ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERIA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS).

TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL MENCIÓN ESTRUCTURAS

AUTORES: ARÉVALO SÁNCHEZ ALEX OMAR

alexei maxi@hotmail.es

BASANTES AVALOS CÉSAR EDUARDO

c.basantes@hotmail.com

DIRECTOR: Ing. EDGAR DAVID MORA MARTÍNEZ, MSc.

edgar.mora@epn.edu.ec

CO-DIRECTOR: Ing. FÉLIX POLICARPO VACA MONCAYO, MSc.

felvaca@hotmail.com

QUITO, ENERO 2022

© Escuela Politécnica Nacional (2022) Reservados todos los derechos de reproducción

DECLARACIÓN

Nosotros, **Arévalo Sánchez Alex Omar** y **Basantes Avalos César Eduardo**, declaramos que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Alex Omar Arévalo Sánchez

César Eduardo Basantes Avalos

CERTIFICACIÓN

Como director y codirector del trabajo de titulación ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERIA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS) desarrollado por Alex Omar Arévalo Sánchez y César Eduardo Basantes Avalos, estudiantes de la Carrera de Ingeniería Civil, habiendo supervisado la realización de este trabajo y realizado las correcciones correspondientes, doy por aprobada la redacción final del documento escrito para que prosiga con los trámites correspondientes a la sustentación de la Defensa oral.

Ing. Edgar David Mora Martínez, MSc.

DIRECTOR DE PROYECTO

Ing. Félix Policarpo Vaca Moncayo, MSc.

CODIRECTOR DE PROYECTO

AGRADECIMIENTO

Agradezco de todo corazón a mis padres por todo el tiempo empleado en mí y por los consejos de vida que me dan, a Dios por darme salud y vida para alcanzar este objetivo tan anhelado y a la Virgencita del Perpetuo Socorro que nunca me abandonó.

A Mishelle por todo su amor y cariño durante esta etapa de mi vida, gracias por todo, eres el amor de mi vida y le doy gracias a Dios por ponerte en mi camino. A mis suegros Faby y Paco por motivarnos y apoyarnos para culminar nuestras carreras universitarias, a Patty y a Doro por su cariño.

A mi amigo Cesar que a más de ser mi compañero de tesis se convirtió en un hermano con el que compartimos tantos buenos momentos en el desarrollo de este trabajo, gracias por ser una persona excepcional y por tu disposición para finalizar este proyecto.

A cada una de las personas con las que compartí en la universidad y que la vida me dio el grato gusto de conocer, me faltarían líneas para nombrarlos, pero nunca me olvidaré de todos ustedes; las risas y las lágrimas nunca faltaron.

A nuestro director Ing. Edgar David Mora y al Ing. Félix Vaca por todo su apoyo brindado, así como su tiempo y conocimientos para llevar a cabo esta investigación. Al Ing. Roger Jaramillo por el financiamiento para realizar esta investigación.

A la Escuela Politécnica Nacional y a todas las personas que impartieron sus conocimientos en este largo proceso.

A las personas que conforman el Centro de la Investigación de la Vivienda y LEMSUR por ayudarnos y guiarnos en el desarrollo de nuestro proyecto de titulación, por todo su tiempo y conocimientos.

Alex Omar

AGRADECIMIENTO

Agradezco a Dios y a la Dolorosa del Colegio, que con su bendición y guía me han permitido culminar con éxito mi tan anhelado sueño.

A mis padres: Vicente y Margarita, porque a través de su amor, apoyo y buenos valores, son mi mayor inspiración y motivo de mejora continua.

A mis hermanos Dani y Wily, que me han apoyado incondicionalmente en las buenas y en las malas, aun cuando no siempre estuve presente para ellos.

A toda mi familia, en especial a Fabo, Susy, Caty, Jorgito, Ramoncito y familia, por brindarme su apoyo y consejos útiles en toda mi carrera; a Carlitos, Carmita, Luisita, Mario, Fena; porque a pesar de encontrarse lejos siempre me manifestaron su cariño y me demostraron que la familia siempre estará ahí.

A Karen, por brindarme su apoyo y amor incondicional durante todos estos años, por impulsarme a ser cada día mejor; quiero que sepas que eres mi inspiración y motivación. Gracias por ser parte de mis triunfos y fracasos.

A mi compañero de tesis Álex y a su familia, quiénes me abrieron las puertas de su hogar para poder culminar este proyecto. Gracias amigo por tu total entrega y predisposición para sacar adelante este proyecto. A mis amigos y panas de la universidad: Marcelo, Jhonny, Víctor, Andrés, Wilson, Brayan, José, Franco, Sebas, Jós, Daya, Skar, Richie, Gladys, Javier B., Dianita, Sol, Amanda, Caty, Irvin, Eduardo, Pato. Gracias a todos por su apoyo, amistad y por haber compartido buenos y gratos momentos.

Al alma máter, La Escuela Politécnica Nacional, a los Ingenieros David Mora y Félix Vaca, por su dirección, conocimiento, y enseñanza al momento de realizar esta tesis. A los Ingenieros del CIV y LEMSUR; por todo el apoyo técnico, logístico, y predisposición para que los ensayos cumplan siempre con todos los estándares propuestos.

DEDICATORIA

A mis padres Luis Arévalo y Ofelia Sánchez, que siempre estuvieron para mí, en especial a mi madre, este título es por y para usted, espero se sienta orgullosa de mí, he cumplido.

A mami Cori, a papi Fausto, a mis hermanos Brando y Tatiana por cuidarme desde siempre.

A mi familia que nunca me ha desamparado y a todas las personas que se han preocupado por mí.

A mi esposa que me vio tantas veces caer y levantarme, esto es para ti.

A Ignacio, que es la alegría de todas mis mañanas. Espero que cuando veas esto te sientas orgulloso de mi.

Te amo hijo.

IV

Alex Omar

DEDICATORIA

A Dios y la Lolita. A mis padres y hermanos, por el apoyo brindado y por estar siempre conmigo, gracias por animarme a salir a conseguir mis metas. Sin ustedes no hubiese sido posible este logro. Esta tesis y todo lo que logre hacer será gracias a sus virtudes y valores inculcados en mí. Los amo.

A mi mami Chavi, por haberme querido mucho desde niño, por la abnegación hacia su familia, por cuidarme, bendecirme y acompañarme siempre. Se que desde el cielo lo seguirá haciendo.

A mi familia que no me desamparó nunca y me apoyaron siempre.

A Karen, por acompañarnos mutuamente y al mismo tiempo a cumplir con este objetivo, por motivarme a ser cada día una mejor persona. Te admiro mucho por todo lo que haces por tu familia; espero que este sea uno de los tantos logros de nuestras vidas. Gracias por todo y por tanto. Te amo.

Al Ing. Roger Jaramillo, quién nos brindó su apoyo económico y logístico para poder realizar y culminar este proyecto de titulación.

A todos quienes me ayudaron en mi formación profesional, gracias por todas las oportunidades que me brindaron.

César

ÍNDICE DE CONTENIDO

DECLARACIÓNI
CERTIFICACIÓNIII
AGRADECIMIENTOII
DEDICATORIAIV
ÍNDICE DE CONTENIDO VI
LISTA DE FIGURASII
LISTA DE TABLASX
LISTA DE ANEXOSXIII
RESUMENXIV
ABSTRACTXV
CAPÍTULO 11
1. INTRODUCCIÓN1
1.1 ANTECEDENTES1
1.1.1 HIPÓTESIS
1.2 OBJETIVOS
1.2.1 OBJETIVO GENERAL
1.2.2 OBJETIVOS ESPECÍFICOS
1.3 ALCANCE
1.4 JUSTIFICACIÓN4
CAPÍTULO 2
2 MARCO TEÓRICO5
2.1 MATERIALES
2.1.1 PROPIEDADES MECÁNICAS

	VII
2.1.1.1 ESFUERZO A COMPRESIÓN	5
2.1.1.2 ESFUERZO A TRACCIÓN	6
2.1.1.3 ESFUERZO DE TENSIÓN DIRECTA	6
2.1.1.4 ENVOLVENTE DE FALLA (COMPRESIÓN-TENSIÓN)	6
2.1.1.5 TENSIÓN DIAGONAL	7
2.1.1.6 RELACIÓN ESFUERZO VS DEFORMACIÓN UNITARIA	8
2.1.2 HORMIGÓN ALIVIANADO CON EPS	8
2.1.2.1 HORMIGÓN ALIVIANADO CON EPS Y PLANCHAS DE FIBROCEMENTO	10
2.1.2.2 RESISTENCIA DE LOS PANELES A COMPRESIÓN, FLEXIÓN E INFLUENCIA DE LA ESBELTEZ	10
2.1.2.3 CONSTRUCTIBILIDAD Y APLICACIONES	11
2.1.2.4 PANELEGO (PANEL SÁNDWICH DE HORMIGÓN ALIVIANADO CON EPS)	12
2.1.3 HORMIGÓN	14
2.1.4 ACERO DE REFUERZO	14
2.2 PROTOCOLO FEMA 461	14
2.3 MAMPOSTERÍA ESTRUCTURAL	15
2.3.1 MAMPOSTERÍA SIMPLE	15
2.3.2 MAMPOSTERÍA REFORZADA	15
2.3.3 MAMPOSTERÍA CONFINADA	16
2.4 DISEÑO	16
2.4.1 CIMENTACIÓN	16
2.4.2 DIMENSIONES MÍNIMAS DE LOS ELEMENTOS ESTRUCTURALES	17
2.4.3 DIMENSIONES MÍNIMAS DEL MURO DE MAMPOSTERÍA	18

		VIII
2.4.4	CUANTÍAS Y SEPARACIÓN DEL REFUERZO HORIZONTAL.	19
2.4.5	RIOSTRA HORIZONTAL (VIGA DE CONFINAMIENTO)	19
2.5 C	OMPORTAMIENTO ANTE CARGAS LATERALES	20
2.6 C	URVA DE HISTÉRESIS	22
2.6.1	ENERGÍA DISIPADA	24
2.6.2	RIGIDEZ SECANTE (Ks)	25
2.6.3	DEGRADACIÓN DE LA RIGIDEZ	26
2.6.4	AMORTIGUAMIENTO VISCOSO EQUIVALENTE (ξ)	26
2.6.5	ENVOLVENTE (CAPACIDAD MAXIMA)	27
2.6.5.1	RESISTENCIA Y DEGRADACIÓN DE LA RESISTENCIA	28
2.6.5.2	DUCTILIDAD DE DESPLAZAMIENTO	28
2.6.5.3	FACTOR DE COMPORTAMIENTO SÍSMICO	29
2.6.6	DERIVAS	
CAPÍT	ULO 3	31
3 CA	RACTERIZACIÓN DE LOS MATERIALES	31
3.1 E	STUDIOS EN LOS MATERIALES	31
3.1.1	DENSIDAD	32
3.1.1.1	DESCRIPCIÓN DEL ENSAYO	32
3.1.1.2	RESULTADOS OBTENIDOS	34
3.1.2	CORTE	34
3.1.2.1	DESCRIPCIÓN DEL ENSAYO	35
3.1.2.2	RESULTADOS OBTENIDOS	38
3.1.3	COMPRESIÓN PERPENDICULAR	
3.1.3.1	DESCRIPCIÓN DEL ENSAYO	39
3.1.3.2	RESULTADOS OBTENIDOS	41
3.1.4	COMPRESIÓN PARALELA	43

	IX
3.1.4.1 DESCRIPCIÓN DEL ENSAYO	43
3.1.4.2 RESULTADOS OBTENIDOS	45
3.1.5 TRACCIÓN DIAGONAL	46
3.1.5.1 DESCRIPCIÓN DEL ENSAYO	47
3.1.5.2 RESULTADOS OBTENIDOS	50
3.1.6 FLEXIÓN	54
3.1.6.1 DESCRIPCIÓN DEL ENSAYO	54
3.1.6.2 RESULTADOS OBTENIDOS	58
3.2 MATERIALES	59
3.2.1 PANEL SÁNDWICH DE HORMIGÓN ALIVIANADO CON EPS	
Y PLANCHAS DE FIBROCEMENTO.	59
3.2.2 HORMIGÓN	60
3.2.3 ACERO DE REFUERZO	60
3.2.4 MORTERO	60
3.2.5 CINTA DE FIBRA DE VIDRIO	61
3.3 CÁLCULO Y DEFINICIÓN DE DIMENSIONES Y MATERIALES	
PARA LOS MODELOS EXPERIMENTALES.	61
3.3.1 MURO DE MAMPOSTERÍA SIMPLE (MMS)	61
3.3.1.1 VIGA DE CIMENTACIÓN	62
3.3.1.2 COLUMNAS DE CONFINAMIENTO	64
3.3.1.3 VIGAS DE CONFINAMIENTO	64
3.3.1.4 PANEL DE MAMPOSTERÍA SIMPLE	65
3.3.2 MURO DE MAMPOSTERÍA CONFINADA REFORZADA	
(MMCR)	66
3.3.2.1 VIGA DE CIMENTACIÓN	67
3.3.2.2 COLUMNAS DE CONFINAMIENTO	69

	Х
3.3.2.3 VIGAS DE CONFINAMIENTO	69
3.3.2.4 PANEL DE MAMPOSTERÍA CONFINADA REFORZADA	70
3.3.3 PÓRTICO	71
3.4 PREDICCIÓN DE CARGA	73
3.5 CONSTRUCCIÓN DE LOS MUROS DE MAMPOSTERÍA	79
3.5.1 CIMENTACIÓN	79
3.5.2 COLUMNAS DE CONFINAMIENTO DEL MMS Y DEL	82
	02
3.5.3 COLOCACION DEL PANEL DE MAMPOSTERIA EN EL MMS	82
3.5.4 VIGAS DE CONFINAMIENTO DEL MMS Y DEL PORTICO	84
3.5.5 PANEL DE MAMPOSTERÍA DEL MMCR	86
3.5.6 VIGAS Y COLUMNAS DE CONFINAMIENTO DEL MMCR	87
CAPÍTULO 4	89
4 ENSAYO A CARGA LATERAL CÍCLICA DEL PÓRTICO Y	
MUROS DE MAMPOSTERIA	89
4.1 PRETENSADO DE LA VIGA DE CIMENTACIÓN	89
4.2 PREPARACIÓN DEL ENSAYO	91
4.3 DEFINICIÓN DEL PROTOCOLO DE CARGA	92
4.4 DESCRIPCIÓN DEL ENSAYO	94
4.4.1 ENSAYO DEL PÓRTICO	95
4.4.2 ENSAYO DEL MURO DE MAMPOSTERÍA SIMPLE (MMS)	100
4.4.3 ENSAYO DEL MURO DE MAMPOSTERÍA CONFINADA	
REFORZADA (MMCR)	106
CAPÍTULO 5	.113
5 PROCESAMIENTO DE DATOS EXPERIMENTALES Y	
PRESENTACIÓN DE RESULTADOS.	113

	XI
5.1 ANÁLISIS DE RESULTADOS	113
5.1.1 PÓRTICO	114
5.1.1.1 ENERGÍA DISIPADA	114
5.1.1.2 RIGIDEZ SECANTE (KS) Y DEGRADACIÓN DE LA RIGIDEZ	116
5.1.1.3 AMORTIGUAMIENTO VISCOSO EQUIVALENTE	118
5.1.1.4 CURVA DE CAPACIDAD (ENVOLVENTE)	119
5.1.1.5 DUCTILIDAD DE DESPLAZAMIENTO (μ) Y FACTOR DE COMPORTAMIENTO SÍSMICO (R)	121
5.1.1.6 DERIVAS	123
5.1.2 MURO DE MAMPOSTERÍA SIMPLE (MMS)	124
5.1.2.1 ENERGÍA DISIPADA	124
5.1.2.2 RIGIDEZ SECANTE (KS) Y DEGRADACIÓN DE LA RIGIDEZ	129
5.1.2.3 AMORTIGUAMIENTO VISCOSO EQUIVALENTE	134
5.1.2.4 CURVA DE CAPACIDAD (ENVOLVENTE)	135
5.1.2.5 DUCTILIDAD DE DESPLAZAMIENTO (μ) Y FACTOR DE COMPORTAMIENTO SÍSMICO (R)	138
5.1.2.6 DERIVAS	141
5.1.3 MURO DE MAMPOSTERÍA CONFINADA REFORZADA (MMCR)	141
5.1.3.1 ENERGÍA DISIPADA	141
5.1.3.2 RIGIDEZ SECANTE (KS) Y DEGRADACIÓN DE LA RIGIDEZ	147
5.1.3.3 AMORTIGUAMIENTO VISCOSO EQUIVALENTE	151
5.1.3.4 CURVA DE CAPACIDAD (ENVOLVENTE)	153
5.1.3.5 DUCTILIDAD DE DESPLAZAMIENTO (μ) Y FACTOR DE COMPORTAMIENTO SÍSMICO (R)	156
5.1.3.6 DERIVAS	159

	XII
5.2 COMPARACIÓN D	E RESULTADOS DEL ESTUDIO159
5.2.1 ENERGÍA DISIP	ADA159
5.2.2 RIGIDEZ SECAN	ITE (KS) Y DEGRADACIÓN DE LA RIGIDEZ160
5.2.3 AMORTIGUAMI	ENTO VISCOSO EQUIVALENTE162
5.2.4 CURVA DE CAF	ACIDAD (ENVOLVENTE)163
5.2.5 DUCTILIDAD D	E DESPLAZAMIENTO (μ) Y FACTOR DE
COMPORTAMIENTO SÍ	SMICO (R)166
5.2.6 DERIVAS	
5.2.7 COSTOS	
5.3 COMPARACIÓN D	E RESULTADOS CON OTROS PROYECTOS
DE INVESTIGACIÓN	
5.3.1 CARGA MÁXIM	A DE MAMPOSTERÍA169
5.3.2 ANÁLISIS COST	O-BENEFICIO173
CAPÍTULO 6	
6 CONCLUSIONES Y	RECOMENDACIONES175
6.1 CONCLUSIONES.	
6.2 RECOMENDACIO	NES178
REFERENCIAS BIBLIO	GRÁFICAS180
ANEXOS	

LISTA DE FIGURAS

Figura 2.1. Curva Esfuerzo-deformación de una unidad de mampostería y	
mortero	6
Figura 2.2. Envolvente de falla normalizada de la unidad de mampostería	7
Figura 2.3. Hormigón Alivianado con EPS	9
Figura 2.4. (a) Hormigón alivianado con tableros de fibrocemento. (b) Hormigón alivianado sin tableros de fibrocemento	10
Figura 2.5. Aplicación de los paneles de fibrocemento con hormigón alivianado con EPS en una casa de una sola planta	12
Figura 2.6. Composición de PANELego	13
Figura 2.7. Diferentes formas de Reforzamiento en Mamposterías.	16
Figura 2.8. Dimensiones y Refuerzos Mínimos de la Cimentación Corrida	17
Figura 2.9. Requisitos Mínimos en función del Número de Pisos de la Vivienda con Pórticos de Hormigón y Losas.	18
Figura 2.10. Requisitos fundamentales en Viviendas de Mampostería Confinada	19
Figura 2.11. Ejemplo de configuración de la prueba para una pared de mampostería	22
Figura 2.12. Ejemplo de Curva de Histéresis Observada y Curva de Envolvente	22
Figura 2.13. Zonas principales de comportamiento de una pared de mampostería producida por cargas laterales cíclicas	24
Figura 2.14. Evaluación de la Energía Disipada proveniente de un ensayo histerético	25
Figura 2.15 Definición de Rigidez Secante, (Ks) de pico a pico	25
Figura 2.16. Evaluación de la Energía Absorbida <i>EA</i> y Energía Disipada <i>ED</i>	27

Figura 2.17. Curva de capacidad máxima con estados límite característicos,	
determinada a partir de la envolvente de un ensayo histerético.	27
Figura 2.18. Determinación de $(\Delta y) y (\Delta u)$	29
Figura 2.19. Deflexiones	29
Figura 2.20. Factor de comportamiento sísmico.	30
Figura 2.21. Derivas máximas Δ_M aceptables por la NEC	30
Figura 2.22. Derivas de piso	31
Figura 3.1. Muestras usadas en el cálculo de la densidad real.	33
Figura 3.2. Ensayo a Corte	35
Figura 3.3. Probetas para el ensayo de la resistencia a Corte	36
Figura 3.4. Configuración del Ensayo a Corte	36
Figura 3.5. Dimensiones del espesor del panel Tipo Sándwich	37
Figura 3.6. Curvas Carga Vs. Deformación del Ensayo a Corte	38
Figura 3.7. Probetas usadas en el ensayo a compresión perpendicular	40
Figura 3.8. Región Lineal (Hook) con materiales tipo Sándwich	41
Figura 3.9. Curvas esfuerzo vs. Deformación del Ensayo a compresión	40
perpendicular	42
Figura 3.10. Ensayo a compresión paralela	43
Figura 3.11. Modos de Falla comúnmente observados en la determinación de la resistencia a compresión paralela	45
Figura 3.12. Curva Carga vs. Deformación para el ensayo a Compresión Paralela	46
Figura 3.13. Falla debido al aplastamiento en las esquinas conseguido en el ensavo de tracción diagonal.	
Figura 3.14. Características del elemento tipo Solid	
Figura 3.15 Asignación de las propiedades del panel en el programa SAP	
2000® (Unidades en kgf y cm)	49

Figura 3.16. Modelación del ensayo a tracción diagonal en el programa SAP 2000 v16.0.0	50
Figura 3.17. Curva Carga vs. desplazamiento para el ensayo a tracción diagonal	51
Figura 3.18. Interfaz de esfuerzos de compresión diagonal máximos [kgf/cm ²]	51
Figura 3.19. Simulación de la prueba de Compresión Paralela en SAP 2000 v16.0.0®	52
Figura 3.20. Asignación de constraints y cargas en los nudos del modelo	53
Figura 3.21. Resultado de esfuerzos máximos de Compresión Paralela en kgf/cm ²	53
Figura 3.22. Ensayo a flexión	54
Figura 3.23. Probeta para el ensayo a flexión	55
Figura 3.24. Diagrama de carga, corte y momentos de los paneles	57
Figura 3.25. Curvas Carga vs Deformación del Ensayo a Flexión	58
Figura 3.26. Cinta de fibra de vidrio	61
Figura 3.27. Dimensiones del MMS	62
Figura 3.28. Dimensión de la Viga de Cimentación	63
Figura 3.29. Armado y distribución del refuerzo transversal de la Viga de Cimentación	63
Figura 3.30. Dimensiones y armado de las columnas de confinamiento	64
Figura 3.31. Dimensión de la viga de confinamiento y dado de apoyo para el gato hidráulico	65
Figura 3.32. Armado y distribución del refuerzo transversal de la Viga de Confinamiento	65
Figura 3.33. Dimensiones y disposición del panel de mampostería simple	66
Figura 3.34. Dimensiones del MMCR	67
Figura 3.35. Dimensión y anclajes de la Viga de Cimentación	68

Figura 3.36. Armado y distribución del refuerzo transversal de la Viga de	
Cimentación	68
Figura 3.37. Dimensiones y armado de las columnas de confinamiento	69
Figura 3.38. Dimensión de la viga de confinamiento y dado de apoyo para el	
gato hidráulico	70
Figura 3.39. Armado y distribución del refuerzo transversal de la Viga de	
Confinamiento	70
Figura 3.40. Dimensiones y disposición del panel de mampostería confinada	
reforzada	/1
Figura 3.41. Dimensiones y armado del pórtico	73
Figura 3.42. Esquema del MMC para el diseño a flexo-compresión	74
Figura 3.43. Diagrama de Interacción para mampostería confinada	77
Figura 3.44. Configuración del Acero de Refuerzo en Vigas de Cimentación	80
Figura 3.45. Colocación del encofrado en las Vigas de Cimentación	80
Figura 3.46. Hormigonado y vibrado en las Vigas de Cimentación	81
Figura 3.47. Vigas de cimentación fundidas	81
Figura 3.48. Hormigonado de columnas del MMS y Pórtico	82
Figura 3.49. Instalación de los paneles	83
Figura 3.50. Colocación de la cinta de fibra de vidrio	84
Figura 3.51. Colocación y verificación del nivel de las vigas de confinamiento	85
Figura 3.52. Hormigonado y Vibrado de las Vigas de Confinamiento	85
Figura 3.53. Instalación de los paneles del MMCR	86
Figura 3.54. Colocación de la cinta de fibra de vidrio	87
Figura 3.55. Colocación y verificación del nivel de las vigas de confinamiento	87
Figura 3.56. Encofrado y fundido de los elementos confinantes	88
Figura 4.1. Esquema de pretensado para cada eje de la viga de cimentación	90

	VI
Figura 4.2. Pretensado de la viga de cimentación	90
Figura 4.3. Esquema de ubicación de LVDT's	91
Figura 4.4. Colocación de LVDT's	92
Figura 4.5. Patrón de desplazamiento cíclico	93
Figura 4.6. Pórtico antes del ensayo	95
Figura 4.7. Primeras fisuras Ciclo 29 en Pórtico, Δ =-8.07mm; P=-13.05kN	97
Figura 4.8. Fisuras Ciclo 41 en Pórtico, Δ=-40.47mm; P=-34.08kN	98
Figura 4.9. Fisuras Ciclo 49 en Pórtico, Δ=-90.05mm; P=-27.40kN	99
Figura 4.10. Historial de carga del Pórtico	100
Figura 4.11. MMS 2 antes del ensayo	100
Figura 4.12. Primeras fisuras Ciclo 25 en el MMS 2, Δ =-6.108mm; P=-	100
72.532kN	102
Figura 4.13. Fisuras Ciclo 32 en el MMS 2, Δ =-13.351mm; P=94.85kN	103
Figura 4.14. Fisuras Ciclo 35 en el MMS 2, Δ=23.578mm; P=93.444kN	104
Figura 4.15. Fisuras Ciclo 38 en el MMS 2, Δ=31.285mm; P=76.074kN	105
Figura 4.16. Historial de carga del MMS 2	106
Figura 4.17. MMCR 2 antes del ensayo	106
Figura 4.18. Primeras fisuras Ciclo 21 en el MMCR 2, ∆=8.14mm;	
P=121.09kN	108
Figura 4.19. Fisuras Ciclo 29 en el MMCR 2, Δ=8.14mm; P=121.09kN	109
Figura 4.20. Fisuras Ciclo 38 en el MMCR 2, ∆=29.86mm; P=120.64kN	110
Figura 4.21. Fisuras Ciclo 44 en el MMCR 2, Δ=48.59mm; P=106.41kN	111
Figura 4.22. Fisuras Ciclo 47 en Pórtico, Δ=31.29mm; P=76.07kN	112
Figura 4.23. Historial de carga del MMCR 2	113
Figura 5.1. Representación de la Energía Disipada (E _D), para el primer ciclo de carga en el Pórtico.	114

	VII
Figura 5.2. Energía disipada por ciclo en el Pórtico.	115
Figura 5.3 Curva de Histéresis Experimental para el Pórtico	116
Figura 5.4. Rigidez secante obtenido en el primer ciclo de histéresis del Pórtico.	117
Figura 5.5. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el Pórtico.	118
Figura 5.6. Envolvente de la curva de Histéresis del Pórtico	121
Figura 5.7. Análisis de la ductilidad de desplazamiento del Pórtico	122
Figura 5.8. Representación de la Energía Disipada (ED), para el primer ciclo de carga en el MMS 1.	124
Figura 5.9. Representación de la Energía Disipada (ED), para el primer ciclo de carga en el MMS 2.	124
Figura 5.10. Energía disipada por ciclo en el MMS 1	126
Figura 5.11. Energía disipada por ciclo en el MMS 2	126
Figura 5.12. Energía disipada por cada rango de ciclo e influencia del Pórtico con los MMS.	127
Figura 5.13 Curva de Histéresis Experimental para el MMS 1	128
Figura 5.14 Curva de Histéresis Experimental para el MMS 2	129
Figura 5.15. Rigidez secante obtenido en el primer ciclo de histéresis del MMS 1	130
Figura 5.16. Rigidez secante obtenido en el primer ciclo de histéresis del MMS 2	130
Figura 5.17. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMS 1.	132
Figura 5.18. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMS 2.	132
Figura 5.19. Rigidez Secante por cada rango de ciclo e influencia del Pórtico con los MMS.	133

	VIII
Figura 5.20. Envolvente de la curva de Histéresis del MMS 1	137
Figura 5.21. Envolvente de la curva de Histéresis del MMS 2	137
Figura 5.22. Análisis de la ductilidad de desplazamiento del MMS 1	138
Figura 5.23. Análisis de la ductilidad de desplazamiento del MMS 2	140
Figura 5.24. Energía Disipada (E _D), para el primer ciclo de carga en el MMCR 1	142
Figura 5.25. Energía Disipada (E _D), para el primer ciclo de carga en el MMCR 2	142
Figura 5.26. Energía disipada por ciclo en el MMCR 1	144
Figura 5.27. Energía disipada por ciclo en el MMCR 2	144
Figura 5.28. Energía disipada por cada rango de ciclo e influencia del Pórtico con los MMCR.	145
Figura 5.29 Curva de Histéresis Experimental para el MMCR 1	146
Figura 5.30 Curva de Histéresis Experimental para el MMCR 2	146
Figura 5.31. Rigidez secante obtenido en el primer ciclo de histéresis del MMCR 1.	147
Figura 5.32. Rigidez secante obtenido en el primer ciclo de histéresis del MMCR 2.	148
Figura 5.33. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMCR 1.	149
Figura 5.34. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMCR 2.	150
Figura 5.35. Rigidez Secante por cada rango de ciclo e influencia del Pórtico con los MMCR.	151
Figura 5.36. Envolvente de la curva de Histéresis del MMCR 1	155
Figura 5.37. Envolvente de la curva de Histéresis del MMCR 2.	155
Figura 5.38. Análisis de la ductilidad de desplazamiento del MMCR 1	156

IX
Figura 5.39. Análisis de la ductilidad de desplazamiento del MMCR 2158
Figura 5.40. Análisis de la Energía Disipada por ciclo160
Figura 5.41. Análisis de la Rigidez secante por ciclo161
Figura 5.42. Análisis del Amortiguamiento viscoso equivalente por ciclo163
Figura 5.43 Curvas de Capacidad del pórtico y paredes de mampostería164
Figura 5.44. Envolvente de resistencia sísmica máxima con estados límite
característicos
Figura 5.45. Curvas de capacidad Ensayos (CIV) de Mampostería de Bloque170
Figura 5.46. Curvas de capacidad Ensayos (CIV) de Mampostería de Ladrillo170
Figura 5.47. Capacidad máxima sin influencia de los elementos estructurales173

LISTA DE TABLAS

Tabla 2.1. Ejemplo de proporción de mezcla para hormigón alivianado a base	
de EPS	12
Tabla 2.2 Proceso de instalación de PANELEGO	13
Tabla 3.1. Resultados del ensayo a densidad de los paneles de hormigón	
alivianado	34
Tabla 3.2. Valores obtenidos del ensayo de corte	38
Tabla 3.3. Valores obtenidos en el ensayo a compresión perpendicular	42
Tabla 3.4 Valores obtenidos en el ensayo a compresión paralela	46
Tabla 3.5. Carga Máxima obtenida en el Ensayo de Tracción Diagonal	50
Tabla 3.6. Valores alcanzados en la prueba a flexión	58
Tabla 3.7 Resultados promedio en las pruebas de caracterización	59
Tabla 3.8. Propiedades mecánicas del hormigón obtenidas experimentalmente	60
Tabla 3.9. Excel realizado para el diagrama de Interacción de una mampostería	
confinada	76
Tabla 3.10. Valores del cortante nominal resistido por la mampostería, Vm	78
Tabla 4.1. Amplitud de los Ciclos Primarios	94
Tabla 4.2. Carga vs desplazamiento máximos por ciclo Pórtico	96
Tabla 4.3. Carga vs desplazamiento máximos por ciclo MMS 2	101
Tabla 4.4. Carga vs desplazamiento máximos por ciclo MMCR 2	107
Tabla 5.1. Energía disipada por el Pórtico	115
Tabla 5.2. Rigidez secante por ciclo del Pórtico	117
Tabla 5.3. Amortiguamiento Viscoso equivalente por cada rango de ciclos para	
el Pórtico	119
Tabla 5.4. Puntos de cada ciclo característico - Pórtico	120

	XI
Tabla 5.5. Ductilidad de desplazamiento para el Pórtico	123
Tabla 5.6. Energía disipada por el MMS 1	125
Tabla 5.7. Energía disipada por el MMS 2	125
Tabla 5.8. Influencia del Pórtico con los MMS en la Energía Disipada	
Acumulada	127
Tabla 5.9. Rigidez secante por ciclo del MMS 1	131
Tabla 5.10. Rigidez secante por ciclo del MMS 2	131
Tabla 5.11. Influencia del Pórtico con los MMS en la Rigidez Secante	133
Tabla 5.12. Amortiguamiento Viscoso Eqv. por cada rango de ciclos para el	
MMS 1	134
Tabla 5.13. Amortiguamiento Viscoso Eqv. por cada rango de ciclos para el	
MMS 2	135
Tabla 5.14. Puntos máximos y mínimos de cada ciclo característico – MMS 1	135
Tabla 5.15 Puntos máximos y mínimos de cada ciclo característico – MMS 2	136
Tabla 5.16. Ductilidad de desplazamiento para el MMS 1	139
Tabla 5.17. Ductilidad de desplazamiento para el MMS 2	141
Tabla 5.18. Energía disipada por el MMCR 1	143
Tabla 5.19. Energía disipada por el MMCR 2	143
Tabla 5.20. Influencia del Pórtico con los MMCR en la Energía Disipada	
Acumulada	145
Tabla 5.21. Rigidez secante por ciclo del MMCR 1	148
Tabla 5.22. Rigidez secante por ciclo del MMCR 2	149
Tabla 5.23. Influencia del Pórtico con los MMCR en la Rigidez Secante	150
Tabla 5.24. Amortiguamiento Viscoso Equivalente por cada rango de ciclos	
para el MMCR 1	151
Tabla 5.25. Amortiguamiento Viscoso Equivalente por cada rango de ciclos	
para el MMCR 2.	152

Tabla 5.26. Puntos máximos y mínimos de cada ciclo característico – MMCR 1	153
Tabla 5.27. Puntos máximos y mínimos de cada ciclo característico – MMCR 2	154
Tabla 5.28. Ductilidad de desplazamiento para el MMCR 1	157
Tabla 5.29. Ductilidad de desplazamiento para el MMCR 2	159
Tabla 5.30. Comparación de la Energía Disipada por cada ciclo	159
Tabla 5.31. Comparación de la Rigidez secante por cada ciclo	161
Tabla 5.32. Comparación del Amortiguamiento viscoso equivalente por cada	
ciclo	162
Tabla 5.33. Puntos de capacidad de los muros por cada ciclo	163
Tabla 5.34. Comparación de la Ductilidad de desplazamiento por cada ciclo	166
Tabla 5.35. Comparación de las derivas obtenidas para cada muro	166
Tabla 5.36. Presupuesto referencial para la construcción del Muro de	
Mampostería Simple	167
Tabla 5.37. Presupuesto referencial para la construcción del Muro de	
Mampostería Confinada Reforzada	168
Tabla 5.38. Resistencias máximas de Mamposterías según Grijalva-Narváez	170
Tabla 5.39. Costo de mamposterías por m²	174

LISTA DE ANEXOS

ANEXO I. Ensayos de Caracterización del Panel de Fibrocemento con	
Hormigón Alivianado con Poliestireno Expandido (EPS)	2
ANEXO II. Dosificación experimental del hormigón (ACI-211)	22
ANEXO III. Propiedades mecánicas del hormigón	27
ANEXO IV. Cálculo del peso propio del MMCR	34
ANEXO V. Bucles de histéresis obtenidos experimentalmente	36
ANEXO VI. Equipos, montaje e Instrumentación del CIV	45
ANEXO VII. Control de calidad del hormigón en obra	49
ANEXO VIII. Registro fotográfico de los ensayos a Carga Lateral Cíclica	52
ANEXO IX. Protocolo de Ensayos del CIV	79
ANEXO X. Planilla de Aceros	90
ANEXO XI. Análisis de Precios Unitarios	92
ANEXO XII. Planos y detalles constructivos	96

RESUMEN

El trabajo de investigación propuesto apunta al análisis de las propiedades estructurales que posee un sistema de paneles de fibrocemento con hormigón alivianado y poliestireno expandido, analizando primero sus propiedades mecánicas para posteriormente construir 5 prototipos a escala real con relación de aspecto largo ancho aproximado de 1:1. El dimensionamiento y requisitos mínimos para este tipo de mampostería están íntimamente ligados a la norma NEC-SE-VIVIENDA y ACI 314-18. Se ensayaron 2 muros de mampostería simple, 2 muros de mampostería confinada reforzada y 1 pórtico sin panel de relleno para estudiar la influencia que posee el sistema con el pórtico resistente a momento. El ensayo a carga cíclica se estableció de acuerdo a la norma ASTM E2126-19, experimentado en el Centro de Investigación de la Vivienda de la Escuela Politécnica Nacional, y del cual se obtuvieron parámetros como: energía disipada, envolvente, curva de capacidad experimental, rigidez secante, degradación de la rigidez, degradación de la resistencia, amortiguamiento viscoso equivalente, curvas de histéresis, derivas; propiedades importantes para determinar el comportamiento de este tipo de sistema ante la ocurrencia de eventos sísmicos.

Una vez obtenidos los parámetros descritos se procedió a comparar y diferenciar entre sistemas constructivos ensayados anteriormente en el CIV. Para entender la influencia que poseen las mamposterías y el pórtico, se tomó como punto de partida el proyecto de titulación de los Ingenieros Lenin Grijalva y Henry Narváez, en el cual recopilaron datos de ensayos experimentales, y usando programación y modelación en programas como SeismoStruct® y MATLAB® lograron determinar por separado la influencia de los componentes estructurales con la mampostería de relleno.

Finalmente se concluye que los sistemas de paneles de fibrocemento con hormigón alivianado y poliestireno expandido con EPS poseen un mejor comportamiento sísmico ante cargas laterales, además de poseer ventajas como la disminución del peso comparado a un sistema tradicional, en la rapidez y versatilidad de su instalación, que solo se ve condicionada por su precio en el mercado.

Palabras clave: Sistemas constructivos, mampostería simple, mampostería confinada reforzada, paneles de fibrocemento, hormigón alivianado, ensayos de histéresis.

ABSTRACT

The proposed research work aims to analyze the structural properties of a system of cement fiber boards of lightweight concrete and expanded polystyrene, first analyzing their mechanical properties and then building 5 full-scale prototypes with an approximate aspect ratio of 1:1. Sizing and minimum requirements for this type of masonry are closely linked to NEC-SE-VIVIENDA and ACI 314-18 standards. Two simple masonry walls, two reinforced confined masonry walls and one frame without infill panel were tested to study the influence of the system on special moment frame. Cyclic load test was established according to ASTM E2126-19 standard, tested at Centro de Investigación de la Viviendaof the National Polytechnic School, and whose parameters such as: dissipated energy, envelope curve, experimental capacity curve, secant stiffness, stiffness degradation, resistance degradation, equivalent viscous damping, hysteresis curves, drifts; important properties to determine the behavior of this type of system before occurrence of seismic events.

Once the described parameters were obtained, we proceeded to compare and differentiate between construction systems previously tested at CIV. In order to understand the influence of the masonry and frame structure, we took as a starting point the degree project of Lenin Grijalva and Henry Narváez Engineers. They compiled data from experimental tests and using programming and modeling programs such as SeismoStruct® and MATLAB®, they were able to determine separately the influence of the structural components with the infill masonry.

Finally, it is concluded that the cement fiber boards of lightweight concrete and expanded polystyrene with EPS have a better seismic behavior under lateral loads, in addition to having advantages such as weight reduction compared to a traditional system, speed and versatility of installation, which is only conditioned by its price in the market.

Keywords: Construction systems, Simple masonry, reinforced confined masonry, fiber cement panels, lightweight concrete, hysteresis tests.

