ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

PLAN DE MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD DE LA INDUSTRIA LÁCTEA INPROLAC S.A.

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

SÁNCHEZ QUIMBIULCO HÉCTOR RAMÓN hector_sanchezq@hotmail.com
VILLACIS LAGOS MICHAEL FRANCISCO
mfrancis_villacis@hotmail.com

DIRECTOR: ING. JAIME RAÚL VARGAS TIPANTA jaimevargas1952@live.com

Quito, Noviembre 2010

DECLARACIÓN

Nosotros, Sánchez Quimbiulco Héctor Ramón, Villacis Lagos Michael Francisco, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido presentada para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

Sánchez Quimbiulco Héctor Ramón

Villacis Lagos Michael Francisco

CERTIFICACIÓN

Certificamos	que	el	presente	trabajo	fue	desarrollado	por le	os señ	ores
SÁNCHEZ Q	UIMB	IUL	CO HÉCT	OR RAI	ИÓN	y VILLACIS	LAGOS	MICH	AEL
FRANCISCO	, bajo	nue	estra super	visión.					

Ing. Jaime Vargas
DIRECTOR DE PROYECTO

Ing Orwield Guerrero Ing Jorge Escobar

Ing. Orwield Guerrero COLABORADOR

Ing. Jorge Escobar COLABORADOR

AGRADECIMIENTOS

A la industria láctea **INPROLAC S.A.**, por la colaboración brindada; facilitando el acceso a las instalaciones y a toda la información requerida para el óptimo desarrollo del proyecto.

A todo el personal del área de mantenimiento, con el Ing. Hugo Ojeda a la cabeza, seguido de: Johan, Compita, Don Luchito, Junior, Don Miguel; quienes nos brindaron su amistad y colaboración respondiendo a todas las inquietudes que se nos presentaron durante el transcurso de la elaboración del proyecto.

A todo el personal docente y administrativo que conforman la mejor facultad del mundo: INGENIERÍA MECÁNICA, quienes nos apoyaron siempre en la consecución y finalización de una etapa más de nuestra vida.

Al Ingeniero Jaime Vargas por brindarnos su amistad y asesoría durante el desarrollo de este proyecto.

A nuestros padres, hermanos y demás familiares, quienes con su apoyo incondicional supieron llenarnos de fortaleza en los momentos difíciles de nuestra vida universitaria y ser la guía para culminar nuestra meta profesional.

A nuestros panas de la Facultad de Ingeniería Mecánica, por todos aquellos momentos compartidos durante esta etapa de nuestras vidas y a nuestra promoción "Llusobe".

LOS AUTORES

DEDICATORIA

Sin lugar a duda este trabajo está dedicado a toda mi familia, pero sobre todo a mí querida madre Gladys, por su sacrificio, su apoyo incondicional y a mis hermanos: Katy, Andrés, Melissa y Juanpi, por ser una fuente de inspiración para seguir adelante durante el desarrollo de mi vida universitaria. Llegar a la culminación de este manuscrito fue una tarea difícil, pero no se compara con la satisfacción de haber compartido momentos buenos y malos, durante el transcurso de la carrera.

Michael Francisco

A mis padres Ramón y Tarjelia, por darme la vida y hacer de mí un hombre de bien, humilde y luchador; quienes con sus consejos han sabido brindarme toda su confianza y su apoyo incondicional para llegar a alcanzar esta nueva meta en mi vida. A mi hermana Jackeline, por estar siempre en aquellos momentos difíciles dándome todo su respaldo y cariño, para seguir adelante.

A mis tíos Jorge y Nancy, que con sus consejos y todo su respaldo incondicional fueron partícipes de la culminación de esta meta.

A una persona muy especial que siempre estará en mi corazón y en mi mente, mi tía Enma, que siempre depositó toda la confianza y su apoyo en mí; y que ahora desde el cielo me brindará todas sus bendiciones al ver que he culminado esta meta propuesta.

A todas las personas, que de una u otra forma me han sabido brindar todo su apoyo, especialmente a Eugenia que con todo su amor y cariño ha sabido ayudarme a surgir en mi vida profesional.

Héctor Sánchez

ÍNDICE

DECLARACION	l
CERTIFICACIÓN	
AGRADECIMIENTOS	
DEDICATORIA	IV
ÍNDICE	V
ÍNDICE DE FIGURAS	XIII
ÍNDICE DE TABLAS	XV
ÍNDICE DE ANEXOS	XVI
RESUMEN	XVII
INTRODUCCIÓN	XIX
CAPÍTULO 1	1
MARCO TEÓRICO	1
1.1. RESEÑA HISTÓRICA	1
1.1.1. ANTECEDENTES de producción lechera	1
1.1.2. ANTECEDENTES DE LA PASTEURIZACIÓN	1
1.2. GENERALIDADES BIOLÓGICAS DE LA INDUSTRIA LÁCTEA	2
1.2.1. CALIDAD DE LA LECHE	3
1.2.1.1. Características organolépticas	3
1.2.1.2. Características físico - químicas	4
1.2.1.3. Características Microbiológicas	5
1.2.1.4. Inocuidad	5
1.2.2. COMPOSICIÓN DE LA LECHE	5
1.2.2.1. Componentes indeseables en la leche	7
1.2.3. TIPOS DE LECHE	7
1.2.3.1. Forma de higienización	7
1.2.3.1.1. Leche pasteurizada	7

1.2.3.1	.2. Leche esterilizada	8
1.2.3.1	.3. Leche UHT (Ultra High Temperature)	8
1.2.3.2.	Forma física	8
1.2.3.3.	Contenido de materia grasa	8
1.2.4. DE	RIVADOS LÁCTEOS	9
1.2.5. RE	CEPCIÓN Y PROCESOS TÉRMICOS DE LA LECHE	10
1.2.5.1.	Recolección	10
1.2.5.2.	Transporte de la leche	11
1.2.5.3.	Recepción de la leche	11
1.2.5.4.	Procesos térmicos	12
1.2.5.5.	Enfriamiento	12
1.2.5.6.	Clarificación y precalentamiento	13
1.2.5.7.	Homogenización	13
1.2.5.8.	La pasteurización	13
1.2.6. EG	UIPOS EN LA INDUSTRIA LÁCTEA	14
1.2.6.1.	Mangueras sanitarias	15
1.2.6.2.	Tuberías	15
1.2.6.3.	Accesorios	16
1.2.6.4.	Válvulas	16
1.2.6.4	.1. Válvula de retención	16
1.2.6.4	.2. Válvula de alivio	17
1.2.6.4	.3. Válvula de asiento	18
1.2.6.4	.4. Válvula de bola	19
1.2.6.4	.5. Válvula de mariposa	20
1.2.6.5.	Bombas	20
1.2.6.5	.1. Bombas centrifugas	21
1.2.6.5	.2. Bombas de desplazamiento positivo	21
1.2.6.5	.3. Bombas de anillo líquido	22
1.2.6.5	.4. Bombas de diafragma	23
1.2.6.6.	Filtros	23
1.2.6.7.	Caudalímetro desaireador	24
1.2.6.8.	Tanques de almacenamiento	25

1.2.6	S.9. Pasteurizadores	26
1.2.6	S.10. Clarificadora	27
1.2.6	S.11. Homogenizador	28
1.2.6	S.12. Llenadora de fundas de leche	29
1.2.6	S.13. Envasadora para yogurt y otros postres	30
1.2.6	S.14. Etiquetadora (Video Jet)	31
1.2.7.	SISTEMAS AUXILIARES	32
1.2.7	7.1. Equipo CIP (Cleaning in place)	32
1.2.7	7.2. Sistema de agua	33
1.2.7	7.3. Sistema de producción de aire comprimido	33
1.2.7	7.4. Sistema de refrigeración	34
1.2.7	7.5. Banco de hielo	35
1.2.7	7.6. Climatizador	36
1.2.7	7.7. Sistema de generación de vapor	36
1.2	.7.7.1. Calentadores	37
1.2	.7.7.2. Calderas	37
1	.2.7.7.2.1 Calderas Pirotubulares	37
1	.2.7.7.2.2 Calderas Acuotubulares.	38
CAPÍTULO	2	39
GENERAL	DADES DE LA INDUSTRIA LACTEA INPROLAC S.A	39
2.1. Re	seña histórica de la empresa	39
2.1.1.	PROCESOS	40
2.1.2.	MISIÓN	40
2.1.3.	VISIÓN	41
2.1.4.	PRINCIPIOS	41
2.2. CO	MPOSICIÓN Y ESTRUCTURA ORGANIZACIONAL	41
2.2.1.	PRESIDENCIA EJECUTIVA	42
2.2.2.	GERENCIA GENERAL	42
2.2.3.	DEPARTAMENTO DE PRODUCCIÓN	42
2.2.4.	DEPARTAMENTO DE CONTABILIDAD	42
2.2.5.	DEPARTAMENTO DE VENTAS	43
2.2.6.	DEPARTAMENTO DE COMPRAS	43

2.2.7.	DEPARTAMENTO DE MANTENIMIENTO	43
2.2.8.	DEPARTAMENTO DE CONTROL DE CALIDAD	43
2.3. HIC	GIENE Y SEGURIDAD DE LA INDUSTRIA	45
2.3.1.	BUENAS PRÁCTICAS DE MANUFACTURA (BPM)	45
2.3.	I.1. Higiene personal	46
2.3.	I.2. Control de plagas	46
2.3.	I.3. Clasificación de proveedores	46
2.3.	I.4. Control del proceso	47
2.3.	I.5. Control de agua	47
2.3.	I.6. Calibración y Mantenimiento	49
2.3.	I.7. Servicios higiénicos	49
2.3.	I.8. Iluminación	50
2.3.	I.9. Ventilación	50
	1.10. Medios de transporte	
2.3.1	I.11. Seguridad industrial	51
2.4. LIN	IEAS DE PRODUCCIÓN	53
2.4.1.	LECHE PASTEURIZADA	53
2.4.2.	LECHE ULTRA PASTEURIZADA	54
2.4.3.	QUESOS	56
2.4.4.	POSTRES	57
2.4.5.	YOGURT	59
2.4.6.	INDUSTRIALES	60
2.5. PR	OCESOS DE PRODUCCIÓN	61
2.5.1.	LECHE PASTEURIZADA	62
2.5.2.	LECHE ULTRA PASTEURIZADA (uht)	63
2.5.3.	YOGURT	64
2.5.4.	QUESOS	65
2.5.5.	MANJAR	66
2.5.6.	MANTEQUILLA	67
2.6. IDE	ENTIFICACIÓN DE ASPECTOS AMBIENTALES	68
2.6.1.	MEDIO AMBIENTE	68
2.6.2.	GENERACIÓN DE FRÍO	68
2.6.3.	GENERACIÓN DE CALOR	69

2.6.4.	GENERACIÓN DE RUIDO	69
2.6.5.	CONSUMO DE AGUA	69
2.6.6.	GENERACIÓN DE RESIDUOS	70
CAPÍTULO	3	71
MANTENIN	IIENTO, GENERALIDADES Y DEFINICIONES	71
INTRODUC	CIÓN	71
3.1. DEF	FINICIÓN DE MANTENIMIENTO	71
3.2. OB	JETIVOS DEL MANTENIMIENTO INDUSTRIAL	72
3.3. CLA	ASIFICACIÓN DEL MANTENIMIENTO	73
3.3.1.	MANTENIMIENTO CORRECTIVO	74
3.3.1	.1. Ventajas	74
3.3.1	.2. Desventajas	75
3.3.1	.3. Aplicaciones	75
3.3.2.	MANTENIMIENTO PREVENTIVO	75
3.3.2	.1. Ventajas	76
3.3.2	.2. Desventajas	76
3.3.2	.3. Aplicaciones	76
3.3.3.	MANTENIMIENTO PREDICTIVO	76
3.3.3	.1. Ventajas	77
3.3.3	.2. Desventajas	77
3.3.3	.3. Aplicaciones	78
3.3.4.	MANTENIMIENTO PRODUCTIVO TOTAL (TPM)	78
3.3.4	.1. Misión	78
3.3.4	.2. Objetivo	78
3.3.4	.3. Beneficios	78
3.3.4	.4. Características	79
3.3.4	.5. Pilares	80
3.3	.4.5.1. Mejora Focalizada	80
3.3	.4.5.2. Mantenimiento autónomo	81
3.3	.4.5.3. Mantenimiento planeado	81
3.3	.4.5.4. Capacitación	81

3.3.4.5.5. 0	Control inicial	81
3.3.4.5.6. N	Mejoramiento para la calidad	82
3.3.4.5.7. Т	TPM en los departamentos de apoyo	82
3.3.4.5.8. \$	Seguridad, higiene y medio ambiente	82
3.4. MANTENIN	MIENTO CENTRADO EN LA CONFIABILIDAD	83
3.4.1. INTRO	DDUCCIÓN	83
3.4.2. DEFIN	IICIÓN	83
3.4.3. PROC	ESO: SIETE PREGUNTAS BÁSICAS	83
3.4.4. OBJET	TIVOS	84
3.4.5. VENTA	AJAS	85
3.4.6. PLAN	DE MANTENIMIENTO BASADO EN RCM	86
3.4.6.1. Lis	stado y codificación de equipos	86
3.4.6.2. Lis	stado de funciones y especificaciones	88
3.4.6.3. De	eterminación de fallos funcionales y técnicos	89
3.4.6.3.1. F	Fallo funcional	89
3.4.6.3.2. F	Fallo técnico	90
3.4.6.3.3. H	Histórico de averías	90
3.4.6.3.4. F	Personal de mantenimiento	91
3.4.6.3.5. F	Personal de producción	91
3.4.6.3.6. E	Diagramas lógicos y diagramas funcionales	91
3.4.6.4. De	eterminación de los modos de fallo	91
3.4.6.4.1. F	Procedimientos para analizar las causas de fallos	93
3.4.6.4.1	I.1 El diagrama de Pareto	94
3.4.6.4.1	l.2 Histogramas	94
3.4.6.4.1	.3 Diagrama Causa – Efecto	95
3.4.6.4.1	I.4 AMFE	96
3.4.6.5. An	nálisis de la gravedad de los fallos. "Criticidad"	98
3.4.6.5.1. F	Fallo crítico	98
3.4.6.5.2. F	Fallo importante	98
3.4.6.5.3. F	Fallo tolerable	99
3.4.6.6. De	eterminación de medidas preventivas	99
3.4.6.6.1. T	Tareas de mantenimiento	99

3.4.6.6.2. La determinación de la frecuencia de las tareas de mantenimiento	102
3.4.6.6.3. Mejoras y modificaciones de la instalación	
3.4.6.6.4. Cambios en los procedimientos de operación	
3.4.6.6.5. Cambios en procedimientos de mantenimiento	
3.4.6.7. Agrupación de las medidas preventivas en sus di	
categorías	
3.4.6.8. Puesta en marcha de medidas preventivas	
3.4.6.8.1. Puesta en marcha del plan de mantenimiento	106
3.4.6.8.2. Implementación de mejoras técnicas	
3.4.6.8.3. Puesta en marcha de las acciones formativas	
3.4.6.8.4. Puesta en marcha de cambios en procedimientos de	
operación y mantenimiento	
CAPÍTULO 4	107
DESARROLLO DEL PLAN DE MANTENIMIENTO	108
4.1. CONSIDERACIONES GENERALES	108
4.1.1. DEFINICIÓN DEL PROBLEMA	108
4.1.2. JUSTIFICACIÓN	108
4.1.3. LISTADO Y CODIFICACIÓN DE EQUIPOS	109
4.1.3.1. Sistema de codificación de las áreas	109
4.1.3.2. Codificación de los equipos	110
4.1.3.3. Distribución de la planta	111
4.2. IDENTIFICACIÓN Y ANÁLISIS DE LAS FALLAS	111
4.2.1. LLUVIA DE IDEAS	112
4.2.2. DIAGRAMA CAUSA – EFECTO	112
4.2.3. DIAGRAMA DE PARETO	115
4.2.4. ANÁLISIS DE LA PRIORIDAD DE REPARACIÓN	122
4.2.4.1. Ponderación de los factores	123
4.2.4.2. Peso relativo de cada factor	124
4.2.4.3. Desarrollo de la matriz de priorización	124
4.2.4.4. Descripción del equipo	129

CAPÍTULO 5	130
UTILIZACIÓN DEL MANTENIMIENTO CENTRADO EN LA CONFIABILIDAI	D130
5.1. PLAN DE MANTENIMIENTO	130
5.1.1. MÉTODO DE ANÁLISIS MODAL DE FALLA Y EFECTO (AMFE	Ξ)130
5.1.1.1. Estructura del cuadro AMFE	131
5.1.1.1.1 Función	132
5.1.1.1.2. Falla Funcional	133
5.1.1.1.3. Código de Fallo	133
5.1.1.1.4. Modo de Fallo	134
5.1.1.1.5. Efectos de Fallo	134
5.1.1.1.6. Consecuencias	135
5.1.1.7. Causas de Fallo	136
5.1.1.1.8. Índice de Gravedad (G)	136
5.1.1.1.9. Índice de Frecuencia (F)	138
5.1.1.1.0. Índice de Detección (D)	139
5.1.1.11. Índice de Prioridad de Riesgo (IPR)	140
5.1.1.1.12. Estado	141
5.1.1.1.13. Código de Tarea	141
5.1.1.1.14. Observaciones	142
5.1.1.2. Estructura del cuadro de correctivos AMFE	142
5.2. CRONOGRAMA DE LAS ACTIVIDADES DE MANTENIMIENTO	144
5.2.1. DESCRIPCIÓN DE LAS TAREAS DE MANTENIMIENTO	144
CONCLUSIONES Y RECOMENDACIONES	146
CONCLUSIONES	146
RECOMENDACIONES	148
BIBLIOGRAFÍA	149
ANEXOS	150

ÍNDICE DE FIGURAS

Figura 1.1	Cadena productiva de lácteos	. 10
Figura 1.2	Válvula de retención	. 17
Figura 1.3	Válvula de alivio	. 18
Figura 1.4	Válvula de asiento	. 19
Figura 1.5	Válvula de bola	. 19
Figura 1.6	Válvula de mariposa	. 20
Figura 1.7	Bomba centrifuga	. 21
Figura 1.8	Bomba de desplazamiento positivo	. 22
Figura 1.9	Bombas de anillo líquido	. 22
Figura 1.10	Bomba de diafragma	. 23
Figura 1.11	Filtros	. 24
Figura 1.12	Caudalímetro desaireador	. 25
Figura 1.13	Tanque de almacenamiento vertical	. 26
Figura 1.14	Pasteurizador	. 27
Figura 1.15	Clarificadora	. 28
Figura 1.16	Homogenizador	. 29
Figura 1.17	Llenadora de fundas de leche	. 30
Figura 1.18	Envasadora de yogurt	. 31
Figura 1.19	Etiquetadora	. 31
Figura 1.20	Sistema de lavado CIP	. 32
Figura 1.21	Compresor	. 34
Figura 1.22	Banco de hielo	. 35
Figura 1.23	Unidad manejadora de aire	. 36
Figura 1.24	Caldera Pirotubular	. 38
Figura 2.1	Estructura Organizacional INPROLAC S.A	. 44
Figura 2.2	Presentación de la Leche Pasteurizada	. 53
Figura 2.3	Información Nutricional de Leche Pasteurizada	. 54
Figura 2.4	Presentación de la Leche Ultra Pasteurizada UHT	. 55
Figura 2.5	Información Nutricional de Leche Ultra Pasteurizada UHT	. 55
Figura 2.6	Presentación de Quesos Dulac´s	. 56
Figura 2.7	Información Nutricional de Quesos Dulac´s	. 57

Figura 2.8	Presentación de Manjar Dulac´s	58
Figura 2.9	Información Nutricional de Manjar Dulac's	58
Figura 2.10	Presentación de Yogurt de Vaso Dulac´s	59
Figura 2.11	Información Nutricional de Yogurt de Vaso Dulac´s	60
Figura 2.12	Presentación de Industriales Dulac´s	61
Figura 2.13	Diagrama de Flujo de la Elaboración de Leche Pasteurizada	62
Figura 2.14	Diagrama de Flujo de la Elaboración de Leche	Ultra
	Pasteurizada UHT	63
Figura 2.15	Diagrama de Flujo de la Elaboración del Yogurt	64
Figura 2.16	Diagrama de Flujo de la Elaboración de Quesos	65
Figura 2.17	Diagrama de Flujo de la Elaboración del Manjar	66
Figura 2.18	Diagrama de Flujo de la Elaboración de Mantequilla	67
Figura 3.1	Clasificación del mantenimiento basado en el tipo de fa	ıllo y
	posibilidad de vigilancia	73
Figura 3.2	Pilares del TPM	80
Figura 3.3	Siglas del TPM en los departamentos de apoyo	82
Figura 3.4	Relación de codificación de equipos	87
Figura 3.5	Estructura de codificación de equipos	88
Figura 3.6	Probabilidad condicional de fallo contra la vida útil	92
Figura 3.7	Diagrama causa - efecto	96
Figura 4.1	Diagrama Causa-Efecto INPROLAC S.A.	. 114
Figura 4.2	Histograma Industria Láctea INPROLAC S.A	. 119
Figura 4.3	Diagrama de Pareto de la Industria Láctea INPROLAC S.A	. 121
Figura 4.4	Envasadora de yogurt	. 129
Figura 5.1	Cuadro de Análisis Modal de Fallo y Efecto	. 132
Figura 5.2	Codificación de la Falla Funcional	. 133
Figura 5.3	Codificación de las Tareas de Funcionamiento	. 141
Figura 5.4	Cuadro de Correctivos AMFE	. 143
Figura 5.5	Codificación de la Acción Correctiva	. 143
Figura 5.6	Cuadro de Tareas de Mantenimiento	. 145

ÍNDICE DE TABLAS

Tabla 1.1	Composición media de la leche 6
Tabla 1.2	Niveles de AGL en la leche cruda11
Tabla 1.3	Alteraciones de los componentes de la leche12
Tabla 1.4	Pasteurización de lácteos14
Tabla 1.5	Colores de identificación básica de tuberías
Tabla 3.1	Descripción de la curva de la bañera93
Tabla 3.2	Tareas de mantenimiento en función de criticidad de fallo 102
Tabla 4.1	Codificación de áreas de la Industria Láctea INPROLAC S.A 109
Tabla 4.2	Código de barras
Tabla 4.3	Número de paradas de la maquinaria en el período
	2009 – 2010117
Tabla 4.4	Estratificación de las máquinas en función del número de
	paradas120
Tabla 4.5	Peso relativo asignado a cada factor
Tabla 4.6	Matriz de equipos en función de los factores
Tabla 4.7	Matriz de priorización de los equipos en función de los factores
	y su respectivo peso relativo (PR)127
Tabla 4.8	Resultados de la matriz de priorización
Tabla 5.1	Codificación de los Sub - sistemas
Tabla 5.2	Índices de gravedad del modo de fallo
Tabla 5.3	Índices de frecuencia del modo de fallo138
Tabla 5.4	Índice de detección del modo de fallo140

ÍNDICE DE ANEXOS

ANEXO A	ORGANIGRAMA Y MANUAL DE PROCEDIMIENTOS DEL
	SISTEMA DE MANTENIMIENTO
ANEXO B	CALIDAD DEL AGUA
ANEXO C	PLANOS (IMPLANTACIÓN, UBICACIÓN, MAPA DE RIESGOS
	EVACUACIÓN, FLUJO DE FABRICACIÓN)
ANEXO D	FORMATO DE HISTÓRICO DE AVERÍAS Y DATOS DE PLACA
	DE LOS EQUIPOS
ANEXO E	DATOS DE PLACA DE EQUIPOS
ANEXO F	LISTADO Y CODIFICACIÓN DE EQUIPOS
ANEXO G	HISTÓRICO DE FALLOS
ANEXO H	FUNCIÓN Y FUNCIONAMIENTO DE LOS SISTEMAS, SUB
	SISTEMA, ELEMENTOS DEL EQUIPO Y CUADROS AMFE

RESUMEN

El objetivo del estudio es diseñar un plan de mantenimiento preventivo centrado en la confiabilidad para la industria láctea INPROLAC S.A. buscando de ésta forma mejorar las condiciones de la maquinaria y equipo. Consta de 5 capítulos que se describen a continuación:

CAPÍTULO 1. Se reseña los antecedentes históricos de la leche, sus generalidades biológicas, procesos térmicos previos al consumo y los principales equipos y sistemas auxiliares que se utilizan en la industria láctea.

CAPÍTULO 2. Consta de las generalidades, antecedentes históricos, estructura organizacional, y buenas prácticas de manufactura de la industria láctea INPROLAC S.A, además se describe las líneas de producción de la leche y sus derivados.

CAPÍTULO 3. Trata sobre generalidades, definiciones, objetivos, tipos de mantenimiento; metodología para el análisis de fallos los cuales constituyen el antecedente para implantación del plan basado en el RCM.

CAPÍTULO 4. Se destina a la definición del problema y situación actual de la planta; codificación de equipos y maquinaria para su posterior introducción al análisis estadístico de fallos y estratificación de los mismos.

CAPÍTULO 5. Se desarrolla el plan de mantenimiento centrado en la confiabilidad usando el método de AMFE, estructuración de cuadros de fallos, correctivos y tareas.

Posteriormente, se describe las conclusiones y recomendaciones dadas por los autores, para un uso adecuado del trabajo efectuado.

El plan de mantenimiento finaliza con la adjudicación de los anexos, donde se describe: normativas para el manejo del agua, formato de registro de maquinaria, bitácoras de mantenimiento, planos de la planta, división en sub - sistemas del equipo seleccionado y la posterior realización de cuadros AMFE: de fallos, correctivos y tareas.

INTRODUCCIÓN

En Ecuador, actualmente el sector ganadero ha tenido un repunte en la producción de leche, viéndose en la necesidad de crear industrias lácteas, principalmente en el sector del Cantón Cayambe debido a la competitividad existente en el mercado.

Industrias Lácteas INPROLAC S.A., continuamente busca nuevas formas de mejorar la eficiencia e incrementar su producción a partir del funcionamiento óptimo de las máquinas y equipos de producción; para lo cual ha visto la necesidad de la creación de un plan de mantenimiento preventivo, que proporcione mayor confiabilidad y durabilidad de los mismos, así como también la mejora de la calidad e inocuidad del producto.

Este plan de mantenimiento debe ser seguro, económico, sustentable y que no afecte al medio ambiente a fin de preservar la vida útil y la disponibilidad de los equipos. Con la implementación del mismo se mejorará la productividad y calidad de los productos; así como, las buenas prácticas de manufactura (BPM), seguridad operacional y reducción de los costos por mantenimiento y reparación de equipo y maquinaria.

De acuerdo a lo expuesto anteriormente la aplicación del mantenimiento centrado en la confiabilidad es factible, siendo su objetivo primordial proporcionar a la industria una mejor proyección en sus actividades futuras, tener productos con excelente calidad; garantizando así la inocuidad del producto y el prestigio de la planta de lácteos.

CAPÍTULO 1

MARCO TEÓRICO

1.1. RESEÑA HISTÓRICA

1.1.1. ANTECEDENTES DE PRODUCCIÓN LECHERA

Hace 5.000 años, el hombre ya había pasado del estado en que solamente recolectaba y cazaba, a otro en que se dedicaba al cultivo y a la cría de ganado; dando lugar al descubrimiento del ordeño.

El hombre aprendió a transformar la leche, tanto para conservarla durante más tiempo como para variar sus formas de consumo. En 1822, el francés Nicolás Appert puso en práctica un procedimiento para extraer las sustancias alimenticias de la leche fresca, evaporando el agua por ebullición a baño María, método que mejoró en 1829 trabajando al vacío¹.

A partir de aquella fecha, se realizaron importantes progresos en el ámbito del conocimiento y transformación de la leche. Los industriales pusieron a punto nuevas técnicas de transformación; por su parte, los ganaderos aprendieron a criar el ganado de la forma más favorable para la producción y a recoger la leche en mejores condiciones de higiene.

1.1.2. ANTECEDENTES DE LA PASTEURIZACIÓN

El proceso de calentamiento recibe el nombre de su descubridor, el científicoquímico francés Louis Pasteur (1822 - 1895). La primera pasteurización se realizó el 20 de Abril de 1864 por el mismo Pasteur y su colega Claude Bernard.

¹ **TRABAJO AL VACIO:** Reducción de la cantidad de aire en un recipiente cerrado; reduciendo el movimiento de las partículas y la proliferación de bacterias.

La leche esterilizada se desarrolló industrialmente en el año 1921, y el proceso de inyección de vapor en 1927 por G. Grindrod en Estados Unidos. Sin embargo, las iniciativas más relevantes que dieron lugar a la comercialización del método UHT se empezaron a desarrollar a fines de 1940, debido a la técnica desarrollada en los esterilizadores de tubos concéntricos y de vapor de uperización² para los sistemas de producción de leche.

Los esfuerzos de aquella época eran muy grandes en la industria para lograr empaquetar asépticamente la leche, hasta que finalmente se logró con éxito en el año 1961.

En la pasteurización, el objetivo primordial no es la "eliminación completa de los agentes patógenos³", sinó la disminución sensible de sus poblaciones, alcanzando niveles que no causen intoxicaciones alimentarias a los humanos (suponiendo que el producto pasteurizado se hubiese refrigerado correctamente y que se consuma antes de la fecha de caducidad indicada).

En la actualidad, este proceso es objeto de cada vez más polémicas en ciertas agrupaciones de consumidores a lo ancho del mundo, debido a las dudas existentes sobre la destrucción de vitaminas y alteración de las propiedades organolépticas⁴ (sabor y calidad) de los productos alimenticios tratados.

1.2. GENERALIDADES BIOLÓGICAS DE LA INDUSTRIA LÁCTEA

Es un líquido de composición compleja, blanco, opaco, de sabor dulce y pH cercano al neutro. Casi todas las leches tienen las mismas substancias: agua, proteína⁵, grasa, lactosa⁶, vitaminas y minerales, pero la proporción varía entre las distintas especies.

² **UPERIZACIÓN:** Método de esterilización de la leche, mediante calor en vacío y una breve inyección de vapor.

³ **PATOGENOS:** Elemento o medio en el que se origina y desarrolla las enfermedades.

⁴ ORGANOLÉPTICAS: Propiedad de un cuerpo que se puede percibir por los sentidos.

⁵ **PROTEÍNA**: Sustancia constitutiva de las células y de las materias vegetales y animales.

⁶ **LACTOSA:** Azúcar que contiene la leche, formada por glucosa y galactosa.

La leche recorre varias etapas, desde el ordeño hasta su ingreso en la planta elaboradora, donde es procesada y convertida en la materia prima de una enorme gama de productos.

La calidad de la materia prima influye directamente en la calidad del producto final, por lo que es imprescindible que la leche cruda posea la máxima calidad higiénico - sanitaria y que sea controlada desde su extracción hasta su procesamiento.

1.2.1. CALIDAD DE LA LECHE

Si bien la tecnología en la industria láctea se ha desarrollado últimamente, no ha podido lograr ningún proceso industrial, obtener un producto lácteo de alta calidad partiendo de una leche cruda (materia prima) de regular o mala calidad; requiere algo más que inversión y tecnología; por sobre todas las cosas se necesita un alto grado de compromiso por parte de quienes tienen la responsabilidad de participar en la producción de la leche y sus derivados.

Para que la leche cumpla con los requerimientos nutricionales debe reunir una serie de requisitos que definen su calidad: cualidades organolépticas composición físico-química y número de microorganismos presentes.

1.2.1.1. Características organolépticas

Es un compuesto líquido, opaco, de color blanco marfil y con el doble de viscosidad que el agua. Esa coloración se torna ligeramente azulada cuando se añade agua o se elimina la grasa. La misma que le da un aspecto amarillento a la superficie cuando se deja en reposo; los causantes, son los pigmentos carotenoides⁷ que existen en los pastos con que se alimenta a los animales.

⁷ **CAROTENOIDES:** Hidrocarburo no saturado, de origen vegetal y color rojo, anaranjado o amarillo; en los animales se transforma en la vitamina A.

Su sabor es ligeramente azucarado; su olor tampoco es intenso, aunque sí característico. La grasa que contiene presenta una acusada tendencia a captar los olores fuertes o extraños procedentes del ambiente.

1.2.1.2. Características físico - químicas.

Está posee una estructura física compleja con tres estados de agregación de la materia:

- Emulsión, en la que se encuentran, principalmente, las grasas.
- Disolución coloidal de parte de las proteínas.
- Disolución verdadera del resto de las proteínas, la lactosa y parte de los minerales.

Por tanto, se la puede definir a la leche como una suspensión coloidal⁸ de partículas en un medio acuoso dispersante. Las partículas son de dos tipos: de forma globular, de 1,5 a 0 micras de diámetro y están constituidas por lípidos; las otras son más pequeñas, de 0,1 micras de diámetro y corresponden a micelas⁹ proteicas que llevan adosadas sales minerales.

Al dejarla en reposo o al someterla a una centrifugación ligera, se puede separar una fracción grasa, la crema, más o menos amarillenta. Si tras el reposo, se hierve, favorece la aglutinación de la grasa y se forma una película semisólida en la superficie, la nata.

En el caso de que se coagulen las proteínas, se obtendrá una masa friable¹⁰ más o menos blanquecina, leche coagulada y un resto de líquido turbio con lactosa disuelta, el suero.

8

⁸ **COLOIDAL:** Dispersión de partículas o macromoléculas en un medio continuo.

⁹ **MICELAS:** Filamentos ramificados.

¹⁰ **FRIABLE:** Que se desmenuza fácilmente.

Las principales características físico - químicas son:

Densidad a 15℃
 1,027 - 1,040 Kg /I

• pH (20℃) 6,5 - 6,7

Calor específico 0,52 Kcal/Kg °C

Punto de congelación - 0,55 ℃

1.2.1.3. Características Microbiológicas.

Las cualidades nutritivas de la leche y sus derivados la sitúan entre los alimentos básicos de consumo masivo, desde la secreción en el interior de la ubre hasta su llegada al consumidor, recorre varias etapas según los casos, se ve sometida a un elevado número de riesgos, como son: el desarrollo no controlado de microorganismos, infecciones patógenas de las vacas productoras, absorción de olores extraños, producción de malos sabores, la presencia de sustancias químicas extrañas; todo esto concurre para afectar de forma negativa a la calidad higiénica del producto.

1.2.1.4. Inocuidad

Se define como la garantía que tiene un alimento para no causar daño al consumidor, cuando el mismo sea preparado o ingerido de acuerdo con el uso a que se destine el producto.

1.2.2. COMPOSICIÓN DE LA LECHE

Generalmente tiene las siguientes características principales:

- Contiene alrededor de 87% de agua.
- Un 3,5% de grasas finamente sub divididas, gotitas de 1 a 10 micrones de diámetro confiere opacidad.

- Casi el 4% corresponde a los prótidos¹¹ (sustancias orgánicas nitrogenadas) entre los que predomina la caseína¹². Cuando ésta se acidifica, se "corta": los prótidos coagulan dando grumos semisólidos.
- Un 4,5% de lactosa (azúcar), disuelta en agua, comunica el sabor dulce.
- Escasas sales inorgánicas: 0,5%,
- Finalmente en baja proporción pero cumpliendo funciones biológicas, se encuentran las vitaminas A y D.

La composición química depende de factores múltiples tales como:

- La raza de los vacunos.
- La época del año.
- Y también la hora del ordeño, así como el intervalo de los mismos.

La composición media de la leche, con sus principales elementos se describe en la Tabla 1.1.

Tabla 1.1 Composición media de la leche

COMPONENTE	PROMEDIO
Agua (g)	87,2
Sólidos totales (g)	12,8
Proteínas (g)	3,3
Grasas (g)	4,0
Hidratos de Carbono (g)	4,7
Cenizas (g)	0,7
Calcio (mg)	119,0
Colesterol (mg)	13,6

Elaboración: Propia

Fuente: PAMPLONA ROGER, J.D. Enciclopedia de los Alimentos. Tomo 1. 1999. Pág. 187. HERNÁNDEZ RODRÍGUEZ, M. y SASTRE GALLEGO, A. Tratado de Nutrición. 1999. Pág. 377.

. .

¹¹ **PRÓTIDOS:** Proteínas.

¹² **CASEÍNA:** Proteína de la leche, rica en fósforo.

1.2.2.1. Componentes indeseables en la leche

La materia prima y sus sub - productos son alimentos perecederos con altos estándares de calidad a lo largo de todo el proceso de producción; éstos son los necesarios para alcanzar o mantener la confianza del consumidor.

La misma que debe de ser de la más alta calidad nutricional - inalterada y sin contaminar. Se presenta aquí una lista parcial de las substancias indeseables más comunes que se encuentran en la leche:

- Agua adicional
- Detergentes y desinfectantes
- Antibióticos
- Pesticidas o insecticidas
- Bacterias

El seguimiento de los productores a regirse dentro de normativas en el uso de productos químicos, como también un buen ordeño, limpieza y almacenamiento de los productos, no son solo esenciales para su éxito propio, sinó también para la industria láctea.

1.2.3. TIPOS DE LECHE

Las distintas variedades, generalmente se clasifican de acuerdo a:

1.2.3.1. Forma de higienización

1.2.3.1.1. Leche pasteurizada

Es el producto entero, descremado o semidescremado, sometido a un proceso térmico, a temperatura (72 °C durante 12 – 15 seg.) que asegura la destrucción de los gérmenes patógenos y la casi totalidad de la flora banal, sin que se modifique sensiblemente sus características físico – químicas.

La vida útil es relativamente corta (3 – 5 días) y después del proceso debe conservarse siempre en frío.

1.2.3.1.2. Leche esterilizada

Consiste en un calentamiento destinado a destruir todos los microorganismos presentes, para asegurar una larga conservación. Se obtiene al tratarla a temperaturas mayores, 140 °C durante 3 – 4 seg. La fecha de vencimiento de ésta, es de aproximadamente 6 meses a partir del momento de su elaboración.

1.2.3.1.3. Leche UHT (Ultra High Temperature)

El tratamiento UHT consiste en un calentamiento instantáneo, en flujo continuo, a 140 – 150 °C durante 2 – 5 seg., seguido de un envasado aséptico en recipientes estériles. Su ventaja es la conservación prácticamente total de su valor nutricional, debido al poco tiempo de aplicación de calor. Pudiéndose conservar hasta 25 días según el tipo de envase.

1.2.3.2. Forma física

- Líquida
- Evaporada o concentrada.- Se obtiene mediante la eliminación de parte del agua de constitución.
- Condensada.- Se obtiene de la misma forma que la evaporada, pero añadiendo sacarosa para asegurar su conservación. Esta alta concentración de azúcar impide la reproducción de las bacterias.
- **En polvo**.- Se obtiene sometiendo a la leche esterilizada a un proceso completo de evaporación.

1.2.3.3. Contenido de materia grasa

• Entera.- Es aquella con un contenido superior a 30 gramos de materia grasa por litro.

- Semidescremada.- Es aquella con un contenido máximo de 30 gramos de materia grasa y un mínimo superior a 5 gramos por litro.
- Descremada.- Es aquella con un contenido máximo de hasta 5 gramos por litro de materia grasa.
- Enriquecidas.- A la leche se le puede adicionar cualquier nutriente. La forma comercial más conocida es adicionar vitamina A y D o enriquecerla con calcio.

