ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ANÁLISIS TÉCNICO-ECONÓMICO COMPARATIVO PARA EL CAMBIO DE FLUIDO MOTRIZ DE PETRÓLEO POR AGUA DE FORMACIÓN, DEL SISTEMA HIDRÁULICO EN EL CAMPO SACHA

TRABAJO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERÍA EN PETRÓLEOS MODALIDAD: ESTUDIOS COMPARADOS

DAVID SANTIAGO ARIAS BAUTISTA santiago.arias.tt@gmail.com

DIRECTOR: ING. BLADIMIR CERÓN GUERRA ignacio.ceron@epn.edu.ec

DECLARACIÓN

Yo, David Santiago Arias Bautista, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

DAVID SANTIAGO ARIAS B.

CERTIFICACIÓN

Certifico	que	el	presente	trabajo	fue	desarrollado	por	David	Santiago	Arias
Bautista,	bajo	mi	supervisió	n.						

Ing. Bladimir Cerón DIRECTOR DE PROYECTO

AGRADECIMIENTOS

Ante todo agradezco a Dios Todopoderoso, quien ha guiado mis pasos siempre por el camino del bien. A la Virgen Santísima de las Mercedes, madre que protege mi hermosa ciudad de Latacunga.

A mis padres, Nelson y Angélica, quienes desde el día en que nací me han apoyado en todo lo necesario y que a pesar de que siempre existan problemas nos mantenemos juntos como familia.

A mis hermanos, Andrés y Carolina, personas que nunca les podré fallar y me brindan su cariño de fin de semana.

A mis seres queridos que a pesar de ser un largo viaje por recorrer, han creído en mí y he logrado cumplir una de mis metas de la mejor manera.

Santiago Arias

DEDICATORIA

Quiero dedicar este proyecto de titulación a Dios por permitirme vivir y ser mejor cada día. Virgen de las Mercedes por permitirme tener junto a mí a personas muy importantes.

A mis padres, hermanos, abuelitos y a mis seres queridos más cercanos, por ser las personas que me han brindado su apoyo incondicional en todo momento, tanto en los malos y mucho mejor en los buenos momentos.

A Carolina por brindarme su apoyo durante este largo y arduo proceso de culminación de tesis; por ser muy importante para mí en el transcurso de estos días y disfrutar contigo de todo momento, muchas gracias.

CONTENIDO

DECLARACIÓN	ا
CERTIFICACIÓN	III
AGRADECIMIENTOS	IV
DEDICATORIA	V
RESUMEN	XVI
PRESENTACIÓN	XVII
CAPÍTULO 1	18
MARCO TEÓRICO	18
1.1 DESCRIPCIÓN DEL CAMPO SACHA 1.1.1 ANTECEDENTES DEL CAMPO 1.1.2 UBICACIÓN DEL CAMPO 1.1.3 GEOLOGÍA DEL CAMPO 1.1.4 ESTRUCTURA DEL CAMPO 1.1.5 ESTRATIGRAFIA DEL CAMPO 1.1.5.1 Formación Hollín 1.1.5.2 Formación Tena 1.1.5.3 Formación Napo 1.1.6 CARACTERÍSTICAS DEL CAMPO 1.1.6.1 Litología de las Zonas Productoras 1.1.6.2 Características de los Crudos 1.1.6.3 Datos PVT 1.1.6.4 Mecanismos de Empuje	181919191920202121
1.2 FUNDAMENTOS TEÓRICOS DEL SISTEMA DE BOMBEO HIDRAÚLICO 1.2.1 INTRODUCCIÓN	23 24 25 26 26 28 28 28 35 36 37
CAPÍTULO 2	39
DESARROLLO DEL SISTEMA POWER WATER	39

2.1 DESCRIPCIÓN DE LAS FACILIDADES DE LA ESTACIÓN CENTRAL	DEL
CAMPO SACHA	39
2.1.1 MANIFOLD	39
2.1.2 SEPARADORES	
2.1.3 SISTEMA DE ALMACENAMIENTO	40
2.1.3.1 Tanque de Lavado	40
2.1.3.2 Tanque de Reposo	41
2.1.3.3 Tanques de Oleoductos	
2.1.4 SISTEMA DE BOMBEO	
2.1.4.1 Bombas de Transferencia	
2.1.4.2 Bombas de Oleoducto	
2.1.5 SISTEMA DE REINYECCIÓN DE AGUA	
2.1.6 DESCRIPCIÓN DEL SISTEMA POWER OIL DEL CAMPO SACH	
2.1.6.1 Succión	
2.1.6.2 Unidades Power Oil	
2.1.6.3 Condiciones Normales de Operación	44
2.2 CARACTERIZACIÓN DEL FLUIDO MOTRIZ	45
2.2.1 FLUIDO MOTRIZ PETRÓLEO	
2.2.1.1 Factor de correlación Kuop	_
2.2.1.2 Petróleo Campo Sacha	
2.2.2 FLUIDO MOTRIZ AGUA DE FORMACIÓN	46
2.2.2.1 Propiedades Físico-Químicas	
2.2.2.2 Análisis Cuantitativo del Agua Producida	47
2.2.2.3 Componentes y Propiedades del Agua Producida	48
2.2.2.3.1 Cationes	
2.2.2.3.2 Aniones	48
2.2.2.3.3 Otras Propiedades	48
2.2.2.4 Calidad del Agua	
2.2.2.4.1 Incrustaciones Formadas en el Agua	50
2.2.2.4.2 Incrustaciones de Carbonatos de Calcio	
2.2.2.5 Características del Agua de Formación	51
CAPÍTULO 3	54
ESTUDIO COMPARADO DE RESULTADOS	
3.1 CÁLCULO VOLUMÉTRICO DEL CAMPO SACHA	
3.1.1 CÁLCULO DE VOLUMEN DE PETRÓLEO MOTRIZ EN LÍNEAS	
SUPERFICIE Y COMPLETACIÓN	
3.1.1.1 Descripción de los Pozos del Sistema Power Oil	
3.1.1.1 Pozo X-01	55 55
3.1.1.1.2 Pozo X-19	
3.1.1.1.2 F020 X-19	
3.1.1.1.4 Pozo X-26	
3.1.1.1.5 Pozo X-37	
3.1.1.1.6 Pozo X-88	
3.1.1.1.7 Pozo X-101	
3.1.1.1.8 Pozo X-112	
3.1.1.1.9 Pozo X-130	
3.1.1.1.10 Pozo X-134	

3.1.1.1.11 Pozo X-190D	
3.1.2 CÁLCULO DE VOLUMEN DE CRUDO EN EL TANQUE DE REPOSO	
3.2 OPTIMIZACIÓN DE BOMBAS JET Y PISTÓN PARA EL DESARROLLO	
DEL SISTEMA POWER WATER	
3.2.1 ANÁLISIS DEL POZO X-01	
3.2.2 ANÁLISIS DEL POZO X-19	
3.2.3 ANÁLISIS DEL POZO X-25	
3.2.4 ANÁLISIS DEL POZO X-26	./1
3.2.6 ANÁLISIS DEL POZO X-88	
3.2.7 ANÁLISIS DEL POZO X-00	
3.2.8 ANÁLISIS DEL POZO X-112	
3.2.9 ANÁLISIS DEL POZO X-130	
3.2.10 ANÁLISIS DEL POZO X-134	.78
3.2.11 ANÁLISIS DEL POZO X-190D	
3.2.12 ANÁLISIS DEL POZO X-197D	.80
3.3 PROCESO DE DESHIDRATACIÓN EN LA ESTACIÓN SACHA CENTRAL.	.81
3.3.1 ANÁLISIS CON FLUIDO MOTRIZ PETRÓLEO	.81
3.3.2 ANÁLISIS CON FLUIDO MOTRIZ AGUA DE FORMACIÓN	.83
3.4 ANÁLISIS COMPARATIVO DEL SISTEMA HIDRÁULICO	.85
3.4.1 FLUIDO MOTRIZ PETRÓLEO	.85
3.4.2 FLUIDO MOTRIZ AGUA DE FORMACIÓN	.86
CAPÍTULO 4	.87
ANÁLISIS ECONÓMICO DEL PROYECTO	.87
4.1 ANÁLISIS TÉCNICO, RECURSOS Y VALORES ECONÓMICOS	.87
4.1.1 REDISEÑO Y CAMBIO DE LAS BOMBAS DE SUBSUELO JET Y	/
PISTÓN	
4.1.1.1 Análisis técnico de la actividad	
4.1.1.2 Recursos requeridos en la actividad	
4.1.1.3 Costos de la actividad4.1.2 MODIFICACIÓN EN LAS BOMBAS ELÉCTRICAS E INSTALACIÓN	
DE EQUIPOS	
4.1.2.1 Análisis técnico de la actividad	
4.1.2.2 Recursos requeridos en la actividad	
4.1.2.3 Costos de la actividad	
4.1.3 MODIFICACIÓN DE SEPARADORES BIFÁSICOS A FWKO	
4.1.3.1 Análisis técnico de la actividad	.91
4.1.3.2 Recursos requeridos en la actividad	
4.1.3.3 Costos de la actividad	
4.1.4 MODIFICACIÓN DEL TANQUE DE AGUA DE FORMACIÓN	
4.1.4.1 Análisis técnico de la actividad	
4.1.4.2 Recursos requeridos en la actividad	
4.1.4.3 Costos de la actividad	
4.1.5.1 Análisis técnico de la actividad	

4.1.5.2 Recursos requeridos en la actividad	93
4.1.5.3 Costos de la actividad	94
4.1.6 OPTIMIZACIÓN DEL TRATAMIENTO QUÍMICO	94
4.1.6.1 Análisis técnico de la actividad	
4.1.6.2 Recursos requeridos en la actividad	95
4.1.6.3 COSTOS DE LA ACTIVIDAD	95
4.2 ANÁLISIS ECONÓMICO DEL PROYECTO	95
4.2.1 INDICADORES ECONÓMICOS	96
4.2.2 DESCRIPCIÓN DE PARÁMETROS EMPLEADOS	
4.2.3 INGRESOS NETOS	
4.2.4 INVERSIÓN	
4.2.5 ANÁLISIS DEL BALANCE ECÓNOMICO	97
CAPÍTULO 5	99
CONCLUSIONES Y RECOMENDACIONES	99
5.1 CONCLUSIONES	99
5.2 RECOMENDACIONES	100
REFERENCIAS BIBLIOGRÁFICAS	102
ANEXOS	104

ÍNDICE DE CUADROS

No	DESCRIPCIÓN	PÁGINA
1.1	Descripción litológica de las zonas productoras del Campo Sacha	26
1.2	Datos PVT del Campo Sacha	27
1.3	Relación de áreas óptimas	39
2.1	Equipos de transferencia	47
2.2	Bombas de oleoducto	48
2.3	Equipos de reinyección de agua	48
2.4	Pozos del Sistema Power Oil	50
2.5	Clasificación del petróleo según la densidad	50
2.6	Caracterización general del crudo	51
2.7	Propiedades físicas del agua	52
2.8	Interpretación de curvas de la calidad del agua	55
2.9	Guía del índice de la calidad del agua	55
2.10	Escalas formadas en yacimientos	56
2.11	Gravedad de las incrustaciones	56
2.12	Análisis físico químico del agua de formación	57
3.1	Cálculo del volumen de petróleo motriz en las líneas de inyección en superficie	67
3.2	Cálculo del volumen de petróleo motriz de inyección en el	68
5.2	tubing	00
3.3	Cálculo del volumen de petróleo motriz de retorno por el	68
5.5	espacio anular	00
3.4	Cálculo del volumen de petróleo motriz en las líneas de	68
0.1	retorno en superficie	00
3.5	Resultados en proceso de inyección y retorno	69
3.6	Cálculo de petróleo en el Tanque de Reposo	70
3.7	Datos del pozo X-01	70
3.8	Resultados por cada iteración del pozo X-01	71
3.9	Sumario final de resultados del pozo X-01	72
3.10	Propuesta de rediseño para optimizar el pozo X-01	72
3.11	Datos del pozo X-19	73
3.12	Sumario final de resultados del pozo X-19	74
3.13	Propuesta de rediseño para optimizar el pozo X-19	74
3.14	Datos del pozo X-25	74
3.15	Sumario final de resultados del pozo X-25	75
3.16	Propuesta de rediseño para optimizar el pozo X-25	75 75
3.17	Datos del pozo X-26	76
3.18	Sumario final de resultados del pozo X-26	76
3.19	Propuesta de rediseño para optimizar el pozo X-26	76
3.20	Datos del pozo X-37	77
3.21	Sumario final de resultados del pozo X-37	77
3.22	Propuesta de rediseño para optimizar el pozo X-37	78
3.23	Datos del pozo X-88	78
3.24	Sumario final de resultados del pozo X-88	78

No	DESCRIPCIÓN	PÁGINA		
3.25	Propuesta de rediseño para optimizar el pozo X-88	79		
3.26	Datos del pozo X-101	79		
3.27	Sumario final de resultados del pozo X-101	80		
3.28	Propuesta de rediseño para optimizar el pozo X-101	80		
3.29	Datos del pozo X-112	80		
3.30	Sumario final de resultados del pozo X-112	81		
3.31	Propuesta de rediseño para optimizar el pozo X-112	81		
3.32	Datos del pozo X-130	81		
3.33	Sumario final de resultados del pozo X-130	82		
3.34	Propuesta de rediseño para optimizar el pozo X-130	82		
3.35	Datos del pozo X-134	83		
3.36	Sumario final de resultados del pozo X-134	83		
3.37	Propuesta de rediseño para optimizar el pozo X-134			
3.38	Datos del pozo X-190D	84		
3.39	Sumario final de resultados del pozo X-190D	84		
3.40	Propuesta de rediseño para optimizar el pozo X-190D	85		
3.41	Datos del pozo X-197D	85		
3.42	Sumario final de resultados del pozo X-197D	85		
3.43	Propuesta de rediseño para optimizar el pozo X-197D	86		
4.1	Resumen de incremento de producción y propuesta de bombas	92		
4.2	Costos por el rediseño y cambio de bomba	94		
4.3	Costos de las modificaciones en las bombas HPS	95		
4.4	Costos por tratamiento químico	100		
4.5	Ingresos mensuales del proyecto	102		
4.6	Inversión inicial del proyecto	102		
4.7	Balance económico	103		

ÍNDICE DE GRÁFICOS

No	DESCRIPCIÓN	PÁGINA
1.1	Componentes del sistema de bombeo hidráulico	29
1.2	Componentes en superficie del bombeo hidráulico	30
1.3	Esquema de una bomba hidráulico tipo jet	31
1.4	Componentes de una bomba hidráulico tipo jet	32
1.5	Curva de comportamiento de diseño Guiberson	38
1.6	Funcionamiento de una bomba tipo pistón	41
1.7	Facilidades del sistema de inyección abierto	42
1.8	Facilidades del sistema de inyección cerrado	43
2.1	Manifold de la Estación Sacha Central	44
2.2	Separadores de producción del Campo Sacha	45
2.3	Tanque de Lavado	46
2.4	Tanque de Reposo	46
2.5	Tanque de Oleoductos	47
2.6	Calidad del agua	54
3.1	Red de Power Oil – Estación Sacha Central	59
3.2	Análisis Nodal del Pozo x-01	73
3.3	Diagrama de flujo Power Oil	87
3.4	Diagrama de flujo Power Water	88

SIMBOLOGÍA

SÍMBOLO	SIGNIFICADO	DIMENSIONES
API	American Petroleum Institute	
Асм	Área anular mínima en la succión para evitar la	L^2
	cavitación, pg ²	
An	Área de flujo de la tobera, pg ²	L ²
As	Área anular de la cámara de mezclado para el flujo	L ²
Ат	de la producción, pg ² Área de flujo total de la cámara de mezclado, pg ²	L ²
bl	Barriles	L ³
bapd	Barriles de agua por día	L ³
bfpd	Barriles de fluido por día	L^3
bipd	Barriles de inyección por día	L^3
bppd	Barriles de petróleo por día	L^3
B_g	Factor volumétrico del gas PC/PCS	
B _o	Factor volumétrico del petróleo, bl/BF	
B _T B _w	Factor volumétrico para petróleo, gas y agua, bl/BF	
BF	Factor volumétrico del agua, bl/BF Barril fiscal	L ³
BSW	Contenido de agua libre y sedimentos	_
BT	Arenisca Productora Basal Tena	
С	Variable definida en función de diámetros D ₁ , D ₂	
ср	Centipoises	M/Lt
cst	Centistokes	
D	Longitud total verdadera, longitud vertical pie	L
Ditp	Diámetro interno de la tubería de producción, pg	L
D₀TP	Diámetro externo de la tubería de revestimiento, pg	L
D _{iTR} D _{oTR}	Diámetro interno de la tubería de revestimiento, pg Diámetro externo de la tubería de revestimiento, pg	L L
DotR D _{Nominal}	Diámetro nominal, pg	Ĺ
D ₁	Diámetro interno de la tubería de producción o de la	Ī
21	tubería de revestimiento, pg	_
D ₂	Diámetro externo de la tubería interior en flujo	L
D_3	anular, pg Distancia entre centro del tubing y el centro del	L
d ₃	casing, flujo anular laminar, pg Diámetro externo de las juntas del tubing, flujo	L
us	anular turbulento, pg	_
Fo	Fracción de petróleo	
Fw	Fracción del agua de formación	
Fwd	Fracción del agua del fluido de la columna de	
FWKO	retorno Separador de agua libre (Free Water Knock out)	
Ī	Factor de fricción	
G _D	Gradiente del fluido de la columna de retorno,	M/L^2t^2
	psi/pie	

SÍMBOLO G _N	SIGNIFICADO Gradiente del fluido motriz en la tubería de	DIMENSIONES M/L ² t ²
ON	inyección, psi/pie	IVI/ L
Go	Gradiente del petróleo producido, psi/pie	M/L^2t^2
Gs	Gradiente del fluido de formación, psi/pie	M/L ² t ²
Gw	Gradiente del agua de formación, psi/pie	M/L ² t ²
H	Relación adimensional de recuperación de presión	
HP HP@90%	Caballos de potencia, unidad de potencia Potencia a 90%, HP	
HPS	Bombas eléctricas horizontales de superficie	
Hs	Zona productora Hollín Superior	
Hi	Zona productora Hollín Inferior	
Hz	Hertz, unidade de frecuencia	T ⁻¹
K_N	Coeficiente de pérdida en la tobera	
K _{TD}	Coeficiente de pérdida combinado cámara de mezclado – difusor	
L	Longitud de tubería de producción hasta la bomba = profundidad de colocación de la bomba = h ₁ , pies	L
M	Relación de flujo másico adimensional, QsGs/QnGn	
M_L	Relación de flujo másico adimensional en el límite	
	de cavitación	
N_Re	Número de Reynolds	
Pb	Presión de burbuja, psi	M/Lt ²
PD	Presión de descarga, psi	M/Lt ²
P _F	Pérdidas de presión por fricción, psi	M/Lt ²
P_{FD}	Pérdida de presión por fricción del fluido en el circuito de retorno, psi	M/Lt ²
P _{FN}	Pérdida de presión por fricción del fluido motriz en la	M/Lt ²
	tubería de inyección, psi	
P_N	Presión a la entrada de la tobera, psi	M/Lt ²
P_R	Presión de reservorio, psi	M/Lt ²
Ps	Presión de succión, psi	M/Lt ²
Рт	Presión superficial de operación, psi	M/Lt ²
PwF	Presión en fondo fluyente, psi	M/Lt ²
PwH	Presión en la cabeza del pozo, psi	M/Lt ²
pg	Pulgada Partos por millón	L
ppm psi	Partes por millón Libras fuerza por pulgada cuadrada	M/Lt ²
psia	Libras por pulgada cuadrada absoluta	M/Lt ²
psig	Libras por pulgada cuadrada manométrica	M/Lt ²
Q _D	Tasa del fluido producido más fluido motriz (tasa de descarga), bl/día	L ³ /t
Q_{G}	Tasa de gas libre que ingresa a la bomba, bl/día	L ³ /t
Q _N	Tasa del fluido motriz, bl/día	L ³ /t
Qo	Tasa de petróleo producido, bl/día	L ³ /t
$\Delta \ Q_N$	Variación de fluido motriz, %	
Qs	Tasa de fluido producido, bl/día	L ³ /t
Qsc	Tasa de fluido producido a partir de la cual inicia la cavitación, bl/día	L ³ /t

SÍMBOLO	SIGNIFICADO	DIMENSIONES
Q_W	Tasa de agua producida, bl/día	L ³ /t
R	Relación de áreas, A _N /A _T	
RGP	Relación gas-petróleo, PCS/BF	
RGL	Relación gas-líquido, pies³/bl	
RPM	Revoluciones por minuto	
GOR	Relación gas-petróleo, pies ³ /bl	L3
SCF SDV	Pies cúbicos estándar	L°
T	Válvulas de emergencia Temperatura, °F	Т
Twf	Temperatura, 1 Temperatura de fondo, °F	†
Twh	Temperatura de fondo, Temperatura en la cabeza del pozo, °F	ή
U	Arenisca productora Napo "U"	•
USD	Dólares americanos	
V	Velocidad del fluido, pie/s	L/t
°F	Grado Farenheit	T
FNC_K	Flujo neto de caja, dólares	
N	Vida útil del proyecto en años	
lo	Inversión inicial neta del proyecto, dólares	
PRI	Período de recuperación de la inversión, tiempo	Т
VAN	Valor actual neto, dólares	
r	Tasa de actualización, %	
K	Años, meses	
d	Tasa de descuento, %	
i	Tasa anual efectiva, %	
TIR	Tasa interna de retorno, %	
γ_f	Gravedad específica del fluido motriz (agua=1.0)	
γ_g	Gravedad específica del gas	
γ_{w}	Gravedad específica del agua	
ρ	Densidad del fluido, lb/pie ³	M/L ³
ρ_{O}	Densidad del petróleo, lb/pie ³	M/L ³
μо	Viscosidad dinámica del fluido de retorno, cp	M/Lt
μο	Viscosidad dinámica del petróleo, cp	M/Lt
μw	Viscosidad del agua, cp	M/Lt
VD	Viscosidad cinemática del fluido de retorno, cst	L ² T ⁻¹
νο	Viscosidad cinemática del petróleo, cst	L ² T ⁻¹
VW	Viscosidad cinemática del agua, cst	L ² T ⁻¹
°API	Grado API	

RESUMEN

El presente trabajo corresponde a un análisis técnico, económico y comparativo para el cambio de fluido motriz de petróleo por agua de formación del Sistema Power Oil en la Estación Central del Campo Sacha, ubicado en el Bloque 60 del oriente ecuatoriano.

El sistema de levantamiento artificial hidráulico, actualmente opera con fluido motriz petróleo que permite la producción de 12 pozos. El objetivo del proyecto tiene como finalidad la evaluación al utilizar agua de formación como fluido motriz, analizando todos los parámetros que se necesitan para realizar este cambio en el sistema Power Oil. Se apreciará el impacto que este cambio generaría en el proceso de deshidratación, una vez realizado la instalación de ciertos equipos y verificado su capacidad de procesamiento.

En el capítulo 1 se describen las generalidades del Campo Sacha como son la ubicación geográfica, características geológicas y estratigráficas de los yacimientos, propiedades PVT de los fluidos y los mecanismos naturales de producción. Así como también se describe la base teórica del sistema de levantamiento artificial hidráulico, y las ecuaciones indispensables para determinar las geometrías óptimas de las bombas jet a utilizarse.

En el capítulo 2 se presenta la descripción de las facilidades de superficie y datos de los pozos del sistema Power Oil de la Estación de Sacha Central, además en éste capítulo se realiza el análisis físico químico del agua de formación.

En el capítulo 3 se realiza el análisis para cambiar el fluido motriz de petróleo por agua de formación, se presenta de forma detallada los cálculos correspondientes para determinar el volumen de petróleo que será recuperado al cambiar el fluido motriz; y se detalla los resultados obtenidos para dimensionar nuevas geometrías para los pozos que operarán con bombeo tipo jet y con el nuevo fluido motriz, agua de formación.

En el capítulo 4 se muestra el análisis de resultados de las actividades a realizarse con sus respectivos costos durante el cambio de fluido motriz, así como también el análisis económico para la evaluación del proyecto es la medida que permitirá a la empresa interesada realizar un balance y de esta manera su posterior ejecución.

En el capítulo 5 se exponen las conclusiones y recomendaciones de mayor importancia para la factibilidad y viabilidad del proyecto.

PRESENTACIÓN

El impacto ambiental que genera la utilización de petróleo como fluido motriz y el reprocesamiento del mismo hacen que el sistema de levantamiento hidráulico se vea en la necesidad de trabajar con agua de formación como fluido motriz.

Por tal motivo, el presente trabajo de titulación "Análisis técnico-económico comparativo para el cambio de fluido motriz de petróleo por agua de formación, del sistema hidráulico en el Campo Sacha", se lo realiza con datos actualizados y tiene como objetivo principal, realizar un estudio completo para cambiar de fluido motriz de petróleo por agua de formación con el que actualmente opera el sistema de bombeo hidráulico, de tal manera que se pueda disminuir el riesgo de contaminación en el campo Sacha.

El presente proyecto podría ser utilizado como una base de estudio para ser ejecutado en los diferentes campos del oriente ecuatoriano.

CAPÍTULO 1

MARCO TEÓRICO

1.1 DESCRIPCIÓN DEL CAMPO SACHA

1.1.1 ANTECEDENTES DEL CAMPO

Sacha, un campo considerado en desarrollo, fue descubierto el 21 de enero de 1969 por la compañía Texaco-Gulf, fue probada con la perforación del pozo exploratorio Sacha-1, que alcanzó una profundidad total de 10.160 pies y se obtuvo una producción inicial de 1.328 bppd, de 30 °API y 0,1% de BSW en el yacimiento Hollín. El pozo Sacha-1 el cual ya no se encuentra en producción, hasta febrero de 1998 reconoció un acumulado de 7'327.000 barriles.

El 06 de julio de 1972 el pozo Sacha-1 fue puesto en producción con una tasa promedio de 29.269 bppd en el mes de julio, y luego incrementándose a una tasa de 117.591 bppd al mes de noviembre. (Baby et al, 2014)

El 03 de noviembre de 2009, en la selva amazónica, OPERACIONES RÍO NAPO CEM comenzó sus operaciones en el campo Sacha, siendo la primera empresa petrolera ecuatoriana de economía mixta que posteriormente alcanzó un incremento de producción de hasta 75.080 bppd, en el año 2013. A inicios de enero de 2013, las operaciones del Campo Sacha se consolidan en una alianza estratégica entre la empresa Petroamazonas EP y PDVSA, con el fin de incrementar el desarrollo productivo del Campo. (Río Napo, 2016)

El Campo Sacha, actualmente es operado por la petrolera estatal Petroamazonas EP, la cual asumió a inicios de agosto de 2016 las operaciones del Bloque 60, luego que después de 7 años de operación en el campo, la empresa de economía mixta Río Napo entrara en liquidación. (El Comercio, 2016)

1.1.2 UBICACIÓN DEL CAMPO

El campo Sacha se encuentra ubicado en el cantón Joya de los Sachas, al noreste de la Región Amazónica, provincia de Orellana, es el campo petrolero ecuatoriano más grande e importante; comprende una extensión de 41.524 acres.

