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Abstract

Convolutional Neural Network (CNNs) is one of the most commonly used methods

for automatic prostate segmentation in Magnetic Resonance Images (MRI). However,

the results of the literature review in this work show that there is one research on

the segmentation of the two main zones of the prostate gland (peripheral and central

zones). This work proposed two different 2D semantic segmentation models to address

the segmentation of the prostate in its main zones. The first model (Model-A) used

an encoder-decoder architecture composed by a global and local U-net. The former

segments the whole prostate, whereas the latter segments the central zone. The

second model (Model-B) used an encoder-classifier architecture, where pixel by pixel

classification was used to achieve the same segmentation goal. Moreover, model

B used a Vggnet that was fine tuned. The Prostate-3T collection of the NCI-ISBI

2013 Challenge database was use to evaluate the performance of each model. The

experimental results show a superior segmentation performance for Model A (DSC =

96.79%± 0.15% and IoU = 93.79%± 0.29%) compared to Model B (DSC = 92.50%±

1.19% and IoU = 86.13%± 2.02%).

Keywords: 2D Semantic segmentation, Magnetic Resonance Images MRI, Central

Gland CG, Peripheral Zone PZ, Prostate, U-net, VGGnet.
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Chapter 1

Introduction

Prostate cancer is one of the major public health worldwide problem that affects men.

The Global Cancer Statistics in 2018 showed that Prostate Cancer is the most frequently

diagnosed cancer in 105 countries, and the second leading cause of death among

men in 46 countries [1]. Diagnosis of prostate cancer is performed by visual analysis of

tissue samples obtained through biopsy from the patient. The Transrectal Ultrasound

Guided Biopsy (TRUS-guided biopsy) is the standard procedure [2, 3] to detect prostate

cancer. In a first time biopsy, the chance of detecting prostate cancer trough TRUS-

guided biopsy is approximately 30–40% [4, 5]. However, this procedure presents some

disadvantages such as: risk of life-threatening Gram-negative sepsis; does not enable

sampling of the entire gland, omitting parts of the prostate; and the diagnostic can yield

to false-negative findings [6].

An alternative to TRUS-guided biopsy is to add Multi-parametric Magnetic Resonance

Images (mp-MRIs) for guiding this procedure [7]. The use of mp-MRIs helps to check

for the presence or absence of prostate cancer without the need of biopsy sampling.

Consequently, clinicians can target biopsy needles to suspicious areas rather than

attempting to random samples of the whole prostate. However, this approach requires

the urologist to outline or segment the prostate border and target [6] which is challenging

due to: a) noise present in medical images; b) voxel intensities variation; c) finite image

resolution; and d) anatomy variation of prostate among different individuals. The

aforementioned difficulties in prostate segmentation suggest that some degree of

uncertainty is expected for both manual and auto-segmentation [8]. However, a manual

segmentation of prostate is a tedious and time-consuming task that has a high degree

of interobserver variability, and requires training and medical experience [9]. Therefore,

automatic segmentation (or auto-segmentation) is preferable as it would address the

same problems of the manual segmentation and it can improve the speed and accuracy

of segmentation.

In recent years, machine learning approach has used to solve problems in different

domains classification, object detection, recognition and segmentation [10, 11]. The

Artificial Neural Network is one of the approaches to machine learning, which have

been widely used in automatic segmentation of medical images. Therefore, we car-
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ried out a Systematic Literature Review (SLR): "Prostate Segmentation in Magnetic

Resonance Images using Artificial Neural Networks". In fact, the results of the SLR

shown that 74% of the studies used convolutional neural networks (CNNs), whereas

23% combined CNNs with other segmentation techniques, and 3% used feed-forward

neural networks. Also, an finding was that there was only one research[12] on the

segmentation of the prostate gland in its two main zones: the central gland and the

peripheral zone . The research [12] used a Feed-Forward Artificial Neural Network

of three layers for segmentation, there is still room for improvement in the problem

of prostate segmentation in its main parts. In fact, the lack of extraction of samples

from the central gland, which contains 30% of adenocarcinoma, is related to failure in

the diagnose of cancer [13]. Also, SLR results shown that the type of segmentation

common used was 2-dimensional 2D. Moreover, the standard architecture as U-net

and VGG-net were the most used. The U-net used encoder and decoder blocks. On

the other hand, the VGG-net used an encoder block followed by a classifier.

From these results of the SRL, the "2D semantic segmentation of the prostate gland in

its two main parts: the central and the peripheral zone in magnetic resonance images

using convolutional neuronal networks" was raised. The main contributions of research

work are:

1. Two models for 2D semantic segmentation of the prostate gland in Magnetic

Resonance Images using convolutional neuronal networks were to be developed

and compared. One of the models was based on an encoder-decoder architecture,

whereas the other model was based on an encoder-classifier architecture.

2. The images used in this research are of the non-ERC MRI type, which were

more challenging for 2D semantic segmentation because they do not provide a

reference point. These images were from the dataset NCI-ISBI 2013, which were

the only one that has segmentation labels for the main areas of the prostate.

3. This work was aimed to perform a comparison of the performance achieved by

the proposed models with respect to the results found in scientific literature.

The manuscript is structured as follows. Chapter 2 presents a SLR about prostate

segmentation in MRI images using artificial neural networks or a combination with

other techniques. Chapter 3 outlines materials and methodology needed to develop

the proposed models and solve the research task. Results and analysis of models are

presented in Chapter 4. Finally, conclusion and recommendations of this research work

are presented in Chapter 5.
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1.1 Goals and hypothesis

The main and specific objectives are detailed in this section. In addition, the hypothesis

of this research work is detailed.

• General goal

– Develop two models for 2D semantic segmentation of the prostate gland in its

two main parts: the central and the peripheral zone in Magnetic Resonance

Images using convolutional neural networks.

• Specific goals

– Design and implement a model (model-A) for 2D semantic segmentation

of the prostate gland in its two main parts: the central and the peripheral

zone in MRIs using convolutional neural networks with an encoder-decoder

architecture.

– Design and implement a model (model-B) for 2D semantic segmentation

of the prostate gland in its two main parts: the central and the peripheral

zone in MRIs using convolutional neural networks with an encoder-classifier

architecture.

– Test models A and B to estimate their performance on central and peripheral

zone segmentation on the public database "NCI-ISBI Challenge.

– Compare the performance of models A and B with respect to literature.

• Hypothesis

– The use of Convolutional Neural Networks for 2D semantic segmentation of

the prostate gland in its two main parts (central and peripheral zones) on

MRIs using the encoder-decoder architecture (model A) improves over the

encoder-classifier architecture (model B).

12



Chapter 2

Systematic Literature Review

In automatic prostate segmentation, there are some traditional methods in literature

such as: Atlas-based models, deformable models, threshold-based models, region-

based models and other methods based on machine learning [10]. Artificial Neural

Networks (ANN) have become a popular machine learning approach for solving prob-

lems in different domains [11]. Moreover, in recent years, artificial neural networks have

been widely applied in medical image segmentation. Some authors have submitted

reviews [14, 15, 16] that compare and show the benefits and limitations of various

segmentation techniques. Other surveys evaluate and analyze different segmentation

techniques for prostate with respect to different imaging modalities (e.g. TRUS, MRI

and computed tomography CT) [17, 18]. Therefore, the Systematic Literature Review

(SLR) about prostate segmentation in MRI images using artificial neural networks or a

combination with other techniques is necessary. The main contributions/goals of this

Chapter are:

• To determine the model’s structure and type of segmentation obtained through

Artificial Neural networks in prostate segmentation on MRI images.

• To retrieve the standard architectures used in prostate segmentation on MRI

images and determine which are the most used.

• To determine the most common metrics used in the segmentation prostate.

• To determine which databases have been used to train and test models for

prostate segmentation in MRI images using artificial neural networks.

2.1 Methods

This SLR followed the procedure indicated by Kitchenham [19]. Through the SLR

process is identified research gaps in prostate segmentation, as well as document the

procedure followed for replicability.
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According to the methodology proposed by Kitchenham, the first phase consists in

planning, which composed of the following steps: research questions, search process,

inclusion and exclusion criteria, quality assessment, data extraction, and data analysis.

The next phase conducts the review, which comprised of the following steps: research

identification, study selection, study quality assessment, data extraction and monitoring

progress, and data synthesis.

2.1.1 Planning

The most important pre-review activities are defining the research questions(s) that the

SLR addressed and the review protocol to be followed. The latter comprises different

stages such as: the search process to identify the primary studies; the definition of

inclusion and exclusion criteria to classify the collected studies; the assessment of

metrics to know the quality of the selected studies; the definition of the data to be

extracted from accepted studies; and the data analysis stage that synthesize the data

and answers the questions [19].

Research questions

Specifying the research question(s) was the most important part of any SLR. The

research question drove the entire systematic review methodology in the processes

of search, data extraction and data analysis [19]. This SLR was driven by a general

question and four specific questions as indicated next:

RQ: What models have been proposed to segment the prostate using artificial neural

networks in MRI images?

• RQ1. What model structure and type of segmentation based on artificial neural

networks have been used to segment the prostate in MRI images?

• RQ2. What standard architectures of artificial neural networks have been used to

segment the prostate in MRI images?

• RQ3. What metrics and results have been obtained using the proposed models

to segment the prostate in MRI images?

• RQ4. What databases have been used in developing and testing the models to

segment the prostate in MRI images?

Search process

The search process identified primary studies that addressed the research questions

using an unbiased search strategy which should be as transparent as possible and

documented in sufficient detail [19]. The repositories used for the search process

was shown in Table 2.1. To reduce bias, arXiv open-access repository of electronic

pre-prints was also included; even though it was not full pair reviewed. The studies
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identified as potentially relevant were those that address prostate segmentation using

artificial neural networks on MRI . Inclusion and exclusion criteria were applied to the

relevant studies to find most relevant literature.

Source Acronym

ACM Digital Library ACM
IEEE Xplore IEEE
Nature Nature
PubMed (Medline) PubMed
Science Direct ScienceDirect
Springer Springer
Arxiv Arxiv

Table 2.1: Repositories

Inclusion and exclusion criteria

Systematic reviews required explicit inclusion and exclusion criteria to assess each

primary study. These inclusion and exclusion criteria [20] were based on the research

question and should capture studies of interest. The exclusion criteria was used to

remove irrelevant papers (i.e. papers that did not address any aspect of the research

questions) found as a result of the initial electronic searches. In Table 2.2, the inclusion

and exclusion criteria were presented.

Inclusion Exclusion

Prostate segmentation studies using con-
volutional or feedforward Neural Net-
works are included. Also, mix of convo-
lutional or feedforward Neural Networks
with other segmentation techniques are
included.