CAPÍTULO 1 INTRODUCCIÓN

1.1 ANTECEDENTES

En nuestro país los muros de mampostería se utilizan ampliamente como tabiques para separar ambientes dentro de un edificio o una vivienda; puesto que su fácil disponibilidad en el mercado y tradición se mantienen en la actualidad.

Para el caso de Ecuador, existen limitados estudios relacionados a paredes de mamposterías simples, confinadas, reforzadas, y mucho menos empleando paneles de fibrocemento con hormigón alivianado y poliestireno expandido, puesto que este tipo de tecnología recién se está implementando en la industria de la construcción ecuatoriana, y no han sido utilizadas debido a la carencia de investigación e innovación de nuevas tecnologías en la construcción. Un ejemplo de una investigación que usa poliestireno se puede evidenciar en la tesis de pregrado expuesto por Orozco y Puente; donde exponen la Evaluación de la productividad en el sistema portante denominado hormi2 que básicamente es un sistema modular que está conformado por un núcleo central de poliestireno expandido con dos mallas de acero electrosoldado y galvanizado de alta resistencia en ambas caras, unidas entre sí por medio de conectores de acero de las mismas características y propiedades (Orozco & Puente, 2016). El modelo expuesto en nuestro estudio considera que el hormigón en su composición usará esferas de poliestireno, haciendo que el poliestireno se adhiera a la mezcla de hormigón, que junto con 2 planchas tipo sándwich agregarán un mejor comportamiento

El sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido* se forma a partir de cemento tipo portland usando en su composición polipropileno expandido(EPS) en forma de esferas, junto con agregados finos y otros aditivos constituyen un hormigón más ligero, en comparación al hormigón tradicional; y que junto a 2 planchas de fibrocemento forman un Panel Sándwich de Hormigón Alivianado con EPS (Jaramillo, 2016). Con proyecto de titulación se quiere indagar el comportamiento del sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido* en paredes de mamposterías: simples y confinadas, expuestas a cargas horizontales en su propio plano; construidas a escala natural y ensayadas de acuerdo a las normativas técnicas aprobadas en el Centro de Investigación de la Vivienda de la Escuela Politécnica Nacional, así como los protocolos de prueba interinos para conocer su rendimiento sísmico característico en elementos estructurales y no estructurales proporcionadas por la Federal Emergency Management Agency (FEMA 461, 2007) de los Estados Unidos.

Este panel Sándwich de Hormigón Alivianado con EPS que analizaremos en este estudio es un claro ejemplo de un sistema ecoeficiente: disminuye el impacto al medio ambiente; aumenta la eficacia del uso de recursos, (reciclaje de las esferas de poliestireno expandido) y que además en conjunto facilitan las siguientes características: aislamiento acústico y térmico, favorable resistencia al fuego pese a que tiene EPS, reducción del peso en la estructura que se traduce en un buen comportamiento sísmico, facilidad y rapidez al momento de la instalación, obteniendo rendimientos óptimos en mano de obra y construcción.

1.1.1 HIPÓTESIS

La pared constituida por el sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido*, posee un comportamiento sísmico favorable, bajo los parámetros establecidos en la Federal Emergency Management Agency (FEMA 461), La guía para el hormigón estructural alivianado (Guide for Structural Lightweight-Aggregate Concrete) (ACI Committee 213, 2014) y la Norma Ecuatoriana de la Construcción (NEC-SE-VIVIENDA, 2015) en el control de derivas.

1.2 OBJETIVOS

1.2.1 OBJETIVO GENERAL

Estudiar el comportamiento estructural de una pared construida mediante el sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido*, mediante ensayos destructivos a carga lateral, para obtener

parámetros que nos permitan caracterizar a este sistema, y que puedan ser usados como alternativa a la construcción tradicional.

1.2.2 OBJETIVOS ESPECÍFICOS

- Establecer las propiedades estructurales en los paneles de fibrocemento con hormigón alivianado y poliestireno expandido, mediante ensayos ejecutados en laboratorios; LEMSUR y CIV.
- Definir el gráfico momento-curvatura de las mamposterías confinadas mediante los resultados obtenidos experimentalmente en este estudio.
- Determinar la influencia del sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido con el* pórtico.
- Demostrar si efectivamente existe un aumento en la resistencia de una pared confinada construida con este material; comparándola con la misma pared sin confinar.
- Comparar los resultados de este estudio, con los resultados experimentales de otros trabajos de titulación previos.

1.3 ALCANCE

El presente trabajo de titulación contribuirá con un registro técnico que servirá para el correcto uso de las mamposterías elaboradas mediante el sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido*.

Para la parte experimental se construyeron un pórtico sin panel para estudiar la influencia que posee el panel dentro del sistema columna-viga-columna, 2 paredes de mampostería simple y 2 paredes de mamposterías confinadas reforzadas con una relación aproximada largo ancho de 1 a 1, donde las medidas y especificaciones están en conformidad con la Norma Ecuatoriana de la Construcción: *Viviendas de hasta 2 pisos con luces de hasta 5m* (NEC-SE-VIVIENDA, 2015).

Para conocer la importancia del comportamiento de las mamposterías construidas mediante el sistema de paneles alivianados con EPS, se obtuvo experimentalmente su Curva de Capacidad Envolvente

Se usará como punto de partida estudios realizados (Fernando et al., 2017) en la Universidad de Moratuwa, en donde se ejecuta una caracterización del material a usarse en esta investigación, obteniéndose parámetros como: Resistencia a compresión paralela, módulo de Elasticidad, y Carga de rotura en probetas analizadas experimentalmente; que serán corroboradas y analizadas en el CIV y LEMSUR.

1.4 JUSTIFICACIÓN

El presente estudio trata por medio de un análisis experimental y comparativo en mamposterías simples y confinadas, fomentar el uso de este sistema conociendo su máxima resistencia frente a cargas laterales cíclicas lo que caracteriza a un sismo.

En función de los resultados obtenidos del comportamiento experimental del sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido*, se alcanzará a incorporar posteriormente este nuevo sistema constructivo para la construcción de edificios y viviendas. Según (Vaidya, 2009) este sistema de construcción es moderno, de rápido crecimiento, su forma de construcción gana reconocimiento por su mayor eficiencia y capacidad de aplicación a las necesidades del mercado: rapidez de construcción, ahorro de materiales, aislamiento térmico, aislamiento acústico, resistencia contra el fuego, etc.

Para la pared de mampostería simple se usará un marco plano constituido por el sistema columna-viga-columna, cuyas dimensiones mínimas y cuantías de acero estarán dadas por la Norma Ecuatoriana de la Construcción: *Viviendas de hasta 2 pisos con luces de hasta 5m.* (NEC-SE-VIVIENDA, 2015).

Para la pared de mampostería confinada se usará la misma referencia de la mampostería simple, diferenciándose en su sistema constructivo y además tendrá acero de refuerzo longitudinal.

Entonces, para nuestro sistema de *paneles de fibrocemento con hormigón alivianado y poliestireno expandido*, se realizaron ensayos destructivos en mamposterías simples y confinadas reforzadas con una relación aproximada largo ancho de 1 a 1, las cuales fueron levantadas en el laboratorio del Centro de Investigación de la Vivienda y de los que se obtienen las siguientes propiedades: Energía Disipada, Amortiguamiento viscoso equivalente, Degradación de la rigidez, modos de falla característicos, derivas, etc.

Mediante la Curva de Capacidad obtenida experimentalmente se puede obtener un panorama del comportamiento de este sistema constructivo.

CAPÍTULO 2

MARCO TEÓRICO

2.1 MATERIALES

2.1.1 PROPIEDADES MECÁNICAS

2.1.1.1 Esfuerzo a compresión

El esfuerzo a compresión es posiblemente el parámetro más importante para determinar en los elementos de mampostería; magnitudes elevadas de esfuerzo indican una adecuada característica para propósitos estructurales, y magnitudes bajas indican que las unidades de mamposterías serán de baja calidad y poco duraderas. Lastimosamente esta propiedad es complicada de cuantificar correctamente debido a la gran variedad de formas, dimensiones, materiales; que no dejan relacionar la verdadera resistencia de la unidad con el resultado de la prueba de compresión, que a su vez no depende solo de su masa, sino también de forma y la altura de las unidades de mampostería. Los valores obtenidos son ejemplos generales de la conducta estructural de las mamposterías (Gallegos & Casabone, 2005).

La interacción entre el elemento de mampostería y el mortero es otro factor para tener en cuenta, ya que, si ambos están sometidos como conjunto a un mismo esfuerzo, la unidad de mampostería inducirá al mortero a esfuerzos de compresión en dirección transversal.

Figura 2.1. Curva Esfuerzo-deformación de una unidad de mampostería y mortero (Paulay & Priestley, 1992, p. 109)

2.1.1.2 Esfuerzo a tracción

En el momento en que una mampostería es expuesto a compresión, la mampostería falla por tensión transversal en el elemento de mampostería, siempre que se encuentre en un estado de cargas triaxiales (Gallegos & Casabone, 2005).

Las pruebas usuales para conseguir la resistencia a tensión son: Prueba de tensión indirecta y módulo de ruptura.

2.1.1.3 Esfuerzo de tensión directa

La obtención de la resistencia a tracción uniaxial se determina a partir de la resistencia a la compresión de la pieza debido a que esa es la manera en la que falla un muro de mampostería sometido a compresión. (Gallegos & Casabone, 2005).

El método más confiable para determinar los valores que más se asemejen a la realidad es el ensayo de tensión directa mediante fuerzas en su propio plano.

Una falla frágil se produce si se llega a superar el valor del esfuerzo máximo en la curva esfuerzo-deformación en los elementos de mampostería ya que esta relación es prácticamente lineal (Diaz & Leon, 2003).

2.1.1.4 Envolvente de falla (compresión-tensión)

Teniendo presentes las secciones anteriores 2.1.1.1 y 2.1.1.2, surge la necesidad fundamental de conocer la envolvente de falla biaxial compresión-tracción de la mampostería debido a la forma de falla de esta.

Hendry y Atkinson realizaron ensayos lo que derivó en la prefijación de la curva estandarizada que se indica en la **figura 2.2**, donde se deduce la formula siguiente:

$$\frac{f_b}{f'_b} = 1 - \left(\frac{f_1}{f'_1}\right)^{0.58}$$

Donde:

- f_b = Esfuerzo a compresión en su plano
- f'_{b} = Resistencia a la rotura por compresión en su plano
- f_1 = Esfuerzo a tracción axial
- f'_1 = Resistencia a la rotura por tracción axial

Figura 2.2. Envolvente de falla normalizada de la unidad de mampostería (Gallegos & Casabone, 2005)

2.1.1.5 Tensión diagonal

Hay varios estados en las que una pared de mampostería puede estar influenciada por efectos de tracción diagonal. Un evento importante es cuando una edificación es sometida a un sismo, también puede estar sometido a otros casos como: hundimientos diferenciales, cuando se encuentran cargas gravitaciones sobre estos o cuando hay un mal reparto de cargas perpendiculares en la mampostería (Tena & Miranda, 2003).
Esta metodología ha sido creada para dar importancia a la resistencia a corte de la mampostería debido a que existen una combinación de esfuerzos de compresión y cortante (Paulay & Priestley, 1992). Los esfuerzos de Tracción Diagonal son el resultado de los efectos que se producen por cargas laterales, las mismas que pueden ser ocasionadas por viento, gravitacionales excéntricas, sismos, y movimientos térmicos o de humedad; por estos motivos es de mucha importancia saber cómo se comporta mecánicamente la mampostería no reforzada bajo este tipo de situaciones, para poder predecir su comportamiento y evitar este modo de falla que ocurre con mucha frecuencia (Gallegos & Casabone, 2005).

2.1.1.6 Relación esfuerzo vs deformación unitaria

La relación esfuerzo-deformación de las unidades de mampostería depende significativamente del material constitutivo (Gallegos & Casabone, 2005).

El rango de cambio de valores es muy característico cuando hablamos de valores de módulo de elasticidad de los elementos de mampostería, que dependerá especialmente de la magnitud de resistencia a la compresión y de la muestra del material. No existe un método normalizado para calcular el módulo de elasticidad; sin embargo y con fines prácticos el cálculo se realiza como el módulo secante de la elasticidad desde el nivel cero de esfuerzo hasta un tercio de la resistencia del material (Diaz & Leon, 2003).

2.1.2 HORMIGÓN ALIVIANADO CON EPS

El uso de hormigones alivianados o ligeros surgen de la necesidad de aligerar el peso frente a sistemas tradicionales. La espuma (esferas) de poliestireno expandido (EPS) es un material liviano empleado en prácticas ingenieriles desde el año 1950. Se utiliza para reducir el asentamiento debajo de terraplenes, amortiguar el sonido y las vibraciones; debido a que su densidad es aproximadamente una centésima parte de la del suelo, tiene buenas propiedades de aislamiento térmico con rigidez y resistencia a la compresión comparables a la arcilla media (Mandlik et al., 2015, p. 2007).

Figura 2.3. Hormigón Alivianado con EPS (Mandlik et al., 2015)

Los residuos de poliestireno expandido en forma granular se utilizan como agregado ligero para producir hormigón estructural ligero con un peso específico que varía de 1200 a 2000 kgf / m³. El hormigón con agregado de poliestireno se produjo reemplazando parcialmente el agregado grueso en las mezclas de hormigón de referencia (peso normal) con un volumen igual de los gránulos de poliestireno triturados con recubrimiento químico (Xu et al., 2012).

Los resultados obtenidos sugieren que el hormigón de poliestireno expandido tiene margen para aplicaciones no estructurales, como paneles de pared, tabiques, etc. (Mandlik et al., 2015, p. 2009).

Estudios determinan que, para una densidad comparable, los hormigones alivianados o ligeros con agregado de EPS de menor tamaño muestran una mayor resistencia a la tensión y compresión. Las densidades de los hormigones varían significativamente con el cambio de volumen de EPS. La fallas observadas en ensayos a compresión fueron más graduales, y los especímenes fueron capaces de retener la carga después de la falla sin desintegrarse por completo. (Babu et al., 2006, p. 526).

En el análisis de los modos de falla del estudio indican que la falla del hormigón está presente en dos fases: la fase inicial es la aparición de microgrietas debido a la macro porosidad del hormigón, seguida de una segunda fase de propagación de microgrietas y/o macrogrietas donde puede ocurrir cualquiera de los dos modos de falla o los dos a la misma vez. Con esto se concluye que la relación del tamaño de la partícula con la resistencia a la compresión del hormigón alivianado resulta de la segunda fase de propagación de la microfisuración y/o macro-grieta por la competencia entre estos dos modos de falla (Miled et al., 2007).

El uso de hormigones alivianados en general está condicionado a su resistencia. Códigos como el ACI 318 y Eurocodigo-8 prohíben el uso de hormigones de muy baja resistencia (10MPa), dicha limitación se debe a falta de estudios y a consideraciones de durabilidad (Mousavi et al., 2014, p. 63). En el caso de nuestro país se debe incluir el uso de estos hormigones dentro de normas para que ayuden a la normalización de este tipo de material, que cada vez se va usando más en la construcción ecuatoriana.

2.1.2.1 Hormigón alivianado con EPS y planchas de fibrocemento

Si bien el uso de planchas (tableros) de fibrocemento encarecerían el producto final, se ha logrado demostrar que su uso con hormigones alivianados aumenta la capacidad de carga al incorporar tableros de fibrocemento de 5mm a cada lado. Esto podría deberse a algunos efectos de confinamiento y a los tableros que llevan una parte de la carga. Otra ventaja que se presentó fue la no desintegración en ensayos a compresión frente al panel sin tableros.

Figura 2.4. (a) Hormigón alivianado con tableros de fibrocemento. (b) Hormigón alivianado sin tableros de fibrocemento

(Fernando et al., 2017, p. 48)

2.1.2.2 Resistencia de los paneles a compresión, flexión e influencia de la esbeltez

En el estudio propuesto por la facultad de Ingeniería civil de la Universidad de Moratuwa se concluyó que la esbeltez juega un papel primordial en la resistencia a compresión paralela del panel. Con un panel completo de 2400 mm y espesor 10 mm (esbeltez =24) se obtuvieron valores más bajos que con el panel ensayado bajo normas establecidas cuya geometría fue de 690 mm y 10 mm de espesor (esbeltez=7). Sin embargo, y cuando se usa para paredes divisorias o de tabiquería (no muros portantes) la tensión en el nivel inferior será muy pequeña (0.017 N/mm²) y al poseer el panel una resistencia superior a 2.75 N/mm² se tiene un factor de seguridad significativamente grande. Del mismo modo y para probar la resistencia a carga lateral los paneles fueron ensayados por flexión, ubicándose en el tercio medio con fallas frágiles, llegando a la conclusión de que se pueden usar como muros de carga de edificaciones de una sola planta y como muros no portantes para edificaciones de varios pisos (Fernando et al., 2017, pp. 48–50).

2.1.2.3 Constructibilidad y aplicaciones

Su conectividad se puede asegurar en buena medida gracias al poseer una unión machihembrada siempre y cuando se use una lechada a base de cemento adecuada durante la construcción o a su vez con la ayuda de morteros adhesivos modificado con polímeros que ayuden a la correcta adherencia y trabajabilidad. Se puede obviar el enlucido debido a la presencia de los paneles de fibrocemento a ambos lados, además se debe realizar el tratamiento de juntas con cinta de fibra de vidrio para proporcionar un acabado limpio. El peso del panel deberá estar controlado, con el fin de que dos operarios puedan manipular los paneles. Deberá tener además varios componentes de acero galvanizado para tener la suficiente conectividad con el piso y las vigas (Fernando et al., 2017, p. 50).

Las aplicaciones incluyen muros de carga en construcciones de una sola planta (ver **Figura 2.5**) y como muros no portantes en otros edificios. Su uso también incluye edificios de apartamentos, hoteles, edificios comerciales que necesiten de particiones, donde el peso propio de cada piso puede verse reflejado en una ventaja significativa para los cimientos.

Figura 2.5. Aplicación de los paneles de fibrocemento con hormigón alivianado con EPS en una casa de una sola planta

(Fernando et al., 2017, p. 50)

2.1.2.4 Panelego (Panel sándwich de hormigón alivianado con EPS)

Es un panel prefabricado en dimensiones estándar 2440 x 610 mm en varios espesores. Se utilizó un espesor de 100 mm en este estudio. Sus componentes son cemento tipo portland usando en su composición polipropileno expandido (EPS) en forma de esferas y 2 planchas tipo sándwich de fibrocemento que aportan una resistencia adicional. Se han desarrollado experimentalmente varias dosificaciones que utilizan EPS para obtener una menor densidad en hormigones alivianados con una suficiente resistencia (Fernando et al., 2017, p. 46). El EPS es un material que contiene un 98% de aire y solo el resto es poliestireno, haciendo que tenga una densidad muy baja, en el rango de 20-30 kg/m³. Posee una estructura cerrada por lo que no absorbe agua, haciéndolo idóneo para producir un hormigón ligero. Un ejemplo de proporción de mezcla para hormigón alivianado a base de EPS se indica a continuación:

Materials	Content (kg/m ³)	By weight	
Cement	380	41.4%	
Sand	136	14.8%	
Water	282	30.7%	
EPS	22	2.4%	
Fly ash	98	10.7%	

Tabla 2.1. Ejemplo de proporción de mezcla para hormigón alivianado a base de EPS

(Fernando et al., 2017, p. 47)

El panel *de* fibrocemento con hormigón alivianado con *EPS* cuenta con una resistencia aproximada a la compresión $f'm \approx 40 \, kgf/cm^2$, el peso promedio del panel es 70-72 kgf/m^2 . Este panel cuenta con machihembrado a los dos lados más extensos que sirven para ensamblar las piezas, lo que posibilita que el levantamiento de la mampostería se realice con mayor rapidez.

En la **Figura 2.6**, se observa la composición de PANELego proporcionada por la empresa Print BuildingTM y distribuida por KubiecTM.

Figura 2.6. Composición de PANELego (PANELego, 2018)

PANELego se caracteriza por ser un producto liviano, pesa el 40% de una pared tradicional de bloque y el 30% del peso de una losa aligerada. Su instalación es dos veces más rápida que un sistema tradicional. Podemos destacar su resistencia, bajo peso, aislamiento térmico y acústico, incremento de área útil, versatilidad, rapidez, impermeabilidad, resistencia al fuego, buen comportamiento sísmico, características que le dan una serie de ventajas frente a sistemas tradicionales (PANELego, 2018, p. 2).

En la siguiente tabla se indica el proceso de instalación de PANELEGO:

PROCESO DE INSTALACIÓN					
1.	Trazado y replanteo				
2.	Chicotes laterales				
3.	Instalar panel de arranque				

Tabla 2.2 Proceso de instalación de PANELEGO

4.	Anclaje inferior
5.	Corte
6.	Instalar segundo panel
7.	Conexión entre paneles
8.	Instalar resto de paneles
9.	Tratamiento de juntas rígidas
10.	Tratamiento de juntas flexibles
11.	Empotrado de instalaciones
12.	Acabado

(PANELego, 2018, p. 11)

2.1.3 HORMIGÓN

Es una mezcla usada en la construcción que contiene cemento, arena, agua y ripio con una relación dependiente de la resistencia que se necesite, siendo la resistencia a los esfuerzos de compresión su característica principal tenemos para nuestro estudio un hormigón con un f´c de 210 kgf/m^2 .

Debido a que este hormigón tiene un comportamiento pésimo frente a esfuerzos de flexión y tracción se mejora su desempeño agregando acero teniendo como resultado hormigón armado.

2.1.4 ACERO DE REFUERZO

Las varillas de acero corrugado se utilizan para soportar los esfuerzos de tracción que el hormigón por sí solo no puede soportar. Estas barras aumentan la capacidad de deformación y evita la fisuración del hormigón.

2.2 PROTOCOLO FEMA 461

El protocolo I del Fema 461 establece protocolos de ensayo para obtener el rendimiento de los componentes, el cual se verifica principalmente por la aplicación de fuerzas sísmicas o desplazamientos inducidos. Se replican por la aplicación de cargas cíclicas cuya historia sigue un patrón determinado. Cabe recalcar que no se recomienda usar para pruebas de rendimiento de componentes estructurales y no estructurales que sean sensibles a la velocidad de deformación o efectos cuyo comportamiento está afectado significativamente por su respuesta dinámica.

Al aplicar el protocolo se obtienen los valores de fragilidad para los componentes estructurales y no estructurales y, además, se puede utilizar para derivar las propiedades en la curva esfuerzo - deformación constituyentes y los datos de las curvas de histéresis para los componentes estructurales necesarios para el análisis estructural y las evaluaciones. (FEMA 461, 2007)

2.3 MAMPOSTERÍA ESTRUCTURAL

Es un sistema constructivo compuesto por ladrillos, bloques, rocas, o *paneles* alivianados como en nuestro caso, que conforman un sistema monolítico que pueden resistir cargas de gravedad, viento, sismo, etc.

A continuación, se muestra su clasificación según su manera de construcción:

2.3.1 MAMPOSTERÍA SIMPLE

Este sistema de mampostería también es conocido como panel relleno, se construye primero las columnas y vigas para posteriormente rellenar con las unidades de mampuesto. Este sistema no tiene ningún refuerzo interno.

2.3.2 MAMPOSTERÍA REFORZADA

Este sistema estructural tiene refuerzos internos con barras, alambres y/o elementos compuestos como escalerillas de acero dispuestos horizontal o verticalmente, repartidos en toda la sección de la mampostería. La mampostería se perfora para introducir el refuerzo y se rellena con hormigón de relleno (grout).

En la siguiente figura se presentan las diferentes formas de reforzar la mampostería con acero de refuerzo:

Albañilería armada

Armadura difundida

Figura 2.7. Diferentes formas de Reforzamiento en Mamposterías.

(Gallegos & Casabone, 2005, p. 35)

2.3.3 MAMPOSTERÍA CONFINADA

En este sistema de mampostería se empieza construyendo el panel con los mampuestos para luego proceder a construir los elementos confinantes (columnas y vigas).

Puede ser de mampostería Simple o Armada. Este sistema constructivo permite una mejor unión entre el pórtico y la mampostería para estos funcionen como pórticos resistentes a momento (NEC-SE-MP, 2015).

2.4 DISEÑO

Para dimensionar los componentes estructurales que forman parte de la pared, se tomará como lineamiento la Norma Ecuatoriana de la Construcción: *Viviendas de hasta 2 pisos con luces de hasta 5m* (NEC-SE-VIVIENDA, 2015).

2.4.1 CIMENTACIÓN

Se debe colocar la cimentación bajo todos los ejes de la pared de mampostería, deberá ser continua y tener un refuerzo longitudinal en la parte superior y en la

parte inferior, tendrá estribos en toda su longitud que confinen al elemento. Los requisitos mínimos para una cimentación corrida se indican a continuación en la **Figura 2.8**

			Resistencia Mínima		
Cimentación corrida	Un piso	Dos pisos	Acero de Refuerzo	Hormigón	
			f _y (MPa)	f' _c (MPa)	
Ancho	250 mm	300 mm			
Altura	200 mm	300 mm			
			* 420		
Acero longitudinal	4 ф 10^ mm	4 cp 12° mm			
Fatribas	dh 0* mm @	dh 0* mm @	(barra corrugada)	18	
Estribos	φ ^o mm @	φ s° mm @			
	200mm	200mm			
Acero para anclaje de	10* mm	10* mm			
muros					

Figura 2.8. Dimensiones y Refuerzos Mínimos de la Cimentación Corrida (NEC-SE-VIVIENDA, 2015, p. 36)

2.4.2 DIMENSIONES MÍNIMAS DE LOS ELEMENTOS ESTRUCTURALES

Se usan dos columnas de hormigón armado en los extremos de la mampostería para confinarla. Estas deben tener continuidad; desde la cimentación hasta la parte superior de la mampostería. En la construcción de la pared, al hormigonar antes las columnas se tiene una pared simple, y al hormigonarlas después se obtiene una pared confinada. Los requerimientos mínimos de las columnas de confinamiento deben tener un ancho mínimo igual al espesor de la pared de mampostería y su área de sección transversal mínima de las columnas de confinamiento será de 200 cm² (NEC-SE-VIVIENDA, 2015, p. 66).

Del mismo modo se usan vigas de hormigón armado que estarán ubicadas en la parte inferior y superior de la pared de mampostería. Se pueden construir y hormigonar antes (simple) o después (confinada) de levantada la pared. Los requerimientos mínimos de sección transversal deben tener un ancho mínimo igual al espesor la pared de mampostería y su área de sección transversal mínima de los componentes de confinamiento es de 200 cm² (NEC-SE-VIVIENDA, 2015, p. 72).

Los requisitos mínimos que establece la NEC para los elementos antes mencionados se ilustran en la **Figura 2.9**

	Número de pisos de la vivienda	Elemento	Luz máxima (m)	altura total de entrepiso máxima (m)	Sección mínima base x altura (cm x cm)	Cuantia Longitudinal Mínima de acero Iaminado en caliente	Refuerzo de acero laminado Transversal Mínimo (estribos)
	1	Columnas	4.0	2.50	20x20(a)	1%	Diámetro 8 mm @ 10 cm
	Vigas			15x20(b)	14/fy sup. 14/fy inf.	Diámetro 8 mm @ 5 en L/4 (extremos) y 10 cm (centro)	
	2	Columnas	4.0	2.50	Piso 1: 25x25 Piso 2: 20x20	1%	Diámetro 8 mm @ 10 cm
	Vigas			20x20 (b)	14/fy sup. 14/fy inf.	Diámetro 8 mm @ 5 en L/4 (extremos) y 10 cm (centro)	

Figura 2.9. Requisitos Mínimos en función del Número de Pisos de la Vivienda con Pórticos de Hormigón y Losas.

(NEC-SE-VIVIENDA, 2015, p. 40)

2.4.3 DIMENSIONES MÍNIMAS DEL MURO DE MAMPOSTERÍA

Según la (NEC-SE-VIVIENDA, 2015) la separación entre columnas de confinamiento deberá ser igual o mayor a 25 veces el espesor de la pared de mampostería, o que 4m, esto con el fin de garantizar un buen confinamiento del sistema, además plantea que el espesor del muro (t) deberá ser mayor o igual a 10 cm (Ver **Figura 2.10**), además de satisfacer todos los requerimientos mencionados anteriormente en el apartado 2.4.2 y 2.4.3.

Figura 2.10. Requisitos fundamentales en Viviendas de Mampostería Confinada (NEC-SE-VIVIENDA, 2015, p. 65)

2.4.4 CUANTÍAS Y SEPARACIÓN DEL REFUERZO HORIZONTAL

La cuantía de acero horizontal (ρ_h) debe ser mayor o igual de 0.0007, evaluada en el área bruta de la sección de la mampostería, además que el refuerzo horizontal debe ser mayor o igual a 4 mm, y el espaciamiento vertical no puede ser mayor de 800 mm (NEC-SE-MP, 2015, p. 49).

El cálculo de ρ_h se lo hace mediante la ecuación:

$$\rho_h = \frac{A_{sh}}{S_h * t}$$

Donde:

- ρ_h : Cuantía de acero horizontal
- A_{sh}: Área del acero horizontal
- *S_h*: Separación horizontal del *A_{sh}*
- t: Espesor del muro

2.4.5 RIOSTRA HORIZONTAL (VIGA DE CONFINAMIENTO)

Se debe construir una viga a lo largo de la pared de mampostería, en la parte superior, que cumpla con las dimensiones mínimas adscritas en la sección 2.3.1 y 2.3.2. El armado de estas secciones estará en función de la ecuación 2.3 y 2.4:

Refuerzo Longitudinal:

$$As = 0.2 * \frac{f'c}{fy} * t^2$$

Donde:

- As: Área del refuerzo longitudinal [mm²]
- f'c: Resistencia a la compresión del hormigón [MPa]
- *fy*: Resistencia a la fluencia del acero [MPa]
- t: Espesor de la pared de mampostería [mm]

Refuerzo Transversal:

$$Asc = \frac{10000}{fy * h_c} * s$$

Donde:

- *Asc*: Área de refuerzo transversal [mm²]
- h_c : Dimensión de la altura en la viga en el plano del muro
- *fy*: Resistencia a la fluencia del acero [MPa]
- s: Separación de estribos [mm]. No deberá exceder en 1.5t o 200 mm
- t: Espesor de la pared de mampostería [mm]

2.5 COMPORTAMIENTO ANTE CARGAS LATERALES

Según Tena y Miranda (2002, p.119) ensayos realizados a compresión diagonal dan como resultado valores característicos de módulo de rigidez a cortante y esfuerzos cortantes resistentes, no obstante, estos valores no demuestran el verdadero funcionamiento de la mampostería debido a que no presentan esfuerzos por flexión ni deformaciones. En cambio, en el ensayo a carga lateral aparecen estos esfuerzos y deformaciones por flexión lo que representa el verdadero funcionamiento de las edificaciones de mampostería que son sometidas a trabajar bajo las influencias de sismos.

Los métodos de prueba para prueba de carga cíclica (reversible) engloban la resistencia al corte, degradación de la rigidez, y la ductilidad de los componentes verticales de los sistemas de resistencia a la fuerza lateral, incluidas las

conexiones de corte y las conexiones de sujeción aplicables (ASTM E2126, 2019).

Estos métodos de prueba cíclica tienen como objetivo evaluar el rendimiento de los componentes verticales del sistema a la fuerza lateral que son sometidos a cargas sísmicas. Este proceso de cargas simula las acciones y sus efectos en los especímenes (ASTM E2126, 2019).

La prueba monotónica tiene por objeto proporcionar datos de desplazamiento continuo de carga de un espécimen de prueba emparejado con condiciones límite idénticas a las de los especímenes que serán probados cíclicamente.

Para realizar el ensayo ante cargas laterales se basó en la Norma ASTM 2126-19 método (c): CUREE Basic Loading Protocol, el cual implica ciclos de desplazamiento agrupados en fases a niveles de desplazamiento cada vez mayores. El historial de carga comienza con una serie de (seis) ciclos de iniciación a pequeñas amplitudes (de igual amplitud) (ASTM E2126, 2019). Este ensayo simula el comportamiento de una viga en cantiléver teniendo a la misma como el muro y el empotramiento como la base del muro, la carga actúa en el plano transversal a la cara del muro (viga en voladizo) e introduce esfuerzos cortantes paralelamente con esfuerzos de flexión. Para poder realizar este ensayo se debe tener la relación altura longitud consistente a medidas reales en un edificio. A continuación (**Figura 2.11**), se presenta la configuración de ensayo para la pared de mampostería:

Figura 2.11. Ejemplo de configuración de la prueba para una pared de mampostería (ASTM E2126, 2019)

2.6 CURVA DE HISTÉRESIS

Consiste en la representación esquemática de los ensayos cíclicos reversibles de carga y descarga que relacionan la carga lateral aplicada y sus desplazamientos laterales (Ver **Figura 2.12**).

Figura 2.12. Ejemplo de Curva de Histéresis Observada y Curva de Envolvente (ASTM E2126, 2019, p. 3)

Mediante esta curva se puede encontrar la envolvente de Ductilidad de Desplazamiento, así como: resistencia máxima, energía que disipa el sistema, rigidez secante y su degradación, amortiguamiento viscoso equivalente.

Las curvas de capacidad (envolventes) serán diferentes para cada tipo de mampostería, por ejemplo, una mampostería confinada reforzada tendrá un mejor comportamiento que una mampostería confinada sin refuerzo horizontal o vertical y mejor comportamiento que una mampostería simple. Para tener una idea clara en 1997 Tomazavic y Klemenc realizaron una curva idealizada en donde se determinaron 3 regiones principales que son:

- 1. Región de comportamiento lineal (elástico), en donde empiezan a aparecer agrietamientos mínimos en el sistema de elementos estructurales y no estructurales, y que prácticamente se considera que presenta un comportamiento lineal que está relacionado a una Rigidez Lateral Efectiva K_e
- 2. Región de resistencia máxima: Está relacionada con una carga lateral máxima $V_{máx}$ y su desplazamiento $d_{máx}$. Su rigidez $K_{Vmáx}$ será menor que la rigidez lateral efectiva (K_e), logrando así conseguir su máxima resistencia.
- Región de degradación de la resistencia y rigidez, en donde se encuentra la Rigidez última K_u, determinada mediante la carga lateral que provoca el desplazamiento último o justo antes del colapso (Alcocer et al., 2013).

Figura 2.13. Zonas principales de comportamiento de una pared de mampostería producida por cargas laterales cíclicas

(Alcocer et al., 2013, p. 31)

2.6.1 ENERGÍA DISIPADA

Se denomina al trabajo realizado en el proceso cuando un sistema estructural se deforma. Parte de esta energía se libera en el proceso de descarga, mientras que la energía remanente del sistema se disipa a través de diferentes mecanismos propios del sistema:

- Amortiguación de material,
- Agrietamiento y aplastamiento del panel,
- Fricción entre el pórtico y el panel generando fisuras,
- Impacto resultante del balanceo del panel de relleno dentro del marco,
- Trabajo histerético de los miembros del marco.

La disipación de energía por ciclo de carga/descarga corresponde al área contenida en cada ciclo de histéresis, y graficando este valor contra el máximo lateral desplazamiento logrado en cada ciclo.

(b) Dissipated energy

Figura 2.14. Evaluación de la Energía Disipada proveniente de un ensayo histerético (Crisafulli, 1997, p. 127)

2.6.2 RIGIDEZ SECANTE (Ks)

La rigidez disminuye significativamente cuando aumenta el desplazamiento lateral, debido al ensayo a carga cíclica. Para evaluar este efecto, la rigidez secante generalmente se calcula de pico a pico, tal como se indica en la **Figura 2.15**, y se relaciona con la rigidez lateral efectiva (K_e) para calcular su degradación. En otras palabras, la rigidez secante por ciclo equivale a obtener la pendiente de la recta secante que conecta los puntos máximos de carga o desplazamiento en ambos sentidos; para un mismo ciclo de histéresis (Crisafulli, 1997, p. 123).

Figura 2.15 Definición de Rigidez Secante, (K_s) de pico a pico. (Crisafulli, 1997, p. 124)

2.6.3 DEGRADACIÓN DE LA RIGIDEZ

El decremento en la rigidez se ve influenciada por las cargas que afectan a la estructura al momento de un sismo o en su efecto al aplicar cargas cíclicas sobre el muro. Esta degradación es evaluada por la variación de la rigidez para cada ciclo de carga. La degradación de la rigidez se evidencia por la disminución de la pendiente de la recta secante que une los dos puntos de máxima distorsión del ciclo; esto nos deja ver que mientras incrementa desplazamiento de la mampostería, disminuirá la pendiente (Rigidez secante). Estudios expuestos (Crisafulli, 1997) denotan que a pesar de las numerosas pruebas cíclicas llevadas a cabo por diferentes investigadores, no hay una conclusión general sobre cómo predecir la degradación de la resistencia de los marcos rellenos.

2.6.4 AMORTIGUAMIENTO VISCOSO EQUIVALENTE (ξ)

El concepto de amortiguamiento viscoso equivalente se ha extendido para sistemas no lineales y es otra forma de cuantificar la energía que disipa un sistema. Para estos casos ξ representa no solo el efecto de amortiguación si no también la energía disipada debido al trabajo plástico (Crisafulli, 1997).

Se puede determinar mediante la expresión:

$$\xi = \frac{E_D}{4\pi E_A}$$
$$E_A = \frac{K_S * \Delta_{max}^2}{2}$$

Donde:

 E_D : Energía Disipada en el ciclo, obtenida con el área del ciclo de histéresis correspondiente a cada ciclo.

E_A: Energía de Deformación absorbida en el ciclo (Para sistemas elásticos de 1 G.D.L)

 K_S : Rigidez secante en el ciclo, obtenida con los puntos máximos de deformación o carga, correspondiente a cada ciclo.

 $\Delta_{máx}$: Desplazamiento máximo para cada ciclo.

A continuación, se indica la importancia de E_A y E_D para este caso:

Figura 2.16. Evaluación de la Energía Absorbida E_A y Energía Disipada E_D . (Crisafulli, 1997, p. 129)

2.6.5 ENVOLVENTE (CAPACIDAD MAXIMA)

La curva de capacidad se obtiene mediante la determinación de los estados límites en la curva de histéresis, la envolvente del comportamiento histerético es la unión de los puntos máximos o estados límites. Esta curva se consigue a través de un análisis estático no-lineal bajo desplazamientos laterales monótonamente crecientes. Cada fuerza cortante basal está asociada a un incremento del desplazamiento lateral global de la estructura. Esta fuerza versus los desplazamientos producen la curva de capacidad (Alcocer et al., 2013, p. 27).

Figura 2.17. Curva de capacidad máxima con estados límite característicos, determinada a partir de la envolvente de un ensayo histerético.

(Alcocer et al., 2013, p. 27)

Alcocer asocia la curva envolvente de capacidad (**Figura 2.17**) en el cual define tres estados límites característicos que serán usados en el presente proyecto de investigación:

(A). Límite Elástico, cuando el muro alcanza el límite elástico y se agrieta (primera fisura);

(B). Estado de Resistencia Máxima, cuando el muro alcanza su carga máxima; y

(C). Estado de Resistencia Última, donde la resistencia del muro se deteriora superando un límite aceptable determinado. Para fines prácticos, una degradación mayor al 70% de la resistencia máxima define el estado de colapso de la estructura.

Esta curva proporciona información sobre el comportamiento y nivel de daño estructural, resistencia máxima y colapso de la estructura, y una vez determinada es posible asociar un índice de daño uniforme en la estructura (Fischinger et al., 2004, p. 305).

2.6.5.1 Resistencia y degradación de la resistencia

La particularidad más significativa que deben poseer las estructuras es la capacidad para resistir o transmitir cargas. Por eso es importante al momento de diseñar cualquier tipo de estructura. Para que la estructura funcione correctamente y no falle, las cargas a aplicar en el sistema deberán ser mayores a las cargas de diseño calculadas.

La degradación es el decremento de la resistencia de la estructura al aumentar los desplazamientos debido a fuerzas cíclicas impartidas en dicha estructura.

