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ABSTRACT 

 

 

Motor disability is the loss of the ability to move a limb of the body. Motor disabilities make 

difficult the interaction between a disabled person and her/his environment. Recent 

research has focused on developing innovative technologies that could be used by 

disabled people to improve their life quality. In this paper, a brain-computer interface for 

controlling IoT devices is proposed. This system is based on the use of the Muse-

Headband sensor which captures EEG signals when a person blinks. This sensor is 

placed on the forehead of the user of the system. The EEGs are preprocessed and then 

classified into short and long blinks by computing their signal envelopes and using the k-

NN algorithm. The classified blinks are then used to form control commands that are sent 

to a mosquitto server hosted in the cloud. This server is responsible for sending the 

control action to the connected IoT devices. The accuracy of the classifier designed in this 

work is 99.53%. Usability tests show that the probability of a user sending a wrong 

command, with the proposed system, is 4.83%. However, this probability decreases when 

the time of use of the system proposed increases. 

 

Keywords: EEG, BCI, k-NN, IoT. 

 

 

  



 

v 

 

ABSTRACT 

 

 

Motor disability is the loss of the ability to move a limb of the body. Motor disabilities make 

difficult the interaction between a disabled person and her/his environment. Recent 

research has focused on developing innovative technologies that could be used by 

disabled people to improve their life quality. In this paper, a brain-computer interface for 

controlling IoT devices is proposed. This system is based on the use of the Muse-

Headband sensor which captures EEG signals when a person blinks. This sensor is 

placed on the forehead of the user of the system. The EEGs are preprocessed and then 

classified into short and long blinks by computing their signal envelopes and using the k-

NN algorithm. The classified blinks are then used to form control commands that are sent 

to a mosquitto server hosted in the cloud. This server is responsible for sending the 

control action to the connected IoT devices. The accuracy of the classifier designed in this 

work is 99.53%. Usability tests show that the probability of a user sending a wrong 

command, with the proposed system, is 4.83%. However, this probability decreases when 

the time of use of the system proposed increases. 

 

Keywords: EEG, BCI, k-NN, IoT. 

 

 

 

  



 

1 

1. INTRODUCTION 

People with motor disabilities such as muscular dystrophy could find very complicated to 

perform simple tasks like, for example, turning on a television, thus making hard their 

interaction with their environment. For many people with motor disabilities, it is difficult to 

count, all the time, on a person who can provide support to perform their daily activities. 

For this reason, different alternatives have been proposed over time to provide this 

support, including the use of brain-computer interfaces (BCI) [1]. The function of a BCI is 

based on the capture of EEG signals generated by the activity of the Central Nervous 

System (CNS) [2]. Several BCIs to improve the life of people with motor disabilities have 

been proposed including intermediaries to control electronic IoT devices [3]–[7], remote 

controls for computer cursors [8]–[13], spellers through which users can communicate by 

forming words [14]–[19], systems for the manipulation of objects in 2D and 3D 

environments [20]–[22], and control systems for prostheses [23], [24], rehabilitation robots 

[25]–[28] and robotic arms [29]. 

The existing BCIs use very complex classifiers [5], [7], [10]–[19], [21]–[24], [26], [27], [30]. 

For this reason, in this work a classifier based on the use of the k-NN algorithm is 

developed. We chose this algorithm because of its simplicity and low computational cost. 

In the development of BCIs there are different methods to obtain EEG signals. These 

methods can demand very long and complex training sessions, suffer from poor signal 

decoding and their performance vary significantly between different people [31]. To avoid 

these problems, in this work we use EEG signals measured while a user blinks. These 

EGG signals are easy to measure, do not require sensors that demand long and complex 

training for their use [32], have low inter and intra-user variation of their statistical 

properties [33], [34], and are simple to decode using the proper filters [35]. Additionally, 

most of the existing BCIs are limited to run on desktop computers [1]–[27], which limits 

their portability. To circumvent this problem, the system proposed in this work runs on a 

tablet or cellphone. 

The BCI proposed in this work is an alternative to the help that a subject could provide to 

a person with motor disabilities. The BCI proposed consists of a mobile application in 

which the IoT devices and the available control commands are displayed. To control the 

system, the user must send combinations of long and short eye blinks that generate EEG 

signals, this model was replicated from [36]. These signals are the input of a 

preprocessing algorithm followed by a k-NN classifier. To control any device that has been 

registered in the application, a connection between the mobile application and an 

mosquitto server was implemented. Finally, usability tests were carried out with 5 people. 



