ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

COMPONENTE: DISEÑO DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA CON DESCARGA AL ESTERO QUE CRUZA LA VÍA DE PALO AZUL.

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERA CIVIL

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

jhosselyn.jimenez @epn.edu.ec

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA patricio.ortega @epn.edu.ec

DMQ, agosto 2023

CERTIFICACIONES

Yo, JHOSSELYN PAOLA JIMENEZ Q	UEVEDO declaro que el trabajo de integración
curricular aquí descrito es de mi autori	ía; que no ha sido previamente presentado para
ningún grado o calificación profesional;	y, que he consultado las referencias bibliográficas
que se incluyen en este documento.	
	Jhosselyn Paola Jiménez Quevedo

Certifico que el presente trabajo de integración curricular fue desarrollado por JHOSSELYN PAOLA JIMÉNEZ QUEVEDO, bajo mi supervisión.

Dr. Patricio Rubén Ortega Lara
DIRECTOR

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DR. PATRICIO RUBÉN ORTEGA LARA

DEDICATORIA

El presente trabajo de integración curricular va dedicado de manera muy especial a mi esposo, Heinert, a mis padres, Edwin y Saida, y a mis hermanos, Jean Pierre y María, por ser quienes me han acompañado en los momentos más importantes y decisivos de mi vida, por ser mi pilar fundamental y un apoyo incondicional.

AGRADECIMIENTO

Agradezco infinitamente a Dios por mi vida y por la vida de quienes amo. Agradezco a mis padres, Edwin y Saida, por su gran esfuerzo día a día por darme lo mejor a mí y a mis hermanos, gracias por hacer de mí una mujer con valores y educación, que busca cada día ser mejor para poder brindar lo mejor a los demás.

ÍNDICE DE CONTENIDO

1.	DE	SCRIPCIÓN DEL COMPONENTE DESARROLLADO	1
	l.1.	Objetivo general	2
,	1.2.	Objetivos específicos	2
,	1.3.	Alcance	2
,	1.4.	Marco teórico	3
	Flu	jo uniforme	3
	Flu	jo no uniforme	3
	Est	ados del flujo	3
	Alc	antarillado pluvial	5
	Inte	ensidad de Iluvia	5
		ración	
		riodo de retorno	
		álisis de pérdidas de energía	
		oritmo de Colebrook-White	
2.	ME	TODOLOGÍA	7
2	2.1.	Normas de diseño	7
2	2.2.	Ubicación del proyecto	8
2	2.3.	Estudio topográfico	10
2	2.4.	Periodo de diseño	12
2	2.5.	Periodo de retorno	12
2	2.6.	Áreas de drenaje	13
2	2.7.	Coeficiente de escurrimiento	14
2	2.8.	Curvas de intensidad – duración y frecuencia	15
2	2.9.	Programa OpenFlowa SewerGEMS (Licencia académica)	16
2	2.10.	Comprobación con hoja de Excel	44

2	2.11.	Cálculo de cantidades y precios unitarios¡Error! Marcador no defini	do
3.	RE	SULTADOS, CONCLUSIONES Y RECOMENDACIONES	. 53
3	3.1.	Resultados	. 53
	Res	sultados hoja de cálculo Excel	55
	Cor	mparación de resultados	57
	Res	sultados de la estructura de descarga	60
	Res	sultados del presupuesto referencial	65
3	3.2.	Conclusiones	. 66
3	3.3.	Recomendaciones	. 67
4.	RE	FERENCIAS BIBLIOGRÁFICAS	. 68
5.	AN	EXOS	. 69

RESUMEN

El presente Trabajo de Integración Curricular, se ha llevado a cabo con el propósito de

brindar a la comunidad 25 de Diciembre, los estudios del alcantarillado pluvial, para que

pueda ser ejecutado por parte de la institución competente, y con ello mejorar la calidad de

vida de los habitantes.

El sistema de alcantarillado pluvial se ha diseñado de acuerdo con las normas ecuatorianas

que corresponden, y sirve de guía para diseños de alcantarillados en cualquier zona del

Ecuador. Se ha realizado la modelación en el software SewerGEMS, de Bentley (licencia

académica), que es una herramienta muy útil para el diseño hidráulico, y también se ha

realizado una comparación de los resultados obtenidos en el software con una hoja de

cálculo en Excel diseñada para alcantarillado pluvial.

Se ha determinado los tipos de pozos y estructura de descarga que son necesarios

implementar en el proyecto para permitir que el flujo sea restituido al río en condiciones

subcríticas, con la finalidad de evitar daños de socavación en el cuerpo receptor.

El presente trabajo cuenta con los diseños del alcantarillado pluvial, planos, cálculo de

cantidades para determinar un presupuesto referencial y una comparación de los

resultados obtenidos.

PALABRAS CLAVE: alcantarillado pluvial, SewerGEMS, diseño hidráulico, pozos,

descarga, lluvias, intensidad, precipitación

VII

ABSTRACT

This Curricular Integration Work has been carried out with the purpose of providing the community "25 de Diciembre", the studies of the storm sewer system, so that it can be executed by the competent institution, and thus improve the quality of life of the habitants.

The storm sewer system has been designed in accordance with the corresponding Ecuadorian standards, and serves as a guide for sewerage designs in any area of Ecuador. The modeling has been carried out in Bentley's SewerGEMS software (academic license), which is a very useful tool for hydraulic design, and a comparison of the results obtained in the software with an Excel spreadsheet designed for storm sewers has also been carried out.

It has been determined the types of wells and discharge structure that are necessary to implement in the project to allow the flow to be restored to the river under subcritical conditions, to avoid scour damage to the receiving body.

This work includes the storm drainage designs, plans, calculation of quantities to determine a reference budget and a comparison of the results obtained.

KEYWORDS: sewer, storm, SewerGEMS, design, hydraulic, manholes, discharge, storm, intensity, precipitation.

1. DESCRIPCIÓN DEL COMPONENTE DESARROLLADO

El alcantarillado pluvial es un sistema de tuberías con la finalidad de conducir y evacuar el caudal proveniente de las precipitaciones y la escorrentía superficial de forma independiente al caudal sanitario. Este caudal pluvial debe descargar sin tratamiento previo en algún punto de un cuerpo de agua de forma uniforme y controlada, que no afecte al medio ambiente ni a los habitantes de la comunidad propia o de las comunidades aledañas. Considerando, que el presente sistema de alcantarillado se desarrollará para una comunidad rural y de topografía plana, es importante determinar como punto de descarga a un estero cercano.

La Comunidad 25 de Diciembre, es una comunidad rural consolidada ubicada en la parroquia Tres de Noviembre, cantón La Joya de los Sachas, provincia de Orellana. Esta comunidad tiene una población actual de 410 habitantes, los cuales actualmente no cuentan con un sistema de alcantarillado pluvial, a pesar de la gran cantidad de precipitaciones que hay en la zona. La falta de alcantarillado pluvial en la comunidad y la topografía de la zona provoca inundaciones en las viviendas de sus habitantes, afectando sin duda su calidad de vida, muchos pierden cosas materiales debido a que no existe una correcta dirección y evacuación de las aguas lluvias. De igual forma, el agua lluvia se estanca en varios puntos generando sitios propicios para la aparición de vectores e insectos que pueden atentar contra la sanidad pública de la zona.

El alcantarillado, es un servicio básico que influye directamente en la calidad de vida de las personas, por ello es importante evaluar la situación actual y la necesidad de un diseño hidráulico del sistema de alcantarillado. Dentro del Plan de Desarrollo y Ordenamiento Territorial 2019-2023, realizado para el cantón La Joya de los Sachas, en los últimos años se ha construido sistemas de alcantarillado pluvial únicamente para parroquias y barrios que pertenecen a la zona urbana, pero considerando que la comunidad 25 de Diciembre, es una comunidad consolidada y una de las más grandes de la parroquia, se puede apreciar la necesidad de implementar un sistema de alcantarillado pluvial.

El diseño del presente proyecto de alcantarillado busca ser el adecuado de acuerdo con las condiciones hidrometeorológicas de la zona, tanto en la conformación de la red como en las condiciones de descarga al cuerpo hídrico seleccionado.

1.1. Objetivo general

Realizar el diseño de la red de alcantarillado pluvial para la comunidad 25 de Diciembre, Cantón La Joya de los Sachas, Provincia de Orellana con descarga al estero que cruza la vía de Palo Azul.

1.2. Objetivos específicos

- Obtener el modelo numérico de la red de alcantarillado pluvial haciendo uso del software OpenFlows SewerGems (licencia académica), de BENTLEY.
- Comprobar los resultados obtenidos con una hoja de cálculo diseñada en EXCEL, empleando el algoritmo de Colebrook-White para el cálculo de la fricción.
- Analizar las condiciones del sitio de descarga y el caudal total.
- Elaborar planos de la red de alcantarillado pluvial, perfiles longitudinales y la memoria técnica
- Realizar un presupuesto referencial, con rubros fundamentales para la correcta ejecución del proyecto de alcantarillado pluvial.

1.3. Alcance

El presente proyecto busca desarrollar el diseño de un sistema de alcantarillado pluvial de la comunidad 25 de Diciembre, que permita a la comunidad mejorar su calidad de vida e ir contando con todos los servicios básicos a mediano plazo. Así mismo considerando las condiciones del flujo para la descarga, se analizaría si es necesario descargar directamente el caudal pluvial al estero que cruza la vía a Palo Azul, o si es necesario implementar una estructura de descarga y disipación de energía. El diseño será realizado con el software OpenFlows SewerGEMS (licencia académica), conjuntamente se realizará la comprobación por tramos del alcantarillado pluvial en una hoja de cálculo. Finalmente, se presentará un informe con toda la información recopilada, análisis de resultados y planos correspondientes. Los productos que se entregarán corresponden a un diseño definitivo del sistema de alcantarillado pluvial.

1.4. Marco teórico

Flujo uniforme

Este tipo de flujo se da cuando la profundidad de agua o cualquier variable hidráulica no cambia a lo largo de un canal o tubería a superficie libre. Este tipo de flujo puede tener variación en el tiempo o no, y clasificarse en flujo uniforme no permanente y flujo uniforme permanente, respectivamente. (Chow, 1994). Así como la profundidad es constante, los otros parámetros hidráulicos también lo son, como la velocidad o el área hidráulica, es decir no cambian con respecto al espacio. Esta condición puede ser representada matemáticamente con la siguiente expresión:

$$\frac{\partial y}{\partial x} = 0;$$
 $\frac{\partial v}{\partial x} = 0;$ $\frac{\partial A}{\partial x} = 0$

Ecuación 1. Condiciones de flujo uniforme

Flujo no uniforme

Cuando las condiciones del flujo uniforme se ven alteradas por secciones de control, se tiene que la profundidad, área y velocidad cambian a lo largo del canal, y se trata de un flujo variado o no uniforme. Este tipo de flujo puede ser expresado matemáticamente de la siguiente manera:

$$\frac{\partial y}{\partial x} \neq 0; \qquad \frac{\partial v}{\partial x} \neq 0; \qquad \frac{\partial A}{\partial x} \neq 0$$

Ecuación 2. Condiciones de flujo no uniforme

A su vez puede clasificarse en flujo gradualmente variado y flujo rápidamente variado, dependiendo de si el cambio de las variables se da de manera gradual o de manera abrupta respectivamente. El flujo rápidamente variado se puede apreciar más comúnmente en la formación de resaltos hidráulicos y en caídas hidráulicas, mientras que el flujo gradualmente variado se puede apreciar en los cambios de sección o cambios de pendiente, canales y sistemas de alcantarillado. (Chow, 1994)

Estados del flujo

El estado del flujo se determina de acuerdo con los efectos de la viscosidad y la gravedad con respecto a las fuerzas de inercia, se tiene dos parámetros importantes que relacionan dichas fuerzas, los cuales son:

 Número de Froude: relaciona las fuerzas inerciales con la gravedad, se define con la siguiente ecuación

$$F_r = \frac{V}{\sqrt{gL}}$$

Ecuación 3. Número de Froude

Donde:

F_r: número de Froude

V: velocidad media (m/s)

g: aceleración de la gravedad (m/s²)

L: longitud característica, profundidad hidráulica para canales (m)

De acuerdo con el número de Froude, el flujo se puede clasificar en:

Subcrítico (Fr < 1): Las fuerzas gravitacionales son dominantes ante las fuerzas inerciales, por ello las velocidades son bajas.

Crítico (Fr = 1)

Supercrítico (Fr > 1): Las fuerzas inerciales son dominantes respecto a las fuerzas gravitacionales, se tiene alta velocidad.

 Número de Reynolds: relaciona las fuerzas inerciales con las fuerzas de viscosidad, mediante la siguiente expresión

$$Re = \frac{VL}{V}$$

Ecuación 4. Número de Reynolds

Donde:

Re: Número de Reynolds

V: velocidad media (m/s)

L: longitud característica (m)

v: viscosidad cinemática del fluido (m²/s)

De acuerdo con las Normas de diseño de sistemas de alcantarillado para la EMAAP-Q, se ha definido que cuando el número de Reynolds tiene un valor menor a 2320, se trata de un flujo laminar. Mientras que cuando se trata de flujo turbulento se puede considerar 3 escenarios, los cuales son flujo turbulento hidráulicamente liso, hidráulicamente rugoso y de transición. (EMAAP-Q, 2009)

Alcantarillado pluvial

El alcantarillado pluvial es un conjunto de tuberías, pozos, sumideros, y canales que recogen las aguas lluvia, también conocidas como aguas grises, para conducirlas hasta puntos de descarga que comúnmente son ríos, esteros o fuentes de agua cercanas. El manual proporcionado por Interagua, de la Alcaldía de Guayaquil, muestra una ilustración clara de la forma de recolección de las aguas lluvias por medio del alcantarillado pluvial.

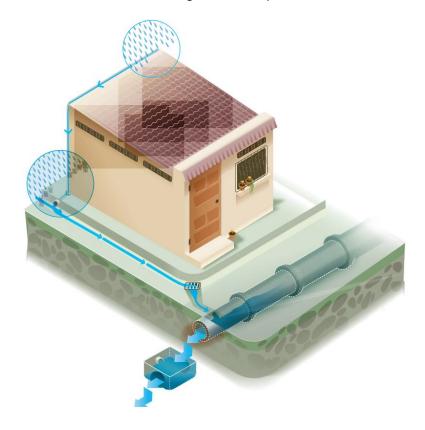


Ilustración 1. Recolección de aguas lluvia con el alcantarillado pluvial

Fuente: Sistema de alcantarillado pluvial (Interagua)

Intensidad de Iluvia

Se define como la cantidad de lluvia que se precipita en un punto determinado, por unidad de tiempo, usualmente se mide en milímetros por hora (mm/h), puede representarse como la relación entre la altura de precipitación con el tiempo de duración.

Duración

Como su nombre lo indica se define como el tiempo que dura la lluvia, según el estudio de lluvias intensas del INAMHI, actualizado en el año 2019, se considera a la duración de la lluvia de diseño igual al tiempo de concentración del área de estudio, teniendo en cuenta que en ese tiempo la escorrentía logra su máximo valor.

Periodo de retorno

Se refiere al número de años en los que podría producirse un evento extraordinario. En el diseño de obras y proyectos hidráulicos representa un parámetro muy importante ya que se define como el tiempo para el cual se debe diseñar la obra para soportar crecidas.

Análisis de pérdidas de energía

Para determinar las pérdidas de energía por fricción generadas en las tuberías se ha utilizado la ecuación de Darcy-Weisbach, que debe su nombre a sus creadores, Henry Darcy y Julius Weisbach. La ecuación relaciona el diámetro de la tubería, la carga de velocidad, la longitud de la tubería y un factor de fricción f.

La ecuación de Darcy-Weisbach se expresa de la siguiente manera:

$$h_f = f * \frac{L}{D_i} * \frac{v^2}{2g}$$

Ecuación 5. Pérdidas de energía Darcy-Weisbach

Donde:

h_f: pérdidas por fricción (m)

f: coeficiente de fricción

L: longitud de la tubería (m)

D_i: diámetro interno (m)

v: velocidad media del flujo (m/s)

g: aceleración de la gravedad (m/s²)

Algoritmo de Colebrook-White

Para determinar el factor de fricción f se han establecido varios métodos teóricos, entre los cuales se ha seleccionado como el más acertado, el algoritmo de Colebrook-White, el cual es válido para tubos comerciales, he ahí la selección de este método. La ecuación se describe a continuación:

$$\frac{1}{\sqrt{f}} = 2\log\left(\frac{\frac{\varepsilon}{\overline{D}}}{3.71} + \frac{2.51}{Re\sqrt{f}}\right)$$

Ecuación 6. Algoritmo de Colebrook-White

Donde:

f: factor de fricción

ε/D: rugosidad relativa

Re: número de Reynolds

Para facilitar la resolución del algoritmo de Colebrook-White, se ha diseñado una hoja de cálculo que, mediante iteraciones, permite determinar el valor del factor *f*.

2. METODOLOGÍA

La metodología que se presenta a continuación, en el Trabajo de Integración Curricular, corresponde a la Memoria Técnica del diseño del sistema de alcantarillado pluvial para la comunidad 25 de Diciembre, cantón La Joya de los Sachas, provincia de Orellana. Considerando que es un capítulo que cuenta con toda la información técnica y criterios de diseño.

2.1. Normas de diseño

En el Ecuador existen normas para el diseño de alcantarillado pluvial que en el presente estudio es el principal objetivo. Entre las normas de diseño utilizadas se tiene:

- a. Normas de diseño de sistemas de alcantarillado para la EMAAP-Q (EMAAP-Q, 2009)
- Norma de diseño para sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural (SENAGUA, 2010)
- c. Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 habitantes (INEN, 1992)

Las normas mencionadas fueron aplicadas de acuerdo con las necesidades reales del proyecto y el criterio propio del diseñador, con la intención de generar el diseño más adecuado y óptimo para la comunidad 25 de Diciembre.

Adicionalmente para el diseño de un alcantarillado pluvial es necesario hacer uso de la actualización del Estudio de Lluvias Intensas, emitido por el Instituto Nacional de Meteorología e Hidrología (INAMHI), a partir del cual se tomarán características de una estación que proporcione datos hidrometereológicos necesarios para el diseño.

En la presente metodología se explicará el procedimiento realizado para el diseño del alcantarillado pluvial para la comunidad 25 de Diciembre, perteneciente a la zona rural del cantón La Joya de los Sachas, haciendo referencia a las normas utilizadas y criterios

7

aplicados, con la finalidad de ser una guía para el diseño de alcantarillados pluviales que beneficien a cualquier rincón del Ecuador.

2.2. Ubicación del proyecto

La comunidad 25 de Diciembre es una comunidad amazónica, se ubica en la parroquia rural Tres de Noviembre, perteneciente al cantón La Joya de los Sachas, provincia de Orellana.

Ilustración 2. Ubicación de la comunidad 25 de Diciembre en referencia al Ecuador

Ilustración 3. Ubicación de la comunidad 25 de Diciembre en referencia a Orellana

Para definir el área de estudio del presente proyecto, se ha delimitado con el siguiente polígono, teniendo en cuenta que es una zona rural con vastas áreas verdes que no se consideraron debido a que la escorrentía sería mínima en dichas zonas:

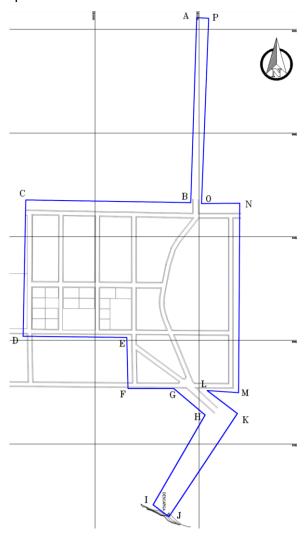


Ilustración 4. Polígono de estudio

El polígono presentado se ha definido con las siguientes coordenadas.

Tabla 1. Coordenadas del polígono de estudio

PUNTO	NORTE	ESTE	PUNTO	NORTE	ESTE	
Α	9983022.43	283195.52	I	9982082.32	283111.80	
В	9982665.50	283183.85	J	9982059.07	7 283141.85	
С	9982670.85	282866.39	K	9982258.63	283273.90	
D	9982407.42	282861.11	L	9982302.86	283215.60	
E	9982405.27	283060.81	M	9982299.04	283276.40	
F	9982306.76	283063.10	N	9982664.15	283278.50	
G	9982306.66	283151.35	0	9982663.65	283204.68	
Н	9982255.40	283211.89	Р	9983021.28	283218.79	

2.3. Estudio topográfico

El estudio topográfico fue proporcionado por parte del Ing. Jorge Luis Guaiña, mismo que fue realizado con equipo especializado de topografía, teniendo como resultado las coordenadas y cotas de los puntos que definen el área del proyecto, de acuerdo como se indica en la siguiente imagen. Cabe recalcar que, mediante oficio, con fecha 23 de diciembre de 2022, emitido por el Ing. Jorge Luis Guaiña se autoriza el uso de la información base, con la finalidad de desarrollar el "Diseño del sistema de alcantarillado pluvial para la comunidad 25 de Diciembre, Cantón La Joya de los Sachas, Provincia de Orellana", teniendo en cuenta que dicha información será utilizada únicamente con fines académicos.

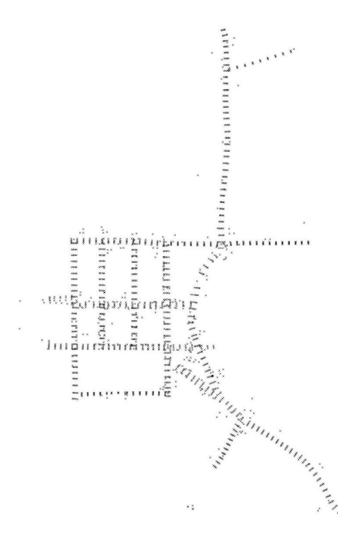


Ilustración 5. Nube de puntos del área de estudio

La topografía es el punto de partida para todo proyecto relacionado con la ingeniería civil, ya que nos permitirá conocer cómo es la superficie del terreno, para tomar las mejores decisiones respecto al proyecto.

Para empezar a desarrollar el presente proyecto del sistema de alcantarillado pluvial para la comunidad 25 de Diciembre, es necesario definir el punto de descarga, que será aguas abajo del puente ubicado en la vía a Palo Azul, en el estero que se encuentra en dicho punto. A continuación, se presenta la gráfica de curvas de nivel y se señala los puntos principales para el sistema de alcantarillado.

En la topografía y visitas de campo se ha podido determinar que la comunidad 25 de Diciembre tiene un relieve bastante regular, que finaliza con una pendiente el llegar al estero. Lo cual es conveniente para evitar excavaciones excesivas. El alcantarillado pluvial se conduce de manera superficial mediante cunetas hasta llegar al sumidero y dirigirse al pozo pluvial. Por ello, el trazado de la red pluvial se ha realizado considerando la topografía obtenida.

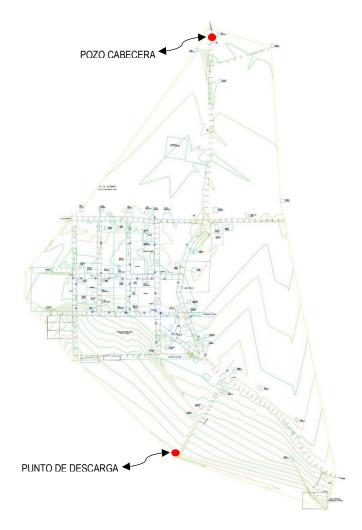


Ilustración 6. Pozo cabecera y punto de descarga

2.4. Periodo de diseño

El periodo de diseño se refiere al tiempo de vida útil que se espera que tenga el proyecto hidráulico, en este caso se definiría como la vida útil del sistema de alcantarillado. Según los parámetros de diseño establecidos en la Norma de diseño para sistemas de alcantarillado de la EMAAP-Q, el sistema de alcantarillado debe diseñarse como mínimo para 30 años. Considerando dicho parámetro se ha determinado que el período de diseño para el proyecto de alcantarillado para la comunidad 25 de Diciembre será de 30 años.

2.5. Periodo de retorno

Este parámetro se refiere al tiempo en el cual puede ocurrir un evento hidrológico, de acuerdo con las recomendaciones del INEN, en su norma para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 100 habitantes, señala que para sistemas de microdrenaje, se dimensionará un escurrimiento con ocurrencia o periodo de retorno de entre 2 a 10 años, dependiendo de la importancia del sector. Parámetro que coincide con lo estipulado por la EMAAP, la cual proporciona una tabla para determinar el periodo de retorno dependiendo del tipo de ocupación del área de influencia de la obra, en la cual se detallan los siguientes valores.

Tabla 2. Períodos de retorno para diferentes ocupaciones del área

PERÍODOS DE RETORNO PARA DIFERENTES OCUPACIONES DEL ÁREA				
Tipo de obra	Tr (años)			
Micro drenaje	Residencial	5		
Micro drenaje	Comercial	5		
Micro drenaje	Área con edificios de servicio público	5		
Micro drenaje	Aeropuertos	10		
Micro drenaje	Áreas comerciales y vías de tránsito intenso	10 – 25		
Micro drenaje	Áreas comerciales y residenciales	25		
Micro drenaje	Áreas de importancia específica	50 – 100		

De acuerdo con la tabla, se ha determinado para la comunidad de estudio, un periodo de retorno de 5 años, que corresponde a un área de micro drenaje residencial.

2.6. Áreas de drenaje

El área de drenaje se refiere a la superficie aportante para el sistema de alcantarillado pluvial, que está directamente relacionado con el escurrimiento de las aguas lluvias. Estas áreas se han definido de acuerdo con el posible escurrimiento del agua, considerando las pendientes del terreno definidas por la topografía del sitio. Teniendo así la siguiente distribución de áreas de drenaje o áreas de aporte:

Ilustración 7. Áreas de drenaje

El área total de drenaje alcanza las 14.48 ha, en el anexo comparativo realizado en una hoja de Excel se indica las áreas de aportación parciales, que corresponden a la división indicada en la ilustración 7.

2.7. Coeficiente de escurrimiento

Este es un parámetro de diseño aplicable con el método racional, el cual se expresa mediante la siguiente fórmula:

$$Q = \frac{C * i * A}{360}$$

Ecuación 7. Método racional

Donde:

Q: caudal (m3/s)

C: coeficiente de escorrentía

i: intensidad de lluvia (mm/h)

A: área de aporte (ha)

El coeficiente de escorrentía se basa en las condiciones del suelo, su capacidad de infiltración, uso, cobertura, entre otros. La comunidad 25 de Diciembre, debido a su naturaleza rural, cuenta con áreas verdes bastante amplias, a pesar de ser una comunidad consolidada actualmente no cuenta con una vía asfaltada o adoquinada, y en su lugar sus vías son lastradas, lo cual influye también en la determinación del coeficiente de escurrimiento. La EMAAP-Q, presenta una tabla con valores de coeficientes de escorrentía para la zona rural, la cual se presenta a continuación:

Tabla 3. Coeficientes de escorrentía rural

Vegetación y topografía		Textura del suelo					
		Limo arenoso abierto	Arcilla y limo	Arcilla abierta			
	Plano pend 0-5%	0.1	0.3	0.4			
Bosque	Ondulada pend 5-10%	0.25	0.35	0.5			
	Montañosa 10-30%	0.3	0.5	0.6			
	Plano pend 0-5%	0.1	0.3	0.4			
Pastura	Ondulada pend 5-10%	0.16	0.36	0.55			
	Montañosa 10-30%	0.22	0.42	0.6			
	Plano pend 0-5%	0.3	0.5	0.6			
Cultivos	Ondulada pend 5-10%	0.4	0.6	0.7			
	Montañosa 10-30%	0.52	0.72	0.82			

La comunidad de estudio cuenta con zonas de cultivos de cacao, maíz, plátano y malanga, principalmente. Su topografía es relativamente plana, con una pendiente aproximada de 3%, y los suelos en su mayoría están compuestos por arcilla abierta. De acuerdo con las

características indicadas, se puede determinar un valor del coeficiente de escorrentía igual a 0.60.

2.8. Curvas de intensidad – duración – frecuencia

El Instituto Nacional de Meteorología e Hidrología (INAMHI) pone a disposición de la sociedad la Actualización del estudio de lluvias intensas, el cual presenta información de las diferentes estaciones del país. Para el presente proyecto, teniendo en cuenta la ubicación del área de estudio, se ha determinado que la estación con información más cercana corresponde a la estación M0293 - Palmioriente, con las siguientes características:

 CÓDIGO
 M0293

 NOMBRE
 Palmioriente

 LATITUD
 937835.47

 LONGITUD
 9964915.69

 ALTITUD
 360

 SERIES DE DATOS
 1987-2000

 INSTITUCIÓN
 INAMHI

Tabla 4. Datos de la estación seleccionada

La siguiente ilustración muestra la ubicación de las estaciones con referencia al área de estudio.

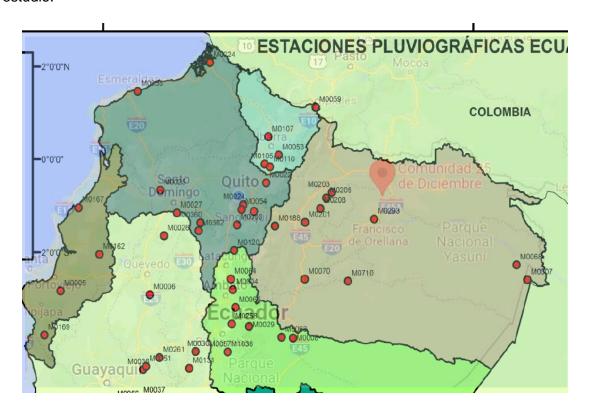


Ilustración 8. Ubicación de la estación respecto a la comunidad 25 de Diciembre

De la estación M0293 – Palmioriente se tienen las siguientes ecuaciones:

Tabla 5. Ecuaciones IDF para la estación M0293

INTERVALOS DE TIEMPO	ECUACIONES			
(minutos)	2007.3101120			
5<30	i=178.2773*T ^{0.1778} *t ^{-0.2592}			
30<120	i=668.8093*T ^{0.1971} *t ^{-0.6529}			
120<1440	i=2532.89*T ^{0.1387} *t ^{-0.9023}			

Tabla 6. Zonificación de intensidades

ZONA	DURACIÓN	ECUACIÓN		
	5.00 min < 34.53 min	I _{TR} =57.237*Id _{TR} *t ^{-0.273}		
64	34.53 min < 71.20 min	$I_{TR}=120.85*Id_{TR}*t^{-0.484}$		
	71.20 min < 1440.00 min	I _{TR} =721.86*Id _{TR} *t ^{-0.903}		

Tabla 7. Intensidades máximas de la estación M0293

Duraciones t (minutos)									
TR (años)	5	10	15	20	30	60	120	360	1440
2	140.9	116.61	104.39	96.51	86.39	63.63	36.56	13.56	3.88
5	169.31	140.12	125.43	115.96	103.81	76.46	43.93	16.29	4.66
10	185.9	153.85	137.73	127.33	113.99	83.96	48.24	17.89	5.12
25	206.19	170.64	152.76	141.22	126.43	93.12	53.5	19.84	5.67
50	219.84	181.94	162.87	150.57	134.79	99.28	57.04	21.15	6.05
100	233.49	193.23	172.98	159.92	143.16	105.44	60.58	22.47	6.42

2.9. Programa OpenFlows SewerGEMS (Licencia académica)

El software OpenFlows SewerGEMS (licencia académica), es un software de la empresa Bentley y una herramienta muy útil en ingeniería civil. Permite analizar, diseñar y modelar sistemas de alcantarillado ya sea sanitario, pluvial o combinado. Este software, permite trabajar con datos hidráulicos y características de la zona, creando escenarios en los que podría ocurrir un fenómeno o evento extraordinario. En el presente caso de estudio se plantea diseñar un sistema de alcantarillado pluvial considerando las curvas de Intensidad, Duración y Frecuencia (IDF) que mejor se acoplen a la zona, además, es un software que permite tener en cuenta las restricciones de diseño que vienen establecidas por las normas ecuatorianas para alcantarillados y la posibilidad de evaluar el comportamiento de flujo como variado.

A continuación, se presenta un detalle del proceso de modelado en el software señalado, desde el inicio del proyecto. La interfaz inicial del programa se indica a continuación.

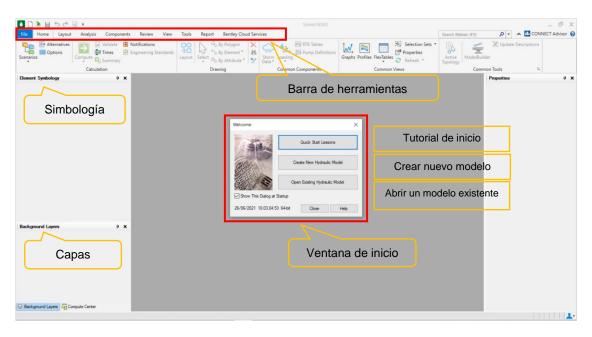


Ilustración 9. Interfaz del programa SewerGEMS de Bentley, licencia académica

Se procede a seleccionar "Crear un nuevo modelo hidráulico" y a continuación, aparece una ventana en blanco, en el cual se podrá realizar el trazado de la red y colocar todos los elementos que se desee. Así mismo, en la simbología de los elementos se despliega una lista de opciones que indica los elementos que se podrá visualizar, conforme se los vaya agregando al modelo. Este programa permite trabajar con tuberías, canales, tuberías a presión, pozos, áreas, descargas, etc.

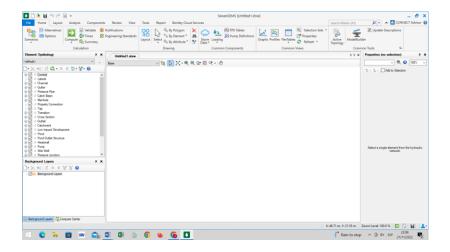


Ilustración 10. Creación de nuevo proyecto en SewerGEMS

Para el diseño del alcantarillado pluvial se utilizará elementos básicos constituyentes, como lo son: tuberías, pozos, descargas y áreas de captación. Antes de definir el trazado de la

red, es necesario configurar las bases del diseño, las restricciones de diseño según las normas establecidas y catálogo de tuberías comerciales, como se indica:

Primero se procede a ingresar en la cinta de opciones Home>Options>Base calculation options, y se desplegará una ventana, en la cual se deberá establecer las opciones de cálculo, según como se indica:

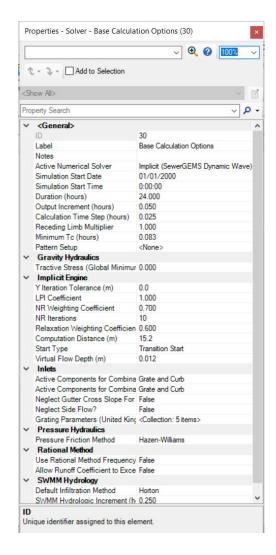


Ilustración 11. Ventana inicial de opciones de cálculo

Para identificar que se trata de la configuración para el proyecto, se empieza cambiando el nombre de las opciones de cálculo a *Cálculo de alcantarillado pluvial*, el solucionador numérico activo que se seleccionará es GVF-Rational (StormCAD), el cuál utilizará el método racional para el diseño. Para el presente caso, se desea realizar un *diseño* en el tipo de cálculo, teniendo en cuenta que también existe la opción de *análisis*, el cual puede ser utilizado cuando se tenga ya un diseño preliminar. El siguiente factor que se modificará en la presente ventana será de *Método de fricción por gravedad*, en el cual se seleccionará

la opción con *Darcy-Weisbach*, y consecuentemente, el método de factor de fricción será *Colebrook-White.*

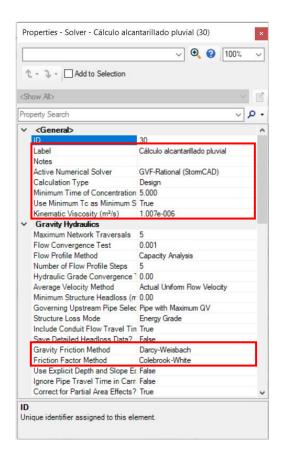


Ilustración 12. Ventana de opciones de cálculo configurada para el presente proyecto.