2.6.5.2 Ductilidad de desplazamiento

El desplazamiento es la manera más práctica de evaluar una estructura y su capacidad para aportar ductilidad. Estos desplazamientos se pueden obtener basándose en el método equivalencia elasto-plástica con rigidez inicial reducida, que expone que el desplazamiento último (Δu) corresponde a la carga máx. (Fu); y para el desplazamiento de fluencia (Δy) se estima que es correspondiente al desplazamiento del 70% de la carga última.

Figura 2.18. Determinación de (Δ y) y (Δ u) (Rivas, 2017)

La ductilidad de desplazamiento se obtiene de la siguiente ecuación:

$$\mu = \frac{\Delta u}{\Delta y}$$

Donde:

 $\Delta u = \text{Desplazamiento último } (\Delta = \Delta y + \Delta p)$

 $\Delta y =$ Desplazamiento de fluencia

Figura 2.19. Deflexiones (Paulay & Priestley, 1992)

2.6.5.3 Factor de comportamiento sísmico

Tomazevicet determinó que la fuerza lateral elástica (V_e) de la estructura y la fuerza última de diseño (V_{du}), da como resultado el factor de comportamiento sísmico, como se puede ver a continuación:

Figura 2.20. Factor de comportamiento sísmico.

(Alcocer et al., 2013)

Se utiliza este factor para disminuir las solicitaciones de diseño; viéndolo en un rango lineal o elástico, debido a que se asumen la aparición de rótulas plásticas (Bedoya-Ruiz et al., 2015). Y se obtiene con la siguiente ecuación:

$$R = \sqrt{2\mu - 1} = \frac{V_e}{V_{du}}$$

Donde:

 μ : ductilidad de desplazamiento global

2.6.6 DERIVAS

Se entiende como deriva al desplazamiento relativo de un piso por la acción de una fuerza horizontal. Se establece que la deriva máxima no debe ser mayor del 1% para estructuras de mampostería, alcanzada como un porcentaje de la altura total de la mampostería (NEC-SE-DS, 2008), tal como se indica a continuación:

$$\delta m \acute{a} x = \frac{\Delta_{m \acute{a} x}}{h p i s o} \le 0.01$$

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

Figura 2.21. Derivas máximas	$\Delta_{\rm M}$ aceptables	por la NEC
------------------------------	-----------------------------	------------

(NEC-SE-DS, 2008)

Figura 2.22. Derivas de piso (Paulay & Priestley, 1992)

CAPÍTULO 3

CARACTERIZACIÓN DE LOS MATERIALES

A continuación, se describen y se detallan los ensayos de caracterización de los paneles de fibrocemento con hormigón alivianado con EPS, esto con el objeto de obtener datos experimentales de comportamiento en este material que nos permitan conocer sus propiedades mecánicas frente a diferentes estados de carga.

Los ensayos se realizaron en el Centro de Investigación de la Vivienda (CIV), y en el Laboratorio de Ensayo de Materiales, Mecánica de Suelos y Rocas (LEMSUR); basados en normas y protocolos de ensayo proporcionadas por las normas nacionales e internacionales.

3.1 ESTUDIOS EN LOS MATERIALES

Las condiciones de aplicación de cargas o esfuerzos son diversas, estando normalmente contemplados en normativas tanto nacionales como internacionales. Para la caracterización de los paneles de fibrocemento con hormigón alivianado con EPS, se ha tomado como punto de referencia las normas americanas de materiales: ASTM (American Society for Testing and Materials), obteniéndose los siguientes parámetros de caracterización que se detallan a continuación:

- Densidad
- Corte
- Compresión perpendicular
- Compresión paralela
- Tracción diagonal y
- Flexión

3.1.1 DENSIDAD

Para obtener la densidad de los *paneles de fibrocemento con hormigón alivianado con EPS se* tomó como referencia la norma: **American Society for Testing and Materials (ASTM C271, 2016); Standard Test Method for Density of Sándwich Core Materials**. Dicho método de prueba cubre los requerimientos necesarios para determinar la densidad de materiales básicos tipo sándwich.

3.1.1.1 Descripción del ensayo

Este ensayo sirve de procedimiento estándar para conseguir datos de densidad de materiales tipo sándwich, y usarlas con fines de diseño, aportando con especificaciones técnicas, desarrollo y para garantizar la calidad de estos.

Según la (ASTM C271, 2016) se debe obtener al menos 5 muestras por condición de prueba cuya geometría, cuya geometría deberá tener una sección transversal cuadrada o rectangular.

Muestra

El tamaño mínimo recomendado por muestra es de 30cm de largo x 30cm de ancho, con un grosor igual al grosor del núcleo sándwich.

Por eficiencia en el corte de los paneles se tomaron muestras rectangulares de 60cm x 30cm x 10cm.

Figura 3.1. Muestras usadas en el cálculo de la densidad real.

Acondicionamiento de la muestra

La preparación del modelo consiste en introducir la muestra en un horno a una temperatura de 105 ± 3 °C por 24 hrs. para que se seque. Se debe registrar las dimensiones y su peso antes y después del secado; esto con el fin de determinar el contenido de humedad, y posteriormente saber su densidad (ASTM C271, 2016).

Cálculos:

Para calcular el contenido de humedad de la muestra, se emplea la siguiente expresión:

$$w[\%] = \frac{Wh - Ws}{Ws} x100$$

Donde:

w[%]: Contenido de humedad del panel.

Wh: Masa húmeda de la muestra [gr].

Ws: Masa seca de la muestra después de 24 hrs [gr].

Para calcular el contenido de humedad, se emplea la siguiente expresión :

$$d = \frac{m}{V}$$

Donde:

d: Densidad del panel [kg/m³],

m: Masa del panel [kg].

V: Volumen del panel [m³].

3.1.1.2 Resultados obtenidos

La densidad se obtuvo de la división de la masa del panel dividido entre el producto de sus dimensiones (ancho, largo y espesor).

A continuación, en la **Tabla 3.1** se señalan los valores obtenidos del ensayo a densidad de un panel de 10 cm de espesor. Para un mayor detalle de valores dirigirse al **Anexo I**.

Tabla 3.1.	Resultados	del ensayo	a densidad	de los	paneles	de hormi	gón aliv	vianado
		~			1		2	

Probeta	CONTENIDO DE HUMEDAD w [%]	CONTENIDO DE HUMEDAD PROMEDIO w [%]	DENSIDAD [kg/m ³]	DENSIDAD PROMEDIO [kg/m ³]	PESO PROMEDIO PANEL [kgf/m ²]
Mcpa-1	15.73		523.78		
Mcpa-2	16.21		528.47		
Mcpa-3	21.42	19.50	508.50	509.16	60.80
Mcpa-4	24.15		491.72		
Mcpa-5	19.97		493.34		

3.1.2 CORTE

La resistencia a corte de los *paneles de fibrocemento con hormigón alivianado con EPS se* calculó tomando como referencia la norma: **American Society for Testing and Materials (ASTM C393, 2016); Standard Test Method for Edgewise Compressive Strength of Sándwich Constructions**. Dicho método de prueba cubre los requerimientos necesarios para determinar la resistencia al corte aplicada en dirección perpendicular al plano de las láminas de materiales básicos tipo sándwich (ASTM C393, 2016).

3.1.2.1 Descripción del ensayo

Este procedimiento de prueba consta en aplicar un momento flexionante normal al plano de un panel sándwich, idealizado como una viga apoyada en varios puntos. Se toman las medidas de carga aplicada vs deformación hasta que ocurra la falla del panel.

Figura 3.2. Ensayo a Corte

Muestra

Según la (ASTM C393, 2016) se debe obtener al menos 5 muestras por condición de prueba, cuya geometría deberá tener una sección transversal rectangular.

En base a ensayos previos realizados en el CIV se tomaron medidas del panel de 65 cm x 20 cm x 10cm, esto con el fin de usar la configuración que más se adapte a los instrumentos proporcionados por el Centro.

Figura 3.3. Probetas para el ensayo de la resistencia a Corte

Configuración

De acuerdo a la norma antes mencionada existen 2 tipos de configuración para la carga: una de 3 puntos (Configuración Estándar) y otra de 4 puntos (Configuración no Estándar) con dos barras de soporte que abarcan el ancho del espécimen ubicados por encima del panel, tal como se puede evidenciar en la **Figura 3.4**. La fuerza se aplica verticalmente por medio de barras de carga, con las barras de soporte fijadas en su lugar en la máquina de prueba.

Medición

Se debe medir la carga designada en la muestra del panel y la deflexión en el centro de la luz del panel hasta el instante de su falla. Se necesitará tomar sus dimensiones iniciales para establecer su esfuerzo máximo a corte asignado en el panel.

Sus únicos modos de falla aceptables son el corte del núcleo (hormigón alivianado) o la unión de núcleo al revestimiento. No se permite si la falla del panel sándwich ocurre en la unión entre el núcleo y la cara de acero (apoyos) (ASTM C393, 2016).

Cálculos

El esfuerzo máximo de corte expresado en kgf/cm², se consigue dividiendo la carga máxima aplicada entre su área de corte.

Se calcula mediante de la siguiente manera:

$$F_s^{ult} = \frac{P_{max}}{(d+c)*b}$$

Donde:

 F_s^{ult} : Esfuerzo máximo a cortante [kgf/cm²].

P_{max}: Carga máxima aplicada sobre el panel [kgf].

- *d*: Espesor del panel completo [cm].
- c: Espesor del núcleo sándwich [cm].
- *b*: Ancho del panel [cm].

Figura 3.5. Dimensiones del espesor del panel Tipo Sándwich (ASTM C393, 2016)

3.1.2.2 Resultados obtenidos

A continuación, en la **figura 3.6** se presentan las gráficas carga – deformación para las diferentes muestras ensayadas a corte.

Figura 3.6. Curvas Carga Vs. Deformación del Ensayo a Corte

Para la **Tabla 3.2** se exponen los resultados conseguidos de los ensayos a corte. El tratamiento de los datos obtenidos en los ensayos a corte se puede observar en el **Anexo I**.

Probeta	Carga máxima <i>P_{max}</i> [kgf]	Área de corte (d + c) * b [cm ²]	Esfuerzo máximo promedio de corte: F ^{ult} [kgf/cm ²]	Esfuerzo máximo promedio de corte: <i>F^{ult} [</i> MPa]								
MC-1	1183.695											
MC-2	990.506	1222 0.913										
MC-3	905.974		1222 0.913	0.090								
MC-4	1256.378											
MC-5	869.777											

Tabla 3.2. Valores obtenidos del ensayo de corte

3.1.3 COMPRESIÓN PERPENDICULAR

La resistencia a compresión perpendicular de los *paneles de fibrocemento con hormigón alivianado con EPS se* calculó tomando como referencia la norma: **American Standard Testing Methods (ASTM C365, 2016); Standard Test Method for Flatwise Compressive Properties of Sandwich Cores**: Dicho método de prueba cubre los requerimientos necesarios para determinar la resistencia a la compresión perpendicular al plano de las láminas de materiales básicos tipo sándwich, además del cálculo del valor del módulo de elasticidad del panel tipo sándwich (ASTM C365, 2016).

3.1.3.1 Descripción del ensayo

Este método cubre los procedimientos necesarios para encontrar la resistencia a compresión perpendicular, así como la determinación de su módulo de elasticidad; parámetros importantes de caracterización con fines de diseño. Se toman los valores de carga vs deformación hasta que ocurra la falla.

Muestra

Según la (ASTM C365, 2016) se debe obtener al menos 5 muestras por condición de prueba, cuya geometría deberá ser de sección transversal cuadrada o circular que no sea mayor de 100 cm², y deben tener el mismo grosor que el grosor del núcleo sándwich. Para la preparación de la muestra se debe garantizar que la misma debe estar sin superficies rugosas o irregulares; y las superficies cargadas deberán ser paralelas entre sí y perpendiculares a los lados de la muestra.

Se adoptaron 5 muestras de 10cm x 10cm x 10cm y fueron ensayadas en el LEMSUR

Figura 3.7. Probetas usadas en el ensayo a compresión perpendicular.

Medición

Para el ensayo a compresión perpendicular se debe realizar el registro de carga – deformación de la muestra, así como la medición de las dimensiones iniciales de la misma. El esfuerzo máximo de corte se logra relacionando la carga máx. con el área de corte.

Cálculos

El esfuerzo máximo de corte (F_z^{ult}) en kgf/cm², se consigue dividiendo la carga máx. y el área de la sección transversal.

Se calcula mediante la siguiente expresión:

$$F_z^{ult} = \frac{P_{max}}{A}$$

Donde:

 F_z^{ult} : Esfuerzo último de corte [kgf/cm²].

 P_{max} : Carga máx. obtenida en la prueba a compresión perpendicular [kgf].

A : Área de la sección transversal [cm²].

Una vez obtenida la curva Esfuerzo - Def. Unitaria se establece el módulo de elasticidad a compresión (E_z^{fc}) con la pendiente de la recta secante con valores de

deformación en un rango del 25 al 50% de la máxima de la deformación unitaria (ASTM C365, 2016).

Se calcula mediante la expresión:

$$E_z^{fc} = \frac{(P_{0.003} - P_{0.001}) * t}{(\delta_{0.003} - \delta_{0.001}) * A}$$

Donde:

- E_z^{fc} : Módulo de Elasticidad a Compresión [kgf/cm²].
- $P_{0.003}$: Fuerza aplicada correspondiente a $\delta_{0.003}$ [kgf].
- $P_{0.001}$: Fuerza aplicada correspondiente a $\delta_{0.001}$ [kgf].
- $\delta_{0.003}$: Valor de deflexión registrado tal que δ/t esté más cerca de 0.003 [cm].
- $\delta_{0.001}$: Valor de deflexión registrado tal que δ/t esté más cerca de 0.001 [cm].
- *t* : Espesor del panel [cm].
- A : Área de corte $[cm^2]$.

Figura 3.8. Región Lineal (Hook) con materiales tipo Sándwich (ASTM C365, 2016, p. 7)

3.1.3.2 Resultados obtenidos

A continuación, en la **Figura 3.9** se presentan las gráficas esfuerzo – deformación unitaria obtenida experimentalmente para las 5 probetas.

Figura 3.9. Curvas esfuerzo vs. Deformación del Ensayo a compresión perpendicular La **Tabla 3.3** muestra los valores conseguidos en los ensayos a compresión perpendicular. El tratamiento de los datos obtenidos en los ensayos a compresión perpendicular se puede observar en el **Anexo I**.

Probeta	Carga máxima P _{max} [kgf]	Resistencia a Compresión Perpendicular F ^{ult} :[kgf/cm ²]	Resistencia a Compresión Perpendicular F_z^{ult} : [MPa]	Módulo de Elasticidad a Compresión Perpendicular E_z^{fc} [kgf/cm ²]	Módulo de Elasticidad a Compresión Perpendicular E_z^{fc} [MPa]
MCPE-1	2522.379				
MCPE-2	2131.929				
MCPE-3	2616.805	25.149	2.466	1159.636	113.721
MCPE-4	2727.037				
MCPE-5	2023.736				
PROM.	2404.377				

Tabla 3.3. Valores obtenidos en el ensayo a compresión perpendicular

3.1.4 COMPRESIÓN PARALELA

La resistencia a compresión paralela de los *paneles de fibrocemento con hormigón alivianado con EPS se* calculó tomando como referencia la norma: **American Standard Testing Methods (ASTM C364, 2016); Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions:** Dicho método de prueba cubre los requerimientos necesarios para determinar la resistencia a la compresión paralela al plano de las láminas de materiales básicos tipo sándwich (ASTM C364, 2016).

3.1.4.1 Descripción del ensayo

Según la (ASTM C364, 2016), este método consiste en someter un panel sándwich a una fuerza de compresión monotónicamente creciente paralela al plano de sus caras. La fuerza se transmite al panel a través de soportes finales fijos o unidos, que pueden ser placas de soporte en los extremos. Se toman los valores de carga vs deformación hasta que ocurra la falla (ASTM C364, 2016).

Figura 3.10. Ensayo a compresión paralela

Muestra

Según la (ASTM C364, 2016) se debe obtener al menos 5 muestras por condición de prueba, cuya geometría deberá tener una sección transversal rectangular.
El largo [L] del espécimen deberá cumplir con $L \le 8 x t$, donde t es el espesor del panel y su ancho [W] deberá ser $50 \le W \le L; W \ge 2 x t$. Las unidades dadas se encuentran en mm.

Se tomaron muestras de paneles con medidas de 60x30x10cm. Para la preparación de la muestra se debe garantizar que la misma debe estar sin superficies rugosas o irregulares; y las superficies cargadas deberán ser paralelas entre sí y perpendiculares a los lados de la muestra.

Medición

La norma exige la medición continua de la carga de compresión y la deformación de la probeta, así como la medición de las dimensiones iniciales de la misma. La velocidad sugerida del ensayo según la norma es de 0.5 mm/min y no se permitirá el fallo en la unión a los bloques de carga o dentro de un grosor de muestra de las abrazaderas finales no son modos de falla aceptables y los datos se anotarán como no válidos.

Se consideran aceptables los siguientes modos de falla:

- Pandeo de la lámina frontal
- Compresión de la lámina frontal
- Acolchado de la hoja frontal
- Falla de compresión del núcleo
- Falla de corte del núcleo

Figura 3.11. Modos de Falla comúnmente observados en la determinación de la resistencia a compresión paralela

(ASTM C364, 2016)

Cálculos

El esfuerzo máximo a compresión paralela en kgf/cm² se calcula mediante la expresión:

$$\sigma = \frac{P_{max}}{A}$$

Donde:

 σ : Esfuerzo a compresión paralela [kgf/cm²].

 P_{max} : Carga máx. obtenida en la prueba a compresión paralela [kgf].

A : Área de corte $[cm^2]$.

Del mismo modo se calcula el módulo de elasticidad a compresión paralela.

3.1.4.2 Resultados obtenidos

Para la **Figura 3.12** se puede observar la curva carga - deformación obtenida experimentalmente de las 5 probetas.

Figura 3.12. Curva Carga vs. Deformación para el ensayo a Compresión Paralela. La **Tabla 3.4** muestra los valores conseguidos en los ensayos a compresión paralela. El tratamiento de los datos obtenidos en los ensayos a compresión paralela se puede observar en el **Anexo I**.

Probeta	Carga máxima P _{max} [kgf]	Resistencia a Compresión Paralela F ^{ult} [kgf/cm ²]	Resistencia a Compresión Paralela F ^{ult} [MPa]	Módulo de Elasticidad a Compresión Paralela E_z^{fc} [kgf/cm ²]	Módulo de Elasticidad a Compresión Paralela E_z^{fc} [MPa]
MCPA-1	8274,95				
MCPA-2	9554,52				
MCPA-3	9179,41	30.373	2.979	2410.422	236.382
MCPA-4	10181,40				
MCPA-5	8368,96				
PROM.	9111.85				

Tabla 3.4 Valores obtenidos en el ensayo a compresión paralela

3.1.5 TRACCIÓN DIAGONAL

La resistencia a tracción diagonal de los *paneles de fibrocemento con hormigón* alivianado con EPS se calculó tomando como referencia la norma: American

Standard Testing Methods (ASTM E519, 2015); Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages: Dicho método de prueba cubre los requerimientos necesarios para determinar la resistencia al corte diagonal o también llamado tracción diagonal en muretes cargados a lo largo de su diagonal principal. (ASTM E519, 2015).

3.1.5.1 Descripción del ensayo

Este método consiste en aplicar a una fuerza axial monotónicamente creciente a un murete de mampostería en dirección de su diagonal principal, causando una falla de tensión diagonal con la muestra dividiéndose en paralelo a la dirección de la carga (ASTM E519, 2015).

Muestra

Se seleccionó el tamaño de la muestra como el más pequeño que sería razonablemente representativo de un conjunto de mampostería de tamaño completo.

Según la norma (ASTM E519, 2015) se debe obtener al menos 3 muestras por condición de prueba, cuya geometría deberá tener una sección transversal cuadrada. Se tomaron muestras de paneles con medidas de 60x60x10cm.

Medición

La norma requiere que la medición la carga de compresión y la deformación del panel (muro) se realice de forma continua, así como también se realice la medición de las dimensiones iniciales de la misma.

Cálculos

No se consiguieron utilizar las fórmulas otorgadas en la norma, esto debido a que en el ensayo no se obtuvieron fallas características (fallo por corte) típicas de una mampostería. La falla predominante fue una falla por compresión y aplastamiento en las esquinas del panel.

Figura 3.13. Falla debido al aplastamiento en las esquinas conseguido en el ensayo de tracción diagonal.

En uno de los procedimientos realizados por (Robles & Castillo, 2005), cuando obtuvieron la misma falla (aplastamiento) en el estudio de tensión diagonal para módulos de paneles de poliuretano del sistema METCOL se usó un modelo computacional en un programa especializado en estructuras; donde se simula el panel con la carga máxima obtenida de los registros de ensayos distribuida uniformemente a lo largo de su esquina superior y en la otra esquina una restricción de movimiento idealizada con apoyos.

En base a ese estudio, se procedió a modelar el *panel de fibrocemento con hormigón alivianado con EPS*, con las siguientes consideraciones:

• El modelamiento del panel se ejecutó mediante el uso del programa SAP 2000 v16.0.0 plus®, a través de su discretización por elementos finitos en

un elemento tipo Solid, de 60x60x10 cm. Las características físicas y mecánicas del elemento Solid se pueden observar en la **Figura 3.14:**

Property Name	Solido_Homrigon_Alivianado
Section Notes	Modify/Show
	Display Color
Material	
Material Name	+ Solido_10cm 💌
Material Angle A	0.
Material Angle B	0.
Material Angle C	0.
Туре	
✓ Incompatible M	odes

Figura 3.14. Características del elemento tipo Solid

 Las características del material se pueden observar a continuación, donde se indican los valores asignados a esta sección.

Material Name and Display Color	Solido_10cm
Material Type	Other
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 6.08	0E-04 Kgf, cm, C 💌
Mass per Unit Volume 6.20	0E-07
Isotropic Property Data	
Modulus of Elasticity, E	2410.42186
Poisson's Ratio, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	927.0853

Figura 3.15. Asignación de las propiedades del panel en el programa SAP 2000® (Unidades en kgf y cm)

- Para la densidad real se utilizó el valor de 608.02 kg/m³, obtenido del Anexo I. Con el valor del Módulo de Elasticidad obtenido previamente de la Tabla 3.4, se tomó del ensayo de compresión paralela realizado durante el desarrollo de esta investigación, cuyo valor fue de 2410.42 kgf/cm².
- Se procedió a discretizar el elemento tipo Solid, se agregaron las restricciones a la base, se definió un constraint en los nudos donde se aplicó la carga y finalmente se asignó la carga máxima a lo largo del elemento ya discretizado, tal como se indica a continuación en la Figura 3.16:

3.1.5.2 Resultados obtenidos

La **Tabla 3.5** expone los valores máximos de carga obtenidos experimentalmente del ensayo a tracción diagonal, y que posteriormente fueron usados en el análisis de SAP. Para un mayor detalle de los resultados dirigirse al **Anexo I**.

Probeta	Carga máxima aplicada P _{max} [kgf]	Carga máxima aplicada P _{max} [N]
MTD-1	5020.153	49230.631
MTD-2	5104.503	50057.823
MTD-3	5007.964	49111.103
PROMEDIO	5044.207	49466.519

 Tabla 3.5. Carga Máxima obtenida en el Ensayo de Tracción Diagonal.

En la **Figura 3.17** se puede observar la curva carga - deformación obtenida experimentalmente del ensayo a tracción diagonal.

Figura 3.17. Curva Carga vs. desplazamiento para el ensayo a tracción diagonal.

A continuación, se puede observar el esfuerzo máximo de tensión que genera el aplastamiento en las esquinas, obtenido de la interfaz gráfica del programa SAP; alcanzando un valor en la zona de falla máximo de 50.03 kgf/cm²

Figura 3.18. Interfaz de esfuerzos de compresión diagonal máximos [kgf/cm²].

Para validar estos resultados se optó por modelar el ensayo a compresión paralela para calibrar el modelo, tratando de asemejarse lo más posible a la realidad. Al finalizar el modelo analítico se obtuvieron valores muy cercanos a lo que se obtuvo de manera experimental, por lo que se considera válidos a los valores obtenidos en la prueba a tracción diagonal. Se presenta a continuación las consideraciones usadas en el modelado del panel ensayado a compresión paralela:

- El modelamiento del panel se efectuó usando SAP 2000 v16.0.0 plus®, mediante el uso de discretización por elementos finitos en un elemento tipo Solid, de 60x30x10 cm. La característica del elemento Solid puede observarse en la Figura 3.14
- Las propiedades físicas y mecánicas del panel se pueden observar en la Figura 3.15, donde se indican los valores asignados a esta sección.
- Para la densidad real se utilizó el valor de 608.02 kg/m³, obtenido del Anexo I. Con el valor del Módulo de Elasticidad obtenido previamente de la Tabla 3.4, se tomó del ensayo de compresión paralela realizado durante el desarrollo de esta investigación, cuyo valor fue de 2410.42 kgf/cm².
- Se procedió a discretizar el elemento tipo Solid, se agregaron las restricciones a la base, se definió un constraint en los nudos donde se aplicó la carga y finalmente se asignó la carga máxima a lo largo del elemento ya discretizado, tal como se indica a continuación:

Figura 3.19. Simulación de la prueba de Compresión Paralela en SAP 2000 v16.0.0®

Figura 3.20. Asignación de constraints y cargas en los nudos del modelo

Figura 3.21. Resultado de esfuerzos máximos de Compresión Paralela en kgf/cm²

A continuación, se puede observar el esfuerzo máximo de compresión paralela generado por la falla a compresión del núcleo del panel, obtenido de la interfaz gráfica del programa SAP; alcanzando un valor en la zona de falla máximo de 30.99 kgf/cm² y comparado con el valor obtenido experimentalmente en la **Tabla 3.4** de 30.37 kgf/cm²

3.1.6 FLEXIÓN

Para conseguir el módulo de elasticidad, la resistencia, la rigidez y el esfuerzo máximo de la sección transversal de los *paneles de fibrocemento con hormigón alivianado con EPS se* tomó como referencia la norma **American Standard Testing Methods (ASTM E72, 2015); Standard Test Methods of Conducting Strength Tests of Panels for Building Construction:** Dicho método de prueba cubre los requerimientos necesarios para determinar la resistencia al resistencia de paneles a flexión para construir edificios (ASTM E72, 2015).

3.1.6.1 Descripción del ensayo

Dicho modo se basa en aplicar un momento de flexión normal al plano del panel sándwich, tal como se realizó en la prueba de corte, pero con una longitud y ancho mayores, esto con el fin de establecer la resistencia de paneles completos ante la aplicación de una carga perpendicular en 4 puntos. La norma establece que se sometan 2 cargas puntuales a los cuartos exteriores, pero en estudios realizados (Robles & Castillo, 2005) se verificó que al utilizar este modo de ensayo de dos puntos aparece tempranamente una falla en los puntos donde se aplica la carga, por lo tanto se toma la recomendación de realizarla en 4 puntos. Del mismo modo en estudios realizados anteriormente (Herrera, 2017) se fabricó un sistema de barras de carga que permiten aplicar la carga de la forma sugerida.

Figura 3.22. Ensayo a flexión

Según la (ASTM E72, 2015) se debe obtener 3 muestras por condición para cada prueba descrita en la norma. Las muestras deben ser representativas en cuanto a material, mano de obra, y deberán ser del tamaño práctico más grande para predecir los atributos de rendimiento de estructural del conjunto. Por lo tanto, se tomaron muestras de paneles completos con medidas de 244x61x10 cm.

Figura 3.23. Probeta para el ensayo a flexión

Medición

Se anotan los valores de fuerza vs desplazamiento mientras no aparezca una falla en el panel por flexión. Además, se obtienen parámetros ante cargas perpendiculares al plano como la rigidez y la resistencia del panel. El estado de carga será mediante carga y descarga; esto es: La carga deberá ser aumentada al mínimo de la primera (registrar deformación), disminuir la carga a la carga inicial y registrar la deformación (a veces llamada deformación permanente). Aumentar la carga a dos incrementos y registrar el conjunto, cuando se libera a la carga inicial. Siga esta secuencia de lecturas durante tres incrementos, cuatro incrementos, y así sucesivamente, de la carga. Cuando para cada muestra el comportamiento de la muestra bajo carga indica que la muestra podría fallar de repente y dañar el aparato de deformación de medición, retire el aparato de la muestra y aumentar la carga de forma continua hasta la carga máxima que se puede aplicar a la muestra se determina (ASTM E72, 2015).

Cálculos

Se determina con la siguiente ecuación el esfuerzo máximo resistente:

$$\sigma m \acute{a} x = \frac{Mc}{I}$$

Donde:

σmáx= Esfuerzo máximo en el punto más lejano del eje neutro.
 M= Momento resultante.
 c= Distancia desde el eje neutro hasta el punto más alejado.
 I= Momento de inercia respecto al eje neutro.

Para determinar el momento de inercia del panel se utilizó la ecuación (Navarro & Barbero, 2017):

$$I = \frac{B(e-en)}{4} * \left(\frac{e+en}{2}\right)^2$$

Tenemos:

<i>I=</i>	Momento de inercia respecto al eje neutro [cm ⁴]
e=	Espesor del panel en cm ($e = en + er$)
B=	Ancho de la viga [cm]
er=	Espesor de la lámina de revestimiento [cm]
en=	Espesor del núcleo [cm]

Para determinar la deflexión máxima en el panel se utilizó el teorema de áreas de momentos mediante los diagramas que se ven a continuación **Figura 3.24**

Figura 3.24. Diagrama de carga, corte y momentos de los paneles.

Se tiene:

$$Mu = 0.13045PL$$
$$\delta m \dot{a} x = 0.0138 \frac{PL^3}{EI}$$

Tenemos:

Mu=	Momento último [kgf.cm]
P=	Carga máxima aplicada (kgf)
L=	Longitud del panel [cm]
δmáx=	Deflexión máxima [cm]
E=	Módulo de elasticidad [kgf/cm ²]
<i>I=</i>	Inercia de las secciones transversales [cm ⁴]

Debido a que tenemos la carga y deflexión del ensayo previo, se despeja el módulo de rigidez en la ecuación.

$$EI = 0.0138 \frac{PL^3}{\delta m \acute{a} x}$$

3.1.6.2 Resultados obtenidos

Figura 3.25. Curvas Carga vs Deformación del Ensayo a Flexión

La Tabla 3.6 muestra los valores alcanzados en las pruebas realizadas a flexión.

Probeta	e[cm]	P máx. [kgf]	δ máx. [cm]	Mu [kgf.cm]	σ máx. [kgf/cm²]	EI [kgf.cm ²]	E [kgf/cm²]
MF1	10	1401.24	1.05	44601.09	137.91	268683122.78	166162.71
MF2	10	1255.95	1.25	39976.56	123.61	201724629.66	124753.32
MF3	10	1318.40	1.12	41964.39	129.76	235546758.13	145670.07
PROM	10	1325.20	1.14	42180.68	130.43	235318170.19	145528,71

Tabla 3.6. Valores alcanzados en la prueba a flexión

e: Espesor

E: Módulo de elasticidad

P máx.: Carga máxima

EI: Módulo de rigidez

δ máx.: Deformación máxima

Mu: Momento último

 σ *máx.*: Esfuerzo máximo a tracción

3.2 MATERIALES

La dosificación del hormigón y la determinación de las propiedades estructurales de los *paneles de fibrocemento con hormigón alivianado y poliestireno expandido* fueron ensayados en laboratorio del LEMSUR y CIV de la Escuela Politécnica Nacional.

3.2.1 PANEL SÁNDWICH DE HORMIGÓN ALIVIANADO CON EPS Y PLANCHAS DE FIBROCEMENTO.

Se usaron paneles con dimensiones son 244x61x10 cm, cuyas propiedades se obtuvieron en el apartado anterior y se resumen a continuación:

PROPIEDADES FISICO – MECÁNICAS	PANELES
DENSIDAD REAL [kg/m ³]	608.02
PESO PROMEDIO [kgf/m ²]	60.80
ESFUERZO MÁXIMO PROMEDIO DE CORTE [kgf/cm²]	0.913
RESISTENCIA A COMPRESIÓN PERPENDICULAR [kgf/cm ²]	25.15
MÓDULO DE ELASTICIDAD A COMPRESIÓN PERPENDICULAR [kgf/cm²]	1159.64
RESISTENCIA A COMPRESIÓN PARALELA [kgf/cm²]	30.373
MÓDULO DE ELASTICIDAD A COMPRESIÓN PARALELA [kgf/cm²]	2410.42
ESFUERZO MÁXIMO A TRACCIÓN DIAGONAL [kgf/cm²]	50.03
ESFUERZO A FLEXIÓN [kgf/cm ²]	130.43
MÓDULO DE ELASTICIDAD A FLEXIÓN [kgf/cm²]	145528.71

Tabla 3.7 Resultados promedio en las pruebas de caracterización

3.2.2 HORMIGÓN

Después de realizadas las pruebas de caracterización de la arena, ripio y cemento se adoptó una dosificación al peso de 0.67 : 1 : 2.08 : 2.63, para conseguir una resistencia de 210 kgf/cm² propuesta por el LEMSUR. Todos los ensayos de dosificación realizados se encuentran en el **Anexo II.**

Además, se controló el asentamiento, resistencia, módulo de elasticidad en todos los procesos de fundición a lo largo de la realización de los muros.

Los valores obtenidos en las pruebas de compresión y módulo de elasticidad realizadas en los cilindros se los puede ubicar en el **Anexo III**. Las propiedades mecánicas del hormigón obtenidas experimentalmente se detallan a continuación:

Tabla 3.8. Propiedades mecánicas	del hormigón obtenida	s experimentalmente.
----------------------------------	-----------------------	----------------------

PROPIEDADES MECÁNICAS DEL HORMIGÓN	kgf/cm ²	MPa
RESISTENCIA A LA COMPRESIÓN PROMEDIO (f'c)	222.33	21.81
MÓDULO DE ELASTICIDAD PROMEDIO (E _c)	188613.54	18496.67
PESO ESPECÍFICO PROMEDIO (γ_p)	2.26 gf/cm ³	-

3.2.3 ACERO DE REFUERZO

Al construir los modelos experimentales se manejó diámetros de varillas corrugadas de 8mm, 12mm, 14mm, 18mm que fueron parte de las cimentaciones, columnas y vigas de confinamiento. Se trabajó con un esfuerzo de fluencia (fy) de 240 MPa, dato dispuesto por el fabricante.

3.2.4 MORTERO

En la colocación de los paneles se utilizó un mortero adhesivo modificado con polímeros que ayuden en la correcta adherencia garantizando así su excelente conectividad. En el país estos morteros se los encuentra bajo el nombre comercial de Bondex Premium; que se usaron además como recomendación del fabricante de los paneles. Sin embargo, puede usarse mortero a base de cemento y arena fina para abaratar costos, siempre y cuando se cumplan con las especificaciones descritas anteriormente en el apartado 2.1.2.3 del presente trabajo. Para la dosificación se colocó por cada 5 kg de bondex 1 litro de agua como especifica la ficha técnica proporcionada por el fabricante.

3.2.5 CINTA DE FIBRA DE VIDRIO

Su función es crear una junta entre panel y panel, eliminado posibles aberturas originadas por la geometría en la colocación de los paneles. Esta cinta es autoadhesiva, se la coloca en las juntas y se hace presión con una espátula. Posteriormente se procede a colocar mortero rápidamente sobre la cinta, para que ingrese entre las hebras y así cubra la cinta en su totalidad.

Figura 3.26. Cinta de fibra de vidrio (PANELego, 2018)

3.3 CÁLCULO Y DEFINICIÓN DE DIMENSIONES Y MATERIALES PARA LOS MODELOS EXPERIMENTALES.

3.3.1 MURO DE MAMPOSTERÍA SIMPLE (MMS)

Teniendo en cuenta los requerimientos del apartado 2.4, se presenta más adelante el modelo experimental planteado para el Muro de Mampostería Simple (MMS).

La altura y ancho final del MMS fue de 3.10 m y 2.70 m respectivamente como se puede observar en la **Figura 3.27**; en esta altura está incluida la cimentación. Se debe verificar que el centro de la viga de confinamiento concurra en la misma altura con el centro de carga del equipo de ensayo del laboratorio.

Figura 3.27. Dimensiones del MMS

Para que el gato hidráulico de doble acción se desplace lo necesario se utilizó un dado de 15 cm para realizar los ensayos.

3.3.1.1 Viga de cimentación

Para el dimensionamiento de este elemento se toma en consideración la sección 2.4.1 y la altura indispensable para poder utilizar los orificios del muro del CIV (Centro de investigación de la vivienda-EPN) es de 0.40m. Para la construcción de este elemento se toma en cuenta los huecos que existen en el piso del CIV para el anclaje de la cimentación, estos huecos están cada 0.60m.

Figura 3.28. Dimensión de la Viga de Cimentación

El armado y la distribución de refuerzo transversal de la cimentación del MMS se indican en la **Figura 3.29**

Figura 3.29. Armado y distribución del refuerzo transversal de la Viga de Cimentación

Las dimensiones de este elemento confinante fueron escogidos de acuerdo con la NEC-SE-VIVIENDA, especificado en la Sección 2.4.1, teniendo una sección de 25x25cm para una altura de 2.50m.

En la **Figura 3.30** se detallan las columnas construidas para los respectivos ensayos del MMS.

Las dimensiones de la viga fueron elegidas respecto a la NEC-SE-VIVIENDA, dando una sección transversal de 20x20cm y una longitud de 2.70m más un dado de 0.15m en el lado izquierdo del MMS para el acople del gato hidráulico.

Figura 3.31. Dimensión de la viga de confinamiento y dado de apoyo para el gato hidráulico

El detallamiento de la viga de confinamiento se indican en la Figura 3.32.

Figura 3.32. Armado y distribución del refuerzo transversal de la Viga de Confinamiento3.3.1.4 Panel de mampostería simple

El panel de mampostería simple tiene una altura de 2.50 m y un ancho de 2.20 m. La disposición de estos paneles se realizó de forma vertical, como se lo coloca en obra. Para cumplir con las dimensiones definidas, se cortó los paneles, tal como se indica a continuación:

Figura 3.33. Dimensiones y disposición del panel de mampostería simple

3.3.2 MURO DE MAMPOSTERÍA CONFINADA REFORZADA (MMCR)

Teniendo en cuenta los requerimientos del apartado 2.4, se presenta más adelante el modelo experimental para las paredes de mampostería confinada reforzada (MMCR).

Las dimensiones finales del MMCR fueron las misma que de nuestro MMS de 2.70m de ancho y 3.10m, cuya diferencia radica en el sistema de construcción, disposición de los paneles y un refuerzo adicional, tal como se indica en la **Figura 3.34**.

Figura 3.34. Dimensiones del MMCR

De igual forma para tener el correcto movimiento del gato hidráulico se utilizó un dado de 15 cm.

3.3.2.1 Viga de cimentación

Se tomaron las dimensiones y armado de la sección 3.3.1.1

Figura 3.35. Dimensión y anclajes de la Viga de Cimentación El armado y distribución de refuerzos transversales de la cimentación del MMCR se indican en la Figura 3.36

Figura 3.36. Armado y distribución del refuerzo transversal de la Viga de Cimentación

3.3.2.2 Columnas de confinamiento

Se tomaron las dimensiones y armado de la sección 3.3.1.2

3.3.2.3 Vigas de confinamiento

Se tomaron las dimensiones y armado de la sección 3.3.1.3

Figura 3.38. Dimensión de la viga de confinamiento y dado de apoyo para el gato hidráulico

El detallamiento de la viga de confinamiento se muestra en la Figura 3.39.

