

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

"DISEÑO Y SIMULACIÓN DE UNA MÁQUINA PARA DEMOLER EL DUCTO DE VACIADO DEL HORNO DE ARCO ELÉCTRICO DE LA EMPRESA ACERÍA DEL ECUADOR COMPAÑÍA ANÓNIMA ADELCA"

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO MECÁNICO

AUTOR:
CARLOS ALBERTO CAIZA COLLAGUAZO
carlos.caiza02@epn.edu.ec

DIRECTOR:

Ing. Fausto Hernán Oviedo Fierro fausto.oviedo@epn.edu.ec

FECHA 28 de agosto de 2017

CERTIFICACIÓN

Certifico	que	el	presente	trabajo	fue	desarrollado	por	CARLOS	ALBERTO	CAIZA
COLLAG	GUAZO), l	oajo mi su	pervisiór	١.					
								Ing.	Fausto Ovie	do
								DIDECTO	ID DE DDO'	VECTO

DECLARACIÓN

Yo, **CARLOS ALBERTO CAIZA COLLAGUAZO**, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondiente a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

Autor	

DEDICATORIA

A Manuela y Luis Alberto mis padres, por todo el apoyo recibido durante toda mi vida, y el amor incondicional que nos brindan día a día. Gracias un millón de gracias.

A Erika mi hermana, por ser uno de los pilares de nuestra familia, gracias por el sacrificio que diariamente haces, por la salud de nuestros padres, te quiero mucho.

A Guillermo mi hermano y su esposa Fabiola, gracias por el apoyo en los momentos difíciles.

A Zarita, Genesis, Escarlet y Gary, mis sobrinos son uno de mis motores para seguir adelante en nuestras vidas.

Espero que esta meta alcanzada sea un motivo más de alegría y satisfacción para continuar en nuestra lucha por mejorar el estado de salud de mamá.

Manuela, Luis Alberto, Guillermo, Erika, no me queda más que agradecer, por todo el amor compartido durante nuestra vida. Los amo.

CARLOS A. CAIZA C

AGRADECIMIENTO

Un agradecimiento muy especial al Ing. Fausto Oviedo, director del proyecto, por el apoyo incondicional recibido durante el desarrollo del proyecto de titulación.

A la empresa Acería del Ecuador ADELCA, por la oportunidad que me brindaron para ser parte de su equipo de trabajo y el apoyo brindado para culminar con este proyecto.

A Anita por el apoyo recibido en estos últimos pasos para la culminación de este proyecto, gracias por todo el tiempo compartido, por estar pendiente de toda mi familia en especial por la salud de mamá.

CARLOS A. CAIZA C

ÍNDICE

CERTIFICACIÓN	i
DECLARACIÓN	ii
DEDICATORIA	iii
AGRADECIMIENTO	iv
ÍNDICE DE TABLAS	x
ÍNDICE DE FIGURAS	xii
ABSTRACT	xv
INTRODUCCIÓN	1
Objetivo general	3
Objetivos específicos	3
Alcance	3
1. MARCO TEÓRICO	4
1.1. Antecedentes	4
1.2. Horno eléctrico	4
1.2.1. Tipos de hornos eléctricos	5
1.2.1.1. Horno de arco eléctrico	5
1.2.1.2. Horno de resistencia directa	6
1.2.1.3. Horno de resistencia eléctrica	6
1.2.2. Partes del horno eléctrico de arco	7
1.2.2.1. Carcasa	7
1.2.2.2. Ducto de vaciado	8
1.2.2.3. Sistema de basculamiento	10
1.2.2.4. Bóveda	10
1.2.2.5. Electrodos	11
1.3. Proceso de fundición de acero	11
1.3.1. Carga de chatarra y fundentes	11
1.3.1.1. Chatarra triturada (SHREDDED)	12
1.3.1.2. Hierro fundido	13

1.3.1.3.	No triturada	14
1.3.1.4.	Pacas	16
1.3.1.5.	Hierro briqueteado en caliente HBI (Hot Briquetted Iron)	17
1.3.1.6.	Hierro de reducción directa DRI (Direct Reduced Iron)	17
1.3.2. F	usión	18
1.3.3. A	fino	20
1.3.4. V	aciado	21
1.4. Tipo	o de colada	21
1.5. Tipe	o de material del ducto	28
1.5.1. N	laterial refractario	28
1.5.2. D	escripción del ducto	28
1.5.3. N	lecanismo de desgaste	30
2. METOD	OLOGIA	32
	erminación de las especificaciones técnicas de la máquina para demole	
2.1.1. C	Consideraciones para la determinación de las especificaciones técnicas	32
2.1.2. C	asa de la calidad	32
2.1.3. A	nálisis de la casa de la calidad	32
2.1.3.1.	Voz del usuario	32
2.1.3.2.	Voz de ingeniero	33
2.1.4. F	Resultados de la casa de la calidad	33
2.1.5. C	Conclusiones de la casa de la calidad	35
2.1.6. E	specificaciones técnicas	35
2.2. Aná	alisis funcional	36
2.2.1.	Pefinición	36
2.2.2.	esarrollo de diagramas funcionales	36
2.3. Def	inición de módulos	37
2.4. Sol	uciones para los módulos	39
2.4.1. N	1ódulo 1	39

2.4.1.1.	Transportar máquina	39
2.4.1.2.	Posicionar máquina	39
2.4.1.3.	Sujetar y liberar máquina	39
2.4.1.4.	Acoplar y desacoplar conexiones	40
2.4.1.5.	Alternativas del módulo 1	40
2.4.1.6.	Evaluación y selección del módulo 1	41
2.4.2.	Módulo 2	43
2.4.2.1.	Revisión condiciones iniciales de operación	43
2.4.2.2.	Accionar y detener movimiento rotacional	43
2.4.2.3.	Revisar condición final de demolición	44
2.4.2.4.	Alternativas del módulo 2	44
2.4.2.5.	Evaluación y selección del módulo 2	44
2.4.3.	Módulo 3	46
2.4.3.1.	Subir y bajar herramienta	46
2.4.3.2.	Verificar estado del ducto	47
2.4.3.3.	Alternativas del módulo 3	48
2.4.3.4.	Evaluación y selección del módulo 3	48
2.4.4.	Resumen de solución de módulos	50
2.4.4.1.	Módulo 1	50
2.4.4.2.	Módulo 2	51
2.4.4.3.	Módulo 3	51
2.5. D	imensionamiento de la máquina	52
2.5.1.	Cálculo de elementos por el método de elementos finitos	52
2.5.2.	Módulo 1	52
2.5.2.1.	Estructura de la máquina (demoledor)	52
2.5.2.2.	Anclajes para el transporte de la máquina	54
2.5.2.3.	Sujeción del demoledor	57
2.5.3.	Módulo 2	61

	Cálculo de la potencia del motor para movimiento rotacional	
herramien	ta	61
2.5.3.2.	Selección del moto reductor	63
2.5.3.3.	Diseño del eje de transmisión	64
2.5.3.4.	Cálculo de la fuerza que actúa sobre el eje	66
2.5.3.5.	Cálculo del torque que actúa sobre el eje	68
2.5.3.6.	Diagrama de cuerpo libre del eje	70
2.5.3.7.	Fuerzas y diagramas del eje en el plano x-y	71
2.5.3.8.	Geometría del eje	72
2.5.3.9.	Cálculo del diámetro mínimo	73
2.5.3.10.	Cálculo dinámico del diámetro mínimo	74
2.5.3.11.	Cálculo del límite de resistencia a la fatiga	74
2.5.3.12.	Soporte en apoyo en A	80
2.5.3.13.	Rodamiento de rodillos cónicos en el punto A	80
2.5.3.14.	Buje en el punto B	82
2.5.3.15.	Rodamiento de agujas en el punto B	84
2.5.3.16.	Soporte para el rodillo de agujas	85
2.5.4. N	lódulo 3	87
2.5.4.1.	Subir y bajar la herramienta	87
2.5.4.2.	Selección del cilindro hidráulico	88
2.5.4.3.	Cálculo del peso del mecanismo móvil	88
2.5.4.4.	Cálculo de la fuerza total sobre el cilindro hidráulico	90
2.5.4.5.	Selección diámetro y carrera del cilindro hidráulico	90
2.5.4.6.	Soporte para motor	92
2.5.4.7.	Selección rodamientos lineales para el soporte para motor	94
2.5.4.8.	Tuerca para acople cilindro-soporte motor	96
2.5.4.9.	Selección Herramienta Perforación	98
2.5.4.10.	Triconos de dientes de acero y tungsteno	98
2.5.5. R	Resumen del diseño	99

2.6. Análisis de costos	100
2.6.1. Costos directos	101
2.6.1.1. Materia prima	101
2.6.1.2. Elementos normalizados	101
2.6.1.3. Mano de obra	102
2.6.2. Costos Indirectos	103
2.6.2.1. Consumibles	103
a. Costos de Diseño	103
2.6.3. Costo total del proyecto	104
3. DISCUSIÓN DE RESULTADOS	105
3.1. Resultados del proyecto	105
3.1.1. Tiempo de demolición del ducto de vaciado	105
3.1.2. Procedimiento demolición ducto de vaciado	106
3.1.3. Mantenimiento	107
3.2. Discusión del proyecto	107
4. CONCLUSIONES	109
Referencia Bibliográfica	110
Anexo I. Diagrama funcional Nivel 2	112
Anexo II. Diagrama Modular	113
Anexo III. Hoja datos técnicos	114
Anexo IV. Catálogo moto-reductor	115
Anexo V. Catálogo rodamientos	117
Anexo VI. Tablas para el cálculo del eje	128
Anexo VII. Catálogo cilindros hidráulicos	130
Anexo VIII. Catálogo rodamientos lineales	132
Anexo IX. Triconos	135

ÍNDICE DE TABLAS

Tabla 1.1. Especificaciones técnicas chatarra triturada	12
Tabla 1.2. Especificaciones técnicas hierro fundido	13
Tabla 1.3. Especificaciones técnicas oxicorte.	14
Tabla 1.4. Especificaciones técnicas residuos de fábrica	15
Tabla 1.5. Especificaciones técnicas tortas.	16
Tabla 1.6. Especificaciones técnicas de pacas.	16
Tabla 1.7. Especificaciones técnicas HBI	17
Tabla 1.8. Especificaciones técnicas de DRI.	18
Tabla 2.1. Especificaciones técnicas de la máquina.	35
Tabla 2.2. Opciones del módulo 1	40
Tabla 2.3. Evaluación de criterios del módulo 1	41
Tabla 2.4. Evaluación de las alternativas respecto al volumen.	41
Tabla 2.5. Evaluación de las alternativas respecto a la sujeción	41
Tabla 2.6. Evaluación de las alternativas respecto a la seguridad	42
Tabla 2.7. Evaluación de las alternativas respecto al mantenimiento	42
Tabla 2.8. Evaluación de las alternativas respecto a la fiabilidad	42
Tabla 2.9. Conclusiones del módulo 1.	42
Tabla 2.10. Cálculo de conclusiones del módulo 1.	42
Tabla 2.11. Opciones del módulo 2	44
Tabla 2.12. Evaluación de criterios módulo 2	45
Tabla 2.13. Evaluación de las alternativas respecto a la inspección visual	45
Tabla 2.14. Evaluación de las alternativas respecto al desgaste.	45
Tabla 2.15. Evaluación de las alternativas respecto a la temperatura	45
Tabla 2.16. Evaluación de las alternativas respecto al mantenimiento	46
Tabla 2.17. Conclusiones del módulo 2.	46
Tabla 2.18. Cálculo de conclusiones del módulo 2.	46
Tabla 2.19. Opciones del módulo 3	48
Tabla 2.20. Evaluación de criterios módulo 3	48
Tabla 2.21. Evaluación de las alternativas respecto al peso de los componentes	49
Tabla 2.22. Evaluación de las alternativas respecto al área necesaria	49
Tabla 2.23. Evaluación de las alternativas respecto al mantenimiento	49
Tabla 2.24. Evaluación de las alternativas respecto a la inspección visual	49
Tabla 2.25. Conclusiones del módulo 3.	50
Tabla 2.26. Cálculo de conclusiones del módulo 3	50
Tabla 2.27. Consideraciones de la estructura del demoledor para <i>FEA</i>	53

Tabla 2.28. Consideraciones del anclaje de izado del demoledor	56
Tabla 2.29. Consideraciones del pin de sujeción del horno eléctrico	58
Tabla 2.30. Consideraciones de las cuñas de sujeción al horno eléctrico	60
Tabla 2.31. Valores de F según el ángulo	67
Tabla 2.32. Valores de T según el ángulo	69
Tabla 2.33. Cálculo Kt y Kts para varios diámetros	77
Tabla 2.34. Cálculo q y qcortante para varios diámetros	77
Tabla 2.35. Cálculo del límite de resistencia a la fatiga (Se) para varios diámetros	77
Tabla 2.36. Cálculo del factor de seguridad para varios diámetros	78
Tabla 2.37. Consideraciones del eje del demoledor	79
Tabla 2.38. Consideraciones del soporte para rodillos de agujas para FEA	86
Tabla 2.39. Correlación factor de carga y velocidad del émbolo	91
Tabla 2.40. Consideraciones del soporte para motor para FEA	93
Tabla 2.41. Consideraciones de la tuerca para acople cilindro-soporte Motor para F	EA96
Tabla 2.42. Partes principales del demoledor	99
Tabla 2.43. Costos de materia prima	101
Tabla 2.44. Costos de elementos normalizados	102
Tabla 2.45. Costos de mano de obra	103
Tabla 2.46. Costos del material consumible	103
Tabla 2.47. Costos de diseño	104
Tabla 2.48. Costo Total del Proyecto	104
Tabla 3.1. Tiempos del procedimiento de demolición	106
Tabla 3.2. Programa de mantenimiento preventivo de la máquina	107
Tabla 3.3. Tiempo de colada según N° cargas	108

ÍNDICE DE FIGURAS

Figura 1.1. Avances en horno eléctrico	5
Figura 1.2. Carcasa de horno	7
Figura 1.3. Paneles refrigerados	7
Figura 1.4. Ducto de vaciado EBT (<i>Eccentric Bottom Tapping</i>)	8
Figura 1.5. Placas refractarias	8
Figura 1.6. Alineación de placas refractarias.	9
Figura 1.7. EBT cerrado	9
Figura 1.8. EBT abierto	10
Figura 1.9. Bóveda refrigerada	11
Figura 1.10. Carga de chatarra	12
Figura 1.11. Trituración de chatarra	13
Figura 1.12. Hierro fundido	13
Figura 1.13. Oxicorte.	14
Figura 1.14. Residuos de fábrica	15
Figura 1.15. Tortas	15
Figura 1.16. Pacas	16
Figura 1.17. HBI	17
Figura 1.18. DRI.	18
Figura 1.19. Fusión	20
Figura 1.20. Anillo pequeño	29
Figura 1.21. Anillo pequeño	29
Figura 1.22. Anillo grande	29
Figura 1.23. Ducto de vaciado armado con 5 anillos pequeños y un grande en su base	. 30
Figura 1.24. Mecanismo de desgaste de un ladrillo de magnesia-carbono	30
Figura 1.25. Mecanismo de desgaste de un ladrillo de magnesia-carbono	31
Figura 1.26. Mecanismo de desgaste de un ladrillo de magnesia-carbono	31
Figura 2.1. Casa de la calidad	34
Figura 2.2. Diagrama funcional nivel 0	36
Figura 2.3. Diagrama funcional nivel 1	37
Figura 2.4. División modular (Módulo 1)	37
Figura 2.5. División modular (Módulo 2)	38
Figura 2.6. División modular (Módulo 3)	38
Figura 2.7. Solución módulo 1	50
Figura 2.8. Solución a los módulos 2 y 3	51
Figura 2.9. Análisis del factor de seguridad de la estructura del demoledor	53

Figura 2.10. Análisis del desplazamiento de la estructura del demoledor	54
Figura 2.11. Ubicación anclajes para grillete	55
Figura 2.12. Análisis del factor de seguridad del anclaje	56
Figura 2.13. Análisis del desplazamiento del anclaje.	57
Figura 2.14. Sujeción de la estructura al horno eléctrico.	57
Figura 2.15. Análisis del factor de seguridad del pin de sujeción.	59
Figura 2.16. Análisis del desplazamiento del pin de sujeción	59
Figura 2.17. Análisis del factor de seguridad de la cuña de sujeción	60
Figura 2.18. Análisis del desplazamiento de la cuña de sujeción	60
Figura 2.19. Diagrama del tricono	64
Figura 2.20. Componentes de la fuerza resistente	65
Figura 2.21. Fuerzas que actúan sobre el tricono.	66
Figura 2.22. Fuerza vs ángulo.	68
Figura 2.23. Torque en función del ángulo de giro del eje	70
Figura 2.24. Diagrama de cuerpo libre del eje.	70
Figura 2.25. Diagrama cortante del eje en el plano x-y.	72
Figura 2.26. Diagrama momento del eje en el plano x-y.	72
Figura 2.27. Geometría del eje.	73
Figura 2.28. Análisis del factor de seguridad del eje del demoledor	79
Figura 2.29. Análisis del desplazamiento del eje del demoledor.	80
Figura 2.30. Soporte para rodillo de agujas en el punto B	85
Figura 2.31. Análisis del factor de seguridad del soporte para rodillo de agujas	86
Figura 2.32. Análisis del desplazamiento del soporte para rodillo de agujas	87
Figura 2.33. Módulo 3, cilindros hidráulicos.	88
Figura 2.34. Soporte para motor.	92
Figura 2.35. Análisis del factor de seguridad del soporte para motor.	93
Figura 2.36. Análisis del desplazamiento del soporte para motor	94
Figura 2.37. Tuerca para acople cilindro-soporte motor.	96
Figura 2.38. Análisis del factor de seguridad para tuerca acople cilindro-soporte moto	r97
Figura 2.39. Análisis del desplazamiento de la tuerca acople cilindro-soporte motor	97
Figura 2.40. Tricono de dientes de acero.	98
Figura 2.41. Tricono de dientes con insertos de carburo de tungsteno	98
Figura 2.42. Demoledor ducto de vaciado	99
Figura 2.43. Posición inicial del demoledor.	100
Figura 2.44. Posición final del demoledor.	100
Figura 3.1 Velocidad de penetración	105

RESUMEN

El presente proyecto se lo realizó con el objetivo de implementar una máquina para demoler el ducto de vaciado del Horno Eléctrico de Arco de la empresa Acería del Ecuador ADELCA para disminuir el tiempo de parada por mantenimiento programado, en el proceso de fundición de chatarra, así como también evitar la exposición a altas temperaturas de los técnicos que realizan esta tarea manualmente, mejorando la calidad trabajo de los mismos. Para el diseño de la máquina se empezó con el estudio del proceso de fundición en Hornos Eléctricos de Arco, para luego, con la aplicación del método de análisis funcional obtener soluciones para cada módulo y con estas diseñar la máquina que cumple con las necesidades de la empresa, para algunos elementos de la máquina se utilizó simulaciones en *CAD*, optimizando así el diseño de las partes. Se concluyó que con una futura implementación de la máquina en la empresa ADELCA, es posible un ahorro significativo de tiempo en paradas por mantenimiento, aprovechándolo en el aumento de producción diaria de la planta fundidora y una mejora en el ambiente de trabajo de los técnicos encargados.

Palabras Clave: Ducto de vaciado excéntrico, Fundición, Horno eléctrico de arco, Refractario.

ABSTRACT

The present project was made with the objective of implementing a machine to demolish the drainage duct of the Electric Arc Furnace from "Aceria del Ecuador ADELCA" company, to reduce the scheduled time of maintenance in the scrap smelting process, the machine could avoid the exposure to high temperatures of the technicians who perform this task manually as well, improving the quality of work. The design of the machine was started with the study of the smelting process in Arco Electric Furnaces, after that, using the functional analysis method I could obtain solutions for each module and with these solutions I could design the machine that meets the needs of the company, for some elements of the machine, CAD simulations were used, to optimize the design of the parts. It was concluded that with a future implementation of the machine in ADELCA Company, it's possible to save significant time in maintenance breaks, taking advantage of the increase in daily production of the smelting plant and an improvement in the working environment of the technicians in charge.

Keywords: Eccentric Bottom Tapping, Melting, EAF Electric Arc Furnace, Refractory.

DISEÑO Y SIMULACIÓN DE UNA MÁQUINA PARA DEMOLER EL DUCTO DE VACIADO DEL HORNO DE ARCO ELÉCTRICO DE LA EMPRESA ACERÍA DEL ECUADOR COMPAÑÍA ANÓNIMA ADELCA

INTRODUCCIÓN

La industria siderúrgica en nuestro país está en crecimiento, principalmente en la producción de aceros para la construcción como son varilla recta, varilla figurada, ángulos, barras cuadradas, barras redondas lisas, platinas, tees, mallas electro soldadas, vigas, viguetas, cumpliendo normas técnicas como son la NTE INEN 2167 y ASTM A706 para varilla recta y figurada, NTE INEN 2215 y 2224 para ángulos, NTE INEN 2215 Y 2222 para barras cuadradas, lisas, platinas, NTE 2215 y 2234 para tees, NTE INEN 2167 para mallas electro soldadas, NTE INEN 1511 y 2209, ASTM 185 y 497 para vigas y viguetas.

La empresa Acería del Ecuador Compañía Anónima (ADELCA), ubicada en la provincia de Pichincha, Cantón Mejía, Parroquia Alóag, mediante el proceso de reciclaje de chatarra y en contribución con el medio ambiente, recicla todo tipo de chatarra ferrosa.

El 70% de esta chatarra se la recolecta a nivel nacional, a través de centros de acopio, para luego transportada a la planta, en donde pasan por un proceso de recepción y clasificación, de donde direccionan la chatarra al proceso de corte o molido, para que ingrese en condiciones óptimas para la fundición de la misma.

Luego de la clasificación, corte, trituración y limpieza de chatarra, esta se almacena y queda lista para el proceso de fundición, que se lo realiza a través de un Horno de Arco Eléctrico basculante que tiene una capacidad de 30 toneladas de acero líquido, en donde se carga una mezcla de chatarra y fundentes, y con ayuda de energía eléctrica entregada a través de tres electrodos, funde esta chatarra dejando un baño de acero líquido, el cual está en contacto directo con ladrillos y masas refractarias, los cuales se desgastan, recibiendo un mantenimiento planificado dos veces por semana, para el cambio parcial y localizado de ladrillos en los lugares de mayor desgaste y la colocación de nueva masa refractaria.

Este baño es vaciado en una cuchara, a través del Ducto de Vaciado del Horno, este ducto compuesto por anillos de material refractario que armados concéntrica y consecutivamente forman el ducto (Figura 1.23), por donde pasa el acero líquido desde el horno hasta la cuchara transportadora de acero. Este ducto por acción mecánica del paso del acero líquido y ataque de escorias, se desgasta paulatinamente, hasta llegar al final de su vida útil, que son 220 coladas.

La cuchara con acero líquido se transporta al horno cuchara en donde se adicionan ferroaleaciones, cumpliendo normas SAE 1010, 1015, 1029, 1026. Luego de este proceso llamado afino, la cuchara sube hacia el colado continuo en donde por medio de lingoteras oscilantes (moldes) y enderezadoras se produce lingotes de acero continuos que luego son cortados y transportados a las laminadoras para la producción de aceros para la construcción.

Para garantizar el tiempo de vaciado del acero y no permitir el paso de escoria hacia la cuchara, el ducto de vaciado del horno necesita ser reemplazado periódicamente, de dos a tres veces al mes dependiendo de los factores de trabajo, como son basicidad de la escoria la cual influye en el mecanismo de desgaste del refractario, viscosidad de la escoria que está directamente relacionado con la basicidad.

Actualmente el proceso utilizado para demoler es manual (persona-martillo neumático), este trabajo toma un tiempo aproximado de 2 horas, con una exposición a altas temperaturas del personal que realiza la tarea.

La temperatura ambiental a la que se realiza el trabajo oscila entre los 60 y 80°C debido a la radiación de la carcasa del horno, el ducto está a una temperatura entre 180 y 200 °C, mientras que el ladrillo refractario en el interior del horno está a una temperatura entre los 400 y 500 °C, luego de haber parado el proceso de producción para realizar dicho cambio.

Se necesita disminuir el tiempo de reemplazo del ducto y reducir la exposición a altas temperaturas de los técnicos que realizan el cambio, con el diseño de una máquina para que realice este trabajo, para de esta manera bajar el tiempo de parada por el cambio del ducto y mantenimiento así como también cuidar la salud de los técnicos encargados.

Objetivo general

Diseñar y Simular una Máquina para demoler el Ducto de Vaciado del Horno Eléctrico de la empresa Acería del Ecuador Compañía Anónima (ADELCA).

Objetivos específicos

- Estudiar el proceso de fundición y el desgaste de material refractario en el horno de arco eléctrico
- Obtener los parámetros de diseño necesarios de la máquina para demoler el ducto, que garanticen las especificaciones y requerimientos de la empresa
- Determinar la geometría y seleccionar materiales más idóneos de cada elemento que compone la máquina, para soportar las cargas y así garantizar su correcto funcionamiento.
- Elaborar los planos necesarios para la construcción de la máquina
- Validar el diseño de la máquina, cumpliendo los requerimientos en cuanto a la reducción del tiempo por mantenimiento y mejora de la calidad de trabajo de los técnicos encargados

Alcance

- Se recopilará y analizará todos los parámetros necesarios para garantizar el correcto funcionamiento de la máquina, mediante la medición de factores que influyan en el comportamiento del mismo como son temperaturas de trabajo y condiciones ambientales.
- Se determinará la geometría y funcionalidad de la máquina, mediante el cálculo de las diferentes partes y equipos que la constituyan, teniendo en cuenta los recursos (energías) existentes en la planta.
- Se simulará el funcionamiento de la máquina, con la ayuda de un programa computacional, para así conocer los esfuerzos a los que están sometidos todos sus elementos.
- Se elaborarán planos necesarios para la construcción de la máquina.
- Se validará el diseño de la máquina para la implementación en la empresa, evaluando el tiempo de parada por mantenimiento así como también la mejora en la calidad de trabajo

1. MARCO TEÓRICO

1.1. Antecedentes

El proceso de fabricación de acero en los últimos tiempos ha experimentado un gran desarrollo, tanto en el método de obtención de acero así como también en el perfeccionamiento de los equipos y maquinaria que se utilizan en este proceso. A inicios del siglo XX con la difusión de la electricidad industrial, empezó la aparición de hornos eléctricos, en un inicio estos hornos solo se los utilizaba para la obtención de aceros aleados de alto valor añadido, por su alto costo de fabricación. Con el paso de años la optimización del proceso de acería eléctrica, ha hecho que llegue a competir con el proceso alto horno-convertidor, en lo que tiene que ver con los costos de fabricación y calidad del acero.

A mediados del siglo XX con el desarrollo del horno eléctrico, se produjo la desaparición paulatina de los hornos Siemens-Martin, encargados de reciclar la chatarra producida por los convertidores, ya que no podían competir en la calidad del acero que se obtiene del horno eléctrico, y también debido a los problemas medio ambientales generados por los hornos de llama (Siemens-Martin) como son la lluvia acida provocada por SO₂, debido al uso de combustibles de baja calidad.

1.2. Horno eléctrico

El horno eléctrico es utilizado en el proceso de elaboración de acero denominado acería eléctrica, el calor necesario para fundir el acero, principalmente se lo obtiene de energía eléctrica.

La producción de acero a través de acería eléctrica en mayor escala inició en los años 40. Inicialmente el horno eléctrico era utilizado principalmente para la producción de aceros largos, debido al mayor contenido de residuos en la carga de chatarra.

Los procesos de elaboración de acero que utilizan la electricidad como principal fuente de energía presentan una ventaja, ya que se puede utilizar una gran cantidad de chatarra ferrosa en la producción de acero, contribuyendo así al medio ambiente con el reciclaje de chatarra.

Con el desarrollo del horno eléctrico, y optimización del proceso de operación de acería eléctrica, se ha llegado a disminuir el consumo de energía eléctrica y electrodos, así también el tiempo de duración por colada, como se muestra en la figura 1.1.

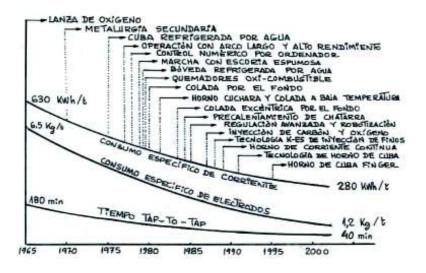


Figura 1.1. Avances en horno eléctrico. (Fuente: Enríquez B. José L. y Tremps G. Enrique. (2007). Metalurgia Secundaria [12])

1.2.1. Tipos de hornos eléctricos

Las formas de conversión de energía eléctrica en calor necesario para la elaboración de acero son las siguientes:

- > Transferencia de calor por radiación, a partir de un arco eléctrico generado por el paso de corriente en un gas ionizado
- Resistencia al paso de una corriente eléctrica en un conductor sólido
- Inducción electromagnética

Las dos primeras formas calientan superficialmente el material de fuera hacia adentro, mientras que el tercer método lo hace de dentro hacia afuera. Estos tipos de calentamiento pueden servir para una clasificación de hornos para la elaboración de acero de la siguiente manera:

1.2.1.1. Horno de arco eléctrico

También llamado horno de arco voltaico, esta generado por el paso de corriente eléctrica a través de aire ionizado, separando los dos puntos que forma el arco, en donde el un punto es el electrodo y el otro corresponde al material que va a ser calentado el cual necesariamente debe ser conductor, de esta manera la trasferencia de calor va directamente a la carga o material a fundirse, la corriente eléctrica pasa también por la carga produciendo un calentamiento adicional de la misma debido a la resistencia al paso de electricidad. La temperatura del arco es igual a la temperatura de ebullición del

material con el que está elaborado el electrodo, a continuación se citan los tipos de horno de arco.

✓ Horno de arco eléctrico de corriente alterna

En este tipo de horno la corriente eléctrica pasa de un electrodo a través del arco eléctrico hacia la carga y de esta, sube a través del arco eléctrico hacia otro electrodo, la polaridad de estos dos puntos calientes se invierte a cada semi ciclo de corriente de la red, los electrodos están instalados por la bóveda del horno, para la fabricación de aceros se utilizan una configuración de tres electrodos.

✓ Horno de arco eléctrico de corriente continua

La corriente eléctrica en este horno pasa de un electrodo a través del arco eléctrico hacia la carga y de esta, pasa a través del arco hacia otro electrodo ubicado en la solera o piso del horno

✓ Horno de arco indirecto

Este horno emplea dos o tres electrodos para la formación del arco entre ellos, en donde la transferencia de calor hacia la carga se lo hace por medio de la radiación del arco formado entre los electrodos que no están sumergidos en la carga. El arco indirecto es estable y constante pero el consumo de energía es mucho mayor que en el horno de arco directo, ya que apenas una parte de energía irradiada llega a la superficie del material a ser fundido o carga

1.2.1.2. Horno de resistencia directa

En este caso la carga a ser fundida sirve como resistencia para el paso de corriente eléctrica, produciéndose el calentamiento de la misma debido al efecto joule, es decir existe un flujo de corriente eléctrica a través de la carga sobre la capa de metal líquido, el electrodo penetra en la carga y el arco se forma en el interior de la misma

1.2.1.3. Horno de resistencia eléctrica

Hornos construidos con hilos metálicos que presentan elevada resistencia al paso de corriente eléctrica como por ejemplo aleaciones de níquel-cromo-hierro y otros materiales resistivos como carburo de silicio, etc. Esta resistencia hace que la energía eléctrica sea convertida en energía térmica por el efecto joule. Estos elementos resistivos son instalados detrás o en el frente de paredes refractarias, calentando a los materiales en

estado líquido o solido por conducción y/o radiación. Estos hornos son principalmente utilizados para tratamientos térmicos de piezas metálicas.

1.2.2. Partes del horno eléctrico de arco

1.2.2.1. Carcasa

La carcasa de hornos eléctricos de arco está fabricada con acero, que tiene normalmente una forma circular o ligeramente elíptica, (figura1.2), esta carcasa es recubierta internamente con ladrillos y masas refractarias, también equipada con un sistema de enfriamiento que son paneles de tubos para la circulación de agua, llamados paneles refrigerados, estos paneles reducen la eficiencia en la transferencia de calor hacia la carga, (figura 1.3), pero son muy útiles en prolongar la vida del revestimiento refractario dentro horno.

