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RESUMEN 
 

El presente proyecto de investigación introduce una integración de tres técnicas de 

inteligencia artificial. El propósito es crear un sistema de comunicación en donde los agentes 

puedan aprender del ambiente utilizando un algoritmo de aprendizaje profundo y comunicar 

el conocimiento obtenido. Mediante la comunicación, los agentes pueden tomar ventaja del 

conocimiento de sus semejantes de manera que el número de acciones incorrectas tomadas 

en el ambiente se reducen. Aparte del uso de una arquitectura multi agente con roles bien 

definidos, algunos ajustes se realizaron en el algoritmo Deep Q Learning. Uno de ellos es la 

adición de información a las observaciones almacenadas en la experience replay; esta 

información adicional es una bandera que permite que el agente reconozca un estado 

relevante de manera que el valor de las recompensas pueda ajustarse durante el 

entrenamiento de la red neuronal. Otro ajuste es el uso limitado de 𝜀-greedy el cual previene 

que un agente explore un estado que ya ha sido comunicado por sus similares, ya que los 

estados que son comunicados representan una observación en donde se cometió un error. 

Estos ajustes demostraron ser efectivos ya que el agente reduce el número de episodios 

donde se cometen errores en un 86%. 

Palabras clave: Aprendizaje por refuerzo profundo, multi agentes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



ABSTRACT 
 

This research project introduces an integration of three artificial intelligence techniques. The 

purpose of this integration is to create a communication system where agents can learn from 

the environment using a deep learning algorithm and communicate the knowledge obtained. 

Through communication, agents can take advantage of the knowledge of its peers in a way 

that the number of incorrect actions taken in the environment is reduced. Apart from the use 

of a pair-based multi-agent architecture with well-defined roles, some adjustments were 

performed in the deep q learning algorithm. One of them is the addition of information to the 

observations stored in the experience replay; this additional information is a flag which allows 

the agent to recognize a relevant state so the value of the rewards can be adjusted during the 

training of the network. In addition, the use of epsilon-greedy is limited to prevent an agent 

from exploring states that have already been explored and reported by other agents. These 

states have been identified as having errors and are therefore not worthy of further exploration. 

These adjustments proved to be effective since the agent reduces the number of episodes 

where errors are made in around 86%.  

 Keywords: Deep reinforcement learning, multi-agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

This work presents a combination of multi-agent systems and deep reinforcement learning. A 

multi-agent system is made of multiple interactive computing elements known as agents. An 

agent is a computing system with the capacity of taking actions autonomously and interact 

with other agents [1]. 

Deep reinforcement learning involves the use of deep learning in the reinforcement learning 

framework. Deep learning marks a difference with “shallow” learning in the sense that there is 

one or more hidden layers between input and output layers [2]. For this work, the input is an 

image which represents a situation an agent inside an environment and the output is the action 

that the agent should take in that situation.  Since the input is an image, a convolutional neural 

network is used which has a better generalizing ability as compared to other neural networks 

[3].  

The way the agent learns is through reinforcement learning, which has gained significant 

attention from researchers across multiple fields, including psychology, control theory, artificial 

intelligence and neuroscience [4]. Reinforcement learning is defined as an artificial intelligence 

paradigm where an agent learns via interaction where the goal is to maximize a reward signal. 

A combination of reinforcement learning and multi-agent systems is seen in [5], where multiple 

agents try to learn an optimal behavior in a fewer number of episodes compared to a one 

agent acting by itself. In that work, a multi-agent architecture was designed and it was tested 

on two environments with different dynamics proving that agents can motivate or discard 

relevant actions in order to reach their goal. In this multi-agent architecture, pairs of agents 

with specific roles exchange information. The information within the system consists of 

relevant states represented as numerical values indicating positions and distances. This 

representation of a state proved to be effective, however an increase in the number of states 

makes it more difficult to assimilate the information. 

The problem of requiring a higher abstraction level originated the idea of implementing a 

neural network, specifically, a convolutional neural network to take advantage of its 

generalizing ability. This implementation will provide the multi-agent architecture with the 

capacity of taking as input the raw pixels that represent a situation between the agent and its 

environment. Adding a neural network involves the use of Deep Q-learning. Also, involves a 

change in the information exchanged through the system which are no longer states in the 

form of positions and distances but tuples. These tuples contain the information needed by a 

deep q learning algorithm, as well as an extra element that enables the identification of 

relevant states. 

This work has also fixed an issue regarding the maximum reward obtained in one of the 

environments which was reported as rebound effect [5]. This observed effect showed that the 

agent has changed its behavior to achieve the goal of making fewer mistakes, however, the 

reward value obtained was lower than that of a single agent operating independently. In this 

work, a special focus is done in this effect with the goal of eliminating it and allowing the agents 

not only to make no mistakes but also not harm the value of the reward obtained. 

Regarding the architecture, some aspects of the multi-agent architecture are kept, like the 

pair-based structure and the restriction of the use of epsilon-greedy. Other aspects are 

changed like the way the agents communicate and the information that the agents transmit. 

On the other hand, the integration of a deep neural network involved a new way of taking 

advantage of the information transmitted. 



The second section of this work presents the theoretical framework that it is based on. The 

methodology is introduced in the third section, followed by the results and discussion in the 

fourth section. The fifth section presents the conclusions and future work, and the bibliography 

can be found in the final, sixth section. 

1.1 Research Question 

¿How can a pair-based multi-agent architecture work along with deep reinforcement learning 

to reduce the number of episodes necessary to make no errors without harming the optimal 

reward? 

1.2 General Objective 

Design a multi-agent architecture using deep reinforcement learning to decrease the number 

of interactions between agents and environment by communicating knowledge. 

1.3 Specific Objectives 

• Design a pair-based multi-agent architecture where all the agents can communicate 

with each other. 

