ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DESPACHO HIDROTÉRMICO DE CORTO PLAZO.

HERRAMIENTA COMPUTACIONAL, EN LENGUAJE PYTHON, PARA LA SOLUCIÓN DEL DESPACHO HIDROTÉRMICO DE CORTO PLAZO CONSIDERANDO LA RED ELÉCTRICA.

TRABAJO DE INTEGRACIÓN CURRICULAR PRESENTADO COMO REQUISITO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELÉCTRICO.

KEVIN DAVID PARRAGA PICO

kevin.parraga@epn.edu.ec

DIRECTOR: Dr.-Ing. NELSON VICTORIANO GRANDA GUTIÉRREZ

nelson.granda@epn.edu.ec

DMQ, agosto 2023

CERTIFICACIONES

Yo, Kevin David Parraga Pico declaro que el trabajo de integración curricular aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

Kevin David Parraga Pico

Certifico que el presente trabajo de integración curricular fue desarrollado por Kevin David Parraga Pico, bajo mi supervisión.

> Nelson Victoriano Granda Gutiérrez DIRECTOR

DECLARACIÓN DE AUTORÍA

A través de la presente declaración, afirmamos que el trabajo de integración curricular aquí descrito, así como el (los) producto(s) resultante(s) del mismo, son públicos y estarán a disposición de la comunidad a través del repositorio institucional de la Escuela Politécnica Nacional; sin embargo, la titularidad de los derechos patrimoniales nos corresponde a los autores que hemos contribuido en el desarrollo del presente trabajo; observando para el efecto las disposiciones establecidas por el órgano competente en propiedad intelectual, la normativa interna y demás normas.

Kevin David Parraga Pico

Nelson Victoriano Granda Gutiérrez

DEDICATORIA

Este gran logro le dedico primordialmente a Dios y a la Virgen del Cisne por siempre guiarme por el camino del bien y bendecirme con la salud cada día de mi vida.

Con mucho amor a mis padres, Jorge y Amparito, que con su gran cariño y amor incondicional siempre me guiaron hacia adelante en busca de mis objetivos y me enseñaron a no rendirme para alcanzar este gran logro académico, gracias a su gran apoyo incondicional todo fue posible.

A mis hermanas, Leslie y Estefanía, gracias por compartir su gran sabiduría mediante consejos para mejorar cada día en mi etapa académica y por su gran preocupación brindándome motivación cada día a pesar de la distancia lo que ha sido un gran pilar para convertirme en una extraordinaria persona llena de valores y principios.

A toda mi familia, especialmente a mis abuelitos, tíos, primos les agradezco por siempre estar pendiente de mi persona y agradezco por su apoyo incondicional en esta gran etapa educativa de mi vida.

A mis grandes amigos de la universidad, que siempre me han apoyado en todas las decisiones y que han formado parte de esta gran trayectoria, siendo amigos incondicionales que han estado a mi lado en los momentos buenos y malos de mi vida a través de los años.

AGRADECIMIENTO

Quiero expresar mi más grande agradecimiento a mis padres que siempre me apoyaron desde el primer día de esta gran etapa de mi vida, a mis amigos que me acompañaron en este difícil camino lleno de buenas y malas experiencias en el transcurso de todos estos años en la universidad, a la prestigiosa Facultad de Ingeniería Eléctrica y Electrónica EPN, que me ha brindado los mejores docentes que han sido un pilar muy importante en la adquisición de nuevos conocimientos y en el aprendizaje continuo para mi formación personal y profesional.

Un agradecimiento especial al Dr. Ing. Nelson Granda por su tiempo, su guía, su experimentada orientación y sus consejos para ayudar a desarrollar este trabajo.

ÍNDICE DE CONTENIDO

CERTIFICACION	IES	I
DECLARACIÓN I	DE AUTORÍA	II
DEDICATORIA		
AGRADECIMIEN	то	IV
ÍNDICE DE CON	TENIDO	V
RESUMEN		VII
ABSTRACT		VIII
1 DESCRIPCIÓ	ÓN DEL COMPONENTE DESARROLLADO	1
1.1 Objetivo	general	1
1.2 Objetivos	s específicos	1
1.3 Marco te	órico	2
1.3.1 Desp	acho Hidrotérmico de Corto Plazo	2
1.3.2 Flujo	Óptimo de Potencia	3
1.3.3 Form	ulación matemática del DHT -CP con OPF -AC	3
1.3.3.1 F	Función Objetivo	3
1.3.3.2 F	Restricciones	5
1.3.3.2.1	Balance de potencia activa y reactiva	5
1.3.3.2.2	Límites de potencia activa generada	6
1.3.3.2.3	Límites de potencia reactiva generada	7
1.3.3.2.4	Restricciones de rampa de arranque y subida	7
1.3.3.2.5	Restricciones de rampa de parada y bajada	8
1.3.3.2.6	Lógica binaria de operación	8
1.3.3.2.7	Volumen máximo y mínimo de embalses	9
1.3.3.2.8	Balance hidráulico	9
1.3.3.2.9	Caudal turbinado	10
1.3.3.2.1	0 Límites de flujo de potencia en red de transmisión	12
1.3.3.2.1	1 Límites de magnitud de voltajes en barras	12
1.3.3.2.1	2 Límites de ángulos de voltaje en las barras	12
1.3.3.3 H	Herramientas de Software	13
1.3.3.3.1	Python	13
1.3.3.3.2	Pyomo	13
1.3.3.3.3	Ipopt	14
2 METODOLO	GÍA	15

	2.	1 D	escripción de la herramienta computacional	.15
3		RE	SULTADOS	.41
	3.	1	Casos de estudio	.41
		3.1	.1 Aplicación al Sistema IEEE de 14 barras	.41
		3.1	.2 Aplicación al Sistema Nacional Interconectado (SNI) ecuatoriano	.58
4		СО	NCLUSIONES Y RECOMENDACIONES	.70
	4.	1	Conclusiones	.70
	4.	2	Recomendaciones	.71
5		RE	FERENCIAS BIBLIOGRÁFICAS	.72
6		AN	EXOS	.74

RESUMEN

En el presente trabajo de integración curricular se desarrolla una herramienta computacional, en lenguaje Python, para la solución del problema del Despacho Hidrotérmico de Corto Plazo (DHT-CP) considerando la red eléctrica en sistemas eléctricos de potencia. Para el cálculo de las pérdidas de potencia activa en la red eléctrica se usa flujo de potencia AC. Se incluye la formulación matemática de las restricciones técnicas y no técnicas del problema. En la herramienta computacional se implementan dos métodos para el cálculo de la potencia generada por las centrales hidroeléctricas.

La herramienta computacional se aplica a los sistemas IEEE de 14 barras y Sistema Nacional Interconectado Ecuatoriano (SNI); para el SNI se estudian dos casos de estudio según su hidrología: la temporada seca y la temporada lluviosa.

La herramienta entrega resultados óptimos para la potencia generada por cada central en función del tiempo, donde como objetivo se tiene que minimizar los costos de generación de las centrales térmicas; en el programa se pueden activar o desactivar las diferentes restricciones del problema y los resultados se muestran gráficamente y se reportan en tablas en formato Excel.

PALABRAS CLAVE: Despacho Hidrotérmico de Corto Plazo, flujo de potencia AC, Sistema Nacional Interconectado Ecuatoriano (SNI), sistema IEEE 14 barras, Pyomo, Python.

ABSTRACT

In this curricular integration work a computational tool is developed, in Python language, for the solution of the Short-Term Hydrothermal Dispatch problem (DHT-CP) considering the electrical network in power systems.

For the calculation of active power losses in the electrical network, AC power flow is used. The mathematical formulation of the technical and non-technical constraints of the problem is included. Two methods are implemented in the computational tool for the calculation of the power generated by hydroelectric power plants.

The computational tool is applied to the IEEE 14-bus system and the Ecuadorian National Interconnected System (SNI); for the SNI two study cases are studied according to its hydrology: dry season and rainy season.

The tool provides optimal results for the power generated by each power plant as a function of time, where the objective is to minimize the generation costs of the thermal power plants; in the program the different restrictions of the problem can be activated or deactivated and the results are shown graphically and reported in tables in Excel format.

KEYWORDS: Short term hydrothermal dispatch, AC power flow, Ecuadorian National Interconnected System (SNI), IEEE 14-Bus System, Pyomo, Python.

1 DESCRIPCIÓN DEL COMPONENTE DESARROLLADO

El Despacho Hidrotérmico de Corto Plazo (*DHT-CP*) es muy importante para la entrega diaria de energía en un sistema eléctrico, se trata de un problema de optimización complejo, de gran dimensión. En el caso de Ecuador SNI se tiene muchas centrales de generación hidroeléctricas y térmicas, además al considerar la red eléctrica se vuelve más complejo ya que se tienen pérdidas de flujo de potencia en los elementos de transmisión. En algunas formulaciones, el DHT-CP debe minimizar los costos de producción y minimizar el impacto ecológico, minimizando el uso las centrales térmicas y privilegiar la producción de energía por las centrales hidroeléctricas, cuyo recurso principal, el agua, para corto plazo no tiene ningún costo y es renovable.

En el presente trabajo se desarrolla una herramienta computacional, en lenguaje Python, para la modelación, parametrización y resolución del DHT-CP. En este modelo se incluyen las pérdidas en la red eléctrica, las restricciones técnicas y operativas del Sistema Eléctrico de Potencia (*SEP*) en un horizonte de tiempo de 24 horas; se tienen como datos de entrada los costos de combustible para centrales térmicas, los caudales hídricos, las demandas de potencia y las características técnicas del SEP, posteriormente, se determinan los costos por hora de la energía eléctrica, así como la producción de cada generador.

Como una aplicación importante se estudia el sistema eléctrico ecuatoriano, que cuenta con centrales hidroeléctricas, las cuales tienen el mayor aporte en la generación, y centrales térmicas. Debido a que el recurso hídrico proviene, en su gran mayoría, de las cuencas hídricas amazónicas se presentan dos escenarios según la abundancia de este recurso: la época seca, donde entran en operación varias centrales térmicas para suplir la demanda, con un incremento del costo de operación operativo, y la época lluviosa, donde se tiene una mayor operación de las centrales hidroeléctricas.

1.1 Objetivo general

Implementar una herramienta computacional, en lenguaje Python, para la solución del Despacho Hidrotérmico de Corto Plazo, considerando la red eléctrica.

1.2 Objetivos específicos

1. Realizar una revisión bibliográfica relacionada a la modelación matemática y diferentes métodos de solución del despacho hidrotérmico de corto plazo, flujo

óptimo de potencia de corriente alterna (OPF-AC) y linealización de la función de producción de energía eléctrica de las centrales hidroeléctricas.

- Implementar una herramienta computacional para la solución del DHT-CP considerando la red eléctrica mediante flujo óptimo de potencia de corriente alterna, utilizando la librería PYOMO.
- Implementar una herramienta computacional para la solución del DHT-CP considerando diferentes alternativas para la modelación de la función de potencia eléctrica generada por unidades hidroeléctricas, con el uso de la librería PYOMO.
- 4. Aplicar la herramienta computacional desarrollada al sistema de prueba IEEE 14 barras y al Sistema Nacional Interconectado Ecuatoriano.

1.3 Marco teórico

1.3.1 Despacho Hidrotérmico de Corto Plazo

El Despacho Hidrotérmico de Corto Plazo (*DHT-CP*) determina el estado de operación y la potencia generada por cada central de generación para suministrar una demanda dada, dentro de un horizonte de tiempo determinado, que para corto plazo usualmente se considera de 24 horas [1].

La mayoría de los sistemas eléctricos tienen una combinación entre centrales hidroeléctricas y centrales térmicas para suministrar su demanda, donde las centrales hidroeléctricas se usan para suministrar la carga base ya que sus costos no son elevados, en comparación a los costos elevados de las centrales térmicas que usan derivados del petróleo. Por otro lado, las centrales térmicas se usan para abastecer la demanda pico, ya que ocurre en periodos de tiempos pequeños, generalmente, cuando se usa más la energía eléctrica en las cargas que abastece la distribuidora eléctrica. La coordinación sistemática de la operación de un sistema con unidades de generación hidroeléctricas y termoeléctricas es más compleja que la programación del despacho de energía de un sistema totalmente térmico. Se deben tomar en cuenta las condiciones operativas como modelos de los embalses, la capacidad de almacenamiento de las centrales, la generación a partir del recurso hidráulico, etc [2].

Para la solución del DHT-CP se tienen que minimizar los costos totales de generación para abastecer la demanda del sistema en un período de tiempo determinado. El costo de la generación de energía eléctrica con el uso de centrales térmicas se determina generalmente por el costo del combustible y tiempos de funcionamiento del encendido (arranque) y apagado (parada) de los generadores térmicos en un determinado tiempo, cada central térmica tiene diferentes costos según su tecnología y dependiendo que tipo de combustible se use para generar la energía eléctrica [2].

1.3.2 Flujo Óptimo de Potencia

El Flujo Óptimo de Potencia (*OPF*) combina el cálculo de despacho económico con el cálculo de flujos de potencia, de manera que se resuelvan de forma simultánea. Las pérdidas totales que se presentan en el sistema de transmisión forman parte del cálculo de flujo de potencia en corriente alterna y se reflejan en potencia de generación en la barra de referencia, por lo que no es necesario calcular las pérdidas. El despacho económico se restringe para cumplir con los límites técnicos del sistema de transmisión, de los generadores, y, los límites operativos de voltaje en las barras. Como consecuencia, se tiene un despacho de generación que representa el mínimo costo total de generación en [\$/MWh] [1], [3].

1.3.3 Formulación matemática del DHT -CP con OPF -AC

La forma general de un problema de optimización se expresa de la siguiente manera:

$$\min_{x} \quad f(X,I) \tag{1}$$

Sujeto

$$G(X, I) \le 0$$
 (2)
 $H(X, I) = 0$ (3)

Donde *f* es la función objetivo, *G* y *H* son el conjunto de restricciones, *I* es la variable de entrada para el problema de optimización, *X* es el conjunto de variables de decisión para satisfacer las restricciones *G* y *H* y optimizar el valor de *f* [4].

1.3.3.1 Función Objetivo

El objetivo de la coordinación hidrotérmica es minimizar los costos totales de generación que pueden ser variables y/o fijos, costos del arranque y parada de las centrales térmicas que se asocian a la operación del Sistema Eléctrico de Potencia (SEP). Cada central termoeléctrica se asocia a una curva de costos propia, donde la función objetivo viene dada como [5]:

$$FO = \min \sum_{t=1}^{T} \sum_{g=1}^{G} (F_g(P_g^t) + C_g^A * Y_g^t + C_g^P * W_g^t)$$
(4)

Donde:

Es la g-ésima central térmica; donde $g = 1,2,3,, G$.
Es el t-ésimo periodo de análisis; donde $t = 1,2,3,, T$.
Es la función de costo total de la g-ésima central térmica [\$/ h].
Son los costos fijos de arranque de la g-ésima central térmica [\$].
Son los costos fijos de parada de la g-ésima central térmica [\$].
Es la variable binaria que se asocia al arranque de la g-ésima
Es la variable binaria que se asocia a la parada de la g-ésima central térmica; donde 1 (parada) y 0 (no está parada).

La función del costo de la central térmica g, generalmente se presenta como una función polinomial (no lineal) o como una función lineal por partes. Se expresa como [5]:

$$F_g(P_g^t) = a_g * U_g^t + b_g * P_g^t + c_g * P_g^{t^2}$$
(5)

Donde:

a_g , b_g , c_g	Son los coeficientes del costo de combustible de la g-ésima central
	térmica.
P_g^t	Es la potencia generada por la g-ésima central térmica en un periodo <i>t</i> [MW].
c_g	Es el coeficiente de costos cuadrática de la g-ésima central térmica $[\$/MW^2]$.
b_g	És el coeficiente de costos lineal de la g-ésima central térmica [\$/ MW].
a_g	Es el coeficiente de costos constante de la g-ésima central térmica [\$].

Además, una función no lineal se puede aproximar mediante una linealización por partes o una linealización simple que permite lograr una reducción del uso de recursos computacionales. Si se calcula la derivada de la función de costos, se obtiene la función lineal de costo marginal de la central térmica g [1].

En la linealización por partes se tienen tres segmentos del generador g que se representan como g1, g2, y g3 donde la variable P_g se reemplaza por tres nuevas variables P_{g1} , P_{g2} y P_{g3} donde cada segmento tiene una pendiente asignada s_{g1} , s_{g2} y s_{g3} . Entonces la función de costos se representa como la suma del costo P_g^{min} más la suma del costo lineal [1].

$$F_g(P_g^t) = F_g(P_g^{min}) + s_{g1}P_g + s_{g2}P_g + s_{g3}P_g$$
(6)

Mediante la derivada de la función de costos cuadrática se tiene una función lineal de los costos marginales de combustible de la central térmica *g* como [1]:

$$\frac{\delta F_g(P_g^t)}{\delta P_g^t} = b_g * U_g^t + c_g * P_g^t \tag{7}$$

Donde:

 U_g^t Es la variable binaria que se asocia al estado de operación de la gésima central térmica; donde 1 (está en servicio) y 0 (está fuera de servicio).

1.3.3.2 Restricciones

Se tiene un conjunto de restricciones: i) De igualdad, que se relacionan con el balance de la potencia en cada una de las barras del SEP y el balance hídrico del embalse de las centrales hidroeléctricas, y, ii) De desigualdad, que se relacionan con los límites técnicos del sistema de transmisión, de los generadores, límites operativos y de seguridad, etc [6].