1.2.4. DERIVADOS LÁCTEOS

Los derivados lácteos son una gran variedad de productos que se obtienen al someter a la leche a determinados procedimientos tecnológicos; estipulados a través de normas. Los grupos más comunes que se distinguen son:

- Crema.
- Mantequilla.
- Quesos
- Sueros lácteos.
- Manjar
- Yogurt

De acuerdo con los procesos tecnológicos implicados en la elaboración de cada uno de ellos; se los puede sub - dividir en tres grupos (Ver Figura 1.1):

- Productos obtenidos al separar la materia grasa de la leche.
- Productos que proceden de la coagulación de las proteínas y la separación de la fracción hidrosoluble.
- Productos resultantes de la fermentación o de la acidificación de la leche.

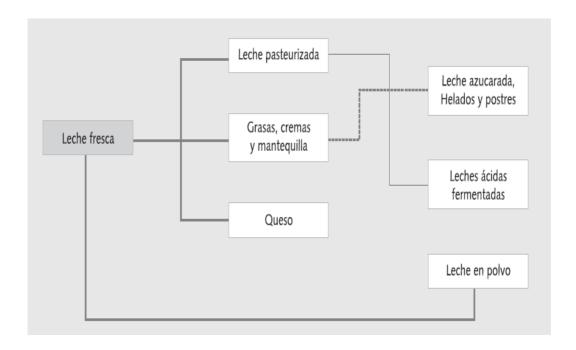


Figura 1.1 Cadena productiva de lácteos

Fuente: YEMAIL, Beatriz; Cadena productiva de lácteos; 1999.

1.2.5. RECEPCIÓN Y PROCESOS TÉRMICOS DE LA LECHE

El primer paso en el procesamiento de la leche es la recepción; en donde se manejan varios aspectos que van desde el momento posterior de su obtención, hasta los primeros procesos básicos antes de su transformación en derivados lácteos.

Previo al desarrollo del tema se trata lo concerniente a la recolección transporte, posteriormente se considera el manejo de la leche en la planta procesadora.

1.2.5.1. Recolección

Comienza con el ordeño, en recipientes denominados tambos¹³; para luego ser trasladados a un establecimiento en el que se recoge la leche cruda e inmediatamente es enfriada y purificada.

_

¹³ **TAMBOS:** Barriles de lámina.

1.2.5.2. Transporte de la leche

La leche es trasladada desde los sitios de acopio hasta las industrias lácteas a través de tanqueros¹⁴, los cuales deben asegurar el mantenimiento de la calidad de la materia prima.

El manejo de ésta es primordial debido a que cualquier alteración (agitación, congelamiento, etc.) producen lesiones de los glóbulos grasos y por lo tanto liberación de grasa (AGL)¹⁵, que pueden conducir a la rancidez¹⁶ del producto. La clasificación de la leche de acuerdo al contenido de ácidos grasos libres, es la siguiente (Ver Tabla 1.2):

Tabla 1.2 Niveles de AGL en la leche cruda

Concentración de AGL (mg/L)	Clasificación
< 0,6	Normal
0,6 a 0,8	Alto
0,8 a 1,0	Muy alto
> 1,0	Demasiado alto

Elaboración: Propia

Fuente: SANDOVAL SATURNO, AMADEO; Recepción y estandarización de la leche;

Universidad de Zulia; Diciembre 2003.

1.2.5.3. Recepción de la leche

Una vez que se encuentra la materia prima en la planta, ésta debe ser sometida a análisis físicos y químicos, que la dividen según su composición y estado higiénico o bien la descartan si no cumple con los estándares de la empresa.

¹⁴ **TANQUEROS**: Camiones cisterna diseñados para transportar leche u otros líquidos; dotados de sistemas de enfriamiento o aislamiento; que evitan la perdida de temperatura. ¹⁵ **(AGL):** Ácidos grasos libres.

RANCIDEZ: Cualidad de los comestibles grasos que con el tiempo adquieren sabor y olor más fuertes, a favor o en

Luego de su aprobación y análisis, ésta es vaciada desde los camiones por medio de bombas y mangueras sanitarias, pasando por filtros, contadores de flujo, desaireadores, enfriador de placas y almacenaje en silos, para su posterior procesamiento.

1.2.5.4. Procesos térmicos

Debido a que la materia prima es un producto con una gran cantidad de sustancias nutritivas, también es propenso para el desarrollo de microorganismos, por lo que es indispensable someterla a altas temperaturas previo a su utilización, a fin de asegurar su total pureza y calidad.

La temperatura y el tiempo a la cual será sometida, se controla según la necesidad; estos factores pueden variar, obteniendo cambios en su composición, los mismos que se describen en la Tabla 1.3.

Tabla 1.3 Alteraciones de los componentes de la leche

Componente	Efecto del proceso térmico (*)	
Grasa	Sin cambios	
Lactosa	Pequeños cambios	
Proteínas	Desnaturalización parcial de la proteína del suero	
Sales minerales	Precipitación parcial	
Vitaminas	Pérdidas marginales	
* A mayor temperatura y/o tiempo, mayores serán los cambios sufridos por la leche.		

Elaboración: Propia

Fuente: HERNÁNDEZ RODRÍGUEZ, M. y SASTRE GALLEGO, A. Tratado de Nutrición. 1999.

Pág. 383.

1.2.5.5. Enfriamiento

Este paso tiene como fin primordial evitar la proliferación de bacterias, para ello la materia prima es enfriada a una temperatura entre 4 – 6 °C.

Inicia con la recolección hasta los lugares de acopio y su posterior traslado a la planta, donde se almacena en los silos a dicha temperatura para su posterior tratamiento.

1.2.5.6. Clarificación y precalentamiento

El objeto del tratamiento es eliminar las impurezas que pueda contener la leche (partículas extrañas), esta operación se efectúa por centrifugación; la misma que es más eficiente si se realiza con la materia prima caliente.

Las temperaturas más frecuentes utilizadas en este precalentamiento son de 95 °C, durante 15 minutos o bien 120 °C durante 5 minutos, dependiendo de las características químicas iniciales.

1.2.5.7. Homogenización

Consiste en la dispersión del glóbulo graso de la leche, al punto de no permitir su separación tras un período prolongado en reposo. Así los glóbulos, cuyos diámetros varían de 1 a 5 micrones, se desintegran mediante fricción a alta presión en 1 micrón o menos, se dispersan por toda la leche, dándole una estructura homogénea.

1.2.5.8. La pasteurización

Es la operación a la que se someten determinados productos alimenticios, para destruir por acción del calor los microorganismos patógenos y la mayoría de los gérmenes restantes; con fines higiénicos o de conservación, preservando al máximo las características físicas, bioquímicas y organolépticas del producto.

La Tabla 1.4 describe los tipos de pasteurización de acuerdo a la temperatura que tiene lugar el proceso y el tiempo durante el que se mantiene la misma.

Tabla 1.4 Pasteurización de lácteos

Temperatura	Tiempo	Tipo de Pasteurización
63°C (145°F)	30 minutos	Pasteurización VAT
72°C (161°F)	15 segundos	Pasteurización "High temperature short time Pasteurization" (HTST)
89°C (191°F)	1.0 segundo	Ultra Pasteurización (UP)
90°C (194°F)	0.5 segundos	Ultra Pasteurización (UP)
94°C (201°F)	0.1 segundos	Ultra Pasteurización (UP)
96°C (204°F)	0.05 segundos	Ultra Pasteurización (UP)
100°C (212°F)	0.01 segundos	Ultra Pasteurización (UP)
138°C (280°F)	2.0 segundos	Esterilización Ultra-high temperature (UHT)

Elaboración: Propia

Fuente: www.idfa.org/facts/milk/pasteur.cfm.

1.2.6. EQUIPOS EN LA INDUSTRIA LÁCTEA

Hasta casi fines del siglo pasado, la leche era consumida o utilizada en la fabricación de productos lácteos sin tratamiento alguno y tal cual era ordeñada. Con la introducción y difusión de ciertos procesos industriales, entre los principales están: los procesos térmicos y la regulación del contenido graso, obteniéndose una materia prima más uniforme y segura para la elaboración de los sub - productos.

En la actualidad el objetivo de la industria láctea moderna es obtener una leche fluida, fresca, de mayor duración, sin alterar mayormente las propiedades nutricionales y organolépticas originales, y destruyendo la mayor parte posible de la flora banal¹⁷ de la leche. Razón por lo que se requiere de maquinaria especializada para desarrollar un producto de calidad; la misma que se describe a continuación:

-

¹⁷ **FLORA BANAL:** Propia de la leche cruda no significa riesgos para la salud de las personas, pero debe ser reducida porque provoca un deterioro del producto.

1.2.6.1. Mangueras sanitarias

Están elaboradas de gomas resistentes a los químicos y al calor que se emplean para su desinfección; son de material inerte para evitar que la leche adquiera olor o sabor extraño. Su uso generalmente está limitado al área de recepción, ya que en el resto de la planta procesadora la leche es transportada a través de tuberías.

1.2.6.2. Tuberías

En la industria láctea, éstas son construidas con acero inoxidable, ya que tienen la ventaja de no impartirle olores o sabores a la leche, son resistentes al calor, ácidos y álcalis empleados durante las tareas de lavado y desinfección. Existen redes para el transporte de agua, soluciones de limpieza, vapor, refrigerante, aire comprimido y aguas residuales.

De acuerdo a la normativa existe un código de colores para la identificación de la tubería y el tipo de fluido que transporta; ésta se describe a continuación en la Tabla 1.5:

Tabla 1.5 Colores de identificación básica de tuberías

Colores	Significado
Rojo	Contra incendio
Verde	Agua
Gris	Vapor de agua
Aluminio	Petróleo y derivados
Marrón	Aceites vegetales y animales
Amarillo ocre	Gases, tanto en estado gaseoso colicuados
Violeta	Ácido y álcalis
Celeste	Aire
Blanco	Sustancias alimenticias

Elaboración: Propia **Fuente:** NTP 399.012

1.2.6.3. Accesorios

Conjunto de piezas moldeadas o mecanizadas, que unidas a los tubos mediante un procedimiento determinado, forman las líneas estructurales de tuberías de una planta de proceso. Entre los tipos de accesorios más comunes se puede mencionar:

- Bridas
- Codos
- Te's
- Reducciones
- Cuellos o acoples
- Válvulas
- Empaques
- Tornillos y neplos
- Pernos
- Filtros

1.2.6.4. Válvulas

En la red de tuberías existen puntos donde es necesario detener el flujo o bien dirigirlo hacia otra dirección; ésta función la cumplen las válvulas.

Pueden ser de varios tipos, según el diseño del cuerpo y el movimiento del obturador. Entre las principales ocupadas en la industria láctea se tiene las siguientes:

1.2.6.4.1. Válvula de retención

Está diseñada para evitar el retorno del fluido y asegurar que fluya en una sola dirección. Se puede utilizar para evitar el cebado¹⁸ frecuente de bombas y para evitar golpes de ariete.

¹⁸ **CEBADO:** Poner ciertos aparatos o máquinas en condiciones de empezar a funcionar.

La válvula de retención se abre cuando la presión del fluido supera la presión del muelle¹⁹. En el momento en que se compensan las presiones o existe una mayor contrapresión se cierra (Ver Figura 1.2).

Figura 1.2 Válvula de retención

Fuente: www.inoxpa.com

1.2.6.4.2. Válvula de alivio

Se utiliza en la bifurcación de presión, como medida de alivio para proteger líneas, bombas, accesorios, estanques. Está diseñada para evitar los riesgos y posibles averías que se derivan de una saturación de flujo en una instalación.

En condiciones normales de trabajo la válvula permanece cerrada. Ésta se calibra regulando el muelle mediante la tuerca. La misma que es la máxima de seguridad, para no dañar la instalación (Ver Figura 1.3).

¹⁹ **MUELLE:** Pieza elástica, ordinariamente de metal, de modo que pueda utilizarse la fuerza que hace para recobrar su posición natural cuando ha sido separada de ella. (Resorte)



Figura 1.3 Válvula de alivio

Fuente: www.inoxpa.com

1.2.6.4.3. Válvula de asiento

Su accionamiento es neumático, diseñado como válvula de alivio en instalaciones para industrias lácteas, alimentarias, de bebidas, industria farmacéutica y química fina (Ver Figura 1.4).

La presión del cierre de la válvula viene dada por la del muelle, que puede variarse mediante la regulación del tornillo situado en la parte superior; en el momento que se sobrepasa la misma, la válvula se abre.

Las aplicaciones más importantes son: como válvula de bifurcación para las bombas de desplazamiento positivo o para proteger los equipos.

Figura 1.4 Válvula de asiento

Fuente: www.inoxpa.com

1.2.6.4.4. Válvula de bola

Su uso más común es para apertura y cierre de líneas en tanques de fermentación. Se conforma de una esfera de acero que trabaja en dos posiciones fijas, permanentemente cerrada o abierta (Ver Figura 1.5).

Figura 1.5 Válvula de bola

Fuente: www.inoxpa.com

1.2.6.4.5. Válvula de mariposa

Se utiliza para manejo de grandes caudales de baja presión como agua, vapor, gas y aplicaciones con fluidos espesos.

El cuerpo está formado por un anillo cilíndrico dentro del cual gira transversalmente un disco circular; requiere un cuarto de giro de la posición cerrada a la totalmente abierta (Ver Figura 1.6).

Figura 1.6 Válvula de mariposa

Fuente: www.inoxpa.com

1.2.6.5. Bombas

La materia prima necesita ser bombeada desde el momento de su llegada a la planta, en tanqueros, hacia los silos de almacenamiento y desde éstos a los demás componentes del proceso.

En la industria láctea se utilizan diferentes tipos de bombas, de acuerdo al producto con que se esté trabajando (leche, manjar, yogurt, etc.), las cuales deben ser de acero inoxidable para su desinfección, lavado y deben garantizar la inocuidad del mismo. De la gran variedad de bombas en la industria de la alimentación, se puede describir las principales utilizadas en la industria láctea:

1.2.6.5.1. Bombas centrifugas

Se usan principalmente para presurizar fluidos poco viscosos, como el agua, lácteos, cerveza y en aplicaciones como en evaporadores, concentradores, torres de destilación, etc.

Es una máquina (Ver Figura 1.7), que convierte la potencia de entrada (rotativa, motor) en energía cinética en el fluido por medio de un mecanismo giratorio, el impulsor.

Figura 1.7 Bomba centrifuga

Fuente: www.inoxpa.com

1.2.6.5.2. Bombas de desplazamiento positivo

Se emplean en casos donde se requiere trabajar con altas presiones y líquidos viscosos (Ver Figura 1.8). Particularmente en la industria láctea, su principal uso es en los homogenizadores, los cuales poseen bombas de pistón de 2000 psi.

"En su funcionamiento la energía es periódicamente suministrada al fluido por la aplicación de fuerza directa sobre un volumen de líquido el cual incrementa su presión al valor requerido para moverse en la tubería de descarga"²⁰.

_

²⁰ (API Standard 674, 675, 676).

Figura 1.8 Bomba de desplazamiento positivo

Fuente: improlac@teleline.es

1.2.6.5.3. Bombas de anillo líquido

Su utilización es apta para trabajar con la gran mayoría de los gases saturados, vapores o incluso, cantidades no demasiado voluminosas de líquidos. Son autocebante y pueden bombear líquidos con alta cantidad de aire.

Constan de una carcasa mandrilada cilíndricamente, en la cual el rotor se encuentra dispuesto excéntricamente (Ver Figura 1.9). La carcasa se llena parcialmente de líquido (denominado líquido de servicio) y con el giro del rotor, se transforma en un anillo hidráulico que se adhiere a la carcasa.

Figura 1.9 Bombas de anillo líquido

Fuente: www.tecnositio.com/maquinas/bombas-de-vacio.html

1.2.6.5.4. Bombas de diafragma

Es una bomba de desplazamiento positivo que, para bombear líquido, combina la acción recíproca de un diafragma²¹ de teflón o caucho y de válvulas que abren y cierran de acuerdo al movimiento del mismo (Ver Figura 1.10).

Figura 1.10 Bomba de diafragma

Fuente: www.hellopro.es/BOMBAS_ESPECIALES

1.2.6.6. Filtros

Éstos ayudan a eliminar las partículas macroscópicas de la leche, tales como restos de alimentos, insectos, etc. Son elaborados de acero inoxidable (Ver Figura 1.11).

Es conveniente que se cuente con dos filtros, que trabajen alternativamente mediante una bifurcación²² en la tubería, de tal manera que al obstruirse uno por exceso de suciedad pueda desviarse el flujo hacia el otro sin detener el bombeo de la leche.

-

²¹ **DIAFRAGMA:** Separación, generalmente movible, que intercepta la comunicación entre dos partes de un aparato o de una máquina.

BIFURCACIÓN: Lugar donde un camino se divide en dos ramales o brazos.

Figura 1.11 Filtros

Fuente: www.inoxpa.com

1.2.6.7. Caudalímetro desaireador

Este equipo (Ver Figura 1.12), permite realizar una medida de caudal de un líquido eliminando el aire mezclado en el líquido evitando errores de lectura debidos al aire.

Una válvula de desaireación o purgador de aire, permite la eliminación de las burbujas de aire que alterarían la lectura del caudal, mejorando la lectura de la cantidad de líquido trasvasado.

Una vez alcanzado este valor, el equipo corta la maniobra a la bomba de trasiego²³ acoplada. Este aparato está destinado principalmente a los líquidos alimentarios con poca viscosidad.

 $^{^{23}}$ TRASIEGO: Trastornar, revolver un liquido de un recipiente a otro.

Figura 1.12 Caudalímetro desaireador

Fuente: www.inoxpa.com

1.2.6.8. Tanques de almacenamiento

La industria láctea principalmente emplea silos verticales en el área de recepción (Ver Figura 1.13); su capacidad varía desde los 25 000 hasta los 200 000 litros y tanques horizontales en la producción. Estos son equipados con una tapa de inspección, escalera en acero inoxidable (tangues verticales poseen también una plataforma), abertura para ventilación, salida, agitador, visores con iluminación y grifo de muestra. Las paredes son aisladas con espuma de poliuretano²⁴, y los refuerzos robustos en acero inoxidable son embutidos.

El sistema de control electrónico indica la temperatura de la leche y cada cierto tiempo acciona el agitador, éste la mezcla y homogeniza y en caso de largos períodos de almacenamiento, la bomba de circulación es accionada para bombear la leche a través de los intercambiadores de calor para posenfriamiento.

POLIURETANO: Resina sintética obtenida por condensación de poliésteres y caracterizada por su baja densidad.

Figura 1.13 Tanque de almacenamiento vertical

Fuente: ETSCHEID Techno

1.2.6.9. Pasteurizadores

Es un equipo diseñado para el proceso térmico de la leche y sus derivados u otros productos alimentarios como refrescos y zumos que permite eliminar los microorganismos patógenos, mediante la aplicación de alta temperatura durante un corto período de tiempo (Ver Figura 1.14).

Los pasteurizadores utilizados para la leche, son intercambiadores de calor, de placas o tubos, que utilizan como fuente de calor agua caliente o vapor. Son de acero inoxidable y constan de varias secciones:

- De intercambio de calor entre la leche fría que entra y la leche caliente que sale.
- De calentamiento, donde la leche alcanza la temperatura deseada; sección de mantenimiento, donde esta temperatura se mantiene durante el tiempo deseado.
- De enfriamiento final de la leche, primero mediante intercambio de calor con agua fría y luego con agua helada.

Figura 1.14 Pasteurizador

Fuente: www.inoxpa.com

1.2.6.10. Clarificadora

La clarificación tiene por objeto la eliminación de partículas orgánicas e inorgánicas y aglomerados de proteínas. Este tipo de equipos se basa en la separación por centrifugación, que permite separar partículas de hasta 4 - $5~\mu m$ de diámetro. La cantidad de sólidos removidos puede variar de acuerdo a la calidad sanitaria de la leche.

El equipo (Ver Figura 1.15), está formado por un cuerpo cónico relleno de un cierto número de aletas con una inclinación determinada. La leche entra por la parte exterior de las aletas, y al subir entre ellas las partículas de mayor densidad (impurezas) se dirigen hacia abajo por la fuerza centrífuga.

Figura 1.15 Clarificadora

Fuente: improlac@teleline.es

1.2.6.11. Homogenizador

Se utiliza para homogeneizar emulsiones, líquidos inmiscibles o dispersiones de sólidos en líquidos, mediante una bomba de alta presión, que precipita el producto a la velocidad deseada, enviándolo a través del juego especial de válvulas (Ver Figura 1.16).

La homogeneización evita la separación de la nata y favorece una distribución uniforme de la materia grasa. Durante esta operación, el diámetro de los glóbulos grasos se reduce de 10 a 1µm. Este efecto se consigue haciendo pasar a la leche por pequeñas ranuras a alta presión.

Figura 1.16 Homogenizador

Fuente: improlac@teleline.es

1.2.6.12. Llenadora de fundas de leche

Éste equipo (Ver Figura 1.17), se utiliza para llenar las fundas de leche o refrescos, se da a través de un sistema de control electrónico, neumático, mecánico.

La materia prima es abastecida a la máquina desde los tanques de almacenamiento por medio bombas o por gravedad; esta tiene una electroválvula la cual dosifica la cantidad adecuada; el paso de las fundas está dado por medio de engranajes, guías y rodillos; un pistón neumático con acoples sostiene la resistencia y cada cierto período sella las fundas.

Figura 1.17 Llenadora de fundas de leche

Fuente: LIQUIPACK 2000

1.2.6.13. Envasadora para yogurt y otros postres

Se utiliza para envasar en vasos preformados de material plástico yogurt o postres como helados, manjar (Ver Figura 1.18).

Estos equipos de envasado rotativo están enfocados para envasar grandes lotes de producción y pueden alcanzar grandes velocidades dependiendo del número de boquillas.

Consta de un sistema termoeléctrico y neumático el cual es el encargado de sellar la tapa de aluminio con el envase, la dosificación del producto está controlada por un sistema electromecánico volumétrico, cinta transportadora para la salida de envases terminados.

Figura 1.18 Envasadora de yogurt

Fuente: improlac@teleline.es

1.2.6.14. Etiquetadora (Video Jet)

Se utilizan para la aplicación de etiquetas auto adheribles y codificación a envases, cajas o bolsas, además de poder desarrollar equipos especiales para el decorado con capacidad de aplicar múltiples etiquetas a un producto con la implementación de accesorios a este (Ver Figura 1.19). Se pueden complementar con sistemas de marcaje, por medio de transferencia térmica o bien por medio de inyectores de chorro de tinta.

Figura 1.19 Etiquetadora

Fuente: www.Equitek.com

1.2.7. SISTEMAS AUXILIARES

La determinación de los puntos críticos de contaminación, dentro del proceso y una buena programación son fundamentales para conseguir una buena limpieza. Previniendo el uso ineficiente de recursos y evitando la generación innecesaria de residuos, una organización se puede beneficiar a partir de la reducción de costos operativos y tratamientos.

Para lo cual, se requiere de sistemas complementarios que faciliten la producción, manteniendo así la calidad e inocuidad del producto. A continuación se detalla los principales:

1.2.7.1. Equipo CIP (Cleaning in place)

Consiste en hacer circular secuencialmente por el interior de tuberías y equipos los diferentes productos de limpieza (agua, ácido, sosa caústica) desde sus correspondientes depósitos de almacenamiento (Ver Figura 1.20).

Puede ser parcial o totalmente automatizado, permite optimizar los consumos de agua, energía y productos de limpieza necesarios para realizar la operación.

Figura 1.20 Sistema de lavado CIP

Fuente: www.inoxpa.com

1.2.7.2. Sistema de agua

Son aquellos que proveen agua, que se utiliza durante el proceso, en el lavado de las instalaciones, equipamiento, utensilios, personal, vehículo de transporte y protección contra incendios.

Los mayores consumos se producen en la operación de limpieza. La cantidad de agua total empleada supera varias veces el volumen de leche tratada (entre una y cuatro veces), dependiendo del tipo de instalación y del sistema de limpieza empleado. El abastecimiento de agua a la planta se da a través de la red pública o por el encause de afluentes; en algunos casos se requiere de bombas para su traslado al sitio para lo cual se requiere seguir un procedimiento:

- Almacenamiento de agua
- Captación
- Tratamiento
- Almacenamiento de agua tratada
- Red de distribución abierta

1.2.7.3. Sistema de producción de aire comprimido

Tiene un propósito básico, que es el de suministrar un gas a una presión más alta del que originalmente existía. El incremento de presión puede variar de unas cuantas onzas a miles de libras por pulgada cuadrada (PSI). La compresión tiene variedad de propósitos, por ejemplo:

- Transmitir potencia a una herramienta neumática.
- Aumentar procesos de combustión.
- Transportar y distribuir gas.
- Hacer circular un gas en un proceso o sistema.
- Acelerar reacciones químicas.

El elemento central de una instalación productora de aire comprimido es el compresor (Ver Figura 1.21). Su función es aspirar aire a presión atmosférica y comprimirlo a una presión más elevada. Las características técnicas a valorar de los compresores son: el caudal suministrado y la relación de compresión.

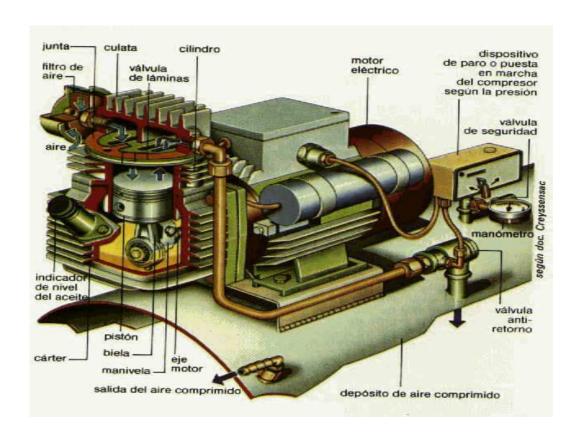


Figura 1.21 Compresor

Fuente: Creyssensac

1.2.7.4. Sistema de refrigeración

Corresponde a un arreglo mecánico, que lleva su cometido acabo forzando la circulación de un fluido refrigerante al interior de un circuito cerrado o semicerrado de tuberías e intercambiadores de calor. La circulación de este fluido refrigerante se realizará a través de compresores y/o bombas, conforme la naturaleza y estado del refrigerante.

1.2.7.5. Banco de hielo

Los recipientes pueden ser de acero galvanizado, acero inoxidable o plástico reforzado. El aislamiento puede ser en poliuretano expandido con protección mecánica en aluminio, chapa galvanizada, acero inoxidable o plástico reforzado con fibra de vidrio.

Como sistema de movimiento del agua se utilizan agitadores accionados por motor eléctrico o por agitación neumática (Ver Figura 1.22). El sistema de funcionamiento pude ser por expansión directa, inundado o recirculado y para cualquier tipo de refrigerante. El agua enfriada, se usa posteriormente para:

- Refrigerar maquinaria industrial.
- Plantas de procesos químicos y de alimentos.
- Procesos de acondicionamiento de aire en grandes instalaciones. El agua generalmente fría es conducida por tuberías hacia una unidad manejadora de aire.
- Producir agua para los intercambiadores de calor.

Figura 1.22 Banco de hielo

Fuente: www.argenfrio.com.ar

1.2.7.6. Climatizador

Es un aparato de acondicionamiento de aire que se encarga de mantener caudales de aire sometidos a un rango de temperatura, humedad, filtración de impurezas (Ver Figura 1.23).

Por sí mismos no producen calor ni frío; éste aporte se da por fuentes externas (caldera o máquinas frigoríficas) por tuberías de agua o gas refrigerante. También puede haber un aporte de calor mediante resistencias eléctricas de apoyo.

Consta de una entrada de aire exterior, un filtro, un ventilador, uno o dos intercambiadores de frío/calor, un separador de gotas (para verano) y un humidificador (para invierno).

Figura 1.23 Unidad manejadora de aire

Fuente: http://es.wikipedia.org/wiki/Archivo

1.2.7.7. Sistema de generación de vapor

En su forma más simple, un sistema de generación de vapor consiste de dos partes esenciales:

- La cámara de destilación o evaporador, donde el agua es calentada y convertida en vapor.
- El condensador, en el cual el vapor es convertido en líquido.

La fuente de calor empleada para vaporizar el agua en las plantas se da mediante vapor de alta o baja presión, el que a su paso por lo serpentines de calentamiento, se condensa, cediendo su calor latente al agua que va a ser evaporada. En la industria para la generación, principalmente se usan sistemas formados por calentadores y calderas.

1.2.7.7.1. Calentadores

Posee un sistema de quemadores, de aire de combustión, sistema de tiro o de presión para extraer del horno el gas de chimenea, sopladores de hollín, y sistemas de aire comprimido que sellan las aberturas para impedir que escape el gas de la chimenea. Los calentadores utilizan cualquier combustible o combinación de combustible, como gas de refinería, gas natural, fuel y carbón en polvo.

1.2.7.7.2. Calderas

Son dispositivos utilizados para calentar el agua o generar vapor a una presión superior a la atmosférica. En definitiva, es un aparato en el que se produce el paso de calor desde un combustible a un fluido. Los principales componentes de las calderas son: cámara de combustión, el quemador, el intercambiador de calor y una carcasa.

De acuerdo al diseño, la dirección del agua a través de los tubos o serpentines y si el calor es aplicado por fuera o por dentro; las calderas utilizadas en la industria pueden clasificarse en:

1.2.7.7.2.1 Calderas Pirotubulares.

Concebida especialmente para aprovechamiento de gases de recuperación de un combustible, mismos que circulan por el interior de tubos cuyo exterior esta bañado por el agua de la caldera (Ver Figura 1.24).

El combustible se quema en un hogar, en donde tiene lugar la transmisión de calor por radiación, y los gases resultantes, se les hace circular a través de los tubos que constituyen el haz tubular de la caldera, y donde tiene lugar el intercambio de calor por conducción y convección.

Figura 1.24 Caldera Pirotubular

Fuente: UMISA

1.2.7.7.2.2 Calderas Acuotubulares.

Al contrario de lo que ocurre en las pirotubulares, es el agua la que circula por el interior de tubos que conforman un circuito cerrado a través del calderín²⁵ o calderines que constituye la superficie de intercambio de calor de la caldera.

Constan de un hogar configurado por tubos de agua, tubos y refractario, o solamente refractario, en el cual se produce la combustión y constituyendo la zona de radiación.

Desde dicho hogar, los gases calientes resultantes de la combustión son conducidos a través del circuito, configurado éste por paneles de tubos y constituyendo la zona de convección. Finalmente, los gases son enviados a la atmósfera a través de la chimenea.

Finalizado el estudio de los equipos principales de una planta pasteurizadora, a continuación se aborda las generalidades de la Industria Láctea INPROLAC S.A.

²⁵ Calderín: Depósito de líquidos pequeño, en forma de caldera.

CAPITULO 2

GENERALIDADES DE LA INDUSTRIA LACTEA INPROLAC S.A.

En este capítulo se realiza una descripción concreta de las características principales de Industrias Lácteas INPROLAC S.A.; así como también los diferentes procesos utilizados para la elaboración de sus productos.

2.1. RESEÑA HISTÓRICA DE LA EMPRESA

Industrias Lácteas INPROLAC S.A., se encuentra ubicada en la ciudad de Cayambe, provincia de Pichincha, a 78 km. de Quito. Nace una fábrica de quesos por el año de 1990 gracias a la visión de Eduardo Cadena Fuertes, con la producción de queso fresco. La planta de producción original, se ubica en la en la Av. Víctor Cartagena y Manuel Córdova Galarza No. 101, en la cual, el primer día se procesaron 40 litros de leche y desde entonces ha venido operando ininterrumpidamente hasta la actualidad.

El 17 de Julio de 1992, pasa a constituirse como Dulac's Cía. Ltda. La constancia, el compromiso con la calidad y el respeto por los clientes, fueron los ingredientes claves para lograr un rápido crecimiento; reflejado en la introducción de dos nuevas líneas de productos: yogurt y manjar de leche, que se sumaban al producto pionero. Para entonces, transcurría el año de 1995 y el volumen de producción llegaba ya a 25.000 litros diarios.

En el 2001 se crea la razón social INPROLAC S.A. y Dulac's se convierte en la primera marca fuerte, a la que se han sumado posteriormente SAMMY (refrescos), LA ROCHELLE (quesos maduros) y PORVENIR (grasas). En abril del 2007, INPROLAC S.A. inaugura sus modernas y amplias instalaciones con cambios tecnológicos importantes, ubicada en la avenida Víctor Cartagena y 24 de Mayo, en la misma ciudad de Cayambe. La misma que trabaja con una producción de 32.000 lts/día y una capacidad instalada de 60.000 litros/ día.

40

Manteniéndose fiel a los principios y valores existentes desde su fundación y

en respuesta al crecimiento acelerado de los últimos años, INPROLAC S.A.

cuenta con más de 70 proveedores de leche, seleccionados entre los mejores

hatos²⁶ ganaderos de la zona de Cayambe, 130 proveedores de materias

primas e insumos y genera más de 250 puestos de trabajo, ya sea directa o

indirectamente.

2.1.1. PROCESOS

A lo largo de 18 años de existencia, en INPROLAC S.A. se ha acumulado una

gran experiencia, que los avala como verdaderos maestros de la lechería.

Cuentan con un equipo humano de amplia trayectoria en el sector lácteo

nacional e internacional, que asegura a sus clientes servicios y productos de

excelencia.

Se ha adquirido equipos de última generación para los procesos de

clarificación, pasteurización y esterilización de líquidos. Además, se cuenta con

una línea de envasado aséptico y envasadoras automáticas que permiten llenar

productos de forma higiénica y eficiente.

Los procedimientos industriales que se emplean, aseguran estabilidad en los

procesos y temperaturas de refrigeración óptimas, para preservar en todo

momento la calidad de los productos terminados.

2.1.2. MISIÓN

Fabricar y comercializar alimentos saludables, únicos y agradables, que

satisfacen las necesidades y expectativas de un mercado cada vez más

exigente.

_

²⁶ **HATOS:** Haciendas ganaderas.

Contamos con proveedores cuidadosamente seleccionados y talento humano idóneo, comprometido, y motivado que asegura la retribución de los accionistas mediante un crecimiento sustentado en procesos tecnológicos de vanguardia y amigables con el planeta.

2.1.3. VISIÓN

Despertar sensaciones de placer en nuestros consumidores con productos saludables y deliciosos.

2.1.4. PRINCIPIOS

Trabajo en equipo Proactividad

Mejora Contínua Innovación y Desarrollo Competencia y Liderazgo Perseverancia

2.2. COMPOSICIÓN Y ESTRUCTURA ORGANIZACIONAL

Industrias Lácteas INPROLAC S.A. tiene una estructura organizacional jerárquica definida (Ver Figura 2.1). Su máxima autoridad es el Presidente Ejecutivo. La operación está dirigida por su Gerente General, el cual es asistido por sus departamentos correspondientes.

En la primera línea de mando están los jefes de producción, contabilidad, ventas, compras, mantenimiento, laboratorio y control de calidad. Estos a su vez están respaldados por un nivel de mando medio y bajo constituidos, el primero, por supervisores, técnicos y bodegueros; el segundo por los trabajadores de los respectivos departamentos funcionales.

Los objetivos y funciones de las principales unidades de organización se detallan a continuación:

2.2.1. PRESIDENCIA EJECUTIVA

Es la máxima autoridad dentro de la empresa y es la encargada de dirigir la administración, su financiamiento e inversión. Su jurisdicción abarca la totalidad de la empresa, todos sus aspectos y unidades correspondientes. Influye en forma determinante en la forma de operación y es el principal responsable de los resultados totales de la empresa en particular y del grado en que éste contribuye a los objetivos del sistema.

2.2.2. GERENCIA GENERAL

Realiza el análisis actual y futuro de la empresa, además estudia las posibilidades de introducir nuevas tecnologías al proceso de producción y nuevos productos al mercado. Debe tomar decisiones que implican análisis completos, generalmente bajo presiones de tiempo y de circunstancias desfavorables. Puede consultar con la superioridad en casos extraordinarios.

2.2.3. DEPARTAMENTO DE PRODUCCIÓN

Se encarga de lograr que los productos lleguen al mercado en las mejores condiciones de calidad, costo y utilidad en base a la simplificación de procesos y recursos materiales, humanos, técnicos, etc.; tomando en consideración el concepto de productividad que medirá la relación entre los insumos y los resultados o productos. También se preocupa por producir cantidad y calidad suficiente para satisfacer las necesidades y gustos de los clientes.

2.2.4. DEPARTAMENTO DE CONTABILIDAD

Su función es la presentación de información financiera mensual para uso interno y externo, así como el uso del catálogo de cuentas para facilitar el registro de las mismas. Tener un registro que se encuentre al día en cuanto a números y nombres de los clientes, proveedores, documentos por cobrar y por pagar, mercancías, etc.

2.2.5. DEPARTAMENTO DE VENTAS

Coordina y dirige las operaciones de la empresa con el objetivo de maximizar los ingresos a través de una efectiva comercialización de los productos que permita satisfacer las necesidades de efectivo, así como la satisfacción de los clientes. Coordina de acuerdo a los pronósticos y ventas, la comercialización de los productos.

2.2.6. DEPARTAMENTO DE COMPRAS

Abastece de materia prima, muebles, maquinaria y servicios necesarios para los procedimientos de producción; procurando que tanto la calidad como la cantidad sea al mejor precio, del mejor proveedor en el lugar y momento oportuno a fin de satisfacer las exigencias de las operaciones. Todas las compras en bienes y servicios que efectúe la empresa deberán ser hechas mediante esta unidad administrativa.

2.2.7. DEPARTAMENTO DE MANTENIMIENTO

Mantiene las instalaciones en estado adecuado para facilitar la elaboración de productos, así como evitar los retardos en producción. La limpieza e higiene estarán directamente relacionadas con el buen mantenimiento de la planta. La política del departamento de mantenimiento es:

Lograr el máximo nivel de productividad de las máquinas, equipos e instalaciones asegurando los estándares de calidad de los productos y seguridad para las personas, optimizando los costos de mantenimiento y el consumo de energía. **VER ANEXO A** (Manual de procedimientos)

2.2.8. DEPARTAMENTO DE CONTROL DE CALIDAD

Se encarga de garantizar la calidad e inocuidad, tanto de la materia prima, como de los productos, a fin de satisfacer a los consumidores; verificando el cumplimiento de normas y procedimientos. Rechaza la materia prima o insumo que no reúna los requisitos de calidad establecidos.