• Design and implement a deep reinforcement learning model using deep q learning 

algorithm where exploration is the main task. 

• Integrate the deep reinforcement learning model with the multi-agent architecture so 

agents can learn to make no errors in less interactions with the environment.  

1.4 Hypothesis 

Deep reinforcement learning can be integrated into a pair-based multi-agent architecture to 

reduce the number of agent-environment interactions without harming the convergence of the 

results. 

2. THEORETICAL FRAMEWORK 

The current section introduces the theoretical background this project relies upon. 

2.1 Reinforcement Learning 

Reinforcement learning (RL) refers simultaneously to a problem, a class of solutions methods 

that work well on the class of problems and the field that studies these problems and their 

solution methods [4]. RL involves how to map situations into actions to maximize a numerical 

reward signal without being told which actions to take, through trial and error. It attempts to 

mimic the way humans learn new things not from a teacher but from interaction with the 

environment [6].  

The use of reinforcement learning is wide, since it’s been involved in areas like engineering, 

neuroscience, psychology, mathematics and economics. On the practice RL-systems have 

been able to make humanoid robots walk, defeat the world champion at Go, and play many 

different Atari games better than humans, among others. In all the systems where RL is 

involved, the basic idea is capturing the most important aspects of the problem to provide an 

agent with the capability of interact with its environment and achieve a goal.  

In the reinforcement learning problem, the learner is called the agent and everything outside 

the agent, is called the environment. These two interact continually, the agent selects actions, 

and the environment responds to those actions and presents new situations to the agent. In a 

more specific way, agent and environment interact in a sequence of discrete time steps, 𝑡  =



 0,1,2,3 . At each time step 𝑡 , the agent receives some representation of the environment’s 

state 𝑆𝑡   ∈  𝑆 where 𝑆  is the set of possible states, and based on that, selects an action 𝐴𝑡   ∈

 𝐴(𝑆𝑡) where 𝐴(𝑆𝑡) is the set of actions available in state 𝑆𝑡. One time step later, in part as a 

consequence of its action, the agent receives a numerical reward 𝑅𝑡+1 and finds itself in a new 

state 𝑆𝑡+1. This process is illustrated in Figure 1.  

 

Figure 1 Agent-Environment interaction 

A state capable of retaining all the relevant information is said to have the Markov property. 

To define this Markov property, it is necessary to assume that there are a finite number of 

states and reward values. A response of the environment at time 𝑡 + 1 to the action at time 𝑡 

may depend on everything on everything that has happened earlier. For that case, the 

dynamics of the environment can be defined as in Equation 1 [2].    

𝑃𝑟 {𝑆𝑡 = 𝑠′,  𝑅𝑡 = 𝑟|𝑆0,  𝐴0, 𝑅1, … 𝑆𝑡−1,  𝐴𝑡−1, 𝑅𝑡−1} (1) 

Equation 1 Dynamics of an environment 

For all 𝑠′, 𝑟 and all possible values of 𝑆0,  𝐴0, 𝑅1, … 𝑆𝑡−1,  𝐴𝑡−1, 𝑅𝑡−1.  

When the environment’s response at 𝑡 depends only on the state and action at 𝑡 − 1, the state 

has the Markov property and the dynamics of the environment can be defined as in Equation 

2.  

𝑝(𝑠′,  𝑟 |𝑠, 𝑎) ≐ 𝑃𝑟 {𝑆𝑡 = 𝑠′,  𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠,  𝐴𝑡−1 = 𝑎}  (1) 

Equation 2 Dynamics of an environment that meets the Markov property 

For all 𝑠′, 𝑠  ∈  𝑆 , 𝑟  ∈  𝑅  and 𝑎  ∈  𝐴(𝑠). The function 𝑝 defines the dynamics of the MDP and 

𝑃𝑟 represents a discrete probability distribution. When Equation 1 is equal to Equation 2 for 

all 𝑠′, 𝑟 and 𝑆0,  𝐴0, 𝑅1, … 𝑆𝑡−1,  𝐴𝑡−1, 𝑅𝑡−1, the environment and task are also said to have the 

Markov property. In a situation where an environment has the Markov property, its one-step 

dynamics allow to predict the next state and expected next reward given the current state and 

action. As a whole, the one-step dynamics, state and actions of an environment defines a finite 

Markov Decision Process (MDP) as long as the learning task satisfies the Markov property.  

Given the dynamics specified in Equation 2, and assuming an environment as a finite MDP, 

anything else can be computed about the environment. Equation 3 shows the state-transition 

probabilities which are obtained by computing the probability of transitioning from one state to 

another given a particular action.  

𝑝(𝑠′|𝑠, 𝑎) ≐ Pr{𝑆𝑡 = 𝑠′ | 𝑆𝑡−1 = 𝑠,   𝐴𝑡−1 = 𝑎}   (3) 

Equation 3 State-transition probabilities 

 



Equation 4 shows the formula for the expected rewards for state-action pairs which is obtained 

by evaluating the expected reward of a state-action pair. This expected reward is the weighted 

average of the expected rewards for all possible next states, being the weights, the transition 

probabilities from one state to the next one under certain action.  

 𝑟(𝑠,  𝑎)  ≐  𝐸[𝑅𝑡|𝑆𝑡−1 = 𝑠,  𝐴𝑡−1 = 𝑎]  (4) 

Equation 4 Expected rewards for state-action-pairs 

Equation 5 shows the expected rewards for state-action-next-state triples. It can be obtained 

by summing all possible next states weighted by the probability of transitioning to each next 

state and then multiplying each term by the reward associated in the triplet.   

