ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO DEL SISTEMA DE BOMBEO HIDRÁULICO TIPO JET INSTALADO EN EL ACTIVO LIBERTADOR PARA INCREMENTAR SU PRODUCCIÓN

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEOS

> ANDRÉS SEBASTIÁN MERLO LÓPEZ andresmerlol@hotmail.com

DIRECTOR: MSc. ING. VINICIO MELO G vinicio.melo@epn.edu.ec

Quito, Febrero 2018

DECLARACIÓN

Yo, Andrés Sebastián Merlo López, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Andrés Sebastián Merlo López

CERTIFICACIÓN

Certifico que el presente Trabajo de Titulación fue desarrollado por Andrés Sebastián Merlo López, bajo mi supervisión.

MSc. ING. VINICIO MELO G.

DIRECTOR DEL TRABAJO

AGRADECIMIENTOS

A Dios por siempre encaminarme por el sendero del bien y darme siempre las fuerzas necesarias para poder seguir.

A mi familia por siempre estar a mi lado, apoyándome y aconsejándome en todas las decisiones que he tomado y por brindarme siempre su amor incondicional.

A mi novia Andrea y su familia, que me han brindado su cariño incondicional como si fuera un miembro más de su familia.

A la Escuela Politécnica Nacional, en especial a la Facultad de Ingeniería en Geología y Petróleos, por permitirme el ingreso y moldearme en un excelente profesional.

Al Ing. Vinicio Melo, por sus enseñanzas impartidas durante toda mi carrera, y en especial por el tiempo y la paciencia mostrada durante el desarrollo del presente Trabajo de Titulación.

DEDICATORIA

Dedico el presente Trabajo de Titulación a mis padres Jorge y Silvia, quienes gracias a su esfuerzo, dedicación, apoyo y amor incondicional para mí, siempre he tenido la fuerza necesario para atravesar cualquier obstáculo, y de esta manera irme forjando en la persona que hoy soy.

A mis hermanos Carolina, Xavier y Santiago, por apoyarme en todo momento y por ser ejemplo de seres humanos.

DECLARACIÓNII
CERTIFICACIÓNIII
CONTENIDO
RESUMENXIX
PRESENTACIÓNXX
CAPÍTULO 1: DESCRIPCIÓN DEL PROBLEMA Y METODOLOGÍA1
1.1 DESCRIPCIÓN DE LA SITUACIÓN ACTUAL DEL ACTIVO LIBERTADOR 1
1.1.1 GENERALIDADES1
1.1.2 UBICACIÓN GEOGRÁFICA2
1.1.3 ESTRUCTURA
1.1.4 FORMACIONES PRODUCTORAS5
1.1.5 PROPIEDADES DE ROCA Y FLUIDO5
1.1.6 RESERVAS
1.1.6.1 Petróleo Original In Situ (POES)7
1.1.6.2 Reservas Probadas8
1.1.6.3 Reservas Probables8
1.1.6.4 Reservas Posibles8
1.1.7 ESTADO ACTUAL DEL ACTIVO LIBERTADOR10
1.1.7.1 Sistemas de levantamiento artificial en el Activo Libertador10
1.2 SELECCIÓN DE LOS POZOS DE ESTUDIO13
1.2.1 ESTADO ACTUAL DE LOS POZOS SELECCIONADOS13
1.3 FUNDAMENTOS DE BOMBEO HIDRÁULICO TIPO JET15
1.3.1 PRINCIPIO DE FUNCIONAMIENTO15
1.3.2 CAVITACIÓN EN EL BOMBEO HIDRÁULICO TIPO JET16
1.3.3 FABRICANTES DE BOMBAS JET17
1.3.4 ASPECTOS TEÓRICOS DEL BOMBEO HIDRÁULICO TIPO JET21
CAPÍTULO 2: DESCRIPCIÓN DE ALGORITMOS PARA EL ANÁLISIS DEL SISTEMA DE BOMBEO HIDRÁULICO TIPO JET24
2.1 MÉTODO DE EDDIE E. SMART24
2.1.1 DESCRIPCIÓN DEL PROCEDIMIENTO DESARROLLADO POR EDDIE E. SMART24
2.2 MÉTODO DE HAL PETRIE 29

CONTENIDO

2.2.1 SECUENCIA DEL PROCEDIMIENTO DE HAL PETRIE	29
2.3 MÉTODO DE PETRIE-SMART-WILSON	34
2.3.1 SECUENCIA DE CÁLCULO DEL MÉTODO PETRIE-SMART- WILSON	36
2.3.1.1 Procedimiento P _S constante	36
2.4.1.2 Procedimiento P_T constante	40
CAPÍTULO 3: APLICACIÓN DE LOS MÉTODOS DE ANÁLISIS EN EL ACTIV LIBERTADOR	O 43
3.1 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE EDDIE E. SMART	43
3.1.1 ANÁLISIS DEL POZO ATACAPI-11	43
3.1.2 ANÁLISIS DEL POZO ATACAPI-25	48
3.1.3 ANÁLISIS DEL POZO PACAYACU-1	49
3.1.4 ANÁLISIS DEL POZO PICHINCHA-2	51
3.2 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE HAL PETRIE	∃ 54
3.2.1 ANÁLISIS DEL POZO SHUSHUQUI-12	54
3.2.2 ANÁLISIS DEL POZO SHUSHUQUI-13	59
3.2.3 ANÁLISIS DEL POZO SHUSHUQUI-15	61
3.2.4 ANÁLISIS DEL POZO SHUSHUQUI-20	64
3.2.5 ANÁLISIS DEL POZO SHUSHUQUI-22	66
3.3 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE DETRIE-SMART-WILSON	E 69
3 3 1 ANÁLISIS DEL POZO ATACAPI-7	60
	03
	70
	73
	86
	88
	00
DESARROLLADO POR EDDIE E. SMART	86
4.1.2 ANÁLISIS TÉCNICO DE LA APLICACIÓN DEL MÉTODO DESARROLLADO POR HAL PETRIE	89
4.1.3 ANÁLISIS TÉCNICO DE LA APLICACIÓN DEL MÉTODO	
DESARROLLADO POR PETRIE-SMART-WILSON	92

4.2 ANÁLISIS ECONÓMICO	96
4.2.1 INDICADORES FINANCIEROS	96
4.2.1.1 Valor Actual Neto (VAN)	96
4.2.1.2 Tasa Interna de Retorno (TIR)	97
4.2.1.3 Relación Beneficio Costo (B/C)	97
4.2.1.4 Periodo de Recuperación de la Inversión (PRI)	98
4.2.2 ESCENARIOS DE APLICACIÓN DEL PROYECTO	98
4.2.3 INGRESOS Y EGRESOS PREVISTOS	99
4.2.4 RESULTADOS DEL ANÁLISIS ECONÓMICO	101
CAPÍTULO 5: CONCLUSIONES Y RECOMENDACIONES	105
6.1 CONCLUSIONES	105
6.2 RECOMENDACIONES	107
GLOSARIO	109
REFERENCIAS BIBLIOGRÁFICAS	111
ANEXOS	113

ÍNDICE DE CUADROS

No	DESCRIPCIÓN	PÁGINA
1.1	Yacimientos productores del Activo Libertador	5
1.2	Propiedades petrofísicas de las rocas del Activo Libertador	6
1.3	Propiedades PVT de los fluidos en el Activo Libertador	6
1.4	Cálculo del POES	9
1.5	Reservas probadas, probables y posibles del Activo Libertador	9
1.6	Producción del Activo Libertador por estaciones	10
1.7	Producción del Activo Libertador mediante bombeo	12
	electrosumergible	
1.8	Producción del Activo Libertador mediante bombeo hidráulico	12
1.9	Producción del Activo Libertador mediante bombeo mecánico	13
1.10	Estado actual de los pozos productores seleccionados	14
1.11	Pozos seleccionados para la implementación y optimización del	14
	bombeo hidráulico tipo jet de los campos Atacapi, Pacayacu,	
	Pichincha y Shushuqui	
1.12	Dimensiones de toberas y gargantas de bombas jet	18
1.13	Relaciones de áreas y áreas anulares de garganta (pg ²) para	19
	bombas Guiberson	
1.14	Áreas anulares garganta-tobera de National (pg ²)	20
1.15	Áreas anulares garganta-tobera de Kobe (pg²)	20
1.16	Relaciones de áreas óptimas	23
2.1	Sumario de resultados por el método de Eddie E. Smart	28
2.2	Sumario de resultados por el método de Hal Petrie	33
2.3	Sumario de resultados por el método de Petrie-Smart-Wilson	39
2.4	Sumario comparativo de resultados obtenidos	40
3.1	Datos del pozo Atacapi-11	43
3.2	Resultados obtenidos por iteración del pozo Atacapi-11	44
3.3	Sumario de resultados pozo Atacapi-11	45
3.4	Geometrías óptimas por fabricante para el pozo Atacapi-11	46
3.5	Datos del pozo Atacapi-25	48
3.6	Sumario de resultados pozo Atacapi-25	48

No	DESCRIPCIÓN	PÁGINA
3.7	Geometrías óptimas por fabricante para el pozo Atacapi-25	49
3.8	Datos del pozo Pacayacu-1	50
3.9	Sumario de resultados pozo Pacayacu-1	50
3.10	Geometrías óptimas por fabricante para el pozo Pacayacu-1	51
3.11	Datos del pozo Pichincha-2	52
3.12	Sumario de resultados pozo Pichincha-2	52
3.13	Geometrías óptimas por fabricante para el pozo Pichincha-2	53
3.14	Resumen de resultados obtenidos mediante el método de Eddie	54
	E. Smart	
3.15	Datos del pozo Shushuqui-12	55
3.16	Resultados obtenidos por cada iteración para el pozo	55
	Shushuqui-12	
3.17	Sumario final de resultados por cada análisis del pozo	57
	Shushuqui-12	
3.18	Sumario de resultados para optimización pozo Shushuqui-12	58
3.19	Datos del pozo Shushuqui-13	59
3.20	Sumario final de resultados por cada análisis del pozo	60
	Shushuqui-13	
3.21	Sumario de resultados para optimización pozo Shushuqui-13	61
3.22	Datos del pozo Shushuqui-15	61
3.23	Sumario final de resultados por cada análisis del pozo	62
	Shushuqui-15	
3.24	Sumario de resultados para optimización pozo Shushuqui-15	63
3.25	Datos del pozo Shushuqui-20	64
3.26	Sumario final de resultados por cada análisis del pozo	64
	Shushuqui-20	
3.27	Sumario de resultados para optimización pozo Shushuqui-20	65
3.28	Datos del pozo Shushuqui-22	66
3.29	Sumario final de resultados por cada análisis del pozo	67
	Shushuqui-22	
3.30	Sumario de resultados para optimización pozo Shushuqui-22	68
3.31	Resumen de resultados método de Hal Petrie	68

v	L.
Λ	L

No	DESCRIPCIÓN	PÁGINA
3.32	Datos del pozo Atacapi-7	69
3.33	Bombas jet candidatas por fabricante para la optimización del	70
	pozo Atacapi-7	
3.34	Resultados por iteración de la bomba National 9-A para el pozo	70
	Atacapi-7	
3.35	Sumario de resultados de la bomba National 9-A para el pozo	71
	Atacapi-7	
3.36	Resultados por fabricante de las bombas jet seleccionadas para	72
	el pozo Atacapi-7	
3.37	Resultados por iteración del análisis 1 de la bomba seleccionada	73
	National 9-A para el pozo Atacapi-7	
3.38	Resultados finales de la bomba seleccionada National 9-A para	75
	el pozo Atacapi-7	
3.39	Datos del pozo Atacapi-8	76
3.40	Resultados por fabricante de las bombas jet seleccionadas para	76
	el pozo Atacapi-8	
3.41	Resultados finales de la bomba seleccionada Claw 9-H para el	77
	pozo Atacapi-8	
3.42	Datos del pozo Atacapi-16	79
3.43	Resultados por fabricante de las bombas jet seleccionadas para	79
	el pozo Atacapi-16	
3.44	Resultados finales de la bomba seleccionada Claw 4-E para el	80
	pozo Atacapi-16	
3.45	Datos del pozo Shushuqui-10	82
3.46	Resultados por fabricante de las bombas jet seleccionadas para	82
	el pozo Shushuqui-10	
3.47	Resultados finales de la bomba seleccionada Fluid Packed	83
	Pump 11-B para el pozo Shushuqui-10	
3.48	Resumen de resultados método Petrie-Smart-Wilson	85
4.1	Resumen de la situación actual e implementación del bombeo	86
	hidráulico tipo jet en pozos con bombeo electrosumergible por el	
	método de Eddie E. Smart	

No	DESCRIPCIÓN	PÁGINA
4.2	Resumen de la situación actual y rediseño de pozos analizados	89
	en el método de Hal Petrie	
4.3	Resumen de la situación actual y rediseño de pozos analizados	93
	en el método de Petrie-Smart-Wilson	
4.4	Precios estimados del barril de crudo	98
4.5	Valores estimados de cambio de bomba jet	100
4.6	Valores estimados de gastos para modificar los parámetros	100
	operativos de la bomba jet	
4.7	Valores estimados de gastos para el cambio de bomba jet en	100
	pozo con bombeo hidráulico	
4.8	Análisis económico del escenario pesimista	101
4.9	Análisis económico del escenario real	102
4.10	Análisis económico del escenario optimista	103

ÍNDICE DE FIGURAS

No	DESCRIPCIÓN	PÁGINA
1.1	Mapa de bloques del Activo Libertador	1
1.2	Ubicación geográfica de los campos del Activo Libertador	3
1.3	Mapa estructural del Activo Libertador.	4
1.4	Sistemas de levantamiento artificial en pozos productores en el	11
	Activo Libertador	
1.5	Producción de petróleo por sistema de levantamiento artificial en	11
	el Activo Libertador	
1.6	Partes de la bomba hidráulica tipo jet	16
1.7	Curvas H-M de las bombas jet	22
1.8	Curva de comportamiento de diseño de las bombas jet	23
2.1	Curva de resultados Presión vs Caudal	34
3.1	Análisis nodal del pozo Shushuqui-12	58
3.2	Análisis nodal del pozo Shushuqui-13	60
3.3	Análisis nodal del pozo Shushuqui-15	63
3.4	Análisis nodal del pozo Shushuqui-20	65
3.5	Análisis nodal del pozo Shushuqui-22	67
3.6	Análisis nodal del pozo Atacapi-7	75
3.7	Análisis nodal del pozo Atacapi-8	78
3.8	Análisis nodal del pozo Atacapi-16	81
3.9	Análisis nodal del pozo Shushuqui-10	84
4.1	Fluido producido por pozo método Smart	87
4.2	Petróleo producido por pozo método Smart	87
4.3	Fluido motriz inyectado por pozo método Smart	88
4.4	Petróleo total producido método Smart	89
4.5	Análisis de fluido producido método Petrie	90
4.6	Análisis de petróleo producido método Petrie	91
4.7	Análisis de fluido motriz método Petrie	91
4.8	Análisis de petróleo total producido método Petrie	92
4.9	Análisis de fluido motriz inyectado método Petrie	92
4.10	Análisis de fluido producido método Petrie-Smart-Wilson	93

No	DESCRIPCIÓN	PÁGINA
4.11	Análisis de petróleo producido método Petrie-Smart-Wilson	94
4.12	Análisis de fluido motriz método Petrie-Smart-Wilson	94
4.13	Análisis de petróleo total producido método Petrie-Smart-Wilson	95
4.14	Análisis de fluido motriz inyectado método Petrie-Smart-Wilson	95

SÍMBOLOGÍA

SÍMBOLO	SIGNIFICADO	DIMENSIONES
A _{CM}	Área de flujo anular mínima para evitar cavitación	L ²
A _G	Área anular adicional para el caso de gas en la	L ²
	succión de la bomba	
A _N	Área de flujo en la tobera	L ²
As	Área anular de la garganta	L ²
A_{SM}	Área de flujo anular mínima para evitar cavitación	L ²
A _T	Área de flujo de la garganta	L ²
bl	Barriles	L ³
BAPD	Barriles de agua por día	L ³ /t
BFPD	Barriles de fluido por día	L ³ /t
BPPD	Barriles de petróleo por día	L ³ /t
B/C	Relación beneficio-costo	
Bg	Factor volumétrico del gas	
Bo	Factor volumétrico del petróleo	
B _T	Factor volumétrico para petróleo, gas y agua	
B _w	Factor volumétrico del agua	
С	Variable definida en función de diámetros D ₁ , D ₂	
cm	Centímetros	L
ср	Centipoises	M/Lt
cst	Centistokes	$L^2 t^{-1}$
D	Longitud total verdadera, longitud vertical	L
D _{iTP}	Diámetro interno de la tubería de producción	L
D _{otp}	Diámetro externo de la tubería de producción	L
D _{iTR}	Diámetro interno de la tubería de revestimiento	L
D_{oTR}	Diámetro externo de la tubería de revestimiento	L
D _{nominal}	Diámetro nominal	L
D ₁	Diámetro interno de la tubería de producción o	L
	tubería de revestimiento	
D ₂	Diámetro externo de la tubería de producción en	L
	flujo anular	

SIGNIFICADO	DIMENSIONES
Distancia entre centro del tubing y el centro del	L
casing, flujo anular laminar	
Eficiencia	

	casing, flujo anular laminar								
E	Eficiencia								
е	Excentricidad de las tuberías								
f	Factor de fricción								
FNCi	Flujo de caja neto del año i								
Fo	Fracción de petróleo								
Fw	Fracción de agua								
F _{WD}	Fracción de agua del fluido de la columna de retorno								
G _D	Gradiente del fluido de la columna de retorno	M/L^2t^2							
G _N	Gradiente del fluido motriz en la entrada de la	M/L^2t^2							
	tobera								
Go	Gradiente del petróleo producido	M/L^2t^2							
Gs	Gradiente del fluido de formación	M/L^2t^2							
Gw	Gradiente del agua de formación	M/L^2t^2							
GLR_{D}	Relación gas-líquido en la descarga								
GOR	Relación gas-petróleo								
Н	Relación adimensional de recuperación de presión								
H _A	Valor de H de la iteración anterior								
H _C	Valor de H de la iteración actual (calculado)								
	Valor promedio de H								
HP	Potencia								
HP (90%)	Potencia a 90%								
i	Periodo								
ID	Diámetro interno de una tubería	L							
K _N	Coeficiente de pérdida en la tobera								
K _{TD}	Coeficiente de pérdida combinado garganta- difusor								
L	Longitud de T.P. hasta la bomba = profundidad	L							

SÍMBOLO

 D_3

medida de asentamiento de la bomba

SÍMBOLO	SIGNIFICADO	DIMENSIONES
М	Relación adimensional de flujo másico	
ML	Relación de flujo másico adimensional en el límite	
	de cavitación	
n	Número de años de la inversión	
N _{RE}	Número de Reynolds	
NUM	Variable usada para definir H	
OD	Diámetro externo de una tubería	L
P _B	Presión de burbuja	M/Lt ²
P _F	Pérdidas de presión por fricción	M/Lt ²
P _{FD}	Pérdidas de presión por fricción del fluido en el	M/Lt ²
	conducto de retorno	
P_{FN}	Pérdidas de presión por fricción del fluido motriz	M/Lt ²
	en la tubería de inyección	
P _D	Presión de descarga	M/Lt ²
P _N	Presión en la entrada de la tobera	M/Lt ²
P _R	Presión de reservorio	M/Lt ²
PRI	Periodo de recuperación de la inversión	
Ps	Presión de succión de la bomba	M/Lt ²
PT	Presión superficial de operación	M/Lt ²
P_{WF}	Presión de fondo fluyente	M/Lt ²
P _{WH}	Presión en la cabeza del pozo	M/Lt ²
psi	Libras fuerza por pulgada cuadrada	M/Lt ²
pie	Pie, unidad de longitud	L
pg	Pulgada, unidad de longitud	L
ppm	Partes por millón	
Q _D	Tasa del fluido de descarga	L ³ /t
Q_{G}	Tasa de gas libre que ingresa a la bomba	L ³ /t
Q _N	Tasa del fluido motriz	L ³ /t
Qo	Tasa de petróleo producido	L ³ /t
Qs	Tasa del fluido producido	L ³ /t
Q _{SC}	Tasa máxima del fluido producido para evitar la	L ³ /t
	cavitación	

SÍMBOLO	SIGNIFICADO	DIMENSIONES
Q _W	Tasa de agua producida	L ³ /t
ΔQ_N	Variación de fluido motriz	L ³ /t
r	Tasa de actualización	
R	Relación adimensional de áreas	
RGP	Relación gas-petróleo	
Т	Temperatura	Т
TIR	Tasa interna de retorno	
T_{WF}	Temperatura de fondo	т
Т _{WH}	Temperatura en la cabeza del pozo	т
T.P.	Tubería de producción	
T.R.	Tubería de revestimiento	
USD	Dólares americanos	
V	Velocidad del fluido	L/t
VAN	Valor actual neto	
V _{pi}	Valor presente de los ingresos	
V _{pe}	Valor presente de los egresos	
%	Tanto por ciento	
γ _f	Gravedad específica del fluido motriz (agua=1.0)	
Yg	Gravedad específica del gas	
γo	Gravedad específica del petróleo	
Υw	Gravedad específica del agua	
ρ	Densidad del fluido	M/L ³
ρο	Densidad del petróleo	M/L ³
μ _D	Viscosidad del fluido de retorno	M/Lt
μ _G	Viscosidad del gas	M/Lt
μ _O	Viscosidad del petróleo	M/Lt
μ_{W}	Viscosidad del agua	M/Lt
ν _D	Viscosidad cinemática del fluido de retorno	$L^{2}t^{-1}$
ν _o	Viscosidad cinemática del petróleo	$L^{2}t^{-1}$
νw	Viscosidad cinemática del agua	L^2t^{-1}
°API	Gravedad API del petróleo	
°F	Grado Fahrenheit	Т

RESUMEN

El presente trabajo de titulación tiene como objetivo realizar un estudio del sistema de bombeo hidráulico tipo jet instalado en el Activo Libertador para incrementar su producción, para ello se desarrollaron cinco capítulos donde se describen a continuación.

El primer capítulo muestra las condiciones actuales de los campos que conforman al Activo Libertador, su ubicación geográfica, propiedades de roca y fluido, así como las reservas de hidrocarburo cuantificadas. Además se describen los fundamentos teóricos del bombeo hidráulico tipo jet y los principales componentes de la bomba jet.

El segundo capítulo describe los algoritmos desarrollados y la secuencia de cálculo de los diferentes métodos a utilizarse que son: Smart, Petrie, y Petrie-Smart-Wilson.

En el tercer capítulo se describe los cálculos realizados para cada uno de los pozos usados para los diferentes métodos de optimización, seguido de los resultados obtenidos. Para el caso de los métodos de Petrie y Petrie-Smart-Wilson, se presenta el análisis nodal de cada pozo analizado, y el comportamiento que tendría con la implementación de su optimización.

El cuarto capítulo presenta el análisis técnico de la situación actual de cada pozo y la situación luego de la optimización según el método de aplicación. Además se desarrolla el análisis económico considerando tres escenarios posibles, con la finalidad de determinar la factibilidad de la implementación de los diferentes métodos estudiados.

PRESENTACIÓN

El Activo Libertador cuenta con 83 pozos productores, donde el 43.37% se encuentra produciendo con tasas entre 150-1000 BPPD y el 56.63% con tasas entre 20-150 BPPD.

El presente trabajo de titulación presenta tres alternativas de optimización, la primera alternativa de optimización es mediante el cambio del sistema de levantamiento artificial por bombeo electrosumergible instalado actualmente a un sistema de bombeo hidráulico tipo jet en pozos que presentan bajo caudal de aporte, la segunda alternativa de optimización es mediante el rediseño de las condiciones operacionales de las bombas jet en pozos que se encuentran funcionando mediante bombeo hidráulico tipo jet, y la tercera alternativa de optimización, es mediante el análisis comparativo de las bombas jet actualmente instaladas, con las posibles bombas de los diferentes fabricantes, a los mismo parámetros de funcionamiento, para determinar mediante comparación cual bomba trabaja a mejores condiciones operacionales, y de ser el caso, se realiza el rediseño de la bomba jet.

El trabajo muestra tres diferentes alternativas para optimizar la producción de los pozos, empleando el sistema de levantamiento artificial por bombeo hidráulico, ya que es más económico en comparación con los otros sistemas de levantamiento.

CAPÍTULO 1

DESCRIPCIÓN DEL PROBLEMA Y METODOLOGÍA

1.1 DESCRIPCIÓN DE LA SITUACIÓN ACTUAL DEL ACTIVO LIBERTADOR

1.1.1 GENERALIDADES

El Activo Libertador, está conformado por los campos en producción: Libertador (sub-estructuras: Shushuqui, Pacayacu, Secoya, Shuara, Pichincha y Carabobo), campo Atacapi, campo Tetete-Tapi, Frontera, Arazá, Secoya Oeste; y el campo en no producción Chanangue.

El Activo Libertador está localizado en el cantón Lago Agrio, provincia de Sucumbíos, de la región Amazónica Ecuatoriana, en el bloque 57, según la definición actual de bloques realizada por la Secretaría de Hidrocarburos. La figura 1.1 muestra la distribución de los campos por bloques.

FIGURA 1.1 MAPA DE BLOQUES DEL ACTIVO LIBERTADOR

FUENTE: "Determinación de los patrones de flujo multifásico en tuberías horizontales y selección óptima de tuberías de producción para el Campo Libertador", 2012 ELABORACIÓN: Ramiro Fabián Peñarreta Tutillo

Libertador fue descubierto en el año 1980 por la Corporación Estatal Petrolera Ecuatoriana (CEPE). Realiza la perforación de los pozos exploratorios: Secoya-1 (Febrero-1980; 6121 BPPD, 29-33° API); Shuara-1 (Abril-1980; 9965 BPPD, 28-33° API); y Shushuqui-1 (Noviembre-1980; 1593 BPPD, 34° API).

El campo Libertador comenzó a producir en julio de 1982. Diez años después alcanzó su máximo pico de producción, promediando 56651 BPPD, a partir de agosto de 1992 su producción comenzó a declinar.

El 31 de enero de 2012 el gobierno ecuatoriano firmó un contrato con la empresa Pardaliservices S.A. (Tecpetrol, Schlumberger, Canacol y Sertecpet) para incrementar la producción de los campos maduros de Atacapi y Libertador. (Baby, Rivadeneira, Barragán, 2014).

1.1.2 UBICACIÓN GEOGRÁFICA

El campo Libertador está conformado por los altos estructurales: Shushuqui, Pacayacu, Secoya, Shuara, Pichincha y Carabobo.

El campo Libertador se encuentra localizado en la zona Central, donde comparte características estratigráficas y estructurales similares a las de los campos Sacha, Shushufindi, Auca, entre otros. Su extensión total es de 160 km².

Geográficamente el campo Libertador se encuentra ubicado en la parte centronoroeste de la cuenca Oriente dentro de la provincia de Sucumbíos, se extiende desde las siguientes coordenadas geográficas:

- Latitud: 00° 04" S a 00° 06' N
- Longitud: 76° 33' 00" E hasta 76° 36' 40" W

En la figura 1.2 se muestra la ubicación de los campos que conforman al Activo Libertador.

FIGURA 1.2 UBICACIÓN GEOGRÁFICA DE LOS CAMPOS DEL ACTIVO LIBERTADOR

FUENTE: Departamento de Geofísica, Petroamazonas EP, 2016 ELABORACIÓN: Petroamazonas EP.

1.1.3 ESTRUCTURA

La estructura del campo Libertador se asemeja a la forma de un cajón, esta posee 4 subestructuras alineadas en dos ejes N-S. Dentro del eje occidental se encuentran las estructuras Shushuqui y Secoya y en el oriental Pacayacu y Shuara. Estas estructuras se encuentran uniéndose en dirección sur para formar el periclinal Pichincha-Carabobo, como se observa en la figura 1.3.

La estructura del campo Libertador posee una longitud de 21 km aproximadamente y 6-6.5 km de ancho. Tiene un cierre estructural máximo de 240 pies que corresponde al alto Secoya; el alto Shushuqui tiene 180 pies, Shuara 200 pies y Pacayacu 140 pies. Estas estructuras del campo se encuentran afectadas por las fallas transversales que poseen una orientación NO-SE, y una falla transpresional dextral que limita el flanco oriental. (Baby, Rivadeneira, Barragán, 2014).

Las estructuras de Secoya y Shushuqui se encuentran separadas por un elemento tectónico transversal de basamento de orientación E-O-NO.

La estructura de campo Atacapi es asimétrica de orientación N-SSE, con una extensión de 17 km de longitud y 2 km de ancho aproximados. Esta estructura se encuentra limitada al este por una falla que desaparece en la parte sur del campo. (Baby, Rivadeneira, Barragán, 2014).

FIGURA 1.3 MAPA ESTRUCTURAL DEL ACTIVO LIBERTADOR

FUENTE: Departamento de Geofísica, Petroamazonas EP, 2016 ELABORACIÓN: Petroamazonas EP.

1.1.4 FORMACIONES PRODUCTORAS

En el Activo Libertador, se han establecido los yacimientos productores que se detallan en el cuadro 1.1. Conforme se desarrolle el conocimiento geológico no se descarta la inclusión de nuevos yacimientos productivos en los campos que conforman el Activo Libertador.

Campo	Yacimientos
Atacapi	Us, Ui, Ts y Ti
Tapi-TTT	Ui y T
Frontera	Ui y T
Secoya	Basal Tena, Us, Ui y T
Shuara	Basal Tena, Us, Ui y T
Shushuqui	Basal Tena, Us, Ui y T
Pacayacu	Ui

CUADRO 1.1 YACIMIENTOS PRODUCTORES DEL ACTIVO LIBERTADOR

FUENTE: Petroamazonas EP, 2016 ELABORACIÓN: Andrés Merlo López

1.1.5 PROPIEDADES DE ROCA Y FLUIDO

Entre las características físicas de la roca tenemos: porosidad (\$\phi), saturación (\$), espesor (h) y permeabilidad (k).

En el cuadro 1.2 se observa las propiedades petrofísicas promedio de los campos del Activo Libertador.

Los análisis de presión-volumen-temperatura (PVT) son pruebas que se realizan en laboratorio, tomando muestras de fondo a condiciones de yacimiento, para así determinar las propiedades de los fluidos que se encuentran en el mismo. Entre estas propiedades tenemos: presión (P), temperatura (T), factor volumétrico (B), °API, gravedad específica (^y).

CUADRO 1.2 PROPIEDADES PETROFÍSICAS DE LAS ROCAS DEL ACTIVO LIBERTADOR

CAMPOS		PRC	PIEDADES	PETROFÍSICAS	6
CAMIFUS	ANLINA	φ (%)	Sw (%)	ho (pie)	k (mD)
Arazá	Ui	17.0	15.0	30	400
Aldza	Ti	15.0	25.0	35	600
	Us	15.0	30.0	15	250
Atacani	Ui	17.0	35.0	35	500
Alacapi	Ts	13.0	42.0	65	500
	Ti	14.0	32.0	65	800
Frontera	Ui	17.6	24.6	25	644
FIUIItera	Ti	15.8	27.1	20	223
	Bt	15.7	21.5	15	110
Secoya	Us	14.5	33.2	14	115
Shuara	Ui	16.8	16.8	33	310
Shushuqui	Ts	12.0	42.0	40	100
	Ti	17.0	30.0	40	800
Pichincha	Üi	17.0	27.0	39	1924
FICIIIIICIIa	Т	12.0	46.5	43	400
Tani Tototo	Ui	15.6	20.0	18	400
Tapi Telele	Т	13.7	25.0	14	700

FUENTE: Petroamazonas EP, 2016

ELABORACIÓN: Andrés Merlo López

El cuadro 1.3 muestra las propiedades de los fluidos del Activo Libertador.

CUADRO 1.3 PROPIEDADES PVT DE LOS FLUIDOS EN EL ACTIVO LIBERTADOR

Campo	Pozo	Arena	°API	T ⁰F	Pb psi	^γ gas (aire=1)	Bo by/bn	GOR PCS/BF
ARAZÁ	ARZ-02D	Ti	31.0	215	1,300	1.6859	1.4420	498
	ATACAPI 1	U	30.9	208	750	1.4090	1.2397	232
	ATACAPI 3	G2	31.0	208	1,308	1.0710	1.3380	442
		U	27.4	209	1,482	1.0880	1.2730	420
ATACAPI	ATACAPI 4	Т	32.0	213	825		1.2501	380
		Т	31.4	205	1,312	1.2980	1.2501	355
	ATA - 7	Ti	33.4	238	1,100		1.4765	453
	ATA-8	Ts+Ti	33.2	206	980		1.3273	394
	FRONTERA 2	Ui	34.2	220	685	1.4400	1.3480	225
FRONTERA		Т	34.7	221	640	1.4360	1.2268	179
CARABOBO	CARABOBO 3	Us	29.4	205	975	1.0640	1.2202	250
PACAYACU	PACAYACU-4	Ui	26.5	230	980		1.2653	231
	PIC-1	Т	31.0	180	1,240	1.7320	1.2626	360
	PIC-5	Ui	27.9	218	1,245		1.2115	291
FICHINCHA	PIC-7	Ui	28.0	235	1,240	1.2379	1.2362	270
	PIC-8	Т	31.8	236	645	1.5580	1.2307	188
		U	28.3	205	1,085	1.1285	1.1790	272
SECOYA	3EC-1	Т	34.2	208	1,010	1.5392	1.3348	444
	SEC- 11	Т	30.5	230	860	1.4531	1.2764	276

CUADRO 1.3 CONTINUACIÓN

Campo	Pozo	Arena	°API	T °F	Pb psi	^γ gas (aire=1)	Bo by/bn	GOR PCS/BF
	SHU- 1	Us	28.0	217	1,110	1.2177	1.2914	274
	SHU- 2	Т	31.7	216	1,120	1.6200	1.3146	383
SHUARA	SHU- 4	U	28.3	229	1,170	1.2439	1.2840	328
	SHU- 12	Us	29.5	232	595	1.4201	1.2117	162
	SHUSHUQUI 1	Ui	32.5	213	1,157	0.9620	1.2990	268
	SHUSHUQUI 6	Us	31.4	226	1,075	1.3540	1.3122	333
ennennom	SHUSHUQUI 14	Ui	29.1	230	1,290	1.2190	1.2336	225
300300001	SHUSHUQUI 15	Bt	19.8	218	360	1.2470	1.1192	80
	SHUSHUQUI 16	Т	33.0	236	1,475	1.5905	1.5722	587
	SHUSHUQUI 19	Ts	34.0	237	1,260	1.5089	1.3908	477
	TAPI 1	Т	28.7	217	1,890	1.6450	1.3976	673
ΤΑΡΙ	TAPI 9	Ti	29.7	217	400	1.5180	1.1700	99
	TAPI 11	Ui	28.8	218	440	1.3810	1.1400	165
TETETE	TETETE 4	Ui	29.8	208	305	1.5980	1.1459	92
	TETETE 7	Ui	30.0	217	320	1.4890	1.1512	75

FUENTE: Petroamazonas EP, 2016 ELABORACIÓN: Andrés Merlo López

1.1.6 RESERVAS

Las reservas son cantidades de petróleo que se consideran pueden ser recuperadas comercialmente a partir de acumulaciones conocidas a una fecha futura. Todos los cálculos de reservas involucran algún grado de incertidumbre. La incertidumbre depende principalmente de la cantidad de datos de ingeniería y geología, confiables y disponibles a la fecha de cálculo y de la interpretación de estos datos. El grado relativo de incertidumbre aplicado determina la ubicación de las reservas en una de las dos clasificaciones principales, probadas o no-probadas. Las reservas no-probadas son menos ciertas a ser recuperadas que las probadas y pueden ser sub-clasificadas como reservas probables y posibles para denotar progresivamente el incremento de la incertidumbre en su recuperación.