(Río Napo, 2016)

Localizado entre las coordenadas: 00°11'00" y 00°24'30" Latitud Sur y 76°49'40" a 76°54'16" Longitud Oeste a 50 km al Sur de Lago Agrio, aproximadamente. Está ubicado geológicamente en la parte central y en el eje de la subcuenca de Napo. El Campo Sacha se encuentra delimitado al norte por las estructuras Palo Rojo, Eno, Ron y Vista, al Sur por los campos Culebra y Yulebra, al Este por los campos Shushufindi-Aguarico, Limoncocha, Pacay, mientras que al Oeste por los campos Pucuna, Paraíso y Huachito. (Romero & Gómez, 2010)

1.1.3 GEOLOGÍA DEL CAMPO

El Campo Sacha se encuentra localizado geológicamente en el Oeste del eje axial de la Cuenca Sedimentaria Cretácica Napo. Su estructura se localiza en la falla general Noroeste-Suroeste, la cual se conecta con la Cuenca Marañón en el Sur y con la Cuenca Putumayo al Norte. (Romero & Gómez, 2010)

1.1.4 ESTRUCTURA DEL CAMPO

La estructura Sacha se formó entre el Turoniano Terminal y el Maastrichtiano, con un ancho de 4 km en el norte y cerca de 7 km en el centro y sur, además de una longitud de 33 km. Localizado en el flanco occidental del Play Central, conocido como el Corredor Sacha-Shushufindi.

Presenta un cierre vertical máximo de alrededor de 240 pies a la base caliza A y un área de 51.166 acres referida al tope Hollín Superior.

El anticlinal Sacha, localizado al noroeste de la antigua concesión Coca, fue mapeado en 1967 y 1968 con grabaciones sísmicas analógicas y digitales en una red sísmica que continua hacia el sur del campo Lago Agrio. (Canfield, 1991)

1.1.5 ESTRATIGRAFIA DEL CAMPO

La producción mayoritaria de petróleo en la Cuenca Oriente, se encuentra asociada a los depósitos del Cretácico Inferior a Medio, como son: las formaciones Hollín (areniscas superior e inferior) y Napo (areniscas "T", "U" y "M-2"); así como también el depósito del Cretácico Superior, la arenisca: Basal Tena. (Baby et al, 2014)

1.1.5.1 Formación Hollín

Es la base de la edad del Cretácico dentro de la edad del Mesozoico, con un ambiente de depositación el cuál es marino transgresivo. Tiene un espesor de 80 a 100 pies. Las areniscas gruesas de la parte inferior son Continentales y las de la parte superior son de grano más fino y de un medio Marino Litoral.

(Romero & Gómez, 2010)

1.1.5.2 Formación Tena

Ésta formación tiene un espesor promedio de 400 a 3.200 pies, la misma que se subdivide en dos arenas:

 Tena Inferior, perteneciente a la edad Cretácica, tiene sus comienzos en la era Mesozoica. El ambiente de depositación es Continental a Marina Somera. Tena Superior, perteneciente a la edad del Paleoceno, constituye la base de la era Cenozoica. El ambiente de depositación es Continental.

(Romero & Gómez, 2010)

1.1.5.3 Formación Napo

La formación pertenece al intervalo del Cretácico Medio al Superior, la cual da inicio de la era Mesozoica. La comprenden entre 500 a 2.500 pies de lutitas y calizas con intercalaciones de areniscas; el grupo se subdivide en cuatro miembros:

- Napo Superior, ésta formación comprende las calizas "M-1" de la zona subandina. Tiene un espesor promedio de 320 m.
- Napo Inferior, con un espesor aproximado de 60 m y se encuentra sobre la formación Napo Basal, que comprende las calizas "B", las lutitas "U" y las areniscas "U".
- Napo Medio, presenta un espesor aproximado de 75 a 90 m e incluye a las calizas "A" y a las calizas "M-2", descartando las calizas "M-1".
- Napo Basal, ésta formación incluye la arenisca Basal, las lutitas negras y las areniscas "". Posee un espesor aproximado de 60 m.

(Romero & Gómez, 2010)

1.1.6 CARACTERÍSTICAS DEL CAMPO

1.1.6.1 Litología de las Zonas Productoras

Hollín Superior: Formada por una arenisca cuarzosa-glauconítica, de grano fino, cemento silicio, con una porosidad promedio de 14%. Éste yacimiento presenta una buena saturación de hidrocarburos con °API de 27, un espesor promedio saturado de 25 pies en el centro del campo, saturación de agua de 35% y una salinidad de 3.891 ppm de CI-. (Baby et al, 2014)

Hollín Inferior: Formada por una arenisca blanca cuarzosa, de grano medio, matriz y cemento silicio, intercalaciones de niveles limosos y arcillosos.

(Bistow & Hoffstetter, 1997)

Éste yacimiento presenta una buena saturación de hidrocarburos con °API de 29, espesor promedio saturado de 45 a 55 pies, con una porosidad promedio de 15%, saturación de agua de 20% a 40% y una salinidad de 500 a 1.500 ppm de Cl-.

(Romero & Gómez, 2010)

Basal Tena: Definida por un pequeño cuerpo de areniscas que sellan el ingreso a la formación Napo, compuesta por una arenisca blanca cuarzosa, moderadamente consolidada, grano fino a muy fino. (Bistow & Hoffstetter, 1997)

Éste yacimiento presenta un espesor promedio de 4 pies, con °API de 25,1. Una porosidad promedio de 18%, saturación de agua de 31% y una salinidad promedio de 24.000 a 36.000 ppm de CI-. (Romero & Gómez, 2010)

Napo "T": Formada por una arenisca cuarzosa gris, de grano fino, cemento calcáreo, inclusiones de glauconita. Éste yacimiento presenta una buena saturación de hidrocarburos con "API de 28, espesor promedio saturado de 20 a 90 pies, con una porosidad promedio de 21%, saturación de agua de 14,8% y una salinidad promedio de 20.000 a 25.000 ppm de CI-. (Baby et al, 2014)

Napo "U": Formada por una arenisca cuarzosa blanca, cemento silicio e inclusiones de glauconita. Éste yacimiento presenta una buena saturación de hidrocarburos con "API de 28,6. Tiene un espesor promedio saturado de 31 pies, con una porosidad promedio de 20%, saturación de agua de 25% y una salinidad promedio de 25.000 a 45.000 ppm de CI-. (Romero & Gómez, 2010)

En el siguiente cuadro 1.1 se detalla la litología de cada formación del campo.

CUADRO 1.1 DESCRIPCIÓN LITOLÓGICA DE LAS ZONAS PRODUCTORAS DEL CAMPO SACHA

DEL GAIN O GAGNA				
FORMACIÓN	DESCRIPCIÓN LITOLÓGICA			
HOLLÍN SUPERIOR	Arenisca			
HOLLÍN INFERIOR	Arenisca			
BASAL TENA	Arenisca			
NAPO "T" Superior	Arenisca			
NAPO "T" Inferior	Arenisca			
NAPO "U" Superior	Arenisca, lutita, caliza			
NAPO "U" Inferior	Arenisca y lutita			

Fuente: Archivos Sacha, Operaciones Río Napo Compañía Economía Mixta (CEM).

Elaboración: Santiago Arias

1.1.6.2 Características de los Crudos

Como se puede verificar la gravedad de los crudos de los yacimientos Hollín Superior, Hollín Inferior, Basal Tena, "T" y "U", se encuentran entre los 27 a 29°API.

El contenido de azufre de los crudos Hollín varía entre 0,40 y 1,10%; de los crudos "T" varía alrededor del 0,90% en peso y de los crudos "U" de 1,20%.

Los contenidos de S, Ni y V del petróleo del yacimiento "T" son menores que los del yacimiento "U" y Basal Tena.

(Baby et al, 2014)

1.1.6.3 **Datos PVT**

En el siguiente cuadro 1.2, se detallan los parámetros más importantes a considerar para las operaciones a realizarse en el campo Sacha, para cada una de las arenas correspondientes.

CUADRO 1.2 DATOS PVT DEL CAMPO SACHA

PARÁMETRO	RESERVORIO				
	Hs	Hi	BT	"T"	"U"
Presión de burbuja(psi) Presión inicial Temperatura (°F) GOR(PCS/BN) Gravedad (API)	550	78	807	1.293	1.052
	4.450	4.450	3.587	4.146	4.054
	225	225	181	215	211
	124	24	150	412	260
	27,3	27,1	24,1	30,3	25,3
Bo(BY/BN) G.GAS Coi(x 10 ⁻⁶) psi ⁻¹ Uoi(cp)	1,133	1,163	1,117	1,361	1,245
	1,356	1,577	1,099	1,257	1,138
	9,2	5,7	7	9,02	8,02
	1,4	3,7	2,5	1,6	1,8

Fuente: Laboratorio de Yacimientos, Operaciones Río Napo CEM.

Elaboración: Santiago Arias

1.1.6.4 Mecanismos de Empuje

En el campo Sacha existe la presencia de acuíferos laterales para los yacimientos de la formación Napo. La arena "T" inferior muestra un acuífero lateral que viene del Noreste, afectando la parte Norte en mayor grado. La arena "U" inferior presenta dos acuíferos laterales definidos, de los cuales, el primero inicia por el flanco Noreste afectando la parte Norte y el segundo inicia en el flanco Sur-Oeste afectando la parte central del campo. (Baby et al, 2014)

El acuífero lateral perteneciente al yacimiento "U" es el principal mecanismo de producción en el campo. Al paso del tiempo ha venido influenciando la parte Centro y Noreste del reservorio. Así como también que además de ser el principal yacimiento, en esta parte del campo se ubican los pozos inyectores.

(Romero & Gómez, 2010)

En el campo rigen dos mecanismos de empuje:

Empuje Hidraulico: El mecanismo de empuje hidráulico se define como la energía que contribuye a la recuperación de petróleo proveniente de un acuífero contiguo a la zona de petróleo. La energía del empuje se debe a la expansión del agua al disminuir la presión debido a la producción. (Craft & Hawkins, 1991)

En el campo Sacha se han identificado dos acuíferos para la formación Hollín, un acuífero lateral para la formación Hollín Superior, y el segundo, acuífero activo de fondo, para la formación Hollín Inferior. (Sánchez, 2009)

Gas en solución: El mecanismo de gas en solución es la energía para el recobro del petróleo que proviene de gas a presión, la cual se halla en la formación productora. Al disminuir la presión se desprende el gas del petróleo, la cual crea una energía suficiente para la expulsión de los fluidos en el vacimiento.

En la formación Basal Tena se tiene un mecanismo de producción combinado, es decir de gas en solución y empuje de agua. (Craft & Hawkins, 1991)

1.2 FUNDAMENTOS TEÓRICOS DEL SISTEMA DE BOMBEO HIDRAÚLICO

1.2.1 INTRODUCCIÓN

El principio utilizado para aplicar bombeo hidráulico en subsuelo es la "Ley de Pascal", dicha ley explica que: "En cualquier punto en el interior de un líquido en reposo, la presión es la misma en todas las direcciones".

(Brown, 1980)

La presión puede ser transmitida desde un lugar en superficie, a través de una tubería llena de líquido, hasta cualquier punto, pozos petroleros, en el caso de la industria del petróleo.

El líquido que se encuentra a presión en las líneas de flujo de fluido motriz es dirigido hacia la tubería en el pozo, accionando la bomba hidráulica que se encuentra acoplada a una camisa. La siguiente figura 1.1 detalla los componentes de un sistema de bombeo hidráulico.

(Collaguazo & Romero, 2011)

En el sistema de bombeo hidráulico se utiliza un fluido motriz, ya sea petróleo o agua de formación. También consta de una unidad de potencia en superficie para manejar altas presiones y de ésta manera cumplir con la función de inyectar el fluido motriz al fondo del pozo.

Una unidad de bombeo en el fondo del pozo, el cual puede ser de tipo pistón o tipo jet, dicha unidad es operada por el fluido motriz inyectado en superficie con alta presión. Esta unidad de fondo también ejerce la función de un transformador que convierte la energía del fluido motriz a una energía potencial, de ésta manera permite el flujo de los fluidos, tanto motriz y producido, hacia superficie y a su vez a la estación de producción instalada en el campo. El bombeo hidráulico se clasifica en tipo pistón y jet. (Melo, 2014)

A continuación se puede visualizar en el gráfico 1.1, los componentes correspondientes al sistema de bombeo hidraúlico, los cuales son:

- Cabezal
- Tubería de producción
- Tubería de revestimiento
- Camisa
- Bomba Hidraúlica
- Empacadura

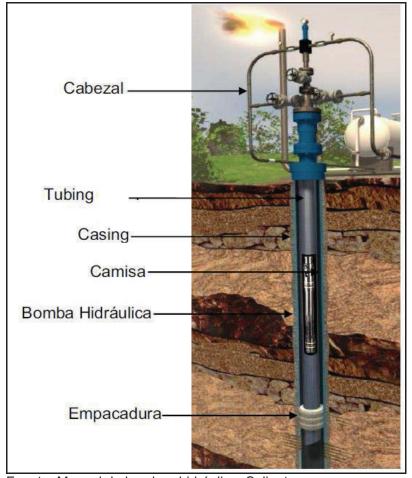


GRÁFICO 1.1 COMPONENTES DEL SISTEMA DE BOMBEO HIDRÁULICO

Fuente: Manual de bombeo hidráulico, Solipet

1.2.2 BOMBEO HIDRAÚLICO TIPO JET

Es un sistema especial de bombeo hidráulico, él cual no ocupa partes móviles, el accionar del bombeo se realiza por medio de la transferencia de energía entre el fluido motriz y los fluidos producidos.

El fluido motriz ingresa por la parte superior de la bomba y continúa a través de la tobera, la cual descarga un chorro en la garganta de entrada de los fluidos del pozo, que tienen comunicación con la formación. La garganta con diámetro mayor al de la tobera, es el sitio donde se mezclan los fluidos producidos y el fluido motriz. En el momento que ocurre la mezcla, los fluidos provenientes del pozo ganan la energía que el fluido motriz pierde.

Luego, la mezcla pasa por el difusor, en donde la energía que en su mayor parte es conservada en forma de carga por velocidad se convierte en carga por presión estática. El flujo se dirige a superficie, una vez que la presión estática es mayor que la ejercida por la columna de fluidos en el espacio anular. (Melo, 2014)

1.2.3 BOMBEO HIDRAÚLICO TIPO PISTÓN

El proceso de transmisión de energía en el bombeo hidráulico tipo pistón, se lo realiza mediante un fluido motriz, éste es inyectado a presión al pozo por una unidad de potencia. El fluido motriz es conducido a través de una tubería que se introduce al pozo, junto con la tubería de producción, esto hace que se accionen los pistones del motor y de la bomba, ésta última instalada abajo del nivel de trabajo del fluido producido por el pozo. (Melo, 2014)

1.2.4 EQUIPO DE SUPERFICIE

En la siguiente figura 1.2 se puede visualizar los equipos que se encuentran en superficie:

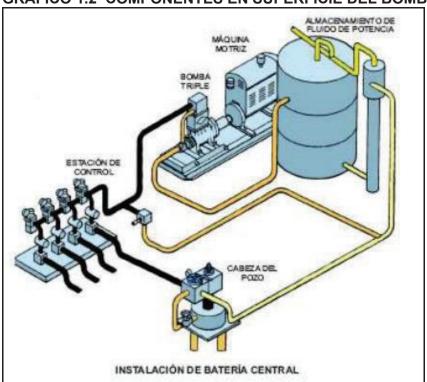


GRÁFICO 1.2 COMPONENTES EN SUPERFICIE DEL BOMBEO HIDRÁULICO

Fuente: Levantamiento artificial, (Melo, 2014)

Elaboración: Weatherford

Los componentes que conforman el sistema de bombeo hidráulico en superficie son los siguientes:

- Tanque de fluido motriz o tanque de surgencia
- Unidad de potencia triplex, quintuplex o bombas horizontales
- Estación de control
- Cabeza de pozo
- Líneas de presión

1.2.5 EQUIPOS DE FONDO

Los componentes mecánicos de cada tipo de bombas en el fondo del pozo dependen de cada fabricante de la industria, pero el principio de funcionamiento es el mismo, sin tomar mucho en cuenta el diseño desarrollado por cada compañía.

Existen dos tipos de bombas de acuerdo a su estructura:

1.2.5.1 Bomba Jet

En el sistema de bombeo hidráulico tipo jet, la presión del fluido motriz se transforma en energía cinética cuando aumenta la velocidad debido a una disminución del área.

En el siguiente gráfico 1.3 se puede visualizar un esquema de una bomba hidráulica tipo jet, la cual no contiene partes móviles.

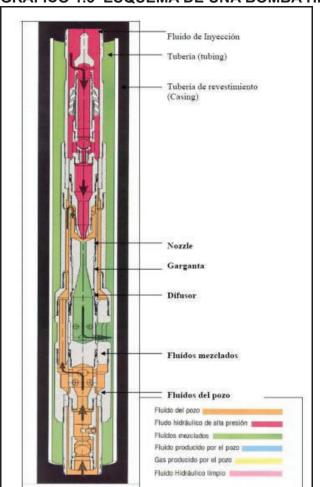


GRÁFICO 1.3 ESQUEMA DE UNA BOMBA HIDRÁULICO TIPO JET

Fuente: Levantamiento artificial, (Melo, 2014)

Elaboración: KOBE

Los tipos de bombas pistón se encuentran ajustadas a similares clasificaciones que las de tipo pistón, pero se tiene que tomar en cuenta la trayectoria que sigue el fluido motriz y de producción, ubicados en la unidad de subsuelo, de ésta manera se tiene cuando:

- El fluido motriz es inyectado por la tubería de producción y se mezcla por el anular
- El fluido motriz es inyectado por el anular y la mezcla retorna por el tubing.

(House & Villacreces, 2010)

1.2.5.1.1 Componentes de la Bomba Hidráulica Jet

Los componentes principales que comprenden la bomba hidráulica tipo jet son: tobera, cámara de mezclado y difusor.

Tobera: Es una herramienta utilizada para soportar altas presiones y temperaturas, consta de dos diámetros diferentes. El fluido motriz ingresa por el diámetro mayor y sale por el diámetro menor, esto hace que se pueda disminuir la presión de ingreso a la tobera y a su salida aumentar la velocidad, de ésta manera se transforma la energía potencial en energía cinética. (Melo, 2014)

Cámara de mezclado: Es en éste componente donde el fluido motriz ingresa a alta velocidad y se mezcla con el fluido de formación que ingresa debido a la disminución de presión, por acción de la tobera. (Melo, 2014)

Difusor: Es un componente en forma de embudo, la cual sirve para que lo mezcla de fluidos pueda salir, y a su vez permite la transformación de energía cinética en energía potencial. (Vásquez, 2014)

En el siguiente gráfico 1.4 se detalla de mejor manera los componentes que conforman una bomba hidráulica tipo jet.

SUCCIÓN Ps, Qs
TOBERA PN, QN

DIFUSOR
PD, QD

GRÁFICO 1.4 COMPONENTES DE UNA BOMBA HIDRÁULICO TIPO JET

Fuente: Levantamiento artificial, (Melo, 2014)

Los símbolos correspondientes a este gráfico se lo pueden encontrar en la parte superior en la parte de simbología.

1.2.5.1.2 Tipos de Bombas Jet

De acuerdo a las necesidades de operación se diseñan algunos tipos de bombas como:

- Convencionales: Éste tipo de bombas son utilizadas en producción y evaluación de pozos, las cuales pueden ser asentadas en camisa o en cavidad.
- **Reversas:** Son similares a las de tipo convencionales, pero se diferencian porque la posición de la boquilla y de la garganta se invierten.

(Beltrán & Perlaza, 2014)

1.2.5.1.3 Cavitación en la Bomba Hidráulica Tipo Jet

La cavitación en las bombas jet se produce cuando la presión del fluido disminuye hasta la presión de saturación, esto provoca que se formen burbujas de vapor. Al alcanzar dicha presión se produce un colapso de las burbujas y esto a su vez causa erosión en la bomba que provoca su mal funcionamiento.

Para evitar éste fenómeno se utilizan modelos matemáticos o pruebas de laboratorio para predecir límites de cavitación. (Aguirre & Mendoza, 2016)

1.2.5.1.4 Fabricantes de Bombas Hidráulicas Tipo Jet

Los principales fabricantes de las bombas tipo jet son:

- CLAW
- GUIBERSON
- KOBE
- NATIONAL OILMASTER
- OILWELL HYDRAULICS INC

(Collaguazo & Romero, 2011)

En el Anexo 3 se presentan algunas tablas referentes a los tamaños de las toberas y gargantas de los principales fabricantes, además de las relaciones de áreas anulares de tobera y garganta.

1.2.5.1.5 Pasos para Optimizar la Producción mediante el Método de Hal Petrie

A continuación se presenta los pasos a seguir del método propuesto por Hal Petrie, para optimizar la producción.

Basado en: (Aguirre & Mendoza, 2016)

Parte A. Escoger la tobera e iterar con el caudal de fluido motriz

1. Determinar el gradiente del fluido motriz en la succión de la bomba.

$$G_s = G(1 - F_w) + G_w F_w$$
 (1.1)

2. Determinar el área anular mínima en la succión necesaria para evitar la cavitación.

$$A_{CM} = Q_{S} \left[\frac{1}{691} \sqrt{\frac{G_{S}}{P_{S}}} + \frac{(1 - F_{W})GOR}{24650 P_{S}} \right]$$
 (1.2)

- 3. Seleccionar la tobera con una R aproximada de 0,4; tal que el área anular de la garganta sea mayor al Acm calculada en el paso 2.
- 4. Escoger la presión de operación en superficie, P⊤. Los valores de operación se encuentran entre 2.000 y 3.000 psi. Con los valores más altos de operación para pozos que se encuentran a mayor profundidad, la presión ideal de partida para los cálculos respectivos se encuentra en 3.000 psi.
- 5. Determinar la presión del fluido motriz en la tobera, en la primera iteración, se desprecia las pérdidas de presión por fricción PFN.

$$P_{N} = P_{T} + G_{N} \times D - P_{FN} \tag{1.3}$$

6. Determinar la tasa de flujo en la tobera.

$$Q_{N} = 832A_{N}\sqrt{\frac{P_{N} - P_{S}}{G_{N}}}$$
 (1.4)

Donde GN = Gradiente del fluido motriz

7. Determinar las pérdidas de presión por fricción en la tubería de inyección del fluido motriz.

$$v = 0.01191 \frac{Q_N}{d^2} \tag{1.5}$$

$$\rho_{o} = \frac{\rho_{osc}}{1 + \frac{T - 68}{1885}} \tag{1.6}$$

$$\mu_{o}[cp] = v_{o}[cst] \times \rho_{o}[g7cm^{3}]$$
(1.7)

$$N_{Re} = 7.742 \times 10^3 \frac{dv}{\mu / \rho}$$
 (1.8)

a) Si $N_{Re} \le 1200$ se tiene flujo laminar y las pérdidas de presión por fricción, P_{FN} , se calculan con la siguiente ecuación:

$$P_{FN} = 7.95 \times 10^{-6} \frac{\overline{\mu} L Q_{N}}{d^{4}}$$
 (1.9)

b) Si N_{Re} > 1200 se tiene flujo turbulento y las pérdidas de presión por fricción, P_{FN} , se calculan con la siguiente ecuación:

$$P_{FN} = 11,46 \times 10^{-6} \frac{Q_N^2}{\gamma f L} \frac{Q_N^2}{d^5}$$
 (1.10)

Donde:

$$\bar{f} = 0.0361 \frac{(\bar{\mu}/\bar{\rho})^{0.21}}{(dv)^{0.21}}$$
 (1.11)

8. Regresar nuevamente al paso 5 hasta que los valores sucesivos de Q_N se encuentren con una diferencia alrededor del 15%. Luego continuar a la parte B.

Parte B. Iterar con el caudal de producción

- 1. Determinar las propiedades necesarias para predecir la presión de descarga de la bomba del fluido de retorno.
 - a) Tasa dl fluido de retorno total

$$Q_{D} = Q_{N} + Q_{S} \tag{1.12}$$

b) Gradiente del fluido de retorno

$$G_{D} = \frac{G_{N} \times Q_{N} + G_{S} \times Q_{S}}{Q_{D}}$$
(1.13)

c) Corte de agua del fluido de retorno en el caso de fluido motriz de agua

$$F_{WD} = \frac{Q_N + Q_S \times F_W}{Q_D} \tag{1.14}$$

d) Corte de agua del fluido de retorno en el caso de fluido motriz de petróleo

$$F_{WD} = \frac{Q_S \times F_W}{Q_D} \tag{1.15}$$

e) Relación gas-líquido del fluido de retorno

$$GLR = \frac{Q_S \times (1 - F_w) \times GOR}{Q_D}$$
 (1.16)

f) Viscosidad del fluido de retorno

$$v_{D} = (1 - F_{WD}) \times v_{O} + F_{WD} \times v_{W}$$

$$(1.17)$$

Determinar la presión de descarga PD.

$$P_{D} = P_{WH} + G_{D} \times D + P_{FD} \tag{1.18}$$

Determinar PFD con las siguientes ecuaciones, si el valor de GLR del fluido de retorno es menor o igual a 10.

$$v = 0.01191 \frac{Q_D}{D_1^2 - D_2^2}$$
 (1.19)

Donde:

PD = Tasa del fluido de retorno por el anular

 $D_1 = ID$ de la tubería de revestimiento (casing)

D₂ = OD de la tubería de producción (tubing)

$$N_{Re} = 7.742 \times 10^3 \frac{dv}{\mu/\rho}$$
 (1.20)

Si el tipo de flujo es laminar ($N_{\text{Re}} \leq 1200$) o flujo turbulento ($N_{\text{Re}} > 1200$), se calcula P_{FD}

a) Flujo laminar

$$P_{FD} = \frac{7,95 \times 10^{-6} \, \mu L \, Q_D \left(\frac{d_1}{d_1 - d_2} \right)^{0,1}}{(D_1 - D_2)^2 \left(D_1^2 - D_2^2 \right) \left(1 + 1,5e^2 \right)}$$
(1.21)

$$e = \frac{2D_3}{D_1 - D_2} \tag{1.22}$$

Donde:

e= excentricidad de la tubería de producción (tubing) respecto a la tubería de revestimiento (casing)

 $D_1 = ID$ de la tubería de revestimiento (casing)

D₂ = OD de la tubería de producción (tubing)

D₃ = distancia entre el centro de la tubería de producción (tubing) y el centro de la tubería de revestimiento (casing)

b) Flujo turbulento

$$P_{FD} = \frac{11,46 \times 10^{-6} \bar{\gamma} \bar{f} Q_{D}^{2} L}{(D_{1} - D_{2})(D_{1}^{2} - D_{2}^{2})^{2} (\frac{D_{1}}{D_{1} - D_{2}})^{0,1} (1 + 1,5e^{2})^{0,25}}$$
(1.23)

$$\bar{f} = 0.0361 \frac{(\bar{\mu}/\bar{\rho})^{0.21}}{(dv)^{0.21}}$$
 (1.24)

$$e = \frac{D_1 - D_3}{D_1 - D_2} \tag{1.25}$$

Donde:

e= excentricidad de la tubería de producción (tubing) respecto a la tubería de revestimiento (casing)

D₁ = ID de la tubería de revestimiento (casing)

D₂ = OD de la tubería de producción (tubing)

D₃ = OD de las juntas de la tubería de producción (tubing)

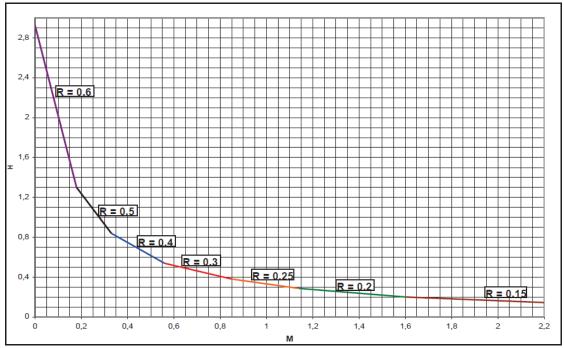
- 3. Si el fluido de retorno posee un GLR superior a 10 pie³/bl, se debe determinar la presión de descarga, PD, utilizando la correlación adecuada de flujo multifásico, para este caso de estudio se recomienda la correlación de Hagedorn y Brown. Para la realización del proyecto se ocupa el software Well Perform para el cálculo de la presión de descarga, en los casos que se requiera.
- 4. Calcular la relación adimensional de presión, H.

$$H = \frac{P_{D} - P_{S}}{P_{N} - P_{D}} \tag{1.26}$$

5. Calcular la relación adimensional de flujo másico, M.

$$GOR \neq 0$$

$$M = Q_{S} \left\{ \left[1 + 2.8 \left(\frac{GOR}{P_{S}} \right)^{1.2} \right] F_{O} + F_{W} \right\} \times \left(\frac{G_{S}}{Q_{N} \times G_{N}} \right)$$


$$(1.27)$$

$$GOR = 0$$

$$M = \frac{Q_S \times G_S}{Q_N \times G_N}$$
 (1.28)

- 6. Determinar el valor de M con una de las siguientes alternativas.
 - a) Usar el valor de H del paso 4 en el gráfico 1.5 para encontrar M en la curva envolvente de los comportamientos de mejor eficiencia. También se determina el valor de R.