𝑟(𝑠,  𝑎,  𝑠′)  ≐  𝐸[𝑅𝑡  | 𝑆𝑡−1 = 𝑠,  𝐴𝑡−1 =  𝑎,  𝑆𝑡 = 𝑠′] (5) 

Equation 5 Expected rewards for state–action–next-state triples 

An agent receives a reward at each time step, which is a simple number. Informally, the 

agent’s goal is to maximize the total reward it receives, which means maximizing not the 

immediate reward but cumulative reward in the long run which is known as the return. 

Formally, defined in Equation 6. 

𝐺𝑡 ≐ 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 … + 𝑅𝑇 (6) 

Equation 6 Expected return 

𝑇 represents the final step, a concept that makes sense in applications where there is a natural 

notion of final time step, which means that the agent-environment interaction breaks naturally 

in subsequences called episodes. Each episode ends in a particular state called the terminal 

state followed by a reset to a pre-defined starting state. One more important concept related 

to the return is the discount rate, which is represented by 𝛾, a parameter with values 0 ≤ 𝛾 ≤

1. This discount rate determines the present value of future rewards. A reward received 𝑘 time 

steps in the future, is worth only 𝛾𝑘−1 times what it would be worth if it were received 

immediately. Through this concept of discounting, an agent tries to select actions in a way that 

the sum of the discounted rewards it receives over the future is maximized which means that 

it will select 𝐴𝑡 to maximize the expected discounted return, represented by the following 

equation: 

𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ =  ∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1  (7) 

Equation 7 Discounted return 

To map a state to a probability of selection certain action at each time step, the agent has a 

policy, denoted 𝜋 where 𝜋(𝑎|𝑠) is the probability that  𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠 . These time steps not 

necessarily refer to fixed intervals of time, they can refer to arbitrary successive stages of 

decision-making and acting. 

Reinforcement learning algorithms involve estimating value functions of states, which estimate 

how good the expected return will be for the agent in a given state. In other words, this value 

function estimates how good a state is in terms of its potential for long-term rewards. 

The value function of a state 𝑠 under a policy 𝜋 denoted 𝑣𝜋(𝑠) is the expected return when 

starting in 𝑠 and following 𝜋 thereafter, Equation 8 defines the value function formally.  

𝑣𝜋(𝑠) ≐ 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] =  𝐸𝜋[∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1|𝑆𝑡=𝑠], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 𝜖 𝑆  (8) 

Equation 8 State-value function for policy π 



In a similar way, the value of selecting action 𝑎 in state 𝑠 under a policy 𝜋, 𝑞𝜋(𝑠, 𝑎), which is 

the expected return starting from 𝑠, taking action 𝑎 and thereafter following policy 𝜋, is called 

the action value function for policy 𝜋 and is illustrated in Equation 9. 

𝑞𝜋(𝑠, 𝑎) ≐ 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] =  𝐸𝜋[∑ 𝛾𝑘∞
𝑘=0 𝑅𝑡+𝑘+1|𝑆𝑡=𝑠 , 𝐴𝑡=𝑎] (9) 

Equation 9 Action-value function for policy π 

To solve a reinforcement learning task is necessary to find a policy that achieves the maximum 

reward possible over the long run which means that an optimal policy must be found. A policy 

𝜋 is defined to be better than or equal to policy 𝜋′ if its expected return is greater than or equal 

to that of 𝜋′ for all states; 𝜋 ≥  𝜋′ if and only 𝑣𝜋(𝑠) ≥  𝑣𝜋′(𝑠) for all 𝑠 𝜖 𝑆. There is always at least 

one policy that is better than the others and there are even cases where there is more than 

one optimal policy and all of them are denoted by 𝜋∗ [2]. Optimal policies share the same 

state-value function, which is called the optimal state-value function, and the same action-

value function which is called optimal action-value function, both are illustrated in Equations 

10 and 11 respectively. 

𝑣∗(𝑠) ≐ max 𝑣𝜋(𝑠) (10) 

Equation 10 Optimal state-value function 

𝑞∗(𝑠, 𝑎) ≐ max 𝑞𝜋(𝑠, 𝑎) (11) 

Equation 11 Optimal action-value function 

2.2 Q Learning 

Q Learning is a Temporal Difference (TD) algorithm, TD is an approach to reinforcement 

learning where the agent incrementally updates estimates of a value function using observed 

rewards and the previous estimates of that value function. Q Learning estimates the optimal 

Q-function by iteratively updating its estimates Q after each interaction with the environment. 

Q learning performs off-policy learning; meaning that it learns about a different policy than the 

one generating the interactions with the environment, which is called the behavior policy. The 

policy the algorithm ends up learning is the optimal policy.  

2.3 Epsilon-Greedy 

One specific challenge in reinforcement learning is the trade-off between exploration and 

exploitation [4]. The agent must exploit what it already knows to obtain a reward, but it also 

must explore in order to make better action selections in the future. One strategy to deal with 

this dilemma is called epsilon-greedy. With this strategy, the agent takes a random action with 

probability 𝜀 and it takes the best action known up to that time step with probability 1- 𝜀. This 

process is described in Equation 12. 

𝜋(𝑠) = {
𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 < 𝜀

arg 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (12) 

Equation 12 Epsilon-greedy [7] 

One important aspect is that exploration must be prioritized when the agent does not have 

enough information about the environment and once the agent has enough information, it must 

exploit its knowledge [7]. Thus, a variation of epsilon-greedy appears, where a decay is 

introduced, which means that the value of epsilon will decay across the life of an agent. 

Specifically, a real value less than 1 is multiplied by epsilon in every episode, which is also 

known as exponential decay. 

Usuario
Resaltado
Inclusión de referencia



2.4 Deep Learning 

In the context of RL, the field of deep learning is about approximating functions in high-

dimensional problems where tabular methods cannot find exact solutions [8]. Deep learning 

uses deep neural networks to find approximations for large, complex high-dimensional 

environments, such as in images and speech recognition. Deep neural networks consist of 

many layers of neurons where different types of connections are used. 