1.1.6.1 Petróleo Original In Situ (POES)

Para el cálculo del POES se utilizó el método volumétrico. Como referencia existe el Modelo Estático, realizado por la compañía GEOCONSULT en diciembre de 2009. Debido a que no hubo perforación se mantendrán los cálculos al año 2015, en los que se presentan pequeñas variaciones por revisión de parámetros petrofísicos. En el cuadro 1.4 se muestra el cálculo del POES para cada campo con sus respectivos reservorios productores.

1.1.6.2 Reservas Probadas

Las reservas probadas son las cantidades de petróleo que, por análisis de datos de geología e ingeniería, puede determinarse con "razonable certeza" que serán recuperables comercialmente, a partir de una fecha dada, de reservorios conocidos y bajo las condiciones económicas actuales, métodos de operación y regulaciones.

En su cálculo se incluyen las reservas probadas que se están produciendo, las reservas cerradas o shut in, las reservas detrás del casing (zonas potencialmente productoras que no han sido punzadas) y las reservas no desarrolladas.

1.1.6.3 Reservas Probables

Las reservas probables son las reservas no probadas que el análisis de datos de geología e ingeniería sugieren que son menos ciertas que las probadas. En este contexto, cuando se usen métodos probabilísticos, debe existir al menos una probabilidad de 50% de que la cantidad a ser recuperada será igual o excederá a la suma del cálculo de reservas probadas más las reservas probables.

1.1.6.4 Reservas Posibles

Las reservas posibles son las reservas no probadas que el análisis de los datos de geología e ingeniería sugieren que son menos ciertas a ser recuperadas que las reservas probables. En este contexto, cuando se utilicen métodos probabilísticos, debe existir al menos una probabilidad del 10% de que las cantidades a ser recuperadas sean iguales o excedan la suma de las reservas probadas más las reservas probables y más las reservas posibles.

En el cuadro 1.5 se presenta un resumen cuantificado de reservas probadas, reservas probables y reservas posibles correspondientes al Activo Libertador.

CUADRO 1.4 CÁLCULO DEL POES

Reservorio	Volumen total de roca (acre-pie)	Área cero (acres)	Espesor promedio neto (pie)	N/g %	Volumen neto de roca (acre-pie)	Porosidad (%)	Sw (%)	Factor volumétrico inicial, boi (by/bn)	POES (bl)
Basal Tena	165,120	13,760	11	88	144,480	17	27	1.130	123,425,636
U Superior	228,194	19,176	11	92	210,943	13	30	1.180	126,650,789
U Media	89,820	9,980	5	56	49,904	11	45	1.170	20,105,483
U Inferior	734,400	22,950	30	94	688,500	18	19	1.170	665,999,394
T Superior	233,511	21,423	8	69	160,679	15	29	1.220	107,850,624
T Inferior	561,175	21,667	24	91	511,343	15	33	1.220	324,749,385
									1,368,781,311

FUENTE: Petroamazonas EP, 2016

ELABORACIÓN: Andrés Merlo López

CUADRO 1.5 RESERVAS PROBADAS, PROBABLES Y POSIBLES DEL ACTIVO LIBERTADOR

		Factor de F	Recobro FR	Posorva total	Producción			RESERVAS bl					
Campo	Reservorio	Final del	AI	bl	Acumulada		Pro	oadas				bl	
		yacimiento %	31/12/2016 %		31/12/2016	Produciendo	Cerradas (shut-in)	Detrás del casing	No desarrolladas	Probables	Posibles		
	Basal Tena	9.9	5.1	12,197,876	6,345,325	2,850,589		284,408	459,245	1,286,654	971,655	5,852,551	
	Us	33.5	25.1	42,365,426	31,795,444	3,963,670	428,233	883,310	1,323,676	3,802,851	168,243	10,569,982	
	Um	0.6	0.6	113,695	113,685								
LIDERIADUR	Ui	35.9	32.6	238,977,847	216,847,251	11,412,981	3,343,586	543,701	2,645,250	3,906,078	279,000	22,130,596	
	Ts	24.9	21.2	26,892,364	22,829,747	1,112,905	219,713	210,000	840,000	1,575,000	105,000	4,062,618	
	Ti	28.6	24.3	92,937,091	78,854,836	3,437,233	1,344,469	962,027	3,570,000	3,800,904	967,623	14,082,256	
Subtotal Li	bertador			413,484,289	356,786,288	22,777,378	5,336,000	2,883,445	8,838,170	14,371,486	2,491,522	56,698,001	

FUENTE: Petroamazonas EP, 2016.

ELABORACIÓN: Andrés Merlo López

1.1.7 ESTADO ACTUAL DEL ACTIVO LIBERTADOR

Para comprender la situación actual del Activo Libertador, es importante conocer los campos que lo conforman, el estado actual de los pozos, la producción, las características del fluido que producen y los diferentes sistemas de levantamiento artificial utilizados.

La información que se presenta en el cuadro 1.6 revela la producción de los diferentes campos que conforman el Activo Libertador y corresponde al mes de julio del 2017.

CAMPO	P	RODUCCIÓN	1	Fw	° A DI
CAMPO	BFPD	BPPD	BAPD		AFI
Arazá	3,751.00	458.09	3,292.91	0.7725	25.95
Atacapi	16,876.92	3,925.98	12,950.94	0.5618	27.08
Frontera	3,208.00	258.44	2,949.56	0.8550	26.65
Расауаси	8,570.00	916.06	7,653.94	0.8430	19.80
Pichincha	6,121.00	610.73	5,510.27	0.7980	29.02
Secoya	47,954.00	4,353.95	43,600.05	0.8120	27.28
Shuara	11,357.00	804.86	10,552.14	0.8938	26.75
Shushuqui	13,691.00	2,224.15	11,466.85	0.7355	27.07
Тарі	7,026.00	876.92	6,149.08	0.6957	26.94
Tetete	7,063.00	525.02	6,537.98	0.9100	21.68
TOTAL ACTIVO LIBERTADOR	124,977.92	14,775.20	110,202.72		

CUADRO 1.6 PRODUCCIÓN DEL ACTIVO LIBERTADOR POR ESTACIONES

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

1.1.7.1 Sistemas de levantamiento artificial en el Activo Libertador

Dentro del Activo Libertador, los sistemas de levantamiento que se han implementado son el bombeo electrosumergible (BES), bombeo hidráulico tipo jet y bombeo mecánico. En la figura 1.4 se observa que el sistema de levantamiento predominante es el bombeo electrosumergible con un 66% de pozos productores.

FIGURA 1.4 SISTEMAS DE LEVANTAMIENTO ARTIFICIAL EN POZOS PRODUCTORES EN EL ACTIVO LIBERTADOR

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

En la figura 1.5 se muestra la producción de petróleo correspondiente a cada sistema de levantamiento artificial presente en el Activo Libertador.

FIGURA 1.5 PRODUCCIÓN DE PETRÓLEO POR SISTEMA DE LEVANTAMIENTO ARTIFICIAL EN EL ACTIVO LIBERTADOR

ELABORACIÓN: Andrés Merlo López

Los cuadros 1.7, 1.8 y 1.9 indican la cantidad de pozos que manejan estos sistemas de levantamiento en los respectivos campos, además la producción correspondiente al mes de julio del 2017.

CUADRO 1.7 PRODUCCIÓN DEL ACTIVO LIBERTADOR MEDIANTE BOMBEO ELECTROSUMERGIBLE

CAMPO	Número de	Bomb	Bombeo Electrosumergible			
CAMPO	pozos	BFPD	BPPD	BAPD		
Arazá	3	3,554.00	347.77	3,206.23		
Atacapi	8	13,891.00	1,876.41	12,014.59		
Frontera	2	3,208.00	258.44	2,949.56		
Расауаси	3	8,570.00	916.06	7,653.94		
Pichincha	4	6,121.00	610.73	5,510.27		
Secoya	20	45,293.00	3,793.02	41,499.98		
Shuara	5	10,293.00	687.82	9,605.18		
Shushuqui	3	6,091.00	812.11	5,278.89		
Тарі	4	6,988.00	848.80	6,139.20		
Tetete	3	4,708.00	269.64	4,438.36		
TOTAL ACTIVO LIBERTADOR	55	108,717.00	10,420.80	98,296.20		

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

CUADRO 1.8 PRODUCCIÓN DEL ACTIVO LIBERTADOR MEDIANTE BOMBEO HIDRÁULICO

CAMPO	Número de	Bombeo Hidráulico tipo jet				
	pozos	BFPD	BPPD	BAPD		
Arazá	1	197.00	110.32	86.68		
Atacapi	8	2,932.93	2,028.37	904.56		
Secoya	4	2,661.00	560.94	2,100.06		
Shuara	1	1,064.00	117.04	946.96		
Shushuqui	10	7,600.03	1,412.06	6,187.97		
Tetete	2	2,355.00	255.38	2,099.62		
TOTAL ACTIVO LIBERTADOR	26	16,809.96	4,484.11	12,325.85		

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

CUADRO 1.9 PRODUCCIÓN DEL ACTIVO LIBERTADOR MEDIANTE BOMBEO MECÁNICO

CAMPO	Número de	Bombeo Mecánico				
	pozos	BFPD	BPPD	BAPD		
Atacapi	1	53.00	21.20	31.80		
Тарі	1	38.00	28.12	9.88		
TOTAL ACTIVO LIBERTADOR	2	91.00	49.32	41.68		

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

Considerando que el potencial de producción en estos campos ha declinado, el bombeo electrosumergible (BES) representa gastos operacionales innecesarios y elevados, lo que no justifica la inversión en este tipo de levantamiento.

1.2 SELECCIÓN DE LOS POZOS DE ESTUDIO

En el oriente ecuatoriano, una gran parte de la producción de petróleo proviene de campos maduros, es decir, que presentan una declinación en su producción. Debido a esto, los yacimientos empiezan a producir más agua que petróleo, ocasionando un incremento considerable en los costos de producción, provocando alteraciones negativas en la rentabilidad de ciertos pozos.

Dada la situación actual en la industria, es decir, la falta de inversión económica, la optimización de la producción tiene que ser más que un control y análisis, ya que el objetivo de esto es la explotación de las reservas de una manera eficiente, razón por la cual es de gran importancia el estudio de alternativas que permitan solucionar los inconveniente presentados en los sistemas de levantamiento implementados.

1.2.1 ESTADO ACTUAL DE LOS POZOS SELECCIONADOS.

El cuadro 1.10 muestra el estado de producción actual, correspondiente al 13 de julio del 2017, de los pozos seleccionados para el estudio de los tres diferentes métodos a desarrollar. En el cuadro 1.11 se muestra los pozos que serán usados para cada uno de los diferentes métodos.

CUADRO 1.10 ESTADO ACTUAL DE LOS POZOS PRODUCTORES SELECCIONADOS

POZO	BFPD	BPPD	BAPD	Fw	GOR	Bomba	°API	P. INY
						Fecha de instalación		
ATCA-007US	241.00	223.62	17.38	0.07	510.0	JET 10J (02-julio-2017)	25.4	3,550
ATCB-008US	218.00	137.34	80.66	0.37	335.0	JET 11K (20-junio-2017)	24.5	3,500
ATCB-011BTI	854.00	128.10	725.90	0.85	617.0	BES TD-850 (14-agosto-2016)	30.4	0
ATCF-016US	189.00	174.32	14.68	0.08	511.0	JET 9I (06-julio-2017)	23.8	3,800
ATCC-025UI	639.00	31.95	607.05	0.95	1,502.0	BES TD-1750	27.5	0
PACAYACU-001BT	640.00	179.00	461.00	0.72	117.2	BES D1050N (19-julio-2017)	19.8	0
PICHINCHA-02 UI	357.00	203.49	153.41	0.43	236.0	BES P6XH6 (31-mayo-2013)	28.1	0
SHH-010UI	1,427.00	131.86	1,295.15	0.91	235.0	JET-12L (23-junio-2017)	26.5	3,500
SHH-012UI	390.00	166.80	223.20	0.57	180.0	JET 9I (19-marzo-2017)	24.1	3,650
SHH-013BT	456.00	319.98	136.02	0.30	53.0	JET 12L (24- marzo-2017)	26.1	3,650
SHH-015UI	166.00	68.43	97.58	0.59	175.0	JET 10I (11-julio-2017)	27.9	3,600
SHH-020UI	1,020.00	87.21	932.79	0.92	46.0	JET-10K (10-julio-2017)	29.1	3,600
SHHA-022BT	1,129.00	245.11	883.89	0.78	16.0	JET 12L (31-mayo-2017)	22.0	3,550
TOTAL	7,726.00	2,097.21	5,628.71					

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

CUADRO 1.11 POZOS SELECCIONADOS PARA LA IMPLEMENTACIÓN Y OPTIMIZACIÓN DEL BOMBEO HIDRÁULICO TIPO JET DE LOS CAMPOS ATACAPI, PACAYACU, PICHINCHA Y SHUSHUQUI

MÉTODO	POZO		
EDDIE E. SMART	ATCB-011BTI		
	ATCC-025UI		
	PACAYACU-001BT		
	PICHINCHA-02 UI		
	SHH-012UI		
	SHH-013BT		
HAL PETRIE	SHH-015UI		
	SHH-020UI		
	SHHA-022BT		

CUADRO 1.11 CONTINUACIÓN

PETRIE-SMART-WILSON	ATCA-007US
	ATCB-008US
	ATCF-016US
	SHH-010UI

FUENTE: Departamento de Producción-Petroamazonas EP, 2017. ELABORACIÓN: Andrés Merlo López

1.3 FUNDAMENTOS DE BOMBEO HIDRÁULICO TIPO JET

1.3.1 PRINCIPIO DE FUNCIONAMIENTO

La bomba hidráulica tipo jet posee tres partes esenciales que son: tobera, garganta o cámara de mezclado y difusor. La relación de áreas entre la tobera y la cámara de mezclado determina el comportamiento operativo de la bomba jet.

La bomba jet se caracteriza por ser de tipo hidrodinámico antes que de tipo hidrostático. Su funcionamiento se debe principalmente a la transferencia de momentum entre dos corrientes de fluidos adyacentes. El fluido motriz a alta presión que pasa a través de la tobera tiene su energía potencial (energía de presión) que se convierte a energía cinética en un chorro de fluido a alta velocidad. El fluido del pozo se mezcla con el fluido motriz en un área constante de la garganta o cámara de mezclado y el momentum es transferido al fluido del pozo, provocando un incremento de energía en él. Según como los fluidos mezclados salen de la garganta, todavía tienen una alta velocidad, y por consiguiente considerable energía cinética a energía potencial al momento de energía, pero esta vez, de energía cinética a energía potencial al momento de pasar por una zona expandida denominada difusor. Este cambio de energía debe ser suficiente para vencer la columna hidrostática y así llevar el fluido producido hacia la superficie.

En la figura 1.6 se muestra las partes mencionadas de la bomba hidráulica tipo jet

FIGURA 1.6 PARTES DE LA BOMBA HIDRÁULICA TIPO JET

FUENTE: Levantamiento Artificial, (Melo V., 2014) ELABORACIÓN: Vinicio Melo

Donde:

- Ps= Presión de succión
- P_N= Presión a la entrada de la tobera
- P_D= Presión de descarga
- Q_S= Tasa del fluido producido
- Q_N= Tasa del fluido motriz
- Q_D= Tasa del fluido producido más fluido motriz (Tasa de descarga)
- A_N = Área de flujo de la tobera
- A_T= Área de flujo total de la cámara de mezclado
- As= Área anular de la cámara de mezclado para el flujo de la producción

1.3.2 CAVITACIÓN EN EL BOMBEO HIDRÁULICO TIPO JET

La cavitación se presenta en la bomba cuando la presión estática del fluido producido dentro de la garganta es menor que la presión de saturación del fluido producido, esto ocasionará que se origine burbujas o cavidades de vapor, al alcanzar esta presión provocará que posteriormente ocurra un colapso de las burbujas, las mismas que originarán una erosión, causando un mal funcionamiento.
La ecuación (1.1) representa la relación de flujo adimensional en el límite de la cavitación. Cuando la relación de flujo adimensional es mayor que la relación de flujo adimensional en el límite de cavitación, esta puede provocar daño a la bomba.

$$M_{L} = \frac{(1-R)}{R} \sqrt{\frac{P_{s}}{1.3(P_{N} - P_{s})}}$$
(1.1)

1.3.3 FABRICANTES DE BOMBAS JET

Existen diversos fabricantes de bombas tipo jet, entre estos los más reconocidos a nivel mundial son: National, Kobe, Guiberson, Claw, OHI, Fluid Packed Pump.

Cada fabricante posee diferentes combinaciones de cámara de mezclado y tobera, definiendo así la relación adimensional de áreas R, y esta varía de acuerdo al modelo matemático utilizado por cada fabricante.

En el cuadro 1.12 se presenta las dimensiones de los fabricantes National, Kobe, Guiberson. En los cuadros 1.13, 1.14 y 1.15 tenemos las áreas anulares correspondientes al fabricante Guiberson, National y Kobe. Las dimensiones al igual que las áreas anulares de los fabricantes Fluid Packed Pump, OHI y Claw se encuentra en el anexo 1.

CUADRO 1.12 DIMENSIONES DE TOBERAS Y GARGANTAS DE BOMBAS JET

	NATIC	NAL		KOBE				GUIBERSON			
TO	BERA	GARG	ANTA	то	BERA	GARG	ANTA	тс	DBERA	GA	RGANTA
N°	ÁREA	N°	ÁREA	N°	ÁREA	N°	ÁREA	N°	ÁREA	N°	ÁREA
1	0.0024	1	0.0064	1	0.0024	1	0.0060	DD	0.0016	0	0.0044
2	0.0031	2	0.0081	2	0.0031	2	0.0077	СС	0.0028	0	0.0071
3	0.0039	3	0.0104	3	0.0040	3	0.0100	BB	0.0038	0	0.0104
4	0.0050	4	0.0131	4	0.0052	4	0.0129	А	0.0055	1	0.0143
5	0.0064	5	0.0167	5	0.0067	5	0.0167	В	0.0095	2	0.0189
6	0.0081	6	0.0212	6	0.0086	6	0.0215	С	0.0123	3	0.0241
7	0.0103	7	0.0271	7	0.0111	7	0.0278	D	0.0177	4	0.0314
8	0.0131	8	0.0346	8	0.0144	8	0.0359	Е	0.0241	5	0.0380
9	0.0167	9	0.0441	9	0.0186	9	0.0464	F	0.0314	6	0.0452
10	0.0212	10	0.0562	10	0.0240	10	0.0599	G	0.0452	7	0.0531
11	0.0271	11	0.0715	11	0.0310	11	0.0774	Н	0.0661	8	0.0661
12	0.0346	12	0.0910	12	0.0400	12	0.1000	Т	0.0855	9	0.0804
13	0.0441	13	0.1159	13	0.0517	13	0.1292	J	0.1257	10	0.0962
14	0.0562	14	0.1476	14	0.0668	14	0.1668	Κ	0.1590	11	0.1195
15	0.0715	15	0.1879	15	0.0863	15	0.2154	L	0.1963	12	0.1452
16	0.0910	16	0.2392	16	0.1114	16	0.2783	М	0.2463	13	0.1772
17	0.1159	17	0.3046	17	0.1439	17	0.3594	Ν	0.3117	14	0.2165
18	0.1476	18	0.3878	18	0.1858	18	0.4642	Р	0.3848	15	0.2606
19	0.1879	19	0.4938	19	0.2400	19	0.5995			16	0.3127
20	0.2392	20	0.6287	20	0.3100	20	0.7743			17	0.3750
						21	1.0000			18	0.4513
						22	1.2916			19	0.5424
						23	1.6681			20	0.6518
						24	2.1544				
		Relación				Relación			Las relac	cione	s de
Tobera	Garganta	R		Tobera	Garganta	R		G	uiberson cuad	están ro 2.2	en el
N	N-1	0.483 X	•	N	N-1	0.517	•				
N	N-1	0.380 A		N	N-1	A- 0 400 A					
N	N+1	0.299 B		N	N+1	0.310 B					
N	N+2	0.235 C		N	N+2	0.240 C					
N	N+3	0.184 D		N	N+3	0.186 D					
N	N+4	0.145 E		N	N+4	0.144 E					

CUADRO 1.13 RELACIONES DE ÁREAS Y ÁREAS ANULARES DE GARGANTA (pg²) PARA BOMBAS GUIBERSON

Tobera									
DD	Gargantas	0	0						
	R	0.36	0.22						
	As	0.0028	0.0056						
CC	Gargantas	0	0	0	1				
	R	0.64	0.4	0.27	0.2				
	As	0.0016	0.0043	0.0076	0.0115				
BB	Gargantas	0	0	1	2				
	R	0.54	0.37	0.27	0,2				
	As	0.0032	0.0065	0.0105	0.0150				
А	Gargantas	0	1	2	3				
	R	0.53	0.39	0.29	0.23				
	As	0.0048	0.0088	0.0133	0.0185				
В	Gargantas	0	1	2	3	4	5	6	
	Ř	0.92	0.66	0.5	0.4	0.3	0.25	0.21	
	As	0.0009	0.0048	0.0094	0.0145	0.0219	0.0285	0.0357	
С	Gargantas	1	2	3	4	5	6	7	
-	R	0.86	0.65	0.51	0.39	0.32	0.27	0.23	
	As	0.0020	0.0066	0.0118	0.0191	0.0257	0.0330	0.0408	
D	Gargantas	3	4	5	6	7	8	9	
	R	0.74	0.56	0.46	0.39	0.33	0.27	0.22	
	As	0.0064	0.0137	0.0203	0.0276	0.0354	0.0484	0.0628	
E	Gargantas	4	5	6	7	8	9	10	11
-	R	0.77	0.63	0.53	0.45	0.36	0.30	0.25	0.20
	As	0.0074	0.0140	0.0212	0.0290	0.0420	0.0564	0.0722	0.0954
F	Gargantas	6	7	8	9	10	11	12	0.0001
·	R	0 69	0.59	0 48	0.39	0.33	0.26	0.22	
	As	0.0138	0.0217	0.0346	0.0490	0.0648	0.0880	0.1138	
G	Gargantas	8	9	10	11	12	13	14	
•	R	0.68	0.56	0.47	0.38	0.31	0.26	0.21	
	As	0.0208	0.0352	0.0510	0.0742	0.1000	0.1320	0.1712	
н	Gargantas	10	11	12	13	14	15	16	
	R	0.69	0.55	0.45	0.37	0.3	0.25	0.21	
	As	0.0302	0.0534	0.0792	0.1112	0.1504	0.1945	0.2467	
1	Gargantas	11	12	13	14	15	16	17	
	R	0.72	0.59	0.48	0.4	0.33	0.27	0.23	
	As	0.0339	0.0597	0.0917	0.1309	0.1750	0.2272	0.2895	
J	Gargantas	13	14	15	16	17	18	19	
-	R	0.71	0.58	0.48	0.4	0.34	0.28	0.23	
	As	0.0515	0.0908	0.1349	0.1871	0.2493	0.3256	0.4167	
к	Gargantas	15	16	17	18	19	20		
	Ř	0.61	0.51	0.42	0.35	0.29	0.24		
	As	0.1015	0.1537	0.2160	0.2922	0.3833	0.4928		
L	Gargantas	16	17	18	19	20			
	Ř	0.63	0.52	0.44	0.36	0.3			
	As	0.1164	0.1787	0.2549	0.3460	0.4555			
М	Gargantas	17	18	19	20				
	Ř	0.66	0.55	0.45	0.38				
	As	0.1287	0.2050	0.2961	0.4055				
Ν	Gargantas	18	19	20					
	R	0.69	0.57	0.48					
	As	0.1395	0.2306	0.3401					
Р	Gargantas	19	20	-					
	R	0.71	0.59						
	As	0.1575	0.267						
R= relación	de área tobera	/área gargan	ita						
As= área an	ular de la garg	anta							

CUADRO 1.14 ÁREAS ANULARES GARGANTA-TOBERA DE NATIONAL (pg²)

		Área anular	Garganta-	Гobera, А _s		
Tobera	Х	Α	В	С	D	E
1		0.0040	0.0057	0.0080	0.0108	0.0144
2	0.0033	0.0050	0.0073	0.0101	0.0137	0.0183
3	0.0042	0.0065	0.0093	0.0129	0.0175	0.0233
4	0.0054	0.0082	0.0118	0.0164	0.0222	0.0296
5	0.0068	0.0104	0.0150	0.0208	0.0282	0.0377
6	0.0087	0.0133	0.0191	0.0265	0.0360	0.0481
7	0.0111	0.0169	0.0243	0.0338	0.0459	0.0612
8	0.0141	0.0215	0.0310	0.0431	0.0584	0.0779
9	0.0179	0.0274	0.0395	0.0548	0.0743	0.0992
10	0.0229	0.0350	0.0503	0.0698	0.0947	0.1264
11	0.0291	0.0444	0.0639	0.0888	0.1205	0.1608
12	0.0369	0.0564	0.0813	0.1130	0.1533	0.2046
13	0.0469	0.0718	0.1035	0.1438	0.1951	0.2605
14	0.0597	0.0914	0.1317	0.1830	0.2484	0.3316
15	0.0761	0.1164	0.1677	0.2331	0.3163	0.4223
16	0.0969	0.1482	0.2136	0.2968	0.4028	0.5377
17	0.1234	0.1888	0.2720	0.3779	0.5128	
18	0.1571	0.2403	0.3463	0.4812		
19	0.2000	0.3060	0.4409			
20	0.2546	0.3896				

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Andrés Merlo López

CUADRO 1.15 ÁREAS ANULARES GARGANTA-TOBERA DE KOBE (pg²)

	Área anular Garganta-Tobera, A _s										
Tobera	A-	Α	В	С	D	E					
1		0.0036	0.0053	0.0076	0.0105	0.0143					
2	0.0029	0.0046	0.0069	0.0098	0.0136	0.0184					
3	0.0037	0.0060	0.0089	0.0127	0.0175	0.0231					
4	0.0048	0.0077	0.0115	0.0164	0.0227	0.0308					
5	0.0062	0.0100	0.0149	0.0211	0.0293	0.0397					
6	0.0080	0.0129	0.0192	0.0273	0.0378	0.0513					
7	0.0104	0.0167	0.0248	0.0353	0.0488	0.0663					
8	0.0134	0.0216	0.0320	0.0456	0.0631	0.0856					
9	0.0174	0.0278	0.0414	0.0589	0.0814	0.1106					
10	0.0224	0.0360	0.0534	0.0760	0.1051	0.1428					
11	0.0289	0.0464	0.0690	0.0981	0.1358	0.1840					
12	0.0374	0.0599	0.0891	0.1268	0.1749	0.2382					
13	0.0483	0.0774	0.1151	0.1633	0.2265	0.3076					
14	0.0624	0.1001	0.1482	0.2115	0.2926	0.3974					
15	0.0806	0.1287	0.1920	0.2731	0.3780	0.5133					
16	0.1036	0.1668	0.2479	0.3528	0.4881	0.6629					
17	0.1344	0.2155	0.3203	0.4557	0.6304	0.8562					
18	0.1735	0.2784	0.4137	0.5885	0.8142	11.058					
19	0.2242	0.3595	0.5343	0.7600	10.516	14.282					
20	0.2896	0.4643	0.6901	0.9817	13.583	18.444					

1.3.4 ASPECTOS TEÓRICOS DEL BOMBEO HIDRÁULICO TIPO JET

Al momento de realizar el diseño se debe cumplir con dos condiciones. La primera toma en cuenta la tasa de fluido que puede bombearse a través de una tobera de diámetro dado, para una determinada caída de presión.

$$Q_{N} = 832A_{N}\sqrt{\frac{P_{N} - P_{S}}{G_{N}}}$$
(1.2)

La segunda condición se describe mediante las curvas de comportamiento adimensional que relacionan la presión de entrada a la tobera P_N , la presión de succión de los fluidos del pozo P_S y la presión de descarga de la bomba P_D , con la tasa que pasa a través de la tobera Q_N y la tasa de fluido producido que ingresa a la bomba Q_S , (La nomenclatura de la bomba jet se muestra en la figura 1.6 mostrada anteriormente). Las curvas se muestran en la figura 1.7 y se definen mediante la ecuación (1.3):

$$H = \frac{NUM}{(1 + K_N) - NUM}$$
(1.3)

Donde:

NUM = 2R +
$$(1 - 2R) \left[\frac{M * R}{1 - R} \right]^2 - (1 + K_{TD}) R^2 (1 + M)^2$$
 (1.4)

$$R = \frac{A_{N}}{A_{T}}$$
(1.5)

$$\mathsf{M} = \frac{\mathsf{Q}_{\mathsf{S}} * \mathsf{G}_{\mathsf{S}}}{\mathsf{Q}_{\mathsf{N}} * \mathsf{G}_{\mathsf{N}}} \tag{1.6}$$

$$H = \frac{P_{\rm D} - P_{\rm s}}{P_{\rm N} - P_{\rm D}}$$
(1.7)

En la ecuación (1.2), el área de la tobera A_N se relaciona con la tasa de fluido motriz requerido Q_N . El la ecuación (1.3), el valor de R determina el perfil de las curvas de comportamiento adimensional. La ecuación (1.5) expresa la relación de áreas R, entre el área de la tobera y el área de la garganta. Para encontrar la bomba óptima para las condiciones de producción del pozo, los parámetros a modificar son los valores de las áreas.

En la ecuación (1.7), en donde se presenta la relación de presiones H, se puede resolver para obtener una expresión en función de P_N , de la siguiente manera:

$$\mathsf{P}_{\mathsf{N}} = \frac{\mathsf{P}_{\mathsf{D}} - \mathsf{P}_{\mathsf{S}}}{\mathsf{H}} + \mathsf{P}_{\mathsf{D}} \tag{1.8}$$

El término P_N es una combinación entre la presión de operación superficial, la presión hidrostática del fluido motriz y las pérdidas de presión del fluido motriz que se presenten en la tubería.

FIGURA 1.7 CURVAS H-M DE LAS BOMBAS JET

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Vinicio Melo

La curva de comportamiento de diseño de la figura 1.8 se puede utilizar como si fuera la curva de comportamiento de una solo bomba, para calcular la relación de presiones H y la relación de flujo adimensional M, que sea consistente con la descripción del pozo y la curva de IPR. Para calcular la geometría óptima de la bomba se debe especificar la presión de operación superficial deseada. Como regla general, con la mayor eficiencia se obtiene con la mayor presión de operación superficial, debido a que se requiere una menor tasa de fluido motriz y, como consecuencia, se tiene menos pérdidas de presión por fricción en la tubería. (Melo, 2014).

FIGURA 1.8 CURVA DE COMPORTAMIENTO DE DISEÑO DE LAS BOMBAS JET

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Vinicio Melo

Los valores mostrados en el cuadro 1.16 son para los puntos de intersección de las curvas indicadas en la figura 1.7. Una tabla similar puede ser construida para otras curvas determinando los puntos donde se intersecan las curvas de comportamiento.

Relación de áreas, R	Rango de relación de presiones, H
0.60	2.930-1.300
0.50	1.300-0.839
0.40	0.839-0.538
0.30	0.538-0.380
0.25	0.380-0.286
0.20	0.286-0.160
0.15	0.160-

CUADRO 1.16 RELACIONES DE ÁREAS ÓPTIMAS

CAPÍTULO 2

DESCRIPCIÓN DE ALGORITMOS PARA EL ANÁLISIS DEL SISTEMA DE BOMBEO HIDRÁULICO TIPO JET

2.1 MÉTODO DE EDDIE E. SMART

El método de Eddie E. Smart presentado en 1985, permite determinar la geometría óptima de una bomba jet, es decir, seleccionar la mejor combinación de tobera-garganta, para el arranque de las operaciones de producción en pozos en los cuales se va a incorporar por primera vez el sistema de bombeo hidráulico tipo jet, asegurándonos así el mejor funcionamiento de la bomba para así evitar cambios tempranos de la misma.