GRÁFICO 1.5 CURVA DE COMPORTAMIENTO DE DISEÑO GUIBERSON

Fuente: Levantamiento artificial, (Melo, 2014)

b) Para determinar con mayor facilidad la R sin emplear la gráfica, se puede usar el cuadro 1.3.

IAS

Relación de áreas, R	Rango de relación de presiones, H
0,60	2,930 – 1,300
0,50	1,300 – 0,839
0,40	0,839 – 0,538
0,30	0,538 – 0,380
0,25	0,380 - 0,286
0,20	0,286 – 0,160
0,15	0,160 –

Fuente: Levantamiento artificial (Melo, 2014)

Elaboración: Santiago Arias

Usando el valor de H del paso 4, y el valor de R que se obtiene en el gráfico 1.5 o con el cuadro 1.3, también se puede determinar M, con la siguiente ecuación:

$$M = \frac{C_3 - \sqrt{C_2 \times C_3 + C_3 \times C_1 - C_2 \times C_1 + \frac{C_4(C_2 - C_3)H}{H + 1}}}{C_2 - C_3}$$
(1.29)

Donde:

$$C_1 = 2R$$

$$K_{TD} = 0.20$$

$$C_2 = \frac{(1-2R)R^2}{(1-R)^2}$$
 $K_N = 0.03$

$$C_3 = (1 + K_{TD})R^2$$

$$C_4 = 1 + K_N$$
 (1.30)

7. Comparar el valor de M del paso 5 con el valor de M del paso 6. Si la diferencia es menor o igual al 5% ir al paso 1 de la parte C, de no ser así, corregir Qs con la ecuación 1.31, y después regresar al paso B.1.a.

$$Q_{\text{SNuevo}} = Q_{\text{Santerior}} \left(\frac{M_6}{M_5} \right) \tag{1.31}$$

Parte C. Cálculos finales

1. Escoger el tamaño de la garganta inmediatamente superior al valor que se obtiene en la siguiente ecuación:

$$A_{T} = \frac{A_{N}}{R} \tag{1.32}$$

2. Calcular la tasa de flujo en la succión de la bomba, en donde iniciará la cavitación.

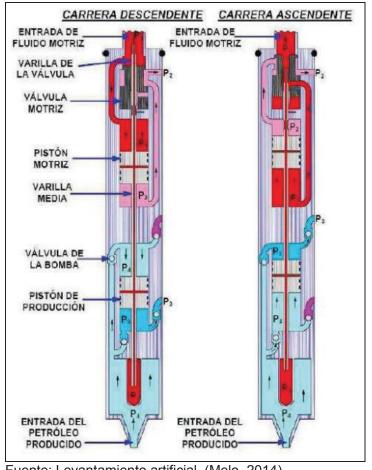
$$Q_{SC} = Q_S \frac{A_T - A_N}{A_{CM}}$$
 (1.33)

3. Calcular la potencia hidráulica de la bomba de superficie.

$$HP = 0,000017 \times Q_{N}P_{T} \tag{1.34}$$

4. Calcular la potencia de la bomba triplex considerando una eficiencia del 90%.

$$HP = \frac{0,000017 \times Q_N P_T}{0.9} \tag{1.35}$$


1.2.5.2 Bomba Pistón

El principio de funcionamiento de la bomba pistón se describe cuando el fluido motriz ingresa por la parte superior hasta un extremo del cilindro motriz, haciendo que el otro pistón llegue al otro extremo.

Al término de la carrera del pistón, la válvula motriz, accionada por la varilla de la válvula, cambia automáticamente el sentido del fluido motriz, de tal forma que llega a un extremo del cilindro y permite la salida por el otro extremo.

El movimiento desplaza al fluido producido de la formación que ingresa por la parte inferior de la sección de producción. (Melo, 2014)

En el siguiente gráfico 1.6 se muestra el funcionamiento de una bomba tipo pistón:

GRÁFICO 1.6 FUNCIONAMIENTO DE UNA BOMBA TIPO PISTÓN

Fuente: Levantamiento artificial, (Melo, 2014)

1.2.5.2.1 Instalaciones Subsuperficiales de Bombas Tipo Pistón

Existen dos tipos de completaciones, en el sistema de bombeo hidráulico tipo pistón:

Sistema de bomba libre: Se puede correr y reversar la bomba sin la necesidad de una unidad especial, ésta bomba es desplazada dentro de la sarta de tubería de fluido motriz. Existen las bombas libre tipo paralelo y las bombas libre tipo tubería de producción. (Collaguazo & Romero, 2011)

Sistema de bomba fija: La unidad de bombeo en éste sistema se encuentra unida mecánicamente con la tubería de fluido motriz, la cual se coloca unido a la sarta dentro del pozo. Existen las bombas fija insertada, las bombas fija para revestimiento y las bombas fija para tubería de producción.

(Collaguazo & Romero, 2011)

1.2.5.2.2 Fabricantes de Bombas Hidráulicas Tipo Pistón

Los principales fabricantes de las bombas tipo pistón son:

- **GUIBERSON**
- **KOBE**
- NATIONAL OILMASTER
- OILWELL HYDRAULICS INC.

(Collaguazo & Romero, 2011)

1.2.6 SISTEMAS DE INYECCIÓN DE FLUIDO MOTRIZ

Existen dos tipos de sistemas de inyección de fluido motriz: el sistema abierto y el sistema cerrado. Los dos trabajan igual con el manejo de fluido motriz desde los tanques de almacenamiento hasta la unidad de bombeo, la diferencia está en la forma de retorno del fluido motriz a superficie. El fluido motriz puede ser petróleo o agua de formación tratada. (Melo, 2014)

1.2.6.1 Sistema Abierto

La aplicación operativa de éste tipo de sistema de invección de fluido motriz es sencillo y económico. El fluido motriz del sistema retorna a superficie mezclado con el fluido producido, su regreso se hace a través de la tubería de descarga o por el espacio anular. Una ventaja es que al adicionar fluido motriz limpio, éste sistema disminuye la corrosión, debido a que se reduce el porcentaje de agua salada, en pozos que contienen alto porcentaje, principal desventaja de éste sistema es el incremento de volumen bruto, el cual es tratado en superficie.

(Melo, 2014)

El gráfico 1.7 que se muestra a continuación, representa un sistema abierto de inyección de fluido motriz.

GRÁFICO 1.7 FACILIDADES DEL SISTEMA DE INYECCIÓN ABIERTO GAS BOOT POWER TREATER SURFACE PUMP MANIFOLD

Fuente: The Technology of Artificial Lift Methods, (Brown, 1980)

1.2.6.2 Sistema Cerrado

Este sistema de inyección es el método más completo en la actualidad. El fluido motriz del sistema retorna a superficie sin mezclarse con el fluido producido, debido a un empaque ubicado en la unidad de bombeo, luego fluye nuevamente al tanque de almacenamiento. El sistema trabaja por medio de una tubería adicional que se encuentra ubicada en un dispositivo conocido como, Cámara de mezclado, instalado al fondo del pozo.

Como principales ventajas podemos encontrar: la medición exacta de fluidos producidos por el pozo, así como también la determinación del desgaste que se tiene en la unidad de bombeo, al incrementarse el volumen de fluido motriz utilizado en la lubricación de los pistones. (Melo, 2014)

El gráfico 1.8 que se muestra a continuación, representa un sistema cerrado de inyección de fluido motriz.

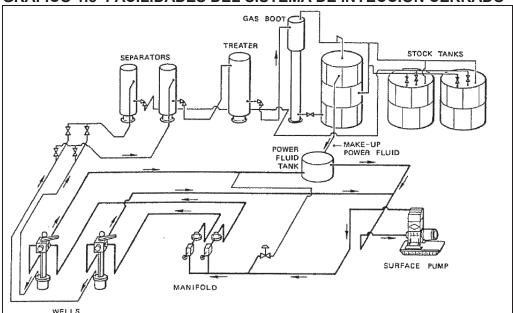


GRÁFICO 1.8 FACILIDADES DEL SISTEMA DE INYECCIÓN CERRADO

Fuente: The Technology of Artificial Lift Methods, (Brown, 1980)

CAPÍTULO 2

DESARROLLO DEL SISTEMA POWER WATER

2.1 DESCRIPCIÓN DE LAS FACILIDADES DE LA ESTACIÓN CENTRAL DEL CAMPO SACHA

2.1.1 MANIFOLD

Éste equipo también conocido como múltiples de producción, es un conjunto de tuberías, conexiones y válvulas que se encuentran alineados de forma paralela, cada arreglo se conecta a las líneas de flujo que provienen de cada pozo. Recolectan la producción y miden los parámetros necesarios, para que pueda ser enviada la producción a los separadores. (Sánchez, 2012)

Fuente: Departamento de Producción Campo Sacha, Operaciones Río Napo CEM

2.1.2 SEPARADORES

Son equipos que permiten el proceso de separación del petróleo, gas y sedimentos que provienen del yacimiento, trabajan a presiones y temperaturas altas, se encuentran diseñados adecuadamente para su correcto funcionamiento, y cumplen con normas establecidas. Los fluidos que llegan a estos equipos son los provenientes de los múltiples de producción.

En la Estación Sacha Central podemos encontrar 7 separadores bifásicos, los cuales se dividen en: 2 separadores de prueba y 5 separadores de producción.

(Sánchez, 2012)

Fuente: Departamento de Producción Campo Sacha, Operaciones Río Napo CEM

2.1.3 SISTEMA DE ALMACENAMIENTO

2.1.3.1 Tanque de Lavado

El tanque de lavado también conocido como wash tank, de techo fijo, tiene como función separar el agua del petróleo por diferencia de densidades. El agua producto de la separación es la de formación, la cual es enviada al sistema de reinyección. El tanque tiene una altura total de 36 pies.

El tanque se mantiene con un colchón de agua de 7 a 8 pies de altura, así como también el tiempo de residencia es el necesario para que se logre la emulsión agua-petróleo, por efecto de la utilización del químico demulsificante.

El tanque de lavado tiene una capacidad de 72.490 bl, adicional se tiene una bota de gas antes de ingresar al tanque que opera 288 bl y permite eliminar el gas en solución que no se retiró completamente en el separador de producción.

(Sánchez, 2012)

GRÁFICO 2.3 TANQUE DE LAVADO

Fuente: Departamento de Producción Campo Sacha, Operaciones Río Napo CEM

2.1.3.2 Tanque de Reposo

El tanque de surgencia tiene una capacidad de 42.000 bl, su función es eliminar el agua restante, con un BSW máximo del 1%, que quedó al finalizar el proceso en el tanque de lavado. Para el sistema de bombeo hidráulico, que requiere de fluido motriz, es extraído de este tanque, debido a su bajo contenido de agua.

(Sánchez, 2012)

GRÁFICO 2.4 TANQUE DE REPOSO

Fuente: Departamento de Producción Campo Sacha, Operaciones Río Napo CEM

2.1.3.3 Tanques de Oleoductos

La Estación Centra del Campo Sacha cuenta con 2 tanques de oleoductos, el primero con una capacidad de 161.105 bl y el segundo con una capacidad de 100.000 bl, con techo flotante. La función principal es recolectar el crudo que proviene de las Estaciones: Central, Norte 1 y Sur, para posteriormente transferir por las líneas de flujo a Lago Agrio. (Sánchez, 2012)

Fuente: Departamento de Producción Campo Sacha, Operaciones Río Napo CEM

2.1.4 SISTEMA DE BOMBEO

2.1.4.1 Bombas de Transferencia

Las bombas de transferencia las podemos encontrar a la salida del Tanque de Surgencia, las cuales van dirigidas hacia los Tanques de Oleoducto. En el siguiente cuadro 2.1 se detallan los equipos que se utilizan en el sistema de transferencia en superficie del campo. Además se enlista la descripción de cada uno de los equipos.

CUADRO 2.1 EQUIPOS DE TRANSFERENCIA

	OCADICO 2.1 EQUII OO DE TIVANOI ENENOIA				
	EQUIPO	DESCRIPCIÓN			
3 Bombas de Transferencia ACT's		Durco 8x6x14 de 1458 GPM 100 HP			
3 Controladores Smith Meter de 8"		Rango 460-2300 BHP			
	1 Bomba Gaulds	3x4x7 de 200 GPM			
	1 Motor y bomba eléctrico	Recupera crudo			
	1 Tablero controlador de crudo				
	1 Probador Maloney	8775 galones a 60 °F – 0 Psi			
	1 Bomba de reinyección	Marca Wenco			

Fuente: Departamento de Producción, Operaciones Río Napo CEM.

Elaboración: Santiago Arias

2.1.4.2 Bombas de Oleoducto

Las bombas de oleoducto conocidas en campo como bombas centrífugas, son las que se encargan de elevar la presión de succión para transportar el crudo hacia la Estación de Lago Agrio.

En el siguiente cuadro 2.2 se detallan los las diferentes bombas que son utilizadas para bombear el oleoducto. Además de las respectivas capacidades con las que operan cada una.

CUADRO 2.2 BOMBAS DE OLEODUCTO

EQUIPO	CANTIDAD	CAPACIDAD
Bombas Centrífugas	3	792 HP
	1	601 HP
Bombas Booster Eléctricas	2	1456 GPM 100 HP
Bombas Booster a Diesel	1	

Fuente: Departamento de Producción, Operaciones Río Napo CEM.

Elaboración: Santiago Arias

2.1.5 SISTEMA DE REINYECCIÓN DE AGUA

El sistema de reinyección de agua tiene como función almacenar el agua de formación que proviene del tanque de lavado. Tiene un total de agua reinyectada de 26.852 bl, conformada de 6 pozos inyectores. (Sánchez, 2012)

En el siguiente cuadro 2.3 se puede visualizar los equipos y capacidades que conforman el sistema de reinyección de agua:

CUADRO 2.3 EQUIPOS DE REINYECCIÓN DE AGUA

EQUIPO	CAPACIDAD (bl)
Tanque desarenador	5.000
Bomba de reinyección de agua	5.700

Fuente: Departamento de Producción, Operaciones Río Napo CEM.

Elaboración: Santiago Arias

2.1.6 DESCRIPCIÓN DEL SISTEMA POWER OIL DEL CAMPO SACHA

El Sistema Power Oil de la Estación Sacha Central contiene seis unidades con Bombas Ajax de desplazamiento positivo quintuplex, Q600FS, que se encuentran operando a una presión de descarga de 3.850 psi y una temperatura de 120 °F. Las unidades power oil desplazan un caudal aproximado de 19.032 bipd de fluido motriz petróleo con un BSW promedio de 0.2667 % y un °API de 28. Este fluido es succionado desde el tanque de almacenamiento TS-01 y permite el funcionamiento de 12 pozos que utilizan el sistema de levantamiento hidráulico, 10 operan con bombas tipo jet y 2 operan con bombas tipo pistón.

2.1.6.1 Succión

El Sistema Power Oil opera con fluido motriz, petróleo, este fluido proviene del tanque de surgencia TS-01 con capacidad de 42.000 bl. Posee 3 succiones a las bombas de transferencia, localizadas a 3, 6 y 9 pies de altura. Para medir el volumen que sale del tanque de surgencia hacia el tanque de oleoducto, se tienen las unidades ACT, los cuales cumplen la función como contadores de desplazamiento positivo. Las unidades ACT 1 y 2 reciben el petróleo de la Estación Sacha Sur, mientras que la unidad ACT 3 recibe la producción del tanque de surgencia.

2.1.6.2 Unidades Power Oil

Los equipos que forman parte del sistema power oil de la estación central del campo Sacha operan con una presión de descarga de 3.850 psi, así como también con una capacidad de inyección de 5.000 bipd. Las Bombas Ajax con motor (White Superior – 610 HP) que se encuentran operativas son las Ajax N° 3, 4, 5, 6, 7, 8. Mientras que las que se encuentran fuera de servicio son las Ajax N° 1, 2.

Se tienen 7 Bombas HPS Horizontales, HC 7800, marca Centrilift, 118 etapas, con una presión de succión de 45 psi, una presión de descarga de 3.849 psi, el motor marca Siemens opera con 4.160 volts, 900 HP, 3.565 RPM.

2.1.6.3 Condiciones Normales de Operación

Para la inyección de petróleo de 19.032 bipd hacia los pozos, las bombas descargan a una presión de 3.850 psi, teniendo como temperatura de operación del fluido de 120 °F. El operador deberá ajustar manualmente las revoluciones en cada una de las unidades hasta obtener la presión operativa adecuada, la cual garantice la inyección de agua apropiada para cada pozo.

2.1.6.4 Pozos con Sistema Power Oil de la Estación Sacha Central

En el siguiente cuadro 2.4, se presentan los datos más importantes de los pozos que son parte de la red del sistema power oil de la Estación Sacha Central.

Entre los parámetros que se tienen están los siguientes:

- Tipo de Arena
- Barriles de fluido por día (bl/día)
- Barriles de petróleo por día (bppd)
- Barriles de agua por día (bapd)
- Barriles de inyección por día (bipd)
- Corte de agua (formación, inyección y retorno)

CUADRO 2.4 POZOS DEL SISTEMA POWER OIL

POZO	ARENA	bfpd	bppd	BSW (%)	BSW INYEC.	BSW RETORNO	bapd	bipd
SAC-001	U	456	444	2,63	0,3	0,7	12	1775
SAC-019	U	334	173	48,2	0,2	9,2	161	1452
SAC-025	U	732	277	62,16	0,3	19	455	1652
SAC-026	U	345	128	62,9	0,2	9,2	217	1225
SAC-037	Т	256	229	10,55	0,2	1,7	27	1490
SAC-088	Т	261	244	6,51	0,3	1,0	17	2010
SAC-101	U	698	203	70,92	0,2	23,4	495	1564
SAC-112	BT	332	290	12,65	0,3	2,4	42	1620
SAC-130	U	357	145	59,38	0,4	10,3	212	1775
SAC-134	U	411	397	3,41	0,3	1,4	14	778
SAC-190D	UI	291	89	69,42	0,3	9,7	202	1850
SAC-197D	UI	228	182	20,18	0,2	2,9	46	1841
TOTAL		4701	2801	35,74	0,2667		1900	19032

Fuente: Departamento de Producción, Operaciones Río Napo CEM.

Elaboración: Santiago Arias

2.2 CARACTERIZACIÓN DEL FLUIDO MOTRIZ

2.2.1 FLUIDO MOTRIZ PETRÓLEO

La densidad del petróleo varía entre 0,7 g/cm³ y 1 g/cm³, siendo menor a la densidad del agua (1 g/cm³), así como también es expresada en grados API. Ésta densidad varía entre 10 y 40 °API y así cuanto menor es el número de grados API, mayor es la densidad del petróleo. La clasificación del petróleo según la densidad es:

CUADRO 2.5 CLASIFICACIÓN DEL PETRÓLEO SEGÚN LA DENSIDAD

Densidad (API)	Densidad (g/cm ³)	Crudo
10	>1	Extrapesado
10 - 22.3	1 – 0.92	Pesado
22.3 - 31.1	0.92 - 0.87	Mediano
31.1 - 39	0.87 - 0.83	Liviano
>39	<0.83	Extraliviano

Fuente: Tipos de Petróleo, Instituto Mexicano de Petróleo (2013).

Elaboración: Santiago Arias

2.2.1.1 Factor de correlación Kuop

En una fracción de petróleo, conformada por una mezcla de hidrocarburo, se tiene que utilizar un concepto equivalente a la temperatura de ebullición de un compuesto puro. El valor de K es específico para cada familia de hidrocarburos, como se lo puede mostrar a continuación en el cuadro 2.6:

	,	
CHADDO 2 6	CARACTERIZACION GENERAL DEL	CDIIDO
CUADRU 2.0	CARACTERIZACION GENERAL DEL	CRUDU

Valores K			
K	K Tipo de HC		
13 12 11 10	Parafinas e Isoparafinas Mixtos de cadena equivalente Naftenos o aromáticos ligeramente sustituidos Aromáticos puros		

Fuente: Petróleo-Origen y Composición, Textos Científicos (2006).

Elaboración: Santiago Arias

El factor de correlación se lo determina con la siguiente ecuación.

Ecuación Factor de correlación Kuop:

$$K = \frac{(Temp.Ebullición(^{\circ}R))^{1/3}}{Densidad 60/60^{\circ}F}$$
 (2.1)

2.2.1.2 Petróleo Campo Sacha

El petróleo del campo Sacha utilizado para el sistema de power oil como fluido motriz, tiene una gravedad °API promedio de 28, y de acuerdo al cuadro 2.5 el petróleo es clasificado según su densidad como mediano, con una viscosidad cinemática promedio de 106,5 centistokes, el porcentaje promedio en peso de azufre es de 1,05%. El porcentaje en volumen promedio de BSW es 35,74 %, el porcentaje de agua promedio del fluido motriz es de 0,2667.

2.2.2 FLUIDO MOTRIZ AGUA DE FORMACIÓN

El fluido motriz que se utilizará en el nuevo sistema de bombeo hidráulico Power Water es utilizando agua de formación que se encuentra almacenada en el tanque de agua de formación. A continuación se detallan las propiedades físicas y químicas del agua, así como también el análisis para poder utilizarlo como fluido motriz.

2.2.2.1 Propiedades Físico-Químicas

El agua es un solvente universal que puede disolver la mayoría de componentes inorgánicos. En la industria petrolera, al ser un solvente muy potente surgen la mayoría de problemas por la manipulación del agua, ya que tanto las aguas producidas como las aguas superficiales contienen significativas cantidades de impurezas. También se tiene que tomar en cuenta que en el agua se desarrollan muy fácilmente crecimientos microbiológicos, el agua disolverá el metal y a

medida que cambian las condiciones de presión y temperatura, muchos compuestos disueltos pueden llegar a ser insolubles, y formar incrustaciones.

(Patton, 1995)

Como propiedades físicas del agua tenemos:

CUADRO 2.7 PROPIEDADES FÍSICAS DEL AGUA

Propiedad	Valor
Peso Molecular	18
Densidad a 4°C	1 g/mL
Punto de Congelación	32°F (0°C)
Punto de ebullición	212°F (100°C)

Fuente: Patton (1995). Elaboración: Santiago Arias

El agua es usado comúnmente en los yacimientos de petróleo para:

- Inyección en formaciones subsuperficiales para incrementar la recuperación de petróleo y/o mantener la presión de reservorio.
- Eliminación de aguas residuales en aguas superficiales.
- Enfriamiento de las camisas de motores de gas natural.
- Impedir la obturación y deposición de sólidos en líneas, contenedores y pozos.

(Patton, 1995)

2.2.2.2 Análisis Cuantitativo del Agua Producida

Los análisis de aguas son muy complejos e importantes llevados a cabo en los laboratorios, en los cuales se obtienen las medidas y pruebas exactas de las muestras de agua. Las propiedades del agua pueden cambiar luego del muestreo, estos pueden ser:

- pH
- Temperatura
- Contenidos de gas disuelto
- Sólidos en suspensión

Los valores de las propiedades del agua mencionadas anteriormente se pueden visualizar en el cuadro 2.12.

Para un análisis exhaustivo de cualquier tipo de agua de formaciones se tiene que tomar en cuenta análisis de laboratorio y campo, así como también conocimientos acerca de:

- Componentes y propiedades del agua, y su importancia
- Métodos analíticos, utilizados en los respectivos análisis

(Patton, 1995)

2.2.2.3 Componentes y Propiedades del Agua Producida

En las operaciones de tratamiento del agua se toma interés en los iones y propiedades físicas que son importantes desde el punto de vista de la obturación y corrosión, entre las más relevantes tenemos los cationes, aniones y otras propiedades.

Los valores pertenecientes a los cationes, aniones y otras propiedades que se mencionan, se encuentran en el cuadro 2.12 más adelante.

2.2.2.3.1 Cationes

- a) El sodio, un componente notable en las aguas de los yacimientos petrolíferos, normalmente no causa problemas. Su única excepción es la precipitación de NaCl.
- b) El ion calcio es un componente importante que se puede combinar con mayor facilidad con carbonatos, bicarbonatos y sulfatos para formar precipitados insolubles e incrustaciones o sólidos en suspensión.
- c) El ion magnesio suele co-precipitarse con el ion calcio, es común encontrarlo en las incrustaciones de carbonato de calcio.
- d) El contenido natural de hierro en las aguas de formación es bajo, su presencia indica corrosión. La presencia de compuestos de hierro precipitados es una de las principales causas de la obturación de las formaciones.
- e) El bario tiene importancia por su facilidad de combinarse con el ion sulfato para formar sulfato de bario, siendo éste extremadamente insoluble.
- f) El estroncio, tanto como el bario y el calcio puede combinarse con los iones sulfatos, formando así sulfato de estroncio, compuesto insoluble.

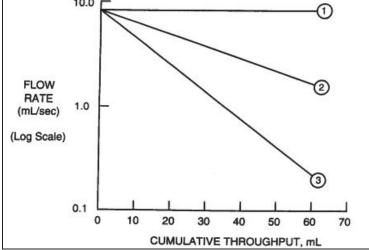
(Patton, 1995)

2.2.2.3.2 Aniones

- a) El ion cloruro, es importante porque se origina un problema principal, ya que la corrosividad del agua aumenta a medida que contiene más sales.
- b) El ion sulfato presenta problemas de reacción con el calcio, estroncio y bario, para formar incrustaciones insolubles.
- c) El ion bicarbonato se encuentra presente en casi todos los tipos de agua, su concentración se lo conoce como alcalinidad naranja de metilo.
- d) El ion carbonato se encuentra raramente presente en aguas producidas, ya que el pH es muy bajo. (Patton, 1995)

2.2.2.3.3 Otras Propiedades

a) El pH es una de las propiedades más importantes, la mayoría de las aguas producidas tienen un pH entre 4 y 8. Si el pH disminuye, la tendencia del agua en formar incrustaciones también disminuye, pero la corrosividad a su vez incrementa.


