
ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA DE SISTEMAS

A NON-INVASIVE METHOD FOR EARLY SUDDEN CARDIAC
DEATH DETECTION

THESIS SUBMITTED AS PART OF THE
REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF DOCTOR OF PHILOSOPHY IN INFORMATICS

NANCY CRISTINA BETANCOURT MENDOZA
nancy.betancourt@epn.edu.ec

ADVISOR: CARLOS ALBERTO ALMEIDA RODRÍGUEZ
carlos.almeidar@epn.edu.ec

COADVISOR: MARCO JAVIER FLORES CALERO
mjflores@espe.edu.ec

QUITO, NOVEMBER 2023

mailto:nombre.apellido@epn.edu.ec
mailto:nombre.apellido@epn.edu.ec
mailto:nombre.apellido@epn.edu.ec


THESIS
For the award of the degree of

DOCTOR OF PHILOSOPHY
IN INFORMATICS
Resolution RPC-SO-43-No.501-2014

of the Consejo de Educación Superior

presented by

NANCY CRISTINA
BETANCOURT MENDOZA

Thesis supervised by

CARLOS ALBERTO ALMEIDA RODRÍGUEZ,

Professor at the Escuela Politécnica Nacional (Ecuador)

and co-supervised by

MARCO JAVIER FLORES CALERO,

Professor at the Universidad de las Fuerzas Armadas - ESPE

(Ecuador)

A NON-INVASIVE METHOD
FOR EARLY SUDDEN

CARDIAC DEATH DETECTION

Oral examination by the following committee:

Marco Eduardo Molina Bustamante, Ph.D.

Escuela Politécnica Nacional (EPN), Opponent Member

María Gabriela Pérez Hernández, Ph.D.

Escuela Politécnica Nacional (EPN), Coordinator

Miguel Alfonso Flores Sánchez, Ph.D.

Escuela Politécnica Nacional (EPN), Internal Member

Angel Domingo Sappa, Ph.D.

Escuela Superior Politécnica del Litoral (ESPOL), External Member

Esteban Pino Quiroga, Ph.D.

Universidad de Concepción, Chile, External Member



ii



STATEMENT

I, NANCY CRISTINA BETANCOURT MENDOZA, hereby declare under oath that the work

here described is of my authorship and has not been previously submitted for any degree or

professional qualification, and that I have consulted the bibliographical references that are

included in this document.

Through this declaration, I transfer my intellectual property rights corresponding to this

thesis, to the Escuela Politécnica Nacional, as established by the Intellectual Property Law

of Ecuador, its regulations, and the current institutional norms. I declare that this work is

based on the following articles of my authorship (as main author or co-author) related to the

title of this thesis:

• N. C. Betancourt M., C. Almeida and M. Flores-Calero (2022). Heart Rate Variability

and T Wave Alternans as risk stratification indices for detecting Sudden Cardiac Death:

A Review, in IEEE Latin America Transactions, vol. 20, no. 9, pp. 2181-2188, Sept.

2022, doi: 10.1109/TLA.2022.9878174.

• Betancourt, N., Flores-Calero, M., Almeida, C. (2021). A Non-invasive Method for

Premature Sudden Cardiac Death Detection: A Proposal Framework. In: Guarda,

T., Portela, F., Santos, M.F. (eds) Advanced Research in Technologies, Information,

Innovation and Sustainability. Communications in Computer and Information Science,

vol 1485. Springer, Cham. https://doi.org/10.1007/978-3-030-90241-4_5.

• Betancourt, N., Flores-Calero, M., Almeida, C. (2021). An Algorithm for Automatic

QRS Delineation Based on ECG-gradient Signal. In: Guarda, T., Portela, F., Santos,

M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability.

Communications in Computer and Information Science, vol 1485. Springer, Cham.

https://doi.org/10.1007/978-3-030-90241-4_10.

• Betancourt, N., Almeida, C., Flores-Calero, M. (2019). T Wave Alternans Analysis in

ECG Signal: A Survey of the Principal Approaches. In: Rocha, Á., Ferrás, C., Paredes,

i



M. (eds) Information Technology and Systems. Advances in Intelligent Systems and

Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_41.

• Nancy Betancourt, Marco Flores-Calero, and Carlos Almeida. (2019). ECG Denoising

by using FIR and IIR Filtering Techniques: An Experimental Study. In Proceedings of

the 2019 11th International Conference on Bioinformatics and Biomedical Technology

(ICBBT’19). Association for Computing Machinery, New York, NY, USA, 111–117.

https://doi.org/10.1145/3340074.3340088

I also declare that I have acknowledged the collaboration of third parties, and the contribution

made by other published or unpublished material.

NANCY CRISTINA BETANCOURT MENDOZA

ii



CERTIFICATION

I certify that NANCY CRISTINA BETANCOURT MENDOZA has carried out his research

under my supervision. To the best of my knowledge, the contributions of this work are

novel.

PhD. CARLOS ALBERTO ALMEIDA RODRÍGUEZ

ADVISOR

PhD. MARCO JAVIER FLORES CALERO

CO ADVISOR

iii



DEDICATED TO

Luis, who has supported me unconditionally throughout this new experience.

Cristian, Sebastián, and Nicolás. For being the forces behind my life.

God, for blessing me in every step and giving me the gift of life.

iv



ACKNOWLEDGEMENTS

To my Director, Carlos Almeida, for his support throughout the work. A special thanks to

Marco Flores, friend and colleague, who, with his knowledge, experience, and support,

managed to guide me through all this arduous work.

To my husband, for his love, patience and strength. Holding my hand in difficult times. He is

the pillar of my life.

To my children, for their love and understanding.

I am grateful to my mother for helping me whenever I need it.

To my dear friends Marquito, Rodrigo, Graciela, Cindy, and Doris. Those, with their words of

encouragement and friendship, made this way easier.

v



Contents

1 INTRODUCTION 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND 7

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Sudden Cardiac Death . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Segmentation and Alignment . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 ECG Noise and Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 k-Nearest Neighbors Classification (K-NN) . . . . . . . . . . . . . . . 14

2.1.7 T-wave Alternans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.8 SCD by TWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.9 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Review of State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Methodology Used for Developing the Literature Review . . . . . . . . 19

2.2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



3 PROPOSED METHODOLOGY 28

3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Database Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Computing Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 K-Nearest Neighbors Classification . . . . . . . . . . . . . . . . . . . . 35

3.3.3 R Peaks Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.4 Segmentation and Alignment of ST -T Segments . . . . . . . . . . . . 37

3.4 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Orthogonal Matching Pursuit (OMP) . . . . . . . . . . . . . . . . . . . 40

3.4.2 Gabor dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Energy Reconstruction of Trace . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 EVALUATION 45

4.1 ECG Synthetic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Group1: Selected Signals from MIT-BIH Arrhythmia Database . . . . . 45

4.1.2 Group 2: Selected Signals from T-Wave Alternans Challenge Database 46

4.1.3 Creation of Synthetic Signals . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 ECG Real Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Results Obtained Using QRS Complex Detection . . . . . . . . . . . . 56

4.4.2 Results of SCD Detection by Using TWA and Dictionary . . . . . . . . 61

5 CONCLUSION AND FUTURE WORKS 66

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 References 68

vii



List of Figures

2.1 Cardiac conduction system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 System of derivations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A heartbeat and its morphology. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 TWA periodic alternation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 MMA Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Spectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Procedure for analysing TWA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Main steps of the SM methodology to compute alternans amplitude. . . . . . 25

3.1 Summary of proposed methodology. . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 SCD by TWA framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 One example of ECG signal filtering. . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Gradient signal computed to detect maximum points R’ over G . . . . . . . . 35

3.5 R′ peaks falsely detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 KNN algorithm applied to eliminate false R peaks. . . . . . . . . . . . . . . . 36

3.7 R peak detected in ECG signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 QRS complex and RR intervals. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Limits ti used to detect the ST-T segment. . . . . . . . . . . . . . . . . . . . . 38

3.10 STTm×n matrix composed of ST − T segments detected. . . . . . . . . . . . 38

3.11 Time-Frequency representation of ST − T segments. . . . . . . . . . . . . . 42

4.1 Base beats to generate synthetic signals using mitdb. . . . . . . . . . . . . . 46

4.2 Base beats to generate synthetic signals using twadb. . . . . . . . . . . . . . 47

4.3 Synthetic signal using base beat twa06. . . . . . . . . . . . . . . . . . . . . . 51

4.4 Synthetic signal using base beat twa00. . . . . . . . . . . . . . . . . . . . . . 53

4.5 Synthetic signal using base beat mitdb123 lead I. . . . . . . . . . . . . . . . . 54

viii



List of Tables

2.1 Wave amplitudes of the ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Intervals and segments duration’s of the ECG . . . . . . . . . . . . . . . . . . 12

2.3 Planning Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Boolean Search Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Criteria of inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Databases of ECG signals used in the state of the art for TWA . . . . . . . . 24

4.1 Dataset used for generating synthetic ECG. . . . . . . . . . . . . . . . . . . . 46

4.2 Sources and reference rankings for a certain record in the T-Wave Alternans

Challenge Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Values of alternans and level of noise that have been combined for generating

synthetic signals using twadb. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Synthetic signal generated using twa06 real signal from twadb. . . . . . . . . 50

4.5 Synthetic signal generated using twa00 real signal from twadb. . . . . . . . . 51

4.6 Synthetic signal generated using mitdb123 lead I real signal. . . . . . . . . . 53

4.7 Distribution of 36 records in twadb used for evaluating the methodology. . . . 55

4.8 Results of evaluating the proposed method for QRS complex detection . . . . 56

4.9 Some results of evaluating the proposed methodology using MIT-BIH Arrhythmia

DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Comparison of the performance of the proposed method with other algorithms

for the MIT-BIH database and QT database. . . . . . . . . . . . . . . . . . . . 60

4.11 Results of evaluating method using synthetic signal grouping by noise value

= 20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Results of evaluating method using synthetic signals that have an alternans

value = 10 µV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Results of evaluating the method using twadb. . . . . . . . . . . . . . . . . . 64

ix



4.14 Value of accuracy obtained in the experimentation using TWADB. . . . . . . . 65

x



RESUMEN

La muerte súbita cardíaca (MSC) es considerada una de las principales causas de mortalidad

a nivel mundial. A menudo, las personas con antecedentes de cardiopatías muestran los

síntomas. Sin embargo, una hora antes del evento fatal, los síntomas también pueden

aparecer en individuos sanos. Comprender el origen de esta enfermedad cardíaca sigue

siendo un desafío para la comunidad científica. Según el estado del arte, se han propuesto

nuevos métodos para estratificar y predecir MSC. Se han implementado diferentes algoritmos

y se han utilizado índices de estratificación de riesgos, como la variabilidad de la frecuencia

cardíaca (VFC) y el análisis de la alternancia de la onda T (AOT).

AOT es el término utilizado para describir los cambios en la amplitud o forma de la onda

T y ha sido considerada un importante indicador no invasivo para la detección de muerte

súbita cardiaca, además este índice de estratificación ha sido incluido en equipos médicos

modernos. VFC es un índice de estratificación del riesgo de muerte súbita que permite

medir la variación de tiempo entre conjuntos consecutivos de latidos cardíacos.

Considerando estos índices y añadiendo técnicas de procesamiento digital de señales como

el aprendizaje de diccionario se ha desarrollado un método híbrido.

El método propuesto identifica las principales características de la señal de ECG obteniendo

una representación escasa que adapta una matriz (dicionario) con el fin de utilizarla para

resaltar las características de la AOT y luego utilizar estas características para detectar

MSC. Los resultados de los experimentos muestran una mejora del 32% comparado con el

programa Physionet TWAnalyser usando señales sintéticas y de un 20% usando bases de

datos públicas.

En esta investigación se presenta una estrategia innovadora para predecir la muerte cardíaca

súbita utilizando el análisis TWA y diccionarios de aprendizaje. Para evaluar la metodología

propuesta se utilizaron bases de datos públicas y se generaron señales sintéticas.

Palabras Claves - MSC, AOT, diccionarios de aprendizaje, ECG, detección
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ABSTRACT

Sudden cardiac death (SCD) is considered one of the main causes of mortality worldwide.

Frequently, people with a history of cardiopathies exhibit the symptoms. However, one

hour prior to the fatal occurrence, the symptoms can also appear in healthy individuals.

Understanding the origin of this heart disease continues to be a challenge for the scientific

community. According to the state of the art, new methods to stratify and predict SCD have

been proposed. Different algorithms have been implemented, and risk stratification indices

have been used, such as heart rate variability (HRV) and T-wave alternans (TWA).