2.1.1 DESCRIPCIÓN DEL PROCEDIMIENTO DESARROLLADO POR EDDIE E. SMART

A continuación se detalla la secuencia de cálculo propuesta por Eddie E. Smart para determinar la geometría óptima de la bomba jet:

- 1. Fijar la presión de operación superficial deseada, P_T.
- Como valor inicial suponer una relación de flujo adimensional igual a 1. Este es utilizado únicamente para calcular las pérdidas de presión por fricción inicial.
- 3. Calcular el gradiente de presión del petróleo producido a partir de su gravedad API.

$$G = \frac{0.433 \times 141.5}{131.5 + ^{\circ}API}$$
(2.1)

4. Calcular el gradiente de presión del fluido producido, a partir de los gradientes de petróleo y agua.

$$\mathbf{G}_{\mathrm{S}} = \mathbf{F}_{\mathrm{W}} \times \mathbf{G}_{\mathrm{W}} + \mathbf{F}_{\mathrm{O}} \times \mathbf{G}_{\mathrm{O}} \tag{2.2}$$

Donde:

 $F_{O}=1\!-\!F_{W}$

5. Estimar el factor de volumen de formación para petróleo y el agua.

$$B_{T} = \left[1 + 2.8 \left(\frac{GOR}{P_{S}}\right)^{1.2}\right] F_{O} + F_{W}$$
(2.3)

6. Calcular la tasa de fluido motriz, con base en la producción deseada y la relación de flujo adimensional, M.

$$Q_{N} = \frac{G_{S} \times Q_{S} \times B_{T}}{G_{N} \times M}$$
(2.4)

- G_N = Gradiente de fluido motriz que pasa a través de la tobera.
- Q_S= Tasa de fluido motriz.
- M= Relación de flujo adimensional.
- G_S= Gradiente de fluido motriz.
- 7. Utilizando la ecuación:

$$P_{F} = \left[\frac{2.02 \times 10^{-6} \times L \times ((D_{1} + D_{2}) \times \mu)^{0.21}}{C \times G^{0.21}}\right] G \times Q^{1.79}$$
(2.5)

Donde:

$$\mathbf{C} = (\mathbf{D}_{1} - \mathbf{D}_{2})(\mathbf{D}_{1}^{2} - \mathbf{D}_{2}^{2})^{2}(\mathbf{D}_{1} / (\mathbf{D}_{1} - \mathbf{D}_{2}))^{0.1}$$

	Flujo anular	Flujo por T.P.	
D ₁	D _{iTR}	D _{iTP}	
D ₂	D _{oTR}	0	

Se procede a determinar las pérdidas de presión producto de la fricción en la tubería por donde circula el fluido motriz, ya sea a través de una sección anular o circular, considerando que:

P_{FN} = Pérdida de presión por fricción del fluido motriz.

 P_{FD} = Pérdida de presión por fricción del fluido de retorno.

 Calcular la presión del fluido motriz en la tobera P_N, como la suma de la presión de operación más la presión hidrostática del fluido motriz, menos la pérdida de presión por fricción de éste, en la tubería.

$$\mathbf{P}_{\mathrm{N}} = \mathbf{P}_{\mathrm{T}} + \mathbf{G}_{\mathrm{N}} \times \mathbf{D} - \mathbf{P}_{\mathrm{FN}} \tag{2.6}$$

 Calcular la tasa de fluido de retorno Q_D, como la suma de la tasa de producción y la tasa del fluido motriz.

$$Q_{\rm D} = Q_{\rm N} + Q_{\rm S} \tag{2.7}$$

10. Calcular el gradiente del fluido de retorno G_D, como un promedio ponderado del gradiente del fluido motriz y el gradiente del fluido producido.

$$G_{\rm D} = \frac{G_{\rm S} \times Q_{\rm S} + G_{\rm N} \times Q_{\rm N}}{Q_{\rm D}}$$
(2.8)

11. Calcular la fracción de agua del fluido de retorno F_{WD}, dependiendo si el fluido motriz es petróleo o agua, con las siguientes ecuaciones:

Si el fluido motriz es petróleo:

$$F_{WD} = \frac{Q_{S} \times F_{W}}{Q_{D}}$$
(2.9a)

Si el fluido motriz es agua:

$$F_{WD} = \frac{Q_N + Q_S \times F_W}{Q_D}$$
(2.9b)

12. Determinar la relación gas-líquido del fluido de retorno GLR.

$$GLR = \frac{Q_{s} \times F_{o} \times GOR}{Q_{o}}$$
(2.10)

 Determinar la viscosidad del fluido de retorno u_D, como un promedio ponderado de las viscosidades del agua y del petróleo.

$$\mu_{\rm D} = \mathbf{F}_{\rm WD} \times \mu_{\rm W} + (1 - \mathbf{F}_{\rm WD}) \times \mu_{\rm O}$$
(2.11)

14. Determinar la presión de descarga de la bomba P_D, como la suma de la presión hidrostática del fluido de retorno, la caída de presión por fricción en el conducto de retorno y la contrapresión en la cabeza del pozo. Si la GLR es menor que 10 pie³/bl, determinar P_{FD} con la ecuación (2.5).

$$\mathbf{P}_{\mathrm{D}} = \mathbf{P}_{\mathrm{WH}} + \mathbf{G}_{\mathrm{D}} \times \mathbf{D} + \mathbf{P}_{\mathrm{FD}} \tag{2.12}$$

Si la GLR es superior o igual que 10 pie³/bl, el valor de P_D debe ser determinado utilizando una correlación adecuada de flujo multifásico.

- 15. Calcular un nuevo valor de la relación de presiones H, mediante la ecuación (1.7).
- 16. Se determina la relación de áreas óptimas, R, basándose en el valor de H del paso anterior y de la figura 1.8 o del cuadro 1.16.
- 17. Utilizando la curva de comportamiento de diseño figura 1.8, se encuentra un nuevo valor para M correspondiente al valor de H del paso 15. También

se puede utilizar la siguiente ecuación para calcular M, usando el valor de R obtenido en el paso anterior.

$$M = \frac{C_3 - \sqrt{C_2 \times C_3 + C_3 \times C_1 - C_2 \times C_1 + \frac{C_4(C_2 - C_3)H}{H + 1}}}{C_2 - C_3}$$
(2.13)

Donde:

$$C_{1} = 2R$$

$$C_{2} = \frac{(1-2R)R^{2}}{(1-R)^{2}}$$

$$K_{TD} = 0.20$$

$$K_{N} = 0.03$$

$$C_{3} = (1+K_{TD})R^{2}$$

$$C_{4} = 1+K_{N}$$

Si en el paso No. 20 se determina la existencia de cavitación, se recomienda usar las curvas de comportamiento de la figura 1.7, para encontrar un nuevo valor de M en lugar de la figura 1.8. Usar el valor de R determinado en el paso 16. En vez de usar la figura 1.7 se puede utilizar la ecuación (2.13) anterior.

- 18. Comparar el nuevo valor de M con el anterior, si la variación de M es menor del 1%, se considera que se ha obtenido la convergencia y se continúa en el paso 19. Caso contrario regresar al paso 6 usando el nuevo valor de M.
- Calcular la relación de flujo adimensional en el límite de cavitación, M_L, con la ecuación (2.22).

$$M_{L} = \frac{(1-R)}{R} \sqrt{\frac{P_{s}}{1.3(P_{N} - P_{s})}}$$
(2.14)

- 20. Si M < M_L, no existe problema de cavitación, en tal caso continuar en el paso 24. Si M > M_L, entonces se tendrán problemas de cavitación, por lo que se requiere un ajuste y continuar en el paso siguiente.
- 21. Fijar M = M_L y utilizar el valor de la relación de áreas seleccionada para calcular un nuevo valor de la relación de presiones H. La curva de comportamiento de la figura 1.7 también se puede usar para encontrar el valor de H correspondiente a M_L. El valor de R se debe mantener constante en los cálculos para evitar cavitación.
- 22. Se calcula la presión de operación superficial requerida para evitar la cavitación:

$$P_{T} = \frac{P_{D} - P_{S}}{H} + P_{D} - G_{N} \times D + P_{FN}$$
(2.15)

23. Repetir los cálculos para evitar cavitación, regresando al paso 5.

24. Determinar el área de la tobera requerida para manejar la tasa de fluido motriz calculada en el paso 6, despejando A_N de la ecuación (1.2).

$$A_{N} = \frac{Q_{N}}{832\sqrt{\frac{P_{N} - P_{S}}{G_{N}}}}$$
(2.16)

La relación de áreas encontrada en el paso 16 junto con el área de la tobera del paso 24 define la geometría óptima de la bomba tipo jet, para la presión de operación superficial dada. Esta área de la tobera es la medida ideal requerida para que la tasa calculada del fluido motriz pase a través de ella. Generalmente el diámetro exacto de la tobera no es comercial y no se encuentra disponible, por lo que se selecciona el diámetro superior más cercano, así como la cámara de mezclado que combina con esta tobera comercial, para obtener la relación de áreas óptima.

Los resultados finales serán tabulados en la tabla 2.1 los cuales permitirán seleccionar la bomba más óptima.

Parámetro	Resultado	Parámetro	Resultado
Q _N (bl/día)		A _N (pg ²)	
Q _s (bl/día)		A _T (pg ²)	
P _T (psi)		R	
HP _{trípelx} (HP)			

CUADRO 2.1 SUMARIO DE RESULTADOS POR EL MÉTODO DE EDDIE E. SMART

ELABORACIÓN: Andrés Merlo López

2.2 MÉTODO DE HAL PETRIE

El método de Hal Petrie presentado en 1992, permite encontrar las mejores condiciones operativas de una bomba jet, en pozos en los cuales ya se encuentra en operación, por lo cual se buscará mejorar las condiciones operacionales de la bomba, con el fin de aumentar la producción. A continuación se presenta la secuencia de cálculo desarrollada por Hal Petrie. La respectiva secuencia de cálculo se encuentra divida en tres secciones, Parte A en la cual se analiza el flujo de fluido motriz a través de la tobera, en la Parte B se analiza el fluido de retorno y en la Parte C el rendimiento de la bomba de superficie; las cuales se detallan a continuación.

2.2.1 SECUENCIA DEL PROCEDIMIENTO DE HAL PETRIE.

Parte A. Escoger la tobera e iterar con el caudal de fluido motriz

- 1. Determinar el gradiente de fluido motriz en la succión de la bomba mediante la ecuación (2.2).
- 2. Determinar el área anular mínima en la succión necesaria para evitar la cavitación.

$$A_{CM} = Q_{S} \left[\frac{1}{691} \sqrt{\frac{G_{S}}{P_{S}}} + \frac{(1 - F_{W})GOR}{24650 \times P_{S}} \right]$$
(2.17)

- Seleccionar la tobera con una R aproximada de 0.4, tal que el área anular de la garganta (cuadros 1.12, 1.13, 1.14 y 1.15) sea mayor al A_{CM} calculada en el paso 2.
- 4. Escoger la presión de operación en superficie, P_T. Los valores de operación se encuentran entre 2000 y 3000 psi, con sus valores más altos de operación para pozos con mayor profundidad, la mejor presión de partida para los respectivos cálculos se encuentra en 3000 psi.
- Determinar la presión del fluido motriz en la tobera, despreciando las pérdidas de presión por fricción P_{FN} en la primera iteración, con la ecuación (2.6).
- 6. Determinar la tasa de flujo en la tobera, con la ecuación (1.2).

 Determinar las pérdidas de presión por fricción en la tubería de inyección del fluido motriz mediante las siguientes ecuaciones:

$$v = 0.01191 \frac{Q_{N}}{d^{2}}$$
(2.18)

$$\rho_{\rm O} = \frac{\rho_{\rm OSC}}{1 + \frac{T - 68}{1885}} \tag{2.19}$$

$$\mu_{\rm O}[cp] = \nu_{\rm O}[cst]\rho_{\rm O}[g/cm^3]$$
(2.20)

$$N_{\rm Re} = 7.742 \times 10^3 \, \frac{\rm dv}{\bar{\mu}/\bar{\rho}} \tag{2.21}$$

 a) Si N_{Re} ≤ 1200 se tiene flujo laminar y las pérdidas de presión por fricción, P_{FN}, se calculan mediante:

Flujo laminar:
$$P_{FN} = 7.95 \times 10^{-6} \frac{\mu LQ_N}{d^4}$$
 (2.22)

 b) Si N_{Re} > 1200 se tiene flujo de transición y turbulento y las pérdidas de presión por fricción; P_{FN}, se calculan mediante:

$$\bar{f} = 0.0361 \frac{(\bar{\mu}/\bar{\rho})^{0.21}}{(dv)^{0.21}}$$
 (2.23)

Flujo turbulento: $P_{FN} = 11.46 \times 10^{-6} \bar{\gamma} \bar{f} L \frac{Q_N^2}{d^5}$ (2.24)

 Regresar al paso 5 hasta que los valores sucesivos de Q_N estén con una diferencia dentro del 15%. Luego continuar con la parte B.

Parte B. Iteración con el caudal de producción

- Determinar las propiedades necesarias para predecir la presión de descarga de la bomba del fluido de retorno.
 - a) Tasa del fluido de retorno total, con la ecuación (2.7).
 - b) Gradiente del fluido de retorno, con la ecuación (2.8).
 - c) Corte de agua del fluido de retorno en el caso de agua como fluido motriz, con la ecuación (2.9b).
 - d) Corte de agua del fluido de retorno en el caso de petróleo como fluido motriz, con la ecuación (2.9a).

- e) Relación gas-líquido del fluido de retorno, con la ecuación (2.10).
- f) Viscosidad del fluido de retorno.

$$\mathbf{v}_{\mathrm{D}} = \left(1 - \mathbf{F}_{\mathrm{WD}}\right) \mathbf{v}_{\mathrm{O}} + \mathbf{F}_{\mathrm{WD}} \mathbf{v}_{\mathrm{W}} \tag{2.25}$$

2. Determinar la presión de descarga P_D, con la ecuación (2.12).

Determinar P_{FD} con las siguientes ecuaciones, si el valor de GLR del fluido de retorno es menor o igual a 10.

$$v = 0.01191 \frac{Q_{D}}{D_{1}^{2} - D_{2}^{2}}$$
(2.26)

Donde:

Q_D = Tasa del fluido de retorno por el anular (bl/día).

 $D_1 = ID$ del casing.

 $D_2 = OD$ del tubing.

$$N_{\text{Re}} = 7.742 \times 10^3 \, \frac{\text{dv}}{\overline{\mu/\rho}} \tag{2.21}$$

Dependiendo del tipo de flujo, laminar ($N_{Re} \le 1200$) o turbulento ($N_{Re} > 1200$), se calcula P_{FD} .

a) Flujo laminar:
$$P_{FD} = \frac{7.95 \times 10^{-6} \bar{\mu} LQ_{D} \left(\frac{d_{1}}{d_{1} - d_{2}}\right)^{0.1}}{(D_{1} - D_{2})^{2} (D_{1}^{2} - D_{2}^{2})(1 + 1.5 e^{2})}$$
 (2.27)

$$e = \frac{2D_3}{D_1 - D_2}$$
(2.28)

Donde:

e = excentricidad del tubing respecto al casing.

 $D_1 = ID$ del casing.

 $D_2 = OD$ del tubing.

 D_3 = distancia entre los centros del tubing y del casing.

b) Flujo turbulento:

$$P_{FD} = \frac{11.46 \times 10^{-6} \,\overline{\gamma} \,\overline{f} \,Q_{D}^{2} \,L}{(D_{1} - D_{2})(D_{1}^{2} - D_{2}^{2})^{2} \left(\frac{D_{1}}{D_{1} - D_{2}}\right)(1 + 1.5 \,e^{2})^{0.25}}$$

$$\overline{f} = 0.0361 \frac{(\overline{\mu}/\overline{\rho})^{0.21}}{(dv)^{0.21}}$$
(2.23)

$$e = \frac{D_1 - D_3}{D_1 - D_2}$$
(2.30)

Donde:

e = excentricidad del tubing respecto al casing.

 $D_1 = ID$ del casing.

 $D_2 = OD$ del tubing.

 $D_3 = OD$ de las juntas del tubing.

- 3. Si el fluido de retorno posee un GLR superior a 10 pie³/bl, se debe determinar la presión de descarga, P_D, utilizando una correlación adecuada de flujo multifásico, para nuestro caso de estudio se recomienda la correlación de Hagedorn y Brown. Para la realización de este proyecto se empleará el software Well Perform para el cálculo de la presión de descarga P_D, en los casos pertinentes.
- 4. Calcular la relación adimensional de presión, H, con la ecuación (1.7).
- 5. Calcular la relación adimensional de flujo másico, M.

$$GOR \neq 0 \qquad M = Q_{s} \left\{ \left[1 + 2.8 \left(\frac{GOR}{P_{s}} \right)^{1.2} \right] F_{o} + F_{w} \right\} \left(\frac{G_{s}}{Q_{N} * G_{N}} \right)$$
(2.31)

$$GOR = 0 \qquad M = \frac{Q_{S} \times G_{S}}{Q_{N} \times G_{N}}$$
(1.6)

- 6. Determinar o encontrar el valor de M con una de las siguientes alternativas.
 - a) Usar el valor de H del paso 4 en la figura 1.8 para encontrar M en la curva envolvente de los comportamientos de mejor eficiencia.
 Además registrar el valor leído de R.
 - b) Para determinar con mayor facilidad la R sin emplear la gráfica, se puede usar el cuadro 1.16.

Usando el valor de H del paso 4, y el valor de R obtenido con la figura 1.8 o con el cuadro 1.16 también se puede calcular M con la ecuación (2.13).

 Comparar el valor de M del paso 5 con el valor de M del paso 6. Si la diferencia es menor o igual al 5%, ir al paso 1 de la parte C, si no corregir Q_S con la siguiente ecuación, y después retornar al paso B.1.a.

$$Q_{S \text{ nuevo}} = Q_{S \text{ anterior}} \left(\frac{M_6}{M_5} \right)$$
(2.32)

Parte C. Cálculos finales

- 1. Escoger el tamaño de la garganta inmediatamente superior al valor obtenido con la ecuación (1.5) despejando la variable R.
- Calcular la tasa de flujo en la succión de la bomba a partir de la cual inicia la cavitación.

$$Q_{SC} = Q_S \frac{(A_T - A_N)}{A_{CM}}$$
(2.33)

3. Calcular la potencia hidráulica de la bomba de superficie.

$$HP = 0.000017Q_{N}P_{T}$$
 (2.34)

4. Calcular la potencia de la bomba tríplex considerando una eficiencia del 90%.

$$HP = \frac{0.000017Q_{N}P_{T}}{0.9}$$
(2.35)

Sumario

Registrar los valores obtenidos en el cuadro 2.2.

CUADRO 2.2 SUMARIO DE RESULTADOS POR EL MÉTODO DE HAL PETRIE

Parámetro	Resultado	Parámetro	Resultado	Parámetro	Resultado
A _N (pg ²)		P _τ (psi)		Q _s (bl/día)	
A _T (pg ²)		Q _N (bl/día)		P _s (psi)	
R		HP _(a 90%)		Q _{sc} (bl/día)	
Bomba					

ELABORACIÓN: Andrés Merlo López

Una vez obtenida la tabla anterior, se procede a realizar la selección de la mejor combinación tobera-garganta que se ajusten a la optimización de los parámetros de operación que incrementen la producción de los pozos de estudio, los mismo como se mencionó anteriormente ya operaban bajo un sistema de bombeo hidráulico tipo jet. Para poder brindar el diseño de optimización se hace uso de diferentes tablas de combinaciones de tobera-garganta proporcionadas por cada uno de los fabricantes.

Repetir el procedimiento para diferentes valores de presión de succión de la bomba y tasa de fluido producido, en este proyecto se mantendrá constante la geometría de la bomba y la presión superficial de operación.

Utilizar los algoritmos de Petrobras para la construcción de la curva IPR revisados en el anexo 2. Con los valores obtenidos de la presión de succión de la bomba P_S y la tasa de fluido producido Q_S , se procede a graficar las curvas Outflow correspondientes a cada valor de presión de inyección como muestra la figura 2.1.

FIGURA 2.1 CURVA DE RESULTADOS PRESIÓN VS CAUDAL

Seleccionar el óptimo valor de funcionamiento de la geometría escogida de nuestra bomba sin exceder el límite de cavitación.

2.3 MÉTODO DE PETRIE-SMART-WILSON

El método desarrollado por Petrie-Smart-Wilson fue presentado en 1984. Cada fabricante de bombas jet ofrece un gran número de diámetros de toberas y cinco

ELABORACIÓN: Andrés Merlo López

o más cámaras de mezclado para cada tobera, razón por la cual se hizo necesaria una representación matemática que estandarice las curvas de comportamiento de las bombas jet, que se llegarían a obtener haciendo variaciones de la presión de entrada en la tobera. Además, es imperativo escribir las ecuaciones de manera adimensional, para así poder aplicarlas a cualquier bomba jet.

Tomando en cuenta las ecuaciones de la conservación de la energía y del momentum para las zonas de flujo: en la tobera, en la succión del fluido de formación, en la cámara de mezclado y en el difusor, se pueden derivan las siguientes ecuaciones, considerando solo líquido.

- Flujo en la tobera (bl/día) con la ecuación (1.2).
- Relación de áreas adimensional con la ecuación (1.5).
- Relación de flujo másico adimensional con la ecuación (1.6).
- Relación de presiones adimensional, con las ecuaciones (1.7) o con la siguiente ecuación:

$$H = \frac{\left\{2R + \left[\left(1 - 2R\right)\left(M^{2}R^{2}\right)/(1 - R)^{2}\right] - \left(1 + KTD\right)R^{2}\left(1 + M\right)^{2}\right\}}{\left(1 + KN\right) - \left\{2R + \left[\left(1 - 2R\right)\left(M^{2}R^{2}\right)/(1 - R)^{2}\right] - \left(1 + KTD\right)R^{2}\left(1 + M\right)^{2}\right\}}$$
(2.36)

• Eficiencia:

$$\mathsf{E} = \mathsf{H} \times \mathsf{M} = \frac{(\mathsf{P}_{\mathsf{D}} - \mathsf{P}_{\mathsf{S}})}{(\mathsf{P}_{\mathsf{N}} - \mathsf{P}_{\mathsf{D}})} \times \frac{(\mathsf{Q}_{\mathsf{S}} \times \mathsf{G}_{\mathsf{S}})}{(\mathsf{Q}_{\mathsf{N}} \times \mathsf{G}_{\mathsf{N}})}$$
(2.37)

• Área mínima para evitar cavitación:

$$A_{CM} = (A_{T} - A_{N}) = \frac{Q_{S}}{691 \times \sqrt{\frac{P_{S}}{G_{S}}}}$$
(2.38)

Las ecuaciones descritas previamente, se ven alteradas cuando el gas se hace presente en el fluido producido, por lo que se necesita realizar aproximaciones para manejo de gas, con respecto a la relación de flujo másico adimensional (M) y el área mínima para evitar la cavitación (A_{CM}). Se ha encontrado que se pueden hacer aproximaciones simples pero muy útiles como la siguiente, propuesta por Cunningham, que si el volumen de gas libre se añade al volumen del líquido como

si fuera líquido, el comportamiento de la bomba se ajusta mucho a las curvas estándar. De este concepto se reformula la ecuación 1.6 de la siguiente forma.

$$M = \frac{(Q_{s} + Q_{g})}{Q_{N}} \times \left(\frac{G_{s}}{G_{N}}\right)$$
(2.39)

Una revisión del trabajo de Standing para una serie de condiciones de fondo, resultó en una correlación empírica para la mezcla de gas y líquido, que sustituyendo en la ecuación 2.39, se la reescribe de esta manera.

$$M = Q_{s} \times \left(\left[1 + 2.8 \times \left(\frac{GOR}{P_{s}} \right)^{1.2} \right] (1 - F_{w}) + F_{w} \right) \times \left[\frac{G_{s}}{Q_{N} \times G_{N}} \right]$$
(2.40)

$$A_{\rm G} = \frac{Q_{\rm S} \times (1 - F_{\rm W}) \times \text{GOR}}{24650 \times P_{\rm S}}$$
(2.41)

Sabiendo que se debe sumar un área extra por la que pasará el gas (A_G), la ecuación de A_{CM} toma la siguiente forma:

$$A_{SM} = Q_{S} \left[\frac{1}{691} \sqrt{\frac{G_{S}}{P_{S}}} + \frac{(1 - F_{W}) \times GOR}{24650 \times P_{S}} \right]$$
(2.17)

2.3.1 SECUENCIA DE CÁLCULO DEL MÉTODO PETRIE-SMART-WILSON

Este método posee dos alternativas de cálculos, la primera alternativa se utiliza cuando se decide mantener la presión de succión P_S constante e ir variando el valor de la presión superficial de operación P_T . La segunda alternativa, en cambio, mantiene la presión superficial de operación constante P_T y se varían los valores de la presión de succión P_S .

Las dos alternativas de cálculo se describen a continuación:

2.3.1.1 Procedimiento P_S constante

- Calcular el área mínima en la succión de la bomba para evitar la cavitación A_{SM}, con la ecuación (2.17).
- Seleccionar una combinación de tobera y cámara de mezclado que posea un área anular superior al valor de A_{SM}. Hacer uso de las tablas de los fabricantes, en los cuadros 1.13, 1.14 y 1.15.

- Escoger el tipo de procedimiento 1; es decir el procedimiento en el cual la presión de succión P_s será constante.
- Asignar el valor de la presión superficial de operación P_T de la bomba triplex, con la cual se empieza los cálculos. Generalmente se asigna valores entre 2000 a 4000 psi.
- Calcular la presión en la entrada de la tobera P_N, con la ecuación (2.6).
 El valor de P_{FN} se desprecia únicamente en la primera secuencia de cálculo.

$$P_{FD} = \left[\frac{202 \times 10^{-8} \times L \times [d_1 + d_2]^{0.21}}{(d_1 - d_2)(d_1^2 - d_2^2)^2 [d_1/(d_1 - d_2)]^{0.1}}\right] \times \left[\left(\frac{\mu}{G}\right)^{0.21} \times G\right] \times Q^{1.79}$$
(2.42)

Donde:

d₁: ID del casing para flujo anular, ID del tubing para flujo por tubería de producción.

d₂: OD del tubing para flujo anular, 0 para flujo por tubería de producción.

La expresión dentro del primer corchete es una constante para una sarta dada de tubing o conducto anular de flujo. La expresión en el segundo corchete es una constante para las pérdidas de fluido motriz, pero no para el conducto de retorno de la producción puesto que contendrá una mezcla variable de fluido motriz y fluido de producción.

- 6. Determinar la tasa de fluido motriz Q_N, con la ecuación (1.2).
- 7. Determinar la tasa de fluido de descarga Q_D, con la ecuación (2.7).
- 8. Determinar el gradiente del fluido producido G_S, con la ecuación (2.2).
- 9. Determinar el gradiente del fluido de descarga G_D, con la ecuación (2.8).
- Calcular la fracción de agua presente en el fluido de descarga F_{WD}.
 Dependiendo del tipo de fluido motriz que se esté utilizando, se define de la siguiente manera.

Fluido motriz petróleo, con la ecuación (2.9a).

Fluido motriz agua, con la ecuación (2.9b).

11. Calcular la relación gas-líquido del fluido de descarga GLR_D, con la ecuación (2.10).

- 12. Si el valor del GLR_D, es superior a 10, se recomienda utilizar una correlación de flujo multifásico vertical, para calcular la presión de descarga de la bomba, haciendo uso de los valores obtenidos en los pasos del 7 al 11. Otra opción es emplear cartas de gas lift. Luego ir al paso 15.
- Si le GLR_D es menor a 10, determinar la viscosidad del fluido de descarga μ_D, con la ecuación (2.11), para calcular las pérdidas por fricción en el siguiente paso.
- Determinar la presión de descarga P_D, definida como la suma de la presión hidrostática en el conducto de retorno, las pérdidas de presión por fricción y la presión de cabeza del pozo, con la ecuación (2.12).
- 15. Calcular M, con la ecuación (2.40).
- 16. Calcular H con la ecuación (2.36) para el valor de R seleccionado, haciendo uso del valor de M calculado en el paso 15.
- 17. En la primera secuencia de cálculo continuar directamente con el paso 18. El valor de H será utilizado para calcular la presión en la entrada de la tobera P_N en el paso 18, esto conduce a un nuevo valor de H en la siguiente iteración. Se aplica el criterio de convergencia entre los valores de H. Se compara los valores de H actual y el anterior; si su diferencia se encuentran dentro del 1% se sigue al paso 19.

Cuando se tiene presencia de gas, es decir que el valor de GLR_D es superior a 10 y además la presión de succión P_S de la bomba es baja, se puede encontrar cierta dificultad en la convergencia. Para encontrar una rápida solución a este inconveniente, los autores encontraron una alternativa matemática, que propone un promedio ponderado de H, el cual reemplazará al valor anterior de H almacenado, y se lo define como $H_{PROMEDIO}$:

$$H_{PROMEDIO} = \frac{2H_{A} + H_{C}}{3}$$
(2.43)

Donde:

H_A: valor de H de la iteración anterior.

H_C: valor de H de la iteración actual.

En la siguiente iteración, el criterio de convergencia del 1% será aplicado al valor actual de H comparado con el H_{PROMEDIO} de las dos iteraciones previas.

Por lo general, se necesitará de 3 a 10 iteraciones, que conjuntamente con el criterio de convergencia del 1% y el promedio ponderado de H, conduce a respuestas que alcanzan una precisión de \pm 15 psi.

- 18. Si se sigue el procedimiento 1, calcular un nuevo valor de la presión de entrada en la tobera P_N , con la ecuación (1.8), y luego ir al paso 6.
- 19. Cuando se ha alcanzado la convergencia, determinar un nuevo valor de presión superficial de operación P_T, utilizando la ecuación (2.6), y de esta despejar el valor de P_T.
- 20. Calcular la tasa máxima de flujo sin cavitación Q_{SC}, con la ecuación (2.33).
- 21. Calcular la potencia requerida de la bomba triplex HP, asumiendo un valor de eficiencia del 90%, con la ecuación (2.35).
- 22. Los resultados obtenidos se reportan en un sumario en el cuadro 2.3.

CUADRO 2.3 SUMARIO DE RESULTADOS POR EL MÉTODO DE PETRIE-SMART-WILSON

	Valor	Unidad
Procedimiento		-
Fabricante		
Bomba		-
R		-
P _T		psi
Q _N		bl/día
HP		HP
Q _{SC}		bl/día
Q _S		bl/día
Ps		psi
PD		psi

ELABORACIÓN: Andrés Merlo López

Para generar una tabla comparativa de varias bombas jet, almacenar los resultados obtenidos y regresar al paso 2, e ingresar la nueva configuración de cámara de mezclado y tobera de la nueva bomba jet; es decir, se obtendrán

varios resultados para un mismo valor de presión de succión P_S. En este caso los resultados se reportan de la siguiente forma, como indica el cuadro 2.4.

CUADRO 2.4 SUMARIO COMPARATIVO DE RESULTADOS OBTENIDOS

Bomba	R	P _T	Q _N	HP _(90%)	Q _{sc}	Qs	Ps	P _D

ELABORACIÓN: Andrés Merlo López

2.4.1.2 Procedimiento P_T constante

- Calcular el área mínima en la succión de la bomba para evitar la cavitación A_{CM}, con la ecuación (2.17).
- Seleccionar una combinación de tobera y cámara de mezclado que posea un área anular superior al valor de A_{SM}. Hacer uso de las tablas de los fabricantes, en los cuadros 1.13, 1.14 y 1.15.
- Escoger el tipo de procedimiento 2; es decir el procedimiento en el cual la presión de succión P_T será constante.
- Asignar el valor de la presión superficial de operación P_T de la bomba triplex, con la cual se empieza los cálculos. Generalmente se asigna valores entre 2000 a 4000 psi.
- Calcular la presión en la entrada de la tobera P_N, con la ecuación (2.6)
 El valor de P_{FN} se desprecia únicamente en la primera secuencia de cálculo, para las siguiente secuencias de cálculo se utiliza la ecuación (2.42).
- 6. Determinar la tasa de fluido motriz Q_N , con la ecuación (1.2).
- 7. Determinar la tasa de fluido de descarga Q_D, con la ecuación (2.7).
- 8. Determinar el gradiente del fluido producido G_S, con la ecuación (2.2).
- 9. Determinar el gradiente del fluido de descarga G_D, con la ecuación (2.8).
- Calcular la fracción de agua presente en el fluido de descarga F_{WD}.
 Dependiendo del tipo de fluido motriz que se esté utilizando, se define de la siguiente manera:

Fluido motriz petróleo, ecuación (2.9a). Fluido motriz agua, ecuación (2.9b).

- 11. Calcular la relación gas-líquido del fluido de descarga GLR_D, con la ecuación (2.10).
- 12. Si el valor del GLR_D, es superior a 10, se recomienda utilizar una correlación de flujo multifásico vertical, para calcular la presión de descarga de la bomba, haciendo uso de los valores obtenidos en los pasos del 7 al 11. Otra opción es emplear cartas de gas lift. Luego ir al paso 15.
- Si le GLR_D es menor a 10, determinar la viscosidad del fluido de descarga μ_D, con la ecuación (2.11), para calcular las pérdidas por fricción en el siguiente paso.
- 14. Determinar la presión de descarga P_D, definida como la suma de la presión hidrostática en el conducto de retorno, las pérdidas de presión por fricción y la presión de cabeza del pozo, y se determina con la ecuación (2.12). Las pérdidas de presión por fricción se determinan con la ecuación (2.42)
- 15. Calcular M, con la ecuación (2.40).
- Calcular H con la ecuación (2.36) para el valor de R seleccionado, haciendo uso del valor de M calculado en el paso 15.
- 17. En la primera secuencia de cálculo continuar directamente con el paso 18. El valor de H será utilizado para calcular la presión de succión P_S en el paso 18, esto conduce a un nuevo valor de H en la siguiente iteración. Se aplica el criterio de convergencia entre los valores de H. Se compara los valores de H actual y el anterior; si su diferencia se encuentran dentro del 1% se sigue al paso 19.

