Aplicación del Software Libre IMEDEXSA en el Diseño de Líneas de Transmisión de Energía Eléctrica

Ivonne Pilataxi, Escuela Politécnica Nacional (EPN) Quito - Ecuador Jorge Sanunga, Escuela Politécnica Nacional (EPN) Quito - Ecuador Paúl Vásquez, Escuela Politécnica Nacional (EPN) Quito - Ecuador

Resumen—El diseño de líneas de transmisión de energía eléctrica requiere de la ejecución de etapas relacionadas con varias áreas del conocimiento. En general, el proceso se divide en estudios eléctricos v estudios mecánicos, mismos que suelen ser enfrentados con herramientas que requieren de licencia con costos de adquisición elevados. El presente artículo evalúa el desempeño y potencial de un software libre -IMEDEXSA-, para ser razonablemente utilizado como herramienta de cálculo de varias etapas, principalmente del diseño mecánico, de una línea de transmisión. El programa cuenta con una base de datos de tipos de estructuras y de conductores, y es capaz de considerar la topografía del terreno, distancias de seguridad mínimas, así como datos de temperatura y factores meteorológicos. Mediante un ejemplo, se muestran la viabilidad de realizar diseños de líneas de transmisión y se muestran los beneficios que ofrece este software para estudiantes o profesionales que requieran abordar esta problemática.

Palabras Clave — Líneas de transmisión, conductor económico, diseño, efecto corona, pérdidas.

I. INTRODUCCIÓN

IMEDEXSA es una empresa española fabricante metalmecánica que diseña y fabrica torres para tendido eléctrico; debido a las nuevas exigencias tecnológicas ha desarrollado el software libre de cálculo mecánico de líneas de alto voltaje que se lo denominó con el nombre de la empresa; este programa permite el ingreso de datos obtenidos en estudios previo de demanda y diseño eléctrico además admite añadir y modificar datos de parámetros existentes en la base de datos del programa.

IMEDEXSA presenta dos métodos para el cálculo mecánico de Líneas de Transmisión; calculo con replanteo, que despliega resultados óptimos de acuerdo con las necesidades de diseño, y calculo sin replanteo en el cual se obtiene resultados únicos.

El uso adecuado del programa IMEDEXSA se presentará mediante un ejemplo en el cual se observará los resultados arrojados por el software.

II. ADQUISICIÓN E INSTALACIÓN

IMEDEXSA se obtiene de la plataforma virtual de la empresa <u>www.imedexsa.es</u> donde ubicamos el enlace, *programa de cálculo de líneas*, que nos direcciona al link de descarga.

Una vez instalada, ejecutamos el programa y al instante se solicita una clave de acceso, para lo cual se envía un correo electrónico con el código de usuario a la dirección comercial@imedexsa.es.

III. EJEMPLO DE APLICACIÓN

A fin de demostrar el desempeño del software IMEDEXSA se propone un problema práctico de diseño eléctrico y mecánico de una línea aérea de transmisión de energía eléctrica para abastecer una zona específica que comprende tres departamentos. De dicha zona se conocen datos históricos, mostrados en las Tablas 1, 2, 3, 4, 5,6 y 7correspondientes a consumo de energía eléctrica, número de usuarios, temperatura y condiciones meteorológicas.

TABLA I ENERGÍA FACTURADA [MWh/Año]DEPARTAMENTO A

10	TLICOL	. 1 / 1 C 1 C	TO LOZZ	M W II / MIO DEI ARTAMERTO A				
Año	Reside ncial	Comer cial	Indust rial	Oficial	Al. Público	Riego Agríco la	Total	
2004	15585	5256	3236	3093	2886	91,0	30147	
2005	14355	4535	2778	2968	2059	90,0	26785	
2006	15210	4418	2728	2885	2284	92,0	27617	
2007	16806	4909	2865	2992	2477	134,0	30183	
2008	18528	4944	4673	3126	2769	411,0	34451	
2009	19170	5531	5507	2967	2790	463,0	36428	
2010	19422	6290	4735	2173	2968	428,0	36016	
2011	20745	6601	5224	3250	3168	449,0	39439	
2012	23113	6622	7587	3510	3336	356,0	44526	

TABLA II . ENERGÍA FACTURADA [MWh/Año] DEPARTAMENTO B

Año	Residen cial	Comerc ial	Industri al	Oficia 1	Al. Públi co	Riego Agrícola	Total
2004	19257	7914	40402	3513	4104	752	75942
2005	18349	6622	34343	3663	4039	0,0	67016
2006	17922	5376	36112	3804	3577	712	67503
2007	19878	5765	34119	4100	3863	685	68410
2008	21772	6869	29105	4302	3008	0,0	65056
2009	23562	7196	30712	4219	3736	0,0	69425
2010	25507	7952	34577	3509	3413	0,0	74958
2011	25154	7906	38826	4716	3035	0,0	79637
2012	25414	8319	42154	4862	3806	0,0	84555