TWA is the term used to describe changes in the amplitude or shape of the T wave. TWA

has been considered an important non-invasive indicator for detecting sudden cardiac death

in addition to being included in modern medical equipment. HRV is a SCD risk stratification

index that allows to measure time variation between consecutive heartbeat sets. Considering

these indices and adding digital signal processing techniques as dictionary learning that can

be found in the breakdown of signals on a specified basis, for instance, the Fourier transform,

a hybrid method has been developed.

The proposed method identifies the main characteristics of ECG signal by obtaining a sparse

representation that adapts a matrix (dictionary) in order to use it for highlighting the TWA

characteristics and then use them for detecting SCD. Experimental results show an improvement

of 32% compared to the Physionet TWAnalyser program by using synthetic data set and an

improvement of 20% over public databases.

This research presents an innovative strategy for predicting sudden cardiac death using

TWA analysis and dictionary learning. To evaluate the proposed methodology, public databases

were used and synthetic signals were generated.

Keywords - SCD, TWA, Dictionary Learning, ECG, SCD detection.
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PROLOGUE

In the following pages, we look at a critical topic in the field of health: Sudden Cardiac Death

(SCD). This condition, which has claimed countless lives worldwide, remains a mystery to

the scientific community. Although it frequently affects those with a history of heart disease,

it can also strike otherwise healthy people, sometimes with as litle as an hour’s notice.

This makes it even more alarming. This thesis represents an attempt to understand the

origins of SCD and to address one of the most pressing challenges in modern cardiology:

risk prediction and stratification. Through these pages, we will explore a novel approach

that combines key elements such as heart rate variability (HRV), T-wave alternans analysis

(TWA), and digital signal processing techniques, including dictionary learning. TWA, a tool

of great importance in the detection of SCD, is one of the central pillars of this research.

We will discover how this technique has become a crucial non-invasive indicator and has

been incorporated into cutting-edge medical equipment. Another important component of

our work will be heart rate variability (HRV). We shall explore how HRV has been used

to categorise of SCD-related risks. HRV allows us to assess the time variation between

heartbeats. However, the most exciting part is the combination of these elements in a

hybrid method. This innovative method seeks to identify the key features of ECG signals,

using dictionary learning techniques to highlight the characteristics of the TWA, and then

using these features to detect the SCD. The results of our experiments promise substantial

improvements in the detection and prediction of this fatal disease. Through these pages, we

will share the findings and results of our research. We will show how our hybrid method has

demonstrated a significant increase in accuracy compared to previous approaches, both in

synthetic signals and in public ECG databases. We hope that this research will be a further

step towards effective prevention and treatment of sudden cardiac death and will inspire

others to continue exploring the limits of scientific knowledge for the benefit of humanity.
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Chapter 1

INTRODUCTION

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Due to current lifestyle habits, sudden cardiac death is one of the leading causes of

mortality in developed countries, and there is no effective method to identify patients at high

risk of suffering from it [1]. Contrarily, the phenomenon known as basal T-wave alternans has

emerged as a very promising non-invasive marker for stratifying certain risks, particularly in

individuals who have had cardiopathies in the past [2], [3]. This demonstrates the necessity

for the development of automatic systems for the detection of this phenomena, as present

methods for estimating the likelihood of developing ventricular fibrillations resulting from

heart collapse are still ineffective and frequently give false positive results. On the other

hand, it is customary to perform the risk assessment alongside the patient in the hospital

units for those who have experienced myocardial infarction. It is impossible to select the

patient group that has to be closely observed in the hospital and administer the appropriate

therapy to them because there are no reliable techniques for automatically detecting this

kind of phenomenon. Therefore, the high prevalence of false positives contributes to the

health system’s saturation. Nevertheless, because of the high incidence of false positives,

1



the health system frequently decides not to maintain hospitalized patients who have been

labeled as at risk. By avoiding hospital saturation, expenditures are increased, but a glaring

deficit in the help process is typically created. The creation of systems for the early, non-

invasive detection of T-wave alternances is the main goal of this thesis. By facilitating risk

categorization and bringing about significant improvements in the assistance process, these

systems will help to achieve the overall goal of this thesis. To process the ECG signal

digitally, a number of effective and practical technologies will be created.

The organization of this chapter is as follows: We begin by outlining the issue that will be

dealt with in this assignment. The goals of this research are then presented. We describe

the research methodology used. We then go over our primary contributions to this effort.

The subsequent chapters’ structure is then presented.

1.1. Problem Statement

A risk factor for the emergence of malignant ventricular arrhythmias and, subsequently,

sudden cardiac death is the alternation in the microvoltage of the T-wave (TWA) on the

surface ECG. It entails a continual fluctuation in the T-wave’s shape, amplitude, or duration

every two beats. TWA is also linked to ventricular fibrillation vulnerability, as demonstrated

by a wealth of experimental and clinical data [2], [4].

The surgical installation of an automated defibrillator is a successful method for treating

sudden cardiac death, although it is risky and expensive. As a result, only patients identified

as high-risk are eligible for defibrillator installation. The electrophysiology study (EEF) is a

useful tool for selecting the risk group and assessing the likelihood of malignant arrhythmias.

However, this surgical test has the drawbacks of being expensive, intrusive, and risky.

Finding non-invasive indicators of the risk of arrhythmic death is crucial.

The present goal is to create non-invasive ways to find these patients before they have

serious arrhythmia episodes. TWA is a key topic of this study. The main constraint on its

scope is the rarity of apparent TWA episodes; nevertheless, the digital signal processing

is enabling the identification of non-visual alternans (of the order of microvolts) that are the

most common.

Different approaches have been proposed for automatic TWA analysis, like: Spectral

Methods (SM), Modified Moving Average methods (MMA), Complex Demodulation methods

(CD) and Statistical Test methods (ST) [2].

The most popular method for TWA detection is the spectral method, which is based

2



on the calculation of the periodogram of the temporary series created by aligning the ST-

T complex of succeeding beats. The procedure should be applied to a large set of data,

ideally 128 beats, and calls for the ECG to behave in a quasi-stationary manner. Additionally,

increased heart frequencies show signs of TWA existence. Ergometry, or stress testing, is

the standard approach used to achieve the aforementioned requirements. Although it is

not an invasive test, it has some drawbacks, including a significant proportion of patients

who are unable to exercise at the appropriate frequencies, leading to a high percentage of

indeterminate results. Therefore, this approach is not recommended.

Designing reliable processes that work with ongoing clinical monitoring and laboratory

experimental studies is the direction that is now being pursued. In general, the approach

should be able to deliver findings that can be understood without requiring the heart rate

to be under control and should be able to deal with noise and artifacts. On long-term

outpatient records or Holter records, the TWA study could be carried out in this manner.

This would suggest an inherent improvement in data collection, as patients could go about

their regular lives while the data was being collected. This would also help to facilitate access

to healthcare at reduced prices, thereby enhancing the aid process.

Despite the methods for detecting TWA, the scenario described in the previous paragraph

is one that is still up for discussion. This is because there is currently no "gold standard"

for methodologically validating the suggested approaches [2]. As was previously stated,

TWA occurrences are not visible to the unaided eye, which has prevented the availability of

registered databases up until this point. The technique that is used and authorized the most

commonly is working with simulated signals [5], [6]. This disadvantage is a fundamental

reason to continue to investigate new techniques.

1.2. Objectives

The proposed methods for TWA detection are significantly improved by using alternative

techniques, such as learning dictionaries. This is quite new, since in the literature that has

been consulted, no prior work with this strategy has been found.

1.2.1. General Objective

The fundamental objective of this thesis is to develop a new methodology for early and

non-invasive detection of sudden cardiac death by using TWA and digital signal processing
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techniques.

1.2.2. Specific Objectives

• In order to have a deeper understanding of the pertinent factors that should be taken

into account when developing the methodology, review and assess the literature that

is linked to sudden cardiac death.

• Integration of processing methods based on dictionary learning to enhance ECG signal

processing methods.

• Develop innovative processing methods to produce options for the detection of T-wave

alternans.

• Methodological evaluation of the obtained results.

1.3. Research Methodology

Design science [7], a type of research technique frequently used to create design artifacts

like methods, process models, and algorithms, served as inspiration for the development of

our methodology. With the stated goal of enhancing the artifact’s functional performance,

design science study focuses on the creation and operation of artifacts. The following are

the six stages that comprise the design study and that allowed us to direct the research.

1. Problem identification and motivation: The precise research issue was now identified,

and the benefit of a solution was established.

2. Define the objectives for a solution: Using the problem definition and your understanding

of what is feasible and possible, we infer the objectives of a solution.

3. Design and development : Build the artifact. Constructs, models, procedures, or instantiations

are some examples of such artifacts. In our work a new methodology have been

developed.

4. Demonstration: Using an experiment we show that the artifact can be used to solve

the problem.

5. Evaluation: Assess the artifact’s ability to aid in finding a solution to the issue.
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6. Communication: Inform researchers and other pertinent audiences, such as practicing

professionals, about the problem and its significance, the artifact, its utility and novelty,

the rigor of its design, and its effectiveness. In this sense, we published our work and

results in journals and conferences.

1.4. Research Contributions

The main contributions of this thesis are:

• N. C. Betancourt M., C. Almeida and M. Flores-Calero (2022). Heart Rate Variability

and T Wave Alternans as risk stratification indices for detecting Sudden Cardiac Death:

A Review, in IEEE Latin America Transactions, vol. 20, no. 9, pp. 2181-2188, Sept.

2022, doi: 10.1109/TLA.2022.9878174.

• Betancourt, N., Flores-Calero, M., Almeida, C. (2021). A Non-invasive Method for

Premature Sudden Cardiac Death Detection: A Proposal Framework. In: Guarda,

T., Portela, F., Santos, M.F. (eds) Advanced Research in Technologies, Information,

Innovation and Sustainability. Communications in Computer and Information Science,

vol 1485. Springer, Cham. https://doi.org/10.1007/978-3-030-90241-4_5.

• Betancourt, N., Flores-Calero, M., Almeida, C. (2021). An Algorithm for Automatic

QRS Delineation Based on ECG-gradient Signal. In: Guarda, T., Portela, F., Santos,

M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability.

Communications in Computer and Information Science, vol 1485. Springer, Cham.

https://doi.org/10.1007/978-3-030-90241-4_10.

• Betancourt, N., Almeida, C., Flores-Calero, M. (2019). T Wave Alternans Analysis in

ECG Signal: A Survey of the Principal Approaches. In: Rocha, Á., Ferrás, C., Paredes,

M. (eds) Information Technology and Systems. Advances in Intelligent Systems and

Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_41.

• Nancy Betancourt, Marco Flores-Calero, and Carlos Almeida. (2019). ECG Denoising

by using FIR and IIR Filtering Techniques: An Experimental Study. In Proceedings of

the 2019 11th International Conference on Bioinformatics and Biomedical Technology

(ICBBT’19). Association for Computing Machinery, New York, NY, USA, 111–117.

https://doi.org/10.1145/3340074.3340088
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1.5. Thesis Contributions

The main contributions of this work are:

1. A hybrid methodology using TWA and dictionary learning has been developed. The

framework proposed shows 4 stage: preprocessing, feature extraction, dictionary learning

and classification.

2. A new algorithm for detecting QRS complex was implemented, and high performance

was obtained.

3. For segmenting the ST-T intervals an algorithm is presented. In this stage, different

values of threshold have been used, according the RR interval analyzed.

4. A dictionary learning has been building for highlighting the TWA characteristics and to

detect SCD.

5. An algorithm to create ECG synthetic signals.

1.6. Thesis Structure

The structure of this thesis is as follows: Chapter two describes the general concepts used in

this work and related works are presented. Chapter three explains the proposal’s research

methodology. Chapter four shows the experimental results and comparative discussion.

Finally, the conclusions and future works are presented in the last chapter.

6



Chapter 2

BACKGROUND

Contents

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Sudden Cardiac Death . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Electrocardiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Segmentation and Alignment . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 ECG Noise and Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 k-Nearest Neighbors Classification (K-NN) . . . . . . . . . . . . . . 14

2.1.7 T-wave Alternans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.8 SCD by TWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.9 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Review of State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Methodology Used for Developing the Literature Review . . . . . . . 19

2.2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Sudden cardiac death (SCD) is a natural death caused by heart failure. Heart electrical

failure, which results in cardiac arrest, is the primary cause of SCD. The heart stops pumping

blood to the rest of the body because this failure prevents a beat from happening. Without

cerebral blood flow, there is a deficiency in brain oxygen, which causes sudden loss of

consciousness and eventual death [8]–[11]. SCD is one of the causes of cardiovascular

mortality [1], [12] producing millions of deaths worldwide [13]. In Ecuador, there are no

official records for SCD, but there are data associated with deaths of heart origin. According

the National Institute of Statistics and Census (INEC) , heart ischemic diseases mortality is

about 13.5% of the total deaths recorded in year 2020. Non-communicable diseases, such as
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cardiovascular disease, cancer, diabetes, and chronic respiratory diseases, are the primary

causes of premature death in the Region of the Americas, and heart disease accounted

for 20% of these fatalities in 2019, according to the Pan-American Health Organization [14].