Cuando se tiene presencia de gas, es decir que el valor de GLR_D es superior a 10 y además la presión de succión P_S de la bomba es baja, se puede encontrar cierta dificultad en la convergencia. Para encontrar una rápida solución a este inconveniente, los autores encontraron una alternativa matemática, que propone un promedio ponderado de H, el cual reemplazará al valor anterior de H almacenado, y se lo define como H_{PROMEDIO}, mediante la ecuación (2.43).

En la siguiente iteración, el criterio de convergencia del 1% será aplicado al valor actual de H comparado con el $H_{PROMEDIO}$ de las dos iteraciones previas. Por lo general, se necesitará de 3 a 10 iteraciones, que conjuntamente con el criterio de convergencia del 1% y el promedio ponderado de H, conduce a respuestas que alcanzan una precisión de ± 15 psi.

- Calcular un nuevo valor de la presión de succión P_S, con la ecuación (1.8), y despejando el valor de P_S.
- Cuando se ha alcanzado la convergencia, calcular la tasa máxima de flujo sin cavitación Q_{SC}, con la ecuación (2.33).
- 20. Calcular la potencia requerida de la bomba triplex HP, asumiendo un valor de eficiencia del 90%, con la ecuación (2.35).
- 21. Los resultados obtenidos se reportan en un sumario en el cuadro 2.3.

Para generar una tabla de comportamiento para una dimensión dada, almacenar los datos obtenidos y regresar al paso 1 e ingresar la nueva tasa de producción; es decir, se obtendrá varios resultados para un mismo valor de presión superficial de operación P_T . En este caso los resultados se reportan de igual manera como lo indica el cuadro 2.4.

CAPÍTULO 3

APLICACIÓN DE LOS MÉTODOS DE ANÁLISIS EN EL ACTIVO LIBERTADOR.

3.1 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE EDDIE E. SMART

En seguida se presentan los resultados conseguidos mediante la aplicación de los algoritmos planteados por Eddie E. Smart, detallando una posible propuesta de cambio del sistema de bombeo electrosumergible que posee cada pozo a un sistema de bombeo hidráulico tipo jet. Dichos pozos trabajarán por primera vez con este sistema de levantamiento artificial tipo jet.

3.1.1 ANÁLISIS DEL POZO ATACAPI-11

En el cuadro 3.1 se detalla la información proporcionada de campo correspondiente al pozo, con esta información se procede al análisis para la optimización de su sistema de levantamiento, detallado en el cuadro 3.2.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
P _T	3600.000	psi	P _{wh}	100.000	psi
P _S =P _{wf}	2356.000	psi	G _w	0.435	psi/pie
D	9416.000	pie	L	9849.000	pie
D _{OTP}	3.500	pg	F _w	0.850	
D _{ITP}	2.992	pg	Fo	0.150	
°API	30.400	°API	Qs	1969.000	bl/día
D _{OTR}	7.000	pg	u _o	0.779	ср
D _{ITR}	6.276	pg	u _w	0.393	ср
GOR	617.000	pie ³ /bl	D _{nominal}	2.776	pg
Fluido motriz	Petróleo		Instalación	CASING	

CUADRO 3.1 DATOS DEL POZO ATACAPI-11

ELABORACIÓN: Andrés Merlo López

De acuerdo a la información del pozo Atacapi-11, se considera un valor de P_T igual a 3600 psi.

CUADRO 3.2 RESULTADOS OBTENIDOS POR ITERACIÓN DEL POZO ATACAPI-11

		Iteraciones				
Paráme	etros	Primera	Segunda			
Ρ _τ	psi	3600.0000	3600.0000			
М		1.0000	0.8973			
$G_o = G_N$	psi/pie	0.3784	0.3784			
Gs	psi/pie	0.4268	0.4268			
Β _T	bl/BF	1.0841	1.0841			
Q _N	bl/día	2407.2198	2682.7470			
P _{FN}	psi	51.9623	63.0860			
С		239.7772	239.7772			
P _N	psi	7111.4325	7100.3088			
Q _D	bl/día	4376.2198	4651.7470			
G _D	psi/pie	0.4002	0.3989			
F _{WD}		0.3824	0.3598			
GLR	pie³/bl	41.6412	39.1747			
UD	ср	0.6315	0.6403			
Fluj	0	Multifásico	Multifásico			
P _D	psi	3624.5000	3622.1000			
P _{FD}	psi	20.9945	23.4272			
С		2218.2328	2218.2328			
Н		0.3638	0.3640			
R		0.2500	0.2500			
М		0.8973	0.8966			
K _{TD}		0.2000	0.2000			
K _N		0.0300	0.0300			
C ₁		0.5000	0.5000			
C ₂		0.0556	0.0556			
C ₃		0.0750	0.0750			
C ₄		1.0300	1.0300			
% Error		11.4459	0.0743			
Converg	jencia	No converge	Converge			
ML			1.8542			
Estado			No cavita			
A _N	pg²		0.0288			
AT	pg ²		0.1152			

ELABORACIÓN: Andrés Merlo López

La ecuación (2.35) se utilizó para determinar la potencia requerida de la bomba de superficie. Esta ecuación determina la potencia al 90% de su capacidad, debido a

que en el campo no se utiliza la máxima capacidad para evitar problemas por sobrecarga del equipo.

$$HP = \frac{0.000017Q_{N}P_{T}}{0.9}$$
(2.35)
$$HP = \frac{0.000017x3600psix2682.747 \text{ bl/dia}}{0.9}$$

$$HP = 182HP$$

En el cuadro 3.3 se tabulan los resultados finales para determinar la mejor geometría de la bomba tipo jet que se recomendaría al pozo Atacapi-11.

CUADRO 3.3 SUMARIO DE RESULTADOS POZO ATACAPI-11

Parámetro	Resultado	Parámetro	Resultado
Q _N (bl/día)	2683	A _N (pg ²)	0.0288
Q _S (bl/día)	1969	A _T (pg ²)	0.1151
P⊤ (psi)	3600	R	0.2500
HP _{trípelx90%} (HP)	182		

ELABORACIÓN: Andrés Merlo López

De los resultados obtenidos se determinó que la presión de operación superficial de la bomba tipo jet debe ser 3600 psi, para poder producir una tasa de fluido de 1969 bl/día, teniendo así un área de tobera de 0.0288 pg^2 , e inyectar una tasa de fluido motriz de 2683 bl/día por medio de una bomba triplex de 182 HP de potencia. De acuerdo al valor obtenido de la relación de presiones H, se determinó el valor de relación de áreas R=0.25. Esto significa que el área de la cámara de mezclado tiene que ser cuatro veces más grande que el área de la tobera, es decir 0.1151 pg^2 .

En el cuadro 3.4 se detallan las alternativas de geometrías para la producción deseada del pozo Atacapi-11 correspondiente para cada fabricante.

CUADRO 3.4 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO ATACAPI-11

	KC	DBE				Ν	IATIONAI	L-OILI	MASTER				GUIBE	RSO	١		
TC	DBERA	GAF	RGANTA	R	BOMBA	T	OBERA	GA	RGANTA	R	BOMBA	ТС	DBERA	GAF	RGANTA	R	BOMBA
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
10	0.0240	12	0.1000	0.240	10-C	11	0.0271	12	0.0910	0.299	11-B	Е	0.0241	10	0.0962	0.25	E-10
		13	0.1292	0.186	10-D			13	0.1159	0.235	11-C			11	0.1195	0.20	E-11
11	0.0310	12	0.1000	0.310	11-B	12	0.0346	12	0.0910	0.380	12-A	F	0.0314	10	0.0962	0.33	F-10
		13	0.1292	0.240	11-C			13	0.1159	0.299	12-B			11	0.1195	0.26	F-11

	CL	.AW			DOMD			OHI				F	LUID PAG	CKED	PUMP		DOMD
TO	BERA	GAF	RGANTA	R		Т	OBERA	GA	RGANTA	R	BOMBA	TC	OBERA	GA	RGANTA	R	
No	AREA	No	ÁREA		Ţ	No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		Ţ
11	0.0239	Ν	0.1119	0.214	11-N	10	0.0238	12	0.1001	0.238	10-C	10	0.02761	12	0.10533	0.262	10-C
		0	0.1445	0.165	11-0			13	0.1288	0.185	10-D			13	0.13166	0.21	10-D
12	0.0311	Ν	0.1119	0.278	12-N	11	0.0307	12	0.1001	0.307	11-B	11	0.03451	12	0.10533	0.328	11-B
		0	0.1445	0.215	12-0			13	0.1288	0.238	11-C			13	0.13166	0.262	11-C

Fabricante	A _N	A _T	R	BOMBA
Kobe	0.0310	0.1292	0.2400	11-C
National-Oilmaster	0.0346	0.1159	0.2990	12-B
Guiberson	0.0314	0.1195	0.2600	F-11
Claw	0.0311	0.1445	0.2150	12-0
OHI	0.0307	0.1288	0.2380	11-C
Fluid Packed Pump	0.03451	0.13166	0.2620	11-C

ELABORACIÓN: Andrés Merlo López

Criterio para la selección de la bomba

Para la correcta selección de la bomba de entre los diversos fabricantes se consideró varias alternativas.

Se selecciona una bomba cuya área de tobera A_N , área de mezclado A_T , fuesen igual o ligeramente mayor a la obtenida mediante los cálculos, para de esta manera el valor de R obtenido de estas combinaciones sea igual o ligeramente mayor al valor de R determinado mediante los cálculos iterativos.

Para el pozo Atacapi-11 se obtuvo un A_N de 0.0288 pg² y una R óptima de 0.250. Con estos valores se procedió a seleccionar la bomba que permita obtener los parámetros obtenidos con el método de Eddie E. Smart. Para esto, se seleccionan dos bombas de cada fabricante, una con A_N menor y otra con un valor mayor con respecto a la obtenida de los cálculos. Mediante este proceso se puede ubicar el valor de A_N dentro de un rango que permita determinar cuál de las dos opciones es la más idónea.

De las opciones de bombas obtenidas que cumplen con el valor igual o mayor de la relación óptima R son 0.299, 0.26 y 0.262 para los fabricantes National-Oilmaster, Guiberson y Fluid Packed Pump. No se toma en cuenta la opción de las bombas de los otros fabricantes debido a que sus parámetros no están muy acorde a los valores calculados.

Se procuró elegir la bomba que más se acerque a las condiciones óptimas de R y A_N determinadas, siendo la bomba del fabricante Guiberson la que cumple con dichas condiciones.

3.1.2 ANÁLISIS DEL POZO ATACAPI-25

En el cuadro 3.5 se detalla la información proporcionada de campo correspondiente al pozo Atacapi-25, con esta información se procede al análisis para la optimización de su sistema de levantamiento a bombeo hidráulico tipo jet.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
Ρ _Τ	3100.000	psi	P _{wh}	180.000	psi
P _s =P _{wf}	1975.000	psi	G _w	0.458	psi/pie
D	9115.000	pie	L	9520.000	pie
D _{OTP}	3.500	pg	F _w	0.950	
D _{ITP}	2.992	pg	F。	0.050	
°API	27.500	°API	Qs	882.000	bl/día
D _{OTR}	7.000	pg	uo	1.210	ср
D _{ITR}	6.276	pg	u _w	0.408	ср
GOR	1502.000	pie ³ /bl	D _{nominal}	2.776	pg
Fluido motriz	Petróleo		Instalación	CASING	

CUADRO 3.5 DATOS DEL POZO ATACAPI-25

ELABORACIÓN: Andrés Merlo López

De acuerdo a la información de campo para el pozo Atacapi-25, se consideró un valor de P_T igual a 3100 psi. El cuadro de los resultados por cada iteración se encuentra en el anexo 3.

En el cuadro 3.6 se tabulan los resultados finales que nos permitirán determinar la bomba tipo jet que se recomendará instalar para el pozo Atacapi-25.

CUADRO 3.6 SUMARIO DE RESULTADOS POZO ATACAPI-25

Parámetro	Resultado	Parámetro	Resultado
Q _N (bl/día)	2276	A _N (pg ²)	0.0251
Q _s (bl/día)	882	A _T (pg ²)	0.0627
P _T (psi)	3100	R	0.4000
HP _{trípelx 90%} (HP)	133		

ELABORACIÓN: Andrés Merlo López

De los resultados obtenidos se determinó que la presión de operación superficial de la bomba tipo jet debe ser 3100 psi, para poder producir una tasa de fluido de 882 bl/día, teniendo así un área de tobera de 0.0251 pg^2 , e inyectar una tasa de fluido motriz de 2276 bl/día por medio de una bomba triplex de 133 HP de potencia. De acuerdo al valor obtenido de la relación de presiones H, se determinó el valor de relación de áreas R=0.4. Esto significa que el área de la cámara de mezclado tiene que ser dos y media veces más grande que el área de la tobera, es decir 0.0627 pg^2 .

En el cuadro 3.7 se detallan las alternativas de geometrías para la producción deseada del pozo Atacapi-25 correspondiente para cada fabricante.

CUADRO 3.7 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO ATACAPI-25

Fabricante	A _N	AT	R	BOMBA
Kobe	0.0310	0.0774	0.400	11-A
National-Oilmaster	0.0271	0.0715	0.380	11-A
Guiberson	0.0314	0.0661	0.480	F-8
Claw	0.0311	0.0655	0.475	12-K
ОНІ	0.0307	0.0774	0.396	11-A
Fluid Packed Pump	0.0276	0.0674	0.410	10-A

ELABORACIÓN: Andrés Merlo López

De los criterios de selección mencionados anteriormente en el pozo Atacapi 11, para el caso del pozo Atacapi-25 se tiene que las bombas que cumplen con un R óptimo igual o cercano al calculado de 0.4 y un A_N cercano al calculado de 0.02507 pg², corresponde a los fabricantes Kobe y Fluid Packed Pump, con un valor de R igual a 0.4 y 0.41 respectivamente, siendo la bomba del fabricante Kobe la más cercana a las condiciones de operación requeridas.

3.1.3 ANÁLISIS DEL POZO PACAYACU-1

En el cuadro 3.8 se detalla la información proporcionada de campo correspondiente al pozo Pacayacu-1, con esta información se procede al análisis para la optimización de su sistema de levantamiento a bombeo hidráulico tipo jet.

CUADRO 3.8 DATOS DEL POZO PACAYACU-1

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
P _T	3600.000	psi	P _{wh}	10.000	psi
P _s =P _{wf}	639.000	psi	G _w	0.448	psi/pie
D	8360.000	pie	L	8360.000	pie
D _{OTP}	3.500	pg	F _w	0.720	
D _{ITP}	2.992	pg	F。	0.280	
°API	19.800	°API	Qs	741.000	bl/día
D _{OTR}	7.000	pg	u _o	7.477	ср
D _{ITR}	6.276	pg	u _w	0.425	ср
GOR	117.190	pie ³ /bl	D _{nominal}	2.776	pg
Fluido motriz	Petróleo		Instalación	CASING	

ELABORACIÓN: Andrés Merlo López

De acuerdo a la información de campo para el pozo Pacayacu-1, se consideró un valor de P_T igual a 3600 psi. El cuadro de los resultados por cada iteración se encuentra en el anexo 3.

En el cuadro 3.9 se tabulan los resultados finales que nos permitirán determinar la bomba tipo jet que se recomendará instalar para el pozo Pacayacu-1.

Parámetro	Resultado	Parámetro	Resultado
Q _N (bl/día)	2574	A _N (pg ²)	0.0249
Q _S (bl/día)	741	A _T (pg ²)	0.0622
P⊤ (psi)	3600	R	0.4000
HP _{trípelx 90%(} HP)	175		

CUADRO 3.9 SUMARIO DE RESULTADOS POZO PACAYACU-1

ELABORACIÓN: Andrés Merlo López

De los resultados obtenidos se determinó que la presión de operación superficial de la bomba tipo jet debe ser 3600 psi, para poder producir una tasa de fluido de 7941 bl/día, teniendo así un área de tobera de 0.0249 pg², e inyectar una tasa de fluido motriz de 2574 bl/día por medio de una bomba triplex de 175 HP de

potencia. De acuerdo al valor obtenido de la relación de presiones H, se determinó el valor de relación de áreas R=0.4. Esto significa que el área de la cámara de mezclado tiene que ser dos y media veces más grande que el área de la tobera, es decir 0.0622 pg^2 .

En el cuadro 3.10 se detallan las alternativas de geometrías para la producción deseada del pozo Pacayacu-1 correspondiente para cada fabricante.

Fabricante	A _N	A _T	R	BOMBA
Kobe	0.0310	0.0774	0.400	11-A
National-Oilmaster	0.0271	0.0715	0.380	11-A
Guiberson	0.0314	0.0661	0.480	F-8
Claw	0.0311	0.0655	0.475	12-K
ОНІ	0.0307	0.0774	0.396	11-A
Fluid Packed Pump	0.0276	0.0674	0.410	10-A

CUADRO 3.10 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO PACAYACU-1

ELABORACIÓN: Andrés Merlo López

De los criterios de selección mencionados anteriormente, para el caso del pozo Pacayacu-1 se tiene que las bombas que cumplen con un R óptimo de 0.4 y un A_N cercano al calculado de 0.0249 pg², correspondiendo a los fabricantes Kobe y Fluid Packed Pump, siendo la bomba del fabricante Kobe la más cercana a las condiciones de operación requeridas.

3.1.4 ANÁLISIS DEL POZO PICHINCHA-2

En el cuadro 3.11 se detalla la información proporcionada de campo correspondiente al pozo Pichincha-2, con esta información se procede al análisis para la optimización de su sistema de levantamiento a bombeo hidráulico tipo jet.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
P _T	3100.000	psi	P _{wh}	42.000	psi
P _s =P _{wf}	910.000	psi	G _w	0.444	psi/pie
D	8170.000	pie	L	8170.000	pie
D _{OTP}	3.500	pg	Fw	0.430	
D _{ITP}	2.992	pg	F。	0.570	
°API	28.100	°API	Qs	417.000	bl/día
D _{OTR}	7.000	pg	u _o	2.006	ср
D _{ITR}	6.276	pg	u _w	0.404	ср
GOR	236.000	pie ³ /bl	D _{nominal}	2.776	pg
Fluido motriz	Petróleo		Instalación	CASING	

CUADRO 3.11 DATOS DEL POZO PICHINCHA-2

ELABORACIÓN: Andrés Merlo López

De acuerdo a la información de campo para el pozo Pichincha-2, se consideró un valor de P_T igual a 3100 psi. El cuadro de los resultados por cada iteración se encuentra en el anexo 3.

En el cuadro 3.12 se tabulan los resultados finales que nos permitirán determinar la bomba tipo jet que se recomendará instalar para el pozo Pichincha-2.

Parámetro	Resultado	Parámetro	Resultado
Q _N (bl/día)	1638	A _N (pg ²)	0.0168
Q _S (bl/día)	417	A _T (pg ²)	0.0419
P _T (psi)	3100	R	0.4000
HP _{trípelx 90%(} HP)	96		

CUADRO 3.12 SUMARIO DE RESULTADOS POZO PICHINCHA-2

ELABORACIÓN: Andrés Merlo López

De los resultados obtenidos se determinó que la presión de operación superficial de la bomba tipo jet debe ser 3100 psi, para poder producir una tasa de fluido de 417 bl/día, teniendo así un área de tobera de 0.0168 pg², e inyectar una tasa de fluido motriz de 1638 bl/día por medio de una bomba triplex de 96 HP de potencia.
De acuerdo al valor obtenido de la relación de presiones H, se determinó el valor de relación de áreas R=0.4. Esto significa que el área de la cámara de mezclado tiene que ser dos y media veces más grande que el área de la tobera, es decir 0.0419 pg².

En el cuadro 3.13 se detallan las alternativas de geometrías para la producción deseada del pozo Pichincha-2 correspondiente para cada fabricante.

Fabricante	A _N	A _T	R	BOMBA
Kobe	0.0186	0.0464	0.400	9-A
National-Oilmaster	0.0212	0.0441	0.483	10-X
Guiberson	0.0177	0.0452	0.390	D-6
Claw	0.0175	0.0447	0.391	10-l
ОНІ	0.0184	0.0464	0.396	9-A
Fluid Packed Pump	0.0176	0.0431	0.410	8-A

CUADRO 3.13 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO PICHINCHA-2

ELABORACIÓN: Andrés Merlo López

De los criterios de selección mencionados anteriormente, para el caso del pozo Pichincha-2 se tiene que las bombas que cumplen con un R óptimo cercano o igual a 0.4, corresponden a los fabricantes Kobe y Fluid Packed Pump con 0.4 y 0.41 respectivamente, siendo la bomba del fabricante Kobe la más cercana a las condiciones de operación requeridas.

A continuación en el cuadro 3.14 se muestra un resumen de los parámetros más importantes en el desarrollo de los cálculos, así como también la selección de la bomba hidráulica tipo jet para cada uno de los pozos analizados mediante el método de Eddie E. Smart.

CUADRO 3.14 RESUMEN DE RESULTADOS OBTENIDOS MEDIANTE EL MÉTODO DE EDDIE E. SMART

POZO	ATACAPI-11 ATACAPI-25		PACAYACU-1	PICHINCHA-2
FABRICANTE	GUIBERSON	KOBE	FLUID PACKED PUMP	KOBE
BOMBA	F-11	11-A	10-A	9-A
A_N (pg2) 0.0288		0.0251	0.0249	0.0168
A _τ (pg2)	0.1151	0.0627	0.0622	0.0419
R	0.2500	0.4000	0.4000	0.4000
P _T (psi)	3600.0000	3100.0000	3600.0000	3100.0000
Q _N (bl/día)	2683.0000	2276.0000	2574.0000	1638.0000
Q _s (bl/día)	1969.0000	882.0000	741.0000	417.0000
HP (HP)	164.0000	120.0000	158.0000	86.0000
HP _{@90%} (HP)	182.0000	133.0000	175.0000	96.0000

ELABORACIÓN: Andrés Merlo López

3.2 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE HAL PETRIE

Enseguida se presenta los resultados conseguidos mediante la implementación de los algoritmos desarrollados por Hal Petrie, de tal manera que se defina una posible optimización del sistema de levantamiento artificial por bombeo hidráulico tipo jet. Esta optimización consiste en la variación de los parámetros de operación con la finalidad de incrementar la producción de los pozos analizados.

3.2.1 ANÁLISIS DEL POZO SHUSHUQUI-12

En el cuadro 3.15 se detalla la información de campo correspondiente al pozo Shushuqui-12, con esta información se procede a la implementación de los algoritmos propuestos por Hal Petrie y detallados en los cuadros 3.16 y 3.17.

CUADRO 3.15 DATOS DEL POZO SHUSHUQUI-12

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
L	8890.000	pie	GOR	180.000	pie ³ /bl
D	8890.000	pie	Fw	0.572	
D _{ITP}	2.992	pg	T _{wh}	100.000	°F
D _{OTP}	3.500	pg	T _{wf}	237.000	°F
D _{ITR}	6.276	pg	P _R	3153.000	psi
P _{wh}	85.000	psi	P _B	1157.000	psi
API	24.100	°API	P _{wf}	1384.000	psi
u _o	2.597	cst	Q @ Pwf	390.000	bl/día
u _w	0.386	cst	γ _g	1.071	
Gw	0.444	psi/pie	٧w	1.025	
Salinidad	35850.000	ppm	Venteo	SI	
Instalación	CASING		Fluido Motriz	Petróleo	

Parámetro	Análisis 1	Análisis 2	Unidad
Producción deseada	100	500	bl/día
Presión de succión de la Producción Deseada	150	1500	psi

ELABORACIÓN: Andrés Merlo López

CUADRO 3.16 RESULTADOS OBTENIDOS POR CADA ITERACIÓN PARA EL POZO SHUSHUQUI-12

PARTE A.- Escoger la tobera e iterar con el caudal de fluido motriz.

Parámetro	Análisis 1	Análisis 1 Análisis 2		
G _s	0.4225	0.4225	psi/pie	
A _{CM}	0.0098	0.0132	pg²	
Fabricante		CLAW		
As	0.0299	0.0299	pg²	
Tobera	9.0000	9.0000		
A _N	0.0148	0.0148	pg²	

CUADRO 3.16 CONTINUACIÓN

		Anális	sis 1	Aná	lisis 2
Parái	netro	Iterae	ción	lter	ación
		Primera	Segunda	Primera	Segunda
PT	psi	3650.000	3650.000	3650.000	3650.000
P _N	psi	7150.552	7121.143	7150.552	7126.274
Q _N	bl/día	1641.851	1638.399	1475.072	1471.899
$\Delta \mathbf{Q}_{\mathbf{N}}$	%		0.211		0.216
V	pie/s	2.184		1.963	
N _{Re}		19481.205		17502.299	
Flu	ujo	Turbulento		Turbulento	
ρο	g/cm ³	0.863		0.863	
μ _o	ср	2.242		2.242	
f		0.030		0.030	
P _{FN} psi		29.409		24.278	
∆Q _N <	: 15 %		Verdadero		Verdadero

PARTE B.- Iteración con el caudal de producción.

		Anál	isis 1	Ana	álisis 2
Pará	metro	Itera	ción	lte	ración
		Primera	Segunda	Primera	Segunda
QD	bl/día	1738.000	1808.000	1972.000	2166.000
GD	psi/pie	0.395	0.397	0.401	0.403
F _{WD}		0.033	0.054	0.145	0.183
GLR	pie ³ /bl	4.000	7.000	19.535	24.682
Uo	cst	2.597	2.597	2.597	2.597
u _w	cst	0.386	0.386	0.386	0.386
VD	cst	2.525	2.478	2.277	2.192
V	pie/s	0.763	0.794	0.865	0.951
N _{re}		6494.875	6882.698	8169.623	9318.784
FI	ujo	Turbulento	Turbulento	Turbulento	Turbulento
е		0.640	0.640		
f		0.038	0.037		
P _{FD}	psi	4.007	4.301		
FI	ujo			Multifásico	Multifásico
PD	psi	3604.255	3613.881	3487.800	3475.800
Н		0.982	0.988	0.546	0.541
Μ		0.163	0.278	0.399	0.553
R		0.500	0.500	0.400	0.400
C ₁		1.000	1.000	0.800	0.800
C ₂		0.000	0.000	0.089	0.089
C ₃		0.300	0.300	0.192	0.192

CUADRO 3.16 CONTINUACIÓN

Parámetro		Anál	isis 1	Ana	álisis 2
		ltera	ción	lte	ración
		Primera	Segunda	Primera	Segunda
C ₄		1.030	1.030	1.030	1.030
М		0.278	0.276	0.553	0.558
M _{ax valor}		0.171	0.291	0.419	0.581
M _{in valor}		0.155	0.264	0.379	0.526
Convergencia		No converge	Converge	No converge	Converge
Q _{s nuevo}	bl/día	170.000	169.000	694.000	699.000

PARTE C.- Cálculos finales.

Parámetro	Análisis 1	Análisis 2	Unidad
AT	0.0296	0.0370	pg²
Garganta	0.0447	0.0447	pg²
N°	9.0000	9.0000	
Bomba		CLAW 9 – I	
Q _{SC}	306.0000	1134.0000	bl/día
HP	102.0000	91.0000	HP
HP (a 90%)	113.0000	101.0000	HP

ELABORACIÓN: Andrés Merlo López

CUADRO 3.17

SUMARIO FINAL DE RESULTADOS POR CADA ANÁLISIS DEL POZO SHUSHUQUI-12

ANÁLISIS 1

A _N	0.0148	pg²	Ρτ	3650	psi	Qs	169	bl/día
AT	0.0447	pg²	Q _N	1638	bl/día	Ps	150	psi
R	0.4000		HP _(a 90%)	113	HP	\mathbf{Q}_{sc}	306	bl/día
BOMBA	CLAW			9 -	• 1			

ANÁLISIS 2

A _N	0.0148	pg²	Ρ _Τ	3650	psi	Qs	699	bl/día
AT	0.0447	pg²	Q _N	1472	bl/día	Ps	1500	psi
R	0.4000		HP _(a 90%)	101	HP	\mathbf{Q}_{sc}	1134	bl/día
BOMBA	CLAW		9 -	·				

ELABORACIÓN: Andrés Merlo López

En la figura 3.1 se muestra el análisis nodal del sistema mediante el cual se determinó un rediseño de optimización y cuyos resultados obtenidos para la optimización se presentan en el cuadro 3.18.

FIGURA 3.1 ANÁLISIS NODAL DEL POZO SHUSHUQUI-12

ELABORACIÓN: Andrés Merlo López

CUADRO 3.18 SUMARIO DE RESULTADOS PARA OPTIMIZACIÓN POZO SHUSHUQUI-12

A _N	0.0148	pg²	Ρ _Τ	3650	psi	Qs	492	bl/día
A _T	0.0447	pg²	Q _N	1537	bl/día	Ps	970	psi
R	0.4000		HP _(a 90%)	106	HP	\mathbf{Q}_{sc}	564	bl/día
BOMBA	CLAW			9 -	-	P _{sc}	585	psi

ELABORACIÓN: Andrés Merlo López

El pozo Shushuqui-12 opera con una bomba jet 9-I del fabricante Claw, es decir pose una tobera con un A_N de 0.0148 pg² y una garganta con un A_T de 0.0447 pg². De los resultados obtenidos por los algoritmos de Petrie se determinaron los parámetros necesarios: presión de operación superficial de 3650 psi, una tasa de producción de 492 bl/día, una tasa de inyección de fluido motriz de 1537 bl/ día, la potencia hidráulica de la bomba de superficie es de 96 HP y la potencia hidráulica de la bomba tríplex considerando una eficiencia del 90% es de 106 HP. La tasa de producción a la cual inicia la cavitación es de 564 bl/día.

3.2.2 ANÁLISIS DEL POZO SHUSHUQUI-13

En el cuadro 3.19 se detalla la información de campo correspondiente al pozo Shushuqui-13, en el cuadro 3.20 se presentan los resultados obtenidos mediante el uso de los algoritmos propuestos por Petrie.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
L	8340.000	pie	GOR	53.000	pie ³ /bl
D	8340.000	pie	Fw	0.298	
D _{ITP}	2.992	pg	T _{wh}	100.000	°F
D _{OTP}	3.500	pg	T _{wf}	218.000	°F
D _{ITR}	6.276	pg	P _R	736.000	psi
P _{wh}	67.000	psi	P _B	360.000	psi
API	26.100	°API	P _{wf}	275.000	psi
u _o	5.697	cst	Q @ Pwf	556.000	bl/día
u _w	0.415	cst	Υ _g	1.247	
G _w	0.447	psi/pie	Υw	1.033	
Salinidad	46800.000	ppm	Venteo	Si	
Instalación	Casing		Fluido Motriz	Petróleo	

CUADRO 3.19 DATOS DEL POZO SHUSHUQUI-13

Parámetro	Análisis 1	Análisis 2	Unidad
Producción Deseada	150	600	bl/día
Presión de succión de la Producción Deseada	100	500	psi

ELABORACIÓN: Andrés Merlo López

El cuadro de los resultados obtenidos por iteración se encuentra en el anexo 3.

CUADRO 3.20

SUMARIO FINAL DE RESULTADOS POR CADA ANÁLISIS DEL POZO SHUSHUQUI-13

ANÁLISIS 1

A _N	0.0311	pg²	Ρ _Τ	3300	psi	Qs	419	bl/día
A _T	0.0796	pg²	Q _N	3301	bl/día	Ps	100	psi
R	0.4000		HP _(a 90%)	206	HP	\mathbf{Q}_{sc}	452	bl/día
BOMBA	CLAW		12 - L					

ANÁLISIS 2

A _N	0.0311	pg²	P _T	3300	psi	Qs	799	bl/día
AT	0.0796	pg²	Q _N	3197	bl/día	Ps	500	psi
R	0.4000		HP _(a 90%)	199	HP	\mathbf{Q}_{sc}	1096	bl/día
BOMBA	CLAW			12 - L				

ELABORACIÓN: Andrés Merlo López

En la figura 3.2 se muestra el análisis nodal del sistema, mediante el cual se determinó un rediseño de optimización y cuyos resultados obtenidos para la optimización se presentan en el cuadro 3.21.

FIGURA 3.2 ANÁLISIS NODAL DEL POZO SHUSHUQUI-13

ELABORACIÓN: Andrés Merlo López

CUADRO 3.21 SUMARIO DE RESULTADOS PARA OPTIMIZACIÓN POZO SHUSHUQUI-13

A _N	0.0311	pg²	Ρ _Τ	3300	psi	Qs	571	bl/día
AT	0.0796	pg²	Q _N	3260	bl/día	Ps	260	psi
R	0.4000		HP _(a 90%)	203	HP	Q_{sc}	620	bl/día
BOMBA	CLAW			12 ·	- L	P_{sc}	205	psi

ELABORACIÓN: Andrés Merlo López

El pozo Shushuqui-13 opera con una bomba jet 12-L del fabricante Claw, es decir pose una tobera con un A_N de 0.0311 pg² y una garganta con un A_T de 0.0796 pg². De los resultados obtenidos por los algoritmos de Petrie se determinaron los parámetros necesarios: presión de operación superficial de 3300 psi, una tasa de producción de 571 bl/día, una tasa de inyección de fluido motriz de 3260 bl/ día, la potencia hidráulica de la bomba de superficie es de 183 HP y la potencia hidráulica de la bomba tríplex considerando una eficiencia del 90% es de 203 HP. La tasa de producción a la cual inicia la cavitación es de 620 bl/día.

3.2.3 ANÁLISIS DEL POZO SHUSHUQUI-15

En el cuadro 3.22 se detalla la información de campo correspondiente al pozo Shushuqui-15, en el cuadro 3.23 se presentan los resultados obtenidos mediante el uso de los algoritmos propuestos por Petrie.