Duplicate reports of the same study
(when several reports of a study exist
in different journals the most complete
version of the study was included in the
review)

Prostate segmentation studies based on
MRI images are included.

All studies that do not contain MRI im-
ages.

Documents written in English are in-
cluded because of the scientific rele-
vance of this language.

All studies that do not segment the
prostate.

Papers of journals or conferences pub-
lished between January 1st, 2015 and
February 28th, 2019.

Studies without results.

Table 2.2: Inclusion and exclusion criteria

Quality assessment

Quality assessments (QA) were usually based on “quality instruments” which were

checklists of factors that need to be evaluated for each study [19]. The studies selected

by using the inclusion and exclusion criteria need to be evaluated respect to their quality.

To establish the quality of the selected studies, the following questions were proposed:
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• QA1. Is the database used in the study specified?

• QA2. Is the architecture (structure, work flow) of the model specified?

• QA3. Is the methodology described to replicate the study?

• QA4. Are the results (with performance metrics) of the studies indicated?

Each question can be answered with Yes (Y) = 1, Partially (P) = 0.5 and No (N) = 0.

Evaluations are pair reviewed and results are averaged. The different answers for each

question are presented next:

QA1: Y (yes), the database(s) was/were explicitly defined in the study; P (Partly), the

database(s) was/were implicit; N (no), the database(s) was/were not defined and it

can not be readily inferred. QA2: Y (yes), the architecture of the model was explicitly

defined in the study; P (Partially), it shows some parts of architecture or the architecture

was implicit; N (no), the architecture was not defined, and it can not be inferred. QA3:

Y (yes), the methodology (procedure, methods) was explicitly described, and it can

be replicate the study; P (Partially), it describes some parts of methodology, or the

methodology was implicit; N (no), the methodology was not defined, and it can not

be replicate the study. QA4: Y (yes), results are indicated, and it shows performance

metric of results in the study; P (Partially), results are implicit; N (no), results are not

defined.

Data extraction

The objective of this stage was to design data extraction forms to accurately record

relevant information from the accepted studies that help to answer the research question.

These forms were defined and piloted to reduce the bias [19]. The extracted information

was organized in the form of data items. For this review, the data items extracted from

each study are shown below:

• The source and full reference

• Segmentation Challenges

• Segmented area

• MRI protocol

• Image Plane

• Modalities

• Type of MRI

• Structure

• Data Augmentation

• Pre-processing

• Feature extraction

• Classifier (Feedforward, CNN, com-

binate with other)

• Post-Processing

• Segmentation type

• Model on which it was based

• Performance evaluated metrics

• Result of metric

• Type of database

• Database public

16



Data synthesis

Data synthesis involved to collate and summarize the extracted information from the

accepted studies. Data extraction forms from previous section were considered to

answer the research questions [19]. Some of these items are complementary: seg-

mentation challenge, segmented area and parameters of the MRI (as protocol, image

plane, modality and type). All these complementary items were collected. To answer

the research questions, the following items were considered:

• Define the model structure with pre-processing, feature extraction, classifier

(Feedforward, CNN, mixed), post-Processing (addressing RQ1).

• What technique of data augmentation was used in the segmentation process?

(addressing RQ1).

• Segmentation type (addressing RQ1).

• The segmented area and the model on which it was based (addressing RQ2).

• The metrics used in the segmentation prostate (addressing RQ3).

• The result of the most used metric in prostate segmentation (addressing RQ3).

• The studies that use private and public databases (addressing RQ4).

• Type of databases (public or private databases) (addressing RQ4).

• Detail of database MRI images parameters such as: acquisition protocol, image

plane, type of image (addressing RQ4).

2.1.2 Conducting the review

Once the protocol has been defined, the review can be started. In this phase, the

studies were collected by running the search string on the selected repositories. Then,

inclusion and exclusion criteria were used to select the most relevant studies. Also, the

quality instrument was implemented and executed on the selected studies. Next, the

information was extracted from each of the final accepted studies [19].

The StArt (State of the Art through Systematic Review) software was used to conduct

the review. This software aims to help the researcher, giving support to each of the

stages of a Systematic Review.

Identification of research

A search string was designed to identify the primary documents for the review. It

was generated considering the population and intervention aspects of the research

question [19]. In this research, the population was related to magnetic resonance

images of the prostate, whereas the intervention was related to the means to achieve

the segmentation, which were the artificial neural networks. Although, the structure
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of the search string was modified depending on the repository where it was used, the

same keywords were used. For instance, the Springer repository was very sensitive

and required two search strings. The structure of the search string used for each

repository is shown in Table 2.3.

A total of 114 studies were retrieved by using the proposed search strings in each of

the repositories. The distribution of studies in each repository was shown in Figure 2.1.

The ACM repository has 4 studies that were equivalent to 4% of the total. Similarly,

the IEEE repository had 23 studies (20%). For the PubMed repository, 18 studies

were found (16%). In Springer repository, 38 studies were obtained (33%). In Nature

repository, 11 studies were found (11%). In the Science Direct repository, 12 studies

(11%). Finally, in the ArXiv repository, there were 8 studies (7%).

Figure 2.1: Search result in the repositories

Study Selection

Papers that address prostate segmentation using artificial neural networks (or a com-

bination) in MRI were identified as potentially relevant. Then, duplicated papers were

removed leaving 105 studies to be analyzed through the inclusion and exclusion criteria,

previously defined. The inclusion and exclusion criteria were applied by reading the

title, the abstract and the keywords. Consequently, the initial 114 primary studies were

reduced to a total of 30 documents. This is presented in Figure 2.2 where the total

number of papers obtained by using the removal of duplicates and the inclusion and

exclusion criteria were presented. As a result, a total of 12 relevant studies were found

in the IEEE repository; Similarly, 5 relevant studies were found for Springer and ArXiv

repositories, while in Science Direct, only 2 relevant studies were found. The ACM and

Nature repositories did not have any relevant studies for this literature review.

18



Repositories Search string

ACM (+Prostate +Segmentation "Magnetic Resonance Images" "Magnetic
Resonance Image" "MR Images" "MR Image" "MRI" "MRIs" "MR" "convo-
lutional neural networks" "convolutional neural network" "CNN" "CNNs"
"feedforward neural networks" "feedforward" "Deep Learning" "semantic
segmentation" "deep network" "autoencoder")

IEEE Prostate AND Segmentation AND ("Magnetic Resonance Images" OR
"Magnetic Resonance Image" OR "MR Images" OR "MR Image" OR
"MRI" OR "MRIs" OR "MR") AND ("convolutional neural networks" OR
"convolutional neural network" OR "CNN" OR "CNNs" OR "feedforward
neural networks" OR "feedforward" OR "Deep Learning" OR "semantic
segmentation" OR "deep network" OR "autoencoder")

Nature that contain these terms: Prostate AND Segmentation AND ("Magnetic
Resonance Images" OR "Magnetic Resonance Image" OR "MR Images"
OR "MR Image" OR "MRI" OR "MRIs" OR "MR") AND ("convolutional
neural networks" OR "convolutional neural network" OR "CNN" OR
"CNNs" OR "feedforward neural networks" OR "feedforward" OR "Deep
Learning" OR "semantic segmentation" OR "deep network" OR "autoen-
coder") publication date: 2015-2019

PubMed Prostate AND Segmentation AND ("Magnetic Resonance Images" OR
"Magnetic Resonance Image" OR "MR Images" OR "MR Image" OR
"MRI" OR "MRIs" OR "MR") AND ("convolutional neural networks" OR
"convolutional neural network" OR "CNN" OR "CNNs" OR "feedforward
neural networks" OR "feedforward" OR "Deep Learning" OR "semantic
segmentation" OR "deep network" OR "autoencoder")

Science Di-
rect

Find articles with these terms: ("convolutional neural networks" OR
"convolutional neural network" OR "CNN" OR "CNNs" OR "feedforward
neural networks" OR "feedforward" OR "Deep Learning" OR "semantic
segmentation" OR "deep network" OR "autoencoder") Year(s): 2015-
2019 Title, abstract or keywords: Prostate AND Segmentation AND
("Magnetic Resonance Images" OR "Magnetic Resonance Image" OR
"MR Images" OR "MR Image" OR "MRI" OR "MRIs" OR "MR")

Springer with at least one of the words: ("Magnetic Resonance Images" OR
"Magnetic Resonance Image" OR "MR Images" OR "MR Image" OR
"MRI" OR "MRIs" OR "MR") where the title contains: Prostate Seg-
mentation ("convolutional neural networks" OR "convolutional neural
network" OR "CNN" OR "CNNs" OR "feedforward neural networks"
OR "feedforward" OR "Deep Learning" OR "semantic segmentation"
OR "deep network" OR "autoencoder") Start year and End year: 2015 -
2019
with at least one of the words: ("Magnetic Resonance Images" OR
"Magnetic Resonance Image" OR "MR Images" OR "MR Image" OR
"MRI" OR "MRIs" OR "MR") where the title contains: Segmentation of
the prostate Start year and End year: 2015 - 2019

ArXiv Prostate Segmentation (Title) AND: "convolutional neural networks" OR
"convolutional neural network" OR "CNN" OR "CNNs" OR "feedforward
neural networks" OR "feedforward" OR "Deep Learning" OR "semantic
segmentation" OR "deep network" OR "autoencoder" (All fields) From:
2015 to: 2019

Table 2.3: Search string depending of repository
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Figure 2.2: Study selection process. Once the primary documents were retrieved
by use of the search string, duplicates were removed and finally the inclusion and
exclusion criteria were used to find most relevant documentation

Study quality assessment

The quality assessment instrument consisted in scoring each study according to a set

of predefined quality questions whose answers are scored, as indicated in Section 2.1.1.

The final weighted score is considered to evaluate the quality of the study. Studies that

do not contain any of the proposed questions are rejected [19]. For the 30 relevant

studies obtained through study selection, the quality instrument was applied. As a result,

one study was rejected due to low score and three studies were duplicated. A total of

26 studies were obtained to extract information in the next stage. The implementation

the quality instrument in each study is shown in Table 2.4, which contains the list of

authors, the evaluated checklists and the score of each study.