- b) Si existe presencia de bacterias en aguas producidas, esto puede producir corrosión y obturación.
- c) La tendencia a taponamiento del agua puede ser calculada mediante la cantidad de sólidos en suspensión que pueden filtrarse utilizando un filtro de membrana.
- d) Con una muestra de aqua, se puede calcular la distribución del tamaño de las partículas de los sólidos en suspensión, por diversas técnicas.
- e) Determinar la forma de las partículas mediante microscopía visual o electrónica de rastreo, puede ser de utilidad para determinar la necesidad de filtrado y selección de filtro.
- f) Determinar la composición de lo sólidos en suspensión permite establecer el origen de los mismos, y de ésta manera se pueda tomar medidas de corrección apropiadas.
- g) Determinar la turbidez es importante para monitorear el funcionamiento de los filtros.
- h) El oxígeno disuelto favorece de manera importante a la corrosividad del agua.
- i) El dióxido de carbono influye en el pH, la corrosividad y la tendencia a formar incrustaciones de carbonato de calcio del agua.
- j) La corrosividad aumenta con la presencia de sulfuros en el agua.
- k) La presencia de aceite emulsionado en el agua puede presentar problemas cuando se invecta aguas producidas.
- I) La temperatura del agua puede afectar en la formación de incrustaciones, el pH y la solubilidad de gases en el agua.

(Patton, 1995)

2.2.2.4 Calidad del Agua

La calidad del agua es una medida importante del grado relativo de obturación, la cual ocurre cuando se hace atravesar a través de un filtro de membrana, un volumen de agua determinado. Usualmente se utiliza un tramo de poro de 0,45 μm. (Patton, 1995)

Fuente: Patton (1995)

El siguiente cuadro 2.8 permite aclarar las curvas de acuerdo a lo que tenemos en el gráfico de la calidad de agua:

CUADRO 2.8 INTERPRETACIÓN DE CURVAS DE LA CALIDAD DEL AGUA

Curva	Calidad
1	Excelente. No ocurre taponamiento debido a que la velocidad
	del flujo permanece constante a través del testeo.
2	De menor rendimiento que la curva 1. La velocidad del flujo
	disminuye a medida que el volumen puesto aumenta indicando
	el taponamiento del filtro.
3	La curva más pobre de rendimiento de las tres. La velocidad
	del flujo se cae mucho más rápidamente indicando un
	taponamiento más rápido.

Fuente: Patton (1995). Elaboración: Santiago Arias

La interpretación de los datos sobre la calidad del agua se lo puede obtener de otros métodos, uno de ellos es el desarrollado por Barkman y Davison. El método se relaciona con los filtros de membrana o los núcleos para predecir el deterioro de pozos a partir de sólidos suspendidos. Aunque dicho método se utiliza para realizar predicciones relativas, los resultados estimados de vida media han demostrado ser no confiables en la práctica. (Patton, 1995)

El índice de taponamiento relativo (RPI) se lo puede determinar mediante el método desarrollado por Amoco, quien plantea lo siguiente:

Ecuación de Índice de Taponamiento Relativo:

$$RPI = TSS - MTSN \tag{2.2}$$

Donde:

TSS= Total de sólidos suspendidos

MTSN= Testeo miliporo del número de la pendiente.

(Patton, 1995)

CUADRO 2.9 GUÍA DEL ÍNDICE DE LA CALIDAD DEL AGUA

RPI	Índice	
<3	Excelente	
3-10	Bueno a Considerable	
10-15	Cuestionable	
>15	Pobre	

Fuente: Patton (1995). Elaboración: Santiago Arias

2.2.2.4.1 Incrustaciones Formadas en el Agua

El objetivo principal de las operaciones con manejo de agua es el tener un control eficaz del agua, ya que muchos problemas de producción pueden ser ocasionados por los óxidos que forma el agua. (Patton, 1995)

En el siguiente cuadro 2.10 se detallan varios óxidos posibles que se encuentran con mayor frecuencia en las aguas de los yacimientos.

CUADRO 2.10 ESCALAS FORMADAS EN YACIMIENTOS

Escala	Variables principales			
Carbonato de Calcio (Calcite)	Presión parcila de CO2, pH, temperatura, presión total, sólidos disueltos en forma total.			
Sulfato de Calcio (Anhydrato)	Temperatura, sólidos disueltos en forma total, presión			
Sulfato de Bario	Temperatura, sólidos disueltos en forma total, presión			
Sulfato de Estroncio	Temperatura, sólidos disueltos en forma total, presión			
Compuestos de Hierro: Carbonato Ferroso Hidróxido Ferroso Hidróxido Férrico Óxido Férrico	Gases disueltos, corrosión, temperatura, presión, pH			

Fuente: Patton (1995). Elaboración: Santiago Arias

2.2.2.4.2 Incrustaciones de Carbonatos de Calcio

Las incrustaciones por carbonatos de calcio se forman por la combinación de un ión de calcio de carbonato. Comúnmente se la conoce con la fórmula química CaCO₃.

En el siguiente cuadro 2.11 se describe Potencial de Precipitación de Carbonatos de Calcio (PTB) que se pueden dar en las aguas de los yacimientos, permitiendo posteriormente de ésta manera evaluar el grado de amenaza en los depósitos.

CUADRO 2.11 GRAVEDAD DE LAS INCRUSTACIONES

Valor PTB	Descripción	
PTB<0	Sin incrustaciones	
0 <ptb<100< td=""><td>Pocos problemas de incrustación</td></ptb<100<>	Pocos problemas de incrustación	
100 <ptb<250< td=""><td>Dificultades moderadas de incrustación</td></ptb<250<>	Dificultades moderadas de incrustación	
PTB>250	Ocurre incrustación grave	

Fuente: Patton (1995). Elaboración: Santiago Arias

2.2.2.5 Características del Agua de Formación

Los análisis físico – químicos del agua de formación del Campo Sacha, permitirán determinar la Calidad del Agua, y de ésta manera verificar si el agua producida pueda ser utilizada como agua de inyección para fluido motriz.

Los datos que se obtuvieron de muestreos tomados en campo, tanto en la salida de tanque de lavado como en la descarga de bombas booster del sistema de reinyección, permiten determinar la Tendencia Incrustante en función de los valores del Potencial de Precipitación CaCO₃ (PTB) y el Índice de Saturación (SI).

Dada la ecuación 2.2 y el análisis de la Calidad del Agua de formación realizado mediante la obtención del Total de Sólidos Suspendidos (TSS), mg/l y la Prueba Miliporo del Número de la Pendiente (MTSN), permite determinar el Índice de Taponamiento Relativo (RPI), un parámetro muy importante en la verificación del comportamiento del agua para inyección de pozos. El RPI permite corregir problemas que se pueden encontrar con la depositación de sólidos.

En conclusión, al análisis completo realizado por muestreo al agua de formación del Campo Sacha, indica que el agua es EXCELENTE, ya que la composición físico – química detalla determina que NO EXISTE tendencia incrustante. Un valor de RPI < 3, ya que el valor de TSS son valores mínimos, lo que demuestra que el agua es EXCELENTE y BUENA PARA INYECTAR.

El índice de saturación es de -0,24, un valor negativo que indica que no puede existir incrustaciones formadas en el agua. El Potencial de Precipitación PTB indica un valor de 0,0 y de ésta manera se puede comprobar que NO EXISTE INCRUSTACIONES DE CARBONATOS DE CALCIO.

La importancia de realizar los análisis en la descarga de las bombas booster, es porque es el origen de alimentación hacia las bombas que llevan el fluido motriz a las diferentes bombas jet del sistema hidráulico. El cambio del fluido motriz de petróleo por agua de formación depende de la calidad del agua que se tiene, por ésta razón además del análisis cualitativo y cuantitativo del agua de formación se debe considerar la instalación de bombas de precarga que son importantes en la ejecución del proyecto, ya que al trabajar con agua se deberá llevar un estudio minucioso con el tema corrosivo en las instalaciones.

CUADRO 2.12 ANÁLISIS FÍSICO QUÍMICO DEL AGUA DE FORMACIÓN

	WASH TANK	SAC-86
Total Hardness, mg/L	3190	1060
Calcium Hardness, mg/L	2770	850
Magnesium Hardness, mg/L	420	210
Alkalinity, mg/L	540	350
Na ⁺ , mg/L	8693	8319
Ca ²⁺ , mg/L	1108	340
Mg ²⁺ , mg/L	100,8	50,4
HCO₃⁻ , mg/L	669,6	434,0
Fe ²⁺ , mg/L SO ₄ , mg/L	13,6	9,7
SO ₄ -, mg/L	4	1
Cl ⁻ , mg/L	10300	9500
pH (Measured)	6,35	6,53
pH (Calculated)	6,08	6,06
TDS(Calculated), mg/L	25910	25242

Continuación Cuadro 2.12

115	114
450	200
0,5	3,0
0,5	0,6
20	20
-0,41	-0,24
8,0	11,0
2,00	4,00
35	1380
0,0	0,0
There isn't scale	There isn't scale problems
problems	
1,0	1,0
22,0	20,0
	450 0,5 0,5 20 -0,41 8,0 2,00 35 0,0 There isn't scale problems 1,0

Fuente: Laboratorio de Fluidos - Sacha, Operaciones Río Napo CEM (2016) Elaboración: Santiago Arias

CAPÍTULO 3

ESTUDIO COMPARADO DE RESULTADOS

El capítulo tiene como objetivo realizar un análisis profundo de la factibilidad que tiene el proyecto al realizar el cambio del fluido motriz de petróleo por agua de formación, en el sistema de power water de la estación sacha central. Se describe los cálculos de volumetría, cambio y rediseño de bombas.

3.1 CÁLCULO VOLUMÉTRICO DEL CAMPO SACHA

3.1.1 CÁLCULO DE VOLUMEN DE PETRÓLEO MOTRIZ EN LÍNEAS DE SUPERFICIE Y COMPLETACIÓN

El Sistema de Bombeo Hidráulico Power Oil del Campo Sacha Central tiene a su disposición y operativas 6 unidades Ajax y 7 bombas eléctricas horizontales (HPS), 2 unidades Ajax se encuentran en las reservas de la Estación Sacha. Las bombas desplazan un caudal de inyección de 19.032 bipd, con un BSW promedio de 0.2667 %.

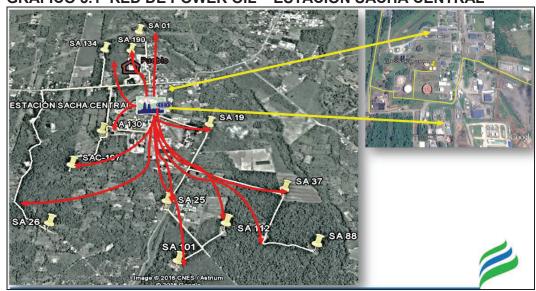


GRÁFICO 3.1 RED DE POWER OIL - ESTACIÓN SACHA CENTRAL

Fuente: Jefatura de Infraestructura y Procesos, Operaciones Río Napo CEM

El desplazamiento del fluido motriz se encuentra en funcionamiento dentro la red de distribución compuesta de líneas principales de 4" y líneas secundarias de 2" de alta presión; de ésta manera se permitirá abastecer el fluido motriz petróleo de manera organizada y controlada por toda la red de Power Oil.

Los parámetros de inyección en superficie, son controlados mediante válvulas reguladoras de flujo (VRF), la medición del caudal de inyección se realiza por medio de turbinas y analizadores de flujo en cada pozo.

El diseño, la construcción y las pruebas realizadas para la línea de inyección de fluido motriz, se lo realizó mediante la norma ASME B31.3 de Tubería de Procesos.

3.1.1.1 Descripción de los Pozos del Sistema Power Oil

3.1.1.1.1 Pozo X-01

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 2.170 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 26 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad Guiberson PL II 2 7/8" asentada a una profundidad de 9.047,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 29,6 bl, y el volumen total de inyección en el tubing son 78,6 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 108,2 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 189,7 bl, mientras que el volumen que circula en la línea de retorno en superficie son 89,2 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 278,9 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 387,17 bl.

3.1.1.1.2 Pozo X-19

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 1.250 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad National 3x48, 3 ½" asentada a una profundidad de 9.086,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son

17,02 bl, y el volumen total de inyección en el tubing son 79,02 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 96,04 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 202,9 bl, mientras que el volumen que circula en la línea de retorno en superficie son 52,5 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 255,4 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 351,44 bl.

3.1.1.1.3 Pozo X-25

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 2.360 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad National 3x48, 3 ½" asentada a una profundidad de 9.108,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 32,18 bl, y el volumen total de inyección en el tubing son 79,21 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 111,39 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 173,36 bl, mientras que el volumen que circula en la línea de retorno en superficie son 84,61 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 257,97 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 369,36 bl.

3.1.1.1.4 Pozo X-26

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 4.370 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad National 3x48, 3 ½" asentada a una profundidad de 9.137,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de

inyección que va desde la bomba en superficie hasta la cabeza del pozo son 59,53 bl, y el volumen total de inyección en el tubing son 79,46 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 138,99 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 195,83 bl, mientras que el volumen que circula en la línea de retorno en superficie son 176,22 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 372,05 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 511,04 bl.

3.1.1.1.5 Pozo X-37

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 2.790 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad Guiberson PL II 2 7/8" asentada a una profundidad de 9.227,9 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 38,03 bl, y el volumen total de inyección en el tubing son 80,25 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 118,28 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 216,31 bl, mientras que el volumen que circula en la línea de retorno en superficie son 123,11 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 339,42 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 457,70 bl.

3.1.1.1.6 Pozo X-88

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 3.880 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad Kobe Tipo D 3 1/2" asentada a una profundidad de 9.458,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 52,83 bl, y el volumen total de inyección en el tubing son 82,25 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 135,08 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 229,94 bl, mientras que el volumen que circula en la línea de retorno en superficie son 177,40 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 407,34 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 542,43 bl.

3.1.1.1.7 Pozo X-101

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 3.240 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 23 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad National 3x48, 3 ½" asentada a una profundidad de 9.161,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 44,12 bl, y el volumen total de inyección en el tubing son 79,67 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 123,79 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 173,99 bl, mientras que el volumen que circula en la línea de retorno en superficie son 115,73 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 289,72 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 413,50 bl

3.1.1.1.8 Pozo X-112

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 3.150 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 26 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad Guiberson PL II 2 7/8" asentada a una profundidad de 8.448,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 42,87 bl, y el volumen total de inyección en el tubing son 73,47 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 116,34 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 184,84 bl, mientras que el volumen que circula en la línea de retorno en superficie son 134,96 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 319,80 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 436,13 bl.

3.1.1.1.9 Pozo X-130

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 570 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" C95 de 26 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad Oilmaster 3x48, 3 ½" asentada a una profundidad de 9.174,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 7,80 bl, y el volumen total de inyección en el tubing son 79,78 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 87,58 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 201,36 bl, mientras que el volumen que circula en la línea de retorno en superficie son 24,64 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 226,00 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 313,58 bl.

3.1.1.1.10 Pozo X-134

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 1.500 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" N80 de 26 lb/ft y la tubería de producción es de 3 ½" N80 de 9,3 lb/ft, consta de una cavidad National 3x48, 3 ½" asentada a una

profundidad de 9.229,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 20,36 bl, y el volumen total de inyección en el tubing son 80,26 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 100,62 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 159,20 bl, mientras que el volumen que circula en la línea de retorno en superficie son 50,53 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 209,74 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 310,35 bl.

3.1.1.1.11 Pozo X-190D

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 1.660 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" C95 de 26 lb/ft y la tubería de producción es de 2 7/8" N80 de 10,4 lb/ft, consta de una cavidad Guiberson PL II 2 7/8" asentada a una profundidad de 9.586,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 22,56 bl, y el volumen total de inyección en el tubing son 43,09 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 65,65 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 250,43 bl, mientras que el volumen que circula en la línea de retorno en superficie son 73,96 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 324,39 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 390,04 bl.

3.1.1.1.12 Pozo X-197D

Es un pozo que está produciendo en la arena U y que en superficie se encuentra a una distancia de 1.230 metros de la Estación Sacha Central. Se encuentra completado verticalmente para el sistema de bombeo hidráulico. La tubería de revestimiento es de 7" C95 de 26 lb/ft y la tubería de producción es de 2 7/8" N80

de 10,4 lb/ft, consta de una cavidad Guiberson PL II 2 7/8" asentada a una profundidad de 9.600,0 ft por la cual el fluido motriz puede circular con el fluido de producción hasta superficie.

El diámetro de la línea de retorno es de 4" con Cédula N° 40, y la línea de fluido motriz de 2" con Cédula N° 40; el volumen total de almacenamiento en la línea de inyección que va desde la bomba en superficie hasta la cabeza del pozo son 16,75 bl, y el volumen total de inyección en el tubing son 43,15 bl. Siendo así un volumen total de petróleo recuperado en el proceso de inyección de 59,90 bl. (Ver Cuadro 3.1 y Cuadro 3.2).

El volumen de fluido motriz que circula desde subsuelo hasta la superficie por el espacio anular son 258,26 bl, mientras que el volumen que circula en la línea de retorno en superficie son 56,54 bl. Siendo así un volumen total de petróleo recuperado en el proceso de retorno de 314,80 bl. (Ver Cuadro 3.3 y Cuadro 3.4).

El volumen estacionario total de petróleo a recuperar en el pozo X-01 son 374,70

A continuación se detallan las ecuaciones necesarias para el cálculo de volumen de petróleo motriz en los procesos de inyección y de retorno.

Ecuación del Corte de Agua de la Formación:

$$F_{W} = \frac{Q_{D} \times F_{WD}}{Q_{S}} \tag{3.1}$$

Donde:

Fwd= Fracción del agua del fluido de retorno QD= Tasa del fluido producido más fluido motriz

Qs= Tasa del fluido producido

Ecuación de la Capacidad en Tubería:

$$Capacidad_{bl/ft} = \frac{ID^2}{1029,4}$$
 (3.2)

Donde:

ID= Diámetro interno de la tubería

Ecuación de la Capacidad en Espacio Anular:
$$Capacidad_{bl/ft} = \frac{ID^2_{csg} - OD^2_{tbg}}{1029,4}$$
 (3.3)

Donde:

IDcsg= Diámetro interno de la tubería de revestimiento (casing) OD_{tbg}= Diámetro externo de la tubería de producción (tubing)

Ecuación del Volumen en Barriles en Tubería o Espacio Anular:

$$Volumen_{bl} = Capacidad_{bl/ft} \times Longitud_{ft}$$
 (3.4)

Fracción del Fluido Producido en el Fluido de Retorno:

$$Fracci\acute{o}n_{F.P} = \frac{bfpd}{bfpd + bipd}$$
 (3.5)

Fracción del Fluido Motriz en el Fluido de Retorno:

$$Fracci\acute{o}n_{F.M} = \frac{bipd}{bipd + bfpd}$$
 (3.6)

En los siguientes cuadros se detallan los parámetros y cálculos que se utilizaron durante los procesos de inyección y retorno.

Proceso de inyección:

CUADRO 3.1 CÁLCULO DEL VOLUMEN DE PETRÓLEO MOTRIZ EN LAS LÍNEAS DE INYECCIÓN EN SUPERFICIE

			ÍÓN			
	D. Nominal	Cédula	ID	Longitud		Volumen (bl)
Pozo	pg	N°	pg	km	ft	Total
X-001	2	40	2,067	2,17	7119,42	29,55
X-019	2	40	2,067	1,25	4101,05	17,02
X-025	2	40	2,067	2,36	7754,27	32,18
X-026	2	40	2,067	4,37	14343,83	59,53
X-037	2	40	2,067	2,79	9162,07	38,03
X-088	2	40	2,067	3,88	12729,66	52,83
X-101	2	40	2,067	3,24	10629,92	44,12
X-112	2	40	2,067	3,15	10328,08	42,87
X-130	2	40	2,067	0,57	1879,92	7,80
X-134	2	40	2,067	1,50	4904,86	20,36
X-190D	2	40	2,067	1,66	5436,35	22,56
X-197D	2	40	2,067	1,23	4035,43	16,75
		TOTA	L			384

Fuente: Jefatura de Infraestructura y Procesos, Operaciones Río Napo CEM (2016)

Elaboración: Santiago Arias

CUADRO 3.2 CÁLCULO DEL VOLUMEN DE PETRÓLEO MOTRIZ DE INYECCIÓN EN EL TUBING

					TUBING			CAVIDA	D	VOLUMEN
			Diámetro (pulg)			Peso	Capacidad		Profundidad	Tubing
Pozo	Tipo Perforación	Arena	OD	ID	Tipo	lb/ft	bl/ft	Tipo	ft	bl
X-001	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8"	9.047,0	78,68
X-019	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.086,0	79,02
X-025	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.108,0	79,21
X-026	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.137,0	79,46
X-037	VERTICAL	T	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8"	9.227,9	80,25
X-088	VERTICAL	T	3 1/2	2,992	N80	9,3	0,0087	Kobe Tipo D 3 1/2"	9.458,0	82,25
X-101	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.161,0	79,67
X-112	VERTICAL	BT	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8"	8.448,0	73,47
X-130	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	Oilmaster 3x48, 3 1/2"	9.174,0	79,78
X-134	VERTICAL	U	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.229,0	80,26
X-190D	DIRECCIONAL	UI	2 7/8	2,151	N80	10,4	0,0045	Guiberson PL II 2 7/8"	9.586,0	43,09
X-197D	DIRECCIONAL	UI	2 7/8	2,151	N80	10,4	0,0045	Guiberson PL II 2 7/8"	9.600,0	43,15
				,	TOTAL					878

Fuente: Jefatura de Infraestructura y Procesos, Operaciones Río Napo CEM (2016)

Elaboración: Santiago Arias

Proceso de retorno:

CUADRO 3.3 CÁLCULO DEL VOLUMEN DE PETRÓLEO MOTRIZ DE RETORNO POR EL ESPACIO ANULAR

					CAS	ING				TUB	ING			CAVIDAD			•	` \	OLUMEN		•	
																Espacio Anular (bl)						
			Diár	metro (pulg)	Peso	Capacidad	Diá	metro (p	ulg)	Peso	Capacidad		Profundidad	Capacidad Anular					Fluido P	roducido	
Pozo	Tipo Perforación	Arena	OD		Tipo		bl/ft	OD		Tipo	lb/ft	bl/ft	Tipo	ft	bls/ft	Total				P. Producido		%BSW
X-001	VERTICAL	U	7	6,276	N80	26	0,0383	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8*	9.047,0	0,0264	238,51	0,796	189,76	0,204	47,08	1,67	3,42
X-019	VERTICAL	U	7	6,366	N80	23	0,0394	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.086,0	0,0275	249,58	0,813	202,90	0,187	23,71	22,96	49,20
X-025	VERTICAL	U		6,366	N80	23				N80	9,3	0,0087	National 3x48, 3 1/2"	9.108,0	0,0275	250,18	0,693	173,36	0,307	29,28	47,53	61,88
X-026	VERTICAL	U	7	6,366	N80	23	0,0394	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.137,0	0,0275	250,98	0,780	195,83	0,220	32,06	23,09	41,87
X-037	VERTICAL	T	7	6,366	N80	23	0,0394	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8"	9.227,9	0,0275	253,48	0,853	216,31	0,147	32,86	4,31	11,59
X-088	VERTICAL	T	7	6,366	N80	23	0,0394	3 1/2	2,992	N80	9,3	0,0087	Kobe Tipo D 3 1/2"	9.458,0	0,0275	259,80	0,885	229,94	0,115	27,26	2,60	8,70
X-101	VERTICAL	U	7	6,366	N80	23	0,0394	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.161,0	0,0275	251,64	0,691	173,99	0,309	18,77	58,88	75,83
X-112	VERTICAL	BT	7	6,276	N80	26	0,0383	3 1/2	2,992	N80	9,3	0,0087	Guiberson PL II 2 7/8*	8.448,0	0,0264	222,72	0,830	184,84	0,170	32,53	5,35	14,11
X-130	VERTICAL	U	7	6,276	C95	26	0,0383	3 1/2	2,992	N80	9,3	0,0087	Oilmaster 3x48, 3 1/2"	9.174,0	0,0264	241,86	0,833	201,36	0,167	15,59	24,91	61,51
X-134	VERTICAL	U	7	6,276	N80	26	0,0383	3 1/2	2,992	N80	9,3	0,0087	National 3x48, 3 1/2"	9.229,0	0,0264	243,31	0,654	159,20	0,346	80,70	3,41	4,05
X-190D	DIRECCIONAL	UI	7	6,276	C95	26	0,0383	2 7/8	2,151	N80	10,4	0,0045	Guiberson PL II 2 7/8*	9.586,0	0,0302	289,82	0,864	250,43	0,136	11,28	28,11	71,37
X-197D	DIRECCIONAL	UI	7	6,276	C95	26	0,0383	2 7/8	2,151	N80	10,4	0,0045	Guiberson PL II 2 7/8"	9.600,0	0,0302	290,24	0,890	258,26	0,110	23,57	8,42	26,32
									TOTAL							3042		2436		375	231	36

Fuente: Jefatura de Infraestructura y Procesos, Operaciones Río Napo CEM (2016)

Elaboración: Santiago Arias

CUADRO 3.4 CÁLCULO DEL VOLUMEN DE PETRÓLEO MOTRIZ EN LAS LÍNEAS DE RETORNO EN SUPERFICIE

						ı	ÍNEAS DE RE	TORNO		•	•	•
									Volumen (BLS	S)		
	D. Nominal	Cédula	ID	Long	gitud						Fluido P	roducido
Pozo	pg	N°	pg	km	ft	%BSW	Total	Fracción F.M	P. Motriz	Fracción F.P	P.Producido	A.Producido
X-001	4	40	4,026	2,17	7119,42	0,7	112,10	0,796	89,19	0,204	22,75	0,16
X-019	4	40	4,026	1,25	4101,05	9,2	64,57	0,813	52,50	0,187	10,97	1,11
X-025	4	40	4,026	2,36	7754,27	19	122,10	0,693	84,61	0,307	30,37	7,12
X-026	4	40	4,026	4,37	14343,83	9,2	225,85	0,780	176,22	0,220	45,06	4,57
X-037	4	40	4,026	2,79	9162,07	1,7	144,26	0,853	123,11	0,147	20,79	0,36
X-088	4	40	4,026	3,88	12729,66	1	200,44	0,885	177,40	0,115	22,81	0,23
X-101	4	40	4,026	3,24	10629,92	23,4	167,38	0,691	115,73	0,309	39,56	12,09
X-112	4	40	4,026	3,15	10328,08	2,4	162,62	0,830	134,96	0,170	27,00	0,66
X-130	4	40	4,026	0,57	1879,92	10,3	29,60	0,833	24,64	0,167	4,45	0,51
X-134	4	40	4,026	1,50	4904,86	1,4	77,23	0,654	50,53	0,346	26,32	0,37
X-190D	4	40	4,026	1,66	5436,35	9,7	85,60	0,864	73,96	0,136	10,51	1,13
X-197D	4	40	4,026	1,23	4035,43	2,9	63,54	0,890	56,54	0,110	6,80	0,20
	•		TOTAL		_		1455		1159		267	29

Fuente: Jefatura de Infraestructura y Procesos, Operaciones Río Napo CEM (2016)

Elaboración: Santiago Arias

En el siguiente cuadro 3.5 se detalla los resultados de petróleo motriz recuperado en los procesos de inyección y de retorno.