Valor Unidad Valor Unidad Parámetro Parámetro pie³/bl 8330.000 GOR 175.000 L pie D 8330.000 Fw 0.588 pie °F 2.992 100.000 DITP T_{wh} pg °F 3.500 T_{wf} 230.000 DOTP pg 6.276 2387.000 DITR \mathbf{P}_{R} psi pg 1157.000 85.000 Pwh psi PB psi API 27.900 °API 1074.000 P_{wf} psi 2.190 166.000 bl/día Q @ Pwf cst uo 0.394 γ_g 1.071 cst u_w 1.035 0.448 psi/pie Gw Υw Salinidad 49000.000 Venteo Si ppm Instalación Casing **Fluido Motriz** Petróleo

CUADRO 3.22 DATOS DEL POZO SHUSHUQUI-15

CUADRO 3.22 CONTINUACIÓN

Parámetro	Análisis 1	Análisis 2	Unidad
Producción Deseada	100	200	bl/día
Presión de succión de la Producción Deseada	100	300	psi

ELABORACIÓN: Andrés Merlo López

El cuadro de los resultados obtenidos por iteración se encuentra en el anexo 3.

CUADRO 3.23 SUMARIO FINAL DE RESULTADOS POR CADA ANÁLISIS DEL POZO SHUSHUQUI-15

ANÁLISIS 1

A _N	0.0175	pg²	Ρτ	3600	psi	Qs	158	bl/día
AT	0.0447	pg²	Q _N	1918	bl/día	Ps	100	psi
R	0.5170		HP _(a 90%)	130	HP	\mathbf{Q}_{sc}	221	bl/día
BOMBA	CLAW		10 - I					

ANÁLISIS 2

A _N	0.0175	pg²	Ρ _Τ	3600	psi	Qs	325	bl/día
AT	0.0447	pg²	Q _N	1889	bl/día	Ps	300	psi
R	0.5170		HP _(a 90%)	128	HP	\mathbf{Q}_{sc}	425	bl/día
BOMBA	CLAW		10 - I					

ELABORACIÓN: Andrés Merlo López

En la figura 3.3 se muestra el análisis nodal del sistema mediante el cual se determinó un rediseño de optimización y cuyos resultados obtenidos para la optimización se presentan en el cuadro 3.24.

FIGURA 3.3 ANÁLISIS NODAL DEL POZO SHUSHUQUI-15

ELABORACIÓN: Andrés Merlo López

CUADRO 3.24 SUMARIO DE RESULTADOS PARA OPTIMIZACIÓN POZO SHUSHUQUI-15

A _N	0.0175	pg²	Ρ _Τ	3600	psi	Qs	240	bl/día
A _T	0.0447	pg²	Q _N	1904	bl/día	Ps	210	psi
R	0.5170		HP (a 90%)	129	HP	\mathbf{Q}_{sc}	242	bl/día
BOMBA	CLAW			10	-	P _{sc}	130	psi

ELABORACIÓN: Andrés Merlo López

El pozo Shushuqui-15 opera con una bomba jet 10-I del fabricante Claw, es decir pose una tobera con un A_N de 0.0175 pg^2 y una garganta con un A_T de 0.0447 pg^2 . De los resultados obtenidos por los algoritmos de Petrie se determinaron los parámetros necesarios: presión de operación superficial de 3600 psi, una tasa de producción de 240 bl/día, una tasa de inyección de fluido motriz de 1904 bl/ día, la potencia hidráulica de la bomba de superficie es de 116 HP y la potencia hidráulica de la bomba tríplex considerando una eficiencia del 90% es de 129 HP. La tasa de producción a la cual inicia la cavitación es de 242 bl/día.

3.2.4 ANÁLISIS DEL POZO SHUSHUQUI-20

En el cuadro 3.25 se detalla la información de campo correspondiente al pozo Shushuqui-20, en el cuadro 3.26 se presentan los resultados obtenidos mediante el uso de los algoritmos propuestos por Petrie.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
L	8954.000	pie	GOR	46.000	pie ³ /bl
D	8954.000	pie	Fw	0.915	
D _{ITP}	2.992	pg	T _{wh}	100.000	۴
D _{OTP}	3.500	pg	T _{wf}	234.000	۴
D _{ITR}	6.276	pg	P _R	3370.000	psi
P _{wh}	110.000	psi	P _B	1085.000	psi
API	29.100	°API	P _{wf}	1945.000	psi
u _o	1.235	cst	Q @ Pwf	1320.000	bl/día
u _w	0.339	cst	γ _g	1.247	
G _w	0.441	psi/pie	Υw	1.018	
Salinidad	25000.000	ppm	Venteo	Si	
Instalación	Casing		Fluido Motriz	Petróleo	

CUADRO 3.25 DATOS DEL POZO SHUSHUQUI-20

Parámetro	Análisis 1	Análisis 2	Unidad
Producción Deseada	200	1700	bl/día
Presión de succión de la Producción Deseada	600	2400	psi

ELABORACIÓN: Andrés Merlo López

El cuadro de los resultados obtenidos por iteración se encuentra en el anexo 3.

CUADRO 3.26 SUMARIO FINAL DE RESULTADOS POR CADA ANÁLISIS DEL POZO SHUSHUQUI-20

A _N	0.0175	pg²	PT	3800	psi	Qs	533	bl/día
A _T	0.0655	pg²	Q _N	1913	bl/día	Ps	600	psi
R	0.3100		HP _(a 90%)	137	HP	Q_{sc}	1223	bl/día
BOMBA		CLA	W	10 -	K			

ANÁLISIS 1

CUADRO 3.26 CONTINUACIÓN

ANÁLISIS 2

A _N	0.0175	pg²	Ρ _Τ	3800	psi	Qs	1189	bl/día
A _T	0.0655	pg²	Q _N	1632	bl/día	Ps	2400	psi
R	0.3100		HP _(a 90%)	117	HP	Q_{sc}	2454	bl/día
BOMBA		CLA	W	10-	K			

ELABORACIÓN: Andrés Merlo López

En la figura 3.4 se muestra el análisis nodal del sistema, mediante el cual se determinó un rediseño de optimización y cuyos resultados obtenidos para la optimización se presentan en el cuadro 3.27.

FIGURA 3.4 ANÁLISIS NODAL DEL POZO SHUSHUQUI-20

ELABORACIÓN: Andrés Merlo López

CUADRO 3.27 SUMARIO DE RESULTADOS PARA OPTIMIZACIÓN POZO SHUSHUQUI-20

A _N	0.0175	pg²	Ρ _Τ	3800	psi	Qs	1121	bl/día
A _T	0.0655	pg²	Q _N	1661	bl/día	Ps	2160	psi
R	0.3100		HP (a 90%)	119	HP	\mathbf{Q}_{sc}	1797	bl/día
BOMBA		CLA	W	10 -	- K	P _{sc}	1430	psi

ELABORACIÓN: Andrés Merlo López

El pozo Shushuqui-20 opera con una bomba jet 10-K del fabricante Claw, es decir pose una tobera con un A_N de 0.0175 pg² y una garganta con un A_T de 0.0655 pg². De los resultados obtenidos por los algoritmos de Petrie se determinaron los parámetros necesarios: presión de operación superficial de 3800 psi, una tasa de producción de 1121 bl/día, una tasa de inyección de fluido motriz de 1661 bl/ día, la potencia hidráulica de la bomba de superficie es de 107 HP y la potencia hidráulica de la bomba tríplex considerando una eficiencia del 90% es de 119 HP. La tasa de producción a la cual inicia la cavitación es de 1797 bl/día.

3.2.5 ANÁLISIS DEL POZO SHUSHUQUI-22

En el cuadro 3.28 se detalla la información de campo correspondiente al pozo Shushuqui-22, en el cuadro 3.29 se presentan los resultados obtenidos mediante el uso de los algoritmos propuestos por Petrie.

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
L	8320.000	pie	GOR	16.000	pie ³ /bl
D	8722.000	pie	Fw	0.783	
D _{ITP}	2.992	pg	T _{wh}	100.000	°F
D _{OTP}	3.500	pg	T _{wf}	220.000	۴
D _{ITR}	6.276	pg	P _R	1900.000	psi
P _{wh}	130.000	psi	P _B	360.000	psi
API	22.000	°API	P _{wf}	1270.000	psi
u _o	3.898	cst	Q @ Pwf	1129.000	bl/día
u _w	0.411	cst	γ _g	1.247	
Gw	0.447	psi/pie	Yw	1.033	
Salinidad	46250.000	ppm	Venteo	Si	
Instalación	Casing		Fluido Motriz	Petróleo	

CUADRO 3.28 DATOS DEL POZO SHUSHUQUI-22

		Andlisis Z	Unidad
Producción Deseada	800	1500	bl/día
Presión de succión de la Producción Deseada	300	1600	psi

ELABORACIÓN: Andrés Merlo López

El cuadro de los resultados obtenidos por iteración se encuentra en el anexo 3.

CUADRO 3.29

SUMARIO FINAL DE RESULTADOS POR CADA ANÁLISIS DEL POZO SHUSHUQUI-22

ANÁLISIS 1

A _N	0.0311	pg²	Ρτ	3700	psi	Qs	852	bl/día
A _T	0.0796	pg²	Q _N	3329	bl/día	Ps	300	psi
R	0.4000		HP _(a 90%)	233	HP	Q_{sc}	871	bl/día
BOMBA		CLA	W	12	- L			

ANÁLISIS 2

A _N	0.0311	pg²	Ρτ	3700	psi	Qs	1410	bl/día
AT	0.0796	pg²	Q _N	2989	bl/día	Ps	1600	psi
R	0.4000		HP _(a 90%)	209	HP	\mathbf{Q}_{sc}	2021	bl/día
BOMBA		CLA	W	12-	L			

ELABORACIÓN: Andrés Merlo López

En la figura 3.5 se muestra el análisis nodal del sistema, mediante el cual se determinó un rediseño de optimización y cuyos resultados obtenidos para la optimización se presentan en el cuadro 3.30.

ELABORACIÓN: Andrés Merlo López

CUADRO 3.30 SUMARIO DE RESULTADOS PARA OPTIMIZACIÓN POZO SHUSHUQUI-22

A _N	0.0311	pg²	Ρ _Τ	3700	psi	Qs	1257	bl/día
AT	0.0796	pg²	Q _N	3082	bl/día	Ps	1240	psi
R	0.4000		HP _(a 90%)	216	HP	\mathbf{Q}_{sc}	1562	bl/día
BOMBA		CLA	W	12 ·	- L	P_{sc}	1080	psi

ELABORACIÓN: Andrés Merlo López

El pozo Shushuqui-22 opera con una bomba jet 12-L del fabricante Claw, es decir pose una tobera con un A_N de 0.0311 pg² y una garganta con un A_T de 0.0796 pg². De los resultados obtenidos por los algoritmos de Petrie se determinó los parámetros necesarios: presión de operación superficial de 3700 psi, una tasa de producción de 1257 bl/día, una tasa de inyección de fluido motriz de 3095 bl/ día, la potencia hidráulica de la bomba de superficie es de 196 HP y la potencia hidráulica de la bomba tríplex considerando una eficiencia del 90% es de 216 HP. La tasa de producción a la cual inicia la cavitación es de 1562 bl/día.

A continuación en el cuadro 3.31 se muestra un resumen de los pozos analizados mediante el método de Hal Petrie.

0070	SHUSHUQUI	SHUSHUQUI	SHUSHUQUI	SHUSHUQUI	SHUSHUQUI
P020	12	13	15	20	22
Fabricante	CLAW	CLAW	CLAW	CLAW	CLAW
BOMBA	9-I	12-L	10-l	10-K	12-L
A _N (pg²)	0.0148	0.0311	0.0175	0.0175	0.0311
A _τ (pg²)	0.0447	0.0796	0.0447	0.0655	0.0796
R	0.4000	0.4000	0.5170	0.3100	0.4000
P⊤ (psi)	3650.0000	3300.0000	3600.0000	3800.0000	3700.0000
Q _N (bl/día)	1537.0000	3260.0000	1904.0000	1661.0000	3082.0000
Q _s (bl/día)	492.0000	571.0000	240.0000	1121.0000	1257.0000
P _s (psi)	970.0000	260.0000	210.0000	2160.0000	1240.0000
HP _{@90%} (HP)	106.0000	203.0000	129.0000	119.0000	216.0000
Q _{sc} (bl/día)	564.0000	620.0000	242.0000	1797.0000	1562.0000
P _{sc} (psi)	585.0000	205.0000	130.0000	1430.0000	1080.0000

CUADRO 3.31 RESUMEN DE RESULTADOS MÉTODO DE HAL PETRIE

ELABORACIÓN: Andrés Merlo López

3.3 RESULTADOS OBTENIDOS CON LA APLICACIÓN DEL MÉTODO DE PETRIE-SMART-WILSON

Enseguida se presenta los resultados conseguidos mediante la implementación de los algoritmos desarrollados por Petrie-Smart-Wilson, de tal manera que se defina una posible optimización del sistema de levantamiento artificial por bombeo hidráulico tipo jet.

En el análisis del pozo Atacapi-7, se detallan todos los procedimientos utilizados para determinar las mejores condiciones de operación de una bomba hidráulica tipo jet, con la finalidad de optimizar su producción. En el resto de pozos se presenta solo los resultados finales que se han obtenido.

3.3.1 ANÁLISIS DEL POZO ATACAPI-7

En el cuadro 3.32 se detalla la información de campo correspondiente al pozo Atacapi-7.

Datos	Valor	Unidad	Datos	Valor	Unidad
L	9200.000	pie	Yw	1.014	-
D	9200.000	pie	Go	0.391	psi/pie
D _{iTP}	2.992	pie	Gw	0.439	psi/pie
D _{oTP}	3.500	pg	μ₀	1.387	ср
D _{iTR}	6.276	pg	μ _w	0.407	ср
P _{WH}	80.000	psi	GOR	510.000	pie ³ /bl
γ _g	0.830	-	Fw	0.072	
Petróleo	25.400	°API	Т _{WH}	100.000	°F
Venteado	Si	-	T _{WF}	230.000	°F
Fluido motriz	Petróleo	-	P _R	1810.000	psi
Qs	300.000	bl/día	P _{WF}	401.000	psi
Instalación	Casing	-	PB	1308.000	psi

CUADRO 3.32 DATOS DEL POZO ATACAPI-7

ELABORACIÓN: Andrés Merlo López

Primero se determina el valor de A_{SM} y con ese valor se selecciona las bombas candidatas que cumplan con un valor de A_{SM} superior al calculado, las cuales se detallaran en el cuadro 3.33.

CUADRO 3.33 BOMBAS JET CANDIDATAS POR FABRICANTE PARA LA OPTIMIZACIÓN DEL POZO ATACAPI-7

9-A 0.3800 0.0167 0.0274 0.0441	10-A 0.3800 0.0212 0.0350 0.0562	9-A 0.4000 0.0186 0.0278 0.0464	10-A 0.4000 0.0240 0.0360 0.0599	10-A- 0.5170 0.0240 0.0224
0.3800 0.0167 0.0274 0.0441	0.3800 0.0212 0.0350 0.0562	0.4000 0.0186 0.0278 0.0464	0.4000 0.0240 0.0360 0.0599	0.5170 0.0240 0.0224
0.0167 0.0274 0.0441	0.0212 0.0350 0.0562	0.0186 0.0278 0.0464	0.0240	0.0240 0.0224
0.0274 0.0441	0.0350 0.0562	0.0278	0.0360	0.0224
0.0441	0.0562	0.0464	0 0599	
IBERSO			0.0000	0.0464
	Ν		FPP	
D-6	D-7	8-B	9-A	8-A
0.3900	0.3300	0.3280	0.4100	0.4100
0.0177	0.0177	0.0144	0.0221	0.0177
0.0276	0.0354	0.0363	0.0318	0.0255
0.0452	0.0531	0.0464	0.0539	0.0431
OHI			CLAW	
10-A	9-A	10-J	10-l	10-H
0.4000	0.4000	0.4700	0.3900	0.3300
0.0238	0.0184	0.0175	0.0175	0.0175
0.0361	0.0280	0.0201	0.0272	0.0351
0.0598	0.0464	0.0376	0.0447	0.0526
	IBERSO D-6 0.3900 0.0177 0.0276 0.0452 OHI 10-A 0.4000 0.0238 0.0361 0.0598	IBERSON D-6 D-7 0.3900 0.3300 0.0177 0.0177 0.0276 0.0354 0.0452 0.0531 OHI 10-A 10-A 9-A 0.4000 0.4000 0.0238 0.0184 0.0361 0.0280 0.0598 0.0464	IBERSON 0.0411 0.0002 0.0404 D-6 D-7 8-B 0.3900 0.3300 0.3280 0.0177 0.0177 0.0144 0.0276 0.0354 0.0363 0.0452 0.0531 0.0464 OHI 10-A 9-A 10-J 0.4000 0.4000 0.4700 0.0238 0.0184 0.0175 0.0361 0.0280 0.0201 0.0598 0.0464 0.0376	0.0441 0.0562 0.0464 0.0599 IBERSON FPP D-6 D-7 8-B 9-A 0.3900 0.3300 0.3280 0.4100 0.0177 0.0177 0.0144 0.0221 0.0276 0.0354 0.0363 0.0318 0.0452 0.0531 0.0464 0.0539 OHI CLAW 10-A 9-A 10-J 10-I 0.4000 0.4000 0.4700 0.3900 0.0238 0.0184 0.0175 0.0175 0.0361 0.0280 0.0201 0.0272 0.0598 0.0464 0.0376 0.0447

ELABORACIÓN: Andrés Merlo López

Segundo seleccionamos el procedimiento 1, es decir se trabajará con presión de succión constante. En los cuadro 3.34 y 3.35, se presenta el cálculo por iteración para la bomba jet National 9-A y el sumario de resultados obtenidos para la misma bomba respectivamente.

CUADRO 3.34 RESULTADOS POR ITERACIÓN DE LA BOMBA NATIONAL 9-A PARA EL POZO ATACAPI-7

G _S	0.3940	psi/pie			
A _{SM}	0.0183	pg²			
Fabricante	NATIONAL				
Tobera - Garganta	9-A				
R	0.3800				
A _N	0.0167	pg²			
A _S	0.0274	pg²			
A _T	0.0441	pg²			
1) Presión de Succión de la bomb	Х				
2) Presión Superficial de operación					

CUADRO 3.34 CONTINUACIÓN

	Se	cuencia de Cá	lculo	
Par	ámetros	Iteración 1	Iteración 2	Iteración 3
ρο	g/cm ³	No Aplica	0.858	0.858
μ _N	ср	No Aplica	1.387	1.387
P _{FN}	psi	No Aplica	33.000	34.000
P _N	psi	7092.603	No Aplica	No Aplica
Q _N	bl/día	1776.348	1809.111	1802.340
Q _D	bl/día	2076.348	2109.111	2102.340
Gs	psi/pie	0.394	0.394	0.394
G _D	psi/pie	0.391	0.391	0.391
Flui	Fluido Motriz		Petróleo	Petróleo
Fwd		0.010	0.010	0.010
	pie³/bl	68.382	67.319	67.536
PD	psi	3321.400	3324.800	3324.100
М		0.468	0.460	0.461
K _{TD}		0.200	0.200	0.200
K _N		0.030	0.030	0.030
Н		0.651	0.661	0.659
	pie³/bl	68.382	67.319	67.536
% diference	ia	No Aplica	No Aplica	0.671
Co	onverge	No Aplica	NO	SI
H _{PROMEDIO}		Siguiente	0.655	0.660
P _N	psi	7330.217	7280.754	7290.724
Ps	psi	No Aplica	No Aplica	No Aplica
P _{T NUEVA}	psi	No Aplica	No Aplica	3721.830
Gs	psi/pie	0.394	0.394	0.394
A _{SM}	pg ²	0.018	0.018	0.018
Q _{SC}	bl/día	No Aplica	No Aplica	448.200
HP	HP	No Aplica	No Aplica	140.870

ELABORACIÓN: Andrés Merlo López

CUADRO 3.35 SUMARIO DE RESULTADOS DE LA BOMBA NATIONAL 9-A PARA EL POZO ATACAPI-7

	Valor	Unidad
Procedimiento	1(P _S constante)	
Fabricante	NATIONAL	
Bomba	9-A	
R	0.380	

CUADRO 3.35 CONTINUACIÓN

	Valor	Unidad
Ρ _τ	3721.831	psi
Q _N	1802.340	bl/día
HP (90%)	140.868	HP
Q _{SC}	448.202	bl/día
Qs	300.000	bl/día
Ps	710.000	psi
P _D	3324.100	psi

ELABORACIÓN: Andrés Merlo López

Este procedimiento se realiza para el resto de bombas descritas en el cuadro 3.33, con el propósito de poder determinar cuál de las bombas produzca la tasa deseada con la menor potencia requerida. El cuadro 3.36 presenta los resultados obtenidos para cada una de las bombas de cada fabricante.

FABRICANTE NATIONAL KOBE BOMBA 10-A 10-X 10-A 10-A-9-A 9-A R 0.380 0.380 0.483 0.400 0.400 0.517 P_⊤, psi 3323.024 3721.831 3380.425 3077.662 3494.861 3184.037 Q_N, bl/día 2214.881 1802.340 2225.145 2454.845 1971.559 2476.622 HP (90%), HP 154.562 140.868 157.961 144.697 165.599 158.659 Q_{sc}, bl/día 572.520 448.202 374.592 587.242 454.745 366.413 Q_s, bl/día 300.000 300.000 300.000 300.000 300.000 300.000 710.000 P_s, psi 710.000 710.000 710.000 710.000 710.000 3367.600 3368.400 3381.500 3341.200 3382.700 P_D, psi 3324.100 FABRICANTE FPP GUIBERSON BOMBA D-7 D-6 D-5 8-B 9-A 8-A R 0.330 0.390 0.460 0.328 0.410 0.410 P_T, psi 3794.582 3597.009 3744.589 3809.329 3182.285 3604.367 Q_N, bl/día 1920.235 1891.611 1912.981 1919.112 2280.781 1889.490 143.019 HP (90%), HP 150.430 152.420 153.016 142.887 153.521 520.830 416.631 Q_{sc}, bl/día 579.063 449.837 332.062 593.131 Q_s, bl/día 300.000 300.000 300.000 300.000 300.000 300.000 710.000 P_s, psi 710.000 710.000 710.000 710.000 710.000 3372.800 P_D, psi 3336.100 3333.100 3335.400 3336.000 3332.900

CUADRO 3.36 RESULTADOS POR FABRICANTE DE LAS BOMBAS JET SELECCIONADAS PARA EL POZO ATACAPI-7

CUADRO 3.36 CONTINUACIÓN

FABRICANTE		OHI		CLAW			
BOMBA	9-B	10-A	9-A	10-J	10-I	10-H	
R	0.310	0.400	0.400	0.330	0.390	0.470	
P _T , psi	3910.695	3088.386	3516.240	3809.808	3619.763	3883.064	
Q _N , bl/día	2013.072	2436.755	1953.739	1900.807	1873.622	1911.258	
HP (90%), HP	165.323	158.039	144.266	152.076	142.424	155.852	
Q _{sc} , bl/día	677.210	588.878	458.016	574.156	444.930	328.790	
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000	
P _s , psi	710.000	710.000	710.000	710.000	710.000	710.000	
P _D , psi	3351.800	3380.500	3339.500	3334.000	3331.300	3335.200	
	I. Andrág Ma	rla Lánaz					

ELABORACION: Andrés Merlo López

Del cuadro anterior se puede determinar que la bomba que produce la producción deseada a menor potencia es la bomba 9-A del fabricante National. Otro parámetro que se debe tomar en cuenta después de la potencia es el valor de la presión superficial P_T , el cual debe estar en un rango entre 2000-4000 psi; y además, que las condiciones de superficie del pozo tengan la capacidad de suministrar este valor de presión.

Una vez seleccionada la bomba, se realiza dos nuevos análisis utilizando el procedimiento 2 (P_T constante), con el fin de generar la curva de Outflow para el análisis nodal del sistema. En el cuadro 3.37 se presenta los resultados obtenidos por cada iteración para la primera tasa de producción deseada (200 bl/día), el mismo procedimiento se lo realiza para la otra tasa de producción y los resultados se los tabula en el cuadro 3.38.

CUADRO 3.37 RESULTADOS POR ITERACIÓN DEL ANÁLISIS 1 DE LA BOMBA SELECCIONADA NATIONAL 9-A PARA EL POZO ATACAPI-7

Parámetros	Análisis 1	Análisis 2	
Tasa de producción deseada (Q _S), bl/día	200.000	400	
Presión de succión a la tasa deseada (P _s), psi	710.000	710	
Gs	0.394	psi/pie	
A _{SM}	0.012	pg²	
Fabricante	NATIONAL		
Tobera - Garganta	9-	A	

CUADRO 3.37 CONTINUACIÓN

R	R			0.3800		
A _N			0	.0167	pg ²	
As			0	pg ²		
AT			0	.0441	pg²	
1) Presió	n de Suco	ción de la bo	omba (P _s) con	stante:	X	
2) Presió	n Superfi	cial de opera	ación (P⊤) con	stante:		
Ρτ			3500	.0000	psi	
		Seci	iencia de Cálo	ulo		
Parám	netros	Iteración 1	Iteración 2	Iteración 3	Iteración 4	
ρο	g/cm ³	No Aplica	0.858	0.858	0.858	
μ _N	ср	No Aplica	1.387	1.387	1.387	
P _{FN}	psi	No Aplica	33.000	34.000	34.000	
P _N	psi	7092.603	7060.008	7058.154	7058.109	
Q _N	bl/día	1776.348	1832.094	1833.418	1833.317	
QD	bl/día	1976.348	2032.094	2033.418	2033.317	
Gs	psi/pie	0.394	0.394	0.394	0.394	
GD	psi/pie	0.391	0.391	0.391	0.391	
Fluido	Motriz	Petróleo	Petróleo	Petróleo	Petróleo	
F _{WD}		0.007	0.007	0.007	0.007	
GLR _D	pie ³ /bl	47.894	46.581	46.550	46.553	
PD	psi	3386.700	3390.400	3390.500	3390.500	
Μ		0.312	0.303	0.302	0.302	
K _{TD}		0.200	0.200	0.200	0.200	
K _N		0.030	0.030	0.030	0.030	
Н		0.841	0.853	0.854	0.854	
GLR _D	pie ³ /bl	47.894	46.581	46.550	46.553	
% diferer	ncia	No Aplica	No Aplica	1.011	0.020	
Conv	rge	No Aplica	NO	NO	SI	
)	Siguiente	0.845	0.853	0.854	
P _N	psi	No Aplica	No Aplica	No Aplica	No Aplica	
Ps	psi	270.520	258.840	259.550	259.670	
P T NUEVA	psi	No Aplica	No Aplica	No Aplica	No Aplica	
Gs	psi/pie	0.394	0.394	0.394	0.394	
A _{SM}	pg ²	0.012	0.025	0.026	0.026	
Q _{SC}	bl/día	No Aplica	No Aplica	No Aplica	210.190	
HP	HP	No Aplica	No Aplica	No Aplica	134.750	

ELABORACIÓN: Andrés Merlo López

CUADRO 3.38 RESULTADOS FINALES DE LA BOMBA SELECCIONADA NATIONAL 9-A PARA EL POZO ATACAPI-7

Bomba National	R	P⊤ psi	Q _N bl/día	HP (90%)	Q _{SC} bl/día	Q _S bl/día	P _s psi	P _D psi	
	Análisis 1								
9-A	0.380	3500	1833	135	210	200	260	3391	
Análisis 2									
9-A	0.380	3500	1654	122	767	400	1533	3235	

ELABORACIÓN: Andrés Merlo López

En la figura 3.6 se presenta el análisis nodal del pozo Atacapi-7, con los nuevos valores de la presión de succión P_S a la tasa deseada Q_S , el cual muestra el comportamiento que tendrá la bomba National 9-A.

FIGURA 3.6 ANÁLISIS NODAL DEL POZO ATACAPI-7

Para el pozo Atacapi-7, se determinó que la mejor opción de rediseño es implementar una bomba jet 9-A del fabricante National, con la cual se obtendrá una producción de 293 bl/día, con una presión superficial de 3500 psi, la potencia de la bomba triplex con una eficiencia del 90% es de 129 HP. La presión de succión es de 866 psi y a presión de descarga es de 3223 psi. La tasa de

ELABORACIÓN: Andrés Merlo López

producción a la cual inicia la cavitación es de 351 bl/día a una presión de succión de 590 psi.

3.3.2 ANÁLISIS DEL POZO ATACAPI-8

En el cuadro 3.39 se detalla la información de campo y en el cuadro 3.40 se encuentra las bombas candidatas para el pozo Atacapi-8, de la cual se selecciona la bomba adecuada.

Las bombas candidatas que cumplan con un valor de A_{SM} superior al calculado, se encuentran detalladas en el anexo 3.

Datos	Valor	Unidad	Datos	Valor	Unidad
L	9250.000	pie	Yw	1.028	-
D	9250.000	pie	Go	0.393	psi/pie
D _{iTP}	2.992	pie	Gw	0.445	psi/pie
D _{oTP}	3.500	pg	μ _o	1.977	ср
D _{iTR}	6.276	pg	μ _w	0.407	ср
P _{WH}	100.000	psi	GOR	335.000	pie ³ /bl
γ _G	0.818	-	Fw	0.372	
Petróleo	24.500	°API	Т _{WH}	100.000	°F
Venteado	Si	-	T _{WF}	230.000	°F
Fluido motriz	Petróleo	-	P _R	1255.000	psi
Qs	300.000	bl/día	P _{WF}	472.000	psi
Instalación	Casing	-	PB	1170.000	psi

CUADRO 3.39 DATOS DEL POZO ATACAPI-8

ELABORACIÓN: Andrés Merlo López

CUADRO 3.40 RESULTADOS POR FABRICANTE DE LAS BOMBAS JET SELECCIONADAS PARA EL POZO ATACAPI-8

FABRICANTE		NATIONAL		KOBE		
BOMBA	10-X	10-A	9-A	10-A-	10-A	9-A
R	0.483	0.380	0.380	0.517	0.400	0.400
P _T , psi	3057.445	3340.476	3669.127	2855.192	3093.962	3417.870
Q _N , bl/día	2199.494	2249.567	1819.346	2446.130	2494.879	1987.239
HP (90%), HP	141.222	157.807	140.184	146.668	162.100	142.635
Q _{sc} , bl/día	406.062	620.619	485.856	397.196	636.578	492.949
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000
P _s , psi	531.000	531.000	531.000	531.000	531.000	531.000
P _D , psi	3521.600	3522.700	3513.700	3526.800	3527.800	3517.200

CUADRO 3.40 CONTINUACIÓN

FABRICANTE		GUIBERSON			FPP		
BOMBA	D-7	D-6	D-5	8-B	9-A	8-A	
R	0.330	0.390	0.460	0.328	0.410	0.410	
P _T , psi	3925.382	3533.658	3426.437	3946.110	3140.556	3470.481	
Q _N , bl/día	1963.855	1908.334	1892.867	1963.434	2306.622	1896.030	
HP (90%), HP	161.887	141.612	136.202	162.707	152.126	138.183	
Q _{sc} , bl/día	627.712	487.629	359.959	642.961	564.586	451.633	
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000	
P _s , psi	531.000	531.000	531.000	531.000	531.000	531.000	
P _D , psi	3516.700	3515.500	3515.200	3516.700	3523.900	3515.300	
FABRICANTE		OHI		CLAW			
BOMBA	10-A	9-A	8-A	10-I	10-H	9-H	
R	0.400	0.400	0.400	0.390	0.470	0.390	
P _T , psi	3102.575	3434.819	3909.878	3551.663	3464.914	3853.413	
Q _N , bl/día	2476.001	1968.550	1597.476	1889.443	1877.097	1635.006	
HP _(90%) , HP	161.322	141.994	131.165	140.924	136.584	132.308	
Q _{SC} , bl/día	638.351	496.495	383.010	482.309	356.412	404.289	
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000	
P _s , psi	531.000	531.000	531.000	531.000	531.000	531.000	
P _D , psi	3527.400	3516.800	3508.800	3515.100	3514.900	3509.600	

ELABORACIÓN: Andrés Merlo López

Del cuadro anterior se puede determinar que la bomba que produce la producción deseada a menor potencia es la bomba 9-H del fabricante Claw.

Una vez seleccionada la bomba, se realiza dos nuevos análisis utilizando el procedimiento 2 (P_T constante), con el fin de generar la curva de Outflow para el análisis nodal del sistema. En el cuadro 3.41 muestra los parámetros de tasa de producción deseada para cada análisis junto con los resultados finales de la bomba Claw 9-H.

CUADRO 3.41 RESULTADOS FINALES DE LA BOMBA SELECCIONADA CLAW 9-H PARA EL POZO ATACAPI-8

Parámetros	Análisis 1	Análisis 2
Tasa de producción deseada (Q _S), bl/día	250	400
Presión de succión a la tasa deseada (P _s), psi	531	531

CUADRO 3.41 CONTINUACIÓN

Bomba Claw	R	P⊤ psi	Q _N bl/día	HP (90%)	Q _{SC} bl/día	Q _S bl/día	P _s psi	P _D psi	
	Análisis 1								
9-H	0.39	3700	1640	127	299	250	334	3517	
	Análisis 2								
9-H	0.39	3700	1512	177	734	400	1388	3485	

ELABORACIÓN: Andrés Merlo López

En la figura 3.7 se presenta el análisis nodal del pozo Atacapi-8, con los nuevos valores de la presión de succión P_S a la tasa deseada Q_S , el cual muestra el comportamiento que tendrá la bomba Claw 9-H.

FIGURA 3.7 ANÁLISIS NODAL DEL POZO ATACAPI-8

Para el pozo Atacapi-8, se determinó que la mejor opción de rediseño es implementar una bomba jet 9-H del fabricante Claw, con la cual se obtendrá una producción de 286 bl/día, con una presión superficial de 3700 psi, la potencia de la bomba triplex considerando una eficiencia del 90% es de 125 HP. La presión de succión es de 598 psi y a presión de descarga de la bomba es de 3511 psi. La

ELABORACIÓN: Andrés Merlo López

tasa de producción a la cual inicia la cavitación es de 330 bl/día a una presión de succión de 415 psi.