INDUSTRIAS LÁCTEAS INPROLAC S.A. ESTRUCTURA ORGANIZACIONAL

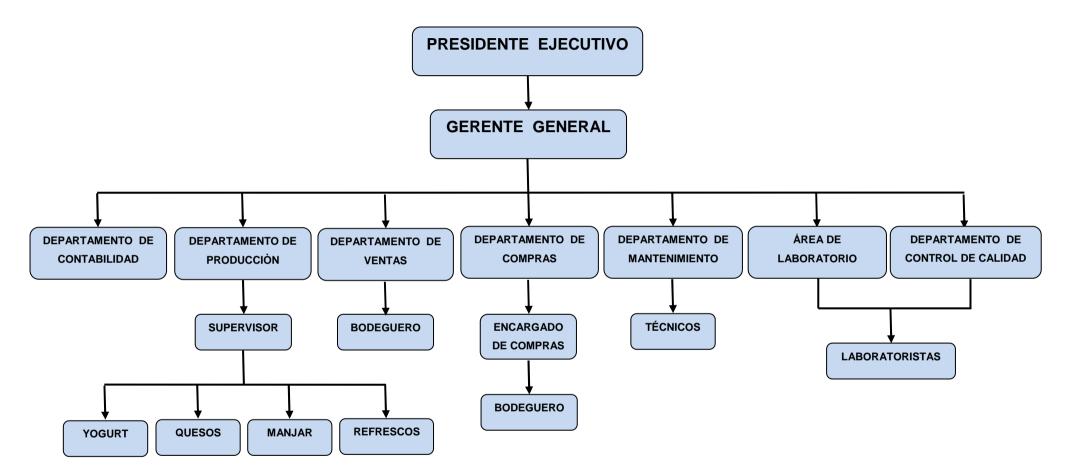


Figura 2.1 Estructura Organizacional INPROLAC S.A.

Fuente: Industrias Lácteas INPROLAC S.A.

2.3. HIGIENE Y SEGURIDAD DE LA INDUSTRIA

El garantizar condiciones que aseguren la elaboración de productos inocuos es una labor compartida entre los diferentes actores que integran la cadena de provisión de alimentos. Por tal motivo se entiende que estas prácticas deben estar dirigidas a propietarios, gerentes, encargados y operarios de plantas que reciben, procesan y comercializan productos lácteos.

En toda la cadena existe responsabilidades y cualquier desvío puede provocar que ese producto ya no cumpla con las expectativas deseadas y que produzca algún tipo de alteración en el estado de salud de quien lo consume.

Actualmente el consumidor exige cada vez más, razón por la cual, estar en el mercado y mantenerse requiere del cumplimiento de normativas de higiene y seguridad, que son la base de un largo camino que se tiene que recorrer para lograr resultados satisfactorios, éstas se logran a través de:

2.3.1. BUENAS PRÁCTICAS DE MANUFACTURA (BPM)

Industrias Lácteas INPROLAC S.A., fiel a su pensamiento de brindar un producto de calidad manteniendo su inocuidad e integridad, aplica a toda su cadena de producción los criterios de higiene que recomiendan las Buenas Prácticas de Manufactura.

Las BPM son un conjunto de normas, procedimientos, controles y condiciones que proveen y garantizan el logro de condiciones de higiene y limpieza, que son implementados antes, durante y después del proceso de producción y en las instalaciones de la planta o establecimiento, con el fin de garantizar la calidad e inocuidad de los alimentos. Por cumplir con las mismas, se debe seguir los siguientes parámetros:

2.3.1.1. Higiene personal

Dentro de la aplicación de las Buenas Prácticas de Manufactura se debe tener en cuenta la higiene del personal:

- Verificar que la indumentaria este limpia.
- Cuidar la higiene personal.
- Salud. Evite el contacto con alimentos si padece afecciones de piel, heridas, resfrío, diarrea u otras, notificación al jefe del área.
- Respetar los NO del sector
 - o NO fumar
 - o NO beber
 - o NO comer
- Cuidar su sector de trabajo.

2.3.1.2. Control de plagas

- Causan pérdidas económicas.
- Por salud: causan enfermedades
- Vestidores y comedores deben estar libres de lugares que alberguen plagas.
- Plagas comunes:
 - o Insectos
 - o Roedores
 - o Aves

2.3.1.3. Clasificación de proveedores

La elección de un buen proveedor de materia prima es importante, ya que la calidad del producto final depende en gran escala del insumo adquirido y se debe considerar los siguientes parámetros:

- Calidad
- Precios
- Puntualidad de entrega
- Forma de pago
- Condiciones de transporte
- Certificaciones

2.3.1.4. Control del proceso

- Contar con manuales de operación o producción (Formulación, Rendimiento).
- Seguir procedimientos indicados en los manuales.
- Zonas de trabajo (recepción, limpieza, fabricación, mezclado, etc.)
 limpias y libres de materiales extraños. No haber tránsito de material o personal ajenos.
- Todo proceso debe ser supervisado por personal calificado.
- Evitar exceso de aceites y lubricantes.
- Todo producto en proceso o ingredientes, en recipientes deben estar tapados y las bolsas deben tener un cierre sanitario.
- Tener cuidado al transportar, mover, manipular o almacenar para evitar daño al envase que contiene el producto.
- Ninguna materia prima, producto en proceso o terminado debe permanecer en el equipo o área de un día para otro.

2.3.1.5. Control de agua

El agua utilizada para el proceso de alimentos debe ser potable y es aquella libre de microorganismos patógenos, minerales y sustancias orgánicas que puedan producir efectos fisiológicos adversos. **VER ANEXO B** (Calidad del agua)

De la inocuidad con que debe contar el agua, ésta debe poseer cierta composición para evitar el daño de equipos, utensilios, red de distribución entre

otras cosas. El control se debe realizar cada tres meses, implica análisis microbiológicos y físicos - químicos.

Se debe tener un plan de control continuo del nivel de cloro residual. Para el tratamiento del agua se tiene tres procedimientos:

- Cloración
- Ozonificación
- Luz Ultravioleta

Cloración.- La cloración elimina las enfermedades transmitidas por el agua.

Ventajas:

- Este proceso es el más sencillo de esterilización y de mínimo costo.
- Elimina gran cantidad de microorganismos.

Desventaja:

 Si sobrepasa el mínimo de cloro, se habla de cloración dañina para la salud.

Ozonificación.- Su eficacia depende del tiempo de contacto y de la concentración de materia orgánica presente. La capacidad oxidante del ozono provoca una intoxicación, que conduce a la muerte a todos los microorganismos.

Ventajas:

- No deja residuos.
- No confiere aromas u olores particulares al producto final.
- El ozono oxida al hierro, por lo que el sabor a metal se desvanece.

Desventaja:

El costo de los equipos

Luz ultravioleta.- La radiación de la luz atraviesa un tubo de cuarzo y se contacta con los microorganismos que se encuentran en el agua, éstos

absorben la radiación que penetra la membrana llegando al núcleo, golpeándolo hasta destruirlo.

Ventajas:

- No generan sub productos.
- Ningún cambio en el gusto, olor, pH o conductividad.
- Efectivo contra virus.

Desventajas

El costo de los equipos

2.3.1.6. Calibración y Mantenimiento

Calibración

Asegura que las mediciones realizadas durante el proceso de producción sean correctas, evitando así errores que puedan afectar la inocuidad de los alimentos o pérdidas económicas al productor o cliente. Por lo cual, debe existir un plan de calibración de todos los aparatos de medición (balanzas, termómetros). La frecuencia de calibración se determina de acuerdo al aparato y necesidad.

Mantenimiento

Es un factor determinante en el proceso de producción de lácteos, ya que si no se realiza de forma correcta, el equipo o máquina puede provocar la contaminación del producto, por lo cual debe existir un plan de mantenimiento preventivo en el cual se establezcan las frecuencias, revisiones, cambios, etc., a realizarse.

2.3.1.7. Servicios higiénicos

- Instalar cantidad suficiente de servicios, lugares apropiados, separados para ambos sexos, adyacentes a vestidores.
- No tener acceso a zonas de manipulación.
- Servicios sanitarios

- o Inodoro y lavamanos de cerámica.
- o Dispensadores de jabón líquido.
- o Dispensador de toallas o secador eléctrico.
- Recipientes para basura, con tapadera que no se tenga que tocar con la mano.
- Dispensador de papel higiénico y escobilla para inodoro.
- Grifos que no requieran accionamiento manual.

2.3.1.8. Iluminación

- Alumbrado natural y artificial adecuado, no alterar colores.
- Luminarias y lámparas colgadas, deben estar protegidas con pantalla o cualquier otro sistema de seguridad.

2.3.1.9. Ventilación

- Ventilación suficiente para impedir condensación, desarrollo de mohos²⁷.
- Ventilación apropiada en vestidores y baños.
- En salas refrigeradas, contar con ventilación mecánica.

2.3.1.10. Medios de transporte

- Todo vehículo debe ser inspeccionado antes de ser cargado (estado sanitario).
- No transportar alimentos con otros productos que ofrezcan riesgo.
- Vehículos que transporten alimentos o materia prima, deben estar construidos de materiales que puedan limpiarse y sanearse con facilidad.
- Verificar periódicamente los sistemas de refrigeración en vehículos.

²⁷ **MOHO:** Especie de hongo de tamaño muy pequeño, que vive en medios orgánicos ricos en materias nutritivas.

2.3.1.11. Seguridad industrial

Industria Láctea INPROLAC S.A., se encuentra vinculada con la seguridad ocupacional y ésta se relaciona con la higiene laboral.

Los accidentes provocan: lesiones, baja moral de trabajo, deterioro del material, avería de las instalaciones en general y consecuentemente pérdidas de tiempo de producción.

Los mayores riesgos en plantas elaboradoras de lácteos se pueden atribuir a las siguientes fuentes:

- Altas temperaturas.
- Sistemas de iluminación insuficientes o mal diseñados.
- Ventilación insuficiente.
- Fallas en los equipos, procesos u operaciones como:
 - o Escapes de amoniaco en la sala de compresores.
 - Filtraciones o derrames de soluciones cáusticas.
 - o Manejo de cargadores.
 - o Gases provenientes de las operaciones de soldadura.
- Ingreso e inspección de espacios confinados.
- Riesgos de incendio.
- Almacenamiento y uso de substancias tóxicas y peligrosas.

Para reducir las probabilidades de ocurrencia de accidentes se pueden adoptar las siguientes medidas, además de las señaladas anteriormente:

- El uso de un código de conducta que norme los procedimientos relativos al manejo de cargadores, al apilamiento y movimiento de materiales y el entrenamiento de los conductores.
- La adopción al interior de las fábricas de "rompe velocidades" para mantener la velocidad dentro de límites aceptables, el uso de espejos convexos instalados en esquinas estratégicas, la designación de áreas restringidas, la separación del tráfico peatonal del vehicular se convierten en factores importante en el control y reducción de riesgos.

- La realización de un sistema de procedimientos y el entrenamiento de los operadores a cargo de las operaciones de mantención e inspección de las áreas y estanques confinados.
- La realización de un programa de capacitación y entrenamiento para los trabajadores en las técnicas y principios de un trabajo seguro.
- Para realizar las mediciones, calibración, ajustes, limpieza, etc. se debe hacer con la máquina parada o si es necesario parar toda la planta, igualmente al operar los equipos del proceso de producción no se debe distraer, ya que provocarían un incidente innecesario.

Otras recomendaciones a los trabajadores de la planta para que no exista accidentes ni contaminación al producto son:

- Iluminación apropiada para el trabajo.
- En ambiente con ruido utilizar orejeras.
- Mandil de uniforme con manga larga ceñida.
- Cofia para hombres y mujeres para no contaminar el producto con cabellos humanos.
- Usar guantes en procesos donde se trata con la materia prima, nutrientes, etc.
- Mascarilla en ambientes donde exista circulación de polvo en el aire.
- Gafas de protección.
- En caso de quemadura salir de la planta inmediatamente, acudir al centro médico.
- En caso de cortadura salir de las áreas de producción inmediatamente,
 lavar con abundante agua, acudir al centro médico.
- Si al estar utilizando químicos para el tratamiento de agua, estos se introdujeran accidentalmente a los ojos, acudir rápidamente al centro médico.
- El ambiente debe ser propicio para el trabajo.
- Se debe de tener un plan sobre la evacuación del personal en caso de emergencia. VER ANEXO C (Mapa de riesgos y evacuación de la planta)

53

2.4. LINEAS DE PRODUCCIÓN

Industrias Lácteas INPROLAC S.A., elabora productos que se obtienen al

someter a la leche a determinados procedimientos tecnológicos, los cuales

cumplen con un estricto control de parámetros y están regidos bajo normas de

seguridad e higiene. Los principales derivados fabricados por la empresa se

describen a continuación:

2.4.1. LECHE PASTEURIZADA

Durante un tiempo breve se hace hervir la leche homogeneizada a unos 75 - 90

° C. Se destruyen los microorganismos, pero son leches de corta duración. Se

envasan en fundas y conviene hervirlas antes de tomarlas. La vida útil de ésta,

es de 3 días a una temperatura menor a 8 °C.

Figura 2.2 Presentación de la Leche Pasteurizada

Figura 2.3 Información Nutricional de Leche Pasteurizada

Fuente: Industrias Lácteas INPROLAC S.A.

2.4.2. LECHE ULTRA PASTEURIZADA

La leche UHT se define como: natural, entera, desnatada o semidesnatada, sometida a un proceso de calentamiento en condiciones tales de temperatura y tiempo que asegure la destrucción de los microorganismos y la inactividad de sus formas de resistencia y posteriormente envasada en condiciones asépticas²⁸". Su duración es de 30 días a temperatura ambiente.

²⁸ **ASÉPTICO:** Perteneciente o relativo a la asepsia.

Figura 2.4 Presentación de la Leche Ultra Pasteurizada UHT

Fuente: Industrias Lácteas INPROLAC S.A.

	00	
INFORMACIO	N NUTRICIONAL	Si .
Tamaño por porción: 1 taz Porciones por envase: 4	za (240 cm3)	
Cantidad por porción		
Cantidad por porción Energía (calorías): 630kJ Energía de Grasa (caloría	s de grasa):300 k	
Energía (calorías): 630kJ	s de grasa):300 k %Vale	J (70Cal) or Diario * 129
Energía (calorías): 630kJ Energía de Grasa (caloría	s de grasa):300 k	or Diario *
Energía (calorías): 630kJ Energía de Grasa (caloría Grasa	s de grasa):300 k %Valu 8 g 5 g	or Diario * 12% 25%
Energía (calorías): 630kJ Energía de Grasa (caloría Grasa Grasa Saturada	s de grasa):300 k %Vale 8 g 5 g 34 mg	or Diario * 12%
Energía (calorías): 630kJ Energía de Grasa (caloría Grasa Grasa Saturada Colesterol	s de grasa):300 k %Valu 8 g 5 g	or Diario * 12% 25% 11%
Energía (calorías): 630kJ Energía de Grasa (caloría Grasa Grasa Saturada Colesterol Sodio	8 g 5 g 34 mg 120 mg 11 g	or Diario * 129 259 119 59
Energía (calorías): 630kJ Energía de Grasa (caloría Grasa Grasa Saturada Colesterol Sodio Carbohidratos Totales	8 g 8 g 5 g 34 mg 120 mg	or Diario * 129 259 119 59

Figura 2.5 Información Nutricional de Leche Ultra Pasteurizada UHT

2.4.3. QUESOS

Elaborados a partir de leche entera, obteniendo variedad de quesos frescos, de maduración corta y de maduración media.

Tipos y tamaños:

Fresco Dulac's de 350 g. y 500 g.

Gouda La Rochelle de 500 g. y 1 kg.

Ricotta Dulac's de 500 g.

Mozzarella Dulac's de 500 g., 700 g. y 1 kg.

Figura 2.6 Presentación de Quesos Dulac´s

Figura 2.7 Información Nutricional de Quesos Dulac's

Fuente: Industrias Lácteas INPROLAC S.A.

2.4.4. POSTRES

El manjar de leche es el producto de mayor demanda por parte de los clientes, ya que tiene agradable sabor y consistencia.

Tipos y tamaños:

Envases de 250 g. y 500 g.

Six - Pack de 6 unidades de 50 g. c/u.

Figura 2.8 Presentación de Manjar Dulac's

Fuente: Industrias Lácteas INPROLAC S.A.

Figura 2.9 Información Nutricional de Manjar Dulac's

2.4.5. YOGURT

Constituye un importante aporte de proteínas de buena calidad, indispensables para desarrollar y fortalecer músculos y tejidos. Además, por su alto contenido de organismos benéficos, ayuda a equilibrar las funciones digestivas y actúa como barrera natural contra todo tipo de infecciones y enfermedades.

Sabores y tamaños: Mora, Durazno, Fresa y Guanábana Vasos de 200 g.

Figura 2.10 Presentación de Yogurt de Vaso Dulac´s

Figura 2.11 Información Nutricional de Yogurt de Vaso Dulac's

Fuente: Industrias Lácteas INPROLAC S.A.

2.4.6. INDUSTRIALES

Quesos, mantequilla, crema de leche y manjar en grandes cantidades destinados a la utilización en restaurantes, pizzerías, pastelerías, hoteles, etc.

Tipos y tamaños:

Queso Pizza en paquetes de 4 Kg.

Queso Ricotta en paquetes de 4 Kg.

Mantequilla (82 – 84% de grasa) en paquetes de 4Kg.

Crema de leche (40% de grasa) en pomas de 4Kg.

Manjar en pomas de 4Kg.

Venta a granel en bidones de 20, 70 y 150 ltr.

Figura 2.12 Presentación de Industriales Dulac's

Fuente: Industrias Lácteas INPROLAC S.A.

2.5. PROCESOS DE PRODUCCIÓN

La calidad de la leche tiene fundamental importancia para obtener un producto uniforme y de buenas cualidades. Por lo cual, se controla diariamente la leche que se recibe de acuerdo a parámetros de selección para su admisión o rechazo.

Tomando en cuenta todo el procedimiento que se efectúa para el estricto control de la calidad de la leche durante la recepción, se puede garantizar la homogenización del líquido, previo a la elaboración de los productos.

Dentro de la industria del sector lácteo, la empresa estudia las tecnologías de producción asociadas a las actividades de mayor consumo, que son las siguientes:

- Leche pasteurizada
- Leche ultra pasteurizada (UHT)
- Yogurt
- Quesos
- Manjar
- Mantequilla

A continuación, se presenta los diagramas de flujo de los procesos productivos de los productos elaborados por la empresa:

2.5.1. LECHE PASTEURIZADA

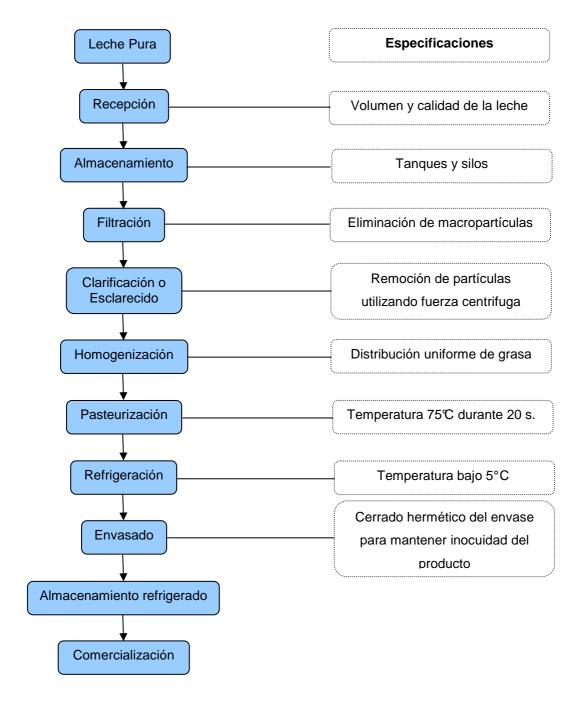


Figura 2.13 Diagrama de Flujo de la Elaboración de Leche Pasteurizada

2.5.2. LECHE ULTRA PASTEURIZADA (UHT)

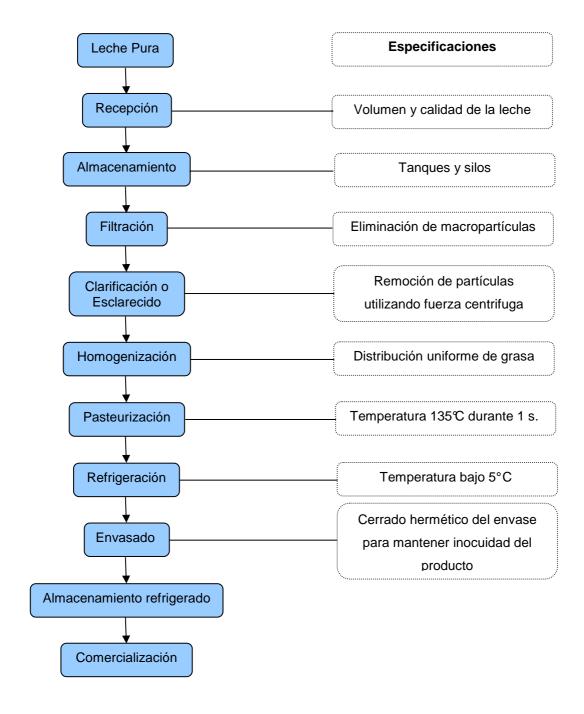


Figura 2.14 Diagrama de Flujo de la Elaboración de Leche Ultra

Pasteurizada UHT

2.5.3. YOGURT

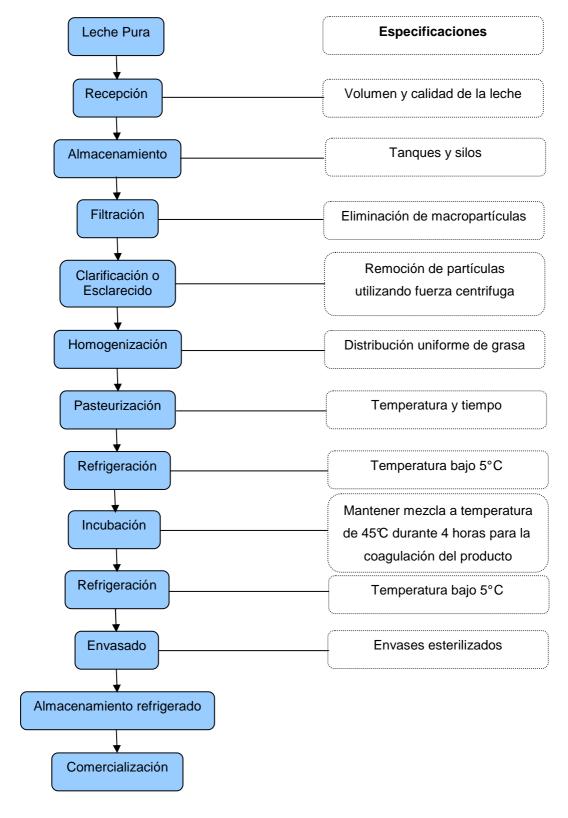


Figura 2.15 Diagrama de Flujo de la Elaboración del Yogurt

2.5.4. QUESOS

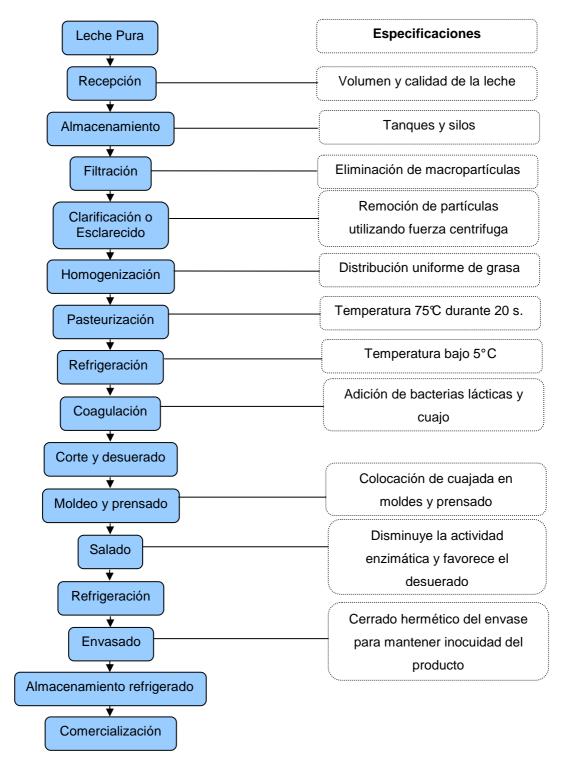


Figura 2.16 Diagrama de Flujo de la Elaboración de Quesos

2.5.5. **MANJAR**

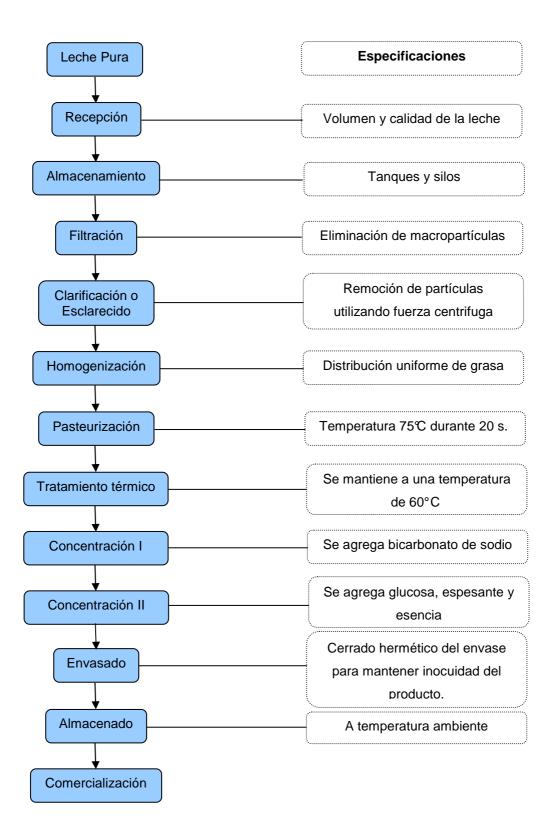


Figura 2.17 Diagrama de Flujo de la Elaboración del Manjar

2.5.6. MANTEQUILLA

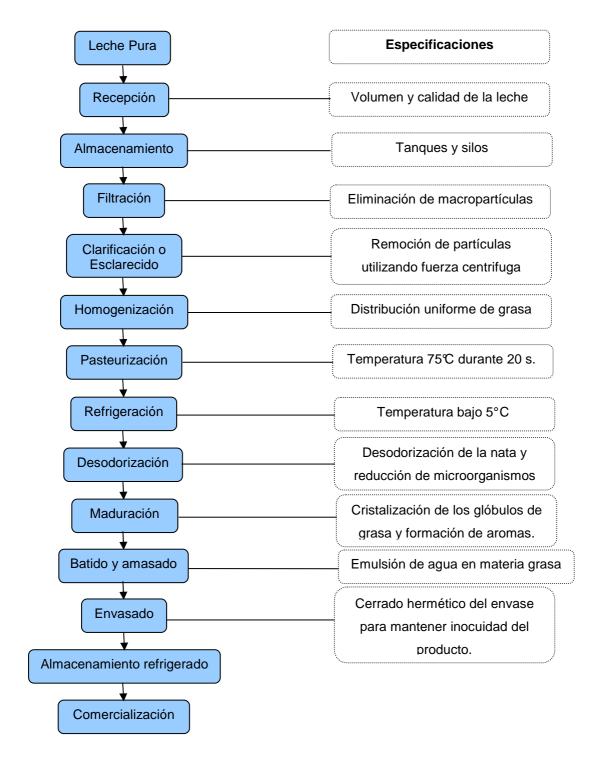


Figura 2.18 Diagrama de Flujo de la Elaboración de Mantequilla

2.6. IDENTIFICACIÓN DE ASPECTOS AMBIENTALES

De acuerdo al análisis realizado de todo el desarrollo de los procesos productivos, se identificaron los aspectos ambientales principales generados por la empresa y a su vez, las medidas de prevención de los potenciales impactos.

2.6.1. MEDIO AMBIENTE

Industrias Lácteas INPROLAC S.A., al encontrarse ubicada relativamente cerca de la cabecera cantonal, se ha visto en la necesidad de mejorar la tecnología en lo que respecta principalmente con la prevención de contaminación al medio ambiente.

A pesar de la diversidad de productos elaborados por la planta, la contaminación producida por este tipo de industria está originada, fundamentalmente por residuos líquidos, siendo la provocada por residuos sólidos, gases o ruidos de mucha menor relevancia.

La emisión de residuos contaminantes es mínima, debido al estricto control que existe en el tratamiento de los mismos, ya sea mediante filtros o piscinas de tratamiento de aguas residuales; esta última es de importancia, ya que el consumo de agua es elevado por el hecho de ser utilizada en la mayoría de procesos.

2.6.2. GENERACIÓN DE FRÍO

En Industrias Lácteas INPROLAC S.A., se genera frío con la finalidad de proporcionar refrigeración en los diferentes procesos y cámaras de almacenamiento.

Para la producción de frío se utiliza compresores eléctricos, los cuales evaporan algunas sustancias como: anhídrido carbónico, freón, amoniaco, etc.; siendo éstos perjudiciales para el ambiente en el caso de que no exista un manejo adecuado.

2.6.3. GENERACIÓN DE CALOR

La necesidad de calor en la planta, es sustentada por vapor de agua como portador térmico, el mismo que es generado en calderos y utilizado en diversos procesos térmicos. El vapor es transportado por toda la planta a través de tuberías cubiertas con aislante térmico para evitar pérdidas de calor durante su distribución. La contaminación generada varía de acuerdo al mantenimiento que se realice a los equipos.

2.6.4. GENERACIÓN DE RUIDO

Otra fuente principal de contaminación es la generación de ruido, el mismo que en su mayoría puede ser generado por operaciones de limpieza de equipos con agua a presión o con vapor, por las máquinas y los equipos neumáticos involucrados en el proceso productivo.

En Industrias Lácteas INPROLAC S.A., los problemas de ruidos no suelen provocar efectos ambientales importantes, ya que el ruido se genera de forma interna en la planta; es decir a lo largo del proceso, por lo cual, los operadores se encuentran dotados con elementos necesarios para su protección auditiva.

2.6.5. CONSUMO DE AGUA

El agua es uno de los elementos de mayor consumo en la planta, ya que se la utiliza en la mayoría de procesos, ya sea de una u otra forma. Principalmente es utilizada en el proceso de pasteurización, en los intercambiadores de calor para disminuir la temperatura y posteriormente para la limpieza del equipo.

Otra área en donde es utilizada es en calderos, pero debe ser tratada anteriormente para bajar el contenido de sulfatos y carbonatos, con el fin de evitar que existan incrustaciones de sales en tuberías y principalmente en el interior de los calderos.

2.6.6. GENERACIÓN DE RESIDUOS

Los grandes problemas ambientales asociados al sector lácteo tienen relación básicamente con los residuos líquidos y sólidos. Los primeros, son generados principalmente por las pérdidas de producto, materias primas y por las aguas de lavado, que son utilizadas con el fin de desinfectar los equipos en cada etapa del proceso.

Los últimos son generados en el proceso productivo, dentro de los cuales se tiene plásticos, maderas, metal, papel y sedimentos de los procesos de producción. Los residuos sólidos generados por la planta, son recogidos por empresas recicladoras, por lo que representan mayor contaminación; por otro lado las aguas residuales son canalizadas hacia piscinas para su tratamiento físico – químico, para posteriormente ser dirigidas hacia el sistema de desagüe.

Una vez tratado las generalidades de la Industria Láctea INPROLAC S.A., se aborda la teoría de mantenimiento, definiciones y principalmente el mantenimiento centrado en la confiabilidad.

CAPITULO 3

MANTENIMIENTO, GENERALIDADES Y DEFINICIONES

INTRODUCCIÓN

Las industrias de alimentos continuamente buscan nuevas formas de mejorar la eficiencia e incrementar su producción a partir del funcionamiento óptimo de las máquinas y equipos de producción; para ello, es necesaria la creación de un plan de mantenimiento, que proporcione mayor confiabilidad y durabilidad de éstos, garantizando la calidad e inocuidad del producto.

El implementar un plan de mantenimiento significa mejorar las buenas prácticas de manufactura, seguridad operacional, reducción de los costos por mantenimiento, reparación de equipo y maquinaria en la industria. Éste se diseña usando datos de los distintos sistemas y sub - sistemas; a fin de conocer que es lo que se va a dar mantenimiento, cómo se lo va a hacer y cuándo o cuál es la oportunidad más propicia para hacerlo.

En este capítulo, se da a conocer las nociones fundamentales acerca de la teoría de mantenimiento, principalmente en conocimientos que tienen que ver con el mantenimiento centrado en la confiabilidad (RCM).

3.1. DEFINICIÓN DE MANTENIMIENTO

Mantenimiento es un sistema o conjunto de actividades que permiten la operatividad eficiente y sustentable de la maquinaria, instalaciones y edificaciones, sosteniendo su desempeño en condiciones de confiabilidad, seguridad, competitividad y respeto al medio ambiente. Conforme con la anterior definición se deducen distintas actividades:

- Prevenir y/ó corregir averías.
- Cuantificar y/ó evaluar el estado de las instalaciones.
- Aspecto económico (costos).

3.2. OBJETIVOS DEL MANTENIMIENTO INDUSTRIAL

Deben alinearse con los de la empresa, ser específicos y estar presentes en las acciones que realice el área. Éstos son:

Máxima producción:

- Asegurar la óptima disponibilidad y mantener la fiabilidad de los sistemas, instalaciones, máquinas y equipos.
- o Reparar las averías en el menor tiempo posible.

Mínimo costo:

- Reducir a su mínima expresión las fallas.
- Aumentar la vida útil de las máquinas e instalaciones.
- o Manejo óptimo de stock.
- Manejarse dentro de costos anuales regulares.

Calidad requerida:

- Cuando se realizan las reparaciones en los equipos e instalaciones, aparte de solucionar el problema, se debe mantener la calidad requerida.
- Mantener el funcionamiento regular de la producción sin distorsiones.
- o Eliminar las averías que afecten la calidad del producto.

Conservación de la energía:

- o Conservar en buen estado las instalaciones auxiliares.
- Eliminar paros y puestas de marcha continuos.
- o Controlar el rendimiento de los equipos.

• Conservación del medio ambiente:

- Mantener las protecciones en aquellos equipos que pueden producir fugas contaminantes.
- Evitar averías en equipos e instalaciones correctoras de poluciones.

Higiene y seguridad:

- Mantener las protecciones de seguridad en los equipos para evitar accidentes.
- Adiestrar al personal sobre normas para evitar los accidentes.

- o Asegurar que los equipos funcionen en forma adecuada.
- Implicación del personal:
 - Obtener la participación del personal para poder implementar el plan de mantenimiento.
 - Implicar a los trabajadores en las técnicas de calidad.

3.3. CLASIFICACIÓN DEL MANTENIMIENTO

Existen varios tipos, con características propias, que se adoptan de acuerdo a las circunstancias encontradas o establecidas; cuando se trata de realizar actividades de mantenimiento con el objeto de obtener un sistema organizado para enfrentar de manera eficiente éstas. Los principales se citan a continuación:

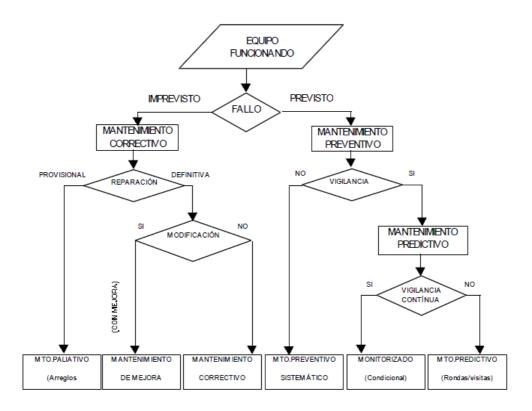


Figura 3.1 Clasificación del mantenimiento basado en el tipo de fallo y posibilidad de vigilancia

Fuente: Abaldin.7; Manual de Mantenimiento de Instalaciones Industriales.

3.3.1. MANTENIMIENTO CORRECTIVO

Consiste en dejar a los equipos que operen sin ningún servicio o control del estado de los mismos, hasta que se produzca una falla en su funcionamiento; dada ésta situación se realizará las debidas labores de reparación.

Arreglado el problema o defecto, no se realizarán chequeos periódicos sinó hasta que se presente otra anomalía. Ésta actitud se le atribuye razones como indiferencia o desconocimiento de las técnicas de programación y planificación.

Falta de justificación económica para los recursos que se necesitan para la aplicación de estas técnicas. Demanda excesiva, temporal o permanente, de la capacidad normal y máxima de los equipos.

No es aconsejable este tipo de mantenimiento, porque provoca repentinas paradas, equipos estropeados seriamente y altos costos en reparación que ello involucra. Pero no se lo puede descartar en su totalidad, ya que es imposible prever todos los daños y muchos de ellos estarán fuera de alcance. Sus características son:

- Está basado en la intervención rápida, después de ocurrida la avería.
- Provoca discontinuidad en los flujos de producción y logísticos.
- Tiene una gran incidencia en los costos de mantenimiento por producción no efectuada.
- Tiene un bajo nivel de organización.
- Se denomina también mantenimiento accidental.

3.3.1.1. Ventajas

- No requiere una gran infraestructura técnica, ni elevada capacidad de análisis.
- Máximo aprovechamiento de la vida útil de los equipos.

3.3.1.2. Desventajas

- Las averías se presentan de forma imprevista, lo que origina trastornos a la producción.
- Riesgo de fallos de elementos difíciles de adquirir, lo que implica la necesidad de un "stock" de repuestos importante.
- Baja calidad del mantenimiento como consecuencia del poco tiempo disponible para reparar.

3.3.1.3. Aplicaciones

- Cuando el costo total de las paradas ocasionadas sea menor que el costo total de las acciones preventivas.
- Esto sólo se da en sistemas secundarios cuya avería no afecta de forma importante a la producción.
- Estadísticamente resulta ser el aplicado en mayor proporción en la mayoría de las industrias.

El objetivo en toda empresa, es llegar a disminuir al mínimo las intervenciones de mantenimiento correctivo, puesto que éste se realiza cuando la falla se produjo y generalmente provoca la rotura de más componentes que si se hubiese detectado la falla con antelación.

3.3.2. MANTENIMIENTO PREVENTIVO

Es la ejecución planificada de un sistema de inspecciones periódicas, cíclicas y programadas de trabajos previstos como necesarios, para aplicar a todas las instalaciones, máquinas o equipos, con el fin de disminuir los casos de emergencias y permitir un mayor tiempo de operación en forma contínua.

En definitiva, se trata de dotar a la empresa, de un sistema que le permita detectar y corregir el origen de las posibles fallas técnicas y no reparar las consecuencias de las mismas, una vez que éstas se han producido.

Cualquiera que sea el nivel aplicado, subsistirán inevitablemente fallas residuales de carácter aleatorio. Y en forma general, reduciendo los imprevistos o fortuitos, se mejora el clima en cuanto a las relaciones humanas, porque cuando sucede algún problema, se crea una tensión en el personal.

Se debe implementar una política de mantenimiento eficaz, que cuantifique el costo directo del mantenimiento y que a su vez permita:

- La gestión de documentación técnica.
- Preparar intervenciones preventivas.
- Acordar con producción paradas programadas.

3.3.2.1. Ventajas

- Importante reducción de paradas imprevistas en equipos.
- Solo es adecuado cuando, por la naturaleza del equipo, existe una cierta relación entre probabilidad de fallos y duración de vida.