Data extraction and monitoring progress

In Section 2.1.1 the data items to be extracted from the 26 accepted studies were

defined. The data items were organized in lists of categories when needed. For in-

stance, segmentation types can be 2 dimensional (2D), or 3 dimensional (3D). Also, the

segmented area can be: Peripheral Zone (PZ), Central Gland (CG), Transition Zone

(TZ), and whole prostate. Databases were also organized in categories according to

their origin: public, private, or both(merge). The MRI images according to their type

can be: T2-weighted (T2W), Diffusion-Weighted Imaging (DWI), Apparent Diffusion

Coefficient (ADC),Coherence Enhanced Diffusion (CED) and pulse sequence images

or their derivatives. The MRI protocol can be: with endorectal coil (ERC), without

endorectal coil (non-ERC), both, undefined. The image modalities can be: monopara-

metric, multiparametric, undefined. Data extracted and organized in the data extraction

forms was used to analyze information from the accepted documents and answer the

research questions.

20



Author QA1 QA2 QA3 QA4 Score

benalcazar2014 [12] Y P Y Y 3,5
yan2016 [21] P P Y Y 3
milletari2016 [22] P P P Y 2,5
mun2017 [23] P Y P Y 3
sun2017 [24] P P P Y 2,5
cheng2017 [25] Y P Y Y 3,5
Clark2017 [26] Y Y Y Y 4
zhu2017 [27] Y Y Y Y 4
meyer2018 [28] Y Y Y Y 4
gibson2018 [29] P P Y Y 3
jia2018 [30] Y P Y Y 3,5
hossain2018 [31] P P Y Y 3
ji2018 [32] P Y Y Y 3,5
Gelder2018 [33] Y P Y Y 3,5
Chen2018 [34] Y P Y Y 3,5
jit2018 [35] Y P Y Y 3,5
to2018 [36] Y Y Y Y 4
zhu2018 [37] Y Y Y Y 4
he2018 [38] P P P Y 2,5
brosch2018 [39] P P Y Y 3
jia2018_Atlas [40] Y P Y Y 3,5
yan2018 [10] Y P Y Y 3,5
Tian2018 [41] Y P P Y 3
zhan2019 [42] Y Y Y Y 4
Karimi2019 [43] P Y Y Y 3,5
bo2019 [44] Y P Y Y 3,5

Table 2.4: Quality assessment implementation

Data synthesis

The research questions that guide this review were answered from the extracted data

by using the extraction forms (see appendix A). The data analysis was presented in the

Result Section 2.2.

2.2 Result

In this section, the results of the research questions were shown.

2.2.1 RQ1. What model structure and type of segmentation based on

artificial neural networks have been used to segment the prostate

in MRI images?

Data augmentation was an important pre-processing step for training and validation

on models based on artificial neural networks. Due to the limited number of prostate

MRI images in public and private databases. Many authors have used different data

augmentation techniques such as: flipping, random rotations, channel shifting, vertically
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and horizontally shift, Gaussian noise addition, zooming, cropping, scale transformation,

and isotropic expansions. Figure 2.3 shown the number of papers where an specific

data augmentation technique is used. The most widely used data augmentation

techniques were: random rotation and flipping. The flipped technique reflected an

image. Random rotation technique consisted in rotating an image randomly. It should

be noticed that only 6 studies did not define a data augmentation technique.
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Figure 2.3: Data Augmentation

Defining a model structure was very complex. Therefore, global processes were

grouped to form different model configurations. The model structure was formed:

pre-processing, feature extraction, segmentation and post-processing.

Figure 2.4, literal (a) shown that 19 studies used pre-processing techniques such as:

normalization, sub-volume center cropping, uniform voxel, contrast adjustment, patches

extraction, resized or re-scaled, filtering, equalization, removal of slices without prostate,

and/or classifier. The most common pre-processing technique among the gathered

studies was the normalization.

Literal (b) in Figure 2.4 presented the feature extraction group which can be automatic

or manual. An encoder was used in automatic extraction, whereas manual extraction

relies on a feature vector. A total of 25 studies use automatic extraction, whereas only

one study used manual extraction.

Literal (c) presented the segmentation process, which used a decoder or classifier

to segment the prostate gland. A total of 16 studies used a decoder, whereas the

remaining 10 used a classifier. The decoders used in the 16 articles are based on: U-

net, V-net, DenseNet, VGGNet, ResNet and undefined. U-net was one of the most used

standard architectures for prostate segmentation using a decoder. The 10 remaining

studies that used a classifier for prostate segmentation used: VGGNet, AlexNet, and

undefined. The most used standard architecture for prostate segmentation using a
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classifier was not defined.

Literal (d) shown that 12 studies used post-processing techniques such as: largest

connected component, thresholding, boundary refinement, small component removal,

hole filling, mathematical morphology, and others. The most common techniques used

in post-processing are: the largest connected component, thresholding, and boundary

refinement.
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Figure 2.4: Model structure

Appendix A presents the extracted information from the 26 accepted documents. Data

extracted includes: year, type and area of segmentation, parameters type, plane and

acquisition of MRI images, type and name of the public database. Table 2.5, extracted

from appendix A, presents the segmentation type (2D or 3D) performed by year. As

indicated in the aforementioned table, 14 studies used 2D segmentation, whereas 3D

segmentation was used in 12 studies. The most used segmentation type in literature

corresponds to 2D segmentation.

Year 2D 3D

2014 1 0
2016 0 2
2017 4 1
2018 7 8
2019 2 1
Total 14 12

Table 2.5: Segmentation type used in prostate segmentation
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2.2.2 RQ2. What standard architectures of artificial neural networks

have been used to segment the prostate in MRI images?

To address the question about the standard architectures of ANN used in prostate

segmentation, it was important to establish the segmented area explored in literature.

Table 2.6, built from the extracted data in appendix A. In this table was compared

the prostate areas segmented and the number of studies published by year. It can

be concluded that most studies focus on the whole prostate gland segmentation

because there are 25 studies from years 2014 to 2019, which dedicated to this type

of segmentation. Whereas only 1 study focused on the central and peripheral zone in

2014. Also, The transition and peripheral zones had 1 studied, respectively. we can be

concluded that most of the studies focused to segment the whole gland of prostate.

Gland Gland + TZ Gland + TZ + PZ CZ + PZ

2014 0 0 0 1
2016 2 0 0 0
2017 5 1 0 0
2018 15 0 1 0
2019 3 0 0 0

25 1 1 1

Table 2.6: Parts of the prostate segmented in literature

Figure 2.5 presented the different standar architectures used in prostate segmentation.

A total of 9 (35%) studies did not specify the standard model. The remaining 17 (65%)

studies used DenseNet, Vgg-Net, ResNet and AlexNet models. Even though, the

aforementioned models was generally used in classification, they can also be used

in segmentation tasks. In this case, a pixel-by-pixel classification was performed to

produce a prediction map (i.e. input image (patches) and the class prediction).

Semantic segmentation through the U-net (19%) and V-net (8%) models were common

in literature. Furthermore, U-net was the most used of its kind in the reviewed accepted

papers. In this case, semantic segmentation performed a pixel-wise prediction where

the output label map has the same size as the input image.

2.2.3 RQ3. What metrics and results have been obtained using the

proposed models to segment the prostate in MRI images?

The extraction stage of the literature review found the following metrics used in the

26 accepted documents: Dice Similarity Coefficient (DSC), Hausdorff Distance) (HD),

Average Boundary Distance (ABD), Relative Absolute Volume Difference (RAVD),

95%- Hausdorff- Distance (95HD), Intersection over Union (IoU), Average minimum

surface-to-surface distance (AVGDIST), Relative Volume Difference (RVD), symmetric

Boundary Distance (BD), MSD, CentroidDistance (CD) and precision-recall. Figure

2.6 shows that the metrics most used in literature are: DSC (25 studies), HD (10

studies), and ABD (7studies). The remaining metrics are less 6 studies. As depicted

in Figure 2.6, DSC metric was the most widely used metrics in literature for prostate
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Figure 2.5: Standard architectures used in prostate segmentation

segmentation. Figure 2.7 presented the results achieved in literature by the authors

that used the DSC metric to evaluate segmentation performance in public and private

databases. Because, these studies used different databases and standard structures,

it was difficult to establish a general comparison between them. However, the highest

and lowest DSC achieved in literature corresponds to 94.57% and 84%, respectively.

Only one study (displayed in green in Figure 2.7) used DSC on a merged database of

public and private databases. This study achieved a DSC of 85%.

2.2.4 RQ4. Which databases have been used for developing and

testing models to segment the prostate in MRI images?

A very important feature of the prostate databases was the anatomical plane of the

MRI images. These planes can be axial, coronal and sagittal, as shown in Figure 2.8

where it can be observed that the most common plane used corresponds to the axial

plane. However, only one study used the three type of planes.

The MRI images acquired by using endorectal coil (ERC) present high resolution [45].

The type of MRI images acquisition for each of the 26 studies is detailed in Table 2.7.

The results of MRI images acquisition system show that 14 studies used MRI images

with ERC; 2 studies used MRI images without ERC; 6 studies used MRI images with

and without ERC; and 4 studies did not define the use of ERC. Therefore, it can be

concluded that the MRI images acquisition without endorectal coil is the most widely

used in literature. The use of MRI images without ERC leads to a greater challenge

because there is no reference point. Also, the MRI images without ERC have a lower

resolution compared to MRI images with ERC.
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Figure 2.7: The DSC metric used in prostate segmentation

The prostate MRI images techniques and protocols vary across centers and clinical

indication, but there are individual images sequences commonly used [46] like: T2W,

DWI, ADC, etc. The use of one or more MRI images sequences in database is referred

with the number of parameters. If the database has only one MRI images sequence is

denominated as monoparameteric. The databases that have more than 2 MRI images

sequences are called multiparametric. Figure 2.9 shown the parameter number and
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Endorectal coil Num paper

with ERC 14
non-ERC 2
both 6
undefined 4
Total 26

Table 2.7: MRI images acquisition using endorectal coil

MRI images sequences used in prostate segmentation. As a result, 22 studies used

one parameter; 3 studies used multiparametric images; and one study did not define

the parameter number. Also, The studies of one parameter use MRI images sequences

T2W. whereas multiparametric studies use MRI images sequences T2W, DWI, ADC,

CED and DERIVATE.

Regarding the database, this SLR shown that public and private databases have been

used in prostate segmentation. One benefit of the public databases is the free access

to download the information by the research community and consequently, they permit

a comparison of different research proposals. However, a disadvantage of this type

of database is the number of samples, which is limited. On the other hand, private

databases usually have a mean of 140 MRI volume, but they cannot be freely accessed

by the research community which makes difficult to replicate and compare results.

Using the information extracted from the 26 accepted papers and presented in Appendix

A. Table 2.8 was built to present the type of database used and the number of papers.

It shows that 17 studies use public databases, wheras 8 use private data. Only 1 study

used both type of databases. Consequently, we can be said that public databases were
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the most used in literature for prostate segmentation studies.