TABLA III ENERGÍA FACTURADA [MWH/AÑO] DEPARTAMENTO C

Año	Resid encial	Come rcial	Indust rial	Oficia 1	Al. Públic o	Riego Agríc ola	Grand es Usuari o	Total
2006	39754	4313	6686	2774	3884	0,0	0,0	57413
2007	41021	4145	5668	2822	3551	0,0	0,0	57208
2008	44453	4393	5089	2840	3291	0,0	0,0	60068
2009	45143	4474	5977	2849	3924	0,0	12600	74969
2010	47216	5171	6806	2871	4990	0,0	11530	78586
2011	49240	5298	7447	3089	5238	1656	11873	83843
2012	53563	6521	8204	3257	5564	2245	12369	91724

TABLA IV CANTIDAD DE USUARIOS.

Año	Reside ncial	Com ercial	Ind ustr ial	Ofi cial	Al. Públic o	Riego Agríc ola	Grandes Usuarios	Total
2006	31629	2139	303	174	1	0	0	34246
2007	32463	1848	318	189	1	0	0	34819
2008	33099	1869	315	204	1	0	0	35488
2009	33405	1764	357	231	1	0	1	35759
2010	33792	1812	363	246	1	0	1	36215
2011	34311	1872	336	264	1	171	1	36956
2012	34734	1755	330	273	1	216	1	37310

TABLA V FACTORES DE CARGA Y DE PARTICIPACIÓN DE LOS DISTINTOS SECTORES DE CONSUMO

Sector de Consumo	Factor de Carga	Factor de Participación
Residencial	0,39	0,98
Comercial	0,5	0,45
Industrial BT	0,58	0,4
Oficial	0,42	0,38
Al. Público	0,6	1
Riego Agrícola	0,16	0,1
Grandes Usuarios	0,9	0,9

TABLA VI OTROS DATOS PROPORCIONADOS POR LA DISTRIBUIDORA

٠.	KOS DAT	OS I KOI OKCIONADOS I C	JK LA DISTRIBUIDO
	180	Generación y/o c	ompra (ET)
	Año	Energía [MWh/año]	Potencia [MW]
	2010	219889,9	45,9
	2011	233357,8	48
	2012	246154.9	48.3

TABLA VII DATOS ADICIONALES PARA EL DISEÑO

DATOS ADICIONALES	FARA EL DISENO					
Datos Adicionales						
Distancia a la barra de potencia	160 [km]					
Niveles de voltaje disponibles	500, 230, 138 [kV]					
Factor de potencia de la carga	0,9 inductivo					
Caída de voltaje permitida	10% de la nominal					

IV. FASES DE DISEÑO

Una vez ejecutado IMEDEXSA, en la pantalla principal del programa, se presentan dos opciones cálculo mecánico, cada caso tiene características específicas, pero de cierto modo similares, solamente se diferencien en el número de cálculos que se realizan en cada una de estas; en el caso de cálculo con replanteo el programa realiza un análisis general y posteriormente presenta una opción de replanteo en función del costo, materiales, etc. En el caso de cálculo sin replanteo nos permite ingresar información mucho más específica de acuerdo con datos iniciales y realiza un cálculo único en función de estos.

IMEDEXSA tiene una base de datos la cual está referida al sistema eléctrico europeo específicamente el Sistema Interconectado Español. Este sistema es diferente al ecuatoriano y al de América del Sur en general; por ejemplo, existen niveles de voltaje de 220 kV, 132 kV, etc. Además, posee calibres de conductores diferentes a los presentes en nuestro mercado. Una de las grandes ventajas del software es permitir añadir valores nuevos de los parámetros de entrada que no se encentren disponibles por lo que el programa funciona correctamente para el diseño de Líneas del SNI ecuatoriano.

Los parámetros de entrada al programa, se obtiene a partir de los datos proporcionados y se realiza los siguientes análisis.

A. Estudio de Demanda.

Proyección de la Demanda desde el año base (2012) hasta los próximos 10 años. Dicha proyección deberá dar como resultado la potencia de usuario final (P_{max, UF}) y la potencia de Estación Transformadora (P_{maxET}). La proyección de la demanda se la realiza de acuerdo con el tipo de usuarios que se tiene en cada departamento, entonces para cada uno de los sectores considerados en los departamentos se tiene lo siguiente:

1) Análisis de la situación actual de la demanda:

Esta etapa comprende el análisis de las características, dinámica y funcionamiento actuales de la demanda (clientes y energía) con el objeto de identificar las variables o factores que afectan su comportamiento. Esto es con la intención de actuar sobre el funcionamiento de las variables para controlar su trayectoria y poder proyectarla.

2) Elección del método de proyección:

Modelos econométricos [1]. El método de estimación de los modelos econométricos usualmente empleado, y que ha sido utilizado para correr las regresiones, es el de Mínimos Cuadrados Ordinarios (MCO).