Figura 3.39. Armado y distribución del refuerzo transversal de la Viga de Confinamiento

3.3.2.4 Panel de mampostería confinada reforzada

La pared de mampostería confinada tiene una altura de 2.50 m y un ancho de 2.20 m. La disposición de estos paneles se realizó de forma horizontal, esto con el objeto de colocar el refuerzo longitudinal en el machihembrado. Para cumplir con las dimensiones definidas, se cortó los paneles, tal como se indica a continuación:

70

Figura 3.40. Dimensiones y disposición del panel de mampostería confinada reforzada El refuerzo horizontal en el MMCR se colocó a cada 60 centímetros, refiriéndonos a la sección 2.4.4 se utiliza un acero de 12 mm que se conectaron a las columnas de confinamiento y quedaron sumidas en la unión de los paneles

$$\rho_h = \frac{1.13 \ cm^2}{60 \ cm \ * \ 10 \ cm} = 0.00188$$

3.3.3 PÓRTICO

Las dimensiones del pórtico y elementos confinantes son los mismos que tenemos en nuestro MMS Y MMCR.

71

Se toman las mismas consideraciones de nuestros muros en cada aspecto para el pórtico.

El pórtico es el mismo en todos los muros de mampostería, este se ensaya sin ningún elemento entre sus columnas y vigas. El armado y detallamiento del pórtico se muestra en la **Figura 3.41**.

Figura 3.41. Dimensiones y armado del pórtico

3.4 PREDICCIÓN DE CARGA

Para una estimación de la carga máxima que soportará el pórtico y muros de mampostería simple y confinada usando paneles de fibrocemento con hormigón alivianado y poliestireno expandido se debe tomar en cuenta que el Centro de Investigación de la Vivienda posee varios ensambles y configuraciones de pruebas, influenciada principalmente por la carga máxima estimada de la pared, siendo la más usual para pórticos con mampostería un gato hidráulico de 100t y capacidad máxima de la celda de 20t.

El cálculo por el método del estado límite de última resistencia para cargas horizontales paralelas al plano, se basa en las hipótesis de diseño expuestas en la Norma Ecuatoriana de la Construcción, en donde para la fuerza vertical se toma únicamente el peso propio de la pared (NEC-SE-MP, 2015, p. 31). Las hipótesis detalladas a continuación se deben tomar en cuenta en el diseño:

- La sección se mantiene plana.
- La resistencia a tracción de la mampostería es nula.
- La máxima deformación a compresión y tracción de la armadura depende del material.
- El diagrama tensión-deformación de la mampostería será rectangular.
- El diagrama tensión-deformación de la armadura es el adoptado para un acero de fy = 420 MPa.
- La deformación unitaria de la armadura se limita a 0.002 en secciones con solo esfuerzo normal a compresión; y en secciones no totalmente

comprimidas, la deformación unitaria límite a compresión se tomará igual a 0.0035. En situaciones intermedias es 0.002 a 3/7 de la altura de la sección, medida desde la cara más comprimida.

 Se tomará la resistencia a compresión del material menos resistente para el cálculo cuando la zona comprimida incluya parte de mampostería y parte de hormigón. (NEC-SE-MP, 2015, pp. 31–32)

El método para elaborar el diagrama de interacción del muro de mampostería confinada se ha realizado tomando un valor de resistencia a compresión de la pared de mampostería aproximado de 40 kgf/cm², esto debido a que el ensayo obtenido en la **sección 3.1.5** no falló de acuerdo con las normas establecidas. Por lo tanto, para fines de predicción se estima un valor de: $f'm = 40 \text{ kgf/cm}^2$, fy = $4200 \text{ kgf/cm}^2 \text{ y Es} = 2.1E06 \text{ kgf/cm}^2$, donde el peso propio de la pared de mampostería se adoptó como fuerza de compresión.

En la **Figura 3.42** se idealiza un esquema de diseño para flexo-compresión en el que se pueden visualizar los parámetros a calcularse, para la obtención de la curva de interacción.

$$a = 0.85 * c$$
$$Ts = As * fy$$
$$c = 0.85 * f'm * b * a$$

Donde:

a: Profundidad del bloque equivalente de compresión.

- c: Profundidad del eje neutro en la zona de compresión.
- Ts: Fuerza de tensión producida por el acero de refuerzo.
- As: Acero de refuerzo (columnas confinantes).
- fy: Esfuerzo de fluencia del acero fy = 4200 kgf/cm^2
- d: Distancia de la cara de compresión al centroide del refuerzo en tracción.
- b: Ancho efectivo de la sección de muro.
- f'm: Resistencia nominal a la compresión de la mampostería f'm $\approx 40 \text{ kgf/cm}^2$
 - Capacidad nominal del elemento de mampostería a flexocompresión:

$$Pn = (c - Ts) * Ae$$
$$Mn = c * \left(\frac{L}{2} - \frac{a}{2}\right) + Ts * \left(\frac{L}{2} - d'\right)$$
$$Pn_{max} = 0.85 * f'm * b * L * He$$

• Factor de esbeltez (*He*):

$$He = \left[1 - \left(\frac{h}{40 * b}\right)^3\right]$$

Donde:

h: Altura de la mampostería

• Capacidad última del elemento de mampostería a flexocompresión:

$$Pu = \emptyset Pn$$
$$Mu = \emptyset Mn$$

• Coeficiente de Reducción de Resistencia:

$$\emptyset \rightarrow flexión = 0.85$$

 $\emptyset \rightarrow compresión = 0.6$
 $Si Pn \le 0 \rightarrow flexión \quad \emptyset = 0.85$
 $Si Pn \ge 0.1 * Pn_{máx} \rightarrow compresión \quad \emptyset = 0.60$

$$\emptyset = 0.6 + 0.25 * \left(\frac{0.1 * Pn_{m\acute{a}x} - Pn}{0.1 + Pn_{m\acute{a}x}}\right)$$

Considerando una relación c/d con un rango de 0 a 1.5 se armó la **Tabla 3.9**. Con los valores obtenidos del cálculo de los parámetros antes descritos se elaboró el diagrama de interacción que se puede apreciar en la **Figura 3.39**.

a/d	c	a	С	Pn	Mn		Pu	Mu
c/a	cm	cm	kgf	t	t.m	φ	t	t.m
0.05	13.00	11.05	3757.00	-16.71	37.19	0.85	-14.20	31.61
0.1	26.00	22.10	7514.00	-13.87	41.64	0.85	-11.79	35.39
0.15	39.00	33.15	11271.00	-11.03	45.67	0.850	-9.37	38.82
0.2	52.00	44.20	15028.00	-8.19	49.29	0.850	-6.96	41.90
0.25	65.00	55.25	18785.00	-5.35	52.50	0.85	-4.55	44.62
0.3	78.00	66.30	22542.00	-2.51	55.29	0.85	-2.13	46.99
0.35	91.00	77.35	26299.00	0.33	57.66	0.84	0.28	48.32
0.3843	99.92	84.93	28876.30	2.28	59.05	0.77	1.75	45.34
0.4	104.00	88.40	30056.00	3.17	59.62	0.74	2.33	43.87
0.45	117.00	99.45	33813.00	6.01	61.16	0.63	3.81	38.74
0.5	130.00	110.50	37570.00	8.85	62.29	0.60	5.31	37.37
0.55	143.00	121.55	41327.00	11.69	63.00	0.60	7.01	37.80
0.6	156.00	132.60	45084.00	14.53	63.30	0.60	8.72	37.98
0.65	169.00	143.65	48841.00	17.37	63.18	0.60	10.42	37.91
0.7	182.00	154.70	52598.00	20.21	62.65	0.60	12.13	37.59
0.75	195.00	165.75	56355.00	23.05	61.70	0.60	13.83	37.02
0.8	208.00	176.80	60112.00	25.89	60.34	0.60	15.53	36.20
0.85	221.00	187.85	63869.00	28.73	58.56	0.60	17.24	35.14
0.9	234.00	198.90	67626.00	31.57	56.37	0.60	18.94	33.82
0.95	247.00	209.95	71383.00	34.41	53.76	0.60	20.64	32.26
1	260.00	221.00	75140.00	37.25	50.74	0.60	22.35	30.44
1.05	273.00	232.05	78897.00	40.09	47.30	0.60	24.05	28.38
1.1	286.00	243.10	82654.00	42.93	43.44	0.60	25.76	26.07
1.15	299.00	254.15	86411.00	45.77	39.18	0.60	27.46	23.51
1.2	312.00	265.20	90168.00	48.61	34.49	0.60	29.16	20.69
1.25	325.00	276.25	93925.00	51.45	29.39	0.60	30.87	17.64
1.3	338.00	287.30	97682.00	54.29	23.88	0.60	32.57	14.33
1.35	351.00	298.35	101439.00	57.13	17.95	0.60	34.28	10.77
1.4	364.00	309.40	105196.00	59.97	11.60	0.60	35.98	6.96
1.45	377.00	320.45	108953.00	62.81	4.84	0.60	37.68	2.91
1.5	390.00	331.50	112710.00	65.65	-2.33	0.60	39.39	-1.40

Tabla 3.9. Excel realizado para el diagrama de Interacción de una mampostería confinada

Figura 3.43. Diagrama de Interacción para mampostería confinada

Se seleccionó el punto de unión entre el peso propio de la mampostería confinada con la curva de Capacidad Nominal de la **Figura 3.43** para establecer la resistencia a corte localizada en la dirección paralela al plano de la mampostería. Entonces se tiene que, para una carga nominal (Pn) de 2.28 t, se le atribuye una capacidad nominal de momento Mn= 59.05 t.m y si se divide el momento nominal (Mn) con la altura de la mampostería (h=2.50 m) se obtiene una resistencia a corte por flexocompresión de 25.89 t. El cálculo del peso propio de la pared se determina en el **Anexo IV.**

Una vez calculada la resistencia a corte por flexocompresión se encontró la capacidad nominal a cortante Vn, que estará influenciada por la capacidad cortante de la mampostería Vm y por la fuerza cortante resistida por el refuerzo de acero transversal. (Vs).

Así se tiene:

$$Vn = Vm + Vs$$

$\frac{M}{Vd}$	V _m
$0.25 \ge \frac{M}{Vd}$	$V_m = 0.20 A_{mv} \sqrt{f'_m}$
$0.25 < \frac{M}{Vd} < 1.00$	$V_m = \left[0.23 - 0.13 \left(\frac{M}{Vd}\right)\right] A_{mv} \sqrt{f'_m}$
$\frac{M}{Vd} \ge 1.00$	$V_m = 0.10 A_{mv} \sqrt{f'_m}$

Tabla 3.10. Valores del cortante nominal resistido por la mampostería, Vm

(NEC-SE-MP, 2015, p. 45)

• Cálculo de Vm (N)

Para el cálculo de *Vm* se usa las fórmulas obtenidas en la **Tabla 3.10**, en las cuales el *M* y *V_d* son el momento y corte que aparecen simultáneamente en la mampostería ante la aplicación de la carga. Es así que la relación $\frac{M}{Vd} = \frac{59.05}{2.28*2.60} = 9.96$, por lo tanto, se usó la fórmula:

$$Vm = 0.10 * A_{mv} \sqrt{f'm}$$

Donde:

 A_{mv} : Área efectiva para determinar esfuerzos cortantes (b*H) y están en mm²

f'm: Resistencia nominal a la compresión de la mampostería (MPa)

$$Vm = 0.10 * 220000 mm^2 \sqrt{3.92 MPa}$$

 $Vm = 43557.77 N \rightarrow 4355.78 kgf$

• Cálculo de Vs

El valor del corte nominal contrarrestado por el refuerzo longitudinal se obtiene mediante la siguiente expresión (NEC-SE-MP, 2015, p. 45):

$$Vs = \rho_m * fy * A_{mv}$$

Cuantía del refuerzo derivada de la sección 2.4.4; que contribuye a resistir la fuerza cortante ρ_m :

$$\rho_m = \frac{A_v}{s * b}$$

Donde:

 A_v : Área del refuerzo longitudinal que resiste la fuerza cortante.

s: Separación del refuerzo de corte

$$Vs = 0.00188 * 4200 * 2200 = 17402 \, kgf$$

Entonces se tiene que:

$$Vn = 4.355 + 17.402 = 21.757 t$$

 $Vu = 0.6 * 21.757 t = 13.054 t$

Como podemos observar la capacidad nominal a corte Vn excede en 1.7 t a la capacidad de la celda de carga, sin embargo, al tratarse de un ensayo cíclico existirá una degradación en la resistencia del sistema, por lo que se puede concluir que el ensayo puede reunir las condiciones necesarias para usar la celda de 20t.

3.5 CONSTRUCCIÓN DE LOS MUROS DE MAMPOSTERÍA

La construcción de las paredes de mampostería y los respectivos ensayos se realizaron en el interior del Centro de Investigación de la Vivienda (CIV) con el apoyo técnico y recomendaciones de los ingenieros de este Centro de Investigación.

3.5.1 CIMENTACIÓN

Definido el armado de las vigas de cimentación, se procedió al corte, doblado, amarrado e implantación en los lugares respectivos para su fundición tal como se visualiza a continuación en la **Figura 3.44**:

Figura 3.44. Configuración del Acero de Refuerzo en Vigas de Cimentación

Seguido de la colocación del encofrado dejando 2,5 cm de recubrimiento, como se puede apreciar en la siguiente figura:

Figura 3.45. Colocación del encofrado en las Vigas de Cimentación

Antes de verter el hormigón se colocan 6 tubos PVC que nos servirán para anclar los muros a la losa de reacción del CIV, estos tubos son de 3 de diámetro y 60 centímetros de largo. Se ubican y se ploman las columnas de confinamiento en sus respectivos ejes.

Se vertió el hormigón y se procedió al vibrado de estos elementos eliminando así los vacíos y ayudando a un mejor confinamiento. Este procedimiento se puede visualizar en la **Figura 3.46**

Figura 3.46. Hormigonado y vibrado en las Vigas de Cimentación

En la siguiente figura se observan las cimentaciones ya fundidas:

Figura 3.47. Vigas de cimentación fundidas

3.5.2 COLUMNAS DE CONFINAMIENTO DEL MMS Y DEL PÓRTICO

Teniendo las columnas ya colocadas se procede a encofrarlas y aplomarlas respecto al eje de referencia asignado, se procede a apuntalarlas para que no existan desplazamientos al momento de hormigonar.

Se vierte el hormigón y se vibra en el interior del encofrado para no tener vacíos ni porosidades en cada una de las columnas.

Como se puede verificar en la **Figura 3.48**, se funden 6 columnas que forman parte del pórtico y de dos muros de mampostería simple MMS. Las columnas restantes se funden después de la colocación de la mampostería debido a que son diferentes diseños de construcción (confinados).

Figura 3.48. Hormigonado de columnas del MMS y Pórtico

3.5.3 COLOCACIÓN DEL PANEL DE MAMPOSTERÍA EN EL MMS

Las medidas de la mampostería fueron de 2.20 m de largo por 2.50 m de altura, establecidas anteriormente. La construcción de estas mamposterías se realizó

con paneles de fibrocemento con hormigón alivianado ya definidos en la sección 2.1.2.

La colocación de estos paneles se realizó por partes cumpliendo las dimensiones definidas previamente como se puede observar a continuación en la **Figura 3.49**

La unión y pegado se lo realizo con chicotes a 45 grados entre paneles en distintas alturas de las uniones y con bondex premium respectivamente

Figura 3.49. Instalación de los paneles

En las uniones de los paneles se colocó una cinta de fibra de vidrio para dar un mejor terminado y mejor trabajabilidad al MMS. Esto se puede visualizar en la siguiente figura que se indica a continuación:

Figura 3.50. Colocación de la cinta de fibra de vidrio.

3.5.4 VIGAS DE CONFINAMIENTO DEL MMS Y DEL PORTICO

Colocados los paneles de fibrocemento procedemos a encofrar y colocar las vigas de confinamiento armadas. Hay que verificar el correcto nivel de las vigas y su perfecta alineación con el eje del muro de reacción del CIV.

Figura 3.51. Colocación y verificación del nivel de las vigas de confinamiento Al momento del hormigonado de las vigas se utilizó un vibrador para una mejor distribución de la mezcla y para que no existan vacíos ni poros, tal como se puede evidenciar en la siguiente figura:

Figura 3.52. Hormigonado y Vibrado de las Vigas de Confinamiento

3.5.5 PANEL DE MAMPOSTERÍA DEL MMCR

Teniendo ya las vigas de cimentación listas y conociendo la diferencia de construcción de los MMCR procedemos a colocar los paneles de mampostería de la manera ya definida en la sección 3.3.2. antes que los otros elementos confinantes, además del acero de refuerzo en el machihembrado del panel, tal como se evidencia a continuación:

Figura 3.53. Instalación de los paneles del MMCR

Las medidas de la mampostería fueron de 2.20 m de largo por 2.50 m de alto, establecidas anteriormente. La disposición y medidas para la colocación de estos paneles se detalla en la sección 3.3.2.4

La unión y pegado se lo realizó con chicotes a 45 grados entre paneles en distintas alturas de las uniones y con bondex premium respectivamente. De igual manera se instaló la cinta de fibra de vidrio en las juntas.

Figura 3.54. Colocación de la cinta de fibra de vidrio

3.5.6 VIGAS Y COLUMNAS DE CONFINAMIENTO DEL MMCR

Una vez instalados los paneles se colocó la viga de confinamiento, garantizando el recubrimiento, y el correcto nivel de columnas y vigas tomando como referencia siempre el eje del muro de reacción del CIV, tal como se observa a continuación:

Figura 3.55. Colocación y verificación del nivel de las vigas de confinamiento

En la **Figura 3.56**, se procedió a encofrar y fundir las vigas y columnas en un solo cuerpo para garantizar el confinamiento en el sistema. En el hormigonado se usó un vibrador para una mejor distribución de la mezcla y para la eliminación de vacíos y porosidades en estos elementos.

Figura 3.56. Encofrado y fundido de los elementos confinantes

CAPÍTULO 4

ENSAYO A CARGA LATERAL CÍCLICA DEL PÓRTICO Y MUROS DE MAMPOSTERIA

4.1 PRETENSADO DE LA VIGA DE CIMENTACIÓN

Para evitar el volcamiento de la pared de mampostería ante la aplicación de la carga horizontal, es necesario calcular la fuerza de tensado que debe tener cada uno de los ejes de anclajes con la siguiente fórmula:

$$P = \frac{\frac{F}{\mu} - W}{n}$$

Donde:

P: Fuerza de pretensado [t]

F: Carga estimada máxima [t]

- W: Peso de la mampostería [t]
- *μ*: Coeficiente de fricción
- *n*: Número de anclajes

Por disponibilidad de anclajes en el Centro, se logró tensar la viga de cimentación en 4 puntos. La fuerza de pretensado fue de 16.09 t

$$P = \frac{\frac{20}{0.30} - 2.28}{4} = 16.09 t$$

Con ayuda de un dado de apoyo y un gato hidráulico, se aplicó una cantidad de 8045 psi en cada anclaje, esto apreciado de mejor manera en la siguiente figura:

Figura 4.2. Pretensado de la viga de cimentación

4.2 PREPARACIÓN DEL ENSAYO

Para medir y verificar los desplazamientos de los muros de mampostería y del pórtico se utilizó 3 LVDT (Linear Variable Differential Transformer). Estos fueron colocados en tres diferentes alturas; el primero en la mitad de viga de confinamiento, el segundo en la mitad de la altura total de la pared y el último en la mitad de la viga de cimentación, éste último con el fin de controlar desplazamientos en la base, que deberán ser insignificantes (Ver **Figura 4.3**). El LVDT de la viga de confinamiento es el principal, este desplazamiento es el que se utilizó en el estudio de forma directa.

Figura 4.3. Esquema de ubicación de LVDT's

En la figura a continuación se puede observar los LVDT ya colocados en sus respectivos puntos de medición.

Figura 4.4. Colocación de LVDT's

4.3 DEFINICIÓN DEL PROTOCOLO DE CARGA

Para definir el protocolo de ensayo se tomó como referencia la norma FEMA 461 y la ASTM 2129-19. Como se indica en el apartado 2.5 se adopta el Método de Carga C. El historial de carga empieza con 6 ciclos de iniciación con pequeñas amplitudes. Cada fase del protocolo consiste en un ciclo primario con una amplitud expresada como un porcentaje de la deformación de referencia Δ y sus ciclos posteriores con una amplitud del 75% del ciclo primario de esa fase.

Figura 4.5. Patrón de desplazamiento cíclico. (ASTM E2126, 2019, p. 10)

Como podemos apreciar en la **Figura 4.5** los primeros ciclos son de pequeña amplitud (iguales), luego se observa la existencia del ciclo primario y los ciclos secundarios con el 75% de la reducción en su amplitud. Esto se realiza de acuerdo a la **Tabla 4.1** el ensayo se termina cuando el espécimen falle, con incrementos adicionales iguales a 100α , donde $\alpha \le 0.5$.

La norma indica que se debe ensayar previamente una pared con el método de Prueba D; una prueba monotónica que nos proporcionará información de un Δ que usaremos para el método de prueba C, pero por motivos de tener significancia en los ensayos se adoptó un delta de 20mm, que se supone será el desplazamiento del 80% de la carga pico en un ensayo monotónico. Por ensayos realizados anteriormente en el centro con este valor se abarca la cantidad suficiente de ciclos para poder observar el comportamiento ante cargas laterales cíclicas.

Una vez definido el Δ que además no deberá exceder en 0.025 veces la altura de la pared; es decir 67.5 mm se calcula el porcentaje de amplitud del ciclo primario, evidenciado en la siguiente tabla:

Patrón	Pasos	Número mínimo de ciclos	Amplitud del Ciclo Primario
1	1	6	5
2	2	7	7.5
	3	7	10
3	4	4	20
	5	4	30
4	6	3	40
	7	3	70
	8	3	100
	9	3	100+100α ^A
	10	3	Incrementos adicionales de 100α (Hasta que el espécimen falle)

Tabla 4.1. Amplitud de los Ciclos Primarios

(ASTM E2126, 2019, p. 11)

4.4 DESCRIPCIÓN DEL ENSAYO

Se detalla el procedimiento y proceso de ensayo para cada uno de los modelos experimentales.

Este estudio consta de 4 muros de mampostería: 2 muros de mampostería simple (MMS), 2 muros de mampostería confinada reforzada (MMCR) y 1 pórtico sin mampostería de relleno. Cada uno de estos modelos experimentales fueron sometidos a un mínimo de 10 ciclos de carga, donde se consideró sentido positivo hacia la derecha cuando este era empujado y hacia la izquierda sentido negativo cuando este era halado. Además, para diferenciar las fisuras, se observa en color

rojo las fisuras producidas por el empuje y en color azul las producidas por el halado.

4.4.1 ENSAYO DEL PÓRTICO

Figura 4.6. Pórtico antes del ensayo

Para el ensayo de carga lateral del pórtico se obtuvieron 49 ciclos, entre primarios y secundarios, de los cuales se eligieron los primarios por ser más representativos. Los resultados obtenidos se tabulan a continuación:

CARGA vs DESPLAZAMIENTO PÓRTICO					
CICLO		kgf	KN	Δ (mm)	
[1]	49	2844.723	27.897	91.493	
	48	3465.179	33.982	78.073	
	47	3460.767	33.939	66.087	
	44	3740.913	36.686	60.234	
	41	3369.077	33.039	40.324	
	38	2961.066	29.038	30.076	
ſŊ	35	2234.191	21.910	19.652	
MP	32	1768.159	17.340	14.017	
Ē	29	1275.485	12.508	7.965	
	25	1087.114	10.661	6.008	
	21	838.630	8.224	4.015	
	14	534.268	5.239	2.119	
	7	398.946	3.912	1.549	
	1	355.545	3.487	1.083	
	1	-331.334	-3.249	-0.996	
	7	-430.347	-4.220	-1.489	
	14	-536.517	-5.261	-1.997	
	21	-891.778	-8.745	-4.052	
	25	-1193.352	-11.703	-6.321	
0	29	-1331.046	-13.053	-8.071	
AD	32	-1843.039	-18.074	-13.831	
HAL	35	-2335.636	-22.905	-20.028	
	38	-3166.361	-31.051	-29.903	
	41	-3475.426	-34.082	-40.469	
	44	-3559.784	-34.910	-59.360	
	47	-3503.900	-34.362	-66.120	
	48	-3303.470	-32.396	-80.164	
	49	-2794.011	-27.400	-90.047	

Tabla 4.2. Carga vs desplazamiento máximos por ciclo Pórtico

La carga máxima que resistió el pórtico $P_{máx} = -3740.91 \text{ kgf} (36.69 \text{ kN})$ y un desplazamiento $\Delta_{máx} = 91.49 \text{ mm}$. Este desplazamiento se obtuvo luego de que la conexión viga-columna y el pie de columna fallen. Los ciclos finales (47-49) fueron únicamente principales, ya que se quería ver y formar la curva de histéresis en donde se evidencie una caída en la resistencia del muro.

Las primeras fisuras se obtuvieron en el ciclo 29. Al final del ciclo se obtuvo un desplazamiento máximo $\Delta = -8.07 \text{ mm}$ de halado y P = -1331.05 kgf de carga lateral; estas fisuras se presentan de manera indiferente en la conexión viga-columna, y se las puede observar a continuación:

Figura 4.7. Primeras fisuras Ciclo 29 en Pórtico, ∆=-8.07mm; P=-13.05kN

Para el final del ciclo 41 el desplazamiento fue de $\Delta = -40.47 \text{ mm}$ de halado y P = -3475.43 kgf; las fisuras obtenidas se pueden observar en la Figura 4.8. Se hace más notoria las fisuras en la conexión viga-columna.

Figura 4.8. Fisuras Ciclo 41 en Pórtico, Δ =-40.47mm; P=-34.08kN

Para el final del ciclo 49 el desplazamiento fue de $\Delta = -90.05$ mm de halado y P = -2794.01 kgf; las fisuras obtenidas se pueden observar en la Figura 4.9. Se hacen más notorias las fisuras en la conexión viga-columna y en la base de esta. El ensayo terminó por la falla en el nudo de la columna y al observar que la curva de histéresis fue decayendo. Cabe recalcar que no existió pandeo en el pórtico y los desplazamientos obtenidos siempre estuvieron en la misma línea de acción de la viga de confinamiento.

Figura 4.9. Fisuras Ciclo 49 en Pórtico, Δ =-90.05mm; P=-27.40kN

En la **Figura 4.10** se expone el historial de carga como resultado del ensayo a carga cíclica en el Pórtico:

Figura 4.10. Historial de carga del Pórtico

4.4.2 ENSAYO DEL MURO DE MAMPOSTERÍA SIMPLE (MMS)

Figura 4.11. MMS 2 antes del ensayo

Para el ensayo de carga lateral del MMS 2 se obtuvieron 38 ciclos, entre primarios y secundarios, de los cuales se eligieron los primarios por ser más representativos, y para ilustrar el procedimiento de estudio utilizaremos los resultados obtenidos del segundo muro de mampostería. Los resultados obtenidos se tabulan a continuación:

CARGA vs DESPLAZAMIENTO MMS 2					
CICLO		kgf	KN	Δ (mm)	
EMPUJE	38	7757.350	76.074	31.285	
	35	9528.642	93.444	23.578	
	32	9671.886	94.849	13.257	
	29	7791.925	76.413	7.989	
	25	6852.724	67.202	6.015	
	21	7976.898	78.227	3.322	
	14	5209.341	51.086	1.991	
	7	5704.544	55.942	1.502	
	1	4578.027	44.895	1.020	
	1	-4432.341	-43.466	-0.997	
HALADO	7	-5687.616	-55.776	-1.490	
	14	-6357.263	-62.343	-1.993	
	21	-7063.628	-69.271	-2.734	
	25	-7396.220	-72.532	-6.108	
	29	-7646.958	-74.991	-7.992	
	32	-9253.890	-90.750	-13.351	
	35	-7714.237	-75.651	-19.686	
	38	-7520.595	-73.752	-30.022	

Tabla 4.3. Carga vs desplazamiento máximos por ciclo MMS 2

La carga máxima que resistió el MMS 2 $P_{máx} = 9671.89 \text{ kgf} (94.85 \text{ kN})$ y un desplazamiento $\Delta_{máx} = 31.28 \text{ mm}$. Este desplazamiento se obtuvo luego de observar un decremento en la carga resistida, fisuras de consideración en la mampostería y elementos estructurales, siendo el último ciclo reportado.

Las primeras fisuras se obtuvieron en el ciclo 25. Al final del ciclo se obtuvo un desplazamiento máximo $\Delta = -6.108 \text{ mm}$ de halado y P = -7396.220 kg f de

carga lateral; estas fisuras se presentan en las uniones entre paneles y se las puede observar a continuación:

Figura 4.12. Primeras fisuras Ciclo 25 en el MMS 2, Δ =-6.108mm; P=-72.532kN

Para el final del ciclo 32 el desplazamiento fue de $\Delta = -13.351 \text{ mm}$ de halado y P = 9671.886 kgf de carga lateral; las fisuras obtenidas se pueden observar en la Figura 4.13. Se hacen más visibles las fisuras.

Figura 4.13. Fisuras Ciclo 32 en el MMS 2, Δ=-13.351mm; P=94.85kN

Para el final del ciclo 35 el desplazamiento fue de $\Delta = 23.578$ mm de empuje y P = 9528.642 kgf de carga lateral; las fisuras obtenidas se pueden observar en la Figura 4.14. Se hacen más visibles las fisuras.

Figura 4.14. Fisuras Ciclo 35 en el MMS 2, ∆=23.578mm; P=93.444kN

Para el final del ciclo 38 el desplazamiento fue de $\Delta = 31.285 \text{ mm}$ de empuje y P = 7757.35 kgf; las fisuras obtenidas se pueden observar en la Figura 4.15. Las fisuras aumentan y da a lugar la falla en la conexión viga columna. Una vez terminado el ensayo se puede determinar que existe un nivel aceptable de resiliencia de los paneles.

Figura 4.15. Fisuras Ciclo 38 en el MMS 2, Δ=31.285mm; P=76.074kN

En la **Figura 4.16** se expone el historial de carga como resultado del ensayo a carga cíclica que fue aplicado el muro de mampostería simple (MMS 2)

Figura 4.16. Historial de carga del MMS 2

4.4.3 ENSAYO DEL MURO DE MAMPOSTERÍA CONFINADA REFORZADA (MMCR)

Figura 4.17. MMCR 2 antes del ensayo

Para el ensayo de carga lateral del MMCR 2 se obtuvieron 47 ciclos, entre primarios y secundarios, de los cuales se eligieron los primarios por ser más representativos, y para ilustrar el procedimiento de estudio utilizaremos los resultados obtenidos del segundo muro de mampostería. Los resultados obtenidos se tabulan a continuación:

CARGA vs DESPLAZAMIENTO MMCR 2						
CICLO		kgf	KN	Δ (mm)		
EMPUJE	47	9698.302	95.108	59.220		
	44	10851.026	106.412	48.595		
	41	11655.715	114.304	39.560		
	38	12301.894	120.640	29.860		
	35	11572.843	113.491	19.583		
	32	12921.308	126.715	13.373		
	29	12347.468	121.087	8.141		
	25	15139.577	148.469	6.573		
	21	12831.302	125.832	3.937		
	14	8604.128	84.378	1.967		
	7	7246.622	71.065	1.509		
	1	5841.399	57.285	1.137		
	1	-6087.863	-59.702	-1.095		
	7	-7721.176	-75.719	-1.472		
	14	-10161.126	-99.647	-2.129		
	21	-13618.997	-133.557	-4.001		
ADO	25	-12594.562	-123.510	-5.870		
	29	-11040.231	-108.268	-8.126		
AL	32	-11010.171	-107.973	-13.658		
Η	35	-10183.618	-99.867	-19.994		
	38	-10373.483	-101.729	-29.519		
	41	-9766.644	-95.778	-39.369		
	44	-9172.162	-89.948	-50.414		
	47	-8722.222	-85.536	-60.021		

Tabla 4.4. Carga vs desplazamiento máximos por ciclo MMCR 2

La carga máxima que resistió el MMCR 2 $P_{máx} = 15139.58 \text{ kgf} (148.47 kN)$ y un desplazamiento $\Delta_{máx} = -60.02 \text{ mm}$. Este desplazamiento se obtuvo luego de observar un decremento en la carga resistida, fisuras de consideración en la mampostería y elementos estructurales, siendo el último ciclo reportado.

Las primeras fisuras se obtuvieron en el ciclo 21. Al final del ciclo se obtuvo un desplazamiento máximo $\Delta = -4.00 \text{ mm}$ de halado y P = -13618.997 kgf de carga lateral; estas fisuras se presentan en las uniones entre paneles y se las puede observar a continuación:

Figura 4.18. Primeras fisuras Ciclo 21 en el MMCR 2, ∆=8.14mm; P=121.09kN

Para el final del ciclo 29 el desplazamiento fue de $\Delta = 8.14 \text{ mm}$ de empuje y P = 12347.47 kgf de carga lateral; estas fisuras se presentan en las uniones entre paneles y se las puede observar a continuación:

Figura 4.19. Fisuras Ciclo 29 en el MMCR 2, Δ=8.14mm; P=121.09kN

Para el final del ciclo 38 el desplazamiento fue de $\Delta = 29.86 \text{ mm}$ de empuje y P = 12301.89 kgf de carga lateral; las fisuras obtenidas se pueden observar a continuación. Se observan grietas iniciales en la conexión viga-columna.

Figura 4.20. Fisuras Ciclo 38 en el MMCR 2, ∆=29.86mm; P=120.64kN

Para el final del ciclo 44 el desplazamiento fue de $\Delta = 48.59$ mm de empuje y P = 10851.03 kgf de carga lateral; las fisuras obtenidas se pueden observar en la Figura 4.21. Se presentan fisuras en los paneles. Se hace más evidente las fisuras en la conexión viga-columna.

Figura 4.21. Fisuras Ciclo 44 en el MMCR 2, Δ=48.59mm; P=106.41kN

Para el final del ciclo 47 el desplazamiento fue de $\Delta = 59.22$ mm de halado y P = 9698.30 kgf; las fisuras obtenidas se pueden observar en la Figura 4.22. Las fisuras aumentan dando lugar la falla en la conexión viga - columna y en el pie de misma. Se observa un nivel aceptable de resiliencia de los paneles.

Figura 4.22. Fisuras Ciclo 47 en Pórtico, ∆=31.29mm; P=76.07kN

En la **Figura 4.23** se expone el historial de carga como resultado del ensayo a carga cíclica en el muro de mampostería confinada reforzada (MMCR2):

Figura 4.23. Historial de carga del MMCR 2

CAPÍTULO 5

PROCESAMIENTO DE DATOS EXPERIMENTALES Y PRESENTACIÓN DE RESULTADOS.

A continuación, se describen y se detallan los datos y resultados obtenidos de las pruebas a carga lateral cíclica, ejecutados bajo las condiciones de la normativa internacional ASTM E2126-19.

5.1 ANÁLISIS DE RESULTADOS

Se debe especificar que, para los cálculos se usó el Sistema Internacional de unidades (SI), Fuerza en Newtons (N), desplazamiento en metros (m) y Energía en Joules (J).

Además, por motivos de comparación con proyectos de titulación anteriores se establece el concepto de ciclo principal o representativo y rango de ciclos para evaluar todos los parámetros descritos en el apartado 2.6

5.1.1 PÓRTICO

5.1.1.1 Energía disipada

En el cálculo de la energía que disipa el Pórtico, Muro de mampostería Simple (MMS) y Muro de Mampostería Confinada Reforzada (MMCR), se organizaron los datos del ensayo. Para determinar la energía disipada se suman todas las áreas encerradas por los bucles que se generan en cada ciclo de la curva de histéresis; y apoyados en el Software MATLAB_R2019a, se graficó la curva correspondiente para cada ciclo de histéresis, posteriormente se usó la función A = polyarea (X, Y) que devuelve el valor del área encerrada en cada bucle, y que equivale a la energía que disipa en cada ciclo. Los resultados parciales de algunos ciclos se presentan a continuación. Para observar todos los bucles de histéresis referirse al **Anexo V.**

En La **Figura 5.1** se puede observar la curva de histéresis del Pórtico en el Ciclo 1, dónde se encierra con color azul el área bajo la curva que representa la energía que disipa el pórtico en cada bucle de histéresis.

Figura 5.1. Representación de la Energía Disipada (E_D), para el primer ciclo de carga en el Pórtico.

Al final del Ciclo 49 se obtuvo una disipación de energía acumulada $E_D = 11 \ KJ$. A continuación, se presenta el detalle de los valores de energía disipada en cada ciclo:

ENERGÍA DISIPADA PÓRTICO						
	POSITIVO(EMPUJE)		NEGATIVO(HALADO)		Enorgía	Energía
Ciclo	Desplazamiento, mm	Carga, KN	Desplazamiento, mm	Carga, KN	disipada (KJ)	disipada acumulada (KJ)
1	1.083	3.487	-0.996	-3.249	0.0020	0.0020
7	1.549	3.912	-1.489	-4.22	0.0020	0.0040
14	2.119	5.239	-1.997	-5.261	0.0033	0.0073
21	4.015	8.224	-4.052	-8.745	0.0138	0.0211
25	6.008	10.661	-6.321	-11.703	0.0312	0.0523
29	7.965	12.508	-8.071	-13.053	0.0374	0.0896
32	14.017	17.34	-13.831	-18.074	0.1170	0.2066
35	19.652	21.91	-20.028	-22.905	0.1690	0.3756
38	30.076	29.038	-29.903	-31.051	0.2956	0.6712
41	40.324	33.039	-40.469	-34.082	0.6660	1.3372
44	60.234	36.686	-59.36	-34.91	1.9090	3.2462
47	66.087	33.939	-66.12	-34.362	1.7080	4.9542
48	78.073	33.982	-80.164	-32.396	2.7049	7.6591
49	91.493	27.897	-90.047	-27.4	3.0690	11

Tabla 5.1. Energía disipada por el Pórtico

La **Figura 5.2** indica el aumento de la Energía Disipada a lo largo de los ciclos de histéresis.

Figura 5.2. Energía disipada por ciclo en el Pórtico.
A continuación, se puede analizar el comportamiento experimental expresado en la curva de histéresis; donde se visualiza un decremento en la carga en el ciclo 44. Podemos aseverar que mientras mayor sea el desplazamiento el área que encierra en cada ciclo también será mayor, y por ende la energía que disipa el Pórtico va a ser mayor. Esto se podrá corroborar más adelante en el apartado Ductilidad de Desplazamiento.

Figura 5.3 Curva de Histéresis Experimental para el Pórtico

5.1.1.2 Rigidez secante (Ks) y degradación de la rigidez

De acuerdo con el apartado 2.6.2 y 2.6.3 la Rigidez secante y la degradación de la Rigidez es evaluada como la pendiente de la línea recta que une los puntos máximos de carga o desplazamiento en ambos sentidos; y en un mismo ciclo de histéresis; por ende y apoyándose nuevamente en el Software MATLAB_R2019a se dibujó el ciclo a considerar y con ayuda de la función p = polyfit(x, y, n) se obtuvo la pendiente de la recta que une los puntos de máxima carga en cada ciclo, tal como se indica a continuación para el ciclo 1:

Es necesario observar cómo se va la degradando la Rigidez secante en cada ciclo representativo, por lo que se elaboró una tabla con el porcentaje de pérdida para cada ciclo; tal como se observa a continuación:

DEGRADACIÓN DE LA RIGIDEZ					
Ciclo	RIGIDEZ SECANTE [kN/m]	PORCENTAJE [%]			
1	3239.231	100.00%			
7	2676.336	82.62%			
14	2551.157	78.76%			
21	2103.415	64.94%			
25	1813.854	56.00%			
29	1593.998	49.21%			
32	1271.671	39.26%			
35	1129.423	34.87%			
38	1001.845	30.93%			

Tabla 5.2. Rigidez secante por ciclo del Pórtico

PÉRDIDA I	89.35%	
49	344.839	10.65%
48	439.915	13.58%
47	516.616	15.95%
44	598.654	18.48%
41	830.782	25.65%

Con estos resultados se grafica la Degradación de la Rigidez para el pórtico, en función de cada ciclo:

Con los resultados obtenidos se puede aseverar que existe una pérdida gradual de la rigidez a lo largo del ensayo, obteniéndose al final del ciclo 49 y con un desplazamiento de 91.49 [mm] una pérdida del 89.35 % de la Rigidez Inicial.

