ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

GENERACIÓN DE MAPAS DE PRESIONES Y PERMEABILIDADES DEL CAMPO GUANTA-DURENO MEDIANTE LA REINTERPRETACIÓN DE PRUEBAS DE PRESIÓN

TRABAJO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEOS

OPCIÓN: TÉCNICO-EXPERIMENTAL

JAVIER FERNANDO MOROCHO CHAVEZ javier.morocho@outlook.com

DIRECTOR: Ing. RAÚL ARMANDO VALENCIA TAPIA, MSc. raul.valencia@epn.edu.ec

Quito, mayo 2021

DECLARACIÓN

Yo, Javier Fernando Morocho Chavez, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Javier Fernando Morocho Chavez

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Javier Fernando Morocho Chavez, bajo mi supervisión.

M.Sc. Raúl Armando Valencia Tapia DIRECTOR DEL TRABAJO

AGRADECIMIENTOS

A mi padre Nelson Morocho, por el inmenso esfuerzo y cariño que me ha dado a lo largo de mi carrera universitaria, este logro te lo debo a ti.

A mi Madre Angela Chavez, por siempre confiar y estar pendiente de mi en los momentos que más lo necesitaba, te amo infinitamente.

A mi abuelita Irene Mora, porque además de ser mi segunda madre es la razón por la cual pude venir a esta prestigiosa universidad a estudiar, te amo mi Chatita.

A la Escuela Politécnica Nacional y la Facultad de Ingeniería en Petróleos, en especial a los docentes quienes a lo largo de mi vida estudiantil fueron formándome como profesional.

Al M.Sc. Raúl Valencia por ser mi director de tesis, quien supo brindarme su apoyo, su conocimiento, lo cual permitió que logre terminar mi trabajo de titulación.

A la empresa Petroamazonas EP, y los Ingenieros del activo Lago Agrio en especial al Ing. Guillermo Pabón, la Ing. Karen Loor y la Ing. Carolina Guerra por compartir su conocimiento y dedicar su tiempo valioso cuando más lo necesitaba.

A mis hermanos Lisbeth, Jonathan y Gisella que siempre estuvo cuidándome desde el cielo, a mis primos Pedrito, Daniel(Moris), Nicolle, Dayana, a mis tíos Florencio y Jonhson quienes pusieron su confianza en mí y siempre supieron que lo lograría.

A mis amigos que conocí a lo largo de mi vida estudiantil en especial a mis amigos de la Vicentina: Esteban C, Damián, Chamo, Colombia, Diego, Luis, Esteban G, David, Javier, Genesis y mi mejor amiga Pamela gracias por su sincera amistad.

DEDICATORIA

Este trabajo se lo dedico con mucho cariño a mi padre Nelson Morocho, quien en todo momento sembró su confianza en mi desde que decidí ingresar a la EPN, se cuánto te has esforzado por poyarnos a mis hermanos y a mí. Quiero que sepas que eres la persona que más admiro, valoro mucho el esfuerzo y sacrificio que haces día a día por nosotros, esto lo logramos juntos, así que el triunfo es de los dos, te quiero mucho.

A mi madre Angela Chavez, eres la persona más importante en mi vida y fuiste la razón por la que decidí venir a Quito a estudiar en esta prestigiosa Universidad, confiaste en mi todo el tiempo, siempre estuviste ahí para escucharme en mis momentos de soledad, mi cariño hacia a ti es infinito, te amo mamita.

A mi abuelita Irene Mora, eres la segunda madre que Dios me dio, a ti de lo debo todo, desde que era un niño me cuidabas y siempre me brindaste tu cariño, durante este largo tiempo sufriste mucho porque no estaba a tu lado, me hiciste bastante falta, pero aquí está todo mi esfuerzo reflejado en la culminación de mi carrera y sé que eso te llena de orgullo abuelita te amo.

CONTENIDO

DECLARA	ACIÓN	I
CERTIFIC	ACIÓN	II
AGRADEC		III
DEDICATO	ORIA	IV
ÍNDICE DE	E FIGURAS	XIV
SIMBOLO	GÍA	XXI
RESUMEN	۷	XXIV
ABSTRAC	стт	XXV
INTRODU	CCIÓN	XXVI
OBJETIVC	D GENERAL	XXVII
OBJETIVC	DS ESPECIFICOS	XXVII
ALCANCE		XXVII
CAPÍTULO	01	1
MARCO T	EÓRICO	1
1.1 DE	ESCRIPCIÓN DEL CAMPO	1
1.1.1	Generalidades e historia	1
1.1.2	Ubicación Geográfica	2
1.1.3	Geofísica del campo	3
1.1.4	Geología Estructural	5
1.1.5	Estratigrafía	9
1.2 PR	ROPIEDADES PETROFÍSICAS Y PVT DEL RESERVORIO	12
1.2.1	Permeabilidad	12
1.2.2	Porosidad	12

Saturación del fluido	13
Propiedades Petrofísicas Del Campo Guanta-Dureno	13
Análisis PVT	19
ONCEPTOS GENERALES	20
Tipos de Fluidos	21
Regímenes de flujo	23
Geometría de Flujo	27
Pruebas de presión	30
ÉTODOS DE ANÁLISIS	33
Método de la curva de Gringarten et al	33
Método de Horner	34
Método de MDH (MILLER-DYES-HUTCHINSON)	36
Método de la curva tipo derivada o Método de Bourdet	37
ODELOS DE INTERPRETACIÓN DE PRUEBAS DE POZOS	39
Identificación del modelo	39
Modelos de almacenamiento del pozo	42
Modelo del pozo	47
Modelo del Reservorio	52
Modelo de Limites	60
ERRAMIENTAS ADICIONALES PARA LA INTERPRETACIÓN Y ACIÓN DE MAPAS	67
Mapas Isobáricos	67
Mapas de Permeabilidades	67
Software de Interpretación de Pruebas de Presión (Saphir)	67
Software para la caracterización de reservorio OFM	68
	Saturación del fluido Propiedades Petrofísicas Del Campo Guanta-Dureno Análisis PVT DNCEPTOS GENERALES Tipos de Fluidos Regímenes de flujo Geometría de Flujo Pruebas de presión ÉTODOS DE ANÁLISIS Método de la curva de Gringarten et al Método de Horner Método de Horner Método de MDH (MILLER-DYES-HUTCHINSON) Método de la curva tipo derivada o Método de Bourdet ODELOS DE INTERPRETACIÓN DE PRUEBAS DE POZOS Identificación del modelo Modelos de almacenamiento del pozo Modelo del pozo Modelo del Reservorio Modelo del Eservorio Modelo del Eservorio Modelo de Limites ERRAMIENTAS ADICIONALES PARA LA INTERPRETACIÓN Y ACIÓN DE MAPAS Mapas Isobáricos Mapas de Permeabilidades Software de Interpretación de Pruebas de Presión (Saphir) Software para la caracterización de reservorio OFM

CAPÍT	ULO 2	69
ANÁL	ISIS E INTERPRETACIÓN DE DATOS	69
2.1	Tipo de Estudio e Instrumentos de análisis	69
2.2	Universo y Muestra	69
2.3	Procesamiento y recopilación de información	69
2.4	Interpretación de pruebas de restauración de presión	75
2.5	Estimación de la presión actual	
2.6	Generación de mapas de presión y permeabilidad	
CAPÍT	ULO 3	79
RESUI	TADOS Y DISCUSIÓN	79
3.1	Resultados del análisis de presión	79
3.2	Comparación de resultados de las pruebas de presión	85
3.3	Presión al datum	87
3.4	Declinación de presión	88
3.5	Presión actual	91
3.6	Mapas de presiones y permeabilidades	93
3.6	6.1 Datos para la generación de los mapas de presión	93
3.6	5.2 Datos para la generación de mapas de permeabilidades	95
CAPÍT	ULO 4	105
CONC	LUSIONES Y RECOMENDACIONES	105
4.1	CONCLUSIONES	105
4.2	RECOMENDACIONES	107
BIBLIC	GRAFIA	109
ANEX	DS	112

ÍNDICE DE TABLAS

N.º	DESCRIPCIÓN	PÁGINA
Tabla 1.	Características de la roca según su permeabilidad	12
Tabla 2.	Características de la roca según su porosidad	13
Tabla 3.	Parámetros Petrofísicos de la arena "Basal Tena"	14
Tabla 4.	Parámetros Petrofísicos de la arena "U"	14
Tabla 5.	Parámetros Petrofísicos de la arena "T"	17
Tabla 6.	Parámetros Petrofísicos de la arena "Hollín Superior"	19
Tabla 7.	Resumen de Análisis PVT de las arenas del campo Guanta-Dureno.	20
Tabla 8.	Condiciones del pozo con relación a su curva de ajuste	39
Tabla 10	Recopilación de pruebas de presión en el campo Guanta-Dureno	71
Tabla 11	I. Pruebas del campo Guanta-Dureno desde el año 2013 al 2020	73
Tabla 12	2. Criterios de selección para el análisis de pruebas de presión	74
Tabla 13	3. Resultados del análisis de pruebas de presión en la arena "BT"	80
Tabla 14	I. Resultados del análisis de pruebas de presión en la arena "U"	81
Tabla 15	5. Resultados del análisis de pruebas de presión en la arena "T"	82
Tabla 16	6. Resultados del análisis de pruebas de presión en la arena "HS"	83
Tabla 17	. Pruebas con un criterio Bajo y No valido	84
Tabla 18	3. Comparación de resultados válidos en la arena Basal Tena	85
Tabla 19	O. Comparación de resultados válidos en la arena "U"	86
Tabla 20). Comparación de resultados válidos en la arena "T"	86
Tabla 21	L Comparación de resultados válidos en la arena Hollín Superior	87
Tabla 22	2. Presión corregida al DATUM	87
Tabla 23	B. Estimación de la presión actual para la arena Basal Tena	

Tabla 24. Estimación de la presión actual para la arena "U" Inferior
Tabla 25. Estimación de la presión actual para la arena "T" Inferior
Tabla 26. Estimación de la presión actual para la arena Hollín Superior
Tabla 27. Datos para generar el mapa de presión de la arena BT 94
Tabla 28. Datos para generar el mapa de presión de la arena UI 94
Tabla 29. Datos para generar el mapa de presión de la arena TI
Tabla 30. Datos para generar el mapa de presión de la arena HS 95
Tabla 31. Datos para generar el mapa de permeabilidad de la arena BT 95
Tabla 32. Datos para generar el mapa de permeabilidad de la arena UI
Tabla 33. Datos para generar el mapa de permeabilidad de la arena TI
Tabla 34. Datos para generar el mapa de permeabilidad de la arena HS 96
Tabla 35. Base de datos de las pruebas de presión realizadas en el campo Guanta-Dureno113
Tabla 36. Matriz de eventos en el Pozo GNT-002 119
Tabla 37. Corrección a Mitad de punzados de los valores obtenidos en lasinterpretaciones121
Tabla 38. Parámetros del pozo y del modelo seleccionado para GNTE-004_ BT(19/08/2015)
Tabla 39. Resultados por los métodos de la derivada y Horner GNTE-004_ BT(19/08/2015)
Tabla 40. Parámetros del pozo y del modelo seleccionado para GNT-005_BT(13/05/2015)
Tabla 41. Resultados por los métodos de la derivada y Horner GNT-005_BT(13/05/2015)
Tabla 42. Parámetros del pozo y del modelo seleccionado para GNT-015_BT(14/04/2018)

Tabla 43. Resultados por los métodos de la derivada y Horner GNT-015_BT(14/04/2018)	124
Tabla 44. Parámetros del pozo y del modelo seleccionado para GNTA-018_BT(29/09/2013)	125
Tabla 45. Resultados por los métodos de la derivada y Horner GNTA-018_BT(29/09/2013)	125
Tabla 46. Parámetros del pozo y del modelo seleccionado para GNTE-034_BT(06/11/2015)	126
Tabla 47. Resultados por los métodos de la derivada y Horner GNTE-034_BT(06/11/2015)	126
Tabla 48. Parámetros del pozo y del modelo seleccionado para GNT-002_US (30/06/2013)	127
Tabla 49. Resultados por los métodos de la derivada y Horner GNT-002_US(30/06/2013)	127
Tabla 50. Parámetros del pozo y del modelo seleccionado para GNTC-017_UI (08/10/2014)	128
Tabla 51. Resultados por los métodos de la derivada y Horner GNTC-017_UI (08/10/2014)	128
Tabla 52. Parámetros del pozo y del modelo seleccionado para GNTA-020_UI (28/10/2017)	129
Tabla 53. Resultados por los métodos de la derivada y Horner GNTA-020_UI(28/10/2017)	129
Tabla 54. Parámetros del pozo y del modelo seleccionado para GNTC-026_UI (16/11/2018)	130
Tabla 55. Resultados por los métodos de la derivada y Horner GNTC-026_UI (16/11/2018)	130

Tabla 56. Parámetros del pozo y del modelo seleccionado para GNTF-028_UI(03/12/2014)	. 131
Tabla 57. Resultados por los métodos de la derivada y Horner GNTF-028_UI(03/12/2014)	. 131
Tabla 58. Parámetros del pozo y del modelo seleccionado para GNTF-038_UI (11/04/2015)	. 132
Tabla 59. Resultados por los métodos de la derivada y Horner GNTF-038_UI (11/04/2015)	. 132
Tabla 60. Parámetros del pozo y del modelo seleccionado para GNTF-039_UI (21/07/2017)	. 133
Tabla 61. Resultados por los métodos de la derivada y Horner GNTF-039_UI (21/07/2017)	. 133
Tabla 62. Parámetros del pozo y del modelo seleccionado para DROA-002_TI (14/04/2014)	. 134
Tabla 63. Resultados por los métodos de la derivada y Horner DROA-002_TI(14/04/2014)	. 134
Tabla 64. Parámetros del pozo y del modelo seleccionado para GNT-015_TI(03/07/2013)	. 135
Tabla 65. Resultados por los métodos de la derivada y Horner GNT-015_TI(03/07/2013)	. 135
Tabla 66. Parámetros del pozo y del modelo seleccionado para GNTA-018_TI (19/05/2014)	. 136
Tabla 67. Resultados por los métodos de la derivada y Horner GNTA-018_TI (19/05/2014)	. 136
Tabla 68. Parámetros del pozo y del modelo seleccionado para GNTA-019_TI (11/12/2018)	. 137

Tabla 69. Resultados por los métodos de la derivada y Horner GNTA-019_TI(11/12/2018)137
Tabla 70. Parámetros del pozo y del modelo seleccionado para GNTF-028_TI(27/12/2016)
Tabla 71. Resultados por los métodos de la derivada y Horner GNTF-028_TI(27/12/2016)138
Tabla 72. Parámetros del pozo y del modelo seleccionado para GNTD-032_TI(12/05/2013)139
Tabla 73. Resultados por los métodos de la derivada y Horner GNTD-032_TI(12/05/2013)139
Tabla 74. Parámetros del pozo y del modelo seleccionado para GNTD-047_TI(09/04/2019)140
Tabla 75. Resultados por los métodos de la derivada y Horner GNTD-047_TI(09/04/2019)
Tabla 76. Parámetros del pozo y del modelo seleccionado para GNTG-048_TI(04/01/2019)141
Tabla 77. Resultados por los métodos de la derivada y Horner GNTG-048_TI(04/01/2019)141
Tabla 78. Parámetros del pozo y del modelo seleccionado para GNT-015_HS(13/02/2013)142
Tabla 79. Resultados por los métodos de la derivada y Horner GNT-015_HS(13/02/2013)142
Tabla 80. Parámetros del pozo y del modelo seleccionado para GNTC-023_HS(25/02/2018)143
Tabla 81. Resultados por los métodos de la derivada y Horner GNTC-023_HS(25/02/2018)

Tabla 82. Parámetros del pozo y del modelo seleccionado para GNTE-031_HS	
(05/10/2018)	144
Tabla 83. Resultados por los métodos de la derivada y Horner GNTE-031_HS(05/10/2018)	144
Tabla 84. Parámetros del pozo y del modelo seleccionado para GNTE-034_HS(04/01/2019)	145
Tabla 85. Resultados por los métodos de la derivada y Horner GNTE-034_HS(04/01/2019)	145

ÍNDICE DE FIGURAS

N.º	DESCRIPCIÓN	PÁGINA
Figura 1	. Ubicación del campo Guanta-Dureno	2
Figura 2	. Sísmica 2D del campo Guanta-Dureno	3
Figura 3	. Sísmica 3D del campo Guanta-Dureno	4
Figura 4	. Sección sísmica con los 4 marcadores principales y la falla inversa	4
Figura 5	. Mapa Estructural en tope arenisca Basal Tena	5
Figura 6	. Mapa Estructural en tope arenisca "U" Inferior	6
Figura 7	. Mapa Estructural en tope arenisca "T" Inferior	7
Figura 8	. Mapa Estructural en tope arenisca Hollín Superior	8
Figura 9 de la cue	. Columna estratigráfica generalizada de los yacimientos de Hidroca enca Oriente del Ecuador	rburos 11
Figura 1 para los t	0. Esquemas de cambios de volumen y densidad en función de la pr tres tipos de fluidos	esión 23
Figura 1	1. Flujo Radial Continuo	24
Figura 1	2. Flujo Pseudo Continuo con producción constante, de t2 a t5	25
Figura 1	3. Flujo Radial Transitorio con producción constante	26
Figura 1	4. Gráfico log-log derivada de presión-tiempo para los regímenes de	flujo. 26
Figura 1	5. Vista frontal y superior del flujo radial	27
Figura 1	6. Flujo lineal	28
Figura 1 [°]	7. Flujo esférico	29
Figura 18	8. Flujo hemisférico	29
Figura 1	9. Gráfico de diagnóstico de flujo con la función de primera derivada	30
Figura 20	0. Prueba de decremento de presión	31

Figura 21.	Prueba de restauración de presión	31
Figura 22.	Prueba de inyección(izquierda) y prueba de Fall off(derecha)	32
Figura 23.	Curva tipo de Gringarten	34
Figura 24.	Gráfico tipo Horner	35
Figura 25.	Gráfico MDH	37
Figura 26. yacimiento	Tipo de curvas para un pozo con almacenamiento y efectos piel en un con comportamiento homogéneo	38
Figura 27.	Clasificación de Regímenes de tiempos para pruebas de pozos	40
Figura 28.	Regiones de tiempo de una prueba de restauración de presión	41
Figura 29.	Efecto de almacenamiento de pozo(idealización)	43
Figura 30.	Curvas de datos en un periodo almacenamiento constante	45
Figura 31.	Curvas de datos en un periodo almacenamiento variable	45
Figura 32.	Idealización del concepto de daño	46
Figura 33.	Comportamiento de fractura de conductividad infinita	47
Figura 34.	Gráfico log-log de una fractura con conductividad infinita	48
Figura 35.	Comportamiento de fractura de conductividad infinita	49
Figura 36.	Regímenes de flujo de entrada limitada	50
Figura 37.	Geometría de un Pozo Horizontal	51
Figura 38.	Comportamiento de un Pozo Horizontal	51
Figura 39.	Reservorio con doble porosidad naturalmente fracturado(idealización)	53
Figura 40.	Sección transversal de presión	54
Figura 41.	Gráfico de registro de doble porosidad, PSS	54
Figura 42.	Comportamiento de un yacimiento naturalmente fracturado (doble	
porosidad)		55
Figura 43.	Sección transversal de presión	55

Figura 44. Comportamiento de un reservorio con doble porosidad transiente y	
semiestacionario	. 56
Figura 45. Idealización de un reservorio con doble permeabilidad/porosidad	
naturalmente fracturada	. 56
Figura 46. Reservorio tipo doble permeabilidad (two layers)	. 57
Figura 47. Respuesta de presión en un reservorio con dos capas	. 58
Figura 48. Esquema de reservorios compuestos radial y lineal	. 59
Figura 49. Respuesta del Flujo Radial Compuesto en una prueba de BUP	. 59
Figura 50. Idealización de la geometría de un pozo con falla-sellante	60
Figura 51. Pendiente doble causada por dos regímenes de flujo radial con un lími	te
de falla sellante	. 61
Figura 52. Comportamiento de los límites con fugas	. 61
Figura 53. Esquema de un pozo con intersección de fallas sellantes	. 62
Figura 54. Comportamiento de la presión en presencia de dos fallas intersecantes	s 63
Figura 55. Esquema de un pozo con fallas paralelas	63
Figura 56. Comportamiento de la presión en presencia fallas paralelas	. 64
Figura 57. Esquema de dos reservorios cerrados: circular y rectangular	. 64
Figura 58. Comportamiento de la presión y su derivada en sistemas cerrados	. 65
Figura 59. Reservorio rectangular, con límites de presión constante hacia el oeste	ə 65
Figura 60. Método de Horner para un modelo con presión constante	. 66
Figura 61. Comparación de los diferentes modelos de límites en una prueba de	
(Build-up)	. 66
Figura 62. Análisis de Datos Dinámicos	. 68
Figura 63. Porcentaje de los criterios de las pruebas de presión	. 75
Figura 64. Parámetros para el análisis	76

Figura 65. Flujo de trabajo para la interpretación de pruebas de presión (Bup) y la generación de mapas isobáricos	<u>३</u> 77
Figura 66. Declinación de la presión de la arena Basal Tena	88
Figura 67. Declinación de la presión de la arena "U" Inferior	89
Figura 68. Declinación de la presión de la arena "T" Inferior	90
Figura 69. Declinación de la presión de la arena Hollín Superior	90
Figura 70. Mapa de presiones arenisca Basal Tena	97
Figura 71. Mapa de presiones arenisca "U" Inferior	98
Figura 72. Mapa de presiones arenisca "T" Inferior	99
Figura 73. Mapa de presiones arenisca Hollín Superior	100
Figura 74. Mapa de permeabilidades arenisca Basal Tena	101
Figura 75. Mapa de permeabilidades arenisca "U" Inferior	102
Figura 76. Mapa de permeabilidades arenisca "T" Inferior	103
Figura 77. Mapa de permeabilidades arenisca Hollín Superior	104
Figura 78. Ajuste de historial de producción y presión. Pozo GNTE-004_BT (19/08/2015)	122
Figura 79. Respuesta de la Derivada y Horner. Pozo GNTE-004_BT (19/08/2015	5) 122
Figura 80. Ajuste de historial de producción y presión. Pozo GNT-005_BT (13/05/2015)	123
Figura 81. Respuesta de la Derivada y Horner. Pozo GNT-005_BT (13/05/2015).	123
Figura 82. Ajuste de historial de producción y presión. Pozo GNT-015_BT (14/04/2018)	124
Figura 83. Respuesta de la Derivada y Horner. Pozo GNT-015 BT (14/04/2018).	124
Figura 84. Ajuste de historial de producción y presión. Pozo GNTA-018 BT	
(29/09/2013)	125

Figura 85. Respuesta de la Derivada y Horner. Pozo GNTA-018_BT (29/09/2013)125
Figura 86. Ajuste de historial de producción y presión. Pozo GNTE-034_BT (06/11/2015)
Figura 87. Respuesta de la Derivada y Horner. Pozo GNTE-034_BT (06/11/2015)126
Figura 88. Ajuste de historial de producción y presión. Pozo GNT-002_US (30/06/2013)
Figura 89. Respuesta de la Derivada y Horner. Pozo GNT-002_US (30/06/2013). 127
Figura 90. Ajuste de historial de producción y presión. Pozo GNTC-017_UI (08/10/2014)
Figura 91. Respuesta de la Derivada y Horner. Pozo GNTC-017_UI (08/10/2014) 128
Figura 92. Ajuste de historial de producción y presión. Pozo GNTA-020_UI (28/10/2017)
Figura 93. Respuesta de la Derivada y Horner. Pozo GNTA-020_UI (28/10/2017) 129
Figura 94. Ajuste de historial de producción y presión. Pozo GNTC-026_UI (16/11/2018)
Figura 95. Respuesta de la Derivada y Horner. Pozo GNTC-026_UI (16/11/2018) 130
Figura 96. Ajuste de historial de producción y presión. Pozo GNTF-028_UI (03/12/2014)
Figura 97. Respuesta de la Derivada y Horner. Pozo GNTF-028_UI (03/12/2014) 131
Figura 98. Ajuste de historial de producción y presión. Pozo GNTF-038_UI (11/04/2015)
Figura 99. Respuesta de la Derivada y Horner. Pozo GNTF-038_UI (11/04/2015) 132
Figura 100. Ajuste de historial de producción y presión. Pozo GNTF-039_UI (21/07/2017)
Figura 101. Respuesta de la Derivada y Horner. Pozo GNTF-039_UI (21/07/2017)

Figura 102. (14/04/2014)	Ajuste de historial de producción y presión. Pozo DROA-002_TI 13 [,]	4
Figura 103.	Respuesta de la Derivada y Horner. Pozo DROA-002_TI (14/04/2014) 	4
Figura 104. (03/07/2013)	Ajuste de historial de producción y presión. Pozo GNT-015_TI 	5
Figura 105.	Respuesta de la Derivada y Horner. Pozo GNT-015_TI (03/07/2013) 13	5
Figura 106. (19/05/2014)	Ajuste de historial de producción y presión. Pozo GNTA-018_TI 	6
Figura 107. I	Respuesta de la Derivada y Horner. Pozo GNTA-018_TI (19/05/2014) 13	6
Figura 108. /	Ajuste de historial de producción y presión. Pozo GNTA-019_TI 	7
Figura 109.	Respuesta de la Derivada y Horner. Pozo GNTA-019_TI (11/12/2018) 	7
Figura 110. (27/12/2016)	Ajuste de historial de producción y presión. Pozo GNTF-028_TI 13	8
Figura 111.	Respuesta de la Derivada y Horner. Pozo GNTF-028_TI (27/12/2016) 	8
Figura 112. (12/05/2013)	Ajuste de historial de producción y presión. Pozo GNTD-032_TI 	9
Figura 113.	Respuesta de la Derivada y Horner. Pozo GNTD-032_TI (12/05/2013) 13	9
Figura 114. (09/04/2019)	Ajuste de historial de producción y presión. Pozo GNTD-047_TI 	0
Figura 115.	Respuesta de la Derivada y Horner. Pozo GNTD-047_TI (09/04/2019) 	0

Figura 116. Ajuste de historial de producción y presión. Pozo GNTG-048_TI (04/01/2019)
Figura 117. Respuesta de la Derivada y Horner. Pozo GNTG-048_TI (04/01/2019)
Figura 118. Ajuste de historial de producción y presión. Pozo GNT-015_HS (13/02/2013) 142
Figura 119. Respuesta de la Derivada y Horner. Pozo GNT-015_HS (13/02/2013)142
Figura 120. Ajuste de historial de producción y presión. Pozo GNTC-023_HS (25/02/2018)
Figura 121. Respuesta de la Derivada y Horner. Pozo GNTC-023_HS (25/02/2018)
Figura 122. Ajuste de historial de producción y presión. Pozo GNTE-031_HS (05/10/2018)
Figura 123. Respuesta de la Derivada y Horner. Pozo GNTE-031_HS (05/10/2018)
Figura 124. Ajuste de historial de producción y presión. Pozo GNTE-034_HS (04/01/2019)
Figura 125. Respuesta de la Derivada y Horner. Pozo GNTE-034_HS (04/01/2019)

SIMBOLOGÍA

SIMBOLO	DEFINICIÓN	DIMENSIONES
°API	Gravedad Especifica, grados °API	
BAPD	Barriles de agua por día	L ³ /t
Boi	Factor Volumétrico inicial del petróleo	
bup	Build up	
BPPD	Barriles de petróleo por día	L ³ /t
BSW	Contenido de agua y sedimentos(Basic Sediment and	
	Water)	
BT	Arena Basal Tena	
С	Coeficiente de almacenamiento	
C _D	Coeficiente de almacenamiento adimensional	
cg	Compresibilidad del gas	
ср	Centipoise	
Ct	Compresibilidad total	
DRO	Dureno	
E.T.R	Región de tiempos tempranos (Early Time Region)	
GNT	Guanta	
h	Espesor	L
hn	Espesor neto	L
HS	Arena Hollín Superior	
IARF	Flujo radial de acción infinita	
k	Permeabilidad	L ²
kd	Permeabilidad de la zona dañada	L ²
kh	Capacidad de flujo	
kr	Permeabilidad del yacimiento	L ²
kz	Permeabilidad en el eje z	L ²

SIMBOLO DEFINICIÓN

DIMENSIONES

	Ocurrencia más baja conocida(Lowest Known		
L.N.U	Occurrence)		
L.T.R	Región de Tiempos Tardíos(Late Time Region)		
m	Pendiente		
mD	Milidarcy		
MD	Profundidad Media (Meassure Depth)	L	
MP	Profundidad a mitad de punzados	L	
M.T.R	Región de Tiempos Medios(Middle Time Region)		
OFM	Oil Field Manager		
Р	Presión		M/Lt^2
Pb	Presión de burbuja		M/Lt^2
P _D	Presión adimensional		M/Lt^2
Phi (ø)	Porosidad		
Pi	Presión inicial		M/Lt ²
Pr	Presión de reservorio		M/Lt^2
psi	Libra fuerza por pulgada cuadrada		
PSS	Flujo Pseudo-continuo (Pseudo Steady State Flow)		
Ρ٧Τ	Presión Volumen Temperatura		
Pwf	Presión de fondo fluyente		M/Lt^2
Pws	Presión de fondo estático		M/Lt^2
q	Caudal		L ³ /t
q _{sf}	Caudal a condiciones de almacenamiento constante		L ³ /t
r	Radio	L	
rd	Radio de la zona dañada	L	
rw	Radio del pozo	L	
S	Daño de formación(Skin)		

SIMBOLO DEFINICIÓN

SS	Flujo Continuo (Steady State Flow)			
Sw	Saturación de agua			
STB	Barriles estándar			
т	Temperatura	Т		
t _D	Tiempo adimensional	t		
ті	Arena T Inferior			
t _p	Tiempo de producción	t		
t _{pss}	Tiempo de producción pseudo estable	t		
TS	Arena T Superior			
TVD	Profundidad vertical verdadera(True Vertical Depth)	L		
TVDSS	Profundidad vertical verdadera sobre el nivel del	L		
	mar(True Vertical Depth Subsea)			
UI	Arena U Inferior			
uo	Viscosidad del petróleo	M/Lt		
US	Arena U Superior			
UTM	Universal Transversal Mercator			
V	Volumen		L^3	
Vi	Volumen inicial		L^3	
W.O	Trabajo de Reacondicionamiento (Work Over)			
ρ	Densidad del fluido		M/L^3	3

RESUMEN

Se recopiló información a lo largo de la vida productiva del campo, encontrando 190 pruebas de buildup realizadas hasta la fecha actual. Se diseñó una base de datos bajo ciertos parámetros petrofísicos y geológicos necesarios para usarlos en el software Saphir NL, permitiendo realizar las reinterpretaciones de buildup.

