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Abstract

A wide and extensive literature has documented a negative association between ris-

ing global temperatures and economic growth. Much of these studies see temperature as

a weather element that is both fixed and exogenous to economic outcomes in the short

run. Under a similar point of view precipitation has also been analyzed, being an im-

portant element of weather too, but results from this research field are ambiguous. This

study provides an investigation of precipitation by taking a different and novel approach,

using a panel of 20 Latin American cuntries. Our empirical strategy relies on exogenous

changes of rainfall seasonality, which is how much rainfall is temporally concentrated

over the year within a particular location. This allows us to associate changes of pre-

cipitation with economic outcomes not only on the amount of rain for a given year, but

on how evenly distributed it is across the year. To account its spatial distribution, we

show that changes in relative rainfall seasonality are positively related with economic

growth using disaggregated measures of production. On average, we find that when lo-

cations have changes in rainfall seasonality they experience as much as a 14% increase

in economic growth as opposed to locations that do not. We also find that variability in

the average amount of rainfall is consistently associated with a lower rate of economic

growth.

1



1 Introduction

Recent literature has documented how fixed national characteristics may explain cross-country

heterogeneity in economic outcomes. It hypothesizes that unchangeable elements in the en-

vironment of an economy (such as geography, climate, and colonial history) can explain why

some countries grow faster than others.1 With an empirical motivation that is different than

that of traditional approaches, this new wave of studies found a way to be suggestive be-

yond simple correlations and cross-sectional estimates by exploiting the randomness in these

fixed determinants of growth. As such, there is now more accurate evidence regarding the

mechanisms behind development, and few experts would deny that geography or history are

unrelated to the growth process.2

In a way, the branch of the literature that has focused on climate and weather as geograph-

ical elements has found temperature to be negatively associated with economic outcomes on

several dimensions. With ªclimateº being the term reserved for the long run distribution of

outcomes and ªweatherº used for the short run, on both of these dimensions temperature has

been hypothesized to have effects through various mechanisms. For specific sectors, like

agriculture, and through a more abstract relationship with individual productivity and labor,

most of the evidence points to rising global temperatures as being detrimental to the economy.

1Some of the most notable contemporary analyses on development that hypothesize persistent effects of

colonial history through institutions are the papers by Acemoglu et al. (2001), Glaeser & Shleifer (2002), Rodrik

et al. (2004), Nunn (2008), Dell (2010), Michalopoulos & Papaioannou (2011) and Dell & Olken (2020). The

relation between geography and growth has been analyzed by Gallup et al. (1998), Sachs (2001), Nordhaus

(2006b), with climate being the center of examination in Deschênes & Greenstone (2007), Hsiang (2010), Jones

& Olken (2010), Dell et al. (2012) and Burke et al. (2015). Much of these are discussed here. The incidence of

disease due to geography is investigated in Gallup & Sachs (2001), Sachs & Malaney (2002) and Deschênes &

Moretti (2009).
2Interestingly, a conclusion in Acemoglu et al. (2001) was that the relationship between geography and

development is a spurious one, implying that regressions of output on climatic variables may be in fact capturing

the effect of institutions. This discrepancy is illustrated in the debate between Rodrik et al. (2004) and Sachs

(2003). Later on, evidence by Dell et al. (2012) and Burke et al. (2015) would strengthen the position of climate

in the geographic side.
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However, temperature conforms one part of the story regarding climate and weather. Pre-

cipitation, which is strongly correlated with temperature, has not been as scrutinizedÐoften

neglected to analyses that do not go beyond the obvious connections it has with agriculture.

And while precipitation has served at least as a control variable in the climate literature, the

relationship that it has with growth has not been successfully deciphered. Moreover, studies

that include this topic have mixed results, and the ones that do find a relationship tend to

differ in their implications.

Of the studies that find an association, some have suggested that precipitation plays an

important role through a similar mechanism with productivity, similar to that of temperature,

such as the individual leisure-labor decisions (Connolly, 2008; Damania et al., 2020). It has

also been found that specific regions with a big agricultural composition such as the African

continent are plausibly the ones most prone to suffering from rainfall variability, and not

mid- to high-income regions like Latin America (Barrios et al., 2010). Others have also sug-

gested that rainfall variation, if associated to an extreme event, is detrimental on an aggregate

perspective (Deschênes & Moretti, 2009; Desbureaux & Damania, 2018). In this light, the

present study investigates the combination of these seemingly unrelated elements: year-to-

year fluctuations in precipitation and their effect on economic growth in Latin America.

In particular, our analysis diverges from previous ones in that we recognize that rain-

fallÐand water in generalÐis economically characterized by its spatial and temporal distri-

bution. In other words, the marginal effects of rainfall in an economy are heavily dependent

on the location, the time the variations happen, and numerous unobserved characteristics that

make difficult the disentanglement of causal effects. And while it is possible to model rain-

fall and water availability in different ways (e.g., General Equilibrium Models) to account for
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spatial and temporal correlations, we opt for a more parsimonious approach, in line with the

quasi-experimental estimation strategies in the studies mentioned above.

To account for the spatial factor statistically, we leave the macroeconomic realm and delve

into the grayer area that lies between micro and macro, making use of dissagregation. This

allows us to not think about how individual outcomes aggregate while having a fine level of

detail regarding spatial activity. The concept, which can be traced to authors such as Nord-

haus (2006b), captures the notion that while production and growth are often presented and

most easily computed at the country level, there is heterogeneity across locations that is both

useful and unobserved. Dissagregation involves computing a location-specific number that

represents the level of production for a specific location in a given country. The earliest use

of it, as originally proposed by Nordhaus, involved the use of population density data to ob-

tain a geographical proxy of economic activity (e.g., we would expect that economic activity

is concentrated the most in places where there are more people.) We use both population-

dissagregated data (constructed ªfrom scratchº) and the dataset from Kummu et al. (2018),

which contains data from more countries and is constructed using more sophisticated tech-

niques.3

To account for the temporal distribution, we first recognize that year-to-year observa-

tions are not appropriate because rainfall effects are more likely felt in shorter intervals of

time. And despite the existence of high-frequency and location-specific weather data, GDP

and growth are constrained to a yearly periodicity. So, to harmonize the data coming from

separate sources we borrow the concept of relative rainfall seasonality from the climatol-

3The dataset from Kummu et al. (2018) provides disaggregated measures of GDP and the HDI (Human

Development Index). The authors use subnational GDP data where available, interpolating and extrapolating

the GDP data with various methods in other cases (ªfilling the gapsº). They also provide estimates of the errors

derived this process. See their paper for a better description.
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ogy literature, which is simply an estimate of the dispersion of rainfall across the yearÐi.e.,

how much of the total yearly rainfall is accumulated across months. In practice this number,

called the Seasonality Index (SI), varies between 0 and 1 and is an interpretative measure of

temporal dispersion because it has clearly specified thresholds defining rainfall regimes. Like

studies using average precipitation rates as the independent variable of interest, our identifi-

cation strategy relies on changes in seasonality being exogenous.

Regarding identification, the estimation developed here also differs in that dissagregation

allows us to define the counterfactual in terms of different locations (as opposed to the same

locations at different points in time, which is a less convincing assumption that cannot be

avoided when using country-level observations.) In the ªpotential outcomesº approach to

causality in observational data (Rubin, 1978, 2005; Holland, 1986; Angrist & Imbens, 1991,

1994), the counterfactual is defined in terms of groups where observations are classified ac-

cording to their treatment status. Hence, our estimates are derived from an approach that

is designed to more closely resemble an experiment. At each particular year and country,

locations are classified in seasonality categories and ªtreatmentº is defined as a change in

seasonality with respect to the previous period. At each baseline year, say t , we show that

these locations are similar on average over some observable characteristics, so that the dif-

ference in outcomes across groups at t C 1 can be thought of as the effect of a seasonality

change. We further discuss why this is also likely to hold for the unobserved characteristics,

making the case of internal validity in a causal sense.

Our results are consistent with some of the previous findings supporting the existence of

negative effects of average precipitation on growth. Our results also suggest that the biggest

share of the burden posed by rainfall is due to temporal variability. The magnitude of the rel-
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ative seasonality estimate is greater than the effect of average precipitation, and the estimates

are significant when the regimes are extreme: changes in seasonality affect more growth

when most rainfall is accumulated over just a few months.

To be more specific, our estimates suggest that any change in seasonality (up or down a

category, either to a more equable or more extreme regime) is associated to a 14% decrease

in growth, derived from a 0.3 percentage point decline. A 1/2 standard deviation increase in

the average precipitation rate (an increase of about 36 mm3 over the year) is associated to a

16% decrease in growth. However, we extend a word of caution for our average precipitation

estimates since our main identification strategy revolves around seasonality. As such, we are

less confident about the causality of our precipitation estimates when compared to the sea-

sonality ones, specially since not all our identification tests hold for the former. Additionally,

temperature seems to be significant across all specifications, consistent with the extensive

findings documented on the matter.

From a policy perspective, our results provide evidence that precipitation is a two-dimensional

element of weather with observable effects in the short run, independently of the share of

agricultural activity in the economy as a whole. Unlike temperature, precipitation is a more

nuanced factor in the equation when considering short intervals of time, and the implications

of a greater seasonal variability may be lower rates of growthÐat least in Latin America.

Although our analysis is limited in that we cannot point to the specific mechanisms that

make this happen (e.g., the productivity-leisure decisions or the impossibility of weather

adaptation) we believe the conclusions provided are interesting in their own right. As pre-

cipitation is not only an element of weather, but part of a much more complex cycle that is

ultimately connected to water availability, the advent of climate change could amplify the de-
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scribed effect of rainfall on growth. Thus, future research will have to analyze in detail both

the mechanisms of transmission and the burden of weather on water availability in a more

general way.

The remainder of the paper proceeds as follows. Section 2 provides a brief review of the

literature on weather and economic outcomes, discussing previous findings and current limi-

tations. Section 3 provides a theoretical framework that captures the notion of rainfall having

a temporal and spatial dimension in a dissagregated setting. Section 4 describes the data

and the summary statistics. Section 5 develops the main strategy and tests for identification.

Section 6 provides the main results, and Section 7 concludes.