1.3.3.2.1 Balance de potencia activa y reactiva

Considerando el flujo de potencia AC, la restricción de balance de potencia activa se expresa como [5]:

$$\sum_{g=1}^{G} (P_g^t) + \sum_{h=1}^{H} (P_h^t) - \sum_{d=1}^{D} (P_{Dem}^t) = \sum_{n,m=1}^{N} (P_{nm})$$

$$= \operatorname{Real}\left\{ V_n \left(\sum_{m=1}^{N} (Y_{nm} * V_m) \right)^* \right\}; \quad \forall t$$
(8)

Donde:

$P_{Dem}^t \ P_g^t$	Es la potencia activa de demanda en la hora t [MW]. Es la potencia activa generada por la g-ésima central térmica en un
P_h^t	Es la potencia activa generada por la h-ésima central hidroeléctrica
	en un periodo t [MW].
P_{nm}	Es la potencia activa transmitida desde la barra n hasta la barra m [MW].
V_n	Es la magnitud de voltaje en la barra n [V].
V_m	Es la magnitud de voltaje en la barra m [V].
Y_{nm}	Es la admitancia entre la barra n y la barra m [Ω^{-1}].
Ν	Número de barras.

Considerando el flujo de potencia AC, la restricción de balance de potencia reactiva se expresa como [5]:

$$\sum_{g=1}^{G} (Q_{g}^{t}) + \sum_{h=1}^{H} (Q_{h}^{t}) - \sum_{d=1}^{D} (Q_{Dem}^{t}) = \sum_{n,m=1}^{N} (Q_{nm})$$

$$= \operatorname{Imag} \left\{ V_{n} \left(\sum_{m=1}^{N} (Y_{nm} * V_{m}) \right)^{*} \right\}; \quad \forall t$$
(9)

Donde:

Q_{Dem}^t	Es la potencia reactiva de demanda en la hora t [MVAr].
Q_g^t	Es la potencia reactiva generada por la g-ésima central térmica en
0	un periodo t [MVAr].
Q_h^t	Es la potencia reactiva generada por la h-ésima central
	hidroeléctrica en un periodo t [MVAr].
Q_{nm}	Es la potencia reactiva transmitida desde la barra n hasta la barra
	<i>m</i> [MVAr].

Los elementos de compensación reactiva se toman en cuenta en la construcción de la admitancia de barra ya que para su cálculo se suma la admitancia shunt que es Y/2.

1.3.3.2.2 Límites de potencia activa generada

La potencia activa generada por cada unidad no debe sobrepasar los límites máximo y mínimo definidos por el fabricante, ya que así se garantiza la operación segura del generador [5].

$$P_{gmin} * U_g^t \le P_g^t \le P_{gmax} * U_g^t; \ \forall t$$
(10)

$$P_{hmin} \le P_h^t \le P_{hmax}; \ \forall t \tag{11}$$

Donde:

P _{gmin}	Es la potencia activa mínima de la g-ésima central térmica [MW].
P_{gmax}	Es la potencia activa máxima de la g-ésima central térmica [MW].
P _{hmin}	Es la potencia activa mínima de la h-ésima central hidroeléctrica [MW].
P _{hmax}	Es la potencia activa máxima de la h-ésima central hidroeléctrica [MW].

1.3.3.2.3 Límites de potencia reactiva generada

La potencia reactiva generada por cada unidad no debe sobrepasar sus límites técnicos máximo y mínimo, ya que así se garantiza la operación segura del generador. Para facilitar los cálculos las restricciones se trabajan en p.u. [5].

$$Q_{gmin} * U_g^t \le Q_g^t \le Q_{gmax} * U_g^t; \ \forall t \tag{12}$$

$$Q_{hmin} \le Q_h^t \le Q_{hmax}; \ \forall t \tag{13}$$

Donde:

Q_{gmin}	Es la potencia reactiva mínima de la g-ésima central térmica
0	[MVAr].
Q _{gmax}	Es la potencia reactiva máxima de la g-ésima central térmica
U	[MVAr].
Q_{hmin}	Es la potencia reactiva mínima de la h-ésima central hidroeléctrica
	[MVAr].
Q_{hmax}	Es la potencia reactiva máxima de la h-ésima central hidroeléctrica
	[MVAr].

1.3.3.2.4 Restricciones de rampa de arranque y subida

Las rampas de arranque y subida de potencia (toma de carga) se relacionan con el límite máximo de potencia que se puede añadir desde un periodo t a un periodo t + 1, donde la rampa de arranque indica que la central se encuentra desacoplada en un periodo t [5].

$$P_g^t - P_g^0 \le R_g^s(U_g^0) + R_g^A(Y_g^t); \quad t = 1$$
(14)

$$P_g^t - P_g^{t-1} \le R_g^g(U_g^{t-1}) + R_g^g(Y_g^t); \quad t = 2, \dots, T$$
(15)

$$P_h^t - P_h^0 \le R_h^3; \quad t = 1 \tag{16}$$

$$P_h^t - P_h^{t-1} \le R_h^S; \quad t = 2, \dots, T$$
(17)

Donde:

R_{g}^{S}	Es la rampa de subida de la g-ésima central térmica [MW].
R_{g}^{A}	Es la rampa de arranque de la g-ésima central térmica [MW].
R_{h}^{S}	Es la rampa de subida de la h-ésima central hidroeléctrica [MW].
Superíndice 1	Arranca.
Superíndice 0	No arranca.

El resultado es que la potencia generada por un generador g en un periodo t, menos la potencia generada en un periodo anterior t - 1, debe ser igual o menor a la suma de la potencia máxima de subida si el generador está en línea donde $U_g^{t-1} = 1$ en el periodo t - 1, más la potencia máxima de arranque si el generador arranca donde $Y_g^t = 1$ en el periodo t [5].

1.3.3.2.5 Restricciones de rampa de parada y bajada

Las rampas de parada y bajada de potencia se relacionan con el límite máximo de potencia que se puede disminuir desde un periodo t a un periodo t - 1 o detener la generación en un período t para la variable binaria U_a^t [5].

$$P_g^0 - P_g^t \le R_g^B(U_g^t) + R_g^P(W_g^t); \quad t = 1$$
(18)

$$P_g^{t-1} - P_g^t \le R_g^B(U_g^t) + R_g^P(W_g^t); \quad t = 2, \dots, T$$
(19)

$$P_h^0 - P_h^t \le R_h^B; \quad t = 1$$
 (20)

$$P_h^{t-1} - P_h^t \le R_h^B; \quad t = 2, \dots, T$$
(21)

Donde:

R_q^B	Es la rampa de bajada de la g-ésima central térmica [MW].
R_q^P	Es la rampa de parada de la g-ésima central térmica [MW].
R_{h}^{B}	Es la rampa de bajada de la h-ésima central hidroeléctrica [MW].
Superíndice 1	Está parada.
Superíndice 0	No está parada.

El resultado es que la potencia generada por un generador g en un periodo t-1, menos la potencia generada en un periodo anterior t, debe ser igual o menor a la suma de la potencia máxima de bajada si el generador está en línea donde $U_a^t = 1$ en el periodo t, más la potencia máxima de parada si el generador se encuentra parado donde $W_a^t = 1$ en el periodo t [5].

1.3.3.2.6 Lógica binaria de operación

Este conjunto de restricciones representa el estado de la unidad generadora como acoplamiento, arrangue y parada. [5]

$$U_g^t - U_g^0 = Y_g^t - W_g^t; \quad t = 1$$
(22)

$$U_{g}^{t} - U_{g}^{t-1} = Y_{g}^{t} - W_{g}^{t}; \quad t = 1$$

$$U_{g}^{t} - U_{g}^{t-1} = Y_{g}^{t} - W_{g}^{t}; \quad t = 2, ..., T$$

$$Y_{g}^{t} + W_{g}^{t} \le 1$$
(22)
(22)
(22)
(23)
(24)

Donde:

- U_a^t Es la variable binaria que se asocia al estado de operación de la gésima central térmica; donde 1 (está en servicio) y 0 (está fuera de servicio).
- Y_a^t Es la variable binaria que se asocia al arranque de la g-ésima central térmica; donde 1 (arranca) y 0 (no arranca).

 W_g^t Es la variable binaria que se asocia a la parada de la g-ésima central térmica; donde 1 (parada) y 0 (no está parada).

Se tiene cuatro posibles estados operativos de la central:

- Si se tiene en *t* que esta acoplada y en *t* − 1 está desacoplada, entonces la central arranca en *t*.
- Si se tiene en *t* que esta acoplada y en *t* − 1 está acoplada, entonces la central ya estaba operando en *t* − 1 y no puede arrancar ni realizar la parada en un tiempo *t*.
- Si se tiene en t que esta desacoplada y en t 1 está acoplada, entonces la central se paró en t.
- Si se tiene en t que esta desacoplada y en t 1 está desacoplada, entonces la central no estaba operando en t 1 y no puede arrancar ni realizar la parada en un tiempo t [5].

1.3.3.2.7 Volumen máximo y mínimo de embalses

Dependiendo de la planificación de operación se define una cantidad de energía a suministrar, donde el embalse debe mantener un mínimo de agua que garantice la continuidad de operación de la central. Además, se tiene un límite máximo del embalse, que evite el desperdicio del recurso hídrico [5].

$$V_{hmin} \le V_h^t \le V_{hmax}; \ \forall t \tag{25}$$

Donde:

- V_{hmin} Es el volumen mínimo del embalse de la h-ésima central hidroeléctrica [Hm³].
 V_{hmax} Es el volumen máximo del embalse de la h-ésima central hidroeléctrica [Hm³].
 - V_h^t Es el volumen del agua del embalse de la h-ésima central hidroeléctrica en un tiempo $t \ [Hm^3]$.

1.3.3.2.8 Balance hidráulico

Embalse independiente

Para asegurar un uso eficaz del embalse se necesita controlar el nivel del agua en cada periodo *t*. La expresión matemática que relaciona el volumen de agua en el embalse con la topología de la red hidráulica, cuando se tiene embalses independientes está dada por [5]:

Donde:

$$V_h^t = V_h^{t-1} + 3600(r_h^t) - q_h^t - S_h^t$$
(26)

r_h^t	Es el influjo natural del embalse de la h-ésima central hidroeléctrica
	en un periodo $t [m^3/s]$.
q_h^t	Es el caudal turbinado de la h-ésima central hidroeléctrica en un
	periodo $t [m^3/n]$.
S_h^t	Son los vertimientos del embalse de la h-ésima central hidroeléctrica en un periodo $t [m^3/h]$.

Embalses dependientes en cascada

Cuando la topología de la red hidráulica tiene centrales hidroeléctricas en cascada o con acoplamiento hídrico, es decir varios embalses en un mismo afluyente, se debe incluir un tiempo de desfase (t_{DT}) entre las centrales, ya que el caudal de una central aguas arriba se demora un tiempo en llegar a la central aguas abajo [5].

$$V_h^t = V_h^{t-1} + 3600(r_h^t) - q_h^t - S_h^t + \sum (q_{ha}^{t-t_{DT}} + S_{ha}^{t-t_{DT}}); \ \forall t$$
(27)

Donde:

q_{ha}^t	Es el caudal turbinado de la central hidroeléctrica aguas arriba en
	un periodo $t \ [m^3/h]$.

- S_{ha}^t Son los vertimientos del embalse de la central hidroeléctrica aguas arriba en un periodo $t [m^3/h]$.
- t_{DT} Es el desfase temporal entre la unidad aguas arriba y la h-ésima central hidroeléctrica $[m^3/h]$.

1.3.3.2.9 Caudal turbinado

La determinación del caudal turbinado considera varios parámetros: tipo de turbina, canales de flujo o tipo de tuberías, coeficientes de pérdidas por fricción, volumen y forma del embalse, etc. Pero, cuando se va a realizar un análisis para corto plazo estos parámetros tienen poca influencia. Si adicionalmente, la altura del embalse se mantiene casi constante durante el periodo de despacho, el caudal turbinado se relaciona con la potencia generada por la central hidroeléctrica mediante el coeficiente de producción de cada central. La expresión matemática para cálculo del caudal se expresa como [7]:

$$q_h^t = \frac{P_h^t}{\rho_h}; \ \forall t \tag{28}$$

Donde:

Es el coeficiente de producción de la h-ésima central hidroeléctrica ρ_h $[MWh/m^3].$

En general, la potencia eléctrica generada por una central hidroeléctrica se determina por sus características técnicas como la altura de caída del agua, el caudal del agua, la eficiencia de la turbina y se expresa mediante la ecuación (29) [8]:

$$q = \frac{P_h^t}{g * h * n_t * \rho} \tag{29}$$

Donde:

Es la potencia generada por la h-ésima unidad hidroeléctrica en un
periodo t [MW].
Es el caudal turbinado $[m^3/h]$.
Es la aceleración gravitacional $[m/h^2]$.
Es el salto hídrico [m].
Es la eficiencia de la turbina.
Es la densidad del agua $[kg/m^3]$.

En la referencia [9] se propone otro método para el cálculo del caudal turbinado, donde se usa una ecuación cuadrática que toma como dato de entrada la potencia eléctrica generada, y mediante los coeficientes de descarga de la central, que dependen de las características constructivas de la tubería de descarga, la altura de la caída del agua, los materiales de construcción y el diámetro de la tubería, se calcula el caudal turbinado mediante [9]:

$$q = x * P_h^2 + y * P_h + z (30)$$

Donde:

Es la potencia generada por la h-ésima unidad hidroeléctrica [MW]. P_h

q Es el caudal turbinado
$$[m^3/h]$$
.

xEs el coeficiente de descarga x
$$\left[\frac{m^3}{MW^2*h}\right]$$
.yEs el coeficiente de descarga y $\left[\frac{m^3}{MW*h}\right]$.zEs el coeficiente de descarga $x \begin{bmatrix} m^3 \\ MW*h \end{bmatrix}$.

Es el coeficiente de descarga
$$z \left[\frac{m^2}{h} \right]$$
.

Los coeficientes de descarga vienen dados en tablas nemotécnicas y son propios de cada central hidroeléctrica [9].

1.3.3.2.10 Límites de flujo de potencia en red de transmisión

$$-P_{nm}^{max} \le P_{nm} = V_n^2 \cdot G_{nm} - V_n \cdot V_m (G_{nm} \cos \theta_{nm} + B_{nm} \sin \theta_{nm}) \le P_{nm}^{max}; \forall n, m$$
(31)
= 1,2, ..., N

Donde:

P ^{max}	Es la potencia activa máxima que se transmite desde la barra n
	hasta la barra <i>m</i> [MW].
P_{nm}	Es la potencia activa transmitida desde la barra n hasta la barra m
	[MVAr].
G_{nm}	Es la conductancia desde la barra n hasta la barra m [Ω^{-1}].
B_{nm}	Es la susceptancia desde la barra n hasta la barra m [Ω^{-1}].
V_n	Es la magnitud de voltaje en la barra <i>n</i> [V].
V_m	Es la magnitud de voltaje en la barra m [V].
θ_{nm}	Ángulo de voltaje desde la barra n hasta la barra m [rad].

$$S_{nm} = P_{nm} + jQ_{nm} = \sqrt{P_{nm}^{2} + Q_{nm}^{2}} \le S_{nm}^{max}; \forall n, m = 1, 2, ..., N$$
(32)

$$-Q_{nm}^{max} \le Q_{nm} = -V_n^2 \cdot B_{nm} - V_n \cdot V_m (G_{nm} \operatorname{sen} \theta_{nm} - B_{nm} \cos \theta_{nm}) \le Q_{nm}^{max}; \forall n, m \quad (33)$$
$$= 1, 2, \dots, N$$

Donde:

S_{nm}^{max}	Es la potencia aparente máxima que se transmite desde la barra n
	hasta la barra <i>m</i> [MVA].
S _{nm}	Es la potencia aparente transmitida desde la barra n hasta la barra m [MVA].

1.3.3.2.11 Límites de magnitud de voltajes en barras

$$V_n^{\min} \le V_n \le V_n^{\max}; \quad \forall n = 1, 2, 3, \dots, N$$
(34)

Donde:

V_n^{min}	Es la magnitud de voltaje mínimo en la barra n.
V_n^{max} :	Es la magnitud de voltaje máximo en la barra n.[10]

1.3.3.2.12 Límites de ángulos de voltaje en las barras

$$-\theta_n^{\min} \le \theta_n \le \theta_n^{\max}; \ \forall n = 1, 2, 3, \dots, N$$
(35)

$$-180 \le \theta \le 180 \tag{36}$$

Donde:

θ	Es el ángulo de voltaje en la barra.
θ_n^{min}	Es el ángulo de voltaje mínimo en la barra n .
θ_n^{max}	Es el ángulo de voltaje máximo en la barra n.

1.3.3.3 Herramientas de Software

1.3.3.3.1 Python

Python es un lenguaje de programación avanzado, de alto nivel, interpretado, gratuito, multiplataforma, dinámico, el cual da la posibilidad de realizar un código para formular un problema de optimización. Cuenta con gran variedad de librerías libres y gratuitas disponibles, además de diferentes módulos para realizar el procesamiento de datos para una convergencia rápida del problema de optimización. Se tiene un entorno virtual de trabajo de Python muy amigable con el usuario para que la codificación sea eficaz y en un lenguaje muy sencillo. Una gran ventaja es que es muy versátil ya que usa bastantes librerías de terceros además de la gran rapidez en la lectura de la información donde se tienen una gran cantidad de formatos para el almacenamiento de datos [11].

Para realizar la programación del despacho hidrotérmico a corto plazo con el lenguaje Python se usa varias librerías propias de este lenguaje, se incluye módulos de formulación matemática y de optimización que son descargados previamente en el entorno de trabajo de Python [11].

1.3.3.3.2 Pyomo

Pyomo es una librería de optimización orientada a objetos de acceso libre y gratuita. Estos objetos de modelado de Pyomo para la modelación del problema se encuentran internamente en el lenguaje Python y su librería se descarga previamente en el entorno de trabajo. Pyomo es usado para la formulación, análisis y resolución de modelos matemáticos para problemas de optimización avanzados donde se puede visualizar los datos y resultados. Este módulo admite funciones algebraicas para resolver diferentes problemas de programación matemática con enteros mixtos [12].