3.3.3 ANÁLISIS DEL POZO ATACAPI-16

En el cuadro 3.42 se detalla la información de campo y en el cuadro 3.43 se encuentra las bombas candidatas para el pozo Atacapi-16, de la cual se selecciona la bomba adecuada.

Las bombas candidatas que cumplan con un valor de A_{SM} superior al calculado, se encuentran detalladas en el anexo 3.

Datos	Valor	Unidad	Datos	Valor	Unidad
L	9090.000	pie	Υw	1.044	-
D	9090.000	pie	Go	0.395	psi/pie
D _{iTP}	2.992	pie	Gw	0.452	psi/pie
D _{oTP}	3.500	pg	μ₀	2.787	ср
D _{iTR}	6.276	pg	μ _w	0.407	ср
P _{WH}	110.000	psi	GOR	551.000	pie ³ /bl
¥g	0.808	-	Fw	0.078	
Petróleo	23.800	°API	Т _{WH}	100.000	°F
Venteado	Si	-	T _{WF}	230.000	°F
Fluido motriz	Petróleo	-	P _R	2531.000	psi
Q _S	300.000	bl/día	P _{WF}	736.000	psi
Instalación	Casing	-	P _B	1308.000	psi

CUADRO 3.42 DATOS DEL POZO ATACAPI-16

ELABORACIÓN: Andrés Merlo López

CUADRO 3.43 RESULTADOS POR FABRICANTE DE LAS BOMBAS JET SELECCIONADAS PARA EL POZO ATACAPI-16

FABRICANTE		NATIONAL		KOBE			
BOMBA	6-B	5-B 7-A		6-B	5-B	7-A	
R	0.299	0.299	0.380	0.310	0.310	0.400	
P _T , psi	2822.443	3296.299	2504.311	2720.102	3216.062	2397.231	
Q _N , bl/día	740.771	613.836	909.649	777.948	637.648	968.268	
HP _(90%) , HP	43.906	42.491	47.839	44.438	43.065	48.744	
Q _{sc} , bl/día	539.353	420.127	476.901	545.030	420.127	474.062	

CUADRO 3.43 CONTINUACIÓN

FABRICANTE		NATIONAL	-		KOBE				
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000			
P _s , psi	1634.000	1634.000	1634.000	1634.000	1634.000	1634.000			
P _D , psi	3138.400	3093.000	3191.300	3151.400	3104.200	3207.000			
FABRICANTE		GUIBERSO	N		FPP				
BOMBA	C-4	B-4	A-2	5-B	4-B	3-B			
R	0.390	0.300	0.290	0.328	0.328	0.328			
P _T , psi	2207.347	2619.222	3560.574	2631.832	3059.389	3612.387			
Q _N , bl/día	1048.925	849.880	540.702	810.810	678.451	571.855			
HP _(90%) , HP	48.622	46.747	40.429	44.812	43.589	43.381			
Q _{sc} , bl/día	542.191	621.675	380.385	526.862	421.547	337.237			
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000			
P _s , psi	1634.000	1634.000	1634.000	1634.000	1634.000	1634.000			
P _D , psi	3228.100	3176.400	3018.800	3162.100	3122.900	3027.500			
FABRICANTE		OHI			CLAW				
BOMBA	6-B	5-B	4-B	6-G	5-F	4-E			
R	0.310	0.310	0.310	0.300	0.310	0.290			
P _T , psi	2720.102	3216.062	3970.964	2630.028	2973.535	3606.024			
Q _N , bl/día	777.948	637.648	529.924	841.945	687.461	533.061			
HP (90%), HP	44.438	43.065	44.191	46.501	42.928	40.367			
Q _{sc} , bl/día	545.030	422.966	326.450	615.997	468.385	377.547			
Q _s , bl/día	300.000	300.000	300.000	300.000	300.000	300.000			
P _s , psi	1634.000	1634.000	1634.000	1634.000	1634.000	1634.000			
P _D , psi	3151.400	3104.200	3012.300	3173.600	3119.100	3014.200			

ELABORACIÓN: Andrés Merlo López

Del cuadro anterior se puede determinar que la bomba que produce la producción deseada a menor potencia es la bomba 4-E del fabricante Claw.

Una vez seleccionada la bomba, se realiza dos nuevos análisis utilizando el procedimiento 2 (P_T constante), con el fin de generar la curva de Outflow para el análisis nodal del sistema. En el cuadro 3.44 muestra los parámetros de tasa de producción deseada para cada análisis junto con los resultados finales de la bomba Claw 4-E.

CUADRO 3.44 RESULTADOS FINALES DE LA BOMBA SELECCIONADA CLAW 4-E PARA EL POZO ATACAPI-16

Parámetros	Análisis 1	Análisis 2
Tasa de producción deseada (Q _S), bl/día	200	370
Presión de succión a la tasa deseada (P _s), psi	1634	1634

CUADRO 3.44 CONTINUACIÓN

Bomba Claw	R	P⊤ psi	Q _N bl/día	HP (90%)	Q _{sc} bl/día	Q _S bl/día	P _s psi	P _D psi	
Análisis 1									
4-E	0.29	3700	558	43	306	200	1205	3227	
	Análisis 2								
4-E	0.29	3700	525	41	417	370	1895	2885	

ELABORACIÓN: Andrés Merlo López

En la figura 3.8 se presenta el análisis nodal del pozo Atacapi-16, con los nuevos valores de la presión de succión P_S a la tasa deseada Q_S , el cual muestra el comportamiento que tendrá la bomba Claw 4-E.

FIGURA 3.8 ANÁLISIS NODAL DEL POZO ATACAPI-16

ELABORACIÓN: Andrés Merlo López

Para el pozo Atacapi-16, se determinó que la mejor opción de rediseño es implementar una bomba jet 4-E del fabricante Claw, con la cual se obtendrá una producción de 303 bl/día, con una presión superficial de 3700 psi, la potencia de la bomba triplex considerando una eficiencia del 90% es de 42 HP. La presión de succión es de 1610 psi y a presión de descarga de la bomba es de 3014 psi. La tasa de producción a la cual inicia la cavitación es de 348 bl/día a una presión de succión de 1490 psi.

3.3.4 ANÁLISIS DEL POZO SHUSHUQUI-10

En el cuadro 3.45 se detalla la información de campo y en el cuadro 3.46 se encuentra las bombas candidatas para el pozo Shushuqui-10, de la cual se selecciona la bomba adecuada.

Las bombas candidatas que cumplan con un valor de A_{SM} superior al calculado, se encuentran detalladas en el anexo 3.

Datos	Valor	Unidad	Datos	Valor	Unidad
L	8261.000	pie	Υw	1.028	-
D	8261.000	pie	Go	0.388	psi/pie
D _{iTP}	2.992	pie	Gw	0.445	psi/pie
D _{oTP}	3.500	pg	μ _o	1.547	ср
D _{iTR}	6.276	pg	μ _w	0.398	ср
P _{WH}	85.000	psi	GOR	235.000	pie ³ /bl
γ _g	0.818	-	Fw	0.908	
Petróleo	26.500	°API	Т _{WH}	110.000	°F
Venteado	Si	-	T _{WF}	226.000	°F
Fluido motriz	Petróleo	-	P _R	2746.000	psi
Q _S	1600.000	bl/día	P _{WF}	1599.000	psi
Instalación	Casing	-	P _B	1085.000	psi

CUADRO 3.45 DATOS DEL POZO SHUSHUQUI-10

ELABORACIÓN: Andrés Merlo López

CUADRO 3.46 RESULTADOS POR FABRICANTE DE LAS BOMBAS JET SELECCIONADAS PARA EL POZO SHUSHUQUI-10

FABRICANTE		NATIONAL			KOBE		
BOMBA	13-A	12-A	13-X	12-B	13-A	12-A	
R	0.380	0.380	0.483	0.310	0.400	0.400	
P _T , psi	3343.152	3858.144	3588.051	3690.742	3055.184	3518.588	
Q _N , bl/día	4146.663	3430.081	4244.167	3895.732	4698.757	3832.689	
HP _(90%) , HP	291.122	277.909	319.794	301.941	301.467	283.199	
Q _{sc} , bl/día	2791.663	2192.894	1823.524	3468.194	3013.286	2332.866	
Q _s , bl/día	1600.000	1600.000	1600.000	1600.000	1600.000	1600.000	
P _s , psi	1460.000	1460.000	1460.000	1460.000	1460.000	1460.000	
P _D , psi	3441.492	3451.417	3440.522	3444.375	3436.999	3445.194	
FABRICANTE	C	GUIBERSON		FPP			
BOMBA	G-12	G-11	G-10	12-B	11-B	12-A	
R	0.310	0.380	0.470	0.328	0.328	0.410	
P _T , psi	3535.744	3279.828	3469.111	3504.301	3859.326	3366.204	

CUADRO 3.46 CONTINUACIÓN

FABRICANTE		GUIBERSON			FPP			
Q _N , bl/día	4327.245	4219.621	4299.471	4122.403	3421.291	4066.308		
HP (90%), HP	321.301	290.633	313.222	303.369	277.282	287.449		
Q _{sc} , bl/día	3888.110	2888.866	1982.936	3441.755	2753.560	2418.016		
Q _s , bl/día	1600.000	1600.000	1600.000 1600.000 1600.000 16		1600.000	1600.000		
P _s , psi	1460.000	1460.000	1460.000	1460.000	1460.000	1460.000		
P _D , psi	3439.759	3440.759	3440.008	3441.745	441.745 3451.573 3442			
FABRICANTE		OHI		0.000 1600.000 1800.000 0.000 1460.000 1460.000 1.745 3451.573 3442.352 CLAW 0.310 0.400 0.470 0.795 3277.097 3481.131 0.628				
BOMBA	12-A	13-A-	12-B	13-0	13-N	13-M		
R	0.400	0.517	0.310	0.310 0.400		0.470		
P _T , psi	3541.852	3410.945	3704.971	971 3540.795 3277.0		3481.131		
Q _N , bl/día	3803.540	4826.566	3862.579	4310.628	4200.141	4285.860		
HP _(90%) , HP	282.903	345.727	300.526	26 320.524 289.05		313.313		
Q _{sc} , bl/día	2352.307	1897.398	0.517 0.510 0.310 0.310 0.945 3704.971 3540.795 3277.0 0.566 3862.579 4310.628 4200.1 0.727 300.526 320.524 289.0 7.398 3468.194 3868.670 2601.1 0.000 1600.000 1600.000 1600.000		2601.146	1971.272		
Q _s , bl/día	1600.000	1600.000	300.526 320.524 289.05 3468.194 3868.670 2601.14 1600.000 1600.000 1600.000		1600.000	1600.000		
P _s , psi	1460.000	1460.000	1460.000	1460.000	1460.000	1460.000		
P _D , psi	3445.586	3436.278	3444.801	3439.907	3440.950	3440.132		

ELABORACIÓN: Andrés Merlo López

Del cuadro anterior se puede determinar que la bomba que produce la producción deseada a menor potencia es la bomba 11-B del fabricante Fluid Packed Pump.

Una vez seleccionada la bomba, se realiza dos nuevos análisis utilizando el procedimiento 2 (P_T constante), con el fin de generar la curva de Outflow para el análisis nodal del sistema. En el cuadro 3.47 muestra los parámetros de tasa de producción deseada para cada análisis junto con los resultados finales de la bomba Fluid Packed Pump 11-B.

CUADRO 3.47 RESULTADOS FINALES DE LA BOMBA SELECCIONADA FLUID PACKED PUMP 11-B PARA EL POZO SHUSHUQUI-10

Parámetros	Análisis 1	Análisis 2
Tasa de producción deseada (Q _S), bl/día	1000	2000
Presión de succión a la tasa deseada (P _s), psi	1460	1460

Bomba FPP	R	P⊤ psi	Q _N bl/día	HP (90%)	Q _{SC} bl/día	Q _S bl/día	P _s psi	P _D psi	
	Análisis 1								
11-B	0.328	3800	3598	287	2033	1000	809	3404	

CUADRO 3.47 CONTINUACIÓN

	Análisis 2									
ĺ	11-B 0.328 3800 3249 259 3193 2000 1951 3480									
⊏	LARORACIÓN: Andrés Morio Lénoz									

ELABORACION: Andrés Merlo López

En la figura 3.9 se presenta el análisis nodal del pozo Shushuqui-10, con los nuevos valores de la presión de succión P_S a la tasa deseada Q_S, el cual muestra el comportamiento que tendrá la bomba Fluid Packed Pump 11-B.

FIGURA 3.9 ANÁLISIS NODAL DEL POZO SHUSHUQUI-10

ELABORACIÓN: Andrés Merlo López

Para el pozo Shushuqui-10, se determinó que la mejor opción de rediseño es implementar una bomba jet 11-B del fabricante Fluid Packed Pump, con la cual se obtendrá una producción de 1616 bl/día, con una presión superficial de 3800 psi, la potencia de la bomba triplex considerando una eficiencia del 90% es de 272 HP. La presión de succión es de 1522 psi y a presión de descarga de la bomba es de 3453 psi. La tasa de producción a la cual inicia la cavitación es de 2244 bl/día a una presión de succión de 1030 psi.

A continuación en el cuadro 3.48 se muestra un resumen de los pozos analizados mediante el método de Petrie-Smart-Wilson.

POZO	ATACAPI-7	ATACAPI-8	ATACAPI-16	SHUSHUQUI-10
Fabricante	NATIONAL	CLAW	CLAW	FLUID PACKED PUMP
BOMBA	9-A	9-H	4-E	11-B
A _N (pg ²)	0.0167	0.0148	0.0054	0.0345
A _T (pg ²)	0.0441	0.0376	0.0187	0.1053
R	0.3800	0.3900	0.2900	0.3280
P _⊤ (psi)	3500.0000	3700.0000	3700.0000	3800.0000
Q _N (bl/día)	1450.0000	1609.0000	538.0000	3404.0000
Q _s (bl/día)	293.0000	286.0000	303.0000	1616.0000
P _s (psi)	866.0000	598.0000	1610.0000	1522.0000
HP _{@90%} (HP)	129.0000	125.0000	42.0000	272.0000
Q _{sc} (bl/día)	351.0000	330.0000	348.0000	2244.0000
P _{sc} (psi)	590.0000	415.0000	1490.0000	1030.0000

CUADRO 3.48 RESUMEN DE RESULTADOS MÉTODO PETRIE-SMART-WILSON

ELABORACIÓN: Andrés Merlo López

CAPÍTULO 4

ANÁLISIS DE RESULTADOS

4.1 ANÁLISIS TÉCNICO

Para el análisis técnico de los resultados se realiza la comparación entre la situación actual de los pozos seleccionados y la situación determinada mediante los diferentes métodos empleados, con la finalidad de concluir la factibilidad de la realización o no de las diferentes alternativas propuestas. A continuación se presenta el análisis técnico de las diferentes alternativas de optimización.

4.1.1 ANÁLISIS TÉCNICO DE LA APLICACIÓN DEL MÉTODO DESARROLLADO POR EDDIE E. SMART

En el cuadro 4.1 se presenta detallada la producción actual de cada pozo produciendo mediante el bombeo electrosumergible y la producción que se espera obtener al implementar el bombeo hidráulico tipo jet, usando los algoritmos propuestos por Eddie E. Smart. Además se presenta el porcentaje de incremento de la producción, así como, el de petróleo producido.

CUADRO 4.1 RESUMEN DE LA SITUACIÓN ACTUAL E IMPLEMENTACIÓN DEL BOMBEO HIDRÁULICO TIPO JET EN POZOS CON BOMBEO ELECTROSUMERGIBLE POR EL MÉTODO DE EDDIE E. SMART

Pozo	Proc b	lucción I/día		Fluido motriz			
1 020	Actual	Rediseño	Actual	Implementación	ΔQ	%	requerido (bl/día)
ATCB-011	854	1969	128	295	167	130.56	2683
ATCC-025	639	882	32	44	12	38.03	2276
PACAYACU-001	640	741	179	207	28	15.91	2574
PICHINCHA-02	357	417	203	238	34	16.81	1638
Total	2490	4009	543	785	242	44.62	9171

ELABORACIÓN: Andrés Merlo López

En la figura 4.1 se aprecia la cantidad de fluido producido por día por cada uno de los pozos en conjunto con la producción optimizada al implementar el método de Smart. El incremento en la cantidad de barriles de petróleo por día se encuentra en un rango de 12 a 167 bl/día. El pozo que presenta el menor incremento es el Atacapi-25, pero en términos económicos representa un aporte significativo como se muestra más adelante.

FIGURA 4.1 FLUIDO PRODUCIDO POR POZO MÉTODO SMART

En la figura 4.2 se aprecia la cantidad de petróleo producido por día por cada uno de los pozos en conjunto con la producción optimizada al implementar el método de Smart. Esta cantidad fue determinada al multiplicar el fluido producido obtenido por la optimización por el corte de petróleo F_O.

FIGURA 4.2 PETRÓLEO PRODUCIDO POR POZO MÉTODO SMART

ELABORACIÓN: Andrés Merlo López

ELABORACIÓN: Andrés Merlo López

En la figura 4.3 muestra la cantidad de barriles por día que se requiere inyectar para poder producir las diversas tasas de producción de petróleo propuestas. Los pozos analizados por el método de Smart se encuentran actualmente produciendo mediante bombeo electrosumergible, cuyos costos de mantenimiento o cambio son elevados en comparación a los costos que significaría un cambio a sistema de bombeo hidráulico tipo jet.

FIGURA 4.3 FLUIDO MOTRIZ INYECTADO POR POZO MÉTODO SMART

ELABORACIÓN: Andrés Merlo López

Los valores actuales de fluido motriz son cero debido a que los pozos se encuentran produciendo con bombeo electrosumergible.

La figura 4.4 muestra la producción total de petróleo de los pozos analizados, es decir, 543 bl/día, esta es la producción que se encuentra actualmente con el sistema de bombeo electrosumergible, mientras que la producción que se alcanzaría con la implementación del bombeo hidráulico tipo jet sería de 785 bl/día, es decir, un incremento del 44.62% en la producción actual de petróleo.

FIGURA 4.4 PETRÓLEO TOTAL PRODUCIDO MÉTODO SMART

ELABORACIÓN: Andrés Merlo López

4.1.2 ANÁLISIS TÉCNICO DE LA APLICACIÓN DEL MÉTODO DESARROLLADO POR HAL PETRIE

En el cuadro 4.2 se presenta detallada la producción de fluido, la producción de petróleo y el fluido motriz a las condiciones actuales de cada pozo, comparando con los resultados que se esperaría obtener al implementar la optimización.

CUADRO 4.2 RESUMEN DE LA SITUACIÓN ACTUAL Y REDISEÑO DE POZOS ANALIZADOS EN EL MÉTODO DE HAL PETRIE

Pozo	Producción (bl/día)		Petróleo Producido (bl/día)				Fluido Motriz (bl/día)			
Actual Rediseño			Actual	Rediseño	ΔQ	%	Actual	Rediseño	ΔQ	%
SHH-12	390	492	167	211	44	26.24	1495	1537	42	2.81
SHH-13	456	571	320	401	81	25.27	3100	3260	160	5.16
SHH-15	166	240	68	99	30	44.50	1860	1904	44	2.37
SHH-20	1,020	1121	87	95	8	9.26	1580	1661	81	5.13
SHHA-22	1,129	1257	245	273	28	11.28	2915	3082	167	5.73
Total	3161	3681	888	1078	191	21.50	10950	11444	494	4.51

ELABORACIÓN: Andrés Merlo López

Actualmente los pozos seleccionados para el desarrollo del método de Petrie se encuentran produciendo un total de 3161 bl/día de fluido con el sistema de bombeo hidráulico tipo jet. La producción de petróleo a las condiciones actuales es de 888 bl/día, con un volumen de fluido motriz de 10950 bl/día. La propuesta de optimización obtenida propone un aumento de la producción hasta 3681 bl/día de producción de fluido. La tasa de petróleo producido se incrementa al valor de 1078 bl/día, con un caudal de fluido motriz de 11444 bl/día, equivalente a un aumento en la producción de petróleo de 191 bl/día, es decir, un 21.5% de barriles de su producción actual, para esto, la tasa de fluido motriz que se debe inyectar se incrementa en un 4.51%, es decir, se necesita 494 bl/día adicionales.

Las diferentes propuestas de optimización de los pozos corresponden en el caso de Shushuqui-13 en una disminución de presión superficial y un aumento de fluido motriz, para los pozos Shushqui-12 y Shushuqui-15 únicamente el incremento de fluido motriz, y por último, los pozos Shushuqui-20 y Shushuqui-22 su incremento en su producción se debe al aumento tanto en fluido motriz como en la presión superficial.

La figura 4.5 muestra la cantidad de fluido producido por día por cada uno de los pozos en conjunto con la producción optimizada.

FIGURA 4.5 ANÁLISIS DE FLUIDO PRODUCIDO MÉTODO PETRIE

ELABORACIÓN: Andrés Merlo López

En la figura 4.6 se aprecia el incremento de la producción de petróleo en cada uno de los pozos analizados. Dicha ganancia obtenida representa un incremento económico de la producción del campo.

FIGURA 4.6 ANÁLISIS DE PETRÓLEO PRODUCIDO MÉTODO PETRIE

ELABORACIÓN: Andrés Merlo López

En la figura 4.7 muestra el aumento de fluido motriz que se requiere para producir las tasas de producción de petróleo en el rediseño en comparación con sus valores actuales de funcionamiento.

FIGURA 4.7 ANÁLISIS DE FLUIDO MOTRIZ MÉTODO PETRIE

ELABORACIÓN: Andrés Merlo López

Las figuras 4.8 y 4.9 muestran la producción total de petróleo producido y la del fluido motriz total inyectado a los pozos, logrando una ganancia de 191 bl/día de petróleo y un aumento en el fluido motriz inyectado de 494 bl/día.

FIGURA 4.8 ANÁLISIS DE PETRÓLEO TOTAL PRODUCIDO MÉTODO PETRIE

ELABORACIÓN: Andrés Merlo López

ELABORACIÓN: Andrés Merlo López

4.1.3 ANÁLISIS TÉCNICO DE LA APLICACIÓN DEL MÉTODO DESARROLLADO POR PETRIE-SMART-WILSON

En el cuadro 4.3 se presenta detallada la producción de fluido, la producción de petróleo y el fluido motriz a las condiciones actuales de cada pozo, comparando con los resultados que se esperaría obtener al implementar la optimización propuesta por el método de Petrie-Smart-Wilson.

CUADRO 4.3 RESUMEN DE LA SITUACIÓN ACTUAL Y REDISEÑO DE POZOS ANALIZADOS EN EL MÉTODO DE PETRIE-SMART-WILSON

Pozo	Producción (bl/día)		Petróleo Producido (bl/día)				Fluido Motriz (bl/día)			
	Actual Rediseño			Rediseño	ΔQ	%	Actual	Rediseño	ΔQ	%
ATCA-07	241	293	224	272	48	21.59	1870	1750	-120	-6.42
ATCB-08	218	286	137	180	42	30.78	2600	1609	-991	-38.12
ATCF-16	189	303	174	279	105	60.26	1300	538	-762	-58.62
SHH-10	1,427	1616	132	149	17	12.75	3060	3404	344	11.24
Total	2075	2498	667	880	212	31.84	8830	7301	-1529	-17.32

ELABORACIÓN: Andrés Merlo López

La figura 4.10 muestra la cantidad de fluido producido por pozo que actualmente es 2075 bl/día, mientras que la producción que se esperaría con la optimización es de 2498 bl/día.

FIGURA 4.10 ANÁLISIS DE FLUIDO PRODUCIDO MÉTODO PETRIE-SMART-WILSON

ELABORACIÓN: Andrés Merlo López

En la figura 4.11 se aprecia el incremento de la producción de petróleo en cada uno de los pozos analizados por el método de Petrie-Smart-Wilson. Dicha ganancia obtenida representa un incremento económico de la producción del campo. FIGURA 4.11 ANÁLISIS DE PETRÓLEO PRODUCIDO MÉTODO PETRIE-SMART-WILSON

ELABORACIÓN: Andrés Merlo López

En la figura 4.12 muestra el decremento de fluido motriz en todos los pozos a excepción del Shushuqui-10 que presenta un incremento de 344 bl/día.

FIGURA 4.12 ANÁLISIS DE FLUIDO MOTRIZ MÉTODO PETRIE-SMART-WILSON

Las figuras 4.13 y 4.14 muestran la producción total de petróleo producido y la del fluido motriz total inyectado a los pozos, logrando una ganancia de 212 bl/día de petróleo y una disminución del fluido motriz inyectado de 1529 bl/día.

FIGURA 4.13 ANÁLISIS DE PETRÓLEO TOTAL PRODUCIDO MÉTODO PETRIE-SMART-WILSON

ELABORACIÓN: Andrés Merlo López

FIGURA 4.14 ANÁLISIS DE FLUIDO MOTRIZ INYECTADO MÉTODO PETRIE-SMART-WILSON

ELABORACIÓN: Andrés Merlo López

Mediante la implementación de los métodos de Eddie E. Smart, Hal Petrie y Petrie-Smart-Wilson se obtuvo un incremento de 242 bl/día, 191 bl/día y 212 bl/día, obteniendo un incremento total de 645 bl/día de petróleo que se obtendría al implementar las optimizaciones.

4.2 ANÁLISIS ECONÓMICO

El análisis económico de un proyecto constituye una parte indispensable al momento de evaluar la factibilidad o no de la ejecución del mismo, teniendo en cuenta que la industria petrolera se caracteriza por el uso intensivo de capital y manejo del riesgo.

Para la determinar la viabilidad del proyecto se usan los siguientes indicadores:

- Valor Actual Neto (VAN)
- Tasa Interna de Retorno (TIR)
- Relación Beneficio-Costo (B/C)
- Periodo de Recuperación de la Inversión (PRI)

4.2.1 INDICADORES FINANCIEROS

4.2.1.1 Valor Actual Neto (VAN)

El valor actual neto es igual a la suma algebraica de los valores actualizados del flujo neto de caja.

$$VAN = \sum_{i=0}^{n} \frac{FNC_{i}}{(1+r)^{i}}$$
(4.1)

Donde:

- FNC_i: flujo de caja neto del año i.
- r: tasa de actualización
- n: número de periodos de la inversión.
- i: periodo

Para determinar la viabilidad del proyecto se considera los siguientes criterios:

- VAN>0: es un proyecto rentable, obteniendo ingresos mayores a lo esperado.
- VAN = 0: es un proyecto irrelevante, el beneficio es mínimo.
- VAN < 0: no es un proyecto rentable, no se debe ejecutarlo.

La tasa interna de retorno es el porcentaje o rendimiento económico que produce un VAN cero, y se evalúa en base a un valor fijado.

$$VAN = \sum_{i=0}^{n} \frac{FNC_{i}}{(1 + TIR)^{i}} = 0$$
(4.2)

Donde:

- TIR: tasa interna de retorno.
- FNC_i: flujo de caja neto del año i.
- n: número de años de la inversión.
- i: periodo

Para determinar la viabilidad del proyecto se considera los siguientes criterios:

- TIR > 0: es un proyecto rentable.
- TIR = 0: es un proyecto irrelevante.
- TIR < 0: no es un proyecto rentable.

4.2.1.3 Relación Beneficio Costo (B/C)

Es un complemento del valor actual neto, está representada por el cociente de la división entre la suma total de los ingresos y egresos.

$$B/C = \frac{\sum V_{pi}}{\sum V_{pe}}$$
(4.3)

Donde:

- B/C: relación beneficio-costo.
- V_{pi}: valor presente de los ingresos.
- V_{pe}: valor presente de los egresos.
- i: periodo.

Para determinar la viabilidad del proyecto se considera los siguientes criterios:

- B/C > 1: es un proyecto rentable.
- B/C = 1: es un proyecto irrelevante.
- B/C < 1: no es un proyecto rentable.

4.2.1.4 Periodo de Recuperación de la Inversión (PRI)

Es el periodo de tiempo necesario para recuperar la inversión inicial del proyecto, es calculado mediante los flujos netos de caja de acuerdo con la siguiente ecuación.

$$SFNC = \sum_{i=0}^{PRI} FNC_i$$
(4.4)

Donde:

- PRI = periodo de recuperación de la inversión.
- SFNC = Suma acumulada de los flujos netos de caja
- FNC_i= Flujo neto de caja del año i
- i: periodo

El criterio de evaluación de este indicador es relativo entre dos o más proyectos que se tengan, resultando la mejor alternativa, la que presente menor PRI.

4.2.2 ESCENARIOS DE APLICACIÓN DEL PROYECTO

Los criterios financieros mencionados anteriormente, en conjunto, determinan la viabilidad y rentabilidad del proyecto, pero estos dependen de la inversión y del precio del crudo que se asumirán en la aplicación del proyecto

Para el respectivo análisis se estimará 3 escenarios del valor de venta del barril de petróleo; un escenario realista tomando el precio del barril de crudo actual, un escenario pesimista y un escenario optimista, en el cuadro 4.4 se muestra los valores correspondientes a dichos escenarios.

CUADRO 4.4 PRECIOS ESTIMADOS DEL BARRIL DE CRUDO

ESCENARIO	PRECIO (USD/bl)
PESIMISTA	30
REALISTA - ACTUAL	40
OPTIMISTA	50

4.2.3 INGRESOS Y EGRESOS PREVISTOS

Los ingresos que se manejan en el presente proyecto son el resultado de multiplicar el número de barriles de petróleo producido por el valor del precio del barril manejado en los tres diferentes escenarios. Para esto se asume una producción ininterrumpida de 1 año, compuesto de 12 meses de 30 días cada uno. También se toma en cuenta el volumen de petróleo recuperado como fluido motriz que se determinó en los pozos que se usaron para el estudio del método de Petrie-Smart-Wilson.

Los egresos corresponden, en un inicio, a la inversión realizada inicialmente en el proyecto, y después, solo se considera el valor de producción del barril de petróleo, determinado mediante la multiplicación el costo económico de extracción de un barril de crudo con el número de barriles que se produzca.

En los cuadros 4.5, 4.6 y 4.7 se listan todos los precios de las operaciones y servicios que se requieren para la aplicación de los tres diferentes métodos de optimización aplicados, es decir, los gastos operativos estimados para:

- Cambio de sistema de levantamiento de bombeo electrosumergible a bombeo hidráulico, (Método de Eddie E. Smart).
- Modificar los parámetros operativos de la bomba jet actual, (Método de Hal Petrie).
- Cambio de bomba jet en pozos que producen con bombeo hidráulico, (Método de Petrie-Smart-Wilson).

La tasa de actualización bancaria anual estimada es de 12% la cual es la empleada por Petroamazonas EP. Además el costo de producción del barril de petróleo estimada al mes de octubre del presente año, para el Activo Libertador es de \$6.77. Estos valores son definidos en el departamento financiero de Petroamazonas EP.

CUADRO 4.5 VALORES ESTIMADOS DE CAMBIO DE BOMBA JET

Descripción del servicio	Costo (USD)
Trabajo de la torre	45000
Equipo de superficie (líneas de flujo, cabezal, bombas, válvulas)	120000
Equipo de fondo	45000
Lubricador	200
Supervisión y transporte	1000
Operaciones de completación	90000
Contingencias (± 30%)	24000
TOTAL	325200

FUENTE: Aguirre y Mendoza, 2016; Petroamazonas EP, 2016 ELABORACIÓN: Andrés Merlo López

CUADRO 4.6 VALORES ESTIMADOS DE GASTOS PARA MODIFICAR LOS PARÁMETROS OPERATIVOS DE LA BOMBA JET

Descripción del servicio	Costo (USD)
Movilización y supervisión	3200
Técnico de operación	300
Camión pluma	700
Reversada + bajada de bomba	16500
Lubricador	224
Kit reparación	452
Contingencias (± 25%)	5344
TOTAL	26720

FUENTE: Aguirre y Mendoza, 2016; Petroamazonas EP, 2016 ELABORACIÓN: Andrés Merlo López

CUADRO 4.7

VALORES ESTIMADOS DE GASTOS PARA EL CAMBIO DE BOMBA JET EN POZO CON BOMBEO HIDRÁULICO

Descripción del servicio	Costo (USD)
Movilización de torre y supervisión	50000
Técnico de operación	300
Camión pluma	700
Reversada + bajada de bomba	16500
Lubricador	224
Bomba jet nueva	20000
Contingencias (± 25%)	8306
TOTAL	96030

FUENTE: Hidalgo, Iván, 2017; Petroamazonas EP, 2016 ELABORACIÓN: Andrés Merlo López En el cuadro 4.5 se tiene el costo estimado de cambio de sistema de bombeo electrosumergible a hidráulico con un valor de 325,200.00 dólares, a este valor lo multiplicamos por 4, que es el número de pozos propuestos para este cambio, y tenemos un total de 1' 300,800.00 dólares. En el cuadro 4.6 se tiene el costo estimado para modificar los parámetros operativos de la bomba jet con un valor de 26,720.00 dólares, a este lo multiplicamos por 5, que es el número de pozos propuestos para este caso, y tenemos 133,600.00 dólares. Y en el cuadro 4.7 se tiene el costo estimado para cambio de bomba jet en pozos que se encuentran produciendo por bombeo hidráulico y es de 96,030.00 dólares, a este valor lo multiplicamos por 4, que es el número de pozos propuestos para este análisis, y se tiene 384,120.00 dólares. Sumando todas las inversiones de las diferentes propuestas tenemos una inversión inicial de 1' 818,520.00 dólares

4.2.4 RESULTADOS DEL ANÁLISIS ECONÓMICO

En el cuadro 4.8 se muestra los resultados obtenidos del análisis económico para el escenario pesimista de 30 dólares el barril que se planteó al inicio del capítulo.