2.5 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a type of artificial network which has deep feed-

forward architecture which can learn highly abstracted features of objects especially spatial 

data and can identify them more efficiently [3]. A deep CNN model consists of a finite set of 

processing layers that can learn various features of input data with multiple levels of 

abstraction. The first layers learn and extract the low-level features and the deeper layers 

learn and extract the high-level features. 

 

Figure 2 Conceptual model of a CNN [10] 

A Convolutional layer is the most important layer of any CNN architecture. In this layer, a set 

of convolutional kernels can be found, these kernels are also called filters that are convolved 

with the input to generate an output feature map. A kernel is a grid of discrete values, where 

each value is known as the weight of the kernel. When the training starts, the values of the 

kernel are random numbers, once the epochs make the agent learn, the values of the kernel 

change and is capable of extracting meaningful features. The output feature map is obtained 

through a convolution operation between the input and the filter (Figure 3). Pooling layers are 

used to sample the feature map. There are different pooling techniques, but the most popular 

and mostly used is Max Pooling whose principle is illustrated in Figure 4.  

Another important concept is the activation function, which decides whether a neuron will fire 

or not for a given input by producing the corresponding output. In CNN architecture, non-linear 

activations layers are used after each learnable layer.  

 



 

Figure 3 Convolutional process illustrated 

 

Figure 4 Max pooling process illustrated 

 

2.6 Deep Reinforcement Learning.  

Deep Learning has had a significant impact on many areas in machine learning since it can 

automatically find compact low-dimensional representations of high dimensional data [9]. The 

progress in RL has similarly been accelerated by DL; the use of DL algorithms within RL 

defines the field of deep reinforcement learning (DRL).  



Deep reinforcement learning can learn to solve large and complex decision problems where 

there is no solution yet, but an approximating trial-and-error mechanism exists through which 

a solution can be obtained out of repeated interactions with the problem.  

2.7 Deep Q Learning 

Deep Q Learning was introduced in the work of Mnih, where a reinforcement learning 

algorithm is connected to a deep neural network which works directly on RGB images and 

efficiently process training data using stochastic gradient updates [10], the DQN algorithm is 

shown in Figure 5. Basically, a network takes preprocessed pixel images as inputs and outputs 

a vector containing Q-values for each valid action.  

The main features of DQN are the use of a target network and the use of experience replay. 

The target network is a separate neural network used to generate the Q-values and it has the 

same structure as the online network. Its weights remain fixed for a certain number of time 

steps until they are updated to match the weights of the online network. The online network is 

the primary neural network which is used for action selection and updates its weights at each 

time step [10]. An experience replay [12] was used since learning directly from consecutive 

samples is inefficient due to strong correlations between the samples.  

 

Figure 5 Deep Q Learning algorithm [11] 

2.8 Multi-agent systems 

There is no universally accepted definition of the term agent [1].The only general consensus 

is that autonomy is central to the notion of agent. A definition provided by Wooldridge and 

Jennings say: An agent is a computer system that is situated in some environment, and that 

is capable of autonomous action in this environment in order to meet its design objectives. 

Some ideas in common with the definition of Russell and Norvig [13] define an agent as a 

flexible autonomous entity capable of perceiving the environment through the sensors 

connected to it and act on the environment through actuators.  



Some features of an agent are situatedness, autonomy, inferential capability, responsiveness, 

pro-activeness and social behavior. The last one stablishes that even though an agent’s 

decision must be free from external intervention, it must still be able to interact with the external 

sources when the need arises to achieve a specific goal. An agent should be able to share its 

knowledge and help other agents to solve a specific problem. Agents should be able to learn 

from the experience of other communicating entities that can be humans or other agents in 

the network. This last idea brings to the table the definition of a Multi-Agent System (MAS). 

In a Multi-Agent system, a group of loosely connected autonomous agents act in an 

environment to achieve a common goal. This goal is achieved by cooperating, competing, 

sharing, or not sharing knowledge with each other. MAS have been adopted in many 

application domains because of the beneficial advantages offered that include the following 

ideas [14]: 

• Increase of the speed due to parallel computation and asynchronous operation. 

• When one or more agents fail, the system does not suffer of a representative 

degradation which means that reliability and robustness are increased. 

• Reduced cost since individual agents cost much less than a centralized architecture. 

• Reusability, a direct effect of an agent modular structure which means that an agent 

can be replaced by another or moved to a different system.  

3. METHODOLOGY 

The following subsections describe the way this project was build; it was divided into three 

specific parts. The first one focuses on the reinforcement model, the second one on the multi-

agent architecture and the third and last one, on how to combine the former parts.  

3.1 Reinforcement learning model design 

Deep Q learning was the algorithm selected, not only by the off-policy characteristic but also 

for its use in different areas with good results. Epsilon-greedy with exponential epsilon decay 

was chosen as the behavior policy, this decay was stablished in 0.9998 and the starting value 

for epsilon was 1. There is not a minimum value for epsilon, which means that after certain 

numbers of epochs the value will be 0, meaning that the agent will fully exploit its knowledge.  

The environment where the agents were tested is inspired by the work of [5] where the agents 

are placed inside a delimited area and must move to the furthest point and will be penalized if 

that point is crossed. The environment in the form of a square presents a challenge for the 

agent to search for the nearest border starting at a random initial point. This objective of the 

agent is considered an exploration task, where it tries to find the optimal route to each border. 

This task is suitable to be divided among multiple agents where each agent has the 

responsibility of finding the optimal route to one or more of the borders.  

For this work, this area is a grid with 21 units per side, agents appear in a central zone and try 

to move to the outside of the grid. There is an internal border placed 2 units from the border 

to the inside, this internal border represents a set of furthest points the agent is allowed to step 

on. A graphic of the environment is showed in Figure 6 and its characteristics are described 

in Table 1 following the properties described by Wooldridge [1]. 