SCD is a multifactorial issue; it has various underlying causes that change with age and may

continue to rise in the years to come as a result of the rise in coronary heart disease (tabac,

obesity, diabetes mellitus, arterial hypertension, and increased cholesterol), which makes it

a significant challenge. The early identification of SCD risk factors is an unresolved problem

in bio-engineering and clinical cardiology [10]. In this sense the urgency of developing new

methods to estimate and predict SCD increases, which leads to more effective prevention.

For analyzing the different cardiac anomalies, there are non-invasive tools such as the

electrocardiogram (ECG), magnetic resonance imaging, or computed tomography [9], [11],

[15].

The ECG is considered by experts as an important tool that allows for the observation of

cardiac failures [3]. The waves inside the ECG are known as the P wave, Q, R, and S (QRS

complex), and the T wave. The study of ECG morphology, intervals, waves, amplitude, and

other features allows for the proposal of new approaches [6], [16].

The T-wave represents ventricular repolarization. The normal T wave is positive and

asymmetric in most leads. Then, when an alteration or change in the shape or amplitude

of the T wave is detected, it is known as a T-wave alternans (TWA) [2], [3]. The magnitude

of the alternans is on the order of microvolts, so it is difficult to detect it. TWA is a heart

rate-dependent magnitude that has proven to be a non-invasive indicator to stratify cardiac

risks [16], [17].

On the other hand, dictionary learning is a technique that has been used in digital

signal processing, allowing the signal to be analyzed in the time-frequency domain [18].

The dictionary captures the information required to recognize the particular features of the

signals. This technique has demonstrated high performance in classification tasks [19].

2.1. Definitions

2.1.1. Sudden Cardiac Death

Sudden cardiac death is defined as natural death caused by heart problems. In most cases

this condition occurs in people with pre-existing heart disease, for example: ventricular

fibrillation and ventricular tachycardia [9], [20]. In addition, SCD has been reported to appear
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in healthy people one hour before the patient dies [6], [8]–[10].

According to the World Health Organization, SCD is a major factor in cardiovascular

mortality, accounting for nine million deaths worldwide in 2019 [1], [12], [13]. SCD causes an

estimated 400,000 deaths per year in the United States [17], [21]. The majority of individuals

are not found until they have developed significant heart conditions such ischemia, infarction,

or aberrant ventricular conduction. 2–3 percent of all SCD casualties are represented by

these patients [1], [21]–[23]. Understanding the origin of this disease continues to be a

challenge for the medical and scientific community.

The two main methods of treatment for SCD are the implantation of an Implantable

Cardioverter-Defibrillators (ICD) and the prescription of antiarrhythmic medications [2], [15].

ICD is an effective technique to prevent SCD. However, it is an invasive and costly method.

Hence, it is important to develop new non-invasive methods to estimate and predict this

pathology.

2.1.2. Electrocardiogram

Electrocardiogram (ECG) is a non-invasive test that captures the electrical activity of the

heart. It is the most common test used to research and diagnose cardiac disorders due to

its ease of use, low cost, and high utility. The heart, which has four hollow chambers, is a

muscle. It is a twin pump, with the left side operating at a higher pressure than the right side.

The cardiac conduction system elements consist in the following components: sinus node

(SA), atrioventricular node (AV node), bundle of His, right bundle branch, left bundle branch,

and Purkinje network (Purkinje fibers) [24] (see Figure 2.1).
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Figure 2.1. Cardiac conduction system. Reproduced from [24]

The conduction system of the heart performs the following stages: The sinus node, which

is made up of unique pacemaker cells, is where the excitement begins. The left and right

atria both experienced the electrical impulses. The AV node slows down the impulses as

they pass through it on their way to the bundle of His. The impulses are quickly conducted

to the Bundle Branches by the Bundle of His, which is located at the distal end of the AV

junction. The fast-conducting branches of the right and left bundles split into progressively

smaller branches, the smallest of which join the Purkinje fibers. Under the endocardium, the

Purkinje fibers are dispersed throughout the ventricles and speed up the delivery of electrical

impulses to the myocardial cells [2], [24], [25].

For recording the ECG signals, a set of electrodes is placed on the chest of the patient.

Typically 10 electrodes are used to record the signal to obtain 12 leads, which can be split

into two groups based on orientation [24]. The orientation of one group is in the horizontal

plane formed by six precordial derivations named V1, V2, V3, V4, V5 and V6. The other group

is in the frontal plane of the body and is formed by three standard derivations and three

augmented derivations. The standard derivations were proposed by Einthoven, and they are

known as bipolar derivations I, II, and III. The three augmented derivations were proposed

by Goldberger and they are named aVR, aVL, and aVF [2], [24], [25]. Figure 2.2 shows the

typical derivation system’s electrode placement for frontal (on the left) and precordial (on the

right) derivations. To reduce noise and make placement easier, the electrodes that make

up the Einthoven triangle (LA, RA, LL) are positioned on the extremities. The corresponding

10



points on the torso are probed by the extremities.

Figure 2.2. System of derivations. Reproduced from [2].

A typical ECG is showed in Fig. 2.3. ECG is composed of waves, intervals, segments,

and one complex. An electrical event is indicated by a wave, which is a positive or negative

displacement from the baseline (isoelectric line). There are different wave types that can be

seen on an ECG: P, Q, R, S, and T waves. The interval is the space of time between two

particular ECG events. The PR, QRS, QT, and RR intervals are among the intervals that

are frequently monitored on an ECG. A complex is the result of numerous waves coming

together in one location. The only significant complex on an ECG is the QRS complex [3],

[12].

Figure 2.3. A heartbeat and its morphology. Source the author.

The P wave, which is the first wave in the ECG, denotes the activation (depolarization)

of the atria. Following the P wave, the QRS complex signals the ventricles’ activity. The re-

polarization of the ventricles is represented by the ST-T complex, which is constituted of the
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ST segment and the T wave. The area that is got no electrical activity is the area between

two complexes: after the T wave and before the P wave. So, the baseline or isoelectric line

should be the TP segment. The set of waves (P,Q,R,S,T) corresponds to a heart beat.

Table 2.1 and Table 2.2 show the amplitude and duration of the intervals in a typical ECG.

Table 2.1. Wave amplitudes of the ECG [26].

Wave Amplitude

P 0.25 mV

Q 25% R wave

R 1.60 mV

T 0.1 - 0.5 mV

Table 2.2. Intervals and segments duration’s of the ECG [26].

Intervals - Segments Duration

PR interval 0.12 - 0.20 s

QT interval 0.35 - 0.44 s

ST segment 0.05 - 0.15 s

P wave 0.11 s

QRS complex 0.06 - 0.1 s

RR interval 0.6 - 1.0 s

The study of ECG morphology, intervals (RR, QT, PQ), segments (ST, ST-T), waves,

amplitude and other characteristics, allow to investigate and develop new methods focused

on detecting cardiac anomalies such as: heart rhythm irregularities, diseases in the coronary

arteries, arrhythmia and SCD [3], [27], [28]. In particular, the normal T wave is positive and

asymmetric in most leads. However, when an alteration or change in its shape or amplitude

is detected, it is known as TWA [2], [3], [6].

2.1.3. Segmentation and Alignment

The goal of segmentation is to split a signal into many components with similar statistical

properties, such as amplitude and frequency. The analysis of specific segments of the ECG

is a common non-invasive technique for the diagnosis of cardiovascular diseases. In this
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sense, the accurate identification of specific points in the ECG could help to improve results

in a clinical application such as heart arrhythmia. The ECG segmentation process can

be performed manually and may offer reliable results when it is done by expert clinicians.

However, this method is tedious and time consuming. So, many researchers have been

interested in automatic ECG segmentation [1], [3], [29].

Phase alignment is a concept used in system optimization to ensure a smooth transition

between two or more signal sources. It involves aligning the timing or phase of these sources

to create the most transparent transition between them. The alignment procedure requires

comparing each of the ECG signal’s extracted periods to a reference, which is the median

sample value calculated from each R peak value found [3].

2.1.4. ECG Noise and Artifacts

ECG is a non-stationary signal which is interfered by different types of noises. Common

noises in ECG can be considered as technical origin and physiological origin [30].

Noise of technical origin

• Baseline wander (BW) Noise with a low frequency is baseline wander. According

to [31], the frequency range is often less than 1.0 Hz. This type of noise is brought

on by variations in electrode-to-skin polarization voltages brought on by breathing and

movement of the body.

• Power line interference (PLI) The most prevalent type of noise in the 50–60 Hz

band is PLI [32]. Power lines’ electromagnetic interference is the main source of

the interference. Improper grounding of the patient or the ECG machine; Electrical

equipment such as air conditioners, elevators, and X-ray units, which draw heavy

power line current, are other causes of interference [33].

• Electrode contact noise (ECN) ECN is caused by the loss of contact between the

electrode and the skin, which effectively disconnects the measurement system from

the subject [32]. They occur mainly in the range from 1 to 10 Hz.

• Electrosurgical noise This noise is generated by other medical equipment present in

the patient care environment at frequencies between 100 KHz and 1 MHz [32].
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Noise of physiological origin

• Electromyogram (EMG) noise EMG is the electrical activity of the muscles. This

noise occurs at the time of muscle activity during an ECG recording. 10% of the ECG

amplitude is affected by this kind of noise [32].

• Motion artifacts (MA) Abrupt movements such as coughing while ECG is being recorded

results in MA in ECGs which appear as sudden changes the in electric potentials [33].

2.1.5. Convolution

Convolution is a mathematical process that takes two functions (f and g) and creates a

third function (f*g) that expresses how the shape of one is changed by the other. It can be

characterized as the integral of the product of the two functions after one of them has been

moved and reflected on the y-axis. The decision of which function is reflected and shifted in

front of the integral has no effect on the outcome of the integral [34].

Discrete convolution

Let x, y be the discrete functions defined on the set Z of integers. The convolution of two

functions (signals) x and y, in discrete-time, is defined as equation (2.1) [34].

G[n] = (x ∗ y)[n] =
∞∑

k=−∞
x(k)y(n− k) =

∞∑
k=−∞

y(k)x(n− k) (2.1)

2.1.6. k-Nearest Neighbors Classification (K-NN)

In the Nearest Neighbor rule. It gives a set of n pairs (x1, θ1), (x2, θ2), ..., (x−n, θn), where xi

takes values from a metric space X over which a metric d is defined, and the values of θi are

in the set {1, 2, ...,M}. Each θi is considered to be the index of the category to which the i−th

individual belongs, and each xi is the result of the set of measurements performed on that

individual. A new pair (x, θ) is given , and θ is expected to be estimated using the information

contained in the correctly classified set of points. If min d(xi, x) = d(x′n, x), i = 1, 2, ..., n,

then we refer to x′n ∈ {x1, x2, ..., xn} as x’s nearest neighbor [35].
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2.1.7. T-wave Alternans

TWA is characterized as a change in the T wave’s shape, amplitude, or duration [2], [3].

Knowing as re-polarization alternans, TWA is regarded as a measure for risk stratification in

SCD patients [6], [20], [36]. Figure 2.4 shows a periodic alternation that occurs continuously

every two beats (even and odd beat).

Figure 2.4. (A) Every two beats, the ECG signal displays a

periodic alternation pattern. (B) As the difference between

the even-beat average and the odd-beat average, TWA is

visually interpreted. Reproduced from [6].

Any wave section of the ECG, including the QRS complex, ST segment, and T wave,

might exhibit alternans. However, T-wave alternans is regarded as a trustworthy index for

determining sudden cardiac risk [22], [36].

The most popular techniques for examining alternans in the T wave are:

• Method of Modified Moving Averages (MMA): The TWA magnitude is calculated by

averaging the absolute maximum difference between the pair and impair beat series

of the T waves or of the ST-T segments [28], [36], [37]. Figure 2.5, shows the MMA

method for calculating TWA.

15



Figure 2.5. MMA Method. Reproduced from [38].

• Spectral method (SM): To determine whether or not TWA is present, the alternans is

calculated by comparing the power spectrum at 0.5 cpb with the noise level spectrum.

Figure 2.6 shows the method proposed by J.M. Smith [39]. In (A) is observed the

selection of 128 ST-T complexes in 128 ECG beats. (B) is the variation of amplitude

along the 128 beats (128 periodograms). In (C) The spectrum is calculated by the

Fourier transform. (D) is the calculation of the composite spectrum. (D) The corresponding

TWA amplitude is the square root of the alternating power.
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Figure 2.6. Spectral Method. Reproduced from [40].