CUADRO 3.5 RESULTADOS EN PROCESO DE INYECCIÓN Y RETORNO

	INYEC	CIÓN	RETO	DRNO	
Pozo	Superficie	Tubing	Espacio A.	Superficie	TOTAL
X-001	29,55	78,68	189,76	89,19	387,17
X-019	17,02	79,02	202,90	52,50	351,44
X-025	32,18	79,21	173,36	84,61	369,36
X-026	59,53	79,46	195,83	176,22	511,04
X-037	38,03	80,25	216,31	123,11	457,70
X-088	52,83	82,25	229,94	177,40	542,43
X-101	44,12	79,67	173,99	115,73	413,50
X-112	42,87	73,47	184,84	134,96	436,13
X-130	7,80	79,78	201,36	24,64	313,58
X-134	20,36	80,26	159,20	50,53	310,35
X-190D	22,56	43,09	250,43	73,96	390,04
X-197D	16,75	43,15	258,26	56,54	374,70
TOTAL	384	878	2436	1159	4857

La red del sistema de power oil se compone de 28.170 metros de tubería de 4" y 28.170 metros de tubería de 2". El volumen total de petróleo recuperado en el proceso de inyección y de retorno son 4.857 bl.

3.1.2 CÁLCULO DE VOLUMEN DE CRUDO EN EL TANQUE DE REPOSO

El tanque de reposo TS-01 de la Estación Sacha Central, funciona como tanque de suministro de fluido motriz para el sistema power oil; además tiene una capacidad de 42.000 bl y una altura total de 32 pies, dicho tanque recibe la producción de petróleo, proveniente del tanque de lavado, de 2.801 bppd, con un BSW menor al 0.5%.

El tanque de reposo tiene un nivel de funcionamiento de 19 pies de altura, por lo tanto el aforo del tanque es de 1.312,5 bl/ft y un volumen de petróleo que se encuentra almacenado de 24.937,5 bl.

El nivel de operación del tanque, en lo que se refiere a la succión para la transferencia de fluido es de 3 pies. Por lo tanto a un nivel mínimo de transferencia se tiene que son 3.937,5 bl.

En conclusión, a dichas condiciones se pueden obtener un volumen de petróleo aproximado de 21.000 bl, los cuales se podrán recuperar al cambiar el fluido motriz por agua de formación.

En el siguiente cuadro 3.3 se puede detallar las condiciones en el tanque.

CUADRO 3.6 CÁLCULO DE PETRÓLEO EN EL TANQUE DE REPOSO

Sistema Po	wer Oil	Sistema de tran	sferencia	Cambio de fluido motriz		
Nivel	bl	Nivel Mínimo	bl	Volumen Recuperado		
Operativo (ft)				(bl)		
19	24.937,5	3	3.937,5	21.000		

3.2 OPTIMIZACIÓN DE BOMBAS JET Y PISTÓN PARA EL DESARROLLO DEL SISTEMA POWER WATER

En esta sección del proyecto se realiza la determinación de la geometría más óptima de la bomba hidráulica tipo jet. Además para el cálculo de la presión de descarga se utiliza una correlación de flujo, dicha correlación de flujo se lo realiza mediante el programa Well Perform.

En el análisis del pozo X-01 se demuestra todos los parámetros y resultados obtenidos en la solución del método de Hal Petrie. En los siguientes análisis de los pozos restantes se presentarán solo los cuadros de resultados finales.

3.2.1 ANÁLISIS DEL POZO X-01

A continuación se detallan los cuadros que corresponden a los datos del pozo X-01 (ver cuadro 3.7), y los resultados finales obtenidos, mediante el método de Hal Petrie, por cada análisis del pozo X-01 (ver cuadro 3.8 y cuadro 3.9).

CUADRO 3.7 DATOS DEL POZO X-01

	PATO DE		·		1	
Parámetro	Valor	Unidad		Parámetro	Valor	Unidad
Pr	4054	psi		Рwн	60	Psi
PwF	988	psi	1	Pb	1052	Psi
Q@ Pwf	602	bl/día		Gw	0,438	psi/pie
Profundidad	9047	pies	1	L	9047	pies
ОДТВС	3,5	pg		Fw	0,0263	
IDтвG	2,992	pg	1	Fo	0,9737	
°API	27,8	°API		Qactual	456	bl/día
ODcsg	7	pg	1	μo	3,213	Ср
IDcsg	6,276	pg	1	μw	0,263	Ср
Twn	92	°F	1	Y g	1,13	
Twf	211	°F	1	γw	1,012	
GOR	260	pie³/bl		Salinidad	17250	ppm
Fluido motriz	Agua		1	Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	500	300	bl/día
Presión de succión de la producción	1100	300	psi

Elaboración: Santiago Arias

CUADRO 3.8 RESULTADOS POR CADA ITERACIÓN DEL POZO X-01

Parte A: Escoger la tobera e iterar con el caudal de fluido motriz

Parámetro	Análisis 1	Análisis 2	Unidades
Gs	0,4383	0,4383	psi/pie
Асм	0,0191	0,0268	pg²
Fabricante	CLAW	CLAW	
As	0,0351	0,0351	pg²
Tobera	10	10	
An	0,0175	0,0175	pg²

		Aná	lisis 1	Anál	isis 2	
Parán	netro	Iter	ación	Itera	ición	
			2da	1ra	2da	
Рт	psi	3500	3500	3500	3500	
PN	psi	7464,9397	7429,0119	7464,9397	7424,9958	
Qn	bl/día	1754,6582	1749,6990	1861,6655	1856,4689	
ΔQN	%		0,2834		0,2799	
V	pie/s	2,3344		2,4768		
NRe		14315,3423		15188,3592		
Flujo		Turbulento		Turbulento		
ρο	g/cm³	0,8506		0,8506		
μο	ср	3,2130		3,2130		
İ		0,0317		0,0313		
PFN	psi	35,9278		39,9439		
∆QN<15%			Verdadero		Verdadero	

Parte B: Iteración con el caudal de producción

Talte B. Iteración con el caddar de producción									
		Anál	isis 1		Análisis 2				
Pará	metro	Itera	ción		Iteración				
		1ra	2da	1ra	2da	3ra			
QD	bl/día	2250	2361	2156	2037	2026			
GD	psi/pie	0,4383	0,4383	0,4383	0,4383	0,4383			
Fwd		0,7853	0,7499	0,8656	0,9145	0,9191			
GLR	pie³/bl	56	65	34,9328	22,2379	21,0464			
Lµo	cst	3,7774	3,7774	3,7774	3,7774	3,7774			
μw	cst	0,2598	0,2598	0,2598	0,2598	0,2598			
V D	cst	1,0149	1,1396	0,7325	0,5607	0,5446			
V	pie/s	0,9873	1,0362	0,9464	0,8939	0,8893			
NRe		20907,7913	19542,6428	27769,7866	34263,8977	35095,4416			
Flujo	•	Turbulento	Turbulento	Turbulento	Turbulento	Turbulento			
E									
İ									
PFD	psi								
PD	psi								
Н		0,5895	0,5657	0,8676	0,9185	0,9275			
M		0,4226	0,5168	0,5296	0,3185	0,2998			
R		0,4000	0,4000	0,5000	0,5000	0,5000			

Cuadro 3.8 Continuación

Parámetro		Anál	isis 1		Análisis 2				
		Itera	ación		Iteración				
		1ra	2da	1ra	2da	3ra			
C ₁		0,8000	0,8000	1,0000	1,0000	1,0000			
C ₂		0,0889	0,0889	0,0000	0,0000	0,0000			
C3		0,1920	0,1920	0,3000	0,3000	0,3000			
C4		1,0300	1,0300	1,0300	1,0300	1,0300			
M		0,5168	0,5368	0,3185	0,2998	0,2966			
Máxvalor		0,4438	0,5426	0,5561	0,3344	0,3148			
Minvalor		0,4015	0,4910	0,5032	0,3025	0,2848			
Converge	encia	NO	SI	NO	NO	SI			
Qs Nuevo	bl/día	611,3955	635,0784	180	170	168			

Parte C: Cálculos finales

Parámetro	Análisis 1	Análisis 2	Unidades
Ат	0,0438	0,0350	pg²
Garganta	0,0447	0,0447	pg²
N°	1	1	
Bomba	CLAW 10-I	•	
Qsc	713	305	bl/día
HP	104	110	HP
HP	116	123	HP

CUADRO 3.9 SUMARIO FINAL DE RESULTADOS DEL POZO X-01

Análisis 1

An	0,0175	pg²	Рт	3.500	psi	Qs	635	bl/día
Ат	0,0447	pg²	Qn	1.750	bl/día	Ps	1.100	psi
R	0.517		HP(90%)	116	HP	Qsc	713	bl/día
Bomba	CLAW	10-I						

Análisis 2

An	0,0175	pg²	Рт	3.500	psi	Qs	168	bl/día
Ат	0,0447	pg²	Qn	1.856	bl/día	Ps	300	psi
R	0,517		HP(90%)	123	HP	Qsc	305	bl/día
Bomba	CLAW	10-I						

Elaboración: Santiago Arias

Una vez que se hayan obtenido los resultados de los análisis 1 y 2, se procede a realizar el análisis nodal del sistema, como se demuestra en el gráfico 3.2. Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-01 se lo presentan en el cuadro 3.10.

CUADRO 3.10 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-01

An	0,0175	pg²	PT	3.500	psi	Qs	595	bl/día
Ат	0,0447	pg²	Qn	1.759	bl/día	Ps	1.025	psi
R	0.517		HP(90%)	120	HP	Qsc	615	bl/día
Bomba	CLAW	10-I				Psc	910	psi

Elaboración: Santiago Arias

ANÁLISIS NODAL DEL SISTEMA Aresión de succión (bsi) 2500 2000 1500 Tasa de fluido producido (bl/día) → Out Flow — In Flow → Límite de cavitación

GRÁFICO 3.2 ANÁLISIS NODAL DEL POZO X-01

La bomba óptima tipo jet necesaria para el pozo X-01, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.500 psi, una tasa de producción de 595 bl/día, un área de la tobera de 0,0175 pg², una tasa de inyección de fluido motriz de 1.759 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 120 HP. Una relación de áreas de R= 0,517; por lo que la garganta tendrá un valor de 0,0447 pg². Por lo tanto se procede a la selección de la bomba CLAW 10-I. La tasa de producción a la cual inicia la cavitación es de 615 bl/día.

3.2.2 ANÁLISIS DEL POZO X-19

CUADRO 3.11 DATOS DEL POZO X-19

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	Pwh	60	psi
PwF	985	psi	Pb	1052	psi
Q@ Pwr	516	bl/día	Gw	0,439	psi/pie
Profundidad	9086	pies	L	9086	pies
ОДТВС	3,5	pg	Fw	0,492	
IDтвG	2,992	pg	Fo	0,508	
°API	27,8	°API	Qactual	334	bl/día
ODcsg	7	pg	μo	3,341	ср
IDcsg	6,366	pg	μw	0,263	ср
Twh	94	°F	Y g	1,13	
TwF	211	°F	γw	1,013	
GOR	260	pie³/bl	Salinidad	18500	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	250	400	bl/día
Presión de succión de la producción	500	900	psi

CUADRO 3.12 SUMARIO FINAL DE RESULTADOS DEL POZO X-19

Análisis 1

An	0,0167	pg²	Рт	3.900	psi	Qs	417	bl/día
Ат	0,0441	pg²	Qn	1.798	bl/día	Ps	500	psi
R	0.380		HP(90%)	132	HP	Qsc	511	bl/día
Bomba	NATIONAL	9-A						

Análisis 2

An	0,0167	pg²	Рт	3.900	psi	Qs	637	bl/día
Ат	0,0441	pg²	Qn	1.749	bl/día	Ps	900	psi
R	0.380		HP(90%)	129	HP	Qsc	723	bl/día
Bomba	NATIONAL	9-A						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-19 se lo presentan en el cuadro 3.13.

CUADRO 3.13 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-19

An	0,0167	pg²	Рт	3.900	Psi	Qs	552	bl/día
Ат	0,0441	pg²	Qn	1.768	bl/día	Ps	750	psi
R	0.380		HP(90%)	131	HP	Qsc	570	bl/día
Bomba	NATIONAL	9-A				Psc	610	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-19, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.900 psi, una tasa de producción de 552 bl/día, un área de la tobera de 0,0167 pg², una tasa de inyección de fluido motriz de 1.768 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 131 HP. Una relación de áreas de R= 0,380; por lo que la garganta tendrá un valor de 0,0441 pg². Por lo tanto se procede a la selección de la bomba NATIONAL 9-A. La tasa de producción a la cual inicia la cavitación es de 570 bl/día.

3.2.3 ANÁLISIS DEL POZO X-25

CUADRO 3.14 DATOS DEL POZO X-25

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	PwH	64	psi
PwF	1074	psi	Pb	1052	psi
Q@ Pwr	674	bl/día	Gw	0,4347	psi/pie
Profundidad	9108	pies	L	9108	pies
ОДтвс	3,5	pg	Fw	0,6188	
IDтвG	2,992	pg	Fo	0,3812	

Cuadro 3.14 Continuación

°API	25,6	°API	Qactual	732	bl/día
ODcsg	7	pg	μo	3,8858	ср
IDcsg	6,366	pg	μw	0,2620	ср
Twn	104	°F	Y g	1,13	
Twf	211	°F	γw	1,0040	
GOR	260	pie³/bl	Salinidad	5700	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades	
Producción deseada	350	780	bl/día	
Presión de succión de la producción	300	800	psi	

CUADRO 3.15 SUMARIO FINAL DE RESULTADOS DEL POZO X-25

Análisis 1

An	0,024	pg²	Рт	3.800	psi	Qs	416	bl/día
Ат	0,0774	pg²	Qn	2.602	bl/día	Ps	300	psi
R	0.310		HP(90%)	187	HP	Qsc	780	bl/día
Bomba	KOBE	10-B						

Análisis 2

An	0,024	pg²	Рт	3.800	psi	Qs	781	bl/día
Ат	0,0774	pg²	Qn	2.514	bl/día	Ps	800	psi
R	0,310		HP(90%)	180	HP	Qsc	1378	bl/día
Bomba	KOBE	10-B				•		

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-25 se lo presentan en el cuadro 3.16.

CUADRO 3.16 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-25

An	0,024	pg²	Рт	3.800	Psi	Qs	743	bl/día
Ат	0,0774	pg²	Qn	2.523	bl/día	Ps	750	psi
R	0.310		HP(90%)	184	HP	Qsc	805	bl/día
Bomba	KOBE	10-B				Psc	340	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-25, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.800 psi, una tasa de producción de 743 bl/día, un área de la tobera de 0,024 pg², una tasa de inyección de fluido motriz de 2.523 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 184 HP.

Una relación de áreas de R= 0,310; por lo que la garganta tendrá un valor de 0,0774 pg². Por lo tanto se procede a la selección de la bomba KOBE 10-B. La tasa de producción a la cual inicia la cavitación es de 805 bl/día.

3.2.4 ANÁLISIS DEL POZO X-26

CUADRO 3.17 DATOS DEL POZO X-26

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	Рwн	120	psi
PwF	970	psi	Pb	1052	psi
Q@ Pwr	536	bl/día	Gw	0,4364	psi/pie
Profundidad	9137	pies	L	9137	pies
ОДтвс	3,5	pg	Fw	0,4187	
IDтвG	2,992	pg	Fo	0,5813	
°API	26,1	°API	Qactual	345	bl/día
ODcsg	7	pg	μo	4,1916	ср
IDcsg	6,366	pg	μw	0,2610	ср
Twn	78	°F	Y g	1,13	
Twf	211	°F	γw	1,0078	
GOR	260	pie³/bl	Salinidad	11100	ppm
Fluido motriz	Agua	•	Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	300	500	bl/día
Presión de succión de la producción	500	1200	psi

Elaboración: Santiago Arias

CUADRO 3.18 SUMARIO FINAL DE RESULTADOS DEL POZO X-26

Análisis 1

An	0,0167	pg²	Рт	3.600	psi	Qs	305	bl/día
Ат	0,0441	pg²	Qn	1.766	bl/día	Ps	500	psi
R	0.380		HP(90%)	120	HP	Qsc	498	bl/día
Bomba	NATIONAL	9-A			•	•		•

Análisis 2

An	0,0167	pg²	Рт	3.600	psi	Qs	598	bl/día
Ат	0,0441	pg²	Qn	1.676	bl/día	Ps	1.200	psi
R	0,380		HP(90%)	114	HP	Qsc	838	bl/día
Bomba	NATIONAL	9-A						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-26 se lo presentan en el cuadro 3.19.

CUADRO 3.19 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-26

An	0,0167	pg²	Рт	3.600	Psi	Qs	525	bl/día
Ат	0,0441	pg²	Qn	1.698	bl/día	Ps	1.035	psi
R	0.380		HP(90%)	117	HP	Qsc	580	bl/día
Bomba	NATIONAL	9-A				Psc	690	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-26, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.600 psi, una tasa de producción de 525 bl/día, un área de la tobera de 0,0167 pg², una tasa de inyección de fluido motriz de 1.698 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 117 HP.

Una relación de áreas de R= 0,380; por lo que la garganta tendrá un valor de 0,0441 pg². Por lo tanto se procede a la selección de la bomba NATIONAL 9-A. La tasa de producción a la cual inicia la cavitación es de 580 bl/día.

3.2.5 ANÁLISIS DEL POZO X-37

CUADRO 3.20 DATOS DEL POZO X-37

Parámetro		Unidad	<u> </u>	Parámetro	Valor	Unidad
Parametro	Valor	Unidad		Parametro	valor	Unidad
Pr	4146	psi		PwH	65	psi
PwF	539	psi		Pb	1293	psi
Q@ Pwf	533	bl/día		Gw	0,4418	psi/pie
Profundidad	9227,9	pies		L	9227,9	pies
ОДТВС	3,5	pg		Fw	0,1159	
IDтвG	2,992	pg		Fo	0,8841	
°API	28,8	°API		Qactual	256	bl/día
ODcsg	7	pg		μo	1,1155	ср
IDcsg	6,366	pg		μw	0,2597	ср
Twh	70	°F		Y g	1,25	
Twf	215	°F		γw	1,0204	
GOR	412	pie³/bl		Salinidad	28800	ppm
Fluido motriz	Agua			Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	380	380	bl/día
Presión de succión de la producción	480	1200	psi

Elaboración: Santiago Arias

CUADRO 3.21 SUMARIO FINAL DE RESULTADOS DEL POZO X-37

Análisis 1

, m.e											
An	0,0148	pg²	Рт	3.750	psi	Qs	183	bl/día			
Ат	0,0526	pg²	Qn	1.585	bl/día	Ps	480	psi			
R	0.310		HP(90%)	112	HP	Qsc	506	bl/día			
Bomba	CLAW	9-J									

Análisis 2

An	0,0148	pg²	Рт	3.750	psi	Qs	626	bl/día
Ат	0,0526	pg²	Qn	1.506	bl/día	Ps	1.200	psi
R	0.310		HP(90%)	107	HP	Qsc	943	bl/día
Bomba	CLAW	9-J						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-37 se lo presentan en el cuadro 3.22.

CUADRO 3.22 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-37

An	0,0148	pg²	Рт	3.750	Psi	Qs	485	bl/día
Ат	0,0526	pg²	Qn	1.531	bl/día	Ps	995	psi
R	0.310		HP(90%)	110	HP	Qsc	535	bl/día
Bomba	CLAW	9-J				Psc	530	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-37, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.750 psi, una tasa de producción de 485 bl/día, un área de la tobera de 0,0148 pg², una tasa de inyección de fluido motriz de 1.531 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 110 HP. Una relación de áreas de R= 0,310; por lo que la garganta tendrá un valor de 0,0526 pg². Por lo tanto se procede a la selección de la bomba CLAW 9-J. La tasa de producción a la cual inicia la cavitación es de 535 bl/día.

3.2.6 ANÁLISIS DEL POZO X-88

CUADRO 3.23 DATOS DEL POZO X-88

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4146	psi	PwH	60	psi
PwF	589	psi	Pb	1293	psi
Q@ Pwf	563	bl/día	Gw	0,4376	psi/pie
Profundidad	9458	pies	L	9458	pies
ОДТВС	3,5	pg	Fw	0,0870	
IDтвG	2,992	pg	Fo	0,9130	
°API	28	°API	Qactual	261	bl/día
ODcsg	7	pg	μo	1,8080	ср
IDcsg	6,366	pg	μw	0,2626	ср
Twh	76	°F	Y g	1,25	
TwF	215	°F	γw	1,0106	
GOR	412	pie³/bl	Salinidad	15100	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	300	500	bl/día
Presión de succión de la producción	200	750	psi

Elaboración: Santiago Arias

CUADRO 3.24 SUMARIO FINAL DE RESULTADOS DEL POZO X-88

Análisis 1

An	0,0311	pg²	Рт	3.800	psi	Qs	138	bl/día
Ат	0,0796	pg²	Qn	3.417	bl/día	Ps	200	psi
R	0.400		HP(90%)	245	HP	Qsc	337	bl/día
Bomba	CLAW	12-L						

Análisis 2

An	0,0311	pg²	Рт	3.800	psi	Qs	682	bl/día
Ат	0,0796	pg²	Qn	3.293	bl/día	Ps	750	psi
R	0.400		HP(90%)	236	HP	Qsc	877	bl/día
Bomba	CLAW	12-I						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-88 se lo presentan en el cuadro 3.25.

CUADRO 3.25 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-88

An	0,0311	pg²	Рт	3.800	Psi	Qs	556	bl/día
Ат	0,0796	pg²	Qn	3.322	bl/día	Ps	650	psi
R	0.400		HP(90%)	241	HP	Qsc	578	bl/día
Bomba	CLAW	12-L				Psc	450	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-88, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.800 psi, una tasa de producción de 556 bl/día, un área de la tobera de 0,0311 pg², una tasa de inyección de fluido motriz de 3.322 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 241 HP. Una relación de áreas de R= 0,400; por lo que la garganta tendrá un valor de 0,0796 pg². Por lo tanto se procede a la selección de la bomba CLAW 12-L. La tasa de producción a la cual inicia la cavitación es de 578 bl/día.

3.2.7 ANÁLISIS DEL POZO X-101

CUADRO 3.26 DATOS DEL POZO X-101

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	PwH	70	psi
PwF	1258	psi	Pb	1052	psi
Q@ Pwf	576	bl/día	Gw	0,4374	psi/pie
Profundidad	9161	pies	L	9161	pies
ODTBG	3,5	pg	Fw	0,7583	
IDтвG	2,992	pg	Fo	0,2417	
°API	26,5	°API	Qactual	698	bl/día
ODcsg	7	pg	μo	3,9893	ср
IDcsg	6,366	pg	μw	0,2604	ср
Twh	82	°F	Y g	1,13	
Twf	211	°F	γw	1,0101	
GOR	260	pie³/bl	Salinidad	14300	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	600	700	bl/día
Presión de succión de la producción	300	600	psi

Elaboración: Santiago Arias

CUADRO 3.27 SUMARIO FINAL DE RESULTADOS DEL POZO X-101

Análisis 1

An	0,031	pg²	Рт	3.700	psi	Qs	518	bl/día
Ат	0,0774	pg²	Qn	3.329	bl/día	Ps	300	psi
R	0.400		HP(90%)	233	HP	Qsc	728	bl/día
Bomba	KOBE	11-A						

Análisis 2

An	0,031	pg²	Рт	3.700	psi	Qs	832	bl/día
Ат	0,0774	pg²	Qn	3.261	bl/día	Ps	600	psi
R	0.400		HP(90%)	228	HP	Qsc	1071	bl/día
Bomba	KOBE	11-A						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-101 se lo presentan en el cuadro 3.28.

CUADRO 3.28 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-101

An	0,031	pg²	PT	3.700	Psi	Qs	721	bl/día
Ат	0,0774	pg²	Qn	3.285	bl/día	Ps	500	psi
R	0.400		HP(90%)	231	HP	Qsc	750	bl/día
Bomba	KOBE	11-A				Psc	305	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-101, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.700 psi, una tasa de producción de 721 bl/día, un área de la tobera de 0,031 pg², una tasa de inyección de fluido motriz de 3.285 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 231 HP. Una relación de áreas de R=0,400; por lo que la garganta tendrá un valor de 0,0774 pg². Por lo tanto se procede a la selección de la bomba KOBE 11-A. La tasa de producción a la cual inicia la cavitación es de 750 bl/día.

3.2.8 ANÁLISIS DEL POZO X-112

CUADRO 3.29 DATOS DEL POZO X-112

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	3587	psi	Pwh	60	psi
PwF	662	psi	Pb	807	psi
Q@ Pwr	360	bl/día	Gw	0,4390	psi/pie
Profundidad	8448	pies	L	8448	pies
ОДтвс	3,5	pg	Fw	0,1411	
IDтвG	2,992	pg	Fo	0,8589	
°API	26,5	°API	Qactual	332	bl/día
ODcsg	7	pg	μo	3,5359	ср
IDcsg	6,276	pg	μw	0,2859	ср
Twn	72	°F	Y g	1,1	
Twf	181	°F	γw	1,0137	
GOR	150	pie³/bl	Salinidad	19500	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	300	300	bl/día
Presión de succión de la producción	200	500	psi

Elaboración: Santiago Arias

CUADRO 3.30 SUMARIO FINAL DE RESULTADOS DEL POZO X-112

Análisis 1

An	0,0175	pg²	Рт	3.750	psi	Qs	218	bl/día
Ат	0,0447	pg²	Qn	1.867	bl/día	Ps	200	psi
R	0.517		HP(90%)	132	HP	Qsc	290	bl/día
Bomba	CLAW	10-I						

Análisis 2

An	0,0175	pg²	Рт	3.750	psi	Qs	453	bl/día
Ат	0,0447	pg²	Qn	1.828	bl/día	Ps	500	psi
R	0,517		HP(90%)	130	HP	Qsc	510	bl/día
Bomba	CLAW	10-I						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-112 se lo presentan en el cuadro 3.31.

CUADRO 3.31 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-112

An	0,0175	pg²	Рт	3.750	Psi	Qs	382	bl/día
Ат	0,0447	pg²	Qn	1.840	bl/día	Ps	420	psi
R	0.517		HP(90%)	131	HP	Qsc	388	bl/día
Bomba	CLAW	10-I				Psc	350	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-112, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.750 psi, una tasa de producción de 382 bl/día, un área de la tobera de 0,0175 pg², una tasa de inyección de fluido motriz de 1.840 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 131 HP. Una relación de áreas de R= 0,517; por lo que la garganta tendrá un valor de 0,0447 pg². Por lo tanto se procede a la selección de la bomba CLAW 10-I. La tasa de producción a la cual inicia la cavitación es de 388 bl/día.