De la base de datos se seleccionaron pruebas desde el año 2013 hasta la más actual dando un total de 49 pruebas disponibles de todas las arenas del campo Guanta-Dureno, las mismas fueron clasificadas bajo la selección de diferentes criterios: (Alto, Medio, Bajo y no valido), estos criterios nos proporcionan un rango de confiabilidad en cada prueba para una correcta reinterpretación.

Se realizaron correcciones de presión a mitad de perforaciones y al datum de las reinterpretaciones de buildup, se estimó la presión para junio de 2021 mediante un análisis de las presiones en funciones de las fechas de pruebas de bup. Finalmente, a partir de esta información la cual fue validada mediante un análisis comparativo entre los resultados obtenidos en este trabajo y los valores promedios del campo, se determino que los resultados son confiables, esto permitió generar los mapas de presiones y permeabilidades de las Arenas: Basal Tena, "U" Inferior, "T" Inferior, Hollín Superior.

PALABRAS CLAVE:

Campo Guanta-Dureno, Criterios de Selección, Interpretación de pruebas de presión, Estimación de Presión, Mapas de Presiones y Permeabilidades.

ABSTRACT

Information was collected throughout the productive life of the field, finding 190 buildup tests carried out to date. A database was designed under certain petrophysical and geological parameters necessary to use them in the Saphir NL software, allowing the reinterpretations of buildup to be carried out.

From the database, tests were selected from 2013 to the most current, giving a total of 49 tests available from all the sands of the Guanta-Dureno field, they were classified under the selection of different criteria: (High, Medium, Low and not valid), these criteria provide us with a range of reliability in each test for a correct reinterpretation.

Pressure corrections were made in the middle of the holes and to the datum of the buildup reinterpretations, the pressure was estimated for June 2021 by means of an analysis of the pressures as a function of the dates of the buildup tests. Finally, from this information which was validated through a comparative analysis between the results obtained in this work and the average values of the field, it was determined that the results are reliable, this allowed to generate the pressure and permeability maps of the Sands: Basal Tena, Lower "U", Lower "T", Hollín Upper.

KEY WORDS:

Guanta-Dureno field, Selection criterion, Pressure test interpretation, Pressure estimation, Pressure and Permeability Maps.

INTRODUCCIÓN

El campo Guanta-Dureno empezó su producción en el año de 1969 con el pozo Dureno-01 que tuvo una producción de 244 BPPD y 5 BAPD en la arena "T", luego de ser conocida la estructura como Guanta, en el año 1985 se perforó el pozo Guanta-01, del cual se obtuvo una producción de 1968 BPPD y un BSW = 0%. La presión y la tasa de producción del campo se han visto afectado desde el inicio de su producción hasta la actualidad en las arenas: Basal Tena, "U" Inferior, "T" Inferior, Hollín superior. En la actualidad este campo se encuentra en su etapa de madurez con

un promedio del 42,58% de declinación en los valores de presión (Baby, Rivadeneira, & Barragán, 2014).

Los pozos en el campo Guanta-Dureno se encuentran en estado: activo, cerrado, inactivo, esperando work over, trabajando con work over y work over suspendido. Actualmente la mayor parte de sus arenas se encuentran en constante declinación, tomando en cuenta que gran parte de sus pozos se encuentran en estado activos y otros inactivos.

Se han realizado numerosas pruebas de presión en todas las arenas del campo, pero existen pruebas que no cuentan con un buen estado digital, por lo que no se puede asumir que los datos sean confiables, en algunas pruebas es difícil visualizar los datos y resultados, además no existe información actualizada del campo, por este motivo se decidió realizar una base de datos, recopilando la mayor cantidad de datos de cada pozo.

La información de las arenas muestra una declinación de presión y producción durante la vida productiva del campo, estos valores se encuentran disponibles de forma digital pero no permiten hacer un correcto análisis del comportamiento de las arenas, la dificultad es porque el campo no cuenta con una actualización de mapas de presiones y permeabilidades.

OBJETIVO GENERAL

Generar mapas de presiones y permeabilidades del campo Guanta-Dureno mediante la reinterpretación de pruebas de presión.

OBJETIVOS ESPECIFICOS

- Elaborar una matriz histórica de datos, eficiente y dinámica de pruebas de presión basado en la recopilación de datos de los reportes de BUP.
- Reinterpretar las pruebas de restauración de presión para el campo Guanta-Dureno.
- Correlacionar la presión de las arenas del campo para la estimación de la presión actual.

ALCANCE

Análisis de las pruebas de presión de las arenas Basal Tena, U Superior, U Inferior, T Superior, T Inferior, Hollín Superior del campo Guanta-Dureno para el periodo 2013-2019 para generación de mapas de presión.

CAPÍTULO 1

MARCO TEÓRICO

1.1 DESCRIPCIÓN DEL CAMPO

1.1.1 Generalidades e historia

El campo Guanta – Dureno, fue descubierto por Texaco – Gulf, mediante la perforación del pozo exploratorio DRO–01TI, alcanzó la profundidad total de 10286', en Julio de 1969, las pruebas iniciales del pozo dieron en la arena "T": 244 BPPD; 5 BAPD y 32 °API (Petroamazonas EP, 2020).

El pozo Guanta – 01, inició su perforación el 15 de diciembre de 1985 y terminó la perforación el 8 de enero de 1986, se completó el 11 de febrero de 1986, las pruebas iniciales del reservorio "T" fueron de 1968 BPPD, 0% BSW, 31.7° API y del reservorio "U" fueron de 3676 BPPD, 0% BSW, 29.7° API. El pozo Guanta–01 determinó que los yacimientos forman parte de un solo campo mediante las interpretaciones del procesamiento sísmico del campo (Baby, Rivadeneira, & Barragán, 2014).

Inicialmente las interpretaciones sísmicas, hacían pensar que se trataba de 2 campos independientes, pero luego de la perforación de Guanta I y Dureno I, se determinó que se trata de un solo campo, esto se confirmó en junio de 1986 cuando se perforo Guanta 2, la cual se encontraba situada a la mitad de distancia entre los pozos que se mencionó anteriormente (Baby, Rivadeneira, & Barragán, 2014).

1.1.2 Ubicación Geográfica

El campo Guanta - Dureno, se encuentra ubicado al Noroeste de la región Amazónica Ecuatoriana, en la provincia de Sucumbíos, en el cantón Nueva Loja, al Sur Oeste del Campo Parahuacu y a unos 15 Km., en dirección Sur Este del Campo Lago Agrio, alineado con el Play petrolero de los campos Tiguino, Cononaco, Auca, Sacha, Palo Azul – Palo Rojo y Charapa, con una dirección preferencial Norte – Noreste, este Play petrolero, entrampa hidrocarburos en las secuencias detríticas de las formaciones Hollín, Napo y Tena. El campo Guanta – Dureno tiene una extensión de área aproximada de 4.5 Km de ancho por 16 Km de largo (Petroamazonas EP, 2020).

1.1.3 Geofísica del campo

El campo Guanta-Dureno cuenta con el procesamiento Sísmico 2D y 3D que fue adquirida en 2012-2013 por la empresa BGP y procesada por SINOPEC en 2014 para PETROAMAZONAS, que incluyó aproximadamente 1,473.39 Km² en superficie y de 177.4 Km de datos sísmicos 3D (Petroamazonas EP, 2020).

La Figura 2 y 3 representan las imágenes en un plano vertical y tridimensional del campo.

Figura 2. Sísmica 2D del campo Guanta-Dureno Fuente: (Petroamazonas EP, 2020)

Figura 3. Sísmica 3D del campo Guanta-Dureno Fuente: (Petroamazonas EP, 2020)

Mediante interpretaciones preliminares del área se llegó a concluir que el campo Guanta-Dureno se encuentra delimitado por una falla inversa de alto ángulo que corta en todo el campo en el flanco Este, la dirección del fallamiento es NNS-SSO como se muestra en la Figura 4 (Petroamazonas EP, 2020).

Figura 4. Sección sísmica con los 4 marcadores principales y la falla inversa Fuente: (Petroamazonas EP, 2020)

1.1.4 Geología Estructural

El campo Guanta-Dureno, es definida como una estructura anticlinal alargada de dirección N-SW DE 16 Km de largo por 4.5 Km de ancho. Al este se encuentra limitado por una falla inversa y su límite de petróleo al reservorio principal Tinf está controlado por un (L.K.O) de 8779'. La producción del campo Guanta-Dureno es principalmente de la formación Napo, pero tiene como potenciales los reservorios a Hollín y Basal Tena (Petroamazonas EP, 2020).

Figura 5. Mapa Estructural en tope arenisca Basal Tena Fuente: (Petroamazonas EP, 2020)

La Figura 5, nos indica que para el reservorio Basal Tena se dio una actualización del mapa estructural en el año 2019, incluyendo los pozos GNT-048 y GNT-047 el mapa vario en área cero, en 126 acres (Petroamazonas EP, 2020).

Figura 6. Mapa Estructural en tope arenisca "U" Inferior Fuente: (Petroamazonas EP, 2020)

Para el Reservorio "U" inferior con la actualización del mapa estructural incluyendo los pozos GNT-048 y GNT-047 el mapa vario en área cero, siendo una variación más evidente en la zona bajo la falla, en 2725 acres, aumentando en el 2019 como lo indica la Figura 6 (Petroamazonas EP, 2020).

Figura 7. Mapa Estructural en tope arenisca "T" Inferior Fuente: (Petroamazonas EP, 2020)

La Figura 7, muestra la actualización del mapa estructural del reservorio "T" inferior incluyendo los pozos GNT-048 y GNT-047. Los cambios en propiedades petrofísicas están atados a la actualización de topes formacionales (Petroamazonas EP, 2020).

Figura 8. Mapa Estructural en tope arenisca Hollín Superior Fuente: (Petroamazonas EP, 2020)

La Figura 8, representa el reservorio Hollín Superior con la actualización del mapa estructural incluyendo los pozos GNT-048 y GNT-047 el mapa vario en área cero, siendo una variación más evidente en la zona bajo la falla, la disminución en POES de 3, 503, 873 bls está atado principalmente a una variación en saturación de agua (Petroamazonas EP, 2020).
1.1.5 Estratigrafía

En el campo Guanta-Dureno y en la zona norte de la Cuenca Oriental de abajo hacia arriba se encuentra la siguiente estratigrafía:

Hollín Inferior

White et al. (1995) indica que las areniscas de Hollín Inferior tuvieron un proceso de depositación en un ambiente fluvial de ríos entrelazados durante el Aptiano, rellenando paleovalles a continuación del evento tectónico que deformó las rocas Jurásicas de Misahualli.

La Litología de Hollín Inferior corresponde a una arenisca cuarzosa, intercalaciones de limolitas y arcillolitas de grano grueso, cuyo tope está definido por una anomalía radioactiva presente en gran parte de la cuenca, ubicada en el cuello lutáceo que la separa de la arenisca Hollín Superior (Petroamazonas EP, 2020).

Hollín Superior

Litológicamente está constituida de arenisca cuarzosa, glauconítica, de grano fino a medio, presencia de intercalaciones de lutitas negras calcáreas, grano grueso con intercalaciones de limolitas y arcillolitas, su tope está definido por una anomalía radioactiva presentare en gran parte de la cuenca localizada en el cuello lutáceo que la separa de la arenisca Hollín Inferior (Petroamazonas EP, 2020).

Arenisca T Inferior

La arenisca T inferior se encuentra constituida por: arenisca cuarzosa, gris clara a café clara, grano medio a fino, matriz caolinítica y subredondeada de moderada clasificación (Petroamazonas EP, 2020).

✤ Arenisca T Superior

El registro masterlog del control litológico durante la perforación de los pozos, determino litológicamente que la arenisca T Superior presenta un intervalo arenoso,

con intercalaciones de lutitas. Presenta arenas de grano fino a medio, matriz arcillosa, cemento calcáreo y glauconita durante todo el intervalo (Petroamazonas EP, 2020).

✤ Arenisca U Inferior

Litológicamente la Arena U inferior está constituida por una arenisca cuarzosa, café claro, grano fino a medio, subredondeada, de regular clasificación y matriz caolinítica (Petroamazonas EP, 2020).

✤ Arenisca U Superior

La sedimentología de la arena está basada en registros de pozos y descripciones en registros litológicos (Masterlog). En los registros eléctricos se observan cuerpos discontinuos de arena, rodeados de cuerpos arcillosos (interpretado como planicies lodosas). La discontinuidad de las arenas en este reservorio sugiere depósitos de plataforma, tipo "shoals", depositados por acción del oleaje y/o tormentas. Litológicamente nos indica la presencia de glauconita en la matriz de areniscas de grano fino a medio (Petroamazonas EP, 2020).

✤ Arenisca Basal Tena

Jaillard (1997) define este tipo de arena como un microconglomerado discordante depositado en canales, con clastos de lutitas verdes y cuarzo. En el anticlinal Mirador estas arenas pasan a margas arenosas verdes con estratificación cruzada de tipo espina de pescado (herring borne), que sugiere un depósito en ambiente influenciado por mareas.

Litológicamente en la Arenisca Basal Tena en el campo Guanta-Dureno, es cuarzosa, blanca a gris clara, de grano fino a medio, friable, subredondeada, regular selección, cemento calcáreo (Petroamazonas EP, 2020).

La columna estratigráfica del campo Guanta-Dureno se muestra en la Figura 9.

Figura 9. Columna estratigráfica generalizada de los yacimientos de Hidrocarburos de la cuenca

Oriente del Ecuador

Fuente: (Baby et al, 2006)

1.2 PROPIEDADES PETROFÍSICAS Y PVT DEL RESERVORIO

La petrofísica nos permite determinar las propiedades físicas de la roca y la interacción que esta tiene con los fluidos. Los datos pvt aportan a la industria con datos claves acerca de comportamiento del reservorio (Castro Delgado & Gómez Bóhorquez, 2016).

1.2.1 Permeabilidad

La permeabilidad es la medida de la facilidad con que una roca permite que los fluidos puedan ingresar y moverse dentro del volumen poroso interconectado. La Tabla 1, muestra la escala de valoración de una roca según su permeabilidad (Gutiérrez & Iturralde, 2017).

PERMEABILIDAD	CARACTERISTÍCAS DE LA ROCA
1 - 10md	Aceptable
10 - 100md	Buena
Mas de 100md	Excelente

Tabla 1. Características de la roca según su permeabilidad

Fuente: (SERTECPET, 2010)

1.2.2 Porosidad

Nos muestra que el porcentaje del interior de la roca fluido es hueco, debido a los poros, esto quiere decir que muestra la cantidad de petróleo que puede almacenar según el tamaño de la roca. La Tabla 2, muestra la escala de valoración de una roca según su porosidad (SERTECPET, 2010).

POROSIDAD	CARACTERÍSTÍCAS DE LA ROCA
0 - 5%	Despreciable
5 - 10%	Pobre
10 - 15%	Regular
15 - 20%	Buena
Mayor a 20%	Excelente

Tabla 2. Características de la roca según su porosidad

Fuente: (SERTECPET, 2010)

1.2.3 Saturación del fluido

Nos muestra la porción del espacio poroso ocupado por un fluido particular, pudiendo existir aceite, gas y agua (Morales Jiménez & de la Torre Santamaría , 2018).

1.2.4 Propiedades Petrofísicas Del Campo Guanta-Dureno

La petrofísica está encargada del estudio de las propiedades de las rocas y las interacciones que estas tienen con los fluidos tales como: gases, hidrocarburos líquidos y soluciones acuosas (Donaldson & Tiab, 2015).

La Tabla 3, muestra los parámetros petrofísicos de los pozos que se han perforado en la arena Basal Tena, con sus correspondientes zonas de disparo.

POZO	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
			MD	MD	MD	TVD	TVD	dec	dec
GNT-005	BT	VERTICAL	8892	8904	8898	12	12	0,16	0,19
GNT-006	BT	VERTICAL	8956	8968	8962	12	12	0,18	0,21
GNT-009	BT	VERTICAL	8921	8931	8926	10	10	0,167	0,21
GNT-015	BT	VERTICAL	8830	8844	8837	10	14	0,148	0,323
GNTA-018	BT	DIRECCIONAL	9214	9229	9222	15	15	0,13	0,19
GNTB-007	BT	VERTICAL	8843	8849	8846	6	6	0,18	0,21
GNTB-041	BT	DIRECCIONAL	10212	10224	10218	12	12	0,183	0,21
GNTD-008	BT	VERTICAL	8862	8867	8865	5	5	0,16	0,21
GNTD-008	BT	VERTICAL	8849	8866	8858	14	17	0,18	0,21
GNTE-004	BT	VERTICAL	8837	8846	8842	9	9	0,15	0,11
GNTE-004	BT	VERTICAL	8840	8946	8893	6	106	0,18	0,2
GNTE-034	BT	DIRECCIONAL "S"	9254	9273	9264	12	19	0,13	0,37

Tabla 3. Parámetros Petrofísicos de la arena "Basal Tena"

La Tabla 4, muestra los parámetros petrofísicos de los pozos que se han perforado en la arena "U", con sus correspondientes zonas de disparo.

POZO	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
			MD	MD	MD	TVD	TVD	dec	Dec
DROA-002	UI	DIRECCIONAL "J"	10397	10407	10402	10	10	0,13	0,34
GNT-002	US	VERTICAL	9612	9633	9623	15	21	0,17	0,27
GNT-002	US+UI	VERTICAL	9612	9672	9642	25	60	0,17	0,23
GNT-002	US+UI	VERTICAL	9626	9698	9662	34	72	0,15	0,23

Tabla 4. Parámetros Petrofísicos de la arena "U"

POZO	ARENA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
	PUNZADA								
			MD	MD	MD	TVD	TVD	dec	Dec
GNT-003	UI	VERTICAL	9578	9607	9593	23	29	0,15	0,19
GNT-003	UI	VERTICAL	9578	9618	9598	29	40	0,145	0,19
GNT-005	UI	VERTICAL	9634	9654	9644	20	20	0,16	0,19
GNT-005	UI	VERTICAL	9634	9674	9654	30	40	0,171	0,19
GNT-006	US+UI	VERTICAL	9682	9736	9709	27	54	0,13	0,24
GNT-006	UI	VERTICAL	9717	9736	9727	19	19	0,15	0,19
GNT-006	US	VERTICAL	9682	9690	9686	8	8	0,155	0,27
GNT-006	UI	VERTICAL	9717	9736	9727	19	19	0,15	0,27
GNT-010	US+UI	VERTICAL	9656	9690	9673	22	34	0,18	0,23
GNT-010	US+UI	VERTICAL	9656	9700	9678	32	44	0,18	0,23
GNT-010	US+UI	VERTICAL	9656	9713	9685	40	57	0,16	0,23
GNT-016	UI	VERTICAL	9600	9620	9610	13	20	0,139	0,19
GNTA-001	UI	VERTICAL	9586	9622	9604	36	36	0,17	0,2
GNTA-018	UI	DIRECCIONAL	9982	10012	9997	30	30	0,14	0,19
GNTA-019	UI	DIRECCIONAL	10120	10134	10127	14	14	0,164	0,19
GNTA-020	UI	DIRECCIONAL	9940	9966	9953	26	26	0,142	0,19
GNTA-040	UI	DIRECCIONAL	9891	9917	9904	26	26	0,14	0,19
GNTB-022	UI	DIRECCIONAL	10096	10116	10106	20	20	0,13	0,2
GNTC-013	UI	VERTICAL	9622	9652	9637	22	30	0,14	0,2
GNTC-013	UI	VERTICAL	9040	9058	9049	18	18	0,14	0,2
GNTC-017	UI	DIRECCIONAL	10080	10120	10100	30	40	0,135	0,179
GNTC-017	UI	DIRECCIONAL	10082	10100	10091	12	18	0,139	0,2
GNTC-017	UI	DIRECCIONAL	10080	10120	10100	40	40	0,135	0,19
GNTC-023	US+UI	DIRECCIONAL "S"	9928	9980	9954	52	52	0,15	0,23
GNTC-023	US+UI	DIRECCIONAL	9928	9980	9954	34	52	0,15	0,2

Continuación: Tabla 4

POZO	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
			MD	MD	MD	TVD	TVD	dec	Dec
GNTC-024	UI	DIRECCIONAL	10375	10395	10385	20	20	0,161	0,2
GNTC-024	US+UI	DIRECCIONAL	10344	10395	10370	32	51	0,161	0,2
GNTC-025	UI	DIRECCIONAL	10522	10576	10549	49	54	0,141	0,1
GNTC-026	UI	DIRECCIONAL	9928	9960	9944	32	32	0,15	0,19
GNTC-026	UI	DIRECCIONAL	9931	9957	9944	26	26	0,147	0,19
GNTD-032	US	DIRECCIONAL "S"	9882	9917	9900	15	35	0,1	0,27
GNTF-011	UI	VERTICAL	9629	9668	9649	33	39	0,171	0,19
GNTF-027	UI	DIRECCIONAL	9975	9990	9983	15	15	0,15	0,19
GNTF-028	UI	DIRECCIONAL	10042	10086	10064	34	44	0,13	0,12
GNTF-028	UI	DIRECCIONAL	10042	10087	10065	38	45	0,15	0,19
GNTF-038	UI	DIRECCIONAL	10146	10189	10168	32	43	0,12	0,16
GNTF-039	UI	DIRECCIONAL	10048	10066	10057	18	18	0,15	0,19
GNTG-012	US	VERTICAL	9591	9608	9600	17	17	0,155	0,27
GNTG-030	UI	DIRECCIONAL "S"	9850	9905	9878	37	55	0,16	0,1

Continuación: Tabla 4

La Tabla 5, muestra los parámetros petrofísicos de los pozos que se han perforado en la arena "T", con sus correspondientes zonas de disparo.

			Prof	Prof		Net	Net		6
POZO		TIPO DE POZO	TOPE	BASE	IVIP	Рау	Res	Phi	SW
	FUNZADA		MD	MD	MD	TVD	TVD	dec	dec
DRO-001	TI	VERTICAL	9884	9909	9897	25	25	0,17	0,43
DRO-001	TI	VERTICAL	9884	9909	9897	15	25	0,17	0,46
DRO-001	TI	VERTICAL	9884	9917	9901	26	33	0,128	0,42
DROA-002	TI	DIRECCIONAL "J"	10591	10622	10607	31	31	0,11	0,43
DROA-003	TI	DIRECCIONAL "J"	10474	10484	10479	10	10	0,12	0,42
GNT-002	TS+TI	VERTICAL	9824	9880	9852	26	56	0,18	0,44
GNT-002	TS+TI	VERTICAL	9824	9880	9852	18	56	0,18	0,44
GNT-003	TS+TI	VERTICAL	9812	9850	9831	30	38	0,16	0,44
GNT-003	TS+TI	VERTICAL	9812	9850	9831	20	38	0,15	0,44
GNT-015	TI	VERTICAL	9810	9834	9822	24	24	0,137	0,42
GNT-016	TI	VERTICAL	9818	9852	9835	34	34	0,142	0,42
GNTA-001	TS+TI	VERTICAL	9772	9836	9804	36	64	0,14	0,44
GNTA-018	TI	DIRECCIONAL	10184	10234	10209	50	50	0,12	0,19
GNTA-019	TI	DIRECCIONAL	10304	10340	10322	36	36	0,16	0,17
GNTA-019	TI	DIRECCIONAL	10305	10368	10337	47	63	0,12	0,42
GNTA-019	TI	DIRECCIONAL	10304	10364	10334	50	60	0,16	0,42
GNTA-020	TI	DIRECCIONAL	10160	10168	10164	8	8	0,151	0,3
GNTB-041	TI	DIRECCIONAL	11198	11210	11204	11	12	0,12	0,42
GNTB-042	TI	DIRECCIONAL	11168	11202	11185	34	34	0,14	0,42
GNTC-014	TI	DIRECCIONAL	10112	10122	10117	10	10	0,165	0,42
GNTC-014	TI	DIRECCIONAL	10064	10091	10078	20	27	0,12	0,42
GNTC-017	TI	DIRECCIONAL	10308	10320	10314	12	12	0,139	0,42
GNTC-017	TI	DIRECCIONAL	10308	10322	10315	14	14	0,139	0,42
GNTC-024	TI	DIRECCIONAL	10574	10608	10591	34	34	0,131	0,2

Tabla 5. Parámetros Petrofísicos de la arena "T"

POZO	ARENA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
	PUNZADA		MD	MD	MD	TVD	TVD	dec	dec
GNTC-026	TI	DIRECCIONAL	10127	10180	10154	33	53	0,12	0,12
GNTD-008	TI	VERTICAL	9824	9836	9830	12	12	0,14	0,42
GNTD-032	TI	DIRECCIONAL	9835	9870	9853	35	35	0.,15	0,2
GNTD-047	TI	DIRECCIONAL	10252	10282	10267	30	30	0,12	0,42
GNTE-004	TI	VERTICAL	9784	9827	9806	35	43	0,137	0,42
GNTE-004	TI	VERTICAL	9784	9840	9812	48	56	0,15	0,42
GNTE-004	TI	VERTICAL	9784	9827	9806	26	43	0,15	0,42
GNTE-004	TI	VERTICAL	9784	9844	9814	60	60	0,15	0,42
GNTE-004	TI	VERTICAL	9784	9844	9814	52	60	0,18	0,42
GNTF-011	TS	VERTICAL	9831	9840	9836	9	9	0,148	0,19
GNTF-028	TI	DIRECCIONAL	10237	10260	10249	23	23	0,12	0,42
GNTF-038	TS	DIRECCIONAL	10347	10355	10351	6	8	0,11	0,45
GNTG-012	TI	VERTICAL	9820	9876	9848	26	56	0,14	0,42
GNTG-012	TI	VERTICAL	9820	9834	9827	14	14	0,17	0,42
GNTG-048	TI	DIRECCIONAL	10086	10112	10099	26	26	0,119	0,42

Continuación: Tabla 5

La Tabla 6, muestra los parámetros petrofísicos de los pozos que se han perforado en la arena Hollín Superior, con sus correspondientes zonas de disparo.

POZO	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Net Pay	Net Res	Phi	Sw
			MD	MD	MD	TVD	TVD	dec	dec
GNT-003	HS	VERTICAL	9965	9978	9972	13	13	0,13	0,36
GNT-009	HS	VERTICAL	10030	10044	10037	14	14	0,12	0,36
GNT-015	HS	VERTICAL	9934	9980	9957	30	46	0,18	0,36
GNT-015	HS	VERTICAL	9934	9950	9942	16	16	0,123	0,36
GNTA-001	HS	VERTICAL	9961	9988	9975	16	27	0,123	0,36
GNTA-019	HS	DIRECCIONAL	10458	10494	10476	36	36	0,151	0,36
GNTA-040	HS	DIRECCIONAL	10227	10257	10242	30	30	0,13	0,36
GNTC-023	HS	DIRECCIONAL "S"	10296	10308	10302	12	12	0,13	0,45
GNTD-047	HS	DIRECCIONAL	10402	10416	10409	14	14	0,12	0,36
GNTE-004	HS	VERTICAL	9954	9980	9967	24	26	0,15	0,36
GNTE-004	HS	VERTICAL	9954	9988	9971	32	34	0,123	0,36
GNTE-031	HS	DIRECCIONAL "S"	10158	10186	10172	28	28	0,14	0,34
GNTE-034	HS	DIRECCIONAL "S"	10372	10394	10383	22	22	0,12	0,36
GNTE-034	HS	DIRECCIONAL "S"	10371	10404	10388	33	33	0,12	0,36

Tabla 6. Parámetros Petrofísicos de la arena "Hollín Superior"

1.2.5 Análisis PVT

Los análisis PVT constituye una parte importante en la caracterización y en la adecuada explotación y mantenimiento de un yacimiento. Esta información que se obtiene es de gran ayuda para evaluar reservas, en el desarrollo óptimo de un plan de recobro y para poder determinar cantidad y calidad de fluidos producidos (Aramendiz & Miguel, 2008).

La Tabla 7 indica los resultados obtenidos de los análisis pvt del campo, realizados para cada arena.

CAMPO GUANTA-DURENO							
RESERVORIO	Basal	U	U	Т	Т	Hollín	
	Tena	Superior	Inferior	Superior	Inferior	Superior	
Boi(by/bn)	1,161	1,295	1,255	1,313	1,313	1,27	
Sw %	21	27	19	46	42	36	
°API	17,5	30,2	29,6	32,3	32,3	29,8	
T(°F)	194	205	200	214	214	232	
Pb(psia)	820	800	1.400	1.398	1.398	990	
Pi(psia)	3.700	3.750	3.750	4.083	4.083	4.315	
ø (%)	16	10	15	11	12	12	
uo(cp)	21,843	2,288	2,24	1,371	1,371	2,148	
k(md)	186	50	255	180	225	120	

Tabla 7. Resumen de Análisis PVT de las arenas del campo Guanta-Dureno

Fuente: Departamento de Reservorios (Petroamazonas EP, 2020)

1.3 CONCEPTOS GENERALES

Los conocimientos de la Ingeniería en yacimientos se vuelven indispensables para lograr entender los problemas de movimiento y comportamiento de los fluidos (petróleo, agua, gas) que se presentan durante la vida de producción de un yacimiento, a fin de obtener una óptima explotación del mismo (Paris de Ferrer, 2009).

Para la clasificación de los fluidos en el yacimiento se considera el coeficiente de compresibilidad isotérmica, los fluidos se encuentran distribuidos en los siguientes 3 grupos (Paris de Ferrer, 2009).