Figure 2.7 presents the process to analyse TWA [2]. The system takes an ECG signal

as an input. It can be seen from the output H0 that the signal contains a T-wave alternan.

The absence of the alternans is represented by H1, on the other hand.

Figure 2.7. Procedure for analysing TWA.

2.1.8. SCD by TWA

TWA is a magnitude that depends on heart rate and has been proven to be a non-invasive

measure for determining SCD risk [6], [27], [28], [41]–[43]. Techniques in the time and

frequency domains, including spectral methods (SM), modified moving average methods

(MMA), complex demodulation methods (CD), empirical mode decomposition (EMD), and

statistical methods (ST), have been developed for the analysis of TWA [2].

The alternations along the T waves are marked by techniques in the frequency domain,

such SM, by examining the power spectrum of the sample points. The article [3] describes

a three-step TWA detection and estimate approach that includes segmenting the ST-T wave

in accordance with the ECG phase, filtering the ECG signal with a Kalman filter (KF) variant,

and identifying and calculating the value of TWA using the spectral method. Based on
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a dynamical model that is not directly amplitude-dependent, the research [44] offers an

Extended Kalman Smoother (EKS) for TWA detection. Within this framework, the authors

take into consideration independent states for PQRS and an amplitude-free state model

for T-wave. In [45], new statistical and spectral detectors, the modified matched pairs t

test, the extended spectral method and the modified spectral method are proposed for T-

wave alternans (TWA) detection. In paper [46], a novel machine learning-based method

for TWA detection is put forward. The K closest neighbor, decision trees, random forests,

support vector machines, and multi-layer perceptrons are among the machine learning

algorithms that use the spectral method (SM), modified moving average technique (MMA),

and temporal domain method (TM) to gather input data. In Paper [47], a brand-new approach

based on tensor decomposition techniques is suggested for automatically detecting TWA.

Canonical polyadic decomposition and the more generalized version PARAFAC2, which

permits the T waves to shift in time, are two alternative tensor decomposition techniques

that are compared and contrasted. A novel EMD-based least squares T-wave alternans

estimation scheme is presented in [48] that outperforms estimation in 10–40 dB Gaussian

noise.

2.1.9. Dictionary Learning

A dictionary is a collection of atoms that can be used for signal decomposition. An atom

di is an elementary signal that represent part of the energy or features of a specific type of

signals for which the dictionary was adapted [19].

A real column vector x of finite length n× 1 is used to represent the original signal. If the

majority of the entries in a vector x are zero, or if the set of values F (x) = {1 ≤ i ≤ n|x[i] ̸=

0} has cardinality k ≪ n, then the vector is said to be sparse. So, a signal that has exactly

k samples with a non-zero value is said to be k−sparse [19].

Modeling the signal x as the linear combination of m elementary wave forms (atoms) will

result in

x ≈ Dα =

m∑
i=1

α[i]di (2.2)

where α is a column vector of size m× 1 that contains the representative coefficients of

x in a matrix dictionary D = [d1, d2, ..., dm], of size n ×m, and di is a vector of size n × 1,

it represents the atom of the dictionary. The setting x ≈ Dα, which means that the signal

x is reconstructed using sparse representation, is used when the dictionary contains more

columns than rows m > n, which is referred to as being over-complete or redundant.
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A Dictionary learning (DL) is created by using Gabor functions over a set of samples of

signals. This dictionary captures the particular characteristics of each wave enhancing the

signal, and representing these characteristics into a matrix (set of atoms). These dictionaries

have demonstrated high performance in classification task [49], [50]. After the dictionary is

defined, the sparse representation of the signal could be obtained.

2.2. Review of State of the Art

TWA is an important phenomenon not only within the clinical field but also within the scientific

and technological fields. It has been considered an important, non-invasive, and very

promising indicator to stratify the risk of sudden cardiac death. Due to its microvolt amplitude

and background noise, sophisticated signal processing techniques are required for its detection

and estimation. In this chapter, we present a survey of the state of the art focusing on the

detection of sudden cardiac death by analyzing the T wave on long-term ECG signals.

2.2.1. Methodology Used for Developing the Literature Review

To carry out the research, a Literature Review (LR) was undertaken based on the guidelines

proposed by Kitchenham [51]. The LR is divided in three phases:

1. Planning review: In this stage, research questions, keywords and scientific databases

for the review are defined. Table 2.3 shows the information used in this stage.

Table 2.3. Planning Review

Research questions Keywords Scientific

databases

Is it possible to detect SCD by analyzing the ECG? SCD IEEE Xplorer

Are there methods to stratify SCD risk? stratification Springer

indices Web of Science

2. Review development: In this stage, articles related to the detection of sudden cardiac

death were selected. In Table 2.4 you see the search chains and related terms that

were used to conduct a comprehensive review, improving the selection of articles in

the selected scientific bases.
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In total, 60 articles related to the research topic were obtained. Then 14 repeated jobs

have been removed. In the next step, the inclusion and exclusion criteria of Table 2.5

were used. Subsequently, 11 items that used invasive techniques such as the IDC

were removed, leaving 35 items left, of which 20 used the ECG as a tool for sampling.

So we have 20 articles for review, of which 6 deal with HRV as a stratification index,

7 deal with TWA, and 5 use other indices; these latter were discarded. Of the 7 TWA

works, 2 were removed by using methods such as complex demodulation. Finally, in

this review, we have 11 relevant works to analyze SCD risk stratification indices.

Table 2.5. Criteria of inclusion and exclusion

Inclusion criteria Exclusion criteria

Non-invasive techniques invasive techniques

Applied to ECG analysis Not applied to ECG analysis

Applicable to SCD Not applicable to SCD

Using Artificial Intelligence Clinical Approach

3. Finally, in the results analysis stage, three domains were defined that allow grouping

the results and discussion: i) Sudden cardiac death ii) Heart Rate Variability, and iii) T

wave alternans.

2.2.2. Related Works

Several methods have been developed in recent years to detect and quantify TWA. Some of

the most widely employed methods in clinical practice follows:

1. Modified moving average method (MMA): In the article presented by [37], the authors

showed a new approach to detect and estimate alternans in the T-wave. The magnitude

of TWA is obtained by means of the maximum absolute difference of averages of series

of even and odd beats calculated in T-waves or ST-T complexes.

Different approaches have been presented based on MMA for example: In their paper

[36] proposes a new method called template matched-filter based scheme for detection

and estimation of T-wave alternans (TMFD), in this work a preprocessing stage for the

MMA method to ensure an optimal alignment of the computed averages is presented.

In the work of [28], the authors propose an Enhanced modified moving average (EnMMA)
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the accuracy of the method was improved with a better aligned prior to distance

calculation. In order to achieve the improvement, the authors added a preprocessing

stage based on continuous dynamic time warping (DTW).

2. Spectral methods (SM): SM was proposed by [39] in this method digitized ECG beats

are aligned, and periodogram based power spectral evaluations are calculated for

every sample in the segment of interest. The value of an added spectrum at 0.5 cpb is

compared with the spectral noise level to decide if TWA is present. Different versions

of the SM have been presented. Paper [17] presents an improved spectral method

that contains three component: enhanced spectral method (EnSM); spectral analysis

of T-Slope variations (TSV); and singular value decomposition (SVD). Another version

of SM is presented by [21] named non-negative matrix factorization (NMF)-Adaptive

SM, the Adaptive SM have the advantages of both SM and Modified moving average.

In [3] the paper presents a three step TWA detection and estimation strategy which

consists of filtering the ECG signal using a variant of Kalman filter (KF), segmenting

the ST-T wave based on ECG phase and applying the spectral method to detect TWA

and estimate its value.

3. Complex demodulation method (CD): In this method, the beats are aligned, and

TWA is showed in each series as a sinusoidal signal of frequency and variable amplitude

and phase. TWA amplitude in each beat-to-beat series is projected by demodulation

of the 0.5-cpb component and low-pass filtered to obtain a continuous beat-to-beat

alternans measurement [52].

4. Correlation method: A single cross correlation coefficient is computed for every ST-T

complex against a representative for a heartbeat series. The single beat-to-beat series

of coefficients is evaluated by a time-domain zero-crossing counter. If the correlation

index alternates for some consecutive beats, a TWA episode is detected [4] [53].

5. Karhunen-Loève transform (KLT): The KLT transform has been used for its ability to

achieve the maximum compaction of energy in a few coefficients[54]. Two proposals

have made use of this transform: The first proposals, each ST-T complex is represented

by the first four coefficients of its KLT transform. Then each beat-to-beat series of KL

coefficients is analyzed spectrally using a periodogram [2].

6. Capon filtering method (CF): In this method, the low-pass filter is replaced by the
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filter cap. It is the filter system that preserves the alternating component, minimizes

the power of the signal at its output. The filter is based on the data and is obtained

from the auto correlation function of the input signal [55].

7. Statistical test method (ST): This method is based on statistical tests: Student’s t

tests for independent and paired samples, applied to study if there are differences

between the characteristics of the T wave between the odd and even beats and the

Rayleigh periodicity test [56]. Recent methods have been developed, [57] presents a

non parametric adaptive surrogate test to assist in accurate detection of TWA, independent

of the particular estimation algorithm being used. In their paper, [58] presents a

new class of algorithms, based on the Monte Carlo method, for the detection and

quantitative measurement of alternans.

8. Laplacian likelihood ratio method (LLRM): The LLRM method calculates the maximum

likelihood estimation of the TWAs by assuming a Laplacian noise distribution, and

applies the generalized likelihood ratio test to decide whether the TWAs are present or

not in the ECG [59]. In [12], they propose the use of a multilead TWA analysis scheme

that combines LLRM method and periodic component analysis (πCA), an eigenvalue

decomposition technique whose aim is to extract the most periodic sources of the

signal.

9. Poincaré mapping method (PMM): PMM are formed by plotting T-wave magnitude

of alternate beat. Semi periodic signal such as TWA, appear as close clusters. TWA

magnitude is the intercluster distance [60].

10. Singular Value decomposition (SVD): This method is used for signal processing

and analysis of statistical data. SVD has two important steps, first the coarse TWA

detection and second fine TWA detection [61].

We inform the reader that all the methods presented in the above section are considered

important; however, in this chapter we will focus on the analysis of the results of the methods

(SM and MMA) by the following reasons: According to the literature SM and MMA are the

most used methods. These methods have been included in medical equipment such as

CH2000 and Heartwave (Cambridge Heart Inc, Bedford, MA) [62].
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Databases

The papers that was presented in the state of the art, used databases that allowed to perform

the experiments and validate the methods. Table 2.6 summarize these databases.

Table 2.6. Databases of ECG signals used in the state of the art for TWA

Article Database Method

[12] Physionet TWA Database LLR

[36] MIT-BIH Arrhythmia Database, from MIT Physionet TMFD

[28] Simulated ECG signals: European ST–T database ( 0123, e0103, and

e0105)

EnMMA

[53] MIT-BIH Arrhythmia Database, from MIT Physionet CM

[63] Simulated ECG signals SM

[17] MIT/BIH Sudden Cardiac Death Holter Database (seventeen records

with T waves presented)

SM

[3] Simulated ECG signals SM

[57] NSRDB, CHFDB and SCDDB) ST

[58] NS ST

[37] 7-French USCI quadripolar catheter MMA

Preprocessing and feature extraction

The paper [36] presents TMFD approach. The QRS and T-wave peak detection is performed

using the waveform locator available at Physionet. The comparative evaluation is carried

out with three most common classical techniques in the case of stationary as well as non-

stationary TWA (SM, MMA and CM). In the preprocessing stage, [28] presents an enhanced

MMA method using Dynamic Time Warping (DTW) curve alignment. DTW is described as a

method that can eliminate shift-related artifacts from measurements by correcting a sample

vector of length J towards a reference of length I. This method performs well for different

levels of TWA, noise, and phase shifts, but it is sensitive to the alignment of the T-waves.

The method proposed by [17] Enhanced modified moving average (EMMA), digital filters

were used to remove general arterial interference and to limit the ECG bandwidth between

1Hz and 50Hz. After that, Pan & Tompkins method [64] is used to indicate R waves. With
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detected R points, T points can be located by cross-checking on the maximum points of ECG

and all the zero-crossing points of dECG. In their research, the noise band is at range [0.42

0.46] cpb, and P0.5 is the maximum value at range [0.47 0.5] cpb by considering potentially

TWA frequency shifting. In [3] artificial generated Gaussian noise is added to the ECG

recordings with SNR varying from -30dB to 30dB. Moreover to assess the performance in

the presence of non-stationary noise, real muscle artifact (MA) and electromyography (EMG)

noise were taken from MIT BIH noise stress database. Fidutial points are selected at the

onset by employing mechanism for QRS and T-wave detection.