 

2 

The remainder of this paper is organized as follows. In section 2, the materials and 

methods used for this work are presented. In section 3, the tests to evaluate the system 

proposed together with their results are presented. Finally, in section 4, the conclusions 

and future work are presented. 

 

1.1. General objective 

Develop a brain-computer interface for the control of IoT devices through the use of eye 

blinks EEG signals for people with motor disabilities. 

 

1.2. Specific objectives 

- Develop a graphical user interface in which the IoT devices and the available 

control commands are displayed. 

- Integrate the brain-computer interface to an intelligent classifier of EEG signals 

and establish an average time below 3 seconds when obtaining and classifying 

signals that are produced when the user blinks to send control commands. 

- Implement a connection between the brain-computer interface and an MQTT 

server in charge of receiving and sending control commands with response times 

less than 1 second. 

- Carry out 5 usability tests of the system with people without physical limitations 

and evaluate the results obtained. 

 

2. METHODOLOGY 

This section describes the materials and methods used to develop the system. After this 

section, the results obtained with the classifier performance and system usability tests are 

described. 

 

2.1. System architecture 

The first block of the proposed BCI is the Muse-Headband, which is a sensor that 

measures EEG signals on the forehead of a user. This headband sends the EEG signals 

to a mobile device via Bluetooth. The second block is a mobile device which has installed 

an application developed in this work. This application translates the EEG signals into 

commands to control IoT devices. The third block is an mosquitto communication server 

that receives the commands generated by the mobile application and sends these 
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commands to the subscribed IoT devices. The fourth block is an IoT device, which in this 

work is a raspberry pi 3 single board computer (SBC). This device, subscribed to the 

mosquitto server, sends infrared signals to control a TV. The diagram of the BCI proposed 

is shown in Fig. 1 and the architecture was replicated from [37]. 

 

 
 

Fig. 1 Diagram of the proposed BCI to control IoT devices. 
 

2.2. Materials 

2.2.1. Muse-Headband 

A low cost OpenSource sensor for recording EEG signals called Muse-Headband [38] 

was used for this work. This sensor has a battery that provides electrical autonomy of up 

to 6 hours of continuous transmission. Because of its small size, the Muse-Headband is a 

portable device. This sensor has four reception channels at a sampling rate of 255Hz with 

a resolution of 12 bits. 

2.2.2. Android SDK 

Android is a software created by Google that allows developers to use its development kit 

(SDK) with no payment [39]. The android SDK is part of the android development 

environment (Android Studio). The Android Studio development environment was used to 

create the mobile application developed in this work. 

2.3. Classifier design 

In this work, the nonparametric k-NN classifier was used. This algorithm is considered 

simple, and highly efficient and effective to solve classification problems [40]. k-NN 

classifies a new example using the labels of the k nearest neighbors, from a training set to 

the example being classified. 
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The operation of the k-NN classifier designed in this work follows the steps described in 

the flow chart shown in Fig. 2. This classifier labels EEG signals with one of 3 classes: 

Short Blink (SB), Long Blink (LB) and No Blink (NB). The classifier designed uses a 

dataset composed of 15 samples per class. When an EEG, corresponding to a user blink, 

needs to be classified, the distance between this signal and the samples in the data set is 

computed. This distance is computed using the Dynamic Time Warp (DTW) algorithm. 

DTW first performs an optimal alignment between two input signals represented as time 

series (time-dependent) [41] and then returns the sum of the absolute value of the 

pointwise difference between these signals. 

The DTW distances between a new EEG and the EEGs in the dataset represent a 

measure of their similarity. For each EEG in the dataset, its label and the DTW distance 

between this signal and the new EEG were stored in a list. Then, this list was sorted 

based on the DTW distances in an ascending order. Next, the mode of the labels of the 

first k examples of this sorted list was computed. The value of the mode was then divided 

by k, obtaining thus an estimate of the conditional probability of the new EEG belonging to 

each of the 3 classes considered in this work. The new EEG was then labeled with the 

class with the highest probability, provided that this probability value is equal to or greater 

than a certain threshold U. The values used for this work are k = 5 and U = 0.70. These 

values were found empirically. 

 

 
Fig. 2 Flowchart of the classification model designed in this work. 
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2.4. Data recording 

Electroencephalography relies on sensors that detect the electrical activities of the brain 

that are recorded on the scalp [42]. This work uses the non-invasive technique for the 

registration of EEG signals. This technique is based on placing electrodes on the scalp of 

a user to capture EEG signals. The advantages of this technique are the following ones: It 

does not physically affect the human body, its installation and use is simple and the cost 

of the equipment is low [6] relative to other techniques. 