1.3.1.1 Fluidos incompresibles

En un fluido incompresible no se produce cambios en su volumen (o densidad) y, debido a la presión, así:

$$\frac{\partial V}{\partial p} = 0 \tag{1.1}$$

$$\frac{\partial \rho}{\partial p} = 0 \tag{1.2}$$

Este tipo de fluido en realidad no existe, para uso práctico se lo toma como ejemplo debido a que en muchas ocasiones ayuda a simplificar la deducción de varias fórmulas de ecuaciones de flujo (Paris de Ferrer, 2009).

1.3.1.2 Fluidos ligeramente compresibles

Los fluidos ligeramente compresibles no sufren un cambio drástico de volumen (o densidad) debido a la presión (Paris de Ferrer, 2009).

Partiendo de un volumen Vi y a una determinada presión P_i matemáticamente se puede llegar a obtener las siguientes ecuaciones:

$$-c\int_{pi}^{p}dp = \int_{vi}^{v}\frac{dV}{V}$$
(1.3)

$$V = Vi[1 + c(P_i - P)]$$
(1.4)

$$\rho = \rho_i [1 - c(P_i - P)]$$
(1.5)

Donde *P* es la presión en (*lpca*), *V* es el volumen a la presión *P* en (*pie*³), *Vi* es el volumen a la presión inicial P_i en (*pie*³), ρ es la densidad del fluido a la presión *P* en (*lb/pie*³).

1.3.1.3 Fluidos compresibles

Estos fluidos sufren un cambio significativo en su volumen debido a los cambios de presión. Todos los gases son considerados como compresibles (Paris de Ferrer, 2009).

$$c_g = \frac{1}{p} - \frac{1}{z} \left(\frac{\delta z}{\delta p}\right)_T \tag{1.6}$$

Donde c_g es el factor isotérmico de compresibilidad del gas en $(lpca^{-1})$, p es la presión en (psi) y z el factor de desviación.

La Figura 10, indica gráficamente que para un fluido incompresible no se producen cambios es decir su grafica representa una línea recta, no ocurre lo mismo para un fluido ligeramente compresible donde el volumen disminuye de manera uniforme mientras que su densidad aumenta uniformemente, en ambos casos las gráficas representan una línea recta inclinada, finalmente para un fluido compresible el volumen disminuye mientras su densidad aumenta de manera exponencial.

1.3.2 Regímenes de flujo

El momento que se pone en producción a un pozo, se produce una distribución de presión en el pozo que viaja a través de la roca a una velocidad que depende de las propiedades de la roca y fluido. Para comprender el análisis de pruebas de pozos se debe considerar los diferentes Estados o Regímenes de flujo (Valencia R., 2011).

1.3.2.1 Flujo continuo

Se caracteriza porque no hay cambios de presión en cualquier punto dentro del reservorio como función del tiempo, además adquiere una energía adicional que es proporcionada por un acuífero. Este concepto se utiliza para el estudio de la Ley de Darcy (Valencia R., 2011). Matemáticamente se expresa como:

$$\left(\frac{\partial P}{\partial t}\right)_i = 0 \tag{1.7}$$

La Figura 11, representa la distribución de presión y caudal que ocurre durante el flujo radial en estado continuo hacia el pozo.

1.3.2.2 Flujo Pseudo-continuo

Este flujo se caracteriza porque la presión en cualquier punto del reservorio declina linealmente en función del tiempo o en proporción directa con la depletación del reservorio como se muestra en la Figura 12 (Valencia R., 2011).

Matemáticamente, se lo expresa por:

Fuente: (Valencia R., 2011)

1.3.2.3 Flujo Transitorio

Este flujo está definido como una condición de flujo en la cual la variación de presiones con respecto al tiempo en cualquier punto del reservorio no llega a ser cero ni constante. La definición de un flujo transitorio sugiere que la derivada de la variación de presión con respecto al tiempo se encuentra en función de la posición y del tiempo (Valencia R., 2011).

La ecuación está definida por:

$$\left(\frac{\partial P}{\partial t}\right) = f(r,t) \tag{1.9}$$

La Figura 13, se observa la distribución de presiones y caudal para un sistema radial transitorio a varios tiempos para un reservorio cerrado. Esta condición se produce debido a la expansión de fluidos en el reservorio.

La Figura 14, es una herramienta que nos permite identificar los regímenes de flujo que se presentan en una prueba de presión para el grafico log-log.

Figura 14. Gráfico log-log derivada de presión-tiempo para los regímenes de flujo. Fuente: (Yasin, 2012)

donde SS (Steady State Flow) representa el Flujo Continuo y PSS (Pseudo Steady State Flow) representa el Flujo Pseudo-continuo y Transient es la zona de Flujo Transitorio.

1.3.3 Geometría de Flujo

La mayor parte de los yacimientos presentan limites irregulares y su geometría puede ser comprendida mediante un análisis matemático riguroso, es indispensable el uso de simuladores numéricos para el gran número de geometrías en el flujo de fluidos (Paris de Ferrer, 2009).

1.3.3.1 Flujo radial

Este tipo de flujo es producido cuando los disparos se realizan en todo el espesor h de la arena, este mecanismo se produce el yacimiento como en las fracturas del pozo como se muestra en la Figura 15. En este tipo de geometría las líneas de flujo nacen desde un círculo exterior y adquiere una dirección de flujo radialmente hacia el pozo en línea recta (Colmont Moncayo & Pinargote Rovello, 2018).

Figura 15. Vista frontal y superior del flujo radial Fuente: (Colmont Moncayo & Pinargote Rovello, 2018)

1.3.3.2 Flujo lineal

Su geometría se produce cuando las líneas de flujo atraviesan un plano perpendicular en forma de líneas paralelas, presenta una pendiente m=1/2. La Figura 16, indica como el fluido se transmite de manera paralela en diferentes zonas de un yacimiento, cuando se producen los disparos (Colmont Moncayo & Pinargote Rovello, 2018).

1.3.3.3 Flujo esférico y hemisférico

La Figura 17, muestra como el flujo esférico se produce cuando el cañoneo no cubre todo el espesor total h de la arena, sino simplemente la parte central, por tal motivo la producción se realiza a través del espesor h' (Colmont Moncayo & Pinargote Rovello, 2018).

Fuente: (Colmont Moncayo & Pinargote Rovello, 2018)

En un el flujo hemisférico, su producción se da en el tope o base de la arena productora ambas presentan una pendiente m=-1/2, como lo indica la Figura 18 (Colmont Moncayo & Pinargote Rovello, 2018).

1.3.3.4 Flujo bilineal

Se caracteriza porque se produce una caída de presión en la fractura, presenta una pendiente m=1/4 en un gráfico log-log de presión y su derivada (Escobar, 2003).

La Figura 19, representa los diferentes valores de pendientes que se obtienen en una gráfica log-log (P vs t) y su respectiva geometría de flujo.

Figura 19. Gráfico de diagnóstico de flujo con la función de primera derivada Fuente: (PDVSA, 1997)

1.3.4 Pruebas de presión

Durante una prueba de pozo, se crea una respuesta de presión transitoria por un cambio temporal en la tasa de producción, la respuesta se monitorea durante un periodo corto o largo dependiendo del objetivo de la prueba. En la mayoría de los casos, el caudal se mide en superficie mientras que la presión en el fondo del pozo (Bourdet, 2002).

Valencia (2008) indica que las pruebas de presión transitoria nos permiten:

- > Evaluar parámetros del reservorio
- > Caracterizar la heterogeneidad del reservorio
- > Estimar límites y geometría del reservorio
- > Determinar comunicación hidráulica entre pozos.

1.3.4.1 Prueba de decremento de presión (Drawdown Test)

Se encuentra definida como una serie de mediciones de presión en el fondo del pozo durante un periodo de flujo, el pozo se encuentra cerrado durante un intervalo de tiempo grande para que se produzcan condiciones de presiones estables antes de que se verifique la prueba de decremento como lo muestra la Figura 20 (Robbins & Castro, 2005).

Figura 20. Prueba de decremento de presión Fuente: (Robbins & Castro, 2005)

1.3.4.2 Prueba de restauración de presión (Build Up)

Son las pruebas más usadas en la industria petrolera, para llevar a cabo esta prueba es necesario el cierre del pozo productor y que este se encuentre produciendo a una tasa constante como se muestra en la Figura 21, ya que la mayoría de los modelos están apoyadas en el principio de superposición y consideran una tasa constante (Robbins & Castro, 2005).

Fuente: (Da Prat, 1990)

1.3.4.3 Prueba de Fall of test

Estima una declinación de presión al mismo instante de la inyección, similar a una prueba de restauración como se muestra en la Figura 22 (Escobar, 2003).

1.3.4.4 Prueba de Inyección

Es una prueba semejante a la prueba de decremento de presión (Drawdown test) como lo indica a Figura 22, pero se diferencia porque no se producen fluidos aquí, lo que se hace es inyectar fluido y que normalmente es agua (Escobar, 2003).

Fuente: (Escobar, 2003)

1.3.4.5 Prueba de Interferencia

Son aquellas en las que se involucran por lo menos 2 pozos uno llamado activo y el otro observador, el primero realizará las operaciones para generar disturbio necesario para evaluar la comunicación con el pozo vecino y el segundo será el receptor de los cambios generados por el pozo activo (Robbins & Castro, 2005).

Este tipo de prueba son utilizadas durante o inmediatamente después de la perforación de un pozo y consiste en pruebas de cierre o flujo cortas y seguidas (Escobar, 2003).

1.4 MÉTODOS DE ANÁLISIS

Es indispensable para determinar una curva tipo que se empate o se ajuste con la respuesta rea del pozo y el yacimiento, mediante este análisis se establecerá cual curva se ajusta mejor con los datos del sistema que está siendo probado y poder determinar parámetros del pozo tales como permeabilidad y daño (Valencia R. A., 2008).

1.4.1 Método de la curva de Gringarten et al.

En 1979 Gringarten et al. introduce la Curva Tipo para reservorios homogéneos con condiciones de contorno en el interior del pozo para efecto de llenado, efecto de daño y para reservorios con fractura inducida. En esa época se presentaba una curva que indique el final del efecto de llenado, el comienzo de la línea recta semilog, cualitativa y cuantitativamente se podía obtener información sobre la condición del pozo (Alvarado, 2004).

La solución de la ecuación de difusividad en su forma aproximada es:

$$P_D(t_D) = 0.5(lnt_D + 0.80907) \tag{1.10}$$

$$P_D = 0.5 \left[ln \left(\frac{t_D}{C_D} \right) + 0.080907 + ln \left(C_D e^{2s} \right) \right]$$
(1.11)

Donde:

$$C_D = \frac{0.8937C}{\phi h C_t r^2_w}$$
(1.12)

 P_D representa la presión adimensional, t_D es el tiempo adimensional, C es el coeficiente de almacenamiento, C_D es el coeficiente de almacenamiento adimensional, C_t es la compresibilidad total, r_w es el radio del pozo, ϕ es la porosidad y h el espesor.

1.4.2 Método de Horner

Este método nos permite evaluar la permeabilidad y el daño en un reservorio finito. Para el caso de comportamiento infinito se puede realizar una estimación en la Pi usando la extrapolación de la sección recta de la gráfica de Horner hasta un tiempo de cierre infinito. Para el caso de reservorio finitos, la presión extrapolada no se estima como Pi por lo cual este valor de presión ha sido llamado P* (Robbins & Castro, 2005). Este Método se usa preferiblemente en pozos nuevos porque tenemos P_i . Si t_p es por lo menos el doble del tamaño de t_{pss} se justifica graficar usando t_{pss} en lugar de t_p en sistemas infinitos, ya que el gráfico de Horner, al contrario de MDH(Miller, Dyes y Hutchinson), tiende a prolongar la recta semilog (Escobar, 2003).

Donde t_p representa el tiempo de producción, t_{pss} tiempo de producción pseudo estable y P_i la presión inicial del reservorio.

Fuente: (Escobar, 2003)

El método se lo realiza trazando una recta tangente que se ajuste con la parte de la zona del flujo radial, a partir del valor de la pendiente se calcula la permeabilidad efectiva del reservorio k y si extendemos esta recta hasta interceptar el eje de las coordenadas cuando el tiempo de horner es igual a 1, se obtiene el valor de la Pi que es la presión inicial del reservorio extrapolado como lo indica la Figura 24 (Paguay, Miranda, & Galarza, 2011).

1.4.2.1 Análisis semilogarítmico

Consiste en Graficar $P_{ws} vs \frac{tp+\Delta t}{\Delta t}$ en papel semilogarítmico, la pendiente m nos permite calcular la capacidad de flujo (kh), donde, q es el caudal, u es la viscosidad y B es el factor volumétrico.

$$kh = \frac{162.6quB}{m} \tag{1.13}$$

La extrapolación de la línea recta a $\frac{tp+\Delta t}{\Delta t} = 1$ nos permite obtener la Pi del reservorio o P* de igual forma el factor de daño (S), se puede calcular mediante la siguiente formula:

$$S = 1.151 \left[\frac{P_{ws}(1hr) - P_{ws}(\Delta t = 0)}{m} - \log \frac{k}{\emptyset u C_t r^2_w} + 3.23 \right]$$
(1.14)

Donde C_t representa la compresibilidad total y r_w el radio del pozo.

1.4.3 Método de MDH (MILLER-DYES-HUTCHINSON)

El método de MDH se basa en la suposición que el tiempo de producción en el reservorio es lo suficientemente largo para poder alcanzar el estado pseudoestable, luego es más representativo usar la presión promedio que la presión inicial. Se recomienda este método para pozos viejos o formaciones depletadas, esto podría dificultar la obtención de la estabilización antes del cierre (Escobar, 2003).

Este método se basa en la ecuación:

$$P_{ws} = P_{1hr} - m \log \Delta t \tag{1.15}$$

Usando este método graficamos $P_{ws} vs \log(\Delta t)$, m= pendiente negativa.

1.4.4 Método de la curva tipo derivada o Método de Bourdet

Este tipo de curvas están basadas en la presión y la derivada de la presión, a tiempos tempranos la curva sigue una línea recta log-log de pendiente unitaria.

Cuando se alcanza el flujo radial de acción infinita en un tiempo tardío. Las curvas se vuelven horizontales a un valor de $P'_D(t_D/C_D) = 0.5$ entre estas dos asíntotas, en tiempos medios, cada curva produce una forma específica y es diferente para valores variables $C_D e^{2s}$ por lo tanto es fácil identificar la curva correspondiente a los datos. Al hacer coincidir las dos líneas rectas se proporciona un punto de coincidencia única como lo indica la Figura 26 (Chaudhry, 2004).

Figura 26. Tipo de curvas para un pozo con almacenamiento y efectos piel en un yacimiento con comportamiento homogéneo Fuente: (Schlumberger, 2002)

La curva tipo derivada es:

$$P_{D} = \frac{kh(P_{i} - P_{wf})}{141.2qBu} \quad vs \quad \frac{t_{D}}{C_{D}} = 0.000295 \left(\frac{kh}{uC}\right) \Delta t$$
(1.16)

Donde kh representan la capacidad de flujo

La aproximación a tiempos pequeños de flujo es:

$$P_{wfD} = \frac{t_D}{C_D} \tag{1.17}$$

La aproximación a tiempos altos de flujo es:

$$P_D = \frac{1}{2} \left(ln \frac{t_D}{C_D} \right) + ln C_D e^{2S} + 0.80907$$
(1.18)

Valor del parámetro C _D e ^{2S}	Condición del pozo
$C_D e^{2S} > 10^3$	pozo dañado
$5 < C_D e^{2S} < 10^3$	pozo no-dañado
$0.5 < C_D e^{2S} < 5$	pozo estimulado
$C_D e^{2S} < 0.5$	pozo fracturado

 Tabla 8. Condiciones del pozo con relación a su curva de ajuste

Fuente: Análisis de Pruebas de Presión (Alvarado, 2004)

1.5 MODELOS DE INTERPRETACIÓN DE PRUEBAS DE POZOS

1.5.1 Identificación del modelo

La dificultad con los métodos convencionales es determinar si existe un régimen de flujo en particular y determinar el modelo de interpretación. El régimen de flujo se asume que existe, cuando pueda o no ser el caso, en el que se presenta una tendencia a una línea recta cuando se tiene la información, la cual no necesariamente pueda presentar un régimen de flujo en especifico (Valencia R. A., 2008).

El modelado es el proceso de comparación histórica de datos transitorios de presión basado en un modelo matemático. Existen muchos modelos diferentes disponibles para hacer coincidir los datos según sea la situación. Por lo tanto, es importante analizar los datos transitorios de presión antes de modelar, porque obliga al analista a pensar en configuraciones probables y proporcionar buenas estimaciones de los parámetros del reservorio, tomando en cuenta tres tipos de regiones de tiempos: temprano, medio y tardío como se indica en la Figura 27 (Fekete Associates Inc., 2009).

Figura 27. Clasificación de Regímenes de tiempos para pruebas de pozos Fuente: (Fekete Associates Inc., 2009)

1.5.1.1 Región de Tiempos Tempranos (E.T.R - Early Time Region)

El análisis de la región de tiempo temprano, la alteración de la presión, debido a la expansión y el movimiento del fluido se localiza en una región alrededor del pozo central, pero esto se propaga progresivamente más en el reservorio. La definición de la E.T.R también incluye el periodo donde el almacenamiento del pozo afecta la respuesta a la presión (Stewart & Jamiolahmady, 2013).

1.5.1.2 Región de Tiempos Medios (M.T.R - Middle Time Region)

Esta región se produce cuando el radio de investigación se ha movido más allá de la zona alterada cerca del pozo que está siendo probado, y cuando el post-flujo ha dejado de distorsionar los datos de la prueba, generalmente se observa una línea recta cuya pendiente describe la permeabilidad de la formación, esto continuara hasta que el radio de investigación alcance uno de los límites del yacimiento o contacto con otro fluido (Valencia R. A., 2008).

1.5.1.3 Región de Tiempos Tardíos (L.T.R – Late Time Region)

A un tiempo considerable, el radio de investigación eventualmente alcanza los bordes del área de drenaje del pozo. En esta región el comportamiento de la presión es influenciada por la configuración de los bordes, interferencia con pozos cercanos, yacimientos heterogéneos significativos y contacto con otros fluidos (Valencia R. A., 2008).

La figura 28, indica las distintas regiones de análisis en una prueba de restauración de presión

Figura 28. Regiones de tiempo de una prueba de restauración de presión Fuente: (Aslanyan, 2021)

CONDICIONES DE POZO	NATURALEZA DEL YACIMIENTO	GEOLOGÍA DEL ÁREA DE DRENAJE ASOCIADA CON EL POZO
Almacenamiento de pozo y daño	Homogéneo	Infinito
Horizontal	Doble porosidad	Una falla
Vertical	Doble permeabilidad	Circulo
Hidráulicamente fracturado	Radial compuesto	Fallas paralelas
Penetración Parcial	Linear compuesto	Fallas intersecantes
		Rectángulo

Tabla 9. Modelos de yacimiento y pozos

Fuente: INTRODUCCIÓN AL ANÁLISIS Y DISEÑO DE PRUEBAS DE PRESIÓN (Da Prat, 1990)

1.5.2 Modelos de almacenamiento del pozo

Se ha demostrado que el volumen finito de pozo y del fluido dentro del pozo afectan las presiones medidas en el mismo, este efecto de almacenamiento es muy importante para el análisis de su comportamiento de la presión al comienzo del periodo (Robbins & Castro, 2005).

1.5.2.1 Efecto de almacenamiento (Wellbore storage)

Cuando se pone a producir un pozo, su producción inicial proviene del mismo pozo debido a la compresibilidad del fluido, el aporte que da el yacimiento en el fondo del pozo es mínimo durante los primeros instantes de producción. De igual forma cuando se cierra el pozo en superficie, en el fondo continúa produciendo durante un tiempo debido al aporte de fluido del yacimiento al pozo. Este efecto denominado almacenamiento de pozo, es temporal y su duración puede ser variado (Da Prat, 1990).

$$C = \frac{\Delta V}{\Delta P} \tag{1.19}$$

Los efectos de almacenamiento de pozos pueden tener graves consecuencias en la eficacia de una prueba de presión transitoria. Dentro de estos análisis el efecto de almacenamiento de un pozo horizontal dura más que en un pozo vertical en la misma formación debido al mayor volumen del pozo y porque la anisotropía reduce la permeabilidad efectiva, kz, para un pozo horizontal (Chaudhry, 2004).

Figura 29. Efecto de almacenamiento de pozo(idealización) Fuente: (Da Prat, 1990)

Este régimen de flujo se caracteriza por una pendiente en un gráfico log-log ΔP y en el grafico de la derivada de presión. Este régimen de flujo solo puede ser utilizado para determinar el coeficiente de almacenamiento C (Bravo, Carrillo, & Miranda).

1.5.2.2 Efecto de almacenamiento constante

El almacenamiento constante del pozo supone que la diferencia entre la tasa de flujo de la superficie de arena y la tasa de flujo superficial es proporcional a la tasa de cambio de presión (Chaudhry, 2004).

Esta expresado por la siguiente ecuación:

$$q_{sf} = qB + 24C \frac{\partial p_{wf}}{\partial t}$$
(1.20)

Donde, q_{sf} representa el caudal a condiciones de almacenamiento constante, p_{wf} es la presión de fondo fluyente, *C* es el coeficiente de almacenamiento.

1.5.2.3 Efecto de almacenamiento variable

Las técnicas de comparación de curvas tipo han descrito un almacenamiento constante, sin embargo, no siempre es posible desde el punto de vista operativo mantener constante el almacenamiento del pozo. Existen muchas circunstancias que provocan cambios en el almacenamiento del pozo como la redistribución de la fase del pozo y aumento o disminución del almacenamiento asociando a pruebas de pozos de inyección (Schlumberger, 2002).

Figura 30. Curvas de datos en un periodo almacenamiento constante Fuente: (Schlumberger, 2002)

Figura 31. Curvas de datos en un periodo almacenamiento variable Fuente: (Schlumberger, 2002)

La Figura 30 y 31 representan el comportamiento de almacenamiento cuando se realiza una prueba de restauración de presión, en un almacenamiento variable se puede modificar la gráfica semi log en el software y se produce un mejor ajuste.

1.5.2.4 Factor de Daño

Es conocido comúnmente como "daño del pozo" y la región de permeabilidad alterada se llama "zona de piel", esta zona puede extenderse desde unas pulgadas hasta varios pies del pozo, este factor se produce durante la perforación, completación u operaciones de reacondicionamiento (Ahmed, Tarek; McKinney, Paul, 2005).

Fuente: (Da Prat, 1990)

Existen varios factores que producen daño en la formación tales como:

- > Invasión de los fluidos de perforación
- Penetración parcial del pozo
- Completamiento parcial
- > Taponamiento de las perforaciones
- > Precipitación orgánica/inorgánica
- Dispersión de arcillas
- > Alta saturación de gas alrededor del pozo

El factor de daños es definido como:

$$S = \left[\frac{k}{k_{skin}} - 1\right] ln\left(\frac{r_{skin}}{r_w}\right)$$
(1.21)

Donde *S* es el daño de la formación, *k* es la permeabilidad, k_{skin} es la permeabilidad de la zona de daño, r_{skin} es el radio del daño, r_w es el radio del pozo.

1.5.3 Modelo del pozo

La geometría del pozo, su trayectoria en la formación, la forma en que se completa y/o estimulados, tienen un gran impacto en las respuestas transitorias y la productividad del pozo a largo plazo (Houzé, Viturat, & Fjaere, 2020).

1.5.3.1 Fractura de conductividad infinita

Cuando el fluido entra a la fractura a un determinado caudal constante por unidad de área, se produce una caída de presión en la fractura. Este caso es conocido como "fractura de flujo uniforme". En un gráfico log-log podemos apreciar como este tipo de fractura nos muestra una pendiente media sobre datos tempranos en la presión y la derivada de la presión (Escobar, 2003).

1.5.3.1.1 Características en los regímenes de flujo

Bourdet (2002), señala que se pueden observar dos regímenes característicos en este modelo después del efecto de tiempos tempranos:

- 1) <u>Flujo lineal</u>, con Δp proporcional a $\Delta t^{1/2}$ y una pendiente unitaria en una línea recta de un gráfico log-log en curvas de presión. El flujo lineal está definido como el producto $k(x_f)^2$ y donde la fractura media esta dado por x_f
- <u>Flujo Pseudo-radial</u>, la influencia de la fractura se describe un factor de daño negativo y el análisis del flujo pseudo-radial proporciona el producto de espesor y permeabilidad kh como lo indica la Figura 34.

Figura 34. Gráfico log-log de una fractura con conductividad infinita Fuente: (Escobar, 2003)

1.5.3.2 Fractura de conductividad finita

Con el modelo de fractura de conductividad finita, el flujo lineal es producido dentro de la fractura, además del régimen de flujo lineal de la zona de pago en el plano de la fractura (Bourdet, 2002).

Este tipo de fracturas pueden ser identificados en un gráfico log-log mediante una pendiente de 1/4 en tiempos tempranos. Una pendiente de 1/2 puede mostrarse o no después. Este tipo de fractura implica una caída de presión, la cual contribuye a la formación de un flujo lineal simultaneo conocido como flujo bilineal, esto se puede observar en la Figura 35 (Escobar, 2003).

Figura 35. Comportamiento de fractura de conductividad infinita Fuente: (Houzé, Viturat, & Fjaere, 2020)

1.5.3.3 Pozos con entrada limitada

Este modelo asume que el pozo produce a partir de un intervalo menor que el intervalo neto de drenaje. El intervalo drenado no siempre se encuentra completamente perforado para evitar la formación de conificación de agua o gas (Houzé, Viturat, & Fjaere, 2020).

Debido a que su producción se da en una parte del espesor del yacimiento, la penetración parcial causa una restricción a las líneas de flujo cercanas al fondo del pozo produciendo un daño positivo (Fuentes & Vásquez, 2011).

Figura 36. Regímenes de flujo de entrada limitada Fuente: (Houzé, Viturat, & Fjaere, 2020)

La Figura 36, indica que en teoría después del almacenamiento del pozo, la respuesta inicial es un flujo radial "1". En el régimen de flujo "2" hay una contribución vertical al flujo y si el intervalo de perforación es muy pequeño se representa con una pendiente -1/2 en la derivada de Bourdet y que correspondería al flujo esférico o semiesférico. Finalmente, cuando la difusión ha alcanzado los limites superior e inferior, el régimen de flujo nuevamente vuelve a ser radial, y la estabilización corresponde ahora al producto k_r h (Houzé, Viturat, & Fjaere, 2020).

1.5.3.4 Pozo Horizontal

Se asume que el pozo es necesariamente horizontal, en una formación homogénea que también es estrictamente horizontal y que tiene un espesor "h". El reservorio es considerado isotrópico en el plano horizontal, pero la anisotropía vertical y otros parámetros serán definidos como en el pozo de entrada limitada (Houzé, Viturat, & Fjaere, 2020).

Figura 37. Geometría de un Pozo Horizontal Fuente: (Houzé, Viturat, & Fjaere, 2020)

La Figura 38, muestra la perspectiva y el comportamiento de presión y su derivada en una prueba de Build-up para un pozo horizontal.

Figura 38. Comportamiento de un Pozo Horizontal Fuente: (Fekete Associates Inc., 2009)

1.5.4 Modelo del Reservorio

El principal parámetro que buscamos es la movilidad del fluido en el yacimiento. Cuando existe duda sobre el espesor efectivo del yacimiento, cuando se conoce la viscosidad del fluido y se asume que es constante, todas estas dudas pueden ser calculadas, cualquiera que sea la variante y si estamos realizando presión transitoria o análisis de producción, este resultado será cuantificado por el ajuste de presión en los gráficos de loglog. Este resultado será común a todos modelos que se describen a continuación, ya sean homogéneos o heterogéneos (Houzé, Viturat, & Fjaere, 2020).

1.5.4.1 Reservorios Homogéneos

Los modelos de yacimientos homogéneos consideran que sus propiedades dentro del mismo permanecen constantes y no varían, aunque esto no ocurre en la realidad, existen yacimientos que tienden a tener estas condiciones ideales (Robbins & Castro, 2005).

Cuando se realiza una prueba de presión, este modelo induce a que la presión calculada en un pozo es la presión de todo el reservorio, lo cual no ocurre debido a que un yacimiento es irregular, de tal manera al realizar la prueba obtendremos una presión puntual, este valor se promediara con las demás presiones obtenidas (Valencia R. A., 2008).

1.5.4.2 Reservorio Heterogéneos

El modelo de yacimiento heterogéneo indica que existen diferencias significativas de permeabilidad y porosidad, las cuales se encuentran involucradas en un proceso de flujo y que interactúan con el mismo medio (Valencia R. A., 2008).

1.5.4.2.1 Reservorios con doble porosidad

Este modelo considera que la formación está constituida por dos medios: Sistemas de fracturas y la matriz de la roca. Estos modelos se presentan como bloques de matriz y consideran que la transferencia de fluidos entre la matriz y las fracturas se produce mediante condiciones de flujo pseudo estacionario o transitorio (Robbins & Castro, 2005).

Los modelos de doble porosidad asumen que el yacimiento no es homogéneo, sino compuesto de bloques de matriz de roca con alta capacidad de almacenamiento y baja permeabilidad como se muestra en la Figura 39. Aunque la mayor parte del hidrocarburo se almacena en los bloques de la matriz, este debe entrar en el sistema de fisuras para ser producido (Houzé, Viturat, & Fjaere, 2020).

Figura 39. Reservorio con doble porosidad naturalmente fracturado(idealización) Fuente: (Ramirez, 2007)

a) Doble Porosidad PSS (Pseudo estacionario)

Desde cualquier punto del yacimiento que se analice, este se encuentra dividido por dos medios de comunicación como se muestra en la Figura 40. El primero un bloque de matriz con una capacidad de almacenamiento alta y de baja permeabilidad y el segundo las fracturas con baja capacidad de almacenamiento y alta permeabilidad (Robbins & Castro, 2005).

Figura 40. Sección transversal de presión Fuente: (Houzé, Viturat, & Fjaere, 2020)

Cuando se da inicio al flujo poroso, se desarrolla un periodo de transición como lo muestra la Figura 41, el cual se ve reflejado en una inflexión en la curva de presión y un valle en la derivada. Al final de este proceso de transición, el reservorio actúa como un medio homogéneo, con el almacenamiento total y con la permeabilidad de las fracturas (Robbins & Castro, 2005).