TWA analysis

Figure 2.8 presents the main steps proposed by Rosembaum et al. [65] to separate between

the ECG signal of a normal subject from those susceptible to sudden cardiac death.

Figure 2.8. Main steps of the SM methodology to compute alternans amplitude.

Paper [37] defines the ECG signal as X = xi, where xi for i = 1...n is one beat in

the signal. To compute TWA, two ECG beats groups are created. The even beats x2∗i

correspond the groupA and odd beats x2∗i−1 is in the groupB. Modified moving average are

calculated for group A and for group B. T-wave alternans is computed using the maximum

absolute value of the difference between the averaged beats A and averaged beats B. The

segment ST- and T-wave are used to compute the modified moving average.

Under the supposition of random Gaussian noise, the method [36] finds the presence

of TWA. Two alternative templates are used to describe the use of the template-matched

filter detector (TMFD): the median (TMFD−1) and the mean (TMFD−2). In the SNR region

25



between -15 dB and 35 dB, this approach performs better than the correlation method. When

the detection probability is maximized in Gaussian noise, the performance of TMFD−1 is

comparable to that of SM, but Laplacian noise results in a 2 dB degradation. The bias of

the TMFD approaches SM under improved signal conditions (SNR = 25 dB) for alternate

magnitudes > 40muV in the Gaussian case and for magnitudes > 20muV with genuine

noises.

In work [28], when there are phase shifts in the register and with some noise, EMMA

outperforms MMA in all cases by 25%. The experiments under different baseline wandering

conditions also demonstrated that EMMA is more robust than MMA.

In [21], the Receiver Operating Characteristics (ROC) is used to evaluate the results. In

a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate

(100-Specificity) for different cut-off points of a parameter. Each point on the ROC curve

represents a sensitivity/specificity pair corresponding to a particular decision threshold. The

area under the ROC curve (AUC) is a measure of how well a parameter can distinguish

between two diagnostic groups (diseased / normal). In the method Adaptive SM, ROC were

computed for each method with the area under the curve indicating relative TWA signal

discrimination. NMF-Adaptive SM had the greatest area under the ROC (0.92) followed by

the SM’s Kscore of (0.77), SM without the Kscore (0.74), and MMA (0.70) (p < 0.001). By

ROC curve analysis, TWA discrimination with NMF-Adaptive SM was superior to SM with

k-score (p < 0.001).

The estimated accuracy comparison in [3] is carried out in terms of relative bias (Rb),

standard deviation and mean square error (MSE). Extended Kalman smoother (EKF) and

Unscented KF (UKF) provide an advantage of 10dB in achieving best Rb=O. UKF provides

a higher Rb at low SNRs (-20dB).

In SM, the stratification of risk is analyzed by means of the maximum alternating magnitude,

this value is associated with a high level of risk of SCD if it is greater than or equal to 60 µ

V during an ambulatory and routine test greater than or equal to 47 µ V after an episode of

myocardial infarction. SM in a method that requires a stable heart rate of 105-110 beats per

minute over a period of time, using a specialized exercise protocol, pharmacological agents

or atrial pacing. Due to these restrictions, approximately 20-40% of the tests are classified

as "indeterminate", either due to factors related to the patient such as the inability to reach

the target heart rate, excessive ventricular ectopia, atrial fibrillation or technical problems as

noise in the recording.

MMA [37] is a time domain approach that consists of continuously estimating the average
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beat of even and odd beats calculated in T waves or ST − T complexes. Normally, the TWA

level is reported every 10 or 15s, which makes the MMA more versatile and more appropriate

in ambulatory recordings. The MMA method can be applied in stress tests and ambulatory

tests, however, the exact values of the thresholds have not yet been defined to calculate

the maximum alternating magnitude, resulting in the classification of the tests being around

75% accuracy.

Conclusions

In this chapter, the state of the art has been presented focusing on the detection and

quantification of the amplitude in the T-wave to determine the risk of SCD. According this

MMA and SM are the most used methods. It can be seen that the accuracy improves but

only in certain cases and under certain conditions, which complicates a comparison between

methods since the same database or the same sample size is not used. On the other hand,

the proposed methods are tested using either synthetically generated signals or using the

physionet database. The reliability of current systems is still debatable because their results

are not enough robust.

In this context, it is important to develop new methods to detect and quantify the alternation

of the T wave to overcome the results presented in the state of the art. For this, we will use

the current computational power and new AI techniques, which will allow us to develop new

efficient and lightweight algorithms for improving the efficiency of SCD detection
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Chapter 3

PROPOSED METHODOLOGY
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3.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

In bioengineering and clinical cardiology, the issue of early detection of SCD risk factors

is still open [10]. In this way, this chapter presents the proposed methodology that allows to

detect SCD using TWA as risk stratification index and features dictionaries learning. Figure

3.1 shows a summary of the processes developed.
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Figure 3.1. Summary of proposed methodology. Source: Authors

3.1. Framework

Based on the three principal observed stages in the review for TWA analysis. A framework

to detect SCD is presented by combined SM and DL properties. Four principal stages

have been developed: a) Preprocessing, b) feature extraction, c) compute dictionary and d)

classification. Figure 3.2 shows, step by step, all processes implemented in the methodology

to detect TWA for determining the risk of SCD.
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Figure 3.2. SCD by TWA framework. It consists of 4 steps: a) Preprocessing:

Database selection and denoising signal, b) Feature selection: fidutial points

detection and alignment/segmentation of T waves, c) Dictionary: compute dictionary

learning and d) Classification: TWA detection
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3.2. Preprocessing

In this stage, two tasks have been carried out: database selection and denoising.

3.2.1. Database Selection

The databases used in this research are the following: MIT-BIH Arrhythmia Database (mitadb)

[66], T-wave alternans Database (twadb) [67], and QT Database (qtdb) [68].

In this thesis an algorithm is developed to detect the QRS complex. The qtdb and mitadb

databases were used to evaluate this algorithm. On the other hand, the databases mitadb

and twadb were used to evaluate the proposed methodology.

• Each recording in the mitadb has a 30 minutes period, making up a total of 24

hours’ worth of ECG data. These recordings relate to 48 patients. At 360 samples

per second, the signals were digitally processed. Additionally, there are files in this

database that have annotations created by two highly qualified cardiologists. These

specifications enable us to recognize the beginning and end of the waves in the ECG.

Around 110,000 beats make up mitadb.

• 100 multichannel ECG records recorded at 500 Hz can be found in twadb. Patients

with myocardial infarction, transitory ischemia, ventricular tachyarrhythmias, and other

conditions that increase the risk of sudden cardiac death are among the participants,

along with healthy individuals in the control group and artificial instances with calibrated

levels of T-wave alternans. In this study, 36 data were employed in the experimental to

validate the suggested framework.

• qtdb contains 49 records, which are distributed as follows: There are 15 records in the

MIT-BIH Arrhythmia Database, 6 in the MIT-BIH ST Change Database, 12 in the MIT-

BIH Supra-ventricular Arrhythmia Database, 10 in the MIT-BIH Normal Sinus Rhythm

Database, 4 in the MIT-BIH Normal Sinus Rhythm Database, and 2 in the Sudden

Death Database.

3.2.2. Denoising

The disturbances or unwished signals may be of physiological, environmental origin or due to

the acquisition and registration equipment. Different filtering techniques have been proposed

for noise reduction:
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• Infinite Impulse Response Filter (IIR): To eliminate power-line interference, an IIR

filter is employed. This kind of electronic filter exhibits a response that depends on

both the values of the input signal and the response’s prior values [69].

• Finite Impulse Response Filter (FIR): The response of this filter can only be based

on a limited set of input signal levels. As a result, regardless of the filter, its impulse

response will depend on the filter’s coefficient count and be steady and of finite duration.

• Wavelet Transform (WT): WT is a powerful method for analyzing non stationary

signals, such as the ECG. Wavelets allow both time and frequency analysis of signals.

The WT is defined as [70]:

Wf (s, τ) =

∫
f(t)ψ∗

s,τ (t)dt

The wavelets are generated from the translation and change of scale of a same wavelet

function ψ(τ), called the "mother Wavelet", and is defined as:

ψs,τ (t) =
1√
s
ψ

(
t− τ
s

)
,

where s is the scale factor, and τ is the translation factor.

The discrete wavelet transform (DWT) examines a signal as a linear combination of

the product of the mother wavelet’s coefficients and the wavelet coefficients added

together [71]. Equation 3.1 is the DWT of X[N ] that is the discrete signal of X(t) [30].

Equation (3.1) is the DWT of the discrete signal X[N ], and N is its size.

DWT (s, τ) = 2
−s
2

∑
N

X[N ]ψ∗(2−sN − τ) (3.1)

DWT is also known as wavelet filter banks. This tool uses two filters: a high pass filter

and a low pass filter that allows to decompose the signal in different frequency scales.

There are several methods based on the DWT to reduce the noise that is presents in

the ECG signal (considering such noise as Gaussian white, variations in the baseline and

power line) [71], [72], [73].

The Stationary Wavelet Transform (SWT), a technique for non-stationary signals like the

ECG, serves as the foundation of the suggested methodology. The SWT’s implementation

is based on the work of [71]. The order of the SWT in this study is M = 3, and the simplest

mother wavelet (the Haar wavelet) is utilized. The inverse stationary wavelet transform

(ISWT) is then computed after that. This method enables the detection of particular signal
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Figure 3.3. One example of ECG signal filtering: mitadb record 101m (female, age 75),

using the algorithm above describe.

elements like motion artifacts, outliers, and QRS complexes. DWT is utilized to remove

intrinsic noise, and a set of thresholds are determined to get the filtering coefficient. The

strategies previously mentioned have been used in this study to generate the denoising

signal Xd[N ] in order to enhance the signal X[N ]. Figure 3.3 shows a raw ECG signal. After

that DWT was applied, the baseline wander was improved and the power line interference

was satisfactorily reduced.

3.3. Feature Extraction

The analysis of specific segments of the ECG is a common non-invasive technique for the

diagnosis of cardiovascular diseases. In this sense, the accurate identification of specific

points in the ECG could help to improve results in a clinical application such as heart

arrhythmia [1], [3], [29]. The ECG segmentation process can be performed manually and

may offer reliable results when it is done by expert clinicians. However, this method is

tedious and time consuming. So, many researchers have been interested in automatic ECG

segmentation. Signal processing techniques and computing systems are tools that allow to

develop automatic methods for segmentation and interpretation of the ECG. In this context,

it is important to develop efficient algorithms that allow accurate detection of EGC fiducial

points. The first step for this segmentation process is to delineate the QRS complex, which

means to detect the onset, the peak, and the offset of the waves. An accurate delineation

of the complex will allow to delineate other components like P and T waves, RR and QT

intervals, ST segments, or any other morphological parameters. However, ECG automatic

segmentation is a hard task due to different aspects such as the difficulty to identify the small

amplitude of the P wave, this due to interference arising from the movement of electrodes
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or muscle noise. The P and T waves can be biphasic, this increase the difficulty to an

accurately determination of their onsets and offsets. Otherwise, some ECG cycles may

not contain some waves or segments, for example, the P wave may be missing. Some

techniques have been proposed for feature extraction on the ECG, some of them are based

on wavelet transforms and techniques using machine learning approaches [53], [74]–[78].

In this work, a gradient signal function is calculated in order to locate R peaks in the

signal. Subsequently, an algorithm based on K-Nearest Neighbors (KNN) is applied to

eliminate false R peaks. A set of thresholds is calculated for detecting peaks Q and S.

In addition, these thresholds allow to the signal to be segmented. The computational time

for the overall process is also reported in the evaluation section.

The goal of this stage is to keep as much information in the TWA as possible while

reducing the number of data points to be processed.

For extracting, peaks and waves of interest, different process was developed: Computing

convolution, KNN classification, R peaks detection, QRS complex detection and alignment-

segmentation of ST-T segments.

3.3.1. Computing Convolution

In order to calculate the signal gradient, a discrete convolution approach is used. The

discrete convolution of Xd and V is given by:

G[n] =
∞∑

i=−∞
Xd[N − i]V [i] (3.2)

In this scenario, the output signal (gradient signal) is G, V is the impulse response and Xd

is the input signal. In this case, Xd is the denoising ECG signal and V is the kernel given

by [1,−1]. The ECG’s QRS complex has an amplitude that is greater than the other waves,

including the T, P, ST interval, and PR interval. In the ECG, the convolution aids in locating

a wave with a higher gradient value than the other waves. Figure 3.4 presents the gradient

signal G[N ] (red curve) that has been calculated for highlighting the most prominent points

of the ECG signal.
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Figure 3.4. Gradient signal computed (red line) to detect maximum points R’ (green

marks) over G[N]: mitadb record 101m.