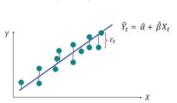


Fig. 1. Recta resultante del modelo estimado.

Dónde

 Y_t : es la variable que explicar.

X_t: son las variables explicativas.

ε_t: es el término de error aleatorio.

En cuanto a los coeficientes:

α: es la ordenada al origen.

^ →indican valores concretos que toman los parámetros una vez estimados.

MCO permite encontrar aquella función que mejor se ajusta a la nube de puntos dada por los datos reales observados, minimizando la suma del cuadrado de los errores o residuos. El residuo o error, ε_t surge de la muestra o conjunto de datos analizados, por lo tanto, se puede conocer.

En el modelo estimado debe evaluarse:

- Medida de Bondad de ajuste: mide la parte de la variabilidad de Y que viene explicada por la regresión. Cuanto más se aproxime el R² a 1 mejor será la
- En base a los residuos originados por la estimación del modelo por MCO se debe comprobar si cumple con los supuestos enunciados:

3) Proyección de la Demanda:

Se ha realizado las respectivas proyecciones de demanda al 2022 para los departamentos A, B y C en base a la metodología anteriormente expuesta y mediante los factores de participación se han establecido la energía y la carga proyectada de cada departamento.

Los resultados se muestran en las Tablas 8 y 9 en donde se ha considerado el factor de participación en cada uno de los sectores de cada departamento y la energía facturada.

TABLA VIII. PROYECCIÓN DE LA DEMANDA DEPARTAMENTO A, B Y C.

ROTECCION DE LA DEMANDA DEI ARTAMENTO A, B.T.						
Energía Proyectada						
del Departamento A	64.132,96	[MWh]				
Energía Proyectada						
del Departamento B	57.330,33	[MWh]				
Energía Proyectada						
del Departamento C	25.455,17	[MWh]				
Factor de carga	0,561					
Carga Proyectada A	13,04	[MW]				
Carga Proyectada B	11,66	[MW]				
Carga Proyectada C	51,76	[MW]				

TABLA IX PROYECCIÓN DE LA DEMANDA TOTAL

Departamento	Demanda[MW]
A	13.04
В	11.66
C	51.76
Total	76.46

B. Estudios Eléctricos.

Los estudios eléctricos son utilizados para determinar el vínculo de transporte, cálculo de constantes primarias y desempeño de la línea seleccionada frente al efecto corona. En esta etapa, y en función de la potencia proyectada en la etapa anterior, se presentarán varias alternativas posibles.

Para el estudio eléctrico se contempla una reserva del 10% de la demanda proyectada y un factor de participación de cada ciudad, se ha considerado que las tres ciudades tendrán un consumo muy parecido entre ellas, entonces el factor de participación se estima un 0.98, con estas consideraciones se tiene que la demanda proyectada de:

Demanda Proyectada = 76.46[MW] * fp * reservaDemanda Proyectada = 76.46[MW] * 0.98 * 1.1Demanda Proyectada = 82.43[MW]

Con los 82.43 [MW] se procede a realizar los diferentes cálculos eléctricos que servirán para el diseño de la línea de transmisión.

El diseño eléctrico se puede realizar en cualquier software de simulación de flujos de potencia de redes eléctricas, en este caso se utiliza DigSILENT® PowerFactory en donde se realiza el esquema de línea de 160 km como se indica en la Fig. 2 y se simulan flujos de potencia, permite obtener la potencia transmitida, las pérdidas y las caídas de voltaje.

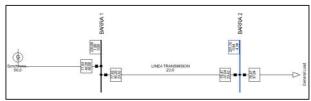


Fig. 2.Diagrama en DigSILENT® PowerFactory para la simulación.

Para las simulaciones se tomaron en cuenta los conductores utilizados en Ecuador.

En la Tabla 12se muestra los diferentes conductores de los cuales se debe escoger el mejor de ellos considerando criterios tanto técnicos como económicos para el diseño de la línea de transmisión en estudio.

Posteriormente, se presenta resultados obtenidos en la simulación, cálculos de algunos datos adicionales para la elección adecuada del nivel de voltaje y conductor económico que son parámetros de entrada para el programa IMEDEXSA.

1) Costos para selección de conductor [2]:

El costo del conductor se consigue con cotizaciones en el mercado. El costo de pérdidas de potencia Joule se calcula, cuando el conductor transporta una determinada potencia las cuales se obtienen sumando el costo de las perdidas con la base de un año, y sumando el costo de perdidas Joule en época seca más las de la época lluviosa.

$$CPPJ = CPPJ_{E.seca} + CPPJ_{E.lluviosa}$$
 (1)
 $CPPJ_{E.seca} = CPPJ_{E.seca} + CPPJ_{E.semestral}$ (2)

$$CPPJ_{E.seca} = CPPJ_{E.seca} + CPPJ_{E.semestral}$$
 (2)

$$CPPJ_{E.lluviosa} = CPPJ_{E.lluvia} + CPPJ_{E.semestral}$$
 (3)

Dónde:

 $CPPJ_{E.seca}$: Costo de pérdidas potencia Joule en época seca, en [US\$/km]

 $\mathit{CPPJ}_{E.lluvia}$: Costo de pérdidas potencia Joule en época de lluvia, en [US\$/km]

CPP_{E.seca}: Pérdidas pote. Joule en época seca, en [kW

CPP_{E lluvia}: Pérdidas potencia Joule en época de lluvia en [kW/Km]

PUP_{E.semestral}: Precio unitario semestral, en [\$/kW]

TABLA X.