Luego se procede a definir el catálogo de tuberías que el programa podrá utilizar para el diseño del alcantarillado. En la barra de herramientas *Components>Catalog>Conduit Catalog, según se indica en la siguiente ilustración:*

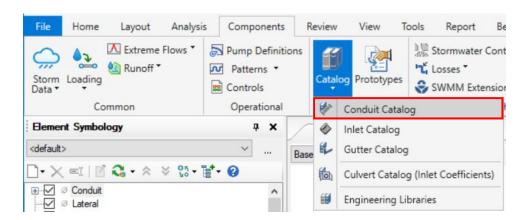


Ilustración 13. Ruta para definir catálogo de tuberías

Se procede a desplegar las opciones al dar click sobre el libro y luego en *import from library>conduits library metric>circle>cicle – PVC>SELECT.* Los diámetros de tuberías deben corresponder a los catálogos comerciales disponibles en el país

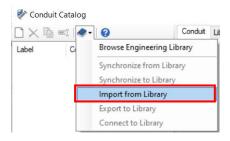


Ilustración 14. Ruta para definir catálogo de tuberías

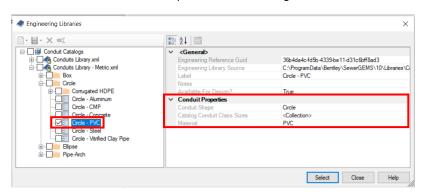


Ilustración 15. Definición de catálogo de PVC

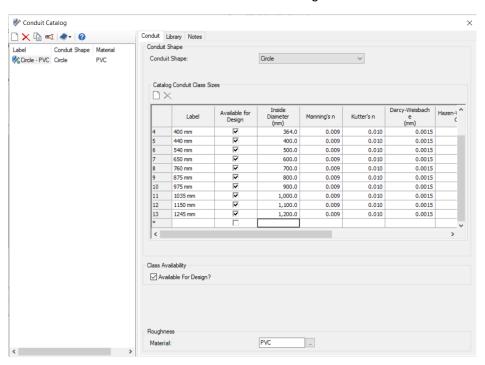


Ilustración 16. Ingreso de catálogo de tuberías (diámetro nominal, diámetro interno, coeficiente de Darcy Weisbach)

El catálogo ingresado al programa debe tener los diámetros internos con una dimensión que abastezca al sistema, ya que en caso de no contar con una tubería lo suficientemente grande, de acuerdo con las necesidades, aparecerá un error al momento de ejecutar el modelo. Para el presente diseño se ha tomado los catálogos Novafort-2018 y Novaloc-2018, del fabricante *Plastigama*, ambos catálogos se encuentran en el *ANEXO IX*.

Una vez que se ha definido el catálogo de tuberías disponibles para el diseño, se crea un "prototipo", siguiendo la siguiente ruta: *Components>Catalog>Prototypes*

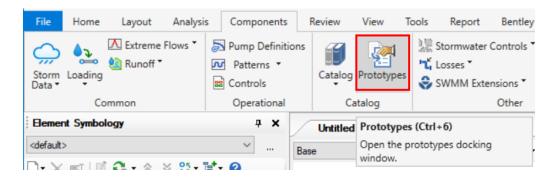


Ilustración 17. Ruta para crear prototipo

Luego se desplegará la siguiente ventana, donde se seleccionará la opción *Conduit>Click* derecho>New>Cambiar nombre a Tubería mínima 250mm

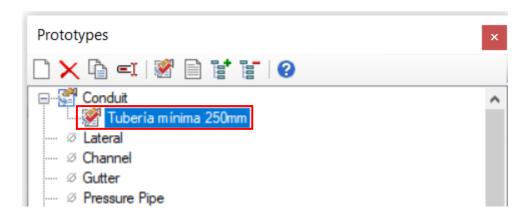


Ilustración 18. Ruta para definir prototipo

Teniendo en cuenta que el prototipo definirá la tubería mínima con la que se puede diseñar, se debe definir los siguientes parámetros en la ventana desplegada: catálogo de tuberías, clase, tamaño, rugosidad absoluta.

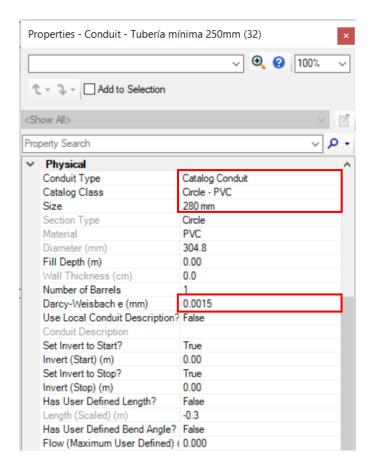


Ilustración 19. Ventana para definición del prototipo

Para terminar la configuración de un archivo en SewerGEMS, será necesario ingresar las condiciones de borde o restricciones para el diseño, basándonos en lo estipulado por las normas correspondientes, se lo realizó de la siguiente manera.

A continuación, se indica la ruta a seguir para esto: *Analysis>Analysis Tools>Design*Constraints

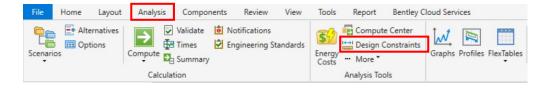


Ilustración 20. Ruta para definir condiciones de diseño

Una vez que se han definido las características que se utilizarán como plantilla para el presente proyecto y futuros proyectos en caso de ser necesario, se procede a guardar el archivo, siguiendo la ruta: File>Save as, se selecciona la carpeta y se define con un nombre para finalizar con el guardado.

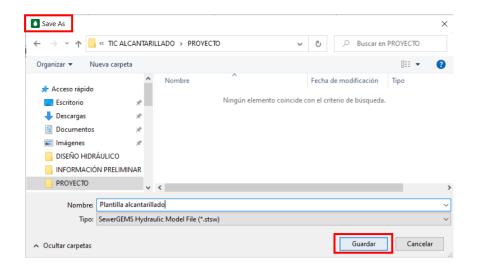


Ilustración 21. Ventana de guardado

Para iniciar el proyecto como tal, se ha guardado el mismo archivo con el nombre: *Proyecto 25D.*

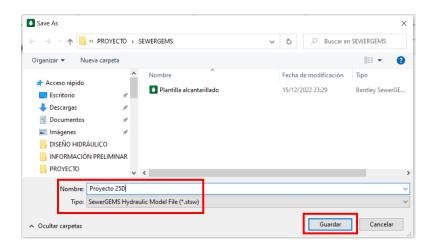


Ilustración 22. Guardado del archivo para el Proyecto 25 de Diciembre

Una vez que el archivo se encuentra configurado, es necesario continuar con el proceso para ingresar la tubería mediante la opción *ModelBuilder*. Cabe recalcar que con anticipación se ha definido el trazado de la tubería de acuerdo con las áreas aportantes y la topografía del sitio. Las tuberías se han trazado en AutoCAD, y se ha guardado como un archivo .dxf, que es el formato que reconocerá el programa SewerGEMS. Entonces se procede con la ruta: *Tools>Model Creation>ModelBuilder*

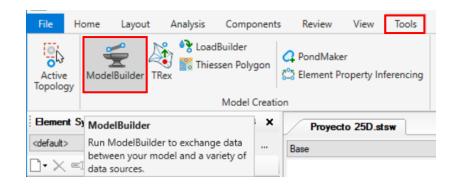


Ilustración 23. Ruta para definir el ModelBuilder

A continuación, se desplega una ventana nueva, donde se seleccionará el ícono de una hoja en blanco (*New*).

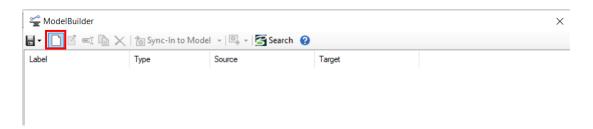


Ilustración 24. Ventana inicial del ModelBuilder

Seguido, se desplegarán varias ventanas de manera consecutiva, las cuales permitirán configurar las características para el modelo. Primero, se seleccionará el tipo de archivo que contiene la tubería para nuestro caso será *CAD Files*, que se refiere a los archivos .dxf.

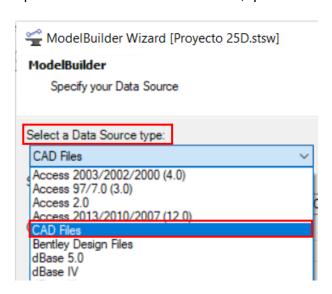


Ilustración 25. Tipo de archivo del recurso

Luego se procede a seleccionar el archivo, y se continúa a la siguiente ventana.

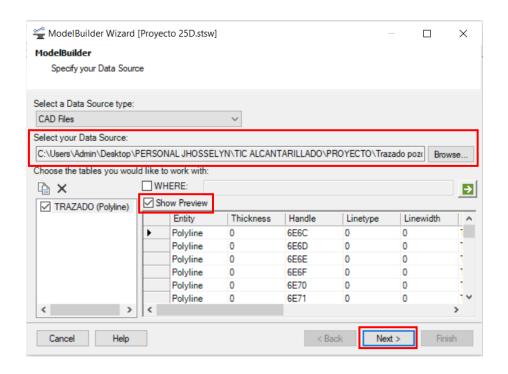


Ilustración 26. Ventana para la selección del archivo

Posteriormente se seleccionará las unidades en las que se encuentran los datos, para el presente caso la unidad es metros *(m)*, adicionalmente se selecciona la opción para establecer una conectividad cuando se tenga tuberías a menos de 1 metro, y se pasa a la siguiente ventana.

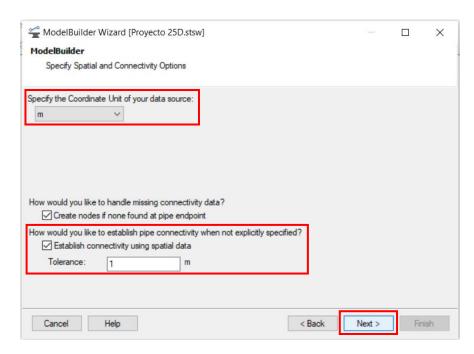
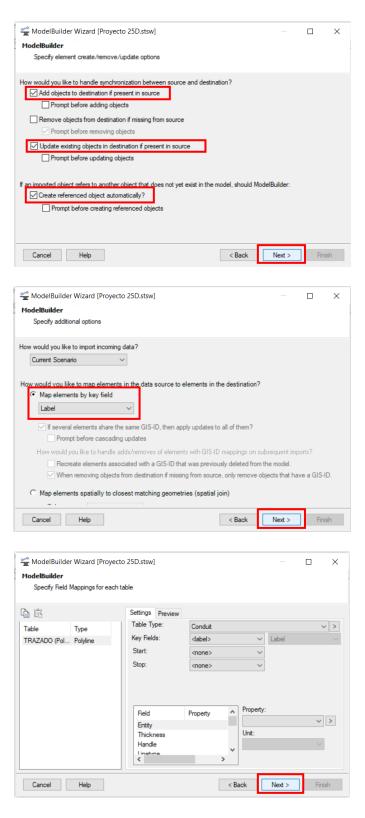



Ilustración 27. Unidades de las coordenadas del archivo de datos

Las siguientes ventanas que aparecerán en el proceso de la configuración del ModelBuilder se dejará con los parámetros establecidos por defecto, a menos que se desee modificar alguno de estos.

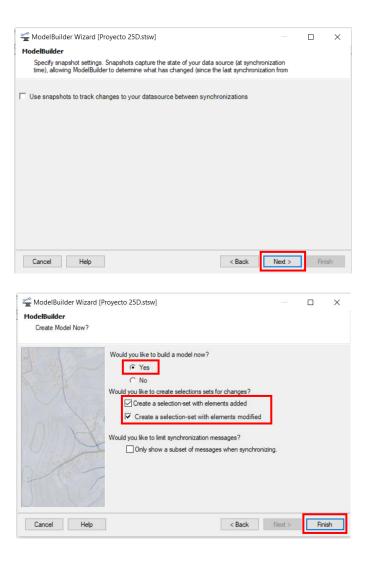


Ilustración 28. Configuración del ModelBuilder

A continuación, aparecerá una ventana preguntando si se desea sincronizar el modelo con la configuración dada en el ModelBuilder, es decir, el programa colocará automáticamente elementos como tuberías y pozos, de acuerdo con los datos ingresados, a lo cual se seleccionará que sí.

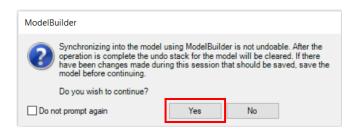


Ilustración 29. Sincronización del modelo

Una vez aceptada la sincronización, aparecerá un resumen de los elementos creados. En este caso se han creado 45 tuberías y 46 nodos o pozos.

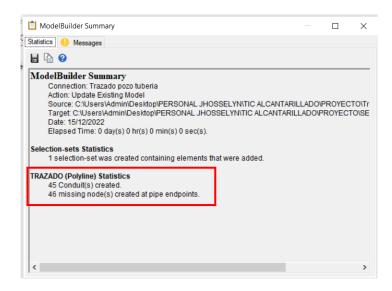


Ilustración 30. Resumen de sincronización

La ventana que se presenta a continuación permitirá sincronizar todos los datos en el dibujo como tal, a lo cual también se seleccionará sí.

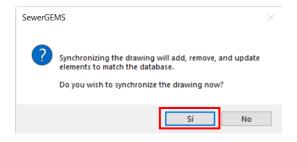


Ilustración 31. Sincronización con el dibujo

Posterior a esto, se puede apreciar los pozos y tuberías creados, mediante la opción zoom se visualiza de mejor manera los elementos creados.

Ilustración 32. Vista general de elementos creados

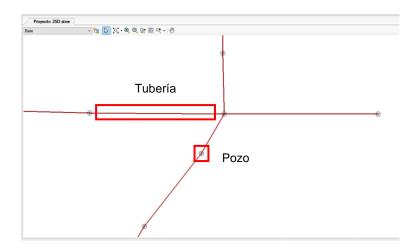


Ilustración 33. Identificación de elementos creados

El programa crea pozos y tuberías a partir de las líneas proporcionadas en el archivo .dxf, por ello se debe definir el punto de descarga (*Outfall*), lo cual se realiza de la siguiente manera: *Layout>Node>Outfall*. Aparecerá un ícono de un triángulo, y al seleccionar el pozo (círculo) que se cambiará por descarga (triángulo)

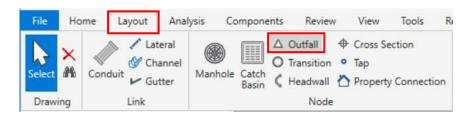


Ilustración 34. Ruta para definir punto de descarga

Ilustración 35. Pozo a cambiar por elemento de descarga

Ilustración 36. Punto definido como descarga (outfall)

Una vez definido el trazado de la tubería y los pozos, se procede a ingresar ciertas capas que serán necesarias para apreciar mejor el diseño que se va a realizar. Es importante tener en cuenta que el programa reconoce archivos en formato .dxf para poder visualizar como capas, y se sigue la ruta que se indica a continuación: *Background layers>New>New file*. La ventana "background layers" se encuentra por defecto en la parte izquierda de la hoja de trabajo.

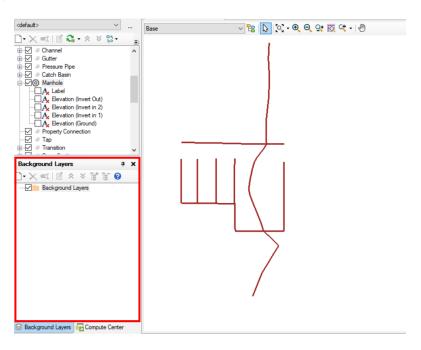


Ilustración 37. Ventana para identificar la herramienta background layers

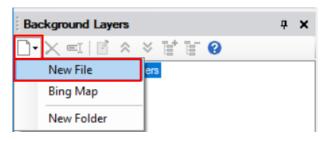


Ilustración 38. Creación de una nueva capa

A continuación, se presenta la ventana *DXF Properties*, donde se buscará el archivo que se desea ingresar como una nueva capa y se define las propiedades de acuerdo con las necesidades que se tenga. Se elige la unidad, que en este caso será en metros *(m)* la transparencia y el color, el cual puede dejarse por defecto, o poner un color en específico.

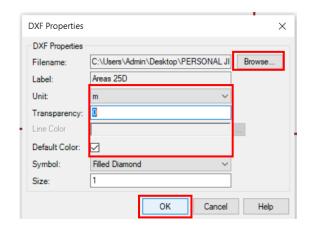


Ilustración 39. Ventana para definir las propiedades de la capa

La primera capa insertada corresponde a las áreas de aporte, se visualiza de la siguiente forma:

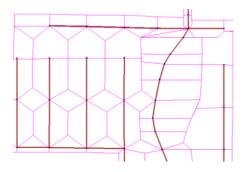


Ilustración 40. Capa de áreas de aporte

Como se mencionó anteriormente, es posible insertar cualquier capa que se desee visualizar, a continuación, se tiene la capa que corresponde a la topografía.

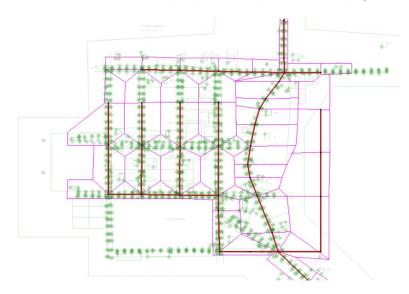


Ilustración 41. Capa de la topografía insertada

Teniendo como guía la capa de las áreas aportantes, se procede a crear las áreas de aporte en SEWERGEMS, con la herramienta *Catchment* como se indica: *Layout>Runoff* and pond>Catchment.

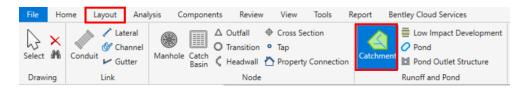


Ilustración 42. Ruta para definir catchment

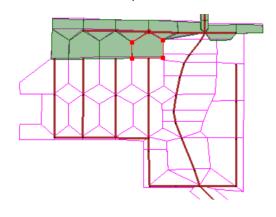


Ilustración 43. Creación de áreas de aporte (catchment)

Definidas todas las áreas de aporte con la herramienta indicada, se selecciona una a una para asignar el elemento de descarga (Outflow element). En este caso se refiere al pozo el cuál aportará el caudal obtenido por las lluvias. La ruta a seguir es: Doble click en el catchment>Catchment>Outflow element>Select outflow element>Select from drawing>Seleccionar el pozo

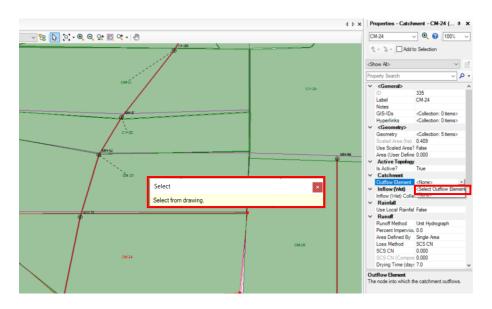


Ilustración 44. Asignación del pozo para cada área

Esto se realizará para cada área y se comprueba que ahora en las propiedades se tiene como Outflow element el nombre de cada pozo.

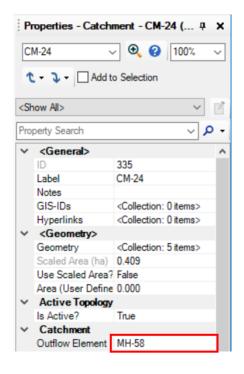


Ilustración 45. Pozo asignado al área de aporte

Existen ciertas características que se debe modificar a los elementos de áreas de aporte (Catchment) para lo cual se desplegará la tabla de estos elementos, y se modificará desde allí, como se indica a continuación: Analysis>Analysis views>Flex tables>Catchment

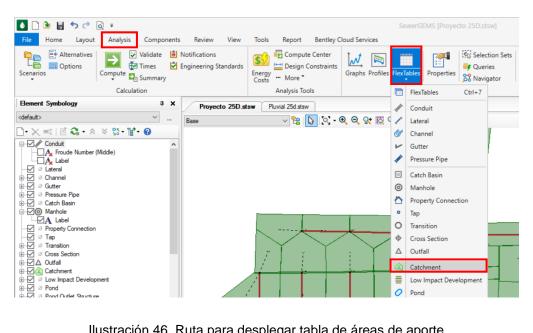


Ilustración 46. Ruta para desplegar tabla de áreas de aporte

Es posible obtener una tabla con diferentes propiedades de las áreas. Para empezar se designará al programa para que utilice las áreas escaladas, para editar se debe seguir la siguiente ruta: Click derecho en Used scaled área?>Global Edit>Seleccionar Value>Ok

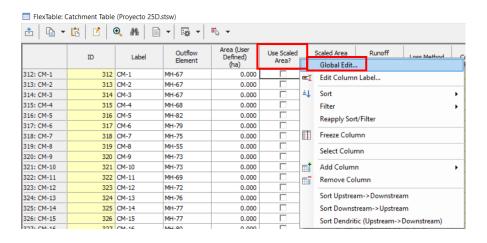


Ilustración 47. Tabla de características de las áreas

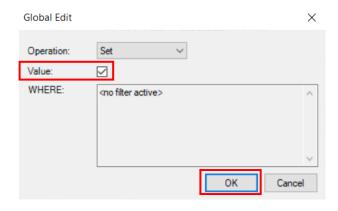


Ilustración 48. Ventana para edición global

Siguiendo el mismo proceso en la columna *Runoff method*, se realiza una edición global para definir el método que se utilizará, para el alcantarillado pluvial se trabaja con el método racional (*Rational method*)

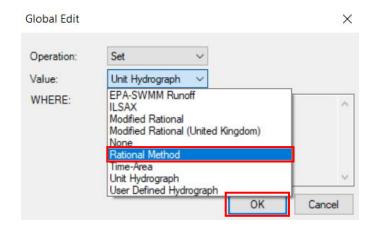


Ilustración 49. Edición global del método de escorrentía

El coeficiente de escorrentía *Runoff coeficient (rational)* también se debe modificar de manera global, es decir, asignar el mismo valor a todas las áreas. El valor asignado ya ha sido determinado anteriormente, corresponde a un valor de 0.60.

Ilustración 50. Edición global del coeficiente de escorrentía

El tiempo de concentración es un factor que se ha determinado por medio de una hoja de cálculo de Excel, el cual es diferente de acuerdo con el área de aporte, por ello es necesario realizar la asignación de este factor en cada una de las áreas.

Asimismo, se debe realizar la asignación de ciertas características de las tuberías (Conduit). La ruta a seguir es: Analysis>Analysis views>Flex tables>Conduit.

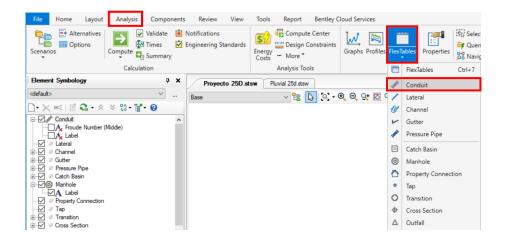


Ilustración 51. Ruta para desplegar tabla de tuberías

Es necesario definir el catálogo, clase y material que el programa podrá utilizar para el diseño del alcantarillado pluvial, utilizando la opción de *Global edit*.

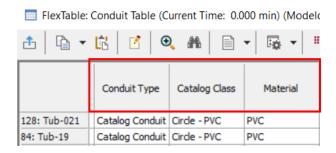


Ilustración 52. Despliegue de la tabla de tuberías

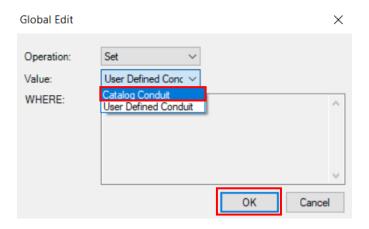


Ilustración 53. Edición del tipo de tubería

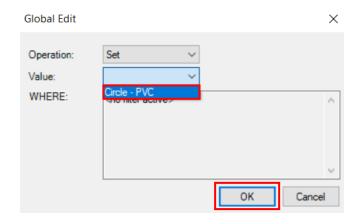


Ilustración 54. Edición de catálogo de clase

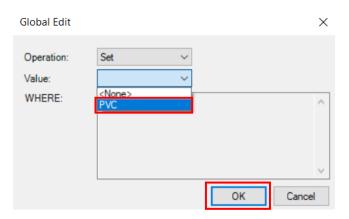


Ilustración 55. Edición del material

El siguiente paso corresponde a la asignación de las cotas del terreno al proyecto, con las cuales el programa trabajará para definir profundidades, pendientes y demás parámetros. Para lo cual, se utilizará la herramienta *TRex*, siguiendo la ruta: *Tools>Model creation>TRex*.

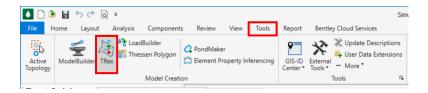


Ilustración 56. Ruta para utilizar la herramienta TRex

A continuación, se desplegará una ventana para seleccionar el tipo de elemento que se desea ingresar para obtener la información topográfica correspondiente a las cotas. Para el presente proyecto se ha utilizado el tipo de archivo de datos *DXF Points*, que es básicamente un archivo que contiene sólo los puntos de la topografía con las elevaciones. Es importante recalcar que el programa también puede obtener las cotas a partir de archivos con curvas de nivel, archivos LandXML, o archivos shape. Lo más práctico ha sido

realizarlo con el archivo mencionado y se indica a continuación el proceso para obtener la información.

En la ventana que se desplega se seleccionará el tipo de archivo, el campo en el que se encuentra la elevación según el archivo seleccionado, y las unidades de las coordenadas (x,y,z) que para el presente caso será *Elevación* y *metros* (*m*) respectivamente.

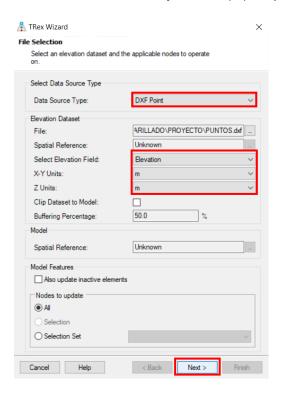


Ilustración 57. Ventana de la herramienta TRex

Una vez completado el proceso aparecerá una ventana que muestra las cotas asignadas a cada pozo, y con ello se finaliza este paso.

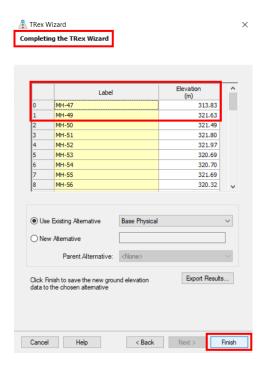


Ilustración 58. Resultados de elevaciones asignadas a los pozos

Al dar click sobre cualquier pozo *(manhole)* y visualizar las propiedades, se aprecia que ya se ha asignado la cota respectiva a dicha elemento.

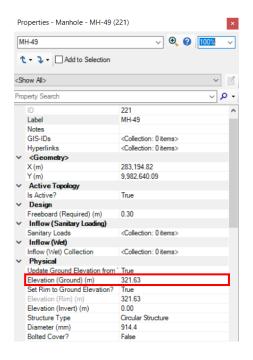


Ilustración 59. Propiedades de pozo, elevación del terreno

Hasta el momento se tiene modelados todos los elementos que conforman el alcantarillado pluvial, los cuales son: pozos, tuberías, descarga y áreas de aporte.

Lo que procede en el diseño es la asignación de los datos de precipitación. Al tratarse de un alcantarillado pluvial, se definirá primero el parámetro de datos de lluvia (Storm data), como se indica.

Components>Common>Storm Data>Storm Data

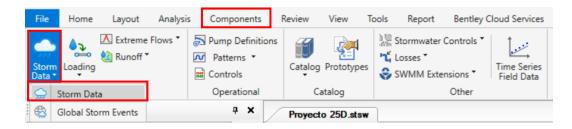


Ilustración 60. Ruta para definir los datos de precipitación

El programa de Bentley, SewerGEMS, permite utilizar diferentes métodos para ingresar los datos de precipitación, como se presenta en la siguiente ilustración. Para el presente diseño se utilizará la curva IDF. Para lo cual es necesario seguir la siguiente ruta: Click derecho sobre *IDF Curve Equation>New>IDF Curve Equation*.

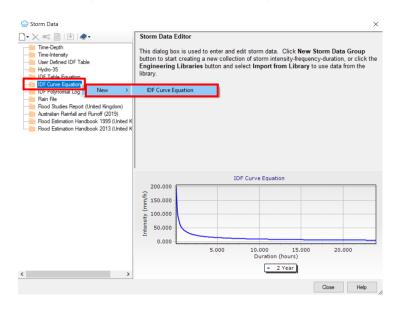


Ilustración 61. Ruta para ingreso de datos por medio de una curva IDF

A continuación, se presenta una ventana que indica los parámetros que definen la curva IDF, de manera anticipada se ha determinado de acuerdo con el Estudio de Iluvias intensas proporcionado por el INAMHI, la estación de la que se obtendrá la información y con ello, la ecuación de la curva IDF. Las unidades de la duración será en *minutos* y de la intensidad será de *mm/h*. Las curvas se ingresarán de acuerdo con el tiempo de retorno de esta.

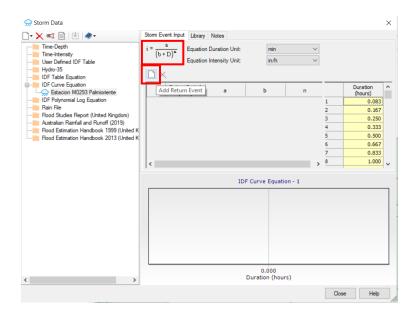


Ilustración 62. Ventana para el ingreso de la curva IDF, Estación M0293

El tiempo de retorno para la ecuación será de 5 años, se ingresará un valor del parámetro *a*, y un valor para *n*, de acuerdo con la ecuación obtenida. En la siguiente ilustración se aprecia las ecuaciones ingresadas y las intensidades obtenidas para los diferentes tiempos de duración.

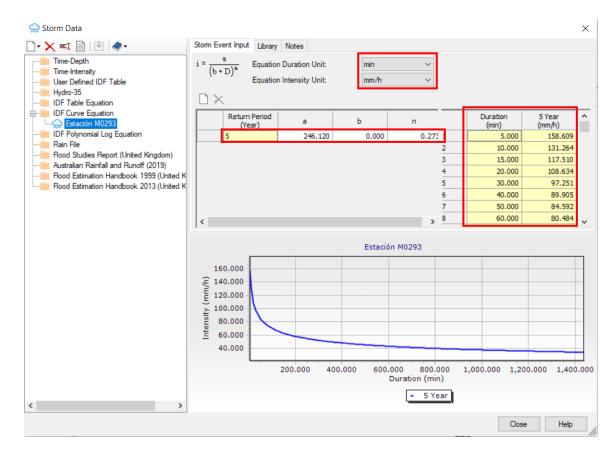


Ilustración 63. Ecuación IDF

Una vez definida la curva IDF, es necesario indicarle al software el evento con el que debe realizar el diseño, se lo hace siguiendo la ruta: *Components>Common>Storm Data>Global Storm Events*.

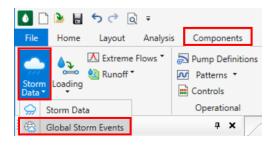


Ilustración 64. Ruta para definir el evento de precipitación

Aparecerá una nueva ventana donde se seleccionará la curva IDF ingresada, y se debe definir un tiempo de duración en minutos, en este caso 5 minutos.

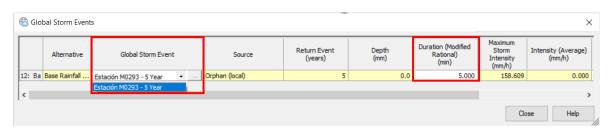


Ilustración 65. Definición del evento

En este punto se encuentran todos los parámetros definidos, entonces se procede a validar el modelo y a calcular, de acuerdo como se indica en la siguiente ruta: Analysis>Calculation>Validate

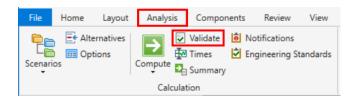


Ilustración 66. Ruta para validar el modelo

La ruta a seguir para calcular es similar: Analysis>Calculation>Compute

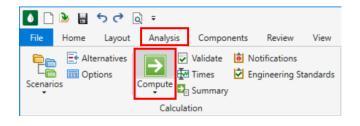


Ilustración 67. Ruta para computar el modelo

Al calcular el modelo aparecerá una ventana que pregunta si se desea crear una nueva alternativa, a lo cual se ha determinado seleccionar la opción *No.*

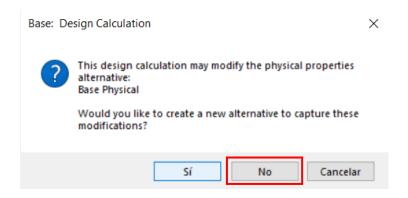


Ilustración 68. Ventana de diseño de alternativas

A continuación, el programa brinda un resumen de la simulación, y se obtienen los resultados deseados del alcantarillado pluvial.

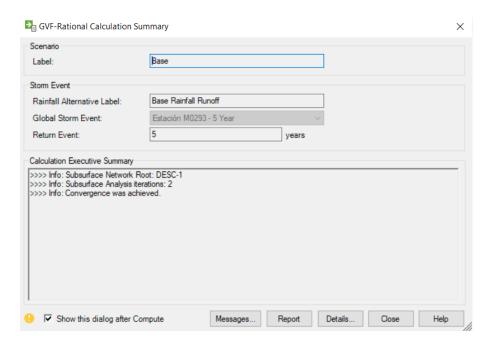


Ilustración 69. Resumen de la simulación

De acuerdo con el resultado que se desea visualizar, se tiene la opción para desplegar diferentes tablas, siguiendo la ruta: *Analysis>Analysis views>Flex tables>Conduit – Manhole – Outfall – Catchment.*

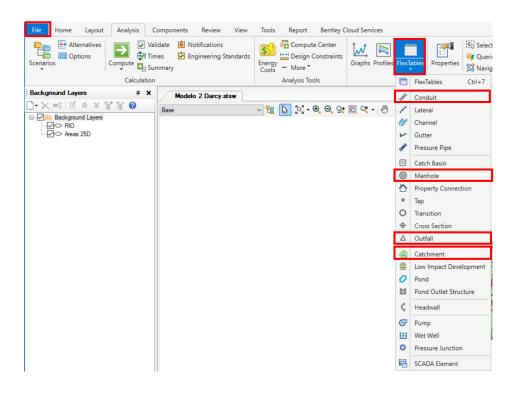


Ilustración 70. Ruta para desplegar tablas

2.10. Comprobación con hoja de Excel

Para comprobar los resultados obtenidos en la modelación numérica del sistema de alcantarillado, se ha revisado un trabajo previo a la titulación, desarrollado por el Ing. César Párraga en la Facultad de Ingeniería Civil y Ambiental de la EPN (opción examen complexivo), denominado "Diseño de un sistema de alcantarillado pluvial para un sector del cantón Urcuquí en la provincia de Imbabura", en el año 2022. La hoja de cálculo al ser un método más simplificado que el software, trabaja con flujo uniforme, mientras que el programa SewerGEMS trabaja con consideraciones de flujo gradualmente variado.