The border in color red represents the internal border. When an epoch started, the agent could 

start its interaction with the environment at any point in the blue zone. The representation of a 

point is determined by its x and y positions having as the origin the top left corner, the direction 

of x and y is also shown in Figure 6. 
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To move from their origin position, agents have 9 actions available, which include 8 

movements and a ninth action where the agents stay in their position. The actions are 

illustrated in Figure 7 where the arrows represent the directions the agent can follow and the 

“stay” actions means that the agent won’t move. This action was added with the purpose of 

preventing any issue that can harm the reward like the rebound effect reported in [5]. 

 

 

Figure 6 Representation of the environment 

The maximum number of movements was set at 21, which is the same as the length of one 

side of the environment grid. An episode is over when this number is reached or if the agent 

moves past the internal border, which will be known as a “fall”. 

 

Criteria Feature of the 
environment 

Description  

Accessibility Accessible Agents can obtain 
detailed and precise 
information from the 
environment. 

Determinism Deterministic Every agent’s action 
has a known effect. 
 

Dynamism Static The dynamics of the  
environment do not 
change. 

Continuity Discrete There is a fixed 
number of actions and 
states 

Table 1 Environment characterization 



Any movement where the agent doesn’t “fall” has an initial reward of 100, which was a value 

found through experimentation, this reward was called the movement award. The definitive 

value of the reward is determined by how far the agent is to the internal border, since the 

internal border has 4 sides, the distance to each one of them is determined and the minimum 

of these distances is taken into consideration. Equations 13 to 16 represent how the distances 

are measured; agentT is the distance of the agent to the top border, agentD, the distance to 

the inferior order, agentL, the distance to the left border and agentR, the distance to the right 

border. The formula to obtain the step reward of an agent is shown in Equation 17.  

Without these equations, the agent would lack the incentive to move towards the border. It 

may opt for a conservative movement strategy that keeps it in a central position while still 

making the maximum number of movements. To encourage the agents to move towards the 

border, a bigger reward was required to be obtained in the positions closer to the border. A 

unit is added to Equation 16 in order to prevent any division by 0, since when an agent is on 

the border, the minimum distance is 0.  

𝑎𝑔𝑒𝑛𝑡𝑇 = 𝑎𝑏𝑠(𝑎𝑔𝑒𝑛𝑡′𝑠 𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 𝑏𝑜𝑟𝑑𝑒𝑟)  (13) 

Equation 13 Distance to the top border 

 

𝑎𝑔𝑒𝑛𝑡𝐷 = 𝑎𝑏𝑠(𝑎𝑔𝑒𝑛𝑡′𝑠 𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 𝑏𝑜𝑟𝑑𝑒𝑟)  (14) 

Equation 14 Distance to the inferior border 

 

𝑎𝑔𝑒𝑛𝑡𝐿 = 𝑎𝑏𝑠(𝑎𝑔𝑒𝑛𝑡′𝑠 𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑙𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)   (15) 

Equation 15 Distance to the left border 

 

𝑎𝑔𝑒𝑛𝑡𝑅 = 𝑎𝑏𝑠(𝑎𝑔𝑒𝑛𝑡′𝑠 𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑟𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)   (16) 

Equation 16 Distance to the right border 

 

𝑠𝑡𝑒𝑝𝑅𝑒𝑤𝑎𝑟𝑑 =
100

𝑚𝑖𝑛(𝑎𝑔𝑒𝑛𝑡𝑇,𝑎𝑔𝑒𝑛𝑡𝐷.𝑎𝑔𝑒𝑛𝑡𝐿,𝑎𝑔𝑒𝑛𝑡𝑅)+1
   (17) 

Equation 17 Step reward equation 

The other value of reward involved is when the agent “falls” this reward has a value of –1600. 

This number was determined by the number of movements an agent would have to take when 

it starts in the extreme of the blue zone and wants to get to the internal border of the opposite 

side, which is 16, by -100, which is the reward for a movement. This formula is shown in 

Equation 18. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑡𝑒 = 16 

𝑓𝑎𝑙𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑡𝑒 ∗  −100  (18) 

Equation 18 Fall reward equation 



 

Figure 7 Representation of the actions available for the agent 

The difference with the work introduced in [5] is that since Q-learning was used, a Q-table 

exists, and it’s the one responsible for determining the action when the agent exploits its 

knowledge. Now in this paper, deep Q learning is the algorithm used, and the mapping 

between actions and values are performed by a model, trained by a deep network.  

Since each Explorer agent of the architecture had a copy of the neural network within, the 

architecture was constrained in terms of complexity, since running several agents at once 

would have reached the maximum processing capabilities. To achieve this, the number of 

layers was minimized. The first layers of the architecture are made of two blocks that contain 

convolutional, pooling and dropout layers to extract the features. Subsequently, a flatten layer 

was introduced to reduce the dimensions of the extracted features.  Finally, a couple of fully 

connected layers were incorporated to classify the features and produce an output that 

determines the action to be taken.  

The dimensions of the input layer is 21x21x3 since as it was seen in Figure 6, the length is 21 

and since it’s a rgb image, the number of channels is 3. On the other hand, the dimension of 

the output layer is 9 since is the number of available actions. After experimenting with some 

nonlinear activation functions, relu was chosen due to the superior performance showed in 

achieving the desired results.   

The architecture of the network is described with the help of Figure 8 and 9. Figure 8 shows a 

summary of the neural network used, and Figure 9 shows a more graphical representation. 



 

Figure 8 Convolutional Neural Network summary 

 

Figure 9. Convolutional Neural Network graphical representation 

3.2 Multi-agent architecture design. 

Just as in the work introduced in [5], centralized planning and decentralized execution 

paradigm is used, along with the pair-based concept.  