PRECIOS REFERENCIALES DE POTENCIA Y ENERGÍA

Precio Unitario De Potencia [Usd/Kw] 34.26

Precio Referencia De Energía [Usd/Kwh] 0.047

El costo total de las pérdidas lo constituye la suma de las pérdidas por efecto Joule y por efecto corona obteniendo así los resultados presentados en la Tabla 13.

TABLA XI. PÉ<u>RDIDAS TOTALES EN PORCENTAJE</u>

	TIPO DE CONDUCTOR	PÉRDIDAS TOTALES (%)
	ACAR 1200 (1exF)	0.152%
230 kV	ACAR 1200 (2exF)	0.012%
230 K V	ACSR Bluejay (1cxF)	0.152%
	ACSR Bluejay (2cxF)	0.012%
	ACSR Brant (1cxF)	0.059%
138 kV	ACSR Brant (2cxF)	0.034%
130 KV	ACSR Flicker (1cxF)	0.042%
	ACSR Flicker (2cxF)	0.028%

TABLA XII CONDUCTORES UTILIZADOS EN LÍNEAS DE TRANSMISIÓN EN ECUADOR. [3]

	ALTERNATIVAS DE CONDUCTORES													
CIRC.	VOL (kV)	FA SES	# DE CON D. X FASE	CONDUC TO	CALIBR E [AWG o KCM]	# DE HILOS Aluminio/Ace ro	Resistenc ia [Ω/km]	XL [Ω/km]	radio [mm]	DIÁMETR O [mm]	Tensió n de ruptura [kg]	Secció n Total [mm²]	GM D [mm]	PESO TOTA L [kg/km
1	132	3	1	ACSR Flicker	477	24/7	0.11750	0.45465	10.740	21.480	7802	273.1	3500	914.1
1	132	3	2	ACSR Brant	397.5	24/7	0.14180	0.31243	9.805	19.610	66.22	227.55	3500	761.8
1	220	3	1	ACAR	1200	18/19	0.05099	0.43469	16.000	32.000	13696	608	4000	1680
1	220	3	2	ACAR	1200	18/19	0.05099	0.30648	16.000	32.000	13696	608	4000	1680
1	220	3	1	ACSR Bluejay	1113	45/7	0.05070	0.43476	15.985	31.970	13517	564.1	4000	1868
1	220	3	2	ACSR Bluejay	1113	45/7	0.05070	0.30488	15.985	31.970	13517	564.1	4000	1868

TABLA XIII COSTO DE PÉRDIDAS DE POTENCIA Y ENERGÍA.

	Costos Potencia				Costos E		
TIPO DE CONDUCTOR	Corona	Joule	Costos Potencia [USD]	Corona	Joule	Costos Energía [USD]	Costo Total Pérdidas [USD]
ACAR 1200 (1cxF)	4008.35	361.87	4370.22	24019.23	4336.88	28356.11	32726.3
ACAR 1200 (2cxF)	0.00	342.60	342.60	0.00	4105.92	4105.92	4448.5
ACSR Bluejay (1cxF)	4024.79	359.73	4384.52	24117.71	4311.22	28428.93	32813.4
ACSR Bluejay (2cxF)	0.00	340.46	340.46	0.00	4080.26	4080.26	4420.7
ACSR Brant (1cxF)	677.92	1087.76	1765.68	4062.30	13036.30	17098.59	18864.3
ACSR Brant (2cxF)	0.00	1017.09	1017.09	0.00	12189.45	12189.45	13206.5
ACSR Flicker (1cxF)	363.27	882.20	1245.47	2176.85	10572.74	12749.59	13995.1
ACSR Flicker (2cxF)	0.00	828.66	828.66	0.00	9931.19	9931.19	10759.9

2) Selección del Conductor Óptimo. [4]:

Para determinar los costos totales se incluirá el precio del conductor y se añadirá los costos totales por efecto de pérdidas.

En base a los criterios de voltaje óptimo, cargabilidad, regulación de voltaje, pérdidas y costos, la opción escogida es: **ACSR Bluejay con un conductor por fase y un nivel de voltaje de** *230 kV* como indica la Tabla 13, algunas de las características de este conductor son:

- El nivel de 230 KV permite tener la cargabilidad suficiente en la línea para alimentar la carga (hasta 232 MW aproximadamente).
- La caída de voltaje se encuentra dentro del rango establecido. (8 %).
- Las pérdidas por efecto Joule son bajas (10.5 kW/km)
- El costo total de la línea, teniendo en cuenta el costo del conductor y las perdidas por efecto corona y Joule es el más bajo entre las opciones que se presentan para 230 kV.