Se tiene varias ventajas de Pyomo como:

-Soporta el modelado de problemas de optimización de manera estructurada con lenguajes de modelación AML como AMPL, AIMMS, GAMS.

-Sirve para realizar una predicción sobre el estado de un sistema.

-Usar diferentes solucionadores comerciales de código abierto para encontrar la solución óptima del problema.

-Tiene una gran variedad de librerías de apoyo de terceros.

-Cuenta con una gran documentación de apoyo [12].

1.3.3.3.3 Ipopt

Ipopt es un solver o solucionador de problemas de optimización no lineal, de gran tamaño, y de código abierto. Para la optimización se usa el método de filtro de búsqueda de línea de punto interior para encontrar una solución al problema matemático [13].

2 METODOLOGÍA

La herramienta computacional se desarrolla en el ambiente de desarrollo Spyder, el cual cuenta con funciones para edición y depuración del código, librerías propias y un entorno de código numérico.

2.1 Descripción de la herramienta computacional

A continuación, se presenta una descripción del código desarrollado y la implementación de la formulación matemática del DHT-CP. Se han desarrollado diferentes "scripts" o funciones de Python para la solución del problema.

Inicialización

Al inicio de la función "modelo.py" se crean los modelos en Pyomo que se pueden definir como una inicialización de un conjunto a la clase "Set", los parámetros con la clase "Param", los contadores con la clase "RangeSet", las variables con la clase "Var".

En las variables de control se tiene la potencia activa y reactiva generada de las centrales térmicas o hidroeléctricas; y en las variables de estado se tiene los ángulos y magnitud de voltaje en las barras, las variables binarias, y los flujos de potencia de las líneas de transmisión y transformadores.

	main.py >	modelo.py ×	flujoAC.py ×	embal.py ×	embal_i.py ×	crearParams.py ×	graficas.py ×	leerDatosExcel.py ×	leerDatosExcelSNI.py >
	1 imp	ort os							
	2 imp	ort leerDatos	Excel as lde						
	3 imp	ort leerDatos	ExcelSNI as lo	leS					
	4 fro	om pyomo.opt i	mport SolverFa	actory					
	5 imp	ort modelo as	md						
	6 imp	ort crearPara	ms as crp						
	7 imp	ort Ybarra as	Yp						
	8 imp	ort graficas	as grt						
	9 imp	ort numpy as	np						
1	.0 1mp	ort time	15						
1	.1 #0p	ciones del Mo	delo	ia	12		S. 6. 14		
1	.2 100	lelo_Linealiza	do=1 # 0: NO .	Linealizado	(Funcion obj	etivo: cuadratic	o); I: Lineal	izado (Función obj	jetivo: Lineal) (Po
1	.5 1100	leto_SNI=0 # 0		as; I: SNI	(Por detecto	0); Casas sashiwa V	hanna (Dan da	forte al	
1	4 FOI	-ZarCreartbarr	d=0 # 0: 05dP	1 Danna de	Archivo; 1:	dal usandar 0 Ea	stopos do dos	recto v)	- (Den defecte 1)
	.) (Tor	popada=1 #(\$0	LO SNT (0, 1)	utocat 1. S	aca (Pop daf	acto A)	ctores de des	carga; i critcienci	ta (Por defecto 1)
1	.0 Tell	tpiccionos-[1	111111		Dococtivo.	1. Activo			
1	g 111	in recroites-fr	, _ , _ , _ , _ , _ , _ , _ , _ , _ ,	.,.,.,.)	, Desacerva,	T. ACCIVA			
1	g Mer	wi Model o							
5	a a:	BALANCE DE PO	TENCTA P						
2	1 1:	BALANCE DE PO	TENCIA O						
2	2 2:	LIMITES DE FL	UJO DE POTENCI	TA EN LAS LI	īs .				
2	3 3:	LIMITES DE FL	UJO DE POTENC	TA EN LOS TH	RANSFORMADORE	5			
	4 4 :	LIMITE DE GEN	ERACION DE PO	TENCIA ACTIN	/A				
	5 5:	LIMITE DE GEN	ERACION DE PO	TENCIA REACT	TIVA				
2	6 6:	RAMPAS DE SUB	IDA Y BAJADA						
2	7 7:	LOGICA DE OPE	RACION						
	8 8:	VOLUMENES DE	EMBALSE						
	9 9:	CAUDALES MAXI	MO Y MINIMO						
	0 10:	LIMITES DE M	AGNITUD DE VOL	TAJE					
	2 Sba	se=100 #poten	cia aparente l	base					
	i3 fre	cRed=60 #frec	uencia de la m	red					
	4 tic	= time.time()						

Figura 2.1.1. Función "main.py"

Como se muestra en la Figura 2.1.1, se encuentra la función "main.py" que se encarga de dar inicio al programa y llama a las diferentes funciones que se crearon para resolver el problema de optimización de despacho de energía eléctrica, las demás funciones deben estar en la misma carpeta que se encuentra guardada la función "main.py".

Además, se crea un menú de las restricciones del problema de optimización en la línea 17 como una función booleana llamada "Restricciones" donde en el caso que se coloque 0 se desactiva la restricción y cuando se coloca 1 se activa la restricción, además desde la línea 18 hasta la línea 31 está la descripción de las restricciones en el script "main.py".

Figura 2.1.2. Función "main.py"

Como se muestra en la Figura 2.1.2, se encuentra la función "main.py" donde se tiene la potencia aparente base en 100 [MVA], la frecuencia de la red en 60 [Hz], la impresión del menú del modelo del problema de optimización, se obtiene los datos del sistema de los archivos Excel para los casos de aplicación del sistema IEEE de 14 barras y el SNI, se carga el archivo ".npy" o se obtiene el archivo de la Y de barra, se obtiene y se crea el

modelo del problema en Pyomo, se elige el solucionador "IPOPT", se resuelve y se imprime los resultados del problema de optimización en donde se visualiza si se llegó a una solución óptima y el tiempo de ejecución del programa que se realiza con el comando "toc". Finalmente, se grafica los resultados en función del tiempo de algunas variables y se exporta los resultados de estas variables en archivos Excel.

ן נ	main.p	oy × modelo.py × flujoAC.py × embal.py × embal_i.py × crearParams.py × graficas.py >	2
	1		
	2	Creamos un diccionario de python con los valores necesarios de la Red	
	3	Estos datos ingresan en el modelo de pyomo	
	4		
	5	import os	
		import math as mt	
	7	import numpy as np	
		def crearLibExcel(red, Modelo_SNI):	
	9	nHidro=0	
10	0	nTermo=0	
	1	nDemanda=len(red.LOAD.name)	
	2	nHoras=Ien(red.DEMANDA)	
		nBuses=len(red.BUS.name)	
14	4 E	nLines=ien(red.LINE.name)	
	5	niratos=len(red.ikAru.name)	
1	0 7	a=[] b=[]	
		0=[] c=[]	
10	0 9	c-[] ab=[]	
20	a a	CΔ=[]	
		CP=[]	
2	2	[]	
2	3	min pt=[]	
	4	max pt=[]	
	5	min ph=[]	
		max_ph=[]	
	7		
		min_qt=[]	
2		<pre>max_qt=[]</pre>	
		min_qh=[]	
	1	<pre>max_qh=[]</pre>	
	2		
	3	Psubt=[]	
	4	Pbajt=[]	
	5	Parrt=[]	
- 3	6	Pnart=1	ſ

Figura 2.1.3. Función "crearParams.py"

Como se muestra en la Figura 2.1.3, se encuentra la función "crearParams.py" que sirve para crear los parámetros en el formato de Pyomo, crear un diccionario o lista de Python de las variables de los datos de la red y estos datos ingresan en el modelo de Pyomo. Se crea diccionarios para los parámetros que son los datos de entrada del problema como los costos de las centrales térmicas, las potencias activas y reactivas máximas, las potencias activas y reactivas mínimas, demanda, influjos, entre otros.

_	main.	ру ×	modelo.py ×	flujoAC.py ×	embal.py ×	embal_i.py ×	crearParams.py ×	graficas.py				
42			'thetami	n':thetamin_	dict,							
42			'Voltmax':Voltmax_dict,									
42			'Voltmin	':Voltmin_di	ct,							
42												
42	4		'Voltima	x':Voltimax_	dict,							
42			'Voltimi	n':Voltimin_	dict,							
42			lot immed									
42			Pijmax DiiTmaw	Pijmax_dict	ر جه							
42			Pijimax	:Pijimax_di	cτ,							
42			Vunu:	VINI_dict								
43			'\/min'	Vmin dict								
43	2		'amin':	amin dict.								
43	3		'amax':	amax dict.								
43			'rh': rh	dict,								
43			'eh': eh	dict,								
43												
43			'x':x_di	ct,								
43			<i>'y'</i> :y_di	ct,								
43			'z':z_di	ct,								
44	0											
44	1		upstrea	m': upstream	_dict,							
44			embalse	: embalse_d	ict,							
44			altura	lange dist	τ,							
44	-+ =		'ualuman	targo_uict,	dict							
44			'unidade	s': unidades	_dict							
44			'dt': dt	dict.	_0100,							
44			'dta': d	ta dict.								
44			'rht': r	ht dict.								
45												
45			'lineas_	posicion': 1	ineas_posici	on_dict,						
45			'trafos_	posicion': t	rafos_posici	on_dict,						
45]	}									
45			return data									

Figura 2.1.4. Función "crearParams.py"

Como se muestra en la Figura 2.1.4, siguiendo la función "crearParams.py" se guarda los diccionarios de los diferentes parámetros del modelo en una variable "data", al final en la línea 454 se devuelve la variable "data" con el cual se pasa a la función "modelo" por lo que ya se tiene estructurado los parámetros en el formato de Pyomo.

Ingreso de datos

main.py × modelo.py >	IndoAC.py X	enbel.py X	embal_upy ×	стенгРагатыру ×	grafication ×	leerOatmExcel.py ×	leerDabosExceSNLpy × 4 🕨
16 SITEF.INFLUD	0 - INFLUDO						
17 class BUS:							
10 def init	(setf, number	, name, vn	kv, etype, zo	ne, in_service,	min_vm_pu, ma	x_vm_pu,vm_i,Tipo	} :
15 Selfanumb	er = number						
in Self-name	- nane						
11. selfivn_k	v = vn kv						
22 selfietyp	e = etype						
13 self.zone	= zone						
sets in s	ervice - in_se	ervice					
is settinin	vm pu = min vm	e pu					
26 set∫amax_	vm_pu = max_vm	n pu					
17 self.vm i	=vm_1						
Self, Tipa	-таро						
19 class LOAD:	and the second						
det init	(set), number	n, name, bus	b umb d una	r, const_z_perce	int, const_1_p	ercent, sn_mva, s	caling, in_service, etype,
sectionumb	er = nunber						
a settanane	- nane						
Sectors out	= bus						
sect p_mw	= p_mv						
section and	ar = q_nvar						
settracons	t_z_percent =	const_2_per	cent				
seer.cons	t_1_percent =	const_1_per	cent				
section i	wa = <u>sn_</u> mva						
srep.scal	ing = scating						
Sectorian S	ervice = in_se	HANTER.					
secretyp	e = etype	and an other states					
secp.cont	rollable = cor	troliable					
secondos	pni = cos_pni						
set and a set and a	- mode						
CLASS GEAT	Anna Anna			and the second sec			i i i i i i i i i i i i i i i i i i i
a oet init	(seu), nunber	y name, ous	* b_mwi vm_bn	" sulinna' uru'd	invaria nex_d_n	war, scaling, sia	ck, injservice, etype, con
secration	er - nunser						
taley share	and have						
Sections	= 00s						

Figura 2.1.5. Función "leerDatosExcel.py"

Como se muestra en la Figura 2.1.5, se encuentra la función "leerDatosExcel.py" que sirve para leer los datos del sistema IEEE de 14 barras desde un archivo Excel. Esta función realiza la lectura cada una de las pestañas del archivo Excel y realiza la tabulación de los datos para los diferentes datos de cada uno de los elementos del sistema. Se define como clase "class" a cada una de las pestañas del Excel y se extrae los datos de las variables del sistema de cada una de las columnas de las diferentes pestañas con el comando "self" para guardarlo en su correspondiente clase. Finalmente, en la línea 193 se devuelve la variable "datos_sistema" donde se guardan todos los datos del sistema como los datos de las barras, las cargas, los generadores, las líneas de transmisión, los transformadores, demandas, entre otros.

	main.py X	modelo.py ×.	fiцюАС.ру ×	enbal.py ×	embal_j.py ×	crearParans py X	graficas.py ×	TeerDatosExcel.py X	kerDatosExcelShLoy ×	
	i4 n.La	GTERM:								
- 25	5	definit	(self, number	y Referenci	a, PotenciaS	, Potencia8, Pot	enciaA, Poten	ciaP, CostoA, Cost	oP):	
- 18	10	sear-numbe	n = number							
- 23		setr Refer	encia Refer	encia						
1	10	seer Poten	cias = Potent	185						
12	12	set 6 Poten	ciao = Potenc	140						
		self Poten	ciaP = Potenc	iaP						
- 50	5	self-costo	A = CostoA	20 C						
11		self.Costo	P = CestoP							
- 14	sa def	leenescel(no	mbrel:							
		Aux - pd.rea	d excel(nombr	e, sheet na	n - '805', sk	iprowst, header	-None)			
		bbus=805(Aux	[0],Aux[1],Au	x[2],Aux[3]	Aux[4], Aux[5], Aux[6], Aux[7]	Aux[10], Aux[1115		
	19 I	Aux = pd.res	d excel(nombr	e, sheet na	me-'LOMD', si	kiprows=1, heade	-None)			
		11oad=LOAD(A	ux[0], Aux[1],	Aux[2],Aux[3], Aux[4], Au	x[5],Aux[6],Aux[7], Aux[8], Aux	[9], Aux[10], Aux[11],Aux[12])	
		Aux = pd.rea	d_excel(nombr	e, sheet na	me='GEN', sk	iprows=1, header	None)			
	10	ggen=GEN(Aux	[0],Aux[1],Au	1x[2],Aux[3]	Aux[10],Aux	[11],Aux[13],Aux	[14],Aux[4],A	ux[6],Aux[7])		
- 17		Aux = pd.rea	d_excel(nombr	e, sheet na	me='LINE', s	kiprows=1, heade	r-None)			
- 1	12	Illine=LINE(A	ux[0],Aux[1],	Aux[2],Aux[3], Aux[4], Au	x[5],Aux[6],Aux[7],Aux[8],Aux	[9],Aux[10],Aux[11],Aux[12],Aux[13],Aux[14]	μAu
1		Aux = pd.rea	d_excel(nombr	e, sheet na	me= TRAF02	skiprows-1, hea	der=None)		in the state of the second state	
- 15	14	ttrafe=TRAFO	(Aux[0],Aux[1],Aux[2],Au	x[3],Aux[4],	Aux[5],Aux[6],Au	x[7],Aux[8],A	ux[9],Aux[10],Aux[11],Aux[12],Aux[13],Aux[1	-1 -
- 22	8	Aux = pd.rea	d_excel(name	e, sheet na	me= SHUW!	ckiprows=1, head	en=hone)			
	12	SSHURT-SHUNT	(what all what i	Thenx[s] her	x[a]'enx[e]'	enx[2]'enx[2]'en	x[1] enx[e])			
- 22		aux patrea	in excell(namor	e, sneet na	ne coor, s	reprovers, neede				
	Hu l	Aux = od rea	ax[0], max[1];	mux[2];mux[of nux[4], nu	kinner-1 hea	(interfloore)			
1		rebidrost#ITD	en(Aux[e] Aux	[1] Aux[2]	Aux[3] Aux[4]	Laux[5] Aux[6]	Aux[7] Aux[8]	Aux[9] Aux[10] Au	efill Auvil21 Auvil11 Auv	114
- 19	H I	Aux - od rea	d excel (nombr	e, sheet na	me 'Glerm'	skinnowsal head	eralinne)	tuny[s] tuny[ss] tun	aler Burneler Browler Brows	
11		ggtern-GTERM	Aux[0] Aux[1	L.Aux[2].Au	x[3].Aux[4].	Aux[5].Aux[6].Au	x[7])			
18	13	Dem - pd.rea	d excel(nombr	e, sheet na	ne- Denanda	skiprows-1, h	eader-None)			
11	4	Dem() - pd.ne	ad excel(nomb	ne, sheet n	ane- 'DEMANDA	2 skiprows-1.	header-None)			
		infl - pd.re	ad_excel(nomb	ire, sheet_n	ame-'Influjo	s', skiprows-1,	header-None)			
		datos_sistem	a-Datos(bbus,	lload, gge	n, Illine, th	rafo, sshunt, co	ost,gghidro,	ggterm, Dem, DemQ,	infl)	
		return dates	sistema							

Figura 2.1.6. Función "leerDatosExcelSNI.py"

Como se muestra en la Figura 2.1.6, se encuentra la función "leerDatosExcelSNI.py" que sirve para leer los datos del SNI desde un archivo Excel. Esta función realiza la lectura cada una de las pestañas del archivo Excel y realiza la tabulación de los datos para los diferentes datos de cada uno de los elementos del sistema. Se define como clase "class" a cada una de las pestañas del Excel y se extrae los datos de las variables del sistema de cada una de las columnas de las diferentes pestañas con el comando "self" para guardarlo en su correspondiente clase. Finalmente, en la línea 186 se devuelve la variable "datos_sistema" donde se guardan todos los datos del sistema como los datos de las barras, las cargas, los generadores, las líneas de transmisión, los transformadores, demandas, influjos, entre otros.