2 Literature review

In this section we briefly discuss some of the most important findings of the literature as-

sociating climatic and weather elements with economic outcomes. We start by analyzing

the attempts at measuring the effects of climate in the economy, which started in a microe-

conomic setting and later progressed onto an active area of research in the macroeconomic

field. The limitations posed by both the traditional and contemporary approaches are out-

lined, highlighting a few of the discrepancies found in the most relevant investigations of the

climate-economy literature. With this, we also analyze how the use of dissagregated measures

of a whole, complete, economy can be helpful in deciphering the association between precip-

itation and economic outcomes. This section finishes by providing an overview of some of

the literature that consider rainfall as a form of water availabilty, remarking the importance

of the literature relating climate and weather with the aggregated economy.
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2.1 Measuring the relationship between climate and the economy

The traditional approach for measuring the effect of climate relied on the specification of

a firm-level production function; that is, in a purely microeconomic setting. With cross-

sectional techniques that considered a wide variety of regressors and functional forms, it was

consistently seen that changes in precipitation, temperature, CO2 levels and in the costs of

irrigation are negatively associated with agricultural output [see, for example, Adams (1989)

and Adams et al. (1990)]. However, estimates from this approach are potentially biased

(upwards) as they do not allow for changes in the conditions of the agricultural environment,

like technological change or productivity adaptations made by the farmer, that could mitigate

climate effects. For instance, farmers could offset the losses of seasons with low precipitation

rates by setting irrigation systems on their crops.

To circumvent the technological problem, seminal work by Mendelsohn et al. (1993)

develops a methodological contribution regarding measurement, still in the microeconomic

realm. Their main insight is that the rent of land is more likely to take into account the

real effect on climate variability than output or crop yield, because land prices respond to

both technological change and climate variation (under well-functioning markets). With rent

having an operational role in their framework, their suitably-named ªRicardian approachº in

principle corrects the bias. As Mendelsohn, Nordhaus and Shaw’s main interest was measur-

ing the effect of temperature, precipitation was interpreted as a control variableÐits inclusion

is nevertheless appropriate due to both temperature and rainfall being highly correlated vari-

ables.4

Using cross-sectional data from the United States, Mendelsohn et al. (1994) would use

4Meaning that if either temperature or precipitation is not included, the effect of one cannot be separately

identified from the effect of the other in a regression framework.
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the Ricardian approach to show thar higher temperatures seem to reduce agricultural revenue

and farm values, while higher rates of precipitation increase them. The impact of climate is,

as expected, lower in magnitude than the one documented in the literature using agricultural

yield as the dependent variable. Interestingly, in an extension of this work, Mendelsohn &

Dinar (2003) would further include irrigation and find that the value of irrigated land is not

sensitive to precipitation and that land value increases with temperature; a complete change in

direction for the results in Mendelsohn, Nordhaus and Shaw’s 1993 and 1994 papers, which

served as starting evidence that irriguation plays an important role offsetting climatic adver-

sity in agriculture. As such, the most important contribution of the Ricardian approach to the

field of climate economics is that systematic increases in temperature may play an observable

role in agriculture and that investing in irrigation may function as insurance, suggesting a role

for policy-making.

But, despite the fact that the Ricardian approach was more convincing than predecessor

frameworks, it still suffers from a fundamental selection problem. The cross-sectional com-

parison of economic outcomes using climate is limited in its interpretation, in the sense that

climate is a geographic element that does not vary much within provinces, states and even

countries. As Dell et al. (2014) point out:

A basic challenge in deciphering the relationship between climatic variables and

economic activity is that the spatial variation in climate is largely fixed. Canada

is colder on average than Cameroon, and it always has been. As such, while

there can be large cross-sectional correlations between a country’s climate and its

economic outcomes, it is difficult to distinguish the effects of the current climate

from the many other characteristics potentially correlated with it.
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Only recently, the literature found a way to cope with this problem by using high-frequency

variations in climate within locations using panel data. The basic idea is that by isolating

variation in the climatic variables from elements that remain fixed across time (regions, coun-

tries, states, provinces, etc.), the estimate associated to the climatic variable in a regression

framework will capture a more precise, clearer effect. At the risk of oversimplification, one

could think of this approach the same way as a differences-in-differences estimation strat-

egy, where variations in climate are correlated to variations in economic outcomes (instead

of levels) controlling for individual characteristics.5

In practice, this surmounts to specifying a regression with fixed effects. The added benefit

of this approach is that variations in weather can be considered to be exogenous to the eco-

nomic system,6 avoiding endogeneity, omitted variable bias and thus allowing the estimates

to be causative.7

In this framework, studies using year-to-year fluctuations and intra-seasonal variations

in weather [Deschênes & Greenstone (2007) and Fishman (2016) respectively] have found

agriculture to be sensitive to both temperature and precipitation. Others have specifically ex-

amined the effects on rain-fed crops with similar results (Auffhammer et al., 2006; Sawano et

al., 2008). Irrigation was also put into more scrutiny in an expanding literature that exploited

a variety of estimation approaches, considering it as a mitigation against rainfall vulnerability

in the form of water accumulation (Duflo & Pande, 2007; Blanc & Strobl, 2013). In these

5This is not quite right though. It is helpful to think of it this way to motivate intuition, but the intra-

variation approach differs from a DiD in that all observations receive treatment. This is closely related to the

causal methodology which will be discussed later on.
6Note that weather, and geography in general, by itself is not exogenous to economic outcomes. What is

exogenous (or can be assumed to be so) are the fluctuations of weather in the form of high-frequency observa-

tions.
7This is not causation in the Granger-Sims sense. The implicit definition of causality underlying observa-

tional studies of this type is the one known as the ªRubin Causal Modelº or the ªpotential outcomes approachº

to causality.
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investigations, precipitation has been found to play a consistent and important role in agri-

cultural indicators and irrigation has been reasserted to offset the negative shocks of climate

changes.

Leaving the microeconomic realm, macroeconomic analysis was motivated by other pa-

pers such as Sachs (2001) and Sachs & Malaney (2002), interested in the incidence of disease

due to geography. A key hypothesis in much of the work of Sachs and his collaborators is

that fixed conditions, such as a hot weather, are favorable to the development of diseases in

much of the developing worldÐespecially rural Africa and parts of Asia.

The macroeconomic analysis of climate and productivity (i.e., not associating it with

other correlated mechanisms like health) surged with in the seminal work of Dell et al. (2012)

(henceforth ªDJOº) and Burke et al. (2015) (ªBHMº). These papers would estimate the ef-

fects of weather on an aggregate perspective using intra-country variation. In particular, DJO

hypothesizes that temperature is a fundamental determinant of growth through its linkage

to productivity, and that it may as well be a fixed element with persistent effects, just as

institutions and colonial history. Their idea is to go beyond the widely-acknowledged corre-

lation between higher temperatures and incomeÐi.e., a cross-sectionÐby instead exploiting

within-country variations. On the opposite of a cross-section, the higher the temperature the

least growth a particular country seems to experience. BHM, in a sense, builds upon DJO’s

paper and argues that more flexible, non-linear, functional forms of temperature may fit the

picture better. Their results are somewhat consistent with DJO’s. The (common and) most

discussed result of these two investigations is that climate, particularly temperature, does

seem to have a profound effect in the functioning economy on average.
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2.1.1 The new limitations in the macroeconomic setting

Despite their identification strategies being largely the same and on similar data, the fact

that DJO and BHM part from a very different set of methodological motivations make their

results and implications differ for practical considerations. On one hand, DJO’s main finding

is that higher temperatures have largely negative effects but only on poor countries. They

further report that hotter years affect both agricultural and industrial output. On the other

hand, BHM find that non-linear functional forms of productivity on temperature seem to be

consistent on a global scale; meaning that when non-linearity in temperature is allowed in

the estimation, higher temperatures are associated with a significant decline in output for all

countries. Neither find any effect of precipitation.

If we were to take DJO’s story seriously, then the burden of climateÐand more specifi-

cally hotter climates on the poor countriesÐcan be escaped through growth. Since the poor

are the ones affected by higher temperatures, be it by the agricultural composition of their

economy or the lack of adaptation, the solution is to motivate a path of growth. On the other

hand BHM’s story has a more pessimistic implication, where no matter the degree of devel-

opment or size of the economy, climate is associated to a generalized decline in productivity

that will worsen with the progress of climate change.

As such, the crux of the problem is answering whether climatic adversity is only relevant

for the poor and agriculturally-driven countries, or if this is in fact a phenomenon increas-

ingly affecting economic outcomes for all countries. Is temperature a problem because of

income heterogeneity? Or is it because of its non-linearity? This is not straightforward, how-

ever, as the empirical setting to answer such a question is, again, constrained by the lack

of variation. But this time, the variation problem comes from the income variableÐthere
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are only a handful of rich countries that also happen have hot climates (such as Shanghai).

Hence, we cannot statistically discern between nonlinear effects and income heterogeneity

even when using fixed effects, for if both are included in the same regression the parameter

of the non-linearity will absorb some of the variation of the income-identifying variable.8

Moreover, even though temperature has been found to have clashing implications in the

seminal investigations of DJO and BHM, in either case the estimate for temperature was

statistically significant. Precipitation, on the other hand, has been found to have mixed results

at best in these and other similar investigations found in the literature. Namely, while both

DJO and BHM find no significant effect of precipitation, under similar strategies and different

data sets the papers by Brown et al. (2013), Sadoff et al. (2015) and Damania et al. (2017)

find the contrary.

Plausible explanations for these disparities are that the impacts of rainfall are heteroge-

neous for its spatial and temporal variability (Damania, 2020), and that the significance level

of the estimates tend to depend on the level of data disaggregation (Damania et al., 2020). In

economic parlance, the marginal utility of rainfall may differ significantly between geograph-

ical areas, for it is not the same having an additional inch of rainfall in the summer than in

the winter, and that additional inch of rainfall would not have the same utility on a desert and

8It may be illustrative to pose this explicitly. DJO uses a global panel and a regression of the form

Yit D ˇ0 C ˇ1Tit C ˇ2Pit C ˇ31fi poorg C ˇ4.Tit � 1fi poorg/ C ırt C "it ;

where Y is the economic outcome of interest (the log of GDP per capita), T and P are the weather variables

(temperature and precipitation respectively), 1fi poorg D 1 if the country is poor and 0 otherwise, ırt are time-

region fixed effects, t indexes time and i indexes countries. BHM consider a more general form for temperature

g.Tit /, such as a quadratic. If we were to include both nonlinear effects in temperature and income heterogene-

ity, as in

Yit D ˛0 C ˛1Tit C ˛2T 2
it C ˛3Pit C ˛41fi poorg C ˛5.Tit � 1fi poorg/ C ırt C �it ;

we would want to test H0: Ǫ2 D 0 and/or H0: Ǫ5 D 0. But, it is likely that Ǫ2 is capturing the effect of Ǫ5

given the small number of observations that satisfy 1fi poorg D 0 and have a high Tit . In other words, there is

not enough statistical power. This also implies that we cannot estimate (robustly) how income is affected in hot

and cold countries separately because there is not enough income variability in the group of the hotter ones. We

cannot run a regression Yit D ˇ0 C ˇ1Tit C ˇ2Pit C ırt C "it separately for cold and hot countries.
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in a tropical region. Plus, the fact that the relevant economic data comes spatially aggregated

could easily veil any relevant effects deriving from weather shocks. Moreover, precipitation

cannot always be convincingly assumed to be a random phenomenon even when controling

for previous periods to account for weather station effects. This argument is based on the

idea that periodicity of changes in the weather could be anticipated with enough precision

by individuals and firms, that the outcome variable and rainfall are only weakly correlated

(Auffhammer et al., 2006).