5.1.1.3 Amortiguamiento viscoso equivalente

De acuerdo con la sección 2.6.4 el coeficiente de amortiguamiento viscoso se calcula de acuerdo con la siguiente expresión:

$$\xi = \frac{E_D}{4\pi E_A}$$

$$E_A = \frac{K_S * \Delta_{max}^2}{2}$$

Para el ciclo 1 se tiene que:

$$E_A = \frac{K_S * \Delta_{max}^2}{2} = \frac{3239.231 \ kN/m * (0.001083 \ m)^2}{2} = 0.0019 \ kJ$$
$$\xi = \frac{E_D}{4\pi E_A} = \frac{0.0020154 \ kJ}{4 * \pi * 0.0019 \ kJ} = 8.44 \ \%$$

Los resultados para el amortiguamiento viscoso equivalente se tabulan a continuación:

AMORTIGUAMIENTO VISCOSO EQUIVALENTE					
Ciclo	RIGIDEZ SECANTE [kN/m]	Δmáx (mm)	E _A [kJ]	E₀ [kJ]	ξ [%]
1	3239.231	1.083	0.002	0.002	8.44%
7	2676.336	1.549	0.003	0.002	4.88%
14	2551.157	2.119	0.006	0.003	4.63%
21	2103.415	4.052	0.017	0.014	6.35%
25	1813.854	6.321	0.036	0.031	6.85%
29	1593.998	8.071	0.052	0.037	5.73%
32	1271.671	14.017	0.125	0.117	7.45%
35	1129.423	20.028	0.227	0.169	5.94%
38	1001.845	30.076	0.453	0.296	5.19%
41	830.782	40.469	0.680	0.666	7.79%
44	598.654	60.234	1.086	1.909	13.99%
47	516.616	66.120	1.129	1.708	12.04%
48	439.915	80.164	1.414	2.705	15.23%
49	344.839	91.493	1.443	3.069	16.92%
PROMEDIO					8.67%

Tabla 5.3. Amortiguamiento Viscoso equivalente por cada rango de ciclos para el Pórtico

5.1.1.4 Curva de capacidad (Envolvente)

Consiste en la unión de los puntos máximos y mínimos de cada ciclo histerético, como se explica en la Sección 2.6.5. Los puntos para la obtención de la envolvente se pueden visualizar en la siguiente tabla:

PUNTOS PARA LA CURVA DE CAPACIDAD: PÓRTICO						
CICLO		kgf	KN	Δ (mm)		
	49	2844.723	27.897	91.493		
	48	3465.179	33.982	78.073		
	47	3460.767	33.939	66.087		
	44	3740.913	36.686	60.234		
E	41	3369.077	33.039	40.324		
	38	2961.066	29.038	30.076		
n.	35	2234.191	21.91	19.652		
MF	32	1768.159	17.34	14.017		
E	29	1275.485	12.508	7.965		
	25	1087.114	10.661	6.008		
	21	838.63	8.224	4.015		
	14	534.268	5.239	2.119		
	7	398.946	3.912	1.549		
	1	355.545	3.487	1.083		
	1	-331.334	-3.249	-0.996		
	7	-430.347	-4.22	-1.489		
	14	-536.517	-5.261	-1.997		
	21	-891.778	-8.745	-4.052		
	25	-1193.352	-11.703	-6.321		
0	29	-1331.046	-13.053	-8.071		
AD	32	-1843.039	-18.074	-13.831		
AL	35	-2335.636	-22.905	-20.028		
H	38	-3166.361	-31.051	-29.903		
	41	-3475.426	-34.082	-40.469		
	44	-3559.784	-34.91	-59.36		
	47	-3503.9	-34.362	-66.12		
	48	-3303.47	-32.396	-80.164		
	49	-2794.011	-27.4	-90.047		

Tabla 5.4. Puntos de cada ciclo característico - Pórtico

Una vez obtenidos estos datos, se procede a dibujar la curva de capacidad (envolvente) mediante una línea continua, que se enuncia a continuación con color rojo:

Figura 5.6. Envolvente de la curva de Histéresis del Pórtico.

El pórtico sin la mampostería de relleno alcanzó una carga de empuje de **3740.91[kgf] (36.69[kN])** con una deformación máxima de **60.23 [mm]**, y una fuerza de halado máxima de **3559.78 [kgf] (34.91 [kN])** con un $\Delta_{máx}$ de **-59.36 [mm]**.

5.1.1.5 Ductilidad de desplazamiento (μ) y factor de comportamiento sísmico (R)

La ductilidad de desplazamiento se encontró en base al método de equivalencia elasto-plástica con rigidez inicial reducida explicada anteriormente en el apartado 2.6.5.2

Se procede a encontrar el desplazamiento último (Δ_u) que corresponde al de la carga máxima o última; y se estima que el desplazamiento de fluencia (Δ y) que es equivalente al desplazamiento correspondiente al 70% de la carga mayor (Paulay & Priestley, 1992), teniendo así los siguientes resultados:

Figura 5.7. Análisis de la ductilidad de desplazamiento del Pórtico

Para el Pórtico, el desplazamiento último de empuje fue de Δu =60.23 [mm] con una carga de 3740.91 [kgf], el desplazamiento último de halado fue de Δu =-59.36 [mm] con una carga de -3559.78 [kgf], el desplazamiento de fluencia en empuje fue de Δy =24.79 [mm] con una carga de 2618.64 [kgf] y el desplazamiento de fluencia en halado fue de Δy =-21.97 [mm] con una carga de -2491.85 [kgf]. Con estos resultados se procede a calcular la ductilidad de desplazamiento como se indica a continuación:

$$\mu_{EMPUJE} = \frac{\Delta u}{\Delta y} = \frac{60.23 \ [mm]}{24.79 \ [mm]} = 2.43$$

Con los datos expuestos en la **Figura 5.7** se calcula el factor de comportamiento sísmico R:

$$R = \sqrt{2\mu - 1} = \sqrt{(2 * 2.43) - 1} = 1.96$$

En la **Tabla 5.5** se exponen los resultados del factor de comportamiento sísmico tanto de empuje como halado para el pórtico:

	EMPUJE	HALADO
Pmáx [kgf]	3740.91	-3559.78
Δu [mm]	60.23	-59.36
Fy=0,7*Pmáx[kgf]	2618.64	-2491.85
Δy [mm]	24.79	-21.97
μ	2.43	2.70
R	1.96	2.10

Tabla 5.5. Ductilidad de desplazamiento para el Pórtico

Según la Norma Ecuatoriana de la Construcción (NEC-SE-VIVIENDA, 2015, p. 66) se recomienda para sistemas estructurales de ductilidad limitada usar un factor de comportamiento sísmico R de hasta 3 para el caso de mampostería confinada, limitada a 2 pisos, y un valor de 1 para el caso de mampostería no reforzada, limitada a 1 piso.

5.1.1.6 Derivas

El desplazamiento máximo obtenido el pórtico fue de $\Delta_{máx}$ = 91.49 [mm], que al dividirse entre la altura del pórtico desde donde fue medida la deformación h=2.60 [m], y de acuerdo con la sección 2.6.6 se tiene que:

$$\Delta_M = \frac{0.09149 \ [m]}{2.60 \ [m]} = 0.035$$

Como podemos observar la deriva no cumple con la norma, de 1% para mampostería y 2% para estructuras de hormigón armado; esto debido a que se trata de un pórtico sin panel de relleno. Estudiaremos la influencia que tiene en el pórtico con la mampostería en apartados posteriores.

5.1.2 MURO DE MAMPOSTERÍA SIMPLE (MMS)

5.1.2.1 Energía disipada

Las **Figuras 5.8 y 5.9** muestran las curvas correspondientes al bucle de histéresis de los MMS en el Ciclo 1, dónde se encierra con color azul el área bajo la curva que representa la energía que disipa el MMS en cada ciclo de histéresis.

Figura 5.8. Representación de la Energía Disipada (E_D), para el primer ciclo de carga en el MMS 1.

Figura 5.9. Representación de la Energía Disipada (E_D), para el primer ciclo de carga en el MMS 2.

La E_D por ciclo del MMS 1 esta detallada en la **Tabla 5.6**, obteniendo al final del Ciclo 49 una disipación de energía acumulada $E_D = 18.81$ KJ.

	ENERGÍA DISIPADA MMS 1						
	POSITIVO(EMPUJE)		NEGATIVO(HA	NEGATIVO(HALADO)		Energía	
Ciclo	Desplazamiento, mm	Carga, KN	Desplazamiento, mm	Carga, KN	disipada (KJ)	disipada acumulada (KJ)	
1	1.044	31.243	-0.996	-30.886	0.0288	0.0288	
7	1.496	35.119	-1.494	-41.309	0.0177	0.0465	
14	2.126	52.368	-1.997	-48.999	0.0449	0.0913	
21	4.005	76.486	-3.964	-80.841	0.1736	0.2650	
25	5.952	91.049	-6.197	-98.846	0.3665	0.6314	
29	8.014	102.820	-8.210	-98.531	1.0981	1.7295	
32	13.906	118.721	-13.777	-120.048	1.0940	2.8235	
35	22.756	123.504	-19.317	-130.373	1.8831	4.7066	
38	29.471	124.097	-29.762	-137.076	2.7126	7.4192	
41	38.000	121.772	-39.652	-130.803	3.5604	10.9796	
44	49.140	108.926	-48.545	-121.055	3.6392	14.6188	
47	60.006	103.402	-59.261	-109.682	4.1887	18.8075	

Tabla 5.6. Energía disipada por el MMS 1

La E_D por ciclo del MMS 2 esta detallada en la **Tabla 5.7**, obteniendo al final del Ciclo 38 una disipación de energía acumulada $E_D = 4.97$ KJ.

	ENERGÍA DISIPADA MMS 2						
	POSITIVO(EMPUJE)		NEGATIVO(HA	ALADO)	Energía	Energía	
Ciclo	Desplazamiento, mm	Carga, kN	Desplazamiento, mm	Carga, kN	disipada (KJ)	disipada acumulada (KJ)	
1	1.020	44.895	-0.997	-43.466	0.0237	0.0237	
7	1.502	55.942	-1.490	-55.776	0.0248	0.0485	
14	1.991	51.086	-1.993	-62.343	0.0389	0.0875	
21	3.322	78.227	-2.734	-69.271	0.3203	0.4078	
25	6.015	67.202	-6.108	-72.532	0.2382	0.6460	
29	7.989	76.413	-7.992	-74.991	0.2684	0.9144	
32	13.257	94.849	-13.351	-90.750	0.9790	1.8934	
35	23.578	93.444	-19.686	-75.651	1.6060	3.4994	
38	31.285	76.074	-30.022	-73.752	1.4708	4.9702	

Tabla 5.7. Energía disipada por el MMS 2

La **Figura 5.10 y 5.11** indica el aumento de la Energía Disipada a lo largo de los ciclos de histéresis para los MMS

Figura 5.10. Energía disipada por ciclo en el MMS 1.

Figura 5.11. Energía disipada por ciclo en el MMS 2.

Para analizar el porcentaje de participación entre el pórtico y los Muros de Mampostería MMS y MMCR se toma el valor más bajo de todos, siendo el menor el MMS 2 correspondiente al ciclo 38 con un desplazamiento aproximado de 30 [mm].

La influencia del panel con el pórtico para la Energía disipada acumulada se puede analizar a continuación:

	Ciclo	$\Delta_{ m máx}$ (mm)	Energía disipada acumulada (KJ)	% de Participación
Pórtico	38	30.076	0.6712	-
MMS 1	38	-29.762	7.4192	90.95%
MMS 2	38	31.285	4.9702	86.50%

Tabla 5.8. Influencia del Pórtico con los MMS en la Energía Disipada Acumulada

La **Figura 5.12** muestra cómo se comportan los MMS con el pórtico, tomado hasta el ciclo 38; que mientras mayor sea el rango de ciclo mayor será la energía que disipa el sistema.

Figura 5.12. Energía disipada por cada rango de ciclo e influencia del Pórtico con los MMS.

La variación de resultados entre el MMS 2 y MMS 1 se debe principalmente en la disposición de los paneles en el momento de la instalación. Se recomienda instalar panales completos en la esquina donde se aplica la carga, esto con el fin de evitar un plano de falla prematuro en la unión de los paneles. El MMS 1 falló en la unión de dichos panales y esto hizo que el sistema no trabaje monolíticamente, evidenciado en que el sistema de paneles no falló. Esto se puede ver en el **Anexo VIII.**

La **Figura 5.13** muestra cómo se comporta experimentalmente el MMS 1 expresado en la curva de histéresis; donde se visualiza un decremento en la carga en el ciclo 41. Podemos aseverar que mientras mayor sea el desplazamiento el área que encierra en cada ciclo también será mayor, y por ende la energía que disipa el MMS va a ser mayor. Esto se podrá corroborar más adelante en el apartado Ductilidad de Desplazamiento.

Figura 5.13 Curva de Histéresis Experimental para el MMS 1.

La **Figura 5.14** muestra cómo se comporta experimentalmente el MMS 2 expresado en la curva de histéresis ; donde se visualiza un decremento en la carga en el ciclo 35.

Figura 5.14 Curva de Histéresis Experimental para el MMS 2.

5.1.2.2 Rigidez secante (Ks) y degradación de la rigidez

De acuerdo con el apartado 2.6.2 y 2.6.3 la Rigidez secante y la degradación de la Rigidez es avaluada como la pendiente de la línea recta que une los puntos máximos de carga o desplazamiento en ambos sentidos; para un mismo ciclo de histéresis; por ende y apoyándose nuevamente en el Software MATLAB_R2019a se dibujó el ciclo a considerar y con ayuda de la función p = polyfit(x, y, n) se obtuvo la pendiente de la recta que une los puntos de máxima carga en cada ciclo para cada MMS, tal como se indica a continuación para el ciclo 1:

Figura 5.15. Rigidez secante obtenido en el primer ciclo de histéresis del MMS 1.

Figura 5.16. Rigidez secante obtenido en el primer ciclo de histéresis del MMS 2.

Es necesario observar cómo se va la degradando la Rigidez secante en cada ciclo representativo, por lo que se elaboró una tabla con el porcentaje de pérdida para cada ciclo; tal como se observa a continuación:

DEGRADACIÓN DE LA RIGIDEZ					
Ciclo	RIGIDEZ SECANTE [kN/m]	PORCENTAJE [%]			
1	30442.737	100.00%			
7	25565.465	83.98%			
14	24581.035	80.75%			
21	19743.009	64.85%			
25	15630.617	51.34%			
29	12410.447	40.77%			
32	8624.847	28.33%			
35	6034.188	19.82%			
38	4409.272	14.48%			
41	3252.652	10.68%			
44	2354.308	7.73%			
47	1786.612	5.87%			
PÉRDIDA	PÉRDIDA DE RIGIDEZ INICIAL 94.13%				

Tabla 5.9. Rigidez secante por ciclo del MMS 1

Tabla 5.10. Rigidez secante por ciclo del MMS 2

DEGRADACIÓN DE LA RIGIDEZ					
Ciclo	RIGIDEZ SECANTE [kN/m]	PORCENTAJE [%]			
1	43812.644	100.00%			
7	37349.378	85.25%			
14	28469.661	64.98%			
21	24353.963	55.59%			
25	11526.015	26.31%			
29	9474.283	21.62%			
32	6921.534	15.80%			
35	4343.568	9.91%			
38	2630.003	6.00%			
PÉRDIDA D	PÉRDIDA DE RIGIDEZ INICIAL 94.00%				

Con estos resultados se grafica la Degradación de la Rigidez para el pórtico, en función de cada ciclo:

Figura 5.17. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMS 1.

Figura 5.18. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMS 2.

Con los resultados obtenidos se puede aseverar que existe una pérdida gradual de la rigidez a lo largo del ensayo, obteniéndose al final del ciclo 47 un desplazamiento de 60 [mm] una pérdida del 94.13 % de la Rigidez Inicial para el MMS 1 y para el MMS 2 una pérdida del 94.00% con un desplazamiento máximo de 31.28 [mm] al final del ciclo 38.

La influencia del panel con el pórtico para la Degradación de la Rigidez Secante se puede analizar a continuación:

	Ciclo	∆máx (mm)	RIGIDEZ SECANTE [kN/m]	% de Participación
Pórtico	38	30.076	1001.845	-
MMS 1	38	-29.762	4409.272	77.28%
MMS 2	38	31.285	2630.003	61.91%

Tabla 5.11. Influencia del Pórtico con los MMS en la Rigidez Secante

La **Figura 5.12** muestra cómo se comportan los MMS con el pórtico, tomado hasta el ciclo 38; mientras mayor sea el rango de ciclo mayor será la degradación de rigidez del sistema.

Figura 5.19. Rigidez Secante por cada rango de ciclo e influencia del Pórtico con los MMS.

5.1.2.3 Amortiguamiento viscoso equivalente

En la Sección 2.6.4 se calcula el coeficiente de amortiguamiento viscoso de acuerdo con la siguiente expresión:

$$\xi = \frac{E_D}{4\pi E_A}$$
$$E_A = \frac{K_S * \Delta_{max}^2}{2}$$

Para el ciclo 1 del MMS 1 se tiene que:

$$E_A = \frac{K_S * \Delta_{máx}^2}{2} = \frac{30442.737 \ kN/m * (0.001044 \ m)^2}{2} = 0.0166 \ kJ$$
$$\xi = \frac{E_D}{4\pi E_A} = \frac{0.028766 \ kJ}{4 * \pi * 0.00166 \ kJ} = 13.79 \ \%$$

Los resultados para el amortiguamiento viscoso equivalente se tabulan a continuación:

AMORTIGUAMIENTO VISCOSO EQUIVALENTE MMS 1						
Ciclo	RIGIDEZ SECANTE [kN/m]	Δmáx (mm)	E _A [kJ]	E⊳ [KJ]	ξ [%]	
1	30442.737	1.044	0.017	0.029	13.79%	
7	25565.465	1.496	0.029	0.018	4.93%	
14	24581.035	2.126	0.056	0.045	6.42%	
21	19743.009	4.005	0.158	0.174	8.73%	
25	15630.617	6.197	0.300	0.366	9.72%	
29	12410.447	8.210	0.418	1.098	20.89%	
32	8624.847	13.906	0.834	1.094	10.44%	
35	6034.188	22.756	1.562	1.883	9.59%	
38	4409.272	29.762	1.953	2.713	11.05%	
41	3252.652	39.652	2.557	3.560	11.08%	
44	2354.308	49.140	2.842	3.639	10.19%	
47	1786.612	60.006	3.217	4.189	10.36%	
PROMEDIO					10.60%	

Tabla 5.12. Amortiguamiento	Viscoso Eqv.	por cada rango de ciclos	para el MMS 1.
0			1

AN	AMORTIGUAMIENTO VISCOSO EQUIVALENTE MMS 2						
Ciclo	RIGIDEZ SECANTE [kN/m]	Δmáx (mm)	E _A [kJ]	E⊳ [KJ]	ξ [%]		
1	43812.644	1.020	0.023	0.024	8.28%		
7	37349.378	1.502	0.042	0.025	4.70%		
14	28469.661	1.993	0.057	0.039	5.48%		
21	24353.963	3.322	0.134	0.320	18.97%		
25	11526.015	6.108	0.215	0.238	8.82%		
29	9474.283	7.992	0.303	0.268	7.06%		
32	6921.534	13.351	0.617	0.979	12.63%		
35	4343.568	23.578	1.207	1.606	10.59%		
38	2630.003	31.285	1.287	1.471	9.09%		
PROMEDIO					9.51%		

Tabla 5.13. Amortiguamiento Viscoso Eqv. por cada rango de ciclos para el MMS 2.

5.1.2.4 Curva de capacidad (Envolvente)

Consiste en unir los puntos máximos con los puntos mínimos de cada ciclo histerético, como se explica en la Sección 2.6.5. Los puntos para la obtención de la envolvente se pueden visualizar en la **Tabla 5.14 y 5.15.**

PUNTOS MÁXIMOS Y MÍNIMOS PARA LA CURVA DE CAPACIDAD MMS 1						
CICLO		kgf	KN	Δ (mm)		
	47	10544.119	103.402	60.006		
	44	11107.352	108.926	49.140		
	41	12417.242	121.772	38.000		
	38	12654.343	124.097	29.471		
Ш	35	12593.935	123.504	22.756		
IU	32	12106.128	118.721	13.906		
MP	29	10484.728	102.820	8.014		
Щ	25	9284.454	91.049	5.952		
	21	7799.396	76.486	4.005		
	14	5340.005	52.368	2.126		
	7	3581.187	35.119	1.496		
	1	3185.930	31.243	1.044		
AL A	1	-3149.492	-30.886	-0.996		

Tabla 5.14. Puntos m	náximos v mínim	os de cada ciclo	característico – MMS 1	
1 abia 3.14. 1 unitos m	алиноз у пинии	los de cada cició		

7	-4212.308	-41.309	-1.494
14	-4996.495	-48.999	-1.997
21	-8243.511	-80.841	-3.964
25	-10079.504	-98.846	-6.197
29	-10047.361	-98.531	-8.210
32	-12241.446	-120.048	-13.777
35	-13294.351	-130.373	-19.317
38	-13977.819	-137.076	-29.762
41	-13338.166	-130.803	-39.652
44	-12344.158	-121.055	-48.545
47	-11184.400	-109.682	-59.261

PUNTOS MÁXIMOS Y MÍNIMOS PARA LA CURVA DE CAPACIDAD MMS 2					
CICLO		kgf	KN	Δ (mm)	
	38	7757.350	76.074	31.285	
	35	9528.642	93.444	23.578	
	32	9671.886	94.849	13.257	
IJE	29	7791.925	76.413	7.989	
IPU	25	6852.724	67.202	6.015	
EN	21	7976.898	78.227	3.322	
	14	5209.341	51.086	1.991	
	7	5704.544	55.942	1.502	
	1	4578.027	44.895	1.020	
	1	-4432.341	-43.466	-0.997	
	7	-5687.616	-55.776	-1.490	
	14	-6357.263	-62.343	-1.993	
DO	21	-7063.628	-69.271	-2.734	
ΓA	25	-7396.220	-72.532	-6.108	
[AF	29	-7646.958	-74.991	-7.992	
	32	-9253.890	-90.750	-13.351	
	35	-7714.237	-75.651	-19.686	
	38	-7520.595	-73.752	-30.022	

Una vez obtenidos estos datos, se procede a dibujar la envolvente dentro de la curva de Histéresis mediante una línea continua, que se enuncia a continuación con color rojo:

Figura 5.20. Envolvente de la curva de Histéresis del MMS 1.

Figura 5.21. Envolvente de la curva de Histéresis del MMS 2.

El MMS 1 alcanzó una carga de empuje de **12593.94 [kgf] (123.50 [kN])** teniendo una deformación máxima de **60.00 [mm]**, y un halado con carga de máxima de **13977.82 [kgf] (137.08 [kN])** con una deformación máxima de **-59.26 [mm]**.

Mientras que el MMS 2 alcanzó una carga de empuje de 9671.89[kgf] (94.85 [kN]) con una deformación máxima de 31.29 [mm], y un halado con carga de máxima de 9253.89 [kgf] (90.75 [kN]) con una deformación máxima de -30.02 [mm].

5.1.2.5 Ductilidad de desplazamiento (μ) y factor de comportamiento sísmico (R)

Para encontrar la ductilidad de desplazamiento se basó en el método equivalencia elasto-plástica con rigidez inicial reducida explicada anteriormente en el apartado 2.6.5.2. Se procede a encontrar el desplazamiento último (Δ u) que corresponde al de la carga máxima o última; y se estima que el desplazamiento de fluencia (Δ y) que es equivalente al desplazamiento correspondiente al 70% de la carga mayor, teniendo así los siguientes resultados:

Figura 5.22. Análisis de la ductilidad de desplazamiento del MMS 1

Para el MMS 1, el desplazamiento último de empuje fue de $\Delta u=29.47$ [mm] con una carga de 12654.34 [kgf], el desplazamiento último de halado fue de $\Delta u=-$ 29.76 [mm] con una carga de -13977.82 [kgf], el desplazamiento de fluencia en empuje fue de $\Delta y=7.15$ [mm] con una carga de 8858.04 [kgf] y el desplazamiento de fluencia en halado fue de $\Delta y=-8.10$ [mm] con una carga de -9784.47 [kgf].

Con estos resultados se procede a calcular la ductilidad de desplazamiento como se indica a continuación:

$$\mu_{EMPUJE} = \frac{\Delta u}{\Delta y} = \frac{29.47 \ [mm]}{7.15 \ [mm]} = 4.12$$

El factor de comportamiento sísmico R se determina con los valores expuestos en la **Figura 5.22**

$$R = \sqrt{2\mu - 1} = \sqrt{(2 * 4.12) - 1} = 2.69$$

Los valores del factor de comportamiento sísmico tanto de empuje como halado para el MMS 1 se exponen en la **Tabla 5.16**:

	EMPUJE	HALADO
Pmáx [kgf]	12654.34	-13977.82
Δu [mm]	29.47	-29.76
Fy=0,7*Pmáx[kgf]	8858.04	-9784.47
Δy [mm]	7.15	-8.10
μ	4.12	3.67
R	2.69	2.52

Tabla 5.16. Ductilidad de desplazamiento para el MMS 1

Figura 5.23. Análisis de la ductilidad de desplazamiento del MMS 2

Para el MMS 2, el desplazamiento último de empuje fue de $\Delta u=13.26$ [mm] con una carga de 9671.89 [kgf], el desplazamiento último de halado fue de $\Delta u=-13.35$ [mm] con una carga de -9253.89 [kgf], el desplazamiento de fluencia en empuje fue de $\Delta y=3.81$ [mm] con una carga de 6770.32 [kgf] y el desplazamiento de fluencia en halado fue de $\Delta y=-2.97$ [mm] con una carga de -6477.72 [kgf].

Con estos resultados se procede a calcular la ductilidad de desplazamiento como se indica a continuación:

$$\mu_{EMPUJE} = \frac{\Delta u}{\Delta y} = \frac{13.26 \ [mm]}{3.81 \ [mm]} = 3.48$$

El factor de comportamiento sísmico R se determina con los valores expuestos en la **Figura 5.23**

$$R = \sqrt{2\mu - 1} = \sqrt{(2 * 3.48) - 1} = 2.44$$

Los resultados del factor de comportamiento sísmico tanto de empuje como halado para el MMS 2 se exponen en la **Tabla 5.17**:

	EMPUJE	HALADO
Pmáx, [kgf]	9671.89	-9253.89
∆u, [mm]	13.26	-13.35
Fy=0,7*Pmáx, [kgf]	6770.32	-6477.72
Δy , [mm]	3.81	-2.97
μ	3.48	4.50
R	2.44	2.83

 Tabla 5.17. Ductilidad de desplazamiento para el MMS 2

5.1.2.6 Derivas

El desplazamiento máximo obtenido el MMS1 fue de $\Delta_{máx}$ = 60.00 [mm], que al dividirse entre la altura del pórtico desde donde fue medida la deformación h=2.60 [m], y de acuerdo con la sección 2.6.6 se tiene que:

$$\Delta_M = \frac{0.060 \ [m]}{2.60 \ [m]} = 0.023$$

El desplazamiento máximo obtenido el MMS 2 fue de $\Delta_{máx}$ = 31.28 [mm], por lo tanto:

$$\Delta_M = \frac{0.03128 \ [m]}{2.60 \ [m]} = 0.012$$

5.1.3 MURO DE MAMPOSTERÍA CONFINADA REFORZADA (MMCR)

5.1.3.1 Energía disipada

Las **Figuras 5.24 y 5.25** indican las curvas correspondientes al bucle de histéresis de los MMCR en el Ciclo 1, dónde se encierra con color azul el área bajo la curva que representa la energía que disipa el MMCR en cada ciclo de histéresis.

Figura 5.24. Energía Disipada (ED), para el primer ciclo de carga en el MMCR 1.

Figura 5.25. Energía Disipada (ED), para el primer ciclo de carga en el MMCR 2.

La Energía Disipada por ciclo del MMCR 1 se ve detallada en la **Tabla 5.18**, obteniendo al final del Ciclo 41 una disipación de energía acumulada $E_D =$ 9.76 KJ

	ENERGÍA DISIPADA MMCR 1					
	POSITIVO(EM	PUJE)	NEGATIVO(HA	ALADO)	_	Energía
Ciclo	Desplazamiento, mm	Carga, kN	Desplazamiento, mm	Carga, kN	Energía disipada (KJ)	disipada acumulada (KJ)
1	1.010	68.096	-1.000	-67.283	0.0322	0.0322
7	1.523	89.813	-1.498	-95.921	0.0486	0.0808
14	2.329	115.871	-1.998	-111.298	0.0878	0.1686
21	3.414	135.686	-3.504	-112.184	0.0878	0.2563
25	5.934	127.409	-6.077	-108.026	0.4873	0.7436
29	7.960	126.680	-7.278	-103.897	0.5079	1.2516
32	14.052	132.026	-13.670	-98.040	1.3282	2.5798
35	20.243	121.603	-20.420	-103.771	1.5498	4.1296
38	29.155	115.962	-30.515	-104.495	2.4519	6.5815
41	43.239	115.962	-39.640	-87.823	3.1826	9.7641

Tabla 5.18. Energía disipada por el MMCR 1

La Energía Disipada por ciclo del MMCR 2 se ve detallada en la **Tabla 5.19**, obteniendo al final del Ciclo 41 una disipación de energía acumulada $E_D = 16 \ KJ$

ENERGIA DISIPADA MMCR 2						
	POSITIVO(EMI	PUJE)	NEGATIVO(HA	ALADO)	F (Energía
Ciclo	Desplazamiento, mm	Carga, kN	Desplazamiento, mm	Carga, kN	disipada (KJ)	disipada acumulada (KJ)
1	1.137	57.285	-1.095	-59.702	0.0335	0.0335
7	1.509	71.065	-1.472	-75.719	0.0285	0.0620
14	1.967	84.378	-2.129	-99.647	0.0497	0.1117
21	3.937	125.832	-4.001	-133.557	0.2731	0.3848
25	6.573	148.469	-5.870	-123.510	0.6508	1.0356
29	8.141	121.087	-8.126	-108.268	0.5295	1.5650
32	13.373	126.715	-13.658	-107.973	1.3041	2.8691
35	19.583	113.491	-19.994	-99.867	1.4579	4.3270
38	29.860	120.640	-29.519	-101.729	2.2656	6.5926
41	39.560	114.304	-39.369	-95.778	2.8484	9.4410
44	48.595	106.412	-50.414	-89.948	3.1347	12.5757
47	59.220	95.108	-60.021	-85.536	3.4311	16.0068

Tabla 5.19. Energía disipada por el MMCR 2

La **Figura 5.26 y 5.27** indica el aumento de la Energía Disipada a lo largo de los ciclos de histéresis para los MMCR

Figura 5.26. Energía disipada por ciclo en el MMCR 1.

Figura 5.27. Energía disipada por ciclo en el MMCR 2.

Para analizar el porcentaje de participación entre el pórtico y los Muros de Mampostería MMS y MMCR se toma el valor más bajo de todos, siendo el menor el MMCR 1 correspondiente al ciclo 41 con un desplazamiento aproximado de 40 [mm].

La influencia del panel con el pórtico para la Energía disipada acumulada se puede analizar a continuación:

	Ciclo	∆máx (mm)	Energía disipada acumulada (KJ)	% de Participación
Pórtico	38	30.076	0.6712	-
MMCR 1	38	-30.515	6.5815	89.80%
MMCR 2	38	29.860	6.5926	89.82%

Tabla 5.20. Influencia del Pórtico con los MMCR en la Energía Disipada Acumulada

La **Figura 5.28** muestra cómo se comportan los MMCR con el pórtico, tomado hasta el ciclo 41; tanto el MMCR 1 como el MMCR 2 disipan la misma energía a comparación del pórtico, y se afirma que mientras mayor sea el ciclo, mayor será la disipación de energía.

Figura 5.28. Energía disipada por cada rango de ciclo e influencia del Pórtico con los MMCR.

La **Figura 5.29** indica cómo se comporta experimentalmente el MMCR 1 en la curva de histéresis; donde se visualiza un decremento en la carga en el ciclo 35. Podemos aseverar que mientras mayor sea el desplazamiento, el área que encierra en cada ciclo también será mayor, y por ende la energía que disipa el

MMCR va a ser mayor. Esto se podrá corroborar más adelante en el apartado Ductilidad de Desplazamiento.

Figura 5.29 Curva de Histéresis Experimental para el MMCR 1.

La **Figura 5.30** muestra cómo se comporta experimentalmente el MMCR 2 en la curva de histéresis; donde se visualiza un decremento en la carga en el ciclo 35.

Figura 5.30 Curva de Histéresis Experimental para el MMCR 2.

5.1.3.2 Rigidez secante (Ks) y degradación de la rigidez

De acuerdo con el apartado 2.6.2 y 2.6.3 la Rigidez secante y la degradación de la Rigidez es avaluada como la pendiente de la línea recta que une los puntos máximos de carga o desplazamiento en ambos sentidos; para un mismo ciclo de histéresis; por ende y apoyándose nuevamente en el Software MATLAB_R2019a se dibujó el ciclo a considerar y con ayuda de la función p = polyfit(x, y, n) se obtuvo la pendiente de la recta que une los puntos de máxima carga en cada ciclo para cada MMCR, tal como se indica a continuación para el ciclo 1:

Figura 5.31. Rigidez secante obtenido en el primer ciclo de histéresis del MMCR 1.

Figura 5.32. Rigidez secante obtenido en el primer ciclo de histéresis del MMCR 2.

Es necesario observar cómo se va degradando la Rigidez secante en cada ciclo representativo, por lo que se elaboró una tabla con el porcentaje de pérdida para cada ciclo; tal como se observa a continuación:

DEGRADACIÓN DE LA RIGIDEZ					
Ciclo	RIGIDEZ SECANTE [kN/m]	PORCENTAJE [%]			
1	67354.735	100.00%			
7	61489.654	91.29%			
14	52505.431	77.95%			
21	35826.757	53.19%			
25	19601.249	29.10%			
29	15131.612	22.47%			
32	8298.841	12.32%			
35	5542.423	8.23%			
38	3694.602	5.49%			
41	2503.916	3.72%			
PÉRDIDA DE RIGIDEZ INICIAL 96.28%					

Tabla 5.21. Rigidez secante por ciclo del MMCR 1

DEGRADACIÓN DE LA RIGIDEZ						
Ciclo	RIGIDEZ SECANTE [kN/m]	PORCENTAJE [%]				
1	52410.883	100.00%				
7	49243.467	93.96%				
14	44921.332	85.71%				
21	32674.821	62.34%				
25	21857.361	41.70%				
29	14099.735	26.90%				
32	8682.186	16.57%				
35	5390.963	10.29%				
38	3744.886	7.15%				
41	2661.651	5.08%				
44	1983.276	3.78%				
47	1551.064	2.96%				
PÉRDIDA DE RIGIDEZ INICIAL 97.04%						

Tabla 5.22. Rigidez secante por ciclo del MMCR 2

Con estos resultados se grafica la Degradación de la Rigidez para el MMCR, en función de cada ciclo:

Figura 5.33. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMCR 1.

Figura 5.34. Degradación de la Rigidez Secante por cada ciclo de carga representativo para el MMCR 2.

Con los resultados obtenidos se puede aseverar que existe una pérdida gradual de la rigidez a lo largo del ensayo, obteniéndose al final del ciclo 41 un desplazamiento de 43,24 [mm] y una pérdida del 96,28% de la Rigidez Inicial para el MMCR 1 y para el MMCR 2 una pérdida del 97,04% con un desplazamiento máximo de 60,02 [mm] al final del ciclo 47.

La influencia del panel con el pórtico para la Degradación de la Rigidez Secante se puede analizar a continuación:

	Ciclo	Δmáx (mm)	RIGIDEZ SECANTE [kN/m]	% de Participación
Pórtico	38	30.076	1001.845	-
MMCR 1	38	-30.515	3694.602	72.88%
MMCR 2	38	29.860	3744.886	73.25%

Tabla 5.23. Influencia del Pórtico con los MMCR en la Rigidez Secante

La **Figura 5.35** muestra el comportamiento de los MMCR con el pórtico, tomado hasta el ciclo 38; que mientras mayor sea el rango de ciclo mayor será la degradación de rigidez del sistema.

Figura 5.35. Rigidez Secante por cada rango de ciclo e influencia del Pórtico con los

MMCR.

5.1.3.3 Amortiguamiento viscoso equivalente

En la Sección 2.6.4 se calcula el coeficiente de amortiguamiento viscoso de acuerdo con la siguiente expresión:

$$\xi = \frac{E_D}{4\pi E_A}$$
$$E_A = \frac{K_S * \Delta_{máx}^2}{2}$$

Para el ciclo 1 del MMCR 1 se tiene que:

$$E_A = \frac{K_S * \Delta_{máx}^2}{2} = \frac{67354.737 \ kN/m * (0.001010 \ m)^2}{2} = 0.032 \ kJ$$
$$\xi = \frac{E_D}{4\pi E_A} = \frac{0.032 \ kJ}{4 * \pi * 0.034 \ kJ} = 7.46 \ \%$$

Los resultados para el amortiguamiento viscoso equivalente se tabulan a continuación:

Tabla 5.24. Amortiguamiento Viscoso Equivalente por cada rango de ciclos para elMMCR 1.

AMORTIGUAMIENTO VISCOSO EQUIVALENTE MMCR 1
Ciclo	RIGIDEZ SECANTE [kN/m]	∆máx (mm)	E _A [kJ]	E₀ [KJ]	ξ [%]
1	67354.735	1.010	0.034	0.032	7.46%
7	61489.654	1.523	0.071	0.049	5.43%
14	52505.431	2.329	0.142	0.088	4.90%
21	35826.757	3.504	0.220	0.088	3.17%
25	19601.249	6.077	0.362	0.487	10.71%
29	15131.612	7.960	0.479	0.508	8.43%
32	8298.841	14.052	0.819	1.328	12.90%
35	5542.423	20.420	1.156	1.550	10.67%
38	3694.602	30.515	1.720	2.452	11.34%
41	2503.916	43.239	2.341	3.183	10.82%
PROMEDIO					8.58%

Tabla 5.25. Amortiguamiento Viscoso Equivalente por cada rango de ciclos para elMMCR 2.