Para empezar, se tiene las ecuaciones IDF obtenidas de la estación seleccionada, se ha definido también el período de retorno y tiempo de concentración mínimo de acuerdo con las normas presentadas inicialmente.

DURACIÓN	ECUACIÓN
5.00 min < 34.53 min	$I_{TR} = 57.237* Id_{TR}*f^{0.273}$
34.53 min < 71.20 min	$I_{TR} = 120.85 \text{ ld}_{TR} \text{ f}^{0.484}$
71.20 min < 1440.00 min	$I_{TR} = 721.86 \text{*} Id_{TR} \text{*} t^{0.903}$

Período de retorno	=	5	años
Tiempo de concentración mínimo	=	5	min
IdTR-5 años	Ш	4.30	mm/h

Ilustración 71. Ecuaciones IDF y datos iniciales

El parámetro IdTR-5 años se ha definido teniendo en cuenta las precipitaciones máximas en 24 horas, de la estación seleccionada, y de las estaciones cercanas para poder obtener isolíneas que permitan determinar el valor adecuado para el parámetro IdTR-5 años. La siguiente tabla de datos indica las isolíneas realizadas que permiten definir el valor IdTR-5 años, para aplicar las ecuaciones en el diseño.

Tabla 8. Intensidades máximas en 24 horas

CÓDIGO	ESTACIÓN	Х	Y	TR5
M0007	NUEVO ROCAFUERTE FUERTE	1122197.9	9898194.53	4.81
M0041	SANGAY	839472.713	9864253.45	5.11
M0070	TENA HDA CHAUPISHUNGO	854666.345	9890988.89	5.32
M0188	PAPALLACTA	817846.988	9959606.04	3.06
M0203	REVENTADOR	837683.803	9953327.32	6.98
M0293	PALMIORIENTE - HUASHITO (PALMAR DEL RÍO)	937835.471	9964915.69	5.41
M0436	CUYUJA	828460.509	9953884.26	2.18
M0485	ZATZAYACU	849844.826	9868115.87	5.54
M0490	SARDINAS	856073.211	9958916.64	4.65
M0697	PUERTO LIBRE	889699.883	10036912.7	6.31
M0698	LA BONITA	914235.9	9996677.05	3.28
M0710	CHONTA PUNTA	906376.755	9896627.47	5.73

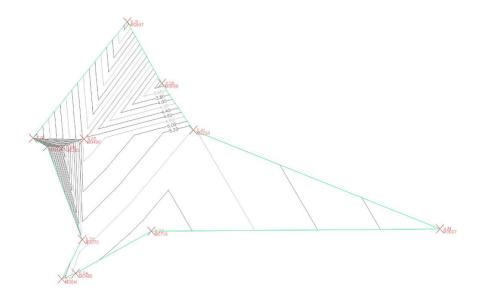


Ilustración 72. Isolíneas de intensidades máximas en 24 horas

Sobreponiendo el mapa con las isolíneas realizadas se ha determinado el valor IdTR para 5 años que se ajusta más a la zona de estudio, teniendo así un IdTR5 = 4.30 mm/h.

Ilustración 73. Isolíneas sobrepuestas en el mapa para identificar el valor IdTR5

La hoja Excel calcula los parámetros necesarios por calle, es decir, se ha definido los pozos y tuberías que componen una calle para realizar el cálculo.

La primera parte está compuesta por la descripción del tramo, se tiene la identificación de la tubería, la identificación de los pozos, cota del terreno *(msnm)*, longitud de tubería en planta *(m)*, longitud acumulada *(m)* y la pendiente del terreno *(m/m)*.

Tabla 9. Descripción del tramo

	DESCRIPCIÓN DEL TRAMO										
TRAMO	POZO	TERRENO	L planta	L acumulada	L	So					
	Nº	msnm	m	m	m	m/m					
TRAMO DE	CALLE 1										
	PZ-27	321.76									
Tub-46			61.10	61.10	61.10	0.001					
	PZ-26	321.81									
Tub-26			69.60	130.70	69.60	0.007					
	PZ-32	321.31									
Tub-22			70.60	201.30	70.60	0.002					
	PZ-28	321.43									
Tub-23			62.00	263.30	62.00	0.005					
	PZ-23	321.72									
Tub-24			58.10	321.40	58.10	0.002					
	PZ-3	321.63									
	PZ-29	321.38									
Tub-25			66.30	66.30	66.30	0.004					
	PZ-3	321.63									

La siguiente parte corresponde al cálculo del caudal de diseño. El método de cálculo utilizado para determinar el caudal es el método racional, el cual se ha explicado

anteriormente. En este punto se debe considerar el coeficiente de escorrentía (C) que tiene un valor de 0.60 para toda la zona de estudio. Se ha determinado los valores de área (A) de acuerdo con las divisiones de aporte en hectáreas y el área acumulada. Para determinar el tiempo de concentración inicial (tc) en minutos se ha aplicado la siguiente ecuación, teniendo en cuenta que si el valor obtenido es menor a 5 minutos, se adoptará como tiempo de concentración los 5 minutos:

$$t_c = \frac{0.0194 * L_{acumulada}^{0.77}}{S^{0.385}}$$

Ecuación 8. Tiempo de concentración inicial

Donde:

t_c: tiempo de concentración inicial (min)

Lacumulada: Longitud acumulada (m)

S: pendiente del terreno (m/m)

Posteriormente, se obtiene una relación entre la longitud y la velocidad, de acuerdo con el desarrollo de la hoja de cálculo, la velocidad se obtiene mediante un proceso iterativo que tiene en cuenta la velocidad admisible dentro de los parámetros de diseño. También se realiza una sumatoria de esta relación que servirá para determinar el tiempo de recorrido, con la siguiente ecuación:

$$t_f = \frac{1}{60} * \sum_{i} \frac{Li}{V_i}$$

Ecuación 9. Tiempo de recorrido

El tiempo de recorrido total será igual a la suma del tiempo inicial más el tiempo de recorrido, como se indica:

$$t = t_c + t_f$$

Ecuación 10. Tiempo de recorrido total

Aplicando la ecuación IDF obtenida de la estación M0293 y reemplazando con el valor de IdTR ya determinado y el tiempo total, se puede obtener la intensidad de Iluvia (i).

$$ITR = 57.237 * IdTR * t^{-0.273}$$

$$ITR = 57.237 * 4.30 * t^{-0.273}$$

$$ITR = 246.119 * t^{-0.273}$$

Una vez obtenidos todos los factores indicados es posible aplicar el método racional para determinar el valor del caudal, con la siguiente expresión:

$$Q = \frac{C * i * A}{360}$$

Ecuación 11. Método racional

Donde:

Q: caudal (m³/s)

C: coeficiente de escorrentía

i: intensidad de lluvia (mm/h)

A: área de aporte (ha)

Tabla 10. Caudal de diseño

	CAUDAL DE DISEÑO									
С	Α	A acum	tc	Li/Vi	Σli/Vi	tf	t	I	Qa	Qd
	На	На	min			min	min	mm/h	m³/s	m³/s
	1	1								
0.60	0.34	0.34	7.11	53.74	53.74	0.90	8.00	139.50		0.0798
0.60	0.35	0.69	5.53	62.65	116.38	1.94	7.47	142.15		0.162
0.60	0.33	1.02	13.43	58.59	174.97	2.92	16.35	114.78		0.226
0.60	0.25	1.27	11.18	35.69	210.67	3.51	14.70	118.17		0.275
0.60	0.18	1.45	19.96	44.80	255.46	4.26	24.21	103.11		0.306

En este punto se tienen las características de la tubería, que corresponden al diámetro (D), pendiente (I) y factor de fricción (f).

Para estas características se ha realizado una hoja de cálculo individual para cada tubería, como se indica a continuación. Se ha aplicado la ecuación de Darcy-Weisbach para el cálculo de las pérdidas de energía, las cuales dependen de un factor de fricción que se ha determinado con el algoritmo de Colebrook-White (Párraga, 2022).

La aplicación del algoritmo de Colebrook-White se resuelve mediante métodos numéricos, para el presente caso se lo realizó mediante el método numérico de Newton-Raphson, que se detalla a continuación:

 Se parte teniendo los datos de caudal de diseño, pendiente de tubería, rugosidad absoluta, viscosidad cinemática; y se asigna un diámetro de tubería para empezar las iteraciones.

Tabla 11. Datos de la tubería

DATO		
Q (m3/s)	0.0798	
So m/m	0.0027	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

 En Excel se utilizará la función Buscar objetivo, para iterar y encontrar un valor de Θ, del cual dependen el área, perímetro mojado, radio hidráulico y espejo de agua, como se indica en la siguiente ilustración.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u> θ	(sen ^θ / ₂) D 6 2√y(D-y)

Ilustración 74. Propiedades hidráulicas para una sección circular

Una vez determinado el valor del ángulo θ se continua con el algoritmo de Colebrook
 White, para determinar el coeficiente de fricción f.

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3.17} + \frac{2.51}{Re\sqrt{\lambda}}\right)$$

Ecuación 12. Algoritmo Colebrook - White

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Ecuación 13. Método Newton - Raphson

 Se aplican las siguientes fórmulas del método numérico mencionado, las cuales se han organizado en un cuadro como se indica a continuación, para finalmente obtener el factor de fricción calculado.

$$x_i = \frac{1}{f^{0.5}}$$

$$a = \frac{e}{3.70 * D}$$

$$b = \frac{2.51}{Re}$$

$$f(x) = -2 * \log_{10}(a + bx)$$

$$f'(x) = \frac{-2}{\ln(10)} * \left(\frac{b}{a + bx}\right)$$

$$\Delta = \frac{f(x) - x}{f'(x) - 1}$$

Ecuación 14. Método numérico Newton Raphson

Si Δ >10⁻⁸, se tiene que:

$$x_{i+1} = x_i - \Delta$$
$$f = \frac{1}{x_n^2}$$

Tabla 12. Aplicación del método Newton - Raphson para determinar el factor de fricción

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON											
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)					
0.0000001	3162.278	1.02E-06	5.02E-06	3.599	0.000	3157.811					
	4.466	1.02E-06	5.02E-06	9.261	-0.186	-4.042					
	8.509	1.02E-06	5.02E-06	8.719	-0.100	-0.191					
	8.700	1.02E-06	5.02E-06	8.700	-0.098	0.000					
	8.700	1.02E-06	5.02E-06	8.700	-0.098	0.000					
0.01321											

En la tabla programada, al asignar un nuevo valor del diámetro de la tubería, el proceso se vuelve iterativo hasta encontrar el valor que permite cumplir con las condiciones planteadas. En este punto es posible aplicar a ecuación de Darcy – Weisbach, para despejar el caudal en función del factor de fricción, pérdidas de energía y características hidráulicas, como se indica en la siguiente ecuación:

$$Q^2 = \frac{h_f * D * 2g * A^2}{L * f}$$

Tabla 13. Caudal despejado de la ecuación de Darcy - Weisbach

Donde:

Q: caudal (m³/s)

h_f: pérdidas de energía por fricción

D: diámetro de tubería (m)

g: aceleración de la gravedad (m/s²)

A: área (m²)

L: longitud de la tubería (m)

f: factor de fricción

Como se mencionó anteriormente, la hoja de cálculo trabaja asumiendo un flujo uniforme, por lo que se hace la siguiente consideración:

$$\frac{hf}{L} = S_f = S_o$$

Ecuación 15. Relación de pérdidas con la pendiente

Reemplazando en la ecuación del caudal se tiene que:

$$Q = \sqrt{\frac{S_o * D * 2g * A^2}{f}}$$

Ecuación 16. Caudal en función del factor f

Tabla 14. Cálculos de la aplicación de Darcy - Weisbach

CÁLCULO							
phi (rad)=	3.479						
Am (m2)=	0.063						
Pm (m)=	0.633						
Rh (m)=	0.100						
T (m)=	0.359						
Dh (m)=	0.399						
v (m/s)=	1.264						
Re=	5.003E+05						
Q (m3/s)=	0.080						

Para la aplicación de la ecuación de Darcy – Weisbach en el presente diseño, se ha definido una celda con la ecuación del caudal Q, que se indica, para aplicar la *función buscar objetivo* de EXCEL, la cual es una herramienta bastante útil en este tipo de iteraciones.

Finalmente en la hoja de cálculo se determina los valores del calado normal, número de Froude y relación de llenado entre el calado normal y el diámetro de la tubería. Se define si el tipo de flujo es subcrítico, crítico o supercrítico, adicionalmente se comprueba que la relación de llenado no supere el 0.75, definido según las normas ecuatorianas.

Tabla 15. Cálculo de calado y características del flujo

CÁLCULO C		
α (rad)=	0.169	
seno(α)=	0.031	
Calado normal (Yn)=	0.213	
CARACT	ERÍSTICA DE FLU	no
Fr=	0.88	SUBCRÍTICO
Yn/D (m/m)	0.58	CORRECTO

3. RESULTADOS, CONCLUSIONES Y RECOMENDACIONES

3.1. Resultados

Resultados SewerGEMS

El software SewerGEMS, permite al usuario obtener los resultados mediante tablas, además permite personalizar las tablas con los resultados que se desea imprimir, sus unidades y etiquetas. A continuación, se presentan los resultados obtenidos en los diferentes elementos que componen el alcantarillado pluvial, los cuales son tuberías, pozos, descarga y áreas de aporte.

Tubería	Pozo inicio	Cota invert inicio (m)	Pozo final	Cota invert final (m)	Longitud (m)	Pendiente (%)	Diámetro nominal	Diámetro (mm)	Cobertura inicio (m)	Cobertura final (m)	Velocidad (m/s)	Calado / Diámetro (%)	Caudal (m³/s)	Número de Froude
Tub-021	PZ-30		DESC-1	314.36	92.8	0.20	1150 mm	1,100.0	0.25	0.34	2.27	67.4	1.543	0.890
Tub-41	PZ-47	317.65	PZ-38	317.45	101.0	0.20	760 mm	700.0	1.79	1.10	1.67	64.6	0.440	0.852
Tub-37	PZ-46	318.82	PZ-10	318.62	91.0	0.21	650 mm	600.0	1.20	1.10	1.55	60.3	0.277	0.901
Tub-28	PZ-36	316.72	PZ-24	316.51	90.1	0.24	540 mm	500.0	3.25	1.06	1.47	62.8	0.192	0.908
Tub-35	PZ-44	318.62	PZ-33	318.41	90.0	0.23	650 mm	600.0	1.67	1.10	1.65	63.2	0.310	0.921
Tub-33	PZ-40	317.68	PZ-25	317.47	89.5	0.23	650 mm	600.0	2.99	1.10	1.63	62.0	0.301	0.928
Tub-17	PZ-16	314.95	PZ-19	314.79	79.7	0.20	1150 mm	1,100.0	3.54	3.23	2.24	65.3	1.465	0.909
Tub-40	PZ-42	318.60	PZ-47	318.44	79.6	0.20	650 mm	600.0	1.67	1.10	1.57	70.7	0.337	0.803
Tub-36	PZ-45	319.22	PZ-46	319.06	79.2	0.20	540 mm	500.0	1.54	1.06	1.38	66.4	0.192	0.817
Tub-34	PZ-43	319.32	PZ-44	319.16	78.9	0.20	540 mm	500.0	1.20	1.23	1.37	65.9	0.188	0.810
Tub-39	PZ-41	319.33	PZ-42	319.17	78.7	0.20	540 mm	500.0	1.39	1.20	1.38	67.8	0.196	0.802
Tub-32	PZ-39	319.74	PZ-40	319.57	78.0	0.22	540 mm	500.0	1.34	1.20	1.42	63.7	0.188	0.868
Tub-42	PZ-38	317.35	PZ-16	317.20	77.7	0.20	760 mm	700.0	1.20	1.69	1.70	67.6	0.472	0.837
Tub-2	PZ-22	319.53	PZ-37	319.37	77.2	0.20	335 mm	300.0	1.25	1.68	1.00	70.7	0.053	0.719
Tub-3	PZ-37	319.31	PZ-34	319.16	77.1	0.20	400 mm	364.0	1.68	2.33	1.11	66.2	0.081	0.772
Tub-27	PZ-35	319.19	PZ-36	318.97	77.0	0.28	400 mm	364.0	1.83	1.14	1.38	74.2	0.114	0.861
Tub-45	PZ-11	315.42	PZ-18	315.26	75.4	0.20	1035 mm	1,000.0	3.71	3.10	2.11	64.5	1.122	0.903
Tub-4	PZ-34	319.16	PZ-31	318.97	75.2	0.25	400 mm	364.0	2.33	2.36	1.25	68.9	0.092	0.868
Tub-15	PZ-14	317.86	PZ-15	317.71	72.1	0.20	875 mm	800.0	1.89	1.55	1.79	60.3	0.558	0.907
Tub-31	PZ-33	315.71	PZ-10	315.57	70.6	0.20	975 mm	900.0	3.50	3.86	1.94	60.5	0.780	0.915
Tub-22	PZ-32	319.61	PZ-28	319.45	70.6	0.22	540 mm	500.0	1.20	1.48	1.45	65.1	0.196	0.868
Tub-30	PZ-25	316.05	PZ-33	315.91	69.9	0.20	760 mm	700.0	2.42	3.50	1.73	73.9	0.528	0.787
Tub-26	PZ-32	319.72	PZ-26	319.94	69.6	-0.32	440 mm	400.0	1.19	1.47	1.56	72.6	0.153	0.954
Tub-5	PZ-31	318.97	PZ-9	318.83	68.2	0.20	400 mm	364.0	2.36	2.49	1.13	71.6	0.090	0.734
Tub-19	PZ-20	314.68	PZ-30	314.54	67.4	0.20	1150 mm	1,100.0	2.42	0.25	2.26	66.9	1.512	0.898
Tub-25	PZ-3	319.69	PZ-29	319.82	66.3	-0.20	400 mm	364.0	1.58	1.20	1.06	55.9	0.063	0.829
Tub-23	PZ-28	319.35	PZ-23	319.23	62.0	0.20	650 mm	600.0	1.48	1.89	1.46	57.1	0.241	0.888
Tub-46	PZ-26	320.03	PZ-27	320.19	61.1	-0.27	400 mm	364.0	1.41	1.20	1.26	58.5	0.080	0.960
Tub-29	PZ-24	316.37	PZ-25	316.25	60.4	0.20	540 mm	500.0	1.20	2.42	1.40	73.1	0.215	0.757
Tub-24	PZ-23	319.23	PZ-3	319.11	58.1	0.20	650 mm	600.0	1.89	1.92	1.47	57.8	0.250	0.881
Tub-1	PZ-21	319.69	PZ-22	319.58	57.5	0.20	280 mm	250.0	1.20	1.25	0.83	61.3	0.024	0.773
Tub-18	PZ-19		PZ-20	314.68	56.2	0.20	1150 mm	1,100.0	3.23	2.42	2.25	66.0	1.488	0.903
Tub-44	PZ-17	315.15	PZ-18	315.26	56.1	-0.20	1035 mm	1,000.0	3.35	3.10	2.11	64.9	1.138	0.899
Tub-43	PZ-16	315.05	PZ-17	315.15	50.8	-0.20	1035 mm	1,000.0	3.54	3.35	2.12	65.1	1.145	0.896
Tub-11	PZ-12	318.22	PZ-13	318.14	39.9	0.20	760 mm	700.0	2.93	2.06	1.65	62.6	0.403	0.884
Tub-8	PZ-4	318.51	PZ-5	318.43	39.8	0.20	650 mm	600.0	2.38	2.77	1.53	67.0	0.300	0.835
Tub-16	PZ-15	317.71	PZ-16	317.64	36.3	0.20	875 mm	800.0	1.55	1.15	1.78	61.1	0.573	0.886
Tub-14	PZ-8	318.03	PZ-14	317.96	36.0	0.20	760 mm	700.0	1.97	1.89	1.72	70.0	0.494	0.819
Tub-12	PZ-13	318.14	PZ-7	318.08	33.9	0.20	760 mm	700.0	2.06	1.91	1.68	65.7	0.443	0.859
Tub-10	PZ-6	318.39	PZ-12	318.32	30.3	0.20	650 mm	600.0	2.98	2.93	1.57	74.6	0.356	0.764
Tub-38	PZ-10	315.47	PZ-11	315.42	27.2	0.20	1035 mm	1,000.0	3.86	3.71	2.08	62.9	1.059	0.920
Tub-6	PZ-9	318.83	PZ-3	318.78	26.2	0.20	400 mm	364.0	2.49	2.49	1.13	71.6	0.090	0.734
Tub-13	PZ-7	318.08	PZ-8	318.03	24.7	0.20	760 mm	700.0	1.91	1.97	1.70	68.4	0.465	0.842
Tub-9	PZ-5	318.43	PZ-6	318.39	20.6	0.20	650 mm	600.0	2.77	2.98	1.55	71.6	0.320	0.813
Tub-7	PZ-3	318.55	PZ-4	318.51	19.6	0.20	650 mm	600.0	2.49	2.38	1.49	62.4	0.260	0.872

Ilustración 75. Resultados de tuberías (SewerGEMS)

	ID	Pozo	Elevación del terreno (m)	Elevación del invert (m)
85: PZ-30	85	PZ-30	315.89	314.54
75: PZ-24	75	PZ-24	318.07	316.37
68: PZ-20	68	PZ-20	318.20	314.68
67: PZ-19	67	PZ-19	319.12	314.79
76: PZ-25	76	PZ-25	319.17	316.05
105: PZ-38	105	PZ-38	319.25	317.35
65: PZ-18	65	PZ-18	319.36	315.26
63: PZ-17	63	PZ-17	319.50	315.15
59: PZ-16	59	PZ-16	319.59	314.95
58: PZ-15	58	PZ-15	320.06	317.71
91: PZ-33	91	PZ-33	320.11	315.71
50: PZ-11	50	PZ-11	320.12	315.42
119: PZ-47	119	PZ-47	320.14	317.65
49: PZ-10	49	PZ-10	320.32	315.47
100: PZ-36	100	PZ-36	320.47	316.72
56: PZ-14	56	PZ-14	320.54	317.86
117: PZ-46	117	PZ-46	320.62	318.82
44: PZ-7	44	PZ-7	320.69	318.08
45: PZ-8	45	PZ-8	320.70	318.03
111: PZ-42	111	PZ-42	320.87	318.60
114: PZ-44	114	PZ-44	320.89	318.62
54: PZ-13	54	PZ-13	320.90	318.14
113: PZ-43	113	PZ-43	321.02	319.32
71: PZ-22	71	PZ-22	321.08	319.53
70: PZ-21	70	PZ-21	321.14	319.69
110: PZ-41	110	PZ-41	321.22	319.33
116: PZ-45	116	PZ-45	321.26	319.22
108: PZ-40	108	PZ-40	321.27	317.68
89: PZ-32	89	PZ-32	321.31	319.61
102: PZ-37	102	PZ-37	321.35	319.31
99: PZ-35	99	PZ-35	321.38	319.19
83: PZ-29	83	PZ-29	321.38	319.82
81: PZ-28	81	PZ-28	321.43	319.35
39: PZ-4	39	PZ-4	321.49	318.51
107: PZ-39	107	PZ-39	321.58	319.74
38: PZ-3	38	PZ-3	321.63	318.55
47: PZ-9	47	PZ-9	321.69	318.83
87: PZ-31	87	PZ-31	321.69	318.97
73: PZ-23		PZ-23	321.72	319.23
79: PZ-27		PZ-27	321.76	320.19
41: PZ-5		PZ-5	321.80	318.43
78: PZ-26		PZ-26	321.81	319.94
52: PZ-12		PZ-12	321.85	318.22
96: PZ-34		PZ-34	321.85	319.16
42: PZ-6		PZ-6	321.97	318.39

Ilustración 76. Resultados de pozos (SewerGEMS)

	ID	Descarga	Elevación del terreno (m)	Elevación del invert (m)
129: DESC-1	129	DESC-1	315.80	314.36

Ilustración 77. Resultados de la descarga (SewerGEMS)

54

	ID	Área de aporte	Pozo de salida	Área escalada (ha)	Método de escorrentía	Coeficiente de escorrentía	Caudal racional del área (m³/s)	Tiempo de concentración (min)	Intensidad de Iluvia (mm/h)
167: A-38	167	A-38	PZ-18	0.147	Rational Method	0.600	0.038	5.470	154.766
160: A-31	160	A-31	PZ-24	0.130	Rational Method	0.600	0.034	5.510	154.459
145: A-16	145	A-16	PZ-35	0.446	Rational Method	0.600	0.114	5.650	153,404
137: A-8	137	A-8	PZ-41	0.768	Rational Method	0.600	0.196	5.660	153.330
147: A-18	147	A-18	PZ-39	0.736	Rational Method	0.600	0.188	5.660	153.330
149: A-20	149	A-20	PZ-45	0.750	Rational Method	0.600	0.192	5.670	153.256
170: A-41	170	A-41	PZ-38	0.202	Rational Method	0.600	0.052	5.680	153.183
136: A-7	136	A-7	PZ-29	0.251	Rational Method	0.600	0.063	6.000	150.908
161: A-32	161	A-32	PZ-25	0.157	Rational Method	0.600	0.039	6.120	150.094
146: A-17	146	A-17	PZ-36	0.335	Rational Method	0.600	0.083	6.430	148.083
150: A-21	150	A-21	PZ-40	0.492	Rational Method	0.600	0.121	6.440	148.020
130: A-1	130	A-1	PZ-21	0.100	Rational Method	0.600	0.024	6.660	146.669
159: A-30	159	A-30	PZ-42	0.639	Rational Method	0.600	0.153	7.190	143.635
148: A-19	148	A-19	PZ-43	0.786	Rational Method	0.600	0.188	7.270	143.202
139: A-10	139	A-10	PZ-26	0.347	Rational Method	0.600	0.082	7.470	142.145
151: A-22	151	A-22	PZ-44	0.558	Rational Method	0.600	0.131	7.710	140.923
138: A-9	138	A-9	PZ-27	0.343	Rational Method	0.600	0.080	8.000	139.509
131: A-2	131	A-2	PZ-22	0.143	Rational Method	0.600	0.033	8.620	136.695
169: A-40	169	A-40	PZ-17	0.088	Rational Method	0.600	0.020	9.030	134.972
163: A-34	163	A-34	PZ-10	0.140	Rational Method	0.600	0.031	9.220	134.207
132: A-3	132	A-3	PZ-37	0.130	Rational Method	0.600	0.028	10.160	130.697
152: A-23	152	A-23	PZ-46	0.534	Rational Method	0.600	0.115	10.600	129.193
155: A-26	155	A-26	PZ-12	0.441	Rational Method	0.600	0.095	10.600	129.193
164: A-35	164	A-35	PZ-11	0.333	Rational Method	0.600	0.071	10.900	128.212
166: A-37	166	A-37	PZ-47	0.653	Rational Method	0.600	0.139	10.900	128.212
162: A-33	162	A-33	PZ-33	0.152	Rational Method	0.600	0.031	12.540	123.399
141: A-12	141	A-12	PZ-28	0.250	Rational Method	0.600	0.049	14.700	118.160
140: A-11	140	A-11	PZ-32	0.334	Rational Method	0.600	0.064	16.350	114.777
143: A-14	143	A-14	PZ-3	0.084	Rational Method	0.600	0.016	16.570	114.359
144: A-15	144	A-15	PZ-4	0.368	Rational Method	0.600	0.069	17.460	112.738
173: A-44	173	A-44	PZ-20	0.235	Rational Method	0.600	0.044	17.710	112.301
153: A-24	153	A-24	PZ-5	0.192	Rational Method	0.600	0.036	17.820	112.111
133: A-4	133	A-4	PZ-34	0.123	Rational Method	0.600	0.023	18.650	110.727
168: A-39	168	A-39	PZ-15	0.155	Rational Method	0.600	0.029	18.700	110.646
156: A-27	156	A-27	PZ-13	0.370	Rational Method	0.600	0.068	18.710	110.629
174: A-45	174	A-45	PZ-30	0.311	Rational Method	0.600	0.056	20.370	108.092
172: A-43	172	A-43	PZ-19	0.227	Rational Method	0.600	0.041	20.620	107.732
165: A-36	165	A-36	PZ-14	0.597	Rational Method	0.600	0.105	22,450	105,260
135: A-6	135	A-6	PZ-9	0.027	Rational Method	0.600	0.005	22.710	104.930
158: A-29	158	A-29	PZ-8	0.275		0.600	0.048	23.380	104, 100
154: A-25	154	A-25	PZ-6	0.336	Rational Method	0.600	0.058	23,530	103.919
142: A-13	142		PZ-23	0.178	Rational Method	0.600	0.031	24.210	103.114
171: A-42	171	A-42	PZ-16	0.301		0.600	0.050	27, 180	99,907
157: A-28	157	A-28	PZ-7	0.208	Rational Method	0.600	0.029	54.260	82,724
134: A-5		A-5	PZ-31		Rational Method	0.600	0.011	132,670	64,808

Ilustración 78. Resultados de áreas de aporte (SewerGEMS)

Los datos hidráulicos de las tuberías que componen el alcantarillado pluvial diseñado se encuentran especificados en los planos, los cuales se presentan tanto en planta como en perfil. En el *ANEXO I* se tiene la planimetría de la red de alcantarillado pluvial con las curvas de nivel, y en el *ANEXO IV, ANEXO V y ANEXO VI* se encuentran los planos de planta y perfil de las respectivas calles.

Resultados hoja de cálculo Excel

En la hoja de Excel se ha realizado el diseño de los elementos que conforman la Calle 1 y la Calle principal, ya que se utilizó este método como comprobación. A continuación, se

presentan los resultados para la Calle 1 y de la tubería Tub-46, que corresponde al primer tramo de dicha calle.

TRAMO	POZO	TERRENO	L planta	L acumulada	L	So
	Nº	msnm	m	m	m	m/m
TRAMO DE C	ALLE 1			<u> </u>		
	PZ-27	321.76				
Tub-46			61.10	61.10	61.10	0.001
	PZ-26	321.81				
Tub-26			69.60	130.70	69.60	0.007
	PZ-32	321.31				
Tub-22			70.60	201.30	70.60	0.002
	PZ-28	321.43			•	
Tub-23			62.00	263.30	62.00	0.005
	PZ-23	321.72				
Tub-24	•		58.10	321.40	58.10	0.002
	PZ-3	321.63				
·	PZ-29	321.38				
Tub-25	·		66.30	66.30	66.30	0.004
	PZ-3	321.63				

					CAUD	AL DE DISEÑ	10				
С	Α	A acum	tc	Li/Vi	Σli/Vi	tf	t	ı	Qa	Q parcial	Qd
Ů	Ha	Ha	min	_, _, , , , , , , , , , , , , , , , , ,	ZID V1	min	min	mm/h	m³/s	m³/s	m³/s
0.60	0.34	0.34	7.11	53.74	53.74	0.90	8.00	139.50		0.0798	0.0798
0.60	0.35	0.69	5.53	62.65	116.38	1.94	7.47	142.15		0.0822	0.162
0.60	0.33	1.02	13.43	58.59	174.97	2.92	16.35	114.78		0.0639	0.226
0.60	0.25	1.27	11.18	35.69	210.67	3.51	14.70	118.17		0.0492	0.275
0.60	0.18	1.45	19.96	44.80	255.46	4.26	24.21	103.11		0.0306	0.306
0.60	0.25	0.25	5.00	60.22	60.22	1.00	6.00	150.88		0.0631	0.063
		1									

	CARACTER	ÍSTICS FÍSICA	AS
D	ı	ı	f
m	%	0/00	Fricción
0.364	0.270	2.7	0.01321
0.4	0.340	3.4	0.01223
0.5	0.220	2.2	0.01196
		_	
0.6	0.200	2	0.01168
0.0	0.000		0.04457
0.6	0.200	2	0.01157
0.364	0.200	2	0.01370

			DATOS	HIDRAULIC	os				
Q	Vdiseño	Vreal	Calado	Rh	Reynolds	Froude	Régimen de		
Vs.	m/s	m/s	Y (m)	m	Re	Fr	funcionamiento		
0.080	1.137	1.264	0.213	0.0996646	5.00E+05	0.88	SUBCRÍTICO		
0.162	1.111	1.621	0.297	0.1203762	7.75E+05	0.95	SUBCRÍTICO		
0.226	1.205	1.474	0.364	0.1498377	8.77E+05	0.78	SUBCRÍTICO		
0.275	1.737	1.506	0.370	0.1687386	1.01E+06	0.79	SUBCRÍTICO		
0.306	1.297	1.538	0.397	0.1742307	1.06E+06	0.78	SUBCRÍTICO		
							,		
0.063	1.101	1.057	0.203	0.0972354	4.08E+05	0.75	SUBCRÍTICO		

Ilustración 79. Resultados hoja de cálculo Excel

Comparación de resultados

Con los resultados obtenidos en ambos métodos de cálculo, se ha realizado un resumen para definir la variación entre los dos métodos. Se ha comparado los parámetros más importantes en el diseño del alcantarillado pluvial, como: caudal parcial, caudal acumulado, diámetro, pendiente, velocidad, número de Froude y la relación entre el calado y el diámetro y/D, teniendo así:

Tabla 16. Comparación de resultados de caudal parcial

			CAUDAL	PARCIAL (m3/s)	
TRAMO D	TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-27				
Tub-46		0.0798	0.0800	-0.3132	-0.0002
	PZ-26				
Tub-26		0.0822	0.0820	0.2564	0.0002
	PZ-32				
Tub-22		0.0639	0.0640	-0.1615	-0.0001
	PZ-28				
Tub-23		0.0492	0.0490	0.4823	0.0002
	PZ-23				
Tub-24		0.0306	0.0310	-1.3425	-0.0004
	PZ-3				
	PZ-29				
Tub-25		0.0631	0.0630	0.1887	0.0001
	PZ-3				

El caudal parcial tanto en Excel como en el software se determinó mediante el método racional, es decir considerando los parámetros de área, coeficiente de escorrentía e intensidad de lluvia, teniendo así resultados con una diferencia mínima y un porcentaje de error máximo de 1.34% en la calle 1.

Tabla 17. Comparación de resultados de caudal acumulado

			CAUDAL (m3/s)					
TRAMO D	TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA			
	PZ-27							
Tub-46		0.0798	0.0800	-0.3132	-0.0002			
	PZ-26							
Tub-26		0.1620	0.1530	5.5328	0.0090			
	PZ-32							
Tub-22		0.2259	0.1960	13.2197	0.0299			
	PZ-28							
Tub-23		0.2751	0.2410	12.3940	0.0341			
	PZ-23							
Tub-24		0.3057	0.2500	18.2164	0.0557			
	PZ-3							
	PZ-29							
Tub-25		0.0631	0.0630	0.1887	0.0001			
	PZ-3							

En los resultados obtenidos del caudal tanto en Excel como SewerGEMS, se aprecia que hay tuberías con diferencias pequeñas. La primera tubería *Tub-46*, tiene un porcentaje de error muy bajo, ya que es el inicio del tramo, sin embargo, en las tuberías que continúan, como la *Tub-23 y Tub-24* se tiene un porcentaje mayor, alcanzando hasta un 18.2%, esto

se debe principalmente a que son tramos finales donde algunos tramos de diversas calles longitudinales y transversales convergen.

En lo que corresponde a los diámetros por ambos métodos se ha obtenido los mismos valores tanto para la hoja de cálculo como para el software.

Tabla 18. Comparación de resultados de diámetro

			DIÁN	IETRO (m)	
TRAMO D	TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-27				
Tub-46		0.3640	0.3640	0.0000	0.0000
	PZ-26				
Tub-26		0.4000	0.4000	0.0000	0.0000
	PZ-32				
Tub-22		0.5000	0.5000	0.0000	0.0000
	PZ-28				
Tub-23		0.6000	0.6000	0.0000	0.0000
	PZ-23				
Tub-24		0.6000	0.6000	0.0000	0.0000
	PZ-3				
	PZ-29				
Tub-25		0.3640	0.3640	0.0000	0.0000
	PZ-3		·	•	

En las pendientes obtenidas por ambos métodos, se aprecia que la mayoría de los tramos de tubería trabajan con las mismas características.