TABLA XIV SELECCIÓN DEL CONDUCTOR ECONÓMICO.

	COSTOS TOTALES										
	TIPO DE CONDUCTOR	Costo [USD/m]	Conductores por Fase	Costo Total Conductor [Millones -USD]	Costos Por Pérdidas [Millones-USD]	Costo Total de la Línea [Millones-USD]					
	ACAR 1200 (1cxF)	19.24	1.000	9.235	0.033	9.27					
220 1-37	ACAR 1200 (2cxF)	19.24	2.000	18.470	0.004	18.47					
220 kV	ACSR Bluejay (1cxF)	8.19	1.000	3.931	0.033	3.96					
	ACSR Bluejay (2cxF)	8.19	2.000	7.862	0.004	7.87					
132 kV	ACSR Brant (1exF)	13.4	1.000	6.432	0.019	6.45					
	ACSR Brant (2exF)	13.4	2.000	12.864	0.013	12.88					
	ACSR Flicker (1cxF)	6.424	1.000	3.084	0.014	3.10					
	ACSR Flicker (2cxF)	6.424	2.000	6.167	0.011	6.18					

C. Estudios Mecánicos.

Con los parámetros obtenidos en la sección anterior, ingresamos los datos de entrada en el software.

En el siguiente ítem, ver Fig. 3, encontramos el ingreso de datos de partida, donde se despliega una ventana en la cual se inserta nivel de voltaje, conductor, número de hilos por conductor, aislamiento [5]:

- Nivel de Tensión 230 kV
- Conductor ACSR Bluejay 1113
- Tipo de Armado tipo S
- Aislamiento tipo Vidrio
- Hilo de guarda con comunicación de fibra óptica.

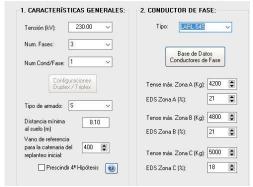


Fig. 3. Datos de partida 1 y 2.

El nivel de voltaje y el tipo de conductor se pueden añadir a la base de datos.

Al momento de ingresar nivel de voltaje Fig. 3, el programa automáticamente selecciona la distancia mínima al suelo, al ingresar el tipo de conductor sus tensiones son especificadas debido a que ya se encuentran en la base de datos.

TABLA XV DATOS DE TEMPERATURA Y VELOCIDAD DE VIENTO PARA CÁLCULO MECÁNICO

Estados	Temperatura [°C]	Velocidad del Viento [km/h]							
Tmáx	45	0							
Tmin	-15	0							
T	10	120							
T	-5	50							
TMA	16	0							

Algunos de los datos proporcionados en el planteamiento del ejemplo indican la temperatura máxima y la velocidad del viento. (Tabla 15).

El software IMEDEXSA permite el ingreso de estos parámetros y como es de esperarse, permite considerar para los cálculos los pesos de viento más hielo [6]. En el ejemplo no se considera el peso del hielo. (Fig. 4)

Fig. 4. Datos de partida 3 y 4.

Se ingresa el material y el tipo de aislador, con esto el programa automáticamente despliega la cadena de aisladores, como se muestran la Fig. 5.

Fig. 5. Datos de partida (aislamiento).

Finalmente, se realizan cálculos de distancias de seguridad, en la Fig.6, se indican las distancias solicitadas.

1) Distancia entre fases [7]:

La distancia mínima admisible entre fases en el centro del vano se calcula de acuerdo con la siguiente expresión:

$$D_{ff} = k\sqrt{f + L_c} + \frac{kV}{150*\delta}$$
 (4)

Dónde:

 D_{ff} : Distancia horizontal entre fases [m].

k: 0,75 para separación vertical.

0,65 para separación horizontal.

f: Flecha del conductor en metros calculada a 45° C de temperatura y sin viento, correspondiente al vano máximo hacia cualquier lado de cada tipo de estructura.

 L_c : Longitud de la cadena de aisladores en metros, en caso de anclaje $L_c=0$

kV: Voltaje entre fases [kV].

 δ : Densidad relativa del aire.

$$\begin{aligned} D_{ff} &= 0.65\sqrt{12 + 2.628} + \frac{230}{150*0.696} \\ D_{ff} &= 4.68 \text{ m} \end{aligned}$$

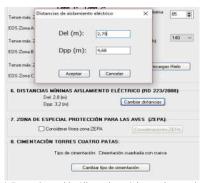


Fig. 6. Datos de partida (distancias mínimas, cimentaciones).