A set of max points (green marks) R′ called R’ peaks candidates has been detected in

G. The goal is to use R′ and detect R peaks inside Xd[N ] signal.

3.3.2. K-Nearest Neighbors Classification

A supervised machine learning approach called K-Nearest Neighbors (KNN) can be used

to handle classification and regression issues. Figure 3.5 shows R′ presented in G[N ].

However, R′ falsely detected are presented. In this case, KNN algorithm was applied to

eliminate these ones as shows in Figure 3.6.

Figure 3.5. R′ peaks falsely detected.
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Figure 3.6. KNN algorithm applied to eliminate false R peaks. mitadb record 101m.

KNN algorithm was trained with k=3 using Euclidean distance. After that for estimating

the skill of KNN, the k-fold cross validation procedure with k=5 was implemented.

3.3.3. R Peaks Detection

Let R′ be a point with the greatest amplitude in gradient signal G after use KNN classification

algorithm. Using R′ peak and the threshold computed by equation (3.3)

µ = 2 ∗ δ −R′distance (3.3)

where R′distance = R′
i+1−R′

i with 1 <= i < N , and δ = 0.04∗fs. The method construct

a window of size µ to detect R-peaks on Xd[N ] signal. Figure 3.7 shows the process carried

out to detect R-peak.

Figure 3.7. R-peak detected in ECG signal Xd[N ]: mitadb record 101m.
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Using R peaks, the technique looks for Q and S points to examine the signal. Finally, as

illustrated in Figure 3.8, the QRS complex is found.

Figure 3.8. QRS complex and RR intervals. mitadb record 101m.

The algorithm explained in preceding sections for detecting QRS complex was released

in the previous work [79]. The detection rate was 0.9976 and 0, 998 using mitadb and qtdb

respectively 53397 beats were processed, 110 FN and 94 FP were detected.

3.3.4. Segmentation and Alignment of ST -T Segments

In this stage, a STT matrix contained the ST -T segments has been created. Using R peaks,

the vector dist was created. This structure contains the RR intervals and it is used to detect

the segment ST -T inside the interval. Let t1,t2,t3 and t4 be the variables that contains the

limits of the segment, fs is the sampling frequency and distance is the vector where the

RR interval size is stored. The algorithm detect the limits of each ST -T segment inside Xd

using equation 3.4.

ti = RRi + γ ∗
√
RRi + β ∗ fs i = 1, 2, 3, 4. (3.4)

γ and β represent the experimental values that have been used in this work to detect the

segments. Figure 3.9 indicates how is used the limits ti to detect Ton (begin of the T wave)

and Toff (end of the wave).
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Figure 3.9. Limits ti used to detect the ST-T segment. mitadb record 101m.

Algorithm 1 shows the process that has been implemented for detecting ST-T segments.

Figure 3.10 presents the result of the Algorithm 1. STTm×n is the matrix where the ST

segments detected in the signal were recorded; m is the number of beats located in the

signal and n is the ST-T segment length.

Figure 3.10. STTm×n matrix composed of ST − T segments detected over the ECG signal

using Algorithm 1: m=128, n=76 in mitadb record 101m.

3.4. Dictionary

A dictionary learning process results in an over-complete dictionary. This process was

carried out using two algorithms of signals analysis: Orthogonal Matching Pursuit (OMP)

and Gabor dictionary (D).
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Algorithm 1: ST-T detection and segmentation.
Input : Rpeaks, Xd

Output : ST-T segments represented by an STTm×n matrix.

// M ← size(Rpeaks)← numbers of beats

// N ← length of ST segment

// dist← distance between R peaks

for i←1 to M do
dist(i)← Rpeaks(i+1) −Rpeaks(i)

if dist(i) < 0.76 ∗ fs then
t1 ← Rpeaks(i) + 0.3 ∗

√
dist(i) + 0.02 ∗ fs

t2 ← Rpeaks(i) + 0.3 ∗
√
dist(i) + 0.05 ∗ fs

end

if dist(i) < (1.13 ∗ fs) & dist(i) >= 0.76 ∗ fs then
t1 ← Rpeaks(i) + 0.4 ∗

√
dist(i) + 0.1 ∗ fs

t2 ← Rpeaks(i) + 0.4 ∗
√
dist(i) + 0.29 ∗ fs

end

if dist(i) > (1.13 ∗ fs) then
t1 ← Rpeaks(i) + 0.3 ∗

√
dist(i) + 0.1 ∗ fs

t2 ← Rpeaks(i) + 0.01 ∗
√
dist(i) + 0.45 ∗ fs

end

if dist(i) < 0.72 ∗ fs then
t3 ← Rpeaks(i) + 0.18 ∗

√
dist(i) + 0.1 ∗ fs

t4 ← Rpeaks(i) + 0.1 ∗
√
dist(i) + 0.32 ∗ fs

end

if dist(i) < (1.1 ∗ fs) & dist(i) >= 0.72 ∗ fs then
t3 ← Rpeaks(i) + 0.1 ∗

√
dist(i) + 0.24 ∗ fs

t4 ← Rpeaks(i) + 0.1 ∗
√
dist(i) + 0.42 ∗ fs

end

if dist(i) > (1.1 ∗ fs) then
t3 ← Rpeaks(i) + 0.1 ∗

√
dist(i) + 0.24 ∗ fs

t4 ← Rpeaks(i) + 0.01 ∗
√
dist(i) + 0.49 ∗ fs

end

Ton(i)← t1 + abs(t2 − t1)/2

Toff (i)← t4 − abs(t4 − t3)/2
end

for k ←1 to M do
STT(:,k) ← Xd(Ton(k),Toff (k))

end
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3.4.1. Orthogonal Matching Pursuit (OMP)

OMP is an iterative technique that breaks down a signal x into linear waveform expansions,

which are generated from a comprehensive and redundant dictionary of functions D. This

technique makes use of the orthogonal projections found in dictionary (atom) elements to

successively approximate the signal.

The most common approach to construct time-frequency dictionaries is based on Gabor

functions, which are Gaussian envelopes modulated by sinusoidal oscillation. To know which

of the functions of these dictionaries most closely resembles a given signal, a measure of fit

(similarity) between the analyzed signal and a known function is needed. This is achieved

by means of the inner product.

Let x = STT(:,k) be the column of matrix that contains the ST -T segments after applying

Algorithm 1. The trace x can be reconstructed according (2.2) like:

STT(:,k) =
m∑
i=1

α[i]di (3.5)

where α[i] is a coefficient vector and di is the i-th optimal atom of the dictionary D involved

in the decomposition.

3.4.2. Gabor dictionary

Gabor dictionary (D) is a collection of the wave forms knowing as atoms. Each atom di is

represented from 3 characteristics: translation, length and frequency; as following:

gγ(t) =
1√
s
w

(
t− u
s

)
ej2πξ(t−u) (3.6)

The index γ is an element of the set Γ = ℜ+ × ℜ2, w is the Gaussian function window

w(t) = 4
√
2e−πt2 , the factor 1√

s
normalizes to 1 the norm of gγ(t), the scale s controls the

length of the waveform envelope, u is the time translation of the atom and ξ is the modulation

frequency.

To efficiently represent any function, an appropriate countable subset of atoms gγi(t)

must be selected with γi = (si, ui, ξi) [80]. So, gγi(t) is the i-th optimal atom to reconstruct

the signal, represented by di.

3.4.3. Energy Reconstruction of Trace

The two algorithms described in above sections have been used to decompose the trace

STT(:,k) in their sparse representation. Algorithm 2 presents the process carried out to
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obtain time-frequency representation of each trace using the algorithm OMP and Gabor

dictionary . The input variables of this algorithm are: the column vector STT(:,k) named the

trace; the variable numAtoms that contains the number of the atoms of the dictionary; n is

the size of ST − T segments and the number of Iterations.

Algorithm 2: Energy reconstruction of trace using Gabor Dictionary process.
Input : trace, numAtoms, n, Iterations

Output : D, α

// The random numbers of dictionary D are elements normally distributed, with

mean 0, variance 1 , and standard deviation 1

// r is the residue

// nrS is the number of samples

// nrT is the number of trials

// nrC is the number of channels

[nrS, nrT, nrC]← size(trace)

trace← reshape(trace, [nrS ∗ nrT, nrC])′

D ← randomDistribution(nrC, numAtoms)

for i←1 to n do
α← OMP (trace,D, Iterations)

r = trace−D ∗ α

for j ←1 to numAtoms do
I ← Find(α(j, :) > 0)

if I == 0 then
continue

end

Subset← r(:, I) +D(:, j) ∗ α(j, I)

GaborData← GaborFunction(Subset)

D(:, j)← rAtom(Subset,GaborData)

α(j, I)← rSignal(Subset,D)

EnergyTrace(j, I)← rEnergy(Subset,D)

r(:, I)← Subset−D(:, j) ∗ α(j, I)
end

Energy(:, :, i)← EnergyTrace

end

The algorithm begin with a random dictionary that contains elements normally distributed,

with mean = 0 and variance = 1. The OMP function used in this work and developed by

[81] required three parameters (the trace, the dictionary D and the number of iterations).

When the OMP function is executed, the matrix sparse α is computed. Then, residue r
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is calculated. The information recorded in these matrices are used in the Gabor functions

to compute the data for updating the dictionary, the sparse representation and the energy

of the trace. Finally a data structure Energy is obtained. Figure 3.11 shows, the spectral

representation calculated by Algorithm 2.

Figure 3.11. Time-Frequency representation of ST − T segments recorded in matrix

STTm×n using OMP (128 samples; 2 trials; 100 atoms; 1 channel): Signal mitadb

101m. In a) trace STT(:,1); b) trace STT(:,2); c) and d) reconstructed the traces

using OMP and D are presented; e) and f) frequencies detected inside the signals a)

and b) respectively.

Using the energy signalEnergy obtained by algorithm 2, a mean sub-matrix V is created.

V is the mean of Energylk×m where k = 64 and corresponds to the sample size. The matrix

V of dimensions k × n has been factorized into two matrices W and H having dimensions

k × r and r × n respectively, where r is the order of the decomposition as following:

V ≈WH =

r∑
i=1

W(:,i)H(:,i) (3.7)

Once equation (3.7) has been applied, the result obtained was W , that is called feature

matrix and H, that is the coefficient matrix (weights associated with W). The main task is

to separate the matrix into alternans components (AC) and noise components (NC). In this

sense,

V = AC +NC (3.8)

The size of matrix V is k × n. However, the last 16 rows of the matrix have been chosen
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because the frequency band of interest are located in this matrix position according [15].

Three matrices, w1, w2, and w3, have been produced using r = 3 in (3.7). These ones

represent the primary elements with comparable spectrum properties. The related alternans

componentwq is chosen as the deconstructed component with the largest magnitude. Equation

(3.7) can be written as follows:

V = wqhq +
r∑

i = 1

i ̸= q

wihi 1 <= i <= 3 (3.9)

According to (3.8) and (3.9), the value of the alternans component is

AC = wqhq (3.10)

Let mTWA = wq be, the matrix that contains the alternans values of the trace. The

rest of the equation (3.10) is the NC according (3.8). Thus, mTWA have been used for

classification.

3.5. Classification

Finally, a classification stage has carried out following the rule: if max(TWAi) > Th then

H0 is chosen instead of H1. Th is a threshold, which is experimentally fixed.

TWAi =
√

(mTWAl,i − µnoisei), 1 <= i <= 3; (3.11)

Where, µnoise is the NC and l is the row that contains the alternans energy values. According

to [15], the frequency band of the noise is between [0.36 − 0.49] cpb and the magnitude of

0.5 cbp for TWA energy. Algorithm 3 shows the process to compute the alternans value of

the signal.
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Algorithm 3: Compute the alternans value.
Input : Energy

Output : H0 or H1

// [k,m, n]← size(Energy)

// Ak×m is a matrix with zero values

A← mean(Energy, 2)

V ← A(k − 15 : k, :)

[W,H]← factorization(V, 3)

B ←W (1 : 15, :)

nmean← mean(B)

nstd← std(B, 0)

for i←1 to 3 do
TWA(1, i)← real(sqrt(W (16, i)− nmean(i)))

end

q ← argmax(TWA)

if TWA(q) > Th then
H0

else
H1

end

end
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Chapter 4

EVALUATION
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The principal issue for evaluating the proposed framework is the lack of annotated databases.

Generating synthetic data bases is a task accepted in the field [2], [5], [12], [28], [36], [82].

In this sense, to evaluate the methodology, a set of synthetic signals was constructed. Also,

a set of real signals have been selected from the Physionet database [67].