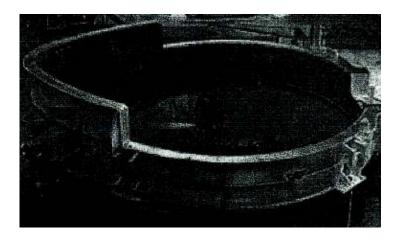


Figura 1.2. Carcasa de horno. (Fuente: Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario [2])

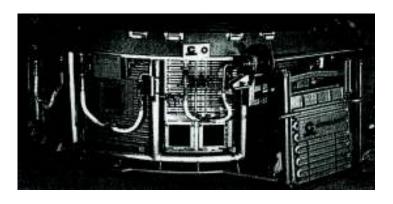


Figura 1.3. Paneles refrigerados. (Fuente: Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario [2])

Los paneles pueden ser fabricados con tubos de acero o cobre, los paneles de cobre se utilizan en las regiones más cercanas al baño de acero líquido o arco eléctrico, mientras que los paneles de acero en la parte superior del horno.

El horno posee dos aberturas laterales una para la remoción de escoria, inspección interna del horno e inyección de oxígeno y carbón, en los hornos antiguos la otra abertura corresponde al canal para el vaciado del baño de acero líquido hacia la cuchara.

1.2.2.2. Ducto de vaciado

En los hornos modernos se utiliza un ducto de vaciado, localizado en la solera del mismo, en una posición excéntrica al horno (EBT *Eccentric Bottom Tapping*), (figura 1.4).

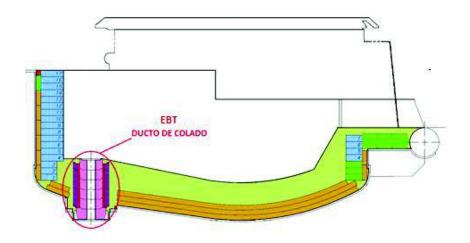


Figura 1.4. Ducto de vaciado EBT (*Eccentric Bottom Tapping*). (Fuente: Magnesita (2010). Hoja Datos Técnicos GMAG-EBT 2124 [3])

El control de apertura del ducto, se lo puede realizar por medio de válvulas deslizantes, que consta de dos placas refractarias (figura 1.5), provistas de un orificio que por medio de un conjunto cilindro pistón, estos dos orificios se alinean permitiendo el paso de acero (figura 1.6)

Figura 1.5. Placas refractarias. (Fuente: http://www.rath-group.com/es/sectores/acero-liquido/sistema-deslizante/)

Figura 1.6. Alineación de placas refractarias. (Fuente: http://www.carbosanluis.com.ar/pdf_mercados/Siderurgia.pdf/)

La apertura también se la puede realizar con un sistema de brazo tipo raqueta, mediante un movimiento de traslación horizontal abre (Figura 1.8) y cierra el ducto de colado (Figura 1.7).

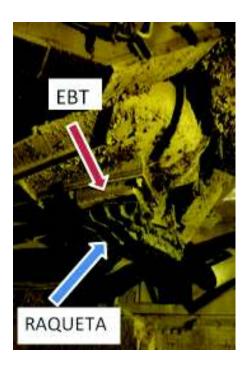


Figura 1.7. EBT cerrado. (Fuente: Elaboración Propia)

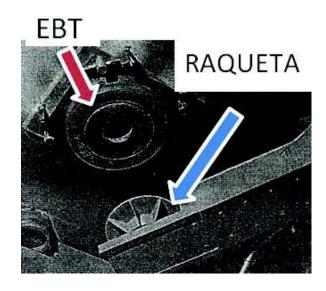


Figura 1.8. EBT abierto. (Fuente: Elaboración Propia)

El uso del sistema EBT presenta una gran ventaja ya que se necesita una pequeña inclinación del horno para el vaciado completo del acero líquido hacia la cuchara, así existe una menor pérdida de temperatura durante el vaciado debido a que el chorro de acero es más compacto y el tiempo de vaciado es menor, también reduce el desgaste de refractario en la zona de línea de escoria.

1.2.2.3. Sistema de basculamiento

El horno está diseñado con sistemas eléctricos e hidráulicos que posibilitan una inclinación de 45° para realizar el vaciado del acero líquido en hornos sin el sistema EBT, mientras que en hornos que poseen este sistema el ángulo de basculamiento es de 15°.

1.2.2.4. Bóveda

La bóveda se traslada a través de un movimiento giratorio para permitir la carga de chatarra en el horno, realizar inspecciones, mantenimiento, posee orificios por los cuales ingresan los electrodos hasta la carga y el ducto de salida de gases. Fabricada con paneles refrigerados y un núcleo de material refractario (figura 1.9).



Figura 1.9. Bóveda refrigerada. (Fuente: Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario [2])

1.2.2.5. Electrodos

Constituidos de grafito poseen una mayor resistencia a la compresión y mayor conductividad térmica, está compuesto de carbono con más del 99% y el resto está constituido de Fe, Si, Ca, S y P. La densidad real está en el rango de 2,22 a 2,25 gr/cm³. El diámetro de los electrodos está en función de la intensidad y voltaje de corriente que fluirán por estos.

1.3. Proceso de fundición de acero

En la fabricación de acero se puede considerar las siguientes etapas del proceso.

1.3.1. Carga de chatarra y fundentes

Después de la inspección del refractario del horno y de los paneles refrigerados, los electrodos son levantados para permitir la abertura del horno, la forma más utilizada para cargar el horno con chatarra es con un puente grúa y cestas o canastas llenas de chatarra con una puerta articulada en el fondo (figura 1.10), el número de cestas depende del requerimiento de producción que pueden ser de 1 a 4 cargas por colada, también pueden ser empleados sistemas de alimentación continua de materia prima precalentada o fría para la conservación de energía y reduciendo así costos de operación.

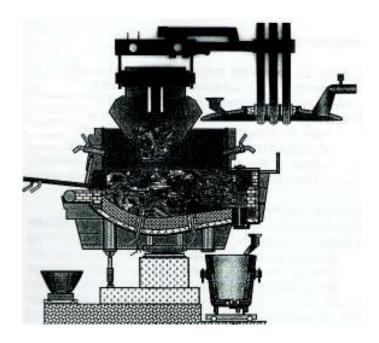


Figura 1.10. Carga de chatarra. (Fuente: Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario [2])

A continuación se detallan los tipos de chatarra con sus características, que ingresan al Horno Eléctrico de Arco de la empresa Acería de Ecuador ADELCA.

1.3.1.1. Chatarra triturada (SHREDDED)

Chatarra de acero al carbono, que proviene de la trituración de estructuras de automóviles, planchas finas de acero chatarra metálica doméstica y de reciclaje procesada en una trituradora que al salir de esta tienen una dimensión aproximada de 100x100x100 [mm], (figura 1.11), en la tabla 1.1 se detallan las especificaciones técnicas.

Tabla 1.1. Especificaciones técnicas chatarra triturada.

	Densidad	Co	mponen	tes	Contam	inantes	Re	esiduale	s
	[gr/cm³]	С%	Mn%	Si%	Р%	S%	Cu%	Cr%	Ni%
Mínima	0,75	0,015	0,189	0,022	0,002	0,001	0,002	0,001	0,003
Media	0,95	0,18	0,63	0,172	0,019	0,016	0,095	0,398	0,053
Máxima	1,14	0,633	2,42	1,958	0,138	0,12	0,413	16,32	0,292

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

La chatarra luego de ser molida, es dirigida por medio de bandas transportadoras hacia magnetos los cuales separa la chatarra metálica de todo tipo de material no metálico, para luego llegar al sitio de almacenamiento listo para cargar en el horno.

Figura 1.11. Trituración de chatarra. (Fuente: Elaboración Propia)

1.3.1.2. Hierro fundido

Proveniente de desechos minero industriales, block de motores de autos, tubería, libres de cualquier elemento inflamable, como aceites cauchos. (figura 1.12), la dimensión estipulada para ingreso al horno eléctrico este tipo de chatarra como máximo es de 600x600x600 [mm]

Figura 1.12. Hierro fundido. (Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

Las especificaciones técnicas del hierro fundido se detallan en la tabla 1.2.

Tabla 1.2. Especificaciones técnicas hierro fundido.

	Densidad	Componentes		Contaminantes		Residuales			
	[gr/cm ³]	С%	Mn%	Si%	P%	S%	Cu%	Cr%	Ni%
Mínima	0,5	0,18	0,0112	0,195	0,001	0,004	0,017	0,01	0,003
Media		4,243	0,614	1,815	0,1845	0,13	0,208	0,169	0,0627
Máxima	1	5,375	0,91	4,05	1,5	0,42	1,042	1,108	0,437

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

1.3.1.3. No triturada

Existen tres tipos de chatarra no triturada que son oxicorte, residuos de fábrica y tortas, que se detallan a continuación.

✓ Oxicorte

Chatarra de acero al carbono, que proviene de residuos de procesos industriales, con espesores mayores a 8 [mm], planchas, tubos, estructuras, estanques, chasis de vehículos, estampados provenientes de la industria metal mecánica, (Figura 1.13), la dimensión para el ingreso al horno de esta chatarra es de 500x500 [mm] como valor máximo

Figura 1.13. Oxicorte. (Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

Las especificaciones técnicas del oxicorte se detallan en la tabla 1.3.

Tabla 1.3. Especificaciones técnicas oxicorte.

	Densidad	Componentes		Contaminantes		Residuales			
	[gr/cm³]	C%	Mn%	Si%	Р%	S%	Cu%	Cr%	Ni%
Mínima	0,4	0,015	0,108	0,002	0,0066	0,001	0,006	0,0017	0,002
Media		0,394	0,801	0,24	0,0183	0,0215	0,1162	0,3688	0,2139
Máxima	0,7	5,16	2,76	2,637	0,1133	0,195	0,553	9,96	6,6

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

✓ Residuos de fábrica

Residuos internos provenientes de la laminación y trefilación: cobles, despuntes, varilla y ángulos, clavos, que presentan defectos físicos, (figura 1.14), el largo máximo de este tipo de chatarra idóneo para ingreso al horno es de 700 [mm]

Figura 1.14. Residuos de fábrica. (Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

Las especificaciones técnicas del residuo de fábrica se detallan en la tabla 1.4.

Tabla 1.4. Especificaciones técnicas residuos de fábrica.

	Densidad	Componentes		Contaminantes		Residuales			
	[gr/cm ³]	С%	Mn%	Si%	Р%	S%	Cu%	Cr%	Ni%
Mínima	1,5	0,11	0,419	0,192	0,0105	0,0106	0,136	0,071	0,048
Media		0,1886	0,7119	0,2277	0,0181	0,0308	0,2654	0,1021	0,0726
Máxima	3,5	0,273	1,08	0,273	0,0227	0,0374	0,449	0,164	0,092

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

✓ Tortas

Chatarra proveniente de la recuperación de derrames de acero, escorias o vaciado de cucharas en acería, con espesores mayores de 3mm, (figura 1.15). La dimensión máxima para el ingreso al horno es de 500x500 [mm]

Figura 1.15. Tortas. (Fuente: Elaboración Propia)

Las especificaciones técnicas de las tortas se detallan en la tabla 1.5.

Tabla 1.5. Especificaciones técnicas tortas.

	Densidad	Componentes		Contaminantes		Residuales			
	[gr/cm³]	С%	Mn%	Si%	Р%	S%	Cu%	Cr%	Ni%
Mínima	0,55	0,26	0,749	0,14	0,0152	0,0173	0,104	0,101	0,045
Media		0,3678	0,9846	0,22	0,022	0,0925	0,1766	0,1327	0,0581
Máxima	1	0,594	1,125	0,3	0,0318	0,378	0,229	0,164	0,071

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

1.3.1.4. Pacas

Chatarra de desechos industriales, desechos de alambre, cabos de acero, latas de reciclaje limpias, zunchos, pletinas. (figura 1.16), la dimensión máxima de las pacas para el ingreso al horno debe ser de 500x500x500 [mm]

Figura 1.16. Pacas. (Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

Las especificaciones técnicas de las pacas se detallan en la tabla 1.6.

Tabla 1.6. Especificaciones técnicas de pacas.

	Densidad	Componentes		Contaminantes		Residuales			
	[gr/cm ³]	С%	Mn%	Si%	Р%	S%	Cu%	Cr%	Ni%
Mínima	0,4	0,02	0,221	0,004	0,0106	0,0076	0,013	0,013	0,002
Media		0,0822	0,4306	0,1438	0,0187	0,0289	0,1647	0,0741	0,0584
Máxima	0,6	0,11	0,64	0,245	0,0365	0,0409	0,28	0,304	0,086

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

El 30% restante de chatarra se obtiene a través de importaciones. Existen diferentes tipos de chatarra en el mercado internacional como los siguientes:

1.3.1.5. Hierro briqueteado en caliente HBI (Hot Briquetted Iron)

Hierro briqueteado en caliente (figura 1.17), compactado a una temperatura superior a 650 ° C en el momento de la compactación. Tiene una alta densidad y contiene un hierro total de entre 90 y 94% en una forma casi pura, bajo contenido de elementos como cobre, níquel, molibdeno, plomo

La reducción directa es el proceso de conversión química de óxidos de hierro, en hierro metálico y carburo de hierro mediante la acción de agentes de reducción y carburización como gas natural, carbón, aceite combustible y gas de horno de coque.

Figura 1.17. HBI. (Fuente: Elaboración Propia)

Las especificaciones técnicas del HBI se detallan en la tabla 1.7.

Tabla 1.7. Especificaciones técnicas HBI.

	Dimensión	Componentes				
	[cm]	[gr/cm ³]	C%	Р%	S%	
Mínima	90x48x29	2	0,6	0,02	0,003	
Máxima	110x58x32	4	1,7	0,14	0,04	

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

1.3.1.6. Hierro de reducción directa DRI (*Direct Reduced Iron*)

Es un mineral hierro de reducción directa también conocido como hiero esponja (figura 1.18), Por el tipo de reducción, en su interior contiene gas, que lo convierte en un material activo, con temperaturas mayores a 65 °C y al contacto con el agua este puede hacer combustión espontánea, se lo utiliza como materia prima ya que sus impurezas son expulsadas con el uso de gas natural, su contenido de carbón es menor al 2 % que se lo emplea como sustituto de chatarra.

Figura 1.18. DRI. (Fuente: Elaboración Propia)

Las especificaciones técnicas del DRI se detallan en la tabla 1.8.

Tabla 1.8. Especificaciones técnicas de DRI.

	Diámetro	Densidad	Componentes			
	[cm]	[gr/cm ³]	С%	Р%	S%	
Mínima	6	1,7	1,5	0,02	0,002	
Máxima	40	2	2,5	0,06	0,0035	

(Fuente: Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico [1])

Para evitar el desgaste prematuro del refractario, la chatarra liviana (triturada) se coloca en el fondo de la cesta, para que pueda absorber el impacto de la chatarra pesada (oxicorte), esto también favorece a la formación del baño en un tiempo menor, dando la protección necesaria al fondo del horno, del arco que producen los electrodos. La chatarra pesada se la coloca en un sitio intermedio, y así evitar que esta caiga cerca de los quemadores, ya que pueden formarse puntos fríos es decir que la llama del quemador no llegue al resto de chatarra. Una segunda carga de chatarra liviana y semipesada se puede añadir para recubrir la primera carga facilitando la penetración de electrodos en el inicio de la siguiente etapa de fusión. Se debe evitar que los electrodos entren en contacto con materiales no conductores, para evitar la interrupción del arco y la posterior rotura de electrodos.

1.3.2. Fusión

Después de cerrar el horno, el interruptor del horno es conectado, el transformador energizado y la corriente eléctrica fluyendo por los cables flexibles hasta las puntas de los electrodos en el horno, los electrodos bajan hasta que entran en contacto con la chatarra formando el arco eléctrico. El calor producido por el arco se transmite hacia la chatarra provocando su fusión.

La fusión empieza con un voltaje medio y alta corriente, para generar un arco relativamente corto, evitando así la radiación intensa de calor hacia la bóveda, debido al elevado nivel de chatarra en el horno, luego de la carga. En un inicio el arco es inestable con variaciones de voltaje y corriente, los electrodos suben y bajan para poder compensar esta inestabilidad, controlando así la longitud de arco, siendo el objetivo tener una impedancia constante.

Luego de la formación de un mayor volumen de baño líquido, los electrodos son elevados para operar a tensión máxima, a medida que la carga sigue bajando, el baño y el arco eléctrico irradia calor a las paredes laterales y la bóveda, por lo cual se termina la fusión con un voltaje bajo, otra opción es formar escoria espumante, que envuelve el arco reduciendo así la transferencia de calor desde el baño hacia las paredes y la bóveda, permitiendo de esta manera retener gran cantidad de energía, que es transmitida directamente al baño aumentando la eficiencia energética del horno, la desventaja de la escoria espumante es la gran cantidad de CO producido en el Horno.

Para la formación de la escoria espumante se debe garantizar la disponibilidad de Oxígeno y Carbono para las reacciones que formarán CO, aumentar la viscosidad de la escoria para disminuir la tensión superficial, mantener la basicidad sobre 2.5 y un contenido de FeO entre 15 y 20% en la escoria.

La fusión concluye cuando el baño metálico líquido tiene una forma horizontal, en este momento es posible enviar una muestra del baño al laboratorio y determinar el contenido de C.

En algunas plantas se realiza la inyección de oxígeno a través de lanzas (Figura 1.19), para cortar los últimos pedazos de chatarra no fundidos dentro del horno, también se puede ubicar la chatarra no fundida cerca de las paredes del horno, una vez generado el baño liquido se inyecta oxígeno, para producir una cantidad extra de energía, por medio de las reacciones exotérmicas del oxígeno con los elementos químicos presentes en el baño como son C, Fe, Si, P, Mn, Al etc. Los óxidos formados de estas reacciones conjuntamente con los fundentes, forman la escoria que flota sobre baño líquido.

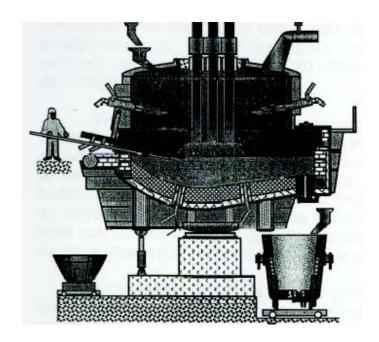


Figura 1.19. Fusión. (Fuente: Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario [2])

1.3.3. Afino

En esta etapa el objetivo es reducir los niveles de los elementos químicos del baño metálico, tales como P, S, C, Si y Mn. Las reacciones químicas que se producen para la reducción de los niveles de estos elementos, depende directamente del nivel de oxígeno presente, la homogenización, la temperatura y la interacción entre la escoria y el baño metálico.

El fosforo como el azufre deben ser reducidos a valores bien inferiores a los que se tiene en la carga inicial, pero las condiciones que son necesarias para la reducción de uno de estos elementos, son desfavorables para la reducción del otro.

La desfosforación es una reacción de oxidación, en donde la adición de oxigeno debe ser de forma controlada, a fin de evitar una rápida elevación de temperatura, que podría perjudicar esta reacción, debido a que es una reacción exotérmica. La adición de cal a temperatura ambiente también favorece la desfosforación, la cantidad de cal debe ser controlada, para no aumentar la temperatura de fusión de la escoria, elevando así su viscosidad y dificultando la remoción de escoria del baño.

La desulfuración no es adecuada en el horno eléctrico, principalmente en los procesos con inyección de oxígeno en el baño, por lo que se da preferencia a la desulfuración de los componentes en la carga, garantizando una selección adecuada de chatarra. Esta desulfuración es posible hacerla en el momento del colado del acero con la adición de aluminato de calcio.

La reacción del carbono con oxígeno para formar CO, es fundamental para lograr una escoria espumante, además de proporcionar energía extra para el calentamiento del baño, que en algunos casos representa del 30 a 40% de energía. Las burbujas de CO son aprisionadas en una escoria básica que rodea el arco eléctrico, aumentando así la eficiencia térmica.

La remoción de escoria es importante principalmente para evitar el aumento del fosforo en el baño y aumentar el rendimiento de las ferroaleaciones en el momento del vaciado, en la mayoría de aceros el volumen ocupado por la escoria esta alrededor del 5%. Esta remoción de escoria se la realiza con un pequeño basculamiento del horno, para así escoriar por gravedad la escoria flotante en el baño.

1.3.4. Vaciado

El vaciado se lo realiza luego de verificar el resultado de la muestra del laboratorio de análisis conforme los valores de composición química y temperatura deseados.

Para realizar el vaciado del acero líquido con la menor contaminación de escoria en la cuchara, se puede retener en el horno el 20% de esta para garantizar que la línea de escoria quede siempre sobre del ducto de vaciado, obteniendo mejores resultados en el manejo de escoria y temperatura, manteniendo estable el proceso de fundición.

Durante el vaciado el refractario del ducto se desgasta, la vida útil del mismo es de 220 coladas, es cuando el ducto debe ser cambiado, ya que el desgaste de este ocasiona problemas durante el vaciado como es el paso de escoria hacia la cuchara trasportadora de acero, bajos tiempos de vaciado, consumo excesivo de arena para el taponamiento del ducto durante la fundición, acumulación de escoria en el ducto, perdiendo así tiempo de producción en la limpieza del mismo.

1.4. Tipo de colada

La etapa de afino es la fase más compleja en la elaboración de aceros, debido a todas las variables que intervienen en el proceso, como el tipo de equipamientos acoplados al horno, la constitución de las materias primas, la operación adoptada en la acería, el tipo de acero a ser producido, tratamientos posteriores en la etapa de metalurgia en la

cuchara, en el re-afino secundario, las reacciones químicas y el programa de potencia en el horno donde se procesa.

Estas reacciones son de fundamental importancia para así añadir los elementos de liga que se adicionan al acero, en forma de ferro aleaciones y metales comercialmente puros, también en esta etapa son añadidos elementos desoxidantes y re carburantes, para cumplir con el ajuste deseado de los niveles de oxígeno y de carbono en el acero líquido, para así aumentar el rendimiento de las adiciones, acelerando así la etapa de fundición de acero.

Uno de los aspectos más importante en el proceso de afino para la fabricación de acero, en el proceso de horno eléctrico de arco, es la oxidación parcial del carbono, manganeso, silicio, fósforo que contiene la chatarra, en la película de escoria que se forma sobre el baño de acero líquido, esta escoria juega un papel importante en el proceso. La formación de una escoria básica además de neutralizar los óxidos ácidos, debe también proteger el revestimiento refractario del horno, la escoria básica disminuye la reactividad de sus componentes, acelerando así las reacciones de afino y estabilizando el azufre y el fosforo presentes en la misma. Otros elementos contenidos en la carga de chatarra como son cromo, vanadio, titanio, plomo, estaño serán oxidados y escorificados según su afinidad con el oxígeno.

Para la comprensión de las reacciones químicas del proceso se considera, que entre varias reacciones posibles ocurrirá aquella que presente una menor energía libre para la formación de óxidos a determinada temperatura. La combinación de elementos químicos presentes en la chatarra especialmente con el oxígeno formando óxidos, puede ser explicada por su menor energía libre necesaria para las reacciones de oxidación, en el intervalo de temperatura que se fabrica el acero.

Los óxidos presentes en el ambiente del horno eléctrico se los puede clasificar en estables y no estables conforme la tendencia de formación y descomposición, la tendencia de descomposición de un óxido inestable está relacionada con una alta energía libre de formación en el intervalo de temperaturas y niveles de oxidación inherentes en el proceso de formación de acero, en comparación con los estables que presentan una menor energía libre de formación. Así los óxidos SiO2, Feo, MnO, P2O5, Cu2O, Cr2O3 son considerados inestables, tendiendo a ocurrir una reversión de sus reacciones de formación.

El oxígeno necesario para las reacciones de afino que se requiere en el baño, se lo inyecta en forma gaseosa a través de lanzas. La nomenclatura que se utilizará en las siguientes ecuaciones químicas es la siguiente por ejemplo.

$$(FeO) + [C] \leftrightarrow CO + [Fe]$$

<> Sólido; () Gas; { } Líquido; [] Escoria.

Se numerarán las siguientes ecuaciones anteponiendo una letra para identificar a qué tipo de elemento se refiere dicha ecuación como por ejemplo:

i = silicio

f = hierro

m = manganeso

c = carbón

 $p = f \circ s f \circ r \circ$

s = azufre

Después de la etapa de fusión de chatarra, las reacciones predominantes en la etapa de afino es la oxidación de Fe, Si, Mn, P y la escorificación de cal, el oxígeno es inyectado al baño en forma de gas a través de la reacción química

$$\frac{1}{2}(\theta_2) \leftrightarrow [\theta] \tag{01}$$

Las reacciones de oxidación del silicio generan calor, y la sílice fundida se combina con los escorificantes como son la cal cálcica y cal dolomítica, esta cal adicionada desde el inicio de la fundición y se tienen las siguientes reacciones

En el punto de combustión:

$$[Si] + (O_2) \leftrightarrow (SiO_2) \tag{i1}$$

En el baño metálico:

$$[Si] + 2[O] \leftrightarrow (SiO_2) \tag{i2}$$

En la interface metal-escoria:

$$[Si] + 2(FeO) \leftrightarrow (SiO_2) + 2\{Fe\} \tag{i3}$$

En la escoria:

$$(SiO_2) + 2(CaO) \leftrightarrow (2CaO \cdot SiO_2) \tag{i4}$$

A medida que la etapa de afino avanza esta sílice forma una emulsión escoria-metal y otros componentes ya oxidados. El contenido de sílice en la escoria aumenta a medida que el Si es escorificado, así como también el CaO para la reacción con el SiO2 y FeO. El Fe está bastante oxidado en esta etapa, y su contenido en la escoria tiene valores elevados, formándose una emulsión entre partículas metálicas y escoria que desempeñan un papel importante en las reacciones de afino.

Las reacciones de oxidación del hierro son:

En el punto de combustión:

$$[Fe] + \frac{1}{2}(O_2) \leftrightarrow (FeO) \tag{f1}$$

$$[Fe] + (CO_2)_{Acero} \leftrightarrow (FeO) + (CO_2)_{aas}$$
 (f2)

En la interface inyección O2/escoria:

$$2(FeO) + \frac{1}{2}(O_2) \leftrightarrow (Fe_2O_3)$$
 (f3)

$$[Fe] + (CO)_{gas\ en\ acero} \leftrightarrow (FeO) + (CO)_{gas}$$
 (f4)

En la interface metal escoria:

$$[Fe] + (Fe_2O_3) \leftrightarrow 3(FeO) \tag{f5}$$

En la escoria (emulsión, más la interface gotas de metal y escoria)

$$\{Fe\} + \frac{1}{2}(O_2)_{gas} \leftrightarrow (FeO) \tag{f6}$$

Para el manganeso las siguientes reacciones están presentes.

En el baño metálico:

$$[Mn] + [0] \leftrightarrow (Mn0) \tag{m1}$$

En la interface metal-escoria:

$$[Mn] + (FeO) \leftrightarrow (MnO) + \{Fe\} \tag{m2}$$

La primera reacción de oxidación del Mn ocurre al inicio, cuando el contenido de Mn es alto y la temperatura es baja durante la mayor parte del tiempo la reacción (m2) predomina.

A medida que se forma la escoria y los contenidos de Si y Mn del baño decrecen la velocidad de descarburación aumenta hasta llegar a su valor máximo, a partir de este momento el FeO y MnO de la escoria son reducidos, aumentando el contenido de Mn en el baño.

Las reacciones del carbono con el oxígeno son las responsables para la descarburación, formación de burbujas, calentamiento del baño, y otros efectos inherentes en el proceso.

En el punto de combustión:

$$[C] + \frac{1}{2}(O_2) \leftrightarrow (CO)_{gas} \tag{c1}$$

$$[C] + (CO_2)_{gas} \leftrightarrow 2(CO)_{gas} \tag{c2}$$

$$(CO_2)_{acero} \leftrightarrow [O] + (CO)_{aas} \tag{c3}$$

En el baño metálico:

$$[C] + [O] \leftrightarrow (CO)_{aas\ en\ el\ acero} \tag{c4}$$

$$(CO)_{acero} + [O] \leftrightarrow (CO_2)_{acero} \tag{c5}$$

En la escoria (emulsión metal-gas-escoria):

$$(CO_2)_{escoria} + 2(FeO) \leftrightarrow (CO)_{escoria} + (Fe_2O_3)$$
 (c6)

$$(CO)_{acero} + (Fe_2O_3) \leftrightarrow (CO_2)_{acero} + 2(FeO) \tag{c7}$$

$$(CO)_{aas} + (FeO) \leftrightarrow (CO_2)_{aas} + \{Fe\} \tag{c8}$$

En la escoria (emulsión, más en la interface gotas de metal y escoria):

$$(CO_2)_{aas} + [C] \leftrightarrow 2(CO)_{aas} \tag{c9}$$

$$[C] + (FeO) \leftrightarrow (CO)_{acero} + [Fe] \tag{c10}$$

En la región del chorro de O2 puede ocurrir una post combustión de monóxido de carbono a dióxido de carbono que retorna al acero.

$$(CO) + \frac{1}{2}(O_2) \leftrightarrow (CO_2)_{acero}$$
 (c11)

Se observa que debido a las reacciones de descarburación ocurre un desprendimiento de burbujas, (reacciones c1, c2 y c4) dando un movimiento circulatorio al baño, renovando la interface expuesta al chorro de oxígeno, además de esto, la generación de CO en la emulsión metal-escoria, provocando la descarburación de las partículas metálicas (reacciones c10 y c11), produciendo así el esponjamiento de la escoria y formando la emulsión metal-gas-escoria.

La oxidación del silicio, la descarburación y la oxidación del hierro son reacciones altamente exotérmicas, esto ocurre a medida que la temperatura del baño se eleva. Para que la temperatura del baño al final de la fundición no exceda los limites previstos, es necesario el control de parámetros eléctricos como son corriente y voltaje.

La desfosforación es iniciada a través de la siguiente reacción química:

$$2[P] + 5[FeO] \leftrightarrow (P_2O_5) + 5[Fe]$$
 (p1)

Esta reacción es altamente exotérmica, por lo tanto ocurre en el inicio de la etapa de afino, cuando la temperatura es baja y existe un elevado contenido de FeO en la escoria, favoreciendo la oxidación del P, la siguiente atapa de desfosforación se la puede ver a través de la reacción:

$$2[P] + 5[O] \leftrightarrow (P_2O_5) \tag{p2}$$

Esta reacción predomina en secuencia en el proceso de afino, cuando el contenido de Fe disminuye y aumenta la temperatura alrededor de los 780 °C.

El P2O5 tiene una reactividad muy alta de modo que la reacción (p2) ocurre también en sentido contrario (revierte), a temperaturas sobre los 1600 °C

$$(P_2O_5) \leftrightarrow 2[P] + 5[O]$$
 (p3)

Esto hace que la reacción de desfosforación sea interrumpida, y esta revierta aumentando así el contenido de fosforo en el metal, para lo cual se debe atrapar al P2O5 formado en la escoria a través de la adición de cal.

La fijación del P2O5 con el óxido de calcio, en forma de fosfato cálcico en la escoria puede ser representada por las siguientes reacciones:

$$(P_2O_5) + 3(CaO) \leftrightarrow (3CaO \cdot P_2O_5) \tag{p4}$$

Ó

$$(P_2O_5) + 4(CaO) \leftrightarrow (4CaO \cdot P_2O_5) \tag{p5}$$

Es por la razón que la cal a temperatura ambiente es agregada junto con la chatarra en la última cesta.