A dataset of 10 people was recorded and uploaded to an online repository in [43]. For 

data recording, each person was asked to make a blink for 2 seconds. For each person, a 

total of 50 EEGs for each of the 3 classes considered in this work were recorded. To have 

a better description of the data acquired for this work, in addition to the EEGs, we also 

recorded the age, weight, height and whether the subject felt tired or rested during the 

data acquisition. 

The data of whether a person was tired or rested while data recording is important to 

register because, if a person is tired, the recorded EEG signal may have a higher 

frequency [34] than the EEGs of a rested person. The fatigue could affect the frequency 

content of the signal, thus causing that a blink is not detected by the classifier designed. 

Age is a determining factor when capturing EEG signals from a person, since these 

signals have higher average amplitude in young subjects [33]. This amplitude variation 

affects the detection of blinks by the proposed system, since to detect a blink, the input 

EEG signal must be equal to or greater than a minimum amplitude value defined by the 

user. Finally, the Muse-Headband was placed on the forehead of the users, ensuring that 

the electrodes are at points TP9, AF8, AF8 and TP10 (Fig. 3), following the 10-20 system, 

a recognized method for placing the electrodes on the scalp [44]. 

 
 

Fig. 3 Location of EEG electrodes according to the 10-20 system 
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2.5. Signal processing 

Processing an EEG signal contributes to improve the classification accuracy. In this work, 

the EEGs were filtered using a 5th order Butterworth filter, with a cutoff frequency of 2 Hz 

and a sampling frequency of 256 Hz. This filter was used to eliminate the unwanted parts 

of the signals in the frequency domain. An example of the result of the filter used in this 

work is presented in Fig. 4 and Fig. 5. 

 
 

Fig. 4 Unfiltered EEG signal of a long blink. 

 

 

Fig. 5 Filtered EEG signal of a long blink. 
 

The EEG signals of blinks are seasonal since their frequency does not vary much as a 

function of time [35]. This property reduces the complexity of the task of classifying EEGs 

of short blinks from long blinks once the EEGs have been filtered. To visualize the spatial 

distribution of the cloud of points of each class considered in this work, the t-SNE 

algorithm was used. This algorithm is used for a non-linear dimensionality reduction [45]. 

Thus, using t-SNE we can visualize each of the processed EEG signals in 2 dimensions. 

In Fig. 6, the cloud of points of the processed EEGs of each type of blink is presented. We 
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can observe that the cloud of processed EEGs for each class are well separated from 

each other, simplifying thus the work of the classifier. 

 
 

Fig. 6 Cloud of EEGs for each class used in this work. The t-SNE algorithm was used for 
dimensionality reduction. 

 

2.6. Blink detection 

To reduce the appearance of false positives at the detection of blinks, it was necessary to 

design an algorithm for the detection of blinks (Fig. 7). If a window observation of an EEG 

passes the detection of a blink, then this signal is sent to the classifier to identify whether 

it corresponds to a short or long blink. Otherwise, the window observation is labeled as no 

blink. The following steps are applied for blink detection. 

- A circular buffer with a size of 510 points is created. 

- A 15-point window is created. This window contains 15 points back from point P. 

- The mean amplitude of the signal is calculated, which corresponds to the average of 

the values inside the 15-point window. 

- A comparison between the mean amplitude of the 15-point window and a threshold, 

AU which was defined by the user, is performed. 

- If the mean amplitude inside the window is less than the threshold, then the arrival 

of 390 new points is expected from point P. 
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- After the 390 points have arrived, the entire buffer is sent to the classifier. 

 

Fig. 7 Example of the application of the blink detection algorithm 

 

Once a sample has been classified as short or long, a sequence of blinks needs to be 

used to control IoT devices. Commands available to navigate the control menu were 

represented in blink combinations (see Table 1). Short blinks are represented by a period 

(.) and long blinks are represented with dashes (-). 

 

Table 1 Commands formed as a combination of blinks. 

 

Command Description 
Blink 

Combination 
Activate / Deactivate Activates or deactivates the system Long Long (--) 

Up Select the top option in the menu Short Long (-) 

Down Selects the lower option in the menu Long Short (-.) 

OK Executes the selected option Short Short (..) 

  

2.7. Mobile Application  

The BCI developed in this work was deployed on a mobile device. For the control of IoT 

devices, a menu was created showing the available commands and control functions (Fig. 

8A). The application also has a module to configure some hyperparameters the k-NN 

classifier (Fig. 8B). For instance, this module allows us to configure the number k o 

nearest neighbors and the threshold U for the majority voting of the k-NN algorithm. 