3.3.2.2. Desventajas

- No se aprovecha la vida útil completa del equipo.
- Aumenta el gasto y disminuye la disponibilidad si no se elige convenientemente la frecuencia de las acciones preventivas.

3.3.2.3. Aplicaciones

- En equipos de naturaleza mecánica o electromecánica sometidos a desgaste seguro.
- Equipos cuya relación fallo duración de vida es bien conocida.

3.3.3. MANTENIMIENTO PREDICTIVO

Consiste en el análisis de parámetros de funcionamiento, cuya evolución permite detectar un fallo antes de que éste tenga consecuencias más graves y así planificar todas las intervenciones con antelación suficiente.

Una de las características más importantes de este tipo de mantenimiento es que no debe alterar el funcionamiento normal de la planta, mientras se está aplicando. La inspección de los parámetros se puede realizar de forma periódica o de forma contínua, dependiendo de diversos factores como son: el tipo de planta, los tipos de fallos a diagnosticar y la inversión que se quiera realizar.

3.3.3.1. Ventajas

- Reduce el tiempo de parada al conocer exactamente que elemento es el que falla.
- Permite seguir la evolución de un defecto en el tiempo.
- Optimiza la gestión del personal de mantenimiento.
- Requiere una plantilla de mantenimiento más reducida.
- La verificación del estado de la maquinaria, tanto realizada de forma periódica, como de forma accidental; permite confeccionar un archivo histórico del comportamiento mecánico y operacional.
- Da a conocer con exactitud el tiempo límite de actuación evitando un fallo imprevisto.
- Facilita la toma de decisiones sobre la parada de una línea de máquinas en momentos críticos.
- Garantiza la confección de formas internas de funcionamientos o compras de nuevos equipos.

3.3.3.2. Desventajas

- Requiere personal calificado e instrumentación de análisis costosa.
- No es viable una monitorización de todos los parámetros funcionales significativos, por lo que pueden presentarse averías no detectadas por el programa de vigilancia.
- Se pueden presentar averías en el intervalo de tiempo comprendido entre dos medidas consecutivas.

3.3.3.3. Aplicaciones

- Maquinaria rotativa
- Motores eléctricos
- Equipos estáticos

3.3.4. MANTENIMIENTO PRODUCTIVO TOTAL (TPM)

Total Productive Mantenaince, es un sistema orientado a lograr: cero accidentes, defectos y averías. Se considera como estrategia, ya que ayuda a crear capacidades competitivas a través de la eliminación rigurosa y sistemática de las deficiencias de los sistemas operativos.

El TPM permite diferenciar una organización en relación a su competencia debido al impacto en la reducción de los costos, mejora de los tiempos de respuesta, fiabilidad de suministros, el conocimiento que poseen las personas, calidad de los productos y servicios finales.

3.3.4.1. Misión

Es lograr que la empresa obtenga un rendimiento económico creciente, en un ambiente agradable como producto de la interacción del personal con los sistemas, equipos y herramientas.

3.3.4.2. **Objetivo**

Maximizar la efectividad total de los sistemas productivos, por medio de la eliminación de sus pérdidas, conforme a la participación de todos los empleados en pequeños grupos de actividades voluntarias.

3.3.4.3. Beneficios

- Organizativos
 - Mejora la calidad del ambiente de trabajo.
 - Mejor control de las operaciones.

- Creación de una cultura de responsabilidad, disciplina y respeto por las normas.
- Creación de un ambiente donde la participación, colaboración y creatividad sea una realidad.
- o Dimensionamiento adecuado de las plantillas de personal.
- o Redes de comunicación eficaces.

Seguridad

- Mejora las condiciones ambientales.
- o Incremento de la capacidad de identificación de problemas potenciales y de búsqueda de acciones correctivas.
- o Entender el porqué de ciertas normas, en lugar del cómo hacerlo.
- o Prevención y eliminación de causas potenciales de accidentes.
- o Elimina radicalmente las fuentes de contaminación y polución.

Productividad

- o Elimina pérdidas que afectan la productividad de la planta.
- Mejora de la fiabilidad y disponibilidad de los equipos.
- Reducción de los costos de mantenimiento.
- Mejora de la calidad del producto final.
- Menor costo financiero por recambios.
- Mejora de tecnología de la empresa.
- Aumento de la capacidad de respuesta a los movimientos del mercado.
- Crear capacidades competitivas desde la fábrica.

3.3.4.4. Características

- Acciones de mantenimiento en todas las etapas del ciclo de vida del equipo.
- Orientado a la mejora de la efectividad global de las operaciones, en lugar de prestar atención a mantener los equipos funcionando.
- Intervención significativa del personal involucrado en la operación y producción, en el cuidado y conservación de los equipos.

 Procesos de mantenimiento fundamentados en la utilización profunda del conocimiento que el personal posee.

3.3.4.5. Pilares

En la Figura 3.2, se describe los 8 pilares fundamentales en los que se encuentra sustentado el TPM:

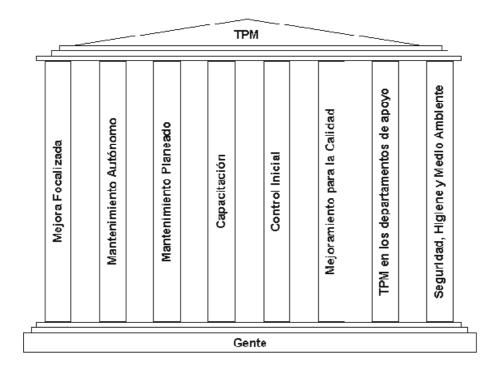


Figura 3.2 Pilares del TPM

Fuente: PREBON; Libro de Gestión de Mantenimiento; 2005.

Para tener una mejor perspectiva del mismo, se detalla a continuación cada uno de sus elementos:

3.3.4.5.1. Mejora Focalizada

Tiene como objetivo, eliminar sistemáticamente las grandes pérdidas ocasionadas durante el proceso productivo. Éstas pueden ser:

- De los equipos
- De los recursos humanos
- Del proceso productivo

3.3.4.5.2. Mantenimiento autónomo

Consiste en que cada operario sepa diagnosticar y prevenir las fallas eventuales de su equipo, de este modo prolongar la vida útil del mismo. Puede advertir:

- Contaminación por agentes externos
- Rupturas de ciertas piezas
- Desplazamientos
- Errores en la manipulación

3.3.4.5.3. Mantenimiento planeado

Se basa en que el operario determine la falla y la indique con etiquetas, con formas, números y colores específicos en la máquina, de forma que cuando el personal de mantenimiento llegue a reparar la máquina, pueda ir directo a la falla y la elimine.

Por lo tanto a este tipo de mantenimiento se lo puede definir como: un conjunto de actividades sistemáticas y metódicas para construir y mejorar continuamente el proceso.

3.3.4.5.4. Capacitación

Este tipo de actividad tiene como objetivo aumentar las capacidades y habilidades de los empleados.

3.3.4.5.5. Control inicial

Reducir el deterioro de los equipos actuales y mejorar los costos de su mantenimiento. Este control nace después de ya implantado el sistema, cuando se adquieren máquinas nuevas.

3.3.4.5.6. Mejoramiento para la calidad

El objetivo es ofrecer un producto cero defectos, como resultado de una máquina que tenga cero defectos y esto último sólo se logra con la mejora contínua y optimización del equipo.

3.3.4.5.7. TPM en los departamentos de apoyo

El TPM es aplicable a todos los departamentos, en finanzas, en compras, en almacén, etc. Su objetivo es eliminar las pérdidas en los procesos administrativos y aumentar la eficiencia. En estos departamentos las siglas toman estos significados (Figura 3.3):

Т	Total Participación de sus miembros
Р	Productividad (volúmenes de ventas y ordenes por personas)
М	Mantenimiento de clientes actuales y búsqueda de nuevos

Figura 3.3 Siglas del TPM en los departamentos de apoyo

Fuente: PREBON; Libro de Gestión de Mantenimiento; 2005.

3.3.4.5.8. Seguridad, higiene y medio ambiente

El ambiente de trabajo debe ser confortable y seguro; muchas veces ocurre que la contaminación en el ambiente de trabajo es producto del mal funcionamiento del equipo, así como muchos de los accidentes son ocasionados por la mala distribución de los equipos y por herramientas en el área de trabajo. El objetivo de este pilar es crear y mantener un sistema que garantice un ambiente laboral sin accidentes, ni contaminación.

3.4. MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD

3.4.1. INTRODUCCIÓN

El Mantenimiento Centrado en la Confiabilidad o Reliability Centred Maintenance (RCM), ha sido desarrollado para la industria de la aviación civil hace más de 30 años. El proceso permite determinar cuáles son las tareas de mantenimiento adecuadas para cualquier activo físico.

Éste ha sido utilizado en miles de empresas de todo el mundo: desde grandes empresas petroquímicas hasta las principales fuerzas armadas del mundo lo utilizan para determinar las tareas de mantenimiento de sus equipos, incluyendo la gran minería, generación eléctrica, petróleo y derivados, metalmecánica, etc.

Cuando se establece el funcionamiento deseado de cada elemento, el RCM pone un gran énfasis en la necesidad de cuantificar los estándares de funcionamiento siempre que sea posible. Estos estándares se extienden a la producción, calidad del producto, servicio al cliente, problemas del medio ambiente, costo operacional y seguridad.

3.4.2. DEFINICIÓN

Es un proceso que se usa para determinar lo que debe hacerse, para asegurar que un elemento físico continúe desempeñando las funciones deseadas en su contexto operacional.

3.4.3. PROCESO: SIETE PREGUNTAS BÁSICAS

Está enfocado en identificar lo que se debe hacer para garantizar las funciones del sistema en forma segura, rentable y confiable. Por lo tanto, el primer paso en el proceso es identificar claramente las funciones del activo, desde el punto de vista del usuario.

Se centra en la relación entre la organización y los elementos físicos que la componen. Antes de que se pueda explorar esta relación detalladamente, se necesita saber qué tipo de elementos físicos existen en la empresa, y decidir cuáles son los que deben estar sujetos al proceso de revisión. En la mayoría de los casos, esto significa que se debe realizar un registro de equipos completo.

Para poder identificar las necesidades reales del mantenimiento de los activos en su contexto operacional, existe una metodología que se basa en siete preguntas:

- ¿Cuáles son las funciones y estándares de rendimiento asociados del activo en su actual contexto operativo? (Funciones y criterios de funcionamiento).
- ¿De qué formas no realiza sus funciones? o puede fallar. (Fallos funcionales)
- ¿Qué causa que deje de cumplir su función? La causa por la que falle.
 (Modos de fallo)
- ¿Qué sucede cuando ocurre un fallo? Sus efectos. (Efectos de los fallos)
- ¿De qué ocurre cuando falla? De qué forma impacta en el sistema. (Consecuencia de los fallos).
- ¿Qué puede hacerse para predecir o prevenir cada fallo? (Tareas preventivas).
- ¿Qué debe hacerse si no se puede prevenir el fallo? (Tareas a "falta de").

3.4.4. OBJETIVOS

El objetivo fundamental de la implantación de este método, en una planta industrial, es aumentar la disponibilidad y disminuir costos de mantenimiento. El análisis de una planta industrial según esta metodología aporta una serie de resultados:

- Mejora la comprensión del funcionamiento de los equipos y sistemas.
- Analiza todas las posibilidades de fallo de un sistema y desarrolla mecanismos que tratan de evitarlos, ya sean producidos por causas intrínsecas al propio equipo o por actos personales.
- Determina una serie de acciones que permiten garantizar una alta disponibilidad de la planta.

Las acciones de tipo preventivo que evitan fallos y que por tanto incrementan la disponibilidad de la planta son de varios tipos:

- Tareas de mantenimiento, que agrupadas forman el plan de mantenimiento de una planta industrial o una instalación.
- Procedimientos operativos, tanto de producción como de mantenimiento, modificaciones o mejoras posibles.
- Definición de una serie de acciones formativas realmente útiles y rentables para la empresa.
- Determinación del stock de repuesto que es deseable que permanezca en planta.

3.4.5. VENTAJAS

- Si se aplicara a un sistema de mantenimiento preventivo ya existente en las empresas, puede reducir la cantidad de mantenimiento rutinario habitualmente desde un 40% a 70%.
- Si se aplicara para desarrollar un nuevo sistema de mantenimiento preventivo en la empresa, el resultado será que la carga de trabajo programada sea mucho menor que si el sistema se hubiera desarrollado por métodos convencionales.
- Su lenguaje técnico es común, sencillo y fácil de entender para todos los empleados vinculados al proceso, permitiendo al personal involucrado en las tareas saber qué pueden y qué no pueden esperar de ésta aplicación y quien debe hacer qué, para conseguirlo.

3.4.6. PLAN DE MANTENIMIENTO BASADO EN RCM

La metodología en la que se basa, supone ir completando una serie de fases necesarias y consecutivas para cada uno de los sistemas que componen la planta, y son las siguientes:

- Listado y codificación de equipos, sub sistemas y elementos que componen el sistema que se está estudiando. Recopilación de esquemas, diagramas funcionales, diagramas lógicos, etc.
- Estudio detallado del funcionamiento del sistema. Listado de funciones del sistema en su conjunto. De cada sub - sistema y equipo significativo integrado.
- Determinación de los fallos funcionales y fallos técnicos.
- Determinación de los modos de fallo o causas de cada uno de los fallos encontrados en la fase anterior.
- Estudio de las consecuencias de cada modo de fallo. Clasificación de los fallos en críticos, importantes o tolerables en función de esas consecuencias.
- Determinación de medidas preventivas que eviten o atenúen los efectos de los fallos.
- Agrupación de las medidas preventivas en sus diferentes categorías. Elaboración del plan de mantenimiento, lista de mejoras, planes de formación y procedimientos de operación y de mantenimiento.
- Puesta en marcha de las medidas preventivas.

3.4.6.1. Listado y codificación de equipos

El primer problema que se plantea al intentar realizar un análisis de fallos según la metodología, es elaborar una lista ordenada de los equipos que existen en ella. Realizar un inventario de los activos de la planta es algo más complejo de lo que pueda parecer en un primer momento. Una lista de todos los motores, bombas, compresores, etc. de la planta no es útil ni práctica.

Con estas características no es más que datos, no es una información (existe una diferencia importante entre datos e información). Para elaborar un listado de equipos realmente útil, se debe expresar éste en forma de estructura arbórea (Ver Figura 3.4), en la que se indiquen las relaciones de dependencia de cada uno de los puntos con los restantes.

En una planta industrial se puede distinguir los siguientes niveles:

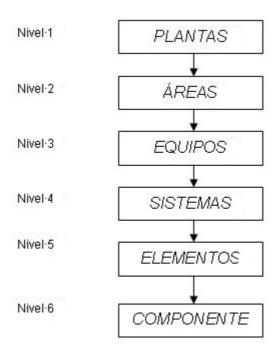


Figura 3.4 Relación de codificación de equipos

Fuente: GARCÍA Garrido Santiago, "Organización y Gestión Integral de Mantenimiento".

Una empresa puede tener una o varias plantas de producción, cada una de las cuales puede estar dividida en diferentes zonas o áreas funcionales. Éstas pueden tener en común la similitud de sus equipos, una línea de producto determinada o una función. Cada una estará formada por un conjunto de equipos, iguales o diferentes, que tienen una entidad propia.

Cada equipo, a su vez, está dividido en una serie de sistemas funcionales, que se ocupan de una misión dentro de él. Los sistemas a su vez se descomponen en elementos. Los componentes son partes más pequeñas de los elementos y que habitualmente se sustituyen en una reparación. Se define cada uno de los términos de la Figura 3.4 a continuación:

Planta: Centro de trabajo. Ej.: Empresa X, Planta de Lácteos.

Área: Zona de la planta que tiene una característica común (centro de costo, similitud de equipos, línea de producto, función). Ej.: Área Servicios Generales, Calderos, Área Línea 1.

Equipo: Cada una de las unidades productivas que componen el área, que constituyen un conjunto único.

Sistema: Conjunto de elementos que tienen una función común dentro de un equipo.

Elemento: Cada uno de las partes que integran un sistema. Es importante diferenciar elemento y equipo. Un equipo puede estar conectado o dar servicio a más de un equipo. Un elemento, solo puede pertenecer a un equipo.

Componentes: Partes en que puede sub - dividirse un elemento. Ej.: Rodamiento de un motor, junta roscada de un cilindro neumático.

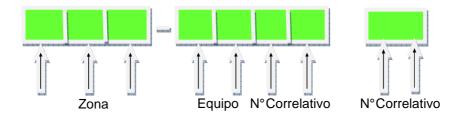


Figura 3.5 Estructura de codificación de equipos

Fuente: GARCÍA Garrido Santiago, "Organización y Gestión Integral de Mantenimiento".

3.4.6.2. Listado de funciones y especificaciones

En esta fase se detalla todas las funciones que tiene el sistema que es objeto de estudio, cuantificando cuando sea posible, como se lleva a cabo esa función.

Para que él cumpla su función, cada uno de los sub - sistemas en que se sub - divide debe cumplir la suya. Para ello, será necesario listar también las funciones de cada uno de ellos.

Cada uno de éstos, está compuesto por una serie de elementos. Es conveniente detallar la función de cada uno, por pequeño que fuera, pero esto haría que el trabajo se haga interminable y que los recursos que se deben asignar para la realización de este estudio, sean tan grandes que lo harían inviable.

Por ello, se detalla solo la maquinaria, que se denomina "equipos significativos". Entonces se obtiene tres listados de funciones:

- Del sistema en su conjunto.
- De cada uno de los sub sistemas que lo componen.
- De cada uno de los elementos de cada sub sistema.

3.4.6.3. Determinación de fallos funcionales y técnicos

Un fallo es la incapacidad de un elemento, para cumplir alguna de sus funciones.

3.4.6.3.1. Fallo funcional

Se define como la incapacidad de un elemento o componente de un equipo para satisfacer un estándar de funcionamiento deseado. Por ejemplo: Un sistema de refrigeración, para cumplir su función, necesita cumplir una serie de especificaciones. Las más importantes son: caudal de agua de refrigeración, temperatura, presión y composición química.

Un fallo funcional del sistema de refrigeración puede ser: caudal insuficiente de agua de refrigeración; será un fallo funcional porque sin éste, es imposible que el sistema de refrigeración pueda cumplir su función. La planta probablemente parará o verá disminuida su capacidad por este motivo.

3.4.6.3.2. Fallo técnico

Se define como aquel que, no impidiendo al sistema cumplir su función, supone un funcionamiento anormal de una parte de éste. Éstos afectan tanto a sistemas como a sub - sistemas o equipos. Aunque de una importancia menor que los fallos funcionales, suponen funcionamientos anormales que pueden tener como consecuencia una degradación acelerada del equipo y acabar convirtiéndose en fallos funcionales del sistema.

Las fuentes de información para determinarlos, son diversas. Entre las principales se puede citar las siguientes: consulta al histórico de averías, consulta al personal de mantenimiento y producción, estudio de los diagramas lógicos y funcionales de la planta.

3.4.6.3.3. Histórico de averías

Es una fuente de información importante, a la hora de determinar los fallos potenciales de una instalación. El estudio del comportamiento de una planta, equipo o sistema, a través de los documentos en los que se registran las averías e incidencias que pueda haber sufrido en el pasado aporta una información esencial para la identificación de fallos. **VER ANEXO D** (Formato de histórico de averías y datos de placa)

En algunas plantas no existe un histórico de averías suficientemente fiable, donde se haya registrado de forma sistemática cada una de las averías que ha tenido cada equipo en un período determinado.

Siempre es posible buscar una fuente que permita estudiar el historial del equipo:

 Estudio de las partes de trabajo, de averías, etc. Agrupando las partes de trabajo por equipos, es posible deducir las incidencias que han afectado a la máquina.

- Facturas de repuesto. Se puede recurrir al departamento de contabilidad, para que facilite las facturas del material consumido en mantenimiento en un periodo determinado.
- Diarios de incidencias. El personal de turno utiliza una libreta de registro en los que refleja los incidentes sufridos, como medio para comunicárselos al turno siguiente. Del estudio de ésta, también es posible obtener información sobre averías e incidentes en los equipos.

3.4.6.3.4. Personal de mantenimiento

Siempre es conveniente conversar con cada uno de los miembros que componen el personal de producción, para que den su opinión sobre los incidentes más habituales y las formas de evitarlos. Esta consulta ayudará, además, a que el personal de mantenimiento se implique en el RCM.

3.4.6.3.5. Personal de producción

Al igual que en el punto anterior, la consulta al operador ayudará a identificar los fallos que más interfieren con la operación de la planta.

3.4.6.3.6. Diagramas lógicos y diagramas funcionales

Éstos suelen contener información importante, para determinar las causas que pueden hacer que un equipo, un sistema se detengan o disparen sus alarmas.

Los mismos que suelen estar protegidos contra determinados fallos, bien mostrando una alarma como aviso del funcionamiento incorrecto, deteniéndose o impidiendo que se pongan en marcha si no se cumplen determinadas condiciones. El estudio de la lógica implementada en el sistema de control puede indicar posibles problemas que pudiera tener la instalación.

3.4.6.4. Determinación de los modos de fallo

Una vez determinados todos los fallos que puede presentar un sistema, un sub - sistema o uno de los equipos significativos que lo componen, se debe estudiar los modos de fallo.

A éste se lo define, como la causa primaria que lo ocasiona o como las circunstancias que lo acompañan. Cada fallo, funcional o técnico, puede presentar, múltiples modos. A su vez, cada uno de éstos puede tener varias causas, y éstas otras, hasta llegar a lo que se denomina "causas raíces".

Por tanto, es importante definir con qué grado de profundidad se va a estudiar los modos, de forma que el estudio sea abordable y técnicamente factible.

Las diferentes probabilidades existentes para que se produzcan los fallos en las máquinas, se presentan a continuación (Ver Figura 3.6):

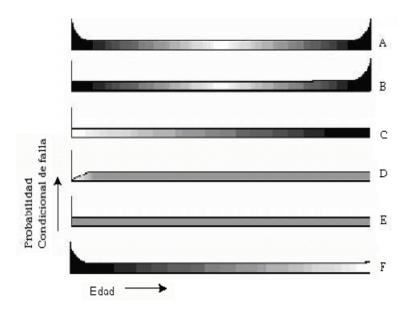


Figura 3.6 Probabilidad condicional de fallo contra la vida útil

Fuente: GARCÍA Moreno Diego; "Guía de Mantenimiento Centrado en la Confiabilidad"; 2008

Tabla 3.1 Descripción de la curva de la bañera

GRÁFICO	OBSERVACIONES				
	Es la conocida "curva de la bañera". Comienza con una incidencia				
Gráfico A	de fallos alto, seguida por una frecuencia de fallo que aumenta				
Granco A	gradualmente o que es constante, y luego por una zona de				
	desgaste.				
	"El punto de vista tradicional". Muestra una probabilidad de fallo				
Gráfico B	constante ascendente, poco aleatorio y termina en una zona de				
	desgaste.				
Gráfico C	Muestra una probabilidad de fallo ligeramente ascendente, pero				
Granco	no hay una edad de desgaste definida que sea identificable.				
	Muestra una probabilidad de fallo bajo cuando el componente es				
Gráfico D	nuevo o se acaba de comprar, luego un aumento rápido a un nivel				
	constante y aleatoria.				
Gráfico E	Fallos aleatorios: Ninguna relación entre la edad de los equipos y				
Granco	la probabilidad de que fallen.				
	Comienza con una mortalidad infantil muy alta, que asciende				
Gráfico F	finalmente a una probabilidad de fallo que aumenta muy despacio				
Granco	o que es constante, debido a un comportamiento aleatorio de los				
	fallos.				

Elaboración: Propia

Fuente: GARCÍA Moreno Diego; "Guía de Mantenimiento Centrado en la Confiabilidad"; 2008

3.4.6.4.1. Procedimientos para analizar las causas de fallos

Antes de investigar un problema, es fundamental asegurarse de que se lo comprende perfectamente. Esto supone definir las causas del mismo y entender el proceso que lo provoca, así se evita desperdiciar esfuerzos innecesariamente. Una vez identificado y definido el problema, se utiliza diferentes procedimientos para el análisis de las causas y son los siguientes:

3.4.6.4.1.1 El diagrama de Pareto

Frecuentemente el personal técnico de mantenimiento y producción, debe enfrentarse a problemas que tienen varias causas o son la suma de los mismos. El diagrama permite seleccionar por orden de importancia y magnitud, éstos se deben investigar hasta llegar a conclusiones que permitan eliminarlos de raíz.

La mayoría de los problemas son producidos por un número pequeño de causas, y éstas son las que interesan descubrir y eliminar para lograr un gran efecto de mejora. Según Pareto, el 20% de las causas son responsables del 80% de los problemas.

Para la elaboración del Diagrama de Pareto se debe de seguir el siguiente proceso:

- Paso 1: Decidir cómo clasificar los datos
- Pase 2: Elegir el período de observación.
- Paso 3: Obtener los datos y ordenarlos.
- Paso 4: Preparar los ejes cartesianos para el diagrama.
- Paso 5: Diseñar el diagrama.

3.4.6.4.1.2 Histogramas

Es un gráfico que representa tablas de frecuencias con datos agrupados en intervalos, en forma de barras verticales. Si los intervalos son todos iguales, cada uno de ellos es la base de un rectángulo cuya altura es proporcional a la frecuencia correspondiente.

Lo cual permite que se conozca de estos datos, los siguientes puntos importantes en la estadística para la priorización o selección de datos; la tendencia central, dispersión y frecuencias relativas de los distintos valores.

Es especialmente útil cuando se tiene un amplio número de datos que es preciso organizar, para analizar más detalladamente o tomar decisiones sobre la base de ellos. Es un medio eficaz para transmitir a otras personas información sobre un proceso de forma precisa e inteligible²⁹.

3.4.6.4.1.3 Diagrama Causa – Efecto

Este diagrama se utiliza para representar la relación entre algún efecto y todas las causas posibles que lo pueden originar. Generalmente, se lo presenta con la forma del espinazo de un pez, de donde toma el nombre alternativo de diagrama de espina de pescado.

También se lo llama como Diagrama de Ishikawa (Ver Figura 3.7), que es quién lo impulsó. Los diagramas de causa - efecto se construyen para ilustrar con claridad cuáles son las posibles causas que producen el problema, mediante los siguientes pasos:

- Un eje central se dirige al efecto.
- Sobre el eje se disponen las posibles causas principales.
- Posteriormente, se disponen todas las causas que pueden provocar el efecto. A las causas conviene agruparlas por tipos, al modo de ejemplo las originadas por motivos eléctricos, otras por elementos mecánicos, hidráulicos, etc.
- Cada grupo se dispone en un eje, sobre el cual se enlistan todas las posibles causas secundarias hasta considerar agotadas todas las posibilidades.

²⁹ **INTELIGIBLE:** Que puede ser entendido.

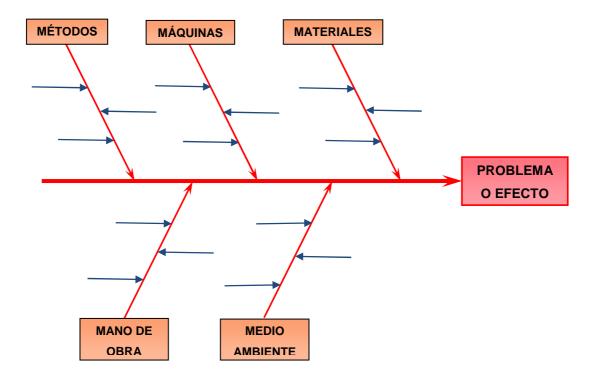


Figura 3.7 Diagrama causa - efecto

Fuente: PREBON; "Libro de Gestión de Mantenimiento"; 2005

El análisis causa - efecto, es el proceso mediante el cual se parte de una definición precisa del efecto que se desea estudiar. Es una herramienta efectiva para estudiar procesos y situaciones, cuando se requiere detectar las posibles causas de un problema específico.

3.4.6.4.1.4 AMFE

Análisis Modal de Fallos y Efectos, es una herramienta de máxima utilidad en el desarrollo del producto que permite, de una forma sistemática, asegurar que han sido tomados en cuenta y analizados todos los fallos existentes.

La definición por lo tanto, es la siguiente:

El AMFE es un método dirigido a lograr el aseguramiento de la calidad, que mediante el análisis sistemático, contribuye a identificar y prevenir los modos de fallo, tanto de un producto como de un proceso, evaluando su gravedad, ocurrencia y detección, mediante los cuales, se calculará el Número de

Prioridad de Riesgo (NPR), para priorizar las causas, sobre las cuales habrá que actuar para evitar que se presenten dichos modos de fallo.

Los objetivos que se pretenden alcanzar cuando se realiza un cuadro, son los siguientes:

- Satisfacer al cliente.
- Introducir en las empresas la filosofía de la prevención.
- Identificar los modos de fallo que tienen consecuencias importantes respecto a diferentes criterios: disponibilidad, seguridad, etc.
- Precisar para cada modo de fallo los medios y procedimientos de detección.
- Adoptar acciones correctoras y/o preventivas, de forma que se supriman las causas de fallo del producto, en diseño o proceso.
- Valorar la eficacia de las acciones tomadas y ayudar a documentar el proceso.

El AMFE se debería comenzar:

- Cuando se diseñe nuevos procesos o métodos;
- Cuando se cambie procesos o diseños actuales, sea cual fuere la razón;
- Cuando se encuentre nuevas aplicaciones para los productos o procesos actuales;
- Cuando se busque mejoras para los procesos o diseños actuales.

Tipos de AMFE

Se pueden distinguir dos tipos, según el marco de la gestión del proceso donde se inscriba:

A continuación se describe cada uno de ellos:

- AMFE de diseño. Consiste en el análisis preventivo de los diseños, buscando anticiparse a los problemas y necesidades de los mismos. Es el paso previo lógico al de proceso, porque se tiende a mejorar el diseño, para evitar el fallo posterior en producción.
- AMFE de proceso. Es el análisis de modos de fallos y efectos potenciales de un proceso de fabricación, para asegurar su calidad de funcionamiento.

3.4.6.5. Análisis de la gravedad de los fallos. "Criticidad"

El siguiente paso es determinar los efectos de cada modo de fallo y una vez determinados, clasificarlos según la gravedad de las consecuencias. Se puede considerar tres posibles casos: fallo **crítico**, **importante** o **tolerable**.

3.4.6.5.1. Fallo crítico

Se considera que un fallo es crítico, si cumple con estas condiciones:

- Que pueda ocasionar un accidente que afecte a la seguridad o al medioambiente, y que existan ciertas posibilidades de que ocurra.
- Que suponga una parada de planta o afecte al rendimiento o a la capacidad de producción.
- Que la reparación del fallo tenga un costo superior a cierta cantidad.

3.4.6.5.2. Fallo importante

Se considera que un fallo es importante si cumple con lo siguiente:

- No debe cumplir ninguna de las condiciones que lo hagan crítico.
- Que pueda ocasionar un accidente grave, con la probabilidad baja.
- Que pueda suponer una parada de planta o afecte a la capacidad de producción y/o rendimiento, y que la probabilidad de ocurrir sea baja.
- Que el costo de reparación sea medio.

3.4.6.5.3. *Fallo tolerable*

Para que un fallo pueda ser considerado tolerable, no debe cumplir ninguna condición que le haga ser crítico o importante, y además, debe tener poca influencia en seguridad y medioambiente, no afecte a la producción de la planta y tenga un costo de reparación bajo.

3.4.6.6. Determinación de medidas preventivas

Determinados los modos de fallo del sistema que se analiza y clasificados estos modos de fallo según su criticidad, el siguiente paso es determinar las medidas preventivas que permiten bien evitar el fallo o bien minimizar sus efectos. Este es el punto fundamental de un estudio RCM.

Las medidas preventivas que se pueden tomar son de cinco tipos: tareas de mantenimiento, mejoras, formación del personal, modificación de instrucciones de operación y modificación de instrucciones de mantenimiento. Y todo ello, con la garantía de que se tendrá un efecto muy importante en la mejora de resultados de una instalación.

3.4.6.6.1. Tareas de mantenimiento

Son trabajos que se pueden realizar, para cumplir el objetivo de evitar el fallo o minimizar sus efectos. Las tareas de mantenimiento pueden, a su vez, ser de los siguientes tipos:

- Tipo 1: Inspecciones visuales. Siempre son rentables sea cual sea el modelo de mantenimiento aplicable, las inspecciones visuales suponen un costo muy bajo.
- Tipo 2: Lubricación. Igual que en el caso anterior, las tareas de lubricación, por su bajo costo, siempre son rentables.
- Tipo 3: Verificaciones del correcto funcionamiento realizados con instrumentos propios del equipo (verificaciones on-line). Este tipo de tareas consiste en la toma de datos de una serie de parámetros de funcionamiento utilizando los propios medios de los que dispone el

equipo. Por ello es necesario, en primer lugar, fijar con exactitud los rangos normales para cada uno de los puntos que se trata de verificar, fuera de los cuales se precisará una intervención en el equipo. También será necesario detallar como se debe actuar en caso de que la medida en cuestión esté fuera del rango normal.

- Tipo 4: Verificación del correcto funcionamiento realizado con instrumentos externos del equipo. Con este tipo de tareas, se puede determinar si el equipo cumple con unas especificaciones prefijadas, pero para cuya determinación es necesario desplazar determinados instrumentos o herramientas especiales, que pueden ser usadas por varios equipos simultáneamente, y que por tanto, no están permanentemente conectadas a un equipo, como en el caso anterior.
- Tipo 5: Tareas condicionales. Se realizan dependiendo del estado en que se encuentre el equipo. No es necesario realizarlas si el equipo no da síntomas de encontrarse en mal estado. Estas tareas pueden ser:
 - Limpiezas condicionales.
 - Ajustes condicionales, si el comportamiento del equipo refleja un desajuste en alguno de sus parámetros.
 - Cambio de piezas, si tras una inspección o verificación se observa que es necesario realizar la sustitución de algún elemento.
- Tipo 6: Tareas sistemáticas. Se realiza cada ciertas horas de funcionamiento, o cada cierto tiempo, sin importar como se encuentre el equipo. Estas tareas pueden ser:
 - o Limpiezas
 - Ajustes
 - Sustitución de piezas
- Tipo 7: Grandes revisiones, también llamado mantenimiento cero horas, overhaul o hard time. Tienen como objetivo dejar el equipo como si tuviera cero horas de funcionamiento.

Una vez determinado los modos de fallo posibles en un punto, es necesario determinar qué tareas de mantenimiento podrían evitar o minimizar los efectos

de un fallo. Pero lógicamente, no es posible realizar cualquier tarea que se presente que pueda evitar un fallo.

Cuanto mayor sea la gravedad de un fallo, mayores recursos se debe destinar a su mantenimiento, y por ello, más complejas y costosas podrán ser las tareas de mantenimiento que se trata de evitar.

Por ello, en el punto anterior se explicó la necesidad de clasificar los fallos según sus consecuencias. Si el fallo ha resultado ser crítico, casi cualquier tarea podría ser de aplicación. Si el fallo es importante, se tendrá algunas limitaciones y si por último, el fallo es tolerable, solo serán posibles acciones sencillas que prácticamente no supongan ningún costo.

En caso de fallos tolerables, las únicas tareas de menor costo son las de tipo 1, 2 y 3. Si son fallos importantes, se trata de buscar síntomas antes de actuar; todas ellas son tareas de los tipos 4 y 5. Si un fallo resulta crítico, y por tanto tiene graves consecuencias, se justifica casi cualquier actividad para evitarlo.

La Tabla 3.2, trata de aclarar qué tipos de tareas de mantenimiento se puede aplicar dependiendo de la criticidad del fallo.

Tabla 3.2 Tareas de mantenimiento en función de criticidad de fallo

TIPOS DE TAREAS DE MANTENIMIENTO	TIPOS DE FALLAS A LAS		
TIPOS DE TAREAS DE MANTENIMIENTO	QUE PUEDE APLICARSE		
1. Inspecciones visuales	Todos los fallos		
2. Tareas de lubricación	Todos los fallos		
3. Verificaciones ON-LINE	Todos los fallos		
4. Verificaciones OFF-LINE			
Verificaciones sencillas			
 Mediciones de Temperatura 			
 Mediciones de Vibración 			
 Mediciones de consumo de corriente. 			
Verificaciones con instrumentos	Fallos importantes y críticos		
complejos			
 Análisis de vibraciones 			
o Termografía			
 Detección de fugas por ultrasonido 			
o Comprobación de alineación por laser			
Tareas condicionales (con resultados anteriores)			
Limpieza			
Ajustes	Fallos importantes y críticos		
Sustitución de piezas			
Tareas sistemáticas (exista o no síntomas de fallo)			
Limpiezas sistemáticas			
Ajustes sistemáticos	Fallos críticos		
Sustitución sistemática de piezas de desgaste			
Mantenimiento cero horas (sustitución de todos	Follog artisas		
los elementos sometidos a desgaste.)	Fallos críticos		

Elaboración: Propia

Fuente: GARCÍA Moreno Diego; "Guía de Mantenimiento Centrado en la Confiabilidad"; 2008

3.4.6.6.2. La determinación de la frecuencia de las tareas de mantenimiento

Una vez determinadas las tareas, es necesario determinar con qué frecuencia es necesario realizarlas.

Existen tres posibilidades para determinarla:

- Si se tiene datos históricos que permitan conocer la frecuencia con la que se produce el fallo, se puede utilizar cualquier técnica estadística que permita determinar cada cuanto tiempo se produce el fallo si no se actúa sobre el equipo. La frecuencia estará en función del costo del fallo y de la tarea de mantenimiento (mano de obra + materiales + pérdida de producción durante la intervención).
- Si se dispone de una función matemática que permita predecir la vida útil de una pieza, se puede estimar la frecuencia de intervención a partir de dicha función.
- Si no se dispone de informaciones anteriores, la determinación de la frecuencia con la que deben realizarse las tareas de mantenimiento propuestas debe hacerse en base a la opinión de expertos.

Si no se dispone de datos históricos ni de fórmulas matemáticas, se puede seguir estos consejos:

- Es conveniente fijar una frecuencia diaria para tareas de bajo costo, como las inspecciones visuales o las lecturas de parámetros.
- La frecuencia mensual es aconsejable para tareas que supongan montajes o desmontajes complejos, y no esté justificado hacer a diario.
- La frecuencia anual se reserva para tareas que necesitan que la planta esté parada, y que no se justifica realizarlas con frecuencia mensual.

Para cada caso, es conveniente comprobar si la frecuencia propuesta es la más indicada. Por último, y con el fin de facilitar la elaboración del plan de mantenimiento, es conveniente especificar la especialidad de la tarea (mecánica, eléctrica, predictiva, de operación, de lubricación, etc.)

3.4.6.6.3. Mejoras y modificaciones de la instalación

Determinados fallos pueden prevenirse más fácilmente modificando la instalación, o introduciendo mejoras.