Database Number of paper

private 8
public 17
both 1
Total 26

Table 2.8: Databases used in prostate segmentation

The following are the public databases used in the 17 studies identified in literature: NCI-

ISBI 2013, SPIE-AAPM-NCI PROSTATEx and PROMISE12. The NCI-ISBI 2013 [47]

database was designed mainly to the development of automatic segmentation methods

of the Central Gland and Peripheral Zone of the prostate gland. The SPIE-AAPM-

NCI PROSTATEx [48] database was a retrospective set of prostate MRI studies. All

studies include T2W, proton density-weighted (PDW), dynamic contrast enhanced

(DCE), and DWI. The PROMISE12 [49] database contains multi-center and multi-

vendor MRI images with different acquisition protocols. For each of the MRI images, a

reference for the prostate segmentation is included. Figure 2.2.4 shows that of the 17

studies: 2 studies use the NCI-ISBI 2013 database, 1 study uses the SPIE-AAPM-NCI

PROSTATEx database, and 14 studies use the PROMISE12 database. The most used

database in whole prostate gland is PROMISE12.
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2.3 Discussion

This section presented an analysis of the literature review findings with respect to

the research question. Thus, this analysis contained key points about the type of

segmentation (RQ1), the standard model (RQ2), the performance metrics (RQ3) and

the public databases (RQ4). These points are detailed below:

• Segmentation type: 2D, and 3D segmentation types were found in literature.

The segmentation type was very important because it allowed to know how the

prostate segmentation problem is being addressed by the researcher.

• RQ1 Segmented area: The segmentation area describes the zone of the prostate

that a particular study has focused on for segmentation. According to this literature

review, the most of the studies segment the whole prostate gland.

• RQ2 Standard architectures: These were the different models based on artificial

neural networks that was used in prostate segmentation. This literature shows

that the U-Net decoder model was the most used in literature. Also, convolutional

neural networks used in classification are used in segmentation by using a

patches.

• RQ3 Metric and result: There were different types of metrics used in prostate seg-

mentation. One of the most used metrics was the DSC, which was implemented

in 25 studies. For the purpose of comparison between the different studies, this

metric has been considered.

• RQ4 Public database: PROMISE12 was the most used public database as the

results of this review show. Databases were important to train and validate the
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segmentation model. For ease of comparison, public databases are preferable

because of their open access.

Figure 2.10 presented a comparison of the performance of different standard architec-

tures on the PROMISE database with respect to different segmentation types by using

the DSC metric. Eight studies considered 2D segmentation of whole prostate used U-

Net, VGG16, VGG19 and undefined standard architecture. The best result is achieved

by VGG19 with an average DSC coefficient of 94.57%. However, it must be noticed

that the authors did not provide the standard deviation of the DSC result achieved in

2D segmentation by VGG19. Regarding 3D segmentation, 6 studies addressed this

type of segmentation by using the models: V-net, AlexNet, and undefined standard

architecture. The best result in these studies achieved a DSC coefficient of 91% and

corresponds to an undefined standard architecture.

The same analysis was carried out for the public database SPIE-AAPM-NCI PROSTA-

TEx, where one study was found. This study used 3D segmentation and U-net as

the standard architecture. It achieved a DSC coefficient of 92.1%. For the NCI-ISBI

2013 database, a study was found to focus on 3D segmentation and it used ResNet-50

as the standard model. The performance achieved corresponds to 88% on the DSC

coefficient. It should be noted that there was another study that uses this database, but

the study did not use the DSC metric and because of that, it was excluded.
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2.4 Conclusions

• Due to the limited number of prostate MRI images in the databases, many studies

used data augmentation techniques to increase the number of images. The most

common techniques found in literature were: flipping and random rotation.

• The model structure was comprised of: pre-processing, feature extraction, seg-

mentation and post-processing. The most commonly used techniques in pre-

processing was normalization and center cropping. Although other techniques

exist. Most of the works in literature used automatic feature extraction through en-

coder. Only one study used manual feature extraction. The segmentation process

can use a decoder or a classifier based on standard architectures. According to

this literature review, a U-net was the most commonly used standard architecture

for prostate segmentation. Finally, according to this literature review, the most

common techniques for post-processing were the largest connected component,

thresholding, and refinement of limits.

• 2D segmentation in MRI images is the leading segmentation technique.

• Table 2.6 shows that most of the studies focus on the task of whole prostate

segmentation. This review found only one study focused on the segmentation

of the prostate gland in its two main areas (CG and the PZ). Therefore, it is an

open field for research to implement segmentation methods and techniques for

the main areas of the prostate.

• The standard architectures used for prostate segmentation in MRI images were:

U-net, DenseNet, V-net, VGG-net, ResNet, AlexNet and undefined. These

standard architectures are based on convolutional neural networks.

• Twelve Different metrics were found in prostate segmentation. However, DSC is

the most common metric in literature.

• The type of acquisition of the MRI image was important because it defined the

quality of the image. For instance, MRI with ERC are high quality images of the

surrounding area and with a reference point. Moreover, Table 2.7 shows that only

2 studies use MRIs without endorectal coil. Because of that, it can be said that it

is a challenge to work with images without ERC for prostate segmentation and its

main areas.

• Most of the studies used public databases for prostate segmentation. Among

the databases that have been found to be used in literature are: NCI-ISBI 2013,

SPIE-AAPM-NCI PROSTATEx and PROMISE12. Only NCI-ISBI 2013 had a

segmentation reference of the CG and PZ.

• Models based on U-net, denseNet, V-net, VGGnet, and Alexnet have not been

used to segment the prostate gland and its main areas on the NCI-ISBI 2013.
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• As a general conclusion, it can be affirmed that prostate segmentation remains a

current challenging problem for computer vision and machine learning because

of the following problems: prostate variation, interscan variability, intra-scan

variations, the prostate boundary, image noise, the size of the prostate area (see

appendix B) and the limited number of images.
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Chapter 3

Methodology and materials:

In this section, the materials and methodology are described which were used to

develop this work.

3.1 Materials

The database and evaluation metric were used as materials. The database was used

to train, validate and test the models. Regarding the metric in Chapter 2 determined

that DSC metric is the most used in SLR. Therefore, DSC metric is used to evaluate

the models. Also, other metrics are specific for the evaluation.

3.1.1 Database

The National Cancer Institute (NCI) in collaboration with the International Society for

Biomedical Imaging (ISBI) "NCI-ISBI 2013" database was used in this work for prostate

segmentation in its main parts. This database was chosen because its access is public.

The database contains 60-case prostate MRI 3D series with markups that define the

Central Gland and Peripheral Zone. The 60-case were acquired as T2-weighted MRI

axial pulse sequences. Half of the cases were obtained at 1.5T (Philips Achieves)

with an endorectal receiver coil and the other half at 3T (Siemens TIM) with a surface

coil [47]. Despite 1.5T MRI images with endorectal receiver coil provide a reference

point for prostate segmentation, 3T MRI images with a surface coil are more commonly

used. Therefore, in this work is used 3T MRI images collection. 3T-collection consists of

30 transverse volumes accompanied by their respective manual segmentation’s or gold

standard volumes. The number of slices per volume of this database varies between

15 and 24. Each slice contains images of 320× 320 pixels.

3.1.2 Metric

The metrics used to evaluate the models are DSC, IoU, precision, recall, and accuracy.

The DSC metric is the most used in the SLR. However, DSC metric is a variant of

the IoU metric. Also, the DSC metric gives twice the weight to the intersection area.
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Therefore, DSC and IoU metrics are used. Finally, the metrics precision, recall, and

accuracy were used to compare with the proposed model in the literature. Each of the

metrics is detailed below:

The dice similarity coefficient measures the spatial overlap between the ground truth of

the prostate and the final segmentation. where |X| and |Y | in (3.1) denote the region

of the predicted segmentation and reference segmentation respectively.

DSC =
2|X ∩ Y |

|X ∪ Y |
=

2TP

2TP + FP + FN
(3.1)

The Jaccard coefficient, Jaccard similarity coefficient or Intersection over Union is

defined as the intersection over union of two sets. In equation (3.2), X and Y are two

different regions, i.e. sets of pixels of the predicted segmentation and reference seg-

mentation respectively. The modulus sign ‘| |’ defines the cardinal of the corresponding

sets.

IoU =
|X ∩ Y |

|X ∪ Y |
=

TP

TP + FP + FN
(3.2)

Other metrics were specific, such as precision, recall and accuracy (see equation 3.3).

These metrics are obtained from the confusion matrix. These metrics are used in

classification tasks.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + FP + FN + TN

(3.3)

3.2 Methodology

The development of research proposed was guided mainly by the phases that are

carried out in machine learning.

3.2.1 Design, training, validation and testing of models

The necessary steps are defined to create the architecture of models A and B. Each

step has a procedure that is specified below:

4.2.1.1 Model-A: Encoder-Decoder Architecture

The proposed model-A was based on U-net [50]. U-net is an encoder-decoder archi-

tecture. The encoder capture semantic/contextual information, whereas the decoder

recover spatial information. The model-A implements two U-net networks: global U-Net

and local U-Net. The input of the global and local U-net is a set of 2D MRI image. The

global U-net was used to segment the whole prostate gland. On the other hand, the

local U-net was used to segments the central zone.
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Global U-Net architecture

The steps defined to create the global U-Net architecture were: a) pre-processing,

b)Data augmentation, c) feature extraction and segmentation, and d) post-processing.

(a) Pre-processing was used to extract region of interest (ROI) images of three different

sizes (151×151, M×N and mask’s size). The techniques used in pre-processing were:

normalization, sub-volume central crop, histogram equalization and non prostate slice

removal. The operations were carried out in a Matlab program. Figure 3.1 presents the

ROI extraction process result. The different ROI process is detailed below:

• 151 × 151 MRI Images: first, MRI images volumes (OBSERVED) and masks

(IDEAL) of 320 × 320 are read. Second, the X and Y coordinates of the ROI

were found by a pattern search approach based on the fact that the prostate

gland is located between the pelvis bones (see Table 3.1). Third, a resulting

ROI of 151× 151 was obtained by adding 75 pixels to the right, left, up and down

directions from the X, Y coordinates of ROI (see Table 3.1 and appendix C).