Figura 41. Gráfico de registro de doble porosidad, PSS Fuente: (Houzé, Viturat, & Fjaere, 2020)

Figura 42. Comportamiento de un yacimiento naturalmente fracturado (doble porosidad) Fuente: (Robbins & Castro, 2005)

La Figura 42, indica la curva de presión en una prueba de pozo cuando el yacimiento se encuentra fracturado además de los diferentes procesos por los que atraviesa.

b) Doble Porosidad Transiente

Está constituido por dos geometrías de bloques de matriz los cuales son considerados: estratos (SLAB) y esferas (SPHERE), existe difusión en cada uno de los elementos que conforman los bloques de la matriz y en los sistemas de fracturas (Robbins & Castro, 2005).

Figura 43. Sección transversal de presión Fuente: (Houzé, Viturat, & Fjaere, 2020)

La Figura 44, nos muestra el comportamiento de un reservorio con doble porosidad PSS (pseudo estacionario o semiestacionario) y doble porosidad transiente.

Figura 44. Comportamiento de un reservorio con doble porosidad transiente y semiestacionario Fuente: (Da Prat, 1990)

1.5.4.2.2 Reservorios con doble permeabilidad

La asunción básica de la doble permeabilidad nos muestra que su solución y definición están basados en parámetros adimensionales con los mismos conceptos que el modelo de doble porosidad (Bourdet, 2002).

Figura 45. Idealización de un reservorio con doble permeabilidad/porosidad naturalmente fracturada Fuente: (Ramirez, 2007)

Un yacimiento del tipo de doble permeabilidad es denominado en el software Saphir como "two layers", y presenta sensibilidad al parámetro k que definen el flujo entre subcapas (capas de contraste de permeabilidad) en la respuesta de la presión transiente como se muestra en la Figura 46 (Da Prat, 1990).

1.5.4.2.3 Reservorios Multicapa

Este tipo de modelos asumen que las capas se encuentran produciendo mezcladas, sin ningún tipo de flujo cruzado en el reservorio. Esta asunción es determinante ya que

nos lleva a eliminar inmediatamente a uno de los mayores mitos en las pruebas de pozos de varias capas que dice: "Si las capas son homogéneas e incluso infinitas y con presiones iniciales diferentes en cada capa no podremos diferenciar el comportamiento de cada capa, en la respuesta de presión medida en el pozo. La respuesta medida en el manómetro es simplemente la respuesta global" (Houzé, Viturat, & Fjaere, 2020).

Figura 47. Respuesta de presión en un reservorio con dos capas Fuente: (Houzé, Viturat, & Fjaere, 2020)

La Figura 47 se encuentra formada por dos capas: la primera representa la pendiente de la capa delimitada y la segunda el límite infinito de la capa.

El comportamiento en un reservorio multicapa podría no llegar a distinguirse del comportamiento de un reservorio de una sola capa, aun cuando un reservorio multiestratos (sin efecto de llene) puede tener una conducta distinta al de un reservorio de una sola capa (Alvarado, 2004).

1.5.4.2.4 Reservorios Compuestos

Este modelo asume dos regiones que poseen distintas propiedades petrofísicas, su geometría se utiliza para representar cambios radiales de sus propiedades debido a

cambios de fluido o en su formación, estos cambios se pueden dar por cambios de saturación debido al acuífero o capa de gas, produciendo con valores de presión por debajo del punto de burbuja, compartición de reservorio y un cambio real de porosidad y permeabilidad (Walid, 2016).

Figura 48. Esquema de reservorios compuestos radial y lineal Fuente: (Walid, 2016)

La Figura 48, muestra que dentro del reservorio radial compuesto se observa: las derivadas son similares a los limites de no flujo, la derivada de la transicion empieza desde un flujo radial, m, hasta otro flujo radial (k1/k2)m,la duración de la transición depende del contraste de k2 a k1 (Fekete Associates Inc., 2009).

Figura 49. Respuesta del Flujo Radial Compuesto en una prueba de BUP Fuente: (Fekete Associates Inc., 2009)

1.5.5 Modelo de Limites

Se considerará en modelos de pozos que involucran flujo vertical, como entrada limitada y pozos horizontales, donde la respuesta temprana implicará una difusión vertical hasta que estos límites se alcanzan. Paradójicamente, los análisis que involucran límites superior e inferior están asociados a modelo de pozos (Houzé, Viturat, & Fjaere, 2020).

1.5.5.1 Falla Simple

Falla simple o sellante es considerada como una condición de no flujo a través del plano de la falla se basa en considerar dos pozos P y P', siendo P' el pozo imagen de P, que se encuentra produciendo a la misma tasa y se encuentra localizado a una distancia simétrica y de igual distancia del pozo a la falla como se muestra la Figura 50 (Da Prat, 1990).

Fuente: (Houzé, Viturat, & Fjaere, 2020)

La Figura 51, muestra el comportamiento de presión y su derivada identificando el almacenamiento del pozo, la acción del flujo radial, las pendientes en la zona de transición y la falla en los límites.

Figura 51. Pendiente doble causada por dos regímenes de flujo radial con un límite de falla sellante Fuente: (Schlumberger, 2002)

1.5.5.2 Falla con fugas

La presencia de falla con fugas (Leaky fault) muestra que, en los límites con fugas, estos pueden modelarse de forma numérica o analítica(cálculos matemáticos), como se muestra en la Figura 52, que indica el modelo más simple, es decir, un único límite lineal con fugas de extensión infinita. El comportamiento que se encuentra del otro lado del límite puede tener diferentes propiedades a pesar de que corresponde al mismo reservorio (Molina & Zeidouni, 2018).

Figura 52. Comportamiento de los límites con fugas Fuente: (Molina & Zeidouni, 2018)

1.5.5.3 Intersección de fallas

El modelo asume:

- Los límites de sellado que se cruzan están ubicados a cierta distancia del pozo, Limitan el reservorio a un sector con un ángulo theta. El reservorio es finito en la dirección hacia afuera del sector.
- El modelo maneja una completación total, con almacenamiento de pozo y daño.

Figura 53. Esquema de un pozo con intersección de fallas sellantes Fuente: (Schlumberger, 2001)

La Figura 54, muestra que el comportamiento en: intersección de fallas. A tiempos tardíos antes de ser visto el primer límite, la respuesta corresponde a un sistema infinito, cuando se ve la influencia de la falla más cercana, el comportamiento de la presión se asemeja al de una falla sellante. Finalmente, el reservorio se encuentra limitado por dos lados y el comportamiento es un sistema infinito (Schlumberger, 2001).

Figura 54. Comportamiento de la presión en presencia de dos fallas intersecantes Fuente: (Schlumberger, 2001)

1.5.5.4 Dos fallas paralelas

El modelo asume:

- Las fallas paralelas, lineales se encuentran ubicadas a cierta distancia del pozo, y limitan la extensión del reservorio.
- El modelo maneja una completación total en reservorios homogéneos y de doble porosidad.

Figura 55. Esquema de un pozo con fallas paralelas Fuente: (Schlumberger, 2001)

Figura 56, muestra que en tiempos tardíos se observa la influencia de ambas fallas con condición de flujo lineal en el reservorio. Durante el flujo lineal, la curva de la derivada de la presión sigue una línea recta de pendiente de 0.5 en una gráfica log-log.

Figura 56. Comportamiento de la presión en presencia fallas paralelas Fuente: (Schlumberger, 2001)

1.5.5.5 Sistemas cerrados

Este sistema está constituido por dos modelos: El modelo circular que es el más común y sencillo, el cual asume que el pozo de prueba se encuentra ubicado en el centro de un reservorio de forma circular y el segundo es un modelo rectangular que usa el principio de pozos de imagen. Esta solución permite definir una relación de aspecto entre el reservorio y la posición del pozo en cualquier punto del rectángulo además que se puede colocar cuatro límites a cualquier distancia (Houzé, Viturat, & Fjaere, 2020).

Figura 57. Esquema de dos reservorios cerrados: circular y rectangular Fuente: (Schlumberger, 2001)

Durante el periodo de cierre, la presión se llega a estabilizar a la presión promedio del reservorio y la derivada empieza a debilitarse hasta volverse cero. Para un modelo rectangular o cualquier modelo con limites cercanos, los efectos de los limites intermedios se detectan y se observa que la derivada sube antes de la inmersión final como se muestra en la Figura 58 (Houzé, Viturat, & Fjaere, 2020).

Fuente: (Houzé, Viturat, & Fjaere, 2020)

1.5.5.6 Límite a presión constante

Los límites de presión constante pueden ser el único efecto de limite en el modelo o puede ser complementado con limites sellantes. La mayoría de las soluciones que involucran limites tienen en cuenta el sellado o límites de presión constante como se indica en la Figura 59 (Houzé, Viturat, & Fjaere, 2020).

Figura 59. Reservorio rectangular, con límites de presión constante hacia el oeste Fuente: (Houzé, Viturat, & Fjaere, 2020)

En este tipo de modelos el comportamiento final no produce un flujo radial. La gráfica semilog no actúa como herramienta para cuantificar el efecto de limite a presión constante. Durante la producción se desvía de IARF(flujo radial de acción infinita) y tendrá una presión de flujo constante en forma de una línea y cuando se realiza el cierre la presión se estabiliza a la presión promedio del reservorio como se muestra en la Figura 60 (Houzé, Viturat, & Fjaere, 2020).

La Figura 61, nos indica la respuesta de los límites de presión constante lineal y circular, para una prueba de bup.

Figura 61. Comparación de los diferentes modelos de límites en una prueba de (Build-up). Fuente: (Houzé, Viturat, & Fjaere, 2020)

1.6 HERRAMIENTAS ADICIONALES PARA LA INTERPRETACIÓN Y GENERACIÓN DE MAPAS

1.6.1 Mapas Isobáricos

Los mapas isobáricos son representaciones de isolíneas, las cuales proporcionan la mayor parte de información necesaria para clasificar los patrones de circulación meteorológica tales como forma, orientación y posicionamiento. Estas isóbaras se generan a partir de informes de presión media al nivel del mar (Zagouras, Economou , Fotopoulos, & Flocas, 2013).

1.6.2 Mapas de Permeabilidades

Los mapas de permeabilidad son realizados a partir de las estimaciones de permeabilidades promedios, que se obtuvieron a partir de las interpretaciones de pruebas de presión y nos permite poder identificar las zonas de mayor y menor fluidez del reservorio, mediante la ilustración geográfica de los valores que se han obtenido (Huerta, 2009).

1.6.3 Software de Interpretación de Pruebas de Presión (Saphir)

Saphir es el software de PTA (Pressure Transient Analysis) estándar de la industria y es utilizado por la gran mayoría de empresas de servicios. Permite una combinación única de herramientas tales como, modelos analíticos, modelos numéricos, mediante un análisis interactivo de superposición en el registro para la identificación del régimen de flujo (Kappa, 2021).

La Figura 62 representa como está constituida un análisis dinámico de datos con Saphir (Kappa), el cual incluye análisis de presión transitoria, análisis de la producción, historial de coincidencia, análisis del rendimiento del pozo, registros de producción.

Figura 62. Análisis de Datos Dinámicos Fuente: (Houzé, Viturat, & Fjaere, 2020)

1.6.4 Software para la caracterización de reservorio OFM

OFM es un poderoso conjunto de módulos desarrollado por Schlumberger Information Solutions, el cual fue diseñado para ayudar en la vigilancia y gestión diarias de los campos de petróleo y gas (Schlumberger, 2014).

El uso del software OFM permite construir gráficos, reportes, predecir futura producción, además de trabajar con visualización en 2D, modelado petrofísicos, creación de mapas entre otros, lo cual lo convierte en una herramienta indispensable en el desarrollo de mapas de presiones, permeabilidades (Schlumberger, 2014).

CAPÍTULO 2

ANÁLISIS E INTERPRETACIÓN DE DATOS

2.1 Tipo de Estudio e Instrumentos de análisis

El actual estudio es de tipo técnico y analítico, se lo desarrolló con la información obtenida del Departamento de Reservorios de Petroamazonas EP, perteneciente al activo Lago Agrio en el campo Guanta-Dureno. Se realizó una base de datos en la que se organizó toda la información con sus parámetros correspondientes, con la finalidad de usar esta información en los softwares Saphir NL v.5.30.04 (Kappa) para la interpretación de pruebas de presión y OFM para la generación de los mapas isobáricos.

2.2 Universo y Muestra

El universo con el que se desarrolló el trabajo es la totalidad de pozos y pruebas de presión recopiladas en el campo Guanta-Dureno, ubicado en el bloque 57. La muestra será los pozos productores de cada arena a partir del año 2013 en adelante y que cuenten con la información suficiente para realizar una correcta interpretación de build up.

2.3 Procesamiento y recopilación de información

Es indispensable realizar un proceso de recolección de información en forma planificada y teniendo claro los objetivos sobre el tema en el que se está trabajando, para analizar el nivel de profundidad de los datos que se recolectaran.

2.3.1 Información disponible

Existen un total de 190 pruebas de presión que se encuentran disponibles en los archivos de la empresa Petroamazonas EP como se lustran en el Anexo 1.

La información proporcionada por la empresa es la siguiente:

- Pruebas diarias de Producción
- Pruebas de Presión (Build Up) de cada pozo
- Historial de Reacondicionamientos
- Diagramas de Completación de Pozos
- Parámetros Petrofísicos y Datos PVT
- Información Geofísica y Geológica y Reportes de las memorias

La tabla 10 indica las pruebas de bup que se realizaron en el campo Guanta-Dureno (GNT-DRO), conjuntamente con la fecha y las arenas en las cuales se realizó la evaluación.

# DE Prijeba	POZO	FECHA	ARENA	# DE Prufra	POZO	FECHA	ARENA	# DE Prufra	POZO	FECHA	ARENA
1		08/01/1984	TI	30		04/01/1988	UI	59		29/11/1987	BT
2		15/09/1985	TI	31		25/11/1988	UI	60	GNT-009	07/07/1988	BT
3		12/11/1986	TI	32 23/09/1994 UI 61			12/05/2005	HS			
4	000 001	10/04/1987	TI	33		17/10/1995	UI	62		15/09/1995	US+UI
5	DKO-001	05/10/1989	TI	34		27/10/1996	UI	63	CNT 010	10/06/1997	US+UI
6		05/12/1994	TI	35		18/08/2000	BT	64	GIN1-010	10/05/2002	US+UI
7		13/05/1996	TI	36	GNT-005	23/08/2000	BT+US	65		14/02/2012	US+UI
8		27/07/1996	TI	37		09/01/2004	UI	66		18/10/1997	HS
9		14/04/2014	TI	38		20/08/2004	UI	67		24/10/1997	HS
10	DRUA-002	09/10/2014	U	39		04/02/2005	UI	68		28/10/1997	HS
11	DROA-003	09/04/2015	TI	40		14/02/2005	BT	69	GNT-015	16/03/1998	HS
12		18/07/1986	US+UI	41		06/06/2008	BT	70		18/08/1998	TI
13		31/07/1986	US+UI	42		13/05/2015	BT	71		13/07/2001	HS
14		17/10/1986	US+UI	43		16/03/1987	UI	72		13/02/2013	HS
15		28/01/1987	US+UI	44		27/04/1987	UI	73		03/07/2013	TI
16	GNT-002	24/11/1988	US+UI	45		09/04/1988	UI	74		14/04/2018	BT
17	0111 002	08/03/1989	US+UI	46		24/04/1988	UI	75	GNT-016	27/08/2005	TI
18		01/10/2003	TS+TI	47		07/10/1988	UI	76		04/09/2005	UI
19		08/05/2005	TS+TI	48		04/06/1990	UI	77		08/09/2005	UI+TS+TI
20		18/10/2008	US+UI	49		22/12/1990	UI	78		01/11/2009	UI+TS+TI
21		30/06/2013	US	50	GNT-006	23/02/1991	UI	79		15/04/2012	UI+TS+TI
22		19/01/1987	UI	51		13/05/1992	BT	80		19/01/1986	HS
23		16/04/1988	UI	52		10/06/1996	UI	81		01/02/1986	TS+TI
24		01/05/1990	TS+TI	53		13/06/1996	BT	82	GNTA-001	04/02/1986	UI
25	GNT-003	05/05/1990	UI	54		17/06/1996	US+UI	83		26/02/1986	UI
26		08/05/1990	UI	55		20/06/1996	US	84		26/09/2006	UI
27		03/10/1990	TS+TI	56		10/07/1997	BT+US+UI	85		15/07/2008	UI
28		15/01/2002	HS	57		24/05/1998	UI	86	GNTA-018	25/12/2010	UI
29	GNT-005	08/02/1987	UI	58		13/01/2005	US+UI	87		29/09/2013	BT

Tabla 10. Recopilación de pruebas de presión en el campo Guanta-Dureno

# DE Prueba	POZO	FECHA	ARENA	# DE Prueba	POZO	FECHA	ARENA	# DE Prueba	POZO	FECHA	ARENA
88		19/05/2014	TI	123		13/04/2014	HS	157		06/09/1995	TI
89	GNTA-010	29/05/2014	TI	124	GNTC-022	15/10/2014	HS	158		18/12/1996	TI
90		25/05/2008 HS 125		GN1C-025	25/02/2018	HS	159	GINTE-004	03/09/1997	TI	
91		03/06/2008	TI	126		03/05/2018	US+UI	160		19/08/2015	BT
92	GNTA-019	10/06/2008	UI	127		08/05/2009	TI	161	GNTE-031	05/10/2014	HS
93		19/10/2013	TI	128	GNTC-024	12/05/2009	US+UI	162		28/09/2014	HS
94		11/12/2018	TI	129		17/06/2009	UI	163	GNTE-034	28/09/2015	HS
95		31/10/2008	UI	130		23/03/2009	UI	164	GIVIE 054	06/11/2015	BT
96	GNTA-020	08/11/2008	TI	131	GNTC-025	28/03/2009	UI	165		04/01/2019	HS
97		28/10/2017	UI	132	0110 025	08/09/2013	UI	166		21/09/1993	TS
98		03/04/2010	HS	133		06/10/2013	UI	167		24/09/1993	UI
99	GNTA-040	30/04/2010	UI	134	4	10/04/2009	TI	168	GNTF-011	10/04/1994	UI
100		05/06/2010	UI	UI 135 CNTC-026 15/04/2009 UI 169			25/01/2003	UI			
101		08/04/1992	BT	136	01110 020	20/10/2010	UI	170		12/05/2003	UI
102	GNTB-007	01/06/1996	BT	137		16/11/2018	UI	171	GNTF-027	02/11/2013	UI
103		19/01/1997	BT	138	8	30/06/1996	BT	172		03/12/2014	UI
104	GNTB-022	22 28/09/2012 UI 139 GNTD-00	GNTD-008	21/04/2003	TI	173		03/01/2015	UI		
105	01110 022	30/10/2012	l0/2012 UI 140		29/04/2012	BT	174	GNTF-028	28/10/2016	TI	
106	GNTB-041	20/07/2012	BT	141	GNTD-032	12/05/2013	TI	175		27/12/2016	TI
107	GIVID 041	13/03/2019	TI	142		05/07/2019	US	176		18/12/2018	UI
108	GNTB-042	01/05/2010	TI	143		15/01/2019	HS	177		05/09/2014	TS
109		24/11/2006	UI	144	GNTD-047	20/02/2019	TI	178	GNTF-038	09/10/2014	UI
110	GNTC-013	05/02/2007	UI	145		09/04/2019	TI	179		11/04/2015	UI
111		23/05/2007	UI	146		01/01/1987	TI	180	GNTE-039	01/06/2014	UI
112	GNTC-014	24/03/2009	TI	147		02/01/1987	TI	181	GITTI 055	21/07/2017	UI
113	0110 014	13/04/2012	TI	148		26/02/1987	TI	182		30/12/1995	TI
114		24/09/2005	UI	149		18/11/1988	TI	183		26/07/1996	US
115		23/11/2006	UI	150		13/12/1988	TI	184		11/02/1998	TI
116		17/04/2007	UI	151	GNTE-004	30/05/1992	TI	185	GNTG-012	23/02/1998	U+T
117	GNTC-017	26/04/2007	TI	152	GN IE-004	20/07/1992	HS	186		23/05/2003	TI
118		10/07/2011	UI	153		22/07/1992	BT	187		26/05/2003	U+T
119		08/10/2014	UI	154		18/10/1994	HS	188		08/05/2017	UI+US+TI
120		24/05/2015	TI	155		19/10/1994	HS	189	GNTG-030	19/05/2015	UI
121	GNTC-023	28/05/2009	US+UI	156		12/12/1994	HS	190	GNTG-048	04/01/2019	TI
122	01110 025	02/06/2009	HS								

Continuación: Tabla 10

Elaboración: (Javier Morocho, 2021)

De la totalidad de pruebas recopiladas en una base de datos en Excel, se seleccionaron aquellas pruebas que se encuentran en el rango (2013 – 2020), con esta información se obtuvieron pruebas en las cuales existe interpretación de Build up y otras que solo presenta la información cruda, dando una totalidad de 49 pruebas disponibles las cuales se detallan en la Tabla 11.

POZO	ARENA									
	BT	US	UI	US+UI	US+UI+TI	TS	TI	HS		
DROA-002			1				1			
DROA-003							1		S	
GNT-002		1							Щ	
GNT-005	1								Bl	
GNT-015	1						1	1		
GNTA-018	1						2		ō	
GNTA-019							2		Ğ	
GNTA-020			1						IS	
GNTB-041							1			
GNTC-017			1				1		AS	
GNTC-023				1				3	B/	
GNTC-025			2						JΕ	
GNTC-026			1						ר גר	
GNTD-032		1					1		Ъ	
GNTD-047							2	1	ш	
GNTE-004	1								Δ	
GNTE-031								1	۲	
GNTE-034	1							3	1	
GNTF-027			1						Ö	
GNTF-028			3				2		- I	
GNTF-038			2			1				
GNTF-039			2							
GNTG-012					1					
GNTG-030			1							
GNTG-048							1			
TOTAL	5	2	15	1	1	1	15	9	49	

 Tabla 11. Pruebas del campo Guanta-Dureno desde el año 2013 al 2020

Elaboración: (Javier Morocho, 2021)

2.3.2 Historial de Eventos

Con la información proporcionada por la empresa Petroamazonas EP, se diseñó una matriz histórica que nos permite conocer los eventos que se realizaron en cada pozo. Se encuentra estructurada por tres parámetros principales los cuales son: Perforación, Completación, Pruebas Iniciales y Workovers.

En la matriz se encuentra detallado los resultados que se obtuvieron por cada arena y las observaciones hechas por los Ingenieros de campo. En el Anexo 2, se muestra de ejemplo los eventos que acontecieron en el pozo GNT-002, esto se realizó para todos los pozos del campo Guanta-Dureno.

2.3.3 Criterios de Selección

Es de vital importancia conocer la calidad y confiabilidad de la información que se tiene, con el objetivo de realizar una interpretación de pruebas de restauración de presión adecuada, a continuación, se presenta la Tabla 12, en la cual constan criterios de selección de este tipo de pruebas, que están basados en ciertos parámetros.

CRITERIO	EVALUACIÓN DEL POZO	NÚMERO DE PRUEBAS DISPONIBLES				
ALTO	Producción previa estable, modelo válido, límites de reservorio	14				
MEDIO	Producción previa variable o suposición de presión/producción, modelo válido	21				
BAJO	Modelo no válido, índice de productividad estimado, no se identifica flujo radial infinito (IARF)	5				
NO VÁLIDO	Periodo de cierre muy corto, no existe datos de producción, problemas mecánicos, no existe prueba de restauración, producción mezclada, data cruda errónea, etc.	9				
	TOTAL DE PRUEBAS					

Tabla 12. Criterios de selección para el análisis de pruebas de presión

Elaboración: (Javier Morocho, 2021)

Fuente: (Izurieta, Dávila, Paz & EP., 2015)

Del total de 49 pruebas existentes en el campo Guanta Duero, tomando en cuenta solo las pruebas a partir del año 2013, se alcanzó un 28.57% de pruebas que tuvieron un criterio alto y un 42.86% un criterio medio, las cuales se usaron para el desarrollo de las interpretaciones de pruebas de presión.

Figura 63. Porcentaje de los criterios de las pruebas de presión Elaboración: (Javier Morocho,2021)

De igual manera se obtuvo un 10.20% de criterio bajo y un 18.37% de criterio No válido, como se muestra en la Figura 63, estas pruebas fueron descartadas debido a que presentan un grado de incertidumbre muy alto y que influirían en los resultados, obteniendo valores erróneos en las interpretaciones de Build up.

2.4 Interpretación de pruebas de restauración de presión

Luego de haber validado la información, se procedió a usar un software confiable que nos permita realizar una interpretación de pruebas de presión adecuada.

La Figura 64, muestra que el software Saphir NL se maneja bajo 4 parámetros indispensables que son: Datos de producción (caudales), Datos de Build Up (presiones), Datos PVT, Datos adicionales como zona de pago, radio del pozo, etc.

Figura 64. Parámetros para el análisis **Fuente:** (Houzé, Viturat, & Fjaere, 2020)

Se siguió una secuencia para la interpretación de presión en el campo Guanta-Dureno: Se tabularon los datos generales del pozo como el radio, zona de pago, porosidad entre otros. Se cargo los datos PVT como saturación de agua, porosidad, viscosidad, factor volumétrico. Se cargó los datos de presión y se la sincroniza con los datos de producción y finalmente se escogió el modelo adecuado para la interpretación de presión

Los valores obtenidos se corrigen a la mitad de los punzados y a la profundidad del datum como se muestra en el Anexo 3.

La Figura 65, muestra la secuencia de los aspectos operacionales que se realizaron en la obtención de los mapas de presiones y permeabilidades, mediante el uso de diagrama de flujo.

Figura 65. Flujo de trabajo para la interpretación de pruebas de presión (Bup) y la generación de mapas isobáricos

Elaboración: (Javier Morocho, 2021)

2.5 Estimación de la presión actual

Se calcularon los valores de presión a la Mitad de los Punzados y al DATUM de cada interpretación. Con la ayuda del software OFM se cargaron los valores de presión al datum de cada arena, se generó una línea de tendencia de declinación de presión por reservorio y por pozo para analizar el comportamiento de la presión en cada arena.

El software permite obtener valores de presión a diferentes fechas cuando se realiza una declinación pozo a pozo, con esta información disponible se obtuvo el valor de presión a junio del 2021(Datum), después se calculó el diferencial de presión al datum es decir el valor de presión que decreció y ese diferencial fue aplicado en la presión a Mitad de Punzados para obtener los valores de presión a junio del 2021(MP).

2.6 Generación de mapas de presión y permeabilidad

Para generar estos mapas es necesario tener las coordenadas UTM de los pozos analizados, esta información fue proporcionada por el departamento de geología de la empresa Petroamazonas EP, además es indispensable los valores de presión y permeabilidad que hemos obtenido anteriormente tabulados cada uno a su respectiva profundidad de arena.

Finalmente se usa un software que nos permita generar mapas isobáricos, en este caso el más recomendable es el software OFM debido a que el campo no cuenta con un modelo de simulación. Con toda la información obtenida permitió generar los mapas y ver el comportamiento de presión y permeabilidad en todo el campo Guanta-Dureno.

CAPÍTULO 3

RESULTADOS Y DISCUSIÓN

3.1 Resultados del análisis de presión

Las Tablas 13,14,15,16 muestran los resultados del análisis de pruebas de presión para los criterios alto y medio de las arenas: Basal Tena, "U" Superior, "U" Inferior, "T" Superior, "T" Inferior y Hollín Superior.

Mediante el uso del software Saphir NL se pudo determinar los valores de presión y permeabilidad por el método de la Derivada y de Horner, tomando en cuenta el modelo que mejor se ajustaba en cada build up.

En el anexo 4, se muestra las herramientas que se usaron en Saphir NL, el tipo de modelo de interpretación y sus respectivos gráficos de diagnóstico que se usaron en el software para determinar los resultados.