Mes	Periodo	Producción Acumulada bl/día	Depletación bl/día	Ingresos actualizados USD	Egresos actualizados USD	Flujo de caja	Flujo caja actualizados
Enero	0	0.0	0.0	0.0	1818520.0	-1818520.0	-1818520.0
Febrero	1	81801.9	0.0	2430989.8	548593.4	1900258.1	1882396.4
Marzo	2	81043.1	758.8	2385802.2	538396.0	1882631.8	1847406.1
Abril	3	80297.7	745.4	2341637.9	528429.6	1865315.1	1813208.3
Мауо	4	79565.2	732.4	2298469.0	518687.8	1848300.6	1779781.2
Junio	5	78845.5	719.7	2256268.2	509164.5	1831581.2	1747103.6
Julio	6	78138.2	707.3	2215009.1	499853.7	1815149.8	1715155.4
Agosto	7	77442.9	695.2	2174666.2	490749.7	1798999.6	1683916.5
Septiembre	8	76759.5	683.4	2135214.8	481846.8	1783124.0	1653368.0
Octubre	9	76087.7	671.9	2096630.9	473139.7	1767516.4	1623491.2
Noviembre	10	75427.1	660.6	2058891.3	464623.1	1752170.6	1594268.2
Diciembre	11	74777.5	649.6	2021973.6	456292.0	1737080.6	1565681.6
Total		860186.3	7024.4	24415552.9	7328296.4	18163607.8	17087256.5
COSTO DE I	MPLEME	NTACIÓN			1818,5	20.00	USD
TASA INTERNA DE RETORNO					1	02.00	%
VALOR ACTUAL NETO					17087,256.48		USD
RELACIÓN E	BENEFICI	O-COSTO				3.33	

CUADRO 4.8 ANÁLISIS ECONÓMICO DEL ESCENARIO PESIMISTA

Para el escenario pesimista de 30 dólares el barril de petróleo se determinó resultados económicamente favorables. El valor actual neto de este escenario es de 17.09 millones de dólares con una tasa interna de retorno de 102%.

En cuanto a la relación beneficio-costo se determinó un valor de 3.33, es decir, que se tiene una ganancia de 3.33 dólares por cada dólar invertido. El tiempo de recuperación de la inversión para este escenario fue de aproximadamente 29 días después de haber iniciado la producción. Los resultados muestran que esta propuesta es económicamente viable a pesar del bajo costo del barril del petróleo.

En el cuadro 4.9 muestra los resultados obtenidos del análisis económico para el escenario real de 40 dólares el barril.

Mes	Periodo	Producción Acumulada bl/día	Depletación bl/día	Ingresos actualizado USD	Egresos actualizados USD Flujo de caja		Flujo caja actualizado
Enero	0	0.0	0.0	0.0	1818520.0	-1818520.0	-1818520.0
Febrero	1	81801.9	0.0	3241319.7	548593.4	2718277.1	2692726.4
Marzo	2	81043.1	758.8	3181069.5	538396.0	2693063.0	2642673.5
Abril	3	80297.7	745.4	3122183.9	528429.6	2668291.9	2593754.3
Мауо	4	79565.2	732.4	3064625.3	518687.8	2643953.1	2545937.5
Junio	5	78845.5	719.7	3008357.6	509164.5	2620036.3	2499193.0
Julio	6	78138.2	707.3	2953345.4	499853.7	2596531.6	2453491.7
Agosto	7	77442.9	695.2	2899554.9	490749.7	2573429.1	2408805.2
Septiembre	8	76759.5	683.4	2846953.0	481846.8	2550719.3	2365106.2
Octubre	9	76087.7	671.9	2795507.9	473139.7	2528393.0	2322368.2
Noviembre	10	75427.1	660.6	2745188.4	464623.1	2506441.3	2280565.3
Diciembre	11	74777.5	649.6	2695964.8	456292.0	2484855.2	2239672.8
Total		860186.3	7024.4	32554070.6	7328296.4	26765470.9	25225774.1
COSTO DE IN	IPLEMENT	ACIÓN	1818,5	520.00	USD		
TASA INTER	NA DE RET	ORNO	146.00		%		
VALOR ACTU	JAL NETO		25225,7	USD			
RELACIÓN B	ENEFICIO-	COSTO					

CUADRO 4.9 ANÁLISIS ECONÓMICO DEL ESCENARIO REAL

Para el escenario real de 40 dólares el barril de petróleo se determinó resultados económicamente favorables. El valor actual neto de este escenario es de 25.23 millones de dólares con una tasa interna de retorno de 146%.

En cuanto a la relación beneficio-costo se determinó un valor de 4.44, es decir, que se tiene una ganancia de 4.44 dólares por cada dólar invertido. El tiempo de recuperación de la inversión para este escenario fue de aproximadamente 21 días después de haber iniciado la producción.

En el cuadro 4.10 muestra los resultados obtenidos del análisis económico para el escenario optimista de 50 dólares el barril.

Mes	Periodo	Producción Acumulada bl/día	Depletación bl/día	Ingresos actualizado USD	Egresos actualizados USD	Flujo de caja	Flujo caja actualizado
Enero	0	0.0	0.0	0.0	1818520.0	-1818520.0	-1818520.0
Febrero	1	81801.9	0.0	4051649.7	548593.4	3536296.1	3503056.3
Marzo	2	81043.1	758.8	3976336.9	538396.0	3503494.3	3437940.9
Abril	3	80297.7	745.4	3902729.9	528429.6	3471268.7	3374300.2
Мауо	4	79565.2	732.4	3830781.7	518687.8	3439605.5	3312093.8
Junio	5	78845.5	719.7	3760446.9	509164.5	3408491.4	3251282.4
Julio	6	78138.2	707.3	3691681.8	499853.7	3377913.3	3191828.1
Agosto	7	77442.9	695.2	3624443.6	490749.7	3347858.5	3133694.0
Septiembre	8	76759.5	683.4	3558691.3	481846.8	3318314.6	3076844.5
Octubre	9	76087.7	671.9	3494384.8	473139.7	3289269.7	3021245.1
Noviembre	10	75427.1	660.6	3431485.6	464623.1	3260711.9	2966862.4
Diciembre	11	74777.5	649.6	3369956.0	456292.0	3232629.9	2913664.0
Total		860186.3	7024.4	40692588.2	7328296.4	35367333.9	33364291.8
COSTO DE I	MPLEME	NTACIÓN	1818,5	520.00	USD		
TASA INTER	RNA DE RI	ETORNO		191.00	%		
VALOR ACTUAL NETO					33364,2	USD	
RELACIÓN E	BENEFICI	O-COSTO					

CUADRO 4.10 ANÁLISIS ECONÓMICO DEL ESCENARIO OPTIMISTA

Para el escenario optimista de 50 dólares el barril de petróleo se determinó resultados económicamente favorables. El valor actual neto de este escenario es de 33.36 millones de dólares con una tasa interna de retorno de 191%.

En cuanto a la relación beneficio-costo se determinó un valor de 5.55, es decir, que se tiene una ganancia de 5.55 dólares por cada dólar invertido. El tiempo de recuperación de la inversión para este escenario fue de aproximadamente 16 días después de haber iniciado la producción.

Del análisis de los diferentes indicadores para el estudio económico, se concluye que el proyecto es viable para los tres diferentes escenarios propuestos.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- De la implementación del método desarrollado por Eddie E. Smart para la optimización de la producción mediante el cambio de sistema de levantamiento artificial de bombeo electrosumergible a bombeo hidráulico, la producción actual se incrementaría de 2490 a 4009 bl/día de fluido producido, en términos de producción de petróleo se obtendría un incremento de 242 bl/día, con un requerimiento de 9171 bl/día de fluido motriz.
- Se determinó viable el cambio del sistema de bombeo electrosumergible por el sistema de bombeo hidráulico en todos los pozos seleccionados para el método de Smart, y estos son: Atacapi-11, Atacapi-25, Pacayacu-1 y Pichincha-2, porque se incrementaría los bl/día de producción de petróleo.
- El pozo Atacapi-25 es el que presenta menor incremento en su producción de petróleo, con tan solo 12 bl/día, pero es el segundo con mayor incremento en la producción de fluido, y esto se debe su alto corte de agua de 95%.
- Al realizar el análisis de los pozos seleccionados para el método de Petrie, se observa un incremento de la producción significativa al aumentar el caudal de fluido motriz en un 4.51%, es decir, 494 bl/día. Con este incremento se obtiene 21.5% más en la producción de petróleo, lo que significa 191 bl/día.
- Para los pozos Shushuqui-12 y Shushuqui-15 se determinó una optimización por el método de Petrie manteniendo su presión superficial actual pero incrementando el caudal de inyección de fluido motriz.

- Del análisis de los pozos, Shushqui-20 y Shushuqui-22, se determinó una optimización de la producción al incrementar tanto la presión superficial de operación como la inyección del caudal del fluido motriz.
- Para el pozo, Shushqui-13, se determinó una optimización de la producción al disminuir la presión superficial de operación pero incrementando la inyección del caudal del fluido motriz.
- De los pozos analizados por el método de Petrie-Smart-Wilson, se observó que el bombeo hidráulico tipo jet instalado actualmente se encuentra mal dimensionado para el potencial del pozo que están produciendo, ya que con el análisis se determinó que se puede producir más cantidad de petróleo con menos cantidad de fluido motriz y con menor potencia de las bombas.
- Al realizar el análisis del método de Petrie-Smart-Wilson, se observa un incremento de la producción de petróleo de 667 a 880 bl/día, esto representa el 31.84% de optimización de la producción actual de petróleo, es decir, 212 bl/día.
- En el consumo de fluido motriz se observa una reducción con la optimización del 17.32%, es decir, se redujo 1529 bl/día, lo que significa que se tiene un mejor rendimiento de las bombas triplex en superficie, como también una reducción de la potencia.
- Para el escenario pesimista de 30 dólares el barril de petróleo se determinó un VAN de 17.09 millones de dólares, un TIR de 102%, B/C de 3.33 y con un tiempo de recuperación de la inversión de 29 días aproximados después de haber iniciado la producción.
- Para el escenario realista de 40 dólares el barril de petróleo se determinó un VAN de 25.23 millones de dólares, un TIR de 146%, B/C de 4.44 y con

un tiempo de recuperación de la inversión de 21 días aproximados después de haber iniciado la producción.

 Para el escenario optimista de 50 dólares el barril de petróleo se determinó un VAN de 33.36 millones de dólares, un TIR de 191%, B/C de 5.55 y con un tiempo de recuperación de la inversión de 16 días aproximados después de haber iniciado la producción.

6.2 RECOMENDACIONES

- Se recomienda realizar pruebas de presión en el Activo Libertador con la finalidad de contar con datos actualizados que permitan conocer la situación actual, para de esta manera, tener valores exactos para el dimensionamiento de bombas jet.
- Se recomienda la utilización de softwares especializados para determinar con exactitud la presión de descarga de la bomba jet, ya que estos programas nos ofrecen valores más exactos que los que se podrían determinar mediante el uso de gráficas.
- Se recomienda el cambio del sistema de levantamiento de bombeo electrosumergible a un sistema de bombeo hidráulico tipo jet en los pozos Atacapi-11, Atacapi-25, Pacayacu-1 y Pichincha-2 al presentar un incremento de 242 bl/día total en su producción de petróleo.
- Se recomienda incrementar el caudal de fluido motriz de los pozos Shushuqui-12 y Shushuqui-15, con la finalidad de aumentar su producción de petróleo en 44 y 30 bl/día adicionales respectivamente, pero manteniendo su presión superficial actual.
- Se recomienda el incremento de la presión superficial así como del caudal de fluido motriz de los pozos Shushuqui-20 y Shushuqui-22 para aumentar su producción de petróleo en 8 y 28 bl/día adicionales respectivamente.

 Se recomienda el cambio de las bombas jet de los pozos Atacapi-7, Atacapi-8, Atacapi-16 y Shushuqui-10, al presentar un incremento en su producción de petróleo de 212 bl/día, con menor caudal de fluido motriz y menor potencia de las bombas seleccionadas.

GLOSARIO

API.- American Petroleum Institute, formado en 1917 para organizar la industria a fin de ordenar la demanda de petróleo durante la primera guerra mundial. Es una organización sin fines de lucro, que sirve para coordinar y promover el interés de la industria petrolera en su relación con gobiernos y otros.

Cavitación.- Fenómeno que se produce cuando el fluido hidráulico disponible no es capaz de llenar todo el espacio existente. En esta situación el fluido pasa de estado líquido a gaseoso para después pasar a líquido de nuevo. Las burbujas explotan cuando quedan sometidas a la presión del sistema en la zona de impulsión de la bomba.

Depleción.- Reducción del contenido de un pozo, reservorio o campo. La depleción natural resulta si el mecanismo de empuje no es reforzado o complementado.

Bombeo electrosumergible.- Es un método de levantamiento artificial altamente eficiente para la producción de crudos livianos y medianos; sin embargo, es uno de los métodos de extracción de crudo que exige mayor requerimiento de supervisión, análisis y control, a fin de garantizar el adecuado comportamiento del sistema.

Energía potencial.- Es la capacidad que tiene un cuerpo para realizar un trabajo de acuerdo a la configuración que ostente en el sistema de cuerpos que ejercen fuerzas entre sí, es decir, es la energía que es capaz de generar un trabajo como consecuencia de la posición de un cuerpo.

Energía cinética.- Es la energía asociada a los cuerpos que se encuentran en movimiento, depende de la masa y de la velocidad del cuerpo.

Fluido motriz.- Parte esencial del bombeo hidráulico, porque es el encargado de transmitir la energía a la bomba del subsuelo.

Flujo multifásico.- Flujo simultáneo de más de una fase fluida a través de un medio poroso. La mayoría de los pozos de petróleo producen, a la larga, petróleo y gas desde la formación y, con frecuencia, producen agua. Como consecuencia de esto, el flujo multifásico es común en pozos de petróleo.

Grado API.- Clasificación para petróleo con propósitos particulares en función de su densidad.

Levantamiento artificial.- Métodos usados para levantar el petróleo a superficie a través del pozo, después que la presión del reservorio ha declinado a un punto tal que el pozo no puede producir por su energía natural.

Petróleo muerto.- Petróleo sin gas disuelto y por lo tanto desprovisto de mecanismo de empuje.

Punto de burbuja.- La temperatura y presión a la cual parte de un líquido comienza a convertirse en gas.

Reservorio.- Formación subterránea porosa y permeable que contiene una acumulación natural de petróleo o gas producible, que se encuentra confinado por rocas impermeables o por barreras de agua y que está solo y separado de otros reservorios.

Relación gas-petróleo (GOR).- Es la proporción de petróleo y gas obtenida en un pozo productor bajo condiciones de presión y temperaturas dadas.

Yacimiento.- Área de superficie bajo la cual existe uno o más reservorios que estén produciendo o que se haya probado que son capaces de producir hidrocarburos.

REFERENCIAS BIBLIOGRÁFICAS

Aguilar, H. y Cevallos A. (2014). "Desarrollo de Algoritmos para Análisis Integral de Pozos con Bombeo Electrosumergible y Bombeo Hidráulico Tipo Jet". Quito: Escuela Politécnica Nacional.

Aguirre, F. y Mendoza, P. (2016). "Análisis Técnico-Económico de métodos de optimización de bombeo hidráulico: Eddie E. Smart y Hal Petrie en un campo del Oriente Ecuatoriano". Quito: Escuela Politécnica Nacional.

Babby, P., Rivadeneira, M. y Barragán, R. (2014). La Cuenca Oriente: Geología y Petróleo. 3era edición, Quito.

Banzer, C. (1996). "Correlaciones Numéricas P.V.T". Maracaibo: Universidad del Zulia

Becerra, F. (2017). "Aplicación de los métodos de Smart y Petrie, para optimizar la producción de pozos con bombeo hidráulico del campo Lago Agrio". Quito: Escuela Politécnica Nacional.

Benavides, A y Vergara, E. (2011). "Estudio del sistema de bombeo hidráulico en el campo Shushufindi". Quito: Escuela Politécnica Nacional.

Bradley, H. (1992), "Petroleum Engineering Handbook", Chapter 9, Hydraulic Pumping, Third Printing, Society of Petroleum Engineers. TX, U.S.A.

Brown Kermit. E., (1980), "The Technology of Artificial Lift Methods", Volumen 2b: Petroleum Publishing Co.

Castro, H. & Rodríguez, D. (2017). "Desarrollo de un Simulador para el Dimensionamiento y Análisis Comparativo entre el Bombeo Hidráulico Tipo Jet y el Bombeo de Cavidades Progresivas para la Producción de Crudos Pesados". Quito: Escuela Politécnica Nacional. Collaguazo, C. y Romero, M. (2011). "Estudio del sistema de bombeo hidráulico en el campo Lago Agria para incrementar su producción". Quito: Escuela Politécnica Nacional.

Hidalgo, I. (2017). "Análisis técnico-económico del método de optimización de bombeo hidráulico: Hal Petrie, Eddie E. Smart y Phil Wilson en el activo Shushufindi". Quito: Escuela Politécnica Nacional.

Melo, V. (2014). "Levantamiento Artificial". Quito, Ecuador.

Peñarreta R. (2012). "Determinación de los patrones de flujo multifásico en tuberías horizontales y selección óptima de tuberías de producción para el campo Libertador". Quito: Universidad Central del Ecuador.

Petrie, H., Wilson, P., and Smart. E.E. Jet Pumping Oil Wells. World Oil. Noviembre, Diciembre 1983, y Enero 1984.

ANEXOS

ÍNDICE DE ANEXOS

ANEXO N°1

RELACIONES DE ÁREAS Y ÁREAS ANULARES PARA BOMBAS FLUID PACKED PUMP, OHY Y CLAW

- A-1.1 Dimensiones de toberas y gargantas de bombas
- A-1.2 Área anular garganta-tobera de Fluid Packed Pump (pg²)
- A-1.3 Área anular garganta-tobera de OHI (pg²)
- A-1.4 Área anular garganta-tobera de Claw (pg²)

ANEXO N°2

CURVAS DE COMPORTAMIENTO DE AFLUENCIA IPR (INFLOW PERFORMANCE RELATIONSHIP)

A-2.1 Data necesaria para la construcción de la curva IPR

ANEXO N°3

CUADROS DE CÁLCULOS

- A-3.1 Resultados obtenidos para el pozo Atacapi-25
- A-3.2 Geometrías óptimas por fabricante para el pozo Atacapi-25
- A-3.3 Resultados obtenidos para el pozo Pacayacu-1
- A-3.4 Geometrías óptimas por fabricante para el pozo Pacayacu-1
- A-3.5 Resultados obtenidos para el pozo Pichincha-2
- A-3.6 Geometrías óptimas por fabricante para el pozo Pichincha-2
- A-3.7 Resultados obtenidos por cada iteración para el pozo Shushuqui-13
- A-3.8 Resultados obtenidos por cada iteración para el pozo Shushuqui-15
- A-3.9 Resultados obtenidos por cada iteración para el pozo Shushuqui-20
- A-3.10 Resultados obtenidos por cada iteración para el pozo Shushuqui-22
- A-3.11 Bombas jet candidatas por fabricante para la optimización del pozo Atacapi-8
- A-3.12 Bombas jet candidatas por fabricante para la optimización del pozo Atacapi-16
- A-3.13 Bombas jet candidatas por fabricante para la optimización del pozo Shushuqui-10

ANEXO Nº1

RELACIONES DE ÁREAS Y ÁREAS ANULARES PARA BOMBAS FLUID PACKED PUMP, OHI Y CLAW

CUADRO A-1.1 DIMENSIONES DE TOBERAS Y GARGANTAS DE BOMBAS

FLUID PACKED PUMP				ОНІ				SERTECPET - CLAW			
то	BERA	GA	RGANTA	то	BERA	GAF	RGANTA	TO	BERA	GAF	RGANTA
N°	AREA	N°	AREA	N°	AREA	N°	AREA	N°	AREA	N°	AREA
1	0.00371	1	0.00905	1	0.0024	1	0.0060	1	0.0018	А	0.0046
2	0.00463	2	0.01131	2	0.0031	2	0.0077	2	0.0030	В	0.0072
3	0.00579	3	0.01767	3	0.0040	3	0.0100	3	0.0038	С	0.0104
4	0.00724	4	0.02209	4	0.0052	4	0.0129	4	0.0054	D	0.0142
5	0.00905	5	0.02761	5	0.0067	5	0.0167	5	0.0074	Е	0.0187
6	0.01131	6	0.03451	6	0.0086	6	0.0216	6	0.0094	F	0.0239
7	0.01414	7	0.04314	7	0.0111	7	0.0278	7	0.0108	G	0.0311
8	0.01767	8	0.05393	8	0.0144	8	0.0360	8	0.0122	Н	0.0376
9	0.02209	9	0.06741	9	0.0184	9	0.0464	9	0.0148	Ι	0.0447
10	0.02761	10	0.08426	10	0.0238	10	0.0598	10	0.0175	J	0.0526
11	0.03451	11	0.10533	11	0.0307	11	0.0774	11	0.0239	Κ	0.0654
12	0.04314	12	0.13166	12	0.0396	12	0.1001	12	0.0311	L	0.0796
13	0.05393	13	0.16458	13	0.0512	13	0.1288	13	0.0450	М	0.0957
14	0.06741	14	0.20572	14	0.0661	14	0.1655	14	0.0658	Ν	0.1119
15	0.08426	15	0.25715	15	0.0854	15	0.2132	15	0.0851	0	0.1445
16	0.10533	16	0.32144	16	0.1114	16	0.2753	16	0.1251	Ρ	0.1763
17	0.13166	17	0.40180	17	0.1439	17	0.3557	17	0.1552	Q	0.2154
18	0.16458	18	0.50225	18	0.1857	18	0.4596	18	0.1950	R	0.2593
19	0.20572	19	0.62782	19	0.2400	19	0.5993	19	0.2464	S	0.3127
20	0.25715	20	0.78477	20	0.3099	20	0.7667	20	0.3119	Т	0,3760
		21	0.98096	21	0.4003	21	0.9905	21	0.3850	U	0,4515
		22	1.22620	22	1.1669	22	1.2908			V	0,5426
		23	1.53275	23	1.5072	23	1.6673			W	0,6520
				24	1.9465	24	2.1538				
				25	2.514	25	2.7818				
				26	3.2471	26	3.5934				
Relació	n			Relació	n			Relaciór	ı		
Tobera	Garganta	R		Tobera	Garganta	R		Tobera	Garganta	R	
				Ν	N-1	0.51	7 A-	Ν	N-1	0.51	7 A-
Ν	Ν	0.4	10 A	N	Ν	0.40	0 A	Ν	Ν	0.40	0 A
N	N+1	0.3	28 B	N	N+1	0.31	0 B	Ν	N+1	0.31	0 B
N	N+2	0.2	62 C	N	N+2	0.24	0 C	Ν	N+2	0.24	0 C
N	N+3	0.2	10 D	N	N+3	0.18	6 D	Ν	N+3	0.18	6 D
Ν	N+4	0.1	68 E	Ν	N+4	0.14	4 E	Ν	N+4	0.14	4 E

FUENTE: "Análisis técnico-económico de métodos de optimización de bombeo hidráulico: Eddie E. Smart y Hal Petrie en un campo del oriente ecuatoriano", 2016 ELABORACIÓN: Andrés Merlo López

CUADRO A-1.2 ÁREA ANULAR GARGANTA-TOBERA DE FLUIDO PACKED PUMP (pg²)

Área anular Garganta-Tobera, A _s									
Tobera	Α	В	С	D	E				
1	0.0053	0.0076	0.0104	0.0140	0.0184				
2	0.0067	0.0095	0.013	0.0175	0.0230				
3	0.0084	0.0119	0.0163	0.0218	0.0287				
4	0.0104	0.0149	0.0204	0.0273	0.0359				
5	0.0130	0.0186	0.0255	0.0341	0.0449				
6	0.0163	0.0232	0.0318	0.0426	0.0561				
7	0.0204	0.0290	0.0398	0.0533	0.0701				
8	0.0255	0.0363	0.0497	0.0666	0.0877				
9	0.0318	0.0453	0.0622	0.0832	0.1096				
10	0.0398	0.0567	0.0777	0.1041	0.1370				
11	0.0498	0.0708	0.0972	0.1301	0.1712				
12	0.0622	0.0885	0.1214	0.1626	0.2140				
13	0.0777	0.1107	0.1518	0.2032	0.2675				
14	0.0972	0.1383	0.1897	0.2540	0.3344				
15	0.1215	0.1729	0.2372	0.3175	0.4180				
16	0.1518	0.2161	0.2965	0.3969	0.5225				
17	0.1898	0.2701	0.3706	0.4962	0.6531				
18	0.2372	0.3377	0.4632	0.6202	0.8164				
19	0.2965	0.4221	0.5791	0.7752	1.0205				
20	0.3707	0.5276	0.7238	0.9691	1.2756				

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Andrés Merlo López

CUADRO A-1.3 ÁREA ANULAR GARGANTA-TOBERA DE OHI (pg²)

	Área anular Garganta-Tobera, A _s										
Tobera	A-	А	В	С	D	Е					
1		0.0036	0.0053	0.0076	0.0105	0.0143					
2	0.0029	0.0046	0.0069	0.0098	0.0136	0.0185					
3	0.0037	0.0060	0.0089	0.0127	0.0176	0.0238					
4	0.0048	0.0077	0.0115	0.0164	0.0226	0.0308					
5	0.0062	0.0100	0.0149	0.0211	0.0293	0.0397					
6	0.0081	0.0130	0.0192	0.0274	0.0378	0.0512					
7	0.0105	0.0167	0.0249	0.0353	0.0487	0.0663					
8	0.0134	0.0216	0.0320	0.0454	0.0630	0.0857					
9	0.0176	0.0280	0.0414	0.0591	0.0817	0.1104					
10	0.0226	0.0361	0.0537	0.0763	0.1051	0.1417					
11	0.0291	0.0467	0.0694	0.0981	0.1348	0.1825					
12	0.0378	0.0605	0.0892	0.1258	0.1736	0.2356					
13	0.0489	0.0776	0.1143	0.1620	0.2241	0.3045					
14	0.0627	0.0994	0.1471	0.2092	0.2896	0.3935					
15	0.0801	0.1278	0.1899	0.2704	0.3743	0.5140					
16	0.1018	0.1639	0.2443	0.3482	0.4879	0.6553					
17	0.1314	0.2119	0.3158	0.4555	0.6228	0.8466					
18	0.1700	0.2739	0.4136	0.5809	0.8048	1.1051					
19	0.2196	0.3593	0.5267	0.7505	1.0508	1.4273					
20	0.2894	0.4567	0.6805	0.9809	1.3573	1.8439					
21	0.3664	0.5902	0.8905	1.2670	1.7535	2.3815					

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Andrés Merlo López

CUADRO A-1.4 ÁREA ANULAR GARGANTA-TOBERA DE CLAW (pg²)

Área anular Garganta-Tobera, A _s							
Tobera	A-	Α	В	С	D	E	
1		0.0028	0.0054	0.0086	0.0124	0.0169	
2	0.0016	0.0042	0.0074	0.0112	0.0157	0.0209	
3	0.0034	0.0066	0.0104	0.0149	0.0201	0.0273	
4	0.0050	0.0088	0.0133	0.0185	0.0257	0.0322	
5	0.0068	0.0113	0.0165	0.0237	0.0302	0.0373	
6	0.0093	0.0145	0.0217	0.0282	0.0353	0.0432	
7	0.0131	0.0203	0.0268	0.0339	0.0418	0.0547	
8	0.0189	0.0254	0.0325	0.0404	0.0533	0.0674	
9	0.0228	0.0299	0.0378	0.0507	0.0648	0.0809	
10	0.0272	0.0351	0.0480	0.0621	0.0782	0.0944	
11	0.0287	0.0416	0.0557	0.0718	0.0880	0.1206	
12	0.0344	0.0485	0.0646	0.0808	0.1134	0.1452	
13	0.0346	0.0507	0.0669	0.0995	0.1313	0.1704	
14	0.0299	0.0461	0.0787	0.1105	0.1496	0.1935	
15	0.0268	0.0594	0.0912	0.1303	0.1742	0.2276	
16	0.0194	0.0512	0.0903	0.1342	0.1876	0.2509	
17	0.0211	0.0602	0.1041	0.1575	0.2208	0.2963	
18	0.0204	0.0643	0.1177	0.1810	0.2565	0.3476	
19	0.0129	0.0663	0.1296	0.2051	0.2962	0.4056	
20	0.0008	0.0641	0.1396	0.2307	0.3404		
21		0.0665	0.1576	0.267			

FUENTE: Levantamiento Artificial, (Melo, 2014) ELABORACIÓN: Andrés Merlo López

ANEXO N°2

CURVAS DEL COMPORTAMIENTO DE AFLUENCIA IPR (INFLOW PERFORMANCE RELATIONSHIP)

CURVAS DEL COMPORTAMIENTO DE AFLUENCIA IPR (INFLOW PERFOMANCE RELATIONSHIP)

Con la finalidad de conseguir el mejor rendimiento operativo de cualquier sistema de levantamiento artificial, es fundamental la elaboración de un correcto diseño, el mismo debe conocer los caudales a los que puede ser producido, de tal manera que se eviten futuros problemas de cavitación de la bomba, para ello es indispensable conocer el diagrama IPR (Inflow Performance Relationship). Un análisis idóneo de nuestras curvas de comportamiento de afluencia, inflow y outflow nos proporcionará los parámetros de funcionamiento óptimo de cada bomba.

El método de Petrobras se caracteriza por dividir en tres zonas, las cuales se encuentran definidas por los valores de q_b, q_{omáx}, q_{tmáx}; en donde:

- Zona 1: valores entre 0<q<q_b
- Zona 2: valores entre q_b<q<q_{omáx}
- Zona 3: valores entre q_{omáx}<q<q_{tmáx}

A continuación se presentan los algoritmos desarrollados por Petrobras, los cuales serán empleados en este proyecto para la construcción de las curvas IPR de yacimientos saturados y subsaturados. La data necesaria para la construcción de las curvas IPR de los pozos a ser analizados se presenta a continuación en el cuadro A-2.1.

CUADRO A-2.1 DATA NECESARIA PARA LA CONSTRUCCIÓN DE LA CURVA IPR

Parámetros	Simbología	Unidades
Presión de reservorio	P _R	psi
Presión de saturación	P _B	psi
Presión de fondo fluyente	P _{WF}	psi
Caudal total @ P _{WF}	QT	bl/día
Caudal de petróleo @ P _{WF}	Qo	bl/día
Corte de agua	F _W	
Corte de petróleo	Fo	

ELABORACIÓN: Andrés Merlo López

IPR de Yacimientos saturados

El estado actual de muchos pozos que se encuentran en el oriente ecuatoriano nos indican que su presión de fondo fluyente se encuentra por debajo de la presión de saturación, $P_{WF} < P_B$. Por ende el uso del índice de producción IP es apropiado ya que no es representativo del pozo.

A continuación se presentan los algoritmos correspondientes del método de Petrobras cuando el yacimiento es saturado.

Primeramente se determina el valor de J.

$$J = \frac{q_{t_{test}}}{f_o \left(P_R - P_b + \frac{P_b A}{1.8}\right) + f_w \left(P_R - P_{WFtest}\right)}$$
(A-2.1)

Siendo

$$A = 1 - 0.2 \left(\frac{P_{WFtest}}{P_b}\right) - 0.8 \left(\frac{P_{WFtest}}{P_b}\right)^2$$
(A-2.2)

Determinar el caudal en el punto de saturación.

$$\mathsf{P}_{\mathsf{WF}} = \mathsf{P}_{\mathsf{R}} - \frac{\mathsf{q}_{\mathsf{t}}}{\mathsf{J}} \tag{A-2.3}$$

Determinar el caudal máximo de petróleo.

$$q_{omáx} = q_b + \frac{J + P_b}{1.8}$$
(A-2.4)

Determinar CD.

$$CD = P_{WFD} - P_{WFC} = f_{w} \left(\frac{0.001q_{omáx}}{J} \right) + f_{o} (0.125) P_{b} \left[-1 + \sqrt{81 - 80 \left(\frac{0.999q_{omáx} - q_{b}}{q_{omáx} - q_{b}} \right)} \right]$$
(A-2.5)

Determinar CG.

$$CG = 0.001q_{omáx}$$
 (A-2.6)

Determinar tana.

$$\tan \alpha = \frac{CG}{CD}$$
(A-2.7)

Determinar $tan\beta$.

$$\tan\beta = \frac{\text{CD}}{\text{CG}}$$
(A-2.8)

Determinar el caudal máximo total esperado.

$$q_{tmáx} = q_{omáx} + f_w \left(P_R - \frac{q_{omáx}}{J} \right) (tan \alpha)$$
 (A-2.9)

Calcular las presiones de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre 0 bl/día hasta el caudal de burbuja.

$$\mathsf{P}_{\mathsf{WF}} = \mathsf{P}_{\mathsf{R}} - \frac{\mathsf{q}_{\mathsf{t}}}{\mathsf{J}} \tag{A-2.10}$$

Calcular las presiones de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre el caudal de burbuja hasta el caudal máximo de petróleo.

$$P_{WF} = f_{w} \left(P_{R} - \frac{q_{t}}{J} \right) + f_{o} \left(0.125 \right) P_{b} \left[-1 + \sqrt{81 - 80 \left(\frac{q_{t} - q_{b}}{q_{omáx} - q_{b}} \right)} \right]$$
(A-2.11)

Calcular la presión de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre el caudal máximo de petróleo hasta el caudal total máximo.

$$P_{WF} = f_{w} \left(P_{R} - \frac{q_{omáx}}{J} \right) - \left(q_{t} - q_{omáx} \right) (\tan \beta)$$
(A-2.12)

Generar una tabla y su correspondiente gráfica con los diferentes valores calculados de caudal y presiones con las ecuaciones A-2.10, A-2.11 y A-2.12.

IPR para Yacimientos subsaturados

En un yacimiento subasturado la IPR tendrá dos comportamientos, cuando la presión de fondo fluyente sea mayor a la presión de saturación $P_{WF}>P_b$ existirá flujo de una sola fase y cuando la presión de fondo fluyente sea menor a la presión de saturación $P_{WF}<P_b$ existirá flujo multifásico.

A continuación se presenta los algoritmos correspondientes del método de Petrobras cuando el yacimiento es subsaturado.