Next, slices without prostate were removed from the set. After, MRI images were

normalized and saved in matrix format for later use. Finally, all this process was

repeated on each volume of the database. As, final result ROI of 151 × 151 is

presented in Sub-figure 3.1(a))

Num. Process

1.1 The data type of MRI images was changed from uint16 to uint8 (see
appendix C Sub-figure (a)).

1.2 The intensity of the values were adjusted according to the image’s limits.
1.3 Histogram equalization was used to enhance contrast of the MRI image.
1.4 In appendix C Sub-figure (b), an opening morphological operation with

a ball structuring element of radius 5 and maximum height offset of 5
was applied followed by the operations of erosion and close. The latter
operations used the same structuring element but with a radius of 4 and
a maximum height offset of 3. Finally, dilation and opening morphological
operations were applied using the same structuring element with a radius
of 3 and maximum offset height of 3.

1.5 The minimum pixel values of the MRI image was set to zero.
1.6 The regions and holes of MRI image were filled with an 8 connectivity (see

appendix C Sub-figure (c))
1.7 The MRI image was increased in size which added 80 pixels to the left and

right of it.
1.8 The MRI image was binarized with a threshold of 0.2.
1.9 Hough’s Circular Transformation algorithm was used to locate the pelvic

bones in the MRI image, because they have a circular shape. The radius
r was 27 ≤ r ≤ 30, as indicated in appendix C Sub-figure (d). Next, the
locations of the left and right pelvic bones were averaged and the midpoint
between them was used to find the X, Y coordinates of ROI.

Table 3.1: Getting the X and Y coordinates of the ROI
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• M × N MRI Images: From, the ROI of 151 × 151 were generated the ROI of

M × N size, where M ≤ 151 and N ≤ 151, by searching the intensity of the

prostate’s pixels. The steps followed to obtain M × N ROIs are described in

Table 3.2 and appendix D. Finally, the MRI images were normalized and slices

without the prostate gland were removed. Slices containing the gland were saved

in Matrix format for later use. This procedure is repeated on all the volumes of

the database. As, final result ROI of M ×N is presented in Sub-figure 3.1(b))

Num. Process

2.1 Slices without prostate were removed.
2.2 A volumetric central area of 30x30 was obtained and the pixel values were

averaged.
2.3 The region’s maximum pixel value was set to 0.
2.4 The volume of MRI images were normalized to a range between 0 and 1.
2.5 Intensity values were adjusted in volumetric MRI images. Notice that the

previous sub-steps (2.1 to 2.5) used volume of MRI images, whereas the
sub-steps (2.6 to 2.16) were processed slice to slice in volumetric MRI
images, as depicted in appendix D Sub-figure (a).

2.6 Pixel values lower than 0.2 are set to 0, whereas pixel values higher than
0.8 are set to 1 on each MRI image slice.

2.7 Erosion morphological operation was used with a disk structuring element
of radius 2.

2.8 Connectivity 8 was used to fill holes and image regions.
2.9 Opening morphological operation with a disk structuring element of radius

15 was applied.
2.10 Pixel values lower than 0.21 and higher than 0.31 were set to 0 and 1,

respectively on the MRI image slice.
2.11 Image regions and holes were filled with an eight connectivity.
2.12 Erosion and opening morphological operations were used with an structur-

ing element of type disk and radius 3 and 2, respectively.
2.13 The intensity values were adjusted.
2.14 opening morphological operation with a 22 radio disk structuring element

was used, as indicated in appendix D Sub-figure (b).
2.15 The MRI image slice was verified to have non-zero pixel values. The

centered ROI was highlighted to calculate the binary mask. Pixel values
higher than 0 are set to 1 (see appendix D Sub-figure (c)).

2.16 All calculated masks were added one by one. The sum of the calculated
mask was normalized in ranges of [0-1] and binarized with a threshold of
0.3; which adjusted the mask to the region of interest.

2.17 Opening morphological operation with a radio 30 disk structuring element
was performed over the adjusted mask.

2.18 Coordinates X1, Y1, X2, Y2 were obtained to cut the adjusted ROI adjusted
out of the mask, as indicated in appendix D Sub-figure (d).

2.19 Using the X1, Y1, X2 and Y2 coordinates the M ×N ROI is extracted out
of the 151× 151 image, as indicated in appendix D Sub-figure (e).

Table 3.2: Getting the M ×N ROI

• Adjusted to the Mask MRI images: This procedure obtained a ROI image ad-
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justed to the dataset’s binary mask. First, the 320 × 320 MRI images volumes

(OBSERVED) and masks (IDEAL) were read. Second, mask coordinates con-

taining the whole prostate were extracted (see Table 3.3 and appendix E). Then,

normalization of the resulting MRI images and removal of slices without containing

the prostate gland was performed. Finally, the MRI images containing were saved

in matrix format and the procedure repeated among all the cases in the database.

As, final result ROI of Adjusted to the Mask is presented in Sub-figure 3.1(c))

Num. Process

3.1 320 × 320 mask volumes (IDEAL) were read and normalized to a range
between 0 and 1 (Figure E.1(b).

3.2 All masks were added one by one (Figure E.1(c).
3.3 Pixels values greater than zero were fixed to one. As a result, the ROI

adjusted mask was obtained.
3.4 Coordinates X1, Y1, X2, Y2 adjusted mask ROI were obtained (see Figure

E.1(d).
3.5 Using the X1, Y1, X2, Y2 coordinates, a ROI sub-volume was cut out of the

original MRI (see Figure E.1(e).

Table 3.3: Getting ROI Adjusted to the Mask

(a) 151 x 151 MRI Images (b) M ×N MRI Images

(c) MRI images adjusted to the mask

Figure 3.1: Different sizes ROI extraction: a) 151x 151 ROI patch is obtained from the
320× 320 MRI images volume; b) M x N ROI patch, where M ≤ 151, N ≤ 151 and not
necessarily M = N c) ROI patch is obtained using the database mask.

(b) Data augmentation: The original dataset contains 578 slices of MRI images. How-

ever, only 421 MRI image slices contain the prostate gland. In order to increase the

number of samples of MRI images slices, data augmentation techniques were used.
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Among these techniques, the following were used: flipping, ± 45 degree random rota-

tion, zoom and zoom with random rotation. The data augmentation increment for the

different ROI is detailed below:

• 151 × 151 MRI Images: Through data augmentation, the 151 X 151 MRI slice

images were increased to 2019. Without data augmentation, the database

contains an average of 84% pixels in the background region and 16% pixels in

the prostate. The augmented database contains an average of 83% background

pixels and 17% of prostate pixels.

• M × N MRI Images: Through data augmentation, the 421 M × N MRI slice

images were increased to a total of 2105. The original set contains an average

of 80% background pixels and 20% pixel prostate. The augmented database

contains 75% background pixels and 25% prostate pixels.

• MRI images adjusted to the mask: The original database contains an average

of 55 % background pixels and 45 % prostate pixels. Using data augmentation,

the database was increased from 421 samples to 2064 MRI slice images. The

augmented database contains 63 % background pixels and 37 % prostate pixels.

(c) Feature extraction and Segmentation: The global U-net architecture was repre-

sented in Figure 3.2. This architecture was formed by a contracting path followed by

an expansive path. The contracting path, which aims to extract features for classifying

each voxel, consists in the repeated application of 3x3 convolutions (padding=’same’),

followed by dropout layer, a 3x3 convolutions (padding=’same’), and a 2x2 max pooling

layer for downsampling. The number of feature channels are doubled at each downsam-

pling. On the other hand, the expansive path, which aims to locate regions of interest

(ROI) more precisely, consists of a 2x2 transposed convolution layer (i.e. deconvolution)

with stride of 2 that halves the number of feature channels, concatenated with the

corresponding cropped feature map from the contracting path, followed by one 3x3 con-

volutions (padding=’same’), a dropout layer, and a 3x3 convolutions (padding=’same’).

The final layer is formed by a 1x1 convolution that is used to map each feature vector to

the desired number of classes. ELU activation function was used for every convolution

block in U-net.

d) Post-processing: this stage was implemented to improve the detection carried out by

the implemented models. First, the predicted image is binarized using a 0.5 threshold.

Second, an opening morphology operation with a radius 5 disk structuring element

is applied. Finally, small areas are removed and the largest area corresponds to the

desired segmentation mask.

Experimental selection in Global U-Net architecture

A total of 6 experiments were carried out for the global U-net architecture. These

experiments mainly modified the size of the ROI image and maintained the training

parameters and the post-processing. ROI were proved with and without data augmen-

tation. The extension of the files considered were PNG and MAT, of which the MAT
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Figure 3.2: Global U-Net architecture

extension was chosen to obtain higher results. The MAT extension saved the data in

the range of 0-1 and without re-scaling. The details of each experiment are presented

below and in Table 3.4.

• Experiment 1: this experiment evaluated the performance of the proposed model

when: (a) the ROI had a size of 151× 151 for training, evaluation and testing and

(b) no data augmentation was used for training, evaluation nor testing.

• Experiment 2: this experiment evaluated the performance of the proposed model

when: (a) the ROI had a size of M ×N , for training, evaluation and testing, and

(b) no data augmentation was used for training, evaluation nor testing.

• Experiment 3: this experiment evaluated the performance of the proposed model

when: (a) for training and evaluation adjusted mask size ROI were used, whereas

for testing, a 151× 151 ROI was used, and (b) no data augmentation was used

for training, evaluation nor testing.

• Experiment 4: In this experiment evaluated the performance of the proposed

model when: (a) ROI had a size of 151× 151, for training, evaluation and testing ,

and (b) data augmentation was used for training and evaluation. For testing, data

augmentation was not used.

• Experiment 5: this experiment evaluated the performance of the proposed model

when: (a) the ROI of interest had a size of M × N for training, evaluation and

testing, and (b) data augmentation was used for training and evaluation but not

for model testing.

• Experiment 6: this experiment evaluated the performance of the proposed model

when: (a) the ROI used mask adjusted sizes for training and evaluation; While a

size of 151× 151 was used for testing, and (b) data augmentation was used for

training and evaluation, but not for testing.
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Experiment ROI Data Augmentation

1 151× 151 No
2 M ×N No
3 Adjust to mask No
4 151× 151 Yes
5 M ×N Yes
6 Adjust to mask Yes

Table 3.4: Experiments carried out on the global U-Net.

All the experiments were evaluated with the DSC and IoU metrics. The segmentation

task evaluated corresponded to segment the whole prostate gland from the background.

Table 3.5 presents the training results. Experiments 4, 5 and 6 achieved a higher result

compared to experiments 1, 2 and 3 on DSC and IoU. This is due to data augmentation.

Experiment DSC [%] IoU [%]
1 91.60± 2.42 84.96± 3.78

2 92.58± 1.20 86.29± 2.06

3 93.98± 0.94 88.69± 1.66

4 96.32± 0.39 92.92± 0.72

5 96.99± 0.22 94.16± 0.42

6 95.37± 0.43 91.19± 0.78

Table 3.5: Training result of the global U-Net.