Whether or not an EEG is sent to the classifier depends on the value of the minimum of 
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amplitude AU. The value of AU is configurable because the amplitude of the signal can 

vary from one user to another (Fig. 8C). 

The classifier works, by default, with a dataset of 15 blinks per class and each sample has 

a duration of 2 seconds. As the statistical properties of the blink samples can vary from 

person to person, the application has a calibration section shown in Fig. 8D. This module 

allows a user to record her/his EEGs for short and long blinks. The user can record from 1 

to 15 new samples for each type of blink defined in this work before saving the new 

dataset.  

As the Muse-Headband is a commercial device, it has many models on the market. Two 

characteristics of the headband that are fundamental for the development of the proposed 

BCI are the number of channels and sampling amplitudes  that could vary according to the 

model [46]. For this reason, a module for channel configuration and for setting the 

minimum and maximum sampling rates were also integrated in the mobile application 

(Fig. 8C). 
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Fig. 8 Main screens of the mobile application. 
 

Version control allows us to keep a backup and track changes that have been made to the 

code. For this work, GitHub was used as a repository for code versioning. The GitHub 

project code is available in [47].  

Firebase App Distribution was used for the distribution of the application updates. This 

tool makes easy the task of distributing applications to trusted testers. Version v2.1.3 of 

the application developed in this work could be accessed through [48]. 

 

3. RESULTS  

3.1. Classifier performance 

Computing the actual accuracy of the classifier developed in this work would require 

testing it on all the people who could use the system. Since this population is too large, a 

small set of people was used for the tests. From this group of people, samples of short 

and long blinks, and no blinks were obtained to build a dataset containing 1500 EEGs. 

With this size of dataset and assuming a confidence level, the margin of error was 
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calculated to obtain thus a confidence interval for the accuracy of the classifier developed. 

The margin of error was calculated using Hoeffding's inequality, which provides a 

universal upper bound for the probability that the sum of random variables deviates a 

certain amount (i.e., margin of error) from its expected value [49]. Hoeffding's inequality is 

described in (1), where ϵ is the margin of error, N is the sample size and P is the 

confidence level. The margin of error corresponding to N = 1500 and P = 0.95 is ϵ = 

4.20%. 1 − 2𝑒−2ϵ2𝑁 = 𝑃  (1) 

The acquired dataset was processed by the system developed in this work. Using a 

confusion matrix (Table 2), the performance of the designed classifier can be visualized. 

For this test, we used k = 5 (number of nearest neighbors) and a probability threshold of 

0.70. 

 

Table 2 Confusion matrix of the classifier developed. 
 True value 

P
re

d
ic

te
d

 v
al

u
e 

Short 
blink 

493 2 5 98.60% 

32.87% 0.13% 0.33% 1.40% 

Long 
blink 

0 500 0 100.00% 

0% 33.33% 0% 0.00% 

No 
Blink 

0 0 500 100.00% 

0% 0% 33.33% 0.00% 

 100% 99.60% 99.01% 99.53% 

 0.00% 0.40% 0.99% 0.47% 

 Short 
Blink 

Long 
Blink 

No Blink  

 

Accuracy, precision and sensitivity: Accuracy (Acc) refers to the percentage of correct 

predictions. Precision (Pr) is the percentage of correct positive predictions. The sensitivity 

(TP) represents the proportion between the positive cases well classified divided by the 

total number of positive cases. Taking into account (2), (3) and (4), we have that the 

accuracy of the classifier proposed is 99.53%, its precisions are greater than 99% and its 

sensitities are greater than 98%. This means that model is both accurate and exact. 

Furthermore, since the accuracy is 99.53% and taking into account the calculated margin 
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of error of 4.20%, the 95% confidence interval for the accuracy is between 95.33% and 

100%.  Acc = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑡𝑜𝑡𝑎𝑙   (2) 

P = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  (3) 

TP = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  (4) 

 

3.2. Usability test 

To start the usability tests, the threshold to detect blinks was set to 70%, the threshold to 

classify a blink was set to 70%, the number of nearest neighbors was set to 5, the 

reception channel was set to 4, the maximum frequency was set at 975Hz and the 

minimum frequency at 725Hz. Before starting each of the usability tests, the operation of 

the system was explained to each user. Additionally, each user was given 5 minutes to 

practice with the system before evaluating its usability. 

To verify the operation of the mobile application developed, 2 tasks were proposed. The 

first task consisted of the participants performing the following steps: (1) activate the 

system, (2) turn on a television and (3) deactivate the system. The second task consisted 

of the following steps: (1) turn on the system, (2) turn on a television, (3) change the 

transmission channel of the television, (4) turn off the television, and (5) deactivate the 

system. 