DATOS DEL RESERVORIO			MODELOS					Método de la Derivada				Método de Horner			
POZO	FECHA	ARENA	Almacenamiento	Pozo	Reservorio	Limites	Pi(PSI)	k.h(md.ft)	k(md)	St	Pi(PSI)	k.h(md.ft)	k(md)	St	
GNTE-004	19/08/2015	BT	Variable	Vertical	Homogéneo	Falla	1337,48	686,34	76,26	3,21	1323,01	419,05	46,56	0,12	
GNT-005	13/05/2015	BT	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier angulo	1460,64	651,33	54,28	-1,29	1427,35	646,59	53,88	-1,53	
GNT-015	14/04/2018	BT	Variable	Vertical con entrada limitada	Homogéneo	Falla	767,59	1658,50	165,85	0,52	910,52	1246,94	124,69	0,53	
GNTA-018	29/09/2013	BT	Variable	Vertical	Homogéneo	Falla	888,14	175,17	11,68	-2,27	861,90	188,07	12,54	-2,34	
GNTE-034	06/11/2015	BT	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier ángulo	1119,10	1458,44	121,54	-0,49	1015,71	1220,85	101,74	-1,47	

Tabla 13. Resultados de	l análisis de	pruebas de	presión en la	arena "BT"
-------------------------	---------------	------------	---------------	------------

Elaboración: (Javier Morocho,2021)
DATOS DEL RESERVORIO				MODELOS			Método de la Derivada				Método de Horner			
POZO	FECHA	ARENA	Almacenamiento	Pozo	Reservorio	Limites	Pi(PSI)	k.h(md.ft)	k(md)	St	Pi(PSI)	k.h(md.ft)	k(md)	St
GNT-002	30/06/2013	US	Constante	Vertical	Homogéneo	Circular	3047,38	59,59	3,97	0,28	3284,56	59,73	3,98	0,34
GNTC-017	08/10/2014	UI	Variable	Vertical	Homogéneo	Circular	1216,73	563,46	18,78	1,80	182,59	550,14	18,34	1,59
GNTA-020	28/10/2017	UI	Variable	Vertical	Homogéneo	Falla	1081,82	44,04	1,69	4,20	1110,39	41,96	1,61	3,83
GNTC-026	16/11/2018	UI	Variable	Vertical	Homogéneo	Infinito	1386,52	134,98	10,04	-2,56	1388,56	127,39	9,48	-2,77
GNTF-028	03/12/2014	UI	Constante	Vertical fracturado con conductividad finita	Doble porosidad pseudo estable	Falla	1815,58	3121,87	97,90	9,53	1823,54	3868,94	121,33	10,25
GNTF-028	03/01/2015	UI	Variable	Vertical	Homogéneo	Circular	1896,65	422,89	12,44	-2,54	2052,27	726,75	21,37	-0,26
GNTF-038	09/10/2014	UI	Constante	Vertical	Homogéneo	Infinito	1878,88	103,27	3,44	-1,36	1855,52	102,99	3,43	-1,51
GNTF-038	11/04/2015	UI	Variable	Vertical fracturado con conductividad finita	Homogéneo	Rectángulo	1809,90	160,10	5,00	-3,75	1900,73	238,60	7,46	-3,09
GNTF-039	01/06/2014	UI	Constante	Vertical	Homogéneo	Infinito	1824,68	702,93	39,05	-2,16	1828,91	612,36	34,01	-2,74
GNTF-039	21/07/2017	UI	Variable	Vertical fracturado con conductividad finita	Homogéneo	Fallas Paralelas	2752,14	833,38	46,30	0,00	1827,43	753,47	41,86	-3,17

Tabla 14. Resultados del análisis de pruebas de presión en la arena "U"

DATOS	S DEL RESERVO	RIO		MODELOS					Método de la Derivada				Método de Horner			
POZO	FECHA	ARENA	Almacenamiento	Pozo	Reservorio	Limites	Pi(PSI)	k.h(md.ft)	k(md)	St	Pi(PSI)	k.h(md.ft)	k(md)	St		
GNTF-038	05/09/2014	TS	Variable	Vertical	Doble porosidad pseudo estable	Infinito	1714,79	96,91	3,23	-3,58	1711,67	126,55	4,22	-2,73		
DROA-002	14/04/2014	TI	Variable	Vertical	Doble porosidad pseudo estable	Infinito	2291,08	4176,61	134,73	11,66	2309,79	3930,71	126,80	11,00		
GNT-015	03/07/2013	TI	Variable	Vertical	Homogéneo	Falla	1838,88	520,63	21,69	34,58	1831,05	538,22	22,43	35,84		
GNTA-018	19/05/2014	TI	Variable	Vertical	Doble porosidad pseudo estable	Falla	1034,02	554,49	11,09	-0,13	1044,20	508,61	10,17	-0,36		
GNTA-019	19/10/2013	TI	Variable	Vertical	Homogéneo	Infinito	1367,17	110,69	4,43	3,43	1364,44	104,62	4,18	2,79		
GNTA-019	11/12/2018	TI	Variable	Vertical	Homogéneo	Falla	1124,07	103,54	3,13	-2,05	1495,87	99,89	3,02	-2,30		
GNTF-028	28/10/2016	TI	Variable	Vertical	Homogéneo	Infinito	1856,94	93,86	4,08	0,36	1851,57	92,15	4,01	0,22		
GNTF-028	27/12/2016	TI	Variable	Vertical	Homogéneo	Infinito	1989,51	72,82	3,17	2,04	2002,04	62,11	2,70	0,89		
GNTD-032	12/05/2013	TI	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier angulo	1942,03	8781,50	250,90	65,30	1918,33	6805,83	194,45	49,52		
GNTD-047	20/02/2019	TI	Variable	Vertical	Homogéneo	Falla	1840,51	8,04	0,27	-1,68	1808,00	7,52	0,25	-1,81		
GNTD-047	09/04/2019	TI	Constante	Vertical	Homogéneo	Intersección de fallas en cualquier ángulo	2005,45	240,71	8,02	-1,71	1922,93	269,03	8,97	-1,52		
GNTG-048	04/01/2019	TI	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier ángulo	2439,33	453,05	17,42	-1,06	2275,72	448,19	17,24	-1,26		

	Tabla 15. F	Resultados de	l análisis de	pruebas de	presión en	la arena '	"T"
--	-------------	---------------	---------------	------------	------------	------------	-----

DATOS DEL RESERVORIO				MODELOS					Método de la Derivada				Método de Horner			
POZO	FECHA	ARENA	Almacenamiento	Pozo	Reservorio	Limites	Pi(PSI)	k.h(md.ft)	k(md)	St	Pi(PSI)	k.h(md.ft)	k(md)	St		
GNT-015	13/02/2013	HS	Variable	Vertical	Homogéneo	Falla	3988,57	1068,31	35,61	22,08	3956,10	1158,48	38,61	24,22		
GNTC-023	13/04/2014	HS	Variable	Vertical	Homogéneo	Falla	3460,55	147,24	12,27	0,24	4025,53	148,47	12,37	0,23		
GNTC-023	15/10/2014	HS	Constante	Vertical	Doble porosidad transiente	Infinito	2686,87	113,63	9,47	-2,96	2523,29	164,37	13,70	-1,82		
GNTC-023	25/02/2018	HS	Variable	Vertical	Homogéneo	Falla	3731,48	125,90	11,42	-0,68	3711,06	135,87	12,35	-0,32		
GNTE-031	05/10/2014	HS	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier ángulo	2012,49	5842,87	208,67	2,84	1970,94	5633,94	201,21	2,37		
GNTE-034	28/09/2015	HS	Variable	Vertical	Homogéneo	Falla	1532,94	341,81	15,54	0,10	1416,52	226,44	10,29	-1,15		
GNTE-034	04/01/2019	HS	Variable	Vertical	Homogéneo	Falla	1575,97	31,36	0,96	-0,88	1317,78	26,79	0,81	-1,35		
GNTD-047	15/01/2019	HS	Variable	Vertical	Homogéneo	Intersección de fallas en cualquier ángulo	2032,00	2657,94	189,85	-2,59	2112,91	1357,38	96,96	-3,87		

Tabla 16. Resul	tados del análisis	s de pruebas de	e presión en la	arena "HS"
-----------------	--------------------	-----------------	-----------------	------------

POZO	FECHA	ARENA	OBSERVACIONES	CRITERIO
DROA-002	09/10/2014	UI	No existe datos de presión de los sensores, solo presenta imagen de restauración de presión	Bajo
DROA-003	09/04/2015	TI Datos no válidos para una prueba de Build Up		No valido
GNT-012	08/05/2017	UI+US+TI	Producción mezclada	No valido
GNTC-017	24/05/2015	24/05/2015TIComportamiento de la derivada de presión (mayo 2015) difiere con la derivada de abril 2007		No valido
GNTA-018	29/05/2014	29/05/2014 TI No existe data cruda		No valido
GNTC-023	3 03/05/2018 US+UI Producción mezclada		No valido	
GNTC-025	08/09/2013	UI	No se observa periodo de estabilización de producción	Вајо
GNTC-025	06/10/2013	UI	No se identifica el flujo radial infinito	Bajo
GNTF-027	02/11/2013	UI	No se alcanza el flujo radial, no se tiene estabilidad de flujo en el pozo	Вајо
GNTF-028	18/12/2018	UI	No se encuentran registros de data cruda	No valido
GNTG-030	19/05/2015	UI	No se logra alcanzar el flujo radial	Bajo
GNTD-032	05/07/2019	/07/2019 US Data tomada para una prueba de Drawdown		No valido
GNTE-034	28/09/2014	HS	No existe data cruda	No valido
GNTB-041	41 13/03/2019 TI Data tomada para una prueba de Drawdown		No valido	

Tabla 17. Pruebas con un criterio Bajo y No valido

Elaboración: (Javier Morocho, 2021)

Luego del análisis de los historiales de las pruebas de build up del campo, muestra que hubo problemas operativos: como mal cierre del pozo, problemas de las memorias, descalibración de las herramientas, entre otros. La Tabla 17, indica las pruebas que fueron descartadas para realizar las interpretaciones de build up, debido a ciertos eventos ocurridos en los trabajos operativos, los cuales generaron que la data sea incorrecta o no valida.

3.2 Comparación de resultados de las pruebas de presión

Los resultados que se obtuvieron de las interpretaciones de pruebas de presión son comparados con las antiguas interpretaciones, para lo cual solo se tomaron en cuenta aquellas pruebas que cumplían con un criterio valido.

Las Tablas 18,19,20,21 muestran la comparación de resultados para las arenas: Basal Tena, "U" Superior, "U" Inferior, "T" Superior, "T" Inferior, Hollín Superior, en las que podemos apreciar que la variación de la presión es mínima, lo cual nos muestra un grado de confiabilidad alto en el trabajo realizado.

Por otro lado, los valores de permeabilidad muestran una diferencia significante, esto sucede porque las interpretaciones antiguas se tomaron en cuenta valores pvt de la información disponible en ese momento o por correlaciones, mientras que las interpretaciones que se realizaron se usó información PVT del laboratorio del campo, que fue proporcionada por Petroamazonas EP.

	GUANTA-DURENO ARENA"BT"									
DATOS DEL RESERVORIO NUEVA INTERPRETACIÓN ANTIGUA INTERPRETACIÓN										
POZO	FECHA	ARENA	Pi(PSI) @MP	k(md)	St	Pi(PSI) @ MP	k(md)	St		
GNTE-004	19/08/2015	BT	1422,61	76,26	3,21	1430,91	163,00	1,47		
GNT-005	13/05/2015	BT	1510,42	54,28	-1,29	1354,78	95,5	0,84		
GNT-015	14/04/2018	BT	854,47	165,85	0,52	847,76	72	2,4		
GNTA-018	29/09/2013	BT	971,47	11,68	-2,27	935,93	40,7	5,07		
GNTE-034	06/11/2015	BT	1192,19	121,54	-0,49	923,09	44,4	2,8		

Tabla 18. Comparación de resultados válidos en la arena Basal Tena

Elaboración: (Javier Morocho, 2021)

La arena BT presenta un 7,7% de diferencia de presión entre la nueva y la antigua interpretación.

GUANTA-DURENO ARENA "U"										
DATOS DEL RESERVORIO NUEVA INTERPRETACIÓN ANTIGUA INTERPRETACIÓN										
POZO FECHA ARENA Pi(PSI) @MP k(md) St Pi(PSI) @ MP k(md)								St		
GNT-002	30/06/2013	US	3142,33	3,97	0,28	3142,14	1,61	1,21		
GNTC-017	08/10/2014	UI	1264,23	18,78	1,80	1257,5	10,7	9,53		
GNTA-020	28/10/2017	UI	1133,13	1,69	4,20	1133,63	25,01	4,12		
GNTC-026	16/11/2018	UI	1470,61	10,04	-2,56	-	-	-		
GNTF-028	03/12/2014	UI	1863,10	97,90	9,53	1854,54	88,2	17,8		
GNTF-028	03/01/2015	UI	1956,71	12,44	-2,54	1886,31	58,7	7,92		
GNTF-038	09/10/2014	UI	1936,68	3,44	-1,36	1749,80	13,1	10,20		
GNTF-038	11/04/2015	UI	1860,23	5,00	-3,75	1900,31	18	-4,5		
GNTF-039	01/06/2014	UI	1872,51	39,05	-2,16	-	-	-		
GNTF-039	21/07/2017	UI	2791,16	46,30	0,00	-	-	-		

Tabla 19. Comparación de resultados válidos en la arena "U"

Elaboración: (Javier Morocho, 2021)

La arena "U" presenta un 1,79% de diferencia de presión entre la nueva y la antigua interpretación.

GUANTA-DURENO ARENA "T"									
DATOS D	ANTIGUA INTE	RPRETA	CIÓN						
POZO	POZO FECHA ARENA Pi(PSI) @MP k(md) St					Pi(PSI) @ MP	k(md)	St	
GNTF-038	05/09/2014	TS	1859,89	3,23	-3,58	1853,10	11,1	5	
DROA-002	14/04/2014	TI	2381,02	134,73	11,66	2388,57	403	21,2	
GNT-015	03/07/2013	TI	1940,43	21,69	34,58	1940,07	14,7	19	
GNTA-018	19/05/2014	TI	1505,22	11,09	-0,13	1505,19	32,1	-2,7	
GNTA-019	19/10/2013	TI	1415,17	4,43	3,43	1406,16	4,11	2,5	
GNTA-019	11/12/2018	TI	1258,14	3,13	-2,05	-	-	-	
GNTF-028	28/10/2016	TI	1991,19	4,08	0,36	2033,21	27,2	-2,89	
GNTF-028	27/12/2016	TI	2113,84	3,17	2,04	2131,88	14,5	-1,71	
GNTD-032	12/05/2013	TI	2016,68	250,90	65,30	2028,53	224,49	58,2	
GNTD-047	20/02/2019	TI	1962,74	0,27	-1,68	-	-	-	
GNTD-047	09/04/2019	TI	2134,71	8,02	-1,71	-	-	-	
GNTG-048	04/01/2019	TI	2512,08	17,42	-1,06	2405,25	31,9	8,89	

Tabla 20. Comparación de resultados válidos en la arena "T"

Elaboración: (Javier Morocho, 2021)

La arena "T" presenta un 0,25% de diferencia de presión entre la nueva y la antigua interpretación.

	GUANTA-DURENO ARENA "HS"										
DATOS DEL RESERVORIO NUEVA INTERPRETACIÓN ANTIGUA INTERPRETACIÓN											
POZO	FECHA	ARENA	Pi(PSI) @MP	k(md)	St	Pi(PSI) @MP	k(md)	St			
GNT-015	13/02/2013	HS	4157,15	35,61	22,08	4087,78	33,6	9,99			
GNTC-023	13/04/2014	HS	3613,01	12,27	0,24	3904,47	90,7	7,2			
GNTC-023	15/10/2014	HS	2835,27	9,47	-2,96	-	-	-			
GNTC-023	25/02/2018	HS	3964,44	11,42	-0,68	4090,97	13	-0,06			
GNTE-031	05/10/2014	HS	2091,45	208,67	2,84	2064	85	-0,13			
GNTE-034	28/09/2015	HS	1591,30	15,54	0,10	-	-	-			
GNTE-034	04/01/2019	HS	1743,23	0,96	-0,88	-	-	-			
GNTD-047	15/01/2019	HS	2214,27	189,85	-2,59	-	-	-			

Tabla 21. Comparación de resultados válidos en la arena Hollín Superior

Elaboración: (Javier Morocho, 2021)

La arena "T" presenta un 2,32% de diferencia de presión entre la nueva y la antigua interpretación.

3.3 Presión al datum

Para poder realzar el análisis respectivo se llevó a un mismo nivel de referencia, se corrigió los valores de presión de bup al datum como se muestra en la Tabla 22.

COMPLETAMIENTO	FECHA	PRESIÓN DEL BUP	PRESIÓN CORREGIDA A MITAD DE PUNZADOS	PRESIÓN CORREGIDA AL DATUM
GNTE-004BT	19/08/2015	1337,48	1422,61	1559,33
GNT-005BT	13/05/2015	1460,64	1510,42	1623,87
GNTA-018BT	29/09/2013	888,14	971,47	1104,24
GNTE-034BT	06/11/2015	1119,10	1192,19	1313,31
GNT-002US	30/06/2013	3047,38	3142,33	3248,48
GNTC-017UI	08/10/2014	1216,73	1264,23	1394,05
GNTA-020UI	28/10/2017	1081,82	1133,13	1266,59
GNTC-026UI	16/11/2018	1386,52	1470,61	1575,08
GNTF-028UI	03/01/2015	1896,65	1956,71	2085,60
GNTF-038UI	11/04/2015	1809,9	1860,23	1969,96
GNTF-039UI	21/07/2017	2752,14	2791,16	2901,70
GNTF-038TS	05/09/2014	1714,79	1859,89	1952,26
DROA-002TI	14/04/2014	2291,08	2381,02	2496,68
GNT-015TI	03/07/2013	1838,88	1940,43	2072,70

Tabla 22. Presión corregida al DATUM

COMPLETAMIENTO	FECHA	PRESIÓN DEL BUP	PRESION CORREGIDA A MITAD DE PUNZADOS	PRESIÓN CORREGIDA AL DATUM
GNTA-018TI	19/05/2014	1034,02	1505,22	1632,09
GNTA-019TI	11/12/2018	1124,07	1258,14	1406,48
GNTF-028TI	27/12/2016	1989,51	2113,84	2242,11
GNTD-032TI	12/05/2013	1942,03	2016,68	2130,69
GNT-015HS	13/02/2013	3988,57	4157,15	4286,66
GNTC-023HS	25/02/2018	3731,48	3964,44	4082,42
GNTE-031HS	05/10/2014	2012,49	2091,45	2207,42
GNTE-034HS	04/01/2019	1575,97	1743,23	1891,41
GNTD-047HS	15/01/2019	2032	2214,27	2356,54

Declinación de presión 3.4

a) Basal Tena

El reservorio Basal Tena presenta una declinación del 3,8% anual efectivo

La Figura 66, Indica que al trabajar a un mismo nivel de referencia es decir a la profundidad del datum podemos apreciar como la presión declina en función del tiempo de manera insignificante. El reservorio presenta valores de presión bien bajos, y la declinación muestra que se llegara a tener valores similares al Pb, por esa razón la mayor parte de pozos se encuentran inactivos.

b) "U" Inferior

El reservorio "U" Inferior presenta una declinación del 2,9 % Anual Efectiva

La Figura 67, La arena "U" Inferior muestra una declinación pequeña del 2,9%, para todas estas arenas se generó una declinación exponencial ya que es la que mejor se ajusta a los datos de presión del campo.

c) "T" Inferior

El reservorio presenta una declinación de presión del 2,7% Anual Efectiva

- Figura 68. Declinación de la presión de la arena "T" Inferio Elaboración: (Javier Morocho,2021)
- d) Hollín Superior

El reservorio presenta una declinación de presión del 1,4% Anual Efectiva

La presión actual de la arena fue determinada en función de los valores que se obtuvieron de las presiones al datum, ya que a esa profundidad se analizó como declinaba la presión.

3.5.1 Basal Tena

GUANTA-DURENO ARENA"BT"										
Datos del Pozo Presión (psi)										
Pozo	Fecha	Arena	@ Build up@ Jun. 2021@ Jun. 2prof MPprof MPprof DAT							
GNTE-004	19/08/2015	ВТ	1422,61	1103,28	1240					
GNT-005	13/05/2015	BT	1510,42	1164,55	1278					
GNTA-018	29/09/2013	BT	BT 971,47 635,79 768,56							
GNTE-034	GNTE-034 06/11/2015 BT 1192,19 932,88 1054									

Tabla 23. Estimación de la presión actual para la arena Basal Tena

La Tabla 23, muestra los valores de presión medidos a un mismo nivel de referencia (DATUM) en la arena BT para cada pozo. Se puede apreciar que el valor de presión del pozo GNTA-018 está por debajo de punto de burbuja, este valor es el que se tendría si el pozo estuviera produciendo, pero el estado actual del pozo es inactivo.

3.5.2 "U" Inferior

La Tabla 24, muestra los resultados obtenidos de la presión medido a un mismo nivel de referencia en cada pozo, es la arena con mayor producción del campo y los valores obtenido son muy cercanos a la presión actual del yacimiento que es 1200psia.

Elaboración: (Javier Morocho, 2021)

GUANTA-DURENO ARENA "UI"										
Datos del Pozo Presión (psi)										
Pozo	Fecha	Arena @ Build up @ Jun. 2021 @ Jun. 2 prof MP prof MP prof DAT								
GNTC-017	08/10/2014	UI	1264,23	1013,18	1143					
GNTA-020	28/10/2017	UI	1133,13	1003,54	1137					
GNTC-026	16/11/2018	UI	1470,61	1354,53	1459					
GNTF-028	03/01/2015	UI	1956,71	1593,11	1722					
GNTF-038	11/04/2015	UI	1860,23	1529,27	1639					
GNTF-039	21/07/2017	UI	2791,16	2473,46	2584					

Tabla 24. Estimación de la presión actual para la arena "U" Inferior

3.5.3 "T" Inferior

La presión actual del yacimiento es de 1500psia. La tabla 25, nos permite apreciar los valores obtenidos a la profundidad del datum son cercanos a la del yacimiento, es decir que el grado de confiabilidad es alto.

GUANTA-DURENO ARENA "TI"											
Da	atos del Po	zo		Presión (psi)							
Pozo	Fecha	Arena	@ Build up prof MP	@ Jun. 2021 prof MP	@ Jun. 2021 prof DATUM						
DROA-002	14/04/2014	TI	2381,02	1924,34	2040						
GNT-015	03/07/2013	TI	1940,43	1524,73	1657						
GNTA-018	19/05/2014	TI	1505,22	1210,13	1337						
GNTA-019	11/12/2018	TI	1258,14	1162,66	1311						
GNTF-028	27/12/2016	TI	2113,84	1848,73	1977						
GNTD-032	12/05/2013	TI	2016,68	1582,99	1697						
GNTD-047	09/04/2019	TI	2134,71	1998,61	2143						
GNTG-048	04/01/2019	TI	2512,08	2337,11	2457						

Tabla 25. Estimación de la presión actual para la arena "T" Inferior

Elaboración: (Javier Morocho, 2021)

3.5.4 Hollín Superior

GUANTA-DURENO ARENA "HS"										
Da	Datos del Pozo Presión (psi)									
Pozo	Pozo Fecha Arena @ Build up prof MP @ Jun. 2021 @ Jun. 2									
GNT-015	13/02/2013	HS	4157,15	3675,49	3805					
GNTC-023	25/02/2018	HS	3964,44	3776,02	3894					
GNTE-031	05/10/2014	HS	2091,45	1889,03	2005					
GNTE-034	04/01/2019	HS	1743,23	1677,82	1826					
GNTD-047	15/01/2019	HS	2214,27	2133,73	2276					

Tabla 26. Estimación de la presión actual para la arena Hollín Superior

La tabla 26, indica que hay 3 pozos que se encuentran con valores de presiones por debajo de la presión actual del yacimiento eso da indicios que hubo problemas operacionales.

3.6 Mapas de presiones y permeabilidades

Para la generación de los mapas es indispensable contar con los suficientes para generar los mapas estos son: coordenadas del pozo (UTM), datos de profundidad del pozo, valores de presión y permeabilidad obtenidos en el desarrollo del trabajo.

3.6.1 Datos para la generación de los mapas de presión

Las tablas que se presentan a continuación permiten identificar los datos obtenidos de cada pozo, esta información es indispensable para el desarrollo de los mapas de presiones que se usaran en el software OFM.

Elaboración: (Javier Morocho, 2021)

RESERVORIO	POZO	COORDENADAS		DATOS DE PI	PRESIÓN (psi)				
		X	Y	TOP_MD	TOP_TVDSS	AL DATUM			
	GNTE-004	302962,3	9999136,9	8837	-7920,1	1240			
вт	GNT-005	303614,88	10002686,8	8890	-7950	1278			
	GNTA-018	302373,125	9997768	9213,5	-7919	768,56			
	GNTE-034	302804,875	10000170	9248,9	-7906,86	1054			

Tabla 27. Datos para generar el mapa de presión de la arena BT

Tabla 28. Datos para generar el mapa de presión de la arena UI

RESERVORIO	POZO	COORDI	ENADAS	DATOS DE PR	PRESIÓN (psi)	
		Х	Y	TOP_MD	TOP_TVDSS	AL DATUM
	GNTA-020	301395,59	9997447,92	9936,72	-8677,87	1137
	GNTC-017	302149,06	9998357,78	10079,33	-8633,45	1143
UI	GNTC-026	301936,41	9999384,69	9927,81	-8708,76	1459
	GNTF-028	303155,78	10003554,81	10039,32	-8696,23	1722
	GNTF-038	303013,23	10004026,37	10145,76	-8710,14	1639
	GNTF-039	302667,22	10003664,63	10018,76	-8707,11	2584

Elaboración: (Javier Morocho, 2021)

Tabla 29. Datos para generar el mapa de presión de la arena 11
--

RESERVORIO	POZO	COORD	ENADAS	DATOS DE PI	PRESION (psi)	
		х	Y	TOP_MD	TOP_TVDSS	@ Dic. 2021
	DROA-002	304206,38	10004419,94	10583,84	-8908,19	2040
	GNT-015	302002,22	9997102,18	9806,89	-8881,89	1657
	GNTA-018	302366,2	9997768,89	10182,47	-8887,17	1337
	GNTA-019	302539,63	9998129,37	10304,45	-8867,49	1311
TI	GNTD-032	303839,23	10002105,72	10122,84	-8906,49	1697
	GNTD-047	303564,77	10000876,76	10252,99	-8861,99	2143
	GNTF-028	303156,29	10003554,29	10237,28	-8894,17	1977
	GNTG-048	303815,25	10003020,28	10085,53	-8874,2	2457

RESERVORIO	POZO	COORD	COORDENADAS		ros de JNDIDAD	PRESIÓN (psi)
		X	Y	TOP_MD	TOP_TVDSS	AL DATUM
	GNT-015	302002,22	9997102,18	9934,19	-9009,19	3805
	GNTC-023	301686,78	9998435,77	10295,43	-9034,19	3894
HS	GNTD-047	303563,81	10000869,91	10394,08	-9001,23	2276
	GNTE-031	302727,77	9999796,13	10158	-9027,91	2005
	GNTE-034	302806,75	10000198,5	10370,78	-9020,73	1826

Tabla 30. Datos para generar el mapa de presión de la arena HS

3.6.2 Datos para la generación de mapas de permeabilidades

Las tablas que se presentan a continuación permiten identificar los datos obtenidos de cada pozo, esta información es indispensable para el desarrollo de los mapas de permeabilidades que se usaran en el software OFM.

Tabla 31. Datos para generar el mapa de permeabilidad de la arena BT

		COORDENADA		DAT	OS DE	PERMEABILIDAD
RESERVORIO POZO		COORDE	COORDENADAS		NDIDAD	(mD)
		Х	Y	TOP_MD	TOP_TVDSS	@ Dic. 2021
	GNTE-004	302962,3	9999136,9	8837	-7920,1	76,26
BT	GNT-005	303614,88	10002686,8	8890	-7950	54,28
	GNTA-018	302373,125	9997768	9213,5	-7919	11,68
	GNTE-034	302804,875	10000170	9248,9	-7906,86	121,54

		COOPDI	COOPDENADAS		TOS DE	PERMEABILIDAD
RESERVORIO POZO		COORDENADAS		PROFUNDIDAD		(mD)
		Х	Y	TOP_MD	TOP_TVDSS	@ Dic. 2021
	GNTA-020	301395,59	9997447,92	9936,72	-8677,87	1,69
	GNTC-017	302149,06	9998357,78	10079,33	-8633,45	18,78
UI	GNTC-026	301936,41	9999384,69	9927,81	-8708,76	10,04
•	GNTF-028	303155,78	10003554,81	10039,32	-8696,23	12,44
	GNTF-038	303013,23	10004026,37	10145,76	-8710,14	5
	GNTF-039	302667,22	10003664,63	10018,76	-8707,11	46,3

Tabla 32. Datos para generar el mapa de permeabilidad de la arena UI

Tabla 33. Datos para generar el mapa de permeabilidad de la arena TI

		COODD		DAT	OS DE	PERMEABILIDAD
RESERVORIO	POZO	COORDE	COURDENADAS		INDIDAD	(mD)
		Х	Y	TOP_MD	TOP_TVDSS	@ Dic. 2021
	DROA-002	304206,38	10004419,94	10583,84	-8908,19	134,73
	GNT-015	302002,22	9997102,18	9806,89	-8881,89	21,69
	GNTA-018	302366,2	9997768,89	10182,47	-8887,17	11,09
ті	GNTA-019	302539,63	9998129,37	10304,45	-8867,49	3,13
	GNTD-032	303839,23	10002105,72	10122,84	-8906,49	3,17
	GNTD-047	303564,77	10000876,76	10252,99	-8861,99	250,9
	GNTF-028	303156,29	10003554,29	10237,28	-8894,17	8,02
	GNTG-048	303815,25	10003020,28	10085,53	-8874,2	17,42

Elaboración: (Javier Morocho, 2021)

Tabla 34. Datos para generar el mapa de permeabilidad de la arena HS

		COOPDI		DAT	TOS DE	PERMEABILIDAD				
RESERVORIO	POZO	COORDI	INADAS	PROFL	JNDIDAD	(mD)				
		Х	Y	TOP_MD	TOP_TVDSS	@ Dic. 2021				
	GNT-015	302002,22	9997102,18	9934,19	-9009,19	35,61				
	GNTC-023	301686,78	9998435,77	10295,43	-9034,19	11,42				
HS	GNTD-047	303563,81	10000869,91	10394,08	-9001,23	189,85				
	GNTE-031	302727,77	9999796,13	10158	-9027,91	208,67				
	GNTE-034	302806,75	10000198,5	10370,78	-9020,73	0,96				

3.6.3 Mapas de presiones y permeabilidades

Figura 70. Mapa de presiones arenisca Basal Tena Elaboración: (Javier Morocho,2021)

Figura 71. Mapa de presiones arenisca "U" Inferior

Figura 72. Mapa de presiones arenisca "T" Inferior Elaboración: (Javier Morocho,2021)

Figura 73. Mapa de presiones arenisca Hollín Superior Elaboración: (Javier Morocho,2021)

Figura 74. Mapa de permeabilidades arenisca Basal Tena Elaboración: (Javier Morocho,2021)

Figura 75. Mapa de permeabilidades arenisca "U" Inferior Elaboración: (Javier Morocho,2021)

Figura 76. Mapa de permeabilidades arenisca "T" Inferior Elaboración: (Javier Morocho,2021)

Figura 77. Mapa de permeabilidades arenisca Hollín Superior Elaboración: (Javier Morocho,2021)

CAPÍTULO 4

CONCLUSIONES Y RECOMENDACIONES

4.1 CONCLUSIONES

- De un total de 190 pruebas de restauración de presión encontradas en la base de datos del campo Guanta-Dureno, se seleccionaron las pruebas a partir del año 2013 porque se cuenta con información valida y disponible desde esa fecha, dando un total de 49 pruebas, lo cual representa un 25,79% del total de pruebas realizadas.
- De las pruebas seleccionadas para la interpretación solo el 71,43% fueron consideradas válidas y el otro 28,57% fueron descartadas ya que son pruebas que carecen de datos físicos y generarían incertidumbre en los resultados.
- Los Reservorios "T" Superior y "U" Superior no fueron tomados en cuenta para la generación de mapas de presiones y permeabilidades, el principal motivo es que existen muy pocas pruebas de restauración realizadas en estas arenas por lo cual no se tiene un grado de confianza alto.
- Al comparar los valores de permeabilidades se puede apreciar que existe una diferencia significativa que vas desde (0-270) mD, debido a que los valores de PVT que se tomaron actualmente difieren de los antiguos.
- Para los pozos que no se contaba con información se decidió utilizar los valores promedio de cada arena: BT=1000 psi, UI=1500 psi, TI=1500 psi, HS=3000 psi, para la generación de los mapas.