Before discussing in more detail these econometric problems, it is worth reviewing evi-

dence that does not use precipitation in the interest of weather and climate effects.

2.2 Precipitation as a measure of water variability

In a more general sense, rainfall has played an important role in the empirical literature

through mechanisms other than climate. For instance, the notion that precipitation functions

as an exogenous, transient phenomenon, has served to empirically corroborate the presence

of consumption smoothing over temporary income shocks in agricultural families (Paxson,

1992). To the extent to which increments in income deriving from changes in rainfall are

considered by farmers to be temporary, Paxson finds evidence that the marginal propensity to

save is greater than on income increases that are regarded as permanent.

Similarly, the fact that precipitation can be thought of as an independent and identically

distributed variable over time has motivated its use as an instrument in determining the effects

of weather on conflict and political stability (Miguel et al., 2004; Hsiang et al., 2013). In

Miguel et al., lower rainfall is found to lead onto more conflict, with negative shocks on

economic growth increasing the likelihood of civil unrest.9 Subsequent works using similar

9Something remarkable that could serve as a motivation for a more systematic analysis is that, for the
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estimation strategies document negative economic consequences when precipitation declines

(Hidalgo et al., 2010).10

Rainfall has also been included in studies about labor productivity with interesting results.

A notable empirical paper on the matter was that by Connolly (2008). She examines the

impact of rainfall on the individual trade-off between labor and leisure for the US finding that

men, specifically, substitute on average thirty minutes a day away from leisure when it rains.

This was an early attempt at using panel data to corroborate aggregate effects of a climatic

variable with a causal framework. In fact, the notion that labor productivity is affected by

weather outcomes greatly motivated the next major advancement with the use of panel data,

allowing for the subsequent analysis on output level.

While these studies provide insights into the mechanisms over which precipitation affects

individual decisions and economical environments, they do not provide clear evidence on how

its variability translates on national economic measures. From a macroeconomic perspective

they do not tell what are, if any, the aggregate effects of water variability. Specially because

it may require a different set of analytical machinery, both from a theoretical and statistical

point of view.

Probably the first to explicitly analyze water for its implications on per capita income in an

aggregate perspective was Barbier (2004), through the concept of water utilization. Using the

neoclassical endogenous growth model of Barro (1990) and Barro & Sala-I-Martin (1992),

water is seen as a publicly provided commodity that is subject to congestion. Theoretically,

validity of their instrument, they rely on assuming precipitation does not affect conflict directly but through

growthÐmeaning their results can only hold if rainfall has (ex ante) an effect on economic growth.
10An interesting aspect about the literature on civil conflicts, is that it is not free of ambiguity. It has been

argued that these discrepancies can be explained by a number of identification omissions, with many of those

studies not accounting for fixed effects, and relying on the inclusion of endogenous controls (Dell et al., 2014).

Moreover, weather measures for rainfall can be correlated with the outcome of interest when serving as an

instrument, with possible exceptions for these being regions with few weather stations (Auffhammer et al.,

2011).
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an inverted U relationship is formulated between growth and the rate of water use in an

economy. Then, the cross-sectional estimates suggest that growth is not limited by utilization

rates.11 Despite of the geographical limitations in data and estimation, this first attempt by

Barbier’s 2004 paper addressed an empirical issue that would not have significant progress

for quite some time.

The most common critique of Barbier’s approach is that, by modeling water utilization

rates, results are susceptible to endogeneity problems. On the opposite to precipitation, uti-

lization rates are seldom exogenous in the economic system. Besides, as Damania (2020)

notes, the interpretation of a utilization variable allows for odd conclusions: water shortages

would lead to an increase in GDP under Barbier’s original results. This means that the inclu-

sion of water, in a complete sense of the word, is not statistically feasible to obtain robust and

consistent estimators.

More recently, Russ (2020), while recognizing the heterogeneous effects attributed to

space, argues that precipitation is a poor indicator of water availability because it does not

account for all the factors that conform the total supply of water: for example, precipitation

results in a significant amount of water that is absorbed in the soil and then goes thorough a

natural cycle that ends up benefiting economic activityÐspecially agriculture. With this, it is

proposed using water runoff as a measure of water availability, and satellite data on night-time

lights is used as a proxy of economic activity to account for the spatial distribution.

An alternative method is modelling water through a computable general equlibrium model

(CGE) and, more specifically, general algebraic modeling systems (GAMS). These allow for

a very stylized specification of an economy that can be spatially disaggregated, incorporating

11However, the estimation results implied that this relationship is different for developing countries, some-

thing to be reviewed later in Barbier (2015) with the same approach. Instead, a U-shaped relationship was

detected: for low- and middle-income economies, an increase in water use would first reduce economic growth.
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specific economic mechanisms, like water sources, demand functions, supply functions, and

water uses [see Hurd (2015)]. The biggest problem with CGEs is, again, fully specifying

the many complex linkages of water in an economy, and rainfall is particularly complicated

for its sequential natureÐit is also the basis for an immense amount of externalities in the

systemÐmaking linkages difficult to trickle down.

2.3 Disaggregation

The spatial distribution of rainfall makes it difficult to get unbiased estimators of the real ef-

fect on an economy. As production and growth are spatially correlated, we would expect that

positive or negative effects in the short run are masked by aggregation. Moreover, consider-

ing individual variables (such as individual productivity, income or consumption) difficult the

problem more because one has to think and clearly define how these variables aggregateÐan

impossible task considering the complex linkages between individual economic outcome.

Some of the methodologies mentioned above, i.e., General Equilibrium Models (GEMs) or

Integrated Assessment Models (IAMs), the number of parameters to estimate and equations

to specify makes these inconvenient in a practical setting.

The idea of disaggregation, which is defined as a number capturing production in a sub-

region of a country, may eliminate these concerns and provide a useful way to obtain unbi-

ased estimators. The reasoning is that we can aggregate production within a sub-region, and

use this as a measure of economic activity in a finer way than country-aggregated GDP. It

was originally conceived, to our knowledge, by Nordhaus and his collaborators (Nordhaus,

2006a,b), who also proposed the simplest way to do it in a practical setting: using population

data and computing disaggregated GDP in terms of the proportion of people that leave in a
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particular sub-region. In other words, this number is simply the country’s per capita GDP

multiplied by the number of people living in the sub-region.

Other methods, some more sophisticated and more computationally demanding, have

been proposed since trying to account for spatial correlation across sub-regions or to compute

other measures that are only available on a country level [e.g., Kummu et al. (2018); Thomas

et al. (2019)].

3 Theoretical Framework

Here we present a framework that illustrates the connection between disaggregated effects

of weather, specifically precipitation, and the aggregated measures which are observed as

data. Empirical investigations have identified a negative association between: (i) rain and the

allocation of leisure chosen by workers (Connolly, 2008), (ii) temperature and the allocation

of time and leisure (Graff Zivin & Neidell, 2014), and (iii) hourly/daily temperature and

agricultural yields (Schlenker & Roberts, 2006, 2009); however none consider explicitly both

precipitation and the transition of disaggregated output measures (wages, profits, crop yields,

etc.) onto macroeconomic data (GDP).

Borrowing from Burke et al. (2015),12 consider a country with a fixed number of indus-

tries indexed by i 2 I with homogeneous firms, and assume that all firms respond equally

to changes in weather conditions in short intervals of time, it being indexed by t 2 � (t can

be thought of as a ªmomentº in time happening on a continuum of points, and � as being the

larger observed unit of time such as a quarter or a year). With respect to the spatial dimen-

sion of production, let s index the unit of spatial allocation so that all s 2 S jointly conform

12Readers are referred to the supplementary paper of Burke et al. (2015), which briefly illustrates the first half

of this model only considering temperature.
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the space within the boundaries of the country. We say that some particular industry i is

established in some, plausibly not all, locations s. When this happens we write i 2 s.

For illustration purposes, we consider a standard Cobb-Douglas aggregate production

function with constant returns to scale and parameter ˛, and abstract productivity as being a

function of weather. Namely,

AK
i .Pst ; Tst/ � Kist and AL

i .Pst ; Tst/ � List

determine the productive units resulting from each input, capital and labor respectively, at

location s and moment t . The processes behind productivity are said to differ only across

industries, and productivity differs within industries only due to local and transitory weather

experienced (hence the subscripts for P and T ). The parameter List is to be interpreted as

the amount of labor employed by industry i at location s and moment t . Also,

@A
j

i =@Pst < 0 and @A
j

i =@Tst < 0 for j 2 fK; Lg with s and t fixed

consistent with (i) and (ii).

In reality, there is the possibility that the quantities of capital and labor themselves are a

function of Pst and Tst . However, by considering short intervals of time t 2 � it is possible

to assume, not unrealistically, that input reallocations cannot be immediately done by firms

in response to changes in weather. Furthermore, we shall regard Kist and List as exogenous

(scalar) parameters in the model determined in the competitive equilibrium, which satisfies

Kist=List D ˛=.1 � ˛/.

Letting pi denote the unitary price of output, the value of production of industry i in the
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location s at time t is

Yist D pi

�

AK
i .Pst ; Tst/Kist

�˛ �

AL
i .Pst ; Tst/List

�1�˛
:

It is convenient to further substitute

wi.Pst ; Tst/ D
�

AK
i .Pst ; Tst/

�˛ �

AL
i .Pst ; Tst/

�1�˛
and Uist D piK

˛
istL

1�˛
ist

so as to write Yist D wi.Pst ; Tst/ Uist . In essence, wi.:/ describes the immediate effect of lo-

cal precipitation and temperature (weather) on productivity (heterogeneous across industries),

and Uist is the scalar measure of resources in industry i applied at location s. Evidently, if i

is not located at, say Os, then Ui Ost D 0 so that Yi Ost D 0.