Éstas pueden ser de los siguientes tipos:

- Cambios en los materiales. Manteniendo el diseño de las piezas, el único cambio que se realiza es, en la calidad de los materiales que se emplean.
- Cambios en el diseño de una pieza. La geometría de algunas piezas hace que en determinados puntos acumulen tensiones que facilitan su falla. Un simple cambio en el diseño de estas piezas puede hacer que cumplan su función perfectamente y que su probabilidad de rotura disminuya sensiblemente.
- Cambios en el diseño de una instalación. En ocasiones no es una pieza, sinó todo un conjunto el que debe ser rediseñado, para evitar determinados modos de fallo.
- Cambios en las condiciones de trabajo del sistema. La forma de evitar la falla de una pieza o un equipo no es actuar sobre éstos, sinó sobre el medio que los rodea.

3.4.6.6.4. Cambios en los procedimientos de operación

El personal que opera suele tener una alta incidencia en los problemas que presenta un equipo. En general, las tareas de mantenimiento tienen un costo, tanto en mano de obra como en materiales.

Las mejoras tienen un costo añadido, relacionado con el diseño y con las pruebas. Pero un cambio en un procedimiento de operación tiene en general un bajo costo y un beneficio alto.

Para minimizar los efectos de un fallo es necesario adoptar una serie de medidas provisionales si éste llegara a ocurrir. Dentro de los cambios en procedimientos de operación, un caso particular es este: instrucciones de operación para el caso de que llegue a ocurrir un fallo en concreto.

3.4.6.6.5. Cambios en procedimientos de mantenimiento

Algunas averías se producen porque determinadas intervenciones del personal de mantenimiento no se hacen correctamente. La redacción de procedimientos en los que se indique claramente cómo deben realizarse determinadas tareas, y en los que figuren determinados datos (tolerancias, ajustes, pares de apriete, etc.), es de gran utilidad.

3.4.6.7. Agrupación de las medidas preventivas en sus diferentes categorías

Determinadas las medidas preventivas para evitar los fallos potenciales de un sistema, el siguiente paso es agrupar estas medidas por tipos (tareas de mantenimiento, mejoras, procedimientos de operación, procedimientos de mantenimiento y formación), lo que luego facilitará su implementación.

El resultado de esta agrupación será:

- Plan de mantenimiento.- Es inicialmente el principal objetivo buscado.
 El plan de mantenimiento lo componen el conjunto de tareas de mantenimiento resultante del análisis de fallos.
- Lista de mejoras técnicas a implementar.- Tras el estudio, se tiene una lista de mejoras y modificaciones que es conveniente realizar en la instalación. Es conveniente depurar estas mejoras, pues habrá que justificar económicamente ante la dirección de la planta y los gestores económicos la necesidad de estos cambios.
- Actividades de formación.- Están divididas normalmente en formación para personal de mantenimiento y para personal de operación.
- Lista de procedimientos de operación y mantenimiento a modificar.- Se genera una lista de procedimientos a elaborar o a modificar que tienen como objetivo evitar fallos o minimizar sus efectos.
 Por lo tanto, habrá un tipo especial de procedimientos, que serán los que hagan referencia a medidas provisionales en caso de fallo.

3.4.6.8. Puesta en marcha de medidas preventivas

Una vez realizado el estudio de RCM se obtienen una serie de medidas preventivas, entre las que destaca el Plan de Mantenimiento a desarrollar en la instalación. Estas son agrupadas de forma operativa, para su posterior implementación.

3.4.6.8.1. Puesta en marcha del plan de mantenimiento

Determinado el plan de mantenimiento, se debe que implementarlo de acuerdo al estudio realizado. Es conveniente repasarlo una vez más, por si se hubieran olvidado tareas. Sobre todo, es necesario comprobar que las tareas recomendadas por los fabricantes han sido tenidas en cuenta, para asegurar que no se olvida en el plan ninguna tarea importante. Pero una vez revisado, se debe tratar de que la implementación sea lo más rápida posible.

Para alguna de las tareas que se detallen en el plan es posible que no se disponga en planta de los medios necesarios. Por ello, es necesario que los responsables del mantenimiento se aseguren de que se dispone de los medios técnicos o de los materiales necesarios. También es imprescindible formar al personal de mantenimiento en el plan, explicando en qué consiste y que fallos se pretenden evitar.

3.4.6.8.2. Implementación de mejoras técnicas

La lista de mejoras obtenida y depurada se la presenta a la dirección de la planta para su realización. Se debe calcular el costo que supone, solicitar algunos presupuestos y preseleccionar posibles contratistas (en el caso de que no puedan implementarse con personal de la planta). También habrá que exponer y calcular los beneficios que se obtienen que la implementación de cada una de ellas.

3.4.6.8.3. Puesta en marcha de las acciones formativas

Para implementar las acciones formativas determinadas en el análisis, es necesario incluirlas en el plan de formación de la planta.

La gran diferencia entre las acciones formativas propuestas por el RCM y la mayoría de las que suelen formar parte de los planes de formación, suele ser que los propuestos tienen como objetivo la solución a problemas tangibles, y por tanto, se traducen rápidamente en una mejora de los resultados.

3.4.6.8.4. Puesta en marcha de cambios en procedimientos de operación y mantenimiento

Para la implementación de estos cambios en procedimientos de operación y mantenimiento es necesario asegurar que todos los implicados conocen y comprenden los cambios. Para ellos es necesario organizar sesiones formativas en los que se explique a todo el personal que tiene que llevarlos a cabo cada uno de los puntos detallados en los nuevos procedimientos, verificando que se han entendido perfectamente.

DESARROLLO DEL PLAN DE MANTENIMIENTO

4.1. CONSIDERACIONES GENERALES

El plan de mantenimiento preventivo está diseñado, indicando la frecuencia de rutinas, equipo específico que requiere el plan e informes anuales de las últimas inspecciones a través de: bitácoras de mantenimiento, experiencia del personal y catálogos.

4.1.1. DEFINICIÓN DEL PROBLEMA

Los equipos de la Industria Láctea INPROLAC S.A. tienen 5 años de uso, sin el debido plan preventivo que respalde y coordine las actividades de revisión periódica de este equipo.

Los antecedentes que abarcan esta problemática no han sido muy notorios en años anteriores por tratarse de maquinaria y equipos nuevos; pero en la actualidad las fallas en la maquinaria o desperfectos son más frecuentes los cuales, repercuten de manera directa en la rentabilidad y desarrollo de la empresa.

La planta cuenta con una sección de herramientas y repuestos que se encuentran en cantidades limitadas, para corregir pequeños desperfectos; pero carece de repuestos específicos para cada máquina en particular, no existe organización, ni control de los repuestos existentes, provocando un desorden al momento de hacer uso de ellos y dificultando el hacer un inventario.

Los talleres de la empresa son los encargados de resolver los problemas de algunas máquinas, muchas veces los técnicos de mantenimiento, se las ingenian haciendo adaptaciones que a la larga tienen como consecuencia el deterioro de los equipos o la producción de daños más significativos.

4.1.2. JUSTIFICACIÓN

El beneficio que se alcanzará con el estudio, es el mejoramiento de la eficiencia y productividad de la tecnología en dicha planta. Proporcionando de esta manera una mejor proyección en sus actividades futuras y calidad del producto durante todo el ciclo de producción. En suma, en este estudio lo que se busca es tener productos con excelente calidad, garantizando así la inocuidad del producto y el prestigio de Industrias Lácteas INPROLAC S.A.

También se contribuirá con el mejoramiento de las Buenas Prácticas de Manufactura (BPM) por parte de los operarios, facilitándole las labores de limpieza e higienización de la maquinaria; mejorando los aspectos de seguridad y bienestar integral de las mismas, proporcionándole un ambiente de trabajo más seguro y estable.

Los incrementos de gastos por mantenimiento y reparación de equipos se reducirán. Contribuyendo de esta forma a mejorar su proyección futura con respecto al presupuesto para el mantenimiento y rentabilidad de la planta.

4.1.3. LISTADO Y CODIFICACIÓN DE EQUIPOS

Para la realización de este punto se requiere de un inventario de éstos; a través de la información que distribuyen los fabricantes de máquinas y equipos industriales se creó una base de datos que incluye el tipo, modelo, series, capacidades y especificaciones. **VER ANEXO E** (Datos de placa de máquinas y equipos).

4.1.3.1. Sistema de codificación de las áreas

En la planta se identifican 10 áreas; las cuales están codificadas como se indica en la Tabla 4.1.

Tabla 4.1 Codificación de áreas de la Industria Láctea INPROLAC S.A.

CODIFICACIÓN DE ÁREAS					
CÓDIGO	ÁREA				
01	Recepción				
02	Pasteurización				
03	Quesos				
04	Mantequilla				
05	Yogurt				
06	Manjar				
07	Gelatina				
08	Servicios generales				
09	Bodegas				
10	Laboratorio				

Elaboración: Propia **Fuente:** INPROLAC S.A.

4.1.3.2. Codificación de los equipos

Para la codificación de éstos la Industria Láctea INPROLAC S.A. ha implantado un sistema de código de barras ECOP (EAN Ecuador)³⁰.

El sistema que se describe a continuación en la Tabla 4.2, es el cual se ha establecido en INPROLAC S.A.:

Tabla 4.2 Código de barras

PAIS			IDT. FABRICA			ÁREA		ACTIVO		IND.		
Α	Α	Α	В	В	В	В	В	С	С	D	D	F

Elaboración: Propia

Fuente: Ecuatoriana de código de producto (ECOP)

A continuación se detalla el significado de cada uno de los casilleros que interviene en la codificación:

³⁰ ECOP EAN Ecuador: Es una entidad privada y sin fines de lucro, destinada a promover la implantación de un sistema de codificación de productos, equipos, bajo estándares que permiten la administración eficiente a nivel local e internacional.

- Los tres primeros dígitos corresponden al código de país; en este caso el código ecuatoriano es 7 8 6.
- La identificación de la empresa se da por los siguientes cinco dígitos; el cual es asignado por ECOP este es 1 0 3 9 9.
- Los dos dígitos siguientes corresponden al área en que se encuentra ubicado el equipo.
- El activo se da por los siguientes dos dígitos; el cual indica el patrimonio poa área.
- El último número, es un digito de control para cada equipo y es calculado mediante algoritmo o solicitar a ECOP.

La codificación de los equipos de la planta se puede observar en el **ANEXO F** (Listado y codificación de equipos).

4.1.3.3. Distribución de la planta

Se la ha realizado con la finalidad de lograr una disposición ordenada y bien planificada de la maquinaria, acorde con el flujo de materias primas y productos, de modo que se aproveche al máximo el equipo, el tiempo y las aptitudes de los trabajadores. **VER ANEXO C** (Planos: Implantación y Flujo de proceso).

4.2. IDENTIFICACIÓN Y ANÁLISIS DE LAS FALLAS

Es importante identificar las fallas para luego poder encarar su análisis y en base a esto solucionar los problemas, no siempre es fácil realizar ésta tarea por lo que se han desarrollado numerosas técnicas para identificar y analizar las éstas.

Estas técnicas no sólo se aplican en mantenimiento, son también de utilidad para los diversos aspectos donde se implementa el mejoramiento continuo: calidad de procesos, diseño y desarrollo de productos, control de inventarios,

etc. Por la facilidad de uso y funcionalidad, las técnicas gráficas son las más difundidas.

Normalmente el estudio de las fallas requiere de la identificación y análisis del problema. A continuación se desarrollan los métodos que pueden ser utilizados para tal fin.

4.2.1. LLUVIA DE IDEAS

Este método Brainstormig, que traducido a nuestro idioma significa "Lluvia de Ideas" consiste básicamente en que todos los participantes expongan sus ideas, que las mismas sean anotadas, luego comentadas, para finalmente llegar a conclusiones, solucionar problemas o mejorar procesos.

La lluvia de ideas tiene las siguientes características:

- Los participantes deben concentrarse en el análisis de un problema
- Participan todos, exponiendo todo tipo de ideas.
- No se deben hacer críticas a ninguna de las sugerencias. Aceptar las ideas de otros.

4.2.2. DIAGRAMA CAUSA – EFECTO

Este diagrama se utiliza para representar la relación entre el efecto y todas las causas posibles que lo pueden originar.

Pasos para la elaboración de un diagrama causa-efecto:

- Definir claramente el efecto, problema, avería o fallo que se va analizar.
 El problema se encierra en un cuadro a la derecha y este se conecta con una flecha a la izquierda.
- Sub dividir las causas en familias. Las principales causas se analizan por el método de las 5M (materiales, métodos, maquinaria, medio

- ambiente, mano de obra), se grafican con flechas que se conectan a la flecha principal.
- Generar para cada familia, una lista de todas las posibles causas y subcausas que contribuyen al efecto, responder sucesivamente ¿por qué ocurre? Hasta considerar agotadas todas las posibilidades.
- Una vez que ha completado el análisis de espina de pescado, marque con un círculo aquellas causas básicas que el equipo de mejora puede resolver y manejar.
- Establezca prioridades; para hacerlo, pregúntese cuál de ellas producirá realmente una mejora diferencial.
- Una vez establecidas las prioridades, se establecen los responsables de cada proyecto o actividad, requisando los formatos que corresponda.
- Implante las soluciones.

En la Figura 4.1 se ilustra el Diagrama Causa - Efecto de INPROLAC S.A.

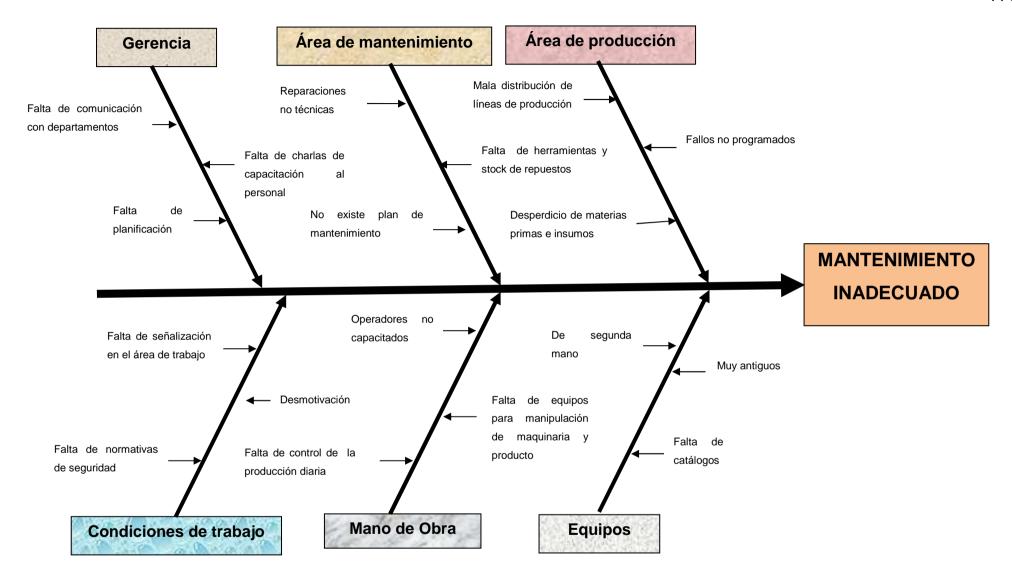


Figura 4.1 Diagrama Causa-Efecto INPROLAC S.A.

Fuente: Industrias Lácteas INPROLAC S.A.

Conforme al presente método se observa seis causas primarias, las cuales pueden incrementar, ya sea por falta de conocimientos sobre el problema o eliminarse si se toman los correctivos necesarios.

4.2.3. DIAGRAMA DE PARETO

Es una representación gráfica de los datos obtenidos sobre un problema, permite seleccionar por orden de importancia y magnitud, las causas o problemas que se deben investigar hasta llegar a conclusiones que permitan eliminarlos de raíz.

La mayoría de los problemas son producidos por un número pequeño de causas, y éstas son las que interesan descubrir y eliminar para lograr un gran efecto de mejora. A estas pocas causas que son las responsables de la mayor parte del problema se las conoce como causas vitales.

Las causas que no aportan en magnitud o en valor al problema, se las conoce como causas triviales. Se trata de ir eliminando en forma progresiva las causas vitales. Una vez eliminadas éstas, es posible que las causas triviales se lleguen a transformar en vitales.

Los pasos a seguir para su representación son:

Paso 1

En el primer paso se decide la clase de problema que será investigado.
 Se define el cubrimiento del análisis, si se realiza a una máquina completa, una línea o un sistema de cierto equipo. Se decide que datos serán necesarios y la forma de clasificarlos. Este punto es fundamental, ya que se pretende preparar la información para facilitar su estratificación posterior.

Paso 2

 Preparar una hoja de recogida de datos. Si la empresa posee un programa informático para la gestión de los datos, se preparará un plan para realizar las búsquedas y la clasificación de la información que se desea.

Es en este punto cuando se puede realizar la estratificación de la información sugerida anteriormente.

• Establecer el período de tiempo dentro del cual se recolectan los datos.

Paso 3

• Clasificar en orden de magnitud la información obtenida.

Paso 4

- Diseño de hoja de verificación para la frecuencia con que ocurre cada factor, dentro del período fijado, especificando el número total de casos verificados.
- Ordenar los factores conforme a su frecuencia comenzando con el que se da un mayor número de veces.
- Obtener el porcentaje relativo de cada causa o factor, con respecto al total.
- Calculo del porcentaje relativo acumulado, se obtiene sumando en forma consecutiva los porcentajes de cada factor.

Paso 5

Dibujar dos ejes verticales (izquierdo y derecho) y otro horizontal.

(1) Eje vertical.

- En el eje vertical a la izquierda se gradúa de forma tal que sirva para mostrar el número de datos observados (la frecuencia de dicha causa).
- En el eje vertical de la derecha se mostrará el porcentaje relativo y acumulado.

(2) Eje horizontal.

 Se divide este eje en un número de intervalos de acuerdo al número de clasificaciones que se pretende realizar.

Paso 6

- En el eje horizontal se anotan las causas de izquierda a derecha, en orden decreciente en cuanto a su frecuencia o costo. El eje vertical izquierdo se gradúa de forma tal que sirva para mostrar el número de datos observados. El eje vertical derecho mostrará el porcentaje relativo y acumulado.
- Construir el diagrama de barras.

Para la elaboración del Diagrama de Pareto se recopiló los datos de las bitácoras de mantenimiento. **VER ANEXO G** (Histórico de fallos de los equipos). Siguiendo los pasos mencionados anteriormente se procede a organizar la información de las máquinas que componen la planta (Ver Tabla 4.3), de acuerdo al número de paradas de éstas, dentro del período de 1 año.

Tabla 4.3 Número de paradas de la maquinaria en el período 2009 - 2010.

Planta de Industrias Lácteas INPROLAC S.A.				
Nº	ÁREA	MÁQUINA	NÚMERO DE PARADAS	
1	Recepción	Enfriador de placas	8	
2	Recepcion	Silo de 15000 lts.	6	
3		Pasteurizador	13	
4		Homogenizador	12	
5	Pasteurización	Clarificador	18	
6		Envasadora de leche pasteurizada	12	
7		Envasadora de leche UHT	13	
8		Empacadora al vacio	10	
9	Mantequilla	Madurador	10	
10		Envasadora de yogurt funda	7	
11		Envasadora de yogurt vaso	45	
12		Termoencogedor	7	
13	Yogurt	Tanque Nº 7	6	
14		Tanque Nº 8	7	
15		Tanque Nº 9	8	
16		Tanque Nº 10	6	

Continuación de la Tabla 4.3

17		Bomba positiva	5
18	Manjar	Envasadora de manjar	8
19	Manjai	Olla Nº 1	6
20		Olla Nº 2	9
21	Gelatina	Envasadora de gelatina	6
22	Colatina	Envasadora de bolos, naranjada	11
23		Caldero # 1 (100 BHP)	20
24	Servicios	Caldero # 2 (250 BHP)	12
25	generales	Caldero # 3 (30 BHP)	9
26		Bomba de agua industrial	6
27		Equipo de ozonificación	16

Elaboración: Propia **Fuente:** INPROLAC S.A.

Con el fin de tener una mejor visualización de la maquinaria con problemas de acuerdo al número de paradas que se da en la planta, se realiza un histograma (Ver Figura 4.2); posteriormente se realiza el Diagrama de Pareto.

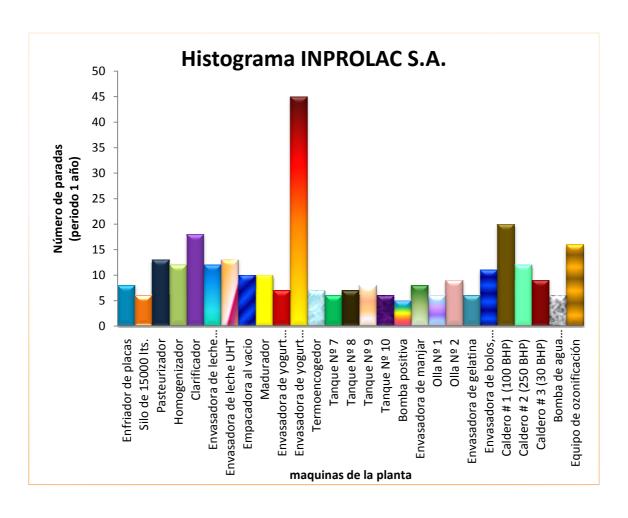


Figura 4.2 Histograma Industria Láctea INPROLAC S.A.

Fuente: INPROLAC S.A.

Observando la figura y analizando se obtiene que las máquinas que presentan un mayor número de averías son: la envasadora de yogurt, caldero (100 BHP), clarificador sin dejar de tomar en cuenta el resto. Para la elaboración del Diagrama de Pareto se procede a clasificar en orden de magnitud los datos obtenidos; estos se describen en la Tabla 4.4.

Tabla 4.4 Estratificación de las máquinas en función del número de paradas

Méassina	Número de	0/ voletive	% relativo	
Máquina	paradas	% relativo	acumulada	
Envasadora de yogurt	45	15,2027027	15,2027027	
Caldero # 1 (100 BHP)	20	6,75675676	21,9594595	
Clarificador	18	6,08108108	28,0405405	
Equipo de ozonificación	16	5,40540541	33,4459459	
Pasteurizador	13	4,39189189	37,8378378	
Envasadora de leche UHT	13	4,39189189	42,2297297	
Envasadora de leche pasteurizada	12	4,05405405	46,2837838	
Homogenizador	12	4,05405405	50,3378378	
Caldero # 2 (250 BHP)	12	4,05405405	54,3918919	
Envasadora de bolos, naranjada	11	3,71621622	58,1081081	
Empacadora al vacio	10	3,37837838	61,4864865	
Madurador	10	3,37837838	64,8648649	
Olla Nº 2	9	3,04054054	67,9054054	
Caldero # 3 (30 BHP)	9	3,04054054	70,9459459	
Enfriador de placas	8	2,7027027	73,6486486	
Tanque Nº 9	8	2,7027027	76,3513514	
Envasadora de manjar	8	2,7027027	79,0540541	
Envasadora de yogurt funda	7	2,36486486	81,4189189	
Termoencogedor	7	2,36486486	83,7837838	
Tanque Nº 8	7	2,36486486	86,1486486	
Silo de 15000 lts.	6	2,02702703	88,1756757	
Tanque Nº 7	6	2,02702703	90,2027027	
Tanque Nº 10	6	2,02702703	92,2297297	
Olla Nº 1	6	2,02702703	94,2567568	
Envasadora de gelatina	6	2,02702703	96,2837838	
Bomba de agua industrial	6	2,02702703	98,3108108	
Bomba positiva	5	1,68918919	100	
TOTAL	296	100		

Elaboración: Propia **Fuente:** INPROLAC S.A.

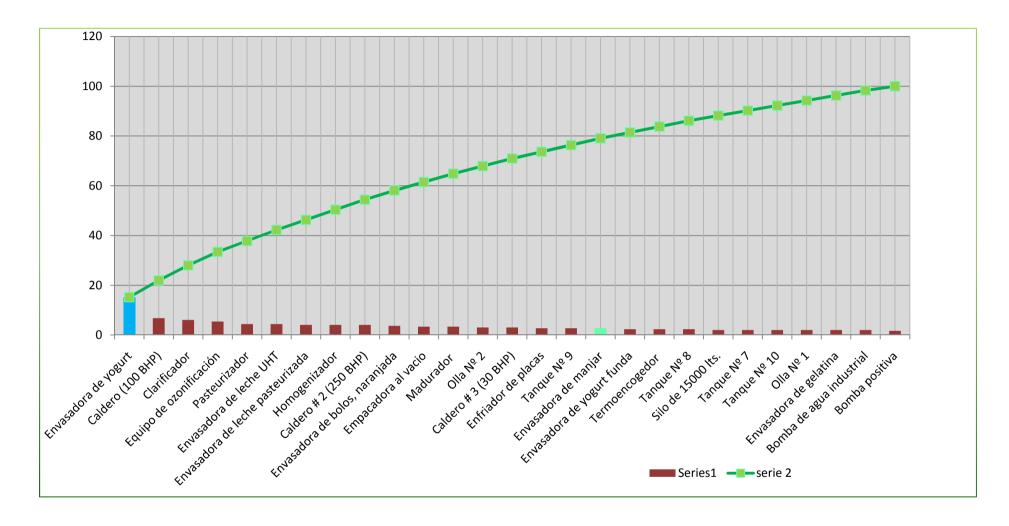


Figura 4.3 Diagrama de Pareto de la Industria Láctea INPROLAC S.A.

Fuente: Industrias Lácteas INPROLAC S.A.

Observando el Diagrama de Pareto, se obtiene que el 80% de las fallas producidas por el número de paradas, las mismas que se encuentran ordenadas de mayor a menor influencia, son ocasionadas por las siguientes máquinas:

- Envasadora de yogurt
- Caldero (100 BHP)
- Clarificador
- Equipo de ozonificación
- Pasteurizador
- Envasadora de leche UHT
- Envasadora de leche pasteurizada
- Homogenizador
- Caldero # 2 (250 BHP)
- Envasadora de bolos, naranjada
- Empacadora al vacio
- Madurador
- Caldero # 3 (30 BHP)
- Enfriador de placas
- Envasadora de manjar

4.2.4. ANÁLISIS DE LA PRIORIDAD DE REPARACIÓN

Para establecer la importancia entre los diferentes equipos y poder determinar la prioridad que será requerida para cada máquina, es necesario realizarlo tomando en cuenta ciertos factores que se otorgan de acuerdo las necesidades que requiera la empresa.

De acuerdo a la necesidad de la empresa, se consideran los siguientes factores:

- Producción.- Este factor determina como afectan las averías en el desempeño de la empresa, los costos por pérdidas.
- Calidad del producto final.- Toma en consideración la influencia que puede llegar a tener los fallos del equipo en la inocuidad del producto o su presentación y el consecuente desprestigio de la empresa.
- Costo del mantenimiento.- Aquí se confluyen criterios como frecuencia, costo de averías, número de horas paradas del equipo, grado de especialización del personal de mantenimiento.
- Medio ambiente.- Determina si el equipo puede causar da
 ños
 ambientales y su exposici
 ón de la empresa a sanciones.
- Seguridad.- Se refiere a los riesgos que puede sufrir el personal de operación y equipo cuando se presentan fallas o paros inesperados.

4.2.4.1. Ponderación de los factores

Se realiza una calificación de cada uno de los factores en 3 niveles, de acuerdo a los criterios de importancia más relevantes que se describen a continuación:

a) Producción

- 1. No afecta la producción.
- 2. Retrasa la producción.
- 3. Para la línea de producción.

b) Calidad del producto final

- 1. No afecta.
- 2. Relativa dentro de parámetros.
- Importante.

c) Costo del mantenimiento

- 1. Bajo.
- 2. Medio.
- 3. Alto.

d) Medio ambiente

- 1. Riesgo nulo.
- 2. Relativo.
- 3. Grave.

e) Seguridad

- 1. Relativo.
- 2. Riesgo del equipo.
- 3. Riesgo del operario

4.2.4.2. Peso relativo de cada factor

Se debe asignar un peso relativo a cada uno de los factores de acuerdo al nivel de importancia dentro de la empresa; la suma de estos debe ser igual al 100%. A continuación se describe en la Tabla 4.5 sus porcentajes.

Tabla 4.5 Peso relativo asignado a cada factor

FACTOR	PESO RELATIVO (PR)
Producción	0.30
Calidad del producto final	0.20
Costo del mantenimiento	0.25
Medio ambiente	0.10
Seguridad	0.15

Elaboración: Propia

Fuente: Propia.

4.2.4.3. Desarrollo de la matriz de priorización

Con los equipos obtenidos del Diagrama de Pareto, se realiza la ponderación de cada factor; de esta manera se puede obtener la criticidad de cada uno de los equipos que deben ser sometidos a un plan de mantenimiento preventivo.

Para la elaboración de la matriz se requiere considerar los siguientes puntos:

- Máquinas que presentan mayor número de fallos (Ver Figura 4.3)
- Factores con su respectiva ponderación.
- Asignación de peso relativo a cada factor
- Se procede a elaborar la matriz (Ver Tabla 4.6), la cual consta de las máquinas que presentan el mayor número de fallas en función de los factores puestos a consideración.
- Se procede a multiplicar cada uno de los factores por sus respectivos pesos relativos.

Tabla 4.6 Matriz de equipos en función de los factores

Equipos	Factor a	Factor b	Factor c	Factor d	Factor e
Envasadora de yogurt	2	3	3	1	1
Caldero # 1 (100 BHP)	2	1	1	2	2
Clarificador	3	1	2	1	1
Equipo de ozonificación	1	1	1	1	1
Pasteurizador	3	1	1	1	1
Envasadora de leche UHT	2	3	3	1	1
Envasadora de leche pasteurizada	2	3	2	1	1
Homogenizador	3	1	2	1	1
Caldero # 2 (250 BHP)	2	1	1	2	2
Envasadora de bolos, naranjada	2	3	2	1	1
Empacadora al vacio	1	3	1	1	1
Madurador	2	3	1	1	1
Olla Nº 2	1	1	1	1	1
Caldero # 3 (30 BHP)	2	1	1	2	2
Enfriador de placas	3	1	1	1	1
Tanque Nº 9	1	1	1	1	1
Envasadora de manjar	2	3	2	1	1

Elaboración: Propia

Fuente: Propia

Tabla 4.7 Matriz de priorización de los equipos en función de los factores y su respectivo peso relativo (PR)

Equipos	Factor a*PR	Factor b*PR	Factor c*PR	Factor d*PR	Factor e*PR	Total
Envasadora de yogurt	0.60	0.60	0.75	0.10	0.15	2.2
Caldero # 1 (100 BHP)	0.60	0.20	0.25	0.20	0.30	1.55
Clarificador	0.90	0.20	0.50	0.10	0.15	1.85
Equipo de ozonificación	0.30	0.20	0.25	0.10	0.15	1.0
Pasteurizador	0.90	0.20	0.25	0.10	0.15	1.60
Envasadora de leche UHT	0.60	0.60	0.75	0.10	0.15	2.2
Envasadora de leche pasteurizada	0.60	0.60	0.50	0.10	0.15	1.95
Homogenizador	0.90	0.20	0.50	0.10	0.15	1.85
Caldero # 2 (250 BHP)	0.60	0.20	0.25	0.20	0.30	1.55
Envasadora de bolos, naranjada	0.60	0.60	0.50	0.10	0.15	1.95
Empacadora al vacio	0.30	0.60	0.25	0.10	0.15	1.40
Madurador	0.60	0.60	0.25	0.10	0.15	1.70
Olla Nº 2	0.30	0.20	0.25	0.10	0.15	1.0
Caldero # 3 (30 BHP)	0.60	0.20	0.25	0.20	0.30	1.55
Enfriador de placas	0.90	0.20	0.25	0.10	0.15	1.60
Tanque Nº 9	0.30	0.20	0.25	0.10	0.15	1.0
Envasadora de manjar	0.60	0.60	0.50	0.10	0.15	1.95

Elaboración: Propia

Fuente: Propia

Observando la matriz de priorización se puede determinar y ordenar los equipos en la Tabla 4.8 a los que se implantará un plan de mantenimiento.

Tabla 4.8 Resultados de la matriz de priorización

Equipos	Total
Envasadora de yogurt	2.2
Envasadora de leche UHT	2.2
Envasadora de leche pasteurizada	1.95
Envasadora de bolos, naranjada	1.95
Envasadora de manjar	1.95
Clarificador	1.85
Homogenizador	1.85
Madurador	1.70
Enfriador de placas	1.60
Pasteurizador	1.60
Caldero # 1 (100 BHP)	1.55
Caldero # 2 (250 BHP)	1.55
Caldero # 3 (30 BHP)	1.55
Empacadora al vacio	1.40
Equipo de ozonificación	1.0
Olla № 2	1.0
Tanque Nº 9	1.0

Elaboración: Propia

Fuente: Propia

Para el presente estudio se toma en consideración a los equipos con un valor igual o superior a 2.0; estos están descritos en la Tabla 4.8 y son la envasadora de yogurt, envasadora de leche UHT.

El equipo que será sometido a estudio es la envasadora de yogurt; ya que esta decisión se ha tomado en función de diversos factores, entre los que se resaltan los siguientes: experiencia de técnicos, operadores y el historial de averías de las máquinas.

Determinándose que el equipo escogido presenta un número elevado de fallas, costo elevado de mantenimiento, paros inesperados, retrasos en la producción. Razón por la cual se requiere de un análisis más profundo descrito posteriormente en los cuadros AMFE.

4.2.4.4. Descripción del equipo

La envasadora de yogurt rotativa volumétrica (Ver Figura 4.4); tiene una capacidad aproximada de 1000 envases/h, para la sujeción de los vasos preformados de material plástico cuenta con guías las cuales están acopladas al botador de vasos, éste a su vez esta sincronizado mediante sistema de trasmisión mecánica, con el cogedor de tapas, el yunque de sellado y el eyector del producto. Todos estos elementos y sub - sistemas están comandados mediante un tablero de control y su funcionamiento de describe en **ANEXO H** (Función y funcionamiento de los sistemas, sub – sistemas, elementos del equipo y cuadros AMFE).

La particularidad del equipo es que no tiene partes móviles en contacto con el producto, excepto el pistón neumático dosificador, debido a su forma y diseño, es sumamente fácil de lavar; garantizando que no se genere contaminación hacia el producto envasado.

Figura 4.4 Envasadora de yogurt

Fuente: Industrias Lácteas INPROLAC S.A.

CAPITULO 5

UTILIZACIÓN DEL MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD

5.1. PLAN DE MANTENIMIENTO

5.1.1. MÉTODO DE ANÁLISIS MODAL DE FALLA Y EFECTO (AMFE)

Determinado el equipo, sus partes y funcionamiento, se procede a realizar el debido análisis de las mismas, haciendo uso del Análisis Modal de Falla y Efecto (AMFE). En este capítulo se van describir los conceptos básicos del AMFE y de las tareas relacionadas al mismo, para poder así desarrollar de forma óptima e idónea la metodología del Mantenimiento Centrado en la Confiabilidad (RCM).

El método AMFE, es una parte fundamental dentro del desarrollo del RCM, ya que éste es sistemático y que permite identificar los problemas antes de que ocurran y puedan afectar o impactar a los procesos y productos en un área determinada bajo un contexto operacional definido.

En este capítulo el objetivo primordial de los cuadros AMFE, es el de encontrar todas las formas y modos de fallo existentes en el equipo, dentro del proceso de fabricación del yogurt, como también identificar todas las consecuencias o efectos que pueden ocasionar dichas fallas. Para ello se debe realizar las siguientes actividades:

- Explicar las funciones del equipo seleccionado y sus respectivos estándares de ejecución.
- Definir las fallas funcionales asociada a cada función del equipo.
- Definir los modos de fallas asociados a cada falla funcional.
- Establecer los efectos o las consecuencias asociadas a cada modo de falla.

5.1.1.1. Estructura del cuadro AMFE

Una vez que se ha determinado a la envasadora de yogurt como el sistema ha analizar, se procede a realizar una sub - división de dicho equipo o sistema, en los siguientes sub – sistemas. En la Tabla 5.1 se indican los sub - sistemas que componen la máquina envasadora:

Tabla 5.1 Codificación de los Sub - sistemas

SUB - SISTEMA	CÓDIGO
Abastecimiento del fluido	AF
Dosificador	DO
Suministrador de vasos	SV
Plato transportador de vasos	PT
Sujeción y colocación de tapas	SC
Yunque sellador de tapas	YS
Eyector del producto	EP
Neumático	NM
Trasmisión mecánica	TM
Control eléctrico	CE
Bastidor principal	BP

Elaboración: Propia **Fuente:** INPROLAC S.A.

Cada uno de estos sub - sistemas cuenta con su propio AMFE, ya que cada sub - sistema cumple con una determinada función dentro del funcionamiento de la envasadora. Para un mejor entendimiento del cuadro se comienza por explicar la manera en la que se ha estructurado dicho cuadro, así como el objetivo de haber realizado dicha estructura.

La estructura genérica del cuadro AMFE y los distintos componentes que la conforman se detallan en la Figura 5.1.

ANÁLISIS MODAL DE FALLO Y EFECTO													
Nombre de	Nombre del sistema: Subsistema:												
Función o componente del servicio	Falla funcional	Código del fallo	Modo del fallo	Efectos del fallo	Consecuencias	Causas del fallo	Ggravedad	F ocurrencia	D detección	IPR inicia	Estado	Código de tareas	Obser.
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Figura 5.1 Cuadro de Análisis Modal de Fallo y Efecto

Fuente: JC PEÑA; "Análisis Modal de Fallos y Efectos"; 2001

Las partes principales del cuadro AMFE genérico son las siguientes: en la primera fila se encuentra ubicado el nombre ANÁLISIS MODAL DE FALLO Y EFECTO, de tal manera que sea de fácil identificación en el instante que se lo requiera.

En la segunda fila consta la información que se refiere, tanto del sistema como del sub - sistema que se está analizando; esta identificación es de vital importancia, ya que a través de ella es posible diferenciar los distintos cuadros AMFE que puedan existir para la maquinaria de la empresa; así como para diferenciar entre ellos, que pueda tener cada sub - sistema dentro de una misma máquina. La tercera fila corresponde a los pasos necesarios que se siguen para la aplicación del método, los mismos que tienen representación numérica en la Figura 5.1.

Los números de cada una de las casillas del cuadro anterior, corresponden a los pasos de aplicación del método y se describen a continuación:

5.1.1.1.1. Función

En la primera columna del formato del cuadro, se escribe la función o funciones que el sub - sistema cumple dentro del sistema principal, en este caso el sistema sobre el que se va a aplicar siempre va a ser la envasadora; por otro lado el sub - sistema va air cambiando de acuerdo a la sub - división mencionada anteriormente.

5.1.1.1.2. Falla Funcional

En esta columna se encuentran todas las posibles formas en las cuales la función de un sub - sistema puede verse afectada en su normal desempeño dentro del proceso de funcionamiento de la máquina. Una función puede tener una o varias fallas funcionales, las mismas que pueden incidir de forma parcial o total.

Falla funcional se define como el estado en el tiempo, en el cual el equipo o sistema no puede alcanzar el estándar de ejecución esperado y trae como consecuencia que el equipo o sistema no pueda cumplir su función ó la cumpla de forma ineficiente.