3.2.9 ANÁLISIS DEL POZO X-130

CUADRO 3.32 DATOS DEL POZO X-130

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	Pwh	120	psi
PwF	895	psi	Pb	1052	psi
Q@ Pwr	431	bl/día	Gw	0,4368	psi/pie
Profundidad	9174	pies	L	9174	pies
ОДТВС	3,5	pg	Fw	0,6151	
IDтвG	2,992	pg	Fo	0,3849	

Cuadro 3.32 Continuación

°API	23,2	°API	Qactual	357	bl/día
ODcsg	7	pg	μo	5,6594	ср
IDcsg	6,276	pg	μw	0,2607	ср
Twn	78	°F	Y g	1,13	
TwF	211	°F	γw	1,0088	
GOR	260	pie³/bl	Salinidad	12500	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	400	500	bl/día
Presión de succión de la producción	300	900	psi

Elaboración: Santiago Arias

CUADRO 3.33 SUMARIO FINAL DE RESULTADOS DEL POZO X-130

Análisis 1

An	0,0184	pg²	Рт	3.600	psi	Qs	282	bl/día
Ат	0,0464	pg²	Qn	1.972	bl/día	Ps	300	psi
R	0.400		HP(90%)	134	HP	Qsc	407	bl/día
Bomba	OHI	9-A						

Análisis 2

An	0,0184	pg²	Рт	3.600	psi	Qs	540	bl/día
Ат	0,0464	pg²	Qn	1.889	bl/día	Ps	900	psi
R	0.400		HP(90%)	128	HP	Qsc	769	bl/día
Bomba	OHI	9-A						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-130 se lo presentan en el cuadro 3.34.

CUADRO 3.34 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-130

An	0,0184	pg²	Рт	3.600	Psi	Qs	455	bl/día
Ат	0,0464	pg²	Qn	1.916	bl/día	Ps	700	psi
R	0.400		HP(90%)	131	HP	Qsc	483	bl/día
Bomba	OHI	9-A				Psc	430	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-130, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.600 psi, una tasa de producción de 455 bl/día, un área de la tobera de 0,0184 pg², una tasa de inyección de fluido motriz de 1.916 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 131 HP.

Una relación de áreas de R= 0,400; por lo que la garganta tendrá un valor de 0,0464 pg². Por lo tanto se procede a la selección de la bomba OHI 9-A. La tasa de producción a la cual inicia la cavitación es de 483 bl/día.

3.2.10 ANÁLISIS DEL POZO X-134

CUADRO 3.35 DATOS DEL POZO X-134

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	Pwh	70	psi
PwF	493	psi	Pb	1052	psi
Q@ Pwr	418	bl/día	Gw	0,4384	psi/pie
Profundidad	9229	pies	L	9229	pies
ОДтвс	3,5	pg	Fw	0,0405	
IDтвG	2,992	pg	Fo	0,9595	
°API	27,2	°API	Qactual	411	bl/día
ODcsg	7	pg	μo	3,1476	ср
IDcsg	6,276	pg	μw	0,2597	ср
Twn	90	°F	Y g	1,13	
Twf	211	°F	γw	1,0125	
GOR	260	pie³/bl	Salinidad	17800	ppm
Fluido motriz	Agua	•	Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	411	430	bl/día
Presión de succión de la producción	300	900	psi

Elaboración: Santiago Arias

CUADRO 3.36 SUMARIO FINAL DE RESULTADOS DEL POZO X-134

Análisis 1

An	0,0239	pg²	Рт	3.800	psi	Qs	249	bl/día
Ат	0,0526	pg²	Qn	2.596	bl/día	Ps	300	psi
R	0.517		HP(90%)	186	HP	Qsc	322	bl/día
Bomba	CLAW	11-J						

Análisis 2

An	0,0239	pg²	Рт	3.800	psi	Qs	557	bl/día
Ат	0,0526	pg²	Qn	1.856	bl/día	Ps	900	psi
R	0.517		HP(90%)	131	HP	Qsc	813	bl/día
Bomba	CLAW	11-J						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-134 se lo presentan en el cuadro 3.37.

CUADRO 3.37 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-134

An	0,0239	pg²	Рт	3.800	Psi	Qs	411	bl/día
Ат	0,0526	pg²	Qn	2.193	bl/día	Ps	595	psi
R	0.517		HP(90%)	159	HP	Qsc	420	bl/día
Bomba	CLAW	11-J				Psc	425	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-134, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.800 psi, una tasa de producción de 411 bl/día, un área de la tobera de 0,0239 pg², una tasa de inyección de fluido motriz de 2.193 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 159 HP. Una relación de áreas de R= 0,517; por lo que la garganta tendrá un valor de 0,0526 pg². Por lo tanto se procede a la selección de la bomba CLAW 11-J. La tasa de producción a la cual inicia la cavitación es de 425 bl/día.

3.2.11 ANÁLISIS DEL POZO X-190D

CUADRO 3.38 DATOS DEL POZO X-190D

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
PR	4054	psi	Pwh	150	psi
PwF	826	psi	Pb	1052	psi
Q@ Pwf	504	bl/día	Gw	0,4367	psi/pie
Profundidad	9586	pies	L	9348	pies
ОДтвс	3,5	pg	Fw	0,7137	
IDтвG	2,992	pg	Fo	0,2863	
°API	27,1	°API	Qactual	291	bl/día
ODcsg	7	pg	μo	1,9838	ср
IDcsg	6,276	pg	μw	0,2631	ср
Twh	80	°F	Y g	1,21	
Twf	211	°F	γw	1,0086	
GOR	260	pie³/bl	Salinidad	12250	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	250	500	bl/día
Presión de succión de la producción	300	1.400	psi

Elaboración: Santiago Arias

CUADRO 3.39 SUMARIO FINAL DE RESULTADOS DEL POZO X-190D

Análisis 1

An	0,0123	pg²	Рт	3.800	psi	Qs	218	bl/día
Ат	0,0314	pg²	Qn	1.347	bl/día	Ps	300	psi
R	0.39		HP(90%)	97	HP	Qsc	293	bl/día
Bomba	GUIBERSON	C-4						

Análisis 2

An	0,0123	pg²	Рт	3.800	psi	Qs	491	bl/día
Ат	0,0314	pg²	Qn	1.245	bl/día	Ps	1.400	psi
R	0,39		HP(90%)	89	HP	Qsc	689	bl/día
Bomba	GUIBERSON	C-4						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-190D se lo presentan en el cuadro 3.40.

CUADRO 3.40 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-190D

An	0,0123	pg²	PT	3.800	Psi	Qs	446	bl/día
Ат	0,0314	pg²	Qn	1.262	bl/día	Ps	1.205	psi
R	0,39		HP(90%)	93	HP	Qsc	498	bl/día
Bomba	GUIBERSON	C-4				Psc	885	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-190D, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.800 psi, una tasa de producción de 446 bl/día, un área de la tobera de 0,0123 pg², una tasa de inyección de fluido motriz de 1.262 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 93 HP. Una relación de áreas de R=0,39; por lo que la garganta tendrá un valor de 0,0314 pg². Por lo tanto se procede a la selección de la bomba GUIBERSON C-4. La tasa de producción a la cual inicia la cavitación es de 498 bl/día.

3.2.12 ANÁLISIS DEL POZO X-197D

CUADRO 3.41 DATOS DEL POZO X-197D

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
Pr	4054	psi	Pwh	60	psi
PwF	798	psi	Pb	1052	psi
Q@ Pwf	405	bl/día	Gw	0,4374	psi/pie
Profundidad	9600	pies	L	9271	pies
ОDтвG	3,5	pg	Fw	0,2632	
IDтвс	2,992	pg	Fo	0,7368	
°API	28,5	°API	Qactual	228	bl/día
ODcsg	7	pg	μo	2,6986	ср
IDcsg	6,276	pg	μw	0,2603	ср
Twh	100	°F	Y g	1,13	
TwF	211	°F	γw	1,0103	
GOR	260	pie³/bl	Salinidad	14600	ppm
Fluido motriz	Agua		Venteo	Si	

Parámetros	Análisis 1	Análisis 2	Unidades
Producción deseada	411	900	bl/día
Presión de succión de la producción	300	1000	psi

Elaboración: Santiago Arias

CUADRO 3.42 SUMARIO FINAL DE RESULTADOS DEL POZO X-197D

Análisis 1

An	0,0175	pg²	Рт	3.800	psi	Qs	206	bl/día
Ат	0,0447	pg²	Qn	1.908	bl/día	Ps	300	psi
R	0.517		HP(90%)	137	HP	Qsc	335	bl/día
Bomba	CLAW	10-I						

Análisis 2

An	0,0175	pg²	Рт	3.800	psi	Qs	556	bl/día
Ат	0,0447	pg²	Qn	1.818	bl/día	Ps	1.000	psi
R	0,517		HP(90%)	130	HP	Qsc	715	bl/día
Bomba	CLAW	10-I						

Elaboración: Santiago Arias

Los valores correspondientes a la propuesta estimada de rediseño para la optimización del pozo X-197D se lo presentan en el cuadro 3.43.

CUADRO 3.43 PROPUESTA DE REDISEÑO PARA OPTIMIZAR EL POZO X-197D

An	0,0175	pg²	Рт	3.800	Psi	Qs	414	bl/día
Ат	0,0447	pg²	Qn	1.855	bl/día	Ps	710	psi
R	0.517		HP(90%)	134	HP	Qsc	432	bl/día
Bomba	CLAW	10-I				Psc	495	psi

Elaboración: Santiago Arias

La bomba óptima tipo jet necesaria para el pozo X-197D, debe contener los siguientes parámetros necesarios: presión de operación superficial de 3.800 psi, una tasa de producción de 414 bl/día, un área de la tobera de 0,0175 pg², una tasa de inyección de fluido motriz de 1.855 bl/día, con una potencia en la bomba triplex y una eficiencia del 90%, de 134 HP.

Una relación de áreas de R= 0,517; por lo que la garganta tendrá un valor de 0,0447 pg². Por lo tanto se procede a la selección de la bomba CLAW 10-I. La tasa de producción a la cual inicia la cavitación es de 432 bl/día.

3.3 PROCESO DE DESHIDRATACIÓN EN LA ESTACIÓN SACHA CENTRAL

El proceso de deshidratación de la Estación Sacha Central se basa solamente en los pozos que utilizan el sistema hidráulico power oil, considerando de esta manera la producción de cada uno de los pozos que ingresan a los separadores y luego son conducidos a los diferentes tanques, como lo son: de lavado, de surgencia y posteriormente a los tanques de oleoductos. También como el proceso de inyección de fluido motriz, tanto para petróleo como agua de formación.

3.3.1 ANÁLISIS CON FLUIDO MOTRIZ PETRÓLEO

El fluido de producción más el fluido motriz de todos los pozos de la Estación Sacha Central llegan al manifold, con un volumen total de 23.733 bfpd, en dicho lugar empieza el proceso de deshidratación, en donde el caudal se direcciona hacia los separadores de producción.

El diagrama de flujo de la Estación Sacha Central con el sistema de fluido motriz, petróleo, se presenta a continuación en el gráfico 3.2.

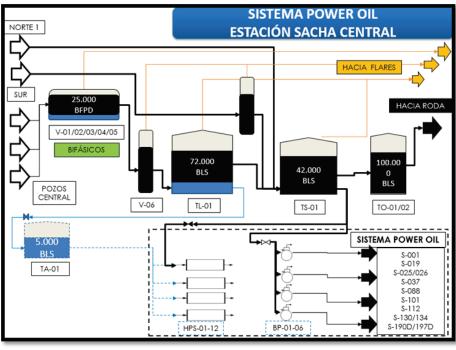


GRÁFICO 3.3 DIAGRAMA DE FLUJO POWER OIL

Fuente: Operaciones Río Napo CEM (2016) Elaboración: Santiago Arias

La alineación de los pozos correspondiente al balance de masas se lo indica a continuación:

- Separador de Producción 1: Pozos X 19, 130
- Separador de Producción 2: Pozos X 112, 190D
- Separador de Producción 3: Pozos X 25, 26, 101
- Separador de Producción 4: Pozos X 37. 88
- Separador de Producción 5: Pozos X 1, 134, 197D

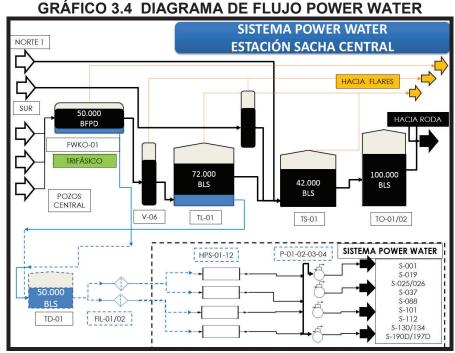
A los 5 separadores llega una producción distribuida de la siguiente manera:

- Separador de Producción 1: 3.918 bfpd
- Separador de Producción 2: 4.093 bfpd
- Separador de Producción 3: 6.216 bfpd
- Separador de Producción 4: 4.017 bfpd
- Separador de Producción 5: 5.489 bfpd

Los 23.733 bfpd de fluido motriz más producción que descargan los cinco separadores ingresan al tanque de lavado, en dicho tanque de lavado a una altura de descarga superior de 33 pies, con un nivel de colchón de 8 pies y con el caudal de ingreso, se obtiene un tiempo de residencia de 51 horas.

El tiempo de residencia es corto debido a que el fluido motriz de inyección de 19.032 bipd, se encuentra reprocesando. Esto hace que el proceso de

deshidratación en el tanque de lavado se vea afectado, por lo que el sistema se encuentra inestable en esta fase del proceso.


Luego continúa el proceso de deshidratación descargando al tanque de surgencia de petróleo un caudal de 21.833 bl con un BSW menor al 0,5%; de ésta manera el ciclo se completa obteniendo el petróleo con las especificaciones que se requieren. Finalmente llegan 1.900 bapd al tanque de reinyección, los cuales posteriormente salen hacia las bombas de reinyección.

En conclusión, la mejor manera para evitar que el fluido de inyección de 19.032 bppd sea reprocesado en el tanque de lavado, se plantea como solución el cambio de fluido motriz de petróleo por agua de formación. El balance de masas con fluido motriz de petróleo, se lo detalla en el anexo 1.

3.3.2 ANÁLISIS CON FLUIDO MOTRIZ AGUA DE FORMACIÓN

Al cambiar el fluido motriz las condiciones en el proceso de deshidratación mejoran, porque la producción que ingresa al tanque de lavado es de 3.975 bfpd, en este caso ya se considera el incremento de producción debido al cambio y rediseño de las bombas en subsuelo. Con los cambios establecidos la inyección de agua con el que se trabajaría en el nuevo sistema power water es de 24.952 bipd.

El diagrama de flujo de la Estación Sacha Central con el fluido motriz, agua de formación, se presenta a continuación en la gráfico 3.3.

Fuente: Operaciones Río Napo CEM (2016) Elaboración: Santiago Arias El fluido de producción más el fluido motriz de todos los pozos de la Estación Sacha Central llegan al manifold, con un volumen total de 31.237 bfpd, en dicho lugar empieza el proceso de deshidratación, en donde el flujo se direcciona hacia el FKWO y al Separador de Producción 5.

La alineación de los pozos correspondiente al balance de masas se lo indica a continuación:

- FWKO (Separador de Agua Libre): Pozos X 19, 25, 26, 37, 88,101,112,130,190D, 197D
- Separador de Producción 5: Pozos X 1, 134

A los separadores llega una producción distribuida de la siguiente manera:

- Separador de Agua Libre 1: 30.231 bfpd
- Separador de Producción 5: 1.006 bfpd

En el Separador de Agua Libre (FWKO) se encontrarán direccionados los pozos de alto corte de agua con 7,75 % de BSW. El proceso de deshidratación inicia con su primera etapa, en la que se extrae 27.262 bapd hacia el tanque desnatador TD-01 y el fluido restante con un BSW promedio del 2%. El proceso continúa direccionando un volumen de 2.969 bfpd.

En el Separador de Producción 5 se recibe el fluido de los pozos X-01 y X-134, con un volumen de 1.006 bfpd, que son direccionados hacia el tanque de lavado TL-01.

Los 3.975 bfpd de fluido motriz más producción que descargan los separadores ingresan al tanque de lavado, en dicho tanque de lavado a una altura de descarga superior de 33 pies, con un nivel de colchón de 8 pies y con el caudal de ingreso, se obtiene un tiempo de residencia de 304 horas. El agua que se drena en este punto del proceso es direccionada hacia el tanque de agua de formación TA-01.

El tiempo de residencia se incrementa de 51 a 304 horas. Esto ocurre gracias a que el fluido motriz de inyección ya no se encuentra reprocesando, como era el caso de utilizar fluido motriz de petróleo.

Con este nuevo sistema power water, el fluido motriz agua de 24.952 bipd más la producción de agua de los pozos del sistema power water de Sacha Central, 2.374 bapd y que es tratado en su mayoría en el Separador de agua libre, 27.262 bapd, hace que el proceso de deshidratación en el tanque de lavado mejore, ya que el sistema se encontraría estable permanentemente.

El proceso continúa cuando se descarga del tanque de lavado TL-01 hacia el tanque de surgencia un volumen total de petróleo de 3.887 bppd, con un BSW menor al 0,5%. Esta producción es enviada hacia el tanque de oleoductos TO-01.

Finalmente los 27.262 bapd provenientes de los separadores y 87 bapd provenientes del tanque de lavado TL-01, llegan al tanque de agua de formación;

los cuales posteriormente salen hacia las bombas de reinyección y a la unidad de power water con un volumen de 2.374 bapd y 24.952 bapd, respectivamente.

Como pudimos verificar anteriormente, se logrará optimizar el consumo de tratamiento químico, por inyección de demulsificante (20 galones/día), al cambiar el fluido motriz por agua de formación.

El balance de masas con fluido motriz de agua de formación, se lo detalla en el anexo 2.

3.4 ANÁLISIS COMPARATIVO DEL SISTEMA HIDRÁULICO

A continuación se detallan las cualidades al utilizar fluido motriz de petróleo y fluido motriz agua de formación. Así como también las desventajas de utilizar cada uno a partir de aspectos técnicos, económicos y ambientales.

3.4.1 FLUIDO MOTRIZ PETRÓLEO

- El funcionamiento del sistema hidráulico con fluido motriz petróleo se basa en utilizar bombas tipo jet y pistón. Con las bombas tipo pistón se puede obtener una mayor producción que las bombas tipo jet; y más eficiencia.
- Las bombas pistón al ser diseñadas por partes internas móviles requieren de lubricación, por lo tanto, con el fluido motriz petróleo no tiene ningún inconveniente en ese aspecto. Así como también las bombas quintuplex de superficie, al trabajar con fluido motriz petróleo, utiliza el fluido como lubricante en sus pistones y de esta manera prolonga el tiempo de vida útil.
- La corrosión con el fluido motriz petróleo es mínima ya que contiene un BSW < 0,5%.

DESVENTAJAS:

- Al disponer con un volumen de petróleo muerto para la utilización como fluido motriz y su circulación, generan pérdidas económicas.
- El petróleo ocasiona la precipitación de parafinas y asfaltenos en el sistema hidráulico, debido a que al trasportarse por las líneas de tubería pierde presión y temperatura.
- El tiempo de residencia en el tanque de lavado es mucho menor, ya que el petróleo debe ser reprocesado constantemente.
- Los costos por tratamiento químico son altos, ya que utilizan demulsificantes para contrarrestar la emulsión que se forma, cuando se mezcla el fluido motriz con el fluido de producción de los pozos.

- La contaminación es alta, durante el mantenimiento en las bombas de subsuelo.
- Los riesgos de contaminación son muy altos al utilizar el petróleo a altas presiones y temperaturas; así como también el riesgo de que se produzcan aberraciones y fugas en bombas o tuberías, pueden generar mayor impacto ambiental.

3.4.2 FLUIDO MOTRIZ AGUA DE FORMACIÓN

- Se minimiza la precipitación de parafinas y asfaltenos, debido a que la temperatura se mantiene al transportarse por las líneas de inyección y retorno.
- El tiempo de residencia en el tanque de lavado se incrementará al utilizar como fluido motriz el agua de formación.
- Se evita el reproceso de fluido motriz, porque al utilizar agua de formación, estos serán transportados de manera directa a separadores y a tanques de reinyección.
- La utilización de demulsicantes como tratamiento químico se reducirán y por tal razón también los costos.
- La contaminación es mínima, durante el mantenimiento de las bombas de subsuelo.
- Los riesgos de contaminación serán minimizados al utilizar el agua de formación, debido a que no es necesario trabajar a altas presiones y temperaturas; así como también se evitaría el riesgo de impacto ambiental y a su vez costos por remediación.
- El uso de agua de formación como fluido motriz permite que se recupere un total de 4.857 bl de petróleo que circulan en las líneas de inyección, retorno y completación de los pozos. Así como también el petróleo muerto que se encuentra en el tanque de surgencia, con un total aproximado de 21.000 bl. Esto representa un ingreso económico significativo.

DESVENTAJAS:

- Se requiere de lubricación forzada para los pistones de las bombas de superficie, debido a que el petróleo, como fluido motriz, cumple con esta función. Representa un costo diario.
- Se requiere mucha cautela y mayor control a la corrosión en las líneas de inyección y de retorno, porque se genera un incremento de % BSW con la utilización de agua de formación como fluido motriz.

CAPÍTULO 4

ANÁLISIS ECONÓMICO DEL PROYECTO

El capítulo tiene como objetivo realizar un análisis técnico-económico del proyecto para realizar el cambio del fluido motriz de petróleo por agua de formación, en el nuevo sistema de power water de la estación sacha central. Se describe los recursos necesarios para cada actividad a realizarse durante el proyecto, así como también los costos necesarios para instalaciones, mantenimiento, reparaciones; optimización del tratamiento químico e incremento de producción.

4.1 ANÁLISIS TÉCNICO, RECURSOS Y VALORES ECONÓMICOS

4.1.1 REDISEÑO Y CAMBIO DE LAS BOMBAS DE SUBSUELO JET Y PISTÓN

4.1.1.1 Análisis técnico de la actividad

En el cuadro 4.1 se detallan a los pozos que son candidatos a realizar el rediseño y su posterior cambio de bombas de subsuelo, para que de ésta manera pueda ejecutarse el cambio de fluido motriz y el incremento de producción.

CUADRO 4.1 RESUMEN DE INCREMENTO DE PRODUCCIÓN Y PROPUESTA DE BOMBAS

	DBO	DUCCIÓN		PETRÓL	FO		AG	ila	FLUIDO MOTRIZ	
	PRU									
		bfpd		bppd			ba	pd	bipd	
Pozo	ACTUAL	REDISEÑO	ACTUAL	REDISEÑO	ΔQ GANADO	%	ACTUAL	REDISEÑO	NECESARIO	BOMBA
X-01	456	595	444	579	135	30,48	12	16	1759	CLAW 10-I
X-19	334	552	173	286	113	65,28	161	266	1768	NATIONAL 9-A
X-25	732	743	277	281	4	1,50	455	462	2523	KOBE 10-B
X-26	345	525	128	195	67	52,17	217	330	1698	NATIONAL 9-A
X-37	256	485	229	434	205	89,45	27	27	1531	CLAW 9-J
X-88	261	556	244	520	276	113,03	17	36	3322	CLAW 12-L
X-101	698	721	203	210	7	3,28	495	511	3285	KOBE 11-A
X-112	332	382	290	334	44	15,06	42	48	1840	CLAW 10-I
X-130	357	455	145	185	40	27,46	212	270	1916	OHI 9-A
X-134	411	411	397	397	0	0,00	14	14	2193	CLAW 11-J
X-190D	291	446	89	136	47	53,24	202	310	1262	GUIBERSON C-4
X-197D	228	414	182	330	148	81,57	46	84	1855	CLAW 10-I
TOTAL	4701	6285	2801	3887	1086	44,38	1900	2374	24952	

Elaboración: Santiago Arias

En la actualidad, los pozos analizados en el sistema de power oil de la Estación Sacha Central, producen un total de 4.701 bfpd. El volumen actual de petróleo producido es de 2.801 bppd y un volumen de agua de 1.900 bapd.

La propuesta de optimización que se propone, permitirá el aumento de producción a 6.285 bfpd, proporcionando un aumento de volumen de petróleo de hasta 3.887 bppd con un fluido motriz de 24.952 bipd, es decir que existe un aumento de la producción de petróleo de 1.086 bppd, equivalente a un 44,38% de barriles de la producción actual.

4.1.1.2 Recursos requeridos en la actividad

Una vez realizado el rediseño de la nueva bomba en cada pozo, se procede a recuperar la bomba que se encuentra operando, y así de esta manera bajar la nueva bomba rediseñada. Se considera que la actividad se lo debe realizar en dos días, ya que se tiene que armar una nueva bomba completa. Esto debido a que la bomba que al momento se encuentra operando es muy diferente a la que se procederá a bajar.

Se debe tomar en cuenta que recuperar la bomba actual e instalar la nueva requiere un trabajo más minucioso, así como también la movilización de equipos y algunos inconvenientes que se puedan presentar durante el desarrollo del cambio de bomba, por lo cual se consideran también las jornadas nocturnas.

Recurso Humano: Se necesitará de alrededor de 9 personas para cada cambio de bomba.

- 1 Ingeniero de Operaciones
- 1 Operador de islas
- 1 Técnico de Campo de la empresa (proveedora de los equipos de subsuelo)
- 4 Operadores (unidad de slick line y el camión de torre)
- 2 Operadores del camión vacum

Los costos del ingeniero de operaciones y del operador de islas, no pueden ser adjuntados al cálculo de los costos, ya que son parte del personal directo de la empresa operadora.

El técnico de campo que representa a la empresa prestadora de servicios, tiene un costo de USD 500,00 la jornada diaria.

Los cuatro operadores, la unidad slick line y el camión torre, pertenecientes a la empresa prestadora de servicios, tienen un costo de USD 200,00 la hora. La actividad se lo tiene previsto realizarla en 16 horas por cada día, determinando un valor total de USD 3.200,00.

El camión vacum con sus dos operadores, pertenecientes a la empresa prestadora de servicios, tienen un costo de USD 350,00 por jornada de trabajo.

Recurso Material: Todos los materiales a emplearse, partes y repuestos que provee la empresa contratista, como fabricantes de cada tipo de bomba.

Se consideran las partes que se cambian en una bomba jet luego de un rediseño como son: throat, nozzle, kit básico de oring's y kit básico de chevrons packing; son concedidas por la empresa contratada para el trabajo.

También se considera el costo de las bombas jet con cavidades completamente nuevas, las cuales tienen un costo de USD 16.500,00 por cada una. Además se consideran un 25% en contingencias.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora.

4.1.1.3 Costos de la actividad

A continuación, se detalla en el cuadro 4.2 los costos de la actividad a realizarse.

CUADRO 4.2 COSTOS POR EL REDISEÑO Y CAMBIO DE BOMBA

				COSTOS (USD)		
	Días	Recurso H	EQUIF	EQUIPOS		CONTINGENCIAS	VALOR
Pozo	Horas	Técnico	Slick L./Camión T.	Camión de V.	Reversada+Bajada	25%	
X-01	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-19	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-25	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-26	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-37	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-88	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-101	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-112	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-130	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-134	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-190D	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
X-197D	16	\$ 1.000,00	\$ 3.200,00	\$ 700,00	\$ 16.500,00	\$ 5.350,00	\$ 26.750,00
					\$ 321.000,00		

Fuente: Operaciones Río Napo CEM.