Assuming that the economy is additively separable in the spatial and time dimensions, the

value of aggregate production Y (GDP) for the larger time interval � is obtained by summing

the production across all locations and industries and integrating for all moments,

Y D
X

i2I

X

s2S

Z

t2�

wi.Pst ; Tst/ Uist dt:

The key insight is that the number of productive units across al moments Uis can be

expressed in terms of the joint distribution of the time spent at all possible temperatures and

precipitation rates. Let gi.Ps; Ts j i 2 s/ express the amount of time each productive unit

of i in s
�

i.e., piK
˛
isL

1�˛
is

�

experiences some determined temperature and precipitation rate.

20



Explicitly, define gi such that13

Uis D

Z

t2�

Uist dt D

Z 1

0

Z 1

�1

gi.Ps; Ts j i 2 s/ dTs dPs

D

Z 1

0

Z 1

�1

gi.P; T / � 1fi 2 sg dT dP:

This function gi can be thought of as a density distribution. (But not a probability density

because it integrates to Uis instead of 1 conditional on i 2 s.) It follows that using gi we can

express production spatially in terms of temperature and precipitation:

Ys D
X

i2I; i2s

Z 1

0

Z 1

�1

wi.P; T / gi.P; T / dT dP: (1)

Intuitively, the production at s is the sum on productivity times output (in market prices) for

all possible weather combinations .P; T /. Hence, under the conditions so far stated one can

write spatially-dissagregated production without knowing in detail the temporal distribution

of production (how much is produced at each particular moment in time). This is differ-

entÐand less stringentÐfrom what is embedded in the frameworks and findings of Dell et

al. (2012), Burke et al. (2015) and other papers that do not account for spatial dissagregation.

In particular, if we further assume that there exists a function density hi.:/ that describes the

number of productive units over time for each possible values of .P; T /, as these papers do,

then we do not need to know the spatial distribution of production neither because under the

same procedure as above it follows that total aggregate production can be expressed as

Y D
X

i2I

Z 1

0

Z 1

�1

wi.P; T / hi.P; T / dT dP: (2)

13Note how precipitation varies in the bounded-below interval Œ0; 1/ as opposed to temperature.

21



It is plausibleÐand likely, as the evidence of those papers showÐthat (2) is not unrealistic if

we are interested in temperature, which is more prone to have systematic changes across large

regions that scale up to the country level. But, as seen in section 1, if GDP is modeled this

way, then one is likely to find that precipitation does not have a discernible effect because it

is required ex ante that it have large enough shocks or systematic changes across time periods

� for any effect to be traceable up to the country level.14

4 Data

Monthly temperature and precipitation data comes from Willmott & Matsuura (2001), a

global database in 0.5° � 0.5° cells of which the territorial administrative limits of the Latin

American countries considered lie under 6795 cells. This database is updated yearly, and

observations are available for the entire period corresponding to 1900±2017. As per the

availability of the rest of the data, the time span used throughout the analysis is the period

2000±2015.

We consider two different datasets of dissagregated GDP. The first, and the one used to

present the results, is the gridded GDP data of Kummu et al. (2018) at the 5 arcmin resolution.

To merge it with the weather data, the observations from this dataset are centered and aggre-

gated to the 0.5° � 0.5° level. The second dataset, which is used to replicate the analysis in

the Appendix, is instead constructed ªfrom scratchº using the economic data from the World

Bank’s Global Economic Monitor Database (GEM) and dissagregating it with data on yearly

population densityÐwhich corresponds to the original methodology proposed by Nordhaus

14On the other side, one could argue the opposite; that the level of dissagregation in (1) would not allow for

the identification of temperature effects. But this is only plausible if capital and labor can be quickly reallocated

over space due to sudden changes in temperature, which violates a core assumption of the model presented and

generally may be deemed as unrealistic.
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Table 1: Summary statistics

Disaggregated log(GDP)

Country Grid cells Precipitation Temperature Kummu et al. Pop. disaggregated Pop. Density HDI

Argentina 1207 52.945 13.964 17.831 17.080 44068.17 26.719

(36.259) (6.373) (2.127) (2.035) (6.940)

Belize 14 172.025 25.059 19.218 21838.59 24.255

(60.524) (1.511) (0.985) (6.128)

Bolivia 434 92.789 21.233 16.881 15.883 26199.38 22.039

(57.232) (7.807) (1.837) (1.507) (5.669)

Brazil 2954 149.448 24.845 17.350 17.773 72658.14 23.108

(57.402) (2.652) (3.464) (2.476) (6.057)

Chile 374 66.412 7.566 16.404 16.946 55183.65 25.924

(70.325) (5.275) (4.688) (2.287) (7.224)

Colombia 429 209.125 25.043 18.337 17.883 120680.10 23.104

(88.180) (4.124) ( 2.555) ( 2.280) (5.963)

Costa Rica 20 251.056 23.992 20.572 19.743 220530.15 23.389

(96.831) (3.400) (1.451) (2.059) (6.398)

Dominican Republic 19 108.158 24.913 21.747 448246.40 20.428

(39.430) (2.865) (0.993) (6.254)

Ecuador 101 161.915 22.714 19.236 18.356 155563.72 23.215

(92.756) (5.371) (2.147) (2.432) (6.378)

El Salvador 10 124.672 24.677 21.672 20.899 670674.58 19.437

(30.402) (2.456) (0.935) (0.981) (5.800 )

Guatemala 51 180.425 24.092 20.205 19.105 318484.02 20.528

(72.750) (2.911) (1.740) (1.960) (5.374)

Honduras 50 125.802 25.510 19.674 18.467 173348.67 19.575

(47.941) (2.365) (1.615) (1.721) (5.294)

Mexico 740 60.821 20.776 19.695 18.930 176577.44 24.322

(49.522) (4.196) (2.026) (2.398) (6.676)

Nicaragua 55 164.356 26.788 18.937 17.910 115941.08 20.321

(73.790) (2.100) (1.517) (1.587) (5.222)

Panama 28 205.344 25.579 19.250 100709.38 23.070

(52.998) (2.561) (1.667) (6.572)

Paraguay 177 95.130 24.013 17.006 16.506 43855.45 22.856

(37.153) (1.709) (3.034) (2.028) (5.867)

Peru 482 142.079 20.409 17.761 17.772 51950.85 23.664

(93.426) (8.730) (2.038) (2.008) (6.106)

Puerto Rico 3 187.068 23.718 24.258 1295622.70 24.481

(42.329) (1.032) (0.450) (7.244)

Uruguay 83 109.208 17.979 18.955 18.079 56442.51 25.714

(26.554) (1.016) (1.358) (1.738) (6.603)

Venezuela 337 155.304 25.475 17.807 79518.82 23.765

(68.710) (3.349) (3.337) (6.204)

All 6965 120.224 21.298 17.804 17.625 81950.49 23.894

(77.099) (6.938) (3.068) (2.389) (6.497)

Note: Each column presents the grid cell average and standard deviation (in parentheses, if applicable) for each country. Each

grid cell is a �55 km2 ªsquareº determined by a longitude-latitude pair. The unit of measurement for precipitation are mm3 and

temperature is measured in centigrade degrees. Precipitation and temperature data is from the most recent version of Willmott and

Mutsuura (2001). The grid average of log(GDP) is presented for the two datasets mentioned: one is from Kummu et al. (2018); the

other one is constructed using data from the World Bank’s GEM and disaggregated with population density data from theWorld

Pop project. Grid population density (rightmost column) is the average number of people per grid cell (the average number of

people per approx. 55 km2).
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(2006b). The population data comes from World Pop’s database (WorldPop, 2020) at a 0.1°

precision (around 1 km at the equator), which is subsequently aggregated to the 0.5° level to

be harmonized with the weather data. It is seen that results do not differ significantly across

datasets, implying that population-dissagregated GDP works well enough as an indicator of

spatial economic activity, consistent with the statements of Nordhaus and his collaborators.

Figure 1 is divided into 6 subfigures, each presenting the empirical spatial distribution

and dispersion of our 3 main variables of interest: precipitation, temperature and GDP. Each

colored gridcell on the map represents the mean value of the variable across all periods of

observation (2000±2015). Interestingly, as shown in subfigures (e) and (f), the spatial distri-

bution Kummu et al. GDP and the population dissagregated GDP are virtually identical (ex-

cept for the availability of some data; in particular, there is no WB GDP data for Venezuela,

Cuba, Belize, and certain subregions, which are painted white in subfigure (d)). Figure 1

also displays in an intuitive way how precipitation tends to be more variable along forestall

Amazonian regions, and along certain parts of the Andean Mountains. Temperature, on the

other hand, is less variable around the equator.

Table 1 presents summary statistics of the main variables in the dataset. Each column

presents the grid cell average and standard deviation (in parentheses, if applicable) for each

country. Each grid cell is a �55 km2 ªsquareº determined by a longitude-latitude pair. The

unit of measurement for precipitation are mm3 and temperature is measured in centigrade

degrees. The grid average of log(GDP) is presented for the two datasets mentioned above.

GDP data for some of the countries is not available from the World Bank’s GEM, so not all

are presented under the population-disaggregated column. Grid population density (rightmost

column) is the average number of people per grid cell. Figure 1 shows instead, graphically,
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the measures of the main variables in a spatially-disaggregated way. It allows us to see spatial

concentration in precipitation, temperature, GDP and their variability.

Figure 2 is composed of scatterplots, where each point represents a pair of variable obser-

vations for each grid cell in the dataset. It displays graphically that there is mostly a negative

relationship between mean precipitation and GDP, HDI and population density. In particular,

GDP seems to be increasing in precipitation at low levels (the blue line is a non-parametric

fit) and increasing at high levels. This non-linearity, however, must be seen with caution

because of external validity concerns: the better the fit in the curve for Latin American coun-

tries, the more bias it is introduced if we want to extrapolate this to a global scale. Moreover,

it can be seen that the cloud of points for GDP (data from Kummu et al.) and population

density with precipitation is virtually identical, just as their linear and non-linear fits, sup-

porting our notion that it does not make a difference how we disaggregate economic activity.

Population-disaggregated GDP works as well for our purposes.
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Figure 1: Spatial distribution of variables

(a) Mean precipitation (mm3) (b) Mean temperature (°C)

(c) Standard deviation of precipitation (mm3) (d) Standard deviation of temperature (°C)

(e) Mean grid cell GDP (data from Kummu et al.)
(f) Mean grid cell GDP (disaggregated with pop.

data)

Note: This figure displays the mean and standard deviation per spatial unit of observation on the

climatic variables and log(GDP) across the entire period (2000±2015).
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Figure 2: Scatterplots at the grid cell level

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Note: Each point is represents an observation pair of variables associated to a grid cell in the dataset. The yearly mean precipitation, temperature and

Seasonality Index are used when indicated. The red line in each plot represents the best fit on a linear regression. The blue line is the best non-parametric

fit with Epaechnikov curve at each bin.
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5 Estimation

The first part of the approach taken for the estimation of weather effects is akin to the recent

literature exploiting intra-country variaton in the weather variables. Additionally, we propose

a quasi-expermiental methodology to identify the effects of precipitation on a dissagregated

economy. This latter approach is based on the definition of causality for observational data

provided by what is known as the ªRubin Causal Modelº or the ªpotential outcomesº frame-

work (Rubin, 1978, 2005, 2019; Holland, 1986).15 This section specifies the empirical equa-

tions to be estimated and test some implications associated with the variables in the model.