Tabla 19. Comparación de resultados de pendiente

		PENDIENTE (%)					
TRAMO [TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA		
	PZ-27						
Tub-46		0.2700	0.2700	0.0000	0.0000		
	PZ-26						
Tub-26		0.3400	0.3200	5.8824	0.0200		
	PZ-32						
Tub-22		0.2200	0.2200	0.0000	0.0000		
	PZ-28						
Tub-23		0.2000	0.2000	0.0000	0.0000		
	PZ-23						
Tub-24		0.2000	0.2000	0.0000	0.0000		
	PZ-3						
	PZ-29						
Tub-25		0.2000	0.2000	0.0000	0.0000		
	PZ-3						

Los rangos de variación de velocidad son bajos y menores al 5%. El valor mal alto de variación de velocidad (4.4%) corresponde de igual forma a los tramos finales. Ambos métodos de diseño cumplen con las condiciones establecidas por las normas para su correcto funcionamiento.

Tabla 20. Comparación de resultados de velocidad

			VELC	CIDAD (m/s)	
TRAMO D	TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-27				
Tub-46		1.2643	1.2600	0.3406	0.0043
	PZ-26				
Tub-26		1.6206	1.5600	3.7389	0.0606
	PZ-32				
Tub-22		1.4740	1.4500	1.6278	0.0240
	PZ-28				
Tub-23		1.5056	1.4600	3.0304	0.0456
	PZ-23				
Tub-24		1.5377	1.4700	4.4052	0.0677
	PZ-3				
	PZ-29				
Tub-25		1.0568	1.0600	-0.3020	-0.0032
	PZ-3			·	·

Los resultados obtenidos del número de Froude presentan una variación de alrededor del 10%, teniendo valores más altos en los números de Froude obtenidos con la simulación numérica, con ambos métodos el flujo se encuentra en régimen subcrítico.

Tabla 21. Comparación de resultados de Número de Froude

			F	ROUDE	
TRAMO [TRAMO DE CALLE 1		SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-27				
Tub-46		0.88	0.96	-9.71	-0.08
	PZ-26				
Tub-26		0.95	0.95	-0.35	0.00
	PZ-32				
Tub-22		0.78	0.87	-11.31	-0.09
	PZ-28				
Tub-23		0.79	0.89	-12.29	-0.10
	PZ-23				
Tub-24		0.78	0.88	-13.13	-0.10
	PZ-3				
	PZ-29				`
Tub-25		0.75	0.83	-10.75	-0.08
	PZ-3		·	·	

Finalmente, se tiene la comparación de la relación del calado y el diámetro, que representa un porcentaje de llenado, el cual según la norma no debe exceder el 75%. Como se aprecia en la siguiente tabla los resultados tienen una variación en el segundo o tercer decimal, teniendo un porcentaje de error máximo de 12.74% y un porcentaje de error mínimo de 0.14%. Sin embargo, en ambos métodos se cumple con lo establecido en la norma, es decir, el porcentaje de llenado de la tubería no supera el 75%.

Tabla 22. Comparación de resultados de la relación y/D

		RELACIÓN y/D			
TRAMO	DE CALLE 1	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-27				
Tub-46		0.5840	0.5850	-0.1688	-0.0010
	PZ-26				
Tub-26		0.7413	0.7260	2.0649	0.0153
	PZ-32				
Tub-22		0.7284	0.6510	10.6298	0.0774
	PZ-28				
Tub-23		0.6159	0.5710	7.2869	0.0449
	PZ-23				
Tub-24		0.6624	0.5780	12.7405	0.0844
	PZ-3				
			•		•
	PZ-29		•		•
Tub-25		0.5582	0.5590	-0.1416	-0.0008
	PZ-3			·	

Resultados de pozos

El alcantarillado pluvial para la comunidad 25 de Diciembre se compone de 45 pozos de revisión, los cuales se clasifican de acuerdo con su diámetro, que puede ser de 1.20 m, 1.40 m o 1.60 m. Del total de pozos, hay 10 pozos especiales que se han denominado Pozo Tipo I y Pozo Tipo II, de acuerdo con las condiciones de salto que tienen. Los pozos especiales mencionados se han definido de acuerdo a lo establecido en las Normas de diseño de sistemas de alcantarillado para la EMAAP-Q, en el ítem 5.3.22. Estructuras de disipación de energía. Teniendo en cuenta que ha sido necesario implementar los pozos especiales, debido a que requieren una disipación de energía que no se lograría con los pozos de salto normal. A continuación, se presenta un esquema de los diferentes tipos de pozos, y en el ANEXO XI, se encuentra un listado de los pozos.

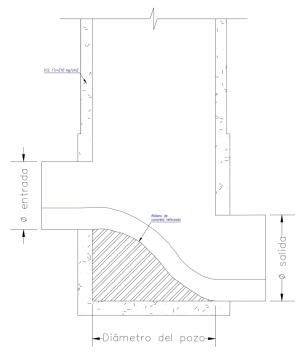


Ilustración 80. Esquema Pozo Tipo I



Ilustración 81. Esquema Pozo Tipo II

Tabla 23. Pozos especiales Tipo I y Tipo II

Nro. Pozo	Altura de pozo (m)	Diámetro de pozo (m)	Tipo de pozo
PZ23	4.64	1.6	Pozo Tipo II
PZ26	1.75	1.6	Pozo Tipo II
PZ29	3.77	1.2	Pozo Tipo II
PZ31	3.15	1.4	Pozo Tipo II
PZ32	4.40	1.6	Pozo Tipo II
PZ33	4.86	1.6	Pozo Tipo II
PZ40	2.30	1.4	Pozo Tipo II
PZ41	2.51	1.4	Pozo Tipo II
PZ44	3.61	1.4	Pozo Tipo II
PZ46	2.29	1.4	Pozo Tipo I

Resultados de la estructura de descarga

La tubería de descarga al río tiene un diámetro de 1100 mm, diámetro nominal 1150 mm, con una pendiente de 0.20% y flujo en régimen subcrítico. El diámetro de la tubería de descarga tanto en la hoja de cálculo como en el software es de 1100 mm. De acuerdo con las condiciones de restitución, se ha determinado que es necesario implementar una estructura de descarga que se compone de un muro de ala para seguridad de la tubería y

de gradas con pendiente de 0.20% para que el flujo no se acelere en la parte final de la descarga y evitar efectos de socavación en el río.

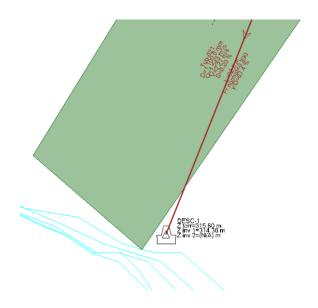


Ilustración 82. Tubería de llegada a la descarga

A continuación, se presenta el esquema de la estructura de descarga. Las paredes del muro de ala se han considerado de 20 cm. Las dimensiones de toda la estructura se presentan en la vista frontal, lateral y superior. Es importante recalcar que la tubería llega con un nivel de 314.35 msnm, mientras que el nivel normal del río está en los 314.10 msnm, es decir la descarga no se da sumergida, si no que el flujo es restituido al cuerpo de agua, en condiciones subcríticas con los escalones de la estructura de descarga.

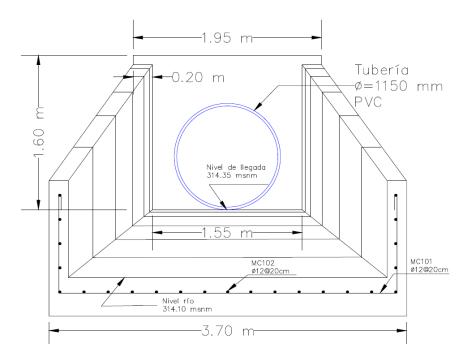


Ilustración 83. Vista frontal de la estructura de descarga

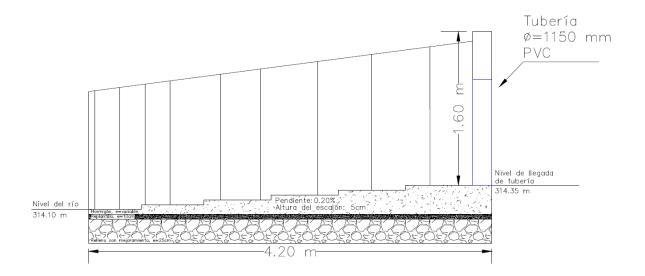


Ilustración 84. Vista lateral de estructura de descarga

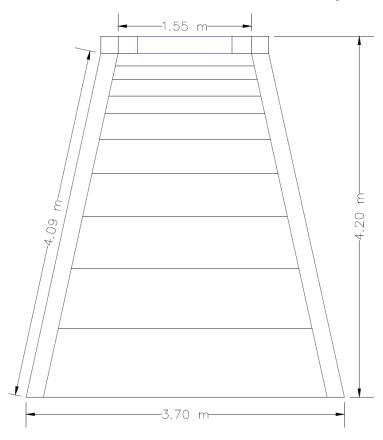


Ilustración 85. Vista superior de estructura de descarga

Cálculo de cantidades y precios unitarios

De acuerdo con los resultados obtenidos en el diseño del alcantarillado, se ha generado una hoja de cálculo para determinar las cantidades de obra del proyecto, los cuales se encuentran a detalle en el ANEXO X. A continuación, se presenta un resumen del presupuesto referencial, considerando las cantidades obtenidas y los precios unitarios para

cada uno de los rubros, mismos que han sido determinados de acuerdo con precios referenciales de proyectos del Cantón La Joya de los Sachas.

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERÍA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

PRESUPUESTO REFERENCIAL

<u>COMPONENTE</u>	<u>TOTAL</u>
TRABAJOS PRELIMINARES	8,592.02
MOVIMIENTOS DE TIERRA	145,419.57
POZOS DE REVISION	61,876.03
SUMINISTRO E INSTALACION DE TUBERIA	458,037.84
DESCARGA	2,499.42
RUBROS COMPLEMENTARIOS	7,139.60
SUBTOTAL	683564.4798

Ilustración 86. Resumen del presupuesto referencial por componentes

Considerando los componentes presentados, cantidades obtenidas y precios unitarios asignados, se tiene un presupuesto referencial de \$683,564.48 (SEISCIENTOS OCHENTA Y TRES MIL QUINIENTOS SESENTA Y CUATRO CON 48/100 DÓLARES AMERICANOS).

El cálculo de las cantidades de obra se ha realizado en hojas de cálculo que permiten con facilidad obtener los resultados que influyen directamente en el presupuesto referencial. A continuación, se presenta el ejemplo de la hoja de cálculo realizada para el *Rubro 06 cama de arena para tubería h=10cm.*

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACION CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
06	06	CAMA DE ARENA PARA TUBERIA h=10cm	m3	407.09

DESCRIPCIÓN	VALOR	UNIDAD
AREA CAMA DE ARENA	4070.88	m2
ALTURA CAMA DE ARENA	0.10	m
VOLUMEN CAMA DE ARENA	407 09	m3

Ilustración 87. Ejemplo del cálculo de cantidades de un rubro

Como se puede apreciar, en la hoja consta el código, número, rubro, unidad y cantidad del rubro que se está calculando, y se realiza un detalle de la forma en que se obtuvo la cantidad necesaria para el proyecto.

Resultados del presupuesto referencial

El presupuesto referencial se compone por los rubros que se presentan a continuación.

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERÍA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

PRESUPUESTO REFERENCIAL

	Т	PRESUPUESTO REFERENC	-			
Cod.	No.	Rubro / Descripción	<u>Unidad</u>	<u>Cantidad</u>	Precio Unitario	<u>Total</u>
_	S PRELIMINA		_		T	
01	01	LIMPIEZA Y DESBROCE MANUAL	m2	3,407.28	0.58	1,976.22
02	02	REPLANTEO Y NIVELACION LINEAL	m	2,839.40	2.33	6,615.80
	NTOS DE TIER	1				
03	03	EXCAVACION A MAQUINA (h=0.00m a 2.00m)	m3	4,034.14	2.92	11,779.70
04	04	EXCAVACION A MAQUINA (h=2.01m a 4.50m)	m3	4,685.19	5.84	27,361.48
05	05	RASANTEO DE ZANJA MANUAL	m2	4,070.88	1.49	6,065.60
06	06	CAMA DE ARENA PARA TUBERIA h=10cm	m3	407.09	16.28	6,627.39
07	07	ACOSTILLADO DE TUBERIA	m3	73.51	16.81	1,235.77
08	08	RELLENO COMPACTADO CON VIBROAPISONADOR, MATERIAL DE SITIO	m3	7,099.63	10.97	77,882.90
09	09	MEJORAMIENTO DE SUELO CON LASTRE	m3	814.18	10.01	8,149.89
10	10	DESALOJO DE MATERIAL DE EXCAVACION	m3	1,619.70	3.90	6,316.84
POZOS DE	E REVISION					
11	11	POZO DE REVISION H=0.80m a 2.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)	u	12.00	483.65	5,803.80
12	12	POZO DE REVISION H=2.01m a 4.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)	u	19.00	587.21	11,156.99
13	13	POZO DE REVISION H=4.01m 6.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)	u	4.00	914.23	3,656.92
14	14	POZO DE SALTO TIPO I (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)	u	2.00	1,234.21	2,468.42
15	15	POZO DE SALTO TIPO II (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)	u	8.00	1,279.23	10,233.84
16	16	REPLANTILLO fc=140kg/cm2	m3	8.54	145.31	1,240.37
17	17	PELDAÑOS DE ACERO fy=4200 Kg/cm2, d=16 mm	u	529.00	5.81	3,073.49
18	18	SUMIDEROS H.F. 60x37 cm	u	106.00	228.70	24,242.20
SUMINIST	RO E INSTAL	ACION DE TUBERIA				
19	19	ENTIBADO METALICO EN ZANJAS PARA ALCANTARILLADO	m	940.10	18.61	17,495.26
20	20	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=200mm NORMA INEN 2059	m	635.40	20.82	13,229.03
21	21	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=250mm NORMA INEN 2059	m	57.50	26.03	1,496.73
22	22	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=300mm NORMA INEN 2059	m	77.20	41.82	3,228.50
23	23	SUM. E INST. TUBERIA PARED INTERNA LISA DINE364mm NORMA INEN 2059	m	451.10	45.74	20,633.31
24	24	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=400mm NORMA INEN 2059	m	69.60	61.92	4,309.63
25	25	SUM. E INST. TUBERIA PARED INTERNA LISA DINE500mm NORMA INEN 2059	m	535.90	102.74	55,058.37
26	26	SUM. E INST. TUBERIA PARED INTERNA LISA DINE600mm NORMA INEN 2059	m	580.50	139.34	80,886.87
27	27	SUM. E INST. TUBERIA PARED INTERNA LISA DIINE700mm NORMA INEN 2059	m	383.10	163.20	62,521.92
28	28	SUM. E INST. TUBERIA PARED INTERNA LISA DINE-800mm NORMA INEN 2059 SUM. E INST. TUBERIA PARED INTERNA LISA DINE-900mm NORMA INEN	m	108.40	232.49	25,201.92
29	29	SUM. E INST. TUBERIA PARED INTERNA LISA DIRIE 1000mm NORMA INEN	m	70.60	261.56	18,466.14
30	30	SUM. E INST. TUBERIA PARED INTERNA LISA DINE 1100mm NORMA INEN	m	209.50	290.62	60,884.89
31 DESCARG	31 A	2059	m	296.00	319.68	94,625.28
		REDI ANTEO MANUAL PARA ESTRUCTURAS	m ²	11 60	1 10	12.06
32	32	REPLANTEO MANUAL PARA ESTRUCTURAS DESBROCE Y LIMPIEZA MANUAL DEL TERRENO	m2 m2	11.69 11.69	1.10 0.58	12.86 6.78
34	34	REPLANTILLO fc=140kg/cm2	m3	1.17	145.31	169.87
35	35	ENCOFRADO/DESENCOFRADO	m2	34.20	12.65	432.63
36	36	HORMIGÓN SIMPLE fc=210 kg/cm2	m3	5.62	249.00	1,400.25
37	37	ACERO DE REFUERZO fy=4200 kg/cm2 (SUMIN. Y COLOCACIÓN)	kg	186.75	2.21	412.71
38	38	RELLENO COMPACTADO CON MATERIAL DE MEJORAMIENTO	m3	2.92	22.01	64.32
	COMPLEMEN		1113	2.92	22.01	04.32
39	39	REPARACIÓN DE ACOMETIDAS DE AGUA POTABLE	u	50.00	142.79	7,139.60
55	Jä	SUBTOTAL	_ u	30.00	142.19	683,564.48
		SUBTUTAL				003,304.48

Ilustración 88. Presupuesto referencial

3.2. Conclusiones

- El diseño de la red de alcantarillado pluvial para la comunidad 25 de Diciembre, se compone de 45 pozos de revisión y 3474.80 m de tubería de diferentes diámetros, teniendo un diámetro que llega al punto de descarga de 1100 mm.
- El diseño del alcantarillado obtenido cumple con los criterios planteados por las diferentes normas ecuatorianas, se trabaja con velocidades admisibles y en lo posible número de Froude menores a 1.
- Para el diseño ha sido necesario aplicar diferentes normas empezando por el manual de lluvias intensas que permitió identificar la zona en la que se encuentra el proyecto, además, permite caracterizar las lluvias de la zona por medio de las curvas IDF obtenidas.
- El software OpenFlows SewerGEMS (licencia académica) de Bentley ha sido una herramienta muy útil en el diseño del alcantarillado, ya que permite modelar proyectos con las características que se requiera, además cuenta con una interfaz amigable para trabajar y en el postproceso se obtiene muchos parámetros de interés.
- La comparación de resultados entre la hoja de cálculo de Excel con la modelación obtenida tiene una variación en diferentes tramos de tubería, esto se debe a que la hoja de cálculo se basa en un flujo uniforme mientras que el software considera flujo no uniforme. La variación no es la misma en todos los tramos, en tramos iniciales se tiene menor variación, mientras que en tramos finales aumenta ligeramente.
- Al llegar al punto de descarga con una tubería de 1100 mm, y una pendiente de 0.20% se ha considerado necesario colocar una estructura de descarga (muro de ala) que mantenga las condiciones del flujo como pendiente y velocidad del flujo hasta que se incorpore con el río, evitando daños en el sitio de descarga.
- La metodología presentada en este trabajo de integración curricular corresponde a la memoria técnica del proyecto, ya que considera todas las condiciones, normas y restricciones con las que se ha diseñado el alcantarillado pluvial.
- El presupuesto referencial alcanza un monto de \$ 683,564.48 (SEISCIENTOS OCHENTA Y TRES MIL QUINIENTOS SESENTA Y CUATRO CON 48/100 DÓLARES AMERICANOS), el cual puede variar de acuerdo con la variación que exista en el mercado respecto a materiales, mano de obra, equipos y transporte.

3.3. Recomendaciones

- Revisar la información inicial básica para realizar el diseño del alcantarillado, es fundamental contar con una topografía adecuada y conocer las características de la zona de estudio.
- Utilizar un software que facilite y agilice los procesos de diseño de este tipo de sistemas, además que permita la modificación o corrección de sus elementos de manera dinámica, es decir, que se tenga libertad para modificar y que cuente con un cálculo automático.
- Utilizar estructuras de disipación de energía en los puntos que se tiene alturas demasiado grandes, para evitar daños en los pozos de revisión o en las tuberías.

4. REFERENCIAS BIBLIOGRÁFICAS

- Bravo, S. (2020). Cálculo de pérdidas de cargas de diferentes accesorios utilizados en tuberías a presión en el laboratorio de hidráulica UNESUM. Jipijapa.
- Carvajal, L. (2006). *Metodología de la Investgación Científica. Curso general y aplicado* (28 ed.). Santiago de Cali: U.S.C.
- Chow, P. D. (1994). Hidráulica de canales abiertos. McGraw-Hill Interamericana S.A.
- EMAAP-Q, E. M. (2009). Normas de diseño de sistemas de alcantarillado para la EMAAP-Q. Quito: V&M Gráficas.
- Empresa Metropolitana de Alcantarillado y Agua Potable, E.-Q. (2009). Normas de diseño de sistemas de alcantarillado para la EMAAP-Q. Quito: V&M Gráficas.
- INEN, I. E. (1992). Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 habitantes. Quito.
- Interagua. (s.f.). Sistema de alcantarillado pluvial. Guayaquil, Guayas, Ecuador.
- Párraga, C. (2022). Diseño de un sistema de alcantarillado pluvial para un sector del cantón Urcuquí en la provincia de Imbabura. (*Trabajo de Titulación, opción Examen Complexivo*). Escuela Politécnica Nacional, Quito.
- SENAGUA, S. d. (2010). Norma de diseño para sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural.

5. ANEXOS

Anexo I. Planimetría de la red de alcantarillado pluvial, curvas de nivel

Anexo II. Planimetría de la red de alcantarillado pluvial, trazado de la red

Anexo III. Planimetría de la red de alcantarillado pluvial, áreas de aporte

Anexo IV. Planta y perfil de la Calle 1, Calle 3, Calle 4 y Calle A

Anexo V. Planta y perfil de la Calle B, Calle C, Calle D y Calle E

Anexo VI. Planta y perfil de la Calle Principal

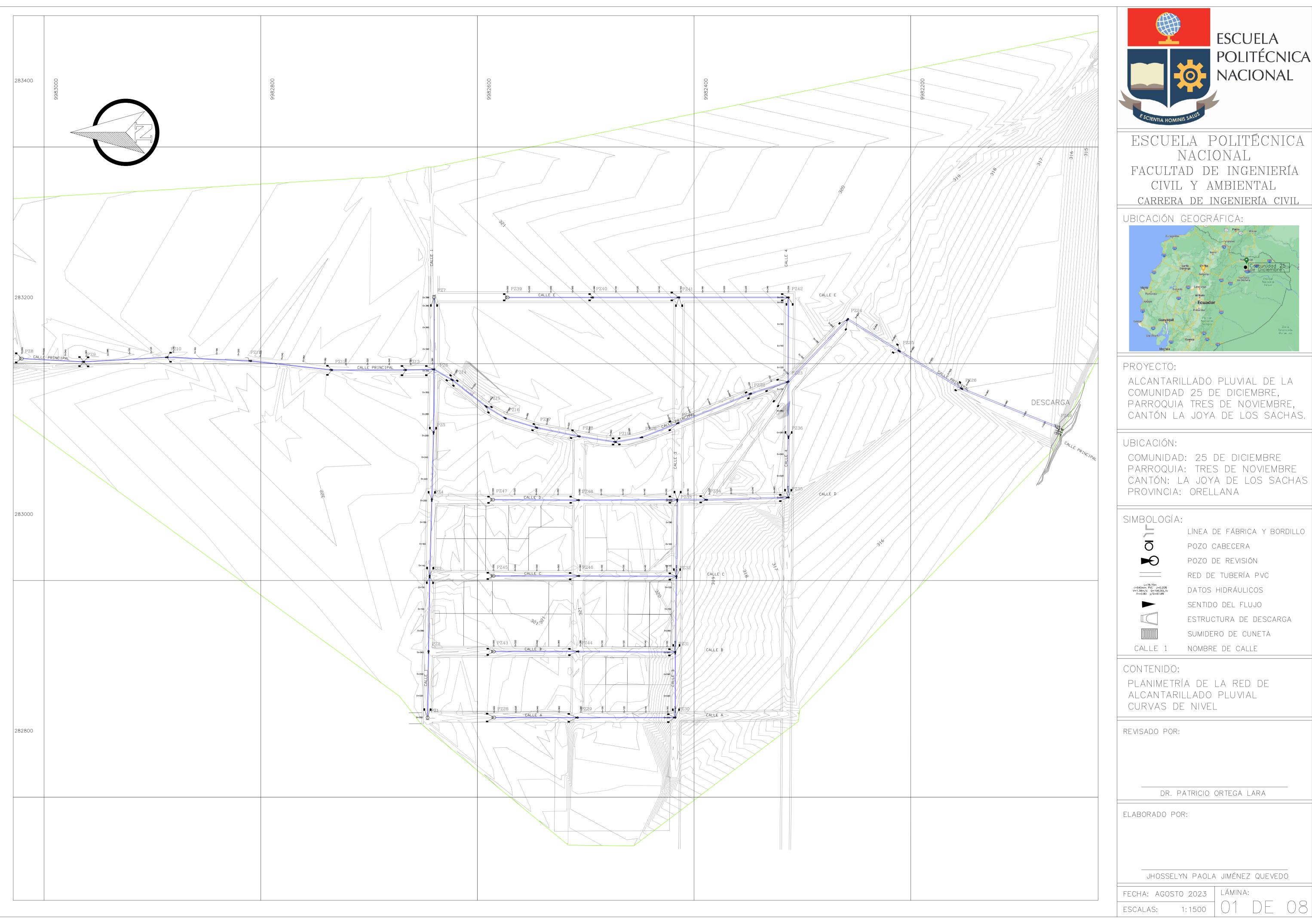
Anexo VII. Detalle de estructura de descarga, sumideros de calzada y conexiones de pozos

Anexo VIII. Detalle de pozos de revisión y pozos de salto

Anexo IX. Catálogo de tuberías

Anexo X. Cálculo de cantidades para el presupuesto

Anexo XI. Tipos de pozos


Anexos XII. Resultados de cálculos en Excel para cada tubería de la Calle 1

Anexos XIII. Resultados de cálculos en Excel para cada tubería de la Calle Principal

Anexo XIV. Comparación de resultados Tramo de Calle 1

Anexo XV. Comparación de resultados Tramo de Calle Principal

ANEXO I

ESCUELA POLITÉCNICA NACIONAL

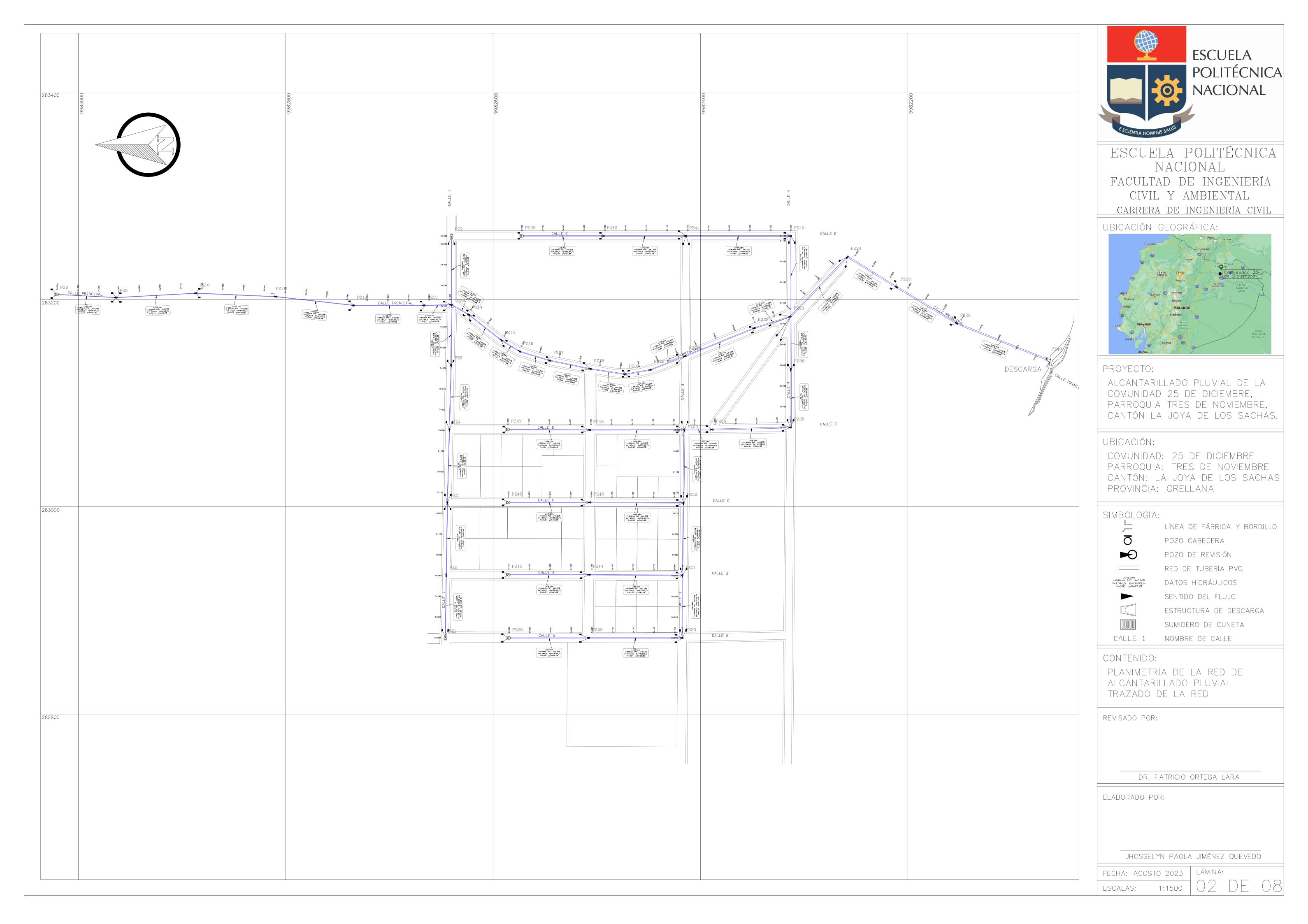
CIVIL Y AMBIENTAL

ALCANTARILLADO PLUVIAL DE LA COMUNIDAD 25 DE DICIEMBRE, PARROQUIA TRES DE NOVIEMBRE, CANTÓN LA JOYA DE LOS SACHAS.

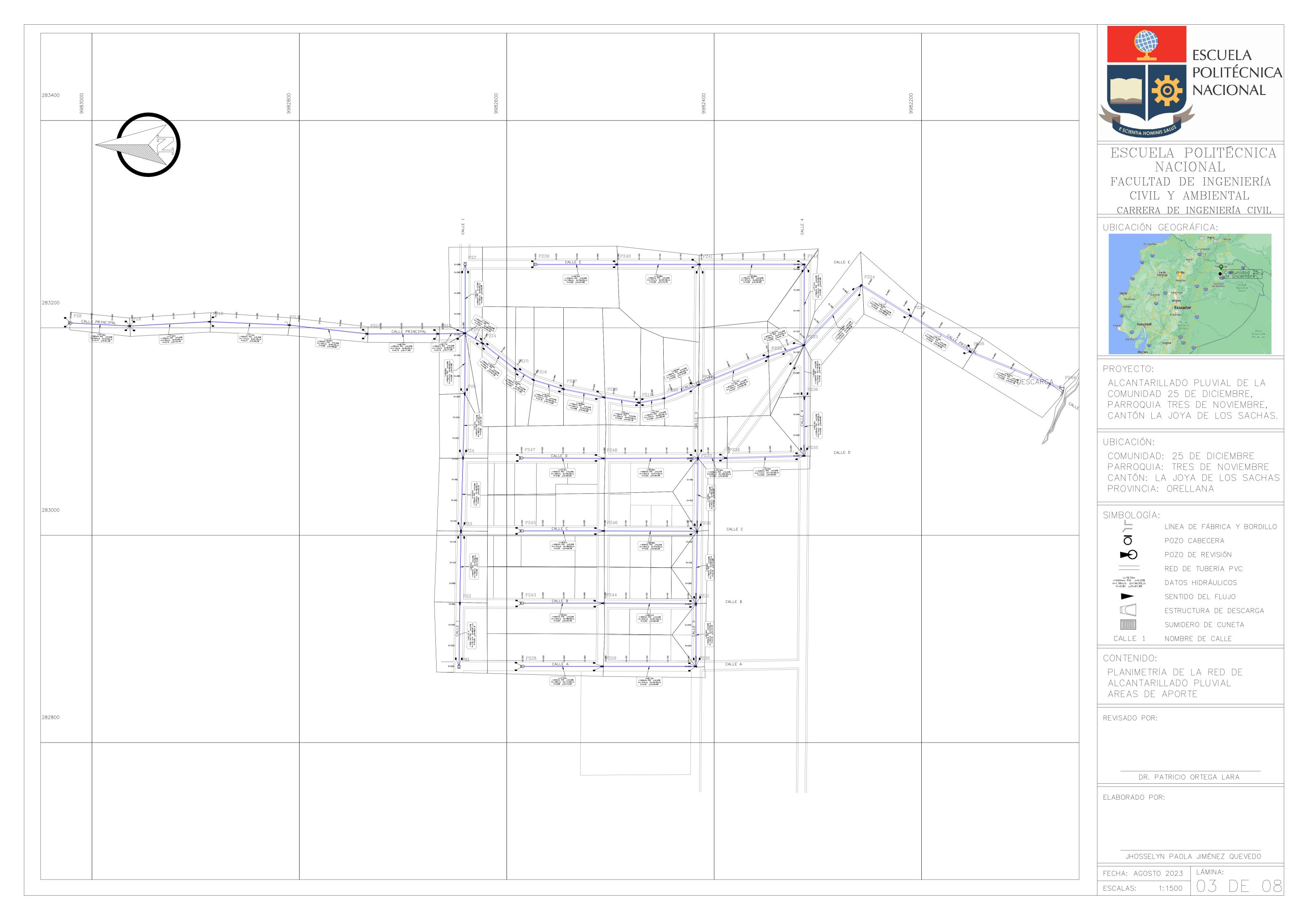
COMUNIDAD: 25 DE DICIEMBRE PARROQUIA: TRES DE NOVIEMBRE CANTÓN: LA JOYA DE LOS SACHAS

