11	sup. Int.	+95 +20	+115 +25	+142	+170	+21	10		50 60	+2	92 72		+335			+390			30 10	+4		+5		+5		+6		+730 +170
12	sup.	+140	+175	+212	+250	+30			60	+4	_		+485	\neg	1	+156		+6	30 10	+6	96	+7	65	+8	45	+9		+1070
13	sup.	+200	+245 +25	+302	+370	+4	_	+5	20 60	+6	12		+715		2	+820	_	+9	20 10	+10	15	+11	05	+12	45	+1410 +160		+1570
6	sup.	+18	+22 +13	+27 +16	+33 +20	+	11.		49		58 36		+68			+79			88 56		98 62	+3		+1		+130 +80		+142
7	sup.	+22	+78	+34	+40		50		60	-	71 36		+83			+96		+1	08 56	+1		+1		+1	_	+1		+176
8	sup.	+28	+35 +13	e43 +16	+53 +20	46	54		76 30		90 36		+106			+122		+1	_	+1	_	+1	_	+1	_	+2	_	+226
66	sup.	+12	+14	+17	+20	+3	25		29	+	34		+39			+44			49	+	54	+	60	+	66	+	74	+82
.7	sup.	+16	+5	+24	+7	343		1 4	40	- 4	47		+14			+15		4	17 69		18 75		83	-+	92	+1		+76
. 8	int.	+4	+5	+33	+7	+			56	- 4	12 66		+77		8	+87		+	17 96	+1	07	+1		+1		+1		+26
16	inf.	+4	+5	+11	+7	_	16	_	10	_	12		+14		-	+15		_	17 32	_	18 36	_	40		22 44		24 50	+26
17	int.	+12	+15	+18	+21	+6		,	30		35	+	+40	$\overline{}$	7	+46		*	52		57	,	63	,	70		80	+90
18	inf. sup.	+18	+72	+27	+33	+1	19	1	46		0 54		+63		8	+72		*	81		89		97	+1		+1		+140
19	inf.	+30	*36	+43	+52	46	52		74		87	-	+100			+115		+1	30	+1	40	+1	55	+1		+2	00	+230
110	inf.	+48	+58	+70	+84	+10	0	+1	20	+1	40	-	+160	_	-	+185	_	+2	0	+2	0	+2	50	+2	0 80	+3	20	+360
	int.	+75	+90	+110	+130	+16	0	+1	90	+2	20	-	+250	_	-	+290	_	+3	20	+3	60		0	+4	40	+5	0	+560
111	inf.	+5	+5	16	0 +8		0		13		16		+18	_	34	+22			0 25		0 28		33		0		0	0
6	int.	+5 -3 +6	+8	-5 +10	-5 +12	, 920	-6 14		-6 18	119	-6 22	-	+76		_	+30		1 8	-7 36	117	39	. 18	-7 43	-	-	-	_	
7	int.	-6 +10	+12	-8 +15	+20	1 33	11	20 3	12	100	13	-	+41		S.	-16		8 3	16 55	100	18	3	20		9			2 -
8	inf.	-8	-10 +4,5	-12 +5,5	-13 +6,5		15		18	3.3	20		+12			-25 +14		- 3	76 16	133	29 18	3	31		22	13	25	+28
56	inf.	+6	4,5	+3,3 -5,5 +9	+6,5 +10,5		8	8	9,5	1/2	17,5		+20	5		+23	5	. 8	16	255	18	. 19	31,5		22 35	124	25	-28 +45
57	sup. int.	-6	+7,5	-0	-10,5	- 24	12,5	1	15	- 6%	17,5		-20		×	-23		W 9	26	- 33	28,5	0 3	31,5		35		40	-45
58	sup. int.	+9 -9	+11	+13,5	+16,5 -16,5	- 34	19,5 19,5	1 3	23 23	18	27 27	_	+31	5		+36 -36		- 6	40,5 40,5	100	44,5 44,5	- 84	48,5 48,5		55 55		62,5 62,5	+70 -70
6	sup. int.	+2 -6	+2 -7	+2	+2 -11	. 53	13		14 15	82	14 18		+4 -21			+5 -24		. 8	+5 27	22	+7 29	. 6	+8 32		44	-50		-56
7	sup. int.	+3	+5 -10	+6 -12	+6 -15	1 (4	18		+9 21	- 23	10 25		+12			+13			16 36	- 20	17 40	- 3	18 45		70	-	0 80	-90
8	sup.	+5 -13	+6 -16	+8 -19	+10 -23	- 3	12 27		14 32		16 38		+20			+22 -50			25 56	133	28 61	- 9	29 68		10	91	_	-140
16	sup. int.	-1 -9	-3 -12	-15	-4 -17		-4 20		-5 24	82	-6 28		-8 -33		6	-8 -37		1	-9 41		10 46		10 50	-	26 70	- 4	30 80	-34 -90
M 7	sup. Int.	-12	-15	0 -18	0 -21		0		0 30		35		40		2	-46			0 52		0 57	. 19	0 63		26 96		30 10	-34 -124