Basal Tena

- El valor de presión del pozo GNT-015BT se encuentra por debajo del punto de burbuja y al ser un pozo cerrado debido a que empezó a mostrar aporte bajo de producción, se decidió que el valor de presión de este pozo no fuera usado en la generación de los mapas.
- El pozo GNT-018BT presenta para junio del 2021 un valor de presión por debajo del punto de burbuja, este valor es el que tendría en el caso de que estuviera produciendo el pozo, pero actualmente el pozo esta inactivo, por este motivo se decidió usar el valor de la presión promedio del reservorio en el mapa.
- El pozo GNT-005 es uno de los pozos activos que tiene el campo, se tomó este pozo como ejemplo de análisis y se determinó que la diferencia que existe entre los valores determinados en mi trabajo y el estudio realizado por el activo es muy pequeño de tan solo 164 psi, lo cual sustenta que nuestro análisis es confiable.

"U" Inferior

- La arena "U" Inferior es la que presenta la mayor cantidad de pozos activos actualmente, además es la arena con mayor producción en el campo Guanta-Dureno.
- La arena presenta valores mayores de presión en la zona Norte del campo, mientras que en el Sur es donde se presentan valores más bajos de presión.
- La mayoría de los pozos presentan permeabilidades bajas tomando en cuenta que la permeabilidad varia en un rango de 1.69-462 mD.

"T" Inferior

- Los valores de presión que determino Petroamazonas EP para junio de 2021, comparando con los valores que obtuve en mi trabajo para esta arena se encuentra cerca de los valores promedio del reservorio, lo cual nos muestra un grado de confiabilidad alto.
- El rango de permeabilidades varia de (3.13-328) mD, siendo la zona Sur donde se presenta valores más bajos de permeabilidades y la zona central del campo muestra los valores más altos de permeabilidad.

Hollín Superior

- Los valores de presión más alto se encuentran en la zona Sur del campo mientras que en la parte central y la parte Norte es donde se visualiza valores más bajos de presión.
- La arena Hollín Superior presenta valores más altos de presión en la zona Norte, donde se encuentran pozos que están actualmente activos y la en la zona Sur presenta valores bajos de presión en la que se puede apreciar que la mayoría de sus pozos se encuentran inactivos.

4.2 **RECOMENDACIONES**

Se recomienda actualizar la base de datos del campo Guanta-Dureno constantemente, con la finalidad de tener la información de una manera amplia y ordenada, lo cual va a permitir que los Ingenieros puedan hacer un buen uso y tomen mejores decisiones.

- Se recomienda, establecer un periodo de cierre más largo en las pruebas de build up, para que se pueda identificar correctamente el estado de flujo radial y los límites del reservorio, el motivo se enfoca en que muchas de las pruebas que se revisaron del campo tienen este inconveniente.
- Es necesario realizar un estudio más profundo en las arenas "U" Superior y "T" Superior, debido a que se han realizado una cantidad muy pequeña de pruebas en estas arenas, la mayoría presenta pruebas con producción mezclada con otras arenas y dificulta predecir correctamente cual es el comportamiento de cada arena.
- Es fundamental realizar un análisis de curvas de influjo para determinar el potencial del pozo a diferentes presiones y realizar simulaciones en el campo.
- Es indispensable que se realice un proyecto de recuperación secundaria, porque el campo muestra una declinación significativa de presión con un promedio del 42,58% y de producción en todas las arenas, lo cual hace necesario que se tome en cuenta un proyecto de esta magnitud.

BIBLIOGRAFIA

Ahmed, T. (2019). Reservoir Engineering Handbook. Gulf Professional Publishing.

Ahmed, Tarek; McKinney, Paul. (2005). *Advanced Reservoir Engineering.* United States: ELSEVIER.

Alvarado, D. (2004). Análisis de Pruebas de Presión. Maracaibo, Venezuela.

- Aramendiz, J., & Miguel, V. (2008). Consideraciones y Procedimientos para el Análisis PVT del crudo de campos maduros. Aplicación Campo Colorado. (Trabajo de grado de Ingeniería). Universidad Industrial de Santander, Bucaramanga.
- Aslanyan, A. (2021). *Nafta College*. Obtenido de Nafta College Onile Knowledge: https://nafta.college/
- Baby, P., Rivadeneira, M., & Barragán, R. (2014). *LA CUENCA ORIENTE:GEOLOGIA Y PETROLEO*. Lima: Instituto Francés de Estudios Andinos.
- Bourdet, D. (2002). WELL TEST ANALYSIS: THE USE OF ADVANCED INTERPRETATION MODELS. Paris, France: ELSEVIER.
- Bravo, O., Carrillo, L., & Miranda, B. (s.f.). Pruebas De Presión E Interpretación En Pozos Horizontales. Escuela Superior Pólitecnica del Litoral, Guayaquil, Ecuador.
- Castro Delgado, J. B., & Gómez Bóhorquez, G. A. (2016). CÁLCULO DE PETRÓLEO ORIGINAL EN SITIO Y EVALUACIÓN DE RESERVAS. FUNDACIÓN UNIVERSIDAD DE AMÉRICA, Bogota, Colombia.
- Chaudhry, A. (2004). *Oil Well Testing Handbook.* Houston, Texas, EEUU: Elsevier 200 Wheeler Road, Burlington, MA 01803.
- Colmont Moncayo, G. J., & Pinargote Rovello, C. I. (2018). *Flujo de Fluidops en Medios Porosos* (Primera ed.). Santa Elena-La Libertad, Ecuador: UPSE.
- Da Prat, G. (1990). INTRODUCCIÓN AL ANÁLISIS Y DISEÑO DE PRUEBAS DE PRESIÓN. Buenos Aires.
- Donaldson, E., & Tiab, D. (2015). *Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties.*
- Escobar, M. F. (2003). Análisis moderno de presiondes de pozos. Neiva, Colombia.

- Fekete Associates Inc. (2009). *Well Testing Fundamentals*. Obtenido de Petroleum Programmer: http://www.petroleumprogrammer.com/wpcontent/uploads/2014/10/Well-Testing-Fundamentals.pdf
- Fuentes, G., & Vásquez, M. (2011). ANÁLISIS DE PRUEBAS DE PRESIÓN. INSTITUTO POLITÉCNICO NACIONAL.
- Gringarten, A., Bourdet, D., Landel, P., & Kniazeff, V. (1979). A Comparison Between Different Skin And Wellbore Storage Type-Curves For Early-Time Transient Analysis. *Society of Petroleum Engineers*, 16.
- Gutiérrez, M., & Iturralde, S. (2017). *ELEMENTOS BÁSICOS DE INGENIERÍA DE YACIMIENTOS.* Santa Elena: UPSE.
- Houzé, O., Viturat, D., & Fjaere, O. (2020). *Dynamic Data Analysis* (Vol. v5.30.01). KAPPA.
- Huerta, J. (2009). MÉTODOS Y HERRAMIENTAS PARA ESTIMAR LA PRESIÓN DE FORMACIÓN DE YACIMIENTO ANTES Y DESPUES DE LA TERMINACIÓN DE UN POZO. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Mexico D.F.
- Kappa, E. (2021). *KAPPA-Workstation*. Obtenido de KAPPA-Saphir: https://www.kappaeng.com/software/saphir/overview
- Lee, J. (1982). Well Testing. Society of Petroleum Engineers.
- Molina, O., & Zeidouni, M. (2018). Analytical Model to Detect Fault PermeabilityAlteration Induced by Fault Reactivationin Compartmentalized Reservoirs. *Water Resources Research*, 15.
- Morales Jiménez, D. A., & de la Torre Santamaría , J. E. (2018). Evaluación de la Saturación promedio de los fluidos del "Pozo A" con los datos obtenidos de la herramienta RST, en el área sur del campo castilla (Tesis de Pregado). Fundación Universidad de América, Bogota.
- Paguay, K., Miranda, D., & Galarza, D. (2011). Evaluación de Pruebas de Restauración de Presión para Yacimientos que producen por Debajo de la Presión de Saturación. Guayaquil: ESPOL.
- Paris de Ferrer, M. (2009). *Fundamentos de Ingenieria de Yacimientos.* Maracaibo, Venezuela: Edisiones Astro Data S.A.

PDVSA. (1997). *Analisis de Pruebas de Presión Nivel II.* Maracaibo, Venezuela. Petroamazonas EP. (2020). *JUSTIFICATIVO-LAGO-AGRIO 2020.* Quito.

Ramirez, B. (2007). GAS CONDENSATE NON-DARCY FLOW EFFECTS IN IDEALIZED DUAL-POROSITY/DUAL-PERMEABILITY NATURALLY FRACTURES RESERVOIRS. *Thesis degree of Master of Science(Petroleum Engineering)*. Colorado School of Mines, Colorado.

Robbins, R., & Castro, I. (2005). Análisis de Pruebas de Presión. Mexico D.F.

Schlumberger. (2001). Weltest 200. En Slumberger, *Weltest 200 Technical Description* (pág. 128).

Schlumberger. (2002). Well Test Interpretation.

- Schlumberger. (2014). *Schlumberger Software*. Obtenido de OFM (Oil Filed Manager): https://www.software.slb.com/products/ofm
- SERTECPET. (2010). MANUAL PARA OPERACIONES DE CAMPO. Quito.
- Stewart, G., & Jamiolahmady, M. (2013). Well Test Analysis. Heriot Watt University.
- Valencia, R. (2011). *Fundamentos de pruebas de presión.* Quito, Ecuador: Escuela Politecnica Nacional.
- Valencia, R. A. (2008). ANÁLISIS MODERNO DE PRUEBAS DE PRESIÓN. Quito: Escuela Politecnica Nacional.
- Walid, B. S. (25 de 1 de 2016). Use and Misuse of Radial Composite Reservoir Models in Well. International Conference of Chemical, Petroleum, and Gas Engineering (ICCPGE).
- Yasin, I. B. (2012). Pressure Transient Analysis Using Generated Well Test Data from Simulation of Selected Wells in Norne Field. (Master Thesis). Norwegian University of Science and Technology, Trondheim.
- Zagouras, A., Economou , G., Fotopoulos, S., & Flocas, H. (2013). Weather maps classification over Greek domain based on isobaric line patterns A pattern recognition approach. *Theoretical and Applied Climatology*, 206.

ANEXOS

	Da		Datos de la Capa (MD)						Registro de Sensores			In	terpre	etación				Gra							
CAMPO	NOMENCLATURA PAM	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	MP	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb
Dureno	DRO-001	BUP	27/07/1996	TI	VERTICAL	9884	9909	9897	25	25	1.562	2.815	8534	1562	2815	16,09	110		3,4	55	22,4	13636	0,4210	624	1.398
Dureno	DRO-001	BUP	13/05/1996	П	VERTICAL	9884	9909	9897	15	25	1.722	2.516	8534	1722	2515	9,55	122		1,7	75	22,4	13636	0,4293	792	1.398
Dureno	DRO-001	BUP	05/12/1994	П	VERTICAL	9884	9917	9901	26	33	1.192	2.481	8534	1192	2481	8,25	16		1,7	57	24,2	13636	0,4198	672	1.398
Dureno	DRO-001	BUP	05/10/1989	TI	VERTICAL	9884	9917	9901	26	33			8534						1,365	20	28,5	13636	0,3943	894	1.398
Dureno	DRO-001	BUP	10/04/1987	П	VERTICAL	9884	9917	9901	26	33			8534						1,365	18	29	13636	0,3922	756	1.398
Dureno	DRO-001	BUP	12/11/1986	TI	VERTICAL	9884	9917	9901	26	33			8534						1,365	20	25,4	13636	0,4003	790	1.398
Dureno	DRO-001	BUP	15/09/1985	TI	VERTICAL	9884	9917	9901	26	33	1.547	3.393	8534	1547	3436	25,66	51,92		1,32	30	28,5	13636	0,3999	1.142	1.398
Dureno	DRO-001	BUP	08/01/1984	TI	VERTICAL	9884	9917	9901	26	33	2.465	3.660	8534	2465	3660	17,15	121		1,365	12	30	30300	0,3876	912	1.398
Dureno	DROA-002	BUP	14/04/2014	П	DIRECCIONAL "J"	10591	10622	10607	31	31	1.903	2.293	10396	1903	2298,5	21,2	403	12500	3,4	77	29,5	20850	0,4288	607	1.398
Dureno	DROA-002	BUP	09/10/2014	UI	DIRECCIONAL "J"	10397	10407	10402	10	10	1.020	1.815	10297	1049	1816,83	22	254	2540	3,4	63	17,7	19000	0,4306	480	1.400
Dureno	DROA-003	BUP	09/04/2015	TI	DIRECCIONAL "J"	10474	10484	10479	10	10			10293							100	10	13000	0,4393	1.248	1.398
Guanta	GNT-002	BUP	30/06/2013	US	VERTICAL	9612	9633	9623	15	21	1.327	3.048	9411	1327	3047	1,21	1,61	24	0,89	100	33,4	30150	0,4479	48	800
Guanta	GNT-002	BUP	18/10/2008	US+UI	VERTICAL	9612	9672	9642	25	60	2.445	3.025	9642	2450	3040	18,0	430		0,9	57	28,9	92000	0,4383	775	800
Guanta	GNT-002	BUP	08/05/2005	TS+TI	VERTICAL	9824	9880	9852	26	56	717	2.079	9438	717	2079	20,0	58		1,177	44	29	19800	0,4086	408	1.398
Guanta	GNT-002	BUP	01/10/2003	TS+TI	VERTICAL	9824	9880	9852	18	56	1.768	2.497	9733	1807	2535				2,24	34	28,7	16500	0,4024	384	1.398
Guanta	GNT-002	BUP	08/03/1989	US+UI	VERTICAL	9626	9698	9662	34	72	2.305	2.961	9284	2305	2996	12,2	232,89		2,1			90000	0,4659	800	800
Guanta	GNT-002	BUP	24/11/1988	US+UI	VERTICAL	9626	9698	9662	34	72	2.293	3.033	9284	2293	3059	9,2	238,39		3,4			90000	0,4659	952	800
Guanta	GNT-002	BUP	28/01/1987	US+UI	VERTICAL	9626	9698	9662	34	72	2.266	3.534	9284	2266	3864	17,4	188,98		2,1		28,5	90000	0,3829	1.716	800
Guanta	GNT-002	BUP	17/10/1986	US+UI	VERTICAL	9626	9698	9698	34	72	2.733	3.595	9284	2733	3656	11,8	111,21		2,1	0	27,8	15131	0,3846	1.099	800
Guanta	GNT-002	BUP	31/07/1986	US+UI	VERTICAL	9626	9698	9662	34	72	2.441	3.653	9284	2462	3746	16,5	253		1,31		28,9	90000	0,3820	1.836	800
Guanta	GNT-002	BUP	18/07/1986	US+UI	VERTICAL	9626	9698	9662	34	72	2.049	3.703	9284	2049	3703	-5,4	302,68		17,3	1,2	29,7	19400	0,3808	1.320	800
Guanta	GNT-002(RW2)	BUP	06/01/2010	BT	VERTICAL	10212	10224	10218	12	12	1.338	1.775	10065	1398	1835	2,9	621	7450	1,67	1	24,3	3150	0,3937	720	820
Guanta	GNT-002(RW2)	BUP	24/12/2009	HS	VERTICAL	11338	11359	11349	21	21	664	3.044	11153	738	3118	-0,5	9,16	192	1,22	41	29,6	4450	0,4028	264	990
Guanta	GNT-003	BUP	15/01/2002	HS	VERTICAL	9965	9978	9972	13	13	2.877	4.059	9828	2877	4280	4,3	343		5,68	0,5	31,2	7500	0,3769	1.728	990
Guanta	GNT-003	BUP	03/10/1990	TS+TI	VERTICAL	9812	9850	9831	30	38	1.176	2.014	9461	1176	2056	28,8	161,19		2,1	55	31,2	58000	0,4237	1.008	1.398
Guanta	GNT-003	BUP	08/05/1990	UI	VERTICAL	9578	9607	9593	23	29	1.065	2.041	9461	1065	2095	38,2	250,75		2,1	25	30	58000	0,4001	840	1.400
Guanta	GNT-003	BUP	05/05/1990	UI	VERTICAL	9578	9607	9593	23	29	678	2.049	9461	678	2049	32,0	201		2,1	55	28,5	58000	0,4266	738	1.400
Guanta	GNT-003	BUP	01/05/1990	TS+TI	VERTICAL	9812	9850	9831	20	38	1.055	1.926	9461	1055	2007	31,9	391,4		2,1	55	28,5	58000	0,4266	984	1.398
Guanta	GNT-003	BUP	16/04/1988	UI	VERTICAL	9578	9618	9598	29	40	1.664	1.936	9461	1664	2019	3,7	240,23		2,1			90000	0,4659	776	1.400

Tabla 35. Base de datos de las	pruebas de presión	realizadas en el can	npo Guanta-Dureno
	p		

Datos del Reservorio							Datos de la Capa (MD)					Registro de Sensores			Interpretación							Gradiente				
САМРО	Nomenclatura Pam	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	MP	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb	
Guanta	GNT-003	BUP	19/01/1987	UI	VERTICAL	9578	9618	9598	29	40	2.254	2.877	9461	2254	2964	5,4	171		2,10			90000	0,4659	1.068	1.400	
Guanta	GNT-003(RW3)	BUP	01/05/2010	П	VERTICAL	11168	11202	11185	34	34	1.859	2.886	10925	1859	2896	63,0	312		1,40	35	27,8	12550	0,4037	672	1.398	
Guanta	GNT-005	BUP	13/05/2015	BT	VERTICAL	8892	8904	8898	12	12	646	1.305	8787	646	1305	0,84	95,5	1150	3,60	100	18,4	31250	0,4484	437	1.485	
Guanta	GNT-005	BUP	06/06/2008	BT	VERTICAL	8892	8904	8898	12	12	918	1.517	8831	945	1656	9,2	520		4,45	64	21,1	30000	0,4311	264	820	
Guanta	GNT-005	BUP	14/02/2005	BT	VERTICAL	8892	8904	8898	12	12	1.539	2.107	8810	1575	2142	-3,1	536	12000	4,00	28	31	28650	0,3967	528	820	
Guanta	GNT-005	BUP	04/02/2005	UI	VERTICAL	9634	9654	9644	20	20	2.200	2.756	8742	2310	2841	0,0	136	5970	2,50	73	28	28650	0,4301	816	1.400	
Guanta	GNT-005	BUP	20/08/2004	UI	VERTICAL					0	1.544	2.107	8810	1800	2275	-4,4	289	3470	4,00	5	28,1		0,3863	240		
Guanta	GNT-005	BUP	09/01/2004	UI	VERTICAL					0	2.200	2.756	9537	2268	2842	0,8	21	905	2,50			90000	0,4659	816	1.400	
Guanta	GNT-005	BUP	23/08/2000	BT+US	VERTICAL	8892	9654	9273	32	762	1.827	2.139	8759				61			46	20,5	74800	0,4345	984	1.400	
Guanta	GNT-005	BUP	18/08/2000	BT	VERTICAL	8892	8904	8898	12	12	1.360	2.899	8759									74800	0,4659		820	
Guanta	GNT-005	BUP	27/10/1996	UI	VERTICAL	9634	9674	9654	30	40	1.731	2.192	9454	1731	2191	11,7	297		2,50	36	26,6	90000	0,4207	744	1.400	
Guanta	GNT-005	BUP	17/10/1995	UI	VERTICAL	9634	9674	9654	30	40	1.467	2.021	9454	1467	2019	5,6	396		2,50	9	28,6	90000	0,3914	1.152	1.400	
Guanta	GNT-005	BUP	23/09/1994	UI	VERTICAL	9634	9674	9654	30	40	1.640	1.886	9454	1640	2352	-1,4	328		2,50	0,1	28,5	90000	0,3830	768	1.400	
Guanta	GNT-005	BUP	25/11/1988	UI	VERTICAL	9634	9674	9654	30	40	1.870	2.257	9454	1870	2254	-1,4	154		2,10			90000	0,4659	1.212	1.400	
Guanta	GNT-005	BUP	04/01/1988	UI	VERTICAL	9634	9654	9644	20	20	1.711	2.107	9454	1711	2107	5,4	140		1,88	54	16,2	15151	0,4286	816	1.400	
Guanta	GNT-005	BUP	08/02/1987	UI	VERTICAL	9634	9674	9654	30	40	2.587	3.346	9454	2587	3386	3,3	258		2,10	8	31	15151	0,3821	2.520	1.400	
Guanta	GNT-006	BUP	13/01/2005	US+UI	VERTICAL	9682	9736	9709	27	54	996	1.612	9560	1061	1677	10,8	231	6233	2,70	5	28,1	17500	0,3868	456	800	
Guanta	GNT-006	BUP	24/05/1998	UI	VERTICAL	9717	9736	9727	19	19	1.048	2.468	9620	1048	2504	31,0	462		2,10			90000	0,4659	912	1.400	
Guanta	GNT-006	BUP	10/07/1997	BT+US+UI	VERTICAL	8956	9736	9346	39	780	777	1.623	8779	777	1623	8,5	57		2,80	43,9	24	50000	0,4222	528	800	
Guanta	GNT-006	BUP	20/06/1996	US	VERTICAL	9682	9690	9686	8	8	1.273	3.266	9560	1273	3266	10,3	362		2,80	12	28	90000	0,3956	840	800	
Guanta	GNT-006	BUP	17/06/1996	US+UI	VERTICAL	9682	9736	9709	27	54	1.571	3.661	9560	1571	3661	7,2	96		2,80	3	28,3	90000	0,3863	1.176	800	
Guanta	GNT-006	BUP	13/06/1996	BT	VERTICAL	8956	8968	8962	12	12	484	1.229	8146	484	1229				4,00	20	28,6	50000	0,3978	360	820	
Guanta	GNT-006	BUP	10/06/1996	UI	VERTICAL	9717	9736	9727	19	19	1.567	3.378	9620	1567	3378	21,8	307		2,50	14	25,4	90000	0,4030	1.176	1.400	
Guanta	GNT-006	BUP	13/05/1992	BT	VERTICAL	8956	8968	8962	12	12	826	1.885	8146	826	1885	-0,4	181		4,00	12	27	50000	0,3951	744	820	
Guanta	GNT-006	BUP	23/02/1991	UI	VERTICAL	9717	9736	9727	19	19	529	1.588	9620	529	1588				2,50	0,7	30	1600	0,3798	108	1.400	
Guanta	GNT-006	BUP	22/12/1990	UI	VERTICAL	9717	9736	9727	19	19	208	1.551	9620	208	1547	5,3	73		2,50	5	29,5	1600	0,3832	216	1.400	
Guanta	GNT-006	BUP	04/06/1990	UI	VERTICAL	9717	9736	9727	19	19	436	1.512	9620	436	1587	45,6	449		2,12	14	29	1600	0,3890	600	1.400	
Guanta	GNT-006	BUP	07/10/1988	UI	VERTICAL	9717	9736	9727	19	19	1.604	1.973	9620	1604	1973	14,6	524		2,12	1	28	10200	0,3847	507	1.400	
Guanta	GNT-006	BUP	24/04/1988	UI	VERTICAL	9717	9736	9727	19	19	1.059	2.527	9620	1059	2565	15,2	251		2,10	1	28	10200	0,3847	912	1.400	
Guanta	GNT-006	BUP	09/04/1988	UI	VERTICAL	9717	9736	9727	19	19	1.518	2.562	9620	1518	2572	5,5	315		2,10	1	28	10200	0,3847	1.512	1.400	
Guanta	GNT-006	BUP	27/04/1987	UI	VERTICAL	9717	9736	9727	19	19	2.426	3.713	9620	2426	3724	7,1	140		2,10	1	28	10200	0,3847	1.205	1.400	
Guanta	GNT-006	BUP	16/03/1987	UI	VERTICAL	9717	9736	9727	19	19	2.375	3.723	9620	2375	3765	10,5	195		2,10	1	29,8	10200	0,3804	864	1.400	
Guanta	GNT-009	BUP	12/05/2005	HS	VERTICAL	10030	10044	10037	14	14	3.230	3.755	8824							89	28,4	5075	0,4297		990	
Guanta	GNT-009	BUP	07/07/1988	BT	VERTICAL	8921	8931	8926	10	10	1.484	3.186	8824	1484	3186	23,5	618		2,50	25	27	50000	0,4044	1.032	820	
Guanta	GNT-009	BUP	29/11/1987	BT	VERTICAL	8921	8931	8926	10	10	2.598	3.551	8824	2598	3560	2,7	416		4,00	2	26,5	50000	0,3892	739	820	

Datos del Reservorio						Datos de la Capa (MD)					Registro de Sensores			s Interpretación						Gradiente						
САМРО	NOMENCLATURA PAM	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	MP	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb	
Guanta	GNT-010	BUP	14/02/2012	US+UI	VERTICAL	9656	9690	9673	22	34	1.311	2.504	8492	1493	2567	11,1	27	592	0,67	10	28,6	90000	0,3924	497	800	
Guanta	GNT-010	BUP	10/05/2002	US+UI	VERTICAL	9656	9700	9678	32	44	1.982	2.715	9567	1982	2788	8,8	105		0,90	85	29,8	90000	0,4647	984	800	
Guanta	GNT-010	BUP	10/06/1997	US+UI	VERTICAL	9656	9713	9685	40	57	2.274	2.514	9550	2274	2514	2,6	236		1,88	28	25,4	90000	0,4155	960	800	
Guanta	GNT-010	BUP	15/09/1995	US+UI	VERTICAL	9656	9713	9685	40	57	2.240	2.744	9550	2240	2744	8,1	300		2,50	15	30	10020	0,3882	1.104	800	
Guanta	GNT-015	BUP	13/02/2013	HS	VERTICAL	9934	9980	9957	30	46	1.119	3.925	9566	1199	3925	9,99	33,6	1010	1,97	63	26,3	1500	0,4169	312	990	
Guanta	GNT-015	BUP	03/07/2013	TI	VERTICAL	9810	9834	9822	24	24	170	1.835	9566	170	1835	19,0	14,7	353	1,02	54	28,9	8100	0,4117	100	1.398	
Guanta	GNT-015	BUP	14/04/2018	BT	VERTICAL	8830	8844	8837	10	14	163	766	8635	163	766	2,4	72	723	16,20	40,5	29	11550	0,4048	42	820	
Guanta	GNT-015	BUP	13/07/2001	HS	VERTICAL	9934	9950	9942	16	16	521	3.432	9583	521	3393	7,2	46	730	2,31	9,4	28,4	9550	0,3883	442	990	
Guanta	GNT-015	BUP	18/08/1998	TI	VERTICAL	9810	9834	9822	24	24	891	2.594	9566	891	2594	17,2	46		1,32	8	27	16500	0,3909	384	1.398	
Guanta	GNT-015	BUP	16/03/1998	HS	VERTICAL	9934	9980	9957	32	46	2.065	4.194	9945	2065	4223	5,0	30		1,91	25	29,3	7500	0,3949	768	990	
Guanta	GNT-015	BUP	28/10/1997	HS	VERTICAL	9934	9950	9942	16	16	1.492	4.129	9814	1492	4127	8,9	52		1,70	10	21	7500	0,4053	768	990	
Guanta	GNT-015	BUP	24/10/1997	HS	VERTICAL	9964	9980	9972	16	16	1.503	4.275	9814	1503	4275	5,4	17		1,70	3	29	7500	0,3834	504	990	
Guanta	GNT-015	BUP	18/10/1997	HS	VERTICAL	9966	9980	9973	14	14	1.155	4.136	9828	1155	4134	8,3	19		1,70	7	20,4	7500	0,4057	504	990	
Guanta	GNT-016	BUP	15/04/2012	UI+TS+TI	VERTICAL	9600	9852	9726	47	252	606	1.470	9517	619	1663	1,6	12	555	1,26	20	26,4	12900	0,3983	285	1.398	
Guanta	GNT-016	BUP	01/11/2009	UI+TS+TI	VERTICAL	9600	9852	9726	47	252	728	1.176	9183	736	1176	1,4	16	872	1,14	28	30	1350	0,3946	216	1.398	
Guanta	GNT-016	BUP	08/09/2005	UI+TS+TI	VERTICAL	9600	9852	9726	47	252	1.448	1.858	9517	1427	1895	1,9	70		0,87	51	30	2400	0,4073	480	1.398	
Guanta	GNT-016	BUP	04/09/2005	UI	VERTICAL	9600	9620	9610	13	20	508	2.367	9517	508	3696	3,8	10		0,74	60	29,7	2400	0,4125	168	1.400	
Guanta	GNT-016	BUP	27/08/2005	TI	VERTICAL	9818	9852	9835	34	34	1.652	1.882	9705	1706	1936	0,5	174		1,04	47	31,6	2400	0,4032	336	1.398	
Guanta	GNTA-001	BUP	26/09/2006	UI	VERTICAL	9586	9622	9604	36	36	710	1.450	9338	813	1553	0,5	18	659	2,50	0,12	33,4	90000	0,3717	504	1.400	
Guanta	GNTA-001	BUP	26/02/1986	UI	VERTICAL	9586	9622	9604	36	36	2.311	3.382	9061	2311	3382	4,2	156	5141	1,80	0,2	30,2	14000	0,3790	1.605	1.400	
Guanta	GNTA-001	BUP	04/02/1986	UI	VERTICAL	9586	9622	9604	36	36	3.167	3.768	9061	3167	3768	-0,7	361	11911	1,80	0	29,7	14000	0,3801	3.576	1.400	
Guanta	GNTA-001	BUP	01/02/1986	TS+TI	VERTICAL	9772	9836	9804	36	64	2.714	3.496	9061	2714	3496	2,4	158	5832	1,30	0	31,7	14000	0,3754	1.968	1.398	
Guanta	GNTA-001	BUP	19/01/1986	HS	VERTICAL	9961	9988	9975	16	27	3.580	4.327	9061	3582	4327	59,1	168	2688	1,70	85	31,4	14000	0,4303	446	990	
Guanta	GNTA-018	BUP	29/09/2013	BT	DIRECCIONAL	9214	9229	9222	15	15	178	853	9023	178	853	5,07	40,7	611	1,25	46	27,5	50000	0,4188	192	820	
Guanta	GNTA-018	BUP	19/05/2014	TI	DIRECCIONAL	10184	10234	10209	50	50	719	1.034	9100	719	1034	-2,7	32,1	1610	1,80	72	28,7	17500	0,4250	336	1.398	
Guanta	GNTA-018	BUP	29/05/2014	TI	DIRECCIONAL	10184	10234	10209	50	50	671	1.069	9142	671	1069	-8,46	1,66	1506	1,80	53	28,7	17500	0,4138	216	1.398	
Guanta	GNTA-018	BUP	25/12/2010	UI	DIRECCIONAL	9982	10012	9997	30	30	632	1.189	9865	632	1292	30,0	85	2546	1,01	49	29,6	90000	0,4290	216	1.400	
Guanta	GNTA-018	BUP	15/07/2008	UI	DIRECCIONAL	9982	10012	9997	30	30	1.334	1.731	9832	1334	1747	34,0	430		0,88	6	27,4	90000	0,3912	1.032	1.400	
Guanta	GNTA-019	BUP	19/10/2013	TI	DIRECCIONAL	10304	10340	10322	36	36	578	1.360	10210	578	1360	2,5	4,11	148	1,44	60	29,5	16500	0,4169	96	1.200	
Guanta	GNTA-019	BUP	11/12/2018	TI	DIRECCIONAL	10305	10368	10337	47	63	287	1.097	9994							83,1	28,5	16500	0,4312	624	1.398	
Guanta	GNTA-019	BUP	10/06/2008	UI	DIRECCIONAL	10120	10134	10127	14	14	1.999	3.803	9956	1999	3848	5,0	49		0,95	67	29,7	90000	0,4468	624	1.400	
Guanta	GNTA-019	BUP	03/06/2008	TI	DIRECCIONAL	10304	10364	10334	50	60	1.517	3.221	9956	1517	3924	5,0	58		1,39	65	29,2	16500	0,4201	576	1.398	
Guanta	GNTA-019	BUP	25/05/2008	HS	DIRECCIONAL	10458	10494	10476	36	36	1.068	3.941	10296	1067	3948	-0,7	18		1,94	60	29,5	7500	0,4142	456	990	
Guanta	GNTA-020	BUP	28/10/2017	UI	DIRECCIONAL	9940	9966	9.953	26	26	230	1078	9830,0	230	1079	4,12	25,01	800,406	2,2	62,8000	29	90.000	0,4429	26	1400	
Guanta	GNTA-020	BUP	08/11/2008	TI	DIRECCIONAL	10160	10168	10.164	8	8	1365	2072	9784,0	1.617	2055	7,37	93,7	2810	1,4429	31,0000	27	16.500	0,40295	552	1398	