Función Objetivo

Como se muestra en la Figura 2.1.7, la ecuación (5) que se refiere a la función objetivo del problema de despacho hidrotérmico de energía se encuentra en el archivo "modelo.py" y es una función que se llama desde el script principal "main.py".

	main.py ×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py ×	graficas.py						
12	9 (def funcion_o	bjetivo(mode	1):									
130		variable=0											
13		if Modelo_Linealizado==0: #FO Cuadrática											
13		<pre>variable+=sum(model.a[j]*model.Pt[i,j]*model.Pt[i,j]*model.U[i,j]</pre>											
13	3	for i in model.I											
134			for	j in model.J)								
13		varia	ble+=sum(mod	el.b[j]*mode	el.Pt[i,j]*mo	del.U[i,j]							
13	5	for i in model.I											
13	7	for j in model.J)											
13	8	varia	ble+=sum(mod	el.c[j]*mode	el.U[i,j] #Ec	uación 5							
13	9		for	i in model.I	[_								
14		• • • • •	for	j in model.J)								
14	1	else: #FO) lineal				1						
14		varia	ble+=sum(mod	el.a[j]*mode	1.0[1,j]								
14	3		for :	1 in model.1	[
14			tor] in model.J)]]] []]]]]]]]]]]]]]]]								
14		varia	ble+=sum(mod	e⊥.b[j]*mode		cuacion /							
14	2		for	1 in model.									
14] in model.J	([] _]								
140	2	Variable+	-=sum(model.C	A[]]'model.i	[1,]]								
15			for 1 in	model.1									
15		vaniableu	-cum(modol (moder.J)	IF4 41								
15		Variablet	for i in	model T	([1,]]								
15			for i in	model 1)			1						
15		ceturn va	roi j in	ción 4									
15	5	model fun obi	= nvo Objec	tive(rule=fu	ncion objetiv	(a)							
15	5		, pjo.objec										

Figura 2.1.7. Función "modelo.py"

En la línea 129 se define la función "funcion_objetivo" mediante la función "def" y se define el modelo abstracto creado de Pyomo "model" de la línea 8 del script "modelo.py", luego se inicializa la "variable" en cero en la línea 130 y se ingresa a un lazo "if-else" donde se crea la ecuación de la función objetivo; se tienen dos opciones, primera función de costo de las centrales térmicas cuadrática (no lineal) que corresponde a la ecuación (5), y, segunda la función de costos de las centrales térmicas linealizada mediante la ecuación (7).

Para el primer caso, la función objetivo del problema se forma mediante la sumatoria de la función de costos cuadrática que corresponde a la ecuación (5) que se forma desde la línea 132 hasta la línea 140 donde "model.l" es el modelo para el contador del tiempo en horas y "model.J" es el modelo para el contador de las centrales térmicas, primero se tiene desde la línea 132 hasta la línea 134 el parámetro de costos cuadráticos *a* para las centrales térmicas "model.a" por el producto de las potencias activas generadas de las centrales térmicas por hora "model.Pt" elevado al cuadrado por la variable binaria "model.U", luego se realiza la sumatoria desde la línea 135 hasta la línea 137 el parámetro de costos

b para las centrales térmicas "model.b" por el producto de las potencias activas generadas de las centrales térmicas por hora "model.Pt" por la variable binaria "model.U[i,j]", luego se realiza la sumatoria desde la línea 138 hasta la línea 140 el parámetro de costos *c* para las centrales térmicas "model.c" por el producto de la variable binaria "model.U[i,j]", luego se realiza la sumatoria desde la línea 148 hasta la línea 150 de los costos fijos de arranque de las centrales térmicas "model.CA" por el producto de la variable binaria "model.Y", más desde la línea 151 hasta la línea 153 los costos fijos de parada de las centrales térmicas "model.CP" por el producto de la variable binaria "model.Y", más sumatoria se devuelve la función objetivo total en la línea 154 con la función "return" en el argumento "variable", y, en la línea 155 se declara la función objetivo como un objeto de Pyomo para la optimización.

Para el segundo caso, la función objetivo del problema se forma mediante la sumatoria de la función de costos lineal que corresponde a la ecuación (7) que se forma desde la línea 141 hasta la línea 147 donde "model.l" es el modelo para el contador del tiempo en horas y "model.J" es el modelo para el contador de las centrales térmicas, primero se tiene desde la línea 142 hasta la línea 144 el parámetro de costos *a* para las centrales térmicas "model.a" por el producto de la variable binaria "model.U", luego se realiza la sumatoria desde la línea 145 hasta la línea 147 el parámetro de costos *b* para las centrales térmicas "model.b" por el producto de las potencias activas generadas de las centrales térmicas por hora "model.Pt", luego se realiza la sumatoria desde la línea 148 hasta la línea 150 de los costos fijos de arranque de las centrales térmicas "model.CA" por el producto de la variable binaria "model.CA" por el producto de la variable binaria se devuelve la función objetivo total en la línea 154 con la función "return" en el argumento "variable" y en la línea 155 la función objetivo se la declara como un objeto de Pyomo para la optimización del problema.

Restricciones

	main.py	× modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py	×	graficas.py ×	leerDatosExcel.py ×				
156			-17										
157													
158		## DEFINE RESTRI	CCIONES										
159													
160		# Restricción Ba	lance de potenc:	ia:									
161		def balance_pote	<pre>ncia_p(model, i)</pre>	:# para cada	uno de los eler	nentos de horas	se t	iene que cumpl:	ir con la demanda P				
162		print("Balan	ce P Hora:",i)										
163		# Sumatoria	de Generadores										
164		if Modelo_Li	nealizado==0:										
165		Pt=sum((I	model.Pt[i,j])*	<pre>nodel.U[i,j]</pre>									
166		f	or j in model.J).									
167		else:											
168		Pt=sum((I	<pre>model.Pt[i,j])</pre>										
169		and the second of	or j in model.J)									
170		Ph=sum(model	.Ph[i,k]										
171		for k	in model.K)										
172		# Sumatoria	de Cargas										
173		Pd=sum(model	.dt[1,d]										
174		for d	in model.D)										
1/5		# Calculamos	Las Perdidas di	e potencia act	1Va								
1/6		NUMEROBARRAS	= len(red.BUS.	name) #Ubtiene	e el numero de l	barras de la Red							
1//		Prim=[] #Matr	12 Phm de inicia	alizacion									
1/8		TOP 11 10 Pa	nge(NUMEROBARRA:	»);									
1/9		Yrmnvm=[]		00453									
180		TOP JJ 1	n range(NUMEROB)	AKKAS):									
101			m.appenu(np.rea.	L(TUdiral[11,]	jjj) model.volla	1)epg(1,g2[1,]])							
102		Prim. apper	sum(Pom) #Scuar	ión S	(2001/05[1,11])								
103		catura Dt+Dh	Dd+Derdidac*Si										
100		in comin in corris		(0.3C									

Figura 2.1.8. Función "modelo.py"

Como se muestra en la Figura 2.1.8 en la línea 161 se define la función "balance_potencia_p" para el balance de potencia activa mediante la función "def", se define el modelo abstracto creado de Pyomo "model" de la línea 8 del script "modelo.py" y se define índice *i* que corresponde al periodo de tiempo en horas, donde para cada uno de los elementos en cada hora en un periodo de tiempo se tiene que cumplir con la demanda de potencia activa. Primero, se realiza la sumatoria de potencias activas generadas por las centrales térmicas Pt en un periodo de tiempo desde la línea 164 hasta la línea 169, luego se tiene la sumatoria de las potencias activas generadas por las centrales hidroeléctricas Ph en un periodo de tiempo desde la línea 170 hasta la línea 171, después se tiene la sumatoria de las potencias activas de la demanda o las cargas Pd en un periodo de tiempo desde la línea 172 hasta la línea 174. Después, se calcula las pérdidas de potencia activa desde la barra n hasta la barra m "Perdidas" desde la línea 175 hasta la línea 182, donde a través de dos lazos "for" se forma la sumatoria entre la parte real de las admitancias entre la barra *n* hasta la barra *m* "Ybarra1" que se obtienen de la función "Ybarra" por el producto de la magnitud de voltaje en la barra m en la línea 181 "model.VoltajeBarras[i,jj]" que se obtiene de la función "flujoAC.py" y luego en la línea 182 para obtener las pérdidas de potencia activa "Perdidas" se le multiplica por la magnitud de voltaje en la barra n "model.VoltajeBarras[i,ii]" que se obtiene de la función "flujoAC.py". El resultado de las pérdidas de potencia activa en p.u. se almacena en la variable "Perdidas" en la línea 183 de la función "modelo.py". Finalmente, en la línea 184 se tiene la ecuación (8) expresada

en [MW] donde las potencias activas generadas por las centrales térmicas Pt más las potencias activas generadas por las centrales hidroeléctricas Ph es igual a las potencias activas de las cargas Pd más las pérdidas de potencias activas en p.u. "Perdidas" por la potencia aparente base "Sbase" que es igual a 100 [MVA] y se encuentra en la función "main.py".

	main.py ×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py ×	graficas.py ×	leerDatosExcel.py
185								
186	def ba	lance_potencia	_q(model, i):#	para cada uno	de los element	os de horas se tier	ie que cumplir o	ion la demanda Q
187	pr	int("Balance Q	Hora:",i)					
188	#	Sumatoria de G	eneradores					
189	11	Modelo_Lineal	1zado==0:					
198		Qt=sum((mode	1.Qt[1,]])*mode	1.0[1,]]				
191	ŝ 🚽	tor j	in model.J)					
192	e.	se:						
193		QT=SUM(model	.Qt[1,]]					
194	al	[TUT [top://www.com/www.com/	in model.J)					
195	. Vi	i=Som(model.Qn[I,K]					
190	1 (G	Sumatoria de C	In mouel.k)					
190		sumatoria de c	or gos Fi dl					
199	Υ.	h and	in model D)					
288	(<u> </u>	Calculamos Las	Perdidas					
281	N	MEROBARRAS = 1	en(red_BUS_name	Y.				
202	Or	m=[]		<i>,</i>				
203	fo	or ii in range()	NUMEROBARRAS):					
284		YnmVm=[]						
205		for jj in ra	nge(NUMEROBARRA	s):				
206		YnmVm.ap	pend(-1*np.imag	(Ybarra1[ii,j	j])*model.Volta	jeBarras[i,jj])		
207		Qnm.append(n	p.sum(YnmVm)*mo	del.VoltajeBa	rras[i,ii])			
208	Pe	rdidasQ=np.sum	(Qnm) #Ecuación	9				
209	ne ne	turn Qt+Qh==Qd-	+PerdidasQ*Sbas	e				
210								
211	if Res	tricciones[0]=	=1:					
212	ma	del.bal_pot_p	= pyo.Constrain	t(model.I, ru	le=balance_pote	ncia_p)		
213	if Res	tricciones[1]=	=1:					
214	ma	del.bal_pot_q :	= pyo.Constrain	t(model.I,rul	e=balance_poten	cia_q)		
215								

Figura 2.1.9. Función "modelo.py"

Como se muestra en la Figura 2.1.9 en la línea 186 se define la función "balance_potencia_q" para el balance de potencia reactiva mediante la función "def", se define el modelo abstracto creado de Pyomo "model" de la línea 8 del script "modelo.py" y se define *i* que corresponde al periodo de tiempo en horas, donde para cada uno de los elementos en cada hora en un periodo de tiempo se tiene que cumplir con la demanda de potencia reactiva. Primero, se realiza la sumatoria de potencias reactivas generadas por las centrales térmicas Qt en un periodo de tiempo desde la línea 188 hasta la línea 194, luego se tiene la sumatoria de las potencias reactivas generadas por las centrales hidroeléctricas Qh en un periodo de tiempo desde la línea 195 hasta la línea 196, después se tiene la sumatoria de las potencias reactivas de la demanda o las cargas Qd en un periodo de tiempo desde la línea 199. Después, se calcula las pérdidas de potencia reactiva desde la barra *n* hasta la barra *m* "PerdidasQ" desde la línea 200 hasta la línea 209 donde a través de dos lazos "for" donde se forma la sumatoria entre la parte

imaginaria de la admitancia entre la barra n hasta la barra m "Ybarra1" que se obtienen de la función "Ybarra" por el producto de la magnitud de voltaje en la barra m en la línea 206 "model.VoltajeBarras[i,jj]" que se obtiene de la función "flujoAC.py" y luego en la línea 207 para obtener las pérdidas de potencia reactiva "PerdidasQ" se le multiplica por la magnitud de voltaje en la barra n "model.VoltajeBarras[i,ii]" que se obtiene de la función "flujoAC.py". El resultado de las pérdidas de potencia reactiva p.u. se almacena en la variable "PerdidasQ" en la línea 208 de la función "modelo.py". Finalmente, en la línea 209 se tiene la ecuación (9) expresada en [MVAr] donde las potencias reactivas generadas por las centrales térmicas Qt más las potencias reactivas de las cargas Qd más las pérdidas de potencias reactivas en p.u. "PerdidasQ" por la potencia aparente base "Sbase" que es igual a 100 [MVA] y se encuentra en la función "main.py". Además, desde la línea 211 hasta la línea 214 se define las restricciones mediante el comando de Pyomo "pyo.Constraint" como la primera restricción "Restricciones[0]" al balance de potencia activa y a la segunda restricción "Restricciones[1]" al balance de potencia reactiva

	main.py ×	modelo.py ×	flujoAC.py ×	embal.py ×	embal_i.py ×	crearParams.py ×	graficas.py ×	leerDatosE
299				Dacto	icción Límita c	la meneración		
301 302 303	def li re	imite_generacio turn model.Pt[nt_max(model, i i,j]<=model.Pma	i, j):# la gen axt[j]*model.U	eracion debe cu [i,j] #Ecuación	implir con el limite 10	e permitido en	cada hora y
304 305 306	def li re	imite_generacion eturn model.Pt[:	nt_min(model, i i,j]>=model.Pm:	i, j):# la gen int[j]*model.U	eracion debe cu [i,j] #Ecuaciór	mplir con el limite 1 10	e permitido en	cada hora y
307 308 309	def li re	imite_generacio turn model.Ph[:	nh_max(model, ∶ i,j]<=model.Pma	i, j):# la gen axh[j] #Ecuaci	eracion debe cu ón 11	mplir con el limite	e permitido en	cada hora y
310 311 312	def li re	imite_generacion turn model.Ph[nh_min(model, : i,j]>=model.Pm:	i, j):# la gen inh[j] #Ecuaci	eracion debe cu ón 11	umplir con el limite	e permitido en	cada hora y
313 314 315 316 317	if Res mo mo mo	stricciones[4]= odel.lim_genh_m odel.lim_gent_m odel.lim_gent_m odel.lim_genh_m	=1: ax = pyo.Constr ax = pyo.Constr in = pyo.Constr in = pyo.Constr	<pre>raint(model.I, raint(model.I, raint(model.I, raint(model.I, raint(model.I,</pre>	model.K, rule= model.J, rule= model.J, rule= model.K, rule=	limite_generacionh_ limite_generaciont_ limite_generaciont_ limite_generacionh_	_max) _max) _min) _min)	

Figura 2.1.10. Función "modelo.py"

Como se muestra en la Figura 2.1.10 en la línea 301 se define la función "limite_generaciont_max" para el límite de potencia activa máxima generada por las centrales térmicas, en la línea 304 se define la función "limite_generaciont_min" para el límite de potencia activa mínima generada por las centrales térmicas, en la línea 307 se define la función "limite_generacionh_max" para el límite de potencia activa máxima generada por las centrales hidroeléctricas, en la línea 310 se define la función "limite_generacionh_min" para el límite de potencia activa máxima centrales hidroeléctricas, mediante la función "def". Primero, en la línea 302 y en la línea 305 se tiene la ecuación (10) donde en la línea 302 la potencia activa generada por las centrales térmicas "model.Pt" debe ser menor o igual a la potencia activa máxima generada por las centrales térmicas "model.Pmaxt" multiplicada por la variable binaria "model.U" y en la línea 305 la potencia activa generada por las centrales térmicas térmicas "model.Pt" debe ser mayor o igual a la potencia activa mínima generada por las centrales térmicas térmicas "model.Pt" debe ser mayor o igual a la potencia activa mínima generada por las centrales térmicas térmicas "model.Pt" debe ser mayor o igual a la potencia activa mínima generada por las centrales térmicas térmicas "model.Pmint" multiplicada por la variable binaria "model.U".

Además, en la línea 308 y en la línea 311 se tiene la ecuación (11) donde en la línea 308 la potencia activa generada por las centrales hidroeléctricas "model.Ph" debe ser menor o igual a la potencia activa máxima generada por las centrales hidroeléctricas "model.Pmaxh" y en la línea 311 la potencia activa generada por las centrales hidroeléctricas "model.Ph" debe ser mayor o igual a la potencia activa mínima generada por las centrales hidroeléctricas "model.Ph" debe ser mayor o igual a la potencia activa mínima generada por las centrales hidroeléctricas "model.Ph" hidroeléctricas "model.Ph". Finalmente, desde la línea 313 hasta la línea 317 se definen las restricciones del límite de potencias activas generadas de las centrales térmicas e hidroeléctricas mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la quinta restricción "Restricciones[4]".