LÍNEA DE FÁBRICA Y BORDILLO

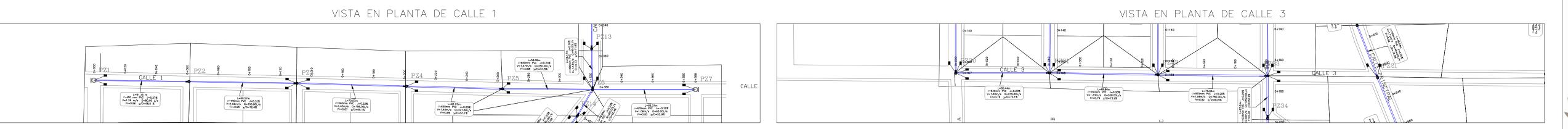
POZO DE REVISIÓN

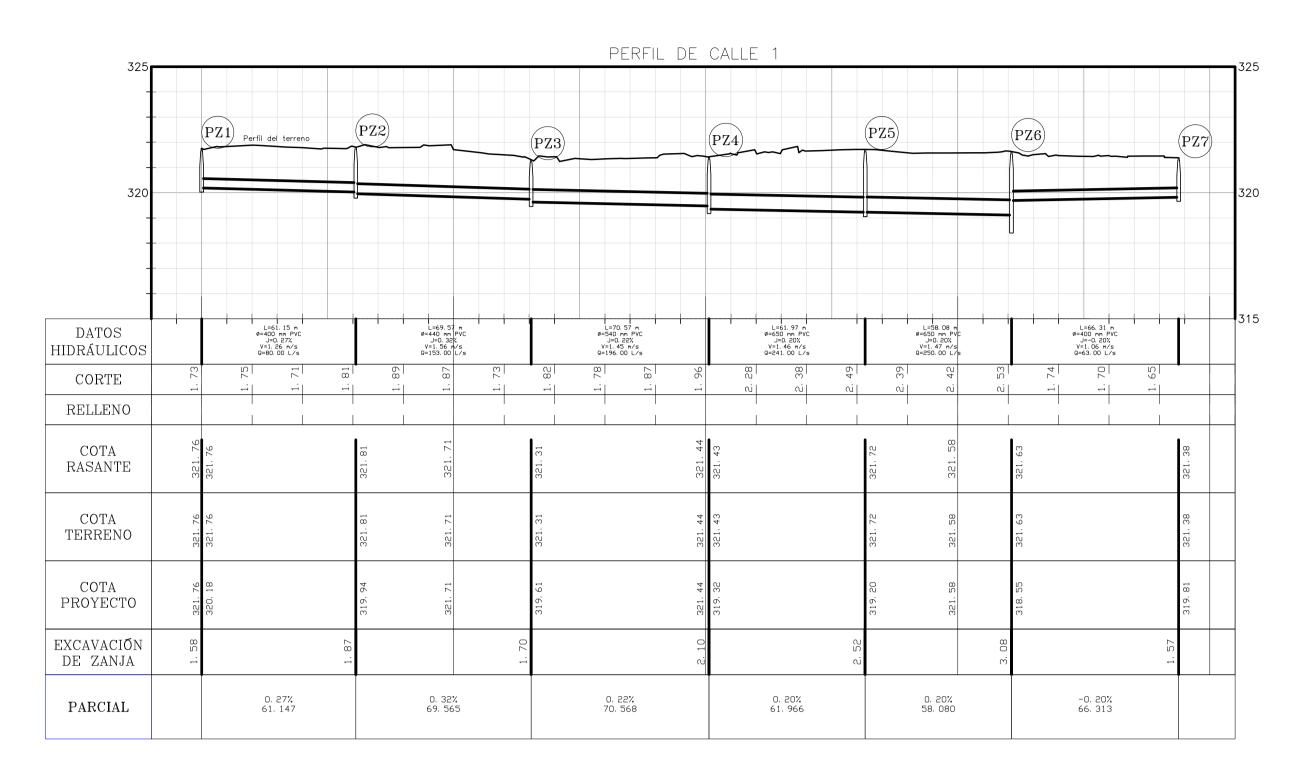

SUMIDERO DE CUNETA

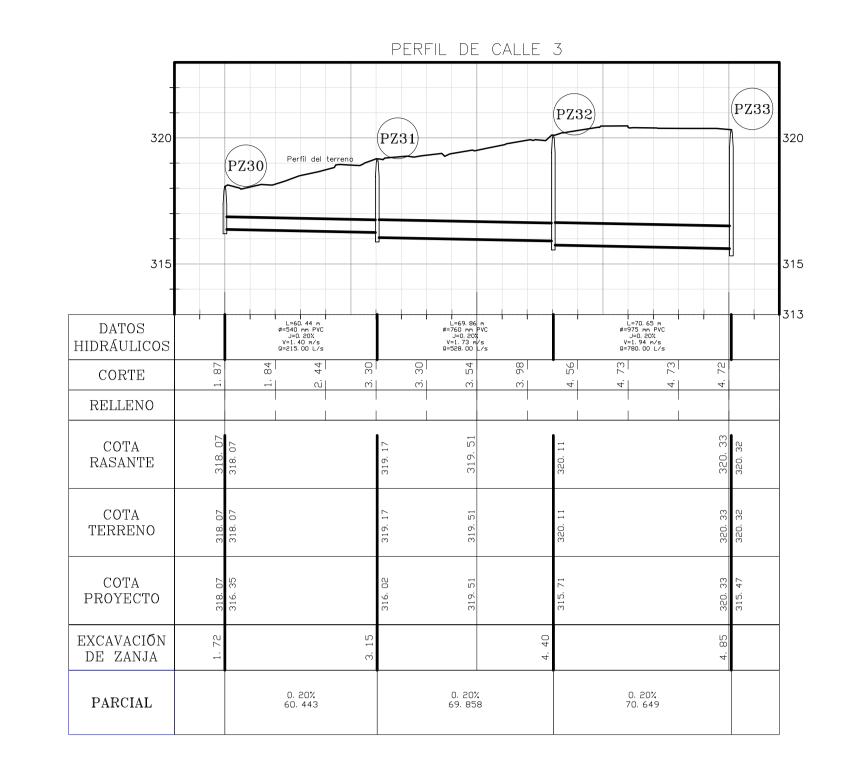
ALCANTARILLADO PLUVIAL

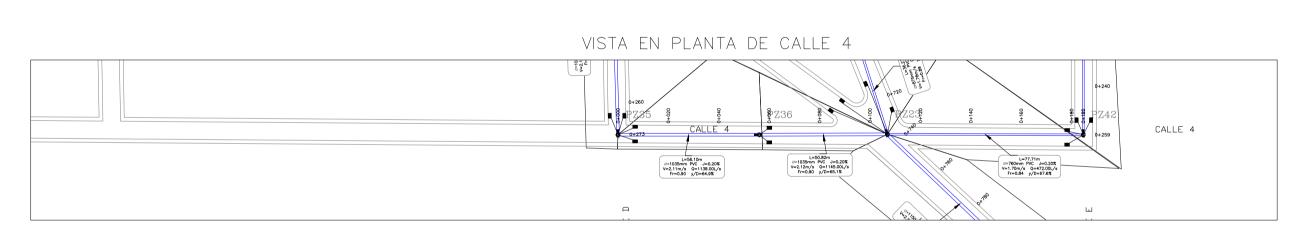

DR. PATRICIO ORTEGA LARA

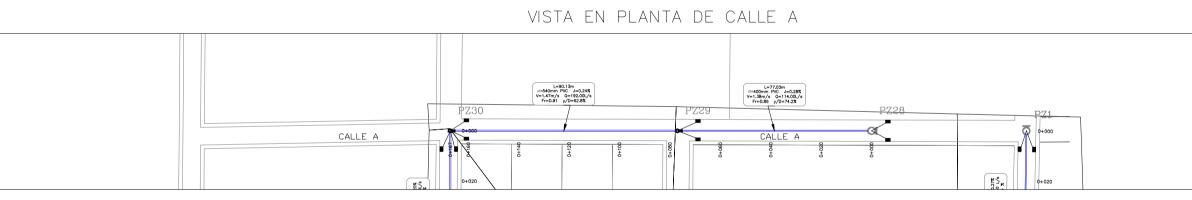
JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

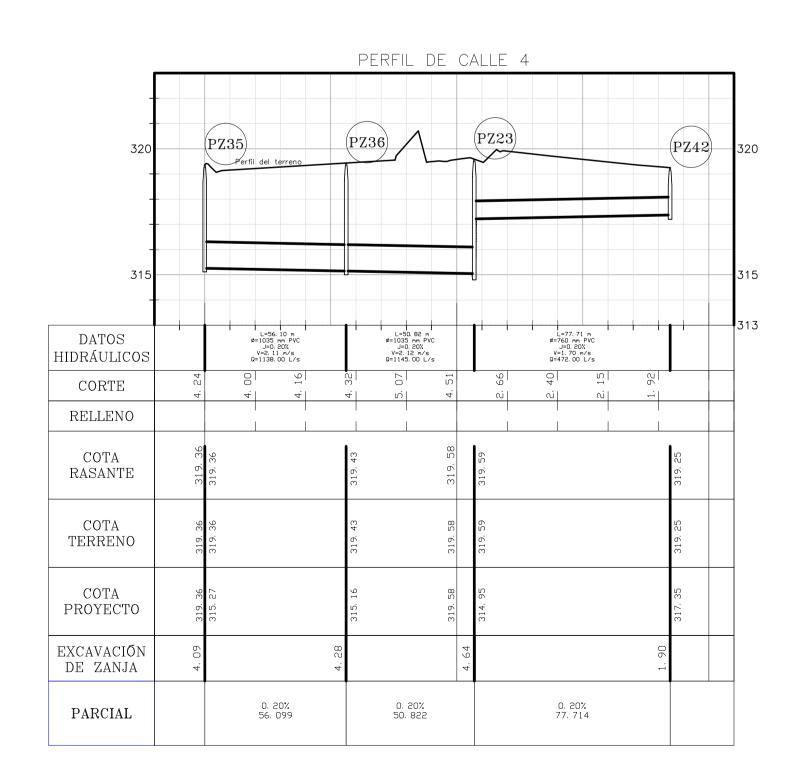

ANEXO II

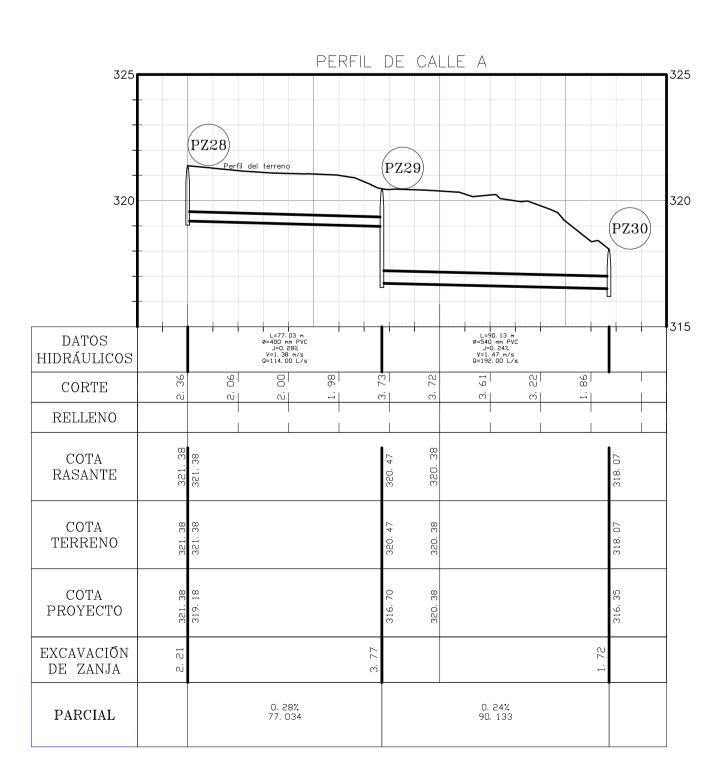



ANEXO III




ANEXO IV





ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERÍA CIVIL

UBICACIÓN GEOGRÁFICA:

PROYECTO:

ALCANTARILLADO PLUVIAL DE LA COMUNIDAD 25 DE DICIEMBRE, PARROQUIA TRES DE NOVIEMBRE, CANTÓN LA JOYA DE LOS SACHAS.

UBICACIÓN:

COMUNIDAD: 25 DE DICIEMBRE PARROQUIA: TRES DE NOVIEMBRE CANTÓN: LA JOYA DE LOS SACHAS PROVINCIA: ORELLANA

SIMBOLOGÍA:

LÍNEA DE FÁBRICA Y BORDILLO POZO CABECERA

Ō

POZO DE REVISIÓN RED DE TUBERÍA PVC DATOS HIDRÁULICOS

SENTIDO DEL FLUJO ESTRUCTURA DE DESCARGA

SUMIDERO DE CUNETA CALLE 1 NOMBRE DE CALLE

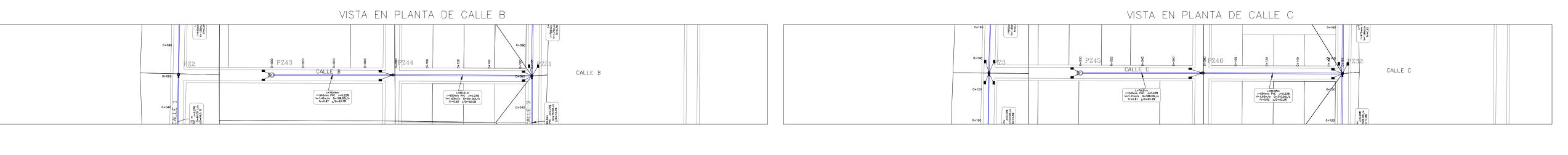
CONTENIDO:

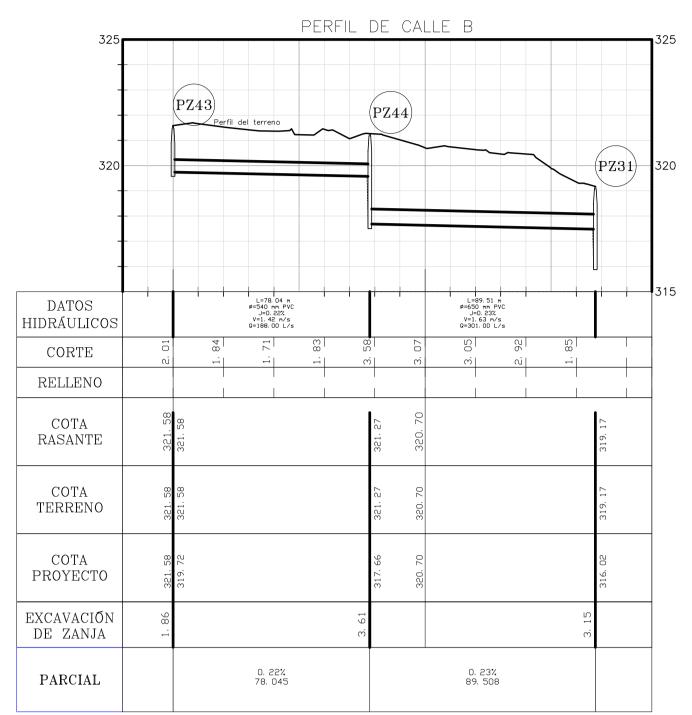
PLANTA Y PERFIL DE LA CALLE 1, CALLE 3, CALLE 4 Y CALLE A

REVISADO POR:

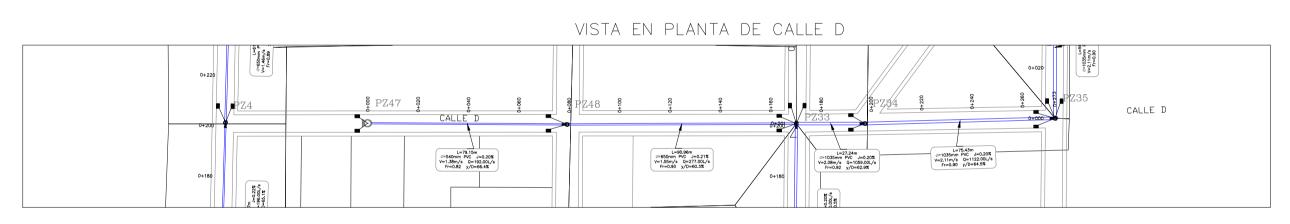
DR. PATRICIO ORTEGA LARA

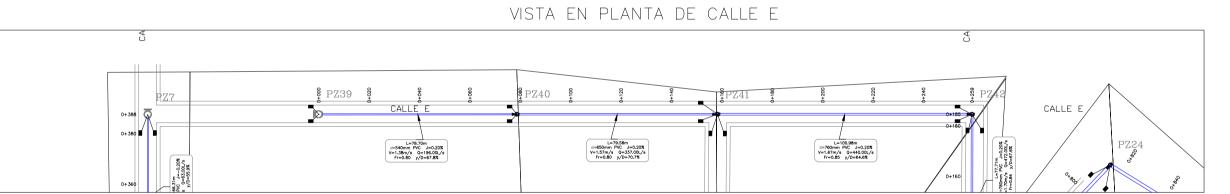
ELABORADO POR:

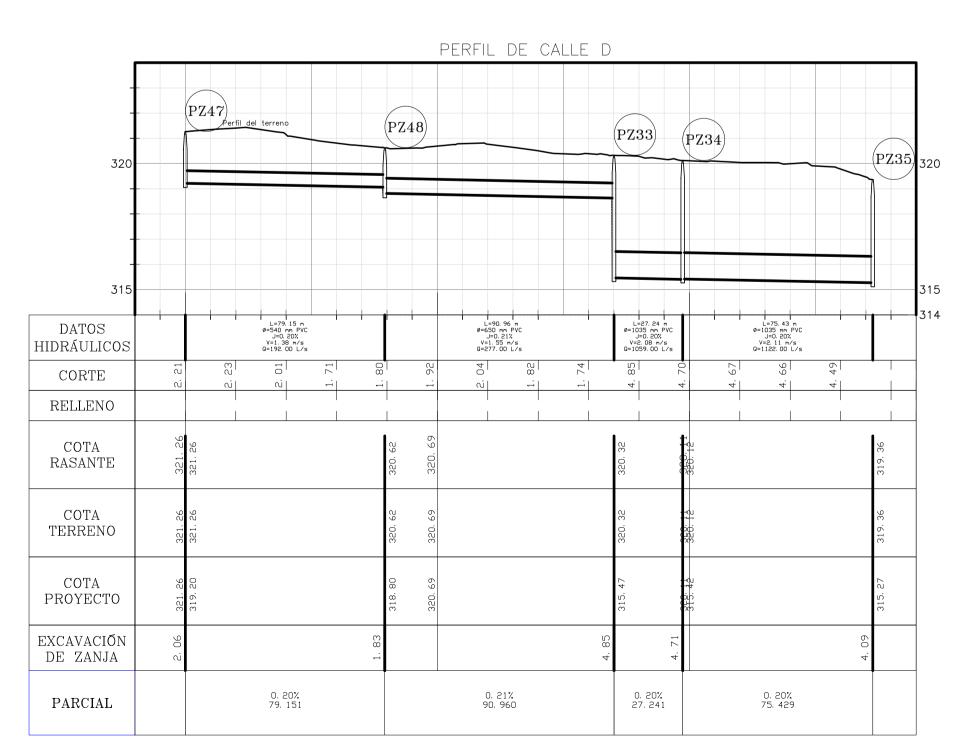

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

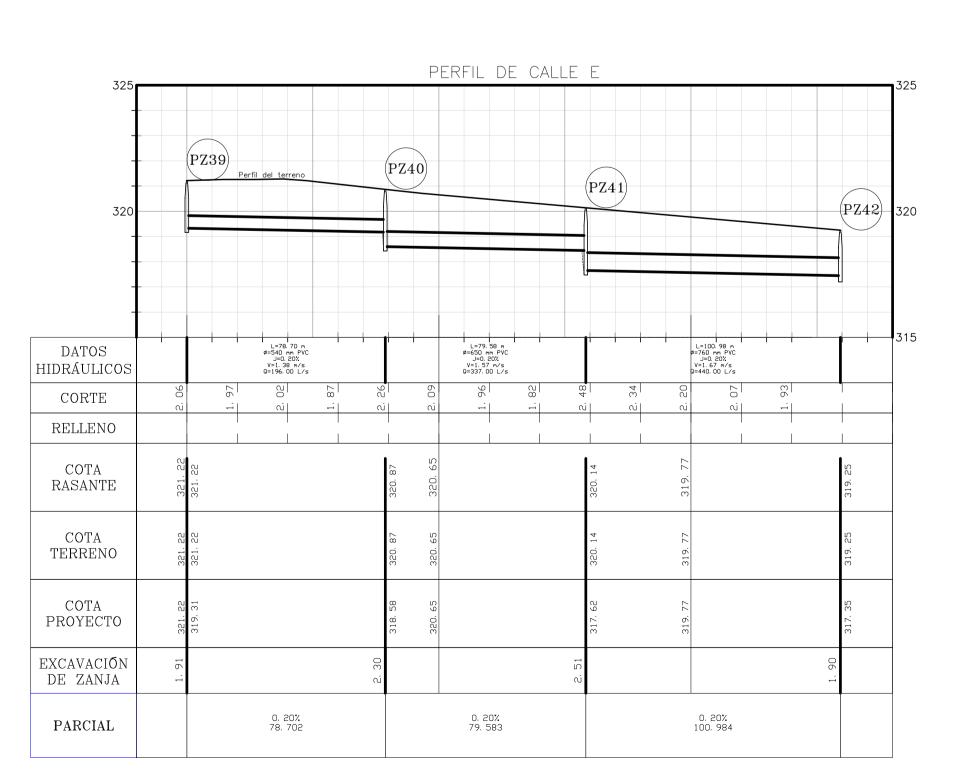

FECHA: AGOSTO 2023 | LÁMINA:


ESCALAS: 1:1500 04 DE




ANEXO V





ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERÍA CIVIL

UBICACIÓN GEOGRÁFICA:

PROYECTO:

ALCANTARILLADO PLUVIAL DE LA COMUNIDAD 25 DE DICIEMBRE, PARROQUIA TRES DE NOVIEMBRE, CANTÓN LA JOYA DE LOS SACHAS.

UBICACIÓN:

COMUNIDAD: 25 DE DICIEMBRE PARROQUIA: TRES DE NOVIEMBRE CANTÓN: LA JOYA DE LOS SACHAS PROVINCIA: ORELLANA

SIMBOLOGÍA:

LÍNEA DE FÁBRICA Y BORDILLO

ō **≫**

POZO CABECERA POZO DE REVISIÓN

RED DE TUBERÍA PVC

S E

ESTRUCTURA DE DESCARGA

SUMIDERO DE CUNETA

CALLE 1 NOMBRE DE CALLE

CONTENIDO:

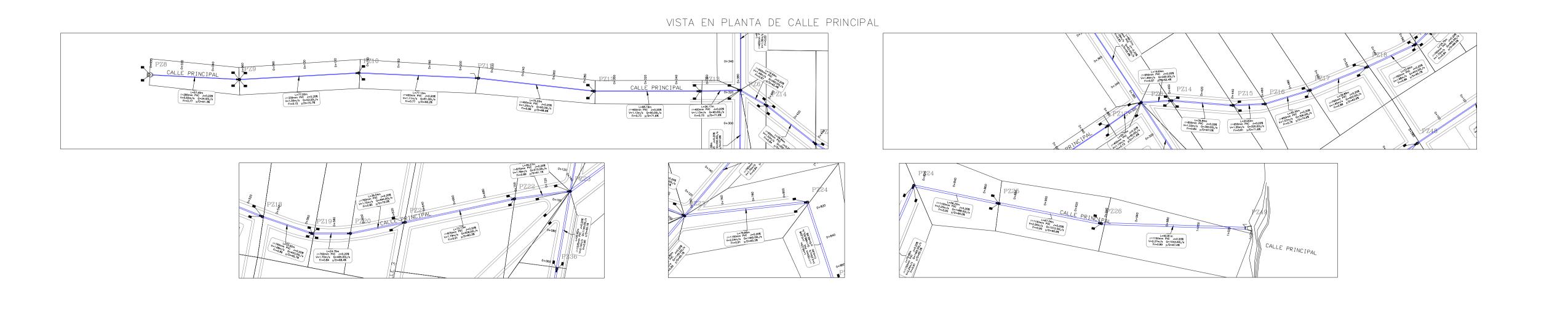
PLANTA Y PERFIL DE LA CALLE B, CALLE C, CALLE D Y CALLE E

REVISADO POR:

DR. PATRICIO ORTEGA LARA

ELABORADO POR:

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO


FECHA: AGOSTO 2023
ESCALAS: 1:1500

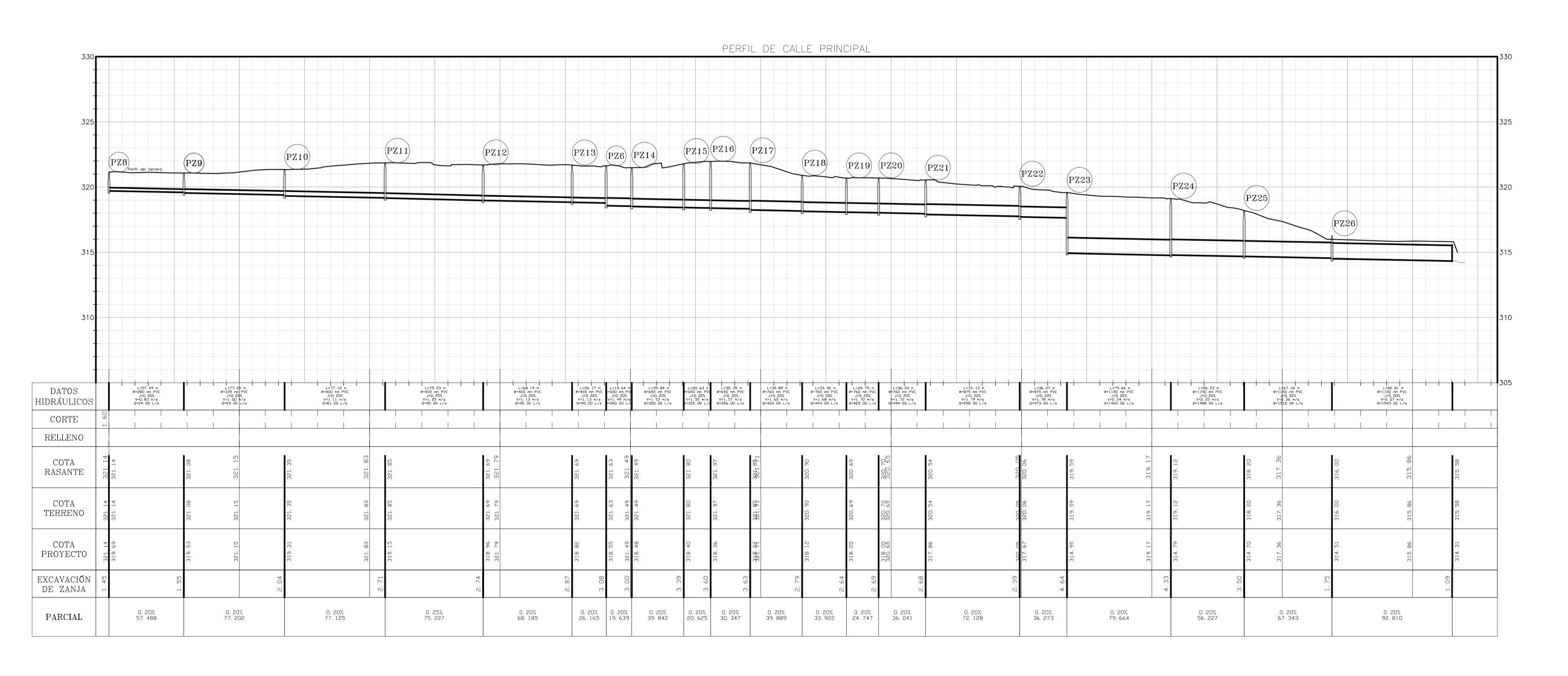

1:1500 05 DE

LÁMINA:

ANEXO VI

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERÍA CIVIL

UBICACIÓN GEOGRÁFICA:

PROYECTO:

ALCANTARILLADO PLUVIAL DE LA COMUNIDAD 25 DE DICIEMBRE, PARROQUIA TRES DE NOVIEMBRE, CANTÓN LA JOYA DE LOS SACHAS.

UBICACIÓN:

COMUNIDAD: 25 DE DICIEMBRE PARROQUIA: TRES DE NOVIEMBRE CANTÓN: LA JOYA DE LOS SACHAS PROVINCIA: ORELLANA

SIMBOLOGÍA:

LÍNEA DE FÁBRICA Y BORDILLO Ō POZO CABECERA

POZO DE REVISIÓN

RED DE TUBERÍA PVC DATOS HIDRÁULICOS

SENTIDO DEL FLUJO

ESTRUCTURA DE DESCARGA SUMIDERO DE CUNETA

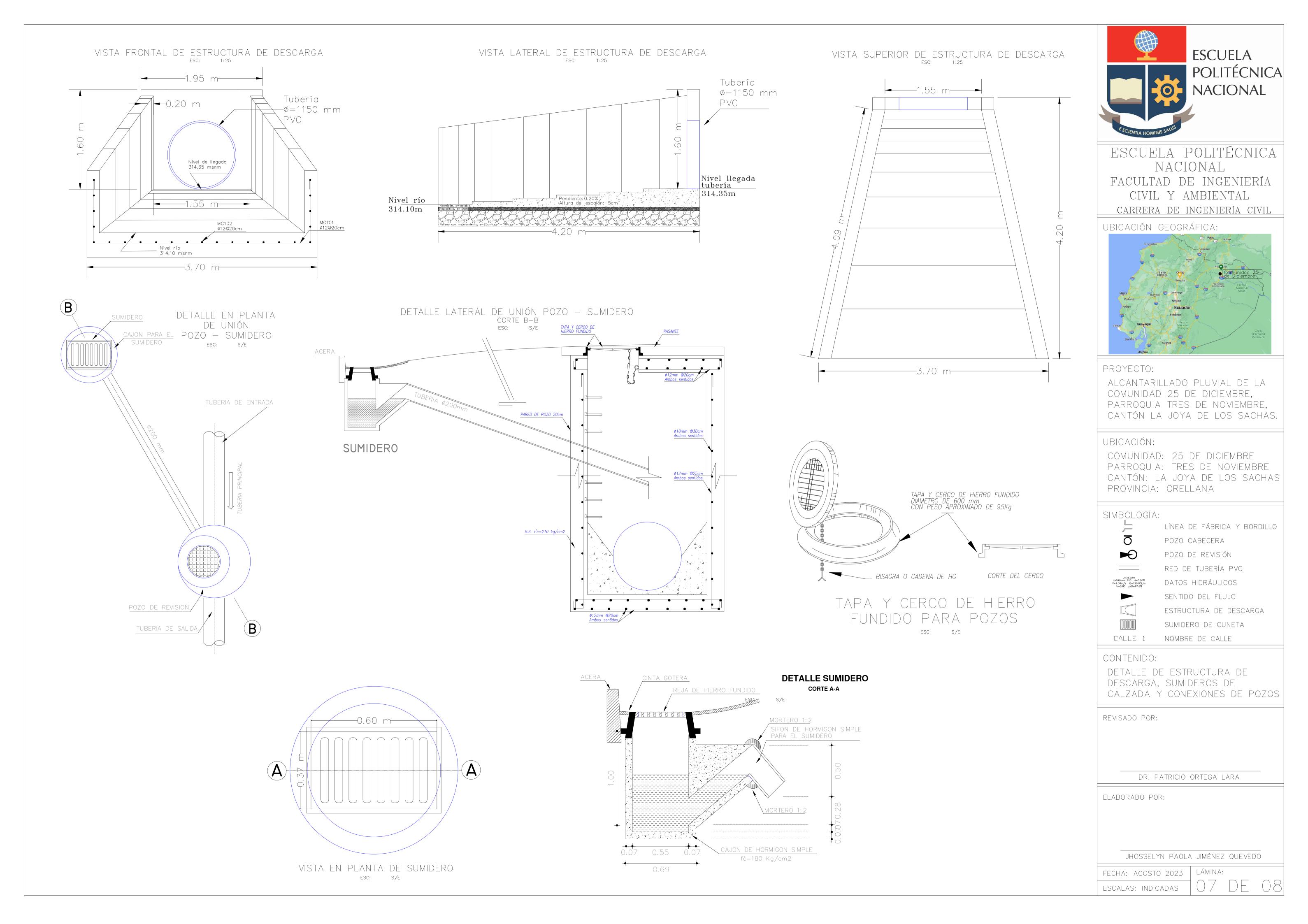
CALLE 1 NOMBRE DE CALLE

CONTENIDO:

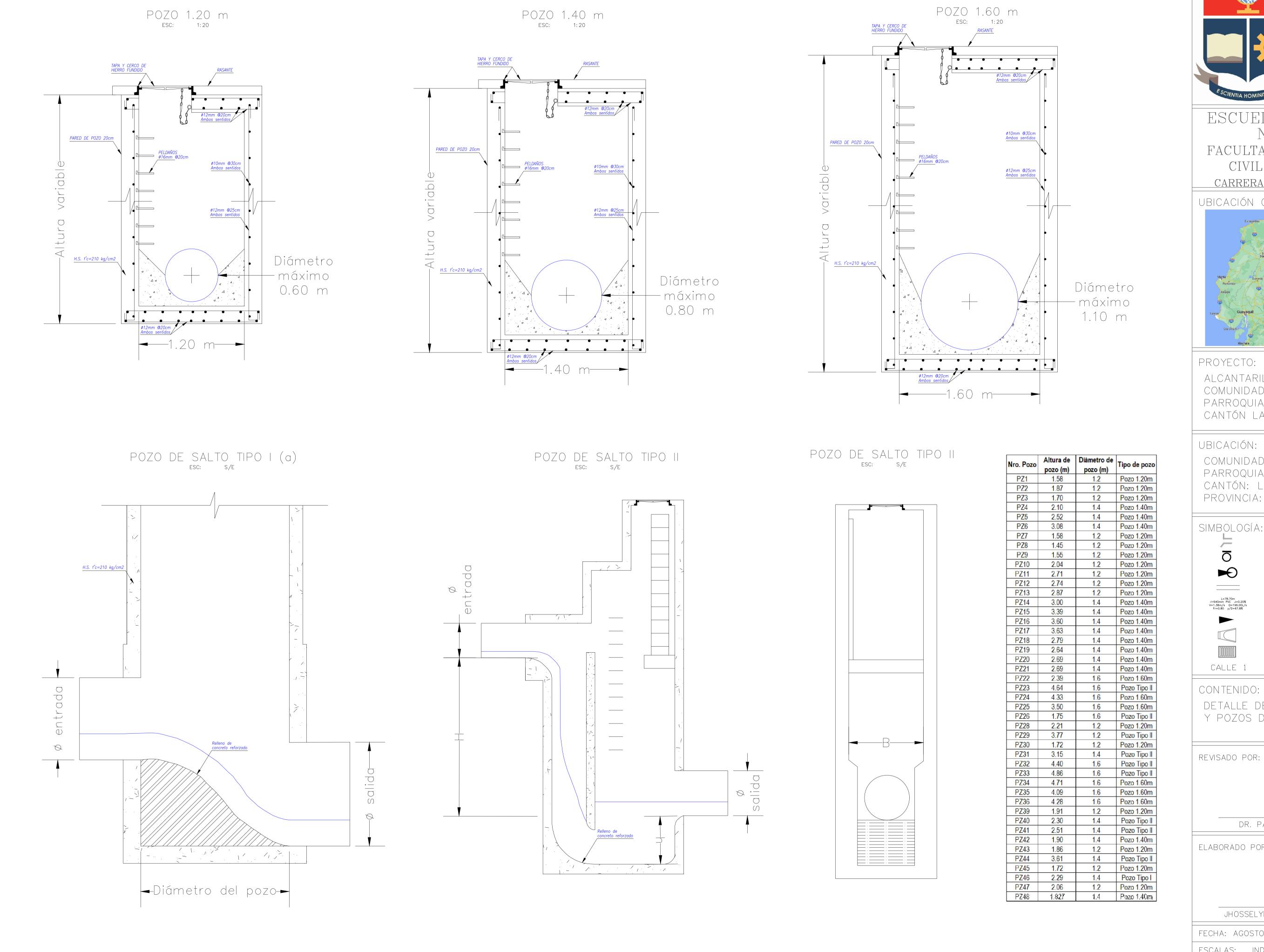
PLANTA Y PERFIL DE LA CALLE B, CALLE C, CALLE D Y CALLE E

REVISADO POR:

DR. PATRICIO ORTEGA LARA


ELABORADO POR:

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO


FECHA: AGOSTO 2023 | LÁMINA:

ESCALAS: 1:1500 06 DE 08

ANEXO VII

ANEXO VIII

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA

CIVIL Y AMBIENTAL CARRERA DE INGENIERÍA CIVIL

UBICACIÓN GEOGRÁFICA:

ALCANTARILLADO PLUVIAL DE LA COMUNIDAD 25 DE DICIEMBRE, PARROQUIA TRES DE NOVIEMBRE, CANTÓN LA JOYA DE LOS SACHAS.