2) Distancia del conductor a la estructura[7]:

La distancia mínima de los conductores a la estructura, tomando en consideración el ángulo de la cadena, de determina por (5):

$$D_c = 0.1 + \frac{vff}{150}$$

$$D_c = 0.1 + \frac{\sqrt{3} * 230}{150} = 2.75 m$$
(5)

Se ingresan los perfiles del terreno y los posibles obstáculos que este pueda presentar como indica la tabla 16.

TABLA XVI. DATOS GEOGRÁFICOS DEL TERRENO.

Piquete	Cota	Progresiva	Ángulo	Observación
1	691,00	0,00		
2	690,15	238,36		
3	688,59	460,21		
4	689,13	679,77		
5	689,13	710,13		Vías de Ferrocarril
6	690,50	740,20		Líneas MT
7	691,04	791,48		
8	690,14	1055,18		
9	690,77	1324,20		
10	692,10	1573,52		
11	689,98	1753,85		
12	690,01	1820,12		•
13	691,04	1972,00	-36,1	Cambio de dirección
14	692,07	2171,44		

En el trazado de la Línea se muestra un bosquejo inicial de la ubicación de cada una de las torres que seha de utilizar e indica la altura mínima desde el nivel del suelo a la que debe ubicarse la línea, ya que, si baja del margen muestra a la línea de color rojo, por no cumple con los márgenes de seguridad.

Además, el trazado se lo puede realizar de forma manual y a su vez utilizando el cálculo de replanteo o semireplanteo, es más óptima debido a que distribuye los vanos de acuerdo al nivel de voltaje que se requiera.

3) Cálculo De La Línea

Esta etapa se la puede realizar automáticamente, pero también manual, de ser necesario. Para el cálculo de forma automática se puede elegir entre las diferentes opciones:

- Mayor número de apoyos monobloque
- Menor peso
- Menor costo total
- Menor volumen de cimentación

TABLA XVII RESULTADOS DATOS DE LA LÍNEA.

Datos de línea	Fase	Protección
TENSION (kV)	230	
CONDUCTOR	LARL-54(5485- AL1/63-A20SA)	OPGW-48
NUMERO FASES	3	
NUMERO COND/FASE	1	
LONGITUD CADENA SUSP. (m)	2.86	
LONGITUD CADENA AMARRE. (m)	2.86	
ALTURA DE PUENTE (m)	2.86	
TEMP. MAX TENDIDO (°C)	85	
VELOCIDAD VIENTO (Km/h)	140	

TABLA XVIII.
RESULTADOS DATOS DEL CONDUCTOR

Datos del conductor	Fase	Protecció
DIÁMETRO (*****)	30,42	n 1 17
DIÁMETRO (mm)		
PESO (Kg/m)	1,755	0,624
CARGA DE ROTURA (Kg)	15630	8000
SECCIÓN (mm2)	547,3	180
COEF. DE DILATACIÓN (°C)	1,95E-05	1,50E-05
MOD. ELASTICIDAD (Kg/mm2)	6700	12000
EDS Max. (%)Zona A	21	15
EDS Max. (%)Zona B	21	15
EDS Max. (%)Zona C	18	20
SOBR. VIENTO 120 Km/h (Kg/m)	1,55	0,866
SOBR. VIENTO 140 Km/h (Kg/m)	2,11	1,179
SOBR. VIENTO 1/2 120 Km/h (Kg/m)	0,775	0,433
ÁNGULO OSCILACIÓN 120 Km/h (°)	41,46	54,24
PESO VIENTO 120 Km/h (Kg/m)	2,342	1,068
PESO VIENTO 140 Km/h (Kg/m)	2,745	1,334
PESO VIENTO 1/2 120 Km/h (Kg/m)	1,919	0,760
PESO HIELO ZONA B (Kg/m)	2,767	1,381
PESO HIELO ZONA C (Kg/m)	3,779	2,137
Diámetro conductor con manguito zona B (mm)	51,1	39,36
Diámetro conductor con manguito zona C (mm)	65,55	53,00
Sobrecarga viento 60 Km/h zona B (Kg/m)	0,65	0,50
Sobrecarga viento 60 Km/h zona C (Kg/m)	0,84	0,68
Peso Hielo +Viento 60 Km/h zona B (kg/m)	2,84	1.47
Peso Hielo +Viento 60 Km/h zona C (kg/m)	3,87	2,24
COMPOSICIÓN NUM. HILOS ALUMINIO+ACERO	54+7	
RESISTENCIA A 20°C (Ohmios/Km)	0,0571	

V. RESULTADOS

A. Características Línea, Conductor y Vanos

En las Tablas 17, 18 se muestra los datos ingresados de línea, conductores de protección y topográficos en el programa del tramo en estudio

1) Resultados:

El cálculo realizado por el programaproporciona el tipo de torres a ser utilizada en cada vano, el costo y peso del hierro, el precio por cimentación y el volumen de excavación para introducir el hormigón, con este resultado se tiene una posible proyección del costo que involucra la construcción de cada torre. (Tabla 17)

2) Distancias:

El software determina las distancias óptimas y seguras para la colocación de aisladores, conductores y protecciones como lo indica la Fig. 7; además de indicar los pesos que cada punto posiblemente es capaz de soportar.