7	mair	1.py ×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py	× graficas.py >	< leerDatosExce	
318										
319		def li	imite_generaci	ont_max_q(model,	i, j):# la g	eneracion debe	cumplir con el	limite permitido	en cada hora y	
320		re	turn model.Qt	[i,j]<=model.Qma	<pre>xt[j]*model.U</pre>	[i,j] #Ecuación	1 12			
321		def li	imite_generaci	ont_min_q(model,	i, j):# la g	eneracion debe	cumplir con el	limite permitido	en cada hora y	
322		re	turn model.Qt	[i,j]>=model.Qmi	nt[j]*model.U	[i,j] #Ecuación	1 12			
323		def li	imite_generaci	onh_max_q(model,	i, j):# la g	eneracion debe	cumplir con el	limite permitido	en cada hora y	
324		re	turn model.Qh	[i,j]<=model.Qma	xh[j] #Ecuaci	ón 13				
325		def li	imite_generaci	onh_min_q(model,	i, j):# la g	eneracion debe	cumplir con el	limite permitido	en cada hora y	
326		re	turn model.Qh	[i,j]>=model.Qmi	.nh[j] #Ecuaci	ón 13				
327										
328		if Res	stricciones[5]	==1:						
329		<pre>model.lim gent max q = pyo.Constraint(model.I, model.J, rule=limite generaciont max q)</pre>								
330		mc	del.lim_gent_	min_q = pyo.Cons	traint(model.	I, model.J, rul	le=limite_genera	ciont_min_q)		
331		mo	del.lim_genh_	max_q = pyo.Cons	traint(model.	I, model.K, rul	le=limite_genera	cionh_max_q)		
332		mo	del.lim_genh_	min_q = pyo.Cons	traint(model.	I, model.K, rul	le=limite_genera	cionh_min_q)		
332					8		10.22			

Figura 2.1.11. Función "modelo.py"

Como se muestra en la Figura 2.1.11 en la línea 319 se define la función "limite_generaciont_max_q" para el límite de potencia reactiva máxima generada por las centrales térmicas, en la línea 321 se define la función "limite_generaciont_min_q" para el límite de potencia reactiva mínima generada por las centrales térmicas, en la línea 323 se define la función "limite_generacionh_max_q" para el límite de potencia reactiva máxima generada por las centrales hidroeléctricas, en la línea 325 se define la función "limite_generacionh_min_q" para el límite de potencia reactiva máxima centrales hidroeléctricas, mediante la función "def".

Primero, en la línea 320 y en la línea 322 se tiene la ecuación (12) donde en la línea 320 la potencia reactiva generada por las centrales térmicas "model.Qt" debe ser menor o igual

a la potencia reactiva máxima generada por las centrales térmicas "model.Qmaxt" multiplicada por la variable binaria "model.U" y en la línea 322 la potencia reactiva generada por las centrales térmicas "model.Qt" debe ser mayor o igual a la potencia reactiva mínima generada por las centrales térmicas "model.Qmint" multiplicada por la variable binaria "model.U".

Además, en la línea 324 y en la línea 326 se tiene la ecuación (13) donde en la línea 324 la potencia reactiva generada por las centrales hidroeléctricas "model.Qh" debe ser menor o igual a la potencia reactiva máxima generada por las centrales hidroeléctricas "model.Qmaxh" y en la línea 326 la potencia reactiva generada por las centrales hidroeléctricas "model.Qh" debe ser mayor o igual a la potencia reactiva mínima generada por las centrales hidroeléctricas "model.Qh" debe ser mayor o igual a la potencia reactiva mínima generada por las centrales hidroeléctricas "model.Qh" debe ser mayor o igual a la potencia reactiva mínima generada por las centrales hidroeléctricas "model.Qminh". Finalmente, desde la línea 328 hasta la línea 332 se definen las restricciones del límite de potencias reactivas generadas de las centrales térmicas e hidroeléctricas mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la sexta restricción "Restricciones[5]".

Figura 2.1.12. Función "modelo.py"

Como se muestra en la Figura 2.1.12 en la línea 335 se define la función "rampa_bajadat" para la rampa de parada y bajada de las centrales térmicas, en la línea 341 se define la función "rampa_subidat" para la rampa de arranque y toma de carga de las centrales térmicas, en la línea 347 se define la función "rampa_subidah" para la rampa de arranque y subida de las centrales hidroeléctricas, mediante la función "def".

Primero, en la línea 337 se tiene la ecuación (19) correspondiente a la restricción de rampa de parada y bajada de las centrales térmicas donde la potencia activa generada por las centrales térmicas "model.Pt" en un tiempo t - 1 menos la potencia activa generada por las centrales térmicas "model.Pt" en un tiempo t debe ser menor o igual a la rampa de bajada de las centrales térmicas "model.Pbajt" multiplicada por la variable binaria "model.U"
más la rampa de parada de las centrales térmicas "model.Ppart" multiplicada por la variable binaria "model.W".

Luego, en la línea 343 se tiene la ecuación (15) correspondiente a la restricción de rampa de arranque y subida de las centrales térmicas donde la potencia activa generada por las centrales térmicas "model.Pt" en un tiempo t menos la potencia activa generada por las centrales térmicas "model.Pt" en un tiempo t - 1 debe ser menor o igual a la rampa de subida de las centrales térmicas "model. Psubt" multiplicada por la variable binaria "model.U" en un tiempo t - 1 más la rampa de arranque de las centrales térmicas térmicas "model.Parrt" multiplicada por la variable binaria "model.Y".

Después, en la línea 349 se tiene la ecuación (17) correspondiente a la restricción de rampa de arranque y subida de las centrales hidroeléctricas donde la potencia activa generada por las centrales hidroeléctricas "model.Ph" en un tiempo t menos la potencia activa generada por las centrales hidroeléctricas "model.Ph" en un tiempo t - 1 debe ser menor o igual a la rampa de subida de las centrales hidroeléctricas "model.Ph" en un tiempo t – 1 debe ser menor o igual a la rampa de subida de las centrales hidroeléctricas "model. Ph" en un tiempo t – 1 debe ser menor y subida de las centrales hidroeléctricas "model. Ph" en un tiempo t – 1 debe ser menor o igual a la rampa de subida de las centrales hidroeléctricas "model. Psubh". Finalmente, desde la línea 353 hasta la línea 356 se definen las restricciones para la rampa de arranque y subida de las centrales hidroeléctricas y térmicas, además de las restricciones de parada y bajada de las centrales térmicas mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la séptima restricción "Restricciones[6]".

Figura 2.1.13. Función "modelo.py"

Como se muestra en la Figura 2.1.13 en la línea 358 se define la función "logica_operacion_encendido" que define la lógica binaria de operación, en la línea 364 se define la función "logica_operacion_cambioestado" que define la lógica binaria de operación. Primero, en la línea 360 se tiene la ecuación (23) correspondiente a la lógica binaria de operación de las centrales térmicas donde la variable binaria "model.U" en un tiempo t menos la variable binaria "model.U" en un tiempo t - 1 debe ser igual a la variable binaria "model.Y" en un tiempo t menos la variable binaria "model.W" en un tiempo t. Luego, en la línea 364 se tiene la ecuación (24) correspondiente a la condición de la lógica binaria de operación de las centrales térmicas donde la variable binaria "model.Y" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t más la variable binaria "model.W" en un tiempo t debe ser menor o igual a la unidad.

Finalmente, desde la línea 367 hasta la línea 369 se definen las restricciones para la lógica binaria de operación de las centrales térmicas, mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la octava restricción "Restricciones[7]".

Figura 2.1.14. Función "modelo.py"

Como se muestra en la Figura 2.1.14 en la línea 372 se define la función "embalse_min" para el volumen mínimo del embalse de las centrales hidroeléctricas, en la línea 382 se define la función "embalse_max" para el volumen máximo del embalse de las centrales hidroeléctricas, mediante la función "def".

Primero, en la línea 378 y en la línea 388 se tiene la ecuación (25) donde en la línea 378 el volumen de agua del embalse de las centrales hidroeléctricas "embalse" debe ser mayor o igual al volumen mínimo del embalse de las centrales hidroeléctricas "model.Vmin"

multiplicado por 1000000 para obtener en las unidades de $[Hm^3]$ y en la línea 388 el volumen de agua del embalse de las centrales hidroeléctricas "embalse" debe ser menor o igual al volumen máximo del embalse de las centrales hidroeléctricas "model.Vmax" multiplicado por 1000000 para obtener en las unidades de $[Hm^3]$.

Se implementan dos formas para determinar el caudal turbinado por las centrales hidroeléctricas usando la función "TipoCalculoProduccion" donde la opción "0" realiza el cálculo usando los coeficientes de descarga mediante la función "embal.py" y la opción "1" realiza el cálculo mediante la eficiencia de la central mediante la función "embal_i.py".

Finalmente, desde la línea 392 hasta la línea 394 se define la restricción del volumen máximo y mínimo de embalses de las centrales hidroeléctricas mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la novena restricción "Restricciones[8]".

	main.py ×	modelo.py ×	flujoAC.py ×	embal.py $ imes$	embal_i.py \times	crearParams.py ×	graficas.py ×	leerDatosExcel.py 🗙 🚺 📝			
1											
2		Programa que calcula el Embalse y caudal del sistema usando factores de descarga									
3											
4	def	def embal(model,red, ii, jj, Modelo_SNI):									
5		# Obtengo datos iniciales									
6		PhMax=model.Pmaxh[jj]*1000*1000#₩									
7		qmax=model.qn	<pre>max[jj]#m^3/h</pre>								
8		eh=model.eh[j	jj] #MWh/m^3								
9		Vini=model.Vi	ini[jj]*10000	3 0 #m^3							
10		upstream=mode	el.upstream[j	j]							
11		DenAgua=1000‡	‡kg/m^3								
12		if Modelo_SNI	I== 1:								
13		altura=mo	odel.altura[j	j]# m							
14		largo=mod	del.largo[jj]	# m							
15		volument=	model.volume	nt[jj]# m							
16		unidades=	model.unidad	es[jj]# m							
17		1† upstream==	='-': # verit:	ico si la ce	entral tiene	un upstream (una	central rio	arriba)			
18		embalseau	ix=[]								
19		embalseA=	=Vini								
20		empaise=	2 								
21		#Calculan	nos el Caudal								
22		TOP 1 10	range(11+1):	1+1000+1000	223						
20		Pri1=1	-2600*modol pl		+W sfluda mAZ/h						
24		#Cours	-2000 moder.u	ιτ[τ,]] +τι	1110 10 10 3/11						
25		+Cauc if Ma	dalo SMT1.	# Dana al 3	NT verifica	si hav datos de	altura para c	alcular el caudal con e			
20		-1 14	if altura0:	# Fala CL .	SWI VELILITCA .	si nay uacos ue		aicuial ei caudai con e			
28		, i i i i i i i i i i i i i i i i i i i	al=Ph1*36	00/(eh*1000	1000) #m^3/h	Ecuación 28					
29		e	alse:	507 (Cli 1000	2000 jana 2 jan	LCGGCION LO					
30			varFaltan	te=volument.	(largo*altur	a)					
31			altural=er	mbalseA/(lar	reo*varFaltan	te)					
32			efil=(PhMa	ax/unidades	/(9.8*DenAgu	a*altura*qmax)					
33			ql=(3600*)	Phl/unidade	s)/(9.8*DenAg	ua*altural*efil)	#m^3/h Ecuaci	ón 29			

Figura 2.1.15. Función "embal.py"

Como se muestra en la Figura 2.1.15 para la función "embal.py" en la línea 4 se define la función "embal" para calcular el embalse y el caudal turbinado usando los factores de descarga de las centrales hidroeléctricas.

Primero, para el caso del SNI, si no se tiene datos de altura del embalse se calcula el caudal turbinado ql usando la eficiencia en la línea 28 donde se implementa la ecuación (28) mediante la potencia activa generada de las centrales hidroeléctricas *Phl* por 3600 dividido para la eficiencia *eh* por 1000000, para obtener el caudal turbinado en $[m^3/h]$.

Luego, para el caso del SNI, si se verifica que existen datos de altura del embalse se calcula el caudal turbinado ql de las centrales hidroeléctricas en la línea 33 donde se implementa la ecuación (29) mediante la potencia activa generada por la central *Phl* por 3600 dividido para la aceleración gravitacional "9.8" multiplicado por el salto hídrico *altural* multiplicado por la eficiencia de la turbina *efil* multiplicado por la densidad del agua *DenAgua*, para obtener el caudal turbinado en $[m^3/h]$.

Figura 2.1.16. Función "embal.py"

Como se muestra en la Figura 2.1.16, para el sistema de estudio IEEE 14 barras se calcula el caudal turbinado *ql* de las usando los factores de descarga, en la línea 41 se implementa la ecuación (30) mediante el factor de descarga *x* por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/1000000 elevado al cuadrado más el factor de descarga *y* por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/1000000 elevado al cuadrado más el factor de descarga *y* por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/100000 elevado al cuadrado más el factor de descarga *y* por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/1000000 más el factor de descarga *z* por 3600, para obtener el caudal turbinado en [*m*³/*h*].

Además, en las líneas 44 y 47 se tiene la ecuación (26) que se refiere al cálculo del embalse independiente donde el volumen de agua del embalse de las centrales hidroeléctricas "embalse" es igual al volumen de agua de embalse de la hora anterior t - 1 de las centrales hidroeléctricas *Vini* más 3600 por el influjo natural de embalse de las centrales hidroeléctricas "model.rht" y menos el caudal turbinado *ql*.

Figura 2.1.17. Función "embal.py"

Como se muestra en la Figura 2.1.17, desde la línea 50 hasta la línea 88 para el caso de las centrales hidroeléctricas en cascada, se calcula el caudal y embalse de las centrales hidroeléctricas que están río arriba. Si no existen datos de altura del embalse se calcula el caudal turbinado ql usando la eficiencia de la central. En caso se verifiquen datos de altura, se calcula el caudal turbinado ql en la línea 72 mediante la ecuación (29)

Además, para el caso de aplicación IEEE de 14 barras se calcula el caudal turbinado ql de las centrales hidroeléctricas usando factores de descarga en la línea 80 donde se tiene la ecuación (30) mediante el factor de descarga x por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/1000000 elevado al cuadrado más el factor de descarga y por 3600 multiplicado por la potencia activa generada de las centrales hidroeléctricas *Phl*/1000000 más el factor de descarga z por 3600, para obtener el caudal turbinado en $[m^3/h]$.

Además, en las líneas 82 y 85 se tiene la ecuación (27) que se refiere al cálculo del embalse dependiente donde el volumen de agua del embalse de las centrales hidroeléctricas "embalse" es igual al volumen de agua de embalse de la hora anterior t - 1 de las centrales

hidroeléctricas *Vini* más 3600 por el influjo natural de embalse de las centrales hidroeléctricas "model.rht" y menos el caudal turbinado *ql*.

	main.py	×	modelo.py ×	< flujoAC.py ×	embal.py ×	embal_i.py ×	crearParams.py ×	graficas.py ×	leerDatosExcel.py 🛪 🖣 🕨	
10		ups	tream=model.	upstream[jj]						
11		DenAgua=1000#kg/m^3								
12		if	Modelo_SNI==	1:						
13			altura=mode	1.altura[jj]# m						
14			largo=model	.largo[]]]# m						
15			volument=mo	de1.volument[]]]#	• m					
10			unitudues=mo	uer.unrudues[j]]#	la contral ti	ana un unstraam	una contral nio	- nonih-1		
40		Ťì	ambal coauv-	FI # VENITICO SI	Ta central ci	tene un upstream	r (una centrat rito	011100)		
10			embalsedux=	LJ ni						
20			embalse_P	1112						
21			#Calculamos	el Caudal						
22			for 1 in ra	nge(ii+1):						
23			Ph1=mod	el.Ph[1.jj]*1000*	1000#1					
24			rht1=36	00*model.rht[1.jj	1 #Influio m^	3/h				
25		#Caudal								
26			if Mode	lo SNI==1: # Para	el SNI verif	ica si hav dato	s de altura para c	alcular el cauda	al con ella o con la eficier	
27			# E	cuación 29						
28			if	altura==0:						
29				ql=Phl*3600/(eh*	1000*1000)#m^	3/h Ecuación 28				
30			els	e:						
31				varFaltante=volu	ment/(largo*a	ltura)				
32				altural=embalseA	/(largo*varFa	ltante)				
33				efil=(PhMax/unid	lades)/(9.8*De	nAgua*altura*qn	iax)			
34				ql=(3600*Phl/uni	.dades)/(9.8*0	enAgua*altural*	efil)#m^3/h Ecuaci	ón 29		
35			else:							
36			# P.	ARA 14 Barras						
37			# C	alculo caudal usa	indo eficienci	6				
38			# E	1 caudal debe que	dar en m3/h					
39			# E	cuacion 28	A second second second second	de la				
40			=10 	Pn1/(en*1000*1000)#mr3/n Ecuac	10n 28	A CONTRACTOR OF			
41			# Calcu	to el empaise tom	iando en cuent	a el empaise de	i la nora anterior			
44			IT I==0	alca_Vini+nhtl al	#Equación 20					
44			emb	alse=vini+rhtl.qi	. #ECOOCLON 20					
45			else.	disch-villiti liti-d	μ.					
46			emb	alse=embalseaux[]	-1]+rht]-a] #	Ecuación 26				
47			emb	alseA=embalseaux[1-11+rht1-01					
48			emba <u>lse</u>	aux.append(embals	e)					

Figura 2.1.18. Función "embal_i.py"

Como se muestra en la Figura 2.1.18 para la función "embal_i.py" en la línea 4 se define la función "embal" para calcular el embalse y el caudal del sistema usando la eficiencia de las centrales hidroeléctricas, mediante la función "def".

Primero, desde la línea 26 hasta la línea 34 para el caso de aplicación del SNI si no se tiene datos de altura se calcula el caudal turbinado ql de las centrales hidroeléctricas usando la eficiencia en la línea 29 donde se implementa la ecuación (28). Además, para el SNI si se verifica que se tiene datos de altura se calcula el caudal turbinado ql de las centrales hidroeléctricas en la línea 34 donde se tiene la ecuación (29).

Después, desde la línea 35 hasta la línea 40 para el caso de aplicación IEEE de 14 barras se calcula el caudal turbinado ql de las centrales hidroeléctricas usando factores de descarga en la línea 40 donde se tiene la ecuación (30) mediante la potencia activa generada de las centrales hidroeléctricas *Phl* dividido para la eficiencia *eh* por 1000000, para obtener el caudal turbinado en $[m^3/h]$.