COMUNIDAD: 25 DE DICIEMBRE PARROQUIA: TRES DE NOVIEMBRE CANTÓN: LA JOYA DE LOS SACHAS PROVINCIA: ORELLANA

> LÍNEA DE FÁBRICA Y BORDILLO POZO CABECERA

POZO DE REVISIÓN RED DE TUBERÍA PVC

DATOS HIDRÁULICOS SENTIDO DEL FLUJO

ESTRUCTURA DE DESCARGA SUMIDERO DE CUNETA

DETALLE DE POZOS DE REVISIÓN Y POZOS DE SALTO

NOMBRE DE CALLE

DR. PATRICIO ORTEGA LARA

ELABORADO POR:

JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

FECHA: AGOSTO 2023 | LÁMINA:

ANEXO IX

ESPECIFICACIONES TÉCNICAS DE LAS TUBERÍAS DE PVC PARED ESTRUCTURADA NOVAFORT PLUS							
				RIGIE	DEZ		
Diámetro Nominal			Rigidez Anular ISO 9969 kPa (kN/m)		Rigidez del Tubo ASTM D-2412 lb/plg²(kN/m²)		
			INEN	INEN 2059		tb/ptg (kN/TH)	
mm	mm	m	Serie 5	*Serie 6	Serie 5	*Serie 6	
125	110,00	6	-	8	-	57 (394)	
175	160,00	6	4	-	29 (199)	-	
220	200,00	6	4	-	29 (199)	-	
280	250,00	6	4	-	29 (199)	-	
335	300,00	6	4	-	29 (199)	-	
400	364,00	6	4	-	29 (199)	-	
440	400,00	6	4	-	29 (199)	-	
540	500,00	6	4	-	29 (199)	-	
650	600,00	6	4	-	29 (199)	-	
760	700,00	6	4	-	29 (199)	_	
875	800,00	6	4	-	29 (199)	-	
* 975	900,00	6	4	-	29 (199)	-	

^{*} PRODUCTO DE FABRICACIÓN BAJO PEDIDO

DIÁMETROS DE TUBERÍAS NOVALOC

DIÁMETRO NOMINAL DNE	SERIE	RIGIDEZ Min	di aprox	Longitud
(mm)		(kN/m²)	(mm)	(m)
1035	2	0.5	1000	6
1055	3	1	1000	6
1150	3	1	1100	6
1245	3	1	1200	6
1245	4	2	1200	6
1345	3	0.5	1300	6
*1500	3	1	1500	4
*1600	3	1	1500	4
*1700	2	0.5	1600	4
*1800	2	0.5	1700	4
*1900	2	0.5	1800	4

^{*} Producto de fabricación bajo pedido.

ANEXO X

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		TRABAJOS PRELIMINARES		
01	01	LIMPIEZA Y DESBROCE MANUAL	m2	3,407.28

ITEM	DIÁMETRO (mm)	LONGITUD (m)
T1	400	61.1
T2	440	69.6
T3	540	70.6
T4	650	62
T5	650	58.1
T6	400	66.3
T7	280	57.5
T8	335	77.2
T9	400	77.1
T10	400	75.2
T11	400	68.2
T12	400	26.2
T13	650	19.6
T14	650	39.8
T15	650	20.6
T16	650	30.3
T17	760	39.9
T18	760	33.9
T19	760	24.7
T20	760	36
T21	875	72.1
T22	875	36.3
T23	1150	79.7
T24	1150	56.2
T25	1150	67.3
T27	400	77
T28	540	90.1
T29	540	60.4
T30	760	69.9
T31	975	70.6
T32	1035	27.2
T33	1035	75.4
T34	1035	56.1
T35	1035	50.8
T38	540	78.7
T39	650	79.6
T40	760	101
T41	760	77.7
T42	540	78
T43	650	89.5
T44	540	78.9
T45	650	90
T46	540	79.2
T47	650	91
T48	1150	92.8
	SUMA	2839.4
	ICHO (m)	1.2
	EZA Y DESBROCE	3407.28
/ 11 (C/ (C V)	LL. (I DEODITOOL	0.01.20

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		TRABAJOS PRELIMINARES		
02	02	REPLANTEO Y NIVELACION LINEAL	m	2,839.40

ITEN A	DIÁMETRO (*****)	LONGITID (m)
ITEM	DIÁMETRO (mm)	LONGITUD (m)
T1	400	61.1
T2	440	69.6
T3	540	70.6
T4	650	62
T5	650	58.1
T6	400	66.3
T7	280	57.5
T8	335	77.2
T9	400	77.1
T10	400	75.2
T11	400	68.2
T12	400	26.2
T13	650	19.6
T14	650	39.8
T15	650	20.6
T16	650	30.3
T17	760	39.9
T18	760	33.9
T19	760	24.7
T20	760	36
T21	875	72.1
T22	875	36.3
T23	1150	79.7
T24	1150	56.2
T25	1150	67.3
T27	400	77
T28	540	90.1
T29	540	60.4
T30	760	69.9
T31	975	70.6
T32	1035	27.2
T33	1035	75.4
T34	1035	56.1
T35	1035	50.8
T38	540	78.7
T39	650	79.6
T40	760	101
T41	760	77.7
T42 T43	540	78
	650	89.5
T44	540	78.9
T45	650	90
T46	540	79.2
T47	650	91
T48	1150	92.8
	SUMA	2839.4

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL
CARRERA DE INGENIERIA CIVIL
TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,
CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA
REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO
DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
03	03	EXCAVACION MAQUINA (h=0.00m a 2.00m)	m3	4,034.14

TUDEDÍA	DIÁMETRO	LONGITUD	COBERTURA	COBERTURA	COBERTURA	ANCHO	ANCHO	VOLUMEN
TUBERÍA	(mm)	(m)	INCIAL (m)	FINAL (m)	PROMEDIO (m)	INFERIOR (m)	SUPERIOR (m)	(m3)
T1	364	61.1	1.17	1.39	1.28	1.16	1.66	110.63
T2	400	69.6	1.42	1.14	1.28	1.20	1.70	129.28
T3	500	70.6	1.14	1.42	1.28	1.30	1.80	140.07
T4	600	62	1.43	1.85	1.64	1.40	1.90	167.98
T5	600	58.1	1.85	1.88	1.86	1.40	1.90	178.40
T6	364	66.3	1.55	1.17	1.36	1.16	1.66	127.17
T7	250	57.5	1.17	1.21	1.19	1.05	1.55	88.99
T8	300	77.2	1.20	1.63	1.42	1.10	1.60	147.84
T9	364	77.1	1.63	2.29	1.96	1.16	1.66	213.84
T18	700	33.9	2.00	1.86	1.93	1.50	2.00	114.44
T19	700	24.7	1.85	1.91	1.88	1.50	2.00	81.13
T20	700	36	1.91	1.83	1.87	1.50	2.00	117.62
T21	800	72.1	1.79	1.45	1.62	1.60	2.10	215.62
T22	800	36.3	1.49	1.09	1.29	1.60	2.10	86.56
T25	1100	67.3	2.31	0.24	1.28	1.90	2.40	184.70
T27	364	77	1.80	1.10	1.45	1.16	1.66	157.98
T29	500	60.4	1.17	2.39	1.78	1.30	1.80	166.46
T38	500	78.7	1.35	1.16	1.26	1.30	1.80	153.52
T39	600	79.6	1.63	1.06	1.34	1.40	1.90	176.26
T40	700	101	1.73	1.04	1.39	1.50	2.00	244.89
T41	700	77.7	1.12	1.61	1.36	1.50	2.00	185.13
T42	500	78	1.31	1.17	1.24	1.30	1.80	149.55
T44	500	78.9	1.16	1.19	1.18	1.30	1.80	143.76
T45	600	90	1.62	1.06	1.34	1.40	1.90	198.99
T46	500	79.2	1.51	1.03	1.27	1.30	1.80	155.60
T47	600	91	1.16	1.05	1.11	1.40	1.90	166.22
T48	1100	92.8	0.27	0.04	0.16	1.90	2.40	31.52
TOTAL								4034.14

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA
REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO
DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
04	04	EXCAVACION MAQUINA (h=2.01m a 4.50m)	m3	4,685.19

TUBERÍA	DIÁMETRO	LONGITUD	COBERTURA	COBERTURA	COBERTURA	ANCHO	ANCHO	VOLUMEN
IUDERIA	(mm)	(m)	INCIAL (m)	FINAL (m)	PROMEDIO (m)	INFERIOR (m)	SUPERIOR (m)	(m3)
T10	364	75.2	2.30	2.33	2.31	1.16	1.66	245.89
T11	364	68.2	2.33	2.46	2.39	1.16	1.66	230.86
T12	364	26.2	2.46	2.46	2.46	1.16	1.66	91.19
T13	600	19.6	2.42	2.31	2.36	1.40	1.90	76.42
T14	600	39.8	2.34	2.72	2.53	1.40	1.90	166.11
T15	600	20.6	2.72	2.94	2.83	1.40	1.90	96.16
T16	600	30.3	2.93	2.88	2.91	1.40	1.90	145.31
T17	700	39.9	2.85	1.98	2.41	1.50	2.00	168.35
T23	1100	79.7	3.45	3.14	3.30	1.90	2.40	564.87
T24	1100	56.2	3.12	2.31	2.72	1.90	2.40	328.05
T28	500	90.1	3.22	1.03	2.13	1.30	1.80	296.84
T30	700	69.9	2.36	3.44	2.90	1.50	2.00	354.99
T31	900	70.6	3.40	3.76	3.58	1.70	2.20	492.65
T32	1000	27.2	3.79	3.64	3.72	1.80	2.30	207.18
T33	1000	75.4	3.63	3.02	3.32	1.80	2.30	513.71
T34	1000	56.1	3.03	3.21	3.12	1.80	2.30	358.87
T35	1000	50.8	3.21	3.47	3.34	1.80	2.30	347.72
TOTAL							4685.19	

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
05	05	RASANTEO DE ZANJA MANUAL	m2	4,070.88

TUBERÍA	DIÁMETRO (mm)	LONGITUD (m)	ANCHO (m)	ÁREA (m2)
T1	364	61.1	1.16	71.12
T2	400	69.6	1.20	83.52
T3	500	70.6	1.30	91.78
T4	600	62	1.40	86.80
T5	600	58.1	1.40	81.34
T6	364	66.3	1.16	77.17
T7	250	57.5	1.05	60.38
T8	300	77.2	1.10	84.92
T9	364	77.1	1.16	89.74
T10	364	75.2	1.16	87.53
T11	364	68.2	1.16	79.38
T12	364	26.2	1.16	30.50
T13	600	19.6	1.40	27.44
T14	600	39.8	1.40	55.72
T15	600	20.6	1.40	28.84
T16	600	30.3	1.40	42.42
T17	700	39.9	1.50	59.85
T18	700	33.9	1.50	50.85
T19	700	24.7	1.50	37.05
T20	700	36	1.50	54.00
T21	800	72.1	1.60	115.36
T22	800	36.3	1.60	58.08
T23	1100	79.7	1.90	151.43
T24	1100	56.2	1.90	106.78
T25	1100	67.3	1.90	127.87
T27	364	77	1.16	89.63
T28	500	90.1	1.30	117.13
T29	500	60.4	1.30	78.52
T30	700	69.9	1.50	104.85
T31	900	70.6	1.70	120.02
T32	1000	27.2	1.80	48.96
T33	1000	75.4	1.80	135.72
T34	1000	56.1	1.80	100.98
T35	1000	50.8	1.80	91.44
T38	500	78.7	1.30	102.31
T39	600	79.6	1.40	111.44
T40	700	101	1.50	151.50
T41	700	77.7	1.50	116.55
T42	500	78	1.30	101.40
T43	600	89.5	1.40	125.30
T44	500	78.9	1.30	102.57
T45	600	90	1.40	126.00
T46	500	79.2	1.30	102.96
T47	600	91	1.40	127.40
T48	1100	92.8	1.90	176.32
		TOTAL		4070.88

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
06	06	CAMA DE ARENA PARA TUBERIA h=10cm	m3	407.09

DESCRIPCIÓN	VALOR	UNIDAD
AREA CAMA DE ARENA	4070.88	m2
ALTURA CAMA DE ARENA	0.10	m
VOLUMEN CAMA DE ARENA	407.09	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
07	07	ACOSTILLADO DE TUBERIA	m3	73.51

TUBERÍ	DIÁMETRO		ANCHO	ANCHO	VOLUMEN
Α	(mm)	LONGITUD (m)	INFEROR (m)	SUPERIOR (m)	(m3)
T1	364	61.1	1.16	1.36	1.01
T2	400	69.6	1.20	1.40	1.27
T3	500	70.6	1.30	1.50	1.57
T4	600	62	1.40	1.60	1.58
T5	600	58.1	1.40	1.60	1.46
T6	364	66.3	1.16	1.36	1.10
T7	250	57.5	1.05	1.25	0.67
T8	300	77.2	1.10	1.30	1.09
T9	364	77.1	1.16	1.36	1.30
T10	364	75.2	1.16	1.36	1.26
T11	364	68.2	1.16	1.36	1.14
T12	364	26.2	1.16	1.36	0.37
T13	600	19.6	1.40	1.60	0.31
T14	600	39.8	1.40	1.60	0.91
T15	600	20.6	1.40	1.60	0.34
T16	600	30.3	1.40	1.60	0.63
T17	700	39.9	1.50	1.70	1.01
T18	700	33.9	1.50	1.70	0.80
T19	700	24.7	1.50	1.70	0.48
T20	700	36	1.50	1.70	0.88
T21	800	72.1	1.60	1.80	2.38
T22	800	36.3	1.60	1.80	0.95
T23	1100	79.7	1.90	2.10	3.43
T24	1100	56.2	1.90	2.10	2.14
T25	1100	67.3	1.90	2.10	2.75
T27	364	77	1.16	1.36	1.30
T28	500	90.1	1.30	1.50	2.06
T29	500	60.4	1.30	1.50	1.31
T30	700	69.9	1.50	1.70	2.06
T31	900	70.6	1.70	1.90	2.54
T32	1000	27.2	1.80	2.00	0.57
T33	1000	75.4	1.80	2.00	2.98
T34	1000	56.1	1.80	2.00	2.02
T35	1000	50.8	1.80	2.00	1.75
T38	500	78.7	1.30	1.50	1.77
T39	600	79.6	1.40	1.60	2.11
T40	700	101	1.50	1.70	3.15
T41	700	77.7	1.50	1.70	2.33
T42	500	78	1.30	1.50	1.75
T43	600	89.5	1.40	1.60	2.40
T44	500	78.9	1.30	1.50	1.78
T45	600	90	1.40	1.60	2.42
T46	500	79.2	1.30	1.50	1.78
T47	600	91	1.40	1.60	2.45
T48	1100	92.8	1.90	2.10	4.15
		TOTAL			73.51

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INCENIERÍA CIVIL Y AMBIENTAL CARRERA DE INCENIERÍA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO DE IUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBEN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
08	08	RELLENO COMPACTADO CON	m3	7,099.63
		VIBROAPISONADOR, MATERIAL DE		· ·
		SITIO		

	DIÁMETRO		VOLUMEN
TUBERÍA	(mm)	LONGITUD (m)	TUBERÍA (m3)
T1	364	61.1	6.36
T2	400	69.6	8.75
T3	500	70.6	13.86
T4	600	62	17.53
T5	600	58.1	16.43
T6	364	66.3	6.90
T7	250	57.5	2.82
T8	300	77.2	5.46
T9	364	77.1	8.02
T10	364	75.2	7.83
T11	364	68.2	7.10
T12	364	26.2	2.73
T13	600	19.6	5.54
T14	600	39.8	11.25
T15	600	20.6	5.82
T16	600	30.3	8.57
T17	700	39.9	15.36
T18	700	33.9	13.05
T19	700	24.7	9.51
T20	700	36	13.85
T21	800	72.1	36.24
T22	800	36.3	18.25
T23	1100	79.7	75.74
T24	1100	56.2	53.41
T25	1100	67.3	63.96
T27	364	77	8.01
T28	500	90.1	17.69
T29	500	60.4	11.86
T30	700	69.9	26.90
T31	900	70.6	44.91
T32	1000	27.2	21.36
T33	1000	75.4	59.22
T34	1000	56.1	44.06
T35	1000	50.8	39.90
T38	500	78.7	15.45
T39	600	79.6	22.51
T40	700	101	38.87
T41	700	77.7	29.90
T42	500	78	15.32
T43	600	89.5	25.31
T44	500	78.9	15.49
T45	600	90	25.45
T46	500	79.2	15.55
T47	600	91	25.73
T48	1100	92.8	88.19
	TOTA	AL	1026.00

POZO NRO.	COBERTURA	DIÁMETRO (m)	VOLUMEN		
FOZO NIKO.	(m)	DIAMETRO (III)	POZO (m3)		
PZ6	3.08	1.4	4.74		
PZ12	2.74	1.2	3.09		
PZ13	2.87	1.2	3.25		
PZ14	3.00	1.4	4.62		
PZ15	3.39	1.4	5.22		
PZ16	3.60	1.4	5.54		
PZ17	3.63	1.4	5.59		
PZ18	2.79	1.4	4.29		
PZ23	4.64	1.6	9.32		
PZ24	4.33	1.6	8.70		
PZ25	3.50	1.6	7.03		
PZ30	1.72	1.2	1.95		
PZ31	3.15	1.4	4.85		
PZ32	4.40	1.6	8.85		
PZ33	4.86	1.6	9.76		
PZ34	4.71	1.6	9.46		
PZ35	4.09	1.6	8.23		
PZ36	4.28	1.6	8.60		
	TOTAL				

DESCRIPCIÓN	VALOR	UNIDAD
VOLUMEN CAMA DE ARENA	407.09	m3
VOLUMEN ACOSTILLADO	73.51	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
09	09	MEJORAMIENTO DE SUELO CON LASTRE	m3	814.18

DESCRIPCIÓN	VALOR	UNIDAD
AREA MEJORAMIENTO	4070.88	m2
ALTURA MEJORAMIENTO	0.20	m
VOLUMEN MEJORAMIENTO	814.18	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		MOVIMIENTOS DE TIERRA		
10	10	DESALOJO DE MATERIAL DE EXCAVACION	m3	1,619,70

DESCRIPCIÓN	VALOR	UNIDAD
Volumen tubería	1026.00	m3
Volumen pozos	113.10	m3
Volumen cama de arena	407.09	m3
Volumen acostillado	73.51	m3
Volumen desalojo	1619.70	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
11	11	POZO DE REVISION H=0.80m a 2.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA		12.00

POZO NRO.	COBERTURA (m)
PZ1	1.58
PZ2	1.87
PZ3	1.70
PZ7	1.58
PZ8	1.45
PZ9	1.55
PZ30	1.72
PZ39	1.91
PZ42	1.90
PZ43	1.86
PZ45	1.72
PZ48	1.83

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,
CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
12		POZO DE REVISION H=2.01m a 4.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA		19.00

POZO NRO.	COBERTURA (m)
PZ4	2.101
PZ5	2.517
PZ6	3.082
PZ10	2.04
PZ11	2.707
PZ12	2.736
PZ13	2.872
PZ14	3.003
PZ15	3.39
PZ16	3.602
PZ17	3.63
PZ18	2.787
PZ19	2.641
PZ20	2.692
PZ21	2.685
PZ22	2.391
PZ25	3.498
PZ28	2.207
PZ47	2.064

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
13		POZO DE REVISION H=4.01m a 6.00m, (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y		4.00
		MALLA ELECTROSOLDADA		

POZO NRO.	COBERTURA (m)
P <u>Z2</u> 4	4.326
PZ34	4.706
PZ35	4.092
PZ36	4.279

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
14	14	POZO DE SALTO TIPO I (INC. ENCOFRADO	u	2.00
		METALICO, TAPA H.F., CERCO Y MALLA		
		ELECTROSOLDADA)		

POZO	ALTURA (m)	DIÁMETRO (m)
PZ40	2.30	1.4
PZ46	2.29	1.4

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
15	1	POZO DE SALTO TIPO II (INC. ENCOFRADO METALICO, TAPA H.F., CERCO Y MALLA ELECTROSOLDADA)		8.00

POZO	ALTURA	DIÁMETRO
PZ23	4.637	1.6
PZ26	1.75	1.6
PZ29	3.773	1.2
PZ31	3.148	1.4
PZ32	4.401	1.6
PZ33	4.855	1.6
PZ41	2.513	1.4
PZ44	3.614	1.4

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
16	16	REPLANTILLO fc=140kg/cm2	m3	8.54

POZO NRO.	COBERTURA (m)	DIÁMETRO (m)	ÁREA (m2)	ALTURA (m)	VOLUMEN (m3)
PZ1	1.58	1.2	1.44	0.1	0.144
PZ2	1.87	1.2	1.44	0.1	0.144
PZ3	1.70	1.2	1.44	0.1	0.144
PZ4	2.10	1.4	1.96	0.1	0.196
PZ5	2.52	1.4	1.96	0.1	0.196
PZ6	3.08	1.4	1.96	0.1	0.196
PZ7	1.58	1.2	1.44	0.1	0.144
PZ8	1.45	1.2	1.44	0.1	0.144
PZ9	1.55	1.2	1.44	0.1	0.144
PZ10	2.04	1.2	1.44	0.1	0.144
PZ11	2.71	1.2	1.44	0.1	0.144
PZ12	2.74	1.2	1.44	0.1	0.144
PZ13	2.87	1.2	1.44	0.1	0.144
PZ14	3.00	1.4	1.96	0.1	0.196
PZ15	3.39	1.4	1.96	0.1	0.196
PZ16	3.60	1.4	1.96	0.1	0.196
PZ17	3.63	1.4	1.96	0.1	0.196
PZ18	2.79	1.4	1.96	0.1	0.196
PZ19	2.64	1.4	1.96	0.1	0.196
PZ20	2.69	1.4	1.96	0.1	0.196
PZ21	2.69	1.4	1.96	0.1	0.196
PZ22	2.39	1.6	2.56	0.1	0.256
PZ23	4.64	1.6	2.56	0.1	0.256
PZ24	4.33	1.6	2.56	0.1	0.256
PZ25	3.50	1.6	2.56	0.1	0.256
PZ26	1.75	1.6	2.56	0.1	0.256
PZ28	2.21	1.2	1.44	0.1	0.144
PZ29	3.77	1.2	1.44	0.1	0.144
PZ30	1.72	1.2	1.44	0.1	0.144
PZ31	3.15	1.4	1.96	0.1	0.196
PZ32	4.40	1.6	2.56	0.1	0.256
PZ33	4.86	1.6	2.56	0.1	0.256
PZ34	4.71	1.6	2.56	0.1	0.256
PZ35	4.09	1.6	2.56	0.1	0.256
PZ36	4.28	1.6	2.56	0.1	0.256
PZ39	1.91	1.2	1.44	0.1	0.144
PZ40	2.30	1.4	1.96	0.1	0.196
PZ41	2.51	1.4	1.96	0.1	0.196
PZ42	1.90	1.4	1.96	0.1	0.196
PZ43	1.86	1.2	1.44	0.1	0.144
PZ44	3.61	1.4	1.96	0.1	0.196
PZ45	1.72	1.2	1.44	0.1	0.144
PZ46	2.29	1.4	1.96	0.1	0.196
PZ47	2.06	1.2	1.44	0.1	0.144
PZ48	1.83	1.4	1.96	0.1	0.196
-		TOTAL		-	8.536

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
17	17	PELDAÑOS DE ACERO fy=4200 Kg/cm2, d=16 mm	u	529.00

POZO	ALTURA POZO	CANTIDAD PELDAÑ
PZ1	1.58	6
PZ2	1.87	7
PZ3	1.70	6
PZ4	2.10	9
PZ5	2.52	11
PZ6	3.08	13
PZ7	1.58	6
PZ8	1.45	5
PZ9	1.55	6
PZ10	2.04	8
PZ11	2.71	12
PZ12	2.74	12
PZ13	2.87	12
PZ14	3.00	13
PZ15	3.39	15
PZ16	3.60	16
PZ17	3.63	16
PZ18	2.79	12
PZ19	2.64	11
PZ20	2.69	11
PZ21	2.69	11
PZ22	2.39	10
PZ23	4.64	21
PZ24	4.33	20
PZ25	3.50	15
PZ26	1.75	7
PZ28	2.21	9
PZ29	3.77	17
PZ30	1.72	7
PZ31	3.15	14
PZ32	4.40	20
PZ33	4.86	22
PZ34	4.71	22
PZ35	4.09	18
PZ36	4.28	19
PZ39	1.91	8
PZ40	2.30	9
PZ41	2.51	11
PZ42	1.90	8
PZ43	1.86	7
PZ44	3.61	16
PZ45	1.72	7
PZ46	2.29	9
PZ47	2.06	8
PZ48	1.83	7
TOTAL		529

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

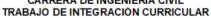
CÁLCULO DE CANTIDADES

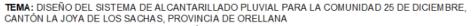
Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		POZOS DE REVISION		
18	18	SUMIDEROS H.F. 60x37 cm	u	106.00

Tomado de la planimetría

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
19	19	ENTIBADO METALICO EN ZANJAS PARA ALCANTARILLADO	m	940.10


TUBERÍA	DIÁMETRO (mm)	LONGITUD (m)	COBERTURA INCIAL (m)	COBERTURA FINAL (m)	COBERTURA PROMEDIO (m)
T10	364	75.2	2.30	2.33	2.31
T11	364	68.2	2.33	2.46	2.39
T12	364	26.2	2.46	2.46	2.46
T13	600	19.6	2.42	2.31	2.36
T14	600	39.8	2.34	2.72	2.53
T15	600	20.6	2.72	2.94	2.83
T16	600	30.3	2.93	2.88	2.91
T17	700	39.9	2.85	1.98	2.41
T23	1100	79.7	3.45	3.14	3.30
T24	1100	56.2	3.12	2.31	2.72
T28	500	90.1	3.22	1.03	2.13
T30	700	69.9	2.36	3.44	2.90
T31	900	70.6	3.40	3.76	3.58
T32	1000	27.2	3.79	3.64	3.72
T33	1000	75.4	3.63	3.02	3.32
T34	1000	56.1	3.03	3.21	3.12
T35	1000	50.8	3.21	3.47	3.34
T43	600	89.5	2.95	1.06	2.00
TOTAL		985.3			•


POZO	COBERTURA	DIÁMETRO (m)	FRACCIÓN DE
NRO.	(m)	DIAMETRO (III)	POZO
PZ10	2.04	1.2	1.20
PZ47	2.06	1.2	1.20
PZ4	2.10	1.4	1.40
PZ28	2.21	1.2	1.20
PZ46	2.29	1.4	1.40
PZ40	2.30	1.4	1.40
PZ22	2.39	1.6	1.60
PZ41	2.51	1.4	1.40
PZ5	2.52	1.4	1.40
PZ19	2.64	1.4	1.40
PZ21	2.69	1.4	1.40
PZ20	2.69	1.4	1.40
PZ11	2.71	1.2	1.20
PZ12	2.74	1.2	1.20
PZ18	2.79	1.4	1.40
PZ13	2.87	1.2	1.20
PZ14	3.00	1.4	1.40
PZ6	3.08	1.4	1.40
PZ31	3.15	1.4	1.40
PZ15	3.39	1.4	1.40
PZ25	3.50	1.6	1.60
PZ16	3.60	1.4	1.40
PZ44	3.61	1.4	1.40
PZ17	3.63	1.4	1.40
PZ29	3.77	1.2	1.20
PZ35	4.09	1.6	1.60
PZ36	4.28	1.6	1.60
PZ24	4.33	1.6	1.60
PZ32	4.40	1.6	1.60
PZ23	4.64	1.6	1.60
PZ34	4.71	1.6	1.60
PZ33	4.86	1.6	1.60
	LONGITUD DE	POZOS	45.20

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
20	20	SUM. E INST. TUBERIA PARED INTERNA	m	635.40
		LISA Dint=200mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
Tubería conexión	200	220	635.4
	TOTAL		635.4

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

0-4	NI-	Dubas / December 1/4	Hada a	04:41
Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
21	21	SUM. E INST. TUBERIA PARED INTERNA	m	57.50
		LISA Dint=250mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T7	250	280	57.5
TOTAL		57.5	

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
22	22	SUM. E INST. TUBERIA PARED INTERNA LISA	m	77.20
		Dint=300mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T8	300	335	77.2
	TOTAL		77.2

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
23	23	SUM. E INST. TUBERIA PARED INTERNA	m	451.10
		LISA Dint=364mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T1	364	400	61.1
T6	364	400	66.3
Т9	364	400	77.1
T10	364	400	75.2
T11	364	400	68.2
T12	364	400	26.2
T27	364	400	77
	TOTAL	· · · · · · · · · · · · · · · · · · ·	451.1

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACION CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA
REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
24		SUM. E INST. TUBERIA PARED INTERNA LISA Dint=400mm NORMA INEN 2059	m	69.60

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T2	400	440	69.6
	TOTAL		69.6

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
25	25	SUM. E INST. TUBERIA PARED INTERNA LISA	m	535.90
		Dint=500mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T3	500	540	70.6
T28	500	540	90.1
T29	500	540	60.4
T38	500	540	78.7
T42	500	540	78
T44	500	540	78.9
T46	500	540	79.2
	TOTAL		535.9

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
26	26	SUM. E INST. TUBERIA PARED INTERNA LISA	m	580.50
		Dint=600mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T4	600	650	62
T5	600	650	58.1
T13	600	650	19.6
T14	600	650	39.8
T15	600	650	20.6
T16	600	650	30.3
T39	600	650	79.6
T43	600	650	89.5
T45	600	650	90
T47	600	650	91
TOTAL			580.5

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
27	27	SUM. E INST. TUBERIA PARED INTERNA LISA	m	383.10
		Dint=700mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO	LONGITUD
IUDERIA	DIAMETRO INTERNO (IIIIII)	NOMINAL	(m)
T17	700	760	39.9
T18	700	760	33.9
T19	700	760	24.7
T20	700	760	36
T30	700	760	69.9
T40	700	760	101
T41	700	760	77.7
TOTAL			383.1

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
28	_	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=800mm NORMA INEN 2059	m	108.40

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T21	800	875	72.1
T22	800	875	36.3
	TOTAL		108.4

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
29	29	SUM. E INST. TUBERIA PARED INTERNA LISA	m	70.60
		Dint=900mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T31	900	975	70.6
	TOTAL		70.6

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
30	30	SUM. E INST. TUBERIA PARED INTERNA LISA	m	209.50
		Dint=1000mm NORMA INEN 2059		

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO NOMINAL	LONGITUD (m)
T32	1000	1035	27.2
T33	1000	1035	75.4
T34	1000	1035	56.1
T35	1000	1035	50.8
	TOTAL		209.5

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

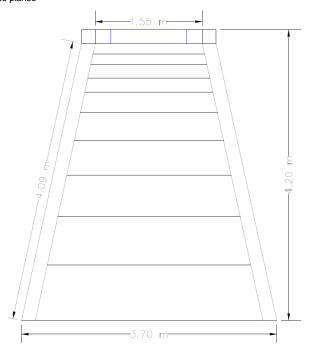
Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		SUMINISTRO E INSTALACION DE TUBERIA		
31	31	SUM. E INST. TUBERIA PARED INTERNA LISA Dint=1100mm NORMA INEN 2059	m	296.00

TUBERÍA	DIÁMETRO INTERNO (mm)	DIÁMETRO	LONGITUD
		NOMINAL	(m) 79.7
T23	1100	1150	79.7
T24	1100	1150	56.2
T25	1100	1150	67.3
T48	1100	1150	92.8
TOTAL			296

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO


DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

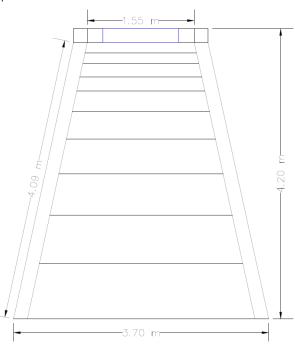
CÁLCULO DE CANTIDADES

Cod.	No.	Rub	ro / Descripción		Unidad	Cantidad
		RED DE ALCANTA	ARILLADO PLUVIAI	_		
		DESCARGA				
32	32	REPLANTEO ESTRUCTURAS	MANUAL	PARA	m2	11.69

ÁREA REPLANTEO PARA ESTRUCTURA DE DESCARGA	11.69	m2

Tomado de los planos

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR


TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
33	33	DESBROCE Y LIMPIEZA MANUAL DEL TERRENO	m2	11.69

ÁREA DESBROCE Y LIMPIEZA PARA ESTRUCTURA DE DESCARGA	11.69	m2	
--	-------	----	--

Tomado de los planos

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

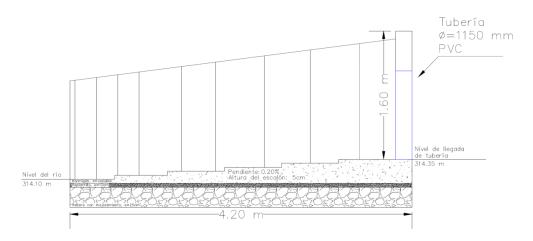
REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

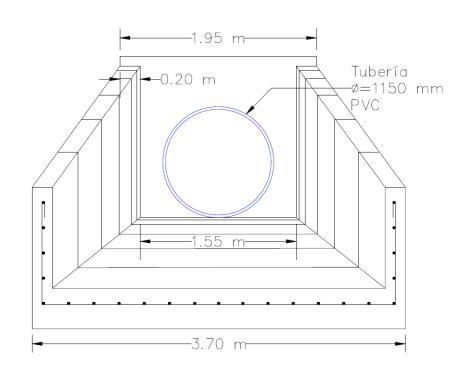
DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
34	34	REPLANTILLO fc=140kg/cm2	m3	1.17

ITEM	VALOR	UNIDAD
ÁREA	11.69	m2
ESPESOR	0.1	m
VOLUMEN	1.169	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR


TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA


REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

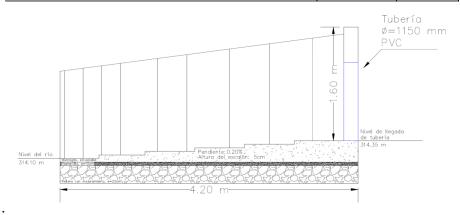
DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
35	35	ENCOFRADO/DESENCOFRADO	m2	34.20

ITEM	VALOR	UNIDAD
ÁREA PARED LATERAL	7.45	m2
NÚMERO DE CARAS	4	-
ÁREA PARED POSTERIOR	2.2	m2
NÚMERO DE CARAS	2	-
ÁREA TOTAL	34.2	m2

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,


CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

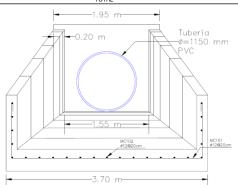
CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
36	36	HORMIGÓN SIMPLE fc=210 kg/cm2	m3	5.62

ITEM	VALOR	UNIDAD
ÁREA PARED LATERAL	7.45	m2
ÁREA PARED POSTERIOR	2.2	m2
ESPESOR PAREDES	0.2	m
ÁREA LATERAL DEL FONDO	0.78	m2
ANCHO PROMEDIO FONDO	2.825	m
VOLUMEN TOTAL	5.62	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACION CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA


REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

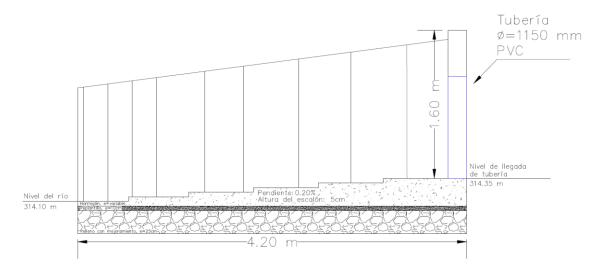
CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
37	37	ACERO DE REFUERZO fy=4200 kg/cm2 (SUMIN. Y COLOCACIÓN)	kg	186.75