El contenido elevado de sílice en la escoria favorece la reacción de esta con el fosfato de calcio, formándose el silicato de calcio y retornando el óxido fosfórico para el baño:

$$(3CaO \cdot P_2O_5) + (SiO_2) \leftrightarrow (3CaO \cdot SiO_2) + (P_2O_5) \tag{p6}$$

Las reacciones de desulfuración se producen, en la formación de escoria mediante la disolución de cal en el baño metálico y en la escoria, ambos muy bien desoxidados.

$$(CaO) + [FeS] \leftrightarrow (CaS) + (FeO) \tag{s1}$$

Esta reacción es altamente endotérmica, por lo que se necesita una alta temperatura para que se produzca esta reacción. Se requiere también un óptimo contacto entre el sulfato de hierro y la cal presente en la escoria, para lo cual es necesario una fuerte agitación en la interface baño metálico-escoria.

El avance de la desulfuración está ligado a la evolución de la disolución de la cal, es decir que esta se realiza de manera más efectiva en la etapa final de afino, cuando la basicidad de la escoria se eleva. La desulfuración en la fase gaseosa es responsable en una ligera disminución del azufre cargado, para este caso las reacciones están definidas principalmente las de oxidación del azufre en el metal y en la escoria.

$$[S] + (O_2)_{aas} \leftrightarrow (SO_2)_{aas} \tag{s2}$$

Otras reacciones de desulfuración del acero ocurren en la cuchara de transporte del acero, luego del vaciado del horno eléctrico, con la adición de materiales, en el momento del vaciado desoxidando el acero o para re carburar el baño metálico:

$$3[S] + 3(CaO) + 2[Al] \leftrightarrow 3(CaS) + (Al_2O_3)$$
 (s3)

$$2[S] + 2(CaO) + 2[Si] \leftrightarrow 2(CaS) + (SiO_2) \tag{s4}$$

$$2(CaO) + [C] + 3[S] \rightarrow 3(CaS) + 2(CO)_{gas}$$
 (s5)

La adición de materiales para la modificación de la escoria (desoxidantes, cal o compuestos para aumentar la fluidez de la escoria) también favorece a la desulfuración del acero.

En el proceso de elaboración de acero en horno de arco eléctrico, la escoria es definida como un baño liquido homogéneo constituidos por uno o más óxidos, que se separa de la fase metálica por ser insoluble y de menor densidad, y desempeña las siguientes funciones en el proceso:

- Absorber e incorporar los elementos no deseados del baño metálico
- Controlar y aislar del oxígeno presente en la atmosfera al baño metálico
- Es un reservorio de sustancias oxidantes
- Es un aislante físico dificultando la transferencia de gases de la atmosfera hacia el baño metálico
- Actúa como protector del revestimiento refractario.

1.5. Tipo de material del ducto

1.5.1. Material refractario

Son materiales constituidos por productos no metálicos, tienen una resistencia piroscópica superior a los 1500 °C.

Según la definición tecnológica es todo material capaz de soportar a temperaturas elevadas las condiciones del medio al que está inmerso, durante un periodo económicamente rentable, sin deterioro excesivo de su propiedad físico-química [13]

1.5.2. Descripción del ducto

El ducto está formado por anillos refractarios compuestos de magnesia- carbono, con 13% de contenido de carbono, a base de magnesia electro fundida, grafito laminar, con adiciones de antioxidante, y resina químicamente ligada, de alta resistencia a la oxidación, flexión en caliente y ataque por escorias [3]

El ducto de vaciado del horno eléctrico se forma al montar concéntrica y consecutivamente 5 anillos pequeños idénticos como se muestra en las figuras 1.20 y

1.21, y uno de mayor diámetro figura 1.22, que armados tienen una dimensión de 1035 mm de altura, con un diámetro externo de 350 mm en la sección de anillos pequeños y un diámetro de 457 mm en la sección del anillo grande como se aprecia en la figura 1.23, el ducto formado, por donde pasa el acero líquido hacia la cuchara tiene un diámetro de 120 mm.

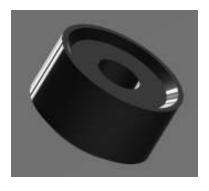


Figura 1.20. Anillo pequeño. (Fuente: Elaboración Propia)

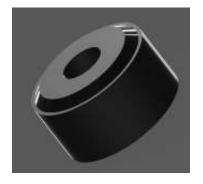


Figura 1.21. Anillo pequeño. (Fuente: Elaboración Propia)

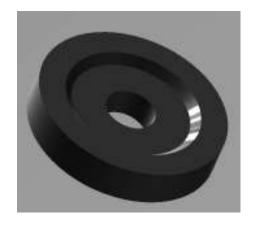


Figura 1.22. Anillo grande.

(Fuente: Elaboración Propia)

Figura 1.23. Ducto de vaciado armado con 5 anillos pequeños y un grande en su base. (Fuente: Elaboración Propia)

1.5.3. Mecanismo de desgaste

Como se aprecia en la Figura 1.24, la escoria (cal + sílice + óxido de hierro) entra en contacto con el ladrillo, por capilaridad y reacción química esta penetra entre los granos de periclasa, formándose silicatos que funden y se incorporan a la estructura del ladrillo, el carbono no funde y es quien no permite esta penetración, ya que este no funde, no es mojado por la escoria y cierra los poros

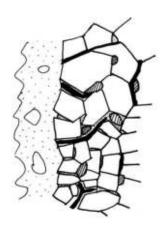


Figura 1.24. Mecanismo de desgaste de un ladrillo de magnesia-carbono. (Fuente: http://boletines.secv.es/upload/198928385.pdf [14])

El óxido de hierro conjuntamente con la sílice va oxidando el carbono.

El hierro formado vuelve a la colada mientras el CO y SiO van consumiendo el carbono y queda el camino libre entre las juntas de grano para que a escoria penetre como se muestra en la Figura 1.25, y forme silicatos principalmente Cao +MgO +SiO₂, monticellita que funde a 1.480 °C y CaO + Al_2O_3 + FeO, brownmillerita que funde a 1.300°C

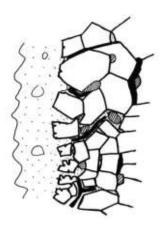


Figura 1.25. Mecanismo de desgaste de un ladrillo de magnesia-carbono. (Fuente: http://boletines.secv.es/upload/198928385.pdf [14])

Estos silicatos funden y se mezclan con la escoria, quedando el grano de periclasa sin unión al resto del ladrillo y cualquier abrasión o choque térmico hace que se desprende y vaya con la escoria como se muestra en la Figura 1.26, quedando descubierta una nueva capa de material refractario y el mecanismo de desgaste comienza nuevamente.

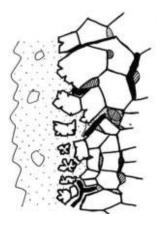


Figura 1.26. Mecanismo de desgaste de un ladrillo de magnesia-carbono. (Fuente: http://boletines.secv.es/upload/198928385.pdf [14])

2. METODOLOGIA

2.1. Determinación de las especificaciones técnicas de la máquina para demoler el ducto de vaciado.

2.1.1. Consideraciones para la determinación de las especificaciones técnicas

El diseño a realizar en el presente proyecto tiene como propósito satisfacer las necesidades y requerimientos de la empresa Acería del Ecuador Compañía Anónima (ADELCA), en la sección fundidora.

El procedimiento con el que actualmente cuenta y se realiza en la empresa, para efectuar el cambio de ducto de vaciado no satisface los tiempos de parada por mantenimiento para dicho cambio así, también se desea reducir la exposición a altas temperaturas, del personal que realiza esta tarea, por lo que se ve en la necesidad de implementar un equipo para realizar este cambio y aumentar así, la producción y la calidad de trabajo de los técnicos que lo realizan.

Para establecer las especificaciones técnicas de la máquina usaremos el criterio de la casa de la calidad.

2.1.2. Casa de la calidad

La casa de la calidad es una herramienta que ayuda a traducir las demandas del usuario en requerimientos técnicos del producto. Es la de mayor aplicación, cuenta de los siguientes pasos: conocer la voz del cliente, mediante el cual este manifiesta sus requerimientos y deseos del producto; luego estos son traducidos, por el criterio del ingeniero en requerimientos técnicos. Finalmente estos requerimientos técnicos son evaluados para determinar aquellos de mayor importancia

2.1.3. Análisis de la casa de la calidad

2.1.3.1. Voz del usuario

El usuario en este caso o también llamados clientes, son técnicos de la empresa ADELCA, quienes son los encargados de realizar el trabajo que se describe en la introducción y tienen los siguientes requerimientos:

- Resistente a altas temperaturas
- > De fácil operación
- > Fácil mantenimiento
- Que no ocupe mucho espacio
- Fácil transportar
- > Rápida instalación en el lugar de trabajo
- Disminuir el tiempo de cambio del ducto

2.1.3.2. Voz de ingeniero

Una vez conocidos los requerimientos y deseos del usuario, se procede a traducirlos a especificaciones o características técnicas:

- > Temperatura de trabajo de la herramienta
- Mínima cantidad de controles en mandos
- Fácil desmonte de piezas de la máquina
- Volumen
- Número de ganchos de puente grúa: 2
- Pines guías para instalación en el sitio de trabajo
- Velocidad de avance de la herramienta

2.1.4. Resultados de la casa de la calidad

En la casa de la calidad que se muestra en la figura 2.1, se realizó el procedimiento propuesto por Carles Riba según se texto diseño concurrente [4]. Para el análisis de la casa de la calidad se ha tomado como valores referencia en la Columna A (propia empresa) el valor de uno, mientras que en columna B (competencia 1) se colocan valores del equipo que tiene actualmente de la empresa Magnesita.

	(CAS	SA	DF	E L	A (CAI	LID	AI)							
														•	Muy	positiva	
				/	(X)										Posit		
				$\langle \rangle$	$\langle \rangle$	$\langle \ \rangle$								×	Nega	tiva	
		,		Ó	$\langle \rangle$	Ó	$\langle \rangle$							ж		negativa	ì
) (X	\times	X	X	λ									
B = Básico			ĺ	ĺ	ĺ	Ĭ	ĺ	ĺ	A	В	C	D	E	F	G	Н	I
O = Unidensional							.0		E	valua	c.						
E = Estimulante							abaj		u	suari)						
	2	_					Tr										
ero	caracteristicas tecnicas	Temperatura de Trabajo de la Herramienta	Minima Cantidad de Controles en Mandos	no		ı: 1	Pines Guia para la instalacion en el sitio de Trabajo	а									
eni	tec	ami	Maı	nisı		3rús	siti	ient									
ing	icas	Теп	en	leca		ite (n e	ram									
Voz del ingeniero	erist	la F	oles	le M		ner	on e	Нег									
Voz	ract	o de	ontro	as d		ıra F	laci	la .									
	ca	bajc	CC	piez		s pa	nsta	e de									
		Тга	p p	de J		cho	la i	anc									%
		de 1	tida	nte		Gan	ara	e av	esa	a 1	a 2		jora	nta			en
		tura	Can	smo	_ ا	de (ia p	p pı	npr	nci	nci	s	e me	e ve	ıcia	zión	cion
		эега	ma (De	mer	ero	j G	cida	ia ei	pete	pete	tivo	e de	ır de	rtan	erac	erac
Voz del usuario necesidades y deseos usuario		eml	1ini	Facil Desmonte de piezas de Mecanismo	Volumen	Número de Ganchos para Puente Grúa: 1	ines	Velocidad de avance de la Herramienta	Propia empresa	Competencia 1	Competencia 2	Objetivos	Indice de mejora	Factor de venta	Importancia	Ponderación	Ponderacion en %
Resista altas temperaturas	В	9	1	3	_	Z	Ь	9	<u>ط</u> 1	3	1	5	<u>1</u>			30	26,
Facil Operación	В	1	9	3	1	3		3	1	4	1	3	3	1,2		10,8	9,
Facil Mantenimiento	Е	3	9	9			3	9	1	1	1	2	2	1,2		4,8	4,
No Ocupe mucho espacio	В		1	3	9	1		3	1	5	1	1	1	1		2	1,
Facil de Transportar	В		1		3	9		1	1	4	1	1	1	1,2		2,4	2,
Rapida Instalacion en el Lugar de Trabajo	0	1	1	1	3	3	9	1	1	3	1	4	4			24	21,
Disminuir el Tiempo de cambio del Ducto	Е	1	3	1		1	3	9	1	4	1	5	5			37,5	33,
Distinute of Ferripo de entreto del Dueto	L			1		1			1					1,0			55,
																111,50	100
																11	_
															E	1	cide ncia
Propia empresa		1	1	1	5	1	3	1									
Competencia 1		3	4	1			4	4								Fuerte	
Competencia 2		257	1	222	112	1.00		716	221	2.0						Medio	
Incidencia								716								Bajo =	: 1
Incidencia en %		16	13	11	5,1	7,5	15	32	10)0							
		()		õ			u									ctor de	
Evaluación técnica		00		301			uu (I	uerte =	: 1,5
		jo 10		es a			le 50								P	osible =	= 1,2
en c		Temperatura de trabajo 100 °C		Peso de piezas menores a 30 kg			Agujeros para pines de 50 mm								N	Vingun =	= 1,0
efer		de t		ıs m	stros.		a pii										
	Valores de referencia Temperatura de trabajo 1 Botonera Peso de piezas menore: 1,5x1,5*2 metros 1 gancho			par	nin												
Se.		erat	Botonera	de p	,5*2,	gancho	ros	100 mm/min									
		Jung	Bot	300	5x1	gan	guje	0 n									
		Те	1	Pe	1,	1 §	Ą	10									

Figura 2.1. Casa de la calidad. (Fuente: Elaboración Propia)

2.1.5. Conclusiones de la casa de la calidad

De la casa de la calidad se obtiene información importante acerca de las características técnicas, que cumplen en su mayor parte con la demanda del cliente, como son los siguientes:

- Temperatura de trabajo de la herramienta: depende de varios factores como son temperatura del ducto, rpm y avance de la herramienta.
- Tiempo de demolición del ducto: este tiene que ser menor a las dos horas que el cliente demora actualmente en realizar este trabajo.

2.1.6. Especificaciones técnicas

Por medio de la casa de la calidad se ha podido establecer las características técnicas de la máquina que se observa en la tabla 2.1.

Tabla 2.1. Especificaciones técnicas de la máquina.

Empresa Cliente: ADELCA	_	ducto: ara demoler el		Fecha Inicial: 01/05/2014 Última revisión: 01/01/2017			
Diseñador: Carlos Caiza	ducto de d	colado de un eléctrico.	Página: 1				
		Especific	caciones				
Concepto	Fecha	Propone	R/D	Descripción			
Función	01/01/2015	С	R	Máquina para demoler el ducto de vaciado de un horno eléctrico a una temperatura de 100 °C			
Operación	01/01/2015	С	D	Una botonera, la fijación de la máquina al horno se lo hace manual			
Mantenimiento	01/01/2015	С	R	Fácil desmontaje para mantenimiento			
Avance	01/01/2015	D	R	Velocidad de avance de la herramienta 100 mm/min			
Tiempos	01/01/2015	С	R	Tiempo de demolición del ducto 30 minutos			
Energía	01/01/2015	С	D	Eléctrica, Hidráulica			

Propone: C: Cliente; D: Diseño; F: Fabricación

R/D: R: Requerimiento; MR: Modificación de Requerimiento; NR: Nuevo

Requerimiento; D: Deseo; MD: Modificación de deseo; ND: Nuevo

Deseo

(Fuente: Elaboración Propia)

2.2. Análisis funcional

2.2.1. Definición

El análisis funcional es una técnica, cuyo propósito es el separar del conjunto al componente o mecanismo, para analizar la acción que efectúa, con el fin de buscar diferentes y nuevas soluciones a un mismo problema, obteniendo mejores productos.

Al aplicar éste análisis se necesita tener presente las funciones primarias y secundarias del equipo para de esta manera poder desglosarlas a fin de llegar a un esquema modular.

La descomposición funcional del producto se la realiza mediante diagramas de flujo, en los que en cada recuadro aparece una función, que puede tener 3 tipos de entradas y salidas: control, material y energía. Estos diagramas de flujo pueden tener diferentes niveles, comenzando con el nivel 0 o función global, y continuando hasta el nivel que se requiera.

2.2.2. Desarrollo de diagramas funcionales

Los diagramas funcionales, empieza en la nivel 0 o global que es la de demoler el ducto, con la entrada de energía, Material y una señal como se muestra en la figura 2.2

Figura 2.2. Diagrama funcional nivel 0. (Fuente: Elaboración Propia)

En el nivel 1 se desglosan en dos actividades como se muestra en la figura 2.3

Figura 2.3. Diagrama funcional nivel 1. (Fuente: Elaboración Propia)

En el nivel 2 se observan ya desglosadas todas las acciones que se efectúan para la demolición del ducto de vaciado (anexo I)

2.3. Definición de módulos

Consiste en dividir a la máquina en varios grupos o módulos funcionales o constructivos, lo cual es una ventaja ya que permite bajar costos, facilidad de mantenimiento y facilidad de producción, en la división modular (anexo II), se observan los módulos en los cuales fueron agrupadas las operaciones del diagrama funcional.

En el análisis del diagrama se pueden establecer dos grupos importantes, que son:

➤ El posicionamiento de la máquina, que va desde el transporte de máquina hasta revisar condiciones iniciales. A este conjunto principal se le ha separado, ya que no se relaciona el posicionamiento del máquina, con el trabajo del mismo, que es la demolición del ducto de colado y se muestra en la figura 2.4.

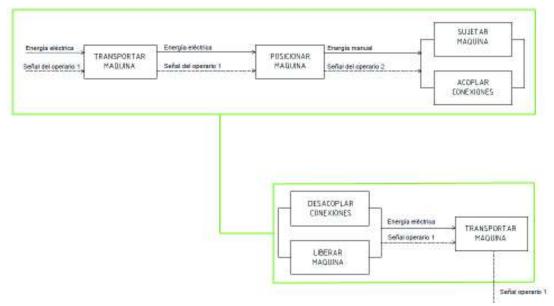


Figura 2.4. División modular (Módulo 1). (Fuente: Elaboración Propia)

Demolición del ducto, que va desde accionar movimiento rotacional conjuntamente con el avance de la herramienta hasta verificación del estado de demolición del ducto. A este segundo grupo (demolición del ducto) se los va a subdividir en dos módulos de la siguiente manera como se observa en la figura 2.5 y figura 2.6

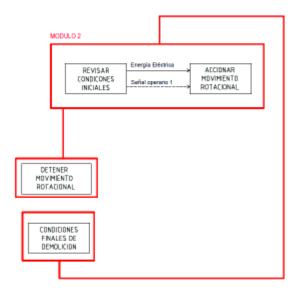


Figura 2.5. División modular (Módulo 2). (Fuente: Elaboración Propia)

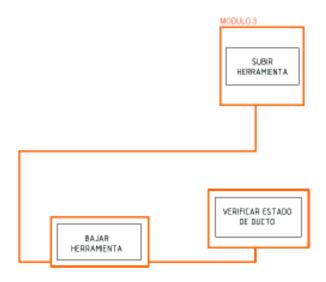


Figura 2.6. División modular (Módulo 3). (Fuente: Elaboración Propia)

2.4. Soluciones para los módulos

2.4.1. Módulo 1

En este módulo se cumplen las siguientes funciones:

- ✓ Transportar máquina
- ✓ Posicionar máquina
- ✓ Sujetar y liberar máquina
- ✓ Acoplar y desacoplar conexiones

2.4.1.1. Transportar máquina

La forma más eficiente para el trasporte de la máquina hacia el sitio de trabajo es por medio de anclajes ubicados en la máquina, de los cuales se puede izar el mismo con uno de los puentes grúa que posee la nave.

2.4.1.2. Posicionar máquina.

La tapa que posiciona los anillos del ducto en su sitio, está asegurada con pines en los cuales se va posicionar la máquina para que se pueda demoler el ducto

2.4.1.3. Sujetar y liberar máquina

Existen dos formas de sujetar la máquina con el horno eléctrico que son las siguientes:

Cuñas

La máquina se la puede sujetar al horno eléctrico, haciendo uso de los cuatro pines existentes para colocar la tapa que posiciona los anillos, que forman el ducto de vaciado, a esta tapa se la sujeta, introduciendo cuatro cuñas de ajuste en los orificios que tiene cada pin, sujetando así, de la misma manera a la máquina para iniciar la demolición.

Ventajas.

- > Se tiene ya los pines instalados en el horno eléctrico.
- Rápido montaje, se requiere colocar una cuña de ajuste en el orificio del pin para sujetar la máquina al horno.

Desventajas.

Difícil manipulación el momento de extraer las cuñas, ya que estas se calientan y se llegan a expandir

Pernos

La máquina se lo puede sujetar al horno eléctrico cambiando los pines con los que se asegura la tapa inferior del ducto, y adaptando pernos para utilizar tanto en la sujeción de la tapa como el de la máquina para la demolición

Ventajas.

Rápido montaje, se necesita ajustar la tuerca para la sujeción de la máquina.

Desventajas.

- ➤ No se tiene disponibles pernos instalados en el horno eléctrico
- Dilatación del conjugado perno-tuerca, por efectos del calor, en proporciones diferentes, dificultando la liberación de la máquina

2.4.1.4. Acoplar y desacoplar conexiones

Esta operación la realiza el operario, la cual consiste en conectar todo lo necesario como son cables de energía, acoples rápidos hacia la central hidráulica verificando que el equipo este energizado y listo para la demolición del ducto.

2.4.1.5. Alternativas del módulo 1

Se deben combinar las diferentes alternativas de cada función de los módulos. Como se muestra en la tabla 2.2.

Tabla 2.2. Opciones del módulo 1.

Función	Componente
Transportar máquina	Gancho
Posicionar máquina	Pines
Sujetar y liberar máquina	Pernos
Acoplar y desacoplar conexiones	Acoplamiento manual

Alternativa 1 ______

2.4.1.6. Evaluación y selección del módulo 1

Para esta selección se utiliza el método corregido de criterios ponderados [4] y las matrices se muestran desde la tabla 2.3 hasta la tabla 2.8.

Los criterios de valoración más importantes son:

- > A: Volumen de la máquina, para trasladar la máquina hacia el sitio de trabajo.
- > B: Sujeción máquina, permitir el montaje y sujeción del equipo.
- C: Seguridad, en los elementos para la sujeción ya que las cuñas se pueden ir deformando.
- > D: Mantenimiento, facilidad para el mantenimiento de la máquina.
- ➤ E: Fiabilidad en acoples rápidos para la conexión de cables de poder y línea de presión de aceite, para evitar contratiempos, debido a cualquier fallo.

Tabla 2.3. Evaluación de criterios del módulo 1.

	Α	В	С	D	E	Σ + 1	Ponderación
Α		0	0,5	1	0,5	3	0,21
В	0,5		1	1	0	3,5	0,24
С	0,5	1		0,5	0	3	0,21
D	0,5	0	0,5		0,5	2,5	0,17
E	0	0	1	0,5		2,5	0,17
					Suma	14,5	1,00
						14,5	

Sujeción > Volumen = Seguridad > Mantenimiento = Fiabilidad

(Fuente: Elaboración Propia)

Tabla 2.4. Evaluación de las alternativas respecto al volumen.

Volumen	Alternativa 1	Alternativa 2	Σ+1	Ponderación				
Alternativa 1		1	2	0,5				
Alternativa 2	1		2	0,5				
Suma 4 1								
Alternativa 1 = Alternativa 2								

(Fuente: Elaboración Propia)

Tabla 2.5. Evaluación de las alternativas respecto a la sujeción.

Sujeción	Alternativa 1	Alternativa 2	Σ + 1	Ponderación				
Alternativa 1		1	2	0,5				
Alternativa 2	1		2	0,5				
Suma 4 1								
Alternativa 1 = Alternativa 2								

Tabla 2.6. Evaluación de las alternativas respecto a la seguridad.

Seguridad	Alternativa 1	Alternativa 2	Σ+1	Ponderación				
Alternativa 1		0	1	0,3				
Alternativa 2	1		2	0,7				
Suma 3 1								
Alternativa 2 > Alternativa 1								

(Fuente: Elaboración Propia)

Tabla 2.7. Evaluación de las alternativas respecto al mantenimiento.

Mantenimiento	Mantenimiento Alternativa 1		Σ+1	Ponderación				
Alternativa 1		0	1	0,3				
Alternativa 2	1		2	0,7				
	Suma 3 1							
Alternativa 2 > Alternativa 1								

(Fuente: Elaboración Propia)

Tabla 2.8. Evaluación de las alternativas respecto a la fiabilidad.

Fiabilidad	Alternativa 1	Alternativa 2	Σ + 1	Ponderación				
Alternativa 1		0,5	1,5	0,4				
Alternativa 2	1		2	0,6				
Suma 3,5 1								
Alternativa 2 > Alternativa 1								

(Fuente: Elaboración Propia)

Luego del desarrollo de matrices se presenta las siguientes conclusiones en las tablas 2.9 y 2.10.

Tabla 2.9. Conclusiones del módulo 1.

Conclusiones	Volumen	Sujeción	Seguridad	Mantenimiento	Fiabilidad
Alternativa 1	0,5 x 0,21	0,5 x 0,24	0,3 x 0,21	0,3 x 0,17	0,4 x 0,17
Alternativa 2	0,5 x 0,21	0,5 x 0,24	0,7 x 0,21	0,7 x 0,17	0,6 x 0,17

(Fuente: Elaboración Propia)

Tabla 2.10. Cálculo de conclusiones del módulo 1.

Conclusiones	Α	В	С	D	E	Σ	Ponderación
Alternativa 1	0,10	0,12	0,07	0,06	0,07	0,42	0,42
Alternativa 2	0,10	0,12	0,14	0,11	0,10	0,58	0,58
					Suma	1,00	1,00

Alternativa 2 > Alternativa 1

(Fuente: Elaboración Propia)

De la tabla 2.10 se concluye que la solución para el módulo 1 es la alternativa 2

2.4.2. Módulo 2

En este módulo se cumplen las siguientes funciones:

- ✓ Revisar condiciones iniciales de operación
- ✓ Accionar y detener movimiento rotacional
- ✓ Revisar condición final de demolición

2.4.2.1. Revisión condiciones iniciales de operación

Esta actividad la realiza un operario, quien revisa que los equipos se encuentren energizados, y listos para su operación

2.4.2.2. Accionar y detener movimiento rotacional

Este movimiento acciona el giro de la herramienta, para empezar con la demolición del ducto, el cual se lo puede realizar de las siguientes maneras:

Poleas

Con un motor eléctrico, acoplado en su eje a una polea motriz y esta se conecta por medio de correas a otra polea conducida, para la transmisión de potencia desde el motor hacia un eje.

Ventajas.

- Montaje es sencillo y rápido
- Poleas y correas existentes en el mercado

Desventajas.

- Temperatura de trabajo bajas, se va a trabajar en un ambiente de 60 a 80 °C
- > Trasmisión de potencia bajas por el deslizamiento entre la correa y la polea.

Engranajes.

Con un motor eléctrico, acoplado a un reductor para la transmisión de potencia, desde el motor hacia un eje.

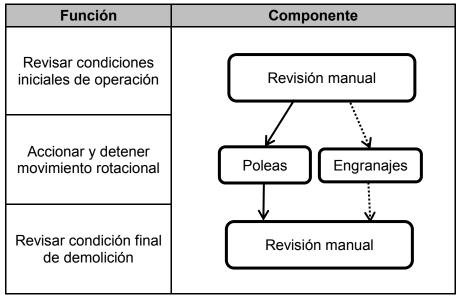
Ventajas.

Temperaturas de trabajo altas.

- Producto existente en el mercado
- Transmisión de potencia altas no existe deslizamiento entre los engranes

Desventajas.

- Mantenimiento de tipo especializado.
- Montaje especializado.


2.4.2.3. Revisar condición final de demolición

Esta actividad la realiza un operario, verificando que el trabajo de demolición este completamente terminado.

2.4.2.4. Alternativas del módulo 2

Se combinan las diferentes alternativas de cada función de los módulos. Como se muestra en la tabla 2.11.

Tabla 2.11. Opciones del módulo 2.

Alternativa 1 _____

(Fuente: Elaboración Propia)

2.4.2.5. Evaluación y selección del módulo 2

Para esta selección se utiliza el método corregido de criterios ponderados [4] y las matrices se muestran desde la tabla 2.12 hasta la tabla 2.16.

Los criterios de valoración más importantes son:

- > A: Inspección visual de que todos los componentes cables de energía líneas de poder estén operativas.
- > B: Desgaste de los elementos de transmisión, poleas o engranajes
- C: Temperatura ambiental a la que se realiza la demolición.
- > D: Fácil mantenimiento.

Tabla 2.12. Evaluación de criterios módulo 2.

	Α	В	С	D	Σ+1	Ponderación
Α		0,5	1	0,5	3	0,25
В	0,5		0,5	1	3	0,25
С	0	0,5		1	2,5	0,21
D	0,5	1	1		3,5	0,29
			Suma	12	1,00	
B				D		

Mantenimiento > Inspección visual = Desgaste > Temperatura

(Fuente: Elaboración Propia)

Tabla 2.13. Evaluación de las alternativas respecto a la inspección visual.

Inspección Visual	Alternativa 1	Alternativa 2	Σ+1	Ponderación	
Alternativa 1		1	2	1,3	
Alternativa 2	0,5		1,5	1,0	
		Suma	3,5	2,3	
Alternativa 1 > Alternativa 2					

(Fuente: Elaboración Propia)

Tabla 2.14. Evaluación de las alternativas respecto al desgaste.

Desgaste	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		0,5	1,5	0,4		
Alternativa 2	1		2	0,6		
Suma 3,5 1						
Alternativa 2 > Alternativa 1						

(Fuente: Elaboración Propia)

Tabla 2.15. Evaluación de las alternativas respecto a la temperatura.

Temperatura	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		0	1	0,3		
Alternativa 2	1		2	0,7		
Suma 3 1						
Alternativa 2 > Alternativa 1						

(Fuente: Elaboración Propia)

Tabla 2.16. Evaluación de las alternativas respecto al mantenimiento.

Mantenimiento	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		0,5	1,5	0,5		
Alternativa 2	0,5		1,5	0,5		
Suma 3 1						
Alternativa 2 = Alternativa 1						

(Fuente: Elaboración Propia)

Luego del desarrollo de matrices se presenta las siguientes conclusiones en las tablas 2.17 y 2.18.

Tabla 2.17. Conclusiones del módulo 2.

Conclusiones	Inspección visual	Desgaste	Temperatura	Mantenimiento
Alternativa 1	1,3 x 0,25	0,4 x 0,25	0,3 x 0,21	0,5 x 0,29
Alternativa 2	1 x 0,25	0,6 x 0,25	0,7 x 0,21	0,5 x 0,29

(Fuente: Elaboración Propia)

Tabla 2.18. Cálculo de conclusiones del módulo 2.

Conclusiones	Α	В	С	D	Σ	Ponderación
Alternativa 1	0,33	0,11	0,07	0,15	0,66	0,49
Alternativa 2	0,25	0,14	0,14	0,15	0,68	0,51
Suma 1,33 1,0						
Alternative 2 > Alternative 1						

(Fuente: Elaboración Propia)

De la Tabla 2.18 se concluye que la solución para el módulo 2 es la alternativa 2.

2.4.3. Módulo 3

En este módulo se cumplen las siguientes funciones:

- ✓ Subir y bajar herramienta
- ✓ Verificar estado del ducto

2.4.3.1. Subir y bajar herramienta

Con esta operación se logra el contacto entre herramienta y el ducto que se va a demoler, subiendo y bajando la misma, según avance y estado de la demolición, esta operación se la puede realizar con las siguientes alternativas:

Conjunto cilindro-émbolo hidráulico

Con la acción de presión hidráulica, en este caso aceite, se puede expandir y contraer al conjunto cilindro-émbolo hidráulico, igual que el funcionamiento de gatos hidráulicos, para así tener un desplazamiento de la herramienta en sentido axial al ducto, permitiendo bajar y subir la herramienta según sea el avance de la demolición.

Ventajas.

- Montaje sencillo
- > Se dispone de presión hidráulica de la central de bombas que posee la planta
- Disponibilidad del conjunto en el mercado
- Fácil operación por parte del personal a cargo.

Desventajas.