The agents that are part of each pair have different roles and based on this role they are given 

a name. The agent in charge of interacting with the environment was called an “Explorer”, on 

the other hand, the agent in charge of receiving the information from the “Explorer” was called 

an “Accumulator”. Each pair was identified by the number at the end of their names. An 

“Explorer” is the one who performs an action, receives a reward and trains the model, but by 

itself it’s unable to know about the actions performed by the other “Explorers”, that’s the 

importance of the “Accumulator”. An “Accumulator” is in charge of receiving the information 

from all the “Explorers” in the system and make it available for its correspondent “Explorer”. 

An illustration of this architecture is shown in Figure 10. 

An Explorer has the ability to send two types of messages, the first is an Inform and is sent 

when it makes a mistake in the environment, this message is sent to all the “Accumulators”. 

The other message is a “Request” and is done to its “Accumulator” only. An “Accumulator” 



can send messages only to its correspondent “Explorer” and is the response of the request 

started by said “Explorer”.  

 

Figure 10 Multi-agent architecture 

This model of communication relies on a peer system which means that the agents along the 

system have the exact same features, these features according to the work presented in [15], 

are characterized for this work in Table 2. Regarding the feature called “Interaction-specific 

features”, there are a number of sub features which are described in Table 3. 

Feature Description regarding this work 

Degree of decentralization The pair of agents learn in parallel 

Interaction-specific features See Table 3. 

Involvement-specific features Goal attainment could be executed by any 
pair of agents and all the pairs of agents 
contain the same type of agents. 

Goal-specific features Agents try to reduce the number of episodes 
required to learn a policy where no mistakes 
are made and this goal does not create 
conflict along agents. 

Learning method Learning by discovery 

Learning feedback Reinforcement learning 
Table 2 Features of the agents involved in the architecture 

Interaction-specific features Description according to this work 

Level of interaction Information exchange 

Persistence of interaction Long-term 

Frequency of interaction High 

Pattern of interaction Different strategies of communication along 
Explorers and Accumulators 

Variability of interaction Fixed 
Table 3 Interaction-specific features of the agents involved in the architecture 



3.3 Integration of the reinforcement learning environment with 

the multi-agent architecture 

The third and last phase of this project was to create a successful integration of the multi-

agent architecture with the reinforcement learning system. The goal was for the agents not to 

only learn about the environment but also communicate and take advantage of that 

communication. It was expected that the agents were capable of reaching a policy where 

errors were not made, and if the returns obtained by this policy were the maximum available, 

it can be considered an optimal policy. 

The important aspects of this integration are what and when agents communicate. To 

understand what is communicated, it’s necessary to refer to the tuples that are part of the 

replay memory of the agent. For this integration, information was added to the tuple. This extra 

information is a flag which says whether the current state that is being sent is a fallen state or 

not. Each tuple was referred to as an observation. These observations flow throughout the 

system, allowing the agents to take advantage of the insights obtained from their peers. 

On the other hand, related to when the agents communicate, Figure 11 shows a diagram of 

it; it can be seen the moments where agents send the messages. The first moment where an 

agent sends a message is when the Explorer starts an episode and makes a request to its 

Accumulator. In that request, it sends a list of observations that the Explorer previously 

received and for instance, are already known for the Explorer; this list is called the known 

observations list (KOL). This list is sent with the purpose of filtering the observations that will 

be in the response of the Accumulator. The Accumulator receives the KOL from its Explorer 

couple and since it has been receiving the observations of the other Explorers of the system, 

uses the KOL to filter the observations. Consequently, redundant information is not sent, and 

the Explorer won’t have repeated observations.  

 

Figure 11 Communication moments 

The second moment of communication happens when an agent “falls” and sends the 

observation to all the accumulators except for its own couple. Accumulators receive this 

observation and add it to a list called the fall observations list (FOL). The observations received 

that are added to this list comes from any Explorer of the system as shown in Figure 12. This 

list is the one that gets filtered when the accumulator receives the KOL from its Explorer 



couple. This filter consists in deleting from FOL the observations that are contained in KOL, 

preventing the Explorer from receiving repeated observations. The filter list is called the filtered 

fall observations (FFOL) which is sent back to the Explorer as response which is a process 

illustrated in Figure 13.  

 

Figure 12 Accumulator forming its KOL list 

 

Figure 13 Filter inside accumulator 

Once the Explorer receives the FFOL it needs to interpret the information that has received. 

Precisely, these observations were part of the minibatch that was sampled from the 

experience replay to train the neural network during that episode. These observations are 

considered in the minibatch immediately as they are received but are also added to the 

experience replay for a possible future use. This means that the number of observations the 

agent will be trained with, will be bigger than the stablished size of 64. Which is the standard 

size of a batch obtained from the experience replay. The observations received by the explorer 

will also be added to KOL as shown in Figure 14. Now that the observations were part of the 

sample to train the network, it was necessary to assimilate the info in these observations, and 

that’s where the extra information that was added to tuple played a role.  



 

Figure 14 Explorer forming KOL 

Since the network is going to train how to map a state to an action, the value for the action 

that keeps the agent in the same position was increased, specifically, its value will be the 

opposite of the fall reward, 1600. It’s a process that happens every time the fallen state flag of 

the tuple has a true value. By doing that, the neural network will train for that state with a big 

negative reward for the action that led the agent to fall and with a big positive value for the 

action that keeps the agent in the same position. The objective of this change in the agent is 

to motivate the agent to stay in the same position right on the border and not trespass this 

border. The perimeter of the environment is 68 (Figure 6). By sharing learning, an agent can 

access a wider range of observations beyond its own. Through this, an agent can learn more 

efficiently and in fewer interactions compared to if it were only observing the states of the 

perimeter independently. 