5.1.1.1.3. Código de Fallo

En esta columna se asigna un código a cada una de las fallas funcionales, esta codificación tiene la finalidad de permitir una interacción rápida y efectiva entre los diferentes sub - sistemas de una misma máquina. La codificación es imprescindible, al momento de encontrar que el modo de falla de un sub - sistema tiene la causa raíz de su problema ubicada en otro igual.

De tal manera que la codificación permite que dicha falla pueda ser encontrada de forma sencilla, al cambiarse de un sistema a otro en busca de la solución efectiva del problema; la codificación empleada en este caso se muestra en la Figura 5.2.

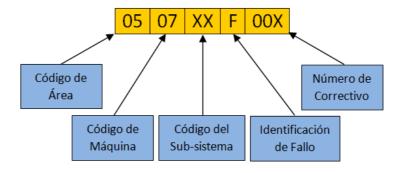


Figura 5.2 Codificación de la Falla Funcional

Fuente: Propia

5.1.1.1.4. Modo de Fallo

Para complementar la cuarta columna se recomienda comenzar con una revisión de los informes realizados en cuadros AMFE anteriores, relacionados con el producto o proceso que se está analizando. Ya que en esta columna se encuentran ubicadas todas las formas o maneras por las cuales se puede provocar una falla funcional o dicho de otra manera se ubican las formas en las cuales un sub - sistema puede fallar.

Un modo de fallo significa que un elemento o sistema no satisface o no funciona de acuerdo con la especificación o simplemente no se obtiene lo que se espera de él. El fallo es una desviación o defecto de una función o especificación. Con esa definición, un fallo puede no ser inmediatamente detectable y sin embargo se lo considera como tal.

La identificación correcta de los modos de fallas es el factor básico para la determinación adecuada de las actividades de mantenimiento a realizar, por esta razón se debe tener en cuenta los siguientes aspectos:

- Nivel de falla.
- Causas raíces de fallas funcionales.
- Modos de fallas con sus respectivos niveles de ocurrencia que deben ser registrados.

5.1.1.1.5. Efectos de Fallo

Suponiendo que el fallo potencial ha ocurrido, en esta columna se describirán los efectos del mismo, es decir, el ¿Cómo? afecta en términos operativos el modo de fallo; por lo tanto a cada modo de fallo le corresponde únicamente un efecto de fallo. Los efectos corresponden a los síntomas. Generalmente hacen referencia al rendimiento o prestaciones del sistema.

Cuando se analiza una parte o componente se tendrá también en cuenta la repercusión en todo el sistema, lo que ofrecerá una descripción más clara del efecto. Si un modo de fallo tiene muchos efectos, a la hora de evaluar, se elegirá el más grave.

Entre los efectos típicos de fallo podrían citarse los siguientes:

- Diseño: ruido, acabado basto, inoperante, inestable, etc.
- Proceso: no puede sujetar, no puede alinearse, no puede perforar, no se puede montar, etc.

Los puntos que debe contener una descripción de los efectos de un modo de falla son:

- Que evidencias existen de que ocurrió la falla.
- Como afecta la seguridad y el ambiente.
- De qué manera afecta a la producción o las operaciones, es decir, si es necesario parar el proceso, impacta a la calidad, impacta hacia el servicio al cliente o se producen daños a otros sistemas.
- Ocurren da
 ños f
 ísicos ocasionados por la falla.
- Como se puede reparar la falla.

5.1.1.1.6. Consecuencias

En esta columna se encuentra el "¿Cómo? y ¿Cuánto?" afecta cada modo de fallo en la operación de un sistema. El RCM clasifica a las consecuencias de acuerdo a, como pueden afectar la falla de un equipo a sus usuarios, así:

- Poniendo en riesgo la seguridad de las personas ("consecuencias de seguridad")
- Afectando al medio ambiente ("consecuencias de medio ambiente")
- Incrementando los costos o reduciendo el beneficio económico de la empresa ("consecuencias operacionales")
- Ninguna de las anteriores ("consecuencias no operacionales")

Además, existe una quinta categoría de consecuencias, para aquellas fallas que no tienen ningún impacto cuando ocurren, salvo que posteriormente ocurra alguna otra falla. Estas fallas corresponden a la categoría de fallas ocultas.

Cada modo de falla identificado en el análisis de RCM debe ser clasificado en una de estas categorías. El orden en el que se evalúan las consecuencias es el siguiente: seguridad, medio ambiente, operacionales, y no operacionales, previa separación entre fallas evidentes y ocultas.

El análisis RCM bifurca en esta etapa: el tratamiento que se la va a dar a cada modo de falla, va a depender de la categoría de consecuencias en la que se haya clasificado, lo que es bastante razonable; no sería correcto tratar de la misma forma a fallas que pueden afectar la seguridad, que aquellas que tienen consecuencias económicas. El criterio a seguir para evaluar tareas de mantenimiento es distinto si las consecuencias de falla son distintas.

5.1.1.1.7. Causas de Fallo

En esta columna se reflejan todas las causas potenciales de fallo atribuibles a cada modo de fallo. La causa potencial de fallo se define como indicio de una debilidad del diseño o proceso cuya consecuencia es el modo de fallo. Las causas relacionadas deben ser lo más concisas y completas posibles, de modo que las acciones correctoras y/o preventivas puedan ser orientadas hacia las causas pertinentes. Entre las causas típicas de fallo podrían citarse las siguientes:

- En diseño: porosidad, uso de material incorrecto, sobrecarga, etc.
- En proceso: daño de manipulación, herramientas incorrectas, sujeción, amarre, etc.

5.1.1.1.8. Índice de Gravedad (G)

Este índice está íntimamente relacionado con los efectos del modo de fallo. El índice de gravedad valora el nivel de las consecuencias sentidas por el cliente.

Esta clasificación está basada únicamente en los efectos del fallo. El valor del índice crece en función de:

- La insatisfacción del cliente. Si se produce un gran descontento, el cliente no comprará más.
- La degradación de las prestaciones. La rapidez de aparición de la avería.
- El costo de la reparación.

El índice de gravedad o también llamado de severidad es independiente de la frecuencia y de la detección. Para utilizar unos criterios comunes en la empresa se utiliza una tabla de clasificación de la severidad de cada efecto de fallo, de forma que se objetive la asignación de valores de G. (Ver Tabla 5.2)

Tabla 5.2 Índices de gravedad del modo de fallo

GRAVEDAD	CRITERIO	VALOR
Muy baja repercusiones imperceptibles	No es razonable esperar que este fallo de pequeña importancia origine efecto real alguno sobre el rendimiento del sistema, Probablemente el cliente no se dé cuenta del fallo.	1
Bajas repercusiones Irrelevantes apenas imperceptibles	El tipo de fallo originaría un ligero inconveniente al cliente, probablemente se observará un leve deterioro del sistema. Provoca una ligera molestia.	2-3
Moderada efectos de relativa importancia.	Se produce deterioro en el rendimiento del sistema. Provoca disgusto e insatisfacción.	4-6
Alta	El fallo es crítico y puede verse inutilizado el sistema. Origina un alto grado de insatisfacción.	7-8
Muy alta	Modalidad de fallo potencial muy crítico que afecta el funcionamiento de seguridad del producto o proceso y de no conformidad con los reglamentos vigentes.	9-10

Elaboración: Propia

Fuente: JC PEÑA; "Análisis Modal de Fallos y Efectos"; 2001

Este índice sólo es posible mejorarlo mediante acciones de diseño, y no se ve afectado por los controles actuales.

5.1.1.1.9. Índice de Frecuencia (F)

Frecuencia se define como la probabilidad de que una causa específica se produzca y dé lugar al modo de fallo. En esta columna se pondrá un valor de probabilidad de frecuencia de la causa específica. Este índice de frecuencia está íntimamente relacionado con la causa de fallo, y consiste en calcular la probabilidad de ocurrencia en una escala del 1 al 10, como se indica en la Tabla 5.3.

Tabla 5.3 Índices de frecuencia del modo de fallo

GRAVEDAD	CRITERIO	VALOR	PROBABILIDAD
Muy baja Improbable	Ningún fallo se asocia a procesos casi idénticos, ni se ha dado nunca en el pasado, pero es concebible. Defecto inexistente.	1	1/10000
Baja	Fallos aislados en procesos similares o casi idénticos.	2-3	1/5000 – 1/2000
Moderada	Defecto aparecido ocasionalmente en procesos similares o previos al actual, probablemente aparecerá algunas veces en la vida del sistema.	4-5	1/1000 – 1/200
Alta	El fallo se ha presentado con cierta frecuencia en el pasado en procesos similares o previos procesos que han fallado.	6-8	1/100 – 1/50
Muy alta	Fallo casi inevitable, es seguro que el fallo se producirá frecuentemente.	9-10	1/20 – 1/10

Elaboración: Propia

Fuente: JC PEÑA; "Análisis Modal de Fallos y Efectos"; 2001

Cuando se asigna la clasificación por ocurrencia, deben ser consideradas dos probabilidades:

- La probabilidad de que se produzca la causa potencial de fallo.
- La probabilidad de que una vez ocurrida la causa de fallo, ésta provoque el efecto nocivo indicado.

Para reducir el índice de frecuencia, se debe emprender una o dos acciones:

- Cambiar el diseño, para reducir la probabilidad de que la causa de fallo pueda producirse.
- Incrementar o mejorar los sistemas de prevención y/o control que impiden que se produzca la causa de fallo.

Para reducir el índice de frecuencia de una causa, es recomendable atacar directamente la "raíz de la misma". Mejorar los controles de vigilancia debe ser una acción transitoria, para más tarde buscar alguna solución que proporcione una mejora de dicho índice.

5.1.1.1.10. Índice de Detección (D)

Se refiere a la posibilidad o no de detectar un modo de fallo o una causa de fallo. La escala de la detectabilidad es inversa, asignando el valor de 1 cuando es fácil de detectar y asignando el valor de 10 cuando es casi imposible de detectar; los Índices de Detección se describen en la Tabla 5.4.

Tabla 5.4 Índice de detección del modo de fallo

GRAVEDAD	CRITERIO	VALOR	PROBABILIDAD	
Muy alta	El defecto es obvio. Resulta muy improbable que	1	1/10000	
	no sea detectado por los controles existentes.			
	El defecto aunque es obvio y fácilmente			
Alta	detectable, podría en alguna ocasión a escapar	2-3	1/5000 – 1/2000	
Alta	a algún control, aunque sería detectado con toda	2-3	1/3000 — 1/2000	
	seguridad en lo posterior.			
	El defecto es detectable, no llega al cliente			
Mediana	posiblemente se detecte en los últimos estados	4-6	1/1000 – 1/200	
	de producción.			
	El defecto es de tal naturaleza que resulta difícil			
Pequeña	detectarlo con procedimientos establecidos	7-8	1/100 — 1/50	
	vigentes.			
Improbable	El defecto no puede detectarse.	9-10	1/20 – 1/10	

Elaboración: Propia

Fuente: JC PEÑA; "Análisis Modal de Fallos y Efectos"; 2001

Es preciso no confundir control y detección, pues una operación de control puede ser eficaz al 100%, pero la detección puede resultar nula si las piezas no conformes son finalmente enviadas por error al cliente. Para mejorar este índice será necesario mejorar el sistema de control de detección, aunque por regla general aumentar los controles signifique un aumento de costo, que es el último medio al que se debe recurrir para mejorar la calidad. Algunos cambios en el diseño también pueden favorecer la probabilidad de detección.

5.1.1.1.11. Índice de Prioridad de Riesgo (IPR)

El IPR es el producto de los índices anteriores de gravedad, frecuencia y detectabilidad, y debe ser calculado para todas las causas de fallo, es decir mediante la fórmula:

El valor resultante oscila entre 1 y 1000 correspondiendo a 1000 el mayor potencial de riesgo. Cuando el IPR es mayor a 100, adicional a las tareas que se desprenden de este ítem se deben incluir acciones correctivas AMFE, sin embargo, no solo para estos valores de IPR de deben realizar análisis detallados sinó cuando particularmente G, F o D son altos, también se debe poner atención en bajar estos índices. El IPR es usado con el fin de priorizar la causa potencial del fallo para posibles acciones correctoras.

5.1.1.1.12. Estado

En esta columna se hace referencia a los resultado obtenidos en el IPR, determinando si se requiere o no una acción correctiva para una causa de fallo, siendo "normal" si el IPR es menor a 100, y presentando un "alto riesgo" para el funcionamiento del sistema si el IPR es igual o mayor a 100, de ser así se requiere de una acción correctiva.

5.1.1.1.13. Código de Tarea

La codificación de la tarea tiene como finalidad el ayudar a encontrar con facilidad la tarea de mantenimiento correspondiente a cada una de las causas de fallo que presenta la máquina, por lo que en esta columna se ubica un código de tarea para identificar cada una de las causas de fallo; la codificación a utilizarse se detalla en la Figura 5.3.

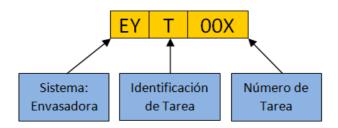


Figura 5.3 Codificación de las Tareas de Funcionamiento

Fuente: Propia

5.1.1.1.14. *Observaciones*

La finalidad de esta columna es de mejorar la interacción entre los diferentes sub - sistemas cuando la ocasión lo amerite, así como la de relacionar el cuadro AMFE con el cuadro de correctivos AMFE que se detalla más adelante.

Con el fin de cumplir estos objetivos, para el primer caso se localiza en esta columna las observaciones que permitan a través de los códigos de fallo, ubicar de forma rápida y sencilla en otros sub - sistemas las causas raíces que provocan modos de fallo en el sub - sistema analizado; para el segundo caso dichas observaciones hacen referencia al código de fallo del cuadro de correctivos AMFE. En el **ANEXO H,** se indica los Cuadros AMFE de falla elaborados para el estudio.

5.1.1.2. Estructura del cuadro de correctivos AMFE

Una vez que realizado el cuadro AMFE y se han obtenido como resultado los valores numéricos de criticidad IPR, se procede a realizar otro cuadro llamado Cuadro de Correctivos AMFE; el cual se realiza para aquellos elementos cuya criticidad resulta ser demasiado alta con un IPR > 100. En este nuevo cuadro se definen las acciones de:

- Rediseño del producto, servicio o proceso general
- Rediseño del proceso de fabricación
- Incremento del control o inspecciones

Con la finalidad de reducir los índices de gravedad, frecuencia o detectabilidad que conlleven a una reducción significativa del índice de prioridad de riesgo IPR, mejorando de esta manera la confiabilidad del funcionamiento del equipo.

Es en general más económico reducir la probabilidad de ocurrencia de fallo (si se encuentra la manera de conseguirlo), que dedicar recursos a la detección de fallos. La estructura genérica del cuadro de Correctivos AMFE y los distintos componentes que la conforman se detallan en la Figura 5.4.

Nombre de	CUADRO DE CORRECTIVOS AMFE Nombre del sistema: Subsistema:										
Nombic di	Notitible del sistema.										
Función o Componente del Servicio	Falla Funcional	Código de acción correctiva	Modo del Fallo	Causas del Fallo	Acción Correctiva	Responsable	G gravedad	F ocurrencia	D detección	IPR Inicial	Código de tareas
1	2	3	4	5	6	7	8	9	10	11	12

Figura 5.4 Cuadro de Correctivos AMFE

Fuente: Propia

En este tipo de cuadros AMFE, los pasos son similares a los AMFE de fallas y los puntos que varían son:

 Código de Acción Correctiva.- En esta columna se ubica el código a través del cual se hace posible identificar fácilmente la acción correctiva que se debe tomar para aquellos casos en los que se requiera reducir el índice de criticidad. Este código se lo ha ubicado en las observaciones del cuadro AMFE de fallas para poder trasladarse sin problemas del cuadro AMFE al cuadro de correctivos AMFE, la codificación empleada se muestra en la Figura 5.5.

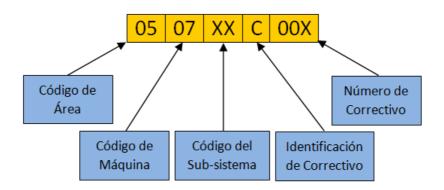


Figura 5.5 Codificación de la Acción Correctiva

Fuente: Propia

- Acción correctiva.- Se detalla la acción que debe realizar al elemento de la máquina para corregir el error.
- Responsable.- Indica la persona a la que corresponde realizar la acción de corrección.
- Índices de gravedad, frecuencia y detectabilidad.- De acuerdo a la acción correctiva que se realice los índices deben disminuir.
- IPR (Número prioritario de riesgo).- El valor también debe disminuir debido a que han disminuido los índices.
- Código de tarea.- Indica los AMFE de tareas que se deben realizar de cada acción correctiva.

5.2. CRONOGRAMA DE LAS ACTIVIDADES DE MANTENIMIENTO

Para la realización del cronograma de mantenimiento se deben elaborar los cuadros AMFE de tareas, donde indica las actividades y el tiempo estimado en el que se debe realizar la tarea.

5.2.1. DESCRIPCIÓN DE LAS TAREAS DE MANTENIMIENTO

Son aquellas tareas que se deben realizar, de todos los elementos que se encuentran en los AMFE de fallos, siendo las tareas de mantenimiento las que se establecen de forma sistemática y tienen como objetivo el poder predecir, prevenir o corregir las fallas.

Las principales partes de la estructura a utilizarse para la elaboración de las tareas se presentan en la Figura 5.6.

	TAREAS DE MANTENIMIENTO AMFE										
CÓDIGO DE TAREAS	NOMBRE ESTRATEGIA		DESCRIPCIÓN	DESCRIPCIÓN PERÍODO DURACIÓN ESTIMADA		REPUESTOS HERRAMIENTAS		PERFIL DEL PERSONAL			
1	2	3	4	5	6	7	8	9			

Figura 5.6 Cuadro de Tareas de Mantenimiento

Fuente: Propia

- Código de tarea.- Código que tiene todas las causas de fallo así como los AMFE de corrección.
- Nombre.- Se refiere al nombre de la tarea que se debe realizar.
- **Estrategia**.- Mantenimiento que se debe realizar de acuerdo al nombre.
- **Descripción**.- Representación de los pasos que se deben seguir para realizar la tarea.
- Período.- Tiempo que se debe realizar la tarea respectiva.
- Duración estimada.- Tiempo que se demora en realizar la tarea el personal respectivo.
- **Repuestos**.- Piezas que se debe tener en stock para realizar el respectivo cambio en la tarea encomendada.
- **Herramientas**.- Elementos y todo lo necesario para poder desarmar la máquina y realizar la respectiva tarea.
- Perfil del personal.- El o las personas que deben realizar la respectiva tarea de mantenimiento.

Para el correcto desarrollo del mantenimiento de la máquina elegida se debe tomar en cuenta los repuestos que se necesita.

Con los procedimientos desarrollados en el presente capítulo se consigue determinar las diferentes máquinas críticas o las que con mayor frecuencia fallan en la planta, además se indica la estructura de los distintos cuadros AMFE, aplicados a las mismas.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- El presente documento tiene como propósito plasmar un plan de mantenimiento centrado en la confiabilidad que trate de asegurar que las máquinas, equipos e instalaciones que dispone la empresa operen el mayor tiempo posible dentro de parámetros, que aseguren una correcta fabricación con el menor número de paros inesperados y fallos. Garantizando así la mejora continua de la empresa en sus distintas etapas de crecimiento y optimizando su prestación.
- La metodología que se siguió, constó de: sectorización de las áreas de la planta, diagnóstico de la situación actual de la maquinaria identificando los problemas más frecuentes y los daños más pronunciados.
- Se creó la base de datos, especificando tipo de maquinaria, modelo, serie, capacidades, especificaciones e historial de averías; con la finalidad de facilitar la identificación y adquisición de repuestos, evitar futuros daños inesperados.
- La ventaja de haber conocido el proceso que se lleva a cabo dentro de la Planta, permite dar una mejor definición de las funciones y parámetros de funcionamiento de la máquina en su verdadero contexto operacional.
- Se implemento los cuadros AMFE como parte del plan de mantenimiento para desarrollar de una forma correcta y ordenada las tareas preventivas o correctivas que requiere la máquina con mayor número de fallos; que en este caso es la envasadora de yogurt.

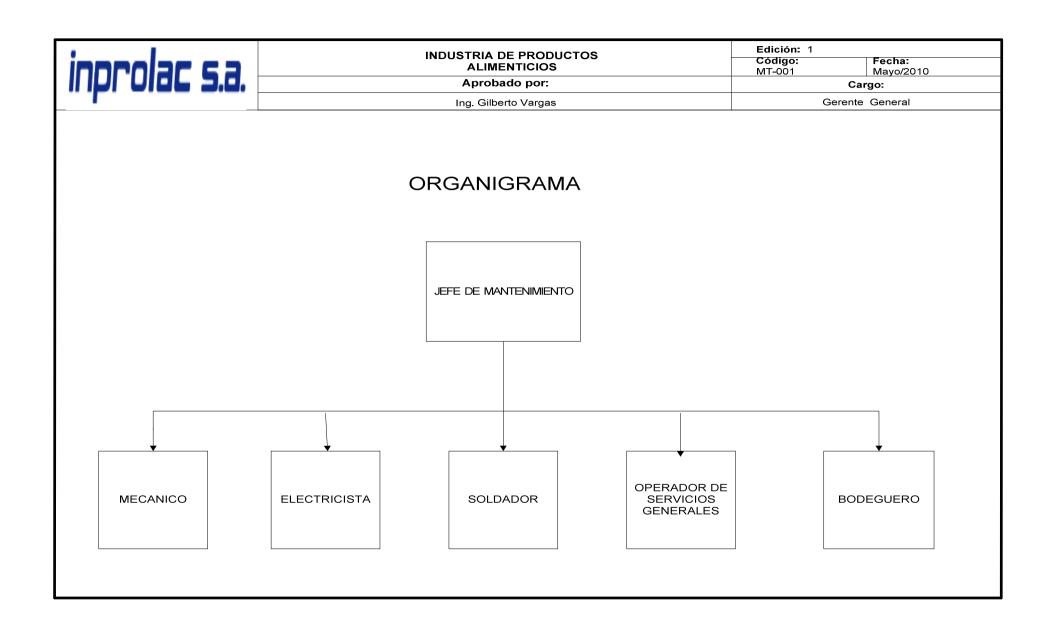
- En la actualidad el departamento de mantenimiento de la empresa no cuenta con el presupuesto suficiente para realizar un mantenimiento adecuado; razón por la cual en los momentos que se producen las averías existe escases de repuestos, adaptación de elementos no estandarizados, incrementándose costos de refacción por mantenimiento inadecuado, tiempos muertos de producción; lo que conlleva al deterioro de la maquinaria y equipo de la planta.
- El éxito del plan de mantenimiento diseñado dependerá en gran parte del empeño y honestidad con que el personal de la Planta realice los trabajos programados así como la elaboración de informes que se ajusten lo más exactamente posible a las labores desarrolladas.

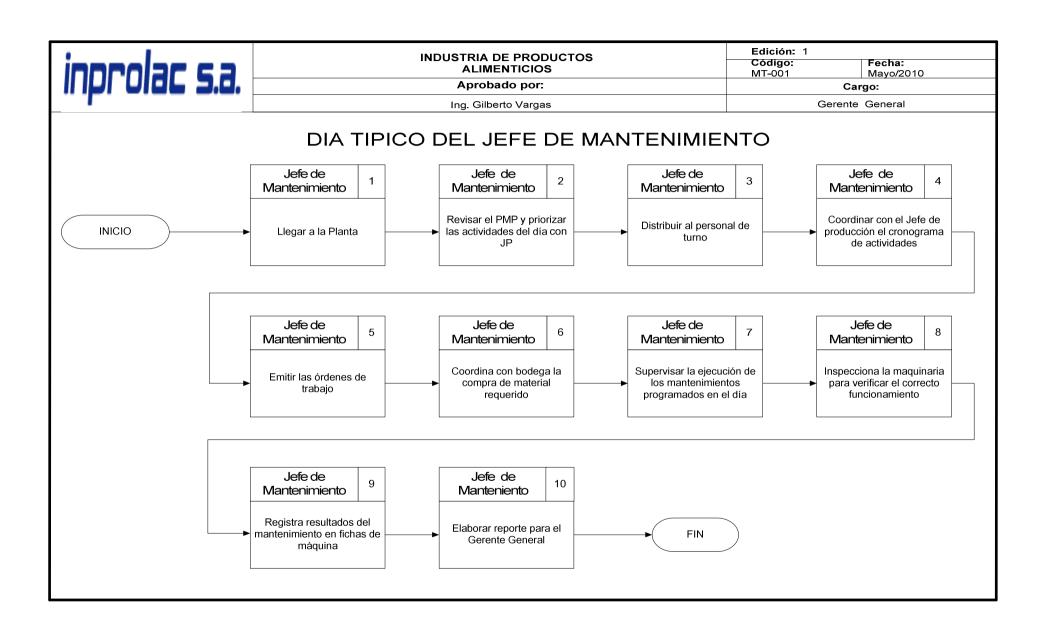
RECOMENDACIONES

- Existe una falta de capacitación al personal de producción; por lo se sugiere realizar un plan para la capacitación continua ya que esta contribuye tanto al desarrollo personal como empresarial.
- Generar un presupuesto exclusivo para el área de mantenimiento, ya sea para herramientas o repuestos.
- Para obtener buenos resultados en el estudio de AMFE, se sugiere tanto el personal de mantenimiento, como el de producción de la planta, unifiquen criterios con respecto al significado de las fallas para equipo.
- Realizar una mejor distribución de las líneas de producción en la planta
- Se recomienda la creación de Órdenes de Trabajo con check list para una mejor entrada, salida de datos y optimización del mantenimiento.
- Capacitar al personal de producción para que desarrollen algunas actividades de mantenimiento, mejorando y agilitando de forma eficiente cuanto falten los técnicos de mantenimiento.
- Antes de aplicar el mantenimiento preventivo los equipos se deben poner en óptimas condiciones de funcionamiento.
- Ningún plan de mantenimiento debe permanecer estático, debe incluir nuevas técnicas administrativas que actualicen su funcionamiento.

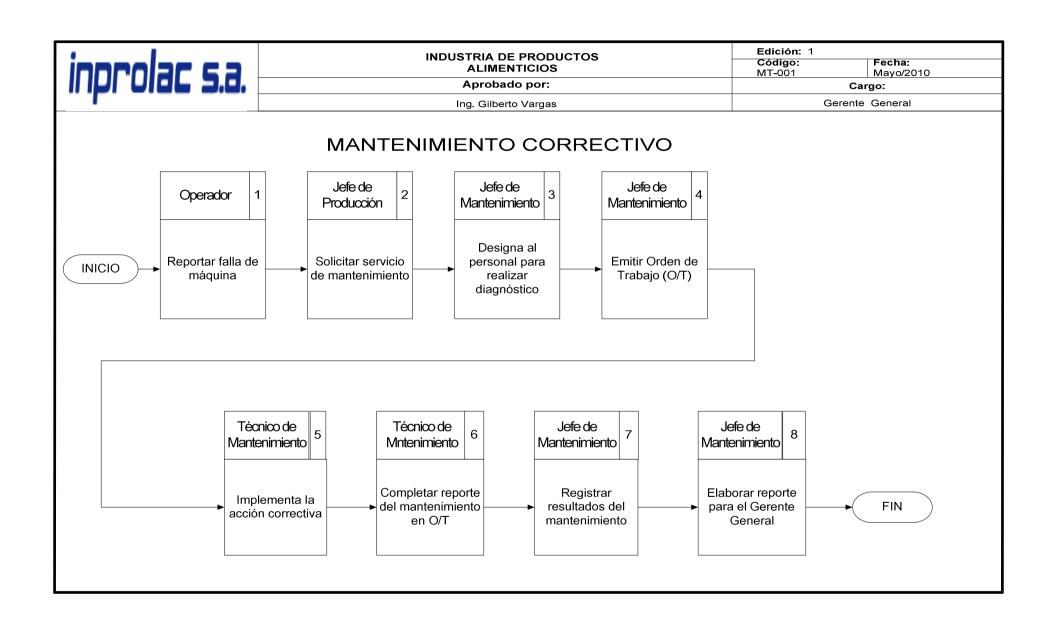
BIBLIOGRAFÍA

- AGUINAGA, A.; Ingeniería del Mantenimiento, Escuela Politécnica Nacional, Ecuador, 2005.
- AMADOR, R. ZELAYA, V; Manual de Buenas Prácticas de Fabricación aplicado a la industria láctea; Honduras, C.A; 2001.
- VERGARA, Carlos; Diseño de una Planta de Producción de leche pasteurizada, yogurt y postres lácteos; Universidad de Cádiz; 2007.
- JACOME, Luis; Ingeniería del Mantenimiento; Escuela Politécnica Nacional; Ecuador - 2006.
- BESTRATÉN, M., NTP 679; Análisis Modal de Fallos y Efectos AMFE,
 Centro Nacional de Condiciones de Trabajo, España; 2001
- Dr. Ing. Rodrigo Pascual J; Gestión Moderna del Mantenimiento; Dpto.
 Ing. Mecánica, U. de Chile; Santiago 2002.
- Tetra Pak. Manual de Industrias Lácteas. Buenos Aires, Argentina. 2009.


PAGINAS DE INTERNET


- www.mantenimientoplanificado.com
- www.inoxpa.com
- www.cavilac.org
- www.geape.es
- www.mantenimientomundial.com
- www.aceriaspazdelrio.com
- www.quiminet.com


ANEXOS


ANEXO A

ORGANIGRAMA Y MANUAL DE PROCEDIMIENTOS DEL SISTEMA DE MANTENIMIENTO

Edición: 1

Código: MT-001 Fecha: Mayo/2010

Aprobado por:

Cargo:

Ing. Gilberto Vargas

Gerente General

MANUAL DE PROCEDIMIENTOS DEL SISTEMA DE MANTENIMIENTO

Edición: 1

Código: Fecha:
MT-001 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

POLITICAS DE MANTENIMIENTO

OBJETIVO

La presente pretende dejar por escrito algunas políticas que regirán al Departamento de Mantenimiento de Inprolac S.A.

ALCANCE

Las presentes disposiciones deben cumplir absolutamente todos los colaboradores del Departamento de Mantenimiento de Inprolac S.A.

EXPOSICION DE LAS POLITICAS

- 1. La principal meta de Mantenimiento es asegurar el correcto funcionamiento de las máquinas, los equipos, y áreas físicas para que se pueda efectuar una producción con altos índices de productividad, para lo cual se fundamentará en el Plan de mantenimiento preventivo (PMP) y el principal responsable es el Jefe de Mantenimiento.
- 2. Cada máquina o equipo tendrá una hoja de vida, la cual será actualizada conforme se ejecute el PMP.
- 3. El Jefe de mantenimiento delineará las actividades que se pueden encargar a los operadores de producción y las que serán de manejo exclusivo de los técnicos de mantenimiento.
- 4. Mantenimiento es el responsable del buen manejo del combustible (diesel), agua, vapor, energía eléctrica, para los cuales siempre estará supervisando y reportando al Gerente General cualquier indicio de desviación. Esto se hará a través del Jefe de Mantenimiento.
- 5. El indicador que medirá a esta área será el cumplimiento con el Plan de Mantenimiento Preventivo.

Edición: 1

Código: Fecha:
MT-001 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

MANTENIMIENTO PREVENTIVO

1. Jefe de Mantenimiento (JM) define la relación de Equipos susceptibles a Mantenimiento Preventivo.

JM define los equipos que son susceptibles a Mantenimiento Preventivo, estos son aquellos que por su importancia en el proceso o por su valor asegurado, deben estar disponibles en todo momento y cumplir con todas las condiciones requeridas por el asegurador.

2. JM clasifica y/o codifica por equipos

JM clasifica y/o codifica los equipos tomando como criterio áreas de trabajo, características inherentes del propio equipo, etc.

3. JM desarrolla el programa de Inspección.

JM desarrolla el programa de monitoreo de los parámetros de los equipos definidos previamente determinando una frecuencia de inspección regular y efectiva.

4. JM determinar acciones correctivas con base la información del fabricante y/o datos históricos.

JM define las actividades preventivas a desarrollar que garanticen el cumplimiento a los parámetros establecidos.

5. JM elabora el Programa de Mantenimiento.

JM deberá elaborar detalladamente el programa de mantenimiento.

6. JM emite orden de trabajo (O/T).

JM elabora las órdenes de trabajo en función del programa de mantenimiento establecido, previa coordinación con Producción. En caso de no ejecutarse en ese momento se dejará abierto hasta que sea ejecutado.

7. El Técnico de Mantenimiento (TM) ejecuta el trabajo.

Implementar la acción preventiva descrita para el caso.

8. TM completa el reporte del mantenimiento en O/T.

TM deberá completar las órdenes de trabajo, anotando correctamente los resultados e incidencias del trabajo de mantenimiento en la O/T.

9. JM registra resultados del mantenimiento en fichas de máguinas.

JM deberá registrar los resultados del mantenimiento en las fichas de máquinas y llevara la estadística de las órdenes de trabajo por equipo que arroja el programa.

10. JM elabora reporte para el Gerente General

JM presentará el reporte del mantenimiento de los equipos según la frecuencia de las órdenes de trabajo que hayan tenido.

Edición: 1

Código: Fecha:
MT-001 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

MANTENIMIENTO CORRECTIVO

1. Operador de Producción (OP) reporta la falla.

El Operador de Producción (OP) identifica la falla y deberá reportar la falla del equipo al JP.

2. Jefe de Producción (JP) solicita el servicio de mantenimiento.

JP solicitará la atención de la falla al JM mediante la solicitud de trabajo.

3. JM designa inspección de la máquina con falla.

JM deberá designar al personal para realizar el diagnóstico, determina las causas, y las acciones correctivas a tomar.

4. JM emite O/T.

JM deberá emitir la O/T respectiva, señalando las acciones correctivas a tomar.

5. El Técnico de Mantenimiento (TM) ejecuta el trabajo.

Implementar la acción correctiva descrita para el caso.

6. TM completa el reporte del mantenimiento en O/T.

TM deberá completar las órdenes de trabajo, anotando correctamente los resultados e incidencias del trabajo de mantenimiento en la O/T.

7. JM registra resultados del mantenimiento en fichas de máquinas.

JM deberá registrar los resultados del mantenimiento en las fichas de máquinas y llevara la estadística de las órdenes de trabajo por equipo que arroja el programa.

8. JM elabora reporte para el Gerente General

JM presentará el reporte del mantenimiento de los equipos según la frecuencia de las órdenes de trabajo que hayan tenido.

Edición: 1

Código: Fecha:
MT-001 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

EXPLICACIÓN DEL DIA TIPICO DEL JEFE DE MANTENIMIENTO

1. Jefe de Mantenimiento (JM) llega a la Planta.

JM debe llegar a la Planta a las 7:00 AM, para revisar con los técnicos las incidencias que se suscitaron en el transcurso del turno de noche, para discutirlas y tomar acciones correctivas.

2. JM revisa el programa de mantenimiento preventivo y prioriza las actividades del día con JP.

JM deberá revisar con JP las actividades programadas para el día, priorizando aquellas que según criterio deberá realizarse primero.

3. JM distribuye al personal de turno.

JM deberá coordinar la distribución de los trabajo con los técnicos.

4. JM coordina con JP las actividades programadas para el día.

Diariamente, JM deberá coordinar con JP para determinar los paros programados en cada una de las máquinas o áreas de trabajo.

5. JM emite las órdenes de trabajo.

Luego de coordinar con Producción, JM deberá emitir las órdenes de trabajo.

6. JM coordina con el Bodeguero la compra de material requerido para realizar el mantenimiento.

JM deberá coordinar con el bodeguero de mantenimiento la adquisición del material, repuesto o herramienta, necesaria para llevar a cabo la labor de mantenimiento, utilizará el formato de la orden de trabajo para sustentar dicha compra.

7. JM supervisa la ejecución de las actividades programadas en el día.

JM deberá supervisar la ejecución de las actividades programadas, deberá conocer el detalle de las acciones realizadas para tomar acciones correctivas.

8. JM inspecciona la maquinaria para verificar el correcto funcionamiento o habilitación.

JM inspecciona la maquinaria con el fin de asegurar el correcto funcionamiento o habilitación, este control determinará la satisfacción del trabajo realizado.

9. JM registra resultados del mantenimiento en fichas de máquinas.

JM deberá registrar los resultados del mantenimiento en las fichas de máquinas y llevara la estadística de las órdenes de trabajo por equipo que arroja el programa.

10. JM elabora reporte para el Gerente General

JM presentará el reporte del mantenimiento de los equipos según la frecuencia de las órdenes de trabajo que hayan tenido.

Edición: 1

Código: MT-001

Fecha: Mayo/2010

Aprobado por:

Cargo:

Ing. Gilberto Vargas

Gerente General

REPORTE DE MANTENIMIENTO

- NOMBRE DEL FORMATO
- REPORTE DE MANTENIMIENTO
- OBJETIVO
- Este reporte permite llevar a la Gerencia el control de la ejecución del Programa de Mantenimiento Preventivo y conocer el estado de los equipos de la Planta a través de los mantenimientos correctivos efectuados. Es el mecanismo por medio del cual Mantenimiento informa a Gerencia los resultados de cada uno de los servicios programados y no programados.
- RESPONSABLE DE SU CORRECTO LLENADO
- Jefe de Mantenimiento.
- FRECUENCIA.
- Semanal
- RESPONSABLE DE RECIBIRLO
- Gerencia General.
- EXPLICACION DEL FORMATO

No	NOMBRE	EXPLICACIÓN
1.	FECHA	Aparece indicada la fecha de emisión.
2.	NUMERO DE LA ORDEN	Relaciona el reporte con el número de la orden de trabajo para mejor seguimiento
3.	REFERENCIA DE LA PLANTA/MAQUINA	Se refiere a la Planta o Máquina a la que se le realiza mantenimiento.
4.	TIPO DE MANTENIMIENTO	Indica el tipo de mantenimiento que se realizó
5.	RESULTADOS	Se refiere a la descripción de los resultados del mantenimiento realizado
6.	OBSERVACIONES	Se refiere a las incidencias que ocurrieron durante la realización del servicio
7.	RESPONSABLE DEL SERVICIO	Indica el nombre del técnico que se le encargó la ejecución del servicio
8.	JEFE DE MANTENIMIENTO	Se refiere al visto bueno del Jefe de Mantenimiento.
9.	GERENTE GENERAL	Se refiere al visto bueno del Gerente General.

 Edición: 1
 Fecha:

 MT-001
 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

ORDEN DE TRABAJO

- NOMBRE DEL FORMATO
- ORDEN DE TRABAJO
- OBJETIVO
- La orden de trabajo nos permite llevar el detalle del servicio que se realizará a la máquina, el tipo de mantenimiento que se le dará y el estado de la máquina antes del servicio de mantenimiento. Es el mecanismo por medio del cual Mantenimiento solicita los materiales, repuestos y herramientas.
- RESPONSABLE DE SU CORRECTO LLENADO
- Jefe de Mantenimiento.
- FRECUENCIA.
- Diario.