The main results are presented and discussed in section 6.

Using the same notation as above, we start by estimating the following regression

log.Ys�/ D ˇ0 C ˇ1Ps� C ˇ2Ts� C X0
s� ˇ̌̌ C ıC � C "s� (3)

where s indexes location (the center of a longitude-latitude grid cell), C indexes countries,

� indexes time (a year), Ys� is the dissagregated observed measure of GDP, Ps� and Ts� are

the average precipitation and temperature experienced in s at time � , ıC � are country-year

fixed effects,16 and Xs� is a column vector of control variables. One could also estimate these

equations adding the variable T 2
s� to account for the possible non-linear effect of temperature

mentioned before, to reduce the variance of Ǒ
1. The reasoning behind the inclusion of fixed

effects at the year-country level is similar in that we seek to reduce the variance of the esti-

mator. Specifically, it accounts for the fact that GDP is a variable whose value depends on the

country of belongingÐa correlation within groupsÐfor grid cells at specific points in time.

15Readers are also referred to Chapter 1 of Imbens & Rubin (2015).
16I.e., ıC � D 1fs 2 C g � 1f� D j g. Since the time span of the data set is 2000-2017, as mentioned in the

introduction, we have j D 2000; : : : ; 2017 or j D 2000Q1; 2000Q2; : : : ; 2017Q4.
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Moreover, the dummy variables would capture the effect of a ªgoodº or a ªbadº year in GDP

which is attributable to individual characteristics, isolating the effect of the weather variables.

It is possible to further account for group heterogeneity by computing robust standard errors,

or more conservatively, clustering the standard errors at the country level.

The thing about equation (3) is that Xs� may not perfectly control for individual charac-

teristics at the location or grid cell level that also determine Ys� . In such case this is an evident

omitted variable bias problem that can be corrected by using a specification that resembles

that of the Differences-in-Differences approach in an experimental setting. If we substract

the first difference from the weather and outcome variables, the estimator associated to these

variables will capture the intended effect accounting for all possible individual characteris-

tics, because we are then regressing the change in GDPÐgrowthÐon the changes in weather.

That is,

log.Ys�/ � log.Ys;��1/ D ˛0 C ˛1
s� C ˛2.Ps� � Ps;��1/

C ˛3.Ts� � Ts;��1/ C ıC � C "s�

� log.Ys�/ D ˛0 C ˛1�Ps� C ˛2�Ts� C ıC � C "s� (4)

where � represents the first difference. Note that (4) is also equivalent to estimating (3) with

location and country-year FEs additively,

log.Ys�/ D !0 C !1Ps� C !2Ts� C ıs C ıC � C "s�

where !1 D ˛1. All in all, the estimates of equations (3) and (4) are intended to show the

main hypothesis that precipitation has a significant effect when using spatially-dissagregated
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measures of GDP.

Table 2 displays the estimates for equations (4) and (5). After controlling for altitude,

latitude and ppopulation density, it can be observed that the estimates under robust standard

errors are significant (in practice, they are not so different from classical standard errors;

not shown in the table). To be conservative, we also present these results using clustered

standard errors at the country-year level. While this may does not necessarily correspond to

the assignment mechanism of variations in precipitation, it can be seen that the significance

does not vanish. The estimates seem relatively small, consistent with previous literature, and

the difference-in-difference estimator (column [3]) is half the magnitude of the ones in cols.

[1] and [2]. However, there are several reasons why the estimates of these two regressions

may not be interpreted as causal, even when clustering the standard errors.

First, there is the possibility that shocks are spatially correlated across administrative

boundaries, which would lead to an underestimate of the true ˇ1. One would expect that

a district located near the country border interacts with its neighbor at the other side of the

fence, and likely experiences similar economic outcomes resulting from weather changes.

Second, we are not discerning between spatial economic activities (which is an inevitable

constraint due to the lack of data availability). This implies that effects on agriculture, prob-

ably the most affected section of the economy regarding weather, may be offset by unrelated

gains in industrial sector or others that conform a big share of GDP. In such a case, there

would too be an underestimate.

Third, each grid cell (or country, for that matter) observed at different points in time is a

different observation altogether, so we cannot be completely confident of what would have

happened to the dissagregated GDP had a weather shock not occurred. In particular, the
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Table 2: Panel FE Results

log(GDP) Growth

[1] [2] [3]

Precipitation �0.012 �0.010

(0.000)*** (0.000)***

[0.004]*** [0.004]***

Temperature �0.008 0.402

(0.003)*** (0.008)***

[0.097] [0.059]***

Temperature2 �0.012

(0.000)***

[0.003]***

�Precipitation �0.006

(0.001)***

[0.002]***

�Temperature 0.026

(0.030)

[0.294]

Constant 19.724 16.755 2.350

(0.081)*** (0.098)*** (0.026)***

[2.999]*** [1.640]*** [0.018]***

Observations 121088 121088 113520

R2 0.232 0.271 0.160

adj. R2 0.230 0.269 0.158

Prob. > F (Robust SEs) 0.000 0.000 0.000

Prob. > F (Clustered SEs) 0.000 0.000 0.024

*p < 0:10, **p < 0:05, ***p < 0:01

Note: The results of this table exclusively use the GDP data from Kummu

et al. (2018). All specifications are calculated with country±year fixed ef-

fects. The specifications for [1] and [2] control for altitude, latitude and pop-

ulation density. Robust standard errors are reported in parenthesis and clus-

tered standard errors to the country-year level are in brackets. The clustered

SEs are vastly more conservative and may underrepresent the true assignment

mechanism because seasonality changes would happen at the grid cell or sub-

country level. Nevertheless, it is seen that the significance of the precipitation

estimates is unchanged by this.
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structural equation associated to (4) requires we assume that a country itself observed several

periods where �P and �T are low is a good approximation of a ªcontrolº group, which is to

be compared with periods where �P and �T are highÐthe ªtreatmentº. There are important

reasons why this may not be a good resemblence, which are discussed in the next subsection.

And fourth, rainfall may not only be characterized by the mean but by its dispersion

across time. It can be expected that economic outcomes are different when all rainfall is

accumulated in one single month of the year, as opposed to it being evenly distributed across

the year.

The first two limitations pose an interpretation problem rather than a methodological one,

in the sense that the magnitude of the estimate may not causative but its sign would. The third

one is methodological and is shared in common with all other papers using intra-country vari-

ation. It is related to the fact that we are comparing the same observations in different periods,

assuming that a ªnormalº year in weather reflects what would have happened had a ªbadº year

not occurred. Hence, the intra-location approach to measuring the effects of weather consists

of assuming that the normal instance of previous periods precisely resembles the counterfac-

tual of the abnormal current period. The fourth limitation poses an identification problem,

which implies that ˇ1 is not the effect of precipitation at large, but the only effect of the

amount of rainfall averaged across the year.

5.1 The Seasonality Index

The climatology of precipitation can be exploited to analyze the same setting in a more ex-

perimental way, so as to circumvent the last two limitations mentioned above. In particular,

we can characterize precipitation by the shape of its distribution over time in terms of its first
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and second moments;17 which are measures of the center and dispersion respectively. The

latter is referred in the climatology literature as the relative seasonality,18 and it defines the

proportion of time the average amount of rainfall in the year happens at a certain number of

months or sub-periods. Relative seasonality can be quantified using the Seasonality Index

(SI) as defined by Ayoade (1970),

SI� D
100

22P�

12
X

mD1

j12Pm � P� j � %

where Pm and P� are the monthly and yearly precipitation averages respectively. The index

is constructed so that 0 � SI� � 1. On one extreme, SI� D 1 happens when all the rainfall

within that particular year falls in a single month, implying an extreme regime. The opposite,

SI� D 0, happens instead when rainfall is evenly distributed across months so that the rainfall

regime is perfectly equable. Using the thresholds of Walsh & Lawler (1981), intermediate

cases 0 < SI� < 1 are defined (see Table 3).19

The SI is a preferable measure of dispersion in our setting as opposed to the empirical

standard deviation because, first, it varies on a closed interval which allows for an intuitive

interpretation, and second, the range of its possible values are clearly defined from the cli-

matology literature. More importantly, the SI is a more natural way of measuring rainfall

17Theoretically, these may be the moments around the mean [E.P ��P / and E..P ��P /2/], although recall

that the temporal distribution of precipitation with respect to time is discontinuous at a rate of zero. One could

also define this in terms of the moments around zero [E.P / and E.P 2/].
18The climatology literature defines two types of seasonality, absolute and relative. Absolute seasonality, in

contrast, simply states weather a particular year has experienced more or less rainfall on average. Technically,

absolute and relative seasonality jointly characterize precipitation in terms of its temporal distribution. However,

it is evident that absolute seasonality is captured in the sign of the difference �P� .
19Walsh and Lawler’s version of the seasonality index is virtually identical to that of Ayoade, which is

SI D
1

P�

12
X

mD1

ˇ

ˇ

ˇ

ˇ

Pm �
P�

12

ˇ

ˇ

ˇ

ˇ

� % 2 Œ0; 1:833�:

Their reasoning is that this more computationally-efficient to compute than Ayoade’s original index. Neverthe-

less, we opt to use Ayoade’s version in conjunction with Walsh and Lawler’s classes.
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dispersion across time in a dissagregated setting because it was originally conceived to be

used with climatic station data. Other studies at the aggregate level have opted to define rain-

fall dispersion in terms of the empirical standard deviation; some define it around the long run

mean (the mean computed over the entire century or various decades), and others using high

frequency (monthly) data define it around each year’s mean (Deschênes & Greenstone, 2007;

Damania et al., 2017, 2020). When using standard deviations, the customary thing to do is

define abnormal instances as those where the precipitation rate is two standard deviations

above or below the chosen mean.

Table 3: Walsh and Lawler’s (1981) thresholds for the Sea-

sonality Index

Classes SI

0. Very equable � 0.16

1. Equable with a wet season 0.17 ± 0.33

2. Seasonal with a short dry season 0.34 ± 0.49

3. Seasonal 0.50 ± 0.66

4. Seasonal with a long dry season 0.67 ± 0.83

5. Most rain happens in 3 months or less 0.84 ± 0.89

6. Extreme regime, all rain in 1±2 months 1 � 0.89

Note: The original thresholds by Walsh and Lawler were pro-

posed with respect of their own version of the Seasonality Index,

which varied between 0 and 1.83; the class thresholds given in

their work were converted to fit with Ayoade’s version of the

index which (more intuitively and better for our interpretation

purposes) varies between 0 and 1.