Fig. 7. Bosquejo de la Torre y distancias de seguridad.

3) Esfuerzos:

En los resultados de esfuerzos se tiene varias hipótesis las cuales son:

- ✓ 1ra Hipótesis (Viento 140 Km/h)
- ✓ 2da Hipótesis (Hielo+ Viento 60 km/h)
- √ 3ra Hipótesis (Desequilibrio)
- √ 4ta Hipótesis Fase

Da a conocer los esfuerzos tanto verticales como horizontales que posiblemente la torre debe soportar tomando en cuenta las hipótesis mencionadas, para tener una idea en este documento se aprecia resultados de la primera hipótesis.

4) Tensiones y Flechas Fase:

Muestra las tensiones o esfuerzo que los conductores tienen que soportar en cada zona del tramo en estudio, además de especificar las flechas en cada zona

5) Tensiones y Flechas de Protección:

Especifica los esfuerzos que debe soportar el cable de protección y la flecha que este conductor va a tener.

6) Coeficiente de Seguridad:

El programa proporciona los coeficientes de seguridad para cada vano, estos resultados se dan tomando en cuenta cada una de las hipótesis mencionadas anteriormente.

7) Tendido de Fases:

Arroja resultados de los esfuerzos del conductor a diferentes temperaturas que este deberá soportar, la longitud entre vanos y el desnivel del conductor entre vanos.

8) Tendida Protección:

En la siguiente tabla se tiene los esfuerzos que debe soportar el conductor de protección a diferentes temperaturas.

TABLA XIX. TIPO DE TORRES A UTILIZARSE EN EL TRAMO EN ESTUDIO.

					Armados N y S								
Número	Función	Tipo	Tipo	Torre	Cabeza	Cruceta	Cruceta	Cúpula	Ahorcam.	Comprob.	Denominación	Código	Peso
apoyo	apoyo	torre	cruceta	seleccionada	(m) "b"	(m) "a"	(m) "c"	(m) "h"	h real	Esf. Vertical	Torre	armado	torre (Kg)
1	FL	IC	S	IC-55000	5,8	6	6	8.6	OK	OK	IC-55000	S1332	17979
2	AL-AM	GCO	S	GCO-40000	5,6	5,6	5,6	7,65	OK	OK	GCO-40000	S1222	14885
3	AL-AM	GCO	S	GCO-40000	5,6	5,6	5,6	7,65	OK	OK	GCO-40000	S1222	17530
4	AL-AM	GCO	S	GCO-40000	5,6	5,6	5,6	7,65	OK	OK	GCO-40000	S1222	12687
5	AL-AM	GCO	S	GCO-40000	5,6	5,6	5,6	7,65	OK	OK	GCO-40000	S1222	12687
6	FL	IC	S	IC-55000	5,8	6	6	8,6	OK	OK	IC-55000	S1332	17979

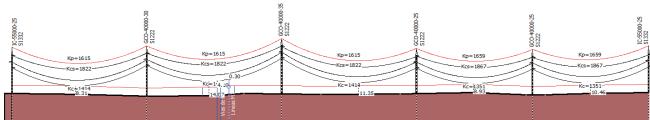


Fig. 8. Perfildefinitivo del tramo en estudio.

9) Cimentación:

El programa entrega datos de tipos de cimentación que se deberán utilizar en cada punto que se van a instalar las torres, además de proporcionar los volúmenes de excavación que se debe realizar y hormigón que será utilizado.

10) Cálculos Eléctricos:

Se obtiene resultados de las características de la línea que se está utiliza, además de caídas de tensión, potencia que se puede transmitir por el tramo y rendimiento de la línea (Tabla 20).

11) Perfil Definitivo:

Hace referencia a la distribución de las líneas en todo el tramo (Fig. 8.).

- Vanos
- Altura de conductores
- Cotas
- Distancia desde el origen

B. Documentación y Reportes

El software permite realizar las siguientes acciones:

- Exportar a AutoCAD
- Exportar Google Earth
- Memorias e Informe
- Visor 3D

TABLA XX.