Elaboración: Santiago Arias

4.1.2 MODIFICACIÓN EN LAS BOMBAS ELÉCTRICAS E INSTALACIÓN DE EOUIPOS

En la Estación Sacha Central existen 7 unidades HPS, con las siguientes características: BOMBA HC 7800 118 etapas; una presión de succión de 45 psi, una presión de descarga de 3.849 psi, el motor opera con 4.160 volts, 900 HP, 3.565 RPM, dividida en 5 cuerpos. El fluido proviene del tanque de reposo.

4.1.2.1 Análisis técnico de la actividad

Se requiere realizar las modificaciones necesarias de las bombas que se tienen en Sacha Central, para posteriormente realizar la instalación de las mismas en el nuevo Sistema Power Water de la estación.

La actividad se pondrá a cargo del Departamento de Mantenimiento de la empresa operadora, y se ejecutará de acuerdo al presupuesto que se tiene para el año en curso.

Las unidades serán instaladas en la plataforma del sistema de reinyección de agua de formación, razón por la cual no se tiene ningún inconveniente para interferir con las operaciones diarias de la planta.

4.1.2.2 Recursos requeridos en la actividad

Se consideran jornadas de trabajo de 12 horas diarias, a partir de las 06:00 hasta las 18:00.

Recurso Humano: Se necesitará de alrededor de 10 personas para cada equipo.

- 1 Operador de camión grúa y asistente
- 1 Técnico mecánico y asistente
- 1 Técnico eléctrico y asistente
- 1 Técnico de instrumentación y asistente
- 2 Técnicos de la empresa proveedora

Los costos de los 6 técnicos de mantenimiento, no pueden ser adjuntados al cálculo de los costos, ya que son parte del personal directo de la empresa operadora. Mientras que los 4 técnicos restantes que se encuentran para la realización de la actividad, tampoco se consideran dentro de los costos, ya que dichos valores son estimados en el valor a facturarse por la empresa proveedora de los servicios.

Recurso Material: Como equipos a emplearse se encuentran los siguientes:

El camión grúa y sus dos operadores, tienen un costo diario de USD 900,00; valor que se cancela únicamente por el montaje de la bomba sobre la plataforma.

- 4 Bombas de precarga con un costo de USD 275.000,00.

Recurso Técnico: Como recurso a emplearse es necesario un software para equipo de alineación y balanceo laser.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora. Se toma en cuenta el cronograma establecido y se encontrará a cargo del Departamento de Mantenimiento de la empresa operadora.

4.1.2.3 Costos de la actividad

En el siguiente cuadro 4.3 se detallan los recursos operativos y costos.

CUADRO 4.3 COSTOS DE LAS MODIFICACIONES EN LAS BOMBAS HPS

	COSTOS (USD)				
Operaciones	Precio unitario	Precio subtotal			
4 Bombas de precarga	275.000,00	1.100.000,00			
Camión Grúa	900,00	900,00			
TOTAL		1.100.900,00			

Fuente: Operaciones Río Napo CEM.

Elaboración: Santiago Arias

Se obtiene un valor total, por costos de montaje e instalación por las cuatro unidades, de USD 1'100.900,00

4.1.3 MODIFICACIÓN DE SEPARADORES BIFÁSICOS A FWKO

En la Estación Sacha Central existen 7 separadores bifásicos, 2 utilizados como separadores de prueba y los 5 restantes como separadores de producción. A estos últimos llega la producción de todos los pozos correspondiente a Sacha Central.

La modificación a un separador de agua libre permitirá que el nuevo sistema de Power Water tenga una mejor distribución de procesamiento.

4.1.3.1 Análisis técnico de la actividad

Es necesario la modificación de un separador bifásico de prueba a un separador de agua libre (FWKO), de esta manera se evita el reprocesamiento de agua en el nuevo Sistema Power Water en la Estación de Sacha Central.

Como solución a esta parte del proyecto se determina la repotenciación del separador bifásico a trifásico, de esta manera aumentando la eficiencia en la separación agua-petróleo, por lo tanto el % BSW será mucho menor y no se tendrá riesgos de altos daños en infraestructura.

4.1.3.2 Recursos requeridos en la actividad

Recurso Humano: Se necesitará de alrededor de personas para cada equipo.

- 1 Ingeniero de campo en Facilidades de Superficie y asistente
- 1 Técnico mecánico y asistente
- 1 Técnico de instrumentación y asistente

Los costos de los 4 técnicos de facilidades y el ingeniero de campo con su asistente, no pueden ser adjuntados al cálculo de los costos, ya que son parte del personal directo de la empresa operadora.

Se consideran jornadas de trabajo de 12 horas diarias, a partir de las 06:00 hasta las 18:00.

Recurso Material: Como único recurso a emplearse se encuentra:

- 1 Repotenciación de Separador Bifásico a Separador Trifásico con capacidad de 50.000 bl, que tiene un costo de USD 2'000.000,00.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora.

Se toma en cuenta el cronograma establecido y se encontrará a cargo del Departamento de Facilidades de la empresa operadora.

4.1.3.3 Costos de la actividad

Con un costo total de USD 2'000.000,00. Se realiza la modificación de un separador bifásico, de esta manera obteniendo una unidad de FREE WATER.

4.1.4 MODIFICACIÓN DEL TANQUE DE AGUA DE FORMACIÓN

Un Tanque Skimmer es un equipo común con la función de remover el hidrocarburo disperso en el agua de inyección. Por lo que al proveer el tiempo suficiente de retención, se logrará separar la fase de petróleo remanente en el agua. La separación que se realiza en el Tanque Skimmer es posterior a la ejecutada en la unidad de Free Water.

4.1.4.1 Análisis técnico de la actividad

El tanque de agua de formación requiere ser cambiado por uno nuevo por lo que se opta como mejor opción la instalación de un Tanque Skimmer o desnatador, con una capacidad de 50.000 bl.

4.1.4.2 Recursos requeridos en la actividad

Se consideran jornadas de trabajo de 12 horas diarias, a partir de las 06:00 hasta las 18:00.

Recurso Humano: Se necesitará de alrededor de 10 personas para cada equipo.

- 1 Ingeniero de campo en Facilidades de superficie y asistente
- 1 Técnico mecánico y asistente
- 1 Técnico de instrumentación y asistente
- 2 Técnicos de la empresa proveedora

Los costos de los 4 técnicos de facilidades y el ingeniero de campo con su asistente, no pueden ser adjuntados al cálculo de los costos, ya que son parte del personal directo de la empresa operadora.

Mientras que los 2 técnicos restantes que se encuentran para la realización de la actividad, tampoco se consideran dentro de los costos, ya que dichos valores son estimados en el valor a facturarse por la empresa proveedora de los servicios.

Recurso Material: Como equipos a emplearse se encuentran los siguientes.

- 1 Tanque Skimmer con un costo de USD 900.000,00.

Recurso Técnico: Como recurso a emplearse es necesario un software que permita el diseño y simulación correspondiente al nuevo tanque desnatador que se instalará en reemplazo del tanque de agua de formación.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora.

Se toma en cuenta el cronograma establecido y se encontrará a cargo del Departamento de Facilidades de la empresa operadora.

4.1.4.3 Costos de la actividad

El costo de la actividad es de USD 900.000,00 por la instalación del nuevo tanque desnatador.

4.1.5 INCLUSIÓN DE UN SISTEMA DE FILTRADO

Los filtros multimedia son utilizados para el tratamiento de agua en la industria petrolera, porque son aquellos capaces de vitar la formación de microbios y algas. Esta función se la puede realizar al no existir una capa filtrante debajo de los difusores de filtración.

4.1.5.1 Análisis técnico de la actividad

Se requiere de la inclusión de sistema de filtrado, ya que para el nuevo Sistema Power Water, el uso de agua de formación como fluido motriz, puede generar daños en los equipos de superficie. Por lo tanto se opta como mejor opción la instalación de un sistema de filtración, compuesto por dos filtros multimedia de 15.000 bl.

4.1.5.2 Recursos requeridos en la actividad

Recurso Humano: Se necesitará de alrededor de personas para cada equipo.

- 1 Ingeniero de campo en Facilidades de Superficie y asistente
- 2 Técnicos de empresa proveedora.

Los costos de los 2 ingenieros de facilidades, no pueden ser adjuntados al cálculo de los costos, ya que son parte del personal directo de la empresa operadora. Se consideran jornadas de trabajo de 12 horas diarias, a partir de las 06:00 hasta las 18:00.

Recurso Material: Como único recurso a emplearse se encuentra:

- 2 Filtros Multimedia de 15.000 bl, que tiene un costo de USD 600.000,00.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora.

Se toma en cuenta el cronograma establecido y se encontrará a cargo del Departamento de Facilidades de la empresa operadora.

4.1.5.3 Costos de la actividad

El costo total por el nuevo sistema de filtración a instalarse es de USD 600.000.00.

4.1.6 OPTIMIZACIÓN DEL TRATAMIENTO QUÍMICO

En el proceso de succión de las bombas booster y en el ingreso al manifold, es necesario aplicar un tratamiento químico. El cual nos permitirá en el sistema de fluido motriz evitar problemas como: emulsiones, precipitación de parafinas y carbonatos, y corrosiones.

4.1.6.1 Análisis técnico de la actividad

En el Campo Sacha se circula un caudal de inyección aproximado de 19.032 barriles de petróleo por día, con un BSW menor al 0,5%. La condición de operación del fluido motriz requiere ser sometido a una presión de 3.850 psi.

Por el movimiento generado al trabajar con las bombas jet se producen emulsiones, por tal motivo es indispensable requerir de un tratamiento químico con inhibidores de emulsión.

Un tratamiento químico de control de bacterias es importante al tener un tratamiento mecánico limitado, debido al sistema que se presenta y a las necesidades existentes, por lo tanto se utiliza un biocida que impida la existencia de bacterias.

El procedimiento para transportar el fluido motriz hacia cada pozo y retornar el mismo con la producción a través de las líneas de flujo, ocasiona pérdidas graduales de presión y temperatura permitiendo la precipitación de parafinas. Para lo cual se inyecta inhibidores y de ésta manera se controla el problema.

La producción de agua de formación en el campo Sacha es de 1.900 bapd. Debido a la composición físico-química del agua existe la probabilidad que se forme incrustaciones o sólidos en suspensión, por la precipitación de carbonatos.

Así también la corrosión es otro problema que debe ser tomado en cuenta en el proceso, por tal razón se requiere la utilización de inhibidores de escala y corrosión.

4.1.6.2 Recursos requeridos en la actividad

Recurso Humano: Se necesitará del personal a cargo de control de sólidos, y puesto que los mismos son pertenecientes a la empresa operadora, no existen rubros a considerarse.

Recurso Material: Se refiere a los inhibidores a ser utilizados en los diferentes tipos de tratamiento químico. Los cuales tienen un costo aproximado de USD 16,00 por galón para el biocida; USD 10,50 por galón para el demulsificante; USD 6,60 por galón para el antiparafínico; USD 9,40 por galón para el antiescala y USD 9,40 por galón para el anticorrosivo.

Recurso Económico: El presupuesto contemplado para el desarrollo de actividades para el año en curso, dentro de las políticas de la empresa operadora.

4.1.6.3 COSTOS DE LA ACTIVIDAD

En el siguiente cuadro 4.4 se detalla los diferentes distintivos para el uso tratamientos químicos con el fluido motriz petróleo y agua.

CUADRO 4.4 COSTOS POR TRATAMIENTO QUÍMICO

	FLUIDO MOTRIZ							
Tratamiento Químico		Petróleo		Agua	Agua			
	gls/día	\$/gal	\$/día	gls/día	\$/gal	\$/mes		
Biocida (BAC-91)	9,00	10,50	94,50	9,00	10,50	94,50		
Demusificante (DMO-14606)	28,00	16,00	448,00	8,00	16,00	128,00		
Antiparafínico (DT-272)	11,00	6,60	72,60	5,00	6,60	33,00		
Antiescala (MX-503)	4,00	9,40	37,60	20,00	9,40	188,00		
Anticorrosivo (PROTERQUIM-1106)	5,00	9,40	47,00	10,00	9,40	94,00		
	57,00		699,70	52,00	51,90	537,50		
Total	Costo	anual	255.390,50	Costo	anual	196.187,50		

Fuente: Operaciones Río Napo CEM.

Elaboración: Santiago Arias

Como se puede verificar en el cuadro 4.4 los costos anuales por tratamiento químico para el fluido motriz petróleo son actualmente de USD 255.390,50 y con fluido motriz agua de formación serán de USD 196.187,50, por lo que existe una reducción de egresos de USD 59.187,00 por año.

4.2 ANÁLISIS ECONÓMICO DEL PROYECTO

La finalidad del proyecto es verificar la factibilidad para el cambio de fluido motriz de petróleo por agua de formación, además del incremento de producción en ciertos pozos del sistema hidráulico con el cambio y rediseño de bombas tipo jet para su ejecución.

A continuación se describen los principales indicadores económicos utilizados en el proyecto.

4.2.1 INDICADORES ECONÓMICOS

Este análisis nos permite determinar la factibilidad y viabilidad en la ejecución del proyecto. Por esta razón la utilización de los principales indicadores financieros permiten aclarar la rentabilidad del proyecto, más aun en el sector de la industria petrolera, que los gastos pueden ser muy elevados y de los cuales se debe tomar mucho en cuenta.

La viabilidad del proyecto será determinado mediante los siguientes indicadores:

- Período de recuperación de la inversión (PRI)
- Tasa interna de retorno (TIR)
- Valor actual neto (VAN)

4.2.2 DESCRIPCIÓN DE PARÁMETROS EMPLEADOS

En el análisis se asume una producción ininterrumpida de 12 meses y 30 días por cada mes. El incremento de producción diaria es de 1.086 bl de petróleo, por cambio de bombas tipo jet en 2 pozos que utilizan bombas pistón y un rediseño de bombas tipo jet en los 10 pozos restantes del sistema hidráulico.

Acorde a datos de producción del Campo Sacha la declinación mensual equivale al 0,1910%. La tasa de actualización bancaria anual estimada es de 12%, la cual es empleada por la empresa estatal Petroamazonas EP.

4.2.3 INGRESOS NETOS

El precio actual de venta por barril de petróleo se considera en USD 51,00; descontando los costos de operación por cada barril producido. Debido a la propuesta de cambio y rediseño de bombas tipo jet de ciertos pozos del sistema hidráulico, Estación Sacha Central, se estima un incremento de producción de 1.086 bppd.

La recuperación inicial que se obtendrá es por el volumen de petróleo recuperado por una sola vez, el cual se encuentra distribuido en las líneas de inyección, retorno y de completación. El volumen de petróleo a recuperarse es de 4.857 bl.

El volumen de petróleo muerto en el tanque de almacenamiento, utilizado para la succión de las unidades power oil también será recuperado, con un total de 21.000 bl.

Por lo tanto el volumen total que se recuperará será de 25.857 bl de petróleo. Así como también la optimización diaria en la producción será de 1.086 bl y de 32.576 bl por mes.

A continuación en el cuadro 4.5 se detallan los costos de ingresos mensuales por incremento de producción y optimización de tratamiento químico. Así como también del ingreso inicial por total de petróleo recuperado.

CUADRO 4.5 INGRESOS MENSUALES DEL PROYECTO

	COSTO	OSTOS (USD)		
Actividad	Barriles	Galones	Unitario	Subtotal
Optmización de producción	32.576,00		51,00	1.661.376,00
Optimización de tratamiento químico		150,00	32,89	4.933,58
Recuperación única de petróleo por fluido motriz	25.857,45		51,00	1.318.730,01
TOTAL	2.985.039,59			

Elaboración: Santiago Arias

Como ingreso neto inicial del proyecto se tiene un valor de USD 2'985.039,59. Mientras como ingreso mensual se tiene un valor total de la suma entre la optimización de la producción y el tratamiento químico de USD 1'666.309,58.

4.2.4 INVERSIÓN

La inversión inicial del proyecto se ve basada en los costos por las siguientes actividades: cambio y rediseño de bombas de subsuelo, equipamiento con bombas de precarga y repotenciación para las bombas HPS, modificación de un separador bifásico a trifásico, instalación de un nuevo tanque desnatador y la inclusión de un sistema de filtración.

Se considera el 5% demás en las actividades, debido a cualquier imprevisto que se tenga durante la ejecución del proyecto. En el cuadro 4.6 se detallan los valores correspondientes a cada una de las actividades a realizarse y la inversión inicial necesaria.

CUADRO 4.6 INVERSIÓN INICIAL DEL PROYECTO

INVERSIÓN INICIAL										
ACTIVIDADES	Subtotal	5% (Imprevistos)	Costos(USD)							
Rediseño y cambio de bombas jet	321.000,00	16.050,00	337.050,00							
Equipamiento de Bombas precarga	240.900,00	12.045,00	252.945,00							
Modificación para Separador Bifásico	2.000.000,00	100.000,00	2.100.000,00							
Tanque nuevo desnatador	900.000,00	45.000,00	945.000,00							
Inlcusión de sistema de filtración	600.000,00	30.000,00	630.000,00							
TOTAL	•		4.264.995,00							

Elaboración: Santiago Arias

4.2.5 ANÁLISIS DEL BALANCE ECÓNOMICO

El análisis final del balance económico permite verificar la factibilidad del proyecto, es así que se llega a la conclusión, que el presente trabajo presentado es totalmente rentable y viable para mejorar en la producción del sistema hidráulico y disminuir el impacto ambiental, que genera al trabajar con fluido motriz petróleo.

En la siguiente tabla 4.7 se detallan los valores correspondientes a los indicadores financieros que permiten determinar la viabilidad del proyecto, así como también el correspondiente flujo de caja.

CUADRO 4.7 BALANCE ECONÓMICO

Análisis económico	Valor
Inversión inicial	4.264.995,00
Ingreso inicial	1.318.730,01
Ingresos mensuales	1.666.309,58
Ingresos anuales	19.995.715,00
Tasa de descuento	12%
Período de recuperación de la inversión (PRI)	2 meses 7 días
Valor actual neto (VAN)	221.101,97
Tasa interna de retorno (TIR)	16%

	MES						
Flujo de caja	0	1	2	3			
Egreso	-4.264.995,00	0	0	0			
Ingreso	1.318.730,01	1.318.730,01	1.318.730,01	1.318.730,01			
TOTAL	-2.946.264,99	-1.627.534,99	-308.804,98	1.009.925,03			

Elaboración: Santiago Arias

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- La implementación de este proyecto, nos permite recuperar aproximadamente 25.857 bl de petróleo, que se encuentran en las líneas de distribución, retorno, completaciones de fondo de los pozos y nivel muerto para la operación de las bombas que trabajan con el sistema Power Oil.
- Al realizar el análisis físico-químico del agua de formación se determinó que es excelente y no es agresiva, ya que no existe tendencia de incrustaciones; por lo tanto se considera que el agua es buena para inyectar, lo que no afectaría al funcionamiento en los equipos actuales.
- El cambio de bombas de tipo pistón por jet de los pozos X-130 y X-134, es viable y necesario, previo al cambio de tipo de fluido motriz; debido a que las bombas pistón no están diseñadas para trabajar con agua como fluido motriz.
- Se determinó que al realizar el rediseño en las bombas de subsuelo de los 12 pozos se incrementa la producción en 1.086 bl de petróleo diario. Así como también una disminución de fluido motriz, pero en este caso, agua de formación.

A continuación se expone el cuadro resumen del rediseño de bombas y optimización de la producción obtenida en cada pozo. Siendo los mejores los pozos X-88 y X-101 ya que ganan una producción de 276 bppd y 205 bppd, respectivamente; mientras que el pozo X-25 solamente alcanza un aumento de producción de 4 bppd.

РО	70	PROD	UCCIÓN		PETRÓL	.EO	А	GUA	FLUIDO	MOTRIZ	ь	OMBA
FO	20	k	ofpd		bppd		k	apd	bi	pd		ONIDA
No	Tipo	Actual	Rediseño	Actual	Rediseño	ΔQ Ganado	Actual	Rediseño	Petróleo	Agua	Actual	Rediseño
X-01	Jet	456	595	444	579	135	12	16	1775	1759	CLAW 10-I	Guiberson PL II 2 7/8"
X-19	Jet	334	552	173	286	113	161	266	1452	1768	NATIONAL 9-A	National 3x48, 3 1/2"
X-25	Jet	732	743	277	281	4	455	462	1652	2523	KOBE 10-B	National 3x48, 3 1/2"
X-26	Jet	345	525	128	195	67	217	330	1225	1698	NATIONAL 9-A	National 3x48, 3 1/2"
X-37	Jet	256	485	229	434	205	27	27	1490	1531	CLAW 9-J	Guiberson PL II 2 7/8"
X-88	Jet	261	556	244	520	276	17	36	2010	3322	CLAW 12-L	Kobe Tipo D 3 1/2"
X-101	Jet	698	721	203	210	7	495	511	1564	3285	KOBE 11-A	National 3x48, 3 1/2"
X-112	Jet	332	382	290	334	44	42	48	1620	1840	CLAW 10-I	Guiberson PL II 2 7/8"
X-130	Pistón	357	455	145	185	40	212	270	1775	1916	OHI 9-A	Oilmaster 3x48, 3 1/2"
X-134	Pistón	411	411	397	397	0	14	14	778	2193	CLAW 11-J	National 3x48, 3 1/2"
X-190D	Jet	291	446	89	136	47	202	310	1850	1262	GUIBERSON C-4	Guiberson PL II 2 7/8"
X-197D	Jet	228	414	182	330	148	46	84	1841	1855	CLAW 10-I	Guiberson PL II 2 7/8"
TOT	ΓAL	4701	6285	2801	3887	1086	1900	2374	19032	24952		

 Al realizar el análisis técnico, se determinó que el pozo X-134, se encuentran operando a condiciones óptimas con la bomba jet para fluido motriz petróleo, que poseen instalada; pero la intervención que se requiere

- es por la necesidad de cambiar el fluido motriz por agua de formación, ya que los pozos necesitan operar con las nuevas bombas que se proponen.
- El programa Well Perform, de la empresa Schlumberger, permitió determinar la correlación de flujo multifásico para obtener la presión de descarga correcta; y de ésta manera determinar la geometría óptima de la bomba hidráulica tipo jet.
- El cambio de fluido motriz de petróleo por agua de formación, permitirá mejorar la capacidad de tratamiento de los fluidos futuros en el proceso de deshidratación, debido al incremento del tiempo de residencia en el tanque de lavado, que será de 51 a 304 horas.
- Los 19.032 bl de petróleo que actualmente se utiliza como fluido motriz serán cambiados por 24.952 bapd, de ésta manera se recuperará 25.857 bl que representa un valor de ingreso de USD 1'318.730, lo cual permite solventar con parte del costo total del proyecto.
- Al realizar el análisis técnico se determinó la inclusión de un sistema de filtración que se componen con 2 filtros multimedia con una capacidad de 15.000 bl cada uno; el cual es importante para que la ejecución del proyecto sea viable, ya que el trabajar con agua puede originar aberraciones en los equipos en superficie.
- En el balance económico realizado se puede determinar que el proyecto es fiable ya que se obtiene un VAN calculado con un ingreso de utilidad de USD 221.101,97. El tiempo de recuperación de la inversión será de 2 meses y 7 días, con una Tasa de Retorno Interna del 16%.

5.2 RECOMENDACIONES

- Se recomienda la implementación de nuevos equipos, así como también las mejoras debidas a los que se tienen en la estación central, para garantizar el éxito en el proyecto a realizarse.
- Se recomienda analizar la posible intervención en el pozo X-134 ya que aún tiene potencial para incrementar la producción en la estación central. Dicho pozo sería considerado candidato a un cambio de levantamiento artificial, de sistema de bombeo hidráulico a sistema de bombeo electrosumergible.
- Se considera necesario la implementación de un repotenciador en un separador bifásico con una capacidad de 50.000 bl, para utilizarlo como una unidad de separación de agua libre, para que de esta manera se evite el reproceso del agua; así como también se debe instalar un nuevo tanque desnatador con una capacidad de 50.000 bl, para tener agua de mejores condiciones para inyección.

- Se recomienda realizar un estudio de integridad mecánica a las líneas de flujo que forman el sistema de distribución de fluido motriz, previo a la implementación del sistema con agua de formación para garantizar su nivel operativo, siendo este el punto de partida para ser monitoreadas en el futuro. Debido a que el por el tiempo de uso pueden encontrarse expuestas a daños.
- Se recomienda que la asignación del presupuesto requerido para el desarrollo de este proyecto se tenga que gestionar por intermedio de los respectivos niveles jerárquicos, para que la ejecución de las diversas tareas propuestas se canalice dentro de los plazos planteados.
- Es recomendable realizar pruebas de presión en los pozos de la estación central del campo Sacha para tener valores más actualizados y que se pueda verificar la situación actual del campo.

REFERENCIAS BIBLIOGRÁFICAS

Aguirre, F., Mendoza, P. (2016). *Análisis técnico-económico de métodos de optimización de bombeo hidráulico: Eddie E. Smart y Hal Petrie en un campo del Oriente Ecuatoriano.* Escuela Politécnica Nacional, Quito, Ecuador.

Baby, P., Rivadeneira, M, (2004). *La Cuenca Oriente: Geología y Petróleo* (3 ed.). Quito, Ecuador: Travaux de l'Institut Français d'Études Andines.

Banco Central del Ecuador, (2016). *Tasa pasiva efectiva referencial*, Recuperado de: https://contenido.bce.fin.ec/resumen_ticker.php?ticker_value=pasiva.

Banco Central del Ecuador, (2016). *Inflación*, Recuperado de: https://contenido.bce.fin.ec/resumen_ticker_php?ticker_value=inflacion.

Barba Díaz, D. L., & Martínez Villarreal, P. E. (2009). Estudio y diseño de un sistema cerrado de reinyección de agua de formación para la Estación Central del Campo Sacha. Universidad Central del Ecuador, Quito, Ecuador

Benavides, A., Vergara, E. (2011). *Estudio del sistema de bombeo hidráulico en el campo Shushufindi*. Escuela Politécnica Nacional, Quito, Ecuador

Beltrán, V., Perlaza, G. (2014). Levantamiento hidráulico con bomba jet para evaluar y producir pozos en el Oriente Ecuatoriano. Escuela Politécnica del Litoral, Guayaquil, Ecuador.

Bristow, C., Hoffstetter, R. (1977). *Lexique stratigraphique international*. Vol. 5, Amérique Latine; Paris, 2 édition.

Brown, Kermit E, (1980). *The technology of Artificial Lift Methods*. Volume 2b: Petroleum Publishing Co.

Canfield, R. (1991). *Sacha Field-Ecuador Oriente Basin*. AAPG. Recuperado de: http://archives.datapages.com

Chanatásig, D. Amaya, A. (2009). Programa de diseño unificado de bombeo hidráulico para la selección de bombas jet y pistón usadas en las operaciones de Petroproducción. Escuela Politécnica Nacional, Quito, Ecuador.

Collaguazo, C. Romero, M. (2011). Estudio del Sistema de bombeo en el Campo Lago Agrio para incrementar su producción. Escuela Politécnica Nacional, Quito, Ecuador.

Craft, B. Hawkins, M. (1991). Applied petroleum reservoir engineering. Texas, USA.