Mantenimiento especializado

Cremallera-tornillo sin fin

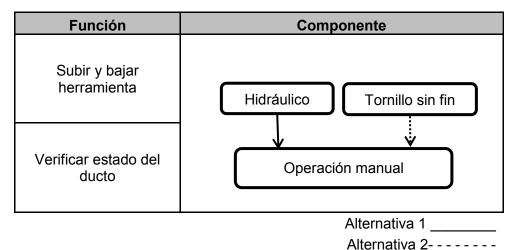
Por medio de la transmisión de potencia, desde un tornillo sin fin hacia una cremallera, se logra pasar del movimiento circular del tornillo, a un movimiento lineal de desplazamiento por medio de la cremallera, para así lograr el avance de la herramienta en la demolición del ducto, dependiendo del avance de la herramienta.

Ventajas.

- Fácil operación por el personal a cargo.
- Desgaste de los elementos del conjunto cremallera-tornillo es mínimo.

Desventajas.

- Mantenimiento especializado
- Se requiere de altas potencias para el movimiento del mecanismo.
- Requiere motor para el accionamiento del tornillo sin fin.
- Espacio que ocupa el mecanismo es grande, lo que influye directamente en el peso del mecanismo, lo requiere mayor potencia para el movimiento del mismo.


2.4.3.2. Verificar estado del ducto

Esta actividad la realiza un operario, verificando visualmente el porcentaje y estado de la demolición, para así continuar o dar por terminada la demolición.

2.4.3.3. Alternativas del módulo 3

Se combinan las diferentes alternativas de cada función de los módulos. Como se muestra en la tabla 2.19.

Tabla 2.19. Opciones del módulo 3.

(Fuente: Elaboración Propia)

2.4.3.4. Evaluación y selección del módulo 3

Para esta selección se utiliza el método corregido de criterios ponderados [4] y las matrices se muestran desde la tabla 2.20 hasta la tabla 2.24.

Los criterios de valoración más importantes son:

- > A: Peso de sus componentes.
- > B: Espacio o área que se necesita para los mecanismos.
- C: Mantenimiento.
- > D: Inspección visual, del avance de demolición del ducto.

Tabla 2.20. Evaluación de criterios módulo 3.

	Α	В	С	D	Σ+1	Ponderación	
Α		1	1	1	4	0,29	
В	1		0,5	1	3,5	0,25	
С	1	1		0,5	3,5	0,25	
D	0,5	1	0,5		3	0,21	
	Suma 14 1,00						
Peso > Áı	Peso > Área necesaria = Mantenimiento > Inspección visual						

(Fuente: Elaboración Propia)

Tabla 2.21. Evaluación de las alternativas respecto al peso de los componentes.

Peso componentes	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		1	2	1,3		
Alternativa 2	0,5		1,5	1,0		
Suma 3,5 2,3						
Alternativa 1 > Alternativa 2						

(Fuente: Elaboración Propia)

Tabla 2.22. Evaluación de las alternativas respecto al área necesaria.

Área necesaria	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		1	2	0,6		
Alternativa 2	0,5		1,5	0,4		
Suma 3,5 1						
Alternativa 1 > Alternativa 2						

(Fuente: Elaboración Propia)

Tabla 2.23. Evaluación de las alternativas respecto al mantenimiento.

Mantenimiento	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		1	2	0,6		
Alternativa 2	0,5		1,5	0,4		
Suma 3,5 1						
Alternativa 1 > Alternativa 2						

(Fuente: Elaboración Propia)

Tabla 2.24. Evaluación de las alternativas respecto a la inspección visual.

Inspección visual	Alternativa 1	Alternativa 2	Σ + 1	Ponderación		
Alternativa 1		0,5	1,5	0,5		
Alternativa 2	0,5		1,5	0,5		
Suma 3 1						
Alternativa 1 = Alternativa 2						

(Fuente: Elaboración Propia)

Luego del desarrollo de matrices se presenta las siguientes conclusiones en las tablas 2.25 y 2.26.

Tabla 2.25. Conclusiones del módulo 3.

Conclusiones	Peso componentes	Área necesaria	Mantenimiento	Inspección visual
Alternativa 1	1,3 x 0,29	0,6 x 0,25	0,6 x 0,25	0,5 x 0,21
Alternativa 2	1 x 0,29	0,4 x 0,25	0,4 x 0,25	0,5 x 0,21

(Fuente: Elaboración Propia)

Tabla 2.26. Cálculo de conclusiones del módulo 3

Conclusiones	Α	В	С	D	Σ	Ponderación	
Alternativa 1	0,38	0,14	0,14	0,11	0,77	0,56	
Alternativa 2	0,29	0,11	0,11	0,11	0,61	0,44	
	Suma	1,38	1,00				
Alternativa 1 > Alternativa 2							

(Fuente: Elaboración Propia)

De la tabla 2.26 se concluye que la solución para el módulo 3 es la alternativa 1

2.4.4. Resumen de solución de módulos

2.4.4.1. Módulo 1

Las soluciones para las funciones de este módulo son las siguientes y se observan en la figura 2.7:

- ✓ Transportar máquina: anclajes, transporte con ayuda de puente grúa al sitio de trabajo de la máquina
- ✓ Posicionar máquina: pines, existentes en el horno eléctrico.
- ✓ Sujetar y liberar máquina: cuñas que ajustan en conjunto, con los pines existentes en el horno, fácil montaje y desmontaje de la máquina
- ✓ Acoplar y desacoplar conexiones: manualmente, acoples rápidos y enchufe para energía

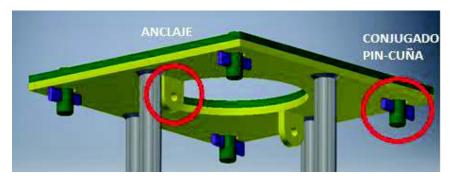


Figura 2.7. Solución módulo 1. (Fuente: Elaboración Propia)

2.4.4.2. Módulo 2

Las soluciones para las funciones de este módulo son las siguientes y se observan en la figura 2.8

- ✓ Revisar condiciones iniciales de operación: inspección por parte del personal encargado
- ✓ Accionar y detener movimiento rotacional: para el trabajo en temperaturas altas la solución es un motoreductor.
- ✓ Revisar condición final de demolición: inspección visual por parte del personal encargado

2.4.4.3. Módulo 3

Las soluciones para las funciones de este módulo son las siguientes y se observan en la figura 2.8.

- ✓ Subir y bajar herramienta: la solución es por medio de cilindros hidráulicos, aprovechando la central hidráulica existente en la planta
- ✓ Verificar estado del ducto: inspección visual por parte del personal encargado

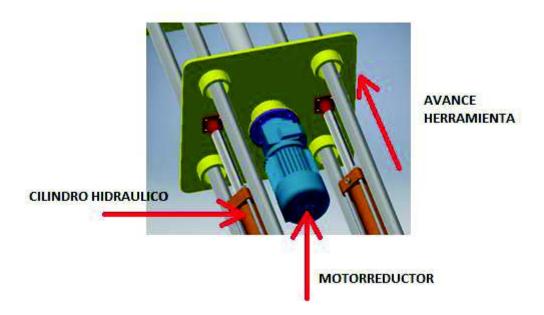


Figura 2.8. Solución a los módulos 2 y 3. (Fuente: Elaboración Propia)

2.5. Dimensionamiento de la máquina

2.5.1. Cálculo de elementos por el método de elementos finitos

Para el cálculo y dimensionamiento de algunos componentes de la máquina se utiliza el método de análisis por elementos finitos FEA [16], que comprende el método de formulación de desplazamientos de elementos finitos para calcular movimientos, deformaciones y tensiones de los componentes con cargas internas y externas. Este método analiza geometrías individualizadas con elementos tetraédricos, triangulares y vigas, y se resuelve con un *solver* iterativo El programa utiliza un tipo de elemento h y/o p adaptativo garantizando encontrar de la solución.

2.5.2. Módulo 1

2.5.2.1. Estructura de la máquina (demoledor)

La estructura de la máquina se ajusta a las condiciones que se requiere en el sitio de trabajo, y debe soportar la fuerza requerida para la demolición y el peso de todos sus componentes.

La fuerza total que se requiere para demoler el ducto se calcula en el apartado 2.5.4.4 y es la siguiente:

$$F_T = 99013,72 [N]$$

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

Las cuatro barras redondas de la estructura son de acero AISI 1018

Las placas base y acople al horno eléctrico, son de acero A-36 de 20 mm cada una

Los sujeciones son fijas en los cuatro orificios de la tapa acople al horno eléctrico.

La carga es la F_T , dividido para dos, en los puntos de apoyo de los cilindros hidráulicos, como se detallan en la tabla 2.27.

Tabla 2.27. Consideraciones de la estructura del demoledor para FEA.

Consideración				
Tipo de análisis	Estático			
Sujeciones	4 agujeros de anclaje			
2 cargas externas	49506,86 [N]			
Tipos de contacto	Fijados			
Número de elementos	108381			
Nodos	196066			

(Fuente: Elaboración Propia)

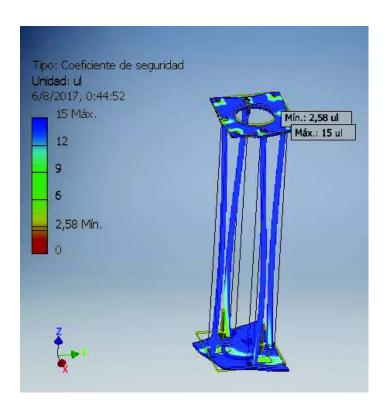


Figura 2.9. Análisis del factor de seguridad de la estructura del demoledor. (Fuente: Elaboración Propia)

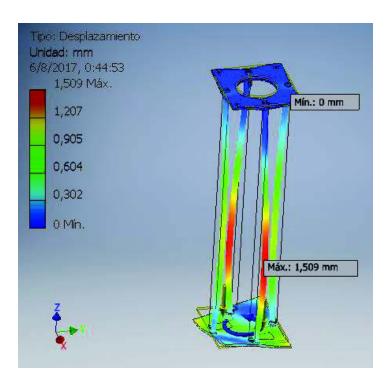


Figura 2.10. Análisis del desplazamiento de la estructura del demoledor. (Fuente: Elaboración Propia)

Los resultados obtenidos en la simulación se observan en las figuras 2.9 y 2.10 y son los siguientes: para el factor de seguridad un valor mínimo de 2,58 y el desplazamiento máximo es de 1,5 mm los cuales son valores adecuados para el trabajo de la máquina y garantiza el correcto desempeño del mismo.

2.5.2.2. Anclajes para el transporte de la máquina

Los anclajes para el transporte de la máquina se los va a colocar en la parte superior de la estructura, para que con la ayuda de cadenas y el puente grúa que dispone la nave, se transporte con facilidad hacia el punto de trabajo del demoledor como se muestra en la figura 2.11.

Figura 2.11. Ubicación anclajes para grillete. (Fuente: Elaboración Propia)

La fuerza que va actuar sobre este anclaje es la sumatoria de los pesos de los elementos del mecanismo móvil Pt que se calcula en el apartado 2.5.4.3 y sumada el peso de la estructura.

$$P_{Tot-Mec} = P_t + P_{estrc}$$

El Pt es el siguiente:

$$P_t = 1397,5 [N]$$

La masa de la estructura se lo toma del programa inventor y es el siguiente:

$$P_{estr} = m_{estructura} * gravedad$$

$$P_{estr} = 698,67 [kg] * 9,81 \left[\frac{m}{S^2}\right]$$

$$P_{estr} = 6853,95[N]$$

Entonces:

$$P_{Tot-Mec} = 1397,5[N] + 6853,95[N]$$

$$P_{Tot-Mec} = 8251,45[N]$$

Esta cantidad se divide para dos ya que son dos anclajes en la estructura del demoledor, quedando la fuerza de la siguiente manera

$$P_T = 4125,73 [N]$$

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

Los anclajes son construidos con acero A-36 de 20 mm de espesor

Las sujeciones son las caras planas en contacto con la estructura, y se detallan en la tabla 2.28

Tabla 2.28. Consideraciones del anclaje de izado del demoledor.

Consideración				
Tipo de análisis	Estático			
Sujeciones	Superficie			
Carga externa	4125,73 [N]			
Tipos de contacto	Fijado			
Número de elementos	1364			
Nodos	2342			

(Fuente: Elaboración Propia)

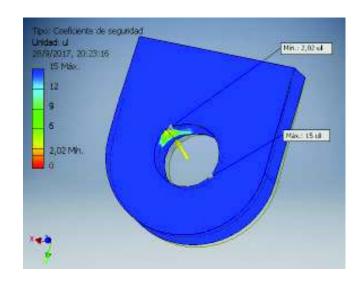


Figura 2.12. Análisis del factor de seguridad del anclaje. (Fuente: Elaboración Propia)

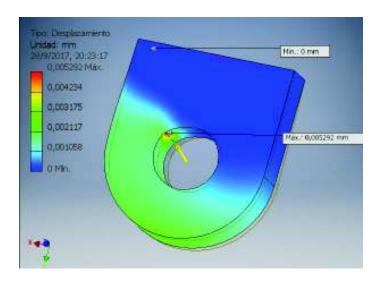


Figura 2.13. Análisis del desplazamiento del anclaje. (Fuente: Elaboración Propia)

Los resultados de la simulación se observan en las figuras 2.12 y 2.13 y son los siguientes: para el factor de seguridad el valor mínimo es de 2,02 y el desplazamiento tiene un valor máximo de 0,0052 mm los cuales son valores adecuados para el transporte de la máquina y garantiza su correcto desempeño.

2.5.2.3. Sujeción del demoledor

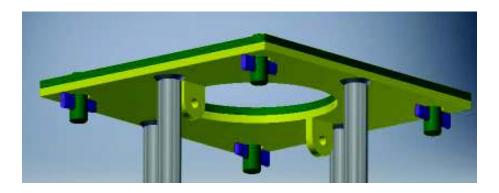


Figura 2.14. Sujeción de la estructura al horno eléctrico. (Fuente: Elaboración Propia)

Para la sujeción en el puesto de trabajo del demoledor la mejor alternativa, es por medio de cuñas y con la ayuda de los cuatro pines existentes en el horno eléctrico, como se muestra en la figura 2.14

La fuerza total que va actuar sobre los pines y las cuñas es la sumatorio de la fuerza calculado en el apartado 2.5.4.4 y el peso total de la máquina que se lo calcula en el apartado 2.5.2.2 y son los siguientes:

$$F_T = 99013,72 [N]$$

$$P_{Tot-Mec} = 8251,45[N]$$

Se obtiene lo siguiente:

$$F_{4-pines} = 107265,17 [N]$$

Esta cantidad se divide para cuatro ya que son cuatro pines presentes en el horno eléctrico, quedando la fuerza de la siguiente manera

$$F_{Pin} = 26816,3 [N]$$

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

Los pines están fabricados de acero AISI 1018 y se detallan en la tabla 2.29

Tabla 2.29. Consideraciones del pin de sujeción del horno eléctrico.

Consideración				
Tipo de análisis	Estático			
Sujeciones	Cara Fija			
Carga externa	26816,3 [N]			
Tipos de contacto	Fijados			
Número de elementos	1231			
Nodos	2145			

(Fuente: Elaboración Propia)

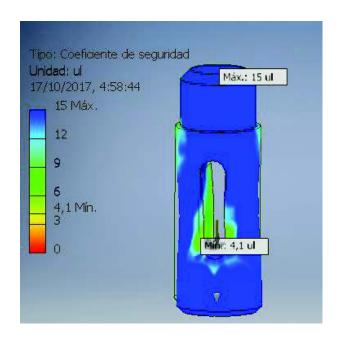


Figura 2.15. Análisis del factor de seguridad del pin de sujeción. (Fuente: Elaboración Propia)

Figura 2.16. Análisis del desplazamiento del pin de sujeción (Fuente: Elaboración Propia)

El resultado de la simulación para el pin de sujeción se observan en la figuras 2.15 y 2.16 y son los siguientes: para el factor de seguridad el valor mínimo es de 4,1 y el desplazamiento máximo es de 0,016 mm los cuales son valores adecuados para la correcta sujeción de la máquina y garantiza el trabajo durante la demolición.

Las cuñas están fabricadas de acero A-36

Tabla 2.30. Consideraciones de las cuñas de sujeción al horno eléctrico.

Consideración					
Tipo de Análisis	Estático				
Sujeciones	Cara Inferior				
Carga externa	26816,3 [N]				
Tipos de contacto	Fijados				
Número de elementos	807				
Nodos	1534				

(Fuente: Elaboración Propia)

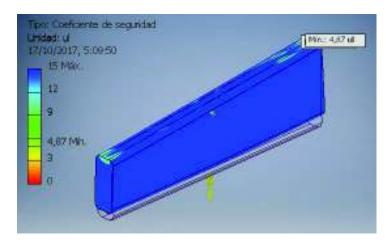


Figura 2.17. Análisis del factor de seguridad de la cuña de sujeción. (Fuente: Elaboración Propia)

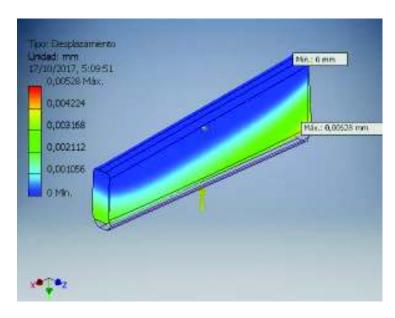


Figura 2.18. Análisis del desplazamiento de la cuña de sujeción. (Fuente: Elaboración Propia)

El resultado de la simulación para la cuña se muestran en las figuras 2.17 y 2.18 y son los siguientes: se obtiene un factor de seguridad con un valor mínimo es de 4,87 y el desplazamiento un valor máximo es de 0,0052 mm los cuales son valores adecuados para un correcta sujeción de la máquina y garantiza el trabajo durante la demolición

2.5.3. Módulo 2

2.5.3.1. Cálculo de la potencia del motor para movimiento rotacional de la herramienta

Se toma como herramienta un tricono (figura 2.40 y 2.41), el cual necesita un empuje suficiente para sobrepasar la resistencia de compresión del material refractario, que en este caso es de 55 MPa [3] (anexo III), el empuje mínimo por debajo del cual el material no será perforado puede calcularse con la siguiente ecuación.

$$E_m = 28.5 * RC * D \tag{2.1}$$

En donde

 $E_m = empuje mínimo [lb]$

RC = resistencia a la compresión [MPa]

D = diámetro del tricono [pulg]

Las constantes que se utilizan en la ecuación 2.1 son:

$$RC = 55 [MPa]$$

$$D = 7 [pulg]$$

$$E_m = 28,5 * 55 * 7$$

$$E_m = 10972,5$$
 [lb]

El empuje máximo por encima del cual se produce un enterramiento del tricono se considera que es el doble del mínimo

$$E_M = 2 * E_m \tag{2.2)[5]$$

Reemplazando valores en la ecuación 2.2 se tiene:

$$E_M = 2 * 10972,5$$

$$E_M = 21945, [lb]$$

$$E_M = 97616,22 [N]$$

El empuje máximo por pulgada de diámetro es:

$$E_i = \frac{E_M}{D} \left[\frac{lb}{pulg} \right] \tag{2.3}[5]$$

Reemplazando valores en la ecuación 2.3 se tiene:

$$E_i = \frac{21945}{7} \left[\frac{lb}{pulg} \right]$$

$$E_i = 3135 \left[\frac{lb}{pulg} \right]$$

La potencia de rotación requerida es igual al producto del par necesario para hacer girar el tricono por velocidad de rotación.

$$HP_r = \frac{N_r * T_r}{5250} \tag{2.4}[5]$$

En donde:

 $HP_r = potencia de rotación [HP]$

 $N_r = velocidad de rotación [rpm]$

 $T_r = par de \ rotaci\'on \ [lb - ft]$

Cuando no se conoce el par necesario la potencia de rotación se la puede calcular con la siguiente expresión.

$$HP_r = K * N_r * D^{2,5} * E_i^{1,5}$$
 (2.5)[5]

En donde

K = constante de la formación

Las constantes que se utilizan en la ecuación 2.5 son:

$$N_r = 60 [rpm]$$

$$D = 7 [pulg]$$

$$E_i = 3,135 \left[\frac{klb}{pulg} \right]$$

$$K = 9 * 10^{-5}$$

$$HP_r = 9 * 10^{-5} * 60 * 7^{2,5} * 3,135^{1,5}$$

$$HP_r = 3,88 [HP]$$

Para la potencia real del motor se considera una eficiencia de transmisión del 90 %

$$HP_r = 4,27 [HP]$$

$$HP_r = 3,18 [kW]$$

Para el cálculo del torque utilizamos la ecuación 2.4

$$HP_r = \frac{N_r * T_r}{5250}$$

$$4,27 = \frac{60 * T_r}{5250}$$

$$T_r = 373,45 [lb - ft]$$

$$T_r = 506,3 [N - m]$$

2.5.3.2. Selección del moto reductor

Conociendo la potencia necesaria para accionar el movimiento rotacional se escoge el siguiente motor del catálogo [8], (anexo IV).

Potencia: 3,6 kW

Voltaje: 220/440 V

Frecuencia: 60 Hz

Torque: 570 N-m

Fases: 3

Peso: 63 kg

2.5.3.3. Diseño del eje de transmisión

El eje va a transmitir la potencia desde el motor hasta la herramienta, en este caso la herramienta es un tricono que se utiliza en perforación de roca.

Para el cálculo de la fuerza radial que actúa sobre el tricono se consideran los ángulos que forman el eje de perforación con el eje de giro del cono γ , y el ángulo del cono, como se observa en la figura 2.19.[20]

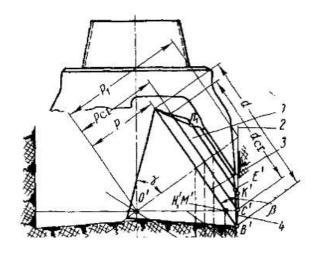


Figura 2.19. Diagrama del tricono (Fuente: https://link.springer.com/article/10.1007/BF01146298)

Los ángulos utilizados para la construcción de tricono para roca blanda es decir hasta 90 Mpa de resistencia a la compresión, son los siguientes.

Ángulo entre el eje de giro de la broca y el eje de giro del cono es de 57°, y el ángulo del cono es de 92° (anexo IX) [19].

La fuerza axial de penetración P es la componente vertical de la fuerza resistente R, como se muestra en la Figura 2.20.

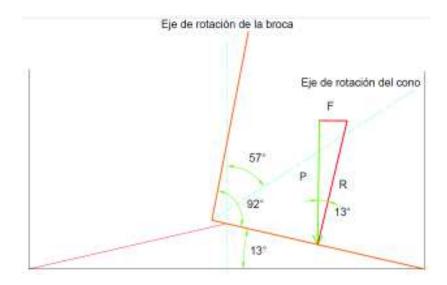


Figura 2.20. Componentes de la fuerza resistente. (Fuente: Elaboración Propia)

Por lo tanto la fuerza axial penetración será:

$$P = R * \cos 13^{\circ} \tag{2.6}$$

Para el caso de una superficie de corte, para el caso del tricono se utiliza la división P/3.

En donde P es el empuje máximo por pulgada, calculado en el apartado 2.5.3.1.

$$P = E_i = 3135 [lb]$$

$$\frac{3135 [lb]}{3} = R * \cos 13^{\circ}$$

$$R = 1072,48 [lb]$$

En tanto la fuerza normal será:

$$F = R * \text{sen } 13^{\circ}$$

En donde F es la fuerza en sentido radial al tricono.

$$F = 1072,48 * sen 13^{\circ}$$

$$F = 241,25 [lb]$$

$$F = 1090,92 [N]$$

2.5.3.4. Cálculo de la fuerza que actúa sobre el eje

Vectorialmente la sumatoria de la fuerza que actúa sobre el eje es la siguiente como se observa en la figura 2.21:

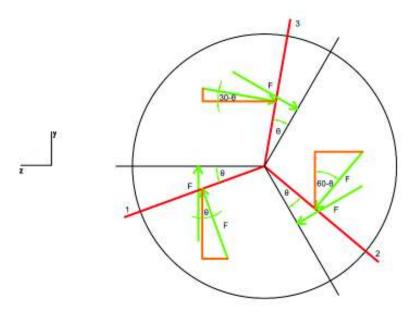


Figura 2.21. Fuerzas que actúan sobre el tricono. (Fuente: Elaboración Propia)

$$\vec{F} = F[\cos\theta - \cos(60 - \theta) - \sin(30 - \theta)]\vec{j} + F[\sin\theta + \sin(60 - \theta) - \cos(30 - \theta)]\vec{k}$$

En la tabla 2.31 se muestran los resultados de la función de F con relación al ángulo de giro del eje.

Tabla 2.31. Valores de F según el ángulo.

Angulo θ	Magnitud F [N]
0	0,00
5	0,00
10	0,00
90	2181,84
120	2181,84
150	1090,92
180	0,00
210	0,00
240	1090,92
270	2181,84
300	2181,84
330	1090,92
360	0,00
F Máxima	2181,84
F Mínima	0,00

(Fuente: Elaboración Propia)

Se calcula la fuerza Fa, que es la componente de la amplitud de la fuerza con la siguiente ecuación:

$$F_a = \frac{F_{max} - F_{min}}{2}$$
 (2.7) [7]
$$F_a = \frac{2181,84}{2}$$

$$F_a = 1090,92$$

La componente del intervalo medio de la fuerza Fm, se obtiene con la siguiente ecuación:

$$F_{m} = \frac{F_{max} + F_{min}}{2}$$

$$F_{m} = \frac{2181,84}{2}$$

$$F_{m} = 1090,92$$

Graficando los valores de la tabla anterior se observa:

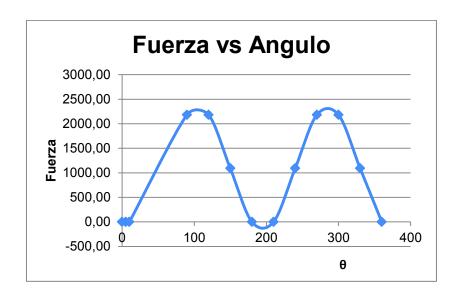


Figura 2.22. Fuerza vs ángulo. (Fuente: Elaboración Propia)

2.5.3.5. Cálculo del torque que actúa sobre el eje

Vectorialmente la fuerza y el radio de los tres conos que actúan sobre el eje son las siguientes:

$$\overrightarrow{F_1} = F[\cos\theta \vec{j} + sen\theta \vec{k}]$$

$$\overrightarrow{F_2} = F[-\cos(60 - \theta)\overrightarrow{j} + \sin(60 - \theta)\overrightarrow{k}]$$

$$\overrightarrow{F_3} = F\left[-sen(30 - \theta)\overrightarrow{j} - cos(30 - \theta)\overrightarrow{k}\right]$$

$$\vec{r_1} = r[sen\theta\vec{j} + cos\theta\vec{k}]$$

$$\vec{r_2} = r \left[-sen(60 - \theta)\vec{j} + cos(60 - \theta)\vec{k} \right]$$

$$\vec{r_3} = r[\cos(30 - \theta)\vec{j} - \sin(30 - \theta)\vec{k}]$$

El torque se lo calcula de la siguiente manera.

Haciendo el producto vectorial se obtiene:

$$\vec{T} = \vec{r} \times \vec{F}$$

$$\vec{T} = r * F[sen^2\theta - cos^2\theta - sen^2(60 - \theta) + cos^2(60 - \theta) - cos^2(30 - \theta) - sen^2(30 - \theta)]\vec{i}$$

En la tabla 2.32 se muestran los resultados de la función de T con relación al ángulo de giro θ del eje.

Tabla 2.32. Valores de T según el ángulo.

Angulo θ	Torque [Nm]
0	-484,91
15	-361,94
30	-193,97
45	-25,99
60	96,98
75	141,99
90	96,98
105	-25,99
120	-193,97
135	-361,94
150	-484,91
165	-529,92
180	-484,91
195	-361,94
210	-193,97
225	-25,99
240	96,98
255	141,99
270	96,98
285	-25,99
300	-193,97
315	-361,94
330	-484,91
345	-529,92
360	-484,91
T Máximo	141,99
T Mínimo	-529,92

(Fuente: Elaboración Propia)

Se calcula la T alternante con la siguiente fórmula:

$$T_a = \frac{T_{max} - T_{min}}{2}$$

$$T_a = \frac{141,99 - (-529,92)}{2}$$

$$T_a = 335,95$$

$$69$$

Se calcula la T media con la siguiente fórmula:

$$T_m = \frac{T_{max} + T_{min}}{2}$$

$$T_m = -193,96$$

Graficando los valores de la tabla anterior se observa:

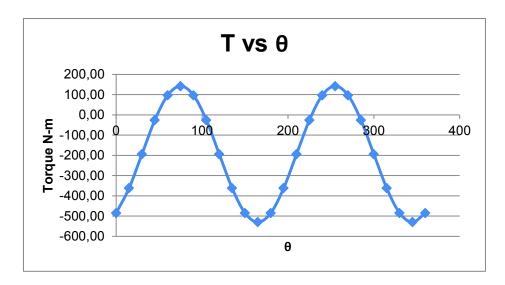


Figura 2.23. Torque en función del ángulo de giro del eje (Fuente: Elaboración Propia)

2.5.3.6. Diagrama de cuerpo libre del eje

Las cargas que soporta el eje en el plano x-y son las que se muestran en la figura 2.24.