Table 3.6 presents the results of model validation. Experiments where data augmen-

tation was used present a superior result compared to experiments that did not use

data augmentation. Moreover, the result of experiment 6 was the highest result with

93.11%± 0.20% in DSC metric. This result is due to the size of the image input, which

has a ROI adjusted to themask; Also, ROI adjusted to the mask decreased background

pixels and focuses on the prostate pixels.

Experiment

number

DSC [%] IoU [%]

1 84.46± 2.24 73.50± 2.92

2 86.09± 0.92 75.67± 1.38

3 91.24± 0.70 83.92± 1.18

4 90.42± 0.33 82.54± 0.54

5 90.61± 0.33 82.84± 0.55

6 93.11± 0.20 87.12± 0.34

Table 3.6: Validation result of the global U-Net.

Similar to training and validation, testing results show higher results for experiments

with data augmentation than for experiments without data augmentation. Result of

experiments was shown in Table 3.7. Also, in DSC metric the experiments 4 and 5

achieved 91.71%± 0.48% and 91.83%± 0.23%, respectively.

Comparing the result of experiments 4 and 5 in the validation and testing, we noticed

that the results vary by less than 2% in DSC metric. On the other hand, experiments 3
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and 6 show difference because training and validation use images adjusted to the size

of the mask, whereas 151× 151 input size was used for testing; Therefore, the result of

experiments 3 and 6 decrease in testing.

Experiment

number

DSC [%] IoU [%]

1 84.94± 2.38 74.2± 3.15

2 87.15± 0.83 77.31± 1.31

3 69.22± 1.87 53.05± 2.21

4 91.71± 0.48 84.71± 0.81

5 91.83± 0.23 84.92± 0.38

6 80.52± 1.58 67.57± 2.17

Table 3.7: Testing result of the global U-Net.

Figure 3.3 presents the results achieved by all the experiments. The metrics considered

to compare the results were: DSC and IoU. Also, the standard deviation of each of

the results is shown. For DSC metric, the standard deviation is ≤ 2.38%, whereas

IOU metric is ≤ 3.15%. The best results correspond to experiments 4 and 5 with

91.71% ± 0.48% and 91.83% ± 0.23% in DSC metric, whereas in IoU metric reached

84.71%± 0.81% and 84.92%± 0.38%, respectively. Noticed that experiment 4 used a

ROI of 151× 151, whereas experiment 5 used a ROI of M ×N .

Figure 3.3: Result of the experiments of the global U-Net

Local U-Net architecture

The local U-net architecture predicted the background and Central Gland classes. The

steps defined to create the local U-Net architecture were: a) pre-processing, b) data

augmentation, c) feature extraction and segmentation, and d) post-processing. The

pre-processing stage consists to select of the ROI with the best results achieved in

global U-net experimentation. The parameters and architecture used in local U-Net

are defined in the feature extraction and segmentation stage. Finally, post-processing

suppresses distortions of the resulting image and enhances the predictions.
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(a) Pre-processing: The ROI size was chosen according to the best results achieved

in Global U-net model testing, detailed in the previous section. Experiments 4 and

5 achieved the best results for the global U-net model, however their results have

an overlap. Therefore the highest and lowest standard deviation were considered to

discriminate between them. Consequently experiment 5 was selected which has M×N

ROI. Table 3.8 and Figure 3.4(a) were presented ROI pre-processing for local U-net.

This process were implemented in Matlab software.

Num. Process

4.1 The M ×N ROI were selected, and then the Peripheral Zone pixels were
eliminated in the volume of masks (IDEAL). As result, the Central Gland pix-
els in the volume of masks (IDEAL) were obtained (see Sub- figure 3.4(a))

4.2 There are 2 pre-processing alternatives according to the dependence of
the 2 U-net networks (see sub-steps 4.2.1 and 4.2.2).

4.2.1 The M × N input is considered independent when it does not consider
the prediction given by the global U-net model. This is represented in
Sub-figure 3.4(b).

4.2.2 In this case, the global U-net trained with M × N images was used to
predict a prostate binary mask. The predicted mask was multiplied with the
MRI image. The result was an overlay between the predicted mask and the
MRI image. Figure 3.4(c) presents this process. Finally, the procedure was
repeated in all the samples of the database.

4.4 The MRI images were normalized and slices without the prostate removed.
Slices containing the prostate gland were saved in MAT extension.

Table 3.8: ROI pre-processing for local U-net

Figure 3.4: ROI pre-processing for local U-net

(b) Data augmentation The original number of MRI images in the database is 578,

where 421 MRI slices contain the prostate. By using data augmentation, the database

was increased to 2064 slice MRI images. Also, the augmented database contains 80%

background pixels and 20% central zone pixels. The following augmentation techniques
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were used: flipping, ±45◦ degree random rotation, zoom and a combination between

zoom and rotation operations.

(c) Feature extraction and Segmentation: The local U-net architecture was represented

in Figure 3.5. This architecture is the same than global U-net architecture (see Figure

3.2) with different from the network inputs and the final layer. The final layer is formed

by a 1x1 convolution that is used to map each feature vector to the desired number of

classes as Central Gland y background.

Figure 3.5: Local U-Net architecture

(d) Post-processing: In post-processing were used the same techniques of global

U-net to improve the segmentation. An additional step in post-processing was obtained

the peripheral zone from the segmentation of the prostate and central central gland,

therefore the main zones of prostate were obtained.

Experimental selection in Local U-Net architecture

This section presents the experimental results for the local U-net architecture. This

experiment used M × N ROI image size and data augmentation for training and

validation. Also, the dependence or independence between the local U-net and global

U-net networks was considered because the segmentation of the entire prostate gland

contains parts of the central zone. Details of the experiments for the architecture are

detailed below and in Table 3.9:

• Experiment 5.1: this experiment evaluated the performance of the proposed

model when: (a) the ROI of interest had a size of M ×N for training, evaluation

and testing data, (b) data augmentation was used for training and evaluation, and

(c) the local U-Net was independent of the global U-Net (i.e. the results of the

global U-net were not taken into account to perform the segmentation of the local

U-net).
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• Experiment 5.2: this experiment evaluated the performance of the proposed

model when: (a) the ROI of interest had a size of M ×N for training, evaluation

and testing data, (b) data augmentation was used for training and evaluation, and

(c) the local U-Net was dependent on the global U-Net (i.e. the global U-net’s

predictions were used and multiplied by the MRI to get the input of the local

U-net).

Experiment

number

ROI Increased

Data

Dependence

on local and

global U-Net

5.1 M ×N Yes No
5.2 Yes

Table 3.9: Experiments carried out on the local U-Net.

The result of the training of the local U-Net is shown in the table 3.10, which contains

the number of experiments, the DSC and IoU metrics. The result of the experiments

have an overlap, therefore we cannot be said which of them have the best result. The

experiments achieved an mean ≥ 91% in the DSC metric and an mean ≥ 84% in the

IoU metric.

Experiment

number

DSC [%] IoU [%]

5.1 91.71± 0.93 84.79± 1.6

5.2 92.76± 0.64 86.52± 1.08

Table 3.10: Training result of the local U-Net.

The result of validation of the local U-Net is presented in Table 3.11, where the ex-

periment 5.2 got higher results than experiment 5.1. The improvement showed by

experiment 5.2 over experiment 5.1 is due to the use of the global U-net prediction.

The experiment 5.2 achieved mean of 89.20% and 80.55% in the DSC and IoU metrics,

respectively.

Experiment

number

DSC [%] IoU [%]

5.1 85.22± 0.53 74.27± 0.80

5.2 89.20± 0.21 80.55± 0.34

Table 3.11: Validation result of the local U-Net.

Table 3.12 is presented the results for the test of the local U-Net. The experiment 5.2

achieved a high performance compare with the experiment 5.1. The experiment 5.2

reached a mean of 93.34% and 87.54% in the DSC and IoU metrics, respectively. Notice

that validation and testing results were higher for experiments 5.2. Furthermore, testing

results score higher than those of validation.
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Experiment

number

DSC [%] IoU [%]

5.1 88.34± 0.38 79.17± 0.61

5.2 93.34± 0.31 87.54± 0.54

Table 3.12: Testing result of the local U-Net.

Figure 3.6 is presented the comparation of test results for the local U-net using DSC

and IoU metrics. Notice than standard deviations were ≤ 0.38% in DSC metric and

≤ 0.61% in DSC metric. Therefore, the result of experiments do not have overlapping.
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Figure 3.6: Result of the experiments of the local U-Net

From, result of the experiments of local U-net were built the architecture for the model-A.

The final architecture for the model-A is presented in Figure 3.7, where the Global

U-net and the local U-net are dependent to achieve the segmentation of the prostate’s

main zones.

Figure 3.7: Proposed model-A based on the Encoder-Decoder Architecture
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4.2.1.2 Model-B: Encoder-Classifier Architecture

The proposed model-B is based on VGG16 pre-training model [51]. VGG16 has an

encoder-decoder architecture and usually is used in classification tasks. The proposed

model-B is used an sliding-window setup to predict the class label of each pixel by

providing a local region (patch). The steps defined to create the model-B were: a)

pre-processing,b) data augmentation, c) feature extraction and segmentation, and d)

post-processing.

(a) Pre-processing: The pre-processing procedure aimed to obtain MRI image patches

(input) according to the classification classes. Therefore, the following sub-steps were

followed:

Num. Process

6.1 From, the M ×N MRI Images specified in pre-processing of the global U-
net, the patch extraction process was carried out. There is only exception to
the sub-step 2.17 in Table 3.2, which consist in use a opening morphological
operation with a radio 30 disk structuring element.

6.2 After, 15x15 sliding window with a stride of 5 was used to obtain slices from
each MRI image, as indicated in Figure 3.8.

6.3 The class of the patch was determined according to the central pixel.
6.4 The number of classes is unbalanced, therefore a process is carried out

to balance the interest classes. There are more pixels of the background
class, therefore 29 background patches are discarded and the background
patch number 30 remains, so on for all background patches. The following
process is carried out with all ZC patches: 7 ZC patches are discarded
and ZC patch number 8 is kept. For all PZ class patches, the process of
discarding 1 PZ patches is carried out and PZ patch number 2 is maintained.