4.1. ECG Synthetic Signals

In this work, for constructing the synthetic signals 2 groups have been considered:

4.1.1. Group1: Selected Signals from MIT-BIH Arrhythmia Database

Table 4.1 presents the ECG records that have been taken from MIT-BIH Arrhythmia database

(mitadb) [66], [83]. According to work presented by [5], the selected signals satisfy the

following criteria: (1) Only signals having more than 99% of their heartbeats labeled as
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"normal" are considered candidates, and (2) only candidates without TWA are taken into

consideration.

Table 4.1. Dataset used for generating synthetic ECG. Source [5]

Record Lead

117 2

121
1

2

122 2

123
1

2

Figure 4.1 presents the base beats used to generate the synthetic signals using mitdb.

Figure 4.1. Base beats to generate synthetic signals using mitdb.

4.1.2. Group 2: Selected Signals from T-Wave Alternans Challenge

Database

The proposed methodology uses TWA analysis to evaluate SCD. In this context, signals

that contain this pathology should be considered. From the T-Wave Alternans Challenge

Database (twadb) [66], [67], six single beats have been taken from the ECG signals, the

same number of signals as group 1. Table 4.2 shows the characteristics of the selected

signals. Column 1 is the name of the record within the twadb. Column 2 is the reference
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rank derived from the ranks assigned by challenge entries. High ranks correspond to records

with larger amounts of TWA. Column 3 specifies the data collection from which each record

originates (see Table 4.7). The original record’s name, which was used to create the twadb

record, is listed in column 4. Reference of each record at [84]. The following criteria have

been considered for selecting the different base beats: (1) The reference rank of the signals

is considered to select the base beat. Signals with TWA and without TWA were therefore

considered. (2) Healthy people and people with different cardiac conditions were selected.

Table 4.2. Sources and reference rankings for a certain record in the T-Wave Alternans Challenge

Database

Name of twa

record

Reference rank Source type Source record name

twa00 1 sdd sddb/30

twa01 91 syn stwdb/c111

twa03 51 ptb ptbdb/patient093/s0367lre

twa06 87 syn stwdb/d109

twa10 7 nsr nsrdb/19090

twa39 22 ptbc ptbdb/patient243/s0472_re

The base beats used to generate the synthetic signals using twadb are presented in

Figure 4.2.

Figure 4.2. Base beats to generate synthetic signals using twadb.
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4.1.3. Creation of Synthetic Signals

Algorithm 4 shows the process implemented to obtain the synthetic database. The base

beats were recorded in the matrix baseBeatr×c. The algorithm creates a ECG synthetic

signal of 128 beats each one in the variable synthetic. After that, a value of alternans and

noise is added and registered in SyntheticECG variable.

Algorithm 4: Process to construct synthetic signals
Input : baseBeatr×c

Output : SyntheticECG

// r number of base beats used to generated the synthetic signals

// c size of each base beat

// nb number of beats

// synthetic matrix that contains 128 beats

// baseBeatr×c matrix that contains samples of selected records from twadb and

mitdb

nb = 128

baseBeat = [mitdb1172(1, 1 : c); ...; twa39(1, 1 : c)];

r=size(baseBeat)

for i←1 to r do
synthetic = [ ]

b = baseBeat(i, :)

for k ← 1 to nb do
synthetic = [synthetic bT ]

end

a = read(value of alternans)

n = read(GaussianNoise)

SyntheticECG = synthetic+ a+ n

end

The alternans values (Valt) considered in this work are based on the paper [5] where

35µV < Valt < 145µV . The Gaussian noise is added at the based signal. Table 4.3 shows

different values of alternans and noise levels that have been combined to generated the

synthetic signal using twadb and mitadb.
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Table 4.3. Values of alternans and level of noise that have been combined for generating synthetic

signals using twadb.

Number of

samples

Alternans (µV ) Noise (dB) Number of beats

12 0 0 768

48 0

20

6144
30

40

50

48 10

20

6144
30

40

50

48 20

20

6144
30

40

50

48 50

20

6144
30

40

50

48 100

20

6144
30

40

50

48 200

20

6144
30

40

50

Total of beats 38400
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Using 12 base beats (6 base beats twa and 6 base beats mitdb) and combining them

with different values of alternans and noise, a total of 300 synthetic ECG signals have been

generated. So, 38400 beats were tested. Table 4.4 shows 25 synthetic signals. A total of

3200 beats generated. For example, signal artificial092 has 128 beats, an alternans value

of 50µV and a noise level of 30 dB.

Table 4.4. Synthetic signal generated using twa06 real signal from twadb [67].

Synthetic signal Number of beats Alternans value (µV ) Noise level (dB)

artificial004 128 0 0

artificial079 128 0 20

artificial080 128 0 30

artificial081 128 0 40

artificial082 128 0 50

artificial083 128 10 20

artificial084 128 10 30

artificial085 128 10 40

artificial087 128 20 20

artificial088 128 20 30

artificial089 128 20 40

artificial090 128 20 50

artificial091 128 50 20

artificial092 128 50 30

artificial093 128 50 40

artificial094 128 50 50

artificial095 128 100 20

artificial097 128 100 40

artificial098 128 100 50

artificial099 128 200 20

artificial100 128 200 30

artificial101 128 200 40

artificial102 128 200 50

Total of beats 3200
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Figure 4.3 presents the results obtained using the algorithm 4. To generate the synthetic

signal the base signal used is twa06 from twadb. In a) the ECG synthetic signal, b) ECG

synthetic signal + 200 µV of alternans value added (Gaussian wave form) c) synthetic signal

+ alternans + 30 dB of noise added (Gaussian).

Figure 4.3. Synthetic signal using base beat twa06.

On the other hand, Table 4.5 shows 25 synthetic signals. A total of 3200 beats generated.

Table 4.5. Synthetic signal generated using twa00 real signal from twadb [67].

Synthetic signal Number of beats Alternans value (µV ) Noise level (dB)

artificial001 128 0 0

artificial007 128 0 20

artificial008 128 0 30

artificial009 128 0 40

artificial010 128 0 50

artificial011 128 10 20

artificial012 128 10 30

artificial013 128 10 40

artificial014 128 10 50

artificial015 128 20 20

Continue on the next page.

51



Synthetic signal Number of beats Alternans value (µV ) Noise level (dB)

artificial016 128 20 30

artificial017 128 20 40

artificial018 128 20 50

artificial019 128 50 20

artificial020 128 50 30

artificial021 128 50 40

artificial022 128 50 50

artificial023 128 100 20

artificial024 128 100 30

artificial025 128 100 40

artificial026 128 100 50

artificial027 128 200 20

artificial028 128 200 30

artificial029 128 200 40

artificial030 128 200 50

Total of beats 3200

Figure 4.4 shows the synthetic signal generated using twa00. In a) the ECG synthetic

signal, b) ECG synthetic signal + 200 µV of alternans value added (Gaussian wave form) c)

synthetic signal + alternans + 20 dB of noise added (Gaussian).
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Figure 4.4. Synthetic signal using base beat twa00.

Table 4.6 presents the synthetic signals using mitdb. A total of 3200 beats have been

generated.

Table 4.6. Synthetic signal generated using mitdb123 lead I real signal.

Synthetic signal Number of beats Alternans value (µV ) Noise level (dB)

artificial200 128 0 0

artificial201 128 0 20

artificial202 128 0 30

artificial203 128 0 40

artificial204 128 0 50

artificial205 128 10 20

artificial206 128 10 30

artificial207 128 10 40

artificial208 128 10 50

artificial209 128 20 20

artificial210 128 20 30

artificial211 128 20 40

artificial212 128 20 50

Continue in the next page.
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Synthetic signal Number of beats Alternans value (µV ) Noise level (dB)

artificial213 128 50 20

artificial214 128 50 30

artificial215 128 50 40

artificial216 128 50 50

artificial217 128 100 20

artificial218 128 100 30

artificial219 128 100 40

artificial220 128 100 50

artificial221 128 200 20

artificial222 128 200 30

artificial223 128 200 40

artificial224 128 200 50

Total of beats 3200

Figure 4.4 shows the synthetic signal generated using mitdb123. In a) the ECG synthetic

signal, b) ECG synthetic signal + 200 µV of alternans value added (Gaussian wave form) c)

synthetic signal + alternans + 30 dB of noise added (Gaussian).

Figure 4.5. Synthetic signal using base beat mitdb123 lead I.
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Finally, 300 synthetic signals have been generates named artificial001, artificial002, ...,

artificial300. Each signal is composed by 128 beats. A total of 38400 beats have been

processed.

4.2. ECG Real Signals

For evaluating the methodology, a set of real signal have been selected from Physionet

database [66]. Table 4.7 shows the samples used for the performance evaluation of the

methodology.

Table 4.7. Distribution of 36 records in twadb used for evaluating the methodology. Source [67]

Database Record

PTB Diagnostic ECG Database (patients) (ptb)[85] 14

Long-Term ST Database (lts)[66] 4

St. Petersburg Institute of Cardiological Technics 12-lead (inc) [66] 2

Sudden Cardiac Death Holter Database (sdd) [86] 2

MIT-BIH Normal Sinus Rhythm Database (nsr) [66] 6

PTB Diagnostic ECG Database (healthy subjects) (ptbc)[85] 6

synthesized ECGs with TWA (syn) [87] 4

Total 36

4.3. Evaluation Metrics

Four metrics have been used for evaluating the proposed method: precison, sensitivity,

specificity and accuracy.

1. Precision is the degree to which measurements of the same thing agree with one

another.

Precision, Pr =
TP

(TP + FP )
(4.1)

2. Sensitivity is the ability of a test to accurately identify true positives (patients out of

those who do have TWA).

Sensitivity, Se =
TP

(TP + FN)
(4.2)
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3. Specificity is the capacity of the test to appropriately reject healthy patients devoid of

TWA. A diagnostic test effectively detects true negatives.

Specificity, Sp =
TN

(TN + FP )
(4.3)

4. Accuracy Accuracy can be defined as the possibility that a patient was correctly

categorized.

Accuracy, Ac =
TP + TN

TP + TN + FP + FN
(4.4)

It has been considered as: true positive (TP) if the method detects alternans and confirm

the presence of TWA; false negative (FN) if the algorithm does not detects alternans but

TWA is presented in the signal; true negative (TN) if the algorithm does not detects alternans

in a signal without alternans ; and false positive (FP) if the method detects a false TWA.

4.4. Results

The results shown in these sections have been divided in two stages: Results obtained using

the QRS complex detection algorithm and results obtained using SCD detection algorithm

(TWA + dictionary learning).

4.4.1. Results Obtained Using QRS Complex Detection

Table 4.8 shows the results obtained using the algorithm 1 proposed in the stage of signal

segmentation. The algorithm has processed 53397 beats, 110 FN, 94 FP. According to (4.2),

(4.3) and (4.4), the detection rate is 99.80%, Sensitivity (Se) is 99.79% and the specificity is

99.82%.

Table 4.8. Results of evaluating the proposed method for QRS complex detection using MIT-BIH

QTDB.

Data Peaks Detected peaks TP FP FN Se (%) Sp (%)

sel30m 1019 1009 1009 10 0 99 100

sel100m 1134 1134 1134 0 0 100 100

sel102m 1088 1088 1088 0 0 100 100

sel103m 1048 1048 1048 0 0 100 100

Continue in the next page.
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Data Peaks Detected peaks TP FP FN Se (%) Sp (%)

sel104m 1113 1109 1109 4 0 99,6 100

sel114m 870 865 865 5 0 99,4 100

sel116m 1186 1186 1186 0 0 100 100

sel117m 766 766 766 0 0 100 100

sel123m 756 756 756 0 0 100 100

sel14046m 1260 1260 1260 0 0 100 100

sel14157m 1092 1085 1083 9 2 99,2 99,8

sel14172m 663 663 663 0 0 100 100

sel15814m 1036 1037 1036 0 1 100 99,9

sel16265m 1031 1031 1031 0 0 100 100

sel16272m 851 851 851 0 0 100 100

sel16273m 1112 1112 1112 0 0 100 100

sel16420m 1063 1063 1063 0 0 100 100

sel16483m 1087 1087 1087 0 0 100 100

sel16539m 922 922 922 0 0 100 100

sel16773m 1008 1008 1008 0 0 100 100

sel16786m 925 925 925 0 0 100 100

sel16795m 761 761 761 0 0 100 100

sel17152m 1628 1628 1628 0 0 100 100

sel17453m 1047 1047 1047 0 0 100 100

sel213m 1642 1642 1640 0 2 100 99,9

sel221m 1240 1250 1238 2 9 99,8 99,3

sel223m 1037 1309 1305 2 2 99,8 99,8

sel230m 1077 1077 1077 0 0 100 100

sel231m 731 731 731 0 0 100 100

sel232m 863 866 863 0 3 100 99,7

sel233m 1533 1531 1529 4 15 99,7 99

sel301m 1352 1351 1335 7 9 99,5 99,3

sel302m 1501 1499 1495 2 4 99,9 99,7

sel306m 1039 1039 1039 0 0 100 100

sel307m 854 854 853 1 1 99,9 99,9

sel308m 1291 1296 1264 6 32 99,5 97,53

Continue in the next page.
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Data Peaks Detected peaks TP FP FN Se (%) Sp (%)

sel310m 2011 2011 2011 0 0 100 100

sel803m 1026 1026 1026 0 0 100 100

sel808m 904 903 903 1 0 99,9 100

sel811m 704 704 704 0 0 100 100

sel820m 1159 1159 1159 0 0 100 100

sel821m 1558 1558 1558 0 0 100 100

sel840m 1179 1180 1179 0 1 100 99,9

sel847m 804 804 798 7 6 99,2 99,3

sel853m 1115 1113 1113 2 0 99,8 100

sel872m 990 990 990 0 0 100 100

sel873m 859 859 859 0 0 100 100

sel883m 893 893 893 0 0 100 100

sel891m 1353 1311 1304 48 7 96,44 99,46

Total 531 81 53397 53304 110 94 99,79 99,82

Therefore, the proposed method has been evaluated using the MIT-BIH Arrhythmia databases.