DESCRIPCION	Ø TIPO	N°	DIMENSIONES			LONGITUD CORTE (m)	LONGITUD TOTAL (m)	DECO (Ir-)			
DESCRIPCION	Ø	IIPU	N-	а	b	С	d	g	LONGITUD CORTE (III)	LONGITUD TOTAL (m)	PESO (kg)
MC101	12	С	20	3.5	1			0.15	5.80	116.00	103.01
MC102	12	11	23	4.1					4.10	94.30	83.74
TOTAL							186 75				

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,


CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		DESCARGA		
38	38	RELLENO COMPACTADO CON MATERIAL DE MEJORAMIENTO	m3	2.92

ITEM	VALOR	UNIDAD
ÁREA FONDO	11.69	m2
ESPESOR PROMEDIO FONDO	0.25	m
VOLUMEN TOTAL	2.92	m3

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

CÁLCULO DE CANTIDADES

Cod.	No.	Rubro / Descripción	Unidad	Cantidad
		RED DE ALCANTARILLADO PLUVIAL		
		RUBROS COMPLEMENTARIOS		
39	39	REPARACIÓN DE ACOMETIDAS DE AGUA POTABLE	u	50.00

CONSIDERANDO LA MAGNITUD DEL PROYECTO Y ÁREA DE LA COMUNIDAD

ANEXO XI

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERÍA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

Nro. Pozo	Altura de pozo (m)	Diámetro de pozo (m)	Tipo de pozo
PZ1	1.58	1.2	Pozo 1.20m
PZ2	1.87	1.2	Pozo 1.20m
PZ3	1.70	1.2	Pozo 1.20m
PZ4	2.10	1.4	Pozo 1.40m
PZ5	2.52	1.4	Pozo 1.40m
PZ6	3.08	1.4	Pozo 1.40m
PZ7	1.58	1.2	Pozo 1.20m
PZ8	1.45	1.2	Pozo 1.20m
PZ9	1.55	1.2	Pozo 1.20m
PZ10	2.04	1.2	Pozo 1.20m
PZ11	2.71	1.2	Pozo 1.20m
PZ12	2.74	1.2	Pozo 1.20m
PZ13	2.87	1.2	Pozo 1.20m
PZ14	3.00	1.4	Pozo 1.40m
PZ15	3.39	1.4	Pozo 1.40m
PZ16	3.60	1.4	Pozo 1.40m
PZ17	3.63	1.4	Pozo 1.40m
PZ18	2.79	1.4	Pozo 1.40m
PZ19	2.64	1.4	Pozo 1.40m
PZ20	2.69	1.4	Pozo 1.40m
PZ21	2.69	1.4	Pozo 1.40m
PZ22	2.39	1.6	Pozo 1.60m
PZ23	4.64	1.6	Pozo Tipo II
PZ24	4.33	1.6	Pozo 1.60m
PZ25	3.50	1.6	Pozo 1.60m
PZ26	1.75	1.6	Pozo Tipo II
PZ28	2.21	1.2	Pozo 1.20m
PZ29	3.77	1.2	Pozo Tipo II
PZ30	1.72	1.2	Pozo 1.20m
PZ31	3.15	1.4	Pozo Tipo II
PZ32	4.40	1.6	Pozo Tipo II
PZ33	4.86	1.6	Pozo Tipo II
PZ34	4.71	1.6	Pozo 1.60m
PZ35	4.09	1.6	Pozo 1.60m
PZ36	4.28	1.6	Pozo 1.60m
PZ39	1.91	1.2	Pozo 1.20m
PZ40	2.30	1.4	Pozo Tipo II
PZ41	2.51	1.4	Pozo Tipo II
PZ42	1.90	1.4	Pozo 1.40m
PZ43	1.86	1.2	Pozo 1.20m
PZ44	3.61	1.4	Pozo Tipo II
PZ45	1.72	1.2	Pozo 1.20m
PZ46	2.29	1.4	Pozo Tipo I
PZ47	2.06	1.2	Pozo 1.20m
PZ48	1.827	1.4	Pozo 1.40m

ANEXO XII

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-46	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATO		
Q (m3/s)		
So m/m	0.0027	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO				
phi (rad)=	3.479			
Am (m2)=	0.063			
Pm (m)=	0.633			
Rh (m)=	0.100			
T (m)=	0.359			
Dh (m)=	0.399			
v (m/s)=	1.264			
Re=	5.003E+05			

CÁLCULO CALADO			
α (rad)=	0.169		
se no(α)=	0.031		
Calado normal (Yn)=	0.213		

ECUACIÓN DE COLEBROOK-WHITE				
$rac{1}{\sqrt{\lambda}} = -2\log_{10}\left(rac{k/D}{3,7} + rac{2,51}{Re\sqrt{\lambda}} ight)$	()			

VX (-) TEVX/
ALGORITMO COLEBROOK-WHITE
Calcular:
$x=\frac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70}$
$b=rac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b\cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b\cdot x})$
$\Delta = \frac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(0-sen0)</u> D ² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	$(\operatorname{sen} \frac{\theta}{2}) D$ 6 $2\sqrt{y(D-y)}$

NEWTON	I-RAPHSON
$x_{n+1}=x_n-$	$\frac{f(x_n)}{f'(x_n)}.$

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.02E-06	5.02E-06	3.599	0.000	3157.811
	4.466	1.02E-06	5.02E-06	9.261	-0.186	-4.042
	8.509	1.02E-06	5.02E-06	8.719	-0.100	-0.191
	8.700	1.02E-06	5.02E-06	8.700	-0.098	0.000
	8.700	1.02E-06	5.02E-06	8.700	-0.098	0.000
0.01321						

v(Darcy) (m/s)=	1.264
-----------------	-------

COMPROBACIÓN CHÉZY		
C=	77.07	
v(Chezy) (m/s)=	1.264	
Q (m3/s)=	0.080	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-26	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.162	
So m/m	0.0034	
D (m)	0.4	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	4.149	
Am (m2)=	0.100	
Pm (m)=	0.830	
Rh (m)=	0.120	
T (m)=	0.350	
Dh (m)=	0.482	
v (m/s)=	1.621	
Re=	7.753E+05	

CÁLCULO CALADO		
α (rad)= 0.504		
seno(α)=	0.097	
Calado normal (Yn)= 0.297		

CARACTERÍSTICA DE FLUJO		
Fr=	0.95	SUBCRÍTICO
Yn/D (m/m)	0.74	CORRECTO

ECUACIÓN DE O	COLEBROOK-WHITE
$\frac{1}{\sqrt{\lambda}} = -2\log_{10}$	$\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$

ALGORITMO COLEBROOK-WHITE

Calcular:

$$x = \frac{1}{\lambda^{0.5}}$$

$$a = \frac{k/D}{3.70}$$

$$b = \frac{2.51}{Re}$$

$$f(x) = -2.0 \cdot log_{10}(a + b \cdot x)$$

$$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a + b \cdot x})$$

$$\Delta = \frac{f(x) - x}{f'(x) - 1}$$

Si
$$\Delta > 1e^{-8}$$
 entonces

$$x=x-\Delta$$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x.

$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	(sen ^θ / ₂) D ό 2√y(D-y)

NEWTON-RAPHSON			
$x_{n+1}=x_n\;-\;$	$\frac{f(x_n)}{f'(x_n)}.$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON							
f (i)	$X(i)$ a b $fx(i)$ $ffx(i)$ $\Delta(i)$						
0.0000001	3162.278	8.42E-07	3.24E-06	3.980	0.000	3157.431	
	4.847	8.42E-07	3.24E-06	9.563	-0.170	-4.031	
	8.878	8.42E-07	3.24E-06	9.058	-0.095	-0.165	
	9.042	8.42E-07	3.24E-06	9.042	-0.093	0.000	
	9.042	8.42E-07	3.24E-06	9.042	-0.093	0.000	
0.01223							

v(Darcy) (m/s)=	1.621
-----------------	-------

COMPROBACIÓN CHÉZY				
C=	80.11			
v(Chezy) (m/s)=	1.621			
Q (m3/s)=	0.162			

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH		
Tub-22	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$		

DATO		
Q (m3/s) 0.2259		
So m/m	0.0022	
D (m)	0.5	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO				
phi (rad)= 4.091				
Am (m2)=	0.153			
Pm (m)=	1.023			
Rh (m)=	0.150			
T (m)=	0.445			
Dh (m)=	0.599			
v (m/s)=	1.474			
Re=	8.773E+05			

CÁLCULO CALADO			
α (rad)=	0.474		
seno(α)=	0.114		
Calado normal (Yn)=	0.364		

CARACTERÍSTICA DE FLUJO				
Fr= 0.78 SUBCRÍTICO				
Yn/D (m/m)	0.73	CORRECTO		

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

AL CODITION OF EDDOOR WILLIES
ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{\ln(10)} \cdot \left(\frac{b}{a+b\cdot x}\right)$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $m{x}$.

Por último calcular λ a partir de x.

Tipo de sección	Áre A (n		Perímetro mojado P (m)	Radio hidrá Rh (m)	ulico	Espejo de agua T (m)
Circular	<u>(</u> θ-ser		<u>θD</u> 2	(1- sen θ)	무 4	$(\operatorname{sen} \frac{\theta}{2}) D$ 6 $2\sqrt{y(D-y)}$
NEWTON-RAPHSON						

 $x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}.$

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON										
f (i)	(i) $X(i)$ a b $fx(i)$ $ffx(i)$ $\Delta(i)$									
0.0000001	3162.278	6.76E-07	2.86E-06	4.087	0.000	3157.324				
	4.954	6.76E-07	2.86E-06	9.657	-0.167	-4.028				
	8.982	6.76E-07	2.86E-06	9.158	-0.094	-0.160				
	9.143	6.76E-07	2.86E-06	9.143	-0.093	0.000				
	9.143	6.76E-07	2.86E-06	9.143	-0.093	0.000				
0.01106		·								

1.471

COMPROBACIÓN CHÉZY					
C=	80.99				
v(Chezy) (m/s)=	1.471				
Q (m3/s)=	0.225				

v(Darcy) (m/s)=

COMPROBACIÓN CHÉZY				
C=	80.99			

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH		
Tub-23	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$		

DATOS		
Q (m3/s)	0.2751	
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO					
phi (rad)=	3.609				
Am (m2)=	0.183				
Pm (m)=	1.083				
Rh (m)=	0.169				
T (m)=	0.584				
Dh (m)=	0.675				
v (m/s)=	1.506				
Re=	1.009E+06				

α (rad)=	0.234
seno(α)=	0.070
Calado normal (Yn)=	0.370

CARACTERÍSTICA DE FLUJO				
Fr=	0.79	SUBCRÍTICO		
Yn/D (m/m)	0.62	CORRECTO		

ECUACIÓN DE COLEBROOK-WHITE					
$\frac{1}{\sqrt{\lambda}} = -2\log_{10}$	$\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$				

ALGORITMO COLEBROOK-WHITE

Calcular:

$$x = rac{1}{\lambda^{0.5}}$$
 $a = rac{k/D}{3.70}$
 $b = rac{2.51}{Re}$
 $f(x) = -2.0 \cdot log_{10}(a + b \cdot x)$
 $f'(x) = rac{-2.0}{ln(10)} \cdot (rac{b}{a + b \cdot x})$
 $\Delta = rac{f(x) - x}{f'(x) - 1}$

Si
$$\Delta > 1e^{-8}$$
 entonces

$$x = x - \Delta$$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x.

$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	(θ-senθ)D ² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	(sen ⁹ / ₂) D ό 2√y(D-y)

NEWTON-RAPHSON				
$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$				

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON										
f (i)	X(i) a b fx (i) ffx (i)									
0.0000001	3162.278	6.01E-07	2.49E-06	4.209	0.000	3157.202				
	5.076	6.01E-07	2.49E-06	9.757	-0.163	-4.024				
	9.100	6.01E-07	2.49E-06	9.268	-0.093	-0.154				
	9.253	6.01E-07	2.49E-06	9.254	-0.091	0.000				
	9.254	6.01E-07	2.49E-06	9.254	-0.091	0.000				
0.01168			•			•				

v(Darcy) (m/s)= 1.506

COMPROBACIÓ	N CHÉZY
C=	81.98
v(Chezy) (m/s)=	1.506
Q (m3/s)=	0.275

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-24	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS	6	
Q (m3/s)	0.3057	
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCUI	_0
phi (rad)=	3.803
Am (m2)=	0.199
Pm (m)=	1.141
Rh (m)=	0.174
T (m)=	0.567
Dh (m)=	0.697
v (m/s)=	1.538
Re=	1.064E+06

CÁLCULO C	ALADO
α (rad)=	0.331
seno(α)=	0.097
Calado normal (Yn)=	0.397

CARACTI	ERÍSTICA DE FLU	no
Fr=	0.78	SUBCRÍTICO
Yn/D (m/m)	0.66	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a = \frac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot \left(\frac{b}{a + b \cdot x}\right)$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $oldsymbol{x}$.
Por último calcular λ a partir de x .

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	(sen ^θ / ₂) D ό 2√y(D-y)

	NEWTO	N-RAPHSON
x_{n+1}	$=x_n$ $-$	$\frac{f(x_n)}{f'(x_n)}.$

		FACTOR DE FRIC	CIÓN "f" NEWT	ON-RAPHSON		
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	5.82E-07	2.36E-06	4.255	0.000	3157.156
	5.122	5.82E-07	2.36E-06	9.795	-0.162	-4.022
	9.144	5.82E-07	2.36E-06	9.309	-0.092	-0.151
	9.295	5.82E-07	2.36E-06	9.295	-0.091	0.000
	9.295	5.82E-07	2.36E-06	9.295	-0.091	0.000
0.01157		•				•

|--|

COMPROBACIÓN CHÉZY			
C=	82.35		
v(Chezy) (m/s)=	1.537		
Q (m3/s)=	0.306		

TRABAJO DE INTEGRACIÓN CURRICULAR TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA
REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-25	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATO	Ī	
Q (m3/s) 0.0631		
So m/m	0.002	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO				
phi (rad)=	3.375			
Am (m2)=	0.060			
Pm (m)=	0.614			
Rh (m)=	0.097			
T (m)=	0.362			
Dh (m)=	0.389			
v (m/s)=	1.057			
Re=	4.082E+05			

CÁLCULO CALADO			
α (rad)=	0.117		
seno(α)=	0.021		
Calado normal (Yn)=	0.203		

CARACTERÍSTICA DE FLUJO			
Fr=	0.75	SUBCRÍTICO	
Yn/D (m/m)	0.56	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x = \frac{1}{10.5}$
$a=rac{\lambda^{0.5}}{k/D} rac{\lambda^{0.5}}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $oldsymbol{x}$.
Por último calcular λ a partir de x .

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D ó 2√y(D-y)

$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}.$	NEWTON-RAPHSON		
	$x_{n+1}=x_n$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.04E-06	6.15E-06	3.422	0.000	3157.988
	4.290	1.04E-06	6.15E-06	9.124	-0.195	-4.046
	8.336	1.04E-06	6.15E-06	8.563	-0.102	-0.206
	8.542	1.04E-06	6.15E-06	8.542	-0.100	0.000
	8.542	1.04E-06	6.15E-06	8.542	-0.100	0.000
0.01370			•	,		•

v(Darcy) (m/s)= 1.055

COMPROBACIÓN CHÉZY			
C=	75.67		
v(Chezy) (m/s)=	1.055		
Q (m3/s)=	0.063		

ANEXO XIII

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERÍA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-1	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DA]	
Q (m3/s) 0.0244		
So m/m	0.002	
D (m)	0.25	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)= 3.447		
Am (m2)=	0.029	
Pm (m)= 0.431		
Rh (m)= 0.068		
T (m)= 0.247		
Dh (m)= 0.272		
v (m/s)= 0.835		
Re= 2.254E+05		

CÁLCULO CALADO		
α (rad)= 0.153		
seno(α)=	0.019	
Calado normal 0.144		

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$r = \frac{1}{r}$
$x = \frac{1}{\lambda^{0.5}}$
$\frac{\alpha}{k}/D$
$a = \frac{k/D}{3.70}$
3.70
, 2.51
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a + b \cdot x)$
, , , , , , , , , , , , , , , , , , , ,
$\frac{a'(a)}{a} = -2.0$ b
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
/
$\Delta = \frac{f(x) - x}{x}$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
<i>y</i> (")
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$
Banatir baata lagrar canvargancia on #

Repetir hasta lograr convergencia en
$$oldsymbol{x}$$
.
Por último calcular $oldsymbol{\lambda}$ a partir de $oldsymbol{x}$.

$$\lambda = rac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	$(\operatorname{sen} \frac{\theta}{2}) D$ δ $2\sqrt{y(D-y)}$

NEWTON-RAPHSON	
$x_{n+1}=x_n$ —	$\frac{f(x_n)}{f'(x_n)}.$

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.49E-06	1.11E-05	2.906	0.000	3158.504
	3.774	1.49E-06	1.11E-05	8.723	-0.222	-4.049
	7.823	1.49E-06	1.11E-05	8.105	-0.109	-0.255
	8.077	1.49E-06	1.11E-05	8.078	-0.106	0.000
	8.078	1.49E-06	1.11E-05	8.078	-0.106	0.000
0.01533						

v(Darcy) (m/s)=	0.834

COMPROBACIÓN CHÉZY		
C= 71.56		
v(Chezy) (m/s)=	0.834	
Q (m3/s)= 0.024		

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-2	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DAT	1	
DATO	1	
Q (m3/s)	0.0570	
So m/m 0.002		
D (m) 0.3		
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	4.161	
Am (m2)=	0.056	
Pm (m)=	0.624	
Rh (m)=	0.090	
T (m)=	0.262	
Dh (m)=	0.361	
v (m/s)=	1.011	
Re=	3.629E+05	

CÁLCULO CALADO		
α (rad)= 0.510		
seno(α)=	0.073	
Calado normal (Yn)=	0.223	

CARACTERÍSTICA DE FLUJO			
Fr= 0.68 SUBCRÍTICO			
Yn/D (m/m) 0.74 CORRECTO			

ECUACIÓN DE COLEBROOK-WHITE		
$\frac{1}{\sqrt{\lambda}} = -2\log_{10}$	$\left(\frac{k/D}{3,7}\right)$	$+rac{2,51}{Re\sqrt{\lambda}}igg)$

$\sqrt{\lambda}$	(3,7	$Re\sqrt{\lambda}$	
ALGORI	TMO COLEBRO	OK-WHITE	
Calcular:			
$x=rac{1}{\lambda^{0.}}$.5		
$a=\frac{k/2}{2}$	$\frac{D}{70}$		

$$a = \frac{k/D}{3.70}$$

$$b = \frac{2.51}{Re}$$

$$f(x) = -\frac{1}{2}$$

$$b = \frac{3.70}{Re}$$

$$f(x) = -2.0 \cdot log_{10}(a + b \cdot x)$$

$$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a + b \cdot x})$$

$$\Delta = rac{f(x) - x}{f'(x) - 1}$$

Si $\Delta > 1e^{-8}$ entonces

$$x = x - \Delta$$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x.

$$\lambda = rac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	(θ-senθ)D² 8	<u>θ D</u> 2	(1- sen θ) D θ	$(\operatorname{sen} \frac{\theta}{2}) D$ δ $2\sqrt{y(D-y)}$

NEWTON-RAPHSON		
$x_{n+1}=x_n\;-\;$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.12E-06	6.92E-06	3.320	0.000	3158.090
	4.188	1.12E-06	6.92E-06	9.043	-0.200	-4.047
	8.235	1.12E-06	6.92E-06	8.472	-0.103	-0.215
	8.450	1.12E-06	6.92E-06	8.450	-0.101	0.000
	8.450	1.12E-06	6.92E-06	8.450	-0.101	0.000
0.01400			·	·	·	

v(Darcy) (m/s)=	1.006

COMPROBACIÓN CHÉZY		
C=	74.86	
v(Chezy) (m/s)=	1.006	
Q (m3/s)=	0.057	

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-3	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.0853	
So m/m	0.002	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	3.893	
Am (m2)=	0.076	
Pm (m)=	0.708	
Rh (m)=	0.107	
T (m)=	0.339	
Dh (m)=	0.428	
v (m/s)=	1.126	
Re=	4.785E+05	

CÁLCULO CALADO		
α (rad)=	0.376	
se no(α)=	0.067	
Calado normal (Yn)=	0.249	

CARACTERÍSTICA DE FLUJO		
Fr=	0.72	SUBCRÍTICO
Yn/D (m/m)	0.68	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{\dot{k/}D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Repetir hasta lograr convergencia en
$$x$$
. Por último calcular λ a partir de x .
$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u>	(1- <u>senθ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D ó 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1} = x_n \ -$	$\frac{f(x_n)}{f'(x_n)}$.	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	9.48E-07	5.25E-06	3.560	0.000	3157.850
	4.428	9.48E-07	5.25E-06	9.233	-0.188	-4.044
	8.471	9.48E-07	5.25E-06	8.686	-0.100	-0.195
	8.667	9.48E-07	5.25E-06	8.667	-0.098	0.000
	8.667	9.48E-07	5.25E-06	8.667	-0.098	0.000
0.01331				•		

v(Darcy) (m/s)=	1.123
-----------------	-------

COMPROBACIÓN CHÉZY		
C= 76.78		
v(Chezy) (m/s)=	1.123	
Q (m3/s)=	0.085	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-4	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.1080	
So m/m	0.0025	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	4.160	
Am (m2)=	0.083	
Pm (m)=	0.757	
Rh (m)=	0.110	
T (m)=	0.318	
Dh (m)=	0.438	
v (m/s)=	1.302	
Re=	5.669E+05	

CÁLCULO CALADO		
α (rad)= 0.509		
seno(α)=	0.089	
Calado normal (Yn)= 0.271		

CARACTERÍSTICA DE FLUJO		
Fr=	0.80	SUBCRÍTICO
Yn/D (m/m)	0.74	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE		
$\frac{1}{\sqrt{\lambda}} = -2\log_{10}$	$\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$	

ALGORITMO COLEBROOK-WHITE
Calcular: $x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70} \ b=rac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b\cdot x)$ $f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b\cdot x})$ $\Delta = \frac{f(x)-x}{f'(x)-1}$
$f'(x)-1$ Si $\Delta>1e^{-8}$ entonces $x=x-\Delta$

Repetir hasta lograr convergencia en
$$oldsymbol{x}$$
 . Por último calcular $oldsymbol{\lambda}$ a partir de $oldsymbol{x}$.

$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	$(\operatorname{sen} \frac{\theta}{2}) D$ 6 $2\sqrt{y(D-y)}$

NEWTON-RAPHSON		
x_{n+1}	$=x_n$	$-rac{f(x_n)}{f'(x_n)}.$

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
1.00E-07	3162.278	9.25E-07	4.43E-06	3.708	-2.75E-04	3157.70
	4.575	9.25E-07	4.43E-06	9.348	-0.182	-4.04E+00
	8.615	9.25E-07	4.43E-06	8.816	-0.098	-1.84E-01
	8.798	9.25E-07	4.43E-06	8.798	-0.096	-1.69E-04
	8.798	9.25E-07	4.43E-06	8.798	-0.096	-1.40E-10
0.01292						

v(Darcy) (m/s)=	1.290

COMPROBACIÓN CHÉZY		
C= 77.94		
v(Chezy) (m/s)=	1.290	
Q (m3/s)=	0.107	

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-5	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.1194	
So m/m	0.002	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	8.433	
Am (m2)=	0.126	
Pm (m)=	1.535	
Rh (m)=	0.082	
T (m)=	-0.320	
Dh (m)=	0.328	
v (m/s)=	0.949	
Re=	3.090E+05	

CÁLCULO CALADO	
α (rad)=	2.646
seno(α)=	0.087
Calado normal (Yn)=	0.269

CARACTERÍSTICA DE FLUJO		
Fr=	0.58	SUBCRÍTICO
Yn/D (m/m)	0.74	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a = \frac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $oldsymbol{x}$.
Por último calcular $\pmb{\lambda}$ a partir de \pmb{x} .
4

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen ^θ / ₂) D ό 2√y(D-y)

NEWTON-RAPHSON	
$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.24E-06	8.12E-06	3.180	-2.75E-04	3158.230
	4.048	1.24E-06	8.12E-06	8.934	-0.207	-4.05E+00
	8.097	1.24E-06	8.12E-06	8.348	-0.105	-2.27E-01
	8.324	1.24E-06	8.12E-06	8.324	-0.102	-2.93E-04
	8.324	1.24E-06	8.12E-06	8.324	-0.102	-4.72E-10
0.01443		•	•			

v(Darcy) (m/s)=	0.944

COMPROBACIÓN CHÉZY		
C= 73.74		
v(Chezy) (m/s)=	0.944	
Q (m3/s)=	0.119	

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-6	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.1241	
So m/m	0.002	
D (m)	0.364	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	8.602	
Am (m2)=	0.130	
Pm (m)=	1.566	
Rh (m)=	0.083	
T (m)=	-0.334	
Dh (m)=	0.333	
v (m/s)=	0.952	
Re=	3.149E+05	

CÁLCULO CALADO		
α (rad)=	2.730	
seno(α)=	0.073	
Calado normal (Yn)=	0.255	

CARACTERÍSTICA DE FLUJO			
Fr= 0.60 SUBCRÍTIO			
Yn/D (m/m)	0.70	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
4
m = 1
$x=rac{1}{\lambda^{0.5}}$
7.
k/D
$a = \frac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$o = \frac{1}{R_o}$
160
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
-2.0 , b ,
$f'(x) = \frac{-2.0}{\ln(10)} \cdot \left(\frac{b}{a+b \cdot x}\right)$
$ln(10) a+b\cdot x$
f(x) = x
$\Lambda = \frac{f(x) - x}{x}$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces
3. = 3 = 2 3.12/1000

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

 $x = x - \Delta$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- sen θ) D/4	(sen $\frac{9}{2}$) D ó 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1}=x_n$ –	$-rac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	1.22E-06	7.97E-06	3.197	0.000	3158.213
	4.064	1.22E-06	7.97E-06	8.947	-0.206	-4.049
	8.113	1.22E-06	7.97E-06	8.362	-0.105	-0.226
	8.339	1.22E-06	7.97E-06	8.339	-0.102	0.000
	8.339	1.22E-06	7.97E-06	8.339	-0.102	0.000
0.01438						

v(Darcy) (m/s)=	0.953
-----------------	-------

COMPROBACIÓN CHÉZY		
C= 73.87		
v(Chezy) (m/s)=	0.953	
Q (m3/s)=	0.124	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-7	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	Q (m3/s) 0.5089	
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	8.904		
Am (m2)= 0.378			
Pm (m)=	2.671		
Rh (m)=	0.142		
T (m)= -0.580			
Dh (m)=	0.566		
v (m/s)=	1.345		
Re=	7.568E+05		

CÁLCULO CALADO		
α (rad)= 2.881		
seno(α)=	0.077	
Calado normal (Yn)=	0.377	

CARACTERÍSTICA DE FLUJO			
Fr= 0.70 SUBCRÍTICO			
Yn/D (m/m) 0.63 CORRECTO			

ECUACIÓN DE COLEBROOK-WHITE		
$rac{1}{\sqrt{\lambda}} = -2\log_{10}\left(rac{k_{j}}{3} ight)$	$\left(rac{D}{\sqrt{7}} + rac{2,51}{Re\sqrt{\lambda}} ight)$	

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70} \ 2.51$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces

$$x=x-\Delta$$
 Repetir hasta lograr convergencia en x . Por último calcular λ a partir de x . $\lambda=rac{1}{x^2}$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen ^θ / ₂) D ό 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1} = x_n -$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	7.16E-07	3.32E-06	3.959	0.000	3157.452
	4.826	7.16E-07	3.32E-06	9.553	-0.172	-4.033
	8.859	7.16E-07	3.32E-06	9.043	-0.096	-0.168
	9.027	7.16E-07	3.32E-06	9.027	-0.094	0.000
	9.027	7.16E-07	3.32E-06	9.027	-0.094	0.000
0.01227			· · · · ·			· · · · · ·

COMPROBACIÓN CHÉZY			
C= 79.97			
v(Chezy) (m/s)=	1.346		
Q (m3/s)=	0.509		

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

DIRECTOR, DR. PATRICIO RUBEN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-8	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	0.5781	
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	9.344		
Am (m2)=	0.417		
Pm (m)=	2.803		
Rh (m)=	0.149		
T (m)=	-0.600		
Dh (m)=	0.595		
v (m/s)=	1.387		
Re=	8.191E+05		

CÁLCULO CALADO		
α (rad)=	3.101	
seno(α)=	0.012	
Calado normal (Yn)=	0.312	

CARACTERÍSTICA DE FLUJO			
Fr=	0.79	SUBCRÍTICO	
Yn/D (m/m)	0.52	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
1
$x=rac{1}{\lambda^{0.5}}$
, ,
$a = \frac{k/D}{3.70}$
$a=\overline{3.70}$
2.51
$b = \frac{2.51}{R_e}$
166
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
-2.0 , b
$f'(x) = \frac{-2.0}{\ln(10)} \cdot \left(\frac{b}{a+b \cdot x}\right)$
()
$\Delta = rac{f(x) - x}{f'(x) - 1}$
$\Delta = \frac{1}{f(r)}$
f'(x) - 1
Si $\Delta > 1e^{-8}$ entonces
DI A / IE ELITORICES

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

 $x = x - \Delta$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
OCircular	(θ-senθ)D² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	(sen $\frac{9}{2}$) D 6 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1} = x_n \ -$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON							
f (i)	X(i) a b		b	fx (i)	ffx (i)	Δ (i)	
0.0000001	3162.278	6.82E-07	3.06E-06	4.027	0.000	3157.383	
	4.894	6.82E-07	3.06E-06	9.609	-0.170	-4.031	
	8.925	6.82E-07	3.06E-06	9.105	-0.095	-0.164	
	9.089	6.82E-07	3.06E-06	9.089	-0.093	0.000	
	9.089	6.82E-07	3.06E-06	9.089	-0.093	0.000	
0.01210			•			•	

v(Darcy) (m/s)=	1.389

COMPROBACIÓN CHÉZY		
C= 80.52		
v(Chezy) (m/s)=	1.389	
Q (m3/s)=	0.579	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

Tub-9 $h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s) 0.6139		
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO				
phi (rad)=	9.555			
Am (m2)=	0.436			
Pm (m)=	2.866			
Rh (m)=	0.152			
T (m)=	-0.599			
Dh (m)=	0.608			
v (m/s)=	1.409			
Re=	8.508E+05			

CÁLCULO CALADO			
α (rad)=	3.207		
seno(α)=	-0.020		
Calado normal (Yn)=	0.280		

CARACTERÍSTICA DE FLUJO			
Fr=	0.85	SUBCRÍTICO	
Yn/D (m/m)	0.47	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{\widehat{k}/D}{3.70}$
$b=\frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Repetir hasta lograr convergencia en
$$x$$
. Por último calcular λ a partir de x .
$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- sen θ) D/4	(sen $\frac{\theta}{2}$) D

L	NEWTON-RAPHSON		
	$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON							
f (i)	$X(i)$ a b $fx(i)$ $ffx(i)$ $\Delta(i)$						
0.0000001	3162.278	6.67E-07	2.95E-06	4.060	0.000	3157.350	
	4.927	6.67E-07	2.95E-06	9.636	-0.169	-4.030	
	8.957	6.67E-07	2.95E-06	9.134	-0.095	-0.162	
	9.119	6.67E-07	2.95E-06	9.119	-0.093	0.000	
	9.119	6.67E-07	2.95E-06	9.119	-0.093	0.000	
0.01203					•		

v(Darcy) (m/s)= 1.409

COMPROBACIÓN CHÉZY		
C= 80.79		
v(Chezy) (m/s)=	1.409	
Q (m3/s)=	0.614	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-10	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	Q (m3/s) 0.6721	
So m/m	0.002	
D (m)	0.6	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)= 9.913			
Am (m2)=	0.467		
Pm (m)=	2.974		
Rh (m)=	0.157		
T (m)=	-0.582		
Dh (m)=	0.628		
v (m/s)=	1.439		
Re=	8.977E+05		

CÁLCULO CALADO		
α (rad)=	3.386	
seno(α)=	-0.073	
Calado normal (Yn)=	0.227	

CARACTERÍSTICA DE FLUJO			
Fr= 0.96 SUBCRÍTICO			
Yn/D (m/m) 0.38 CORRECT			

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}} \ a=rac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{\ln(10)} \cdot \left(\frac{b}{a + b \cdot x}\right)$
$\Delta = \frac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

 $x = x - \Delta$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D 6 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1} = x_n -$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	6.45E-07	2.80E-06	4.107	0.000	3157.304
	4.974	6.45E-07	2.80E-06	9.674	-0.167	-4.028
	9.002	6.45E-07	2.80E-06	9.176	-0.094	-0.159
	9.161	6.45E-07	2.80E-06	9.161	-0.092	0.000
	9.161	6.45E-07	2.80E-06	9.161	-0.092	0.000
0.01191			•			•

COMPROBACIÓN CHÉZY			
C= 81.16			
v(Chezy) (m/s)=	1.439		
Q (m3/s)=	0.672		

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH		
Tub-11	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$		

DATOS		
Q (m3/s)	0.7671	
So m/m	0.002	
D (m)	0.7	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	8.910		
Am (m2)=	0.516		
Pm (m)=	3.119		
Rh (m)=	0.165		
T (m)=	-0.677		
Dh (m)=	0.661		
v (m/s)=	1.488		
Re=	9.771E+05		

CÁLCULO CALADO		
α (rad)= 2.884		
seno(α)=	0.089	
Calado normal (Yn)=	0.439	

CARACTERÍSTICA DE FLUJO			
Fr=	0.72	SUBCRÍTICO	
Yn/D (m/m)	0.63	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70}$
$b=\frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = \frac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Por último calcular λ a partir de x .			
$\lambda = \frac{1}{x^2}$			

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	(θ-senθ)D² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	$(\operatorname{sen} \frac{\theta}{2}) D$ o $2\sqrt{y(D-y)}$

NEWTON-RAPHSON			
$x_{n+1}=x_n-$	$\frac{f(x_n)}{f'(x_n)}.$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	6.13E-07	2.57E-06	4.180	0.000	3157.230
	5.048	6.13E-07	2.57E-06	9.734	-0.164	-4.025
	9.073	6.13E-07	2.57E-06	9.242	-0.093	-0.155
	9.228	6.13E-07	2.57E-06	9.228	-0.092	0.000
	9.228	6.13E-07	2.57E-06	9.228	-0.092	0.000
0.01174						

v(Darcy) (m/s)= 1.487

COMPROBACIÓN CHÉZY		
C=	81.75	
v(Chezy) (m/s)=	1.487	
Q (m3/s)=	0.766	

TRABAJO DE INTEGRACIÓN CURRICULAR TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

DARCY-WEISBACH Tub-12

DATOS		
Q (m3/s)	0.8353	
So m/m	0.002	
D (m)	0.7	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	9.204		
Am (m2)=	0.550		
Pm (m)=	3.221		
Rh (m)=	0.171		
T (m)=	-0.696		
Dh (m)=	0.683		
v (m/s)=	1.518		
Re=	1.030E+06		

CÁLCULO CALADO			
α (rad)=	3.031		
seno(α)=	0.039		
Calado normal (Yn)=	0.389		

CARACTERÍSTICA DE FLUJO			
Fr=	0.78	SUBCRÍTICO	
Yn/D (m/m)	0.56	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a = \frac{\overset{\frown}{k}/D}{3.70}$
$b=rac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$
Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x .