Datos del Reservorio							Datos de la Capa (MD)					Registro de Sensores			Interpretación							Gradiente				
САМРО	NOMENCLATURA PAM	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	MP	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb	
Guanta	GNTA-020	BUP	31/10/2008	UI	DIRECCIONAL	9940	9966	9953	26	26	873	1.465	9779	845	1465	6,2	41	1070	1,17	31	27,3	90000	0,4149	504	1.400	
Guanta	GNTA-040	BUP	05/06/2010	UI	DIRECCIONAL	9891	9917	9904	26	26	957	1.236	9780	957	1253	-2,7	42		0,85	0,3	29,9	90000	0,3799	480	1.400	
Guanta	GNTA-040	BUP	30/04/2010	UI	DIRECCIONAL	9891	9917	9904	26	26	362	1.279	9715	362	1284	50,0	70		1,30	25	29,9	90000	0,4046	144	1.400	
Guanta	GNTA-040	BUP	03/04/2010	HS	DIRECCIONAL	10227	10257	10242	30	30	1.075	3.469	10032	1075	4001	1,5	39		4,70	81	30,6	7500	0,4255	576	990	
Guanta	GNTB-007	FALL OFF	20/05/2013	ΤΤΥ	VERTICAL	7530	7580	7555	50	50	4.962	3.497	7451						0,49			16500	0,4659	3.168	1.398	
Guanta	GNTB-007	BUP	19/01/1997	BT	VERTICAL	8843	8849	8846	6	6	1.000	1.593	7436	1000	1592	9,4	679		3,00	4,9	26	50000	0,3924	408	820	
Guanta	GNTB-007	BUP	01/06/1996	BT	VERTICAL	8843	8849	8846	6	6	935	1.550	7436	935	1550		614		3,00	10	22,8	50000	0,4032	504	820	
Guanta	GNTB-007	BUP	08/04/1992	BT	VERTICAL	8843	8849	8846	6	6	1.898	3.260	7436	1898	3259	2,3	778		4,00	2	28,3	50000	0,3849	1.272	820	
Guanta	GNTB-022	BUP	30/10/2012	UI	DIRECCIONAL	10096	10116	10106	20	20	2.688	2.920	10074	2702	2934	0,4	378	7560	0,84	88	32,9	90000	0,4668	1.200	1.400	
Guanta	GNTB-022	BUP	28/09/2012	UI	DIRECCIONAL	10096	10116	10106	20	20	1.764	2.892	10012	1858	2986	23,5	33	653	0,95	55	29,1	90000	0,4355	312	1.400	
Guanta	GNTB-041	BUP	13/03/2019	TI	DIRECCIONAL	11198	11210	11204	11	12			11125									16500	0,4659		1.398	
Guanta	GNTB-041	BUP	20/07/2012	BT	DIRECCIONAL	10212	10224	10218	12	12	1.086	1.133	10116	1096	1145	2,9	897	10800	1,70	56	23,3	15000	0,4207	144	820	
Guanta	GNTB-041 (RW2)	BUP	06/01/2010	BT	DIRECCIONAL	10212	10224	10218	12	12	1.338	1.775	10065	1398	1776	2,9	621	7450	1,67	1	24,3	3150	0,3937	720	820	
Guanta	GNTB-041 (RW2)	BUP	24/12/2009	HS	DIRECCIONAL	11338	11359	11349	21	21	664	3.044	11153	738	3044	0,5	9	192	1,22	41	29,6	4450	0,4028	264	990	
Guanta	GNTB-042	BUP	01/05/2010	TI	DIRECCIONAL	11168	11202	11185	34	34	1.859	2.886	10925	1859	2896	63,0	313		1,40	35	27,8	16500	0,4044	672	1.398	
Guanta	GNTB-042 (RW-03)	BUP	28/06/2012	TI	DIRECCIONAL	11168	11188	11178	20	20	1.798	2.425	11014	1825	2432	12,1	132	2630	1,48	69	27	14000	0,4233	384	1.398	
Guanta	GNTB-042 (RW-03)	BUP	15/06/2012	TI	DIRECCIONAL	11168	11188	11178	20	20	928	2.389	11014	928	2539	33,0	25	499	1,17	45	27,8	2000	0,4068	96	1.398	
Guanta	GNTC-013	BUP	23/05/2007	UI	VERTICAL	9622	9652	9637	22	30	632	1.687	9548	694	1749	19,8	90	1990	1,16	43	29	47000	0,4139	360	1.400	
Guanta	GNTC-013	BUP	05/02/2007	UI	VERTICAL	9622	9652	9637	22	30	466	1.657	9542	517	1708	22,9	70	1620	1,16	20	29	47000	0,3967	312	1.400	
Guanta	GNTC-013	BUP	24/11/2006	UI	VERTICAL	9040	9058	9049	18	18	1.136	1.690	9500	1191	1745	12,8	140	3080	1,16	40	29	90000	0,4209	384	1.400	
Guanta	GNTC-014	BUP	13/04/2012	TI	DIRECCIONAL	10112	10122	10117	10	10	677	1.183	9832	796	1302	16,3	131	1315	0,90	46	19,2	16500	0,4224	713	1.398	
Guanta	GNTC-014	BUP	24/03/2009	TI	DIRECCIONAL	10064	10091	10078	20	27	1.098	1.350	9575							75	29,2	16500	0,4261	240	1.398	
Guanta	GNTC-017	BUP	08/10/2014	UI	DIRECCIONAL	10080	10120	10100	30	40	243	1.210	9975	243	1210	9,53	10,7	587	1,75	14,2	29	17500	0,3902	68	1.400	
Guanta	GNTC-017	BUP	24/05/2015	TI	DIRECCIONAL	10308	10320	10314	12	12	620	1.144	9440	620	1142	1,0	6,68	94	1,24	66	29,5	16500	0,4205	40	1.398	
Guanta	GNTC-017	FLUYENTE	26/06/2016	UI	DIRECCIONAL			#iDIV/0!		0										28	29,4	43750	0,4015	360	1.400	
Guanta	GNTC-017	FLUYENTE	03/07/2018	UI	DIRECCIONAL			#¡DIV/0!		0	579	1.042								36,2	29,2	90000	0,4169	223	1.400	
Guanta	GNTC-017	BUP	10/07/2011	UI	DIRECCIONAL	10082	10100	10091	12	18	418	1.341	10084	418	1346	-3,3	6	75	1,24	4	29,1	90000	0,3854	216	1.400	
Guanta	GNTC-017	BUP	26/04/2007	TI	DIRECCIONAL	10308	10322	10315	14	14	581	1.616	9616	581	1698	13,0	150		1,24	6	28,5	16500	0,3864	504	1.398	
Guanta	GNTC-017	BUP	17/04/2007	UI	DIRECCIONAL	10080	10120	10100	30	40	486	1.538	9884	570	1622	14,9	84	2530	1,22	13	29	90000	0,3945	312	1.400	
Guanta	GNTC-017	BUP	23/11/2006	UI	DIRECCIONAL	10080	10120	10100	40	40	1.121	3.986	9901	1121	3986		457	18200	1,16	0,52	29,5	90000	0,3811	312	1.400	
Guanta	GNTC-017	BUP	24/09/2005	UI	DIRECCIONAL	10080	10120	10100	30	40	1.773	2.173	9894	1773	2259	9,8	125		1,16	9	27,6	90000	0,3936	408	1.400	
Guanta	GNTC-023	BUP	13/04/2014	HS	DIRECCIONAL "S"	10296	10308	10302	12	12	982	3.752	9931	982	3752	7,2	90,7	1090	5,30	44,6	28	23600	0,4111	175	990	
Guanta	GNTC-023	BUP	15/10/2014	HS	DIRECCIONAL "S"	10296	10308	10302	12	12	738	2.575	9931							36	29,9	7500	0,4001	250	990	
Guanta	GNTC-023	BUP	25/02/2018	HS	DIRECCIONAL "S"	10296	10308	10302	11	12	229	3.552	9707	417	3858	-0,058	13		3,13	21,4	30	7500	0,3916	182	990	
Guanta	GNTC-023	BUP	03/05/2018	US+UI	DIRECCIONAL "S"	9928	9980	9954	52	52	582	1.137	9707	631	1171	-2,6	0,065	2,22		71,4	28,9	90000	0,4517	232	1.400	
	Datos del Reservorio				Datos de la Capa (MD) F				Registro de Sensores			s Interpretación					Gradiente									
--------	----------------------	----------	------------	------------------	-------------------------	--------------	-----------	-------	---	------------------	-------	------------------	-------------	------	------	------	------------	----------------	-----------------	------------	------	------------------------	----------------	-------	-------	
САМРО	NOMENCLATURA PAM	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	МР	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb	
Guanta	GNTC-023	BUP	02/06/2009	HS	DIRECCIONAL	10296	10308	10302	12	12	1.823	3.421	9500	1823	3641	-2,0	175		5,30	6	28,3	7500	0,3866	792	990	
Guanta	GNTC-023	BUP	28/05/2009	US+UI	DIRECCIONAL	9928	9980	9954	34	52	1.005	1.414	9745	1093	1503	4,4	86,98	2957,61		34	28,2	90000	0,4163	360	800	
Guanta	GNTC-024	BUP	17/06/2009	UI	DIRECCIONAL	10375	10395	10385	20	20	1.667	2.077	10220	1734	2144	9,2	129,32	4138,41	1,24	55	30,6	90000	0,4339	912	1.400	
Guanta	GNTC-024	BUP	12/05/2009	US+UI	DIRECCIONAL	10344	10395	10370	32	51	2.735	3.040	10191	2735	3040	1,1	255,91	5118,35	0,88	11	30,6	90000	0,3892	1.200	800	
Guanta	GNTC-024	BUP	08/05/2009	TI	DIRECCIONAL	10574	10608	10591	34	34	559	1.196	10419	668	1264	15,7	16,6	448,33	1,24	71	28,9	16500	0,4239	192	1.398	
Guanta	GNTC-025	BUP	08/09/2013	UI	DIRECCIONAL	10522	10576	10549	49	54			10403							50	29,2	12000	0,4101	81	1.400	
Guanta	GNTC-025	BUP	06/10/2013	UI	DIRECCIONAL	10522	10576	10549	49	54	171	1.410	10400						1,19	50	29,6	12000	0,4096	81	1.400	
Guanta	GNTC-025	BUP	28/03/2009	UI	DIRECCIONAL	10522	10576	10549	49	54	874	1.646	10409	935	1707	-0,3	6,18	302,95	1,16	56	25,4	38250	0,4250	480	1.400	
Guanta	GNTC-025	BUP	23/03/2009	UI	DIRECCIONAL	10522	10576	10549	49	54	490	1.553	10332	582	1645	13,9	5,49	269,44	0,76	60	29,6	38250	0,4233	288	1.400	
Guanta	GNTC-026	BUP	16/11/2018	UI	DIRECCIONAL	9928	9960	9944	32	32	130	1.276	9742							70	28,2	59500	0,4393	116	1.400	
Guanta	GNTC-026	BUP	20/10/2010	UI	DIRECCIONAL	9931	9957	9944	26	26	993	1.433	9847	993	1568	-1,9	12,7		0,96	65	29,5	50000	0,4310	312	1.400	
Guanta	GNTC-026	BUP	15/04/2009	UI	DIRECCIONAL	9931	9957	9944	26	26	1.138	1.405	9782							67	25	6000	0,4212	144	1.400	
Guanta	GNTC-026	BUP	10/04/2009	TI	DIRECCIONAL	10127	10180	10154	33	53	1.326	1.424	10113	1341	1439	-2,0	107	5680,00	1,50	98	28	17100	0,4402	432	1.398	
Guanta	GNTD-008	BUP	29/04/2012	BT	VERTICAL	8862	8867	8865	5	5	1.951	2.980	8036	2152	3194	5,0	1170	5840,00	2,26	85	19,6	63900	0,4565	1.056	820	
Guanta	GNTD-008	BUP	21/04/2003	TI	VERTICAL	9824	9836	9830	12	12	1.708	2.231	9662	1708	2324	7,4	328		1,39	67	28	12000	0,4208	480	1.398	
Guanta	GNTD-008	BUP	30/06/1996	BT	VERTICAL	8849	8866	8858	14	17	1.253	1.514	8036	1253	1514	15,0	1315		4,00	40	26	50000	0,4166	864	820	
Guanta	GNTD-032	BUP	12/05/2013	TI	DIRECCIONAL "S"	9835	9870	9853	35	35	1.691	1.931	10048	1690	1931	58,2	224,49	7857,46		45	30,3	11850	0,4057	360	1.398	
Guanta	GNTD-032	FLUYENTE	07/10/2016	BT	DIRECCIONAL "S"	9165	9176	9171	11	11	569	985	8807							62	29,4	7700	0,4155	500	820	
Guanta	GNTD-032	BUP	05/07/2019	US	DIRECCIONAL "S"	9882	9917	9900	15	35			9746							95	29,4	97500	0,4787	456	800	
Guanta	GNTD-047	BUP	15/01/2019	HS	DIRECCIONAL	10402	10416	10409	14	14	626	1.492	9966							67,9	27,8	2000	0,4181	467	990	
Guanta	GNTD-047	BUP	20/02/2019	TI	DIRECCIONAL	10252	10282	10267	30	30	140	1.790	9963,14							40,4	25,5	9800	0,4094	34	1.398	
Guanta	GNTD-047	BUP	09/04/2019	TI	DIRECCIONAL	10252	10282	10267	30	30	425	1.687	9963,14							90	25,5	9800	0,4330	384	1.398	
Guanta	GNTE-004	BUP	19/08/2015	BT	VERTICAL	8837	8846	8842	9	9	802	1.346	8649,59	802	1346	1,5	163	1470,00	1,70	73	24,4	55000	0,4424	408	820	
Guanta	GNTE-004	BUP	03/09/1997	TI	VERTICAL	9784	9827	9806	35	43	1.355	1.988	9567	1355	1987	21,8	78		1,32	38,4	27	16500	0,4075	696	1.398	
Guanta	GNTE-004	BUP	18/12/1996	TI	VERTICAL	9784	9840	9812	48	56	1.417	2.066	9567	1417	2064	10,5	83		2,10	45,1	24	16500	0,4152	768	1.398	
Guanta	GNTE-004	BUP	06/09/1995	TI	VERTICAL	9784	9827	9806	26	43	1.047	1.885	9567	1047	1885	12,6	36		1,70	40,1	28,9	16500	0,4057	504	1.398	
Guanta	GNTE-004	BUP	12/12/1994	HS	VERTICAL	9954	9980	9967	24	26	682	3.970	8279	688	3970	3,4	16		1,70	4	30	7500	0,3817	360	990	
Guanta	GNTE-004	BUP	19/10/1994	HS	VERTICAL	9954	9980	9967	24	26	511	3.554	8279	511	3553	25,9	7		1,67	0,1	30	7500	0,3794	336	990	
Guanta	GNTE-004	BUP	18/10/1994	HS	VERTICAL	9954	9980	9967	24	26	511	3.553	8279	511	3553	5,3	19		1,70	0,1	30	7500	0,3794	336	990	
Guanta	GNTE-004	BUP	22/07/1992	BT	VERTICAL	8840	8946	8893	6	106	1.750	2.960	8649,59	1750	2959	-1,0	431		4,00	20	26	50000	0,4028	1.152	820	
Guanta	GNTE-004	BUP	20/07/1992	HS	VERTICAL	9954	9988	9971	32	34	1.249	4.056	8279	1249	4056	10,5	9		1,70	28	31	7500	0,3937	864	990	
Guanta	GNTE-004	BUP	30/05/1992	TI	VERTICAL	9784	9844	9814	60	60	645	921	9645	645	920	30,2	88		1,70	8,1	21,8	16500	0,4030	234	1.398	
Guanta	GNTE-004	BUP	13/12/1988	TI	VERTICAL	9784	9844	9814	52	60	1.159	1.736	9645	1159	1774	16,2	287,24		2,10	25	30	4544	0,3933	1.104	1.398	
Guanta	GNTE-004	BUP	18/11/1988	TI	VERTICAL	9784	9844	9814	52	60	1.267	1.288	9645						2,10	25	30	4544	0,3933	1.272	1.398	
Guanta	GNTE-004	BUP	26/02/1987	TI	VERTICAL	9784	9844	9814	52	60	2.357	2.552	9567	2357	2657	0,8	163,75		2,10	0,5	29,5	4544	0,3808	828	1.398	
Guanta	GNTE-004	BUP	02/01/1987	TI	VERTICAL	9784	9844	9814	52	60	2.680	2.850	9567	2680	2928	-4,1	15,78		1,32	0,5	29,5	4544	0,3808	412	1.398	

Datos del Reservorio				Datos de	e la Caj	ba (MD)		Regist	tro de l	Sensores		Ir	terpre	etaciór	1			Gra	diente						
САМРО	NOMENCLATURA PAM	ENSAYO	FECHA	ARENA PUNZADA	TIPO DE POZO	Prof TOPE	Prof BASE	MP	Espesor neto (o punzado) "hn" (ft)	Espesor TOTAL	Pwf	Pr	Prof_sensor	Pwf	Pr	St	Ko [md]	K*h [mD*ft]	Mu oil [Cps]	BSW (%)	API	SALINIDAD (ppm Cl-)	GG (PSI/ft)	Qf	Pb
Guanta	GNTE-004	BUP	01/01/1987	TI	VERTICAL	9784	9844	9814	52	60	2.680	2.850	9567	2680	2954	-1,6	29,63		2,10	0,5	29,5	4544	0,3808	432	1.398
Guanta	GNTE-004	BUP	01/01/1987	TI	VERTICAL	9784	9844	9814	52	60	2.680	2.850	9567	2680	2889	-1,3	35,64		2,10	0,5	29,5	4544	0,3808	432	1.398
Guanta	GNTE-031	BUP	05/10/2014	HS	DIRECCIONAL "S"	10158	10186	10172	28	28	1.457	1.985	9961,76	1457	1985	-0,1	85	2390,00	1,70	1	31,9	4545	0,3756	587	990
Guanta	GNTE-034	BUP	28/09/2014	HS	DIRECCIONAL "S"	10372	10394	10383	22	22	1.757	1.989	9964							49	29,6	7000	0,4078	103	990
Guanta	GNTE-034	BUP	06/11/2015	BT	DIRECCIONAL "S"	9254	9273	9264	12	19	139	848	9078	139	850	2,8	44,4	533,00	2,37	14	23,3	50000	0,4045	62	820
Guanta	GNTE-034	BUP	28/09/2015	HS	DIRECCIONAL "S"	10372	10394	10383	22	22	407	1.482	10238							16	23,3	10000	0,4025	120	990
Guanta	GNTE-034	BUP	04/01/2019	HS	DIRECCIONAL "S"	10371	10404	10388	33	33	114	1.177	10204									7500	0,4659		990
Guanta	GNTF-011	BUP	12/05/2003	UI	VERTICAL	9629	9668	9649	33	39	1.687	2.269	9567	1687	2294	6,3	75		1,04	4,6	28,3	90000	0,3878	608	1.400
Guanta	GNTF-011	BUP	25/01/2003	UI	VERTICAL	9629	9668	9649	33	39	661	2.360	9530	661	2385	30,0	56,7		0,86	9	28,5	90000	0,3916	504	1.400
Guanta	GNTF-011	BUP	10/04/1994	UI	VERTICAL	9629	9668	9649	33	39	1.138	2.352	9447	1138	2352	23,8	137		2,50	3,9	29	8484	0,3839	432	1.400
Guanta	GNTF-011	BUP	24/09/1993	UI	VERTICAL	9629	9668	9649	33	39	888	2.628	9447	888	2354	19,5	207		2,50	2	29,5	8484	0,3817	792	1.400
Guanta	GNTF-011	BUP	21/09/1993	TS	VERTICAL	9831	9840	9836	9	9	1.746	2.631	9447	1746	2631	30,0	490		1,32	60	30,5	8484	0,4136	1.440	800
Guanta	GNTF-027	BUP	02/11/2013	UI	DIRECCIONAL	9975	9990	9983	15	15			9645	338	1062		0,298			100		24858	0,4452	458	1.400
Guanta	GNTF-027	FALL OFF	03/06/2016		DIRECCIONAL					0			9952										0,4659		
Guanta	GNTF-028	BUP	03/12/2014	UI	DIRECCIONAL	10042	10086	10064	34	44	1.320	1.850	9962	1320	1814	17,8	88,2	3530,00	2,45	16	27,4	88000	0,4005	312	1.400
Guanta	GNTF-028	BUP	03/01/2015	UI	DIRECCIONAL	10042	10086	10064	34	44	1.381	1.802	9914	1381	1817	7,9	58,7	1700,00		90	27,4	67000	0,4590	384	1.400
Guanta	GNTF-028	BUP	28/10/2016	TI	DIRECCIONAL	10237	10260	10249	23	23	467	1.783	9551,3	558	1909	-2,9	27,2	544,00		70,4	28,5	20000	0,4251	120	1.398
Guanta	GNTF-028	BUP	27/12/2016	TI	DIRECCIONAL	10237	10260	10249	23	23	728	1.911	9551,3	728	2005	-1,7	14,5	512,00		87	28,5	16500	0,4335	312	1.398
Guanta	GNTF-028	BUP	18/12/2018	UI	DIRECCIONAL	10042	10087	10065	38	45	558	1.908	9771	558	1909	-2,8	28,4	568,00	1,72	80	21	72000	0,4562	459	1.400
Guanta	GNTF-038	BUP	05/09/2014	TS	DIRECCIONAL	10347	10355	10351	6	8	1.236	1.708	10019	1236	1708	5,0	11,1			100	15,6	15600	0,4406	96	1.398
Guanta	GNTF-038	BUP	09/10/2014	UI	DIRECCIONAL	10146	10189	10168	32	43	215	1.727	10036	216	1692	10,2	13,1	302,00		100	15,6	19000	0,4423	168	1.400
Guanta	GNTF-038	BUP	11/04/2015	UI	DIRECCIONAL	10146	10189	10168	32	43	1.140	1.791	10052	1140	1850	-4,5	18	720,00	2,30	57	28,4	90000	0,4382	362	1.400
Guanta	GNTF-039	BUP	01/06/2014	UI	DIRECCIONAL	10048	10066	10057	18	18	1.145	1.770	9938							32	28,9	28600	0,4028	240	1.400
Guanta	GNTF-039	BUP	21/07/2017	UI	DIRECCIONAL	10048	10066	10057	18	18	1.147	1.648	9973									90000	0,4659		1.400
Guanta	GNTG-012	BUP	08/05/2017	UI+US+TI	VERTICAL	9591	9834	9713	45	243	798	1.384	9335						2,29	77	20,1	10000	0,4301	360	1.199
Guanta	GNTG-012	BUP	26/05/2003	U+T	VERTICAL	9591	9876	9734	69	285	852	2.267	9473	852	2283	-1,8	5,25		1,29	50	28,5	90000	0,4313	648	800
Guanta	GNTG-012	BUP	23/05/2003	TI	VERTICAL	9820	9876	9848	26	56	467	2.388	9402	476	2431	12,8	85		2,74	53	22,5	16500	0,4208	480	1.398
Guanta	GNTG-012	BUP	23/02/1998	U+T	VERTICAL	9591	9842	9717	81	251	1.120	2.369	9480	1120	2369	7,2	17		2,50	28	23,8	11000	0,4068	432	800
Guanta	GNTG-012	BUP	11/02/1998	TI	VERTICAL	9820	9834	9827	14	14	669	2.557	9480	669	2557	21,1	9		1,32	28,1	22,5	9091	0,4090	288	1.398
Guanta	GNTG-012	BUP	26/07/1996	US	VERTICAL	9591	9608	9600	17	17	1.135	2.675	9251	1135	2675	0,5	61		2,50	1	21,1	15000	0,4019	528	800
Guanta	GNTG-012	BUP	30/12/1995	TI	VERTICAL	9820	9834	9827	14	14	1.082	2.349	9674	1082	2349	20,1	55		2,50	48	22,6	6150	0,4160	336	1.398
Guanta	GNTG-029	RAW DOW	16/01/2014	UI	DIRECCIONAL "S"	9906	9949	9928	37	43	620	1.850	9661						1,86	60	29,8	7250	0,4138	366	1.400
Guanta	GNTG-030	BUP	19/05/2015	UI	DIRECCIONAL "S"	9850	9905	9878	37	55	510	1.482	9730	510	1482	-4,6	2,32		1,80	12	29,6	85000	0,3919	158	1.400
Guanta	GNTG-048	BUP	04/01/2019	TI	DIRECCIONAL	10086	10112	10099	26	26	995	2.010	9908	995	2332	8,9	31,9	1310,00	1,15	6,2	30,2	10700	0,3826	310	1.398

				RE	SER	VOR	10				PR	oducción		
POZO	EVENTO	FECHA	BT	US	UI	TS	TIH	S OBJETIVO	COMENTARIO	EVALUADA	PETRÓLEO (BPPD)	AGUA (BAPD)	BSW (%)	
GNTC-017	Perf	08/08/2005						Iniciar Perforación	Trabajo exitoso					
GNTC-017	C&PI	30/09/2005			x			Iniciar Completación y Obtener valores de las Pruebas Iniciales	Intervalos de punzados Arena "HS" 10464'-10494' (30') MD a 5 DPP Arena "UI" 10080'-10088' (6') MD a 5 DPP 10094'-10100' (6') MD a 5DPP 10104'-10120' (16') MD a 5DPP	UI	451	29	6	
GNTC-017	W.O. #01	19/11/2005			х			Cambio de completación por taponamiento en succión del separador de gas	Exitoso, se recupera producción estimada	UI	306	10	3,2	
GNTC-017	W.O. #02	16/05/2007			х		х	Cambio de completación por comunicación TBG-CSG	*Trabajo exitoso *Recañonean Arena "TI"	TI	306	6	2	
GNTC-017	W.O. #03	02/10/2010					х	Reparación de cabezal	Exitoso, se recupera producción estimada	TI	268	1	0,2	CVCIIIC
GNTC-017	W.O. #04	11/04/2011			x			Cambio de completación por comunicación TBG-CSG	Luego de W.O. la Arena "TI" no aporta, se cambia de zona a "UI" y se recupera una producción aproximada de 196 BPPD	UI	15	59	79,3	10