Another aspect in the explorer regards the application of epsilon-greedy. This application of 

epsilon-greedy is limited in the sense that it won’t be applied to states that are included in 

KOL. Which means that once that the q values for a state have been manipulated (Figure 14), 

this mentioned process would not be applied to that state again. Instead, a straight exploitation 

is performed, as seen in Figure 15. 

 

Figure 15 Epsilon-greedy limitation performed by the Explorer agent 



The way the explorers handle the messages and apply the RL algorithm introduces a variation 

in the Deep Q learning algorithm apart from the initializer which is He uniform [16] and 

optimizer which is RMSProp [17]. This mentioned variation can be seen in Figure 16. Once 

the agent reached a final state a counter was increased, once the counter got to 5, the target 

network was updated with the weights of the online network. The value of 5 to perform the 

update was found based on the favorable results observed during experimentation. Following 

the same principle, the value of the discount factor was obtained, which was 0.95. 

 

Figure 16 Variation of Deep Q learning 

Since there is an extra item in the transitions that are stored in the experience replay, this work 

is placed along a couple of works which follow this strategy.  A description of these, is seen in 

Table 4. 

Name Description 

Lenient Multi-Agent Deep Reinforcement 
Learning [18] 

Adding a leniency value to the transition 
allows to determine whether the sample is 
considered or not 

Stabilizing Experience Replay for Deep  
Multi-Agent Reinforcement Learning [19] 

Add information to help disambiguate the 
age of the data in the form of the number of 
the iteration during training  

Present work Add a flag that helps characterizing a 
relevant state 

Table 4 Summary of works under the same principle 

To compare the performance of the agents using the multi-agent architecture with a unique 

agent, decrement percentage formula was used, and the metric to consider was the number 

of episodes an agent needs to learn to not trespass the internal border of the environment.  

4. Results 

To quantify what would be the improvement of using the multi-agent architecture, first, one 

only agent is placed in the environment with the purpose of observing to three certain metrics. 



The first is the average reward, which is computed every 50 episodes; in the same interval, 

the number of errors made by the agent is accounted as well. The third is the accuracy of the 

model. 

4.1 Results with no communication 

Figure 17 shows the number of errors made by the agent, this metric represents the number 

of times an agent has “fallen” or trespassed the internal border of the environment. For the 

agent that acted by itself in the environment, it’s observed that this number increases during 

the early stages of the training, specifically the number increases until around 5000 episodes. 

After that, it is observed how the number of errors decreases until obtaining a flat line, which 

means no errors, at around 45000 episodes.  

 

Figure 17 Number of errors made by the lonely agent 

Figure 18 shows that around 45000 episodes the accuracy was 0.85. The accuracy shows 

values higher than 0.9 at around 16000 episodes, it is observed a decrease in the performance 

after the mark of the 41000 episodes, however, it handles to recover performance getting to 

be placed in the same range of values around 0.9. Regarding the average reward, Figure 19 

shows that the agent stabilizes this reward at around 25000 episodes obtaining its maximum 

values at around 45000 episodes.  



 

Figure 18 Number of errors made by the lonely agent 

 

Figure 19 Average reward values obtained by the lonely agent 

4.2 Results with communication 

To avoid any confusion with the pair-based architecture concept, a constraint was put in place 

to ensure that the number of pairs of agents could not be two. Additionally, due to processing 

limitations, the number of pairs could not exceed 3. Thus, the reported results were obtained 

using 3 pairs of agents.   

For 3 pairs of agents, Figure 20 shows that the explorer 1 obtained 0 errors at around 3900 

episodes and continues to make 0 errors for the subsequent episodes. A different behavior is 



seen for gents 2 and 3. In the case of agent 2, a similar behavior to agent 1’s is seen until gets 

around 5750 episodes when it starts to make errors again, however, after less than 2000 

episodes later, precisely, at 6900 episodes, it gets back to a behavior where no errors are 

made.  

Explorer 3 shows a different behavior, first, it shows a similar behavior to the one performed 

by explorer 2, then starts to make errors at around 4900 episodes and gets to make no errors 

at around 5400 episodes. The difference is that at around 7900 episodes, it starts to show a 

behavior where during some intervals it makes no errors, but during other intervals it makes 

several errors even obtaining episodes with more than 20 errors.  

 

Figure 20 Number of errors made by the explorers using the multi-agent architecture 

Figure 21 shows the average reward obtained by the explorers of each pair. It is observed that 

the explorers get the maximum average reward at around 10000 episodes with values around 

18000. It is also observed that two of the agents, precisely, agents 2 and 3 show a kind of a 

negative spike around 1000 episodes later, however, agent 2 obtains the maximum reward 

again a few hundreds of episodes later and onwards. That is not the case for agent 3 since 

after around 7000 episodes, the average rewards show a considerable decrease on its value. 



 

Figure 21 Average reward of the explorer agents using the multi-agent architecture 

There are moments where the average reward reaches its maximum value which is 18000, 

but for other episodes the average reward is considerably lower compared with the values 

obtained by the remaining explorers of the system. Similar results were observed comparing 

the number of errors.  

Comparing Figure 21 with Figure 19 for the best Explorer agent, it is observed that the rewards 

obtained by the Explorer agent are not smaller than those obtained by the independent agent.  

This suggests that the Explorer agents were able to achieve the maximum possible reward, 

as opposed to the results presented in [5] where the independent agent performed better in 

this specific metric. This effect was documented as a consequence of a called rebound effect. 

Since the maximum values of the reward were obtained, the resulting policies can be 

considered optimal.  

In Figure 22, it’s seen that the number of episodes that the agent makes no error can be found 

at around 5000 episodes, the accuracy is not over 0.8, however it starts to get the maximum 

values at around 16000 episodes. 