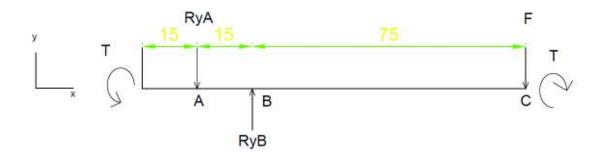


Figura 2.24. Diagrama de cuerpo libre del eje. (Fuente: Elaboración Propia)

2.5.3.7. Fuerzas y diagramas del eje en el plano x-y

Realizando la sumatoria de fuerzas en y se obtiene:

$$\Sigma F_y = 0$$

$$-Ry_A + Ry_B - F = 0 \tag{2.9}$$

Haciendo sumatoria de momentos en B se obtiene:

$$\Leftrightarrow \Sigma M_B = 0$$

$$Ry_A * 0.15 - F * 0.75 = 0$$

Dónde:

$$F = 2181,84 [N]$$

Que se la calcula vectorialmente en el apartado anterior.

$$Ry_A * 0.15 - 2181.84 * 0.75 = 0$$

 $Ry_A = 10909.2 [N]$

Reemplazando en la ecuación 2.9

$$-10909.2 + Ry_B - 2181.84 = 0$$

 $Ry_B = 13091.04 [N]$

El diagrama de cortante es el siguiente:

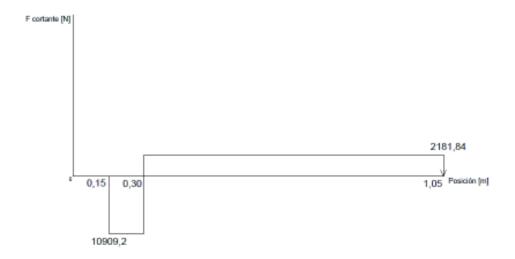


Figura 2.25. Diagrama cortante del eje en el plano x-y. (Fuente: Elaboración Propia)

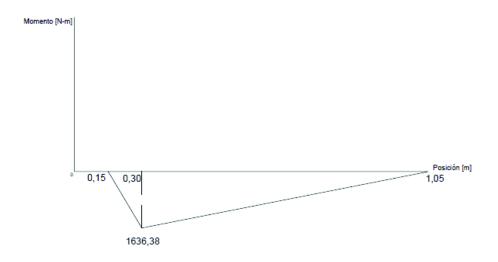


Figura 2.26. Diagrama momento del eje en el plano x-y. (Fuente: Elaboración Propia)

De los diagramas se observa que el momento máximo que soporta el eje es:

$$M = 1636,38 [N - m]$$

2.5.3.8. Geometría del eje

Para los cambios de sección se toman en cuenta el apoyo en A, y se muestran en la figura 2.27

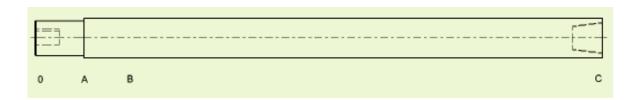


Figura 2.27. Geometría del eje. (Fuente: Elaboración Propia)

2.5.3.9. Cálculo del diámetro mínimo

Para el cálculo del diámetro minio del eje se utiliza la fórmula de la energía de distorsión [7]

$$d = \left[\frac{32n}{\pi S_y} \left(M^2 + \frac{3T^2}{4} \right)^{\frac{1}{2}} \right]^{\frac{1}{3}}$$
 (2.10)

Dónde:

d = diámetro mínimo del eje

n = factor de seguridad

 $S_v = esfuerzo de fluencia del material$

M = momento flexionante en la sección crítica

T = par torsionante en la sección crítica

El material seleccionado es acero de transmisión AISI 4340, existente en el mercado, con las siguientes propiedades físicas:

$$S_{ut} = 980 MPa$$

$$S_v = 687 MPa$$

El momento máximo calculado en la sección anterior es:

$$M = 1636,38 [N - m]$$

El torque máximo calcula en la sección 2.5.3.1

$$T_r = 506,3 [N - m]$$

Los valores reemplazando en la ecuación 2.10 se obtiene.

$$d = 36.8 \, mm$$

2.5.3.10. Cálculo dinámico del diámetro mínimo

Para el cálculo se utiliza la fórmula de la energía de distorsión-Soderberg.

$$d = \left\{ \frac{48n}{\pi} \left[\left(\frac{T_a}{S_e} + \frac{T_m}{S_y} \right)^2 + \left(\frac{M_a}{S_e} + \frac{M_m}{S_y} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}}$$
 (2.11)

Donde:

d = diámetro mínimo del eje

n = factor de seguridad

 $S_e =$ límite de resistencia a la fatiga

 $S_y = esfuerzo de fluencia del material$

 $M_a y M_m = momento flexionante alterno y medio$

 T_a y $T_m = par$ de torsión alternante y medio

2.5.3.11. Cálculo del límite de resistencia a la fatiga

El límite de resistencia a la fatiga se la calcula con la siguiente fórmula:

$$S_{\rho} = k_{\alpha}k_{b}k_{c}k_{d}k_{\rho}k_{f}S_{\rho}' \tag{2.12}$$

Donde:

 $k_a = factor de modificación por la condición superficial$

 $k_b = factor de modificación por el tamaño$

 $k_c = factor de confiabilidad$

 $k_d = factor de modificación por la temperatura$

 $k_e = factor de modificación por concentración de esfuerzos$

 $k_f = factor de modificación por efectos varios$

 S'_e = límite de resistencia a la fatiga en viga rotatoria

Estos factores se calculan de la siguiente manera:

Factor de condición superficial.

$$k_a = aS_{ut}^b$$
 (2.13) [7]

Los valores correspondientes para a y b, se toman de la tabla de parámetros en el factor de la condición superficial de *Marin* [7] (anexo VI, Tabla 6-2), para un acabado superficial maquinado o laminado en frío y son los siguientes:

$$a = 4.51$$

$$b = -0.265$$

Para el acero de transmisión AISI 4340 la resistencia mínima a la tensión es:

$$S_{ut} = 980 \, [MPa]$$

Reemplazando los valores en la ecuación 2.13

$$k_a = 4,51 * 980^{-0,265}$$

$$k_a = 0.726$$

Factor de tamaño

$$k_b = 1.24 * d^{-0.107}$$
 si $2.79 \le d \le 51 \, mm$ (2.14)[7]

$$k_b = 1.51 * d^{-0.107}$$
 si $51 \le d \le 254 mm$

Factor de confiabilidad.

$$k_c = 1$$
 confiabilidad 50% (2.15)[7]

Factor de temperatura.

$$k_d = 0.975 + 0.432(10^{-3})T - 0.115(10^{-5})T^2 + 0.104(10^{-8})T^3 - 0.595(10^{-12})T^4$$
 (2.16)

Para el cálculo del factor de temperatura se toma como promedio una temperatura de 100°C que es el promedio entre la temperatura ambiente y la temperatura a la cual se encuentra el ducto de vaciado, reemplazando en la ecuación 2.16

$$k_d = 0,975 + 0,432(10^{-3})212 - 0,115(10^{-5})212^2 + 0,104(10^{-8})212^3 - 0,595(10^{-12})212^4$$

$$k_d = 1.46$$

El límite de resistencia a la fatiga en viga rotatoria se calcula con la ecuación siguiente.

$$S'_e = 0.5 * S_{ut}$$
 si $S_{ut} \le 1400 MPa$ (2.17)[7]

Reemplazando en la ecuación 2.17 la resistencia mínima a la tensión para el acero AISI 4340 se obtiene.

$$S_e' = 0.5 * 980[MPa]$$

$$S_e' = 490 \, [MPa]$$

Para el cálculo de ke y kf, se utilizan las siguientes ecuaciones.

$$K_e = 1 + q(K_t - 1)$$
 $K_f = 1 + q_{cortante}(K_{ts} - 1)$ (2.18) [7]

Donde.

 $K_t = factor teórico de la concentración de esfuerzo normal$

 $K_{ts} = factor$ teórico de la concentración de esfuerzo cortante

q = sensibilidad de la muesca

Para encontrar Kt y Kts se utiliza la Tabla A-15 [7] (anexo VI, Figuras A-15-8 y A-15-9), aplicando las siguientes relaciones

$$\frac{r}{d}$$
 y $\frac{D}{d}$

En donde D, d y r se obtiene de la selección del rodamiento [8] (anexo V). Los valores se observan en la tabla 2.33.

Tabla 2.33. Cálculo Kt y Kts para varios diámetros.

Secciones del eje	d [mm]	r	D	r/d	D/d	Kt	Kts
Eje de cal. estático	40	1,5	52	0,0375	1,3	2,2	1,83
1	50	2	64	0,04	1,28	2,1	1,72
2	65	2	84	0,03	1,29	2,2	1,9
3	70	2	91	0,03	1,30	2,2	1,9
4	75	2	97	0,03	1,29	2,2	1,9
5	80	2	103	0,03	1,29	2,2	1,9
6	85	2,5	110	0,03	1,29	2,2	1,9

(Fuente: Elaboración Propia)

La sensibilidad de la muesca q y $q_{cortante}$ se la obtiene de la (Figura 6-20) [7] (anexo VI), para un radio de muesca determinado y una resistencia mínima a la tensión de 980 [MPa], los valores que se obtienen se detallan en la tabla 2.34

Tabla 2.34. Cálculo q y qcortante para varios diámetros.

Secciones del eje	d [mm]	r	q	qcort
Eje de cal. estático	40	1,5	0,87	0,88
1	50	2	0,88	0,9
2	65	2	0,88	0,9
3	70	2	0,88	0,9
4	75	2	0,88	0,9
5	80	2	0,88	0,9
6	85	2,5	0,9	0,91

(Fuente: Elaboración Propia)

Con todos estos resultados obtenidos se puede calcular S_e con la fórmula 2.12, sus valores se observan en la tabla 2.35, para diferentes diámetros.

Tabla 2.35. Cálculo del límite de resistencia a la fatiga (Se) para varios diámetros.

Secciones del Eje	Se'	ka	kb	kc	kd	ke	kf	Se	Diámetro [m]
Eje de cal. estático	490	0,726	1,747	1	1,02	0,489	0,578	179,23	0,0406
1	490	0,726	1,706	1	1,02	0,508	0,607	190,83	0,0508
2	490	0,726	2,328	1	1,02	0,486	0,552	226,97	0,0635
3	490	0,726	2,293	1	1,02	0,486	0,552	223,60	0,0699
4	490	0,726	2,262	1	1,02	0,486	0,552	220,57	0,0762
5	490	0,726	2,248	1	1,02	0,486	0,552	219,16	0,0794
6	490	0,726	2,162	1	1,02	0,481	0,550	207,36	0,1016

(Fuente: Elaboración Propia)

Luego de obtener el límite de resistencia a la fatiga S_e , se puede calcular el factor de seguridad para diferentes diámetros con la ecuación 2.11 de la energía de distorsión, de la cual los resultados se presentan en la tabla 2.36.

Tabla 2.36. Cálculo del factor de seguridad para varios diámetros.

Secciones del eje	Diámetro [m]	FS
Eje de cal. estático	0,0406	0,77
1	0,0508	1,56
2	0,0635	3,51
3	0,0699	4,61
4	0.0762	5 93

(Fuente: Elaboración Propia)

Se observa que para un factor de seguridad de 3,51 el diámetro mínimo es de 0,0635 metros, este valor es mayor al calculado con el método estático, por lo cual se toma 0,070 como diámetro mínimo del eje en el diseño.

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

El eje de acero AISI 4340, de cuatro secciones

La sujeción fija en el punto A en donde se colocara un rodamiento de rodillo cónico de una sola hilera.

La carga es F y las reacciones respectivas los puntos en A y B calculadas este apartado

Los torques tanto del motor, como del que ejerce la herramienta sobre el eje y se detallan en la tabla 2.37.

Tabla 2.37. Consideraciones del eje del demoledor.

Consideración				
Tipo de análisis	Estático			
Sujeciones	Punto A			
Carga axial	97616,22 [N]			
Carga punto A	10909,2 [N]			
Carga punto B	13091,04 [N]			
Carga punto C	2181,84 [N]			
Torque motor	210 [N-m]			
Torque herramienta	138,6 [N-m]			
Tipos de contacto	Fijado			
Número de elementos	4641			
Nodos	7928			

(Fuente: Elaboración Propia)

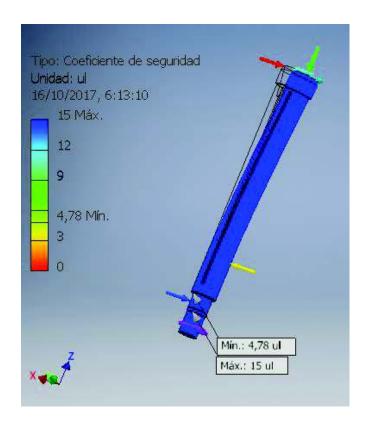


Figura 2.28. Análisis del factor de seguridad del eje del demoledor. (Fuente: Elaboración Propia)

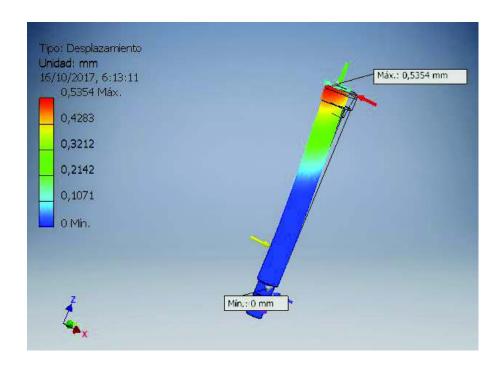


Figura 2.29. Análisis del desplazamiento del eje del demoledor. (Fuente: Elaboración Propia)

Los resultados de la simulación se muestran en las figuras 2.28 y 2.29 y son los siguientes: para el factor de seguridad el valor mínimo es de 4,78 y el desplazamiento máximo es de 0,53 mm los cuales son valores adecuados para el trabajo del eje.

El factor de seguridad que se obtuvo en el cálculo analítico es de 4,61 para un diámetro mínimo de 70 mm, considerando a este valor confiable y adecuado en el diseño para el trabajo que va a realizar el eje.

2.5.3.12. Soporte en apoyo en A

En el punto A, el eje va a estar sometido a carga axial proveniente del empuje que ejerce la herramienta sobre el eje, para lo cual se ha escogido un rodamiento de rodillo cónico de una sola hilera. Para la sujeción del rodamiento en el eje se construye un cambio de sección.

2.5.3.13. Rodamiento de rodillos cónicos en el punto A

El rodamiento que se utiliza es uno de rodillos cónicos, la carga dinámica equivalente del mismo se la obtiene de la siguiente ecuación (anexo V).

$$P = XF_r + YF_a (2.19)[9]$$

$$\frac{F_a}{F_r} \le e \ \left\{ \begin{matrix} X = 1 \\ Y = 0 \end{matrix} \right\}$$

$$\frac{F_a}{F_r} > e \left\{ \begin{array}{l} X = 0.4 \\ Y = Y_1 \end{array} \right\}$$

Dónde:

P = carga dinámica equivalente

 $F_r = carga\ de\ empuje\ radial = Ry_A$

 $F_a = carga \ de \ empuje \ axial = E_M$

Para el caso analizado corresponde e=0,58

$$\frac{F_a}{F_r} = \frac{97616,22}{10909,2} = 8,94 > e \left\{ \begin{array}{l} X = 0,4 \\ Y = Y_1 = 1 \end{array} \right\}$$

Reemplazando los valores en la ecuación 2.19

$$P = 0.4 * 10909.2 + 1.0 * 97616.22$$

$$P = 101979,9 [N]$$

El índice básico de carga se lo obtiene de la siguiente ecuación.

$$f_h = \frac{c}{P} f_n$$
 (2.20) [9]

Dónde:

 $f_h = factor de vida de fatiga$

 $C = indice \ b\'asico \ de \ carga \ [N]$

 $P = carga\ dinámica\ equivalente\ [N]$

 $f_n = factor de velocidad$

El factor de velocidad se lo obtiene del catálogo de rodamientos [9] en la figura 5.3 (anexo V)

$$f_n = 0.84$$

El factor de vida de fatiga del rodamiento es de 2-4, valores para maquinaria de construcción, se lo toma del catálogo [9] (tabla 5.1, anexo V), y reemplazando los valores en la ecuación 2.20 se obtiene:

$$2{\sim}4 = \frac{C}{101979,9} * 0,84$$

$$C = 242809 \sim 485618$$

El rodamiento que cumple este índice básico de carga es el de diámetro externo de 160 mm y corresponde al número de rodamiento según catálogo [9] HR 32315 J (anexo V), y su índice de carga básico corresponde:

$$C = 340000 [N]$$

El cálculo de la vida nominal para un rodamiento de rodillos se lo realiza de la siguiente manera.

$$L = \left(\frac{c}{R}\right)^{\frac{10}{3}} * 10^6 [revoluciones]$$
 (2.21)[9]

$$L = \left(\frac{340000}{101979.9}\right)^{\frac{10}{3}} * 10^{6} [revoluciones]$$

$$L = 55,36 * 10^6 [revoluciones]$$

La herramienta gira a una velocidad de 60 rpm queda garantizada la vida del rodamiento.

$$L = 500 * \left(\frac{c}{p} * f_n\right)^{\frac{10}{3}} horas$$
 (2.22)[9]

$$L = 15480.39 horas$$

Las horas de trabajo del rodamiento están garantizadas con este cálculo.

2.5.3.14. Buje en el punto B

Para el diseño del buje se lo hace de acuerdo al diámetro del eje, y la carga que va a soportar el mismo.

 $F_r = Carga\ de\ empuje\ radial = Ry_B = 13091,04\ [N]$

La presión nominal se la obtiene de la siguiente ecuación

$$P = \frac{F}{DL}$$
 (2.23)[7]

En donde

 $F = carga\ radial = F_r[N]$

D = diámetro interno (diámetro del eje)[mm]

 $L = longitud \ del \ bocin \ [mm]$

Reemplazando valores en la ecuación 2.23

$$P = \frac{13091,04}{110 * 74} \left[\frac{N}{mm^2} \right]$$

$$P = 1,61 \left[\frac{N}{mm^2} \right] = 233,51 \ psi$$

La carga máxima del acero con el cual se va a construir el buje es de 8000 psi [7] (tabla 12.7), por lo que es valor aceptable para el diseño.

La velocidad en el bocín se la calcula de la siguiente manera.

$$V = \frac{\pi DN}{12} \tag{2.24}[7]$$

En donde:

N = velocidad angular [rpm]

$$V = \frac{\pi * 0.11m * 1 rpm * pulg}{12 * 0.0254m}$$

$$V = 1,13 \left[\frac{pie}{min} \right]$$

La velocidad máxima del acero con el cual se va a construir el buje es de 800 pie/min

El factor PV entonces es.

$$PV = 233,51 * 1,13 \left[psi * \frac{pie}{min} \right]$$

$$PV = 263,86 \left[psi * \frac{pie}{min} \right]$$

El valor máximo del factor PV es de 50000, el valor calculado para el diseño es aceptable.

2.5.3.15. Rodamiento de agujas en el punto B

El factor dinámico del rodamiento se lo obtiene de la siguiente ecuación 2.20.

Para el punto B la carga es:

$$P = 13091,04 [N]$$

El factor de velocidad se lo obtiene del catálogo de rodamientos en la figura 5.3 (anexo V) [9]

$$f_n = 0.84$$

El factor de vida de fatiga del rodamiento es de 2-4, valores para maquinaria de construcción, se lo toma del catálogo [9] (tabla 5.1, anexo V), y reemplazando los valores en la ecuación 2.20 se obtiene:

$$2{\sim}4 = \frac{C}{13091,04} * 0.84$$

$$C = 31169,14 \sim 62338,28$$

El rodamiento que cumple este índice básico de carga es el de diámetro interno de 110 mm, diámetro externo de 150 mm y 54 mm de altura que corresponde al número de rodamiento según catálogo [9] NA 5922 (anexo V), que su índice de carga básico corresponde:

$$C = 200000 [N]$$

El cálculo de la vida nominal para un rodamiento de rodillos se lo realiza con la ecuación 2.21, de la siguiente manera.

$$L = \left(\frac{200000}{13091,04}\right)^{\frac{10}{3}} * 10^{6} [revoluciones]$$

$$L = 8848,15 * 10^{6} [revoluciones]$$

La herramienta gira a una velocidad de 60 rpm queda garantizada la vida del rodamiento.

Para el cálculo de las horas de trabajo del rodamiento se utiliza la fórmula 2.22

$$L = 500 * \left(\frac{c}{P} * f_n\right)^{\frac{10}{3}} horas$$
 (2.22)[9]

$$L = 2474118.2 horas$$

Las horas de trabajo del rodamiento están garantizadas con este resultado.

2.5.3.16. Soporte para el rodillo de agujas

El soporte para el rodillo de agujas va estar ubicado en el punto B del diagrama de cuerpo libre del eje, el cual alojará al rodillo de agujas y será punto de apoyo en el momento del movimiento axial del eje, como se muestra en la Figura 2.30

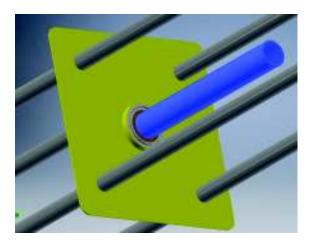


Figura 2.30. Soporte para rodillo de agujas en el punto B. (Fuente: Elaboración Propia)

La fuerza que va se ejercerá sobre el soporte es la reacción en el punto B calculado en el apartado 2.5.3.7.

$$Ry_B = 13091,04 [N]$$

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

El soporte está construido con Acero A-36 de 4 mm de espesor

Las restricciones fijas son los 4 agujeros de la estructura del demoledor y se detallan en la tabla 2.38

Tabla 2.38. Consideraciones del soporte para rodillos de agujas para FEA.

Consideración				
Tipo de análisis	Estático			
Sujeciones	4 agujeros de la estructura			
Carga externa	27810,48 [N]			
Tipos de contacto	Fijados			
Número de elementos	6075			
Nodos	12176			

(Fuente: Elaboración Propia)

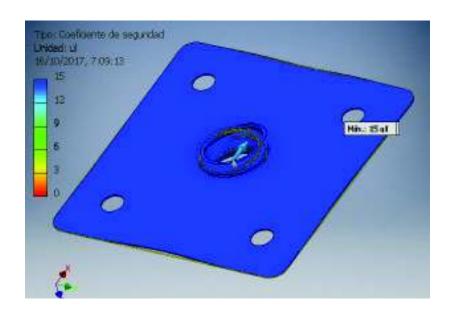


Figura 2.31. Análisis del factor de seguridad del soporte para rodillo de agujas. (Fuente: Elaboración Propia)

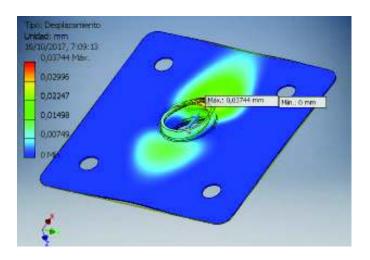


Figura 2.32. Análisis del desplazamiento del soporte para rodillo de agujas. (Fuente: Elaboración Propia)

Los resultados de la simulación se muestran en las figuras 2.31 y 2.32 y son los siguientes: el factor de seguridad mínimo es de 15 y el desplazamiento máximo es de 0,037 mm los cuales son valores adecuados para el trabajo del soporte, donde va estar alojado el rodamiento de rodillos de agujas y garantiza el correcto desempeño de la mismo.

2.5.4. Módulo 3

2.5.4.1. Subir y bajar la herramienta

Para este módulo la mejor alternativa, es la de cilindros hidráulicos para permitir subir y bajar de la herramienta en dirección axial al eje del ducto de vaciado (movimiento de avance de la herramienta), realizando la tarea de demolición, como se muestra en la figura 2.33

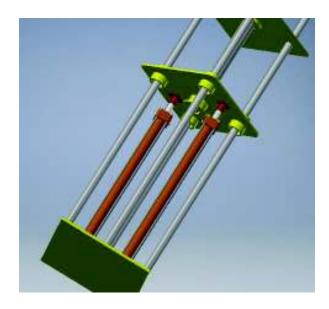


Figura 2.33. Módulo 3, cilindros hidráulicos. (Fuente: Elaboración Propia)

2.5.4.2. Selección del cilindro hidráulico

Para lo cual se va a tomar en cuenta la fuerza total que el cilindro necesita ejercer, que es la suma del peso del mecanismo móvil y el empuje necesario para demoler los anillos que componen el ducto de colado.

2.5.4.3. Cálculo del peso del mecanismo móvil

Para el cálculo del peso del mecanismo móvil, se toman en cuenta todos los elementos del mismo y se detallan a continuación:

La masa del motor-reductor se lo obtiene del catálogo [8], (anexo IV)

$$Masa\ motoreductor = m_{M-r} = 63[kg]$$

El peso del moto-reductor

$$P_{M-r} = 618,03 [N]$$

El peso del eje se lo calcula con el volumen y la densidad del acero

$$V_{eje} = \pi * r_{eje}^2 * L_{eje}$$

El volumen del eje en la sección 0-A tenemos:

$$V_{eje\ 0-A} = \pi * 0.035^2[m^2] * 0.16[m]$$

$$V_{eie0-A} = 6.15x10^{-4}[m^3]$$

El volumen del eje en la sección A-C tenemos:

$$V_{ejeA-C} = \pi * 0.045^{2}[m^{2}] * 0.89 [m]$$

 $V_{ejeA-C} = 5.66x10^{-3}[m^{3}]$

El volumen del eje es la suma de los volúmenes de las dos secciones

$$V_{eje} = V_{eje0-A} + V_{ejeA-C} [m^3]$$

$$V_{eje} = 6.15x10^{-4} + 5.66x10^{-3} [m^3]$$

$$V_{eje} = 6.27 \times 10^{-3} [m^3]$$

La densidad del acero AISI 4043.

$$\delta = 7,84 \left[\frac{g}{cm^3} \right]$$

$$m_{eje} = V_{eje} * \delta$$

$$m_{eje} = 6,27x10^{-3} [m^3] * 7,84 \left[\frac{g}{cm^3} \right] * \frac{(100 cm)^3}{(1m)^3} * \frac{kg}{1000g}$$

$$m_{eje} = 49,15 kg$$

El peso del eje es:

$$P_{eje} = m_{eje} * gravedad$$

$$P_{eje} = 49,15 [kg] * 9,81 \left[\frac{m}{s^2}\right]$$

$$P_{eje} = 482,22 N$$

Masa del rodamiento según el catálogo [9] (anexo V) es:

$$m_r = 5,3 [kg]$$

El peso del rodamiento es:

$$P_r = 52 [N]$$

El peso de la herramienta es:

$$P_h = 245,25 [N]$$

Por lo tanto sumando todos los pesos que necesita mover el cilindro hidráulico se tiene.

$$P_t = P_M + P_{eje} + P_r + P_h$$

$$P_t = 618,03 + 482,22 + 52 + 245,25 [N]$$

$$P_t = 1397,5 [N]$$

2.5.4.4. Cálculo de la fuerza total sobre el cilindro hidráulico

La fuerza total que el cilindro hidráulico necesita ejercer, es la suma del empuje E_M calculado en el apartado 2.5.3.1 y el peso del mecanismo móvil Pt, calculado en el apartado anterior.

$$E_M = 21945 [lb] = 97616,22 [N]$$

$$F_T = P_t + E_M$$

$$F_T = 99013,72 [N]$$

2.5.4.5. Selección diámetro y carrera del cilindro hidráulico

Para el cálculo del diámetro del cilindro, se debe obtener la salida del cilindro requerida.

$$F = \frac{P_T}{f_c} {(2.25)[10]}$$

En donde

F = salida del cilindro requerida

 $f_c = factor de carga$

El factor de carga se lo obtiene de la tabla 2.39. [10]

Tabla 2.39. Correlación factor de carga y velocidad del émbolo.

Velocidad del émbolo (mm/s)	Factor de carga máximo
8 a 100	70%
101 a 200	30%
201 a 300	10%

(Fuente: [10] SMC. (2017). Catálogo Cilindros Hidráulicos)

Para una velocidad de 8 a 100 mm/s se obtiene un factor de carga de 70%, se van a colocar dos cilindros hidráulicos por lo que la fuerza calculada en el apartado anterior se la divide en dos, reemplazando en la ecuación 2.25.

$$F = \frac{49506,86 [N]}{0,71}$$

$$F = 69727,97 [N]$$

Con este valor se selecciona en la tabla del esfuerzo teórico del catálogo [10] (anexo VII) y se aplica la siguiente ecuación.

$$F_{p1} = \mu_1 * F_{f1} \tag{2.26}[10]$$

En donde:

 $F_{p1} = fuerza de extensión generada por el cilindro [N]$

 μ_1 = coeficiente de la presión de carga de la extensión del cilindro = 0,9

 $F_{f1} = esfuerzo de extensión teórico [N] [10]$

Para un esfuerzo de extensión teórico igual a 78500 de la tabla esfuerzo teórico [10] (anexo VII) se obtiene.

$$F_{p1} = 0.9 * 78500$$

$$F_{p1} = 70650 > 69727,97$$

El diámetro del vástago que satisface la salida F del cilindro con una presión de 10 MPa, cuando la dirección es de salida es de 100 mm [10] (anexo VII).

La carrera del cilindro es de 1000 mm que normalizada es de 1287 mm.

El sistema hidráulico de la máquina se compone de dos cilindros de 100 mm de diámetro y van a ser controlados por una válvula de avance/retracción de doble acción, 4 vías ajuste, centro en serie de tres posiciones como se muestra en el Anexo X.

2.5.4.6. Soporte para motor

El soporte del motor va a cumplir la función de sujetar al motor y movilizarse conjuntamente con el eje para cumplir la operación de demolición como se muestra en la figura 2.34, va a soportar la fuerza que ejerce los cilindros hidráulicos para movilizar el eje así como también la fuerza axial que se necesita para la demolición del ducto de vaciado.

Figura 2.34. Soporte para motor. (Fuente: Elaboración Propia)

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

El soporte está construido con Acero A-36 de 20 mm de espesor, que consta de un alojamiento para un rodamiento de rodillos cilíndricos, el cual soportará la carga axial y radial del eje, así como también de una adaptación tipo brida para la sujeción del motor encargado de la rotación del eje.

Las restricciones tipo pasador son los 4 agujeros por donde se deslizara de forma axial conjuntamente con el eje y se detallan en la tabla 2.40.

Tabla 2.40. Consideraciones del soporte para motor para FEA.

Consideración			
Tipo de análisis	Estático		
Sujeciones tipo pasador	4 agujeros de la estructura		
Carga radial	10909,2 [N]		
Carga Axial	97616,22 [N]		
Carga de cilindros (2)	49506,86 [N]		
Torque Motor	570 [N-m]		
Tipos de contacto	Fijados		
Número de elementos	7664		
Nodos	14316		

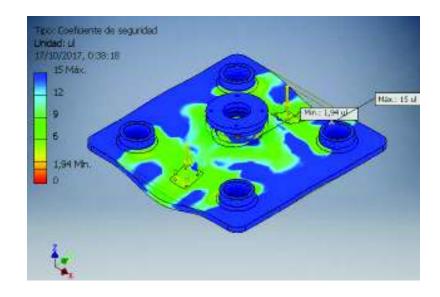


Figura 2.35. Análisis del factor de seguridad del soporte para motor. (Fuente: Elaboración Propia)

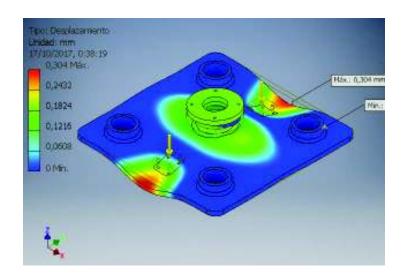


Figura 2.36. Análisis del desplazamiento del soporte para motor. (Fuente: Elaboración Propia)

Los resultados de la simulación se muestran en las figuras 2.35 y 2.36 y son los siguientes: para el factor de seguridad el valor mínimo es de 1,94 y el desplazamiento máximo es de 0,30 mm los cuales son valores adecuados para el soporte del motor, y garantiza el correcto desempeño del mismo, en la demolición.

2.5.4.7. Selección rodamientos lineales para el soporte para motor

Para la selección de los rodamientos lineales en los cuatro puntos del soporte del motor, para poder deslizarse a través de las barras de la estructura, se toma en cuenta la fuerza axial que actúa sobre el soporte, es decir la fuerza en el punto A del eje.

Como son cuatro guías a esta fuerza axial se la va a dividir para 4.

$$F_m = \frac{10909,2 [N]}{4} = 2727,3 [N]$$

La duración de vida L se calcula con la siguiente fórmula.

$$L = 2 * s * n_s * 60 * L_h (2.27)[17]$$

En donde:

L = Duración de vida nominal [metros]

 $L_h = Duración de vida nominal [horas]$, para este caso se va escoger 100000 horas que es la duración del rodamiento de rodillos cónicos del apartado anterior

s = Longitud de carrera [m]

$$n_s = Frecuencia de carrera \left[\frac{carrera}{min} \right]$$

Reemplazando los valores en la ecuación 2.27

$$L = 2 * 0.87 * 0.03 * 60 * 100000$$

$$L = 3.132 \times 10^5$$

Con este valor se obtiene el factor fL, del diagrama de Factor de duración de vida (fL) [17] (anexo VIII)

$$f_L = 0.68$$

El valor de carga requerida se la obtiene de la siguiente ecuación.

$$C_{req} = \frac{F_m}{f_H * f_t * f_s * f_L}$$
 (2.28) [17]

En donde:

 $f_H = Factor de Dureza$

 $f_t = Factor de Temperatura$

 $f_s = Factor de carrera corta$

 $f_L = Factor de Duración de vida$

Para una dureza de eje de HRc 60 y usando el diagrama para factor de dureza fH [17] (anexo VIII), se obtiene:

$$f_H = 1$$

Se obtiene un fT, para una temperatura de rodamiento de 100°C, según tabla factor de temperatura del rodamiento [17] (anexo VIII).

$$f_t = 1$$

El factor de carrera es igual a 1, para carreras mayores a tres veces la longitud del rodamiento, reemplazando en la ecuación 2.28 se obtiene.

$$C_{req} = \frac{2727,3 [N]}{1*1*1*0.68}$$

$$C_{req} = 4010,73 [N]$$

Con este valor se escoge un rodamiento lineal estándar R0600 [17] (anexo VIII), cerrados con retenes, siendo el valor máximo de carga dinámica 12100 [N].

2.5.4.8. Tuerca para acople cilindro-soporte motor

Va a cumplir la función de acoplar el cilindro hidráulico con el soporte del motor para poder transmitir el movimiento axial del eje, como se observa en la figura 2.37

Figura 2.37. Tuerca para acople cilindro-soporte motor. (Fuente: Elaboración Propia)

Para el análisis con el método de elementos finitos se utilizan las siguientes consideraciones:

La tuerca está construida con Acero A-36.

La restricción fija es la cara que se acopla al soporte del motor, a continuación en la tabla 2.41 se detallan.

Tabla 2.41. Consideraciones de la tuerca para acople cilindro-soporte Motor para FEA.