6.5 MRI patches were saved in image and matrix formats. This procedure was
repeated with all the database (30 volume).

Table 3.13: pre-processing for model-B

Figure 3.8: Obtain MRI image patches
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(b) Data augmentation: The original set contains 578 slices of MRI images (30 MRI

volumen). As indicated before, only 421 slices contain the prostate. Due to data

imbalance, the number of patches for each of the classes was manipulated as follows:

a) for the central zone, the number of patches was maintained; b) the number of

background patches was reduced in 2/3; c) the number of patches for the peripheral

zone was increased 3 times by using data augmentation techniques such as: flipping,

and rotation in a range of (-45, +45). The total number of patches obtained through the

sliding window were 161607 for background, 152042 for central zone, and 155040 for

peripheral zone.

(c) Feature extraction and segmentation: The model-B is used the VGG16 pre-trained

model. The weights of the 15 first layers were kept, where the weights of the last

layer were adjusted for the classification of 3 classes (Central Gland, Peripheral Zone,

and background). The process of adjusting the weights of the last layers, whereas

keeping the weights values of the previous layers is called fine-tuning. Therefore,only

7211523 parameters were trained, and 7635264 parameters were re-used. Also, the

model-B is used an input fixed size of 32 x 32 x 3. The model-B has 5 blocks. The

first block contains 2 convolutional Layers with 64 feature maps (the image dimensions

change to 32x32x64), followed by maximum pooling (the image dimensions are reduced

to 16x16x64). The second block have 2 convolutional layers with 128 feature maps

(the image dimensions is modified to 16x16x128), followed by maximum pooling layer

(output will be reduced to 8x8x128). The third block include 3 convolutional layers with

256 feature maps (the image dimensions is 8x8x256), followed by maximum pooling

layer (which will be reduced to 4x4x256). The fourth block possess 3 convolutional

layers (the image dimensions change to 4x4x512), followed by maximum pooling layer

(output are reduced to the half, although the feature map remains ). The fifth block

have of 3 convolutional layers with 512 feature maps (the image dimensions is modified

to 2x2x512), followed by maximum pooling layer (output will be reduced to 1x1x512).

Finally, there is a softmax output layer with 3 possible values (see Figure 3.9).

Figure 3.9: Architecture of proposed model-B

(d) Post-processing: The prediction of each pixel of the MRI image is performed
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and then small areas are removed and the largest area corresponds to the desired

segmentation mask.

3.2.2 Training, validation and testing parameters

Cross-validation was used to evaluate the results of a statistical analysis and ensure that

they are independent of the partition between training and test data. Cross-validation

consists of repeating and calculating the arithmetic mean obtained from the evaluation

measures on different partitions. We established k − fold = 5, and total MRI number

was 30 volume. In this case, 30 MRI volume was divided of into 5 parts (4 parts are

for training and 1 part for testing), which is repeated 5 times. The 4 parts contains

24 MRI volumen, where each volume had around 14 MRI images. Therefore, the 4

parts had a 336 MRI images, which were used in training and validation of models.

Also, using data augmentation, the number of MRI images can be increased 4 more

times in training the models. For testing of model is used 1 part which contains

6 MRI volume, where each volume has around 14 MRI images. The 6 MRI volume

have around 84 MRI images.

4.2.2.1 Model-A: Encoder-Decoder Architecture

The model-A was retrieved from the Tensorflow machine learning framework Also, the

global and local U-net networks of the model-A used the following training parameters:

• loss function: binary cross-entropy

• optimizer: ADAM

• batch size: 16

• total number of epochs: 200

• early stopping patience: 100

• the class weight was calculated to balance the different classes of the ROI

4.2.2.2 Model-B: Encoder-Classifier Architecture

The model was retrieved from the Tensorflow machine learning framework. To train the

model-B, the following parameter were used:

• loss function: categorical cross-entropy

• optimizer: SGD

• learning rate: 0.001 with decay of 0,000001 and momentum of 0.9

• batch size: 64

• number of epochs: 10

• early stopping patience: 20
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Chapter 4

Results and Analysis

In this section, the results of the proposed models are presented. In addition, the

comparative analysis between the proposed models and with other models proposed

in the literature are shown.

4.1 Result

The results of model-A and model-B are presented. To report the results of these

models are used DSC and IoU metrics. Additionally, the confusion matrix is shown to

obtain the presicio, recall and accuracy. This metrics allow to make the comparison

with the model proposed in the literature.

4.1.1 Results of model-A

This section presents the results achieved by model-A (see section 3.2.1 and Figure

3.7) on the segmentation of the main zones of the prostate. The estimation of the mean

and standard deviation of the model results consisted of a 10-time repetition of the

cross validation process. The results of training, validate and testing were presented in

Table 4.1. We can see that the testing results reached 96.79% and 93.79% in the DSC

and IoU metrics, respectively. Also, the standard deviation was ≤ 0.15% in the DSC

metric, whereas in IoU metric was ≤ 0.29%. Therefore, the testing results oscillated

in a range of 96.64%− 96.94% in DSC metric and 93.50%− 94.08% in IoU metric. This

testing result was one of the highest achieved to compare the model-B and proposed

model in the literature. In addition, the results show that there was not over-fitting.

Notice that the number of MRI volumes of the NCI-ISBI 2013 was 4-times less than the

average of images in private databases.

Table 4.1: Result of Model A based on Encoder-Decoder Architecture

DSC [%] IoU [%]
training 96.59± 0.23 93.42± 0.43

valid 94.09± 0.07 88.86± 0.13

test 96.79± 0.15 93.79± 0.29
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According to the proposed study [12] in the literature (see Chapter 2), the precision,

recall and accuracy metrics were presented when segmenting the main zones of the

prostate. Therefore, in Table 4.2 was shown the confusion matrix and the precision,

recall and accuracy metrics. Also, to establish comparison, the model-A was tested

using the same volumes of MRI images (volumes 16-30) of study [12], where the

number of processed voxels were 29237248. The confusion matrix shown a true

positive rate of 95.81% for the background, 0.55% for the PZ, and 3.20% for the CG.

Notice that PZ and CG pixels occupied ≤ 4.16% compared to background pixels .

The precision values reported, how many predictions were correct: 99.88% for the

background, 77.44% for the PZ, and 94.93% for the CG. The recall values show, how

many actual positives were captured: 99.95% for the background, 70.76% for the PZ,

and 94.86% for the CG. Remind that PZ occupied 0.78% of the total number of pixels,

therefore, the result of precision and recall were lower compared to results of precision

and recall for the background and CG.

Table 4.2: Confusion matrix of Model A based on Encoder-Decoder Architecture

4.1.2 Results of Model-B

The results achieved by model-B (see section 3.2.1 and Figure 3.9) were presented

in Table 4.3. This table shown the results of training, validate and testing using DSC

and IoU metric. The estimation of the mean and standard deviation of the model

results consisted of a 10-time repetition of the cross validation process. The testing

results of model-B obtained 92.50± 1.19 and 86.13± 2.02 in the DSC and IoU metrics,

respectively. Also, the standard deviation was ≤ 1.19% in the DSC metric, whereas

in IoU metric was ≤ 10.02%. Therefore, the testing results of model-B fluctuated in

a range of 91.31% − 93.69% in DSC metric and 84.11% − 88.15% in IoU metric. The

testing result of model-B was lower than model-A with 4.26% in DSC metric and 7.66%

in IoU metric. Notice, that the result of model-B did not take adjacent pixels into account.

In addition, the results show that there was not over-fitting.

To compare the result of model-B with the study [12], the precision, recall and accuracy

50



Table 4.3: Result of Model B based on Encoder-Classifier Architecture

DSC [%] IoU [%]
training 94.27± 1.33 89.27± 2.355

valid 76.48± 0.36 62.25± 0.47

test 92.50± 1.19 86.13± 2.02

metrics were used. Therefore, in Table 4.4 was shown the confusion matrix and the

precision, recall and accuracy metrics. Also, the model-B was tested using the same

volumes of MRI images (volumes 16-30) of study [12], where the number of processed

voxels were 29237248. The confusion matrix shown a true positive rate of 95.93%

for the background, 0.33% for the PZ, and 2.27% for the CG. The model-B reached a

precision de 99.05% for the background, 62.00% for the PZ, and 87, 02% for the CG. Also,

recall values obtained 99.63% for the background, 48.80% for the PZ, and 75.05% for the

CG. Despite, the classes was balanced in the training, it is noted that the precision and

recall of the central gland and the peripheral area are less than background class in the

testing. Notice that PZ and CG patches occupied ≤ 3.71% compared to background

patches.

Table 4.4: Confusion matrix of Model based on Encoder-Classifier Architecture

4.2 Analysis

In this section, the analysis and comparison of the results between the models-A

and models-B were performed. Additionally, another analysis and comparison were

performed between the models proposed and the study [12] proposed in the scientific

literature.

4.2.1 comparison of the proposed models

The comparison of model-A and model-B consisted in consider test results (see the

Tables 4.1 and 4.3). This comparison was shown in Figure 4.1. The results in DSC
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metric obtained that model-A reached 96.79% ± 0.15% compared to 92.5% ± 1.19%

of model-B. The results of models A and B did not show overlap in the DSC metric,

therefore we concluded that model-A was better with 4.29% compared to model-B. Note

that the standard deviation for model-A was less than 0.15%, whereas for model-B was

less than 1.19% with a difference of 1.04% in DSC metric. Moreover, the results in IoU

metric obtained that model-A reached 93.79%± 0.29% compared to 86.13%± 2.102%

of model-B. In addition, the results of models A and B do not show overlap in the IOU

metric, therefore we concluded that model-A was better with 7.66% compared to model

B. Also note that the standard deviation of model A is less than 0.29%, whereas the

model is less than 2.02% with a difference of 1.73% in IoU.

Figure 4.1: Comparison of the proposed models

4.2.2 Compare with other model

Table 4.5 shows the comparison of the results of models-A and model-B (see Tables

4.2 and 4.4) with respect to the proposed model [12] in literature. To compare the

model were used the same volumes of MRI images (volumes 16-30) and after we got

precision, recall, and accuracy result. Notice that model-A achieved the high results for

precision, and recall with 94.9256% and 94.8608% for the central gland. Also, model-A

precision for the central gland was higher with 7.9082% compared to model-B, and

with 22.9081% outperformed to proposed model [12]. Whereas, model-A recall for

the central gland was higher with 19.8096% compared to model-B, and with 38.0682%

outperformed to proposed model [12]. On the other hand, the model-A in peripheral

zone reached 77.4377%, and 70.7627% for precision, and recall, respectively. Also,

the model-A precision for the peripheral zone was higher with 15.4362% compared

to model-B, and with 1.1153% outperformed to proposed model [12]. Also, model-A

recall for the peripheral zone was higher with 21.8682% compared to model-B, and
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with 7.6330% outperformed to proposed model [12]. Moreover, the model-B achieved

the results of 87.0174% and 75.0512% for precision and recall for the central gland.