The column “Average Test Duration” of Tables 3 and 4 refers to the average time it took a 

subject to complete 5 repetitions of the corresponding task. The time was recorded from 

the detection of the first blink to the detection of the last blink. The column “Sent 

Commands” of these tables refers to the total number of combinations of two blinks sent 

by the test subject, regardless of whether she/he wanted to send or not that instruction. 

The column “Incorrect Commands Sent” refers to the total number of combinations of two 

blinks that the subject did not intend to send. 

 

Table 3 Results of the first task. 
 

Subject Average tests 
duration [s] 

Sent commands Incorrect 
commands sent 

1 22,74 17 1 
2 22,21 17 1 
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3 22,52 15 0 

4 22,68 17 2 

5 24,59 15 0 

 
Table 4 Results of the second task. 

 

Subject 
Average tests 
duration [s] Sent Commands 

Incorrect 
commands sent 

1 59,46 42 4 

2 60,82 37 1 

3 56,29 35 0 
4 58,41 39 3 

5 57,37 37 1 

 

The results presented in Tables 3 and 4 shows that it was necessary to send, on average, 

at least 4 commands in an average of 22.95 seconds to complete the first task. To 

complete the second task, it is necessary to send, on average, at least 8 commands in an 

average time of 58.46 seconds. The probability of sending an incorrect blink combination 

in the first task was 4.93% and in the second task it was 4.73%. These probabilities were 

estimated as the ratio between the number of incorrect commands and the total number of 

commands that were sent. We can see that there is a reduction in the probability of 

sending the wrong blink combination. This reduction occurred since, with the time of use 

of the system (for the first task), the user can more easily remember the combination of 

blinks that she/he has to send to complete successfully the second task. 
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4. CONCLUSIONS 

In this work, a BCI that uses EEG signals from eye blinks to control IoT devices has been 

developed. This BCI is especially useful for people with motor disabilities to control IoT 

devices. The proposed BCI uses combinations of long and short blinks to form commands 

to control IoT devices. These blinks are identified by the k-NN classifier, which is a very 

simple and computationally inexpensive algorithm. In addition, the BCI developed includes 

a mobile application. This mobile application allows the portability of the system 

developed. The communication between the mobile application and the IoT devices was 

done through a mosquitto server hosted in the cloud, allowing the user to control any 

device subscribed to this server. To evaluate the performance of the classifier developed, 

a test was carried out using 1500 EEGs taken from 10 users. In the classifier tests, the 

accuracy obtained was 99.53% with a margin of error of 4.2%, with a confidence level of 

95%. Additionally, the results of the first usability test, where users had to send an 

average of 16 combinations of two blinks, showed that the probability of sending an 

incorrect combination of two blinks was 4.93%. In the second usability test, where users 

had to send an average of 38 combinations of two blinks, this probability decreased to 

4.73%. These results demonstrate that the time of use of the system proposed contributes 

to reduce the probability of sending a wrong combination of eye blinks. This occurs 

because with time of use, the user more easily remembers the combination of blinks to 

send. Future work includes testing new classifiers that can distinguish between voluntary 

and involuntary blinks. 
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ANNEXES 

 

Annexed I Database used for classifier efficiency tests. 
 

− https://github.com/Kelvin9811/EEG-Blink-dataset/upload/main 

 

Annexed II Tool list. 

 

− https://epnecuador-

my.sharepoint.com/:f:/g/personal/kelvin_ortiz_epn_edu_ec/EiHQyJ-

AnV9GpebAQR50cNABpgVMKbBbYmjyG3-Zudg1sA?e=eeJQZy 

 

Annexed III User manual. 

 

− https://epnecuador-

my.sharepoint.com/:f:/g/personal/kelvin_ortiz_epn_edu_ec/ElEueUoSgvlFun42kK4

XyfUBHFRL6P0PneffsUcototRuw?e=INnCoh 

 

Annexed IV Installation manual. 

 

− https://epnecuador-

my.sharepoint.com/:f:/g/personal/kelvin_ortiz_epn_edu_ec/ElEueUoSgvlFun42kK4

XyfUBHFRL6P0PneffsUcototRuw?e=INnCoh 

 

Annexed V Access to the latest version of the mobile application. 

 

− https://epnecuador-

my.sharepoint.com/:f:/g/personal/kelvin_ortiz_epn_edu_ec/EtNi0P2rQ8RGtUmjZW

oBw_EBJ4abJD1CrkVgm5sQiSE03w?e=sHtsdH 
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