Consideración			
Tipo de análisis	Estático		
Sujeciones fija	Cara en contacto con el soporte motor		
Carga del cilindro	49506,86 [N]		
Tipos de contacto	Fijados		
Número de elementos	2041		
Nodos	4122		

(Fuente: Elaboración Propia)

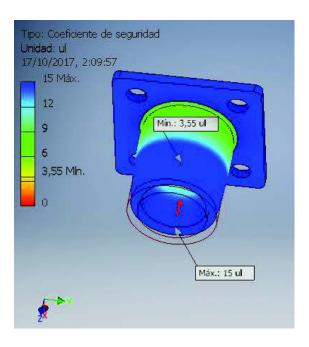


Figura 2.38. Análisis del factor de seguridad para tuerca acople cilindro-soporte motor. (Fuente: Elaboración Propia)

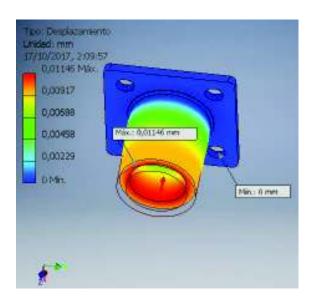


Figura 2.39. Análisis del desplazamiento de la tuerca acople cilindro-soporte motor. (Fuente: Elaboración Propia)

Los resultados de la simulación se observan en las figuras 2.38 y 2.39 y son los siguientes: para el factor de seguridad el valor mínimo es de 3,55 y el desplazamiento máximo es de 0,011 mm los cuales son valores adecuados para para el acople cilindro base motor y garantiza el correcto desempeño del elemento.

2.5.4.9. Selección Herramienta Perforación

Para la demolición misma del ducto de vaciado se ha escogido como herramienta una broca de perforación de roca utilizada en minería, las cuales existen en el mercado como son los triconos de dientes de acero y carburo de tungsteno así como también brocas tipo PDC.

2.5.4.10. Triconos de dientes de acero y tungsteno

En el mercado existen brocas tricónicas en un gran rango de diámetros, para formaciones suaves con dientes de acero, y para formaciones duras, con insertos de carburo de tungsteno como se observa en las Figuras 2.40 y 2.41 respectivamente

Figura 2.40. Tricono de dientes de acero. (Fuente: http://tecnodrill.net/tricones.htm)

Figura 2.41. Tricono de dientes con insertos de carburo de tungsteno. (Fuente: http://tecnodrill.net/tricones.htm)

La selección de la broca se da de acuerdo a las características del elemento a perforar, para este caso la resistencia a la compresión a vencer es de 55 MPa [3], que es la resistencia a la compresión del material que está construido el ducto de vaciado.

Según a tabla 5.3 [18] (anexo IX) de la clasificación general de triconos de insertos, para formaciones medias, con una resistencia a la compresión comprendidas entre 40 y 90 MPa y formaciones medio duras con la resistencia a la compresión entre 90 y 170 MPa, se escoge un tricono de insertos atlas copco, y de la serie CM251 [18].

2.5.5. Resumen del diseño

En la figura 2.42, se observa el demoledor con todos sus elementos diseñados en este apartado.

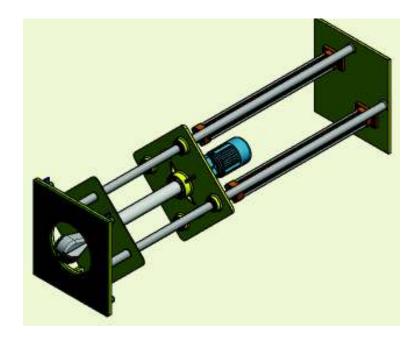


Figura 2.42. Demoledor ducto de vaciado. (Fuente: Elaboración Propia)

La máquina tiene una dimensión de 790x790x2700 [mm] y un masa aproximada de 700 kg, en la tabla 2.42 se enumeran las partes principales del demoledor y en las figuras 2.43 y 2.44 se observan su posición inicial y final de trabajo.

Tabla 2.42. Partes principales del demoledor.

N°	Parte	
1	Estructura demoledor	
2	Cilindro hidráulico	
3	Motor	
4	Eje del demoledor	
5	Broca tipo tricono	

(Fuente: Elaboración Propia)

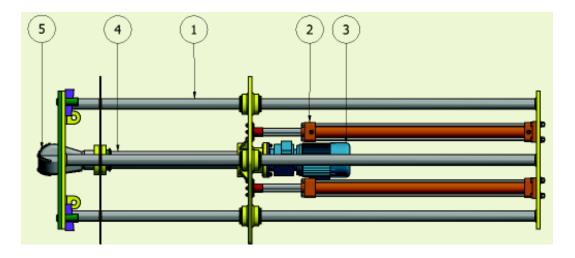


Figura 2.43. Posición inicial del demoledor. (Fuente: Elaboración Propia)

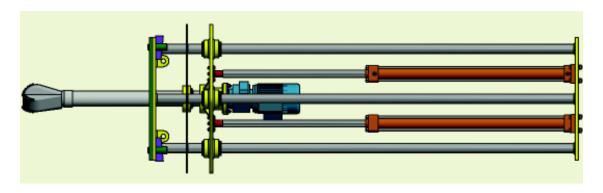


Figura 2.44. Posición final del demoledor. (Fuente: Elaboración Propia)

2.6. Análisis de costos

Se va elaborar un estudio de los costos para el presente proyecto en los cual están incluidos los diferentes rubros que se detallan a continuación: Costos Directos.

- Materia prima
- Elementos normalizados
- Maquinado
- Montaje

Costos Indirectos

• Costos de diseño

- Imprevistos
- Materiales consumibles

2.6.1. Costos directos

2.6.1.1. Materia prima

Están incluidos todos los costos referentes a los planchas de acero, ejes, tubería, que se necesita para la construcción de la maquina demoledora como se muestra en la tabla 2.43.

Tabla 2.43. Costos de materia prima.

Material	Unidad	Cant.	V. Unitario	V. Total
Plancha acero A-36 720x790x20 mm	plancha	2	172,4	344,8
Barra AISI 1018 2700xø60 mm	barra	4	118,01	472,04
Plancha acero A-36 720x720x4 mm	plancha	1	21,9	21,9
Tubo sin costura cedula 80 6"	metros	0,01	40	40
Plancha acero A-36 700x700x20 mm	plancha	1	148,5	148,5
Tubo sin costura cedula 80, 4"	metros	0,5	50	50
Plancha acero A-36 75x88x20 mm	plancha	2	14	28
Eje transmisión AISI 4340 1100 x ø 110 mm	Barra	1	294,77	294,77
Barra perforada EN10294-1 øext 115 øint 65x600	unidad	1	161,63	161,63
Tubo sin costura cedula 40, 8"	metros	0,5	50	50
Tubo sin costura cedula 40, 5"	metros	0,5	50	50
Plancha acero A-36 200x200x20 mm	plancha	1	148,5	148,5
Tubo sin costura cedula 40 1/2"	metros	6	12,5	75
Codo acero negro 1/2"	unidad	7	25	175
Tubo sin costura cedula 40 1 1/2"	metros	0,5	29,9	14,95
Total		<u>-</u>		2075,09

(Fuente: Elaboración Propia)

2.6.1.2. Elementos normalizados

Están incluidos todos los costos referentes a tornillería, rodamientos, motor, válvulas, cilindros, que se necesita para la construcción de la maquina demoledora como se muestra en la tabla 2.44.

Tabla 2.44. Costos de elementos normalizados.

Material	Unidad	Cant.	V. Unitario	V. Total
Broca tricono 7 pulgadas	unidad	1	1400	1400
Motoreductor Siemens, 3.4 Hp, 120 rpm, 3F	unidad	1	815	815
Rodamiento de rodillos cónicos 32315 J, NSK	unidad	1	124,19	124,19
Anillo elástico 160 mm	unidad	2	5	10
Rodamiento de agujas RNA 4920, NSK	unidad	1	361,87	361,87
Anillo elástico 75 mm	unidad	1	5	5
Cilindro hidráulico doble efecto, ø 80 mm, carrera 1020 mm	unidad	2	500	1000
Valvulas media vuelta alta presión	unidad	2	88	176
Válvula de control direccional de bomba	Juego	1	350	350
Perno de acero M 16 x 70 mm	unidad	8	0,62	4,96
Arandela de acero plana M16	unidad	8	0,15	1,2
Arandela de acero presión M16	unidad	8	0,1	0,8
Tuerca de acero M16 x 12	unidad	8	0,15	1,2
Perno de acero M 10 x 40 mm	unidad	8	0,18	1,44
Arandela de acero plana M10	unidad	12	0,06	0,72
Arandela de acero presión M10	unidad	12	0,04	0,48
Tuerca de acero M10 x 12	unidad	12	0,08	0,96
Rodamiento lineal estándar R0600	unidad	4	512,86	2051,44
Perno de acero M 10 x 50 mm	unidad	4	0,2	0,8
Total				6306,06

2.6.1.3. Mano de obra

Los costos de la mano de obra se detallan en la tabla 2.45, en los cuales consta todo lo referente a la mano de obra que se utilizará en la construcción de la máquina, en lo que tiene que ver con el maquinado y ensamble de la misma.

Tabla 2.45. Costos de mano de obra.

Mano de obra	Tiempo trabajo [h]	Valor/hora	Valor total
Corte plasma	7	20	140
Corte sierra	2,5	20	50
Fresado	7	35	245
Limado	2	30	60
Roscado	3	40	120
Soldadura	8,5	35	297,5
Taladrado	2,5	10	25
Torneado	12,5	30	375
Total			1312,5

2.6.2. Costos Indirectos

Los costos indirectos son aquellos que se generan indirectamente en el proyecto e influye directamente en la construcción de la máquina.

2.6.2.1. Consumibles

En estos costos se abarca todo el material que se va a consumir para la construcción de la máquina, como son electrodos, gratas etc y se detallan en la tabla 2.46

Tabla 2.46. Costos del material consumible.

Material	Unidad	Cant.	V. Unitario	V. Total
Electrodo E7018	kg	6	3,248	19,488
Electrodo E6013	kg	11	3,304	36,344
Electrodo E6011	kg	13	3,304	42,952
Disco corte	u	1	2,3	2,3
Disco desbaste	u	3	4,25	12,75
Grata circular	u	2	18	36
Grata conica	u	1	26	26
Pintura y catalizador	galon	1	108,75	108,75
	Total	•	_	284,584

(Fuente: Elaboración Propia)

a. Costos de Diseño

En estos costos incluye toda la papelería utilizada en la elaboración del proyecto, impresiones, transporte e ingeniería y se detallan en la tabla 2.47.

Tabla 2.47. Costos de diseño.

Rubro	Costo
Implementos oficina	140
Transporte	100
Impresiones	100
Ingenieria	2300
Total	2640

2.6.3. Costo total del proyecto

Es la sumatoria de todos los costos directos e indirectos calculados, para el diseño y construcción de la máquina, y se detallan en la tabla 2.48

Tabla 2.48. Costo Total del Proyecto.

Rubro	Costo USD
Materia prima	2075,09
Elementos normalizados	6306,06
Maquinado	1312,5
Consumibles	284,58
Diseño	2640
Total	12618,23

(Fuente: Elaboración Propia)

3. DISCUSIÓN DE RESULTADOS

3.1. Resultados del proyecto

3.1.1. Tiempo de demolición del ducto de vaciado

La máquina tiene un avance de la herramienta de 14 pies/hora, que es el avance que corresponde para un empuje de 3135 lb/pulg y una Resistencia a la compresión de 55 MPa (7977,08 psi), que se obtiene de la Figura 3.1 [18], velocidades de penetración de triconos.

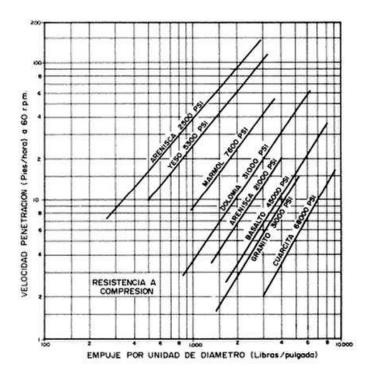


Figura 3.1. Velocidad de penetración. (Fuente: Manual de Perforación y Voladura de Rocas)

$$V = 14 \frac{pie}{hora} = 4,26 \frac{m}{hora} * \frac{1 hora}{60 min} = 0,071 \frac{m}{min}$$

La distancia a demoler del ducto de vaciado es 0.75 m, por lo que el tiempo requerido para el trabajo de demolición será:

$$V = \frac{d}{t}$$

$$t = \frac{d}{V} = \frac{0.75m}{0.071 \frac{m}{min}} = 10.56 min$$

A este tiempo se aumenta el tiempo de montaje de la máquina en el lugar de trabajo, revisión de las condiciones iniciales de operación, así como también el desmontaje de la misma.

3.1.2. Procedimiento demolición ducto de vaciado

En la tabla 3.1 se detalla todo el procedimiento para realizar la operación de demolición del ducto, con todos los tiempos estimados para cada actividad.

Tabla 3.1. Tiempos del procedimiento de demolición.

Actividad	Responsable	Recurso	Tiempo [min]
TRANSPORTE MÁQUINA: Con la ayuda del puente grúa, enganchar la cadena de 4 puntas a los grilletes de la máquina Transportar hasta parte baja del horno	técnico	cadena puente grúa	5
ANCLAJE AL HORNO: Con ayuda del puente grúa y con la cadena (tensor de carga) ubicar la máquina en los pines ubicados en horno	técnico	cadena (tensor) puente grúa	2
ASEGURAR MÁQUINA: Colocar cuñas para el ajuste de la máquina al horno Desenganchar cadena	técnico	cuñas, martillo cadena (tensor) puente grúa	5
CONDICIONES INICIALES DE OPERACIÓN: Acoplar mangueras de aceite (acoples rápidos) Energizar máquina	técnico	Acoples rápidos enchufes trifásicos	2
DEMOLICIÓN DEL DUCTO	técnico	energía	11
CONDICIONES FINALES DE DEMOLICIÓN: Constatar finalización demolición ducto Desacoplar mangueras Desenergizar máquina	técnico	Acoples rápidos enchufes trifásicos	2
DESACOPLAR MÁQUINA: Enganchar máquina a cadena (tensor carga) Retirar cuñas sujetadoras	técnico	cuñas, martillo cadena (tensor) puente grúa	2

TRANSPORTE MÁQUINA: Con la ayuda del puente grúa, enganchar la cadena de 4 puntas a los grilletes de la máquina Transportar lugar designado para su ubicación	técnico	cadena puente grúa	5
		Tiempo total	34

El tiempo total para el proceso de demolición es de 34 minutos, en los cuales están incluidos tiempos de transporte, acoplamiento y demolición.

3.1.3. Mantenimiento

La máquina posee elementos fácilmente desmontables, y sencillos para su mantenimiento, por lo que cumple con la especificación. En la tabla 3.2 se detalla un programa de mantenimiento preventivo para la máquina.

Tabla 3.2. Programa de mantenimiento preventivo de la máquina.

Parte	Actividad	Frecuencia
	Limpieza	Finalización demolición
Estructura	Revisión rodamientos lineales	Finalización demolición Cada 500 horas de trabajo
	Revisión soldaduras	Semestral
0:-1	Limpieza	Finalización demolición
Sistema hidráulico	Revisión acoples	Finalización demolición
maradiico	Revisión posibles fugas de aceite	Mensual
	Limpieza	Finalización demolición
	Revisión motor	Trimestral
Sistema motriz	Revisión eje	Trimestral
Sistema motinz	Rodamientos	Finalización demolición Cada 500 horas de trabajo
	Broca tricono	Finalización demolición

(Fuente: Elaboración Propia)

3.2. Discusión del proyecto

Como se puede observar en el apartado anterior, en los resultados del proyecto, el tiempo estimado para la demolición del ducto es de 34 minutos, cumpliendo con el requerimiento de la empresa, permitiendo así un ahorro en tiempo de mantenimiento programado de 1 hora 20 minutos, los cuales pueden hacer aprovechados en aumentar la producción de la planta, cada colada tiene un tiempo de duración (*Tap To Tap*) según la tabla 3.3.

Tabla 3.3. Tiempo de colada según N° cargas.

N° cargas	Tiempo/Colada (Tap To Tap) [min]
2	38
3	42
4	44

Analizando para el caso en una producción de 4 cargas es decir un tiempo de 44 minutos por colada, el número de coladas que se pueden realizar en el tiempo ahorrado es el siguiente:

$$N^{\circ} Coladas = 80 min * \frac{1}{44 \frac{min}{colada}} = 1,8 coladas$$

El peso promedio por cada colada es de 29.5 toneladas de acero.

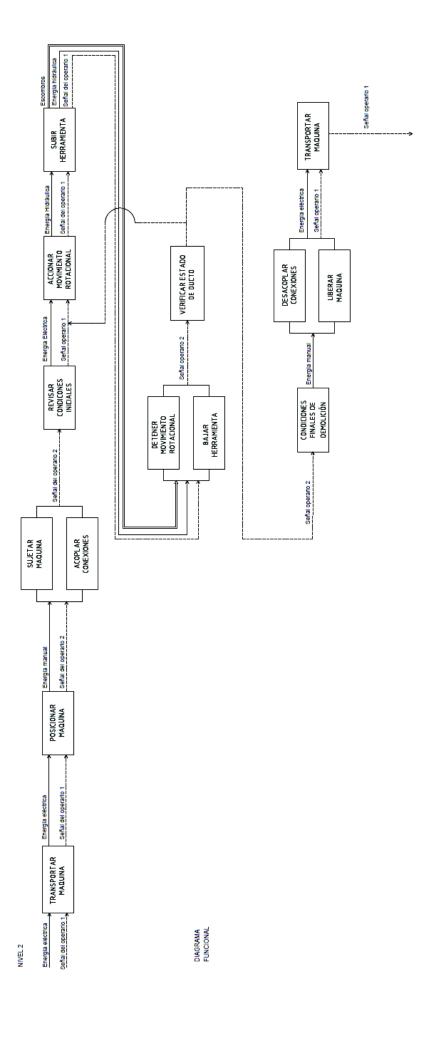
$$Peso\ Producido = 1,8\ coladas * \frac{29,5\ toneladas}{colada} = 53,1\ toneladas$$

El costo promedio por tonelada producida es de 410 dólares (barras).

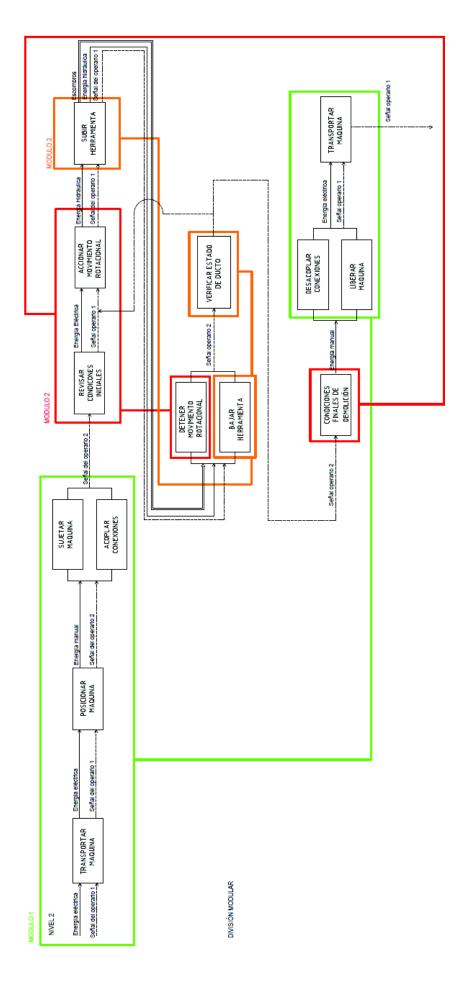
$$Producci\'on\ USD = 53,1\ toneladas * \frac{410\ USD}{tonelada} = 21771\ USD$$

Se tiene un aumento en la producción de 1,8 coladas que representan 21771 USD, en 1 hora y 20 minutos, que es el tiempo que se ganaría la planta al implementar esta máquina, para realizar el proceso de cambio del ducto de vaciado.

4. CONCLUSIONES


- Con la implementación de esta máquina en la empresa Acería del Ecuador ADELCA, se disminuirá el tiempo de parada por mantenimiento planificado en el trabajo de demolición del ducto, el cual puede ser aprovechado para un aumento en la producción de la planta, mejorando de esta manera la productividad, fabricando como mínimo 1,8 coladas, que representan alrededor de 53 toneladas de acero adicionales, de las producidas en la actualidad.
- La metodología usada en el desarrollo del proyecto y sus herramientas, como la casa de la calidad, nos ayuda a conocer los requerimientos y necesidades del cliente de una manera muy objetiva y puntual, para de esta manera poder llegar a las soluciones que nos permitan satisfacer las necesidades y especificaciones, planteadas por el cliente.
- La reducción de la exposición a altas temperaturas de los técnicos y personal que realiza el trabajo de demolición del Ducto, es significativo ya que la radiación que reciben con la implementación de esta máquina es mínima, al instalar y desinstalar la máquina en el lugar de trabajo, lo que mejora sustancialmente la calidad y el ambiente de trabajo entre los técnicos encargados de esta tarea, lo que es beneficioso para su salud.
- La industria siderúrgica en el país está crecimiento, por lo que es muy importante el desarrollo tecnológico en equipos que contribuyan a la optimización y mejoramiento continuo de este proceso productivo, contribuyendo así a los procesos y procedimientos que se aplican en esta industria.

Referencia Bibliográfica


- [1] Andrés Albuja. (2014). Tipos de Chatarra Usada en Horno Eléctrico. Dirección Técnica Acería Adelca. I-A-PD-01 Revisión 05. Alóag
- [2] Ernandes Marcos. (2008). Introducción a los Procesos de Afino Primario de Aceros en Hornos de Arco Eléctrico. Brasil.
- [3] Magnesita (2010). Hoja Datos Técnicos GMAG-EBT 2124. Brasil
- [4] Riba Carlos. (2002). Diseño Concurrente. UPC.
- [5] J. López. (2006). Manual de sondeos, Tecnología de perforación. España. Editorial: Omega S.A
- [6] Velastegui, Tito; Guía de Prácticas de Máquinas y Herramientas; EPN, Anexo D
- [7] Budynas G.R. y Nisbett J.K. (2011). Diseño en ingeniería Mecánica de Shigley. (9 ed.). México. Editorial: McGraw Hill.
- [8] Siemens. (2010). Catálogo No. D 87.1.2010. Motox Geared Motors. Alemania.
- [9] NSK. (2009). Catálogo No. E1102c. Rodamientos NSK. Motion & Control. Alemania
- [10] SMC. (2017). Catálogo Cilindros Hidráulicos. España. Editorial: SMC Corporation.
- [11] Instituto Tecnológico GoeMinero de España Manual de Perforación y Voladura de Rocas. Madrid.
- [12] Enríquez B. José L. y Tremps G. Enrique. (2007). Metalurgia Secundaria. Madrid.
- [13] Escuela Politécnica Superior. Procesos de Mecanizado III. Tecnología Mecánica. Recuperado el 27 de Junio de 2017, a partir de: http://lim.ii.udc.es/docencia/iin-gti-tecfab/docs/TemaVII.pdf
- [14] Lasquibar J.I. y Ribera C. Refractarios de magnesia-carbono para cucharas. Aristegui Material Refractario S.A. 385-393. Recuperado el 16 de Junio de 2017, a partir de http://boletines.secv.es/upload/198928385.pdf
- [15] Guerrero, V. Cerámicos y Refractarios. Recuperado el 16 de Junio de 2017, a partir de http://www.cdts.espol.edu.ec/documentos/Ceramicos%20y%20refractarios.pdf
- [16] Solid Works. (2016). Simulación. Análisis por Elementos Finitos. Recuperado el 20 de Junio de 2017, a partir de http://www.solidworks.es/sw/products/simulation/finite-element-analysis.htm
- [17] Bosch Group. (2007).Rodamientos Lineales R310ES 3100. Alemania. Recuperado el 01 agosto de 2017, a partir de: http://www.lineartec.com.ar/catalogos/7RodamientosLine-alesBosch.pdf

- [18] Triconos. Recuperado el 20 de Junio de 2017, a partir de https://es.slideshare.net/romain45/05-triconos
- [19] Trépanos Tricono. Recuperado el 17 de Octubre de 2017, a partir de https://es.slideshare.net/perforaciones2015/trepanos-tricono
- [20] Desing of three-blade chisels for calibrating wells. Recuperado el 17 de Octubre de 2017, a partir de https://link.springer.com/article/10.1007/BF01146298

Anexo I. Diagrama funcional Nivel 2

Anexo II. Diagrama Modular

Anexo III. Hoja datos técnicos

Praça Louis Ensch, 240 CEP: 32210-902 Cidade Industrial | Contagem | MG | Brasil

Telefone: +55 31 3368-1147 qualidade@magnesita.com.br www.magnesita.com.br

(MPa)

23

HOJA DE DATOS TECNICOS

GMAG-EBT EDICIÓN: 29/11/2010

CÓDIGOS DE MARCA 2124

Ladrillo refractário de magnesia-carbon, con 13% de carbon, a base

de magnesia electrofundida, grafita lamelar, con agentes antioxidantes y en la resina quimicamente ligada. De alta resistencia DESCRIPCIÓN DEL PRODUCTO

a oxidación, flexión en caliente y al ataque por la escoria.

Regiones de alta solicitación de convertidores: línea de escorias, APLICACIONES PRINCIPALES

vaciamiento, muñones y impacto.

PROPIEDADES QUÍMICAS (%)

91,0

Resistência a la flexión en caliente a 1400°C x 30 min.

MgO Carbono Total

12,8

PROPIEDADES FISICAS			
	Valor Tipico	Unidad	
Densidad aparente	3,05	(g/cm³)	
Densidad aparente después de 1400°C x 5 h	2,98	(g/cm³)	
Porosidad aparente	2,7	(%)	
Porosidad aparente después de 1400°C x 5 h	7,1	(%)	
Resistência a la compresión a temperatura ambiente	55	(MPa)	

NOTAS

- 1 Los ensayos son realizados de acuerdo con las normas: ABNT, ASTM, EN, DIN y procedimientos
- Para informaciones adicionales sobre seguridad, se recomienda consultar la Hoja Informativa de Seguridad de Productos Químicos - FISPQ de La marca correspondiente.
- 3 Los análisis químicos son realizados conforme la metodología de Magnesita Refractarios, utilizando la muestra base calcinada.
- El análisis químico y ensayos especiales siguen el plan de muestreo de la Gerencia de Processos según la norma ISO 9001.
- Los datos técnicos se obtienen a partir de cuerpos de prueba provenientes de produciones industriales.
- 6 Valores típicos se procesaron estadísticamente según la base de datos que caracterizan la marca.
- Las informaciones contenidas en esta Hoja podran sufrir alteraciones sin aviso prévio. Al ser confirmada la orden de venta, deberá ser verificado con nuestra área comercial si esta HDT se encuentra en su última revisión.

Anexo IV. Catálogo moto-reductor

@Siemens AG 2010

MOTOX Geared Motors Helical geared motors

Geared motors up to 200 kW

Power rating Motor	Output speed	d	Output torque	Service factor	Gearbox ratio	Order No.	Order	Weight
w	<i>n</i> ₂ (50 Hz) rpm	n ₂ (60 Hz) rpm	7₂ Nm	fa fa	Aus		(No. of poles)	kg
3.0 (50 Hz)	Z.68-LA100	LB4						
3.6 (60 Hz)	41	49	696	=1.1	34,49	2KJ1104 - #FM13 - ##U1		62
	46	55	617	1.3	30.60 ★	2KJ1104 - #FM13 - ##T1		62
	50	60	570	1.4	28.25	2KJ1104-WFM13-WWS1		62
	56	67	515	1.6	25.55 ★	2KJ1104 - #FM13 - ## R1		62
	60	72	475	1.7	23.53	2KJ1104 - #FM13 - ##Q1		62
	65	78	439	1.8	21.76 *	2KJ1104 - #FM13 - ## P1		62
	70	84	406	2.0	20.20	2KJ1104 - ■FM13 - ■■N1		62
	80	96	360	2.2	17.82 *	2KJ1104- FM13- M1		62
	86	103	332	2.4	16.45	2KJ1104 - FM13- BL1		62
	96	115	297	2.7	14.74 ★	2KJ1104- #FM13- ##K1		62
	104	125	274	2.9	13.59	2KJ1104 - #FM13 - ## J1		62
	125	150	230	3.4	11.40	2KJ1104- =FM13- == H1		62
	146	175	196	3.8	9.73 *	2KJ1104 - #FM13 - ## G1		62
	239	267	120	4.1	5.93	2KJ1104 - ##M13 - ##D1		62
	281	3 37	102	4.7	5.06 ★	2KJ1104 - #FM13 - ## C1		62
	Z.48-LA100	LB4	10.000					
	54	65	535	0.84	26.53	2KJ1103 - #FM13 - ##\$1		45
	62	74	465	0.97	23.07 ★	2KJ1103 - #FM13 - ##R1		45
	68	82	423	1.1	20.95	2KJ1103 - #FM13 - ##Q1		45
	74	89	396	1.2	19.13 ★	2KJ1103 - #FM13 - ## P1		45
	81	97	354	1.3	17.55	2KJ1103 - #FM13 - ## N1		45
	86	106	326	1.3	16.17 ★	2KJ1103 - FM13 - M1		45
	97	116	296	1.4	14.66	2KJ1103 - #FM13 - ##L1		45
	106	127	270	1.5	13.38 *	2KJ1103 - #FM13 - ## K1		45
	116	139	247	1.6	12.25	2KJ1103 - #FM13 - ##J1		45
	130	156	221	1.8	10.93 *	2KJ1103 - #FM13 - ##H1		45
	146	174	197	1.9	9.76	2KJ1103 - BFM13 - BB G1		45
	171	205	167	2.2	8.29	2KJ1103 - #FM13 - ##F1		45
	206	247	139	2.4	6.90 ★	2KJ1103 - ■FM13 - ■■E1		45
	209	251	137	2.0	6.79 *	2KJ1103 - #FM13 - ##D1		45
	234	281	122	2.2	6.06	2KJ1103 - #FM13 - ##C1		45
	276	331	104	2.6	5.15	2KJ1103 - #FM13 - ##B1		46
	332	398	86	3.0	4.28 ★	2KJ1103 - ■FM13 - ■■A1		45
	Z.38-LA 100			0.0	7.00	2101100 11110 1211		- 40
	110	132	261	0.84	12.92	2KJ1102 - #FM13 - ##M1		35
	120	144	236	0.92	11.82 ★	2KJ1102 - BFM13 - BBL1		35
	134	161	213	0.98	10.57	2KJ1102 - FM13 - WK1		35
	146	175	196	1.0	9.70 *	2KJ1102 - #FM13 - ## J1		35
	162	194	177	1.1	8.75	2KJ1102 - FM13 - BH1		35
	189	227	151	1.2	7.50 ★	2KJ1102 - FM13 - FF1		35
	189	227	0.00	1.3	1000000	2KJ1102 - FM13 - FG1		35
	212	254	152 135	1.3	7.52 ★	2KJ1102 - #FM13 - ##D1		35
	2500		17.72	10.777	6.71			177.00
	231	277	124	1.4	6.16 *	2KJ1102 - #FM13 - ##C1		35

*) For mounting type 83

Siemens D 87.1 2010

Frequency and voltage, see page 8/20 Gearbox housing mounting position, see page 2/119 -

A, F, H or R -

AD

263

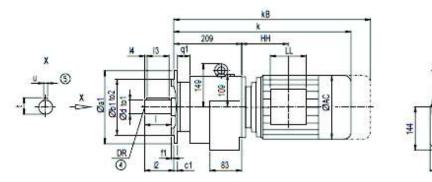
M16x36

M16x36

80

100

43.0


53.5 14

MOTOX Geared Motors Helical geared motors

Dimensions

Gearbox DF/ZF68 (3-/ 2-stage), flange-mounted design (A-type)