The model-B precision for the central gland was higher with 14.9999% to proposed

model [12]. Whereas, model-B recall for the central gland was higher with 18.2586% to

proposed model [12]. Additionally, the model-B reached the results of 62.0015% and

48.8045% for precision and recall for the peripheral zone. The model-B precision for the

peripheral zone was lower with 14.3209% to proposed model [12]. Whereas, model-B

recall for the peripheral zone was lower with 14.2352% to proposed model [12].

Table 4.5: Comparison of models in precision, recall and accuracy metrics

Metric Model A Model B Other

model [12]

Precision (Predicted labels | Actual labels)

Prostate gland | Prostate gland 98.8915 88.6480 77.7071
Central gland | Central gland 94.9256 87.0174 72.0175
Peripheral zone | Peripheral zone 77.4377 62.0015 76.3224

Recall (Actual labels | Predicted labels)

Prostate gland | Prostate gland 97.2260 75.2310 62.0712
Central gland | Central gland 94.8608 75.0512 56.7926
Peripheral zone | Peripheral zone 70.6727 48.8045 63.0397

Accuracy 99.56 98.54 96.84

In Figure 4.2 was compared the ground truth with segmentation of 4 slice MRI images

slices by model-A, model-B, and the model [12]. The peripheral zone was depicted in

green, whereas the central gland was presented in red. We can see that model-A got

similar result a ground truth. After, the result of model-B occupied second place in the

segmentation of the main areas.

From result of Table 4.5, and Figure 4.2, we concluded that model-A outperformed

to model-B and model [12]. The result of model-A used the M × N ROI, where

M × N ROI reduced 52% background pixels. Besides, the architecture of model-A

considered the adjacent pixels of MRI image to segment. On the other hand, the

model-B occupied second place. Model-B same as model-A used the M × N ROI.

However, the architecture of Model-B did not consider the adjacent patches to segment.

Therefore, model-B detected spurious objects of Central Gland or Peripheral Zone.

Notice that Peripheral Zone occupied small area of pixels in the MRI image, therefore

this result can rise.

Finally, the model [12] proposed in the literature, which obtained lower results compared

to model-A and model-B. The segmented area of model [12] contained fewer true

positives in Figure 4.2. Therefore, the model [12] detected more spurious objects of

Central Gland or Peripheral Zone.
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Original Model A Model B Other

model [12]

Ground truth

Figure 4.2: Examples of original, results of model based on encoder-decoder,results of
model based on encoder-classifier,results of other model proposed in SLR, and ground
truth slices. Green = peripheral zone; Red = central gland
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Chapter 5

Conclusions and

Recommendations

5.1 Conclusions

• To accomplish the general objective, two of 2D prostate segmentation models of

the main areas were created. These models encompass a different segmentation

approach, and achieved DSC results of 96.78% and 92.50% for models-A and

models-B, respectively. A very important part, when creating a segmentation

model is the area that the prostate occupies. The prostate area is around 1/4

and this area varies depending on the patient, therefore it was necessary to

eliminate the background pixels that are not necessary through a ROI region of

interest, which allowed us to obtain established results. In addition, because few

research regarding the segmentation of the main areas of the prostate can use

other standard architectures, and test their result.

• The SLR presented in Chapter 2, addressed a research question related to the

common metrics used in prostate segmentation. The most used metric was the

DSC. However, the DSC metric is a variation to IoU metric. Therefore, results can

be misleading because a high result on the DSC metric can be linked to a lower

result on the IoU metric.

• To address the first objective is proposed the mode-A with an encoder-decoder

architecture. This model is based on U-net. Model-A is composed by a global

and local U-net, as indicated in Figure 3.7. The global U-net segments the whole

prostate. Whereas the local U-net segments the central gland. The global U-net

input uses 2D MRI images with ROI of M × N , where M ≤ 151 and N ≤ 151.

The ROI of M ×N reduced the background pixels by 52%. The ROI of M ×N

was obtained from comparison experiments (see Table 3.7 and Figure 3.3). On

the other hand, the U-net local uses 2D MRI image with ROI of M ×N together

with the segmentation result of the global U-net. Therefore, the inputs of the

local U-net depend on the result of the global U-net (see Table 3.12 and Figure
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3.6). From the results of the global and local U-net, the segmentation of the

Peripheral Zone is obtained. The training parameters of the local and global unet

is specified in section 3.2.2. Also, the training, validation and testing of model-A

are carried out in CPU INTEL 2680 of MODEMAT. Model-A is tested in the NCI-

ISBI 2013 database, and achieved a performance of DSC = 96.79%± 0.15% and

IoU = 93.79%± 0.29%.

• To address the second objective is present the Model- B with an encoder-classifier

architecture (see Figure 3.9). This model is based on VGGnet, which is used in

classification tasks. Model-B inputs use patches obtained from 2D MRI images

of M ×N . According to central pixel, the patches are labeled as central gland,

peripheral zone, and background. A very important part for this model is the

balance of the classes, which were obtained 161607 patches for the background,

152042 patches for the central gland and 155040 patches for the peripheral zone.

Also, Model-B use fine-tuning to train the model and classify in the aforementioned

classes. The classification of all the patches of an 2D MRI image segment the

main zone of the prostate. The training parameters of model-B is specified in

section 3.2.2. Also, the training, validation and testing of model-B are carried

out in CPU INTEL 2680 of MODEMAT. Model-B is tested in the NCI-ISBI 2013

database, and achieved a performance of DSC = 92.50% ± 1.19% and IoU =

86.13%± 2.02%.

• Regarding the third objective, the comparison between the results of Model-A and

Model-B (Section 4.2.1) suggest that Model A achieves the high result with 4.29%

compare to model-B for the DSC metric. Also, Model-A achieves the high result

with 7.66% compare to model-B for the IoU metric. Notice that Model-A takes

into account the adjacent pixels, In addition, a visual comparison of the models

is shown in the Figure 4.2, in which confirmed that the segmentation results of

model-A are similar to the ground truth. Whereas the model-B detects spurious

objects of central gland or peripheral zone. Furthermore, the model-B does not

consider the adjacent patches, therefore model-B tends to erroneously predict the

peripheral zone class, because peripheral zone occupies a smaller area ≤ 3.71%.

Notice that the number of MRI volumes of the NCI-ISBI 2013 are small compared

to the number of MRIs in private databases which have an average of 120 MRI

volumes.

• The comparison the model-A, model-B and model [12] are shown in Table 4.5.

The precision, recall and accuracy metrics and the same MRI volumes were con-

sidered to compare the models. The results for the central gland were: precision

reached 94.92%, 87.01%, and 72.01% for model A, model B and model [12], re-

spectively. Whereas the recall reached 94.86%, 75.05%, and 56.79% for model

A, model B and model [12], respectively. On the other hand, the results for the

peripheral zone were: precision reached 77.43%, 62.00%, and 76.32% for model

A, model B and model [12], whereas the recall reached 70.76%, 48.80%, and
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63.03%, for model A, model B, and model [12]. Note that both the precision and

recall metric for the peripheral zone have a lower result in the three models. This

is because the peripheral zone has fewer pixels compared to the background and

central gland.

• Additionally, a comparative visual analysis was performed (see Figure 4.2) and

we concluded that models A and B have superior results than model [12]. The

model [12] uses Feed-Forward Artificial Neural Network of three layers, and

this model to extract the characteristics manually to enter the neural network

and predicts the class. Although, the model-B has a similar approach to the

model [12], the model-B uses a convolutional neural network and patches of the

ROI of M × N . Therefore model-B work better in comparison with the model.

Also, the architecture of models A and model [12] are different, where model-A

use encoder-decoder architecture.
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5.2 Recommendations

• This project has verified that the number of pixels in the area of the prostate in

the MRI slice image is small in the NCI-ISBI 2013 [47]. It could be suggested that

smaller ROI (crop of a sub-volume) are generated to improve the segmentation

results of the main zones of the prostate. To obtain smaller ROI, the pre-procesing

technique specified in Figure 2.4, literal a, can be considered.

• Despite extracting smaller ROI from the NCI-ISBI 2013 [47] database, the number

of pixels for background is greater than that of the other main areas of the

prostate. Therefore, it is recommended to use balancing techniques to improve

the segmentation of the main zones of the prostate gland.

• One of the challenges in prostate segmentation is the limited number of medical

images. Therefore, it is recommended to use data augmentation techniques (see

Figure 2.3) that allow to increase the number of data. However, the augmented

data contains the same information.

• The implementation of the proposed models used the Python programming

language. This programming language allows the implementation of models

using CNN. Furthermore Python has many open source libraries and a lot of code

to reuse. Therefore, it is recommended to use Python programming language.

• The pre-processing and data augmentation of the images of the proposed models

was implemented in Matlab, because of it s powerful image processing. Hence, it

is recommended to use Matlab for image preprocessing.
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Appendix A

Studies for review
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p3 2016 3D Gland T2W Axial Both Public PROMISE12
p4 2017 3D Gland T2W Axial ERC Public PROMISE12
p5 2017 2D Gland T2W Axial Private
p6 2017 2D Gland T2W,

CED
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other

Axial Private
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p10 2018 3D Gland T2W Axial Private
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Appendix B

segmentation challenges

12

12

9

6

3

2

1

4

2 interscan variability

3. intrascan variations

4. difficulty in prostate boundaries

5. prostate is similar of other organs

6. image noise

7. medical images limited

8. prostate areas is small

9. UNDEFINED

°

C
h

a
lle

n
g

e
s

Challenges of Segmentation
(26 papers)

Figure B.1: segmentation challenges
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Appendix C

151 x 151 ROI Pre-processing

Figure C.1: 151× 151 ROI pre-processing: a) the original 320× 320 pixels image; b)
mathematical morphology was used to highlight patterns that locate the pelvic bones;
c) hole filling process; d) ROI X, Y coordinates were found and the ROI image was
increased by adding 75 pixels to the ends; e) 151× 151 ROI
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Appendix D

M x N ROI Pre-processing

Figure D.1: M ×N ROI pre-processing: a) is shown an MRI image of size 151× 151

pixels, which has central area of 30 × 30 with the average value pixels. b) presents
the result of the sequence of operations to highlight areas of interest. c) display the
calculation of the mask. d) shows the expansion of the mask calculated, to obtain the
coordinates to trim the ROI. e) shows the ROI results of M ×N .
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Appendix E

Pre-processing of the ROI
adjusted to the mask

Figure E.1: Pre-processing of the ROI adjusted to the mask
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