Además, en las líneas 43 y 46 se tiene la ecuación (26) que se refiere al cálculo del embalse independiente donde el volumen de agua del embalse de las centrales hidroeléctricas

"embalse" es igual al volumen de agua de embalse de la hora anterior t - 1 de las centrales hidroeléctricas *Vini* más 3600 por el influjo natural de embalse de las centrales hidroeléctricas "model.rht" y menos el caudal turbinado *ql*.

main.py ×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py ×	graficas.py ×	leerDa		
48	embal	lseaux.append	(embalse)		e 				
49	else: # Si existe upstream es importante calcular el caudal y embalse de las generad								
50	genAnteri	lores=str(mod	el.upstream[[jj]).split("	;")		8		
51	embalseau	ix=[]							
52	embalseA=	-Vini					ĺ		
53	embalse=0)							
54	genAntL=1	len(genAnteri	ores)				İ		
55	for 1 in	<pre>range(ii+1):</pre>					ĺ		
56	cauda	1A=0					İ		
57	for i	in range(ge	nAntL):				ĺ		
58	8	genAnt=int(ge	Anteriores	[i])					
59	e	mbalseA, qA=	embal(model,	, red,l, genA	nt, Modelo_SNI)				
60	c	audalA+=qA							
61	Phl=m	odel.Ph[1,jj] *1000*1000 ‡	ŧW					
62	rhtl=	-3600*model.r	nt[1,jj]+cau	dalA #Influjo	o m^3/h				
63	#Caud	lal							
64	if Mo	delo_SNI==1:							
65	i	f altura==0:							
66		ql=Ph1*36	30/(eh*1000*	1000) #m^3/h i	Ecuación 28				
67	e	lse:							
68		varFaltan	te=volument/	(largo*altura	a)		ĺ		
69		altural=e	mbalseA/(lar	go*varFaltant	te)				
70		efil=(PhM	ax/unidades)	/(9.8*DenAgua	a*altura*qmax)				
71		ql=(3600*)	Phl/unidades	s)/(9.8*DenAg	ua*altural*efil)	#m^3/h Ecuaci	Lón 29		
72	else:								
73	c	l=Phl/(eh*10	30*1000)#m^3	3/h Ecuación 3	28				
74	if l=	=0:					ĺ		
75	e	mbalse=Vini+	r htl-ql #Ecu	ación 27					
76	e	mbalseA=Vini	+rhtl-ql				ĺ		
77	else:						ĺ		
78	e	mbalse=embal:	seaux[1-1]+r	htl-ql #Ecuar	ción 27				
79	e	mbalseA=emba	lseaux[1-1]+	rhtl-ql					
80	embal	seaux.append	(embalse)						
81	return embals	e, ql							

Figura 2.1.19. Función "embal_i.py"

Como se muestra en la Figura 2.1.19, desde la línea 49 hasta la línea 81 para el caso del embalse dependiente si existe "upstream" se calcula el caudal y embalse de las centrales hidroeléctricas que están río arriba.

Figura 2.1.20. Función "modelo.py"

Como se muestra en la Figura 2.1.20 en la línea 397 se define la función "limite_caudal_min" para el caudal mínimo turbinado de las centrales hidroeléctricas, en la línea 407 se define la función "limite_caudal_max" para el caudal máximo turbinado de las centrales hidroeléctricas, mediante la función "def".

Se implementan dos métodos de cálculo que se definen en la función "TipoCalculoProduccion" donde la opción "0" realiza el cálculo con los coeficientes de descarga mediante la función "embal.py" y la opción "1" realiza el cálculo con la eficiencia mediante la función "embal_i.py".

Además, en la línea 405 y en la línea 416 se tiene la ecuación donde en la línea 405 el caudal turbinado de las centrales hidroeléctricas qA debe ser mayor o igual al caudal mínimo turbinado de las centrales hidroeléctricas "model.qmin" en $[m^3/h]$.

Luego, en la línea 416 para el caso de embalse independiente y en la línea 419 para el caso de embalse dependiente con "upstream" y para ambos casos el caudal turbinado de las centrales hidroeléctricas qA debe ser menor o igual al caudal máximo turbinado de las centrales hidroeléctricas "model.qmax" en $[m^3/h]$.

Además, para el caso de centrales de pasada, el influjo está determinado por las centrales río arriba y en la línea 432 el caudal turbinado de las centrales hidroeléctricas qA debe ser menor o igual al caudal máximo turbinado de las centrales hidroeléctricas *caudalA* en $[m^3/h]$.

Finalmente, desde la línea 434 hasta la línea 436 se define la restricción del caudal máximo y mínimo turbinado de las centrales hidroeléctricas mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la décima restricción "Restricciones[9]".

	main.py ×	modelo.py \times	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py ×	graficas.p	
216	#			FL	UJO DE POTENCIA	POR LAS LÍNEAS		
217	def	FLimite_Pline(model,i,l): # L	ímite de Carg.	a P de la línea			
218		print("FLujo	P Linea:" ,l, " H	lora:",i)				
219		return model.	Piji[i,l]<=mode	el.Pijmax[1]				
220	def	f Limite_Sline(<pre>ite_Sline(model,i,l): # Limite de Carga S de la linea</pre>					
221		print("FLujo	int("Flujo S Linea:",1," Hora:",1)					
222		return model.	<pre>turn model.Siji[i,l]<=model.Pijmax[1]*model.Pijmax[1]</pre>					
223	def	Calculo_Pij(m	odel,i,l): # Ca	ilculo de la p	otencia P de la	linea		
224		print("FLujo	Valor P Linea:'	',1," Hora:",1)			
225		Pos0=int(pyo.	value(model.lin	leas_posicion[0,1]))			
226		Pos1=int(pyo.	value(model.lin	leas_posicion[1,1]))			
227		Gnm=np.real(Y	barra1[Pos0,Pos	(1]) (1)				
228		Bnm=np.1mag(Y	barrai[Pos0,Pos	51]) (0]				
229		Vn=model.volt	ajeBarras[1,Pos	50] - 4]				
230		Thetenm-model	ajeBdrrdS[1,POS	Docal model T	hotoDopporti Do	-11		
231		P_np_abs(Vo%V	<pre>.IIICLdbdFFdS[1; n%Com Vo%Vm%(Cr</pre>	m [*] nvo cos/The	term)+Dom&ovo s	in(Thetanm))) #Ecu	ación 31	
202		r=np.aus(vn·v	piii[i]]p*ck	me pyo.cos(me	caniii)+briiii pyo.s		acton SI	
233	def	Calculo Oii(m	odel i l) # Cá	ilculo de la n	otencia O de la	línea		
235	uc.	nrint("Eluio	Valor O linea:'	'.l." Hora:".i)	1 11100		
236		Pos@=int(pvo.	value(model.lin	leas posicion[
237		Pos1=int(pvo.	value(model.lir	leas posicion[1,11))			
238		Gnm=np.real(Y	barra1[Pos0,Pos	;1])	-1-1//			
239		Bnm=np.imag(Y	barra1[Pos0,Pos	1])				
240		Vn=model.Volt	ajeBarras[i,Pos	:0]				
241		Vm=model.Volt	ajeBarras[i,Pos	;1]				
242		Thetanm=model	.ThetaBarras[i,	Pos0]-model.T	hetaBarras[i,Po	s1]		
243		Q=np.abs(-Vn*	Vn*Bnm-Vn*Vm*(G	inm*pyo.sin(Th	etanm)-Bnm*pyo.	cos(Thetanm))) #Ec	uación 33	
244		return model.	Qiji[i,l]==Q*Sb	ase				
245	def	f Calculo_Sij(m	odel,i,l): # Cá	ilculo de la p	otencia S de la	línea 🛛		
246		print("FLujo	Valor S Linea:'	' ,1, " Hora:" , i)			
247		S=model.Qiji[i,l]*model.Qiji	i[i,l]+model.P	iji[i,l]*model.	Piji[i,1] #Ecuació	n 32	
248		return model.	Siji[i,l]==S					
249	if	Restricciones[2]==1:			l		
250		model.Limite_	Pline = pyo.Co	onstraint(mode	1.I,model.L, ru	lle=Limite_Pline)		
251		model.Limite_	Sline = pyo.Co	onstraint(mode	1.1,model.L, ru	lle=Limite_Sline)		
252	mod	lel.Calculo_Pij	= pyo.constra	int(model.I,m	odel.L, rule=Ca	ICUIO_P1J)		
253	mod	lel.calculo_Q1j	= pyo.constra	int(model.1,m	odel.L, rule=Ca	liculo_Q1j)		
254	mod	er.calculo_Sij	= pyo.constra	int(model.1,m	odel.L, rule=Ca	11CU10_S1])		

Figura 2.1.21. Función "modelo.py"

Como se muestra en la Figura 2.1.21 en la línea 217 se define la función "Limite_Pline" para el límite de flujo de potencia activa en líneas de transmisión, en la línea 220 se define

la función "Limite_Sline" para el límite de flujo de potencia aparente en líneas de transmisión, mediante la función "def".

Primero, en la línea 232 se tiene la ecuación (31) para el cálculo del flujo de potencia activa en líneas de transmisión P en coordenadas polares en p.u., en donde, primero se obtiene la posición de las líneas de transmisión Pos0 y Pos1 mediante las líneas 225 y 226 respectivamente, luego en las líneas 227 y 228 se calcula la conductancia G_{nm} y susceptancia B_{nm} entre la barra n y la barra m, respectivamente, usando la matriz de admitancia Ybarra1. En la línea 229 se calcula el voltaje en la barra $n V_n$ y en la línea 230 se calcula el voltaje en la barra $m V_m$ con la ecuación de la magnitud de voltaje en las barras "model.VoltajeBarras" que se obtiene del flujo de potencia AC de la función "flujoAC.py". Además, en la línea 231 se calcula el ángulo $Theta_{nm}$ entre la barra n y la barra m con la ecuación de ángulo de voltaje en las barras "model. Theta Barras" que se obtiene del flujo de potencia AC de la función "flujoAC.py". Luego, en la línea 233 se calcula el flujo de potencia activa en línea de transmisión P entre la barra n y la barra m en [MW] ya que la variable P_{iii} debe ser igual a P * Sbase. Finalmente, en la línea 219 el límite de la variable del flujo de potencia activa en las líneas de transmisión P_{iji} entre la barra n y la barra mdebe ser menor o igual al parámetro de la potencia activa máxima de la línea de transmisión P_{ijmax} entre la barra n y la barra m.

Luego, en la línea 243 se tiene la ecuación (33) para el cálculo del flujo de potencia reactiva en líneas de transmisión Q en coordenadas polares en p.u., en donde primero se obtiene la posición de las líneas de transmisión Pos0 y Pos1 mediante las líneas 236 y 237 respectivamente. En las líneas 238 y 239 se calcula la conductancia G_{nm} y susceptancia B_{nm} entre la barra n y la barra m, respectivamente, mediante la matriz de admitancia Y barra 1, luego en la línea 240 se calcula el voltaje en la barra n V_n y en la línea 241 se calcula el voltaje en la barra $m V_m$ con la ecuación de la magnitud de voltaje en las barras "model.VoltajeBarras" que se obtiene del flujo de potencia AC de la función "flujoAC.py". Además, en la línea 242 se calcula el ángulo $Theta_{nm}$ entre la barra n y la barra m con la ecuación de ángulo de voltaje en las barras "model.ThetaBarras" que se obtiene del flujo de potencia AC de la función "flujoAC.py". Luego, en la línea 244 se tiene el flujo de potencia reactiva en líneas de transmisión Q entre la barra n y la barra m en [MVAr] ya que la variable Q_{iji} debe ser igual a Q * Sbase. Finalmente, en la línea 247 se tiene la ecuación (32) del flujo de potencia aparente en líneas de transmisión S en coordenadas polares entre la barra n y la barra m en [MVA] ya que en la línea 248 la variable S_{iii} debe ser igual a S. Además, en la línea 222 el límite de la variable del flujo de potencia aparente en las líneas de transmisión S_{iji} entre la barra n y la barra m debe ser menor o igual al parámetro de la potencia aparente máxima de la línea de transmisión S_{ijmax} entre la barra n y la barra m.

Finalmente, desde la línea 249 hasta la línea 254 se define la restricción del límite de flujo de potencia activa y aparente por las líneas de transmisión mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la tercera restricción "Restricciones[2]".

] נ	main.py	×	modelo.py ×	flujoAC.py ×	embal.py ×	embal_i.py ×	crearParams.py	×	graficas.p
259		#							
260		def	Limite_PTrafo	<pre>s(model,i,l):</pre>	# Límite de C	arga P del Trar	sformador		
261		print("Flujo P Trafo:",1," Hora:",i)							
262			return model.PijiT[i,l]<=model.PijTmax[1]						
263		def	Limite_STrafo	<pre>s(model,i,l): #</pre>	⊭ Límite de Ca	rga S del Trans	formador		
264			print("FLujo :	rint("Flujo S Linea:",1," Hora:",i)					
265			return model.	SijiT[i,l]<=mod	del.PijTmax[1]	<pre>*model.PijTmax[</pre>	[1]		
266		def	Calculo_Pij_T	(model,i,1): #	Cálculo de la	potencia P del	. Transformador		
267			print("FLujo	Valor P Trafo:'	",1," Hora:",i)			
268			Pos0=int(pyo.	value(model.tra	afos_posicion[0,1]))			
269			Pos1=int(pyo.	value(model.tra	afos_posicion[1,1]))			
270			Gnm=np.real(Y	barra1[Pos0,Pos	51])				
271			Bnm=np.1mag(Y	barra1[Pos0,Pos	51])				
272			vn=model.volt	ajeBarras[1,Pos	50]				
273			VM=model.volt	ajeBarras[1,Pos	51] Decel medel 7		- 4 3		
274			Inetanm=model	. InetaBarras[1,	Posej-model.	netaBarras[1,PC)51] 	L	
275			P=np.abs(Vn*Vn*Gnm-Vn*Vm*(Gnm*pyo.cos(Thetanm)+Bnm*pyo.sin(Thetanm))) #Ecuación 31						
270		daf	Calculo Oii I(model i): # Cálculo de la notencia O del Transformador						
2//		uei	print("Eluin Valor O Linea:"] "Hora:"i)						
270			print("FLUJO Valor Q Linea:",1," Hora:",1) Rose_int(nyo value(model trafos posicion[0 11))						
275			Post-int(pyo.	value(model tra	fos posicion[1 11))			
281			Gnm=nn.real(Y	barral[Pos0.Pos	(11)	-,-]//			
282			Bnm=np.imag(Y	barra1[Pos0,Pos	s11)				
283			Vn=model.Volt	aieBarras[i,Pos	501				
284			Vm=model.Volt	aieBarras[i,Pos	s1]				
285			Thetanm=model	.ThetaBarras[i	Pos01-model.T	hetaBarras[i.Po	s1]		
286			O=np.abs(-Vn*	Vn*Bnm-Vn*Vm*(Snm*pyo.sin(Th	etanm)-Bnm*pyo.	cos(Thetanm)))	#EC	uación 33
287			return model.	QijiT[i,l]==Q*9	Sbase	· · · ·			
288		def	Calculo_Sij_T	(model,i,1): #	Cálculo de la	potencia S del	Transformador		
289			print("FLujo	Valor S Linea:'	",1," Hora:",i)			
290			S=model.QijiT	[i,1]*model.Qij	ji⊤[i,l]+model	.PijiT[i,l]*mod	lel.PijiT[i,l] #	Ecu	ación 32
291			return model.	SijiT[i,1]==S					
292		if	Restricciones[3]==1:					
293			model.Limite_	PTrafos = pyo.	.Constraint(mo	del.I,model.TRA	WSF, rule=Limit	te_P	Trafos)
294			model.Limite_	STrafos = pyo.	.Constraint(mo	del.I,model.TRA	WSF, rule=Limit	e_s	Trafos)
295		mod	el.Calculo_Pij	_T = pyo.Const	traint(model.I	,model.TRANSF,	rule=Calculo_Pi	.j_⊺)
296		mod	el.Calculo_Qij	_T = pyo.Const	traint(model.I	,model.TRANSF,	rule=Calculo_Qi	.j_T)
297		mod	el.Calculo_Sij	_T = pyo.Const	traint(model.I	,model.TRANSF,	rule=Calculo_Si	ф_т)

Figura 2.1.22. Función "modelo.py"

Como se muestra en la Figura 2.1.22 en la línea 260 se define la función "Limite_PTrafos" para el límite de flujo de potencia activa en transformadores, en la línea 263 se define la función "Limite_STrafos" para el límite de flujo de potencia aparente en transformadores, mediante la función "def". El proceso de implementación es similar al descrito para líneas de transmisión. Finalmente, desde la línea 292 hasta la línea 297 se define la restricción

del límite de flujo de potencia activa y aparente en los transformadores mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la cuarta restricción "Restricciones[3]".

	main.py	×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py ×	crearParams.py ×	gı	
439									
440	#				Restricc	ión Límite de m	agnitud de voltaje:		
441		def	Voltaje_MAX(m	odel, i, j):# M	lagnitud de vo	ltaje máximo			
442			print("Limite	Max Voltaje Ba	ırra:" ,j, " Hor	a:",i)			
443			# Encontramos	la posición de	e las barras d	e los generador	'es		
444			NUMEROBARRAS :	<pre>= len(red.BUS.n</pre>	iame)				
445			NameBarra= re	d.BUS.name					
446			Nbarra_Ph=[]						
447			Nbarra_Pt=[]						
448			for 1 in range	e (NUMEROBARRAS	;):				
449			aux=NameB	arra[l]					
450			exist_cou	nt = list(red.G	EN.bus).count	(aux)			
451			if exist_	count > 0:					
452			nameG	en=red.GEN.name	[list(red.GEN	.bus).index(aux	()]		
453			exist	_count = list(r	ed.GHIDRO.Ref	erencia).count(nameGen)		
454			if exist_count > 0:						
455			N	Nbarra_Ph.append(1)					
456			else:	else:					
457			e	<pre>exist_count = list(red.GTERM.Referencia).count(nameGen)</pre>					
458			Í	f exist_count >	0:				
459				Nbarra_Pt.ap	pend(1)				
460			aux=0						
461			for 1 in range	e(len(Nbarra_Ph)):				
462			if Nbarra	_Ph[1]==j:					
463			aux=1						
464				17 1.1 - I					
465			for 1 in range	e(len(Nbarra_Pt	:)):				
466			1† Nbarra	_Pt[1]==]:					
467			aux=1						
468			1† aux==0:						
469			return mo	del.VoltajeBarr	as[1,]]<=mode	1.Voltmax[]] #E	cuacion 34		
470			else:						
471			return py	o.constraint.Sk	ip # Saltar s	i es un voltaje	e fijo de generadora	S	
472		def	voitaje_MIN(m	ode1, 1,]):# M	lagnitud de vo	itaje minimo			
473			print("Limite	Min Voltaje Ba	irra:",j," Hor	a:",1)			
474			# Encontramos	la posicion de	i las barras d	e ios generador	es		
475			NUMEROBARRAS	= len(red.BUS.n	iame)				
476			NameBarra= re	d.BUS.name					

Figura 2.1.23. Función "modelo.py"

Como se muestra en la Figura 2.1.23 en la línea 441 se define la función "Voltaje_MAX" para la restricción del límite máximo de magnitud de voltaje en las barras y en la línea 472 se define la función "Voltaje_MIN" para la restricción del límite mínimo de magnitud de voltaje en las barras.