DZF011

Flange	at	ы	to2	c1	01	ff	qt	st	d	tot	1	и	В	1	u	2	DR
A2 50	250	180	j6	15	.215	4	40	13.5	35	k6	70	5	56	38.0	10	70	M12x28
									40	k6	80	6	70	43.0	12	80	M16x36
									50	k6	100	10	60	53.5	14	100	M16x36
A300	300	230	В	16	265	4	39	13.5	35	k6	-70	5	56	38.0	10	70	M12x28
									40 -1	k6	80	5	70	43.0	12	80	M16x36
									50	k6	100	10	80	53.5	14	100	M16x36
A3 50	350	250	16	18	300	4	39	17.5	35	k6	70	5	56	38.0	10	70	M12x28

40*

50

k6

k6

10:

^{*} Preferred series

	ZF68		DF 68						ZF68	DF68		Wolgh	L
Motor	k	kB	k	kB	AC	AD	AG	ш	нн	нн	0	ZF68	DF68
LA71	456.0	511.0	474.5	529.5	139.0	14.6	- 90	90	103.0	121.5	M20x1.5M25x1.5	45	47
LA71Z	475.0	530.0	493.5	548.5	139.0	146	90	90	103.0	121.5	M20x1.5M25x1.5	45	47
LABO.	493.0	556.5	511.5	575.0	156.5	155	90	90	102.5	121.0	M20x1.5/M25x1.5	49	52
LA90S	524.0	595.0	542.5	613.5	174.0	163	90	90	102.5	121.0	M20x1.5M25x1.5	54	56
LA90 L	524.0	595.0	542.5	613.5	174.0	163	90	90	102.5	121.0	M20x1.5/M25x1.5	54	56
LA100L	570.0	651.0	588.5	669.5	195.0	168	120	120	143.0	161.5	2xM32x1.5	63	65
LA112M	597.0	678.0	77.		219.0	181	120	120	146.0	-77	2xM32x1.5	75	- 51
LA132S	657.0	759.0	-	- 14	259.0	19.5	140	140	186.5	7-0	2xM32x1.5	88	1 2
LA132M	657.0	759.0	(0)	+	259.0	195	140	140	186.5	(0)	2xM32x1.5	88	*
LA132ZM	703.0	805.0	-7-	-	259.0	195	143	143	1.86.5	-7	2xM32x1.5	97	-
LA160M	759.5	878.0	100	10.5	313.5	227	165	165	212.0	100	2xM40x1.5	121	125
LA160L	759.5	578.0	(40)	(4)	313.5	227	165	165	212.0	(80)	2xM40x1.5	121	140

@ DIN 332

Feather key / keyway DIN 6885

2/168

Siemens D 87.1 - 2010

Anexo V. Catálogo rodamientos Tabla 5. 1 Factor de vida de faliga /i- para distintas aplicaciones de rodamientos

Periodos de	11 0	F6	ctor de vida de firliga.	fh.	
funcionamiento	-3	2-4	3-5	4-7	6-
Utilizados con poca fecuencia o durante periodos cortos	Motores pequeños para electrodoreis- ticos, paino applicado- nas y lavadores. Herramia nitas electricas namuales.	-Magsinaria agrisola			
Utilizados ocasionalmente pero ozya frabilidad es importante		Motores pero salefac- tures demistica s y aires acondicionados Maquinaria para la construcción	Transportations Holdons para cobles elevadores.		
Utilizados intermitantemente durante períodos relativamente largos	Caellos de cilindras para la reinación	Motores pequeños Grisas de cablerta Grisas de carga es general Soportes de piños Codres de pasajeros	Mintores de fábricas Máquina Hersamienta Transmétianes Critios Trituradoras	•R oldanas para gridas •Camprasores •T rass misiones especial tradas	
Utilizados intermitentemente durante más de ocho horas dialtas		€scalenas mecánicas	*Separadores certiflugos Espalpos de aire aco ediciona do Compresones *Majorius para tobojar modesi *Martones grandes eje s terroviorios eje s terroviorios	-Elevatores para minas -Volantes de prensas -Motores de triacción para ferrocarriles -Cajas de ejes para locoreotores.	Marquinos para fabricación de paper
Utilizados continuamente y cuya alta fabilidad es importante					Bontass de agua Centrales eléctrices Bontas poro el denaje de minas

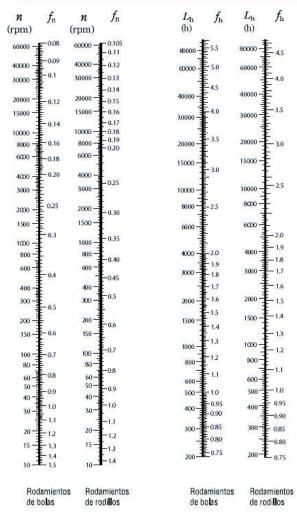
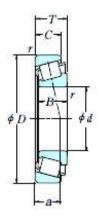
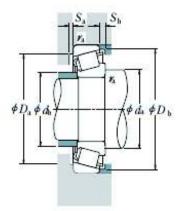



Fig. 5.3 Velocidad del rodamiento y factor de velocidad

Fig. 5.4 Factor de vida de fatiga y vida de fatiga

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 40~50 mm



		Di	mensiones (mm)	ė.				Indices Básicos	de Carga	755/376	Velocidade	
272					Cono	Copa	- 0	N)		(kgf)	(rpr	AN CONTRACTOR
d	D	T	В	С	82/85/5/37	nin.	G	Ca	Cr	Cor	Grasa	Aceite
40	62	15	15	12	0.6	0.6	34 000	47 000	3 450	4 800	5 600	7 500
	68	19	19	14.5	1	1	53 000	71 000	5 400	7 250	5 300	7 100
	68	22	22	18	1	1	59 000	81 500	6 000	8 300	5 300	7 100
	75	26	26	20.5	1.5	1.5	78 500	101 000	8 000	10 300	4 800	6 700
	80	19.75	18	16	1.5	1.5	63 500	70 000	6 450	7 150	4 800	6 300
	80	24.75	23	19	1.5	1.5	77 000	90 500	7 900	9 200	4 800	6 300
	80	24.75	23	19	1.5	1.5	74 000	90 500	7 550	9 200	4 500	6 300
	80	32	32	25	1.5	1.5	107 000	137 000	10 900	14 000	4 800	6 300
	90	25.25	23	20	2	1.5	90 500	101 000	9 250	10 300	4 300	5 600
	90 90 90 90	25.25 25.25 25.25 35.25	23 23 23 33	18 17 17 27	2222	1.5 1.5 1.5	84 500 80 000 80 000 120 000	93 500 89 500 89 500 145 000	8 600 8 150 8 150 12 200	9 500 9 150 9 150 14 800	4 300 3 800 3 800 4 300	5 60 5 30 5 30 6 00
45	68 75 75	15 20 24	15 20 24	12 15.5 19	0.6	0.6 1 1	34 500 60 000 69 000	50 500 83 000 99 000	3 550 6 150 7 050	5 150 8 450 10 100	5 000 4 500 4 800	6 70 6 30 6 30
	80	26	26	20.5	1.5	1.5	84 000	113 000	8 550	11 600	4 500	6 00
	85	20.75	19	16	1.5	1.5	68 500	79 500	6 950	8 100	4 300	6 00
	85	24.75	23	19	1.5	1.5	83 000	102 000	8 500	10 400	4 300	6 00
	85	24.75	23	19	1.5	1.5	75 500	95 500	7 700	9 750	4 300	5 60
	85	32	32	25	1.5	1.5	111 000	147 000	11 300	15 000	4 300	6 00
	96	29	26.5	20	2.5	2.5	88 500	109 000	9 050	11 100	3 600	5 00
	95	36	35	30	2.5	2.5	139 000	174 000	14 200	17 800	4 000	5 30
	100	27.25	25	22	2	1.5	112 000	127 000	11 400	12 900	3 800	5 30
	100	27.25	25	18	2	1.5	95 500	109 000	9 750	11 100	3 400	4 80
	100 100	27.25 38.25	25 36	18 30	2 2	1.5 1.5	95 500 144 000	109 000 177 000	9 750 14 700	11 100 18 000	3 4 00 3 8 00	4 80 5 30
50	100	36	35	30	2.5	2.5	144 000	185 000	14 600	18 800	3 800	5 00
	72	15	15	12	0.6	0.6	36 000	54 000	3 650	5 500	4 500	6 30
	80	20	20	15.5	1	1	61 000	87 000	6 250	8 900	4 300	6 00
	80	24	24	19	1	1	70 500	104 000	7 150	10 600	4 300	6 00
	85	26	26	20	1.5	1.5	89 000	126 000	9 100	12 800	4 300	5 60
	90	21.75	20	17	1.5	1.5	76 000	91 500	7 750	9 300	4 000	5 30
	90	24.75	23	19	1.5	1.5	87 500	109 000	8 900	11 100	4 000	5 30
	90	24.75	23	18	1.5	1.5	77 500	102 000	7 900	10 400	3 800	5 30
	90	32	32	24.5	1.5	1.5	1 18 000	165 000	12 100	16 800	4 000	5 30
	105	32	29	22	3	3	109 000	133 000	11 100	13 600	3 200	4 50
	110	29.25	27	23	2.5	2	130 000	148 000	13 300	15 100	3 400	4 80
	110	29.25	27	19	2.5	2	114 000	132 000	11 700	13 400	3 200	4 30
	110	29.25	27	19	2.5	2	114 000	132 000	11 700	13 400	3 200	4 30
	110	42.25	40	33	2.5	2	176 000	220 000	17 900	22 400	3 600	4 80
	110	42.25	40	33	2.5	2	164 000	218 000	16 800	22 200	3 400	4 80

Observaciones

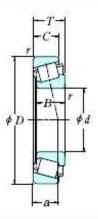
El sufijo C representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

Carga Dinámica Equivalente

 $P = XF_{\scriptscriptstyle T} + YF_{\scriptscriptstyle A}$

F_s/I	$r_j \leq e$	F_a/F	,>e
X	Y	X	Y
DV -	0	0.4	Y

Carga Estática Equivalente

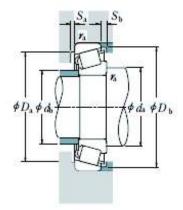

$$\begin{split} P_0 = &~0.5F_r + Y_0F_a \\ \text{Cuand o } F_t > &~0.5F_r + Y_0F_B \text{ use } P_0 = F_r \end{split}$$
Los valores de e, Y_1 , y Y_0 se

muestran en la tabla siguiente.

Números de	Serie Dimen-			Dimer	siones	de Tope (mm)	y Cha	aflán	es es es es es		Centros Efectivos	Cons- tante	7 00 00 00	res de a Axial	Masa (kg)
Rodamientos	sional ISO355 aprox.	da min.	dь máx.	I máx.) _a mín,	$D_{ m b}$ min.	Sa min.	S _b	Cono	Copa T _a máx.	de Carga (mm) a	e	Y_1	Y_0	аргох
HR 32908 J	2BC	48	44	57	57	59	3	3	0.6	0.6	11.5	0.29	2.1	1.1	0.16
HR 32008 XJ	3CD	49	45	62	60	65.5	4	4.5	1	1	15.0	0.38	1.6	0.87	0.28
HR 33008 J	2BE	49	45	62	61	65	4	4	1	1	14.6	0.28	2.1	1.2	0.32
HR 33108 J	2CE	51	46	66	65	71	4	5.5	1.5	1.5	18.0	0.36	1.7	0.93	0.50
HR 30208 J	3DB	51	48	71	69	75	3	3.5	1.5	1.5	16.6	0.38	1.6	0.88	0.43
HR 32208 J	3DC	51	48	71	68	75	3	5.5	1.5	1.5	18.9	0.38	1.6	0.88	0.54
HR 32208 CJ	5DC	51	47	71	65	76	3	5,5	1.5	1.5	21.9	0.55	1.1	0.60	0.558
HR 33208 J	2DE	51	46	71	67	76	5	7	1.5	1.5	20.8	0.36	1.7	0.92	0.74
HR 30308 J	2FB	52	52	81	76	82	3	5	2	1.5	19.5	0.35	1.7	0.96	0.75
HR 30308 C HR 30308 DJ HR 31308 J HR 32308 J	7FB 7FB 2FD	52 56 56 54	50 50 50	81 81 81 81	72 70 70 73	84 87 87 82	3333	7 8 8	2 2 2 2	1.5 1.5 1.5	22.7 28.7 28.7 23.4	0.53 0.83 0.83 0.35	1.1 0.73 0.73 1.7	0.62 0.40 0.40 0.96	0.73 0.72 0.72 1.05
HR 32909 J HR 32009 XJ HR 33009 J	2BC 3CC 2CE	53 54 54	50 51 51	63 69 69	62 67 67	64 72 71	3 4 4	3 4.5 5	0.6	0.6	12.3 16.6 16.3	0.32 0.39 0.29	1.9 1.5 2.0	1.0 0.84 1.1	0.18 0.35 0.41
HR 33109 J	3CE	56	51	71	69	77	3	5.5	1.5	1.5	19.1	0.38	1.6	0.86	0.55
HR 30209 J	3DB	56	53	76	74	80		4.5	1.5	1.5	18.3	0.41	1.5	0.81	0.48
HR 32209 J	3DC	56	53	76	73	81		5.5	1.5	1.5	20.1	0.41	1.5	0.81	0.60
HR 32209 CJ	5DC	56	52	76	70	82	3	5.5	1.5	1.5	23.6	0.59	1.0	0.56	0.60
HR 33209 J	3DE	56	51	76	72	81	5	7	1.5	1.5	22.0	0.39	1.6	0.86	0.81
T 7 FC045	7FC	60	53	83	71	91	3	9	2	2	32.1	0.87	0.69	0.38	0.91
T 2 ED 045 HR 30309 J HR 30309 DJ	2ED 2FB 7FB	60 57 61	54 58 57	83 91 91	79 86 79	89 93 96	533	6 5 9	2 2 2	2 1.5 1.5	23.5 21.1 31.5	0.32 0.35 0.83	1.9 1.7 0.73	1.02 0.96 0.40	1,22 1.01 0.95
HR 31309 J HR 32309 J	7FB 2FD	61 59	57 56	91 91	79 82	96 93	3	9	2	1.5 1.5	31.5 25.0	0.83 0.35	0.73 1.7	0.40 0.96	0.94 1.42
T 2 ED050	2ED	65	59	88	83	94	6	6	2	2	24.2	0.34	1.8	0.96	1.3
HR 32910 J	2BC	58	54	67	66	69	3	3	0.6	0.6	13.5	0.34	1.8	0.97	0.19
HR 32010 XJ	3CC	59	56	74	71	77	4	4.5	1	1	17.9	0.42	1.4	0.78	0.38
HR 33010 J	2CE	59	55	74	71	76	4 4 3	5	1	1	17.4	0.32	1.9	1.0	0.45
HR 33110 J	3CE	61	56	76	74	82		6	1.5	1.5	20.3	0.41	1.5	0.8	0.59
HR 30210 J	3DB	61	58	81	79	85		4.5	1.5	1.5	19.6	0.42	1.4	0.79	0.55
HR 32210 J	3DC	61	57	81	78	86	3 5	5.5	1.5	1.5	21.0	0.42	1.4	0.79	0.64
HR 32210 CJ	5DC	61	58	81	76	87		6.5	1.5	1.5	24.6	0.59	1.0	0.56	0.65
HR 33210 J	3DE	61	56	81	76	87		7.5	1.5	1.5	23.2	0.41	1.5	0.80	0.86
T 7 FC050 HR 30310 J HR 30310 DJ	7FC 2FB 7FB	74 65 70	59 65 62	91 100 100	78 95 87	100 102 105	5 3 3	10 6 10	2.5	2.5	36.4 23.1 34.2	0.87 0.35 0.83	0.69 1.7 0.73	0.38 0.96 0.40	1.22 1.28 1.26
HR 31310 J HR 32310 J HR 32310 CJ	7FB 2FD 5FD	70 68 68	62 62 59	100 100 100	87 91 82	105 102 103	3 3	10 9 9	2 2 2	2 2 2	34.2 27.9 32.8	0.83 0.35 0.55	0.73 1.7 1.1	0.40 0.96 0.60	1.26 1.88 1.93

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 55~65 mm



		Di	mensiones					Índices Básicos	de Carga		Velocidade	
			01410		Cono	Copa	.0	4)		(kgf)	(rpr	0000000
d	D	T	В	С		r min.	Cr	Cor	C _r	Cor	Grasa	Aceite
55	80	17	17	14	1	1	45 500	74 500	4 600	7 600	4 300	5 600
	90	23	23	17.5	1.5	1.5	81 500	117 000	8 300	11 900	3 800	5 300
	90	27	27	21	1.5	1.5	91 500	138 000	9 300	14 000	3 800	5 300
	95	30	30	23	1.5	1.5	112 000	158 000	11 500	16 100	3 800	5 000
	100	22.75	21	18	2	1.5	94 500	113 000	9 650	11 500	3 600	5 000
	100	26.75	25	21	2	1.5	110 000	137 000	11 200	14 000	3 600	5 000
	100	35	35	27	2	1.5	141 000	193 000	14 400	19 700	3 600	5 000
	115	34	31	23.5	3	3	126 000	164 000	12 800	16 700	3 000	4 300
	120	31.5	29	25	2.5	2	150 000	171 000	15 200	17 500	3 200	4 300
	120	31.5	29	21	2.5	2	131 000	153 000	13 400	15 600	2 800	4 000
	120	31.5	29	21	2.5	2	131 000	153 000	13 400	15 600	2 800	4 000
	120	45.5	43	35	2.5	2	204 000	258 000	20 800	26 300	3 200	4 300
	120	45.5	43	35	2.5	2	195 000	262 000	19 900	26 700	3 200	4 300
60	85	17	17	14	1	1	49 000	84 500	5 000	8 650	3 800	5 300
	95	23	23	17.5	1.5	1.5	85 500	127 000	6 700	12 900	3 600	5 000
	95	27	27	21	1.5	1.5	96 000	150 000	9 800	15 300	3 600	5 000
	100	30	30	23	1.5	1.5	115 000	166 000	11 700	16 900	3 400	4 800
	110	23.75	22	19	2	1.5	104 000	123 000	10 600	12 500	3 400	4 500
	110	29.75	28	24	2	1.5	131 000	167 000	13 400	17 000	3 400	4 500
	110	38	38	29	2	1.5	166 000	231 000	16 900	23 600	3 400	4 500
	125	37	33.5	26	3	3	151 000	197 000	15 400	20 100	2 800	3 800
	130	33.5	31	26	3	2.5	174 000	201 000	17 700	20 500	3 000	4 000
	130 130 130 130	33.5 33.5 48.5 48.5	31 31 46 46	22 22 37 35	3 3 3	2.5 2.5 2.5 2.5	151 000 151 000 233 000 196 000	177 000 177 000 295 000 249 000	15 400 15 400 23 700 20 000	18 100 18 100 30 000 25 400	2 600 2 600 3 000 2 800	3 800 3 800 4 000 3 800
65	90	17	17	14	1	1	49 000	86 500	5 000	8 800	3 600	5 000
	100	23	23	17.5	1.5	1.5	86 500	132 000	6 800	13 500	3 400	4 500
	100	27	27	21	1.5	1.5	97 500	156 000	9 950	15 900	3 400	4 500
	110	34	34	26.5	1.5	1.5	148 000	218 000	15 100	22 200	3 200	4 300
	120	24.75	23	20	2	1.5	122 000	151 000	12 500	15 400	3 000	4 000
	120	32.75	31	27	2	1.5	157 000	202 000	16 000	20 600	3 000	4 000
	120	41	41	32	2	1.5	202 000	282 000	20 600	28 800	3 000	4 00
	140	36	33	28	3	2.5	200 000	233 000	20 400	23 800	2 600	3 60
	140	36	33	23	3	2.5	173 000	205 000	17 700	20 900	2 400	3 40
	140 140	35 51	33 48	23 39	3	2.5 2.5	173 000 267 000	205 000 340 000	17 700 27 300	20 900 35 000	2 400 2 800	3 40 3 80

Observaciones

El sufijo C representa rodamientos de rodillos cônicos de ângulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

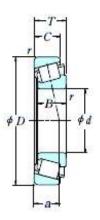
Carga Dinámica Equivalente

 $P = XF_r + YF_a$

F./1	$r_j \leq e$	$F_{\rm s}/F$,>e
X	Y	X	Y
1	0	0.4	Y

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0F_a$ Cuando $F_r > 0.5F_c + Y_0F_B$ use $P_0 = F_c$

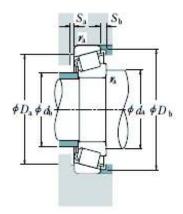

Los valores de e , Y_1 , y Y_0 se

muestran en la tabla siguiente.

Números de	Serie Dimen-			Dime	nsione	s de Top (mm)	e y Cha	dlán	Copo	Сора	Centros Efectivos de Carga	Cons- tante		res de a Axial	Masa (kg)
Rodamientos	sional ISO355 aprox.	da min.	$d_{ m b}$ máx.	máx.	D _a mín.	$D_{\rm h}$ min.	S _n min.	S _b	3500	r _a máx.	(mm) a	е	Y_1	Y_0	aprox.
HR 32911 J	2BC	64	60	74	73	76	4	3	1	1	14.6	0.31	1.9	1.1	0.282
HR 32011 XJ	3CC	66	62	81	80	86	4	5.5	1.5	1.5	19.7	0.41	1.5	0.81	0.568
HR 33011 J	2CE	66	62	81	80	86	5	6	1.5	1.5	19.2	0.31	1.9	1.1	0.657
HR 33111 J	3CE	66	62	96	82	91	5	7	1.5	1.5	22.4	0.37	1.6	0.88	0.877
HR 30211 J	3DB	67	64	91	89	94	4	4.5	2	1.5	20.9	0.41	1.5	0.81	0.736
HR 32211 J	3DC	67	63	91	87	95	4	5.5	2	1.5	22.7	0.41	1.5	0.81	0.859
HR 33211 J	3DE	67	62	91	86	96	6	8	2	1.5	25.2	0.40	1.5	0.83	1.18
T 7 FC055	7FC	73	66	101	86	109	4	10.5	2.5	2.5	39.0	0.87	0.69	0.38	1.58
HR 30311 J	2FB	70	71	110	104	111	4	6.5	2	2	24.6	0.35	1.7	0.96	1.63
HR 30311 DJ	7FB	75	67	110	94	114	4 4 4	10.5	2	2	37.0	0.83	0.73	0.40	1.58
HR 31311 J	7FB	75	67	110	94	114		10.5	2	2	37.0	0.83	0.73	0.40	1.58
HR 32311 J	2FD	73	67	110	99	111		10.5	2	2	29.9	0.35	1.7	0.96	2.39
HR 32311 CJ	5FD	73	65	110	91	112		10.5	2	2	35.8	0.55	1.1	0.60	2.47
HR 32912 J	2BC	69	65	79	78	81	4	3	1	1	15.5	0.33	1.8	1.0	0.306
HR 32012 XJ	4CC	71	66	86	85	91	4	5.5	1.5	1.5	20.9	0.43	1.4	0.77	0.608
HR 33012 J	2CE	71	66	86	85	90	5	6	1.5	1.5	20.0	0.33	1.8	1.0	0.713
HR 33112 J	3CE	71	68	91	88	96	5	7	1.5	1.5	23.6	0.40	1.5	0.83	0.91
HR 30212 J	3EB	72	69	101	96	103	4	4.5	2	1.5	22.0	0.41	1.5	0.81	0.930
HR 32212 J	3EC	72	68	101	95	104	4	5.5	2	1.5	24.1	0.41	1.5	0.81	1.18
HR 33212 J	3EE	72	68	101	94	105	6	9	2	1.5	27.6	0.40	1.5	0.82	1.56
T 7 FC060	7FC	78	72	111	94	119	4	11	2.5	2.5	41.3	0.82	0.73	0.40	2.03
HR 30312 J	2FB	78	77	118	112	120	4	7.5	2.5	2	26.0	0.35	1.7	0.96	2.03
HR 30312 DJ HR 31312 J HR 32312 J 32312 C	7FB 7FB 2FD	84 84 81 81	74 74 74 74	118 118 118 116	103 103 107 102	125 125 120 125	4 4 4 4	11.5 11.5 11.5 13.5	2.5 2.5 2.5 2.5	2 2 2 2	40.3 40.3 31.4 39.9	0.83 0.83 0.35 0.58	0.73 0.73 1.7 1.0	0.40 0.40 0.96 0.57	1.98 1.98 2.96 2.86
HR 32913 J	2BC	74	70	84	82	86	4	3	1	1	16.8	0.35	1.7	0.93	0.323
HR 32013 XJ	4CC	76	71	91	90	97	4	5.5	1.5	1.5	22.4	0.46	1.3	0.72	0.646
HR 33013 J	2CE	76	71	91	90	96	5	6	1.5	1.5	21.1	0.35	1.7	0.95	0.76
HR 33113 J	3DE	76	73	101	96	106	6	7.5	1.5	1.5	26.0	0.39	1.5	0.85	1.32
HR 30213 J	3EB	77	78	111	106	113	4	4.5	2	1.5	23.8	0.41	1.5	0.81	1.18
HR 32213 J	3EC	77	75	111	104	115	4	5.5	2	1.5	27.1	0.41	1.5	0.81	1.55
HR 33213 J	3EE	77	74	111	102	115	6	9	2	1.5	29.2	0.39	1.5	0.85	2.04
HR 30313 J	2GB	83	83	128	121	130	4	8	2.5	2	27.9	0.35	1.7	0.96	2.51
HR 30313 DJ	7GB	89	80	128	111	133	4	13	2.5	2	43.2	0.83	0.73	0.40	2.43
HR 3 13 13 J HR 32313 J	7GB 2GD	89 86	80 80	128 128	111 116	133 130	4	13 12	2.5 2.5	2 2	43.2 34.0	0.83 0.35	0.73 1.7	0.40 0.96	2.43 3.6

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 70~80 mm



		Di	mensiones					Indices Básico	s de Carga	Visitates	Velocidade	
			u.i.i.i.		Cono	Copa		4)		(kgf)	(rpr	
d	D	T	В	c		r min.	G	Cor	G	Cor	Grasa	Aceite
70	100	20	20	16	1	1	70 000	113 000	7 150	11 500	3 200	4 500
	110	25	25	19	1.5	1.5	104 000	158 000	10 600	16 100	3 200	4 300
	110	31	31	25.5	1.5	1.5	127 000	204 000	12 900	20 800	3 000	4 300
	120	37	37	29	2	1.5	177 000	262 000	18 100	26 700	3 0 0 0	4 000
	125	26.25	24	21	2	1.5	132 000	163 000	13 500	16 700	2 8 0 0	4 000
	125	33.25	31	27	2	1.5	157 000	205 000	16 100	20 900	2 8 0 0	4 000
	125	41	41	32	2	1.5	209 000	299 000	21 300	30 500	2 800	4 000
	140	39	35.5	27	3	3	177 000	229 000	18 000	23 400	2 400	3 400
	150	38	35	30	3	2.5	227 000	268 000	23 200	27 400	2 400	3 400
	150 150 150 150	38 38 54 54	35 35 51 51	25 25 42 42	3 3 3	2.5 2.5 2.5 2.5	192 000 192 000 300 000 280 000	229 000 229 000 390 000 390 000	19 600 19 600 30 500 28 600	23 300 23 300 39 500 39 500	2 200 2 200 2 600 2 400	3 200 3 200 3 400 3 400
75	105	20	20	16	1	1	72 500	120 000	7 400	12 300	3 200	4 300
	115	25	25	19	1.5	1.5	109 000	171 000	11 100	17 400	3 000	4 000
	115	31	31	25.5	1.5	1.5	133 000	220 000	13 500	22 500	3 000	4 000
	125	37	37	29	2	2	182 000	275 000	18 600	28 100	2 800	3 800
	130	27.25	25	22	2	1.5	143 000	182 000	14 600	18 500	2 800	3 800
	130	33.25	31	27	2	1.5	165 000	219 000	16 900	22 400	2 800	3 800
	130	41	41	31	2	1.5	215 000	315 000	21 900	32 000	2 800	3 800
	160	40	37	31	3	2.5	253 000	300 000	25 800	30 500	2 400	3 200
	160	40	37	26	3	2.5	211 000	251 000	21 500	25 600	2 200	3 000
	160 160 160	40 58 58	37 55 55	26 45 43	3 3	2.5 2.5 2.5	211 000 340 000 310 000	251 000 445 000 420 000	21 500 35 000 32 000	25 600 45 500 43 000	2 200 2 400 2 200	3 000 3 200 3 200
80	110	20	20	16	1	1	75 000	128 000	7 650	13 100	3 000	4 000
	125	29	29	22	1.5	1.5	140 000	222 000	14 300	22 700	2 800	3 600
	125	36	36	29.5	1.5	1.5	172 000	282 000	17 500	28 800	2 800	3 600
	130	37	37	29	2	1.5	186 000	289 000	19 000	29 400	2 600	3 600
	140	28.25	26	22	2.5	2	157 000	195 000	16 000	19 900	2 600	3 400
	140	28.25	26	20	2.5	2	147 000	190 000	15 000	19 400	2 400	3 400
	140	35.25	33	28	2.5	2	192 000	254 000	19 600	25 900	2 600	3 400
	140	46	46	35	2.5	2	256 000	385 000	26 200	39 000	2 600	3 400
	170	42.5	39	33	3	2.5	276 000	330 000	28 200	33 500	2 200	3 000
	170 170 170 170	42.5 42.5 61.5 61.5	39 39 58	27 27 48 48	3 3 3	2.5 2.5 2.5 2.5	235 000 235 000 385 000 365 000	283 000 283 000 505 000 530 000	24 000 24 000 39 000 37 500	28 900 28 900 51 500 54 000	2 000 2 000 2 200 2 200	2 800 2 800 3 000 3 000

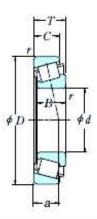
Observaciones

El sufijo CA representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo CA.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