AN	AMORTIGUAMIENTO VISCOSO EQUIVALENTE MMCR 2									
Ciclo	RIGIDEZ SECANTE [kN/m]	Δmáx (mm)	E _A [kJ]	E _D [KJ]	ξ [%]					
1	52410.883	1.137	0.034	0.033	7.85%					
7	49243.467	1.509	0.056	0.029	4.05%					
14	44921.332	2.129	0.102	0.050	3.89%					
21	32674.821	4.001	0.262	0.273	8.31%					
25	21857.361	6.573	0.472	0.651	10.97%					
29	14099.735	8.141	0.467	0.529	9.02%					
32	8682.186	13.658	0.810	1.304	12.82%					
35	5390.963	19.994	1.078	1.458	10.77%					
38	3744.886	29.860	1.670	2.266	10.80%					
41	2661.651	39.560	2.083	2.848	10.88%					
44	1983.276	50.414	2.520	3.135	9.90%					
47	1551.064	60.021	2.794	3.431	9.77%					
PROMEDIO					9.08%					

Consiste en unir los puntos máximos con los puntos mínimos de cada ciclo histerético, como se explica en la Sección 2.6.5. Los puntos para la obtención de la envolvente se pueden visualizar en la **Tabla 5.26 y 5.27.**

PUI	PUNTOS MÁXIMOS Y MÍNIMOS PARA LA CURVA DE CAPACIDAD MMCR 1									
CICI	20	kgf	kN	Δ (mm)						
	41	11288,181	115,962	43,239						
	38	11824,789	115,962	29,155						
	35	12400,086	121,603	20,243						
لدا	32	13462,932	132,026	14,052						
IUG	29	12917,793	126,680	7,960						
EMI	25	12992,126	127,409	5,934						
	21	13836,083	135,686	3,414						
-	14	11815,590	115,871	2,329						
	7	9158,367	89,813	1,523						
	1	6943,840	68,096	1,010						
	1	-6860,943	-67,283	-1,000						
	7	-9781,269	-95,921	-1,498						
	14	-11349,248	-111,298	-1,998						
Q	21	-11439,613	-112,184	-3,504						
'AD	25	-11015,577	-108,026	-6,077						
IAL	29	-10594,570	-103,897	-7,278						
	32	-9997,344	-98,040	-13,670						
	35	-10581,729	-103,771	-20,420						
	38	-10655,560	-104,495	-30,515						
	41	-8955,476	-87,823	-39,640						

Tabla 5.26. Puntos máximos y mínimos de cada ciclo característico – MMCR 1

PU	NTO	S MÁXIMOS Y MÍNI CAPACIDA	MOS PARA LA D MMCR 2	CURVA DE
CICI	0_	kgf	kN	Δ (mm)
	47	9698,302	95,108	59,220
	44	10851,026	106,412	48,595
41 38 35	11655,715	114,304	39,560	
	38	12301,894	120,640	29,860
[T]	35	11572,843	113,491	19,583
IU	32	12921,308	126,715	13,373
EMI	29	12347,468	121,087	8,141
	25	15139,577	148,469	6,573
-	21	12831,302	125,832	3,937
	14	8604,128	84,378	1,967
	7	7246,622	71,065	1,509
	1	5841,399	57,285	1,137
	1	-6087,863	-59,702	-1,095
	7	-7721,176	-75,719	-1,472
	14	-10161,126	-99,647	-2,129
	21	-13618,997	-133,557	-4,001
Q	25	-12594,562	-123,510	-5,870
AD	29	-11040,231	-108,268	-8,126
IAL	32	-11010,171	-107,973	-13,658
Ш.	35	-10183,618	-99,867	-19,994
	38	-10373,483	-101,729	-29,519
	41	-9766,644	-95,778	-39,369
	44	-9172,162	-89,948	-50,414
	47	-8722,222	-85,536	-60,021

Tabla 5.27. Puntos máximos y mínimos de cada ciclo característico – MMCR 2

Una vez obtenidos estos datos, se procede a dibujar la envolvente dentro de la curva de Histéresis mediante una línea continua, que se enuncia a continuación con color rojo:

Figura 5.36. Envolvente de la curva de Histéresis del MMCR 1.

Figura 5.37. Envolvente de la curva de Histéresis del MMCR 2.

El MMCR 1 alcanzó una carga de empuje de **11288.181 [kgf] (115.96 [kN])** teniendo una deformación máxima de **43.24 [mm]** y un halado con carga máxima

de 8955.8248 [kgf] (87.82 [kN]) alcanzando una deformación máxima de -39.64 [mm].

El MMCR 2 alcanzó una carga de empuje de **9698.30[kgf] (95.108 [kN])** con una deformación máxima de **59.22 [mm]**, y un halado con carga máxima de **8722.22 [kgf] (85.54 [kN])** alcanzando una deformación máxima de **-60.02 [mm]**.

5.1.3.5 Ductilidad de desplazamiento (μ) y factor de comportamiento sísmico (R)

Para encontrar la ductilidad de desplazamiento se basó en el método equivalencia elasto-plástica con rigidez inicial reducida explicada anteriormente en el apartado 2.6.5.2. Se procede a encontrar el desplazamiento último (Δ u) que corresponde al de la carga máxima o última; y se estima que el desplazamiento de fluencia (Δ y) que es equivalente al desplazamiento correspondiente al 70% de la carga mayor, teniendo así los siguientes resultados:

Figura 5.38. Análisis de la ductilidad de desplazamiento del MMCR 1

Para el MMCR 1, el desplazamiento último de empuje fue de $\Delta u=3.414$ [mm] con una carga de 13836.083 [kgf], el desplazamiento último de halado fue de $\Delta u=-$ 3.50 [mm] con una carga de -11439.613 [kgf], el desplazamiento de fluencia en

empuje fue de $\Delta y=2.18$ [mm] con una carga de 13836.083 [kgf] y el desplazamiento de fluencia en halado fue de $\Delta y=-1.71$ [mm] con una carga de - 11439.613 [kgf]

Con estos resultados se procede a calcular la ductilidad de desplazamiento como se indica a continuación:

$$\mu_{EMPUJE} = \frac{\Delta u}{\Delta y} = \frac{3.41 \ [mm]}{2.18 \ [mm]} = 1.57$$

Se calcula el factor de comportamiento sísmico R con los datos de la Figura 5.38

$$R = \sqrt{2\mu - 1} = \sqrt{(2 * 1.57) - 1} = 1.46$$

Los resultados del factor de comportamiento sísmico tanto de empuje como halado para el MMCR 1 se observan en la **Tabla 5.28**

	EMPUJE	HALADO
Pmáx [kgf]	13836.08	-11439.61
∆u [mm]	3.41	-3.50
Fy=0,7*Pmáx[kgf]	2618.64	-2491.85
Δy [mm]	2.18	-1.71
μ	1.57	2.05
R	1.46	1.76

Tabla 5.28. Ductilidad de desplazamiento para el MMCR 1

Figura 5.39. Análisis de la ductilidad de desplazamiento del MMCR 2

Para el MMCR 2, el desplazamiento último de empuje fue de Δu =6.57 [mm] con una carga de 15139.58 [kgf], el desplazamiento último de halado fue de Δu =-4 [mm] con una carga de -13618.99 [kgf], el desplazamiento de fluencia en empuje fue de Δy =3.95 [mm] con una carga de 15139.58 [kgf] y el desplazamiento de fluencia en halado fue de Δy =-2.69 [mm] con una carga de -13618.99 [kgf].

Con estos resultados se procede a calcular la ductilidad de desplazamiento como se indica a continuación:

$$\mu_{EMPUJE} = \frac{\Delta u}{\Delta y} = \frac{6.57 \ [mm]}{3.95 \ [mm]} = 1.66$$

Se calcula el factor de comportamiento sísmico R con los datos de la Figura 5.39

$$R = \sqrt{2\mu - 1} = \sqrt{(2 * 1.66) - 1} = 1.53$$

Los resultados del factor de comportamiento sísmico tanto de empuje como halado para el MMCR 2 se observan en la **Tabla 5.29**

	EMPUJE	HALADO
Pmáx, [kgf]	15139,58	-13619,00
∆u, [mm]	6,57	-4,00
Fy=0,7*Pmáx, [kgf]	2618,64	-2491,85
$\Delta y, [mm]$	3,95	-2,69
μ	1,66	1,49
R	1,53	1,41

Tabla 5.29. Ductilidad de desplazamiento para el MMCR 2

5.1.3.6 Derivas

El desplazamiento máximo obtenido el MMCR1 fue de $\Delta_{máx}$ = 43.23 [mm], que al dividirse entre la altura del pórtico desde donde fue medida la deformación h=2.60 [m], y de acuerdo con la sección 2.6.6 se tiene que:

$$\Delta_M = \frac{0.04323 \ [m]}{2.60 \ [m]} = 0.016$$

El desplazamiento máximo obtenido el MMCR 2 fue de $\Delta_{máx}$ = 60.02 [mm], por lo tanto:

$$\Delta_M = \frac{0.060 \ [m]}{2.60 \ [m]} = 0.023$$

5.2 COMPARACIÓN DE RESULTADOS DEL ESTUDIO

5.2.1 ENERGÍA DISIPADA

La **Tabla 5.30** muestra la comparación de los valores conseguidos en los ensayos realizados a las paredes de mampostería y al pórtico. Los desplazamientos y las cargas fueron aumentando proporcionalmente, así como el área de los bucles que refleja la energía disipada por cada espécimen.

	RESUMEN ENERGÍA DISIPADA POR CICLO											
	PÓRTICO		MN	MMS 1		MS 2		MMCR 1		MMCR 2		
Ciclo	E _D (KJ)	E _D (KJ) acum.	E _D (KJ)	E _D (KJ) acum.	E _D (KJ)	E _D (KJ) acum.	E _D (KJ)	E _D (KJ) acum.	E _D (KJ)	E _D (KJ) acum.		
1	0.0020	0.0020	0.0288	0.0288	0.0237	0.0237	0.0322	0.0322	0.0335	0.0335		
7	0.0020	0.0040	0.0177	0.0465	0.0248	0.0485	0.0486	0.0808	0.0285	0.0620		
14	0.0033	0.0073	0.0449	0.0913	0.0389	0.0875	0.0878	0.1686	0.0497	0.1117		

Tabla 5.30. Comparación de la Energía Disipada por cada ciclo

21	0.0138	0.0211	0.1736	0.2650	0.3203	0.4078	0.0878	0.2563	0.2731	0.3848
25	0.0312	0.0523	0.3665	0.6314	0.2382	0.6460	0.4873	0.7436	0.6508	1.0356
29	0.0374	0.0896	1.0981	1.7295	0.2684	0.9144	0.5079	1.2516	0.5295	1.5650
32	0.1170	0.2066	1.0940	2.8235	0.9790	1.8934	1.3282	2.5798	1.3041	2.8691
35	0.1690	0.3756	1.8831	4.7066	1.6060	3.4994	1.5498	4.1296	1.4579	4.3270
38	0.2956	0.6712	2.7126	7.4192	1.4708	4.9702	2.4519	6.5815	2.2656	6.5926
Promedio			6.195					6.5	587	

La pared de Mampostería Simple (MMS) disipa menos energía que la pared de Mampostería Confinada Reforzada (MMCR) debido a que el MMCR soportó una mayor carga al momento del ensayo.

Figura 5.40. Análisis de la Energía Disipada por ciclo

5.2.2 RIGIDEZ SECANTE (KS) Y DEGRADACIÓN DE LA RIGIDEZ

DEGRADACIÓN DE LA RIGIDEZ SECANTE POR CICLO											
	Pórtico	MMS 1	MMS 2	MMCR 1	MMCR 2						
Ciclo		RIGIDEZ SECANTE [kN/m]									
1	3239.231	30442.737	43812.644	67354.735	52410.883						
7	2676.336	25565.465	37349.378	61489.654	49243.467						
14	2551.157	24581.035	28469.661	52505.431	44921.332						
21	2103.415	19743.009	24353.963	35826.757	32674.821						
25	1813.854	15630.617	11526.015	19601.249	21857.361						
29	1593.998	12410.447	9474.283	15131.612	14099.735						
32	1271.671	8624.847	6921.534	8298.841	8682.186						
35	1129.423	6034.188	4343.568	5542.423	5390.963						
38	1001.845	4409.272	2630.003	3694.602	3744.886						

Tabla 5.31. Comparación de la Rigidez secante por cada ciclo

Se graficó la degradación de la rigidez de todos los especímenes observando que existe una pérdida de rigidez uniforme en todos los especímenes, llegando a la pérdida casi total de la rigidez, teniendo una mayor rigidez en los MMCR debido a su composición.

Figura 5.41. Análisis de la Rigidez secante por ciclo

5.2.3 AMORTIGUAMIENTO VISCOSO EQUIVALENTE

El amortiguamiento viscoso equivalente está asociado directamente con los desplazamientos máximos de cada ciclo representativo, este amortiguamiento refleja cómo actúa el espécimen ante las cargas laterales asociándolo con los daños y agrietamientos que sufren los muros de mampostería dependiendo de su desplazamiento.

AMORTIGUAMIENTO VISCOSO EQUIVALENTE								
	Pórtico	MMS 1	MMS 2	MMCR 1	MMCR 2			
Ciclo			ξ [%]					
1	8.44%	13.79%	8.28%	7.46%	7.85%			
7	4.88%	4.93%	4.70%	5.43%	4.05%			
14	4.63%	6.42%	5.48%	4.90%	3.89%			
21	6.35%	8.73%	18.97%	3.17%	8.31%			
25	6.85%	9.72%	8.82%	10.71%	10.97%			
29	5.73%	20.89%	7.06%	8.43%	9.02%			
32	7.45%	10.44%	12.63%	12.90%	12.82%			
35	5.94%	9.59%	10.59%	10.67%	10.77%			
38	5.19%	11.05%	9.09%	11.34%	10.80%			
Promedio		10.0)6%	8.53%				

Tabla 5.32. Comparación del Amortiguamiento viscoso equivalente por cada ciclo

La **Figura 5.42** muestra el comportamiento de las paredes de mampostería, los MMS presentan picos elevados debido a agrietamientos primarios, precedidos de esto, no se disipa correctamente la energía y comienzan a aparecer las demás grietas y la pérdida de resistencia. En los MMCR tenemos un comportamiento uniforme sin picos altos ni valles muy bajos, la energía se disipa correctamente y el agrietamiento es uniforme como se pudo observar en los ensayos.

Figura 5.42. Análisis del Amortiguamiento viscoso equivalente por ciclo

5.2.4 CURVA DE CAPACIDAD (ENVOLVENTE)

En la **Tabla 5.33** se observa la comparación entre los muros de mampostería y el pórtico, así como los puntos máximos que conforman la curva de capacidad.

	PUNTOS PARA LA CURVA DE CAPACIDAD											
CIC		Pór	tico	MMS 1		MM	MMS 2		CR 1	MMC	CR 2	
CICLO		kgf	Δ (mm)	kgf	Δ (mm)	kgf	Δ (mm)	kgf	Δ (mm)	kgf	Δ (mm)	
	38	2961.07	30.08	12654.34	29.47	7757.35	31.29	11824.79	29.16	12301.89	29.86	
	35	2234.19	19.65	12593.93	22.76	9528.64	23.58	12400.09	20.24	11572.84	19.58	
	32	1768.16	14.02	12106.13	13.91	9671.89	13.26	13462.93	14.05	12921.31	13.37	
JE	29	1275.49	7.97	10484.73	8.01	7791.93	7.99	12917.79	7.96	12347.47	8.14	
IPU	25	1087.11	6.01	9284.45	5.95	6852.72	6.02	12992.13	5.93	15139.58	6.57	
EN	21	838.63	4.02	7799.40	4.00	7976.90	3.32	13836.08	3.41	12831.30	3.94	
	14	534.27	2.12	5340.01	2.13	5209.34	1.99	11815.59	2.33	8604.13	1.97	
	7	398.95	1.55	3581.19	1.50	5704.54	1.50	9158.37	1.52	7246.62	1.51	
	1	355.55	1.08	3185.93	1.04	4578.03	1.02	6943.84	1.01	5841.40	1.14	
LA	1	-331.33	-1.00	-3149.49	-1.00	-4432.34	-1.00	-6860.94	-1.00	-6087.86	-1.09	

Tabla 5.33. Puntos de capacidad de los muros por cada ciclo

7	-430.35	-1.49	-4212.31	-1.49	-5687.62	-1.49	-9781.27	-1.50	-7721.18	-1.47
14	-536.52	-2.00	-4996.50	-2.00	-6357.26	-1.99	-11349.25	-2.00	-10161.13	-2.13
21	-891.78	-4.05	-8243.51	-3.96	-7063.63	-2.73	-11439.61	-3.50	-13619.00	-4.00
25	-1193.35	-6.32	-10079.50	-6.20	-7396.22	-6.11	-11015.58	-6.08	-12594.56	-5.87
29	-1331.05	-8.07	-10047.36	-8.21	-7646.96	-7.99	-10594.57	-7.28	-11040.23	-8.13
32	-1843.04	-13.83	-12241.45	-13.78	-9253.89	-13.35	-9997.34	-13.67	-11010.17	-13.66
35	-2335.64	-20.03	-13294.35	-19.32	-7714.24	-19.69	-10581.73	-20.42	-10183.62	-19.99
38	-3166.36	-29.90	-13977.82	-29.76	-7520.60	-30.02	-10655.56	-30.51	-10373.48	-29.52

Como se puede observar en la **Figura 5.43** los muros de mampostería simple (MMS) tienen diferentes curvas de capacidad, el MMS 2 tuvo un comportamiento uniforme y trabajó monolíticamente, al contrario que el MMS 1 que tuvo un comportamiento desigual debido a la disposición de los paneles al momento de la instalación.

Figura 5.43 Curvas de Capacidad del pórtico y paredes de mampostería

Además, los muros de mampostería confinada reforzada (MMCR) tuvieron un comportamiento semejante; la envolvente fue uniforme hasta lograr su máxima carga, desde este punto presentan fisuras considerables que se representan por picos medianos hasta llegar a la capacidad última.

Los MMCR tuvieron mayor capacidad de carga a comparación de los MMS, esto debido a la composición y sistema constructivo.

Finalmente, y de acuerdo con la sección 2.6.5 se presenta a continuación la curva de capacidad máxima, tanto del MMS y MMCR 2 en el cual define los tres estados límites característicos:

Estos datos se obtuvieron tomando el máximo valor de empuje y halado de los muros más representativos. La razón de elección de dichos muros se explicará a continuación en el apartado 5.3.

5.2.5 DUCTILIDAD DE DESPLAZAMIENTO (μ) Y FACTOR DE COMPORTAMIENTO SÍSMICO (R)

DUCTILIDAD DE DESPLAZAMIENTO												
	Pórtico		MMS 1		MMS 2		MMCR 1		MMCR 2			
	EMPUJE	HALADO	EMPUJE	HALADO	EMPUJE	HALADO	EMPUJE	HALADO	EMPUJE	HALADO		
Pmáx, [kgf]	3740.91	-3559.78	12654.34	-13977.82	9671.89	-9253.89	13836.08	-11439.61	15139.58	-13619.00		
Δu , [mm]	60.23	-59.36	29.47	-29.76	13.26	-13.35	3.41	-3.50	6.57	-4.00		
μ	2.43	2.70	4.12	3.67	3.48	4.50	1.57	2.05	1.66	1.49		
R	1.96	2.10	2.69	2.52	2.44	2.83	1.46	1.76	1.53	1.41		
Promedio µ	2.	.57	3.94				1.69					
Promedio R	2.	.03		2.0	62		1.54					

Tabla 5.34. Comparación de la Ductilidad de desplazamiento por cada ciclo

En la **Tabla 5.34** se puede observar que los MMS tienen mayor ductilidad de desplazamiento y un mejor comportamiento sísmico a comparación de los MMCR que son más rígidos y poseen una baja capacidad para no fallar previsiblemente ni tener buena ductilidad.

5.2.6 DERIVAS

La **Tabla 5.35** muestra que las derivas de los MMCR son mayores a las de los MMS debido a que soportaron una mayor carga.

Deriva [%]										
	Pórtico	MMS 1	MMS 2	MMCR 1	MMCR 2					
Pmáx, [kgf]	3740.91	-13977.82	9671.89	13836.08	15139.58					
$\Delta_{ m M}$	3.52%	2.31%	1.20%	1.66%	2.31%					
$\Delta_{ m P}$	2.32%	1.14%	0.51%	0.54%	0.25%					
Promedio $\Delta_{\rm M}$	3.52%	1.76%		1.99%						
Promedio $\Delta_{\rm P}$	2.32%	0.83	3%	0.40%						

Tabla 5.35. Comparación de las derivas obtenidas para cada muro

Donde Δ_M es la deriva máxima debido al desplazamiento máximo obtenido del ensayo y Δ_P es la deriva correspondiente a la Carga Máxima (al final del rango lineal). Debido a una combinación entre estructuras de hormigón armado (columnas y vigas) y las estructuras de mampostería (paneles) las derivas máximas deberían estar en el 1% y 2% de la altura de la mampostería.

5.2.7 COSTOS

En este proyecto de titulación se determinaron los costos de construcción por medio de un análisis de precios unitarios, en los que se ven involucrados: la mano de obra, los equipos, materiales y transporte para cada rubro. En la **Tabla 5.36** se detalla el presupuesto de construcción. Se detalla además los APU's en el **ANEXO XI**

Tabla 5.36. Presupuesto referencial para la construcción del Muro de Mampostería Simple

PROYECTO: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

TA	TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS										
<u>No.</u>	<u>Rubro / Descripción</u>	<u>Unidad</u>	<u>Cantidad</u>	<u>Precio</u> unitario	<u>Precio</u> global						
1	Hormigón f´c= 210 kgf/cm ² en Cimentaciones, inc. Encofrado	m ³	0.40	145.54	58.51						
2	Hormigón f´c= 210 kgf/cm ² en Columnas y Vigas, inc. Encofrado	m ³	0.45	145.69	65.78						
3	Acero de refuerzo fy=4200 kgf/cm ²	Kg	130.78	1.59	207.93						
4	Mampostería; material e instalación	m ²	5.50	43.97*	241.84						
				Sub Total:	574.05						
				Iva 12%	68.89						
				TOTAL:	642.94						

CONSULTOR: Alex Arévalo / César Basantes

SON: SEISCIENTOS CUARENTA Y DOS DOLARES, 94/100 CENTAVOS

* El valor de \$43.97 es el Costo de mampostería/m² en este proyecto de titulación y que fue proporcionado por la empresa proveedora de los paneles. Dicho valor incluye la instalación y sus respectivos materiales.

El presupuesto de un muro de mampostería confinada reforzada aumenta su costo en un 2,79% con un valor de \$ 590,17 dólares sin IVA lo que se evidencia en la **Tabla 5.37**:

Tabla 5.37. Presupuesto referencial para la construcción del Muro de MamposteríaConfinada Reforzada

PROYECTO: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

ТА	TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS										
<u>No.</u>	<u>Rubro / Descripción</u>	<u>Unidad</u>	<u>Cantidad</u>	<u>Precio</u> unitario	<u>Precio</u> global						
1	Hormigón f´c= 210 kgf/cm ² en Cimentaciones, inc. Encofrado	m ³	0.40	145.54	58.51						
2	Hormigón f´c= 210 kgf/cm ² en Columnas y Vigas, inc. Encofrado	m ³	0.45	145.69	65.78						
3	Acero de refuerzo fy=4200 kgf/cm ²	Kg	140.91	1.59	224.05						
4	Mampostería; material e instalación	m ²	5.50	43.97*	241.84						
				Sub Total:	590.17						
				Iva 12%	70.82						
				TOTAL:	660.99						

CONSULTOR: Alex Arévalo / César Basantes

SON: SEISCIENTOS SESENTA DOLARES, 99/100 CENTAVOS

* El valor de \$43.97 es el Costo de mampostería/m² en este proyecto de titulación y que fue proporcionado por la empresa proveedora de los paneles. Dicho valor incluye la instalación y sus respectivos materiales.

5.3 COMPARACIÓN DE RESULTADOS CON OTROS PROYECTOS DE INVESTIGACIÓN.

Uno de los objetivos específicos propuestos al comenzar este estudio señala la comparación del sistema propuesto con otros trabajos de investigación presentados anteriormente, para cualificar y cuantificar las ventajas y desventajas frente a eventos sísmicos del sistema de paneles de fibrocemento con hormigón alivianado y poliestireno expandido.

Este análisis tiene como visión utilizar un valor normalizado para comparar los valores obtenidos en este estudio con otros proyectos de titulación que tienen características parecidas y dimensiones similares que el presente estudio.

Sin embargo, y debido a que los proyectos de titulación a comparar no tienen las mismas dimensiones, armado, protocolos de ensayo a carga lateral, etc., y para no crear sesgos que interfieran con las conclusiones, se opta por comparar

parámetros más generales como la resistencia máxima y el costo de mampostería.

5.3.1 CARGA MÁXIMA DE MAMPOSTERÍA

Para lograr este acometido se comparará con el proyecto de titulación: **ELABORACIÓN CURVAS** DE DE FRAGILIDAD PARA **ENSAYOS** EXPERIMENTALES REALIZADOS SOBRE MAMPOSTERÍAS DE BLOQUES DE CONCRETO Y LADRILLOS EN QUITO, propuesto por los Ingenieros Lenín Grijalva y Henry Narváez, en donde recopilaron datos de muros de mampostería rellenos de bloque y ladrillo además de complementar con modelaciones que simulen la realidad, y en el cual lograron determinar por separado la interacción de los componentes estructurales con la mampostería de relleno. Se usaron conocimientos de programación y modelación en programas como SeismoStruct y Matlab; para determinar las curvas de capacidad solamente de las mamposterías, logrando aislar al sistema, minorando así la incertidumbre que genera la construcción, armado y ensayo de los elementos estructurales. De dicha investigación se obtienen los valores aproximados de capacidad máxima, útiles para la comparación del sistema propuesto en esta investigación, y que se exponen a continuación:

Figura 5.45. Curvas de capacidad Ensayos (CIV) de Mampostería de Bloque Modificado de: (Grijalva & Narváez, 2018, p. 111)

Figura 5.46. Curvas de capacidad Ensayos (CIV) de Mampostería de Ladrillo Modificado de: (Grijalva & Narváez, 2018, p. 111)

La **Tabla 5.38** presenta las resistencias máximas de mamposterías hechas con bloque y ladrillo pertenecientes a los distintos proyectos de titulación obtenidos de la tesis de Grijalva y Narváez:

N°	TEMA	AUTOR(ES)	RESISTENCIA MÁXIMA APROX (kgf)
1	CURVAS DE CAPACIDAD PARA UNA VIVIENDA DE UN PISO DE HORMIGON ARMADO REPRESENTADAS EN PORTICOS DE RELLENOS DE MAMPOSTERÍA (BLOQUE)	ROSA ALOMOTO	6111.76
2	ANALISIS EXPERIMENTAL ANALITICO DE LAS PROPIEDADES ESTRUCTURALES ANTE CARGAS LATERALES DE UNA MAMPOSTERIA CONFINADA Y UNA MAMPOSTERIA REFORZADA (MMC)	LIZ RIVAS	12009.59

Tabla 5.38. Resistencias máximas de Mamposterías según Grijalva-Narváez.

3	ESTUDIO DEL REFORZAMIENTO DE LA MAMPOSTERÍA DE BLOQUE DE HORMIGON CON MALLA ELECTROSOLDADA MEDIANTE ENSAYOS DESTRUCTIVOS	DIEGO ALBUJA JONATHAN PANTOJA	9542.50
4	ESTUDIO ANALITO-EXPERIMENTAL DEL DESEMPEÑO DE UN PORTICO DE HORMIGON ARMADO CON PANEL DE RELLENO DE BLOQUE DE BAJA REISTENCIA, A TRAVEZ DE UN ENSAYO A CARGA LATERAL Y MODELO COMPUTACIONAL	KARINA LIMA JADYRA PAREDES	8185.38
5	PORTICOS IDEAL ALAMBREC 4	CIV	11882.31
6	ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERIA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS). (MMS)	ALEX ARÉVALO CÉSAR BASANTES	10958.71
7	ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERIA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS). (MMCR)	ALEX ARÉVALO CÉSAR BASANTES	14052.56
8	CURVAS DE CAPACIDAD PARA UNA VIVIENDA DE UN PISO DE HORMIGON ARMADO REPRESENTADAS EN PORTICOS DE RELLENOS DE MAMPOSTERÍA (LADRILLO)	ROSA ALOMOTO	4304.96
9	ENSAYOS A CARGA HORIZONTAL DE MAMPOSTERÍA SIN MORTERO DE UNIÓN, CONFINADAS, CON EL SISTEMA CONSTRUCTIVO MULTIBLOCK.	JONATHAN DIAZ DAVID RODRIGUEZ	7880.24

Modificado de: (Grijalva & Narváez, 2018, pp. 209–224)

La **Tabla 5.38** muestra los valores correspondientes a nuestro estudio obtenidos experimentalmente al restar la resistencia del sistema de paneles, con el pórtico ensayado sin mampostería de relleno. Para efectos de comparación y elegir a los más representativos se escogerá el MMS 1 y MMCR 2 y los cuales se los denominará en adelante como MMS y MMCR respectivamente. Las especificaciones de los ensayos realizados previamente se resumen a continuación:

- Para el caso del ensayo de Alomoto no se pudo contar con una fuente bibliográfica, sin embargo, se incluyen los valores ya que se compara con materiales tradicionales como el ladrillo y bloque.
- En el estudio de Rivas se usó una mampostería confinada (MMC) de 2.20m x 2.50m con 3 escalerillas distribuidas a lo largo de la altura de la mampostería. Bloque de hormigón de 15x20x40. f'c=209 kgf/cm².
- El estudio de Albuja y Pantoja usa una mampostería simple de 2.10m x
 2.40m de bloque tipo B de 15x20x40 y con una resistencia promedio a la compresión en los elementos estructurales f'c=210kgf/cm².
- En el estudio de Karina Lima y Yadyra Paredes se ejecutó un ensayo en un muro de mampostería con unidades de relleno que no tenían una alta resistencia, una mampostería simple de 2.85 (m) de ancho y 2.30 (m) de alto. Bloque clase D: Ancho de 13.6(cm), Largo de 36,97 (cm) y Altura de 17,70 (cm) y con una resistencia promedio a la compresión en los elementos estructurales f'c=240kgf/cm².
- No se pudo contar con una fuente bibliográfica del ensayo de los pórticos Ideal Alambrec ensayados en el CIV, sin embargo, se los toma en cuenta para la comparación.
- En el estudio de Díaz y Rodríguez se ejecutó un ensayo de una pared que no contaba con mortero de unión confinada con el sistema MultiBlock de 1.80(m) de ancho y 2.00(m) de alto con una resistencia promedio a la compresión en los elementos estructurales f'c=183kgf/cm².

Figura 5.47. Capacidad máxima sin influencia de los elementos estructurales

5.3.2 ANÁLISIS COSTO-BENEFICIO

En la comparación de precios por metro cuadrado de distintos materiales se eligen los más tradicionales que fueron los utilizados en los proyectos de titulación antes mencionados.

Los valores obtenidos son referenciales de la Revista de la Cámara de la Industria de la Construcción (CAMICON) debido a que los proyectos de titulación mencionados no prestan la facilidad para determinar estos valores. Es así y para estandarizar los valores por m² se creó la siguiente tabla:

Material	U	Costo \$
Mampostería de bloque prensado liviano 40x20x20cm, Mortero relación 1 a 6, Espesor=2.5cm	m ²	12.05
Mampostería de ladrillo mambrón 15x08x34cm, Mortero relación 1 a 6, Espesor=1.5cm	m ²	16.79
Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS)	m ²	43.97

Tabla 5.39. Costo de mamposterías por m²

Nota: El costo por metro cuadrado del bloque y ladrillo aumenta dependiendo del sistema constructivo (simple, confinado, reforzado), así como el costo de materiales adicionales como acero de refuerzo usado en chicotes, escalerilla, etc.

El costo de los Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS) dependerá en función del total de m² a instalar, esto según los datos del fabricante.

En la **Tabla 5.39** se indica que el material utilizado para este proyecto de titulación tiene un costo 3.5 veces mayor que el bloque tradicional y un costo 2.5 veces mayor que el ladrillo. Ahora bien, si se compara en términos de rendimiento se ha demostrado que el uso del sistema de paneles de fibrocemento con hormigón alivianado con EPS agilita el proceso de construcción, siendo este entre 2 y 3 veces más rápido. Se ha determinado que cada panel instalado representa 1.49 m² de pared seca lista para dar acabado al siguiente día, además de ser más liviano (40% del peso de una pared tradicional)

Modificado de: (CAMICOM, 2020, p. 22)

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- Se determinaron las propiedades estructurales de un pórtico de hormigón armado usando paneles de fibrocemento con hormigón alivianado y poliestireno expandido, tales como: Energía Disipada, Resistencia Máxima, Rigidez Secante y su Degradación, Amortiguamiento Viscoso Equivalente, Derivas, Curvas de Capacidad, Envolvente de los diferentes ciclos de Histéresis, etc., mediante ensayos experimentales que sirven para definir el comportamiento y funcionamiento del sistema ante cargas laterales, para su adecuada práctica en el campo
- Se determinaron las propiedades físico-mecánicas de los paneles, tales como: densidad real, peso promedio, esfuerzo máximo a corte, resistencia a la compresión paralela y perpendicular con respecto al plano, esfuerzo y módulo de elasticidad a flexión, módulo de elasticidad a compresión paralela y perpendicular, esfuerzo máximo a tracción diagonal del panel,; características importantes para conocer a fondo el comportamiento del panel de fibrocemento con hormigón alivianado y poliestireno expandido.
- Del ensayo a tracción diagonal efectuado en un panel de 0.60m x 0.60m se concluye que la falla predominante de los paneles ante cargas horizontales y verticales será por aplastamiento en las esquinas; es decir que una pared de mampostería construida con este material tendrá una tendencia al agrietamiento en las juntas de pegado, al aplastamiento y resquebrajadura en los paneles.
- Al terminar la prueba a carga lateral cíclica se observa la falla de los componentes estructurales; se presenta una falla localizada en el nudo, específicamente donde se unen la viga y la columna. No se nota la falla súbita del panel de relleno; únicamente agrietamientos en las uniones de los paneles, desprendimiento del panel con el pórtico y fisuras considerables en algunos de los paneles.

- Con base a la revisión de las fotografías del ensayo a carga lateral se observaron fisuras en las uniones de los paneles, sin embargo, estas fisuras no se hicieron tan notorias gracias al tratamiento de juntas realizado con la cinta de fibra de vidrio. Además, para desplazamientos más considerables el panel presenta fisuras en sus elementos, no obstante, el panel presenta un nivel aceptable de resiliencia al no fallar súbitamente como lo hacen los sistemas tradicionales.
- Se determinó para este caso en particular que la influencia del pórtico ensayado sin panel de relleno aporta aproximadamente el 28.46 % en la Rigidez secante del sistema para el caso del MMS y con el 26.93 % de la Rigidez secante en los MMCR, sin embargo, este valor estará acorde a la construcción, dimensiones de los componentes estructurales, armado, mano de obra etc., por lo que se debe realizar más ensayos con diferentes alturas de muro para observar que ocurre con la rigidez y su degradación ante cargas laterales cíclicas.
- Se determinó para este caso en particular que la influencia del pórtico ensayado sin panel de relleno aporta aproximadamente el 11.28 % en la Energía Disipada del sistema para el caso del MMS y con el 10.19 % de la Energía Disipada en los MMCR.; y como en el caso anterior no se puede concluir de manera general debido a variables que intervienen directamente en la obtención de estos valores.
- Los MMCR alcanzaron una mayor resistencia (7.67% ↑), mayor Rigidez Lateral inicial (41.91% ↑), menor Disipación de energía (441.83% ↓) y menor deriva (452% ↓), a comparación de los MMS; esto debido a su sistema constructivo (confinamiento), reforzamiento y disposición geométrica en la instalación de los paneles.
- En la degradación de la rigidez el modelo MMS pierde el 94,13% mientras que el MMCR pierde el 97,04% de su rigidez inicial, con desplazamientos últimos de 60 mm en ambos casos y cargas máximas de 13977,82 kgf y 15139,58 kgf respectivamente. Al ser directamente proporcional la rigidez con la carga y desplazamiento se puede concluir que la degradación de rigidez está íntimamente ligada a la carga máxima que soporta;

determinando con esto que el MMCR pierde casi toda su rigidez secante inicial debido a que soporta una mayor carga.

- Con respecto al Amortiguamiento Viscoso Equivalente, el comportamiento de los modelos MMCR y MMS es semejante; 10.62% y 8.72% respectivamente. No obstante, el MMS presenta picos más elevados, debido a fisuras y agrietamientos abruptos en el ensayo. El MMCR presenta un comportamiento más uniforme sin picos altos ni valles muy bajos, siendo este menor al del MMS debido a su rigidez y disipación de energía; que ocurre de manera uniforme y progresiva.
- Con respecto a los Estados Límite de servicio los modelos MMS y MMCR alcanzaron el límite elástico a los 6.19 mm y 3,93 mm respectivamente, concluyendo que el MMCR al ser más rígido necesitó un valor menor de desplazamiento para que ocurra su primera fisura, determinando una menor ductilidad de desplazamiento.
- En el MMCR la condición de servicio va desde 3,93mm hasta 6,57mm, en el MMS la condición va desde 6,19mm hasta los 29,76mm; por lo tanto, se determina que la condición de servicio del MMS empieza después y tiene un lapso más extenso que el MMCR, traducido finalmente en que el tiempo que tiene el MMS para abandonar la edificación es mayor al que nos proporciona el MMCR si se presentara un evento sísmico.
- Para llegar al nivel de colapso de la estructura y del panel de relleno se trató de alcanzar desplazamientos más grandes, sin embargo, el estado de colapso no fue alcanzado debido a que se presentaron grietas bastante considerables en la conexión viga-columna.
- El MMCR tiene un rango seguro que va desde 6,57 [mm] hasta 48,59 [mm], mientras que en el MMS el rango seguro va desde 29,76 [mm] hasta la culminación del ensayo, esto debido a que nunca alcanzó su estado último; concluyendo que el rango de servicio y seguridad es mayor en el MMS donde se mantiene un rango seguro aún con mayores derivas debido a que no se aproximó al colapso.
- Luego de comparar la resistencia obtenida del presente estudio con otros trabajos de investigación previos se puede concluir que las paredes fabricadas con el sistema de paneles de fibrocemento con hormigón

alivianado y poliestireno expandido presentan un buen comportamiento ante cargas laterales frente a sistemas tradicionales como el bloque o el ladrillo; esto traducido desde la perspectiva de resistencia, índices de serviciabilidad y funcionalidad, aún incluso con desplazamientos mayores. No obstante, su precio es aproximadamente 3.5 veces más costoso frente a sistemas tradicionales con bloque y aproximadamente 2.5 veces más costoso frente a sistemas tradicionales con ladrillo que a su vez pueden ser compensados con su comportamiento, nivel de resiliencia y rendimiento de instalación en obra.

6.2 **RECOMENDACIONES**

- Luego de haber obtenido los resultados experimentales es necesario desarrollar procedimientos analíticos que reproduzcan e idealicen el comportamiento del sistema de paneles de fibrocemento con hormigón alivianado y poliestireno expandido en mamposterías simples y confinadas, esto con el fin de establecer una premisa o hipótesis que sirva de apoyo para su modelación estructural y correcto uso en la práctica ingenieril.
- Se recomienda usar la misma disposición constructiva en los paneles debido a la variación de resultados que se presentaron entre el MMS 1 y MMS 2. Para futuros ensayos con materiales similares se recomienda instalar paneles completos en la esquina en donde se aplica el empuje del muro, esto con el fin de evitar un plano de falla prematuro en la unión de los paneles. El MMS 1 falló en la unión de dichos panales y esto hizo que el sistema no trabaje monolíticamente, tal como se indica en el Anexo VIII.
- Se recomienda reforzar la unión entre la viga y la columna para modelos futuros, esto con el fin de evitar el fisuramiento en el nudo y poder apreciar de mejor manera que sucede con el panel cuando se aplican desplazamientos más grandes, cuidando siempre que la carga se mantenga en la misma línea de acción; es decir, asegurar que no exista movimiento fuera del plano del muro (torsión).
- Del ensayo a tracción diagonal, al no obtener una falla por corte como se esperaría de dicho ensayo y al no encontrar la resistencia a compresión de la pared f'm, se recomienda realizar un murete con los paneles de

fibrocemento con hormigón alivianado y poliestireno expandido y unidos entre si con mortero de pega, tratando de asemejarse a la realidad debido a la complejidad en la geometría de los paneles.

- Se recomienda realizar un ensayo monotónico en pruebas futuras a carga lateral cíclica, para garantizar que se tenga en el ciclo final el desplazamiento máximo establecido en la norma ASTM E2126.
- Se recomienda no crear una abertura en el panel para los pernos de anclaje, ya que como se puedo observar en los MMS se crearon planos de falla cercanos a los pernos. La forma adecuada debe ser mediante muescas no vistas y rellenar los espacios vacíos con mortero, siempre protegiendo al perno y la rosca con una funda plástica, tal como se hicieron en los MMCR.
- Se recomienda calcular eficientemente la carga de postensado en los pernos, ya que, si bien no existió desplazamientos no deseados en las cimentaciones, esto ocurre habitualmente en los ensayos cíclicos. Además, se debe usar la cantidad necesaria de pernos, en función de la disponibilidad del centro y la carga máxima de postensado que se le puede otorgar a los pernos.
- Se recomienda utilizar siempre mano de obra calificada y que tengan gran conocimiento para construir estos muros, ya que su comportamiento está íntimamente ligado a la calidad de: construcción, instalación de mampostería, curado, hormigonado, etc.
- Del mismo modo se recomienda investigar más acerca de nuevas tecnologías que van saliendo con el paso del tiempo, modelar y recrear mediante ensayos destructivos a escala real, esto con el fin de proporcionar la información suficiente y necesaria para su uso dentro del país.