Primero, se encuentra la posición de las barras de los generadores y luego en la línea 469 se tiene la ecuación (34) donde la magnitud de voltaje en las barras "VoltajeBarras[i,j]" se obtiene del flujo de potencia AC en la función "flujoAC.py" debe ser menor o igual a la magnitud de voltaje máximo en las barras "Voltmax[j]".

	main	.ру ×	modelo.py ×	flujoAC.py ×	embal.py \times	embal_i.py \times	crearParams.py ×	graficas.py ×	leerDatosExcel.py	,∢	•
487			else:								
488		<pre>exist_count = list(red.GTERM.Referencia).count(nameGen)</pre>									
489			i	f exist_count :	0:						
490				Nbarra_Pt.ap	opend(1)						
491			aux=0								
492			for 1 in rang	e(len(Nbarra_P	1)):						
493			if Nbarra	Ph[1]==j:							
494			aux=1								
495											
496			for 1 in rang	e(len(Nbarra_P	t)):						
497			if Nbarra	_Pt[1]==j:							
498			aux=1								
-499			if aux==0:								
500			return mo	del.VoltajeBarn	ras[i,j]>=mode	l.Voltmin[j] #	cuación 34				
501			else:								
502			return py	o.Constraint.S	cip # Saltar s	i es un voltaje	e fijo de generador	as			
503		def	Calculo Volta	jes(model, i,	i): # Calculam	los ecuaciones d	ie Voltaje con el f	lujo AC			
584			print("Voltaj	e Valor Barra:	".j." Hora:".i)					
505			if j==0: # Ca	lculamos solo p	bara la j==0 y	a que el result	tado del flujo entr	ega el valor pa	ra todas las barra	s	
506			[VolBarra	s, ThetaBarras	=fac.FlujoAC(red, model, Yba	arra1, Sbase, frecR	ed, i, Modelo S	NI)		
507			for n in	range (len(red.	BUS.name)):						
508			Volta	jeBarrasFlujo[i,n]=VolBarras	[n] # ingresamo	os los valores en u	na variable aux	iliar con las ecua	cione	es de
509			return model.	VoltaieBarras	i.il==VoltaieB	arrasFluio[i.i	# Indicamos el va	lor para cada b	arra optimizando e	1 tie	empo d
510		def	Calculo Theta	(model, i, j):	# Calculamos	ecuaciones de A	angulo con el flujo	AC			28 - C
511			print("Theta	Valor Barra:".	i." Hora:".i)						
512			if i==0: # Ca	lculamos solo r	oara la i==0 v	a que el result	ado del fluio entr	ega el valor pa	ra todas las barra	s	
513			[VolBarra	s. ThetaBarras	=fac.FluioAC(red, model, Yba	arra1, Sbase, frecR	ed, i, Modelo S	NI)		
514			for n in	range (len(red.	BUS.name)):						
515			Theta	BarrasFlujo[i,	1]=ThetaBarras	[n]# ingresamos	s los valores en un	a variable auxi	liar con las ecuac	iones	s de t
516			return model.	ThetaBarras[i,	il==ThetaBarra	sFlujo[i,j] # 1	Indicamos el valor	para cada barra	optimizando el ti	empo	de ei
517		if	Restricciones[10]==1:	endor statisticites						1.2.28 - 11 2 9
518			model.Voltaje	MAX = pyo.Cons	straint(model.	I,model.N, rule	e=Voltaje MAX)				
519			model.Voltaje	MIN = pvo.Cons	straint(model.	I.model.N. rule	=voltaje MIN)				
520		mod	el.Calculo Vol	taies = pvo.Cor	straint(model	.I.model.N. rul	le=Calculo Voltaies)			
521		mod	el.Calculo The	ta = pyo.Constr	aint(model.I.	model.N, rule=0	alculo Theta)				
522					and a second second second second second second second second second second second second second second second		oning the Million of States of State				
523		ret	urn model								
-											

Figura 2.1.24. Función "modelo.py"

Como se muestra en la Figura 2.1.24, se encuentra la posición de las barras de los generadores y luego en la línea 500 se tiene la ecuación (34) donde la magnitud de voltaje en las barras "VoltajeBarras[i,j]" se obtiene del flujo de potencia AC en la función "flujoAC.py" debe ser mayor o igual a la magnitud de voltaje mínimo en las barras "Voltmin[j]".

Finalmente, desde la línea 517 hasta la línea 521 se define la restricción del límite de magnitud de voltajes en las barras mediante el comando de Pyomo "pyo.Constraint" y se almacena en el menú del script "main.py" como la onceava restricción "Restricciones[10]".

3 RESULTADOS

3.1 Casos de estudio

En el presente capítulo se presentarán los resultados obtenidos de forma gráfica de la herramienta computacional desarrollada para la solución del problema de optimización de despacho hidrotérmico de corto plazo considerando la red eléctrica usando flujo óptimo de potencia AC para los casos de aplicación del sistema IEEE de 14 barras y para el SNI ecuatoriano.

3.1.1 Aplicación al Sistema IEEE de 14 barras

Para validar la herramienta computacional desarrollada se aplica al sistema IEEE de 14 barras y 5 generadores que se presenta en la Figura 3.1.1.1.

Figura 3.1.1.1. Sistema IEEE de 14 barras [14].

El sistema consta de tres centrales hidroeléctricas con embalse representadas con "H" y dos centrales térmicas representadas con "T", donde la CH que se encuentra en la barra 3

está ubicada aguas abajo de las dos CH restantes, por lo que se tiene concatenación hídrica "upstream" tal como se muestra en la Figura 3.1.1.2.

Figura 3.1.1.2. Concatenación hídrica del sistema IEEE de 14 barras [6].

Caso de estudio A

Para este caso se considera la siguiente parametrización:

Tabla 1 Parametrización del modelo

Opción	Тіро
Función de costos de producción	Linealizada
Cálculo de función de producción	Con eficiencia
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

Figura 3.1.1.3. Potencia generada. Sistema IEEE de 14 barras.

En la Figura 3.1.1.3 se presenta la potencia generada por las centrales térmicas e hidroeléctricas para un período de 24 horas, donde se observa que la mayoría de la demanda es suministrada por las centrales hidroeléctricas ya que el costo de producción es más bajo en comparación a las centrales térmicas. En las horas pico, desde las 18 hasta las 21 horas, ambas centrales térmicas se encuentran en funcionamiento para suplir la demanda, posteriormente ambas salen de operación.

Figura 3.1.1.4. Perfil de voltaje en barras en p.u. Sistema IEEE de 14 barras

Como se visualiza en la Figura 3.1.1.4, la magnitud del voltaje en las barras cumple con los límites establecidos entre 0.94 p.u. y 1.09 p.u. La barra 14 es la que más bajo perfil de voltaje presenta en el tiempo, posiblemente se deba a que se encuentra eléctricamente alejada de los generadores. Por otro lado, la barra 8 presenta el perfil de voltaje más alto, debido a que tiene un generador conectado a ella, que realiza el control de voltaje.

Figura 3.1.1.5. Flujo de potencia activa en líneas de transmisión. Sistema IEEE de 14 barras.

En la Figura 3.1.1.5 se muestra el flujo de potencia activa en las líneas de transmisión, en [MW], que en todos los casos cumple con los límites establecidos y la potencia en las líneas no supera los 100 [MW]. Se observa que la línea "Line_0001_0005" es la que está más sobrecargada ya que a la barra 1 se conecta el generador hidroeléctrico "GH_1" que entrega más potencia.

Figura 3.1.1.6. Flujo de potencia activa en las líneas de transmisión en porcentaje. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.6 la línea con mayor porcentaje de cargabilidad es la línea "Line_0001_0005" y no supera el 85% de su capacidad máxima.

Figura 3.1.1.7. Flujo de potencia activa en transformadores. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.7 el flujo de potencia activa en transformadores, en [MW], cumple con los límites establecidos. El transformador "Trf_0005_0006" está más sobrecargado que el resto y se debe a que está conectado con el generador térmico "GT_1" en la barra 6.

En la Figura 3.1.1.8 se muestra el flujo de potencia activa en los transformadores en [%], observándose que no se supera la cargabilidad del 100 %, por tanto, se cumple con criterios de seguridad estática.

Figura 3.1.1.9. Evolución de los embalses. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.9 la central hidroeléctrica "GH_3", que se encuentra en la barra 3, está ubicada aguas abajo de las dos centrales hidroeléctricas restantes "GH_1" y "GH_2", por lo que se tiene concatenación hídrica "upstream" y su embalse aumenta en función del tiempo. La central hidroeléctrica "GH_3" almacena el agua en un embalse y tiene la capacidad de generar potencia de forma variable desde 25 [MW] hasta 110 [MW], por lo tanto, genera menos potencia que las centrales hidroeléctricas "GH_1" y "GH_2" las cuales cuentan con límites de potencia activa máxima generada con valores más elevados y por ende generan más potencia que "GH3".

Figura 3.1.1.10. Curva del caudal para el caso de estudio A usando el sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.10 el caudal, sigue una tendencia similar a la curva de potencia generada por las centrales hidroeléctricas y se observa que el generador "GH_1" es el que más caudal turbina ya que entrega también más potencia generada.

Figura 3.1.1.11. Potencia activa generada y demanda total. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.11, la curva de la potencia activa total generada y demanda total, al considerar pérdidas en el sistema, la potencia activa total generada es mayor a la demanda.

Figura 3.1.1.12. Potencia reactiva generada y demanda de potencia reactiva. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.12 para la curva de la potencia reactiva generada y demanda, al considerar pérdidas en el sistema la potencia reactiva generada puede ser mayor o menor a la demanda en función del tiempo, debido a que se tiene potencias reactivas capacitivas o inductivas.

Figura 3.1.1.13. Potencia activa generada total por centrales térmicas e hidroeléctricas. Sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.13, la generación de potencia activa que entregan las centrales hidroeléctricas es mucho más grande en comparación con las centrales térmicas, que solo generan unas pocas horas, pues tiene un costo operativo mucho menor.

Figura 3.1.1.14. Curva de la potencia reactiva generada por las centrales térmicas e hidroeléctricas para el caso de estudio A usando el sistema IEEE de 14 barras.

Como se visualiza en la Figura 3.1.1.14, se analiza que la generación de potencia reactiva la realizan las centrales hidroeléctricas, siendo los pilares para el control de voltaje.

• Caso de estudio B

Tabla 2	Parametrización	del	modelo
---------	-----------------	-----	--------

Opción	Тіро
Función de costos de producción	No linealizada
Cálculo de función de producción	Con eficiencia
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

Caso de estudio C

Tabla 3	Parametrización	del modelo
---------	-----------------	------------

Opción	Тіро
Función de costos de producción	Linealizada
Cálculo de función de producción	Con factores de descarga
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

• Caso de estudio D

Tabla 4 Parametrización del modelo

Opción	Тіро
Función de costos de producción	No linealizada
Cálculo de función de producción	Con factores de descarga
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

Tabla 5 Costos totales de operación para los diferentes casos de estudio

Costos totales de operación		
Caso de estudio A	\$13,406.50	
Caso de estudio B	\$17,655.49	
Caso de estudio C	\$13,531.85	
Caso de estudio D	\$16,543.63	

Como se visualiza en la Figura 3.1.1.15 y en la tabla 5, se analiza que para los cuatro casos se tienen costos totales similares de operación, por lo que la herramienta computacional funciona correctamente. Además, para los casos de estudio A y C se tienen valores muy cercanos ya que se usa una función de costos linealizada para la minimización del problema; mientras que para los casos de estudios B y D se tienen valores cercanos ya que se usa una función de costos no linealizada para la minimización del problema; mientras que el caso B, es el que mayor costo total de operación genera en comparación a los otros casos, debido a los valores de la eficiencia de las centrales hidroeléctricas en los datos de entrada del Excel y al estado de operación de las variables binarias de las centrales térmicas.

Figura 3.1.1.16. Curva de generación para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.1.16 y en el Anexo IV, se analiza que para los cuatro casos de estudio se tienen perfiles de generación muy similares en función del tiempo ya que la demanda para los cuatro casos es muy parecida, por lo que se comprueba que la herramienta computacional funciona de manera correcta. Se concluye que los perfiles de generación para todo el día del caso de estudio A con un valor de 7662.98 [MW] y del caso C con un valor de 7662.185 [MW] son casi iguales, por lo que se comprueba el uso de una función de costos linealizada para minimizar costos del problema considerando pérdidas de la red eléctrica, además de usar para el cálculo de la función de producción de las centrales hidroeléctricas mediante la eficiencia para el caso A y de factores de descarga para el caso C. De igual forma, se tiene perfiles de generación muy similares para el caso de estudio B con un valor de 8089.3019 [MW] y el caso D con un valor de 7968.5497 [MW], pero con el uso de una función de costos no linealizada para la minimización de costos del problema de optimización, además se analiza que en las horas que se tiene menor demanda son casi iguales. Se tiene mayor potencia activa generada en el caso B con un gran aporte al día de las centrales hidroeléctricas de 93.12 % y un aporte de las centrales térmicas de 6.88%, cuando se usa una función de costos no linealizada y con la eficiencia, pues se tiene un costo más alto ya que se usa más generación térmica en este caso. Finalmente, para los cuatro casos de estudio en la hora 18 se tiene la máxima generación ya que se debe suplir la demanda máxima en esa hora pico.

Figura 3.1.1.17. Pérdidas totales para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.1.17 y en el Anexo IV, se analiza que para el caso A con un valor de 137.143 [MW] y el caso C con un valor de 136.348 [MW] se tiene casi las mismas pérdidas cuando se usa la función de costos linealizada. Para el caso de estudios B con un valor de 563.465 [MW] y el caso D con un valor de 442.713 [MW] se tienen pérdidas en la red eléctrica cercanas ya que se usa una función de costos no linealizada para la minimización del problema de optimización y su diferencia es tolerable. Además, en las horas con baja demanda se obtiene pérdidas en el sistema eléctrico casi iguales para los cuatro casos, pero cuando se tiene mayor demanda varían su tendencia ya que se tiene un gran aumento de pérdidas en el sistema eléctrico. Para el caso B, se tiene las mayores pérdidas donde se usa la función de costos no linealizada, ya que se debe generar más potencia para cubrir la demanda y por ende se genera más pérdidas en la red, pues se comprueba que se tiene costos de producción totales más elevados en este caso debido a que se tiene más pérdidas.

Figura 3.1.1.18. Perfil de voltaje para los diferentes casos de estudio en la barra 9.

Como se visualiza en la Figura 3.1.1.18 y en el Anexo IV, se analiza que los valores de los voltajes en p.u. en la barra 9 para el sistema IEEE de 14 barras son casi iguales en los cuatro casos con muy pequeñas diferencias en las horas pico de demanda desde la hora 18 hasta la hora 21 debido a que tiene dos transformadores y una carga conectada a ella, para realizar el control de voltaje. Para el caso A, en la hora 21 de demanda máxima se tiene un nivel de voltaje mínimo de 0.9962 p.u., pues al ser una barra de carga el perfil de voltaje cambia con su demanda.

Figura 3.1.1.19. Perfil de voltaje para los diferentes casos de estudio en la barra 10.

Como se visualiza en la Figura 3.1.1.19 y en el Anexo IV, se analiza que los valores de los voltajes en p.u. en la barra 10 del sistema IEEE de 14 barras son muy similares para los cuatro casos de estudio, donde se tiene pequeñas diferencias entre las 13 y 15 horas, y entre las 19 y 21 horas debido a que tiene una carga grande conectada a ella, para realizar el control de voltaje. Se analiza que para las horas de demandas pico se tiene niveles de voltajes mínimos y para las horas de demandas bajas se tiene niveles de voltajes mayores, pues es una barra de carga. Finalmente, para el caso A, en la hora 21 de demanda máxima se tiene un nivel de voltaje mínimo de 0.9786 p.u.

Tabla 6 Tiempos de ejecución para los diferentes casos de estudio

Tiempos de ejecución [s]		
Caso de estudio A	27.25786	
Caso de estudio B	18.79152	
Caso de estudio C	21.29868	
Caso de estudio D	20.25944	

Figura 3.1.1.20. Tiempos de ejecución para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.1.20 y en la Tabla 6, se analiza que el tiempo de ejecución más alto es el caso A debido a que se tiene un mayor uso de memoria del computador al crear la Y de barra por primera vez para el caso del sistema IEEE de 14 barras ya que en los otros casos ya se carga el archivo Y de barra calculado previamente, además en este método se usa la función de costos linealizada para una mejor

aproximación del problema de optimización y el método de la eficiencia. Para los casos B, C y D se tienen tiempos más bajos y muy similares con una pequeña diferencia de centésimas de segundos, por lo que se comprueba que el programa está bien implementado. Finalmente, el caso B es el más rápido cuando se usa la función de costos no linealizada y el método de la eficiencia ya que se tiene menos aproximaciones en los cálculos internos del programa desarrollado.