5.2 Main strategy

While the estimates from Table 1 suggest significant associations of rainfall with the GDP

levels and growth through the average amount of rainfall, we have cannot make inferences

about their causal validity. To provide such validation, an alternative and more experimental

approach is proposed.
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The idea is to spatially identify locations within each country that have had changes in

their seasonality category and others that have not in a manner of ªtreatmentº and ªcontrolº.

Specifically, because there are various categories of seasonality and various periods, with the

computation of the Seasonality Index we can classify each location, within a country and for

each year, into one of the seven possible categories from Table A. Knowing which locations

belong to each SI category at year � , we can tell which locations experienced changes in

their relative seasonality for year � C 1. Moreover, for a group of locations that belong

to some category at � , we can identify which them experience a change their seasonality at

� C1 and compare the difference in economic outcomes to obtain the effect of the seasonality

changeÐprovided that this change was exogenous. In essence, those locations which have

not changed in seasonality for year � C 1 can be thought as the control, and those locations

which have changed for � C 1 can be thought of as receiving treatment in the form of a

different temporal distribution of rainfall starting at period � . This comparison will be valid

only between those locations which belong to the same SI category at baseline or period � ,

and ideally, between locations that are as similar as possible before any seasonality change

happens.

This last statement is important, because if the observed characteristics of treatment and

control at period � are equal on average, then the control group can be regarded as a precise

resemble of the treatment group’s counterfactual in the sense of Rubin (1978, 2005, 2019). In

such case, the difference in economic outcomes from treatment and control (change in the SI

vs. no change) reflects the causal effect of rainfall seasonality. The methodological nuances

for a precise estimation under this strategy are straightforward, because we can compute the

(real) Differences-In-Differences estimator, which is by nature more precise and efficient than
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the simple difference in outcomes. Furthermore, we can expand this same idea to capture the

marginal effect of rainfall given a change in the seasonal category. This specification captures

precisely what we want to measure, which how the distribution of precipitation on both its

temporal and quantitative dimension affect the dissagregated measures of GDP.

Figure 3 illustrates this notion. We want to compare only locations that have both similar

characteristics and the same seasonality category at baseline. This way, we get to statistically

comparable groups of observations, and a difference-in-difference estimator would allow us

to find an unbiased estimate of a seasonality change. We think of ªtreatmentº as being subject

to a change in seasonality in a quasi-experimental sense.

Figure 3: Illustration of the main identification strategy

Note: This figure illustrates the comprasion between grid cells of the same seasonality index at base-

line. Each color denotes a different seasonality category. ªTº and ªCº denoting treatment and control

respectively, where treatment is a seasonality change (either up or down a category) and control is

no seasonality change. The main identification assumption is that those grid cells represented by the

same color at time t are similar for quasi-experimental comparison at time t C1, where the similarities

hold in both the observed and unobserved characteristics. Then, comparing those grid cells marked

ªTº with those marked ªCº would allow us to find the treatment effect of a seasonality change. In

particular, we propose a differences-in-differences approach as opposed to a simple difference in the

comparison of outcomes.

To write the empirical equations to be estimated, let Cs� denote the Seasonal Index cat-

egory of grid cell s at year � , where it takes one of seven possible values corresponding to

each class shown in Table A. As before, �Cs� would denote the change in category with
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respect to the previous period, Cs� � Cs;��1. This is a natural way of representing changes

in the category that go up in the scale of table A, in which case the sign is positive, and

changes that go down the scale, where the sign is negative. The idea is that �Cs� allows for a

better approximation of treatment on a particular year, as opposed to changes in the average

amount of rainfall. Like with all other papers analyzing precipitation, a categorical change of

seasonality may be regarded as an exogenous phenomenon to economic activity.

The Differences-In-Differences strategy mentioned above would involve estimating the

following

� log.Ys�/ D ˛0 C ˛1
s� C ˛2�Ps� C ˛3�Ts� C ıC c� C �s� (5)

where 
s� D 1f�Cs� ¤ 0g is a dummy variable specifying whether there is change in

the seasonal index category with respect to the previous period. We now take advantage

of the use of fixed effects at the country-year-category level, ıC c� . By including a dummy

variable that equals 1 for every country-category-year combination, we are isolating treatment

and control as defined above. The estimate ˛1 will be the difference between treatment (a

change in the seasonal category with respect to the previous period) and control (no change),

substracted from individual characteristics. The Differences-in-Differences estimator in (5)

more closely resembles an experimental setting as opposed to the one in (4) because we are

explicitly separating the locations which have had an SI change from those that have not, at

each year. Hence, we leave the assumption that each location is its own counterfactual at

different points in time. At the same time, because we have defined treatment in terms of

the temporal distribution of rainfall and not Ps� itself, we can look at the marginal effect of

precipitation given relative seasonality. That is, we can analyze the effect of precipitation on

both of its dimensions: the amount of rain and the temporal distribution of rain each year. We
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can estimate

� log.Ys�/ D ˛0 C ˛1
s� C ˛2.
s� � �Ps�/ C ˛3�Ps� C ˛4�Ts� C ıC c� C �s� (6)

where the parameter associated to the interaction term, ˛2, captures the marginal effect.

5.3 Identification & the SI-Precipitation rate relationship

Evidently, the identification assumption required for these estimates to be causal is that the

variation in the Seasonality Index and precipitation rates are exogenous to the outcome vari-

able of interest, growth, which ideally would imply that the observed and unobserved char-

acteristics of those locations experiencing seasonality changes are equal (on average) than

those locations that remain on the same category. Notably, most (if not all) of similar studies

on the subject, have regarded rainfall as a variable that fluctuates without anything to do with

the economic system in the short run. As it was mentioned in the Introduction, rainfall has

even been used as a ªbenchmarkº instrument in a wide variety of empirical studies, because

it confidently provides variation that is seldom related to GDP or growth. Nevertheless, for

our purposes and in our dissagregated setting, it is possible to provide tests for identification.

We start by estimating specifications that intend to look at the difference in outcomes

across locations. Because we expect changes to happen exogenously, we can test whether

there are systematical differences in GDP of locations that experience seasonality changes

with locations that do not, in a particular category. If on average GDP is higher or lower

moving up or down in the scale, then it would be likely that the assignment mechanism is

not exogenous. This would, intuitively, mean that economic activity is more established on

places that do not experience variations in relative seasonality, so any estimates would be
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biased. Mathematically we have,

log.Ys�/ D ˇ0 C ˇ1
s� C ˇ2Ps� C ˇ3Ts� C X0
s� ˇ̌̌ C ıC c� C "s� (7)

where ˇ1 is intended to capture the difference in outcomes of locations that have had any

change seasonality with respect to the previous period within countries and across time. The

test surmounts to not rejecting H0: Ǒ
1 D 0.

Because we can think of the treatment assignment repeating itself every year, we can see

if locations are different before (ex ante) the change occurs within categories. This tests the

assumption that baseline conditions in the outcome variable are similar on average before

treatment, which would tell us if the dummy variable 
s� provides a valid way of comparison

between regions that do not have experienced seasonality changes and those that have. In

other words, this is what would allow to make the estimate ˛1 in (5) valid in the sense that it

would capture the effect of treatment. We can test this by running

log.Ys�/ D ˇ0 C ˇ1
s;�C1 C ˇ2Ps� C ˇ3Ts� C X0
s� ˇ̌̌ C ıC c� C "s� (8)

where 
s;�C1 is the next periods’ assignment. If 
s;�C1 D 1, then location s experiences a

seasonality change at period t C 1, and for the comparison of the events20

ŒYs0;�C1 j 
s0;�C1 D 1� and ŒYs00;�C1 j 
s00;�C1 D 0� for s0 ¤ s00

to be valid, we want that E ŒYs0� � D E ŒYs00� �. In the regression, we need to not reject H0:

Ǒ
1 D 0.

20Here we use the conditional notation from Imbens & Rubin (2015).
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Table 4: Differences at baseline

Variable Variation in SI No variation in SI Difference Diff. p-value

log(GDP) 16.938 16.957 0.019 0.271

Growth 2.669 2.737 0.068 0.227

HDI 26.758 26.774 0.016 0.165

Population density 83,002.98 86,291.29 3,288.31 0.216

Latitude �18.670 �18.621 0.058* 0.097

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications are computed using country-year-category fixed effects. Column 2

(ªVariation in SIº) shows the mean value at time t (within country C and category c) for lo-

cations that did not experience a change in seasonality at time t C 1, for each variable on the

leftmost column. Likewise, Column 3 shows the mean value at time t for places that experienced

seasonality changes in t C 1. A change in seasonality is defined as a dummy variable that takes

the value of 1 whenever the seasonality is different according to the categories above. Column

4 shows the difference between columns 2 and 3, and column 5 shows the p-value associated to

the difference. All regressions control for precipitation, temperature and temperature squared.

HDI refers to the Human Development Index, and the data comes from Kummu et al. (2018)

Table 4 shows the baseline characteristics and the differences across regions that expe-

rience seasonality changes, within a country and a particular year, with regions that do not.

It is seen that the differences in averege is mostly not significant. Furthermore, in Table 5

the rightmost columns, [3] and [4], show that H0 from eqs. (7) and (8) can be confidently

rejected, so that within categories locations assigned to seasonality changes before and after

do not have different GDP levels, which is at the center of our main identification assump-

tion. The two leftmost columns, [1] and [2], instead show that within countries we cannot

confidently reject (at a 10% level at least) that assignment to seasonality variation does not

differ across observations of GDP. The main findings of Table 5 as are that (i) baseline GDP

is not different before the changes occur, as shown in col. [4], and (ii) locations experiencing

seasonality changes are not necessarily different in their level of GDP, as shown in col. [3].