ANEXO XVII. Hojas de procesos

Tabla 77. Hoja de procesos del eje chumacera.

HOJA DI	E PROCESOS				^	
Tiempo t	otal de duración:180 m	nin		EJE CHUMACERA	4	
Pos.	Cant.	Denominación	Material	Dim. En bruto		Obs.
	6	Eje motriz 1	Acero de Trasmisión	150x18 mm	1	Ninguna
		60		1,00		
Fase	Operaciones	Velocidad en rpm	N pasadas	Profundidad (mm)	Tiempo e	estimado
1	Trazar				5	
2	Medir y cortar				15	
3	Puesta Punto, refrenar				10	
4	Cilindrar	220	25	1	60	
4	Cilindrar	220	25	1	60	
4	Chaflanar	220	1	2	15	
5	Trazar					
CODIGO	PLANO: 1.3204	.106				

(Fuente: Propia)

Tabla 78. Hoja de procesos nervio para columna.

HOJA [DE PROCESOS			NERVIO PARA COLUMNA A-36					
Tiempo	total de duración:60 m	in							
Pos.	Cant.	Denominación	Material	Dim. En bruto		Obs.			
	9	NERVIO	ACERO A 36	200x420 mm	1	Ninguna			
	100	50	150						
Fase	Operaciones	Velocidad en rpm	N pasadas	Profundidad (mm)	Tiempo e (min)	estimado			
1	Trazar				5				
2	Medir y cortar				15				
4	Chaflanar a 45° 220		1	4	30				
	1	1	1	1	1				

(Fuente: Propia)

ANEXO XVIII. WPS

Tabla 79. WPS

	e Compa lo.: 001	ñía: E.P.N.		No. Identifica Fecha: 06/0	ación: EPN.0 6/2017	01		
		WS D 1.1		Realizado po	or: Robinson n: Escuela Po		cional	
Abe Tal Anç Placa Prepai Mé	e junta: Tertura raíz ón: gulo de ra de respale ra bisel: todo: amo	: 1 mi 1 m nura: 30° do: si <u>X</u> si <u>X</u> olado	m	Artículo II. Proceso de Tipo de sold Manual Soldadura a Cordón de re Limpieza: Pase raíz Pases siç	Técnica de soldadura: adura: Semiau : Un lado espaldo: si estato : amoladora quientes: cep	e Soldadura SMAW-INVE utomático [X Dos r illo metálico y	RTER \overline{x} Authorized Authoriz	-
	_	Metal Base Acero A-36 m		Artículo V. Posición de Técnica: Un	Soldadu <u>ra:</u> 1		a s pases	X
		Metal de Ap on: E 6011 y cial: AGA		Precalentam Tiempo entr Artículo VI. • Verif	niento N/A e pases: 8 m	in n de la junta		
Detall	e de la ju	nta:						
	N N	30	,			P3 P2 P1		
No de	Metal	de aporte	Cor	riente	Tensión de trabajo	Velocidad de		nica de ladura
pase	Clase	Diámetro	Tipo y	Intensidad	[Voltaje]	avance	Oscil	Recto

N	0	Metal o	de aporte	Coi	rriente	Tensión	Velocidad	Técr	nica de
de	е					de trabajo	de	sold	adura
pas	se	Clase	Diámetro	Tipo y	Intensidad	[Voltaje]	avance	Oscil	Recto
			[mm]	polaridad	[Amperios]		[mm/min]	ado	
1		E 6011	3.2	DC⁺	80	30	93.58	Х	
2	-	E 6013	3.2	DC⁺	125	25	222.25	Х	
3	}	E 6013	3.2	DC⁺	134	25.5	164.17	Х	

(Fuente: Propia)

ANEXO XIX.PLANOS