REFERENCIAS BIBLIOGRÁFICAS

- ACI Committee 213. (2014). Guide for Structural Lightweight-Aggregate Concrete Reported. In *Aci 213R*.
- Alcocer, S., Hernández, H., & Sandoval, H. (2013). Envolvente de Resistencia Lateral de piso para Estructuras de Mampostería Confinada. *Revista de Ingeniería Sísmica*, 54(89), 24–54. https://doi.org/10.18867/ris.89.163
- ASTM C271. (2016). Standard Test Method for Density of Sandwich Core Materials. *Annual Book of ASTM Standards*, *i*, 1–4. https://doi.org/10.1520/C0271
- ASTM C364. (2016). Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions. *ASTM International*, 07, 24–31. https://doi.org/10.1520/C0364
- ASTM C365. (2016). Standard Test Method for Flatwise Compressive Properties of Sandwich Cores 1. *Annual Book of ASTM Standards*, *i*, 2–4. https://doi.org/10.1520/C0365
- ASTM C393. (2016). Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam. *Annual Book of ASTM Standards*, *i*, 1–8. https://doi.org/10.1520/C0393
- ASTM E2126. (2019). Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for. i, 1–14. https://doi.org/10.1520/E2126
- ASTM E519. (2015). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. *American Society for Testing Materials*, 5. https://doi.org/10.1520/E0519
- ASTM E72. (2015). Standard Test Methods of Conducting Strength Tests of Panels for Building Construction. i, 1–13. https://doi.org/10.1520/E0072-15.2
- Babu, D. S., Ganesh Babu, K., & Tiong-Huan, W. (2006). Effect of polystyrene aggregate size on strength and moisture migration characteristics of

lightweight concrete. *Cement and Concrete Composites*, *28*(6), 520–527. https://doi.org/10.1016/j.cemconcomp.2006.02.018

- Bedoya-Ruiz, D., Ortiz, G. A., Álvarez, D. A., & Hurtado, J. E. (2015). Modelo dinámico no lineal para evaluar el comportamiento sísmico de viviendas de ferrocemento. *Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería*, 31(3), 139–145. https://doi.org/10.1016/j.rimni.2014.04.001
- CAMICOM. (2020). Revista de la Camara de la Industria de la Construccion CAMICOM-Retorno a las Obras. *Camicom*, 96. https://www.camicon.ec/
- Crisafulli, F. J. (1997). Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills [University of Canterbury Christchurch, New Zealand]. http://hdl.handle.net/10092/1221
- Diaz, B., & Leon, R. (2003). Vulnerabilidad y Riesgo Sismico de Edificios. Aplicación a Entornos Urbanos en zonas de Amenaza alta y moderada. *Tesis Doctoral, Universidad Politécnica de Cataluña*, 147, 25.
- FEMA 461. (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. June, 138.
- Fernando, P. L. N., Jayasinghe, M. T. R., & Jayasinghe, C. (2017). Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels. *Construction and Building Materials*, 139, 45–51. https://doi.org/10.1016/j.conbuildmat.2017.02.027
- Fischinger, M., Beg, D., Isaković, T., Tomaževič, M., & Žarnić, R. (2004). Performance Based Assessment — From General Methodologies to Specific Implementations. *Performance-Based Seismic Design Concepts and Implementation, PEER Report 2004/05*, 293,308.
- Gallegos, H., & Casabone, C. (2005). Albañilería Estructural. In *Fondo Editorial* (Tercera Ed). Pontificia Universidad Católica del Perú.
- Grijalva, L. P., & Narváez, H. J. (2018). Elaboración de Curvas de Fragilidad para ensayos experimentales realizados sobre mamposterías de Bloques de

Concreto y Ladrillos en Quito [Escuela Politécnica Nacional]. http://bibdigital.epn.edu.ec/handle/15000/19992

Herrera, M. N. (2017). Validación estructural de una Vivienda propuesta por la empresa Kubiec-Conduit, mediante estudios Analítico-Experimentales [Escuela Politécnica Nacional]. http://bibdigital.epn.edu.ec/handle/15000/18898

Jaramillo, R. (2016). Panel Sandwich de Hormigón Alivianado con EPS. 45.

Mandlik, A., Sood, T. S., Karade, S., Naik, S., & Kulkarni, A. (2015). Lightweight Concrete Using EPS. International Journal of Science and Research (IJSR), 4(3), 2007–2010. https://www.ijsr.net/search index results paperid.php?id=SUB152576

Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. *Mechanics of Materials*, 39(3), 222–240. https://doi.org/10.1016/j.mechmat.2006.05.008

- Mousavi, S. A., Zahrai, S. M., & Bahrami-Rad, A. (2014). Quasi-static cyclic tests on super-lightweight EPS concrete shear walls. *Engineering Structures*, 65, 62–75. https://doi.org/10.1016/j.engstruct.2014.02.003
- Navarro, C., & Barbero, E. (2017). *Capítulo 7. Introducción a las estructuras Sandwich*. 142–155. http://ocw.uc3m.es/cursos-archivados/elasticidad-yresistencia-ii/material-de-clase-1/materiales-compuestos/capitulo7.pdf.
- NEC-SE-DS. (2008). Cargas Sismicas, Diseño Sismoresistente. *Norma Ecuatoriana de La Construcción*, 139.
- NEC-SE-MP. (2015). NEC-SE-MP Mampostería Estructural. *Norma Ecuatoriana de La Construcción*, 1–56. https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2014/08/NEC-SE-MP.pdf

NEC-SE-VIVIENDA. (2015). Viviendas de hasta 2 pisos con luces de hasta 5m. Norma Ecuatoriana de La Construcción, 40. https://www.habitatyvivienda.gob.ec/wpcontent/uploads/downloads/2015/02/NEC-SE-VIVIENDA-parte-2.pdf

- Orozco, A. M., & Puente, A. R. (2016). Evaluación de productividad en el Sistema portante Hormi2 de paneles de hormigón armado con Núcleo de Poliestireno Expandido mediante el uso de Formaletas [Pontificia Universidad Católica del Ecuador]. http://repositorio.puce.edu.ec/handle/22000/11069
- PANELego. (2018). PANELES DE HORMIGÓN ALIVIANADO CON EPS. 16. https://kubiec.com/panelego/
- Paulay, T., & Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. In A Wiley Interscience Publication (Vol. 25, Issue 4). John Wiley & Sons, Inc.
- Rivas, L. Y. (2017). Análisis experimental y analítico de las propiedades estructurales ante Cargas Laterales de una Mampostería Confinada y una Mampostería Reforzada [Escuela Politécnica Nacional]. http://bibdigital.epn.edu.ec/handle/15000/17927
- Robles, A. L., & Castillo, G. D. (2005). Modelación de un sistema estructural prefabricado de bajo peso sometido a cargas sismicas para la construcción de viviendas [Pontificia Universidad Javeriana]. http://hdl.handle.net/10554/7449
- Tena, A., & Miranda, E. (2003). Comportamiento mecánico de la mampostería. In *Edificaciones de mampostería para vivienda* (pp. 103–132). https://www.researchgate.net/publication/259496032_Capitulo_4_Comportam iento_mecanico_de_la_mamposteria
- Vaidya, A. S. (2009). Lightweight Composites for Modular Panelized Construction [University of Alabama at Birmingham]. https://www.researchgate.net/publication/234301647_Lightweight_composites _for_modular_panelized_construction
- Xu, Y., Jiang, L., Xu, J., & Li, Y. (2012). Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. *Construction and Building Materials*, 27(1), 32–38. https://doi.org/10.1016/j.conbuildmat.2011.08.030

ANEXOS

ANEXO I.

Ensayos de Caracterización del Panel de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS)

Ensayo de Densidad

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Norma: ASTM C271-16

	MEDICIÓN INICIAL					DENSIDAD	PESO	PESO	
Probeta	Masa	Dimensiones [cm]			Real	Real PROMEDIO	PANEL	PROMEDIO PANEL	
	[gr]	Largo	Ancho	Espesor	[kg/m ³]	[kg/m ³]	[kgf/m²]	[kgf/m ²]	
Mcpa-1	10911.0	60.0	30.0	10.0	606.17		60.62		
Mcpa-2	11054.2	60.0	30.0	10.0	614.12		61.41		
Mcpa-3	11113.7	60.0	30.0	10.0	617.43	608.02	61.74	60.80	
Mcpa-4	10988.7	60.0	30.0	10.0	610.48		61.05		
Mcpa-5	10653.8	60.0	30.0	10.0	591.88		59.19		

Probeta	M Masa	EDICIÓ Din	DN FINA	NAL CONTENIDO CON nes [cm] HUMEDAD HUM		CONTENIDO DE HUMEDAD	DENSIDAD SECA	DENSIDAD PROMEDIO	
	[gr]	Largo	Ancho	Espesor	w [%]	PROM. w [%]	[kg/m³]	[kg/m ³]	
Mcpa-1	9428.1	60.0	30.0	10.0	15.73		523.78		
Mcpa-2	9512.4	60.0	30.0	10.0	16.21		528.47		
Mcpa-3	9153.0	60.0	30.0	10.0	21.42	19.50	508.50	509.16	
Mcpa-4	8851.0	60.0	30.0	10.0	24.15		491.72		
Mcpa-5	8880.2	60.0	30.0	10.0	19.97		493.34		

ESCUELA POLITÉCNICA NACIONAL

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

DENSIDAD DE MATERIALES TIPO SANDUCHE

INF. No. 20-0126-I Hoja 01 de 01 Quito, 15 de diciembre de 2020

CV (%)

3.32

SOLICITA: CÉSAR EDUARDO BASANTES ÁVALOS; ÁLEX OMAR ARÉVALO SÁNCHEZ Atención: CÉSAR EDUARDO BASANTES ÁVALOS; ÁLEX OMAR ARÉVALO SÁNCHEZ

Dirección: Ladron de Guevara E11-253 y Andalucia -EPN

ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERÍA SIMPLE Y PROYECTO: CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS).

CONTRATISTA: ****

FISCALIZADOR: ****

MUESTRA: HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS). NORMA: ASTM C271

No.	DESCRIPCIÓN	PESO	ANCHO INICIAL	LARGO INICIAL	ESPESO R INICIAL	PESO FINAL	ANCHO FINAL	LARGO FINAL	ESPESO R FINAL	CONTENIDO DE HUMEDAD (%)	DENSIDAD
		(g)	(mm)	(mm)	(mm)	(g)	(mm)	(mm)	(mm)		(kg/m ³)
1	Mcpa-1	10911,0	300,00	600,00	100,00	9428,1	300,00	600,00	100,00	15,73	523,78
2	Mcpa-2	11054,0	300,00	600,00	100,00	9512,4	300,00	600,00	100,00	16,21	528,47
3	Mcpa-3	11113,7	300,00	600,00	100,00	9153,0	300,00	600,00	100,00	21,42	508,50
4	Mcpa-4	10988,7	300,00	600,00	100,00	8851,0	300,00	600,00	100,00	24,15	491,72
5	Mcpa-5	10653,8	300,00	600,00	100,00	8880,2	300,00	600,00	100,00	19,97	493,34
			100					Р	ROMEDIO	(kg/m3)	509,16
							1000	DESVIA	IÓN ESTÁ	NDAR (kg/m3)	16,89

OBSERVACIONES: - El muestreo es responsabilidad del cliente

ING. PAŬI ZUNIGA M. UEFE DE LABORATORIO (E)

DENEPS20-001-I

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalúcia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec
Ensayo a Corte

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Norma: ASTM C393-16

Probeta	MO	C-1	MO	C-2	M	C-3	MO	C-4	M	C-5	
Largo [cm]	65.	.00	65.	.00	65.	.00	65.	00	65.	.00	
Ancho [cm]	20.	.00	20.	.00	20.	.00	20.	00	20.	.00	
Espesor [cm]	10.	00	10.	.00	10.	.00	10.	00	10.	10.00	
Pmáx [kgf]	.gf] 1183.69		990	.51	905	.97	125	5.38	869	.78	
	Carga [kgf]	⊿ [mm]									
	0.00	0.007	0.00	0.000	0.00	0.042	0.00	0.000	0.00	0.008	
	12.08	0.009	12.08	0.078	12.08	0.055	24.16	0.034	40.40	0.053	
	14.08	0.011	24.16	0.082	24.16	0.064	84.56	0.057	54.56	0.061	
	24.16	0.013	60.40	0.127	48.32	0.069	108.73	0.059	80.80	0.079	
	36.24	0.018	136.63	0.193	193.27	0.112	120.81	0.063	108.72	0.091	
	36.24	0.027	229.51	0.276	303.27	0.166	225.77	0.092	130.80	0.105	
	48.31	0.034	326.14	0.377	434.87	0.225	350.34	0.150	212.56	0.143	
	60.39	0.058	392.38	0.453	495.27	0.277	471.14	0.219	258.20	0.163	
	108.71	0.100	483.17	0.560	519.43	0.329	543.63	0.265	295.77	0.180	
	157.02	0.155	551.49	0.641	551.11	0.386	658.19	0.350	308.25	0.186	
	237.41	0.220	628.13	0.725	578.94	0.443	748.99	0.396	344.09	0.202	
	339.49	0.294	688.52	0.810	623.98	0.507	809.40	0.450	370.33	0.215	
	362.36	0.316	751.00	0.883	676.46	0.573	918.12	0.533	398.65	0.227	
	495.22	0.436	817.24	0.969	714.78	0.642	1002.69	0.617	429.05	0.239	
	613.53	0.553	869.71	1.045	736.86	0.705	1087.25	0.717	452.81	0.252	
	683.03	0.633	905.95	1.131	773.10	0.764	1159.73	0.835	519.45	0.280	
	779.26	0.691	930.11	1.207	845.58	0.828	1230.06	0.988	591.93	0.310	
	877.57	0.753	950.11	1.282	905.97	0.898	1244.14	1.020	712.73	0.394	
	966.28	0.818	972.19	1.368	885.58	0.967	1256.38	1.084	736.89	0.432	
	1062.91	0.883	990.51	1.490	877.66	1.027	1244.30	1.126	793.14	0.511	
	1123.30	0.941	942.19	1.660	847.66	1.090	1239.38	1.150	829.38	0.560	
	1159.54	0.996	869.71	1.810	807.26	1.154	1220.14	1.190	849.62	0.606	
	1183.69	1.052	640.20	1.895	761.02	1.228	1220.14	1.212	868.62	0.716	
	1171.62	1.121	495.25	1.981	434.87	1.358	1195.98	1.244	869.78	0.814	
	1111.22	1.206	446.94	2.058	289.91	1.408	1038.93	1.311	829.38	0.934	
	386.51	1.544	398.62	2.115	265.75	1.417	531.54	1.403	483.21	1.061	
			386.54	2.117	241.59	1.422	507.38	1.418	386.57	1.131	

6

Ensayo a Compresión Perpendicular

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Norma: ASTM C365-16

Probeta	MCI	PE-1	MCI	PE-2	MCI	PE-3	MC	PE-4	MCI	PE-5
Largo [cm]	9.7	72	9.3	70	9.2	74	9.	84	10	.03
Ancho [cm]	9.8	84	9.3	71	9.2	78	9.	78	9.	64
Espesor [cm]	9.5	55	9.5	54	9.0	50	9.	58	9.:	56
Pmáx [kgf]	2522	2.38	213	1.93	261	5.81	272	7.04	202	3.74
	Carga [kgf]	⊿ [mm]								
	16.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	50.88	0.05	63.22	0.22	53.43	0.08	53.43	0.12	51.50	0.08
	102.28	0.11	107.58	0.26	106.25	0.15	106.25	0.19	114.11	0.17
	220.26	0.20	146.64	0.29	156.43	0.19	164.28	0.24	159.08	0.20
	273.69	0.23	203.33	0.33	209.25	0.23	209.86	0.28	221.59	0.24
	334.98	0.25	255.54	0.36	257.48	0.25	260.03	0.31	333.04	0.29
	404.12	0.28	322.64	0.40	303.06	0.27	317.44	0.34	414.52	0.33
	563.09	0.33	419.72	0.45	367.61	0.30	426.24	0.40	514.24	0.36
	750.21	0.39	509.04	0.50	415.84	0.32	526.58	0.43	620.50	0.40
	851.87	0.42	626.31	0.57	516.90	0.35	649.15	0.47	730.02	0.43
	957.42	0.44	713.70	0.64	603.57	0.38	720.23	0.49	829.03	0.47
	1063.06	0.47	829.75	0.71	710.44	0.41	869.41	0.52	930.70	0.50
	1146.47	0.49	947.63	0.77	823.22	0.45	1089.06	0.57	1023.29	0.54
	1252.73	0.52	1033.69	0.80	940.49	0.48	1167.27	0.59	1123.63	0.57
	1360.20	0.54	1132.09	0.83	1021.35	0.51	1255.99	0.61	1217.55	0.61
	1472.37	0.57	1241.00	0.87	1145.76	0.55	1343.99	0.63	1358.27	0.66
	1584.44	0.60	1362.86	0.91	1226.62	0.58	1424.75	0.64	1445.66	0.70
	1697.83	0.62	1480.12	0.94	1331.55	0.62	1510.82	0.66	1559.66	0.75
	1798.17	0.65	1546.61	0.96	1445.66	0.68	1575.98	0.67	1637.87	0.78
	1896.68	0.68	1663.27	0.99	1536.82	0.72	1736.99	0.71	1755.24	0.83
	1965.71	0.70	1728.53	1.01	1635.32	0.78	1824.99	0.73	1831.42	0.87
	2043.31	0.73	1843.25	1.04	1742.19	0.84	1987.23	0.76	1944.20	0.94
	2124.79	0.75	1953.38	1.08	1828.87	0.88	2070.03	0.78	2023.74	1.04
	2206.27	0.78	2064.12	1.13	1938.39	0.94	2146.31	0.80	1955.92	1.10
	2400.42	0.86	2131.93	1.18	2053.72	1.00	2346.38	0.85	1856.20	1.12
	2451.30	0.89	2044.64	1.27	2246.04	3.00	2561.43	0.92	1739.54	1.22
	2522.38	0.96	1942.87	1.41	2616.81	5.55	2727.04	1.08	1632.06	1.39
	2445.39	1.04	1840.59	1.59	2345.66	7.29	2262.25	1.20	1602.69	1.46

Ensayo a Compresión Paralela

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Probeta	MCP	A-1	MCP	A-2	MCP	PA-3	MCP	A-4	MCF	PA-5
Largo [cm]	60.	00	60.	00	60.	00	60.0	00	60.	00
Ancho	30.1	20	30	00	30.1	00	30.0	0	30	00
Espesor	50.	50	50.	00	50.0	50	50.0	0	50.	00
[cm]	10.	00	10.	00	10.	00	10.0	00	10.	00
Pmáx [kgf]	8274	.95	9554	.52	9179	9.41	10181	.40	8368	3.96
	Carga [kgf]	⊿ [mm]								
	-24.16	1.249	12.08	0.032	0.00	0.008	12.08	1.212	12.08	0.709
	-12.08	1.951	24.16	0.577	12.08	0.598	241.55	2.013	169.07	2.460
	193.28	2.260	36.24	1.087	736.77	2.387	543.49	2.393	1050.67	3.336
	543.61	2.551	60.40	1.994	1002.49	2.634	857.51	2.690	2777.64	4.531
	700.65	2.678	676.44	2.830	1159.50	2.762	1135.29	2.936	3840.39	5.161
	821.45	2.789	1171.70	3.250	1437.30	3.000	1364.77	3.172	4432.15	5.481
	930.18	2.885	1666.95	3.660	1690.94	3.206	1835.79	3.522	4939.37	5.749
	1050.98	2.989	1872.30	3.819	1920.43	3.381	2029.03	3.672	5784.74	6.222
	1147.62	3.093	2186.36	4.056	2222.38	3.610	2355.13	3.933	6364.43	6.574
	1256.31	3.202	2331.31	4.161	2500.18	3.816	3019.40	4.403	6412.73	6.739
	1365.03	3.290	2597.06	4.348	2705.51	3.987	3200.56	4.528	6509.35	6.918
	1449.59	3.377	2826.56	4.505	2910.84	4.118	3756.13	4.878	6799.19	7.226
	1546.23	3.451	3188.95	4.751	3321.50	4.382	4601.56	5.373	6968.26	7.330
	1630.79	3.532	3382.21	4.862	3502.67	4.474	4891.42	5.573	7209.80	7.492
	1775.75	3.645	3430.53	4.900	3587.22	4.543	5241.67	5.741	7620.40	7.775
	2983.74	4.711	3611.72	4.999	3732.15	4.627	6026.72	6.156	7777.40	7.909
	3394.46	5.217	3696.28	5.036	4034.11	4.767	6703.06	6.523	7934.40	8.048
	3853.49	5.622	4227.67	5.350	5048.67	5.293	7029.15	6.678	8200.09	8.272
	4010.53	5.769	4263.90	5.387	5290.24	5.452	7584.72	7.119	8296.70	8.361
	4167.57	5.908	4336.38	5.403	5398.94	5.524	7971.21	7.390	8368.96	8.483
	4614.53	6.253	4348.46	5.435	5519.72	5.581	8116.14	7.499	7632.30	8.731
	4759.49	6.366	4420.93	5.465	5592.19	5.642	8623.40	7.834	7547.76	9.052
	6184.92	7.554	4517.56	5.494	8370.17	7.176	8925.34	8.098	7499.46	9.569
	6595.80	7.743	8129.20	7.516	9179.41	8.422	9142.73	8.303	7439.07	9.840
	7199.81	8.067	9554.52	8.822	8189.00	9.784	9287.66	8.448	7390.77	10.124
	8250.79	8.575	7694.35	10.639	7935.36	10.660	10181.40	8.752	7185.47	10.497
	8274.95	10.711	7042.08	11.848	7367.68	11.521	7657.19	10.203	6436.73	11.103
	8045.42	12.361	6112.00	13.943	7174.43	12.208	5942.17	12.872	5748.38	11.737

Norma: ASTM C364-16

3000 2000

1000

0.00

2.00

6.00 8.00 Deformación [mm]

10.00

12.00

14.00

2.00

4.00

- MCPA-4

14.00

12.00

10.00

Ensayo a Tracción Diagonal

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Norma: ASTM E519-15

Probeta	МТ	D-1	МТ	D-2	МТ	D-3	
Largo [cm]	60.	.00	60.	.00	60.	.00	
Ancho [cm]	60.	.00	60.	.00	60.00		
Espesor [cm]	10.	.00	10	.00	10.00		
Pmáx [kgf]	5020	0.15	5104	4.50	500	7.96	
	Carga [kgf]	⊿ [mm]	Carga [kgf]	⊿ [mm]	Carga [kgf]	⊿ [mm]	
	0.00	0.075	108.61	1.602	193.08	0.373	
	96.55	0.234	265.48	2.003	470.63	0.729	
	313.77	0.824	687.84	2.637	820.58	1.334	
	929.26	1.775	1013.66	3.110	1086.06	1.934	
	1556.81	2.797	1315.34	3.507	1242.94	2.519	
	2268.83	3.534	1568.76	3.837	2027.32	3.430	
	2811.84	4.206	1798.04	4.162	3137.52	4.281	
	3306.62	4.872	2642.76	5.453	3752.96	4.924	
	3596.25	5.500	2956.51	5.985	3909.83	5.214	
	3620.39	7.512	3378.87	6.570	4102.91	8.031	
	3415.23	11.911	3704.69	7.118	3885.70	12.448	
	3366.96	14.151	3994.30	8.491	3716.75	15.763	
	3668.66	15.172	4247.72	9.382	3596.08	17.863	
	3813.48	16.097	4501.13	9.704	3668.48	18.710	
	4018.63	17.524	4658.01	10.049	4090.84	20.042	
	4115.18	20.244	5020.03	10.718	4271.85	21.508	
	4404.81	22.670	5056.23	11.055	4368.39	22.849	
	3692.80	25.994	5104.50	12.197	4368.39	27.910	
	3789.34	27.347	4247.72	13.035	4332.19	30.538	
	4042.77	29.800	4175.31	13.902	4368.39	33.389	
	4139.21	34.301	3861.56	14.975	4609.74	36.216	
	4404.02	37.177	3596.08	16.198	4706.28	39.410	
	4501.24	38.972	3716.75	17.751	4826.95	42.784	
	4561.58	40.847	3740.89	18.948	5007.96	44.242	
	4778.80	42.764	3825.36	19.806	4875.22	47.281	
	5020.15	46.541	3680.55	21.853	4887.29	48.689	
	4899.48	49.252	3403.00	23.476	4947.63	50.797	
	784.40	52.210	760.25	25.172	181.01	47.026	

Ensayo a Flexión

Proyecto: Estudio del comportamiento experimental de una Mampostería Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

Norma: ASTM E72-19

Probeta	MF	⁻ -1	MF	-2	MF	-3
Largo [cm]	244	.00	244	.00	244	.00
Ancho [cm]	61.	00	61.	00	61.	00
Espesor [cm]	10.	00	10.	00	10.	00
Pmáx [kgf]	1401	.24	1255	5.95	1294	.21
	Carga [kgf]	⊿ [mm]	Carga [kgf]	⊿ [mm]	Carga [kgf]	⊿ [mm]
	0.00	0.049	0.00	0.008	12.13	0.010
	181.30	0.963	12.08	0.075	24.25	0.016
	205.47	1.059	108.68	0.566	48.50	0.050
	229.62	1.204	132.83	0.713	72.76	0.155
	265.87	1.457	205.28	1.074	133.39	0.375
	314.21	1.614	277.72	1.626	145.51	0.510
	350.44	1.951	326.02	1.940	206.14	0.696
	374.61	2.065	350.17	2.053	278.79	0.796
	410.84	2.362	386.40	2.340	290.91	0.869
	398.75	2.276	446.78	2.526	363.64	1.213
	326.25	1.983	434.71	2.535	375.76	1.324
	253.75	1.556	326.03	2.182	400.00	1.424
	205.42	1.390	217.35	1.704	412.12	1.460
	217.50	1.475	205.28	1.605	424.24	1.469
	302.09	1.800	265.65	1.831	448.48	1.475
	314.17	1.825	301.87	1.987	460.61	1.477
	326.25	1.909	338.10	2.121	411.93	1.448
	338.34	1.968	434.70	2.625	302.89	1.082
	374.59	2.107	446.77	2.747	290.78	1.005
	447.09	2.457	483.00	2.868	278.66	0.931
	519.59	2.850	495.07	2.957	266.47	0.964
	555.78	3.269	507.15	3.020	290.69	1.032
	592.03	3.424	579.60	3.448	205.85	1.228
	604.11	3.439	603.75	3.522	230.07	1.325
	567.81	3.475	603.75	3.545	302.72	1.608
	495.32	3.097	627.94	3.804	351.16	1.917
	447.00	2.823	615.87	3.766	448.03	2.308

Probeta	MF	`-1	MF	-2	MF	-3
	386.59	2.607	543.41	3.404	460.14	2.395
	277.87	2.094	470.96	3.080	557.01	2.885
	241.62	1.916	434.73	2.954	569.12	2.939
	229.54	1.795	386.43	2.799	605.44	3.206
	253.70	1.983	374.35	2.648	617.55	3.237
	338.26	2.309	338.12	2.488	629.66	3.254
	374.50	2.496	301.90	2.283	593.21	3.315
	386.59	2.576	253.59	2.087	581.10	3.250
	410.75	2.618	217.37	1.897	544.78	3.075
	446.99	2.841	169.06	1.635	496.36	2.925
	471.15	2.898	156.98	1.638	447.93	2.562
	495.31	3.024	144.91	1.638	411.61	2.376
	579.88	3.355	156.98	1.660	363.19	2.130
	628.20	3.589	169.06	1.767	326.87	1.973
	640.28	3.624	217.36	1.918	302.60	1.878
	652.36	3.701	253.59	2.096	266.24	1.880
	664.44	3.771	313.96	2.429	290.44	2.015
	724.85	4.152	386.42	2.728	326.75	2.237
	785.25	4.472	458.89	2.992	387.26	2.440
	797.33	4.651	519.27	3.247	399.36	2.615
	664.44	4.103	615.88	3.729	484.07	2.974
	579.88	3.668	712.49	4.236	496.18	3.009
	495.31	3.406	784.95	4.728	605.09	3.501
	459.05	3.224	833.25	4.960	617.19	3.554
	483.21	3.297	821.16	5.115	653.50	3.793
	628.17	3.955	797.01	5.004	701.91	3.993
	652.33	4.071	736.63	4.847	726.11	4.263
	748.97	4.469	712.47	4.732	762.42	4.455
	809.37	4.729	676.25	4.593	822.93	4.792
	640.25	4.065	640.02	4.449	835.03	4.806
	555.69	3.679	579.64	4.121	810.82	4.818
	507.37	3.420	543.41	3.939	786.49	4.866
	422.81	3.031	507.19	3.759	762.29	4.892
	374.49	2.872	458.88	3.577	798.59	4.927
	326.17	2.602	422.65	3.398	834.89	4.941
	314.09	2.488	398.50	3.209	810.69	4.943
	277.84	2.292	338.12	3.014	677.59	4.382
	229.52	2.162	301.90	2.820	604.99	3.938
	302.01	2.403	253.59	2.625	532.39	3.609

Probeta	MF-1		MF	-2	MF-3	
	362.41	2.725	241.52	2.438	496.09	3.339
	446.97	3.145	205.29	2.248	459.79	3.182
	616.09	3.797	193.21	2.193	447.69	3.110
	640.25	3.955	181.14	2.193	411.39	2.921
	664.41	4.052	205.29	2.207	375.09	2.810
	736.89	4.417	169.06	2.221	362.99	2.663
	748.97	4.470	181.14	2.218	314.56	2.654
	773.13	4.591	169.06	2.221	290.37	2.464
	845.61	4.863	181.14	2.229	266.17	2.398
	857.70	5.060	169.06	2.236	241.97	2.087
	942.26	5.522	181.14	2.244	229.87	2.078
	1014.74	6.061	265.67	2.767	278.27	2.074
	1063.01	6.528	362.28	3.598	254.07	2.074
	1123.41	6.956	410.58	3.920	254.03	2.295
	1171.72	7.354	446.81	4.173	423.38	2.996
	1183.80	7.481	519.26	4.811	532.25	3.626
	1244.20	7.731	591.74	5.226	616.93	3.981
	1220.04	7.810	664.20	5.846	677.41	4.312
	1232.12	7.861	748.74	6.461	798.37	4.943
	1207.96	7.941	869.50	7.525	822.57	5.042
	1171.72	7.555	954.04	8.444	858.86	5.243
	1123.41	7.111	978.19	8.858	907.16	5.882
	1159.64	7.401	1002.34	9.209	931.35	6.266
	1207.96	7.711	1026.50	9.414	1003.92	6.953
	1220.04	7.958	1062.72	9.794	1040.21	7.352
	1232.12	8.075	1098.95	10.477	1052.30	8.007
	1268.36	8.359	1123.11	10.674	1136.97	8.657
	1328.76	9.101	1135.18	10.878	1149.06	8.753
	1352.92	9.537	1147.26	11.058	1161.16	9.038
	1365.00	9.864	1171.41	11.254	1221.64	9.931
	1377.08	10.163	1195.57	11.676	1257.92	10.235
	1389.16	10.305	1219.72	11.865	1270.02	10.632
	1401.24	10.455	1255.95	12.481	1294.21	11.221
	-193.26	8.768	-277.76	12.125	-84.67	11.066

ANEXO II.

Dosificación experimental del hormigón (ACI-211)

ANEXO III.

Propiedades mecánicas del hormigón

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

COMPRESIÓN DE CILINDROS DE HORMIGÓN

Quito, 29 de junio de 2021

DATOS DEL CLIENTE CÉSAR BASANTES ÁLEX ARÉVALO Razón social

INF. No. 21 - 0077 - I

Hoja 01 de 01

Dirección:	LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA
Teléfono:	0983015919
DATOS DEL PR	DYECTO
Proyecto:	ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERÍA SIMPLEY CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS).
Contratante:	-
Contratista:	
Fiscalizador	

COLUMNAS Y VIGAS DE CONFINAMIENTO

ASTM C39

ELEMENTO: NORMA:

No.	IDENTIFICACIÓN	FECHA	FECHA	EDAD	DIÁMETRO	ÁREA	PESO	CARGA MÁX.	RESIS	TENCIA	TIPO DE DEF	
		FABRICACIÓN	ROTURA	(dias)	(mm)	(mm ²)	(kg/m ²)	(kN)	(MPa)	(kg/cm ²)	FALLA*	DEFECTOS.
1	CV1	2021-05-26	2021-06-02	7	100.50	7933	2280	132,8	16,7	171	TIPO 1	A
2	CV2	2021-05-26	2021-06-02	7	100,25	7893	2270	116.8	14,8	151	TIPO 1	A
3	CV3	2021-05-26	2021-06-02	7	100,25	7893	2310	118,8	15,0	153	TIPO 1	A
4	CV4	2021-05-26	2021-06-09	14	101,75	8131	2250	156,0	19,2	195	TIPO 1	A
5	CV5	2021-05-26	2021-06-09	14	100,50	7933	2290	154,1	19,5	198	TIPO 1	A
6	CV6	2021-05-26	2021-06-09	14	100,25	7893	2340	149,1	18,9	193	TIPO 1	A
7	CV7	2021-05-26	2021-06-16	21	100,75	7972	2300	147,9	18,6	189	TIPO 1	A
8	CV8	2021-05-26	2021-06-16	21	101,50	8091	2280	162,3	20,1	205	TIPO 1	A
9	CV9	2021-05-26	2021-06-16	21	100,25	7893	2270	179,3	22.7	232	TIPO 1	A
10	CV10	2021-05-26	2021-06-23	28	101,75	8131	2250	164,8	20,2	206	TIPO 2	A
11	CV11	2021-05-26	2021-06-23	28	101,75	8131	2270	175,3	21,6	220	TIPO 4	A
12	CV12	2021-05-26	2021-06-23	28	101,00	8012	2230	164,7	20,5	209	TIPO 2	A

DESCRIPCIÓN DE DEFECTOS: A = NINGUNO ; B = SEGREGADO ; C = POROSIDAD ; D = FISURAS PREEXISTENTES ; E = OTRA

OBSERVACIONES: Todos los datos del item de ensayo (fecha de fabricación, elemento, identificación) son proporcionadas por el cliente por lo que involucra

su total responsabilidad. Los resultados reportados en el presente informe corresponden únicamente a los items ensayados. La información marcada con asterisos (1 corresponde a los especificado en la norma ASTM C39 El contenido del presente informe no podrá reproducirse ni parcial ni totalmente sin la autorización del LEMSUR.

1

ING. PAUL ZUNIGA M. JEFE DEL LABORATORIO (E)

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

Quito, 29 de junio de 2021

MÓDULO DE ELASTICIDAD EN HORMIGÓN

ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERÍA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON

INF. No. 21 - 0078 - I	
Hoja 01 de 03	

CÉSAR BASANTES; ÁLEX ARÉVALO LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA 0983015919; 0995248852

Teléfono: DATOS DEL PROYECTO

DATOS DEL CLIENTE

Proyecto:

Razón social:

Dirección:

Contratante: Contratista: Fiscalizador: ELEMENTO: MUESTRA: FECHA DE ENSAYO: NORMA:

COLUMNAS Y VIGAS DE CONFINAMIENTO CV13 2021-06-23 ASTM C469 - 14

POLIESTIRENO EXPANDIDO (EPS).

ING. PAUL ZUÑIGA M.

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif Ing, Gizil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

MÓDULO DE ELASTICIDAD EN HORMIGÓN

INF. No. 21 - 0078 - I Hoja 02 de 03

Quito, 29 de junio de 2021

DATOS DEL CLIENTE Razón social: Dirección:

LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA 0983015919; 0995248852 DATOS DEL PROYECTO

...

Proyecto:

Teléfono:

ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERÍA SIMPLE Y CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS).

Contratante:
Contratista:
Fiscalizador:
ELEMENTO:
MUESTRA:
FECHA DE ENSAYO:
NORMA:

... COLUMNAS Y VIGAS DE CONFINAMIENTO CV14 2021-06-23 ASTM C469 - 14

CÉSAR BASANTES; ÁLEX ARÉVALO

CARGA	DEF. AXIAL	ESFUERZO	CARACTERÍSTICAS DE LA PROBETA	
(KN)	(µm/µm)	(MPa)	DIAMETRO (D) (mm) :	102,4
0,0	0	0,00	ALTURA (L) (mm) :	202
5,0	33	0,61	PESO (g) :	3738
10,0	66	1,21	PESO UNITARIO (g/cm³) :	2,25
15,0	100	1,82		
20,0	133	2,43	•	
25,0	166	3,04	RESUMEN DE RESULTADOS	
30,0	199	3,64	ÁREA(mm ²) :	8235,
35,0	232	4,25	RELACIÓN L/D :	1,97
40,0	266	4,86	Carga máxima (KN) :	
45,0	299	5,46	Módulo de Elasticidad (MPa) :	1814
50,0	332	6,07	Resistencia a la compresión (MPa) :	•••
55,0	365	6,68	40 % de Resistencia a la compresión (MPa) :	7,89
60,0	398	7,29		
65,0	432	7,89		_
0,0	0	0,00		
5,0	34	0,61	8	-
10,0	67	1,21		
15,0	101	1,82		
20,0	135	2,43	6	-
25,0	169	3,04		
30,0	202	3,64		
35,0	236	4,25	224 A	_
40,0	270	4,86		
45,0	304	5,46	2 3	-
50,0	337	6,07		
55,0	371	6,68		
60,0	405	7,29	1	-
65,0	438	7,89		
VACIONES:	Las probetas no se	ensayaron hasta	DEFORMACION UNITARIA su rotura, solo hasta el 40% de su resistencia estimada.	500

ING. PAUL ZUÑIGA M. FE DEV LABORATORIO (E PE DEL

Telf.: 2976300 Ext.: 1609

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Civil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

LABORATORIO DE ENSAYOS DE MATERIALES, MECÁNICA DE SUELOS Y ROCAS

Quito, 29 de junio de 2021

MÓDULO DE ELASTICIDAD EN HORMIGÓN

INF. No. 21 - 0078 - I Hoja 03 de 03 DATOS DEL CLIENTE Razón social: CÉSAR BASANTES; ÁLEX ARÉVALO Dirección: LADRÓN DE GUEVARA E11-253 Y ANDALUCÍA Teléfono: 0983015919; 0995248852 DATOS DEL PROYECTO ESTUDIO DEL COMPORTAMIENTO EXPERIMENTAL DE UNA MAMPOSTERÍA SIMPLE Y

Proyecto:

Contratante: Contratista: Fiscalizador: ELEMENTO: MUESTRA: FECHA DE ENSAYO: NORMA:

CONFINADA UTILIZANDO PANELES DE FIBROCEMENTO CON HORMIGÓN ALIVIANADO CON POLIESTIRENO EXPANDIDO (EPS). ... •••• COLUMNAS Y VIGAS DE CONFINAMIENTO CV15 2021-06-23 ASTM C469 - 14

Dirección: Ladrón de Guevara E11-253 y Andalucia / Edif. Ing. Givil / Mezanine / Ofic. M15 Email: lemsur@epn.edu.ec

ANEXO IV.

Cálculo del peso propio del MMCR

Viga de cimentación		Columna de conf.		Viga de confinamiento		Paneles		Refuerzo Horizontal	
Cant	1	Cant	2	Cant	1			Cant	4
b (m)	0.3	b (m)	0.25	b (m)	0.2	largo (m)	2.2		
h(m)	0.4	h(m)	0.25	h(m)	0.2	alto (m)	2.5		
L (m)	3.35	L (m)	2.5	L (m)	2.92	e (m)	0.1	L\$12(m)	2.95
γ [t/m3]	2.4	2.4		2.4		0.509		Peso ϕ 12 [kg/m]	0.888
Peso [t]	0.965	0.750		0.280		0.280		0.010	
Peso Total [t]	2.286								

ANEXO V.