The algorithm is applied to channel I of 48 records with a duration of 30 minutes, 109494

beats have been processed and evaluated. The detection has been considered as true

positive (TP) if the proposed method detects the QRS complex, false negative (FN) if the

algorithm does not detect the QRS complex and false positive (FP) if the method detects

a false QRS complex and this is considered as positive. Further, time from preprocessing

stage to fiducial points detection is showed (Time (s)).

Table 4.9 contains 8 columns, the first one shows the number of processed signals; in the

second column, the number of beats in the signal is shown according MIT-BIH arrhythmia

DB; third, fourth and fifth columns show the TP, FP, FN respectively. In the next columns,

the percentage rate and time of process of each signal is shown. The proposed method

has processed 109,494 beats and it has produced 273 FN beats and 129 FP beats. The

detection failure is 405 beats.
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Table 4.9. Some results of evaluating the proposed methodology using MIT-BIH Arrhythmia DB

Data Peaks Detected

peaks

TP FP FN Rate% time(s)

101 1865 1865 1865 0 0 100 3.81

107 2137 2137 2137 0 0 100 3.58

111 2124 2124 2124 0 0 100 3.87

114 1879 1881 1876 3 3 99.8 3.07

200 2601 2608 2598 3 10 99.6 5.83

203 2980 2973 2973 0 7 99.76 5.72

210 2650 2630 2623 7 27 98.9 6.12

213 3251 3246 3246 0 5 99.8 3.37

217 2208 2222 2208 14 0 100 5.79

230 2256 2256 2256 0 0 100 5.03

Total 109494 109350 109221 129 273 99.76 4.15

Hence, according to equations (4.2), (4.3) and (4.4), the detection rate is 99.76%, the Se

is 99.67% and the Sp is 99.73%. The average processing time is 4.15 seconds, by using a

laptop DELL Inspiron N4050, Core i5 2.40-GhZ with 8GB RAM.

In order to evaluate the performance of this experimental study, the methodology developed

has been compared with the well-known SM method. The first one is Pan Tompkins algorithm

[64], that is a referent in the literature to detect the fiducial points. The second one is the

method proposed by Saini et al. [88] that allows detect the points of interest using a KNN

approach.

In the proposed algorithm a convolution was calculated, a gradient curve G[n] was used

to detect maximum points inside G[n], this process allow to detect R peaks candidates in a

ECG signal X[n]. The KNN approach is used to eliminate maximum point falsely detected

in G[n]. After that, the R peaks are located using a window of size u in X[n], this innovation

improves the detection rate.

The proposed method works properly as a QRS detector for the employed databases,

and it provides a satisfying high performance in difficult distorted records of MIT-BIH.
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Table 4.10. Comparison of the performance of the proposed method with other

algorithms for the MIT-BIH database and QT database.

Database (Annotations) QRS Detector Paper Detection

rate (%)

mitadb (109,809 beats) A real-time QRS detection based

upon digital analysis of slope,

amplitude and width.

[64] 99.30

mitadb (109,966 beats) QRS detection using K-Nearest

Neighbor algorithm (KNN) and

evaluation on standard ECG

databases.

[88] 99.81

mitadb (109,494 beats) Proposed method – 99.76

qtdb (86741 beats) An improved QRS complex

detection method having low

computational load.

[89] 99.8

qtdb (53181 beats) Proposed method – 99.8
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4.4.2. Results of SCD Detection by Using TWA and Dictionary

Performance evaluation using synthetic signals

In Table 4.11, the artificial signals have been classified by noise value. A total of 4608 beats

with noise = 20dB have been tested using twa base beats.

Table 4.11. Results of evaluating method using synthetic signal grouping by noise value = 20 dB

Synthetic signals Number of beats Alternans (µ V) Noise (dB) Detection

artificial011 128 10 20 FN

artificial015 128 20 20 TP

artificial019 128 50 20 TP

artificial023 128 100 20 TP

artificial027 128 200 20 TP

artificial035 128 10 20 FN

artificial039 128 20 20 TP

artificial043 128 50 20 TP

artificial047 128 100 20 TP

artificial051 128 200 20 TP

artificial059 128 10 20 FN

artificial063 128 20 20 TP

artificial067 128 50 20 TP

artificial071 128 100 20 TP

artificial075 128 200 20 TP

artificial083 128 10 20 FN

artificial087 128 20 20 TP

artificial091 128 50 20 TP

artificial095 128 100 20 TP

artificial099 128 200 20 TP

artificial107 128 10 20 TP

artificial111 128 20 20 TP

artificial115 128 50 20 TP

artificial119 128 100 20 TP

Continue in the next page.
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Synthetic signals Number of beats Alternans (µ V) Noise (dB) Detection

artificial123 128 200 20 TP

artificial131 128 10 20 TP

artificial135 128 20 20 TP

artificial139 128 50 20 TP

artificial143 128 100 20 TP

artificial147 128 200 20 TP

artificial007 128 0 20 TN

artificial055 128 0 20 TN

artificial031 128 0 20 TN

artificial079 128 0 20 TN

artificial103 128 0 20 TN

artificial127 128 0 20 TN

Total of beats 4608

The results are: Ac = 0.89, Se = 0.87, Sp = 1. In the cases when the values of noise are:

30, 40 y 50 dB, the results obtained are: Ac = 1, Se = 1, Sp = 1.

Table 4.12 shows a subset of the artificial signals grouped by alternans values and is

composed by 25 signals with alternans = 10 µV .

Table 4.12. Results of evaluating method using synthetic signals that have an alternans value = 10

µV

Synthetic signals Number of beats Alternans (mu V) Noise (dB) Detection

artificial011 128 10 20 FN

artificial012 128 10 30 TP

artificial013 128 10 40 TP

artificial014 128 10 50 TP

artificial035 128 10 20 FN

artificial036 128 10 30 TP

artificial037 128 10 40 TP

artificial038 128 10 50 TP

Continue in the next page.
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Synthetic signals Number of beats Alternans (mu V) Noise (dB) Detection

artificial059 128 10 20 FN

artificial060 128 10 30 TP

artificial061 128 10 40 TP

artificial062 128 10 50 TP

artificial083 128 10 20 FN

artificial084 128 10 30 TP

artificial085 128 10 40 TP

artificial086 128 10 50 TP

artificial107 128 10 20 TP

artificial108 128 10 30 TP

artificial109 128 10 40 TP

artificial110 128 10 50 TP

artificial131 128 10 20 TP

artificial132 128 10 30 TP

artificial133 128 10 40 TP

artificial134 128 10 50 TP

Total of beats 3072

The result obtained is Ac = 0.83 using 3072 beats. Grouping the signals using alternans

values of 20, 50, 100, 200 µV , the result is Ac = 1 in all cases.

Using twadb, the algorithm classified 116 signals as TP, 29 signals as TN, 4 signals as

FN and 1 signal as FP. Using equations (4.2), (4.3) and (4.4) the quality of the proposed

methodology was verified. The results obtained with the proposed methodology are: 0.96 of

Accuracy; 0.97 of Sensitivity and 0.97 of Specificity.

Performance Evaluation in Real Signals

Table 4.13 shows the results obtained using reals signals. According to equations (4.2) and

(4.3). Sensitivity is Se = 0.8; Specificity is Sp = 0.8 and the Accuracy is Ac = 0.81.
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Table 4.13. Results of evaluating the method using twadb.

Database Record Detection Accuracy

PTB Diagnostic ECG Database Myocardial Infarction

03 TP

0.85

11 TP

18 TP

19 TP

20 FN

31 TP

36 TP

40 FN

41 TP

48 TP

49 TP

53 TP

54 TP

83 TP

Long-Term ECG Database

07 TP

0.75
32 TP

85 FN

92 TP

St Petersburg INCART
12 TP

1
27 TP

Sudden Cardiac Death Holter Database

00 FN

0.67

08 FN

45 TP

63 TP

68 TP

95 TP

PTB Diagnostic ECG Database Healthy People

39 TN

0.75
46 FP

55 TN

60 TN

MIT-BIH Normal Sinus Rhythm Database

10 TN

0.83

23 TN

61 TN

62 TN

71 TN

93 FP

Total 36 0.81
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In order to evaluate the performance of this experimental study, the methodology developed

has been compared with well-known SM method [39] using the software TWAnalyser: A T-

wave alternans detector [90] available in Physionet. Table 4.14 summarizes the value of

accuracy obtained.

Table 4.14. Value of accuracy obtained in the experimentation using TWADB.

Method Accuracy

TWA and Dictionary Learning 0.81

Spectral Method using TWAnalyser software 0.64

In this experimental study, 300 artificial signals generated using the 12 base beats of

twadb and mitdb and 36 real signals available in Physionet Data [67] have been tested.

Using dictionary learning and time-frequency representation, an algorithm was implemented.

The signals have been selected with alternate presences and alternate absences. According

to Table 4.14 the implemented method improves the accuracy by 20% compared to the

software TWAnalyser. To improve the robustness of the method, synthetic signals have

been generated so that the threshold value can be adjusted. Thus, if the TWA = 0µV then

the threshold Th value was between 0 µV and 5 µV , and the result achieved was a true

negative. On the other hand, when the synthetic signals presented TWA values between 10

µV and 200 µV ; the proposed method sent a true positive for Th >= 5µV . In this sense,

the experimental Th was fixed in this study.
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Chapter 5

CONCLUSION AND FUTURE WORKS

Contents

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The conclusions and upcoming projects for the thesis are presented in this chapter.

5.1. Conclusion

An innovative strategy for forecasting sudden cardiac death is presented in this research.

In this context, a review of the state of the art was necessary. The papers analysed are

focusing on the detection and quantification of the amplitude in the T-wave to determine the

risk of SCD. According this MMA and SM are the most used methods. It can see that the

accuracy improves but only in certain cases and under certain conditions, which complicates

a comparison between methods since the same database or the same sample size is

not used. On the other hand, the methods analysed are tested using either synthetically

generated signals or using the physionet database.

In this work, the first task was to develop an efficient algorithm to detect the QRS complex

following two steps. The first step is denoising, which allowed signal enhancement to obtain

the relevant sections. The second step is the QRS point locations; for this, the gradient of the

signal has been calculated and used to improve the R point detection. The QRS detection

algorithm has obtained a detection rate of 0.997 and 0.998 for Arrhythmia DB and QTDB

respectively.

Next, a dictionary has been computed by a dictionary learning process. Two algorithms

have been used to build it. OMP has obtained a sparse solution by performing the analysis
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operations given a dictionary. After, GD evaluates the accuracy of the dictionary to decompose

the input signals. So, the energy of the signal obtained in this process is used to detect TWA.

The first experimental study shows an accuracy of 0.96 using artificial signals and 0.81

using real signals respect to the algorithm implemented by Physionet that shows an accuracy

of 0.64 detecting TWA using the spectral method.

5.2. Future Works

This work presents a non-invasive methodology for predicting sudden cardiac death. The

proposed algorithms have been implemented and the results obtained show improvements

in predictions. However, execution time should be a task we need to improve. The suggested

algorithms may be used in electrical device work in the future.

One limitation for evaluating our work was obtaining recorded databases. In this sense,

an algorithm was developed to generate synthetic signals and evaluate the methodology.

In future work, a standardized, registered database should be generated for use by the

scientific community. Also, in a subsequent research, particular characteristics of patients

could be taken into account, for example: geographical location, age, sex, and co-existing

diseases. Another line of research could consist of changing the classification method or

using another risk stratification index, which could somehow improve the results obtained.

In this work, Gabor dictionaries were used to develop the methodology. In a future

work one could analyze another type of dictionaries such as those built using singular value

decomposition.
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