3.1.2 Aplicación al Sistema Nacional Interconectado (SNI) ecuatoriano

La herramienta computacional se aplica al SNI ecuatoriano que cuenta con varias centrales hidroeléctricas que suministran la mayor parte de energía eléctrica. Se modelan 69 generadores, 355 barras, 89 cargas, 213 líneas de transmisión, 221 transformadores, etc. La gran cantidad de elementos eléctricos de la red dificulta la resolución del DHT-CP.

• Caso de estudio A

Tabla 7 Parametrización del modelo

Opción	Тіро
Función de costos de producción	Linealizada
Cálculo de función de producción	Con eficiencia
Temporada	Lluviosa
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

El caso de temporada lluviosa se caracteriza porque se cuenta con un mayor caudal de los ríos, por lo que los embalses tienen mayor volumen de agua y las unidades hidroeléctricas entregan una gran cantidad de energía; se cubre con la demanda sin ningún problema.

Los resultados que se obtienen son los siguientes:

Figura 3.1.2.1. Potencia activa generada. SNI temporada lluviosa.

Como se visualiza en la Figura 3.1.2.1, la mayoría de la demanda es suministrada por las centrales hidroeléctricas Paute, Sopladora y Coca Codo Sinclair, además de las otras centrales hidroeléctricas de menor envergadura. La potencia que entrega la central hidroeléctrica Coca Codo Sinclair es casi constante en el tiempo de análisis ya que es una central de pasada que utiliza al máximo el caudal natural del río Coca. La central no genera su potencia máxima debido a que varias unidades se encuentran en mantenimiento programado, por lo que no se encuentran disponibles.

La central Paute, debido a que tiene embalse, pueden suministrar potencia de forma variable desde 326.69 [MW], en horas de valle, hasta llegar a 1087.59 [MW] cuando se tiene el pico de demanda.

Las centrales hidroeléctricas Paute, Sopladora y Mazar se encuentran en la misma cuenca del río Paute, por lo que se tiene concatenación hídrica y sus despachos se relacionan entre sí, por consiguiente, si la central hidroeléctrica Mazar genera más potencia, también lo harán las centrales hidroeléctricas Paute y Sopladora.

Figura 3.1.2.2. Perfil de voltaje en las barras en p.u. SNI temporada lluviosa.

Como se visualiza en la Figura 3.1.2.2, el perfil de voltaje, en p.u., se encuentra entre 0.90 p.u. y 1.10713 p.u. Las barras 151, 152 y 153 alcanzan el valor máximo de voltaje, en la zona Santa Rosa – Totoras, estas operan a un nivel de voltaje de 500 kV. Se analiza, que la barra 88 alcanza el valor más bajo de voltaje, en la zona de Pascuales.

Como se visualiza en la Figura 3.1.2.3, la línea "L_E005_SIDE_1_1" en la zona Molino – Milagro es la que mayor cargabilidad presenta, para evitar este inconveniente se debe redistribuir de mejor forma los flujos de potencia en esta zona.

Figura 3.1.2.4. Flujo de potencia activa en líneas de transmisión, en porcentaje. SNI ecuatoriano.

Lo antes mencionado puede confirmarse en la Figura 3.1.2.4 donde se observa que la línea con mayor sobrecarga es la línea "L_E005_SIDE_1_1" en la zona Molino – Milagro, que está cerca del 100% de cargabilidad.

Figura 3.1.2.5. Flujo de potencia activa en transformadores. SNI ecuatoriano.

Como se visualiza en la Figura 3.1.2.5 el transformador "T_INGA_ATJ_lv" está más sobrecargado que el resto en la zona de Quito, cumple con los límites establecidos.

Figura 3.1.2.6. Flujo de potencia activa en los transformadores, en porcentaje. SNI ecuatoriano.

Como se visualiza en la Figura 3.1.2.6 se cumple con los límites de cargabilidad, además se observa que el transformador "T_INGA_ATJ_lv" es el más sobrecargado en la zona de Quito, pero no supera el 100 % cumpliendo con criterios de seguridad estática.

Figura 3.1.2.7. Evolución de embalses. SNI ecuatoriano.

Como se visualiza en la Figura 3.1.2.7, el embalse de la central hidroeléctrica Daule -Peripa "G_HEMB_DPER_U1" tiene mayor volumen y se utiliza al máximo el caudal natural del río Daule para la zona de Guayaquil. Además, la central hidroeléctrica de pasada Agoyán "G_HPAS_AGOY_U1" tiene menor volumen.

Figura 3.1.2.8. Curva del caudal. SNI ecuatoriano.

Lo antes mencionado puede confirmarse en la Figura 3.1.2.8 donde para la central hidroeléctrica Daule - Peripa "G_HEMB_DPER_U1" se utiliza el caudal máximo natural del río Daule con un valor aproximado de 1497717.964 $[m^3/h]$ para abastecer de energía eléctrica a la zona de Guayaquil.

Como se visualiza en la Figura 3.1.2.9 cuando se tiene pérdidas en la red eléctrica, la potencia activa generada es mayor a la demanda. Se tiene valores más elevados de potencia generada en las horas pico de demanda desde las 18 hasta las 20 horas, para suplir la demanda máxima de 3753.506 [MW] a la hora 18 en la generación hidráulica se tiene un valor de 3325.88 [MW] y en la generación térmica se tiene un valor de 475.775 [MW].

Figura 3.1.2.10. Potencia reactiva generada y demanda total. SNI ecuatoriano.

Como se visualiza en la Figura 3.1.2.10 al considerar pérdidas en la red eléctrica, la potencia reactiva generada es mayor a la demanda. Se tiene valores más elevados de potencia reactiva generada en las horas pico de demanda desde las 18 hasta las 20 horas, con un valor máximo de generación de 336.33 [MVAr] en la hora 18. Se analiza que desde las 0 hasta las 6 horas se tiene valores negativos ya que se absorbe potencia reactiva.

Figura 3.1.2.11. Potencia activa generada por centrales térmicas e hidroeléctricas. SNI ecuatoriano.

Como se visualiza en la Figura 3.1.2.11, la generación de potencia activa que entregan las centrales hidroeléctricas en el día es más grande representan el 94.528 % del total de su generación en comparación a las centrales térmicas que al día representan el 5.472 %, pues se tiene un costo operativo muy bajo para la temporada lluviosa.

Caso de estudio B

Opción	Тіро
Función de costos de producción	Linealizada
Cálculo de función de producción	Con eficiencia
Temporada	Seca
Solucionador	lpopt
Cálculo con pérdidas en la red eléctrica	Con pérdidas

Tabla 8 Parametrización del modelo

Tabla 9 Costos totales de operación para los diferentes casos de estudio

Costos totales de operación	
Caso de estudio A	\$10,213.22
Caso de estudio B	\$68,103.62

Como se visualiza en la Figura 3.1.2.12 y en la tabla 9, se analiza que para los dos casos no se tienen costos totales similares de operación para el SNI ecuatoriano, se concluye que para el caso A que corresponde a la temporada lluviosa se tiene un costo operativo más bajo ya que la mayoría de demanda se suple con generación hidráulica. Se analiza que el caso B que corresponde a la temporada seca, es mayor alrededor de 7 veces al

costo total de operación del caso A, debido a que se usa más generación térmica para suplir la demanda, pues se tiene un mayor costo total debido al cambio en las variables binarias que se asocian al estado de operación de las centrales térmicas.

Figura 3.1.2.13. Curva de generación para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.2.13 y en el Anexo V, se analiza que para los dos casos de estudio se tienen perfiles de generación muy similares en función del tiempo ya que la demanda total es muy similar, para el caso A se tiene un valor de 74382.76 [MW] y para el caso B se tiene un valor de 74339.65 [MW], además se analiza que el caso A tiene mayor potencia activa generada por hora al día. Se analiza que para el caso A de la temporada lluviosa, la generación de potencia activa total al día es de 75178.90 [MW], el porcentaje total de cobertura al día de las centrales hidroeléctricas es del 94.528 % con un valor de 71065.09 [MW] y el aporte de las centrales térmicas es de 5.472 % con un valor de 4113.81 [MW], pues se tiene un costo operativo mucho menor. Se analiza que para el caso B de la temporada seca, la generación de potencia activa total al día es de 75131.90 [MW], el porcentaje total de cobertura al día de las centrales hidroeléctricas es del 81.327 % con un valor de 61102.73 [MW] y el aporte de las centrales térmicas es de 18.673 % con un valor de 14029.17 [MW], pues se tiene un costo operativo más grande. Finalmente, para los dos casos de estudio en la hora 18 se tiene la máxima generación ya que se debe suplir la demanda máxima en esa hora pico.

Figura 3.1.2.14. Pérdidas totales para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.2.14 y en el Anexo V, se analiza que para el caso A y B se tienen pérdidas similares cuando se usa la función de costos linealizada, en donde para el caso A se tiene un total de pérdidas al día de 796.14 [MW] y para el caso B se tiene un valor de 792.25 [MW], el perfil de pérdidas totales de ambos casos sigue una misma tendencia, entre las 18 y 21 horas se tiene las máximas pérdidas ya que se debe generar más potencia para suplir la demanda pico. Se concluye que para el caso A en la temporada lluviosa, se tiene mayores pérdidas ya que se tiene mayor generación de potencia activa para suplir una demanda un poco más grande en comparación al caso B.

Figura 3.1.2.15. Perfil de voltaje para los diferentes casos de estudio en la barra "B_Santa_Rosa_ATU_13.8".

Como se visualiza en la Figura 3.1.2.15 y en el Anexo V, se analiza que los valores de los voltajes en p.u. en la barra "B_Santa_Rosa_ATU_13.8" para el SNI ecuatoriano son muy similares en los dos casos con muy pequeñas diferencias en función del tiempo para la zona de Santa Rosa – Totoras, una carga y un transformador se conecta a esta barra para realizar el control de voltaje. Como es una barra de carga PQ el perfil de voltaje cambia con su demanda, para la hora 18 de demanda máxima se tiene un nivel de voltaje mínimo, donde para el caso A se tiene un valor de 0.9974681 p.u. y para el caso B un valor de 0.9971732 p.u., pues se tiene un valor más bajo en la temporada seca y se cumple con los límites establecidos para el límite de magnitud de voltaje.

Figura 3.1.2.16. Perfil de voltaje para los diferentes casos de estudio en la barra "B Pascuales ATU 13.8".

Como se visualiza en la Figura 3.1.2.16 y en el Anexo V, se analiza que los valores de los voltajes en p.u. en la barra "B_Pascuales_ATU_13.8" para el SNI ecuatoriano son similares en los dos casos con muy pequeñas diferencias en el análisis en función del tiempo para la zona de Pascuales, una carga y un transformador se conecta a esta barra para realizar el control de voltaje. Como es una barra de carga PQ el perfil de voltaje cambia con su demanda, para la hora 18 cuando se tiene demanda máxima se tiene un nivel de voltaje mínimo, donde para el caso A se tiene un valor de 0.9537214 p.u. y para el caso B un valor de 0.9520209 p.u., pues se tiene un valor más bajo en la temporada seca y se cumple con los límites establecidos para el límite de magnitud de voltaje.

Figura 3.1.2.17. Tiempos de ejecución para los diferentes casos de estudio.

Como se visualiza en la Figura 3.1.2.17, se analiza que el tiempo de ejecución para los dos casos es muy elevado porque se tiene una gran cantidad de elementos eléctricos de la red lo que dificulta la resolución del problema de DHT-CP. Se tiene una mayor complejidad al incorporar los límites de flujo de potencia AC en las líneas y en los transformadores ya que se genera muchas ecuaciones para un gran número de barras del SNI ecuatoriano, pues el tiempo de ejecución es mayor. El caso B para la temporada seca su tiempo de ejecución es mayor. El caso B para la temporada seca su tiempo de ejecución es mayor uso de memoria del computador al incorporar las variables binarias que se asocian al estado de operación de las centrales térmicas.

4 CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Se desarrolló una herramienta computacional en lenguaje Python con la que se logró implementar un programa óptimo para el despacho hidrotérmico a corto plazo con diferentes alternativas para la modelación de la función de la potencia generada por las centrales hidroeléctricas, con el cual se obtiene una minimización de costos totales de producción de las centrales térmicas considerando flujo AC y pérdidas en el sistema eléctrico de potencia.
- Se analiza que para el caso de la temporada lluviosa debido a que se tiene mayor recurso hídrico en las centrales hidroeléctricas se tiene un menor costo de producción en la generación de potencia activa para suplir la demanda, pues la mayoría de generación se tiene por las centrales hidroeléctricas donde el porcentaje total de cobertura al día es de 94.528 % y el aporte de las centrales térmicas es de apenas el 5.472 %. En caso contrario, cuando se tiene el caso de la temporada seca se tiene una hidrología baja, se utiliza mucha más generación térmica para suplir la demanda dando como resultado costos totales de producción más elevados, donde el porcentaje total de cobertura de generación al día de las centrales hidroeléctricas es del 81.327 % y para las centrales térmicas son de 18.673 %.
- Se comprueba que la herramienta computacional implementada para el sistema IEEE de 14 barras da resultados similares en los costos totales de producción, pérdidas totales del sistema eléctrico de potencia, perfiles de generación y perfiles de voltaje para los diferentes casos de estudio cumpliendo todos los límites establecidos para las diferentes restricciones del problema, por lo que se demuestra la confiabilidad del software desarrollado y por consiguiente su aplicación a un sistema eléctrico más robusto como el SNI ecuatoriano, sin embargo el tiempo de ejecución es más elevado debido al gran número de elementos eléctricos de la red lo que dificulta la resolución del DHT-CP.
- El problema de despacho hidrotérmico a corto plazo se resuelve con el solucionador Ipopt el cual sirve para la resolución de problemas de optimización no lineales y es compatible con la librería Pyomo.
- Un gran problema al usar el algoritmo es el tiempo de ejecución para las redes de gran tamaño como el SNI ecuatoriano, ya que se demora mucho tiempo

construyendo las ecuaciones de magnitud y ángulo de voltaje para todas las barras mediante el flujo de potencia AC que posteriormente se utilizan en las restricciones de los límites de flujo de potencia de la red eléctrica y en las demás restricciones lo que dificulta la resolución del DHT-CP.

4.2 Recomendaciones

- Se analiza que los tiempos de cálculo para el sistema del SNI es extenso en comparación al sistema IEEE de 14 barras por lo que para mejorar el rendimiento del programa se recomienda implementar un modelo más optimizado en el flujo AC.
- Verificar los datos de entrada del Excel para una correcta implementación de las restricciones del problema de optimización.
- Usar valores adecuados en los datos de entrada de las diferentes restricciones del Excel para que el problema de DHT-CP converja.

5 REFERENCIAS BIBLIOGRÁFICAS

- [1] A. Wood, B. Wollenberg, y G. Sheblé, *Power Generation, Operation and Control.* New Jersey: John Wiley & Sons Inc, 2014.
- [2] G. S. Christensen y S. A. Soliman, *Optimal Long-Term Operation of Electric Power Systems*, Primera. New York, 1988.
- [3] M. E. El-Hawary y G. S. Christensen, *Optimal Economic Operation of Electric Power Systems*. Estados Unidos, 1979.
- [4] A. Soroudi, Power System Optimization Modeling in GAMS. Springer, 2017.
- [5] J. A. Henríquez Valencia y S. A. Montano Rivas, "Modelo de la programación de la operación de un sistema hidrotérmico con flujo óptimo de potencia utilizando herramientas convencionales de optimización", Universidad de El Salvador, 2018.
- [6] C. A. Rueda Mayorga, "Implementación de una herramienta computacional en lenguaje Python para obtener las curvas de oferta de importación/ exportación de un sistema eléctrico de potencia", Escuela Politécnica Nacional, 2021.
- [7] A. Harvey, A. Brown, P. Hettiarachi, y A. Inversin, *Micro-hydro design manual*. 1993.
- [8] S. Pinzón, "Despacho económico de generación Hidroeléctrica y Termoeléctrica usando programación dinámica", Universidad Politécnica Salesiana Sede Quito, 2020.
- [9] A. Kumar Sharma, "Short term Hydrothermal scheduling using evolutionary programming", Thapar University, 2009.
- [10] C. Coffrin y P. Van Hentenryck, "A Linear-Programming Approximation of AC Power Flows", *INFORMS J. Comput.*, vol. 26, núm. 4, pp. 718–734, 2014, doi: 10.1287/ijoc.2014.0594.
- [11] S. Delgado, "Aprende Python", Aprende Python, núm. python, pp. 1–488, 2022, [En línea]. Disponible en: https://aprendepython.es/_downloads/907b5202c1466977a8d6bd3a2641453f/apre ndepython.pdf.
- [12] Hart, E. William, J. Watson, y D. L. Woodruff, *Pyomo Optimization Modeling in Python*. Springer, 2017.
- [13] Y. Kawajir, "Ipopt Documentation", Ipopt, 2005. https://coin-or.github.io/Ipopt/

(consultado jul. 01, 2023).

[14] M. Moscoso, "HERRAMIENTA COMPUTACIONAL, EN LENGUAJE PYTHON, PARA LA SOLUCIÓN DEL PROBLEMA DE DESPACHO HIDROTÉRMICO DE CORTO PLAZO CONSIDERANDO LA RED ELÉCTRICA CON UN FLUJO ÓPTIMO DE POTENCIA DE CORRIENTE CONTINUA Y EL EFECTO DE LAS PÉRDIDAS", Escuela Politécnica Nacional, 2022.