Bucles de histéresis obtenidos experimentalmente

Pórtico

-2 0 2 Desplazamiento (mm)

-8

ANEXO VI.

Equipos, montaje e Instrumentación del CIV

Foto 1. Montaje de la placa hembra mediante 4 pernos embebidos en los Muros

Foto 2. Montaje del émbolo de la celda de carga a la placa hembra con un pasador no roscado

Foto 3. Montaje placa de muro de reacción, gato hidráulico y celda de carga

Foto 4. Gato hidráulico para el pretensado de los anclajes de la cimentación

Foto 5. Montaje del gato hidráulico con el banco de pretensado

Foto 6. Bomba eléctrica de transmisión de carga (100t)

Foto 7. Sistema UPM100 para recopilación y procesamiento de datos de carga y desplazamiento de manera digital

ANEXO VII.

Control de calidad del hormigón en obra

Foto 8. Control de la consistencia del hormigón mediante el Ensayo de Abrams

Foto 9. Moldes metálicos cilíndricos para concreto

Foto 10. Ensayo de rotura de cilindros de concreto

Foto 11. Ensayo de rotura de cilindros de concreto

ANEXO VIII.

Registro fotográfico de los ensayos a Carga Lateral Cíclica

<u>Pórtico:</u>

Foto 12. Fisuras Ciclo 14(49) en el Pórtico (Empuje \rightarrow), Δ =91.49mm; P=27.90kN (Halado \leftarrow), Δ =-90.05mm; P=-27.40kN

Foto 13. Falla en la conexión viga-columna en el Pórtico

Foto 14. Desprendimiento columna con la viga de cimentación

Foto 15. Desprendimiento columna con la viga de cimentación

Foto 16. Falla en la conexión viga-columna en el Pórtico

Foto 17. Falla en la conexión viga-columna en el Pórtico

<u>MMS 1:</u>

Foto 18. MMS 1 antes del ensayo

Foto 19. Primera fisura Ciclo 25 en el MMS 1(Empuje \rightarrow), Δ =5.95mm; P=91.05kN

Foto 20. Fisuras Ciclo 35 en el MMS 1(Empuje \rightarrow), Δ =22.76mm; P=123.50kN

Foto 21. Fisuras Ciclo 35 en el MMS 1(Halado \leftarrow), Δ =-19.32mm; P=-130.37kN

Foto 22. Fisuras Ciclo 38 en el MMS 1(Empuje \rightarrow), Δ =29.47mm; P=124.10kN

Foto 23. Fisuras Ciclo 38 en el MMS 1(Halado \leftarrow), Δ =-29.76mm; P=-137.08kN

Foto 24. Fisuras Ciclo 41 en el MMS 1(Empuje \rightarrow), Δ =38.00mm; P=121.77kN

Foto 25. Fisuras Ciclo 41 en el MMS 1(Halado \leftarrow), Δ =-39.65mm; P=-130.80kN

Foto 26. Fisuras Ciclo 47 en el MMS 1(Empuje \rightarrow), Δ =60.00mm; P=103.40kN

Foto 27. Fisuras Ciclo 47 en el MMS 1(Halado \leftarrow), Δ =-59.26mm; P=-109.68kN

Foto 28. Falla en la conexión viga-columna en el MMS 1

Foto 29. Falla en el panel por abertura de los pernos de anclaje

<u>MMS 2:</u>

Foto 30. MMS 2 antes del ensayo

Foto 31. Primera fisura Ciclo 25 en el MMS 2(Halado ←), Δ=-6.108mm; P=-72.532kN

Foto 32. Fisuras Ciclo 6(29) en el MMS 2(Empuje \rightarrow), Δ =7.99mm; P=76.41kN

Foto 33. Fisuras Ciclo 6(29) en el MMS 2(Halado \leftarrow), Δ =-7.99mm; P=-74.99kN

Foto 34. Fisuras Ciclo 7(32) en el MMS 2(Empuje \rightarrow), Δ =13.26mm; P=94.85kN

Foto 35. Fisuras Ciclo 7(32) en el MMS 2(Halado \leftarrow), Δ =-13.35mm; P=-90.75kN

Foto 36. Fisuras Ciclo 8(35) en el MMS 2(Empuje \rightarrow), Δ =23.58mm; P=93.44kN

Foto 37. Fisuras Ciclo 8(35) en el MMS 2(Halado \leftarrow), Δ =-19.69mm; P=-75.65kN

Foto 38. Fisuras Ciclo 9(38) en el MMS 2(Empuje \rightarrow), Δ =31.29mm; P=76.07kN

Foto 39. Fisuras Ciclo 9(38) en el MMS 2(Halado \leftarrow), Δ =-30.02mm; P=-73.75kN

<u>MMCR 1:</u>

Foto 40. MMCR 1 antes del ensayo

Foto 41. Fisuras Ciclo 5(25) en el MMCR 1(Empuje \rightarrow), Δ =5.93mm; P=127.41kN

Foto 42. Fisuras Ciclo 7(32) en el MMCR 1(Empuje \rightarrow), Δ =14.05mm; P=132.03kN

Foto 43. Fisuras Ciclo 7(32) en el MMCR 1(Halado \leftarrow), Δ =-13.67mm; P=-98.04kN

Foto 44. Fisuras Ciclo 9(38) en el MMCR 1(Empuje \rightarrow), Δ =29.16mm; P=115.96kN

Foto 45. Fisuras Ciclo 9(38) en el MMCR 1(Halado \leftarrow), Δ =-30.52mm; P=-104.50kN

Foto 46. Fisuras Ciclo 10(41) en el MMCR 1(Empuje \rightarrow), Δ =43.24mm; P=115.96kN

Foto 47. Fisuras Ciclo 10(41) en el MMCR 1(Halado \leftarrow), Δ =-39.64mm; P=-87.82kN

Foto 48. MMCR 1 después del ensayo

Foto 49. MMCR 1 después del ensayo

MMCR 2:

Foto 50. MMCR 2 antes del ensayo

Foto 51. Primera fisura Ciclo 21 en el MMCR 2, (Empuje \rightarrow), Δ =8.14mm; P=121.09kN

Foto 52. Fisuras Ciclo 6(29) en el MMCR 2(Empuje \rightarrow), Δ =8.14mm; P=121.09kN

Foto 53. Fisuras Ciclo 6(29) en el MMCR 2(Halado \leftarrow), Δ =-8.13mm; P=-108.29kN

Foto 54. Fisuras Ciclo 7(32) en el MMCR 2(Empuje \rightarrow), Δ =13,37mm; P=126.72kN

Foto 55. Fisuras Ciclo 7(32) en el MMCR 2(Halado \leftarrow), Δ =-13.66mm; P=-107.97kN

Foto 56. Fisuras Ciclo 8(35) en el MMCR 2(Empuje \rightarrow), Δ =19.58mm; P=113.49kN

Foto 57. Fisuras Ciclo 8(35) en el MMCR 2(Halado \leftarrow), Δ =-19.99mm; P=-99.87kN

Foto 58. Fisuras Ciclo 10(41) en el MMCR 2(Empuje \rightarrow), Δ =39.56mm; P=114.30kN

Foto 59. Fisuras Ciclo 10(41) en el MMCR 2(Halado \leftarrow), Δ =-39.37mm; P=-95.78kN

Foto 60. Fisuras Ciclo 12(47) en el MMCR 2(Empuje \rightarrow), Δ =59.22mm; P=95.11kN

Foto 61. Fisuras Ciclo 12(47) en el MMCR 2(Halado \leftarrow), Δ =-60.02mm; P=-85.54kN

Foto 62. MMCR 2 después del ensayo

Foto 63. MMCR 2 después del ensayo

ANEXO IX.

Protocolo de Ensayos del CIV

	1							ESC	UELA PO	LITÉCNIC	A NACION	NAL							-		Revisión	6		01
(TT -							CE	NTRO DE	INVEST	GACIÓN I	DE LA VIV	IENDA - 0									Fecha:		0	ct-2019
																				-	Hoja:		7.00	1 de 2
	_							FORM	ATO ENS	AYO DE C	AKGA LA	TERAL										FT-CIV-0	/-03	
				Direcció	n del labo	oratorio:		Ladrór	de Gue	vara E11-	253. Edifi	cio N°5					-						1	
				Fecha	Cliente /	(M/DD):		0	écar Bas	antes / Ål	ev Areval	ő			T 7	(())	inic	15.8	sayo	FI	17 3	ауо	{	
			Dire	ección del	cliente /	Tesista:	-	Av.	Cóndor Ñ	Nan, OE35	5 Pumapu	ingo		1	Hr	rel (%)		65	-		60		1	
			Ide	ntificació	on del esp	écimen:				Pórtico					H	lora		8:32			15:34		1	
							ACT	4 53134	10.1	Afterda	de Ferr		A ma m littere	d de les	Cieles	Delmast	-							
	-						ASI	VI EZ IZ	5 - 19:1	Metodo	de Ensa	ayo C - I	Amplitu	a de los	CICIOS	Primari	05							American
		Número							Desplaza	miento (Objetivo (mm), De	splazamie	ento (mn	n) y Fuer	za (kg) re	gistrados	1						del ciclo
Patrón	Paso	mínimo	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	△ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	△ (+)	Δ (+)	F (+)	pirmario (%
		de cicios	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	Δ(-)	Δ (-)	F (-)	△ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	۵)
1	1	6	1.00	1.00	333	1.00	1.74	577	1.00	1.13	282	1.00	1.05	263	1.00	1.03	263	1.00	1.00	253				5.00
	÷.,		-1.00	-1.00	331	-1.00	-1.00	348	-1.00	-1.02	338	-1.00	-1.04	343	-1.00	-1.02	309	-1.00	-1.01	316				
	2	7	1.50	1.50	385	1.13	1.15	299	1.13	1.14	297	1.13	1.14	297	1.13	1.21	321	1.13	1.23	323	1.13	1.15	304	7.50
2	-		-1.50	-1.50	430	-1.13	-1.17	328	-1.13	-1.15	321	-1.13	-1.17	331	-1.13	-1.12	311	-1.13	-1.15	323	-1.13	-1.15	323	
-	3	7	2.00	2.01	512	1.50	30.70	708	1.50	1.57	323	1.50	2.09	455	1.50	1.67	360	1.50	1.51	319	1.50	1.72	367	10.00
	3		-2.00	-2.00	536	-1.50	-1.49	420	-1.50	-1.49	408	-1.50	-1.61	439	-1.50	-1.47	362	-1.50	-1.44	348	-1.50	1,49	391	10.00
		- 62	4.00	4.02	835	3.00	3.03	652	3.00	3.01	630	3.00	3.22	676		e			-5	55.7 T			~	20.00
			-4.00	-4.05	891	-3.00	-3.03	611	-3.00	-2.99	596	-3.00	-3.00	592]									2000
3			6.00	6.01	1087	4.50	4.51	811	4.50	4.50	794	4.50	4.49	787	1									100.000
	3		-6.00	6.32	1193	-4.50	-4.50	715	-4.50	-4.50	712	-4.50	-4.50	724	1									30.00
			8.00	8.02	1268	6.00	5.12	934	6.00	6.03	895			a	-0.6									40.00
	0		-8.00	-8.07	1331	-6.00	-6.04	888	-5.00	-6.21	927]												40.00
	7		14.00	14.02	1768	10.50	10.51	1253	10.50	10.54	1251]												70.00
			-14.00	-54.02	1785	-10.50	-10.50	1236	-10.50	-10.51	1236													10.00
			20.00	20.03	2234	15.00	15.12	1540	15.00	15.67	1644]												100.00
	0	-	-20.00	-20.03	2335	-15.00	-15.00	1543	-15.00	-15.01	1538													100.00
	0		30.0	310,025	29851	22.5	22.85	2096	22.5	22.53	:2022/													
			-30.0	310,425	3051	-22.5	-37.50	2388	-22.5	-22,52	2.622													
	10		40.0	-40.32	30869	30.0	31.04	2457	30.0	35.17	2015-0													
2			-10.0	-40.37	-3475	-30.0	-30.05	2338	-30,0	-50.94	3608													
	12		50,0	60.00	30540	45.0	44.45	2574	45.0	45.05	2577]												(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
	- A.K.	1	-60.0	-50.07	35.2.3	-45,0	-45.05	2578	-45.0	-45.29	2547]												and consider de
	12		70.0	87.28	2342]												el espècimen faile)
	14		-70,0	-67.22	343.1]												
			80.0	80.25	3452							1												
	13	1	-80.0	-80.16	3303							1												
	3.2		90.0	91,49	2844							1												
	14		-90.0	-90.03	2903)																			
Delta (mm)	20																							

	T							ESC	UELA PO	LITÉCNIC	A NACION	IAL									Revisión			01
100							CE	NTRO DE	INVESTI	GACIÓN I	DE LA VIV	IENDA -									Fecha:		0	ct-2019
								EORM	ATO ENS	ANO DE C	ARGAIA	TERAL								├ ──	Hoja:	ET.CIV.O	7.03	1 de 2
								FURIN	ATO ENS	ATO DE C	ARGA LA	TERAL										FI-CIV-0.	1-03	
				Dirección	n del labo	pratorio:		Ladrón	de Guev	ara E11-	253. Edifi	io N*5		-						-				
				Fecha	(AAAA/N	IM/DD):		6	Ácar Bac	021/05/1	2 ox Aroual	0			T	(***	Inic	17 2	sayo	Fir	1 de ensa	iyo	1	
			Dire	cción del	cliente /	Tesista:		Av. (Cóndor Ñ	an. OE35	E Pumapu	ngo			Hr	el (%)		64		<u> </u>	59			
			Ide	ntificació	n del esp	écimen:		MURO	DE MAP	OSTERÍA S	SIMPLE (N	/MS 1)			H	lora		9:06			15:30			
							1071		10.1		de Free				Ct-1	D.1				ð			10	
	-		<u> </u>				ASTN	1 EZ120	- 19: N	letodo	de Ensa	yoc-	Amplitu	a de lo	s cicios	Primar	105							1 Annual Inc. of
		Número						1	Desplaza	miento C	bjetivo (i	mm), De	splazamie	ento (mn	n) y Fuer	za (kg) re	gistrados	5						del ciclo
Patrón	Paso	minimo	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ(+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	pirmario (%
		de ciclos	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	Δ)
	1		1.00	1.01	3178	1.00	1.04	3013	1.00	1.43	3881	1.00	1.00	1850	1.00	1.17	2839	1.00	1.00	1700				VIDCENV
1	1	5	-1.00	-1.00	3149	-1.00	-0.99	2549	-1.00	-1.01	2943	-1.00	-1.00	2807	-1.00	-1.00	2754	-1.00	-1.00	2698	1			5.00
	-		1.00	1.60	26.02			2011			2026			1000			2040			2120			2107	+
	2	7	1.50	1.50	3081	1.13	1,13	2011	1.13	4,13	2025	1.13	1.13	1989	1.13	1.13	2040	1.13	1.14	2120	1.13	1.1/	2191	7.50
2			-1.50	-1.50	4205	-1.13	-1.13	2621	-1.13	-1.13	2608	-1.13	-1.13	2508	-1.13	-1.13	2639	-1.13	-1.14	2625	-1.13	-1.13	2598	
		-	2.00	2.13	5340	1.50	1.56	2356	1.50	1.50	2040	1.50	1.51	2131	1.50	1.53	2139	1.50	1.50	2100	1.50	1.51	2052	10.00
	3		-2.00	-2.00	4995	-1.50	-1.50	3072	-1.50	-1.51	3165	-1.50	-1.50	3110	-1.50	-1.50	3079	-1.50	-1.50	3081	-1.50	-1.50	3091	20.00
			4.00	4.00	7799	3.00	3.00	4033	3.00	3.03	4026	3.00	3.00	3815										
	4	4	-4.00	-4.02	8204	-3.00	-3.00	4958	-3.00	-3.00	4951	-3.00	-3.00	5002	1									20.00
3			6.00	5.00	9211	4.50	4.50	4879	4.50	4.50	5053	4.50	4.54	4893	1									
	5	4	-6.00	-6.20	10079	-4.50	-4.52	\$550	-4.50	-4.51	5497	-4.50	-4.50	5403	1									30,00
	-		5.00	8.02	10484	5.00	6.05	5117	5.00	5.15	5135				1									
	6	3	8.00	0.02	20404	6.00	0.05	2227	0.00	0.10	3123	-												40.00
			-8.00	-8.21	10047	-6.00	-2.99	4059	-6.00	-6.80	7659	{												
	7	3	14.00	13.91	11455	10.50	11.48	7388	10.50	11.01	5811	-												70.00
			-14.00	-14.00	12101	-10.50	-10.50	6248	-10.50	-10.50	6241													
	8	3	20.00	22.81	12593	15.00	15.14	4523	15.00	15.00	3523													100.00
			-20.00	-20.00	13195	-15.00	-15.11	6318	-15.00	-15.10	6342													
4	0		30.0	30.00	17258	22.5	22.50	4530	22.5	22.58	-4728													
	1.5511		-30.0	-302.10	12242	-22.5	-22.53	5323	-22.5	-72.52	3502													
	10		40.0	-30.55	12330	30.0	30.15	4040	30.0	38.00	-40058													
	1.0		-40.0	-40.05	13753	-30.0	-30.15	43.98	-30.0	-30.00	4977	1												adicionales de
			50.0	50.16	11037	37.5	37.50	4230	37,5			1												100x (histii que el espècimen
	2.1	3	-50.0	-50.05	32013	-37.5	-37.50	4015	-37.5			1												(falle)
			60.0	60.12	10544	45.0	-		45.0		·	1												1
	12	1	-60.0	-60.49	11/1/19	.45.0			-45.0			1												1
Delta (mm)	20		140.07			- 3.0			1010			1												
Alfa ≤ 0.5	0.5																							

	T							ESC		UTÉCNIC	ANACIO	NAL									Rovisión	2		01
								ESC	UELA FO	LITECNIC		NAL									Fecha:		0	or 0ct-2019
							CE	NTRO DE	INVESTI	GACION I	DE LA VIV	IENDA -	CIV								Hoja:			1 de 2
								FORM	ATO ENS	AYO DE O	CARGA LA	TERAL										FT-CIV-0	7-03	
				Direcció	n del labo	oratorio:		Ladrón	de Guev	vara E11-	253. Edifi	cio N°5												
				Fecha	(AAAA/N	/M/DD):			2	2021/05/1	14				1 <u>5</u>		Inic	io de en	isayo	Fir	n de ens	ауо	1	
					Cliente /	Tesista:		C	ésar Bas	antes / Á	lex Areval	0			т	(°C)		17.7			20.8			
			Dire	cción del	cliente /	Tesista:		Av.	Cóndor M	Nan, OE3	5 Pumapu	ingo			Hr	el (%)		70		—	62		1	
			Ide	ntificacio	n dei esp	becimen:		MORO	DE MAP	USI ERIA	SIVIPLE (I	VIIVI5 2)			<u> </u>	lora	L	0:20		<u> </u>	12:52		1	
2							AST	VI E2126	5 - 19: 1	Método	de Ensa	ayo C -	Amplitu	d de los	s Ciclos	Primar	ios							
		Número						1	Desplaza	imiento (Objeti v o (mm), De	splazami	ento (mn	n) y Fuer	za (kg) re	gistrado	5						Amplitud del ciclo
Patrón	Paso	mínimo	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	pirmario (%
-	-	de cícios	Δ (-)	Δ (-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	۵)
	100	7.0	1.00	1.01	4575	1.00	1.01	4225	1.00	1.05	4382	1.00	1.00	3859	1.00	1.00	3952	1.00	1.02	3922				10000
1	1	5	-1.00	-1.00	4432	-1.00	-1.00	4259	-1.00	-1.00	4069	-1.00	-1.01	4018	-1.00	-1.00	3940	-1.00	-1.00	3881	1			5.00
	-		1.50	1.50	5704	1.13	1.14	3730	1.13	1.13	3728	1.13	1.15	3824	1.13	1.16	3843	1.13	1.13	3597	1.13	1.95	7199	
2	2	<i>.</i>	-1.50	-1.50	5680	-1.13	-1.14	3624	-1.13	-1.13	3524	-1.13	-1.14	3653	-1.13	-1.13	3524	-1.13	-1.14	3580	-1.13	1.13	3734	7.50
2			2.00	2.00	5197	1.50	1.51	3499	1.50	1.50	3383	1.50	1.50	3301	1.50	1.50	3325	1.50	1.58	3736	1.50	1.52	3368	
	3	7	-2.00	-2.00	6337	-1.50	1.50	3910	-1.50	-1.50	3915	-1.50	-1.50	3934	-1.50	-1.51	3905	-1.50	-1.50	3830	-1.50	-1.52	3989	10.00
			4.00	4.40	7933	3.00	3.01	3104	3.00	3.09	3296	3.00	3.01	3039					5 c		-			in the
2	4	4	-4.00	-4.02	6831	-3.00	-3.02	4091	-3.00	-3.00	4040	-3.00	-3.01	3989	1									20.00
3			6.00	5.02	6852	4.50	4.50	4119	4.50	4.60	4274	4.50	4.50	3995	1									100000
	5	4	-6.00	-6.11	7396	-4.50	-4.53	3788	-4.50	4.50	3684	-4.50	4.53	3757	1									30.00
			8.00	8.00	7755	6.00	5.00	4550	6.00	6.06	4670				-									
	6	3	-8.00	-8.08	7567	-6.00	-6.03	3985	-6.00	-6.12	4121	1												40.00
	7		14.00	14.11	9379	10.50	10.55	4972	10.50	10.70	4740]												20.00
	· ·		-14.00	-14.04	8410	-10.50	-10.50	4257	-10.50	-10.58	4298													10.00
4	8		20.00	23.01	9528	15.00	15.11	2780	15.00	15.20	2825													100.00
	0	3	-20.00	-20.01	7373	-15.00	-16.28	4392	-15.00	-15.13	3660]												100.00
			30.0	31,29	7757	22.5			22.5															100000000000000000000000000000000000000
			-30.0	-30.02	75.20	-22.5			-22.5]												adicionales de
	100		40.0			30.0			30,0															el espècimen
	20	- 20	-40.0			-30.0			-30.0			1												(mise)
Delta (mm)	20								1			-												
Alfa ≤ 0.5	0.5																							

	T							ESC	UELA PO	LITÉCNIC	A NACIO	NAL									Revisión:	5		01
100							CE	NTRO DE	INVEST	GACIÓN		IENDA -	CIV								Fecha:		0	ct-2019
																					Hoja:			1 de 2
								FORM	ATO ENS	AYO DE C	CARGA LA	TERAL										FT-CIV-0	7-03	
				Direcció	n del labo	oratorio:		Ladrón	de Guev	vara E11-	253. Edifi	cio N°5					-							
				Fecha	(AAAA/N	MM/DD):			2	021/06/2	22						Inic	io de en	sayo	Fir	n de ensa	iyo		
			Dise	and a dal	Cliente /	Tesista:		C	ésar Bas	antes / Al	ex Areval	0		-	T	(°C)	<u> </u>	16.2		<u> </u>	19.8			
			Dire	ntificació	cliente /	resista:		AV.	Condor P	van, OE3:	A REFORM	ingo	ACD 33		HI	el (%)	<u> </u>	86		<u> </u>	12:24			
			lde	nuncacio	n dei esp	ecimen:	MUR	O DE MAP	OSTERIA	CONFINAD	A REFORZ	ADA (MIN	ACK 2)	×		lora		9:00		L	15:24			
							ASTN	A E2126	6 - 19: N	Método	de Ensa	yo C -	Amplitu	d de los	s Ciclos	Primar	ios							-
		Número						1	Desplaza	miento C	bjetivo (mm), De	splazami	ento (mn	n) y Fuer	za (kg) re	gistrados	5						Amplitud del ciclo
Patrón	Paso	mínimo	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	pirmario (%
		de cicios	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ(-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	۵)
1	1	6	1.00	1.09	5746	1.00	1.01	4846	1.00	1.17	5874	1.00	0.99	4637	1.00	1.01	4902	1.00	0.99	4765				5.00
	1		-1.00	-1.09	6087	-1.00	-1.00	5753	-1.00	-0.99	4879	-1.00	-0.98	4927	-1.00	-0.99	5425	-1.00	-0.99	5322				
	2	7	1.50	1.51	7246	1.13	1.08	4938	1.13	1.15	5252	1.13	1.20	5450	1.13	1.12	4978	1.13	1,12	4955	1.13	1,12	4900	7.50
2	2		-1.50	-1.50	7181	-1.13	-1.13	5606	-1.13	-1.12	5576	-1.13	-1.12	5479	-1.13	-1.13	5759	-1.13	-1.13	5647	-1.13	-1,11	5560	1.00
2			2.00	2.00	8599	1.50	1.48	6166	1.50	1.50	6163	1.50	1.64	6814	1.50	1.49	6027	1.50	1.50	5043	1.50	1.50	6104	10.00
	3		-2.00	-2.13	10151	-1.50	-1.50	6509	-1.50	-1.49	6745	-1.50	-1.50	6666	-1.50	-1.47	6669	-1.50	-1.51	6725	-1.50	-1.49	6577	10.00
			4.00	3.99	12768	3.00	2.98	9181	3.00	3.07	9492	3.00	3.01	9134		o				10				
2	4		~4.00	-4.00	13619	-3.00	-2.95	9379	-3.00	-3.01	9134	-3.00	-2.96	8890	1									20.00
3			5.00	6.57	15139	4.50	4.51	7748	4.50	4.58	7678	4.50	4.47	7276	1									
	5		-6.00	-6.09	12309	-4.50	-4.51	7885	-4.50	-4.59	7951	-4.50	-4.60	7644	1									30.00
			8.00	8.14	12347	6.00	6.01	7301	6.00	6.11	7442													
	6	3	-8.00	8.13	11040	-6.00	-5.03	6509	-6.00	-5.96	5245	1												40.00
	7		14.00	14.00	11800	10.50	10.60	5803	10.50	10.48	6354	1												70.00
	· ·		-14.00	-14.05	11010	-10.50	-10.35	\$772	-10.50	+10.54	6582]												70.00
	0		20.00	20.02	11531	15.00	15.03	6090	15.00	15.12	5967]												100.00
			-20.00	-19.99	10183	-15.00	-14.98	5208	-15.00	-14.87	5172													
٨	0	1.2	30.0	30.33	212598	22.5	22.30	6242	22.5	22.36	5882													
179			-30.0	-30.20	3897	-22.5	-22.31	3541	-22.5	-22.69	5725													
	*/7		40.0	40-10	30962	30.0	29.99	5807	30.0	31,27	6382]												
	10		-40,0	-40.18	9870	-30.0	-30.79	\$477	-30.0	30.15	5176]												adicionales de
	7.7		50.0	49.94	10927	37.5	37.62	53,90	37.5	37.42	5090]												el espéciment
	1.1		-50.0	50-4±	9122	-37.5	37.66	4992	-32.5	-32542	-1917													0.00000
	12		60.0	60.02	9466	45.0			33.8															
1. JULY 11. 11. 11.	1.6		-50.0	-60.00	8722	-45.0			-33.8															
Delta (mm)	20																							
Alta ≤ 0.5	0.5																							

	1							ESC	JELA PO	LITÉCNIC	A NACION	IAL									Revisión	:		01
111							CER	NTRO DE	INVESTI	GACIÓN I	E LA VIV	IENDA -	CIV								Fecha:		C	ct-2019
								FORM	ATO ENS	AYO DE C	ARGA LA	TERAL									Hoja:	FT-CIV-0	7-03	1 de 2
	1.04			Direcció	n del labo	oratorio:		Ladrón	de Guev	ara E11-2	253. Edifi	io N°5												
				Fecha	(AAAA/N	M/DD):			2	021/06/2	2				-		Inic	io de en	sayo	Fir	n de ensa	уо	1	
					Cliente /	Tesista:		C	ésar Bas	antes / Ál	ex Areval	0			т	(°C)		16.2			19.8			
			Dire	cción del	cliente /	Tesista:		Av. (Condor N	lan, OE35	Pumapu	ngo	100.31		Hr	el (%)	<u> </u>	58		<u> </u>	56			
			ide	nuncacio	n dei esp	eamen:	MUR	J DE MAPI	OSTERIA	ONFINAD	A REFORZ	ADA (MIN	ICR 2)	•		lora	1	9:00			13:24		l	
	T						ASTN	1 E2126	- 19: N	Nétodo	de Ensa	iyo C - I	Amplitu	d de lo	s Ciclos	s Primar	ios							Amplitur
Patrón	Para	Número							Desplaza	miento C	bjetivo (mm), De	splazami	ento (mn	n) y Fuer	rza (kg) re	gistrados							del ciclo
Patron	raso	de ciclos	Δ (+)	△ (+)	F (+)	Δ (+)	Δ (+)	F (+)	Δ (+)	Δ (+)	F (+)	△ (+)	△ (+)	F (+)	Δ (+)	Δ (+)	F (+)	∆ (+)	∆ (+)	F (+)	Δ (+)	Δ (+)	F (+)	pirmario (
	+	-	Δ (-)	Δ (-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ(-)	Δ(-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ(-)	Δ (-)	F (-)	Δ (-)	Δ (-)	F (-)	Δ)
1	1	6	1.00	1.09	5740	1.00	1.01	4845	1.00	1.17	5874	1.00	0.99	4637	1.00	1.01	4902	1.00	0.99	4765				5.00
	+		-1.00	-1.09	6087	-1.00	-1.00	5753	-1.00	-0.99	4879	-1.00	-0.98	4927	-1.00	-0.99	5425	-1.00	-0.99	5322		20020		<u> </u>
	2	7	1.50	1.51	7245	1.13	1.08	4938	1.13	1.15	5252	1.13	1.20	5450	1.13	1.12	4978	1.13	1.12	4965	1.13	1.12	4900	7.50
2	-	<u> </u>	-1.50	-1.50	7181	-1.13	-1.13	5606	-1.13	-1.12	5576	-1.13	-1.12	5479	-1.13	-1.13	5759	-1.13	-1.13	5647	-1.13	-1.11	5560	
	3	7	2.00	2.00	8599	1.50	1.48	6166	1.50	1.50	6163	1.50	1.64	6814	1.50	1.49	6027	1.50	1.50	6043	1.50	1.50	6104	10.00
	_		-2.00	-2.13	10151	-1.50	-1.50	5509	-1.50	-1.49	6746	-1.50	-1.50	6555	-1.50	-1.47	6669	-1.50	-1.51	5725	-1.50	-1.49	5577	
	4	-4	4.00	3.99	12768	3.00	2.98	9181	3.00	3.07	9492	3.00	3.01	9134	4									20.00
3			-4.00	-4.00	13619	-3.00	-2.95	9379	-3.00	-3.01	9134	-3.00	-2.96	8890	4									
	5	4	6.00	6.57	15139	4.50	4.51	7748	4.50	4.58	7678	4.50	4.47	7276	4									30.00
	-	<u> </u>	-6.00	-6,09	12309	-4.50	-4.51	7885	-4.50	-4.59	7951	-4.50	-4.60	7644	1									
	6	з	8.00	8.14	12347	6.00	6.01	7301	6.00	6.11	7442													40.00
	-	<u> </u>	-8.00	8.13	11040	-6.00	-6.03	6509	-6.00	-5.96	6245													
	7	3	14.00	14.00	11800	10.50	10.60	5803	10.50	10.48	6354													70.00
	-	-	-14.00	-14.05	11010	-10.50	-10.35	5772	-10.50	-10.04	5067													<u> </u>
	8	3	-20.00	.19.99	10183	-15.00	-14.98	5208	-15.00	14.87	5172													100.00
	-	<u> </u>	30.0	30.33	11798	22.5	23.30	6242	22.5	22.36	5882	1												<u> </u>
4	9	(<u>8</u>)	-30.0	30.20	9897	-22.5	-22.91	5541	-22.5	-27.69	5725													
			40.0	40.10	10982	30.0	29.09	5807	30.0	31.72	6382													
	10	- 20	-40.0	-10.18	9670	-30.0	-30.75	5477	-30.0	-315.78	5.176													incrementas adicionales de
			50.0	49.64	10527	37.5	37.67	\$396	37.5	37.47	5.096													2000e (hosto qui el espècimen
	11	30	-50.0	50.41	93.72	+37.5	37.66	4997	-37.5	-37.42	4917	1												Dollar)
			60.0	60.02	.9468	45.0			33.8			1												
	12	3	-50.0	-60.00	8722	-45.0			-33.8			1												
Delta (mm)	20											1												
Alfa ≤ 0.5	0.5																							

ANEXO X.

Planilla de Aceros

]	PLAN	NILL A	A DE	ACERO	S		
		Φ			DIMEN	SIONES		LONG	LONG	PESO	
Mc	TIPO	mm	N°	а	b	с	g	DESAR (m)	TOTAL (m)	(Kg)	OBSERV.
						CIME	NTAC	CIÓN			
101	С	18	20	3.20			0.25	3.70	74.00	148.00	NINGUNA
102	0	8	155	0.35	0.25		0.08	1.36	210.80	83.27	NINGUNA
						-			TOTAL (kg)	231.27	•
						CO	LUM	NA			
201	Z	14	40	3.03	0.15	0.3		3.48	139.20	168.15	NINGUNA
202	0	8	250	0.20	0.20		0.08	0.96	240.00	94.80	NINGUNA
								•	TOTAL (kg)	262.95	
					VIGA	DE CO	ONFIN	NAMIENTO	С		
301	С	12	20	2.80			0.10	3.00	60.00	53.34	NINGUNA
302	0	8	100	0.15	0.15		0.08	0.76	76.00	30.02	NINGUNA
303	Ι	18	20	1.90				1.90	38.00	76.00	ROSCA
									TOTAL (kg)	159.36	
	REI	FUERZ	о но	RIZOI	NTAL-	MAM	POST	ERIA CON	FINADA F	REFORZAI	DA
401	С	12	8	2.8			0.10	3.00	24.00	21.34	NINGUNA
						•			TOTAL (kg)	21.34	
					RESU	MEN I	DE MA	TERIALES	S		
	Φ (mm)		8	10	12	14	16	18	20	22	25
	W (kg/m)	0.395	0.617	0.889	1.208	1.578	2	2.466	2.984	3.853
	L (m)		526.80	0.00	84.00	139.20	0.00	112.00	0.00	0.00	0.00
P	ESO (kg	g)	208.09	0.00	74.676	168.15	0.00	224.00	0.00	0.00	0.00
W TO	T MMS	(KG)=	674.92								
W TOT	MMCR	(KG)=	653.58								
HOR	MIGON	F'C=	210								

ANEXO XI.

Análisis de Precios Unitarios

ANALISIS DE PRECIOS UNITARIOS

PROYECTO: Estudio del comportamiento experimental de una Mamposteria Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

NOMBRE DEL CONSULTOR: César Basantes / Álex Arévalo

ANALISIS DE PRECIOS UNITARIOS

HOJA 01 DE 03 UNIDAD: m3

RUBRO : 1 DETALLE : Viga de cimentación de Hormigón f'c= 210 kg/cm2, inc. Encofrado

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.	16	- 10			0.28
CONCRETERA 1 SACO	1.00	4.00	4.00	0.500	2.00
VIBRADOR	1.00	2.80	2.80	0.100	0.28
SUBTOTAL M	20			· · · · · · · · · · · · · · · · · · ·	2.56

MANO DE OBRA DESCRIPCION		CANTIDAD	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC. OBRA CIVIL	EO C1	1.00	4.04	4.04	0.010	0.04
ALBAÑIL	EO D2	1.00	3.65	3.65	0.030	0.11
PEON	EO E2	3.00	3.60	10.80	0.500	5.40
SUBTOTAL N		di s		A		5.55

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CEMENTO PORTLAND	KG	364.000	0.16	57.22
ARENA	M3	0.452	14.00	6.33
RIPIO	M3	0.681	13.75	9.36
AGUA	M3	0.210	0.50	0.11
ENCOFRADO VARIOS USOS	GBL	1.000	32.96	32.96
SUBTOTAL O		•		105.98
TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO

DESCRIPCION		A	В	C=AxB
CEMENTO PORTLAND	KG	360.000	0.02	7.20
SUBTOTAL P				7.20

TOTAL COSTO DIRECTO	O (M+N+O+P)	121.29
INDIRECTOS (%)	20.00%	24.26
COSTO TOTAL DEL RUE	BRO	145.54
VALOR OFERTAD	C	145.54

SON: CIENTO CUARENTA Y CINCO DOLARES, 54/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

ANALISIS DE PRECIOS UNITARIOS

PROYECTO: Estudio del comportamiento experimental de una Mamposteria Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

NOMBRE DEL CONSULTOR: Cesar Basantes / Álex Arévalo

ANALISIS DE PRECIOS UNITARIOS

HOJA 02 DE 03 UNIDAD: m3

RUBRO : 2 DETALLE : Columnas y Vigas de Hormigón f'c= 210 kg/cm2, inc. Encofrado

EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.		5.00		n vez	0.28
CONCRETERA 1 SACO	1.00	4.00	4.00	0.500	2.00
VIBRADOR	1.00	2.80	2.80	0.100	0.28
ANDAMIOS METALICOS	0.80	0.60	0.48	0.250	0.12
SUBTOTAL M					2.68

MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
MAESTRO MAYOR EJEC. OBRA CIVIL	EO C1	1.00	4.04	4.04	0.010	0.04
ALBAÑIL	EO D2	1.00	3.65	3.65	0.030	0.11
PEON	EO E2	3.00	3.60	10.80	0.500	5.40
SUBTOTAL N						5.55

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
CEMENTO PORTLAND	KG	364.000	0.16	57.22
ARENA	M3	0.452	14.00	6.33
RIPIO	M3	0.681	13.75	9.36
AGUA	M3	0.210	0.50	0.11
ENCOFRADO VARIOS USOS	GBL	1.000	32.96	32.96
SUBTOTAL O				105.98
TRANSPORTE DESCRIPCION	UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
CEMENTO PORTLAND	KG	360.000	0.02	7.20
SUBTOTAL P				7.20

SUBTOTAL P

TOTAL COSTO DIRECTO	121.41	
INDIRECTOS (%)	20.00%	24.28
COSTO TOTAL DEL RUE	BRO	145.69
VALOR OFERTADO		145.69

SON: CIENTO CUARENTA Y CINCO DOLARES, 69/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

ANALISIS DE PRECIOS UNITARIOS

PROYECTO: Estudio del comportamiento experimental de una Mamposteria Simple y Confinada utilizando Paneles de Fibrocemento con Hormigón Alivianado con Poliestireno Expandido (EPS).

NOMBRE DEL CONSULTOR: Cesar Basantes / Álex Arévalo

ANALISIS DE PRECIOS UNITARIOS

HOJA 03 DE 03 UNIDAD: kg

DETALLE : Acero en Varillas fy=4200 kg/cm2

RUBRO : 3

EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.						0.00
CORTADORA DE HIERRO		1.00	1.00	1.00	0.005	0.01
SUBTOTAL M				1.00		0.01
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
PEON	EO E2	1.00	3.60	3.60	0.002	0.01
FIERRERO	EO D2	1.00	3.65	3.65	0.002	0.01
SUBTOTAL N					L	0.01

MATERIALES DESCRIPCION	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
ACERO DE REFUERZO fy=4200kg/cm2	KG	0.880	1.29	1.14
ALAMBRE GALVANIZADO # 18	KG	0.100	1.63	0.16
SUBTOTAL O				1.30

TRANSPORTE	UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION		A	B	C=AxB
SUBTOTAL P				0.00

TOTAL COSTO DIRECTO (M+N+O+P)		1.32
INDIRECTOS (%)	20.00%	0.26
COSTO TOTAL DEL RUI	BRO	1.59
VALOR OFERTADO		1.59

SON: UN DOLAR, 59/100 CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

ANEXO XII.

Planos y detalles constructivos