Cueva, L. (2001). Estudio de la optimización del fluido motriz para Bombeo Hidráulico en el campo Sacha. Escuela Politécnica Nacional, Quito, Ecuador.

Guerrón, F., Robalino, D. (2013). Estudio de los resultados del cambio de sistema de levantamiento hidráulico a electrosumergible en el Campo Sacha y definición de criterios para selección de pozos, enero 2013. Universidad Central del Ecuador, Quito, Ecuador.

House, J., Villacreces, R. (2010). Estudio para la implementación del servicio de bombeo hidráulico tipo jet de la compañía Ecuapet CÍA. LTDA. En Petroproducción. Escuela Politécnica Nacional, Quito, Ecuador.

Jiménez, C. (2009). *Optimización de los procesos en las facilidades de producción en el Campo Sacha*, Estación Sacha Central. Escuela Politécnica Nacional, Quito, Ecuador.

El Comercio. (2016). Operaciones Río Napo se liquida; Pdvsa está dejando el campo Sacha. Recuperado de: http://www.elcomercio.com/actualidad/liquidacion-rionapo-pdvsa-petroleo-camposacha.html
Melo, V. (2014). Levantamiento Artificial, Quito, Ecuador.

Molina, I., Sánchez, M., Román, H. (2009). *Diagnóstico y rediseño de las facilidades de separación en el área Auca*. 2016. Escuela Politécnica del Litoral, Guayaquil, Ecuador.

OilMail. (2011). Sistema de levantamiento artificial por bombeo hidráulico, Recuperado de: http://oil-mail.blogspot,com/2011/05/sistema-de-levantamiento-artificial-po 4374.html.

Patton, CC. (1995). Applied Water Technology. Dallas, Texas, Ecuador.

Romero, J., Gómez, F. (2010). Estudio de los efectos de la inyección de agua en los yacimientos "U" y "T" de la formación Napo del Campo Sacha, Estación Sacha Central. Escuela Politécnica Nacional, Quito, Ecuador.

Sánchez, M. (2012). Estudio para la optimización del fluido motriz para bombeo hidráulico en el campo Sacha. Escuela Politécnica Nacional, Quito, Ecuador.

Tapia, M. (2015). *PRODUCCIÓN ORN-SACHA*. 2016, Recuperado de: http://rionapocem.com.ec/contenido/produccion/2015-11-13.pdf

Valdés, L. (2014). Estudio y evaluación técnico económica para cambio de fluido motriz de aceite por agua de formación del Sistema Power Oil centralizado en el Campo Coca. 2016, de Universidad Tecnológica Equinoccial, Quito, Ecuador.

Váquez, G. (2014). Implementación y funcionamiento de la bomba hidráulica tipo jet para pruebas de producción en el pozo guaricho 304 del activo cinco presidentes campo de Petróleos mexicanos (PEMEX) México. Universidad Tecnológica Equinoccial, Quito, Ecuador.

ANEXOS

ANEXO No 1 BALANCE DE MASAS CON FLUIDO MOTRIZ PETRÓLEO

		Producción d	el Sistema	Power Oil	•	
		Producción	Real		Inyección	Producción Total
Pozo	bfpd	bppd	bapd	% BSW	bipd	bppd+bipd
X-001	456	444	12	2,63	1775	2.219
X-019	334	173	161	48,2	1452	1.625
X-025	732	277	455	62,16	1652	1.929
X-026	345	128	217	62,9	1225	1.353
X-037	256	229	27	10,55	1490	1.719
X-088	261	244	17	6,51	2010	2.254
X-101	698	203	495	70,92	1564	1.767
X-112	332	290	42	12,65	1620	1.910
X-130	357	145	212	59,38	1775	1.920
X-134	411	397	14	3,41	778	1.175
X-190D	291	89	202	69,42	1850	1.939
X-197D	228	182	46	20,18	1841	2.023
TOTAL	4.701	2.801	1.900	35,74	19.032	21.833

				Entrada	Salida		
	SEPARADO	ORES	Produccio	ón total + F	Tanque TL-01	Descarga	
Alineación	Tipo	Capacidad (bfpd)	bfpd	bppd	%BSW	bfpd	%BSW
19-130	Producción 1	25000	3.918	318	9,52	3.918	9,52
112-190	Producción 2	25000	4.093	379	5,96	4.093	5,96
25-26-101	Producción 3	25000	6.216	608	18,77	6.216	18,77
37-88	Producción 4	25000	4.017	473	1,10	4.017	1,10
1-134-197	Producción 5	25000	5.489	1.023	1,31	5.489	1,31
	TOTAL	-	23.733	2.801			

TANQUE LAVADO TL-01						
ENTRADA SALIDA						
Producción + Fluido motriz	Tanque S-01	Tanque A-01				
bfpd	bppd	bapd				
3.918	318	3.600				
4.093	379	3.714				
6.216	608	5.608				
4.017	473	3.544				
5.489	1.023	4.466				
23.733	2.801	20.932				

TANQUE SURGENCIA TS-01						
ENTRADA	SALIDA					
Producción + Fluido motriz	Tanque O-01	Fluido motriz				
bppd	bppd	bppd				
21.833	2.801	19.032				

TANQUE AGUA DE FORMACIÓN TA-01					
ENTRADA SALIDA					
TL-01	Bombas de reinyección				
bapd	bapd				
1.900	1.900				

TIEMPO RESIDENCIA TL-01									
Nivel colchón	Nivel colchón Vol. a nivel colchon Altura descarga sup. Vol. a descarga sup. Volumen total Caudal de ingreso Tiempo								
pies	bl	pies	bl	bl	bl	horas			
8	16.109	33	66.449	50.340	23.733	51			

ANEXO No 2

BALANCE DE MASAS CON FLUIDO MOTRIZ AGUA DE FORMACIÓN

		Producci	r Water			
		Producc	ión Real		Inyección	Producción Total
Pozo	bfpd	bppd	bapd	% BSW	bipd	bppd+bipd
X-001	595	579	16	2,63	1759	2.338
X-019	552	286	266	48,2	1768	2.054
X-025	743	281	462	62,16	2523	2.804
X-026	525	195	330	62,9	1698	1.893
X-037	485	434	27	5,57	1531	1.965
X-088	556	520	36	6,51	3322	3.842
X-101	721	210	511	70,92	3285	3.495
X-112	382	334	48	12,65	1840	2.174
X-130	455	185	270	59,38	1916	2.101
X-134	411	397	14	3,41	2193	2.590
X-190D	446	136	310	69,42	1262	1.398
X-197D	414	330	84	20,18	1855	2.185
TOTAL	6.285	3.887	2.374	35,33	24.952	28.839

				ENTRADA	4		SALIDA	
SEPARADORES			Producció	n total + F	luido motriz	Tanque TL-01	Tanque D-01	Descarga
Alineación	Tipo	Capacidad (bfpd)	bfpd	bppd	%BSW	bfpd	bapd	%BSW
19-25-26-37-88-101-112-130-190-197	FWKO	50000	30.231	2.911	7,75	2.969	27.262	2
1-134	Producción 5	25000	1.006	976	2,95	1.006	0	2,95
TOTAL			31.237	3.887			•	

TANQUE LAVADO TL-01						
ENTRADA SALIDA						
Producción + Fluido motriz	Tanque S-01	Tanque D-01				
bfpd	bppd	bapd				
2.969	2.911	57				
1.006	976	30				

TANQUE DESNATADOR TD-01							
ENTRAD)A	SALIDA					
Separadores Tanque L-01		Unidad de Power Water	Bombas de reinyección				
bapd	bapd	bapd	bapd				
27.262	87	24.952	2.374				

TANQUE SURGENCIA TS-01				
ENTRADA SALIDA				
Tanque L-01	Tanque O-01			
bppd	bppd			
3.887	3.887			

TIEMPO RESIDENCIA TL-01								
Nivel colchón Vol. a nivel colchon Altura descarga sup. Vol. a descarga sup. Volumen total Caudal de ingreso Tiemp								
Pies	bl	Pies	bl	bl	bl	Horas		
8	16.109	33	66.449	50.340	3.975	304		

ANEXO No 3

RELACIONES DE ÁREAS Y ÁREAS ANULARES PARA BOMBAS GUIBERSON, NATIONAL, KOBE, FLUID PACKED PUMP, OHI, CLAW

TABLA A-3.1 DIMENSIONES DE TOBERAS Y GARGANTAS DE BOMBAS JET

National					Kol	be Guiberson					
Tobera Garganta			To	Tobera Garganta			Tobera		Garganta		
Número	Área	Número	Área	Número	Área	Número	Área	Número	Área	Número	Área
1	0.0024	1	0.0064	1	0.0024	1	0.0060	DD	0.0016	000	0.0044
2	0.0031	2	0.0081	2	0.0031	2	0.0077	CC	0.0028	00	0.0071
3	0.0039	3	0.0104	3	0.0040	3	0.0100	ВВ	0.0038	0	0.0104
4	0.0050	4	0.0131	4	0.0052	4	0.0129	Α	0.0055	1	0.0143
5	0.0064	5	0.0167	5	0.0067	5	0.0167	В	0.0095	2	0.0189
6	0.0081	6	0.0212	6	0.0086	6	0.0215	С	0.0123	3	0.0241
7	0.0103	7	0.0271	7	0.0111	7	0.0278	D	0.0177	4	0.0314
8	0.0131	8	0.0346	8	0.0144	8	0.0359	Е	0.0241	5	0.0380
9	0.0167	9	0.0441	9	0.0186	9	0.0464	F	0.0314	6	0.0452
10	0.0212	10	0.0562	10	0.0240	10	0.0599	G	0.0452	7	0.0531
11	0.0271	11	0.0715	11	0.0310	11	0.0774	Н	0.0661	8	0.0661
12	0.0346	12	0.0910	12	0.0400	12	0.1000	1	0.0855	9	0.0804
13	0.0441	13	0.1159	13	0.0517	13	0.1292	J	0.1257	10	0.0962
14	0.0562	14	0.1476	14	0.0668	14	0.1668	K	0.1590	11	0.1195
15	0.0715	15	0.1879	15	0.0863	15	0.2154	L	0.1963	12	0.1452
16	0.0910	16	0.2392	16	0.1114	16	0.2783	М	0.2463	13	0.1772
17	0.1159	17	0.3046	17	0.1439	17	0.3594	N	0.3117	14	0.2165
18	0.1476	18	0.3878	18	0.1858	18	0.4642	Р	0.3848	15	0.2606
19	0.1879	19	0.4938	19	0.2400	19	0.5995			16	0.3127
20	0.2392	20	0.6287	20	0.3100	20	0.7743			17	0.3750
						21	1.0000			18	0.4513
						22	1.2916			19	0.5424
						23	1.6681			20	0.6518
						24	2.1544				
		Relación				Relación		Las relaciones de Guiberson			
Tobera	Garganta	R	_	Tobera	Garganta	R	_	están ind	icadas er	n la tabla 3.2	!
N	N-1	0.483 X		N	N-1	0.517 A-					
N	N	0.380 A		N	N	0.400 A					
N	N+1	0.299 B		N	N+1	0.310 B					
N	N+2	0.235 C		N	N+2	0.240 C					
N	N+3	0.184 D		N	N+3	0.186 D					
N	N+4	0.145 E		N	N+4	0.144 E					

Fuente: Levantamiento artificial (Melo, 2014); (OHI, 2011); (SERTECPET, 2010)

TABLA A-3.2 RELACIONES DE ÁREAS Y ÁREAS ANULARES DE GARGANTA PARA BOMBAS GUIBERSON (pg²)

Tobe	ra				(10	,			
DD	Gargantas	000	00						
	R	0.36	0.22						
	As	0.0028	0.0056						
CC	Gargantas	000	00	0	1				
	R	0.64	0.40	0.27	0.20				
	As	0.0016	0.0043	0.0076	0.0115				
BB	Gargantas	00	0	1	2				
	R	0.54	0.37	0.27	0.20				
	A_S	0.0032	0.0065	0.0105	0.0150				
Α	Gargantas	0	1	2	3				
	R	0.53	0.39	0.29	0.23				
	As	0.0048	0.0088	0.0133	0.0185				
В	Gargantas	0	1	2	3	4	5	6	
	R	0.92	0.66	0.50	0.40	0.30	0.25	0.21	
	As	0.0009	0.0048	0.0094	0.0145	0.0219	0.0285	0.0357	
С	Gargantas	1	2	3	4	5	6	7	
	R	0.86	0.65	0.51	0.39	0.32	0.27	0.23	
	As	0.0020	0.0066	0.0118	0.0191	0.0257	0.0330	0.0408	
D	Gargantas	3	4	5	6	7	8	9	
	R	0.74	0.56	0.46	0.39	0.33	0.27	0.22	
	As	0.0064	0.0137	0.0203	0.0276	0.0354	0.0484	0.0628	
Е	Gargantas	4	5	6	7	8	9	10	11
	R	0.77	0.63	0.53	0.45	0.36	0.30	0.25	0.20
_	As	0.0074	0.0140	0.0212	0.0290	0.0420	0.0564	0.0722	0.0954
F	Gargantas	6	7	8	9	10	11	12	
	R	0.69	0.59	0.48	0.39	0.33	0.26	0.22	
0	As	0.0138	0.0217	0.0346	0.0490	0.0648	0.0880	0.1138	
G	Gargantas	8	9	10	11	12	13	14	
	R	0.68	0.56	0.47	0.38	0.31	0.26	0.21	
Н	A _S	0.0208	0.0352 11	0.0510 12	0.0742	0.1000	0.1320	0.1712	
П	Gargantas R	10 0.69	0.55	0.45	13 0.37	14 0.30	15 0.25	16 0.21	
	A _S	0.0302	0.0534	0.43	0.37	0.30	0.25	0.21	
1	Gargantas	11	12	13	14	15	16	17	
ı	R	0.72	0.59	0.48	0.40	0.33	0.27	0.23	
	As	0.72	0.0597	0.0917	0.40	0.33	0.2272	0.2895	
J	Gargantas	13	14	15	16	17	18	19	
Ü	R	0.71	0.58	0.48	0.40	0.34	0.28	0.23	
	As	0.0515	0.0908	0.1349	0.1871	0.2493	0.3256	0.4167	
K	Gargantas	15	16	17	18	19	20	011101	
	R	0.61	0.51	0.42	0.35	0.29	0.24		
	As	0.1015	0.1537	0.2160	0.2922	0.3833	0.4928		
L	Gargantas	16	17	18	19	20			
	R	0.63	0.52	0.44	0.36	0.30			
	As	0.1164	0.1787	0.2549	0.3460	0.4555			
M	Gargantas	17	18	19	20				
	R	0.66	0.55	0.45	0.38				
	As	0.1287	0.2050	0.2961	0.4055				
Ν	Gargantas	18	19	20					
	R	0.69	0.57	0.48					
	As	0.1395	0.2306	0.3401					
Р	Gargantas	19	20						
	R	0.71	0.59						
	As	0.1575	0.2670						

R = relación área tobera/área garganta A_S = área anular de la garganta

Fuente: Levantamiento artificial (Melo, 2014)

TABLA A-3.3 ÁREA ANULAR GARGANTA-TOBERA DE FLUID PACKED

PUMP (pg²)

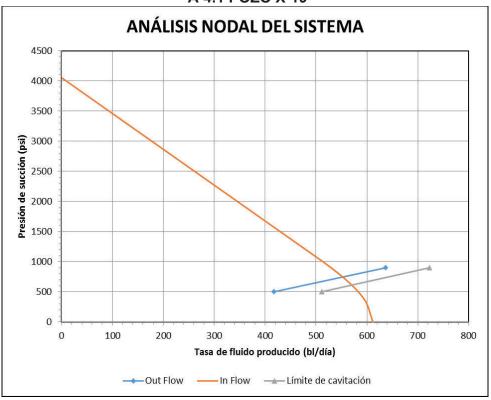
Área Anular Garganta-Tobera A _s								
Tobera	Α	В	С	D	E			
1	0.0053	0.0076	0.0104	0.0140	0.0184			
2	0.0067	0.0095	0.0130	0.0175	0.0230			
3	0.0084	0.0119	0.0163	0.0218	0.0287			
4	0.0104	0.0149	0.0204	0.0273	0.0359			
5	0.0130	0.0186	0.0255	0.0341	0.0449			
6	0.0163	0.0232	0.0318	0.0426	0.0561			
7	0.0204	0.0290	0.0398	0.0533	0.0701			
8	0.0255	0.0363	0.0497	0.0666	0.0877			
9	0.0318	0.0453	0.0622	0.0832	0.1096			
10	0.0398	0.0567	0.0777	0.1041	0.1370			
11	0.0498	0.0708	0.0972	0.1301	0.1712			
12	0.0622	0.0885	0.1214	0.1626	0.2140			
13	0.0777	0.1107	0.1518	0.2032	0.2675			
14	0.0972	0.1383	0.1897	0.2540	0.3344			
15	0.1215	0.1729	0.2372	0.3175	0.4180			
16	0.1518	0.2161	0.2965	0.3969	0.5225			
17	0.1898	0.2701	0.3706	0.4962	0.6531			
18	0.2372	0.3377	0.4632	0.6202	0.8164			
19	0.2965	0.4221	0.5791	0.7752	1.0205			
20	0.3707	0.5276	0.7238	0.9691	1.2756			

Fuente: Levantamiento artificial (Melo, 2014)

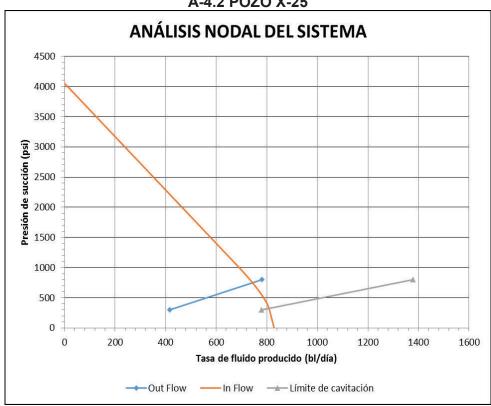
TABLA A-3.4 ÁREA ANULAR GARGANTA-TOBERA DE OHI (pg²)

	Área Anular Garganta-Tobera As								
Tobera	A-	Α	В	С	D	E			
1		0.0036	0.0053	0.0076	0.0105	0.0143			
2	0.0029	0.0046	0.0069	0.0098	0.0136	0.0185			
3	0.0037	0.0060	0.0089	0.0127	0.0176	0.0238			
4	0.0048	0.0077	0.0115	0.0164	0.0226	0.0308			
5	0.0062	0.0100	0.0149	0.0211	0.0293	0.0397			
6	0.0081	0.0130	0.0192	0.0274	0.0378	0.0512			
7	0.0105	0.0167	0.0249	0.0353	0.0487	0.0663			
8	0.0134	0.0216	0.0320	0.0454	0.0630	0.0857			
9	0.0176	0.0280	0.0414	0.0591	0.0817	0.1104			
10	0.0226	0.0361	0.0537	0.0763	0.1051	0.1417			
11	0.0291	0.0467	0.0694	0.0981	0.1348	0.1825			
12	0.0378	0.0605	0.0892	0.1258	0.1736	0.2356			
13	0.0489	0.0776	0.1143	0.1620	0.2241	0.3045			
14	0.0627	0.0994	0.1471	0.2092	0.2896	0.3935			
15	0.0801	0.1278	0.1899	0.2704	0.3743	0.5140			
16	0.1018	0.1639	0.2443	0.3482	0.4879	0.6553			
17	0.1314	0.2119	0.3158	0.4555	0.6228	0.8466			
18	0.1700	0.2739	0.4136	0.5809	0.8048	1.1051			
19	0.2196	0.3593	0.5267	0.7505	1.0508	1.4273			
20	0.2894	0.4567	0.6805	0.9809	1.3573	1.8439			
21	0.3664	0.5902	0.8905	1.2670	1.7535	2.3815			

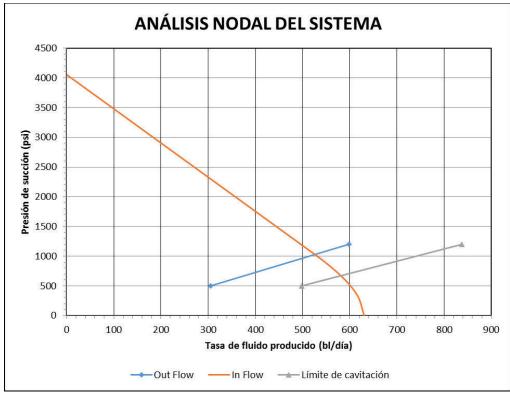
Fuente: OILWELL (2001)


TABLA A-3.5 ÁREA ANULAR GARGANTA-TOBERA DE CLAW (pg²)

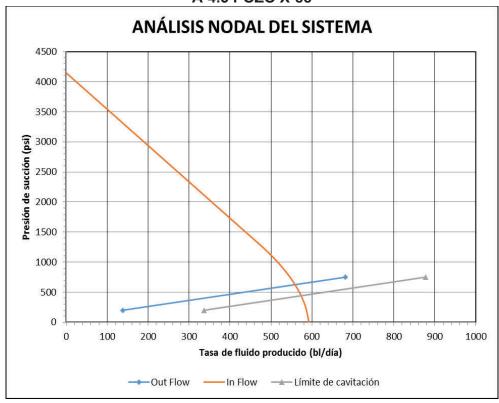
Área Anular Garganta-Tobera A _S								
Tobera	A-	Α	В	С	D	E		
1		0.0028	0.0054	0.0086	0.0124	0.0169		
2	0.0016	0.0042	0.0074	0.0112	0.0157	0.0209		
3	0.0034	0.0066	0.0104	0.0149	0.0201	0.0273		
4	0.0050	0.0088	0.0133	0.0185	0.0257	0.0322		
5	0.0068	0.0113	0.0165	0.0237	0.0302	0.0373		
6	0.0093	0.0145	0.0217	0.0282	0.0353	0.0432		
	0.0131	0.0203	0.0268	0.0339	0.0418	0.0547		
8	0.0189	0.0254	0.0325	0.0404	0.0533	0.0674		
9	0.0228	0.0299	0.0378	0.0507	0.0648	0.0809		
10	0.0272	0.0351	0.0480	0.0621	0.0782	0.0944		
11	0.0287	0.0416	0.0557	0.0718	0.0880	0.1206		
12	0.0344	0.0485	0.0646	0.0808	0.1134	0.1452		
13	0.0346	0.0507	0.0669	0.0995	0.1313	0.1704		
14	0.0299	0.0461	0.0787	0.1105	0.1496	0.1935		
15	0.0268	0.0594	0.0912	0.1303	0.1742	0.2276		
16	0.0194	0.0512	0.0903	0.1342	0.1876	0.2509		
17	0.0211	0.0602	0.1041	0.1575	0.2208	0.2963		
18	0.0204	0.0643	0.1177	0.1810	0.2565	0.3476		
19	0.0129	0.0663	0.1296	0.2051	0.2962	0.4056		
20	0.0008	0.0641	0.1396	0.2307	0.3401			
21		0.0665	0.1576	0.2670				

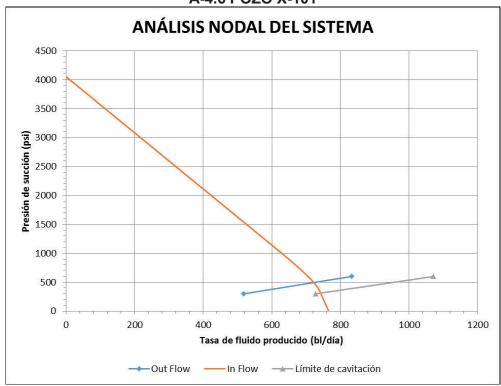

Fuente: SERTECPET (2010)

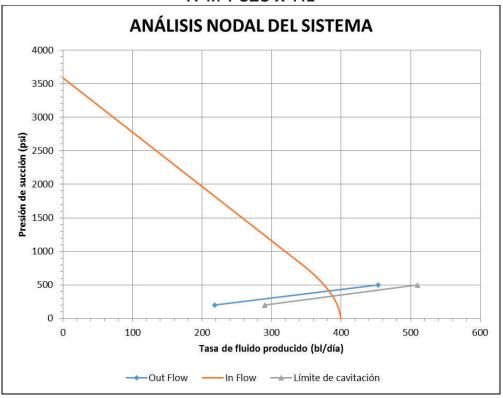
ANEXO Nº 4 GRÁFICOS IPR PARA OPTIMIZACIÓN

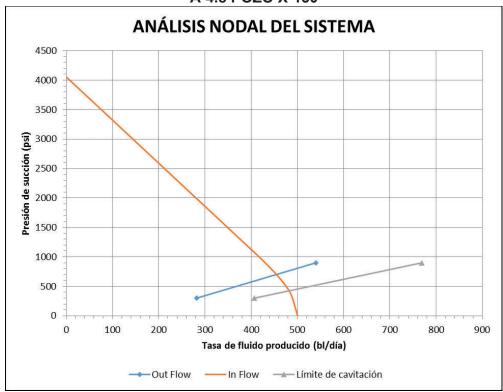

A-4.1 POZO X-19

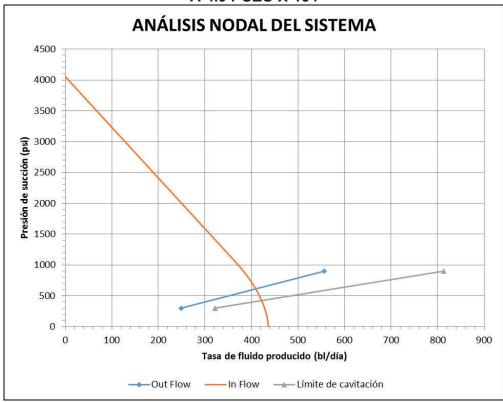
A-4.2 POZO X-25

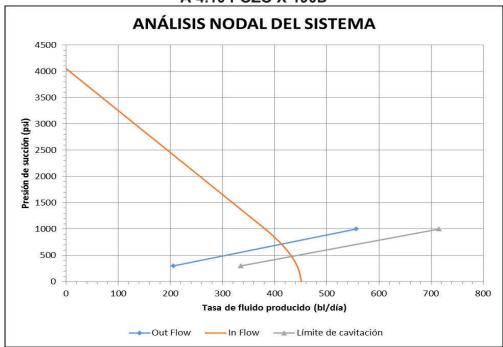

A-4.3 POZO X-26

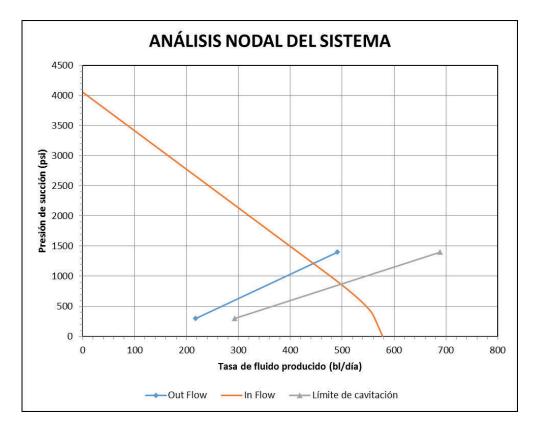

A-4.4 POZO X-37


A-4.5 POZO X-88


A-4.6 POZO X-101


A-4.7 POZO X-112


A-4.8 POZO X-130


A-4.9 POZO X-134

A-4.10 POZO X-190D

A-4.11 POZO X-197D