Primeramente se determina el valor de J.

$$J = \frac{q_t}{P_R - P_{WF}}$$
(A-2.13)

Determinar el caudal en el punto de saturación.

$$\mathbf{q}_{\mathrm{b}} = \mathbf{J} \left(\mathbf{P}_{\mathrm{R}} - \mathbf{P}_{\mathrm{b}} \right) \tag{A-2.14}$$

Determinar el caudal máximo de petróleo.

$$q_{omáx} = q_b + \frac{J \times P_b}{1.8}$$
 (A-2.15)

Determinar CD.

$$CD = P_{WFD} - P_{WFC} = f_{w} \left(\frac{0.001q_{omáx}}{J} \right) + f_{o} (0.125) P_{b} \left[-1 + \sqrt{81 - 80 \left(\frac{0.999q_{omáx} - q_{b}}{q_{omáx} - q_{b}} \right)} \right]$$
(A-2.16)

Determinar CG.

$$CG = 0.001q_{max}$$
 (A-2.17)

Determinar tanα.

$$\tan \alpha = \frac{CG}{CD}$$
(A-2.18)

Determinar tan_β.

$$\tan\beta = \frac{\text{CD}}{\text{CG}} \tag{A-2.19}$$

Determinar el caudal máximo total esperado.
$$q_{omáx} = q_{omáx} + f_w \left(P_R - \frac{q_{omáx}}{J} \right) (\tan \alpha)$$
 (A-2.20)

Calcular las presiones de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre 0 bl/día hasta el caudal de burbuja.

$$\mathsf{P}_{\mathsf{WF}} = \mathsf{P}_{\mathsf{R}} - \frac{\mathsf{q}_{\mathsf{t}}}{\mathsf{J}} \tag{A-2.21}$$

Calcular las presiones de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre el caudal de burbuja hasta el caudal máximo de petróleo.

$$P_{WF} = f_{w} \left(P_{R} - \frac{q_{t}}{J} \right) + f_{o} \left(0.125 \right) P_{b} \left[-1 + \sqrt{81 - 80 \left(\frac{q_{t} - q_{b}}{q_{omáx} - q_{b}} \right)} \right]$$
(A-2.22)

Calcular la presión de fondo fluyente para diferentes valores de caudal en el intervalo comprendido entre el caudal máximo de petróleo hasta el caudal total máximo.

$$P_{WF} = f_{w} \left(P_{R} - \frac{q_{omáx}}{J} \right) - \left(q_{t} - q_{omáx} \right) (\tan \beta)$$
 (A-2.23)

Generar una tabla y su correspondiente gráfica con los diferentes valores calculados de caudal y presiones con las ecuaciones A-2.21, A-2.22 y A-2.23.

ANEXO N°3

CUADROS DE CÁLCULOS

CUADRO A-3.1 RESULTADOS OBTENIDOS PARA EL POZO ATACAPI-25

		Iteraciones						
Paráme	etros	Primera	Segunda	Tercera				
PT	psi	3100.0000	3100.0000	3100.0000				
М		1.0000	0.4711	0.5024				
$G_o = G_N$	psi/pie	0.3853	0.3853	0.3853				
Gs	psi/pie	0.4538	0.4538	0.4538				
B _T	bl/BF	1.1008	1.1008	1.1008				
Q _N	bl/día	1143.5023	2427.2606	2276.2419				
P _{FN}	psi	14.7416	56.7100	50.5501				
С		239.7772	239.7772	239.7772				
P _N	psi	6597.6577	6555.6893	6561.8492				
Q _D	bl/día	2025.5023	3309.2606	3158.2419				
G _D	psi/pie	0.4152	0.4036	0.4045				
F _{WD}		0.4137	0.2532	0.2653				
GLR	pie ³ /bl	32.7021	20.0160	20.9731				
U _D	ср	0.8777	1.0065	0.9967				
Fluj	0	Multifásico	Multifásico	Multifásico				
P _D	psi	3789.1000	3705.3000	3712.5000				
P _{FD}	psi	5.6379	13.6622	12.5623				
С		2218.2328	2218.2328	2218.2328				
н		0.6459	0.6070	0.6098				
R		0.4000	0.4000	0.4000				
М		0.4711	0.5024	0.5001				
K _{TD}		0.2000	0.2000	0.2000				
K _N		0.0300	0.0300	0.0300				
C ₁		0.8000	0.8000	0.8000				
C ₂		0.0889	0.0889	0.0889				
C ₃		0.1920	0.1920	0.1920				
C ₄		1.0300	1.0300	1.0300				
% Error		112.2655	6.2218	0.4490				
Converg	encia	No converge	No converge	Converge				
ML				0.8633				
Estado				No cavita				
A _N	pg²			0.0251				
A _T	pg²			0.0627				

CUADRO A-3.2 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO ATACAPI-25

	K	OBE				NA	TIONAL	OILMA	STER				GUIBE	RSO	N		
Т	OBERA	GAF	RGANTA	R	BOMBA	то	BERA	GAR	GANTA	R	BOMBA	тс	DBERA	GARGANTA		R	BOMBA
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
10	0.0240	10	0.0599	0.400	10-A	10	0.0212	10	0.0562	0.380	10-A	Ш	0.0241	7	0.0531	0.45	E-7
		11	0.0774	0.310	10-B			11	0.0715	0.299	10-B			8	0.0661	0.36	E-8
11	0.0310	10	0.0599	0.517	11-A-	11	0.0271	10	0.0562	0.483	11-X	F	0.0314	7	0.0531	0.59	F-7
		11	0.0774	0.400	11-A			11	0.0715	0.380	11-A			8	0.0661	0.48	F-8

	CI	_AW					С	н				FI	LUID PAC				
т	OBERA	GAR	GANTA	R	BOMBA	то	BERA	GARC	GANTA	R	BOMBA	тс	BERA	GAR	GANTA	R	BOMBA
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
11	0.0239	J	0.0526	0.454	11-J	10	0.0238	10	0.0598	0.398	10-A	9	0.0221	9	0.0539	0.410	9-A
		K	0.0655	0.365	11-K			11	0.0774	0.307	10-B			10	0.0674	0.328	9-B
12	0.0311	#N/A	#N/A	#N/A	#N/A	11	0.0307	10	0.0598	0.513	11-A-	10	0.0276	9	0.0539	0.512	10-A-
		К	0.0655	0.475	12-K			11	0.0774	0.396	11-A			10	0.0674	0.410	10-A

CUADRO A-3.3 RESULTADOS OBTENIDOS PARA EL POZO PACAYACU-1

		Iteraciones						
Paráme	etros	Primera	Segunda	Tercera				
P _T	psi	3600.0000	3600.0000	3600.0000				
м		1.0000	0.4011	0.3414				
$G_o = G_N$	psi/pie	0.4050	0.4050	0.4050				
Gs	psi/pie	0.4357	0.4357	0.4357				
Β _T	bl/BF	1.1024	1.1024	1.1024				
Q _N	bl/día	878.9358	2191.3743	2574.2688				
P _{FN}	psi	12.3231	63.2293	84.3541				
С		239.7772	239.7772	239.7772				
P _N	psi	6973.0901	6922.1839	6901.0591				
QD	bl/día	1619.9358	2932.3743	3315.2688				
G _D	psi/pie	0.4190	0.4127	0.4118				
F _{WD}		0.3293	0.1819	0.1609				
GLR	pie ³ /bl	15.0096	8.2918	7.3341				
U _D	ср	5.1545	6.1940	6.3422				
Fluj	0	Multifásico						
P _D	psi	3328.8000	3474.7911	3470.8842				
P _{FD}	psi	4.8485	14.4044	18.0015				
С		2218.2328	2218.2328	2218.2328				
Н		0.7381	0.8226	0.8256				
R		0.4000	0.4000	0.4000				
М		0.4011	0.3414	0.3394				
K _{TD}		0.2000	0.2000	0.2000				
K _N		0.0300	0.0300	0.0300				
C ₁		0.8000	0.8000	0.8000				
C ₂		0.0889	0.0889	0.0889				
C ₃		0.1920	0.1920	0.1920				
C ₄		1.0300	1.0300	1.0300				
% Error		149.3213	17.4728	0.6004				
Converg	encia	No converge	No converge	Converge				
ML				0.2929				
Estado				No cavita				
A _N	pg ²			0.0315				
A _T	pg ²			0.0630				

CUADRO A-3.4 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO PACAYACU-1

	K	OBE				N	IATIONAL-	OILM	ASTER				GUIBE	RSON	١		
Т	OBERA	GAF	RGANTA	R	BOMBA	TOBERA GARGANT		RGANTA	R	BOMBA	TOBERA		GAF	RGANTA	R	вомва	
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
10	0.0240	10	0.0599	0.400	10-A	10	0.0212	10	0.0562	0.380	10-A	Е	0.0241	7	0.0531	0.45	E-7
		11	0.0774	0.310	10-B			11	0.0715	0.299	10-B			8	0.0661	0.36	E-8
11	0.0310	10	0.0599	0.517	11-A-	11	0.0271	10	0.0562	0.483	11-X	F	0.0314	7	0.0531	0.59	F-7
		11	0.0774	0.400	11-A			11	0.0715	0.380	11-A			8	0.0661	0.48	F-8

	CI	_AW					0	HI					FLUID PA	CKED	PUMP		
Т	OBERA	GAR	GANTA	R	BOMBA	тс	BERA	GAF	RGANTA	R	вомва	т	TOBERA		RGANTA	R	BOMBA
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
11	0.0239	J	0.0526	0.454	11-J	10	0.0238	10	0.0598	0.398	10-A	9	0.0221	9	0.0539	0.410	9-A
		К	0.0655	0.365	11-K			11	0.0774	0.307	10-B			10	0.0674	0.328	9-B
12	0.0311	#N/A	#N/A	#N/A	#N/A	11	0.0307	10	0.0598	0.513	11-A-	10	0.0276	9	0.0539	0.512	10-A-
		K	0.0655	0.475	12-K			11	0.0774	0.396	11-A			10	0.0674	0.410	10-A

CUADRO A-3.5 RESULTADOS OBTENIDOS PARA EL POZO PICHINCHA-2

			Iteraciones	
Parám	etros	Primera	Segunda	Tercera
Ρτ	psi	3100.0000	3100.0000	3100.0000
м		1.0000	0.3806	0.3577
$G_o = G_N$	psi/pie	0.3839	0.3839	0.3839
Gs	psi/pie	0.4098	0.4098	0.4098
Β _τ	bl/BF	1.3160	1.3160	1.3160
Q _N	bl/día	585.8438	1539.3081	1637.8166
P _{FN}	psi	4.2371	23.8810	26.6854
С		239.7772	239.7772	239.7772
P _N	psi	6232.1778	6212.5339	6209.7295
Q _D	bl/día	1002.8438	1956.3081	2054.8166
G _D	psi/pie	0.3947	0.3894	0.3892
F _{WD}		0.1788	0.0917	0.0873
GLR	pie ³ /bl	55.9358	28.6738	27.2992
UD	ср	1.7197	1.8593	1.8663
Flu	jo	Multifásico	Multifásico	Multifásico
P _D	psi	3219.3000	3265.0000	3267.2000
P _{FD}	psi	1.5212	5.0602	5.5268
С		2218.2328	2218.2328	2218.2328
Н		0.7665	0.7990	0.8011
R		0.4000	0.4000	0.4000
М		0.3806	0.3577	0.3562
K _{TD}		0.2000	0.2000	0.2000
K _N		0.0300	0.0300	0.0300
C ₁		0.8000	0.8000	0.8000
C ₂		0.0889	0.0889	0.0889
C ₃		0.1920	0.1920	0.1920
C ₄		1.0300	1.0300	1.0300
% Error		162.7506	6.3995	0.4108
Converg	gencia	No converge	No converge	Converge
ML				0.5451
Estado				No cavita
A _N	pg ²			0.0168
AT	pg ²			0.0419

CUADRO A-3.6 GEOMETRÍAS ÓPTIMAS POR FABRICANTE PARA EL POZO PICHINCHA-2

	KO	BE				N	ATIONAL	-OILM/	ASTER				GUIBE	RSO	N		
тс	DBERA	GAF	RGANTA	R	BOMBA	то	BERA	GAR	GANTA	R	BOMBA	тс	BERA	GAF	RGANTA	R	вомва
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
8	0.0144	8	0.0359	0.400	8-A	9	0.0167	8	0.0346	0.483	9-X	С	0.0123	5	0.0380	0.32	C-5
		9	0.0464	0.310	8-B			9	0.0441	0.380	9-A			6	0.0452	0.27	C-6
9	0.0186	8	0.0359	0.517	9-A-	10	0.0212	#N/A	#N/A	#N/A	#N/A	D	0.0177	5	0.0380	0.46	D-5
		9	0.0464	0.400	9-A			9	0.0441	0.483	10-X			6	0.0452	0.39	D-6

	CL	AW						оні				F	LUID PAC	KED	PUMP		
тс	DBERA	GAR	GANTA	R	BOMBA	то	BERA	GAR	GANTA	R	вомва	тс	DBERA	GAF	RGANTA	R	вомва
No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA			No	ÁREA	No	ÁREA		
9	0.0148	н	0.0376	0.394	9-H	8	0.0144	8	0.0360	0.400	8-A	7	0.0141	7	0.0345	0.410	7-A
		Ι	0.0447	0.331	9-I			9	0.0464	0.310	8-B			8	0.0431	0.328	7-B
10	0.0175	#N/A	#N/A	#N/A	#N/A	9	0.0184	8	0.0360	0.511	9-A-	8	0.0177	7	0.0345	0.512	8-A-
		I	0.0447	0.391	10-I			9	0.0464	0.396	9-A			8	0.0431	0.410	8-A

TABLA DE RESULTADOS MÉTODO DE HAL PETRIE

CUADRO A-3.7 RESULTADOS OBTENIDOS POR CADA ITERACIÓN PARA EL POZO SHUSHUQUI-13

PARTE A.- Escoger la tobera e iterar con el caudal de fluido motriz.

Parámetro	Análisis 1	Análisis 2	Unidad
Gs	0.4062	0.4062	psi/pie
A _{CM}	0.0161	0.0266	pg²
Fabricante		CLAW	
As	0.0485	0.0485	pg²
Tobera	12.0000	12.0000	
A _N	0.0311	0.0311	pg²

		Anális	sis 1	Aná	lisis 2
Parái	metro	Iterae	ción	lter	ación
		Primera	Segunda	Primera	Segunda
PT	psi	3300.0000	3300.0000	3300.0000	3300.0000
P _N	psi	6542.3073	6427.7943	6542.3073	6434.1790
Q _N	bl/día	3330.8906	3301.1543	3225.8269	3196.8332
$\Delta \mathbf{Q}_{\mathbf{N}}$	%		0.9008		0.9070
V	pie/s	4.4315		4.2919	
N _{Re}		18018.2514		17449.9155	
Flu	u jo	Turbulento		Turbulento	
ρο	g/cm ³	0.8565		0.8565	
μο	ср	4.8795		4.8795	
f		0.0302		0.0304	
P _{FN}	psi	114.5130		108.1283	
∆Q _N < 15 %			Verdadero		Verdadero

		Anál	isis 1	Ana	álisis 2
Pará	metro	Itera	ción	lte	ración
		Primera	Segunda	Primera	Segunda
QD	bl/día	3451.0000	3725.0000	3797.0000	4001.0000
GD	psi/pie	0.3895	0.3908	0.3915	0.3923
F _{WD}		0.0130	0.0339	0.0471	0.0599
GLR	pie ³ /bl	2.0000	4.0000	5.8795	7.4779
u _o	cst	5.6971	5.6971	5.6971	5.6971
u _w	cst	0.4147	0.4147	0.4147	0.4147
VD	cst	5.6286	5.5180	5.4483	5.3807

CUADRO A-3.7 CONTINUACIÓN

		Anál	isis 1	Análisis 2		
Parár	netro	Itera	ción	lte	ración	
		Primera	Segunda	Primera	Segunda	
V	pie/s	1.5146	1.6347	1.6663	1.7559	
N _{re}		5783.1475	6366.8679	6573.0029	7013.4757	
Flujo		Turbulento	Turbulento	Turbulento	Turbulento	
е		0.6398	0.6398	0.6398	0.6398	
f		0.0384	0.0376	0.0374	0.0369	
P _{FD}	psi	15.0071	17.2058	17.8064	19.5562	
Flu	u jo					
PD	psi	3330.6502	3343.0936	3350.1500	3358.1600	
Н		1.0431	1.0513	0.9242	0.9292	
Μ		0.0910	0.2572	0.2222	0.2978	
R		0.5000	0.5000	0.5000	0.5000	
C ₁		1.0000	1.0000	1.0000	1.0000	
C ₂		0.0000	0.0000	0.0000	0.0000	
C ₃		0.3000	0.3000	0.3000	0.3000	
C ₄		1.0300	1.0300	1.0300	1.0300	
Μ		0.2572	0.2545 0.2978		0.2960	
M _{ax valor}		0.0956	0.2700	0.2333	0.3127	
M _{in valor}		0.0865	0.2443	0.2111	0.2829	
Conver	gencia	No converge	Converge	No converge	Converge	
Q _{s nuevo}	bl/día	424.0000	419.0000	804.0000	799.0000	

PARTE C.- Cálculos finales.

Parámetro	Análisis 1	Unidad			
A _T	0.0622	0.0622	pg²		
Garganta	0.0796	0.0796	pg²		
N°	12.0000	12.0000			
Bomba	CLAW 12 – L				
Q _{SC}	452.0000	1096.0000	bl/día		
HP	185.0000	179.0000	HP		
HP (a 90%)	206.0000	199.0000	HP		

CUADRO A-3.8 RESULTADOS OBTENIDOS POR CADA ITERACIÓN PARA EL POZO SHUSHUQUI-15

Parámetro	Análisis 1	Análisis 2	Unidad		
Gs	0.4219	0.4219	psi/pie		
A _{CM}	0.0123	0.0128	pg²		
Fabricante	CLAW				
As	0.0351	0.0351	pg²		
Tobera	10.0000	10.0000			
A _N	0.0175	0.0175	pg²		

PARTE A.- Escoger la tobera e iterar con el caudal de fluido motriz.

		Análi	sis 1	Análisis 2	
Pará	metro	Itera	ción	Itera	ación
		Primera	Segunda	Primera	Segunda
PT	psi	3600.0000	3600.0000	3600.0000	3600.0000
P _N	psi	6801.8503	6767.3624	6801.8503	6768.2850
Q _N	bl/día	1922.5636	1917.6105	1893.6593	1888.7651
$\Delta \mathbf{Q}_{N}$	%		0.2583		0.2591
V	pie/s	2.5578		2.5194	
N _{Re}		27051.0485		26644.3558	
Flu	ujo	Turbulento		Turbulento	
ρο	g/cm ³	0.8443		0.8443	
μ _o	ср	1.8492		1.8492	
f		0.0278		0.0278	
P _{FN}	psi	34.4879		33.5653	
∆ Q _N <	: 15 %		Verdadero		Verdadero

Parámetro		Anál	isis 1	Análisis 2	
		Itera	ción	Iteración	
		Primera	Segunda	Primera	Segunda
QD	bl/día	2018.0000	2077.0000	2089.0000	2227.0000
GD	psi/pie	0.3862	0.3872	0.3880	0.3901
F _{WD}		0.0291	0.0451	0.0563	0.0893
GLR	pie ³ /bl	4.0000	6.0000	6.9036	10.9448
u _o	cst	2.1903	2.1903	2.1903	2.1903
u _w	cst	0.3937	0.3937	0.3937	0.3937
VD	cst	2.1379	2.1093	2.0891	2.0299
V	pie/s	0.8855	0.9115	0.9167	0.9773
N _{re}		8901.2029	9286.8757	9430.3309	10346.7314

CUADRO A-3.8 CONTINUACIÓN

		Análi	isis 1	Análisis 2		
Parár	netro	Itera	ción	lte	ración	
		Primera	Segunda	Primera	Segunda	
Flu	ujo	Turbulento	Turbulento	Turbulento	Turbulento	
е		0.6398	0.6398	0.6398		
f		0.0351	0.0347	0.0346		
P _{FD}	psi	4.6305	4.8803	4.9329		
Flu	ujo				Multifásico	
PD	psi	3306.9531	3315.6641	3321.6700	3380.1000	
Н		0.9268	0.9316	0.8767	0.9091	
М	Μ		0.2969	0.1864	0.3151	
R	R		0.5000	0.5000	0.5000	
C ₁		1.0000	1.0000	1.0000	1.0000	
C ₂		0.0000	0.0000	0.0000	0.0000	
C ₃		0.3000	0.3000	0.3000	0.3000	
C ₄		1.0300	1.0300	1.0300	1.0300	
М		0.2969	0.2952	0.3151	0.3032	
M _{ax valor}		0.1958	0.3117	0.1957	0.3308	
M _{in valor}		0.1771	0.2820	0.1771	0.2993	
Conver	Convergencia No converge Converge No converge		Converge			
Q _{s nuevo}	bl/día	159.0000	158.0000	338.0000	325.0000	

PARTE C.- Cálculos finales.

Parámetro	Análisis 1	Análisis 2	Unidad		
A _T	0.0350	0.0350	pg²		
Garganta	0.0447	0.0447	pg²		
N°	10	10			
Bomba	CLAW 10 – I				
Q _{SC}	221	425	bl/día		
HP	117	116	HP		
HP (a 90%)	130	128	HP		

CUADRO A-3.9 RESULTADOS OBTENIDOS POR CADA ITERACIÓN PARA EL POZO SHUSHUQUI-20

Parámetro	Análisis 1	Análisis 2	Unidad		
Gs	0.4356	0.4356	psi/pie		
A _{CM}	0.0079	0.0333	pg²		
Fabricante	CLAW				
As	0.0351	0.0351	pg²		
Tobera	10.0000	10.0000			
A _N	0.0175	0.0175	pg²		

PARTE A.- Escoger la tobera e iterar con el caudal de fluido motriz.

Parámetro		Análisis 1		Análisis 2	
		Itera	ción	Iteración	
		Primera	Segunda	Primera	Segunda
PT	psi	3800.0000	3800.0000	3800.0000	3800.0000
P _N	psi	7215.9845	7183.5490	7215.9845	7191.5732
Q _N	bl/día	1917.3845	1912.6787	1635.8916	1631.7403
$\Delta \mathbf{Q}_{\mathbf{N}}$	%		0.2460		0.2544
V	pie/s	2.5509		2.1764	
N _{Re}		47831.3336		40809.1726	
Flu	u jo	Turbulento		Turbulento	
ρο	g/cm ³	0.8371		0.8371	
μο	ср	1.0341		1.0341	
f		0.0246		0.0255	
P _{FN}	psi	32.4354		24.4113	
ΔQ _N	< 15 %		Verdadero		Verdadero

Parámetro		Análisis 1		Análisis 2		
		lterac	ión	Iteración		
		Primera	Segunda	Primera	Segunda	Tercera
QD	bl/día	2113.0000	2475.000	3332.0000	2770.0000	2828.0000
GD	psi/pie	0.3866	0.394	0.4091	0.4037	0.4044
F _{WD}		0.0866	0.208	0.4669	0.3761	0.3870
GLR	pie ³ /bl	0.3701	0.889	1.9951	1.6070	1.6539
uo	cst	1.2354	1.235	1.2354	1.2354	1.2354
u _w	cst	0.3939	0.394	0.3939	0.3939	0.3939
VD	cst	1.1625	1.060	0.8425	0.9189	0.9097
v	pie/s	0.9272	1.086	1.4622	1.2158	1.2411

CUADRO A-3.9 CONTINUACIÓN

		Análisis 1		Análisis 2		
Parán	netro	ltera	ción	Iteración		
		Primera	Segunda	Primera	Segunda	Tercera
N _{re}		17141.475	22019.429	37299.107	28435.449	29320.364
Flujo		Turbulento	Turbulento	Turbulento	Turbulento	Turbulento
е		0.640	0.640	0.640	0.640	0.640
f		0.031	0.029	0.026	0.028	0.027
P _{FD}	psi	4.772	6.376	10.892	7.831	8.125
Flujo						
PD	psi	3576.626	3642.510	3784.110	3732.960	3739.060
Н		0.825	0.859	0.406	0.385	0.388
Μ		0.121	0.340	1.192	0.798	0.839
R		0.400	0.500	0.300	0.300	0.300
C ₁		0.800	1.000	0.600	0.600	0.600
C ₂		0.089	0.000	0.074	0.074	0.074
C ₃		0.192	0.300	0.108	0.108	0.108
C ₄		1.030	1.030	1.030	1.030	1.030
Μ		0.340	0.322	0.798	0.839	0.834
M _{ax valor}		0.127	0.357	1.252	0.838	0.881
M in valor		0.115	0.323	1.133	0.759	0.797
Conver	gencia	No converge	Converge	No converge	No converge	Converge
Q s nuevo	bl/día	563.000	533.000	1139.000	1196.000	1189.000

PARTE C.- Cálculos finales.

Parámetro	Análisis 1	Unidad		
A _T	0.0350	0.0583	pg²	
Garganta	0.0655 0.0655		pg²	
N°	10	10		
Bomba		CLAW 10 – K		
Q _{SC}	1223	1223 2454		
HP	124	105	HP	
HP _(a 90%)	137	117	HP	

CUADRO A-3.10 RESULTADOS OBTENIDOS POR CADA ITERACIÓN PARA EL POZO SHUSHUQUI-22

Parámetro	Análisis 1	Análisis 2	Unidad
Gs	0.4368	0.4368	psi/pie
A _{CM}	0.0446	0.036	pg²
Fabricante		CLAW	
As	0.0485	0.0485	pg²
Tobera	12	12	
A _N	0.0311	0.0311	pg²

PARTE A.- Escoger la tobera e iterar con el caudal de fluido motriz.

		Análi	sis 1	Aná	lisis 2
Parár	metro	Itera	ción	ltera	ación
		Primera	Segunda	Primera	Segunda
PT	psi	3700.0000	3700.0000	3700.0000	3700.0000
P _N	psi	7020.9266	6905.8128	7020.9266	6925.9593
Q _N	bl/día	3357.6105	3328.7323	3015.4526	2988.9225
ΔQ_N	%		0.8675		0.8876
V	pie/s	4.4670		4.0118	
N _{Re}		26547.5102		23842.1811	
Flu	ujo	Turbulento		Turbulento	
ρο	g/cm ³	0.8789		0.8789	
μ _o	ср	3.4258		3.4258	
f		0.0279		0.0285	
P _{FN}	psi	115.1138		94.9673	
∆ Q _N <	: 15 %		Verdadero		Verdadero

Parámetro		Análi	isis 1	Análisis 2 Iteración		
		Itera	ción			
		Primera	Segunda	Primera	Segunda	
QD	bl/día	4129.0000	4183.0000	4489.0000	4393.0000	
GD	psi/pie	0.4064	0.4068	0.4117	0.4112	
F _{WD}		0.1517	0.1599	0.2616	0.2502	
GLR	pie ³ /bl	0.6727	0.7090	1.1602	1.1096	
u _o	cst	3.8977	3.8977	3.8977	3.8977	
u _w	cst	0.4113	0.4113	0.4113	0.4113	
VD	cst	3.3688	3.3403	2.9855	3.0253	
V	pie/s	1.8120	1.8357	1.9700	1.9279	
N _{re}		11559.7777	11811.4286	14181.6253	13695.8181	

CUADRO A-3.10 CONTINUACIÓN

Parámetro		Análisis 1		Análisis 2		
		Iteración		lte	ración	
		Primera	Segunda	Primera	Segunda	
Flu	ijo	Turbulento	Turbulento	Turbulento	Turbulento	
е		0.6398	0.6398	0.6398	0.6398	
f		0.0332	0.0330	0.0318	0.0320	
P _{FD}	psi	20.4054	20.8791	23.5410	22.6666	
Flu	ijo					
PD	psi	3532.0455	3535.7914	3579.1700	3573.7300	
Н		0.9580	0.9602	0.5914	0.5888	
Μ		0.2677	0.2859	0.5505	0.5153	
R		0.5000	0.5000	0.4000	0.4000	
C ₁		1.0000	1.0000	0.8000	0.8000	
C ₂		0.0000	0.0000	0.0889	0.0889	
C ₃		0.3000	0.3000	0.1920	0.1920	
C ₄		1.0300	1.0300	1.0300	1.0300	
Μ		0.2859	0.2851	0.5153	0.5174	
M _{ax valor}		0.2811	0.3002	0.5781	0.5410	
M _{in valor}		0.2544	0.2716	0.5230	0.4895	
Convergencia		No converge	Converge	No converge	Converge	
Q _{s nuevo}	bl/día	854.0000	852.0000	1404.0000	1410.0000	

PARTE C.- Cálculos finales.

Parámetro	Análisis 1	Análisis 2	Unidad
AT	0.0622	0.0778	pg²
Garganta	0.0796	0.0796	pg²
N°	12.0000	12.0000	
Bomba		CLAW 12 – L	
Q _{SC}	871.0000	2021.0000	bl/día
HP	209.0000	188.0000	HP
HP (a 90%)	233.0000	209.0000	HP

CUADRO A-3.11 BOMBAS JET CANDIDATAS POR FABRICANTE PARA LA OPTIMIZACIÓN DEL POZO ATACAPI-8

FABRICANTE	NATIONAL			KOBE		
BOMBA	10-x	9-A	10-A	9-A	10-A	10-A-
R	0.4830	0.3800	0.3800	0.4000	0.4000	0.5170
A _N , pg	0.0212	0.0167	0.0212	0.0186	0.0240	0.0240
A _s , pg	0.0229	0.0274	0.0350	0.0278	0.0360	0.0224
Α _T , pg	0.0441	0.0441	0.0562	0.0464	0.0599	0.0464
FABRICANTE		GUIBERSON	١	FLUI	D PACKED I	PUMP
BOMBA	D-5	D-6	D-7	8-B	9-A	8-A
R	0.4600	0.3900	0.3300	0.3280	0.4100	0.4100
A _N , pg	0.0177	0.0177	0.0177	0.0177	0.0221	0.0177
A _s , pg	0.0203	0.0276	0.0354	0.0363	0.0318	0.0255
Α _T , pg	0.0380	0.0452	0.0531	0.0539	0.0539	0.0431
FABRICANTE		OHI			CLAW	
BOMBA	8-A	10-A	9-A	9-H	10-l	10-H
R	0.4000	0.4000	0.4000	0.3900	0.3900	0.3300
A _N , pg	0.0144	0.0238	0.0184	0.0148	0.0175	0.0175
A _s , pg	0.0216	0.0361	0.0280	0.0229	0.0272	0.0351
A _T , pg	0.0360	0.0598	0.0464	0.0376	0.0447	0.0526

ELABORACIÓN: Andrés Merlo López

CUADRO A-3.12 BOMBAS JET CANDIDATAS POR FABRICANTE PARA LA OPTIMIZACIÓN DEL POZO ATACAPI-16

FABRICANTE	NATIONAL			KOBE		
BOMBA	5-B	6-B	7-A	5-B	6-B	7-A
R	0.2990	0.2990	0.3800	0.3100	0.3100	0.4000
A _N , pg	0.0064	0.0081	0.0103	0.0067	0.0086	0.0111
A _s , pg	0.0150	0.0191	0.0169	0.0149	0.0192	0.0167
A _T , pg	0.0212	0.0271	0.0271	0.0215	0.0278	0.0278
FABRICANTE	(GUIBERSON	1	FLUIC	D PACKED P	PUMP
BOMBA	A-2	B-4	C-4	3-B	4-B	5-B
R	0.2900	0.3000	0.3900	0.3280	0.3280	0.3280
A _N , pg	0.0055	0.0095	0.0123	0.0058	0.0072	0.0091
A _s , pg	0.0133	0.0219	0.0199	0.0119	0.0149	0.0186
A _T , pg	0.0189	0.0314	0.0314	0.0177	0.0221	0.0276
FABRICANTE		OHI			CLAW	
BOMBA	4-B	5-B	6-B	4-E	5-F	6-G
R	0.3100	0.3100	0.3100	0.2900	0.3100	0.3000
A _N , pg	0.0052	0.0067	0.0086	0.0054	0.0074	0.0094
A _s , pg	0.0115	0.0149	0.0192	0.0133	0.0165	0.0217
A _T , pg	0.0167	0.0216	0.0278	0.0187	0.0239	0.0311

CUADRO A-3.13 BOMBAS JET CANDIDATAS POR FABRICANTE PARA LA OPTIMIZACIÓN DEL POZO SHUSHUQUI-10

FABRICANTE	NATIONAL				KOBE	
BOMBA	12-A	13-A	13-X	12-B	12-A	13-A
R	0.3800	0.3800	0.4830	0.3100	0.4000	0.4000
A _N , pg	0.0346	0.0441	0.0441	0.0400	0.0400	0.0517
A _s , pg	0.0564	0.0718	0.0469	0.0891	0.0599	0.0774
A _T , pg	0.0910	0.1159	0.0910	0.1292	0.1000	0.1292
FABRICANTE	(GUIBERSON	1	FLUIC	D PACKED I	PUMP
BOMBA	G-10	G-11	G-12	12-A	11-B	12-B
R	0.4700	0.3800	0.3100	0.4100	0.3280	0.3280
A _N , pg	0.0452	0.0452	0.0452	0.0431	0.0345	0.0431
A _s , pg	0.0510	0.0742	0.1000	0.0622	0.0708	0.0885
A _T , pg	0.0962	0.1195	0.1452	0.1053	0.1053	0.1317
FABRICANTE		OHI		CLAW		
BOMBA	12-A	12-B	13-A-	13-M	13-N	13-O
R	0.4000	0.3100	0.5170	0.4700	0.4000	0.3100
A _N , pg	0.0396	0.0396	0.0512	0.0450	0.0450	0.0450
A _s , pg	0.0605	0.0892	0.0489	0.0507	0.0669	0.0995
A _T , pg	0.1001	0.1288	0.1001	0.0957	0.1119	0.1445