 

Figure 22 Accuracy of the explorer agents using the multi-agent architecture 

4.3 Discussion 

After comparing the results of an independent agent and 3 Explorer agents, it was observed 

that there is a decrease regarding two metrics. These metrics are the number of episodes to 

reach a policy where no errors are made and the number of episodes where the maximum 

value of the reward is reached. These metrics are accuracy, maximum value of reward and 

the number of episodes where the agents reduced their errors to zero. It’s important to remark 

that to make this comparison, the best of the explorers is the one taken in consideration. An 

explorer is considered the best if is the one that has obtained a policy where no errors are 

made in the smaller number of episodes.  

This best explorer managed to obtain a policy where no errors are made in the environment 

in around 3900 episodes. On the other hand, the independent agent achieved the same in 

around 45000 episodes. This represents a decrease of 86.6%. Considering the maximum 

value of the reward, the best explorer agent reached this value at around 10000 episodes and 

the independent agent reached this value at around 45000 episodes. These numbers 

represent that the Explorer agent achieved a better performance than the independent agent 

since it has managed to decrease the number of episodes by 77.78%. These two metrics 

show that the Explorer agent has an advantage over the independent agent.  

The last metric shows a parity between the Explorer agent and the lonely agent. The metric 

consists of the number of episodes required to reach the best value of accuracy. Both, the 

best Explorer agent and the lonely agent managed to reach the best value of accuracy at 

around 1600 episodes. The comparison of the three metrics can be seen in Table 5. 

In Table 6, it’s observed a comparison of the results obtained by the experimentations of this 

work with its “shallow” learning counterpart [5] for 3 pairs of agents. Since the metric that 

considers the accuracy of the model did not apply to the previous work, it is not included in 

the comparison.  Comparing the results of the experiments with no communication and the 

experiments using the multi-agent architecture, is observed that a decrement exists in both 

works. However, the work that used Q-learning instead of Deep Q-learning shows a larger 

decrement, to be precise 97.7% compared to 86.6%  

Usuario
Resaltado
Corrección en el texto



On the other hand, regarding the metric of episodes needed to obtain the maximum values of 

the reward, it is observed that the deep learning approach shows a larger decrement, to be 

precise, 77.78% to 61.1%. It is important to notice that since in this work not all the agents 

managed to obtain a policy where no errors were made, the midrange formula could not be 

applied as in the work introduced in [5]. It should be noted that these results only apply to the 

specific metrics considered and do not necessarily generalize to other performance criteria. 

Metric No Communication With communication (best 
agent) 

Episodes to get the best 
value of accuracy 

16000 16000  

Episodes to get the 
maximum value of reward 

45000  10000  

Episodes to make no errors 45000  3900 
Table 5 Summary of results 

Metric Work 
introduced in 
[5] No 
communication 

Work introduced in 
[5] using its multi-
agent architecture 
with 3 pair of agents 

This work no 
communication 

This work 
using its 
multi-agent 
architecture 
with 3 pair 
of agents 

Episodes to get 
the maximum 
value of reward 

45102  Around 17500 45000  10000 

Episodes to 
make no errors 

45102  1030 * 45000  3900 

Table 6 Comparison with the results reported in the work introduced in [5] 

* Average between the value obtained by the agent that needed the fewer number of 

interactions and the one that needed the bigger number of interactions, midrange formula.  

5. Conclusions and Recommendations 

This section introduces the conclusions based on the objectives introduced in former sections. 

Also, some recommendations to be considered in possible future works on the same line of 

research.  

5.1 Conclusions 

The multi-agent architecture proposed in this work has achieved a decrease in the number of 

episodes necessary to obtain a policy where no errors are made without harming the value of 

the maximum reward. Since the maximum rewards have been obtained, it can be considered 

an optimal policy. 

The deep reinforcement learning model provided the agents with an exploration task where 

agents must not only explore the environment but also find the limits in it. The necessary 

actions have been provided in order to prevent any issue during the obtention of the reward 

like the rebound effect. 

A deep reinforcement model has been designed to provide the agents with an exploration task 

that involves not only moving around a delimited zone but finding the limits of the zone. The 

actions provided to the agent were effective in achieving this objective, as no rebound effect 

was observed during the experiments.  



The absence of the rebound effect is associated with a reduction in the number of episodes 

needed to obtain the maximum reward, as the agent is now capable of taking an action that 

allows it to remain in its position and receive a larger reward at the end of an episode.  

Comparing the deep learning approach with the shallow learning approach in the number of 

episodes to obtain a policy where no errors are made, it was observed that there is a difference 

of about 10% in the decrement. Which is an effect that can be attributed to the increase of 

complexity of the algorithm and the increased number of actions available to the agent in this 

work. 

A multi-agent architecture has been redesigned to take care of the new information that flows 

through the environment as a consequence of the use of a deep learning algorithm. The pair-

based approach has proven to be effective handling not only information in the form of 

numbers but also in the form of big arrays which represent an image. 

The integration of the multi-agent architecture with a variant of the deep reinforcement learning 

algorithm has permitted the agents to reach a policy where no errors are made in fewer 

interactions. The multi-agent architecture enables agents to leverage the knowledge of their 

peers by incorporating additional information into the tuples stored in the experience replay. 

Specifically, the identification of a state where errors are made, has allowed to train the neural 

network with the appropriate inputs and outputs so errors can be reduced, and at the same 

time the reward obtained is not harmed. 

5.2 Future Work 

During training, not all the Explorer agents managed to obtain an policy where no errors are 

made. As future work, this anomaly can be assessed with the objective of finding the reasons 

or exact component of the architecture that causes the issue and for that, further 

experimentation will be required. 

Regarding scalability, the number of agents were limited due to processing capabilities, for 

that reason, increasing the number of agents in order to find new optimizations remains to be 

seen. Another possible area for further experimentation is changing the primary objective the 

agents. That would require a different design regarding the actions and rewards of the Explorer 

agents in order to generate a working model and consequently, a successful integration with 

the pair-based architecture. 
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