Tabla 36. Matriz de eventos en el Pozo GNT-002

119

				RE	SER	VO	rio					PR	oducción	
POZO	EVENTO	FECHA	BT	US	UI	TS	TI	HS	OBJETIVO	COMENTARIO	EVALUADA	PETRÓLEO (BPPD)	AGUA (BAPD)	BSW (%)
GNTC-017	W.O. #05	22/09/2014			х				Cambio de completación, posible comunicación TBG-CSG baja cavidad	Trabajo no satisfactorio	UI	16	33	60,1
GNTC-017	W.O. #06	19/05/2015			x				Bajar BHA de evaluación, completar con bombeo hidráulico de acuerdo a resultados de evaluación	Trabajo no Satisfactorio	UI	14	27	66
GNTC-017	W.O. #07	17/05/2016			x				Fracturamiento hidraulico a los intervalos de "UI", Evaluar y de acuerdo a los resultados completar pozo	Trabajo exitoso	UI	237	10	4
GNTC-017	W.O. #08	19/03/2017			Х				Pulling hidráulico	Trabajo satisfactorio	UI	82	39	32
GNTC-017	W.O. #09	07/07/2017			Х				Pulling hidráulico	Trabajo satisfactorio	UI	72	99	57,9
GNTC-017	W.O. #10	14/06/2018			х				Pulling Sistema Hidráulico	Queda produciendo con bomba Jet 10l	UI	0	505	100
GNTC-017	W.O. #11	15/11/2018			х				Pulling Sistema Hidráulico	Desplazan bomba Jet 10l	UI	27	266	90,8

Elaboración: (Javier Morocho, 2021)

Pozo	Fecha	Arena	Tope_TVD (ft)	Saturación de agua Sw (%)	Porosidad Phi (%)	Compresibilidad total ct (psi -1)	Radio del pozo rw (in)	Viscosidad uo (cp)	Factor Volumétrico Boi (BY/BN)	Zona de pago neto (ft)	Presión @ Sensor (psi)	Profundidad del sensor _TVD (ft)	Mitad de punzados_TVD (ft)	Gradiente (psi/ft)	Presión a MP (Corregida)
DROA-002	14/04/2014	TI	9848,35	42	12	1,1412E-05	3,5	1,371	1,310	31	2291,08	9654,525	9864,273	0,4288046	2381,02
GNT-002	30/06/2013	US	9612	46	17	1,2561E-05	4	0,898	1,228	21	3047,38	9411	9623	0,4478901	3142,33
GNTE-004	19/08/2015	BT	8837	11	15	8,5000E-06	4	1,698	1,126	9	1337,48	8649,59	8842	0,4424449	1422,61
GNT-005	13/05/2015	BT	8892	19	16	1,1676E-05	4	3,6	1,126	12	1460,64	8787	8898	0,4484477	1510,42
GNT-015	13/02/2013	HS	9934	36	12	1,1384E-05	3,48	1,974	1,156	30	3988,57	9566	9957	0,4311425	4157,15
GNT-015	03/07/2013	TI	9810	42	13	1,1412E-05	3,48	1,02	1,218	24	1838,88	9566	9822	0,3966678	1940,43
GNT-015	14/04/2018	BT	8830	32,3	14,8	1,1010E-05	3,48	16.2	1,131	10	767,59	8635	8837	0,4301224	854,47
GNTC-017	08/10/2014	UI	9568,87	17,9	13,5	1,0753E-05	3,48	1,75	1,227	30	1216,73	9466,61	9588,33	0,3902343	1264,23
GNTA-018	29/09/2013	BT	8840,772	21	13	1,1010E-05	4,25	1,25	1,193	15	888,14	8649,8	8848,77	0,4188138	971,47
GNTA-018	19/05/2014	TI	9810,48	19	12	1,1412E-05	4,25	1,8	1,275	50	1034,02	8726,78	9835,47	0,4250043	1505,22
GNTA-019	19/10/2013	TI	9788,82	42	16	1,1412E-05	4,25	1,371	1,310	36	1367,17	9694,912	9806,805	0,4290096	1415,17
GNTA-019	11/12/2018	TI	9789,822	42	12	1,1412E-05	4,25	1,371	1,310	47	1124,07	9479,105	9821,79	0,3912314	1258,14
GNTA-020	28/10/2017	UI	9613,91	19	14,2	1,0753E-05	4,25	2,24	1,250	26	1081,82	9503,81	9626,91	0,4168555	1133,13
GNTC-023	13/04/2014	HS	9973,761	45	13	1,1384E-05	4,25	5.3	1,011	12	3460,55	9608,886	9979,756	0,4110983	3613,01
GNTC-023	15/10/2014	HS	9973,761	36	12	1,1384E-05	4,25	2,148	1,270	12	2686,87	9608,886	9979,756	0,4001402	2835,27
GNTC-023	25/02/2018	HS	9973,761	49	15,8	1,1384E-05	4,25	3,13	1,260	11	3731,48	9384,9	9979,756	0,3916304	3964,44
GNTC-026	16/11/2018	UI	9647,72	19	15	1,0753E-05	4,25	2,24	1,250	32	1386,52	9461,738	9663,721	0,416305	1470,61
GNTF-028	03/12/2014	UI	9637,305	12	13	1,0753E-05	3,48	2,45	1,227	34	1815,58	9557,309	9659,3	0,4659278	1863,10
GNTF-028	03/01/2015	UI	9637,305	19	15	1,0753E-05	3,48	2,24	1,250	34	1896,65	9509,312	9659,3	0,4004638	1956,71
GNTF-028	28/10/2016	TI	9832,28	42	12	1,1412E-05	3,48	1,371	1,310	23	1856,94	9551,3	9843,8	0,4589623	1991,19
GNTF-028	27/12/2016	TI	9832,28	42	12	1,1412E-05	3,48	1,371	1,310	23	1989,51	9551,3	9843,8	0,4250748	2113,84
GNTE-031	05/10/2014	HS	9958,21	36	12	1,1384E-05	4,5	2,148	1,270	28	2012,49	9761,97	9972,21	0,3755686	2091,45
GNTD-032	12/05/2013	TI	9835	20	15	1,1412E-05	3,48	0,749	1,2753	35	1942,03	9669	9853	0,4057139	2016,68
GNTE-034	06/11/2015	BT	8841,87	37	13	1,1010E-05	4	2,37	1,160	12	1119,10	8670,9	8851,59	0,4045209	1192,19
GNTE-034	28/09/2015	HS	9951,98	36	12	1,1384E-05	4	2,148	1,270	22	1532,94	9817,98	9962,96	0,4025269	1591,30
GNTE-034	04/01/2019	HS	9950,98	36	12	1,1384E-05	4	2,148	1,270	33	1575,97	9603,98	9962,96	0,4659278	1743,23
GNTF-038	05/09/2014	TS	9848,39	46	11	1,1412E-05	4,25	1,371	1,310	6	1714,79	9523,05	9852,37	0,44061	1859,89
GNTF-038	09/10/2014	UI	9648,78	19	15	1,0753E-05	4,25	2,24	1,250	32	1878,88	9539,88	9670,57	0,4422955	1936,68
GNTF-038	11/04/2015	UI	9648,78	16	12	1,0753E-05	4,25	2,306	1,227	32	1809,90	9555,72	9670,57	0,4381863	1860,23
GNTF-039	01/06/2014	UI	9674,75	19	15	1,0753E-05	4	2,24	1,250	18	1824,68	9565	9683,75	0,40282	1872,51
GNTF-039	21/07/2017	UI	9674,75	19	15	1,0753E-05	4	2,24	1,250	18	2752,14	9600	9683,75	0,4659278	2791,16
GNTD-047	15/01/2019	HS	9933,816	36	12	1,1384E-05	4	2,148	1,270	14	2032,00	9504,82	9940,737	0,4181239	2214,27
GNTD-047	20/02/2019	TI	9785,76	42	12	1,1412E-05	4	1,371	1,310	30	1840,51	9502,024	9800,54	0,4094438	1962,74
GNTD-047	09/04/2019	TI	9785,76	42	12	1,1412E-05	4	1,371	1,310	30	2005,45	9502,024	9800,54	0,4330065	2134,71
GNTG-048	04/01/2019	TI	9807,64	42	11,9	1,1412E-05	4	1,15	1,313	26	2439,33	9630,49	9820,64	0,3825844	2512,08

Tabla 37. Corrección a Mitad de punzados de los valores obtenidos en las interpretaciones

Elaboración: (Javier Morocho, 2021)

Anexo 4. Resultados del software Saphir Pruebas Validas

POZO: GNTE-004_ BT (19/08/2015)

Tabla 38. Parámetros del pozo y del modelo seleccionado para GNTE-004_BT (19/08/2015)

POZO		MODE	LOS
Nomenclatura	GNTE-004	Almacenamiento	Variable
Fecha	19/08/2015	Pozo	Vertical
Arena	ВТ	Reservorio	Homogéneo
Criterio	Alto	Límite	Falla

Tabla 39. Resultados p	or los métodos de la	derivada y Horner	GNTE-004_B	Г (19/08/2015)
------------------------	----------------------	-------------------	------------	----------------

MÉT	ODO DE LA	DERIVA	DA	Μ	IÉTODO DE H	IORNER	
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1337,48	686,34	76,26	3,21	1323,01	419,05	46,56	0,12

Figura 78. Ajuste de historial de producción y presión. Pozo GNTE-004_BT (19/08/2015)

Figura 79. Respuesta de la Derivada y Horner. Pozo GNTE-004_BT (19/08/2015)

POZO: GNT-005_BT (13/05/2015)

Tabla 40. Parámetros del	v ozog	/ del modelo seleccionado	para GNT-005	BT ((13/05/2015)
	,		paia 6111 000		

POZO		MC	DELOS
Nomenclatura	GNT-005	Almacenamiento	Variable
Fecha	13/05/2015	Pozo	Vertical
Arena	ВТ	Reservorio	Homogéneo
Criterio	Alto	Límite	Intersección de fallas
Cinterio	7.10	Linite	en cualquier ángulo

Tabla 41. Resultados por	los métodos de la d	lerivada y Horner (GNT-005_BT	(13/05/2015)
--------------------------	---------------------	---------------------	------------	--------------

MÉT	ODO DE LA	DERIVA	DA	Μ	IÉTODO DE H	IORNER	
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1460,64	651,33	54,28	-1,29	1427,35	646,59	53,88	-1,53

Figura 80. Ajuste de historial de producción y presión. Pozo GNT-005_BT (13/05/2015)

Figura 81. Respuesta de la Derivada y Horner. Pozo GNT-005_BT (13/05/2015)

POZO: GNT-015_BT (14/04/2018)

Tabla 42. Parámetros del pozo y del modelo seleccionado para GNT-015_BT (14/04/2018)

POZO		MODELOS		
Nomenclatura	GNT-015	Almacenamiento	Variable	
Fecha	14/04/2018	Pozo	Vertical con entrada limitada	
Arena	ВТ	Reservorio	Homogéneo	
Criterio	Alto	Límite	Falla	

Tabla 43. Resultados por los méto	dos de la derivada y Horner	GNT-015_BT (14/04/2018)
-----------------------------------	-----------------------------	-------------------------

MÉT	ODO DE LA	O DE LA DERIVADA			MÉTODO DE HORNER			
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	Pi(psi) k.h(md.ft)		St	
767,59	1658,50	165,85	0,52	910,52	1246,94	124,69	0,53	

Figura 82. Ajuste de historial de producción y presión. Pozo GNT-015_BT (14/04/2018)

Figura 83. Respuesta de la Derivada y Horner. Pozo GNT-015_BT (14/04/2018)

POZO: GNTA-018_BT (29/09/2013)

Tabla 44. Parámetros del pozo y del m	odelo seleccionado para (GNTA-018_BT (29/09/2013)
---------------------------------------	---------------------------	--------------------------

POZO		MODELOS			
Nomenclatura	GNTA-018	Almacenamiento	Variable		
Fecha	29/09/2013	Pozo	Vertical		
Arena	ВТ	Reservorio	Homogéneo		
Criterio	Medio	Límite	Falla		

Tabla 45. Resultados por los métodos de la derivada y Horner GNTA-018_BT (29/09/2013)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
888,14	175,17	11,68	-2,27	861,90	188,07	12,54	-2,34

Figura 84. Ajuste de historial de producción y presión. Pozo GNTA-018_BT (29/09/2013)

Figura 85. Respuesta de la Derivada y Horner. Pozo GNTA-018_BT (29/09/2013)

POZO: GNTE-034_BT (06/11/2015)

	-	-	-	
POZO		MODELOS		
Nomenclatura	GNTE-034	Almacenamiento	Variable	
Fecha	06/11/2015	Pozo	Vertical	
Arena	ВТ	Reservorio	Homogéneo	
Criterio	Criterio Alto		Intersección de fallas	
Chieno	7.100	Linite	en cualquier ángulo	

 Tabla 46. Parámetros del pozo y del modelo seleccionado para GNTE-034_BT (06/11/2015)

Tabla 47. Resultados por	los métodos de la derivada	y Horner GNTE-034	_BT (06/11/2015)
--------------------------	----------------------------	-------------------	------------------

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi) k.h(md.ft)		k(md)	St
1119,10	1458,44	121,54	-0,49	1015,71	1220,85	101,74	-1,47

Figura 86. Ajuste de historial de producción y presión. Pozo GNTE-034_BT (06/11/2015)

Figura 87. Respuesta de la Derivada y Horner. Pozo GNTE-034_BT (06/11/2015)

POZO: GNT-002_US (30/06/2013)

Tabla 48. Parámetros del pozo y del modelo seleccionado para GNT-002_US (30/06/2013)

POZO		MODELOS		
Nomenclatura	GNT-002	Almacenamiento	Constante	
Fecha	30/06/2013	Pozo	Vertical	
Arena	US	Reservorio	Homogéneo	
Criterio	Alto	Límite	Circular	

Tabla 49. Resultados por los métodos de la derivada y Horner GNT-002_US (30/06/2013)

MÉT	IÉTODO DE LA DERIVADA			MÉTODO DE HORNER			
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k(md)	St	
3047,38	59,59	3,97	0,28	3284,56	59,73	3,98	0,34

Figura 89. Respuesta de la Derivada y Horner. Pozo GNT-002_US (30/06/2013)

POZO: GNTC-017_UI (08/10/2014)

Tabla 50. Parámetros del r	oozo v del	modelo	seleccionado	para	GNTC-017	UL	(08/10/2014)
		11100010	00100010114400	para			

POZO		MOI	DELOS
Nomenclatura	GNTC-017	Almacenamiento	Variable
Fecha	08/10/2014	Pozo	Vertical
Arena	UI	Reservorio	Homogéneo
Criterio	Alto	Límite	Circular

Tabla 51. Resultados por los métodos de la derivada y Horner GNTC-017_UI (08/10/2014)

MÉTODO DE LA DERIVADA			Μ	IÉTODO DE H	IORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1216,73	563,46	18,78	1,80	182,59	550,14	18,34	1,59

Figura 91. Respuesta de la Derivada y Horner. Pozo GNTC-017_UI (08/10/2014)

POZO: GNTA-020_UI (28/10/2017)

Tabla 52. Parámetros del pozo y del modelo seleccionado para	GNTA-020_UI (28/10/2017)
--	--------------------------

POZO		MOL	DELOS
Nomenclatura	GNTA-020	Almacenamiento	Variable
Fecha	28/10/2017	Pozo	Vertical
Arena	UI	Reservorio	Homogéneo
Criterio	Medio	Límite	Falla

Tabla 53. Resultados por los métodos de la derivada y Horner GNTA-020_UI (28/10/2017)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1081,82	44,04	1,69	4,20	1110,39	41,96	1,61	3,83

Figura 93. Respuesta de la Derivada y Horner. Pozo GNTA-020_UI (28/10/2017)

POZO: GNTC-026_UI (16/11/2018)

Tabla 54. Parámetros del pozo y del modelo seleccionado para	GNTC-026_UI (16/11/2018)
--	--------------------------

POZO		MOI	DELOS
Nomenclatura	GNTC-026	Almacenamiento	Variable
Fecha	16/11/2018	Pozo	Vertical
Arena	UI	Reservorio	Homogéneo
Criterio	Medio	Límite	Infinito

Tabla 55. Resultados por los métodos de la derivada y Horner GNTC-026_UI (16/11/2018)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1386,52	134,98	10,04	-2,56	1388,56	127,39	9,48	-2,77

Figura 94. Ajuste de historial de producción y presión. Pozo GNTC-026_UI (16/11/2018)

Figura 95. Respuesta de la Derivada y Horner. Pozo GNTC-026_UI (16/11/2018)

POZO: GNTF-028_UI (03/12/2014)

Table 56 Darámatros dal	0070 V	dal madala calaggianada	Dara GNITE 028	1117	02/12/2014)
Tabla 30. Falametros der	pozo y	del modelo seleccionado	para GINTE-020	_01(03/12/2014)

POZO		MODELOS		
Nomenclatura	GNTF-028	Almacenamiento	Constante	
Fecha	03/12/2014	Pozo	Vertical fracturado con conductividad finita	
Arena	UI	Reservorio	Doble porosidad pseudo estable	
Criterio	Alto	Límite	Falla	

 Tabla 57. Resultados por los métodos de la derivada y Horner GNTF-028_UI (03/12/2014)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1815,58	3121,87	97,90	9,53	1823,54	3868,94	121,33	10,25

Figura 96. Ajuste de historial de producción y presión. Pozo GNTF-028_UI (03/12/2014)

Figura 97. Respuesta de la Derivada y Horner. Pozo GNTF-028_UI (03/12/2014)

POZO: GNTF-038_UI (11/04/2015)

 Tabla 58.
 Parámetros del pozo y del modelo seleccionado para GNTF-038_UI (11/04/2015)

POZO		М	DDELOS
Nomenclatura	GNTF-038	Almacenamiento	Variable
Fecha	11/04/2015	Pozo	Vertical fracturado con conductividad finita
Arena	UI	Reservorio	Homogéneo
Criterio	Medio	Límite	Rectángulo

Tabla 59. Resultados por los métodos de la derivada y Horner GNTF-038_UI (1)	1/04/2015)
--	------------

MÉTODO DE LA DERIVADA			Μ	ÉTODO DE H	IORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1809,90	160,10	5,00	-3,75	1900,73	238,60	7,46	-3,09

Figura 98. Ajuste de historial de producción y presión. Pozo GNTF-038_UI (11/04/2015)

Figura 99. Respuesta de la Derivada y Horner. Pozo GNTF-038_UI (11/04/2015)

POZO: GNTF-039_UI (21/07/2017)

Tabla 60. Parámetros del pozo y del modelo seleccionado para GNTF-039_UI (21/07/2017)

POZO		М	ODELOS
Nomenclatura	GNTF-039	Almacenamiento	Variable
Fecha	21/07/2017	Pozo	Vertical fracturado con conductividad finita
Arena	UI	Reservorio	Homogéneo
Criterio	Medio	Límite	Fallas Paralelas

Tabla 61. Resultados por	los métodos de la derivada	a y Horner GNTF-039	_UI (21/07/2017)
--------------------------	----------------------------	---------------------	------------------

MÉTODO DE LA DERIVADA			Μ	IÉTODO DE H	IORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
2752,14	833,38	46,30	0,00	1827,43	753,47	41,86	-3,17

Figura 100. Ajuste de historial de producción y presión. Pozo GNTF-039_UI (21/07/2017)

Figura 101. Respuesta de la Derivada y Horner. Pozo GNTF-039_UI (21/07/2017)

POZO: DROA-002_TI (14/04/2014)

Tabla 62. Parámetros del pozo y del modelo seleccionado para DROA-002_TI (14/04/2	014)
---	------

POZO		MOD	ELOS	
Nomenclatura	DROA-002	Almacenamiento	Variable	
Fecha	14/04/2014	Pozo	Vertical	
Arena	TI	Reservorio	Doble porosidad pseudo estable	
Criterio	Medio	Límite	Infinito	

Tabla 63. Resultados por	los métodos de la derivada	y Horner DROA-002	_TI (14/04/2014)
--------------------------	----------------------------	-------------------	------------------

MÉTODO DE LA DERIVADA			Μ	IÉTODO DE H	HORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
2291,08	4176,61	134,73	11,66	2309,79	3930,71	126,797	11,001

Figura 102. Ajuste de historial de producción y presión. Pozo DROA-002_TI (14/04/2014)

Figura 103. Respuesta de la Derivada y Horner. Pozo DROA-002_TI (14/04/2014)

POZO: GNT-015_TI (03/07/2013)

Tabla 64. Parámetros del pozo y del modelo seleccionado para GNT-015_TI (03/07/2013)

POZO		MOL	DELOS
Nomenclatura	GNT-015	Almacenamiento	Variable
Fecha	03/07/2013	Pozo	Vertical
Arena	TI	Reservorio	Homogéneo
Criterio	Alto	Límite	Falla

Tabla 65. Resultados por los métodos de la derivada y Horner GNT-015_TI (03/07/2013)

MÉTODO DE LA DERIVADA			Μ	IÉTODO DE H	IORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1838,88	520,63	21,69	34,58	1831,05	538,22	22,43	35,84

Figura 104. Ajuste de historial de producción y presión. Pozo GNT-015_TI (03/07/2013)

Figura 105. Respuesta de la Derivada y Horner. Pozo GNT-015_TI (03/07/2013)

POZO: GNTA-018_TI (19/05/2014)

Tabla 66. Parámetros del	nozo v de	l modelo seleccionado	para GNTA-018	TL	(19/05/2014)
	pozo y uc		pulu antin olo	,	(10/00/2014)

POZO		MODELOS		
Nomenclatura	GNTA-018	Almacenamiento	Variable	
Fecha	19/05/2014	Pozo	Vertical	
Arena	TI	Reservorio	Doble porosidad pseudo estable	
Criterio	Alto	Límite	Falla	

Tabla 67. Resultados por los métodos de la derivada y Horner GNT	A-018_TI (19/05/2014)
--	-----------------------

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1034,02	554,49	11,09	-0,13	1044,20	508,61	10,17	-0,36

Figura 106. Ajuste de historial de producción y presión. Pozo GNTA-018_TI (19/05/2014)

Figura 107. Respuesta de la Derivada y Horner. Pozo GNTA-018_TI (19/05/2014)

POZO: GNTA-019_TI (11/12/2018)

Tabla 68. Parámetros del	pozo y de	I modelo seleccionado	para GNTA-019 T	⁻ I (11/12/2018)
				· · · · · · · · · · · · · · · · · · ·

POZO		MODELOS		
Nomenclatura	GNTA-019	Almacenamiento	Variable	
Fecha	11/12/2018	Pozo	Vertical	
Arena	TI	Reservorio	Homogéneo	
Criterio	Medio	Límite	Falla	

Tabla 69. Resultados por los métodos de la derivada y Horner GNTA-019_TI (11/12/2018)

MÉTODO DE LA DERIVADA			Ν	IÉTODO DE H	IORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1124,07	103,54	3,13	-2,05	1495,87	99,89	3,02	-2,30

Figura 108. Ajuste de historial de producción y presión. Pozo GNTA-019_TI (11/12/2018)

Figura 109. Respuesta de la Derivada y Horner. Pozo GNTA-019_TI (11/12/2018)

POZO: GNTF-028_TI (27/12/2016)

Tabla 70 Parámetros del	nozo v de	l modelo se	leccionado	nara GNTE	-028 TI	(27/12/2016)
	pozo y ue		ieccionado j	para Giviri	-020_11	(21/12/2010)

POZO		MODELOS		
Nomenclatura	GNTF-028	Almacenamiento	Variable	
Fecha	27/12/2016	Pozo	Vertical	
Arena	TI	Reservorio	Homogéneo	
Criterio	Alto	Límite	Infinito	

Tabla 71. Resultados por los métodos de la derivada y Horner GNTF-028_TI (27/12/2016)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1989,51	72,82	3,17	2,04	2002,04	62,11	2,70	0,89

Figura 110. Ajuste de historial de producción y presión. Pozo GNTF-028_TI (27/12/2016)

Figura 111. Respuesta de la Derivada y Horner. Pozo GNTF-028_TI (27/12/2016)

POZO: GNTD-032_TI (12/05/2013)

POZO		MODELOS		
Nomenclatura	GNTD-032	Almacenamiento	Variable	
Fecha	12/05/2013	Pozo	Vertical	
Arena	TI	Reservorio	Homogéneo	
Criterio	Medio	Límite	Intersección de fallas	
Citterio	medio	2	en cualquier ángulo	

 Tabla 72. Parámetros del pozo y del modelo seleccionado para GNTD-032_TI (12/05/2013)

Tabla 73. Resultados por los métodos d	e la derivada y Horner	GNTD-032_TI (12/05/2013)
--	------------------------	--------------------------

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1942,03	8781,50	250,90	65,30	1918,33	6805,83	194,45	49,52

Figura 113. Respuesta de la Derivada y Horner. Pozo GNTD-032_TI (12/05/2013)

POZO: GNTD-047_TI (09/04/2019)

Tabla 74 Parámetros del	0070	/ del modelo seleccionado par:	a GNTD-047	TI ((09/04/2019)
	pozo .			_ ' ' '	

POZO		MODELOS		
Nomenclatura	GNTD-047	Almacenamiento	Constante	
Fecha	09/04/2019	Pozo	Vertical	
Arena	TI	Reservorio	Homogéneo	
			Intersección de	
Criterio	Medio	Límite	fallas en cualquier	
			ángulo	

Tabla 75. Resultados por los métodos de la derivada y Horner GNTD-047_TI (09/04/2019)

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi) k.h(md.ft) k(md)			St
2005,45	240,71	8,02	-1,71	1922,93	269,03	8,97	-1,52

Figura 114. Ajuste de historial de producción y presión. Pozo GNTD-047_TI (09/04/2019)

Figura 115. Respuesta de la Derivada y Horner. Pozo GNTD-047_TI (09/04/2019)

POZO: GNTG-048_TI (04/01/2019)

	-	•			
POZO		MODELOS			
Nomenclatura	GNTG-048	Almacenamiento	Variable		
Fecha	04/01/2019	Pozo	Vertical		
Arena	TI	Reservorio	Homogéneo		
Criterio	Medio	Límite	Intersección de fallas		
			en cualquier ángulo		

 Tabla 76.
 Parámetros del pozo y del modelo seleccionado para GNTG-048_TI (04/01/2019)

Tabla 77. Resultados por los métodos de la derivada	a y Horner GNTG-048_TI (04/01/2019)
---	-------------------------------------

MÉT	MÉTODO DE LA DERIVADA			MÉTODO DE HORNER			
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k(md)	St	
2439,33	453,05	17,42	-1,06	2275,72	448,19	17,24	-1,26

Figura 117. Respuesta de la Derivada y Horner. Pozo GNTG-048_TI (04/01/2019)

POZO: GNT-015_HS (13/02/2013)

Tabla 78. Parámetros del	pozo v	del modelo seleccionado	para GNT-015	HS ((13/02/2013)
	po-o ,		para anti oro		(10,00,00,00)

POZO		MODELOS			
Nomenclatura	GNT-015	Almacenamiento	Variable		
Fecha	13/02/2013	Pozo	Vertical		
Arena	HS	Reservorio	Homogéneo		
Criterio	Medio	Límite	Falla		

Tabla 79. Resultados por los métodos de la derivada y Horner GNT-015_HS (13/02/2013)

MÉ	MÉTODO DE LA DERIVADA			Ν	IÉTODO DE H	IORNER	
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k(md)	St	
3988,57	1068,31	35,61	22,08	3956,10	1158,48	38,61	24,22

Figura 118. Ajuste de historial de producción y presión. Pozo GNT-015_HS (13/02/2013)

Figura 119. Respuesta de la Derivada y Horner. Pozo GNT-015_HS (13/02/2013)

POZO: GNTC-023_HS (25/02/2018)

Tabla 80 Parámetros del	0070 V	del modelo s	eleccionado	nara	GNTC-023	HS	(25/02/2018)
	pozo y		eleccionado	para	01110-020	1101	(23/02/2010)

POZO		MODELOS			
Nomenclatura	GNTC-023	Almacenamiento	Variable		
Fecha	25/02/2018	Pozo	Vertical		
Arena	HS	Reservorio	Homogéneo		
Criterio	Medio	Límite	Falla		

Tabla 81. Resultados por los métodos de la derivada y Horner GNTC-023_HS (25/02/2018)

MÉT	rodo de la	DERIVA	DA	Μ	ÉTODO DE HORNER		
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	St		
3731,48	125,90	11,42	-0,68	3711,06	135,87	12,35	-0,32

Figura 120. Ajuste de historial de producción y presión. Pozo GNTC-023_HS (25/02/2018)

Figura 121. Respuesta de la Derivada y Horner. Pozo GNTC-023_HS (25/02/2018)

POZO: GNTE-031_HS (05/10/2018)

-	-	·		
POZO		MODELOS		
Nomenclatura	GNTE-031	Almacenamiento	Variable	
Fecha	05/10/2014	Pozo	Vertical	
Arena	HS	Reservorio	Homogéneo	
Criterio	Alto	Límite	Intersección de fallas	
Cinterio			en cualquier ángulo	

 Tabla 82.
 Parámetros del pozo y del modelo seleccionado para GNTE-031_HS (05/10/2018)

Tabla 83. Resultados por	los métodos de la derivada	y Horner GNTE-031	_HS (05/10/2018)
--------------------------	----------------------------	-------------------	------------------

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
2012,49	5842,87	208,67	2,84	1970,94	5633,94	201,21	2,37

Figura 122. Ajuste de historial de producción y presión. Pozo GNTE-031_HS (05/10/2018)

Figura 123. Respuesta de la Derivada y Horner. Pozo GNTE-031_HS (05/10/2018)

POZO: GNTE-034_HS (04/01/2019)

Arena

Criterio

ΡΟΖΟ		MODELOS						
Nomenclatura	GNTE-034	Almacenamiento	Variable					
Fecha	04/01/2019	Pozo	Vertical					

Reservorio

Límite

Homogéneo

Falla

Tabla 84. Parámetros del pozo y del modelo seleccionado para GNTE-034 HS (04/01/2019)

Tabla 85 Resultados	nor los métodos de la derivada v	Horper GNITE-034	HS (01/01/2010)
	por los melodos de la derivada y		no (04/01/2019)

HS

Medio

MÉTODO DE LA DERIVADA			MÉTODO DE HORNER				
Pi(psi)	k.h(md.ft)	k(md)	St	Pi(psi)	k.h(md.ft)	k(md)	St
1575,97	31,36	0,96	-0,88	1317,78	26,79	0,81	-1,35

Figura 124. Ajuste de historial de producción y presión. Pozo GNTE-034_HS (04/01/2019)

Figura 125. Respuesta de la Derivada y Horner. Pozo GNTE-034_HS (04/01/2019)