Interestingly, Table 5 also shows that precipitation is different across all these dimensions on
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Table 5: Panel FE Results of the main identification assumptions

log(GDP� )

[1] [2] [3] [4]

�C� dummy 0.029* 0.001

(0.016) (0.017)

�C�C1 dummy 0.023 0.017

(0.016) (0.017)

Precipitation� �0.010*** �0.010*** �0.007*** �0.007***

(0.000) (0.000) (0.000) (0.000)

Constant 16.740*** 16.776*** 17.346*** 17.366***

(0.099) (0.102) (0.090) (0.093)

Country-Year FE Yes Yes

Country-Category-Year FE Yes Yes

Observations 121088 113520 121088 113520

R2 0.271 0.272 0.332 0.332

adj. R2 0.269 0.270 0.323 0.324

Prob. > F 0.000 0.000 0.000 0.000

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications control for temperature, temperature2, altitude, latitude and popula-

tion density (not shown). The unit of measurement for precipitation are mm3. The variable

ª�C� dummyº equals one if there is any change in the categorical Seasonality Index with re-

spect to the previous period, and ª�C��1 dummyº equals one if there is a categorical change

for the subsequent period with respect to the current one. Robust standard errors are reported

in parentheses.
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average. Precipitation rates are lower on those locations that do not have seasonality changes.

Regarding this seemingly negative correlation of precipitation with GDP levels when ac-

counting for relative seasonality, one can further use the full variability in the category dimen-

sion to get a similar table showing heterogeneous correlations. Specifically, if we include

interaction terms of the SI category with the rate of precipitation, the associated parame-

ters will capture the additional effect of a mm3 of rainfall at each category level. Letting


js� D 1fCs� D j g be a dummy variable that takes the value of one when the SI category of

s at year � is j , where j 2 f0; 1; : : : ; 6g, we can write this explicitly as

log.Ys�/ D ˇ0 C

6
X

j D1

ˇj

�


js� � Ps�

�

C ˇ8Ps� C ˇ9Ts� C X0
s� ˇ̌̌ C ıC c� C "s� : (9)

The omitted category is the first one, where seasonality is very equable across months. Here

Ǒ
j C7 D 0 for all j would imply that there is no attributable effect to more or less rainfall

at any given seasonality level, contradictory with what is seen in Table 2. Similarly, Ǒ
8 D 0

and Ǒ
j ¤ 0 for j D 1; : : : ; 6 would mean that the only attributable effect of precipitation on

GDP is due to the SIÐi.e., precipitation would only matter because of its relative, and not

absolute, seasonality. A constistent result with our previous findings would be that Ǒ
j ¤ 0

for at least one j and Ǒ
8 ¤ 0. Note that because of the use of country-category-year fixed

effects, ıC c� , the estimate Ǒ
j reflects the marginal effect of precipitation given seasonality

j ¤ 0, in contrast with seasonality j D 0. In other words, Ǒ
j is to be interpreted as the

additional effect perceived on the outcome variable with respect to a very equable rainfall
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regime. Also note that this is a more precise way of estimating

log.Ys�/ D �0 C

6
X

j D1

�j 
js� C

6
X

j D1

�j C6

�


js� � Ps�

�

C �14Ps� C � � � C ıC � C "s� :

for the interaction terms O�7; : : : ; O�12 using country-year fixed effects. For comparison, the

estimates of both equations are shown in Table 3.

Table 6 shows the results of equation (9) in conjunction with the country-year FE spec-

ification with individual dummies for each category (columns [3] and [4]). Note that in the

more isolated specification these terms would be collinear. Columns [1] and [2] show the

same results from Table 3 for additional comparison and adding the terms for temperature. It

is seen that seasonality categories are significant and positive across all categories in column

[3], in contrast with a greater magnitude of the constant in col. [4]. This implies that (on

average) more equable regimes tend to have a greater GDP level. A reason for this may be

that most of the spatial economic activity is established in locations with relatively equable

rainfall; it is also plausible that a higher share of GDP is obtained in the most seasonal areas.

Because more equable regimes are the most uniformly distributed ones, this would support

the notion that the predictability of rainfall is benefitialÐcontrasting with the idea that pre-

dictability offsets any changes in economic outcomes due rainfall variation (Auffhammer et

al., 2006). Interestingly, the interactions are significant across all categories, and go from neg-

ative to positive going in the direction of less equable regimes. Since less equable regimes

are the less uniformly distributed, they could also bear a high predictability rate for economic

agents (e.g., agents would know which months of the year have rain, so they can plan ahead).

So all this would support the notion that when the seasonality rainfall is predictable, then the

amount of rainfall matters positively for the level of GDP. More explicitly, the interaction
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Table 6: Panel FE Results, comparison of precipitation effects among SI categories

log(GDP)

[1] [2] [3] [4]

Constant 16.740*** 17.346*** 11.678*** 17.249***

(0.099) (0.090) (0.243) (0.090)

�C dummy 0.029* 0.001 0.007 �0.010

(0.016) (0.017) (0.016) (0.017)

Precipitation �0.010*** �0.007*** 0.006*** 0.003**

(0.000) (0.000) (0.001) (0.001)

Temperature 0.402*** 0.348*** 0.381*** 0.346***

(0.008) (0.007) (0.007) (0.007)

Temperature2 �0.012*** �0.011*** �0.012*** �0.011***

(0.000) (0.000) (0.000) (0.000)

SI category dummies:

Wet season 5.030***

(0.233)

Short dry season 5.480***

(0.222)

Seasonal 5.035***

(0.221)

Long dry season 4.478***

(0.221)

all rain in 3 � months 4.381***

(0.223)

Extreme, all rain in 1-2 months 4.417***

(0.226)

Precipitation interacted with:

Wet season �0.016*** �0.015***

(0.001) (0.001)

Short dry season �0.017*** �0.012***

(0.001) (0.001)

Seasonal �0.011*** �0.009***

(0.001) (0.001)

Long dry season 0.000 0.003**

(0.001) (0.001)

All rain in 3 � months 0.009*** 0.016***

(0.001) (0.002)

Extreme, all rain in 1- months 0.010*** 0.026***

(0.002) (0.003)

Country-Year FE Yes Yes

Country-Category-Year FE Yes Yes

Observations 121088 121088 121074 121074

R2 0.271 0.332 0.298 0.340

adj. R2 0.269 0.323 0.296 0.332

Prob. > F 0.000 0.000 0.000 0.000

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications control additionally for altitude, latitude and population density.

The unit of measurement for precipitation are mm3; and for temperature it is centigrade de-

grees. The variable ª�C dummyº equals one if there is any change in the categorical class

of the Seasonality Index with respect to the previous period. These results were computed

using the dissagregated GDP data from Kummu et al. (2018). Robust standard errors are

reported in parentheses.
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estimates show that an additional mm3 of rainfall is associated with a (� 1 percentage point)

decrease in the level of GDP at intermediately equable seasons; and an additional mm3 of

rainfall is associated with a (� 1-2 percentage point) increase in the level of GDP in years

with less uniformly distributed rain.

Finally, it is important to mention that because the assignment to seasonality categories

themselves may not be random (as the significance of the estimates show), we are not at-

tributing any causal validity to the results from tables 2 and 3. They simply intent to show the

average differences in GDP across seasonal categories and their relationship with precipita-

tion. And, as the assignment to the changes in seasonality does not seem to be significantly

associated with GDP levels at the category level, we can say that the data does not support

the idea that changes in seasonality happen because GDP is different across locations.

6 Main Results

Table 7 displays the main results from the estimation of equations (5) and (6) from section

5.2 in columns [1] and [2] respectively. Column [3] breaks down the dummy variable for any

categorical change into positive (up in the scale) and negative (down in the scale). Column

[4] breaks down instead the additional effect of variations in precipitation for each category

in the Seasonality Index as opposed to the binary interaction for any treatmentÐsimilar to

Table 6.

It can be observed that the associated estimate to 
s� (ª�C dummyº) is relatively un-

changed across all three relevant specifications, suggesting that changes in seasonality drive

growth up by 0.3 percentage points. To put this result in contrast, the average growth rate

across all locations considered (20 countries in the entire Latin American region) is 2.2 per-
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centage pointsÐwhich is captured in the magnitude of the constant term. Meaning that a

change in the seasonality scale, either up or down, on any given particular year will lead, on

average, to a growth rate that is .0:3=2:2/% D 13:6% bigger than it would have been other-

wise. In other words, for a group of locations within a country that start at the same category

of seasonality, those experiencing changes in their category for the subsequent period will

have a bigger rate of growth.

Interestingly, across all specifications written above on both the level of GDP and the

rate of growth, the amount of precipitation has been consistently found to have a negative

associated effect of 0.007±0.010 percentage points, and Table 7 is no exception. Notably,

these are not necessarily small effects neither when put into perspective. The variable for

precipitation is measured in mm3, and the standard deviation of precipitation across the most

populated areas in the entire region is 72 mm3 (see the summary statistics in the data section).

Hence, a one-half standard deviation increase in such case would lead to approximately a 0.36

percentage point decrease in growth, implying that the end-of-year growth rate would be

around 16% smaller had the increase not happened. Moreover, if a change in the seasonality

of these areas is accompanied by a half-standard-deviation increase in the amount of rainfall,

then the effect of seasonality on growth will be completely offset by it.

Even if such a variation on the amount of precipitation is unrealistic, the fact that we

cannot reject the null hypothesis of a zero effect of precipitation on growth (and GDP) over a

variety of specifications tells us that there is a statistical association that cannot be neglected.

More importantly, although consistent with previous findings in the literature, the results from

Table 4 go on to show that the temporal distribution of rain across the year is associated to

growth in a way that may be similar in magnitude to that of average precipitation documented
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Table 7: Main panel FE Results

Growth

[1] [2] [3] [4]

Constant 2.204*** 2.206*** 2.205*** 2.204***

(0.037) (0.037) (0.037) (0.037)

�C dummy 0.314*** 0.308*** 0.310***

(0.057) (0.057) (0.057)

�C > 0 dummy 0.048

(0.090)

�C < 0 dummy 0.573***

(0.067)

�Precipitation ��C dummy �0.010***

(0.003)

�Precipitation �0.007*** �0.003* �0.007*** �0.016***

(0.001) (0.001) (0.001) (0.005)

�Temperature 0.183** 0.175* 0.206** 0.171*

(0.090) (0.089) (0.088) (0.089)

�Precipitation interacted with:

Wet season 0.015***

(0.005)

Short dry season 0.011**

(0.006)

Seasonal 0.001

(0.006)

Long dry season 0.011*

(0.006)

All rain in 3 � months 0.018**

(0.007)

Extreme, all rain in 1-2 months 0.049***

(0.010)

Observations 113520 113520 113520 113506

R2 0.203 0.203 0.203 0.203

adj. R2 0.193 0.193 0.193 0.193

Prob. > F 0.000 0.000 0.000 0.000

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications were calculated with country-category-year fixed effects. The precipitation

variables are measured in mm2 and temperature is measured in centigrade degrees. The variable

ª�C dummyº equals one if there has been a change in the Seasonality Index category with respect

to the precious period; ª�C > 0 dummyº equals one if the change occurs in the direction of a more

extreme (less equable) rainfall regime; and ª�C < 0 dummyº equals one if the change is in the

direction of a more equable regime. These results were computed using the disaggregated GDP data

from Kummu et al. (2018). Robust standard errors are reported in parentheses.
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in similar studies.