Cálculos Eléctricos	Valores
VOLTAJE DE LA LINEA (kV)	230
RESISTENCIA DE LA LÍNEA (Ohmios)	0.1240
REACTENCIA INDUCTIVA MEDIA (Ohmios/Km)	0.4411
REACTENCIA INDUCTIVA MEDIA DE LA LÍNEA(Ohmios/Km)	0.9579
CAPACIDAD MEDIA (μF/Km)	0.0082
VOLTAJE CRITICO DISRUPTIVO A 85°C Y AMBIENTE HÚMEDO (kV)	113
DENSIDAD MÁXIMA ADMISIBLE (A/mm²)	1.6581
INTESIDAD MÁXIMA (A)	907.5022
POTENCIA MÁXIMA A TRANSPORTAR (kW)	289219
CAÍDA DE VOLTAJE MÁXIMO (V)	1059.3394
CAÍDA DE VOLTAJE MÁXIMO (%)	0.4606
MÁXIMA POTENCIA PERDIDA (kW)	306.3378
MÁXIMA POTENCIA PERDIDA (%)	0.1059
RENDIMIENTO DE LA LÍNEA (%)	99.8941

VI. CONCLUSIONES

Se ha desarrollado una guía didáctica para la aplicación de IMEDEXSA,la cual muestra además los beneficios y potencial de esta herramienta, para realizar un adecuado diseño mecánico de líneas de transmisión y subtransmisión.

Considerando las condiciones geográficas y climáticas que el usuario incorpore a lo largo del recorrido de la línea, IMEDEXSA calcula las variables de decisión más importantes del problema, como son: tensión del conductor, flechas, esfuerzos, longitud de los vanos, características de las estructuras sobre las cuales se apoyarán los conductores y cadenas de aisladores.

El diseño eléctrico influye considerablemente en el diseño mecánico de la línea. De ahí que, previo al diseño mecánico es

fundamental la elección adecuadadel nivel de voltaje, distancia entre fases, y número de conductores por fase.

Condiciones topográficas, tales como líneas de medio voltaje, carreteras, áreas agrícolas, líneas férreas, edificios, ríos, etc.por donde atraviesa la línea, pueden ser modeladas en el programa y este las toma en cuenta para un adecuado cálculo de distancias de seguridad.

En definitiva, el uso de esta herramienta computacional es viable ya que además de resolver adecuadamente el problema del diseño mecánico de una línea de transmisión, es gratuita, a diferencia de la mayoría de herramientas relacionadas que exhiben costos de licencias elevados y, hasta cierto punto, prohibitivos.

REFERENCIAS

- Plan Maestro de Electrificación 2013-2022, "Metodología de la Proyección de la Demanda", Vol.2, pp. 96-99
- [2] INTERNATIONAL COPPER ASSOCIATION LATIN AMERCIA ., "Dimensionamiento Econónico y Ambiental de Conductores Electricos" pg 12-15
- [3] CHASIPANTA. J., "Estudio para Repotenciación de Línea de Transmisión Pucará-Mulaló a 138 kV Utilizando el Conductor más Económico", 2010, EPN, pp 37.
- [4] Constructor Electrico, Energy Management (2015, May.). Dimensionamiento Óptimo de los Conductores Eléctricos [Online]. Disponible: https://constructorelectrico.com/dimensionamiento-optimo-de-los-conductores-electricos/
- [5] IMEDEXSA, "Programa de cálculo de Líneas aéreas de Alta Tensión" Versión 12. España.
- [6] INDUSTRIAS MECANICAS DE EXTREMADURA S.A., "Manual de usuario IMEDEXSA 12"
- [7] Blog ESPOL, Diseño de la Línea de Transmisión a 138 kV, Memoria Técnica [Descarga]. Disponible: http://blog.espol.edu.ec/econde/files/2012/08/diseodelalineadetransmisi ona138kv-130316145554-phpapp01.doc

VII. BIOGRAFÍAS

Ivonne Gabriela Pilataxi, Nace en la ciudad de Quito, el 28 de abril de 1991, sus estudios superiores los realiza actualmente en la Escuela Politécnica Nacional en la Facultad de Ingeniería Eléctrica y Electrónica en la especialidad Eléctrica. Sus áreas de interés son: Diseño E/M de Líneas de Transmisión, Protecciones Eléctricas, SEP y Eficiencia Energética.

Jorge Luis Sanunga Cando, Nace en la ciudad de Quito, el 28 de mayo de 1990, sus estudios superiores los realiza actualmente en la Escuela Politécnica Nacional en la Facultad de Ingeniería Eléctrica y Electrónica en la especialidad Eléctrica. Sus áreas de interés son: Diseño en Alto Voltajes, Sistemas Eléctricos de Potencia, Operación de Subestaciones y Planificación de Sistemas de Distribución.

Paúl Vásquez Miranda:Ingeniero Eléctrico "Escuela Politécnica Nacional," Quito, 2001. Trabajó para Movistar encargado del área de planificación 2003-2004. Se graduó de doctor en ingeniería eléctrica en la Universidad Nacional de San Juan, Argentina-2009. Colaboró como investigador invitado durante un año, 2008-2009, en el Instituto de Energía Eléctrica (LENA) de la Universidad Otto-von-Guericke en Magdeburg, Alemania.

Actualmente, es profesor de pregrado y posgrado en la Escuela Politécnica Nacional, EPN. Sus áreas de interés son: planificación, calidad de SEP, confiabilidad de SEP, optimización, modelación de incertidumbres y técnicas de manejo de riesgos.