Tipo de Área sección A (m2)			Perímetro mojado Radio hidráo P (m) Rh (m)		ulico Espejo de agua T (m)			
		en6)D ² 8 D 2		(1- sen θ) D/4		(sen ^θ / ₂) D ό 2√y(D-y)		
			NEW	TON-RAPHS	ON		•	
		x_{n+}	$x_1 = x_n$	$- \; \frac{f(x_n)}{f'(x_n)}$				
		FACTOR	DE FRICO	CIÓN "f" NEW	TON-RAPHSON			
f (i)	X(i)	a	1	b	fx (i)	f	fx (i)	Δ (i)
0.0000001	3162.278	5.93	E-07	2.44E-06	4.226	С	.000	3157.184
	5.093	5.93	E-07	2.44E-06	9.772	-(0.163	-4.024
	9.117	5.93	E-07	2.44E-06	9.284	-(0.093	-0.153
	9.270	5.93	E-07	2.44E-06	9.270	-(0.091	0.000
	9.270	5.93	E-07	2.44E-06	9.270	-(0.091	0.000
0.01164								
		v(Darcy) (m/s)=	1.518]			
		COMF	PROBACI	ÓN CHÉZY				
				00.40				

i)	а	b	fx (i)	ffx (i)	Δ (i)
278	5.93E-07	2.44E-06	4.226	0.000	3157.184
93	5.93E-07	2.44E-06	9.772	-0.163	-4.024
17	5.93E-07	2.44E-06	9.284	-0.093	-0.153
70	5.93E-07	2.44E-06	9.270	-0.091	0.000
70	5.93E-07	2.44E-06	9.270	-0.091	0.000
1					

COMPROBACIÓN CHÉZY				
C=	82.12			
v(Chezy) (m/s)=	1.518			
Q (m3/s)=	0.835			

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-13	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	Q (m3/s) 0.8640	
So m/m	0.002	
D (m)	0.7	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	9.321		
Am (m2)=	0.565		
Pm (m)=	3.262		
Rh (m)=	0.173		
T (m)=	-0.699		
Dh (m)=	0.692		
v (m/s)=	1.530		
Re=	1.052E+06		

CÁLCULO CALADO		
α (rad)= 3.090		
seno(α)=	0.018	
Calado normal (Yn)=	0.368	

CARACTERÍSTICA DE FLUJO				
Fr= 0.81 SUBCRÍTICO				
Yn/D (m/m)	0.53	CORRECTO		

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=\frac{1}{\lambda^{0.5}}$
$a=\frac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
OCircular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- sen θ) D/4	(sen $\frac{9}{2}$) D 6 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1} = x_n \ -$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	5.86E-07	2.39E-06	4.245	0.000	3157.166
	5.112	5.86E-07	2.39E-06	9.787	-0.162	-4.023
	9.135	5.86E-07	2.39E-06	9.300	-0.093	-0.152
	9.286	5.86E-07	2.39E-06	9.286	-0.091	0.000
	9.286	5.86E-07	2.39E-06	9.286	-0.091	0.000
0.01160					·	

v(Darcy) (m/s)=	1.530
-----------------	-------

COMPROBACIÓN CHÉZY		
C= 82.27		
v(Chezy) (m/s)=	1.530	
Q (m3/s)=	0.864	

FACULTAD DE INGENIERIA CIVIL Y AMBIENTAL

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-14	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	Q (m3/s) 0.9117	
So m/m	0.002	
D (m) 0.7		
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	9.512		
Am (m2)=	0.588		
Pm (m)=	3.329		
Rh (m)=	0.177		
T (m)=	-0.699		
Dh (m)=	0.706		
v (m/s)=	1.550		
Re=	1.088E+06		

CÁLCULO CALADO		
α (rad)= 3.185		
seno(α)=	-0.015	
Calado normal (Yn)=	0.335	

CARACTERÍSTICA DE FLUJO		
Fr=	0.86	SUBCRÍTICO
Yn/D (m/m)	0.48	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE		
$rac{1}{\sqrt{\lambda}} = -2\log_{10}\left(rac{k/D}{3,7} + rac{2,51}{Re\sqrt{\lambda}} ight)$)	

ALGORITMO COLEBROOK-WHITE
Calcular:
Colodial.
1
$x=rac{1}{\lambda^{0.5}}$
7.
k/D
$a = \frac{k/D}{3.70}$
00
$b = \frac{2.51}{Re}$
$b = {R_{\theta}}$
100
$f(x) = -2.0 \cdot log_{10}(a+b\cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$f'(x) = \frac{1}{1 \cdot (x \cdot x)} \cdot (\frac{1}{1 \cdot x})$
$ln(10) a+b\cdot x$
f(x) - x
$\Delta = rac{f(x) - x}{f'(x) - 1}$
f'(x) - 1
Si $\Delta > 1e^{-8}$ entonces

$$x=x-\Delta$$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Por último calcular λ a partir de x.

$$\lambda = rac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	(θ-senθ)D² 8	<u>θ D</u>	(1- sen θ) D/4	(sen ^θ / ₂) D ό 2√y(D-y)

NEWTON-RAPHSON	
$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	5.74E-07	2.31E-06	4.274	0.000	3157.137
	5.141	5.74E-07	2.31E-06	9.811	-0.161	-4.022
	9.162	5.74E-07	2.31E-06	9.326	-0.092	-0.150
	9.313	5.74E-07	2.31E-06	9.313	-0.091	0.000
	9.313	5.74E-07	2.31E-06	9.313	-0.091	0.000
0.01153				•		

v(Darcy) (m/s)=	1.551
-----------------	-------

COMPROBACIÓN CHÉZY		
C=	82.50	
v(Chezy) (m/s)=	1.551	
Q (m3/s)=	0.912	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

Tub-15 $h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	1.0164	
So m/m	0.002	
D (m)	0.8	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	8.667		
Am (m2)=	0.638		
Pm (m)=	3.467		
Rh (m)=	0.184		
T (m)=	-0.743		
Dh (m)=	0.737		
v (m/s)=	1.592		
Re=	1.165E+06		

CÁLCULO CALADO		
α (rad)=	2.763	
seno(α)=	0.148	
Calado normal (Yn)=	0.548	

CARACTERÍSTICA DE FLUJO		
Fr=	0.69	SUBCRÍTICO
Yn/D (m/m)	0.69	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
1
$x=rac{1}{\lambda^{0.5}}$
$x = \frac{10.5}{10.5}$
, , , , , , , , , , , , , , , , , , ,
k/D
$a = \frac{1}{1 - 1}$
$a=rac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
Re
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f(w) = 2.0 \text{ tog}_{10}(w + o - w)$
-2.0 , b
$f'(x) = \frac{1}{1 \cdot (10)} \cdot (\frac{1}{100})$
$f'(x) = \frac{-2.0}{\ln(10)} \cdot \left(\frac{b}{a + b \cdot x}\right)$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
$-\frac{f'(x)-1}{f'(x)}$
J (w) 1
Si $\Delta > 1e^{-8}$ entonces
SIA / Te elitolices
$x=x-\Delta$
$x = x - \Delta$

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D 6 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}.$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	5.50E-07	2.16E-06	4.333	0.000	3157.078
	5.200	5.50E-07	2.16E-06	9.859	-0.159	-4.019
	9.219	5.50E-07	2.16E-06	9.380	-0.092	-0.147
	9.366	5.50E-07	2.16E-06	9.367	-0.090	0.000
	9.367	5.50E-07	2.16E-06	9.367	-0.090	0.000
0.01140			•			•

v(Darcy) (m/s)=	1.592
-----------------	-------

COMPROBACIÓN CHÉZY		
C= 82.98		
v(Chezy) (m/s)=	1.592	
Q (m3/s)=	1.016	

TRABAJO DE INTEGRACIÓN CURRICULAR TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-16	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	1.0450	
So m/m	0.002	
D (m)	0.8	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	8.764	
Am (m2)=	0.652	
Pm (m)=	3.506	
Rh (m)=	0.186	
T (m)=	-0.757	
Dh (m)=	0.744	
v (m/s)=	1.603	
Re=	1.184E+06	

CÁLCULO CALADO		
α (rad)= 2.811		
seno(α)=	0.130	
Calado normal (Yn)=	0.530	

CARACTERÍSTICA DE FLUJO		
Fr=	0.70	SUBCRÍTICO
Yn/D (m/m)	0.66	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
4
$r = \frac{1}{r}$
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70}$
$_{\iota} = 2.51$
$b = rac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
ln(10) = ln(10)
f(x)-x
$\Delta = rac{f(x) - x}{f'(x) - 1}$
f'(x) = 1
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Repetir hasta lograr convergencia en $oldsymbol{x}$
Por último calcular $\pmb{\lambda}$ a partir de \pmb{x} .
$\lambda = rac{1}{x^2}$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D 6 2√y(D-y)

NEWTON-RAPHSON		
$x_{n+1}=x_n-$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	5.45E-07	2.12E-06	4.347	0.000	3157.063
	5.214	5.45E-07	2.12E-06	9.871	-0.159	-4.019
	9.233	5.45E-07	2.12E-06	9.393	-0.092	-0.146
	9.379	5.45E-07	2.12E-06	9.380	-0.090	0.000
	9.380	5.45E-07	2.12E-06	9.380	-0.090	0.000
0.01137		•		_		•

v(Darcy) (m/s)= 1.603

COMPROBACIÓN CHÉZY			
C=	83.09		
v(Chezy) (m/s)=	1.603		
Q (m3/s)=	1.045		

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-17	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	3.0311	
So m/m	0.002	
D (m)	1.1	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO		
phi (rad)=	9.552	
Am (m2)=	1.464	
Pm (m)=	5.253	
Rh (m)=	0.279	
T (m)=	-1.098	
Dh (m)=	1.115	
v (m/s)=	2.071	
Re=	2.292E+06	

CÁLCULO CALADO		
α (rad)=	3.205	
seno(α)=	-0.035	
Calado normal (Yn)=	0.515	

CARACTERÍSTICA DE FLUJO		
Fr=	0.92	SUBCRÍTICO
Yn/D (m/m)	0.47	CORRECTO

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70} \ 2.51$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > ~1e^{-8}$ entonces
$x=x-\Delta$

Repetir hasta lograr convergencia en
$$m{x}$$
. Por último calcular $m{\lambda}$ a partir de $m{x}$.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
OCircular	(θ-senθ)D² 8	<u>θ D</u> 2	(1- <u>senθ</u>) <u>D</u> θ	$(\operatorname{sen} \frac{\theta}{2}) D$ \acute{o} $2\sqrt{y(D-y)}$

NEWTON	NEWTON-RAPHSON		
$x_{n+1}=x_n \ -$	$\frac{f(x_n)}{f'(x_n)}.$		

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	3.64E-07	1.10E-06	4.921	0.000	3156.490
	5.788	3.64E-07	1.10E-06	10.348	-0.142	-3.993
	9.781	3.64E-07	1.10E-06	9.911	-0.086	-0.120
	9.901	3.64E-07	1.10E-06	9.901	-0.085	0.000
	9.901	3.64E-07	1.10E-06	9.901	-0.085	0.000
0.01020		•				

v(Darcy) (m/s)= 2.071

COMPROBACIÓN CHÉZY		
C= 87.71		
v(Chezy) (m/s)=	2.071	
Q (m3/s)=	3.031	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE, CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

	DARCY-WEISBACH
Tub-18	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s)	3.0718	
So m/m	0.002	
D (m)	1.1	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)= 9.601			
Am (m2)= 1.479			
Pm (m)=	5.280		
Rh (m)=	0.280		
T (m)= -1.096			
Dh (m)= 1.120			
v (m/s)=	2.078		
Re=	2.311E+06		

CÁLCULO CALADO		
α (rad)= 3.230		
seno(α)=	-0.048	
Calado normal (Yn)=	0.502	

CARACTERÍSTICA DE FLUJO			
Fr= 0.94 SUBCRÍTIC			
Yn/D (m/m)	0.46	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
_ 1
$x=rac{1}{\lambda^{0.5}}$
$a=rac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
Re
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
-2.0 , b
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
$\Delta = f'(x) - 1$
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$

Por último calcular
$$\lambda$$
 a partir de x . $\lambda = rac{1}{x^2}$

Repetir hasta lograr convergencia en $oldsymbol{x}$.

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	(sen ^θ / ₂) D 6 2√y(D-y)

NEW1	TON-RAPHSON
$x_{n+1}=x_n$	$-rac{f(x_n)}{f'(x_n)}.$

		FACTOR DE FRIC	CIÓN "f" NEW	TON-RAPHSON	I	
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)
0.0000001	3162.278	3.62E-07	1.09E-06	4.928	0.000	3156.483
	5.795	3.62E-07	1.09E-06	10.354	-0.142	-3.993
	9.788	3.62E-07	1.09E-06	9.918	-0.086	-0.120
	9.907	3.62E-07	1.09E-06	9.908	-0.085	0.000
	9.908	3.62E-07	1.09E-06	9.908	-0.085	0.000
0.01019						

v(Darcy) (m/s)=	2.077
-----------------	-------

COMPROBACIÓN CHÉZY		
C=	87.77	
v(Chezy) (m/s)=	2.077	
Q (m3/s)=	3.071	

CARRERA DE INGENIERIA CIVIL TRABAJO DE INTEGRACION CURRICULAR

TEMA: DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA

REALIZADO POR: JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

	DARCY-WEISBACH
Tub-19	$h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS	DATOS		
Q (m3/s)	3.1158		
So m/m	0.002		
D (m)	1.1		
e (mm-m)	0.0015	0.0000015	
u (m2/s)	1.007E-06		

CÁLCUL	.0
phi (rad)=	9.656
Am (m2)=	1.495
Pm (m)=	5.311
Rh (m)=	0.282
T (m)=	-1.093
Dh (m)=	1.126
v (m/s)=	2.084
Re=	2.331E+06

CÁLCULO CALADO		
α (rad)=	3.257	
seno(α)=	-0.063	
Calado normal (Yn)=	0.487	

CARACTERÍSTICA DE FLUJO				
Fr=	Fr= 0.95 SUBCRÍTICO			
Yn/D (m/m)	0.44	CORRECTO		

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
1
$x = \frac{1}{\lambda^{0.5}}$
$\lambda^{0.5}$
k/D
$a=rac{k/D}{3.70}$
$b = \frac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
-2.0 , b
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
/
$\Lambda = f(x) - x$
$\Delta = \frac{f(x) - x}{f'(x) - 1}$
-
Si $\Delta > 1e^{-8}$ entonces
$x=x-\Delta$

Repetir hasta lograr convergencia en
$$oldsymbol{x}$$
 . Por último calcular $oldsymbol{\lambda}$ a partir de $oldsymbol{x}$.

$$\lambda = \frac{1}{x^2}$$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D²</u> 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u> θ	(sen $\frac{\theta}{2}$) D

NEWTON-RAPHSON		
$x_{n+1}=x_n-$	$\frac{f(x_n)}{f'(x_n)}.$	

FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON						
f (i)	$X(i)$ a b fx (i) ffx (i) Δ (i)					
0.0000001	3162.278	3.60E-07	1.08E-06	4.935	0.000	3156.475
	5.802	3.60E-07	1.08E-06	10.360	-0.142	-3.992
Ĭ	9.795	3.60E-07	1.08E-06	9.924	-0.086	-0.120
Ĭ	9.914	3.60E-07	1.08E-06	9.914	-0.085	0.000
Ĭ	9.914	3.60E-07	1.08E-06	9.914	-0.085	0.000
0.01017			•			•

v(Darcy) (m/s)=	2.084

COMPROBACIÓN CHÉZY		
C=	87.83	
v(Chezy) (m/s)=	2.084	
Q (m3/s)=	3.116	

TRABAJO DE INTEGRACIÓN CURRICULAR

TEMA; DISEÑO DEL SISTEMA DE ALCANTARILLADO PLUVIAL PARA LA COMUNIDAD 25 DE DICIEMBRE,

CANTÓN LA JOYA DE LOS SACHAS, PROVINCIA DE ORELLANA **REALIZADO POR:** JHOSSELYN PAOLA JIMÉNEZ QUEVEDO

DIRECTOR: DR. PATRICIO RUBÉN ORTEGA LARA

HOJA DE CÁLCULO PARA HALLAR LAS CARACTERÍSTICAS DE UN CANAL CIRCULAR CON LA ECUACIÓN DE DARCY-WEISBACH, MEDIANTE EL USO DEL MÉTODO NUMÉRICO DE NEWTON-RAPHSON PARA RESOLVER EL ALGORITMO DE COLEBROOK-WHITE.

Tub-021 $h_f = f \cdot rac{L}{D} \cdot rac{u^2}{2g}$

DATOS		
Q (m3/s) 3.1719		
So m/m	0.002	
D (m)	1.1	
e (mm-m)	0.0015	0.0000015
u (m2/s)	1.007E-06	

CÁLCULO			
phi (rad)=	9.726		
Am (m2)=	1.516		
Pm (m)=	5.349		
Rh (m)=	0.283		
T (m)=	-1.088		
Dh (m)=	1.134		
v (m/s)=	2.092		
Re=	2.355E+06		

CÁLCULO CALADO		
α (rad)=	3.292	
seno(α)=	-0.082	
Calado normal (Yn)=	0.468	

CARACTERÍSTICA DE FLUJO			
Fr= 0.98 SUBCRÍTICO			
Yn/D (m/m)	0.43	CORRECTO	

ECUACIÓN DE COLEBROOK-WHITE
$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k/D}{3,7} + \frac{2,51}{Re\sqrt{\lambda}}\right)$$

ALGORITMO COLEBROOK-WHITE
Calcular:
$x=rac{1}{\lambda^{0.5}} \ k/D$
$a=rac{k/D}{3.70} \ b=rac{2.51}{Re}$
$f(x) = -2.0 \cdot log_{10}(a+b \cdot x)$
$f'(x) = \frac{-2.0}{ln(10)} \cdot (\frac{b}{a+b \cdot x})$
$\Delta = rac{f(x) - x}{f'(x) - 1}$
Si $\Delta > 1e^{-8}$ entonces

Repetir hasta lograr convergencia en
$$m{x}$$
.
Por último calcular $m{\lambda}$ a partir de $m{x}$.

 $x = x - \Delta$

Tipo de	Área	Perímetro mojado	Radio hidráulico	Espejo de agua
sección	A (m2)	P (m)	Rh (m)	T (m)
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- <u>sen θ</u>) <u>D</u>	$(\operatorname{sen} \frac{\theta}{2}) D$ 6 $2\sqrt{y(D-y)}$

NEWTON-RAPHSON		
$x_{n+1}=x_n\;-\;$	$\frac{f(x_n)}{f'(x_n)}.$	

	FACTOR DE FRICCIÓN "f" NEWTON-RAPHSON											
f (i)	X(i)	а	b	fx (i)	ffx (i)	Δ (i)						
0.0000001	3162.278	3.58E-07	1.07E-06	4.945	0.000	3156.466						
	5.812	3.58E-07	1.07E-06	10.367	-0.141	-3.992						
	9.803	3.58E-07	1.07E-06	9.933	-0.086	-0.119						
	9.923	3.58E-07	1.07E-06	9.923	-0.085	0.000						
	9.923	3.58E-07	1.07E-06	9.923	-0.085	0.000						
0.01016		•										

v(Darcy) (m/s)=	2.093
-----------------	-------

COMPROBAC	IÓN CHÉZY				
C=	87.90				
v(Chezy) (m/s)=	2.093				
Q (m3/s)=	3.172				

ANEXO XIV

			CAUDAL	PARCIAL (m3/s)	
TRAMO D	DE CALLE 1	EXCEL	SEWERGEMS PORCENTAJE ERROR		DIFERENCIA
	PZ-27				
Tub-46		0.0798	0.0800	-0.3132	-0.0002
	PZ-26				
Tub-26		0.0822	0.0820	0.2564	0.0002
	PZ-32				
Tub-22		0.0639	0.0640	-0.1615	-0.0001
	PZ-28				
Tub-23		0.0492	0.0490	0.4823	0.0002
	PZ-23		•		
Tub-24		0.0306	0.0310	-1.3425	-0.0004
	PZ-3				
	PZ-29				
Tub-25		0.0631	0.0630	0.1887	0.0001
	PZ-3			·	`

			CAL	JDAL (m3/s)			DIÁMETRO (m)			
TRAMO D	E CALLE 1	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	
	PZ-27									
Tub-46		0.0798	0.0800	-0.3132	-0.0002	0.3640	0.3640	0.0000	0.0000	
	PZ-26									
Tub-26		0.1620	0.1530	5.5328	0.0090	0.4000	0.4000	0.0000	0.0000	
	PZ-32									
Tub-22		0.2259	0.1960	13.2197	0.0299	0.5000	0.5000	0.0000	0.0000	
	PZ-28									
Tub-23		0.2751	0.2410	12.3940	0.0341	0.6000	0.6000	0.0000	0.0000	
	PZ-23									
Tub-24		0.3057	0.2500	18.2164	0.0557	0.6000	0.6000	0.0000	0.0000	
	PZ-3									
	PZ-29									
Tub-25		0.0631	0.0630	0.1887	0.0001	0.3640	0.3640	0.0000	0.0000	
·	PZ-3		·	·	·		·	·	·	

			PEND	IENTE (%)		VELOCIDAD (m/s)				
TRAMO D	DE CALLE 1	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	
	PZ-27									
Tub-46		0.2700	0.2700	0.0000	0.0000	1.2643	1.2600	0.3406	0.0043	
	PZ-26									
Tub-26		0.3400	0.3200	5.8824	0.0200	1.6206	1.5600	3.7389	0.0606	
	PZ-32				•					
Tub-22		0.2200	0.2200	0.0000	0.0000	1.4740	1.4500	1.6278	0.0240	
	PZ-28									
Tub-23		0.2000	0.2000	0.0000	0.0000	1.5056	1.4600	3.0304	0.0456	
	PZ-23									
Tub-24		0.2000	0.2000	0.0000	0.0000	1.5377	1.4700	4.4052	0.0677	
	PZ-3									
	PZ-29							·		
Tub-25		0.2000	0.2000	0.0000	0.0000	1.0568	1.0600	-0.3020	-0.0032	
	PZ-3									

			F	ROUDE		RELACIÓN y/D				
TRAMO D	E CALLE 1	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	
	PZ-27									
Tub-46		0.8751	0.9600	-9.7070	-0.0849	0.5840	0.5850	-0.1688	-0.0010	
	PZ-26		•		•		•		•	
Tub-26		0.9507	0.9540	-0.3464	-0.0033	0.7413	0.7260	2.0649	0.0153	
	PZ-32									
Tub-22		0.7798	0.8680	-11.3110	-0.0882	0.7284	0.6510	10.6298	0.0774	
	PZ-28									
Tub-23		0.7908	0.8880	-12.2932	-0.0972	0.6159	0.5710	7.2869	0.0449	
	PZ-23									
Tub-24		0.7788	0.8810	-13.1256	-0.1022	0.6624	0.5780	12.7405	0.0844	
	PZ-3		•							
	PZ-29									
Tub-25		0.7485	0.8290	-10.7496	-0.0805	0.5582	0.5590	-0.1416	-0.0008	
	PZ-3									

ANEXO XV

TD 414	2 25 24115		CAUDAL	PARCIAL (m3/s)			CAL	JDAL (m3/s)			DIÁN	IETRO (m)	
	DE CALLE INCIPAL	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-21												
Tub-1		0.0244	0.0240	1.8247	0.0004	0.0244	0.0240	1.8247	0.0004	0.2500	0.2500	0.0000	0.0000
<u> </u>	PZ-22				T				1			T	1
Tub-2	D7.07	0.0326	0.0330	-1.2981	-0.0004	0.0570	0.0530	7.0553	0.0040	0.3000	0.3000	0.0000	0.0000
Tub-3	PZ-37	0.0283	0.0280	1.1122	0.0003	0.0853	0.0810	5.0834	0.0043	0.3640	0.3640	0.0000	0.0000
Tub-3	PZ-34	0.0283	0.0280	1.1122	0.0003	0.0853	0.0810	5.0634	0.0043	0.3040	0.3640	0.0000	0.0000
Tub-4	FZ-34	0.0227	0.0230	-1.3330	-0.0003	0.1080	0.0920	14.8429	0.0160	0.3640	0.3640	0.0000	0.0000
100 4	PZ-31	0.0221	0.0200	1.0000	0.0000	0.1000	0.0320	14.0425	0.0100	0.0040	0.00-10	0.0000	0.0000
Tub-5		0.0113	0.0110	3.0106	0.0003	0.1194	0.0900	24.6086	0.0294	0.3640	0.3640	0.0000	0.0000
	PZ-9				•							•	•
Tub-6		0.0047	0.0050	-5.8936	-0.0003	0.1241	0.0900	27.4771	0.0341	0.3640	0.3640	0.0000	0.0000
	PZ-3		T	T									
Tub-7		0.0160	0.0160	0.0700	0.0000	0.5089	0.2600	48.9108	0.2489	0.6000	0.6000	0.0000	0.0000
	PZ-4				T		1		1			1	
Tub-8	PZ-5	0.0691	0.0690	0.2158	0.0001	0.5781	0.3000	48.1025	0.2781	0.6000	0.6000	0.0000	0.0000
Tub-9	PZ-5	0.0359	0.0360	-0.3468	-0.0001	0.6139	0.3200	47.8775	0.2939	0.6000	0.6000	0.0000	0.0000
Tub-9	PZ-6	0.0359	0.0360	-0.3400	-0.0001	0.0139	0.3200	47.0773	0.2939	0.0000	0.6000	0.0000	0.0000
Tub-10	120	0.0582	0.0580	0.3284	0.0002	0.6721	0.3560	47.0340	0.3161	0.6000	0.6000	0.0000	0.0000
	PZ-12												
Tub-11		0.0949	0.0950	-0.0535	-0.0001	0.7671	0.4030	47.4630	0.3641	0.7000	0.7000	0.0000	0.0000
	PZ-13									•			
Tub-12		0.0682	0.0680	0.3200	0.0002	0.8353	0.4430	46.9650	0.3923	0.7000	0.7000	0.0000	0.0000
	PZ-7		1	1	1	1	1		1	1		1	1
Tub-13		0.0287	0.0290	-1.1235	-0.0003	0.8640	0.4650	46.1790	0.3990	0.7000	0.7000	0.0000	0.0000
	PZ-8	0.04==	2 2 4 2 2	0.0004		0.044=	0.4040	45.04.40		. =	. ====		
Tub-14	PZ-14	0.0477	0.0480	-0.6021	-0.0003	0.9117	0.4940	45.8148	0.4177	0.7000	0.7000	0.0000	0.0000
Tub-15	PZ-14	0.1047	0.1050	-0.2599	-0.0003	1.0164	0.5580	45.1012	0.4584	0.8000	0.8000	0.0000	0.0000
100-10	PZ-15	0.1047	0.1030	-0.2333	-0.0003	1.0104	0.5500	43.1012	0.4304	0.0000	0.0000	0.0000	0.0000
Tub-16	12.13	0.0286	0.0290	-1.4576	-0.0004	1.0450	0.5730	45.1674	0.4720	0.8000	0.8000	0.0000	0.0000
	PZ-16												
Tub-17		0.0501	0.0500	0.2440	0.0001	3.0311	1.4650	51.6674	1.5661	1.1000	1.1000	0.0000	0.0000
	PZ-19				-		-						
Tub-18		0.0408	0.0410	-0.5947	-0.0002	3.0718	1.4880	51.5600	1.5838	1.1000	1.1000	0.0000	0.0000
	PZ-20	1	T	T	1		1		1	T		1	1
Tub-19	57.06	0.0440	0.0440	-0.0312	0.0000	3.1158	1.5120	51.4735	1.6038	1.1000	1.1000	0.0000	0.0000
Tub 004	PZ-30	0.0560	0.0560	0.0514	0.0000	2.4740	1.5420	E4 0E04	4 6200	1 1000	1 1000	0.0000	0.0000
Tub-021	DESC-1	0.0560	0.0560	0.0514	0.0000	3.1719	1.5430	51.3534	1.6289	1.1000	1.1000	0.0000	0.0000
	DE20-1	1											

TRAMO	DE CALLE		PEND	IENTE (%)			VELC	OCIDAD (m/s)	
_	DE CALLE NCIPAL	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-21		T		_	1	1		
Tub-1		0.2000	0.2000	0.0000	0.0000	0.8349	0.8300	0.5859	0.0049
	PZ-22			0.000					
Tub-2	D7.07	0.2000	0.2000	0.0000	0.0000	1.0113	1.0000	1.1150	0.0113
T 1 0	PZ-37	0.0000	0.0000	0.0000		4 4000	4.4400	4 4400	0.0400
Tub-3	D7.04	0.2000	0.2000	0.0000	0.0000	1.1263	1.1100	1.4429	0.0163
Tub-4	PZ-34	0.2500	0.2500	0.0000	0.0000	4 2040	1.2500	2.0007	0.0540
TUD-4	PZ-31	0.2500	0.2500	0.0000	0.0000	1.3018	1.2500	3.9807	0.0518
Tub-5	FZ-31	0.2000	0.2000	0.0000	0.0000	0.9489	1.1300	-19.0807	-0.1811
Tub-3	PZ-9	0.2000	0.2000	0.0000	0.0000	0.3403	1.1300	-19.0007	-0.1011
Tub-6	12-3	0.2000	0.2000	0.0000	0.0000	0.9522	1.1300	-18.6676	-0.1778
100 0	PZ-3	0.2000	0.2000	0.0000	0.0000	0.3322	1.1000	10.0070	0.1770
Tub-7	120	0.2000	0.2000	0.0000	0.0000	1.3454	1.4900	-10.7487	-0.1446
145 /	PZ-4	0.2000	0.2000	0.0000	0.0000	110 10 1		1017 101	0
Tub-8		0.2000	0.2000	0.0000	0.0000	1.3868	1.5300	-10.3278	-0.1432
	PZ-5	0.200							*******
Tub-9		0.2000	0.2000	0.0000	0.0000	1.4087	1.5500	-10.0288	-0.1413
	PZ-6				•				
Tub-10		0.2000	0.2000	0.0000	0.0000	1.4385	1.5700	-9.1377	-0.1315
	PZ-12								
Tub-11		0.2000	0.2000	0.0000	0.0000	1.4878	1.6500	-10.9048	-0.1622
	PZ-13								
Tub-12		0.2000	0.2000	0.0000	0.0000	1.5179	1.6800	-10.6829	-0.1621
	PZ-7								
Tub-13		0.2000	0.2000	0.0000	0.0000	1.5305	1.7000	-11.0782	-0.1695
	PZ-8		1	•		1	1		
Tub-14		0.2000	0.2000	0.0000	0.0000	1.5505	1.7200	-10.9328	-0.1695
	PZ-14								
Tub-15	57.45	0.2000	0.2000	0.0000	0.0000	1.5923	1.7900	-12.4159	-0.1977
T 1 40	PZ-15	0.0000	0.0000	0.0000		4.0007	4.7000	44.0505	0.4770
Tub-16	D7.40	0.2000	0.2000	0.0000	0.0000	1.6027	1.7800	-11.0595	-0.1773
T. b. 47	PZ-16	0.0000	0.0000	0.0000	0.0000	0.0700	0.0400	0.4040	0.4004
Tub-17	PZ-19	0.2000	0.2000	0.0000	0.0000	2.0706	2.2400	-8.1810	-0.1694
Tub-18	PZ-19	0.2000	0.2000	0.0000	0.0000	2.0776	2.2500	-8.2984	-0.1724
100-10	PZ-20	0.2000	0.2000	0.0000	0.0000	2.0110	2.2000	-0.2304	-0.1724
Tub-19	FZ-20	0.2000	0.2000	0.0000	0.0000	2.0842	2.2600	-8.4369	-0.1758
100-19	PZ-30	0.2000	0.2000	0.0000	0.0000	2.0042	2.2000	-0.4309	-0.1700
Tub-021	1 2-30	0.2000	0.2000	0.0000	0.0000	2.0925	2.2700	-8.4852	-0.1775
140 021	DESC-1	0.2000	0.2000	0.0000	0.0000	2.0320	2.2100	0.7002	0.1775
	DL00-1								

TDAMO	DE CALLE		F	ROUDE			REL	ACIÓN y/D	
	INCIPAL	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA	EXCEL	SEWERGEMS	PORCENTAJE ERROR	DIFERENCIA
	PZ-21								
Tub-1		0.7024	0.7730	-10.0517	-0.0706	0.5761	0.6130	-6.4081	-0.0369
	PZ-22		T	1		1	, ,		
Tub-2		0.6835	0.7190	-5.1973	-0.0355	0.7439	0.7070	4.9572	0.0369
T 1 0	PZ-37	0.7040	0.7700	7.0775	0.0540	0.0004	0.0000	0.4005	0.004.4
Tub-3	PZ-34	0.7210	0.7720	-7.0775	-0.0510	0.6834	0.6620	3.1285	0.0214
Tub-4	PZ-34	0.7989	0.8680	-8.6531	0.0601	0.7427	0.6900	7.3508	0.0547
TUD-4	PZ-31	0.7989	0.8680	-6.0031	-0.0691	0.7437	0.6890	7.3308	0.0547
Tub-5	FZ-31	0.5846	0.7340	-25.5612	-0.1494	0.7379	0.7160	2.9734	0.0219
Tub-5	PZ-9	0.3040	0.7340	-23.3012	-0.1434	0.1313	0.7100	2.3734	0.0219
Tub-6	123	0.6023	0.7340	-21.8633	-0.1317	0.7000	0.7160	-2.2910	-0.0160
100 0	PZ-3	0.0020	0.7010	21.0000	0.1017	0.7000	0.7 100	2.2010	0.0100
Tub-7		0.6993	0.8720	-24.6910	-0.1727	0.6288	0.6240	0.7632	0.0048
	PZ-4								
Tub-8		0.7925	0.8350	-5.3615	-0.0425	0.5202	0.6700	-28.7927	-0.1498
	PZ-5								•
Tub-9		0.8492	0.8130	4.2676	0.0362	0.4675	0.7160	-53.1602	-0.2485
	PZ-6								
Tub-10		0.9631	0.7640	20.6715	0.1991	0.3791	0.7460	-96.8061	-0.3669
	PZ-12		T						
Tub-11		0.7168	0.8840	-23.3175	-0.1672	0.6273	0.6260	0.2002	0.0013
	PZ-13		I	1		1	1		
Tub-12		0.7774	0.8590	-10.4942	-0.0816	0.5551	0.6570	-18.3538	-0.1019
T 1 40	PZ-7	0.0050	0.0400	4 5000	0.0007	0.5000	0.0040	22.2222	0.4500
Tub-13	D7.0	0.8053	0.8420	-4.5630	-0.0367	0.5260	0.6840	-30.0323	-0.1580
Tub-14	PZ-8	0.8557	0.8190	4.2908	0.0367	0.4781	0.7000	-46.4160	-0.2219
TUD-14	PZ-14	0.8557	0.8190	4.2908	0.0367	0.4781	0.7000	-40.4100	-0.2219
Tub-15	FZ-14	0.6867	0.9070	-32.0726	-0.2203	0.6850	0.6030	11.9733	0.0820
100 10	PZ-15	0.0007	0.5070	32.0720	0.2200	0.0000	0.0000	11.5755	0.0020
Tub-16	12.10	0.7030	0.8860	-26.0242	-0.1830	0.6622	0.6110	7.7361	0.0512
100 10	PZ-16	0000	0.0000	20.02.12	0000	0.0022	0.01.0	711001	0.00.2
Tub-17		0.9211	0.9090	1.3161	0.0121	0.4683	0.6530	-39.4490	-0.1847
	PZ-19		•		•	1			•
Tub-18		0.9365	0.9030	3.5761	0.0335	0.4561	0.6600	-44.7073	-0.2039
	PZ-20								
Tub-19		0.9538	0.8980	5.8547	0.0558	0.4424	0.6690	-51.2100	-0.2266
	PZ-30							·	
Tub-021		0.9770	0.8900	8.9077	0.0870	0.4250	0.6740	-58.5726	-0.2490
	DESC-1								