EXPLICACION DEL FORMATO

	No	NOMBRE	EXPLICACIÓN
	01.	ORDEN DE TRABAJO Nº	Indica el número de la orden de trabajo
	02.	PLANTA	Indica la planta en la que se realizará el servicio
	03.	AREA	Indica el área dentro de la Planta en la que se realizará el servicio
	04.	MAQUINA	Indica la Máquina en la que se realizó el diagnóstico
l la	05.	TIPO DE MANTENIMIENTO	Se refiere al tipo de mantenimiento por el que se realiza orden
"	06.	FECHA	Se refiere a la fecha de emisión del documento
	07.	DESCRIPCIÓN DEL	Se describen las actividades que se realizarán en el
servic	io		4
		SERVICIO	
	08.	VERIFICACIÓN DEL	Flag para llevar el check list de tareas realizadas.
		SERVICIO	
	09.	CANTIDAD	Se refiere a la cantidad de repuestos utilizados
	10.	REQUERIMIENTO DE REPUESTOS	Se refiere a los repuestos que se requieren para llevar a cabo el servicio
	11.	VALOR	Indica el costo del repuesto utilizado
	12.	RESULTADO DEL SERVICIO	Se refiere al estado de la máquina luego de realizado el servicio
	13.	AUTORIZADO POR:	Indica quien autoriza el servicio
	14.	REALIZADO POR:	Indica quien estará a cargo del servicio
	15.	SOLICITADO POR:	Indica quien solicitó y revisara el resultado del servicio.

Edición: 1

Código: Fecha:
MT-001 Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

PROGRAMA DE MANTENIMIENTO PREVENTIVO

- NOMBRE DEL FORMATO
- PROGRAMA DE MANTENIMIENTO PREVENTIVO
- OBJETIVO
- Determinar el número de mantenimientos que se realiza en cada planta y a las máquinas susceptibles de mantenimiento preventivo. Determinar la fecha y las actividades de mantenimiento preventivo que se realizaron a un determinado equipo.
- RESPONSABLE DE SU CORRECTO LLENADO
- Jefe de Mantenimiento.
- FRECUENCIA.
- Diario.
- RESPONSABLE DE RECIBIRLO
- Gerencia General.
- EXPLICACION DEL FORMATO

No.	NOMBRE	EXPLICACION
1.	MAQUINA	Indica el nombre de la máquina que se realiza el mantenimiento preventivo.
2.	AREA	Indica el área donde se encuentra la máquina.
3.	SERIE	Indica el número de serie de la máquina.
4.	INVENTARIO Nº	Indica el número de inventario de la máquina.
5.	FRECUENCIA	Se refiere a la frecuencia en el cual se deberá realizar una o varias actividades encaminadas a mejorar la vida útil de la máquina.
6.	ITEM	Indica una numeración, para determinar el número de actividades programadas según la frecuencia.
7.	SERVICIOS	Se refiere a las intervenciones a realizar en la maquinaria una vez alcanzadas las frecuencias que ahí se indican.
8.	MATRIZ DE SERVICIO POR SEMANAS	Indica la semana en la que se realizara cada una de las actividades descritas en el programa.

Edición: 1

Código: Fecha: Mayo/2010

Aprobado por: Cargo:

Ing. Gilberto Vargas Gerente General

APROBACIÓN.

	Firma	Fecha
Gerencia de Fábrica		
Control de la Calidad		
Producción		
Técnico		

ANEXO B

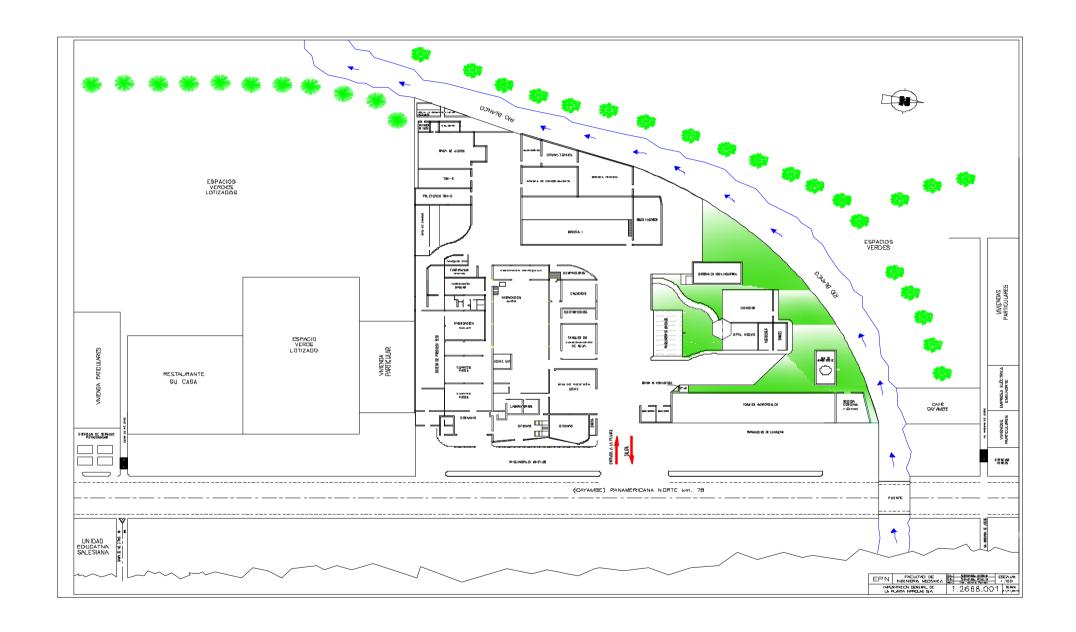
CALIDAD DEL AGUA

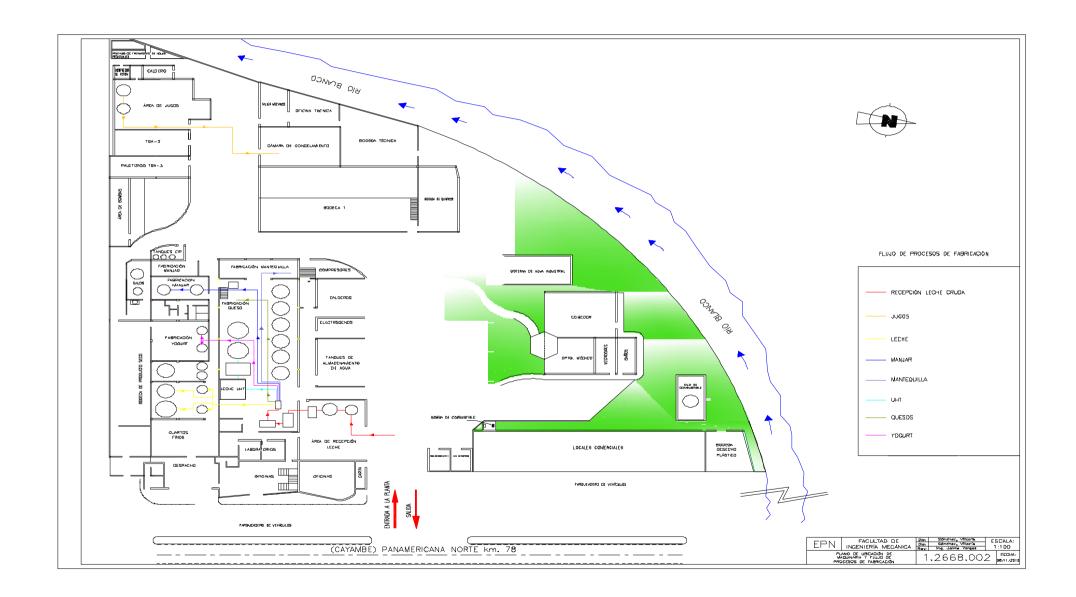
CALIDAD DEL AGUA PARA USO POTABLE

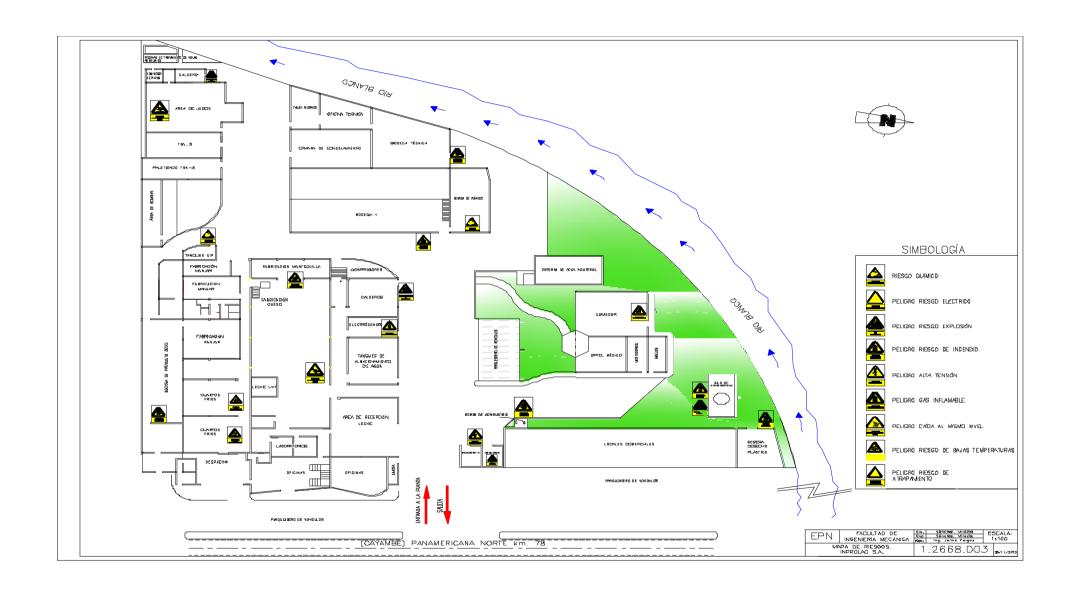
Criterios de calidad para la destinación del recurso para consumo humano y doméstico

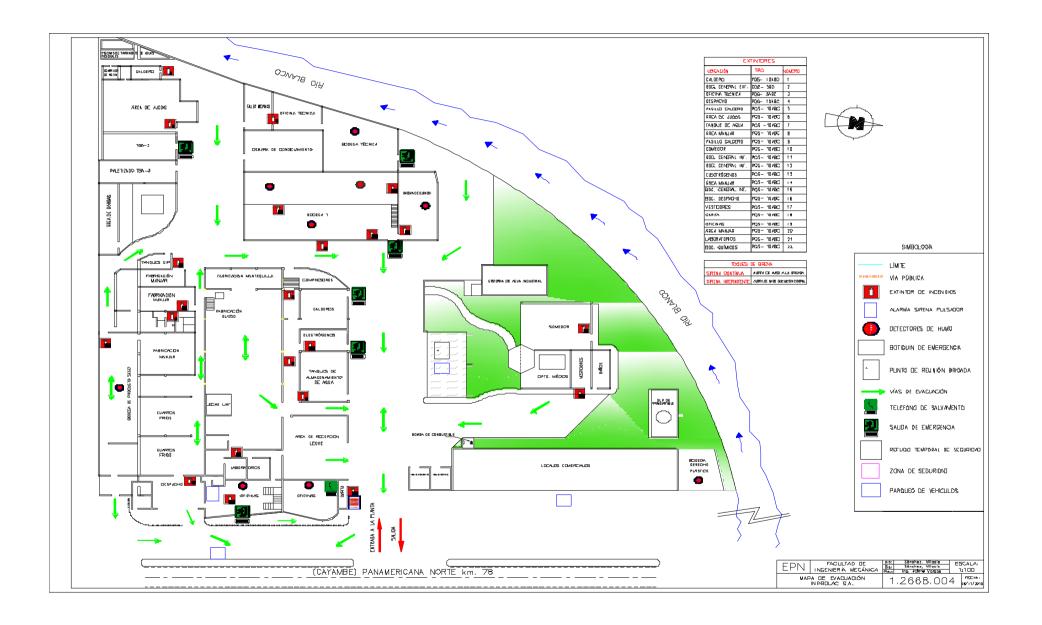
PARA TRATAMIENTO CONVENCIONAL

Se tiene la siguiente referencia:


REFERENCIA	EXPRESADO COMO	VALOR (*)		
Amoníaco	N	1,0		
Arsénico	As	0,05		
Bario	Ва	1,0		
Cadmio	Cd	0,01		
Cianuro	CN ⁻	0,2		
Zinc	Zn	15,0		
Cloruros	Cl	250,0		
Cobre	Cu	1,0		
Color	Color real	75 Unid de Pt – Co		
Compuestos	Fenol	0,002		
Cromo	Cr ⁶⁺	0,05		
Difenil Policlorados	Concentración de Agente activo	No detectable		
Mercurio	Hg	0,002		
Nitratos	N	10,0		
Nitritos	N	1,0		
Ph	Unidades	5,0 - 9,0		
Plata	Ag	0,05		
Plomo	Pb	0,05		
Selenio	Se	0,01		
Sulfatos	SO ₄ =	400,0		
Tensoactivos	Sustancias activas al azul de	0,5		
Coliformes Totales	NMP	20.000 microorg./100		
Coliformes Fecales	NMP	2.000 microorg./100		


NOTA


(*) Todos los valores están expresados en mg/L, excepto aquellos para los cuales se presentan directamente sus unidades.


ANEXO C

PLANOS (IMPLANTACIÓN, FLUJO DE PROCESOS DE FABRICACIÓN, MAPA DE RIESGOS Y EVACUACIÓN)

ANEXO D

FORMATO DE HISTÓRICO DE AVERÍAS Y DATOS DE PLACA

FECHA:			ÁREA:						
REPORTE:									
TRABAJO RE	ALIZADO:								
HORA INICIO	D:		HORA FINAL:						
REPUESTOS	UTILIZADOS:								
CANTIDAD			DESCRIPCIÓN						
AUTORIZADO:			TÉCNICO	RECIBIDO:					

INDUSTRIA DE PRODUCTOS	Edición: ′	1	
	Código:	Fecha:	
ALIMENTICIOS	RT-005	may-10	
Aprobado por:	Cargo:		
Ing. Gilberto Vargas	Gerente	General	

GRAFICO DE MAQUINARIA

REGISTRO DE MAQUINARIA									
SECCIÓN:				INVENTA	RIO Nº		AÑO:		
	PASTEUR	IZACIÓN		786.	10399.02	.139	13 DE F	EBRERO D	EL 2007
DESCRIPCIO	ÓN:		MODELO		SERIE:		CAPACID	AD:	
HOM	OGENIZAD	OR	SAN-50)HP-1N	100	005	50	000 Lts / ho	ra
TIPO DE CO	RRIENTE:			VOLTAJE		AMPERA.	IE:	POTENCIA	۹:
	TRIFA	SICA		22	0 V	12	0 A	55	HP
TIPO DE CO	RREA:			•		•			
				PIX B96 1	7 x 2438				
TIPO DE RO	DAMIENT	OS:							
TIPO DE LUI	BRICANTE	: ACEITE	RECOMEN	NDADO REI	PSOL YPF	DIESEL AT	TURBO 40) SAE 40	
REMPLAZOS	S: SHELL R	IMULAX M	ONOGRAD	O SAE 10V	V-40; TEXA	CO URSAI	D3 SAE 40;	MOBIL DE	LVAC 1340
	MARCA	MODELO	SERIE	POTENCIA	RPM	VOLTAJE	AMPERAJE	PH	HZ
	WEG	2255M07-06	QB24952	55 HP	1770	220-440 V	120-60 A	TRIFASICO	60
MOTORES	WEG	7110-06	C02 067	0.37 KW	1710	220 V	1.1/2.2	TRIFASICO	60

ANEXO E DATOS DE PLACA DE EQUIPOS

ÁREA GELATINA

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:		PREP	AC	FECHA:	05-o	ct-10			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE		
INPROLAC	MANJAR	7861039906014	S/N	6673355	2000 Lts/h	1988	WAUKESHA		
	DATOS DE MOTOR								
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE		
BAUER	BAUER S/N		S/N	1 HP	40 rpm	220 V	2 Amp		

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA:	COCINA INDUSTRIAL F				FECHA:	05-0	ct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	MANJAR	7861039906021	S/N	S/N	10 Lts	1998	NACIONAL
			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
WEG	WEG S/N C56-07/02 S/N		S/N	1/2 HP	3495 rpm	110/ 220 V	7/ 3.5 Amp

MÁQUINA:	С	FECHA:	05-oct-10				
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	BOLOS Y REFRESCOS	7861039906045	S/N	S/N	300 Lts	1988	NACIONAL
	T	DAT	OS DE	MOTOR	ı		T
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
S/N	S/N	S/N	S/N	3 HP		220 V	9,4 Amp

ÁREA MANJAR

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:		ВОМВА РО	SITIVA	FECHA:	05-o	ct-10				
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE			
INPROLAC	MANJAR	7861039906014	S/N	6673355	2000 Lts/h	1988	WAUKESHA			
	DATOS DE MOTOR									
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE			
BAUER	S/N	S/N	S/N	1 HP	40 rpm	220 V	2 Amp			

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ARE	AREA DE MANTENIMIENTO - TARJETA DE MAQUINA										
MÁQUINA:	L	ICUADORA IN	FECHA:	05-o	ct-10						
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE				
INPROLAC	MANJAR	7861039906021	S/N	S/N	10 Lts	1998	NACIONAL				
			DATOS	DE MOTOR							
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE				
WEG	S/N	C56-07/02	S/N	1/2 HP	3495 rpm	110/ 220 V	7/ 3.5 Amp				

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA: MÁQUINA ENVASADORA					FECHA:	05-0	ct-10		
PLANTA	PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANT								
INPROLAC	MANJAR	7861039906038	DLB-RC	953	30 G.P.M	2006	BISIGNANO		
			DATOS	DE MOTOR					
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE		
EBERLE	B-80	B-06	S/N	0.75 HP	1720 rpm	220 V	2,7 Amp		
					·				

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ANL	A DE MAN									
MÁQUINA:		VIDEO	FECHA:	05-о	ct-10					
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE			
INPROLAC	MANJAR	7861039906090	43 - S	73300008	Variable	2007	VIDEOJET			
			DATOS [DE MOTOR						
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE			

ÁREA MANTEQUILLA

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	IA: MADURADOR					05-o	ct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	MANTEQUILLA	7861039906038	DLB-RC	953	30 G.P.M	2006	BISIGNANO
INI TOE/TO	WATEGOILLA	7001003300000	DEBINO	300	00 G.I .IVI	2000	DIGIGITATIO
		D	ATOS D	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
EBERLE	B-80	B-06	S/N	0.75 HP	1720 rpm	220 V	2,7 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

AREA DE MANTENIMIENTO - TARGETA DE MAQUINA							
MÁQUINA:	BA	TIDORA DE	05-oct-10				
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
	1						+
INPROLAC	MANTEQUILLA	7861039906014	S/N	6673355	2000 Lts/h	1988	WAUKESHA
			DATOS D	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
BAUER	S/N	S/N	S/N	1 HP	40 rpm	220 V	2 Amp

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	INA: BOMBA SANITARIA 1					05-o	ct-10		
PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTE									
INPROLAC	MANTEQUILLA	7861039906021	S/N	S/N	10 Lts	1998	NACIONAL		
			ATOC D	F MOTOD					
MADOA	MODELO			E MOTOR	DDM	VOLTA IF	AMPERAJE		
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE		
WEG	S/N	C56-07/02	S/N	1/2 HP	3495 rpm	110/ 220 V	7/ 3.5 Amp		

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

AKE	A DE MANTE										
MÁQUINA:	BOMBA DE VACIO F					05-o	ct-10				
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE				
INPROLAC	MANTEQUILLA	7861039906045	S/N	S/N	300 Lts	1988	NACIONAL				
		D	ATOS D	E MOTOR							
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE				
S/N	S/N	S/N	S/N	3 HP		220 V	9,4 Amp				

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	MOLDE	FECHA:	05-0	oct-10			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	MANTEQUILLA	7861039906052	S/N	S/N	300 Lts	1988	NACIONAL
		D	ATOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
S/N	S/N	S/N	S/N	4 HP		220 V	12 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

- AINL	-A DE MANT						
MÁQUINA:	Е	05-0	ct-10				
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	MANTEQUILLA	7861039906083			1500 Lts	1985	
			DATOS DI	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
TEFC	192	100L	S/N	5 HP	1710	220 V	15 Amp

ÁREA PASTEURIZACIÓN

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	P	ASTEURIZAD	FECHA:	05-0	oct-10		
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	PASTEURIZACION	7861039906014	S/N	1221	0	2007	Argentina
		<u> </u> DA	TOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
TECNAR	S/N	1221	S/N	7.5HP	3480 rpm	380 V	11.3 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA:	НС	MOGENIZAI	FECHA:	05-0	ct-10		
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	PASTEURIZACION	7861039906021	S/N	0	0		Argentina
		DA	TOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
SIMES	S/N	S/N	S/N	0	3495 rpm	110/ 220 V	7/ 3.5 Amp

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	DE	SODORIZAL	FECHA:	05-0	oct-10		
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	PASTEURIZACION	7861039906038	S/N	1221	0	2007	Argentina
		DA	TOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
TECNAR	S/N	1221	S/N	0	1720 rpm	220 V	2,7 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

7 11 12							
MÁQUINA:	C	CLARIFICADO	FECHA:	05-о	ct-10		
DIANTA	οποριόν	INIVENTADIO	MODELO	CEDIE	CADACIDAD	AÑO FAD	FARRICANTE
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	PASTEURIZACION	7861039906045	RE35TE	CO21-081	5000 lt/h	2003	Vicenso-Italia
		DA	TOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
REDA	RE35TE	CO21-081	S/N	0		220 V	9,4 Amp

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	ВС	FECHA:	05-o	ct-10			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	PASTEURIZACION	7861039906069		10338	15m3/h	0	Argentina
		D	ATOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
SIMES		10338	S/N	3 HP	3000 rpm	380 V	5.19 Amp
						_	

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA:	El	NFUNDADORA	A DE LEC	FECHA:	05-0	ct-10				
PLANTA	PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTE									
INPROLAC	LECHE	7861039906014	S/N	0	0	0	PREPAC			
			DATOS	DE MOTOR						
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE			
BAUER	S/N	S/N	S/N	1 HP	40 rpm	220 V	2 Amp			

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:		BOMBA SAN	FECHA:	05-0	ct-10		
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	LECHE	7861039906021	S/N	10338	15 m3/h	0	SIMES
			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
WEG	S/N	C56-07/02	S/N	1/2 HP	3495 rpm	110/ 220 V	7/ 3.5 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

							
MÁQUINA:	MÁ	QUINA EMPA	FECHA:	CHA: 05-oct-10			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	LECHE	7861039906045	S/N	S/N	0	0	ASEPTIC
_			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
S/N	S/N	S/N	S/N	3 HP		220 V	9,4 Amp

ÁREA RECEPCIÓN

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA:	MÁQUINA: BOMBA SANITARIA 1					05-0	ct-10			
PLANTA	SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTI									
INPROLAC	RECEPCION	7861039906052	S/N	S/N	1 Hp	0	BALDOR			
			DATOS D	E MOTOR						
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE			
BALDOR	SGC	W898	S/N	1 Hp	3450 rpm	208-230/460 V	3.7-3.6/1.8 Amp			

ÁREA SERVICIOS GENERALES

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	COMPRESOR DE REFIGERACION 2			ACION 2	FECHA:	05-00	05-oct-10	
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE	
	BANCO DE			4RR1-2-300-TSK-				
INPROLAC	HIELO	0	0	200	500 psi	0	0	
			DATOS	DE MOTOR				
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE	
		4RR1-2-300-TSK-						
COPELAND	0	200	0	0	0	208-230 V	0	
	_							

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE	ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA										
MÁQUINA:	СОМ	FECHA:	05-	oct-10							
PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTE											
INPROLAC	GENERACION	7861039906014	S/N	HS2000A	80 gal	1995	CAMBELLL HAUSFEL				
		DA	TOS DE	MOTOR							
MARCA	MARCA MODELO SERIE TIPO POTENCIA R.P.M. VOLTAJE AMPERAJE										
CAMBELL HAUSFELT	S/N	HS 2000A	S/N	1550 rpm	230 V	21 Amp					

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	OMPRESOR	FECHA:	05-o	ct-10			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	GENERACION	7861039906021	GA 209	30190101-5	8.8 bar	1975	ATLAS COPCO
		I	DATOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
ATLAS COPCO	GA 209	3090101-5	ABP705831	6 HP	3500 rpm	440/ 460 V	7/ 3.5 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ARE	A DE MANTE										
MÁQUINA:		ENFRIADOR	FECHA:	05-о	ct-10						
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE				
INPROLAC	GENERACION	7861039906038	FD 300CSA/UL	127515	20 bar	1975	ATLAS COPCO				
			DATOS DE	MOTOR							
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE				
ATLAS COPCO	FD 300CSA/UL	127515	FD 300CSA/UL	3 HP	rpm	220/230 V	Amp				

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

COMF	PRESOR HO	FECHA:	05-	oct-10		
SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
GENERACION	7861039906045	GSC-3	TS20/2447	125 psi	2000	GRIMMER SCHMIDT
	D.A	TOS DE	MOTOR			
MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
GSC-3	TS20/2447	S/N	20 HP	4256 rpm	230 V	Amp
	SECCIÓN GENERACION MODELO	SECCIÓN INVENTARIO GENERACION 7861039906045 DA MODELO SERIE	SECCIÓN INVENTARIO MODELO GENERACION 7861039906045 GSC-3 DATOS DE MODELO SERIE TIPO	GENERACION 7861039906045 GSC-3 TS20/2447 DATOS DE MOTOR MODELO SERIE TIPO POTENCIA	SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD GENERACION 7861039906045 GSC-3 TS20/2447 125 psi DATOS DE MOTOR MODELO SERIE TIPO POTENCIA R.P.M.	SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. GENERACION 7861039906045 GSC-3 TS20/2447 125 psi 2000 DATOS DE MOTOR MODELO SERIE TIPO POTENCIA R.P.M. VOLTAJE

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

, v		., .										
MÁQUINA:	GRUPO ELI	05-oct-10										
PLANTA	PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTE											
INPROLAC	GENERACION ELECTRICA	7861039906014	SSDMO	S/N	32 Lts	S/N	JHON DEERE					
		DATO	OS DE N	MOTOR								
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE					
JHON DEERE	SSDMO	S/N	S/N	S/N	1800 rpm	220 -127 V	7.45 - 8.2 Amp					

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:		CALDERO	FECHA:	05-0	oct-10		
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	GENERACION	7861039906014	S/N	1747239	100 BHP	1988	CLEAVEAR BROKS
			TOS DE	MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
CLEAVEAR BROKS	S/N	S/N	S/N	1 HP	40 rpm	220 V	2 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA: CALDERO 2					FECHA:	05-o	ct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	GENERACION	7861039906021	S/N	FAA-2473	250 BHP	1998	UMISA
		I	DATOS D	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
UMISA	S/N	C56-07/02	S/N	1/2 HP	3495 rpm	110/ 220 V	7/ 3.5 Amp

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	MÁQUINA: CALDERO 3					05-0	ct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	GENERACION	7861039906038	DLB-RC	0	30 BHP	2006	NACIONAL
		[DATOS D	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
NACIONAL	B-80	B-06	S/N	0.75 HP	1720 rpm	220 V	2,7 Amp


INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

BOMBA DE AGUA Y TANQUE HIDRONEUMÁTICO 1 - MÁQUINA: 2 FECHA: 05-oct-10

PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE				
INPROLAC	SISTEMA DE AGUA POTABLE	7861039906014	JMM3314T	37K976X048G1	S/N	S/N	BALDOR				
	DATOS DE MOTOR										
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE				
BALDOR	JMM3314T	37K976X048G1	S/N	15 HP	3450 rpm	208-230 /460 V	38-36/18 Amp				

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

BOMBA DE	OZONIFICA	ACIÓN		FECHA:	05-oct-10	
SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRIC ANTE
SISTEMA DE AGUA POTABLE	7861039906021	S/N	1520955	S/N	S/N	SAER
	DATOS	DE MOT	OR			
MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERA JE
S/N	1520955	M/200	2 HP	3450 rpm	127 V	21.2 Amp
	SECCIÓN SISTEMA DE AGUA POTABLE MODELO	SECCIÓN INVENTARIO SISTEMA DE AGUA POTABLE 7861039906021 DATOS MODELO SERIE	SECCIÓN INVENTARIO MODELO SISTEMA DE AGUA POTABLE 7861039906021 S/N DATOS DE MOT MODELO SERIE TIPO	SECCIÓN INVENTARIO MODELO SERIE SISTEMA DE AGUA POTABLE 7861039906021 S/N 1520955 DATOS DE MOTOR MODELO SERIE TIPO POTENCIA	SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD SISTEMA DE AGUA POTABLE 7861039906021 S/N 1520955 S/N DATOS DE MOTOR MODELO SERIE TIPO POTENCIA R.P.M.	SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. SISTEMA DE AGUA POTABLE 7861039906021 S/N 1520955 S/N S/N DATOS DE MOTOR MODELO SERIE TIPO POTENCIA R.P.M. VOLTAJE

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

		- IAINL			шл						
					FECHA						
MÁQUINA:	EQUIPO DE	OZONIF	ICACI	:	05-oct-10						
		INVENTA	MODE		CAPACI						
PLANTA	SECCIÓN	RIO	LO	SERIE	DAD	AÑO FAB.	FABRICANTE				
	SISTEMA DE AGUA	78610399	W6-B-				CORONA				
INPROLAC	POTABLE	06038	L-VH	S/N	S/N	S/N	DISCHARGE SISTEM				
		DATOS	DE M	OTOR							
				POTEN							
MARCA	MODELO	SERIE	TIPO	CIA	R.P.M.	VOLTAJE	AMPERAJE				
CORONA											
DISCHARGE SISTEM	W6-B-L-VH	S/N	S/N	S/N	S/N	120 V	0.25 Amp				
							·				

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	BOMBA DE A TANQUE H	05-oct-10										
PLANTA	SECCIÓN	INVENTARIO	MODEL O	SERIE	CAPACID AD	AÑO FAB.	FABRICANTE					
INPROLAC	SISTEMA DE AGUA POTABLE	78610399060 45	NBR	7049	S/N	S/N	WEG					
	DATOS DE MOTOR											
MARCA	MODELO	SERIE	TIPO	POTENCI A	R.P.M.	VOLTAJE	AMPERAJE					
WEG	NBR	7049	S/N	15 HP	3500 rpm	220-380/440 V	36.9-21.4-18.5 Amp					

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

MÁQUINA:	BOMBA DE	FECHA:	05-0	oct-10								
PLANTA	SECCIÓN	INVENTARI O	MODE LO	SERIE	CAPACID AD	AÑO FAB.	FABRICANTE					
INPROLAC	SISTEMA DE AGUA POTABLE	7861039906 052	S/N	S/N	S/N	S/N	WEG					
		DATOS	DE M	IOTOR								
				POTEN								
MARCA	MODELO	SERIE	TIPO	CIA	R.P.M.	VOLTAJE	AMPERAJE					
						222-380-440	36.9-21-4-18.5					
WEG	S/N	S/N	S/N	11 KW	3250 rpm	V	Amp					

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	MÁQUINA: SUELDA TIG					05-0	oct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	TALLER	7861039906014	S/N	S/N	0	0	MASTER TIG
		[DATOS D	E MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
MASTER KEMPPI	S/N	S/N	S/N	0	0	220/440 V	1600 AC/DC

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ANLA DL			AINUL I A	DE MAGO								
MÁQUINA:	TALADRO PEDESTAL FECHA:						05-oct-10					
DIANTA	PLANTA SECCIÓN INVENTARIO MODELO SERIE CAPACIDAD AÑO FAB. FABRICANTE											
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	ANO FAB.	FABRICANTE					
INPROLAC	TALLER	7861039906052	S/N	S/N	0	0	NACIONAL					
		D	ATOS DE	MOTOR								
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE					
DRILLING MACHINE	S/N	S/N	S/N	3/4 HP	1720 rpm	110 V	5 Amp					

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA: TORNO UNIVERSAL					FECHA:	05-0	oct-10					
DI ANITA	DI ANTA CECCIÓN INVENTADIO MODELO CEDIE CADACIDAD AÑO FAD FADDICANTE											
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE					
INPROLAC	TALLER	7861039906069				0						
			DATOS D	E MOTOR								
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE					
ECUAMA				1.5 KW	1700 rpm	110 V						

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

ROSCADORA DE TUBOS

MÁQUINA: ELECTRICA FECHA: 05-oct-10

			1		1	~	1			
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE			
INPROLAC	TALLER	0	0	0	1/2 - 4"	0	PIPE THREAD			
	DATOS DE MOTOR									
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE			
PIPE THREADER	0	0	0	750 W	0	110 V	0			
		•				·				

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:	SUEL	DA DE ARC	O ELECT	RICO 2	FECHA:	05-о	ct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	TALLER	0	0	KD 465340	0	0	MILLER
			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
MILLER	0	KD 465340	0	0	0	115-230 V	50-200 Amp

ÁREA YOGURT

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

MÁQUINA:		ENFUNDA	DORA		FECHA:	05-0	oct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	YOGURT	7861039906014	0	0	6000 Lts/h	0	0
			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
ASTIMEC	S/N	S/N	S/N	1.6 HP	S/N	220 V	1.4 Amp

INDUSTRIA DE PRODUCTOS LÁCTEOS S.A.

ÁREA DE MANTENIMIENTO - TARJETA DE MÁQUINA

, ,, ,=	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				J 1,7 1		
MÁQUINA:	ı	BOMBA DE SA	ANITIZACIO	ON	FECHA:	05-0	oct-10
PLANTA	SECCIÓN	INVENTARIO	MODELO	SERIE	CAPACIDAD	AÑO FAB.	FABRICANTE
INPROLAC	YOGURT	7861039906076			2000 Lts/h	0	0
			DATOS	DE MOTOR			
MARCA	MODELO	SERIE	TIPO	POTENCIA	R.P.M.	VOLTAJE	AMPERAJE
SIEMENS	15A	B01LA094	S/N	3.6 HP	0	220/440 V	12/6 Amp

ANEXO F LISTADO Y CODIFICACIÓN DE EQUIPOS

CODIFICACIÓN DE EQUIPOS

CÓDIGOS	MA	\QI	UIN	IAF	RI/	4							
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS	<u> </u>	ID.	Γ. F.	AB	RIC	Α	AR	EΑ	ACT	IVO	IND
RECEPCIÓN													
BOMBA DE LECHE Nº 1	7	8	6	1	0	3	9	9	0	1	0	1	9
BOMBA DE LECHE Nº 2	7	8	6	1	0	3	9	9	0	1	0	2	6
ENFRIADOR DE PLACAS	7	8	6	1	0	3	9	9	0	1	0	3	3
FILTRO DE LECHE	7	8	6	1	0	3	9	9	0	1	0	4	0
FLUJOMETRO	7	8	6	1	0	ფ	9	9	0	1	0	5	7
SILO DE 15000 Its	7	8	6	1	0	3	9	9	0	1	0	6	4
SILO DE 20000 Its	7	8	6	1	0	3	9	9	0	1	0	7	1
TANQUE DE RECEPCION Nº 1	7	8	6	1	0	ფ	9	9	0	1	0	8	8
TANQUE DE RECEPCION Nº 2	7	8	6	1	0	3	9	9	0	1	0	9	5
TANQUE PULMON	7	8	6	1	0	3	9	9	0	1	1	0	1
TINA DE ENFRIAMIENTO DE 4000 Its N° 3	7	8	6	1	0	3	9	9	0	1	1	1	8

Elaborado por: Propio **Fuente**: INPROLAC S. A.

CÓDI	GC)S	M	AQ	Ul	N	ΑF	٦L	A				
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS)	ID	Γ. F.	AB	RIC	Α	AR	EΑ	ACT	IVO	IND
QUESOS													
TINAS DE QUESOS Nº 1	7	8	6	1	0	3	9	9	0	3	0	1	3
TINAS DE QUESOS Nº 2	7	8	6	1	0	3	9	9	0	3	0	2	0
TINAS DE QUESOS Nº 3	7	8	6	1	0	3	9	9	0	3	0	3	7
TINAS DE QUESOS Nº 4	7	8	6	1	0	3	9	9	0	3	0	4	4
TINAS DE QUESOS Nº 5	7	8	6	1	0	3	9	9	0	3	0	5	1
TINAS DE QUESOS Nº 6	7	8	6	1	0	3	9	9	0	3	0	6	8
TINAS DE QUESOS Nº 7	7	8	6	1	0	3	9	9	0	3	0	7	5

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓDIGOS I	ИA	QL	JIN	AR	ΙA	\							
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS	;	ID	Γ. F.	AB	RIC	Α	AR	EΑ	ACT	IVO	IND
PASTEURIZACIÓN													
BOMBA DE AGUA CALIENTE	7	8	6	1	0	3	9	9	0	2	0	1	6
BOMBA DE AGUA LAVADO	7	8	6	1	0	3	9	9	0	2	0	2	3
BOMBA DESCARGA CENTRIFUGA	7	8	6	1	0	3	9	9	0	2	0	3	0
BOMBA DE LECHE Nº 1	7	8	6	1	0	3	9	9	0	2	0	4	7
BOMBA DE LECHE Nº 2	7	8	6	1	0	3	9	9	0	2	0	5	4
BOMBA DE LECHE Nº 3	7	8	6	1	0	3	9	9	0	2	0	6	1
BOMBA DE VACIO	7	8	6	1	0	3	9	9	0	2	0	7	8
CENTRIFUGA REDA	7	8	6	1	0	3	9	9	0	2	0	8	5
DESODORIZADOR	7	8	6	1	0	3	9	9	0	2	0	9	2
ENVASADORA DE LECHE PASTEURIZADA	7	8	6	1	0	3	9	9	0	2	1	0	8
ENVASADORA DE LECHE UHT	7	8	6	1	0	3	9	9	0	2	1	1	5
ESTERILIZADOR DE PLACAS TECNAR	7	8	6	1	0	3	9	9	0	2	1	2	2
HOMOGENIZADOR DE PISTONES SIMES	7	8	6	1	0	3	9	9	0	2	1	3	9
TANQUE DE PASTEURIZACION Nº 4	7	8	6	1	0	3	9	9	0	2	1	4	6
TANQUE DE PASTEURIZACION Nº 6	7	8	6	1	0	3	9	9	0	2	1	5	3
TANQUE DE PASTEURIZACION Nº 7	7	8	6	1	0	3	9	9	0	2	1	6	0
TINA DE ENFRIAMIENTO DE 2000 Its Nº 5	7	8	6	1	0	3	9	9	0	2	1	7	7

Elaborado por: Propio Fuente: INPROLAC S. A.