Column [3] shows an interesting relationship between the sign if the change in relative

seasonality and the associated effect on growth. It suggests that the effect is not different from

zero when the category goes on the direction of a more extreme seasonality. Instead, the non-

negligible effect is attributable to only those categorical changes going into a more equable

type of rainfall seasonality. In plain words, growth only seems to be affected, positively,

when rainfall becomes more evenly distributed across months. This is again consistent with

the hypothesis that more predictable rainfall is beneficial for growth, because uniformly-

distributed rainfall tends to be the less variable. In the same light, this is also consistent with

the fact that the variation in the average amount of precipitation is negatively associated with

growth.

Nevertheless, some caution must be drawn into the estimates of col. [3]. On the contrary

to the simple dummy variable for �C (this variable equals 1 for any change, no matter the

direction), the assignment to a binary relationship such that �C > 0 or �C < 0 may

not be close to randomly assigned. In fact, it is intuitive that some regions would tend to

change their rainfall seasonality only in a particular direction; for instance, locations near the

shores would tend to only have seasonality changes in the direction of more equable regimes,

because the majority of the time such locations already have rainfall unevenly distributed

across months. They cannot have a less equable seasonality if they are already in the least

equable of categories.

The fact that directionality may not be exogenous is related to the fact that geography, as

aluded in the Literature section, is indeed fixed across observations. Hence, the interpretation

of the estimates from the dummy variables in column [3] is limited and we cannot confidently
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assert the validity of their magnitudes. However, we can suggest there is a relevant relation-

ship regarding directionality on the grounds of significance. We can reject that the estimate

associated to the dummy variable �C > 0 is zero, and this is consistent with the hypothe-

sized relationship between rainfall predictability and growth mentioned in the literature. All

that we can confidently assert, is that regions experiencing rainfall changes going into more

equable regimes experience higher rates of growth as compared to locations within the same

baseline categories that do not have any seasonality changes.

Column [4] displays a similar specification as the ones in [1] and [2] but adding interaction

terms for each seasonal category with variations in precipitation; the omitted term is the one

associated to category 0, or the most equable of regimes. This allows us to have an idea of the

additional effect of rainfall for all seasonality categories independently of the treatment status.

It is seen that additional amounts of rainfall are more significant at the extreme, opposite

regimes, which suggests that there may not be any such marginal effect when the economy

experiences seasonal years. The important aspect is that the estimates are positive, while the

term for precipitation variation remains negative and has increased in magnitude. Thus, this

implies that for a fixed amount of precipitation variation, there are benefits under the most

extreme and equable regimes, while the same amount would be contractive for the seasonal

ones. So overall, col. [4] shows that the positive effect associated to changes in precipitation

is heterogeneous in the seasonal category dimension.

7 Concluding remarks

Precipitation matters for both its temporal and spatial distribution. Recognizing this, the

present paper developed an estimation strategy around the Seasonality Index, a number that
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captures the dispersion of rainfall across months in a year, and using GDP dissagregation to

the grid cell level. As observations are on a finer level of geographical detail, we were able to

isolate locations with the same baseline sasonality (within a country and within a particular

year), and showed that locations that experience seasonality changes for the next period are

similar ex ante, on average, over a number of covariates. With this, the developed empirical

strategy is akin to a diff-in-diff approach, where we compared the variations in seasonality

with variations in the GDP level, or growth. The identification assumption we needed was

that locations that experienced seasonality variations would not have had different trends in

GDP had the change not happened. Because baseline characteristics are mostly similar, we

argued why this assumption is not unreasonable. We found that locations that experience

seasonality changes, either to more equable or more extreme regimes, are better-off than the

locations that do not. This suggests that while greater variations in the average rainfall rates

are detrimental on growth, when the temporal distribution changes growth is bigger.

Although we were not able to identify explicitly the mechanism behind this positive ef-

fect, we can suggest a number of possible elements that are consistent with previous liter-

ature (see Section 2, Literature Review). Firstly, the accumulation of yearly rainfall on a

few months could influence the capability of adaptation, so that individual labor-leizure de-

cisions are taken in a more efficient setting and in turn increasing productivity. Secondly, an

evenly distributed rainfall across the year (coming from an extreme regime) could have posi-

tive effects because it changes the production possibility frontier (PPF). In particular, it could

improve agricultural yields and the production of other activities dependent on precipitation

rates. It is uncluar how the trade-off between more equable or more extreme regimes work,

but our estimates suggest that any negative effects are offset by positive ones in either case.
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Finally, our results are also consistent with previous studies analyzing precipitation rates,

in the sense that an increased average precipitation is negatively associated to growth. While

our estimation strategy did not revolve around yearly (average) precipitation ratesÐthus low-

ering the confidence of the causality in this particular topicÐthe sign of our estimates is

consistent, significant, and robust across all specifications.
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Appendix

This section replicates the results from Tables 2, 5 and 6 using population-disaggregated

GDP data. We find that the significance of the seasonality estimates and their sign do not

change. Interestingly, we also see that the magnitude of these estimates is lower. We suggest

two plausible explanations: (i ) because spatial activity is dependent on population and thus

migratory movements, the estimates resulting from the use od population-disaggregated data

are biased below; and (i i ) because this data completely relies on an aggregated measure (the

WB’s Development Indicators Database) there is some localized activity that is not captured

and also biases the estimates below.

This analysis also demonstrates how average precipitation rates vary across datasets. It

is found that under our estimation strategy and population-disaggregated GDP, identification

is weaker. Specifically, in Table 10 the precipitation estimates are no longer significant for

specifications [3] and [4]. While this does not intervene with our main findings, it suggests

that average precipitation rates are more difficult to observe on a yearly basis; suggesting that

further research to be made on the subject should rely on a finer level of detail in the temporal

dimension.
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Table 8: Replication Panel FE Results

log(GDP) Growth

[1] [2] [3]

Precipitation �0.008 �0.006

(0.0001)*** (0.0001)***

[0.005] [0.005]

Temperature �0.017 0.357

(0.002)*** (0.005)***

[0.079] [0.057]***

Temperature2 �0.010

(0.0001)***

[0.002]***

�Precipitation �2:41 � 10�5

(8:56 � 10�6)***

[2:19 � 10�5]

�Temperature �0.004

(0.001)***

[0.003]

Constant 4.825 2.300 0.030

(0.081)*** (0.065)*** (0.0002)***

[2.999]*** [1.640]*** [0.0001]***

Observations 110917 110917 103750

R2 0.263 0.313 0.148

adj. R2 0.262 0.311 0.147

Prob. > F (Robust SEs) 0.000 0.000 0.000

Prob. > F (Clustered SEs) 0.000 0.000 0.341

*p < 0:10, **p < 0:05, ***p < 0:01

Note: The results of this table use population-disaggregated GDP data. All specifi-

cations are calculated with country±year fixed effects. The specifications for [1] and

[2] control for altitude, latitude and population density. Robust standard errors are

reported in parenthesis and clustered standard errors to the country-year level are in

brackets. The clustered SEs are vastly more conservative and may underrepresent the

true assignment mechanism because seasonality changes would happen at the grid cell

or sub-country level.
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Table 9: Replication Panel FE Results of identification assumptions

log(GDP� )

[1] [2] [3] [4]

�C� dummy 0.036* �0.002

(0.013) (0.013)

�C�C1 dummy 0.035*** 0.025*

(0.013) (0.013)

Precipitation� �0.006*** �0.006*** �0.003*** �0.003***

(0.000) (0.000) (0.000) (0.000)

Constant 2.281*** 2.279*** 2.193*** 2.196***

(0.066) (0.068) (0.070) (0.070)

Country-Year FE Yes Yes

Country-Category-Year FE Yes Yes

Observations 121088 113520 121088 113520

R2 0.313 0.313 0.366 0.366

adj. R2 0.311 0.312 0.359 0.360

Prob. > F 0.000 0.000 0.000 0.000

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications control for temperature, temperature2, altitude, latitude and popula-

tion density (not shown). The unit of measurement for precipitation are mm3. The variable

ª�C� dummyº equals one if there is any change in the categorical Seasonality Index with re-

spect to the previous period, and ª�C��1 dummyº equals one if there is a categorical change

for the subsequent period with respect to the current one. Robust standard errors are reported

in parentheses. These results were computed using population-disaggregated data.
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Table 10: Replication Panel FE Results, effects within SI categories

log(GDP)

[1] [2] [3] [4]

Constant 2.281*** 2.193*** 0.240** 2.077***

(0.066) (0.070) (0.115) (0.069)

�C dummy 0.036*** �0.002 �0.017 �0.010

(0.013) (0.013) (0.013) (0.013)

Precipitation �0.006*** �0.003*** 0.001 0.003***

(0.000) (0.000) (0.001) (0.001)

Temperature 0.357*** 0.343*** 0.354*** 0.342***

(0.005) (0.006) (0.005) (0.006)

Temperature2 �0.010*** �0.010*** �0.011*** �0.010***

(0.000) (0.000) (0.000) (0.000)

SI category dummies:

Wet season 2.226***

(0.106)

Short dry season 2.009***

(0.102)

Seasonal 1.762***

(0.102)

Long dry season 1.440***

(0.103)

all rain in 3 � months 0.943***

(0.108)

Extreme, all rain in 1-2 months 0.515***

(0.109)

Precipitation interacted with:

Wet season �0.009*** �0.013***

(0.001) (0.001)

Short dry season �0.006*** �0.006***

(0.001) (0.001)

Seasonal �0.001*** �0.004***

(0.001) (0.001)

Long dry season 0.008*** 0.003***

(0.001) (0.001)

All rain in 3 � months 0.026*** 0.024***

(0.001) (0.001)

Extreme, all rain in 1- months 0.038*** 0.036***

(0.002) (0.003)

Country-Year FE Yes Yes

Country-Category-Year FE Yes Yes

Observations 110917 110917 110903 110903

R2 0.313 0.366 0.348 0.380

adj. R2 0.311 0.359 0.347 0.373

Prob. > F 0.000 0.000 0.000 0.000

*p < 0:10, **p < 0:05, ***p < 0:01

Note: All specifications control additionally for altitude, latitude and population density.

The unit of measurement for precipitation are mm3; and for temperature it is centigrade de-

grees. The variable ª�C dummyº equals one if there is any change in the categorical class

of the Seasonality Index with respect to the previous period. These results were computed

using the population-disaggregated data. Robust standard errors are reported in parenthe-

ses.
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