F_{i}/I	$\zeta \leq e$	F_{\circ}/F	,>e
X	Y	X	Y
110	0	0.4	Y_1

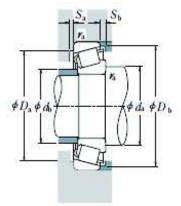

Carga Estática Equivalente

$$\begin{split} P_0 = &~0.5F_r + Y_0F_a \\ \text{Cuando} &~F_r > 0.5F_r + Y_0F_a \text{ use } P_0 = F_r \end{split}$$
Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen-			Dime	ns ione:	s de Top (mm)	e y Cha	aflán	Cono	Сора	Centros Efectivos de Carga	Cons- tante		res de a Axial	Masa (kg)
Rodamientos	ISO355 aprox.	d _n min.	d _b	máx.	D _a mín.	$D_{\rm h}$ min.	Sa min.	S _b		r _a máx.	immi a	e	Y_1	Y_0	аргох.
HR 32914 J	28C	79	76	94	93	96	4	4	1	1	17.6	0.32	1.9	1.1	0.494
HR 32014 XJ	4CC	81	77	101	98	105	5	6	1.5	1.5	23.7	0.43	1.4	0.76	0.869
HR 33014 J	2CE	81	78	101	100	105	5	5.5	1.5	1.5	22.2	0.28	2.1	1.2	1.11
HR 33114 J HR 30214 J HR 32214 J	3DE 3EC	82 82 82	79 81 80	111 116 116	104 110 108	115 118 119	6 4 4	8 5 6	2 2 2	1.5 1.5 1.5	27.9 25.7 28.6	0.38 0.42 0.42	1.6 1.4 1.4	0.87 0.79 0.79	1.71 1.3 1.66
HR 33214 J T 7 FC070 HR 30314 J	3EE 7FC 2GB	82 88 88	78 79 89	116 126 138	107 106 132	120 133 140	7 5 4	12 8	2 2.5 2.5	1.5 2.5 2	30.4 45.7 29.7	0.41 0.87 0.35	1.5 0.69 1.7	0.81 0.38 0.96	2.15 2.55 3.03
HR 3 03 14 DJ	7GB	94	85	138	118	142	4	13	2.5	2	45.7	0.83	0.73	0.40	2.94
HR 3 13 14 J	7GB	94	85	138	118	142	4	13	2.5	2	45.7	0.83	0.73	0.40	2.94
HR 3 23 14 J	2GD	91	86	138	124	140	4	12	2.5	2	36.0	0.35	1.7	0.96	4.35
HR 3 23 14 CJ	5GD	91	84	138	115	141	4	12	2.5	2	43.3	0.55	1.1	0.60	4.47
HR 32915 J	2BC	84	81	99	98	101	4	4	1	1	18.7	0.33	1.8	0.99	0.53
HR 32015 XJ	4CC	86	82	106	103	110	5	6	1.5	1.5	25.1	0.46	1.3	0.72	0.925
HR 33015 J	2CE	86	83	106	104	110	6	5.5	1.5	1.5	23.0	0.30	2.0	1.1	1.18
HR 33115 J	3DE	87	83	115	109	120	6	8	2	2	29.1	0.40	1.5	0.83	1.8
HR 30215 J	4DB	87	85	121	115	124	4	5	2	1.5	27.0	0.44	1.4	0.76	1.43
HR 32215 J	4DC	87	84	121	113	125	4	6	2	1.5	29.8	0.44	1.4	0.76	1.72
HR 332 15 J	3EE	87	83	121	111	125	7	10	2	1.5	31.6	0.43	1.4	0.77	2.25
HR 303 15 J	2GB	93	95	148	141	149	4	9	2.5		31.8	0.35	1.7	0.96	3.63
HR 303 15 DJ	7GB	99	91	148	129	152	6	14	2.5		48.7	0.83	0.73	0.40	3.47
HR 31315 J HR 32315 J 32315 CA	7GB 2GD	99 96 96	91 91 90	148 148 148	129 134 124	152 149 153	6 4 4	14 13 15	2.5 2.5 2.5	2 2 2	48.7 38.9 47.7	0.83 0.35 0.58	0.73 1.7 1.0	0.40 0.96 0.57	3,47 5,31 5,3
HR 32916 J HR 32016 XJ HR 33016 J	2BC 3CC 2CE	89 91 91	85 89 88	104 116 116	102 112 112	106 120 119	4 6	4 7 6.5	1 1.5 1.5	1 1.5 1.5	19.8 26.9 25.5	0.35 0.42 0.28	1.7 1.4 2.2	0.94 0.78 1.2	0.56 1.32 1.66
HR 33116 J HR 30216 J 30216 CA	3DE 3EB	82 95 95	88 91 92	121 130 130	113 124 122	126 132 133	6 4 4	8 6 8	2 2 2	1.5 2 2	30.4 28.1 33.7	0.42 0.42 0.58	1.4 1.4 1.0	0.79 0.79 0.57	1.88 1.68 1.66
HR 32216 J	3EC	95	90	130	122	134	4	7	2	2 2 2	30.6	0.42	1.4	0.79	2.13
HR 33216 J	3EE	95	89	130	119	135	7	11	2		34.8	0.43	1.4	0.78	2.93
HR 30316 J	2GB	98	102	158	150	159	4	9.5	2.5		34.0	0.35	1.7	0.96	4.27
HR 30316 DJ	7GB	104	97	158	136	159	6	15.5	2.5	2	51.8	0.83	0.73	0.40	4.07
HR 31316 J	7GB	104	97	158	136	159	6	15.5	2.5	2	51.8	0.83	0.73	0.40	4.07
HR 32316 J	2GD	101	98	158	143	159	4	13.5	2.5	2	41.3	0.35	1.7	0.96	6.35
HR 32316 CJ	5GD	101	95	158	132	160	4	13.5	2.5	2	49.2	0.55	1.1	0.60	6.59

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 85~100 mm



		D	imensiones					Índices Básico	s de Carga	o to company	Velocidade	
			0.0000		Cono	Copa	(1	4)		(kgf)	(rpr	n)
d	D	T	B	C		r min.	Cr	C_{0}	C _r	Cor	Grasa	Aceite
85	120 130 130	23 29 36	23 29 36	18 22 29.5	1.5 1.5 1.5	1.5 1.5 1.5	93 500 143 000 180 000	157 000 231 000 305 000	9 550 14 600 18 400	16 000 23 600 31 000	2 800 2 600 2 600	3 800 3 600 3 600
	140 150 150	41 30.5 30.5	41 28 28	32 24 22	2.5 2.5 2.5	2 2 2	230 000 184 000 171 000	365 000 233 000 226 000	23 500 18 700 17 500	37 000 23 800 23 000	2 400 2 400 2 200	3 400 3 200 3 200
	150 150 180	38.5 49 44.5	36 49 41	30 37 34	2.5 2.5 4	2 2 3	210 000 281 000 310 000	277 000 4 15 000 375 000	21 400 28 700 31 500	28 200 42 500 38 000	2 200 2 400 2 000	3 200 3 200 2 800
	180 180 180	44.5 44.5 63.5	41 41 60	28 28 49	4 4	333	261 000 261 000 410 000	315 000 315 000 535 000	26 600 26 600 42 000	32 000 32 000 54 500	1 900 1 900 2 000	2 600 2 600 2 800
90	125 140 140	23 32 39	23 32 39	18 24 32.5	1.5 2 2	1.5 1.5 1.5	97 000 170 000 220 000	167 000 273 000 360 000	9 850 17 300 22 400	17 000 27 800 37 000	2 600 2 400 2 400	3 600 3 200 3 200
	150 160 160	45 32.5 42.5	45 30 40	35 26 34	2.5 2.5 2.5	2 2 2	259 000 201 000 256 000	405 000 256 000 350 000	26 500 20 500 26 100	41 500 26 100 35 500	2 400 2 200 2 200	3 200 3 000 3 000
	190 190 190 190	46.5 46.5 46.5 67.5	43 43 43 64	36 30 30 53	4 4 4	3333	345 000 264 000 264 000 450 000	425 000 315 000 315 000 590 000	35 500 26 900 26 900 46 000	43 000 32 000 32 000 60 500	1 900 1 800 1 800 2 000	2 600 2 400 2 400 2 600
95	130 145 145	23 32 39	23 32 39	18 24 32.5	1.5 2 2	1.5 1.5 1.5	98 000 173 000 231 000	172 000 283 000 390 000	10 000 17 600 23 500	17 500 28 900 39 500	2 400 2 400 2 400	3 400 3 200 3 200
	160 170 170	46 34.5 45.5	46 32 43	38 27 37	3 3 3	3 2.5 2.5	283 000 223 000 289 000	445 000 286 000 400 000	28 800 22 800 29 500	45 500 29 200 40 500	2 200 2 200 2 200	3 000 2 800 2 800
	200 200 200	49.5 49.5 49.5	45 45 45	38 36 32	4 4	333	370 000 350 000 310 000	455 000 430 000 375 000	38 000 35 500 31 500	46 500 44 000 38 500	1 900 1 800 1 700	2 600 2 400 2 400
o ta ta la	200 200	49.5 71.5	45 67	32 55	4	3	310 000 525 000	375 000 710 000	31 500 53 500	38 500 72 500	1 700 1 900	2 400 2 600
00	140 145 150	25 24 32	25 22.5 32	20 17.5 24	1.5 3 2	1.5 3 1.5	117 000 113 000 176 000	205 000 163 000 294 000	12 000 11 500 17 900	20 900 16 600 30 000	2 200 2 200 2 200	3 20 3 00 3 00
	150 165 180	39 52 37	39 52 34	32.5 40 29	2 2.5 3	1.5 2 2.5	235 000 315 000 255 000	405 000 515 000 330 000	24 000 32 500 26 000	41 500 52 500 34 000	2 200 2 000 2 000	3 00 2 80 2 60
	180 180 215	49 63 51.5	46 63 47	39 48 39	3 3 4	2.5 2.5 3	325 000 4 10 000 425 000	450 000 635 000 525 000	33 000 42 000 43 000	46 000 65 000 53 500	2 000 2 000 1 700	2 600 2 600 2 400
	215 215	56.5 77.5	51 73	35 60	4	3	385 000 565 000	505 000 7 55 000	39 000 57 500	51 500 77 000	1 500 1 700	2 200 2 400

Observaciones

El sufijo CA representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo CA.

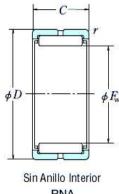
Carga Dinámica Equivalente

 $P = XF_x + YF_a$

F/I	$r \le e$	F_a/F	,>e
X	Y	X	Y
1	0	0.4	Y

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0F_n$

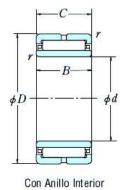

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm in}$ use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se

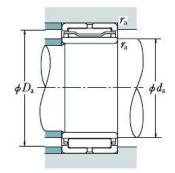
muestran en la tabla siguiente.

W	Serie Dimen-			Dime	nsiones	de Top (mm)	e y Cha	dlán			Centros Efectivos	Cons- tante	100000	res de a Axial	Masa (kg)
Números de Rodamientos	sional ISO355 aprox.	da min.	d₀ máx.	máx.	D _a	D _b	Sa min.	S _b	Cono	Copa Ta máx.	de Carga (m.m) a	e	Y_1	Y_0	aprox.
HR 32917 J	2BC	96	92	111	111	115	5	5 7	1.5	1.5	20.9	0.33	1.8	1.0	8.0
HR 32017 XJ HR 33017 J	4CC 2CE	96 96	94 94	121	116	125 125	6	7 6.5	1.5	1.5	28.2 26.5	0.44	1.4	0.75	1.38
HR 33117 J	3DE	100	94	130	122	135	7	9	2	2	32.7	0.41	1.5	0.81	2.51
HR 30217 J	3EB	100	97	1.40	133	141	5	6.5	2 2	2	30.3	0.42	1.4	0.79	2.12
3 02 17 CA HR 3 22 17 J	3EC	100	98 96	140	131	142	5	8.5	2	2	36.2 33.8	0.58	1.0	0.57	2.07
HR 33217 J	3EE	100	95	140	129	144	7	12	2	2	37.3	0.42	1.4	0.79	3.57
HR 30317 J HR 30317 DJ	2GB 7GB	106	108 103	166 166	157	167	5 6	16.5	3	2.5	35.7 55.3	0.35	1.7	0.96	5.08
HR 3 13 17 J	7GB	113	103	166	144	169	6	16.5	3	2.5	55.3	0.83	0.73	0.40	4.88
HR 32317 J	2GD	110	104	166	151	167	5	14.5	3	2.5	43.5	0.35	1.7	0.96	7.31
HR 32918 J HR 32018 XJ	2BC 3CC	101	97 99	116	116 124	120 134	5	5	1.5	1.5	22.0 29.7	0.34	1.8	0.96	1.78
HR 33018 J	2ČE	102	99	131	129	135	7	6.5	2	1.5	27.9	0.27	2.2	1.2	2.21
HR 33118 J HR 30218 J	3DE 3FB	105	100	140	132	144 150	7 5	10	2 2	2 2	35.2 31.7	0.40	1.5	0.83	3.14
HR 32218 J	3FC	105	102	150	139	152	5	8.5	2	2	36.1	0.42	1.4	0.79	3.41
HR 30318 J HR 30318 DJ	2GB 7GB	111	114	176 176	176 152	176 179	5	10.5	3	2.5	37.3 58.6	0.35	1.7 0.73	0.96	5.91 5.52
HR 31318 J	7GB	118	110	176	152	179	6	16.5	3	2.5 2.5	58.6	0.83	0.73	0.40	5.52
HR 32318 J	2GD	115	109	176	158	177	5	14.5	3 1.5	2.5	46.5	0.35	1.7	0.96	8.6
HR 32919 J HR 32019 XJ	2BC 4CC	107	104	121	121	125 140	5	5	2	1.5	23.2	0.36	1.7	0.92	1.88
4R 33019 J	2CE	107	103	136	133	139	7	6.5	2	1.5	28.6	0.28	2.2	1.2	2.3
T 2 ED095 HR 30219 J	2ED 3FB	113	108	146 158	141 150	152 159	6	8 7.5	2.5	2.5	34.5	0.34	1.8	0.97	3.74
HR 32219 J	3FC	113	108	158	1.47	161	5	8.5	2.5	2	39.3	0.42	1.4	0.79	4.22
HR 30319 J 30319 CA	2GB	116	119	186	172 168	184 188	5	11.5	3	2.5	38.6 48.6	0.35	1.7	0.96	6.92
HR 30319 DJ	7GB	123	115	186	158	187	6	17.5	3	2.5	61.9	0.83	0.73	0.40	6.64
HR 31319 J HR 32319 J	7GB	123	115	186 186	158	187 186	6	17.5	3	2.5	61.9 48.6	0.83	0.73	0.40	6.64
HR 32319 J	2GD 2CC	111	109	132	132	134	5	16.5	1.5	1.5	24.2	0.35	1.7	1.0	10.4
T 4 CB100	4CB	118	108	135	1.35	142	6	6.5	2.5	2.5	30.1	0.47	1.3	0.70	1.18
HR 32020 XJ HR 33020 J	4 CC 2 CE	112	109 107	141	136 137	144	6	8 6.5	2 2	1.5	32.5 29.3	0.46	1.3	1.2	1.95
HR 33120 J	3EE	115	110	155	144	159	8	12	2	2 2	40.5	0.41	1.5	0.81	4.32
HR 30220 J	3FB	118	116	168	158	168	5	10	2.5	2	36.1	0.42	1.4	0.79	3.78
HR 3 22 20 J HR 3 32 20 J	3FC 3FE	118	115	168	155 152	171 172	10	15	2.5	2	41.5 45.9	0.42	1.4	0.79	5.05 6.76
HR 30320 J	2GB	121	128	201	185	197	5	12.5	3	2.5	41.1	0.35	1.7	0.96	8.41
HR 31320 J HR 32320 J	7GB 2GD	136 125	125	201	169	202	7	21.5 17.5	3	2.5	67.7 53.2	0.83	0.73	0.40	9.02

RODAMIENTOS DE AGUJAS MACIZOS

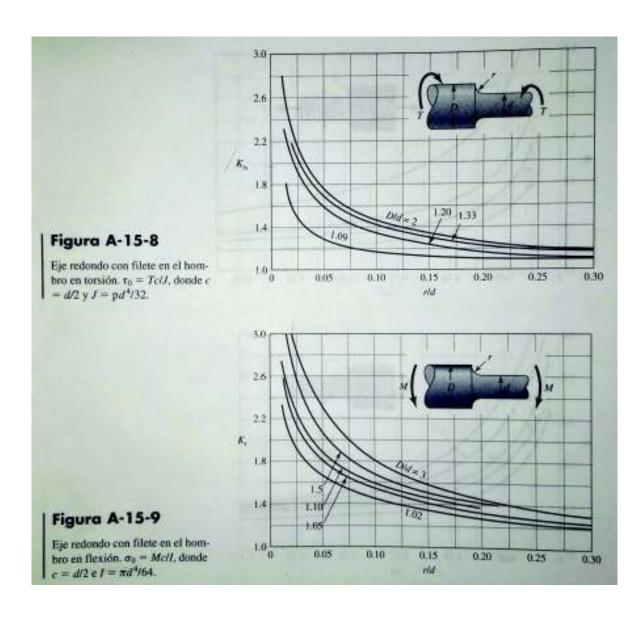
RNA • NA Diámetro del Círculo Inscrito 125~390 mm

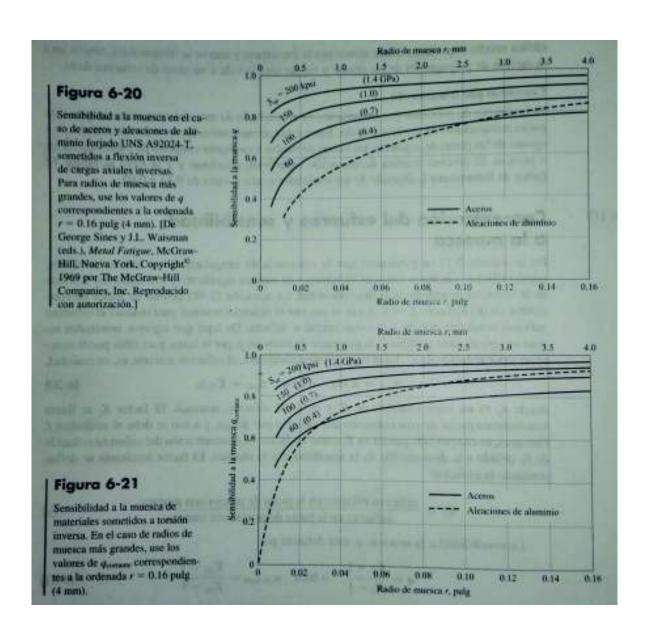



RNA

Di	mensione (m)		les	(Índices Básicos N)	de Carga	{kgf}	Velocidad (rp		Números de
F_{W}	D	C	r min.	Cr	Cor	Cr	Cor	Grasa	Aœite	Sin Anillo Interior
125	150 150	40 54	1.1 1.1	149 000 200 000	315 000 460 000	15 200 20 300	32 500 47 000	2 000	3 200 3 200	RNA 4922 RNA 5922
130	150	30	1	105 000	238 000	10 700	24 300	1 900	3 200	RNA 4824
135	165 165	45 60	1.1 1.1	192 000 253 000	395 000 565 000	19 600 25 800	40 500 58 000	1 900 1 900	3 000	RNA 4924 RNA 5924
145	165	35	1.1	127 000	315 000	12 900	32 000	1 700	2 800	RNA 4826
150	180 180	50 67	1.5 1.5	228 000 299 000	515 000 725 000	23 200 30 500	52 500 74 000	1 700 1 700	2 800 2 800	RNA 4926 RNA 5926
155	175	35	1.1	133 000	340 000	13 600	35 000	1 600	2 600	RNA 4828
160	190 190	50 67	1.5 1.5	235 000 310 000	545 000 775 000	24 000 31 500	55 500 79 000	1 600 1 600	2 600 2 600	RNA 4928 RNA 5928
165	190	40	1.1	180 000	440 000	18 300	45 000	1 500	2 400	RNA 4830
175 185 195	200 215 225	40 45 45	1.1 1.1 1.1	184 000 224 000 230 000	465 000 540 000 570 000	18 700 22 900 23 500	47 000 55 000 58 000	1 400 1 400 1 300	2 200 2 200 2 000	RNA 4832 RNA 4834 RNA 4836
210 220 240	240 250 270	50 50 50	1.5 1.5 1.5	268 000 274 000 286 000	705 000 740 000 805 000	27 300 27 900 29 100	72 000 75 500 82 000	1 200 1 100 1 000	1 900 1 800 1 700	RNA 4838 RNA 4840 RNA 4844
265 285 305	300 320 350	60 60 69	2 2 2	375 000 395 000 510 000	1 070 000 1 160 000 1 390 000	38 500 40 000 52 000	109 000 118 000 142 000	950 900 800	1 500 1 400 1 300	RNA 4848 RNA 4852 RNA 4856
330 350 370 390	380 400 420 440	80 80 80 80	2.1 2.1 2.1 2.1	660 000 675 000 690 000 705 000	1 810 000 1 900 000 1 990 000 2 080 000	67 500 69 000 70 500 72 000	185 000 194 000 203 000 212 000	750 710 670 630	1 200 1 100 1 100 1 000	RNA 4860 RNA 4864 RNA 4868 RNA 4872

Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.

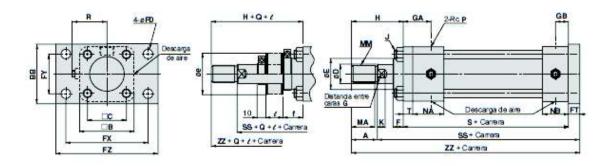



١
Dime
d

Rodamientos	Glo	nsiones bales om)	Dime	nsiones de l y Chaflán (mm)	Торе	(k	asa (g) rox.
Con Anillo Interior	d	В	da min.	$D_{ m a}$ máx.	γ a máx.	Sin Anillo Interior	Con Anillo Interior
NA 4922	110	40	116.5	143.5	1	1.25	2.1
NA 5922	110	54	116.5	143.5		1.95	3.05
NA 4824	120	30	125	145	1	0.71	1.15
NA 4924	120	45	126.5	158.5	1	1.9	2.9
NA 5924	120	60	126.5	158.5		2.7	4.05
NA 4826	130	35	136.5	158.5	1	0.92	1.8
NA 4926	130	50	138	172	1.5	2.3	4.0
NA 5926	130	67	138	17 <mark>2</mark>	1.5	3.3	5.55
NA 4828	140	35	146.5	168.5	1	0.98	1.9
NA 4928	140	50	148	182	1.5	2.45	4.25
NA 5928	140	67	148	182	1.5	3.55	6.0
NA 4830	150	40	156.5	183.5	1	1.6	2.75
NA 4832	160	40	166.5	193.5	1	1.75	2.95
NA 4834	170	45	176.5	208.5	1	2.55	4.0
NA 4836	180	45	186.5	218.5	1	2.65	4.2
NA 4838	190	50	198	232	1.5	3.2	5.6
NA 4840	200	50	208	242	1.5	3.35	5.9
NA 4844	220	50	228	262	1.5	3.65	6.45
NA 4848	240	60	249	291	2	5.45	10
NA 4852	260	60	269	311	2	5.9	11
NA 4856	280	69	289	341	2	9.5	15.5
NA 4860	300	80	311	369	2	13	22
NA 4864	320	80	331	389	2	13.5	23.5
NA 4868	340	80	351	409	2	14	24.5
NA 4872	360	80	371	429	2	15	26

Anexo VI. Tablas para el cálculo del eje

Tabla 6-2	SERVICE SAN ESTABLE	Foc	tor a	Exponente
Parámetros en el factor de	Acabado superficiel	S. kpsi	S _{im} MPa	ь
la condición superficial de Marin, ecuación (6-19)	Esmerilado	1.34	1.58	-0.085
Marin, ecuacion (6-19)	Maquinado o laminado en frio	2.70	4.51	-0.265
	Laminado en entiente	14.4	57.7	-0.718
	Como sale de la forja	39.9	272.	-0.995
	De C.J. Noll y C. Lipson, "Allowable Work 1946, p. 29. Reproducida por O.J. Horger (Yark, Copyright)" 1953 per The McGraw-Hi	ed.) Messir Engineering	Design ASME Handb	not. McGraw-Hill.


Anexo VII. Catálogo cilindros hidráulicos

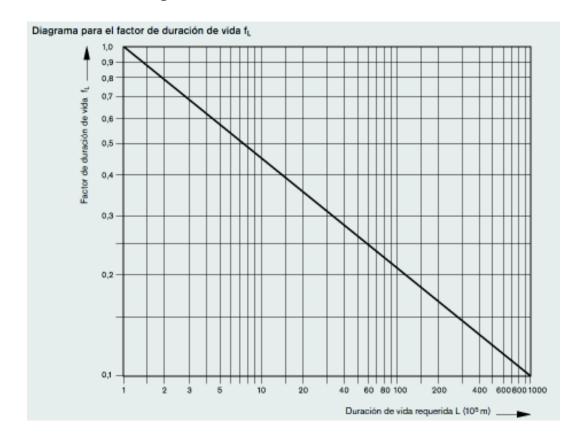
Cilindro hidráulico estándar Doble efecto con vástago simple Serie CH2E/CH2F/CH2G/CH2H

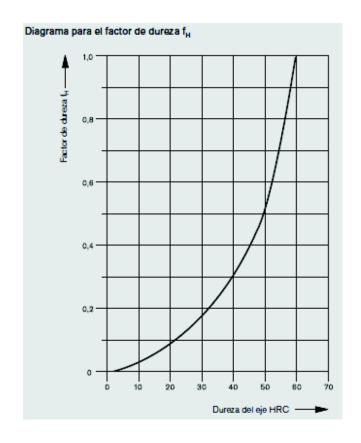
Esfuerzo teórico

T	Diámetro	Tamaño	Sentido de	Área efectiva			Presión de t	rabajo (MPa)		Unidad:
	(mm)	vástago(mm)	movimiento	(mm²)	1	3.5	5	7	10	14
T		87.2	SALIDA	804	804	2813	4019	5627	8038	11254
	32	18	ENTRADA	550	550	1923	2748	3847	5495	7693
1	**	20.4	SALIDA	1256	1256	4396	6280	8792	12560	17584
ם	40	22.4	ENTRADA	862	862	3017	4311	6035	8621	12070
Serie B			SALIDA	1963	1963	6869	9813	13738	19625	27475
8	50	28	ENTRADA	1347	1347	4715	6735	9429	13471	18859
Vastago	5220	82/12/8/2015	SALIDA	3116	3116	10905	15578	21810	31157	43619
22 22	63	35.5	ENTRADA	2126	2126	7442	10632	14885	21264	29769
۶ [00	46	SALIDA	5024	5024	17584	25120	35168	50240	70336
	80	45	ENTRADA	3434	3434	12020	17172	24041	34344	48081
Ī	400		SALIDA	7850	7850	27475	39250	54950	78500	109900
	100	56	ENTRADA	5388	5388	18859	26941	37718	53882	75435
T	24	35.0	SALIDA	1256	1256	4396	6280	8792	12560	17584
	40	18	ENTRADA	1002	1002	3506	5008	7012	10017	14023
٦		20.4	SALIDA	1963	1963	6869	9813	13738	19625	27475
serie	50	22.4	ENTRADA	1569	1569	5490	7843	10980	15686	21961
8		-00	SALIDA	3116	3116	10905	15578	21810	31157	43619
Vastago	63	28	ENTRADA	2500	2500	8751	12501	17502	25002	35003
S		222	SALIDA	5024	5024	17584	25120	35168	50240	70336
>	80	35.5 ENTRADA	ENTRADA	4035	4035	14121	20174	28243	40347	56486
	400	45	SALIDA	7850	7850	27475	39250	54950	78500	109900
	100	45	ENTRADA	6260	6260	21911	31302	43823	62604	87645

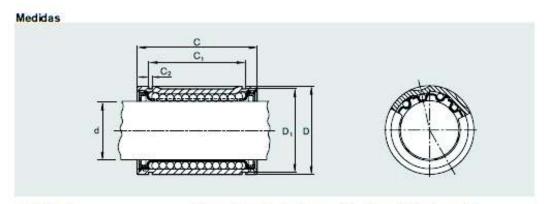
Brida trasera rectangular: CH2GFZ, CH2HFZ

	Rangode	Ĺ.,				_																	Conf	uelle	
(mm)	carrera (mm)	8	88	С	F	GA	GB	J	NA	NB	P	н	s	т	FD	FT	FX	FY	FZ	ss	Vast B	e Vitet C	1	٥	Visit B Wast C
32	25 a 1400	58	62	38	16	32	15	M10 x 1.25	37	31	3/8	39	141	11	11	13	88	40	109	184	52	-	215	15	-
40	25 a 1400	65	69	45	12	32	15	M10 x 1.25	36	30	3/8	42	141	11	11	13	95	46	118	184	52	52	12	15	1/3.5
50	25 a 1400	76	85	52	15	40	19	M10 x 1.25	43	35	1/2	46	155	13	14	18	115	58	145	203	55	52	15	15	carrera
63	25 a 1500	90	98	63	15	42	19	M12 x 1.5	43	35	1/2	52	163	15	18	20	132	65	165	218	65	55	15	20	
80	25 a 1800	110	118	80	17	40	22	M16 x 1.5	44	44	3/4	65	184	18	18	24	155	87	190	243	80	65	17:	20	1/4
100	25 a 1800	135	150	102	19	42	22	M18 x 1.5	44	44	3/4	75	192	20	22	28	190	109	230	260	100	80	19	15	carrera


Diametro (mm)	Vástago serie B									Västago serie C									6	
	MM	A	MA	D		E	K	G	н	ZZ	MM	A	MA	D		E	K	G	н	ZZ
32	M16 x 1.5	25	22	18	34	-0.025 -0.064	7	14	55	209		-	-	-	1	-	-	-	_	-
40	M20 x 1.5	30	27	22.4	40		9	19	60	214	M16 x 1.5	25	22	18	36	-0.025 -0.064	7	14	55	209
50	M24×1.5	35	32	28	46		11	24	65	238	M20 x 1.5	30	27	224	40		9	19	60	233
63	M30 x 1.5	45	42	35.5	55	-0.030	13	30	80	263	M24 x 1.5	35	32	28	46		11	24	70	253
80	M39 x 1.5	60	.57	45	65	-0.076	15	41	95	303	M30 x 1.5	45	42	35.5	55.	-0.030 -0.076	13	30	80	288
100	M48 x 1.5	75	72	56	80	-0036	16	50	115	335	M39 x 1.5	60	57	45	65		15	41	100	320


Diámetro (mm)	FT	FX	FY	
32	40.2	18	±0.13	
40	10.2	±0.18	20.10	
50		10	±0.15	
63	±0.3	10.2	10.10	
80		200.0	±0.18	
100		±0.23		

SMC 101


131

Anexo VIII. Catálogo rodamientos lineales

Temperatura del rodamiento (°C)	100	125	150	175	200
Factor de temperatura f _t	1	0,92	0,85	0,77	0,70

Medidas	s (mm)					Hieras de bolas	Tolerancia del circulo inscrito	Juego radial ⁽⁾ Eje h6	Capacidad	c		
0 d	D	C HI2	C ₁	C ₂	ь,		(µm)	(jun)	min.	máx.	min.	máx
3	7	10	- 4	+	-	4	+8 0	+12 +2	55	65	45	65
4	8	12	:4	2.4	(+	4	+8	+14	70	80	60	.85
5	12	22	14,2	1,1	11,1	4	+11	+16	190	210	140	200
8	16	25	16,2	1,1	14,7	4	+12	+18 +5	320	370	240	330
10	19	29	21,6	1,3	18	4	+8	+18 +5	300	350	260	370
12	22	32	22,6	1,3	20,5	4	+12	+20 +5	420	480	280	400
16	26	36	24,6	1,3	249	4	+14	+22	590	670	440	620
20	32	45	31,2	1,6	30,5	5	+14	+23	1170	1390	860	1250
25	40	58	43,7	1,85	38,5	5	+16 +2	+25 +6	2080	2480	1560	2280
30	47	68	51,7	1,85	44,5	6	+16 +2	+25	2820	2980	2230	2860
40	62	90	60,3	2,15	58	6	+19	+30 +7	5170	5480	3810	4880
50	75	100	77,3	2,65	71	6	+19	+30	8260	8740	6470	8280
60	90	125	101,3	3,15	85	6	+19 +2	+33	11500	12100	9160	11730
80	120	166	133,3	4,15	114	6	+24	+37	21000	22200	16300	20850

¹⁾ Estadisticamente calculado a partir de la tolerancia del circulo inscritoy del eje. Tolerancia del taladro de la carcasa: H6 o H7.

El cálculo de la capacidad de carga dinámica se basa en 100.000 m de recorrido. Si se basa en 50.000 m, se deberá multiplicar los valores C según la tabla por 1,26.

Anexo IX. Triconos

TABLA 5.3. CLASIFICACION GENERAL DE TRICONOS DE INSERTOS

	CA	RACTERISTIC DE DISEÑO			CION		MARCA Y MODELO						
CLASES DE ROCA	TAMAÑO DE INSERTOS	SEPARAC. ENTRE INSERTOS	DE	POR	ARRANQUE POR DESGARRE	TRICONO	HUGHES	REED	SMITH	VAREL	SECU- RITY	ATLAS COPCO	
Formaciones blandas Baja resistencia a compresión (<40 MPa) y alta perforabilidad (talco, pizarra, arcillas, yesos, etc.)						ı	ннзз	M51 M52	Q4JL	омс9	S8M	CS251 CS311 CS381	
Formaciones medias y medioduras Las primeras con resistencias entre 40 y 90 MPa (calizas, mármodas, con RC entre 90 y 170 MPa (dotomias, grauwacas, feldespatos, granitos, gneises, etc.)						I y III	HH44 HH55	M62 M70	QSJL	QMC7 QMC77 QMC6	мвм	CM251 CM311 CM381	
Formaciones duras Con RC entre 170 y 230 MPa (cuarcitas, piritas, basattos, taconitas). Mayor abrasividad						101	HH77 HH88	M73 M80	Q7JL	QMCS QMCH	H8M H10M	CH251 CH311	
Formaciones muy duras Con resistencias su- periores a los 320 MPa (lava, topacio, corin- dón, etc.)						IV	нн99	M83 M84	Q9JL		H10M3 H10M4	CH381	