CĆ	DI	GC	S	MA	46	QU	IN	ΙA	RI	Α			
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		IDT	Г. F.	ABI	RIC	Α	AR	EΑ	ACT	IVO	IND
LABORATORIO													
ESTERILIZADOR	7	8	6	1	0	3	9	9	1	0	0	1	11

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓDIGO	S	MA	\QI	UIN	1A	R	ΙA	ı					
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		IDT	Γ. F.	ABI	RIC	Α	AR	EΑ	ACT	IVO	IND
MANTEQUILLA													
BALANZA MECANICA	7	8	6	1	0	3	9	9	0	4	0	1	0
BATIDORA DE MANTEQUILLA	7	8	6	1	0	3	9	9	0	4	0	2	7
BOMBA DE VACIO	7	8	6	1	0	3	9	9	0	4	0	3	4
FORMADORA DE MANTEQUILLA	7	8	6	1	0	3	9	9	0	4	0	4	1
PLACAS DE ENFRIAMIENTO	7	8	6	1	0	3	9	9	0	4	0	5	8
TANQUE DE ALMACENAMIENTO	7	8	6	1	0	3	9	9	0	4	0	6	5

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓDIGOS	M	AG	UI	NA	ιR	ΙA	ı						
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		ID	Γ. F.	AB	RIC	Α	AR	EΑ	AC1	IVO	IND
MANJAR													
BOMBA POSITIVA	7	8	6	1	0	3	9	9	0	6	0	1	4
LICUADORA INDUSTRIAL	7	8	6	1	0	თ	9	9	0	6	0	2	1
MAQUINA ENVASADORA	7	8	6	1	0	3	9	9	0	6	0	3	8
OLLA DE MANJAR Nº 1	7	8	6	1	0	3	9	9	0	6	0	4	5
OLLA DE MANJAR Nº 2	7	8	6	1	0	თ	9	9	0	6	0	5	2
SELLADORA	7	8	6	1	0	თ	9	9	0	6	0	6	9
TANQUE DE ALMACENAMIENTO Nº 1	7	8	6	1	0	3	9	9	0	6	0	7	6
TANQUE DE ALMACENAMIENTO Nº 2	7	8	6	1	0	3	9	9	0	6	0	8	3
VIDEOJET	7	8	6	1	0	3	9	9	0	6	0	9	0

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓDIGOS N	ΛA	QU	INA	٩R	ΙA								
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		IDī	Г. F .	ABI	RIC	Α	AR	EΑ	AC.	TIVO	IND
YOGURT													
BOMBA DEL CIP	7	8	6	1	0	3	9	9	0	5	0	1	7
BOMBA NEUMATICA DE REPARTO Nº 1	7	8	6	1	0	3	9	9	0	5	0	2	4
BOMBA NEUMATICA DE REPARTO Nº 2	7	8	6	1	0	3	9	9	0	5	0	3	1
ENVASADORA DE YOGURT BOTELLAS	7	8	6	1	0	3	9	9	0	5	0	4	8
ENVASADORA DE YOGURT FUNDA	7	8	6	1	0	3	9	9	0	5	0	5	5
ENVASADORA DE YOGURT FUNDA LITRO	7	8	6	1	0	3	9	9	0	5	0	6	2
ENVASADORA DE YOGURT VASO	7	8	6	1	0	3	9	9	0	5	0	7	9
SELLADORA DE SIX-PAC	7	8	6	1	0	3	9	9	0	5	0	8	6
TERMOENCOGEDOR DE ETIQUETAS	7	8	6	1	0	3	9	9	0	5	0	9	3
TINA DE PREPARACION DE YOGURT № 1	7	8	6	1	0	3	9	9	0	5	0	10	0
TINA DE PREPARACION DE YOGURT № 10	7	8	6	1	0	3	9	9	0	5	0	11	7
TINA DE PREPARACION DE YOGURT № 11	7	8	6	1	0	3	9	9	0	5	0	12	4
TINA DE PREPARACION DE YOGURT Nº 12	7	8	6	1	0	3	9	9	0	5	0	13	1
TINA DE PREPARACION DE YOGURT № 2	7	8	6	1	0	3	9	9	0	5	0	14	8
TINA DE PREPARACION DE YOGURT № 3	7	8	6	1	0	3	9	9	0	5	0	15	5
TINA DE PREPARACION DE YOGURT Nº 4	7	8	6	1	0	3	9	9	0	5	0	16	2
TINA DE PREPARACION DE YOGURT № 5	7	8	6	1	0	3	9	9	0	5	0	17	9
TINA DE PREPARACION DE YOGURT № 6	7	8	6	1	0	3	9	9	0	5	0	18	6
TINA DE PREPARACION DE YOGURT № 7	7	8	6	1	0	3	9	9	0	5	0	19	3
TINA DE PREPARACION DE YOGURT № 8	7	8	6	1	0	3	9	9	0	5	0	20	0
TINA DE PREPARACION DE YOGURT № 9	7	8	6	1	0	3	9	9	0	5	0	21	7
TUNEL DE TERMOENCOGIDO SIX-PAC	7	8	6	1	0	3	9	9	0	5	0	22	4

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓDIGO	S	M	ΑQ	UIN	٧A	۱R	ΙA	١					
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS)	IDī	Γ. F.	AB	RIC	Α	AR	EΑ	ACT	IVO	IND
GELATINA													
BOMBA DE DISTRIBUCION	7	8	6	1	0	3	9	9	0	7	0	1	1
BOMBA DEL ENFRIADOR	7	8	6	1	0	3	တ	တ	0	7	0	2	8
ENFRIADOR	7	8	6	1	0	თ	ത	ത	0	7	0	3	5
ENVASADORA DE BOLOS	7	8	6	1	0	თ	ത	ത	0	7	0	4	2
ENVASADORA DE GELATINA	7	8	6	1	0	3	9	9	0	7	0	5	9
ENVASADORA DE NARANJADA	7	8	6	1	0	3	9	9	0	7	0	6	6
MARMITA DE MERMELADAS	7	8	6	1	0	3	9	9	0	7	0	7	3

Elaborado por: Propio Fuente: INPROLAC S. A.

CÓ	DIC	30	S I	MA	Q	UI	N	ΑF	RIA	١			
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		ID	Γ. F.	ABI	RIC	Α	AR	EΑ	ACT	IVO	IND
BODEGAS													
CUARTO FRIO Nº 1	7	8	6	1	0	3	9	9	0	9	0	1	5
CUARTO FRIO Nº 2	7	8	6	1	0	3	ത	9	0	9	0	2	2
CUARTO FRIO Nº 3	7	8	6	1	0	3	ത	9	0	9	0	3	9
CUARTO FRIO Nº 4	7	8	6	1	0	3	9	9	0	9	0	4	6
CUARTO FRIO Nº 5	7	8	6	1	0	3	ത	9	0	9	0	5	3
CUARTO FRIO Nº 6	7	8	6	1	0	3	9	9	0	9	0	6	0
CUARTO FRIO Nº 7	7	8	6	1	0	3	9	9	0	9	0	7	7

Elaborado por: Propio **Fuente**: INPROLAC S. A.

CÓDIGOS	M	٩Q	UIN	IA	٦I	Α							
	13	12	11	10	9	8	7	6	5	4	3	2	1
NOMBRE		PAIS		ID1	Γ. F.	ABI	RIC	Α	AR	EA	AC.	TIVO	IND
SERVICIOS GENERALES													
BANCO DE CONDENSADORES	7	8	6	1	0	3	9	9	0	8	0	1	8
CALDERO # 1	7	8	6	1	0	3	9	9	0	8	0	2	5
CALDERO # 2	7	8	6	1	0	3	9	9	0	8	0	3	2
CALDERO # 3	7	8	6	1	0	3	9	9	0	8	0	4	9
CAMARA DE TRANSFORMADORES	7	8	6	1	0	3	9	9	0	8	0	5	6
CANALETAS	7	8	6	1	0	3	9	9	0	8	0	6	3
CIRCUITO DE DESAGUE	7	8	6	1	0	3	9	9	0	8	0	7	0
COMPRESORES DE AIRE # 1	7	8	6	1	0	3	9	9	0	8	0	8	7
COMPRESORES DE AIRE # 2	7	8	6	1	0	3	9	9	0	8	0	9	4
BANCO DE HIELO Nº 1	7	8	6	1	0	3	9	9	0	8	0	10	1
BANCO DE HIELO Nº 2	7	8	6	1	0	3	9	9	0	8	0	11	8
COMPRESORES DE AIRE # 1	7	8	6	1	0	3	9	9	0	8	0	12	5
COMPRESORES DE AIRE # 2	7	8	6	1	0	3	9	9	0	8	0	13	2
COMPRESORES DE AIRE # 3	7	8	6	1	0	3	9	9	0	8	0	14	9
COMPRESORES DE AIRE # 4	7	8	6	1	0	3	9	9	0	8	0	15	6
GENERADOR SDMO	7	8	6	1	0	3	9	9	0	8	0	16	3
INSTALACIONES ELECTRICAS	7	8	6	1	0	3	9	9	0	8	0	17	0
LINEA AGUA INDUSTRIAL	7	8	6	1	0	3	9	9	0	8	0	18	7
LINEA AGUA POTABLE	7	8	6	1	0	3	9	9	0	8	0	19	4
LINEA DIESEL	7	8	6	1	0	3	9	9	0	8	0	20	1
LINEA VAPOR	7	8	6	1	0	3	9	9	0	8	0	21	8
MONTACARGAS	7	8	6	1	0	3	9	9	0	8	0	22	5
POZO PROFUNDO #1	7	8	6	1	0	3	9	9	0	8	0	23	2
PUERTAS, PISOS, TECHOS Y PAREDES	7	8	6	1	0	3	9	9	0	8	0	24	9
TABLERO DE DISTRIBUCION	7	8	6	1	0	3	9	9	0	8	0	25	6
TANQUE DIESEL PRINCIPAL Nº 1	7	8	6	1	0	3	9	9	0	8	0	26	3
TANQUE DIESEL Nº 2	7	8	6	1	0	3	9	9	0	8	0	27	0
TANQUE DIESEL Nº 3	7	8	6	1	0	3	9	9	0	8	0	28	7

Elaborado por: Propio Fuente: INPROLAC S. A.

ANEXO G HISTÓRICO DE FALLOS DE LA MAQUINARIA

ÁREA RECEPSIÓN

SILO

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Abr-28-2008	suelda de tubo de salida de producto	L.C	Mantenimiento B	
Jun-01-2008	cambio de malla del tamiz	O.C.	Mantenimiento B	
Jul-14-2008	se construye dos agitadores de acero inox	0.C.	Mantenimiento B	
Dic-24-2008	fabricacion de chaveta para agitador	0.C.	Mantenimiento B	
Ene-16-2009	se completa aceite en motorreductor de agitador	0.C.	Mantenimiento B	
Feb-03-2009	se coloca flujometro en linea de leche	0	Mantenimiento B	
Ago-21-2009	cambio de manzana del agitador y rodamiento	0	Mantenimiento B	

ENFRIADOR DE PLACAS

	HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO		
Jul-14-2008	se construye 2 toma muesatras de acero inox	L.C-L.L	Mantenimiento A		
Ago-25-2008	se fabrica 3 agitadores y 3 toma muestras inox	L.C-L.L	Mantenimiento A		
Oct-09-2008	cambio de sello mecanico en bomba principal	L.C-L.L	Mantenimiento B		
Oct-22-2008	construccion de 3 toma muestras	L.L	Mantenimiento A		
Nov-15-2008	cambio de rodamientos y sello mecanico	0.0	Mantenimiento B		
Nov-17-2008	se pinta tuberia de esta area	L.C-L.L	Mantenimiento A		
Nov-19-2008	contruccion de persiana plastica de recepcion a la quesera	L.C-L.L	Mantenimiento A		
Feb-05-2009	colocacion de presostato de baja en compresor	L.C-L.L	Mantenimiento B		

ÁREA PASTEURIZACIÓN

PASTEURIZADOR

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Jul-15-2008	Cambio de empaque en brida de entrada a la valvula de regulacion	L.C	Mantenimiento B	
Ago-23-2008	Se cambia el intercambiador de calor	O.C.	Mantenimiento B	
	Revisión de placas de calentamiento del pasteurizador y calibracion de		Mantenimiento A	
Oct-21-2008	Cambio de manometros entrada de vapor,salida de vapor tubular de a	O.C.	Mantenimiento B	
Nov-11-2008	Cambio de sello en la bomba de alimentacion	O.C.	Mantenimiento B	
Nov-12-2008	Desmontaje del pasteurizador y limpieza de las placas del cuerpo de ca	L.L	Mantenimiento A	
Nov-17-2008	Cambio de rodamientos y sello mecanico en bomba de pasteurizador	L.L	Mantenimiento B	
Ene-13-2009	Se realiza topes en las placas	0	Mantenimiento B	
Ene-29-2009	Se instala sirena y licuadora	0	Mantenimiento B	
Feb-09-2009	Adaptacion de buje para porcelana de sello	0	Mantenimiento B	
Mar-30-2009	Instalacion de tuberia pasteurizador	0	Mantenimiento B	
May-11-2009	Mantenimiento de la bomba	0	Mantenimiento A	
Jul-09-2009	Cambio de valvula de agua potable	0	Mantenimiento B	

CLARIFICADOR

	HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO		
Abr-08-2008	cambio de filtro de agua,manometro	L.C	Mantenimiento B		
Abr-13-2008	desmontaje ,limpieza de clarificadora y pruebas de funcionamiento	L.C-L.L	Mantenimiento A		
Abr-16-2008	cambio de kit de empaque de la clarificadora y engrasada	L.C-L.L	Mantenimiento B		
Abr-21-2008	reemplazo de cono por neplo HG	L.C	Mantenimiento A		
Jun-17-2008	desntaje,limpieza y chequeo de rutina	L.C	Mantenimiento A		
Jun-28-2008	cambio de quit de empaques	0.0	Mantenimiento B		
Jul-30-2008	se realiza limpieza de clarificadora y cambio de empaque de la valvula	L.C-O.C	Mantenimiento B		
Ago-25-2008	ajuste de zapatas de la centrifuga	L.C	Mantenimiento A		
Sep-30-2008	cambio de oring en plato separador y limpieza	L.C-L.L	Mantenimiento B		
Oct-13-2008	cambio de kit de empaque de la clarificadora y engrasada	L.C-L.L	Mantenimiento B		
Dic-23-2008	cambio de bomba de agua en clarificadora	L.C	Correctivo		
Feb-10-2009	limpieza de valvula y cambio de oring	L.C	Mantenimiento B		
Feb-18-2009	aumento de tubo de retorno	0.0	Mantenimiento B		
Abr-30-2009	insatalacion de bomba para lavado	L.C-O.C	Mantenimiento B		
May-01-2009	cambio de sello mecanico bomba de retorno	L.C	Mantenimiento B		
May-01-2009	revision de zapatas y pulida de tambor	L.C-L.L	Mantenimiento A		
May-01-2009	Se pule el tambor y se aviva ranuras en las zapatas de montaje del mo	L.C-L.L	Mantenimiento B		
May-13-2009	cambio de quit de empaques	L.C	Mantenimiento B		
Jul-13-2009	cambio de empaques	L.C	Mantenimiento B		
Jul-30-2009	cambio de empaque en la base de platos	0.C	Mantenimiento B		
Nov-09-2009	cambio de empaque en la base de platos	L.C-O.C	Mantenimiento B		
Dic-29-2009	cambio de empaques del piston	L.C	0		

ENFUNDADORA DE LECHE

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Mar-25-2008	mantenimiento de mordaza vertical y cambio de teflon	L.C	Mantenimiento B	
Abr-01-2008	calibracion de maquina,fotocentrado y regulador de frecuencia	O.C.	Mantenimiento A	
Abr-07-2008	soldadura de aleta y armado de las tijeras	O.C.	Mantenimiento B	
Abr-08-2008	calibracion de placas y cambio de teflon	0.C.	Mantenimiento A	
Abr-11-2008	revision de sensor fotoelectrico y calibracion	O.C.	Mantenimiento A	
Abr-16-2008	cambio y lubricacion de 4 rodillos de arrastre	L.L	Mantenimiento B	
Abr-19-2008	arreglo y cambio de accesorios	L.L	Mantenimiento B	
Abr-23-2008	cambio de valvulas de vapor y agua	L.C	Mantenimiento B	
Jul-31-2008	cambio de chumacera y bocin de eje sellado horizontal	L.C	Mantenimiento B	
Sep-21-2008	suelda de mordaza vertical	L.C	Mantenimiento B	
Feb-12-2009	cambio de mangueras en refrigeracion de sellador vertical	L.C	Mantenimiento B	
Mar-27-2009	cambio de manguera para sistema de enfriamiento	L.C	Mantenimiento A	
Abr-26-2009	regulacion en arrastre de plastico	L.C	Mantenimiento A	
May-02-2009	calibracion de sensor tapa de envasador	L.C	Mantenimiento A	
May-18-2009	revision de fotocentrado	L.C	Mantenimiento A	

ENVASADORA UHT

FECHA	DESCRIPO	CION DEL MANTE	NIMIENTO		ENCARGADOS	TIPO DE MANTENIMIENTO
May-06-2008	de banda transpo	o de banda transpo	de banda transpo	de banda transpo	L.C	Mantenimiento A
Dic-26-2008	cambio de po	cambio de pote	cambio de po	cambio de po	L.C-L.L	Mantenimiento B
Dic-26-2008	cambio de en	cambio de emp	cambio de em	cambio de em	L.C-L.L	Mantenimiento B
Ene-01-2009	cambio de en	cambio de emp	cambio de em	cambio de em	L.C	Mantenimiento B
Ene-12-2009	cambio de tut	cambio de tubo	cambio de tub	cambio de tub	L.C	Mantenimiento B
Ene-12-2009	pintado del ex	pintado del ext	pintado del ex	pintado del ex	O.C	Mantenimiento B
Ene-15-2009	fabricacion de	fabricacion de	fabricacion de	fabricacion de	L.C-O.C	Mantenimiento B
Ene-16-2009	colocacion de	colocacion de	colocacion de	colocacion de	L.C-O.C	Mantenimiento B
Ene-28-2009	fabricacion de	fabricacion de	fabricacion de	fabricacion de	0	Mantenimiento B
Ene-29-2009	instalacion ele	instalacion elec	instalacion ele	instalacion ele	0	Mantenimiento B
Mar-10-2009	adecuacion d	adecuacion de	adecuacion d	adecuacion de	0	Mantenimiento A
Mar-13-2009	construccion	construccion d	construccion	construccion	0	Mantenimiento B
Mar-17-2009	construccion	construccion d	construccion	construccion	0	Mantenimiento B

ÁREA MANTEQUILLA

MADURADOR

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Mar-21-2008	Cambio de relé térmico y rebobinado de motor	L.L	Mantenimiento B	
Mar-30-2008	Instalación correcta de tapas del motoreductor	L.C	Mantenimiento B	
Abr-12-2008	Cambio de motor del agitador y pruebas de funcionamiento	L.C	Mantenimiento B	
Abr-16-2008	Cambio y reajuste de polea del agitador	L.C	Mantenimiento B	
Abr-19-2008	Desarmada del reductor del agitador para reconstrucción	L.C-O.C	Mantenimiento B	
Abr-19-2008	Fabricación de tubería para recircular la crema	0.C.	Mantenimiento B	
Abr-22-2008	Montaje del agitador ya reparado la caja del reductor	L.C	Mantenimiento B	
May-06-2008	Cambio de pasador de la compuerta	L.C	Mantenimiento B	
Jul-17-2008	Lubricación de la caja reductora del agitador	L.C	Mantenimiento B	
Sep-10-2008	Cambio de corona en caja reductora del agitador	0.C.	Mantenimiento B	

ÁREA YOGURT

ENVASADORA DE YOGURT

	HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO		
Mar -24-2008	Cambio de actuador neumatico y lubricacion de rodamientos	L.C	Mantenimiento B		
Mar -25-2008	Centrado de plato,lubricacion de valvula neumatica	L.C-L.L	Mantenimiento A		
Mar -28-2008	Calibracion de plato y botador de tapas	L.C-L.L	Mantenimiento B		
	Lubricacion del sistema neumatico y calibracion del equipo	L.C	Mantenimiento A		
	Lubricacion y calibracion del equipo	L.C	Mantenimiento A		
	Cambio de valvula de piston de sellado	O.C	Mantenimiento B		
	Calibracion de guias de plato desgastadas	L.C-O.C	Mantenimiento A		
	Enderezada ycalibracion del botador de vasos	L.C-O.C	Mantenimiento A		
	Calibracion de la carrera de piston y ventosa	L.C	Mantenimiento B		
	Calibracion y lubricacion de la bomba neumatica	L.C	Mantenimiento A		
	Limpieza y secado del micro de llenado,ca mbio del Oring del tanque pi	0	Mantenimiento B		
	Adecuacion de pieza de teflon,colocacion de tuercas	0	Mantenimiento A		
	Se fabrica empaque para dosificador (Oring)	0	Mantenimiento B		
	Cambio de Racor	0	Mantenimiento B		
	Cambio de resistencias en el sellador	0	Mantenimiento B		
	Cambio de Oring,limpieza del filtro dosificador y arreglo de la bandeja d	0	Mantenimiento B		
	Regulacion, calibracion del tiempo de maguina de vaso y engrasada	0	Mantenimiento A		
	Cambio de racor por un pasa muros de racor de 6	0	Mantenimiento B		
	Desmontaje , montaje y suelda del sacador de vasos	0	Mantenimiento A		
	Centrado, reajuste y lubricacion del botador	0	Mantenimiento A		
	Limpieza y sopleteado de tomas delm sensor de la tapa de olla de yogu	0	Mantenimiento A		
	Cambio de resistencias tubulares y calibracion de sellado	0	Mantenimiento B		
	Calibracion de la selladora de vasos	0	Mantenimiento A		
	Calibracion de la plancha de sellado, presion de sellado	0	Mantenimiento A		
	Centrado y calibracion del botador de vasos	0	Mantenimiento A		
	Limpieza y soldadura del soporte	0	Mantenimiento A		
	Centrado de disco y guias	0	Mantenimiento A		
	Cambio de la corona y montaje de la caja reductora	0	Mantenimiento B		
	Limpieza de los contactores del sensor	0	Mantenimiento A		
	Reajuste de resistencias de maquina de vasos y colocar tope de resiste		Mantenimiento A		
	Cambio de pernos del matrimonio	0	Mantenimiento B		
	Cambio de racores de 1/8 x 6 mm	0	Mantenimiento B		
	Fabricacion de protector para silenciador de bomba neumatica	0	Mantenimiento B		
	Instalacion de valvula reguladora de presion	0	Mantenimiento B		
	Se canbia electrovalvula de 5.2 y componentes	0	Mantenimiento B		
	Cambio de corona de caja reductora	0	Mantenimiento B		
	Adecuacion de maquina de gelatina para yogurt	0	Correctivo		
	Se aumenta eje de leva de botador de vasos	0	Mantenimiento B		
	Cambio de resortes en la plancha del yunque sellador maquina vasos	0	Mantenimiento B		
	Arreglo del termosellador	0	Mantenimiento B		
Oct-05-2008	Cambio de sensor del termosellador	0	Mantenimiento B		
Oct-03-2008	Cambio de serisor del erritosellador Cambio de oring de dispensador de tapas y engrasada de guias	0	Mantenimiento B		
Nov-04-2008	Cambio de oring de dispersador de lapas y engrasada de guias	0	Mantenimiento B		
Nov-11-2008	Se cambia disco de termo sellador,resrtes, resistencias y calibracion de		Mantenimiento B		
	Cambio de ventosa y lavado de valvula de vacio	0	Mantenimiento B		
Jun-02-2009	Cambio de ventosa y lavado de valvula de vacio Cambio de niquelinas quemadas	0			
	·	0	Mantenimiento B		
Jun-08-2009	Fabricacion de bocin roscado para censor y reajuste de resistencia		Mantenimiento B		
Jul-22-2009	Reparacion de maquina envasadora	0	Mantenimiento B		

ENFUNDADORA DE YOGURT

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Mar -30-2008	cambio de valvulas de vapor en las mezcladoras	L.L	Mantenimiento B	
Mar -30-2008	lubricacion del sistema meumatico	L.C	Mantenimiento A	
Abr-01-2008	calibracion del equipo	L.C	Mantenimiento A	
Abr-01-2008	colocacion soporte para sensor,valvula,bobina,pernos expansión	L.C	Mantenimiento B	
Abr-28-2008	se calibra arrastre de la maquina para presentacion de 100 cc	L.C-O.C	Mantenimiento A	
Nov-12-2008	cambio de resistencia plana de sellador vertical	O.C.	Mantenimiento B	
Nov-19-2008	mantenimiento de valvula direccional y cambio de silenciadores	L.C	Mantenimiento B	
Jun-13-2009	Lavado y secado del control de temperatura	L.C	Mantenimiento B	
Jun-20-2009	cambio de temporizador reles y cables	L.C	Mantenimiento B	
Jun-21-2009	terminar de reparar maquina	O.C.	Mantenimiento B	

IMPRESORA VIDEO JET

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Mar -26-2008	cambio de banda, lavado y engrasado de los rodillos	L.C-L.L	Mantenimiento B	
Abr-10-2008	suelda del perno del prisionero del porta tipos y calibracion	L.C-L.L	Mantenimiento A	
Abr-11-2008	limpieza del cañon con solucion 16-8535Q y calibracion del chorro	L.C-L.L	Mantenimiento A	
Abr-12-2008	limpieza del cabezal de impresora y calibracion del chorrro	L.L	Mantenimiento A	
Abr-13-2008	limpieza del cabezal de impresora con disolvente y calibracion del chor	0.0	Mantenimiento A	
Abr-14-2008	se realiza auto purga-cebado del sistema de tinta,cambio de tinta,solver	L.C-O.C	Mantenimiento B	
Abr-15-2008	limpieza del cañon y apertura del aire comprimido	L.C-O.C	Mantenimiento A	
Abr-24-2008	se cambia repuestos con tecnico de COPERTEC S.A	L.C	Mantenimiento B	
Jul-08-2008	reubicacion de inatalacion electrica y toma de aire	L.C	Mantenimiento A	
Sep-15-2008	ensamblaje de transportador	0.0	Mantenimiento B	
Mar -28-2009	Limpieza de cañon completa,purgas y calibracion de presiones	L.C-O.C	Mantenimiento B	
May-06-2009	Calibración de impresión	0	Mantenimiento A	
May-16-2009	Revisiónde impresora y lavado de cañon	0	Mantenimiento A	
May-26-2009	Limpieza y calibración de cañon	0	Mantenimiento A	
Jun-05-2009	limpieza y regulacion de cañon	0	Mantenimiento A	
Jul-18-2009	limpieza y regulacion de cañon	0	Mantenimiento A	

TANQUE 7

HISTORIA DE MAQUINA				
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO	
Mar -30-2008	pintado de numeros en tanques,remocion de pintura de #viejos	L.C-L.L	Mantenimiento A	
Jun-04-2008	suelda de tanque # 7	L.C-L.L	Mantenimiento A	
Jul-04-2008	se cambia valvula de bola en retorno de agua helada	L.C-L.L	Mantenimiento B	
Oct-13-2008	suelda de tanque	L.L	Mantenimiento A	
Dic-21-2008	suelda de tanque	0.0	Mantenimiento A	
Feb-17-2009	suelda del tubo de evacuacion	L.C-O.C	Mantenimiento A	

TANQUE 9

	HISTORIA DE MAQUINA						
FECHA	FECHA DESCRIPCION DEL MANTENIMIENTO ENCARGADOS						
Mar -30-2008	pintado de numeros en tanques,remocion de pintura de #viejos	L.C-L.L	Mantenimiento A				
May -10-2008	cambio de resorte y valvula de seguridad	L.C-L.L	Mantenimiento B				
Nov-11-2009	adecuacion de agitador	L.C-L.L	Mantenimiento A				
Dic-24-2008	se coloca tanque y bomba para retorno de agua	L.L	Mantenimiento A				
Mar -19-2009	contruccion de rompedor y aletas del agitador	0.0	Mantenimiento B				
Mar -26-2009	fabricacion de tapones	L.C-O.C	Mantenimiento A				
Mar -26-2009	cambio de empaque de valvula	L.C-O.C	Mantenimiento B				
Abr-07-2009	calibracion de valvula	L.C	Mantenimiento A				
Jun-05-2009	cambio de potenciometro y adecuacion del mismo	L.C	Mantenimiento B				

TANQUE 10

	HISTORIA DE MAQUINA							
FECHA	HA DESCRIPCION DEL MANTENIMIENTO ENCARGADOS TIPO DE MANTENIMIEN							
Mar -30-2008	pintado de numeros en tanques,remocion de pintura de #viejos	L.C-L.L	Mantenimiento A					
Sep-19-2008	suelda de tanque	L.C-L.L	Mantenimiento A					
Sep-28-2008	coneccion del motorreductor agitador	L.C-L.L	Mantenimiento A					
Sep-28-2008	suelda de tanque - ovalamiento	L.L	Mantenimiento B					
Feb-25-2009	coloca seegurodad en compuerta de tanque	0.0	Mantenimiento A					

ÁREA MANJAR

BOMBA POSITIVA

HISTORIA DE MAQUINA					
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO		
Mar-09-2008	Fabricación de neplo para manguera	L.C	Correctivo		
Feb-17-2009	Cambio de rodfamientos del motor	O.C.	Mantenimiento B		
Feb-17-2009	Cambio de matrimonio de 2 1/2"	O.C.	Mantenimiento B		
Feb-17-2009	Cambio de rodamientos de la bomba	O.C.	Mantenimiento B		
Feb-17-2009	Cambio de aceite Sae 140 1/4	O.C.	Mantenimiento B		
Jun-08-2009	Cambio de matrimonio de 2 1/2"	L.L	Mantenimiento B		
Jun-08-2009	Revisión del aceite	L.L	Mantenimiento A		
Oct-03-2009	Cambio de rodfamientos del motor	L.C	Mantenimiento B		
Oct-03-2009	Cambio de rodamientos de la bomba	L.C	Mantenimiento B		
Oct-03-2009	Cambio de aceite Sae 140 1/4	L.C	Mantenimiento B		
Oct-03-2009	Cambio de matrimonio de 2 1/2"	L.C	Mantenimiento B		
Oct-03-2009	Cambio de oring´s de tapa	L.C	Mantenimiento B		

ENVASADORA

	HISTORIA DE MAQUINA					
FECHA	DESCRIPCION DEL MANTENIMIENTO	TIPO DE MANTENIMIENTO				
May-05-2008	Cambiar tuerca exagonal de codo en válvula salida de producto	L.L	Correctivo			
May-06-2008	Reajuste de tuercas y calibración del dosificador	L.C	Mantenimiento A			
Sep-18-2008	Instalación de filtro de línea en tolva de envasado	L.C	Mantenimiento B			
Sep-24-2008	Cambio de electroválvula neumática del termosellador	L.C	Correctivo			
Oct-10-2008	Soldada de estrella, cambio de aceite y mantenimiento general	L.C-O.C	Mantenimiento B			
Oct-20-2008	Cambio de base de termosellador	O.C.	Correctivo			
Nov-12-2008	Cambio de pistón dosificador	L.C	Correctivo			
Ene-15-2009	Fabricación e instalación de embolo en dosificador	L.C	Mantenimiento A			
Abr-06-2009	Destrabe de máquina y regulación de sellado	L.C	Correctivo			
May-16-2009	Cambio de válvula y limpieza de ventosa guía	O.C.	Correctivo			
May-27-2009	Destrabe de máquina y regulación de sellado	O.C.	Correctivo			
Jun-04-2009	Desarmada de válvula de paso de aire para poner tapas	L.C	Correctivo			
Jun-15-2009	Destrabe de máquina y regulación de sellado	L.C	Correctivo			
Jun-30-2009	Soldada de estrella, cambio de aceite y mantenimiento general	L.C-O.C	Mantenimiento B			
Ene-14-2010	Cambio de pistón en termoselladora	L.C	Mantenimiento B			

OLLA Nº 1

HISTORIA DE MAQUINA								
FECHA	DESCRIPCION DEL MANTENIMIENTO ENCARGADOS TIPO DE MANTENIMIE							
May-05-2008	Cambio de válvula en la olla	L.C	Correctivo					
Jun-26-2008	Cambio de rodamiento y sello mecánico	L.C-L.L	Correctivo					
Jun-28-2008	Cambio de rodamientos en la turbina de la olla	L.C-L.L	Correctivo					
Oct-05-2008	Se fabrica y se instala camisa para termometro	L.C	Mantenimiento B					
Nov-11-2008	Se suelda el tubular	L.C	Correctivo					
Mar-30-2009	Cambio de tubo roto y universal en entrada de vapor	0.0	Correctivo					
Jul-21-2009	Cambio de rodamientos y sello mecánico	L.C-O.C	Mantenimiento B					
Nov-16-2009	Cambio de rodamientos y sello mecánico	L.C-O.C	Mantenimiento B					

OLLA Nº 2

HISTORIA DE MAQUINA							
FECHA	FECHA DESCRIPCION DEL MANTENIMIENTO ENCARGADOS TIPO DE MA						
May-28-2008	Cambio de poleas y bandas	L.C-L.L	Correctivo				
Jun-26-2008	Cambio de rodamientos y sello mecánico	L.C-L.L	Correctivo				
Jul-01-2008	Cambio de rodamientos, sello mecánico y eje principal de la olla	L.C-L.L	Correctivo				
Sep-19-2008	Cambio de empaque en el tubular	L.L	Correctivo				
Oct-25-2008	Instalación de tubería para el condensado y agua de enfriamiento	0.0	Mantenimiento B				
Nov-11-2008	Cambio de rodamientos y sello mecánico	L.C-O.C	Mantenimiento B				
Dic-22-2008	Cambio de sello	L.C-O.C	Correctivo				
Feb-25-2009	Suelda en tubular	L.C	Correctivo				
Feb-25-2009	Cambio de bandas	L.C	Correctivo				
Jun-09-2009	Cambio de válvula termodinamica	0.0	Correctivo				
Oct-25-2009	Cambio de rodamientos y sello mecánico	L.C-O.C	Mantenimiento B				

ÁREA GELATINA

ENFUNDADORA DE REFRESCOS

HISTORIA DE MAQUINA					
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO		
Abr-01-2008	Limpieza y lubricación de unidad reguladora	L.C	Mantenimiento B		
Abr-08-2008	Calibración de las resistencias de mordaza horizontal	O.C.	Mantenimiento A		
Abr-08-2008	Regulación y alineamiento del codificador	O.C.	Mantenimiento A		
Abr-09-2008	Fabricar el cedaso para filtro de envazadora de naranjada	O.C.	Mantenimiento B		
Abr-10-2008	Limpieza y reajuste de terminales de resistencia	O.C.	Mantenimiento A		
Abr-21-2008	Arreglo de resistencia sellado vertical y cambio de racor	L.L	Mantenimiento B		
Abr-21-2008	cambio de terminal talón, aislante del sellador y tuerca	L.L	Mantenimiento B		
Abr-25-2008	Cambio de terminal, aislante, resistencia y regulación de cable	L.C	Mantenimiento B		
Nov-12-2008	Se reconstruye el portatipos	L.C	Correctivo		
Dic-22-2008	Cambio de tarjeta y potenciómetro	L.C	Mantenimiento B		
Ene-16-2009	Cambio se plato en termosellador	L.C	Mantenimiento B		

ÁREA SERVICIOS GENERALES

CALDERO 100 BHP

	HISTORIA DE MAQUINA					
FECHA	DESCRIPCION DEL MANTENIMIENTO	ENCARGADOS	TIPO DE MANTENIMIENTO			
Mar-31-2008	revision y limpieza del sensor fotoelectrico	L.C	Mantenimiento A			
Abr-01-2008	purga de caldero /hora	O.C.	Mantenimiento A			
Abr-02-2008	purga de caldero /hora	O.C.	Mantenimiento A			
Abr-04-2008	purga de caldero /hora	O.C.	Mantenimiento A			
Abr-05-2008	cambio del presostato	O.C.	Mantenimiento B			
Abr-06-2008	purga de caldero, reseteo de control	L.L	Mantenimiento A			
Abr-11-2008	revision del caldero y calibracion de valvula de paso de aire	L.L	Mantenimiento A			
Abr-14-2008	limpieza del sensor del caldero,purga	L.C	Mantenimiento A			
Abr-15-2008	regulacion de la presion de aire,purga	L.L	Mantenimiento A			
Abr-15-2008	se realiza acoples para evitar condensado de aire a la entrada	L.C	Mantenimiento B			
Abr-16-2008	limpieza del sensor del caldero,purga	L.L	Mantenimiento A			
Abr-17-2008	encendido de caldero, purga y cambio de quimico	L.C	Mantenimiento A			
Abr-20-2008	cambio de quimico y se purga 15,10,3 seg	L.L	Mantenimiento A			
May-06-2008	limpieza del sensor del caldero,purga regulacion del aire y del combust	L.L	Mantenimiento A			
May-07-2008	cambio de quemador,manometro,adaptacion de electrodo y regulacion	L.C	Correctivo			
May-10-2008	cambio de sensor,quimico, regulacion de aire y purga 15, 10, 3 seg	L.L	Mantenimiento A			
Abr-25-2009	limpieza de fotocelda y revision de la bomba	L.C	Mantenimiento A			
May-05-2009	cambiuo de cable cortocircuitado de bomba de agua	L.L	Mantenimiento B			

CALDERO 250 BHP

HISTORIA DE MAQUINA					
FECHA	DESCRIPCION DEL MANTENIMIENTO	TIPO DE MANTENIMIENTO			
Abr-02-2008	purga de caldero /hora	L.L	Mantenimiento A		
May-10-2008	cambio del sensor y arranque de caldero	L.L	Mantenimiento B		
May-11-2008	purga de calderoro 15,10,3 seg	L.C	Mantenimiento A		
Jun-12-2008	monitoreo de equipos, purga de calderos y limpieza de sensor de llama	L.C	Mantenimiento A		
Jul-12-2008	se cambia empaques en bridas de linea de vapor	L.C	Mantenimiento B		
Ago-20-2008	se cambia el top kit de bomba dosificadora de quimico	L.C	Mantenimiento B		
Sep-17-2008	cambio de rodamientos en rotor del motor del caldero	L.C	Mantenimiento B		
Nov-17-2008	cambio del transformador de ignicion	L.C	Mantenimiento B		
May-08-2009	Cebada de bombas de agua y combustible	L.C	Mantenimiento A		
Jul-09-2009	Purga de bombas de agua	L.C	Mantenimiento A		

CALDERO 30 BHP

	HISTORIA DE MAQUINA							
FECHA	ECHA DESCRIPCION DEL MANTENIMIENTO ENCARGADOS TIPO DE MANTENIMIE							
Mar-24-2008	revision de la valvula de combustible	L.L	Mantenimiento A					
Mar-24-2008	verificacion de fuga de gua	L.C	Mantenimiento A					
Abr-14-2008	monitoreo de equipos, purga de calderos y limpieza de sensor de llama	L.C	Mantenimiento A					
Jun-12-2008	limpieza del sensor del caldero,purga	L.C	Mantenimiento A					
Nov-21-2008	cambio del transformador de ignicion	L.C-O.C	Mantenimiento B					

ANEXO H

FUNCIÓN Y FUNCIONAMIENTO DE LOS SISTEMAS, SUB-SISTEMA, ELEMENTOS DEL EQUIPO Y CUADROS AMFE

FUNCIÓN Y FUNCIONAMIENTO DE SISTEMAS, SUBSISTEMAS Y COMPONENTES A SER ANALIZADOS EXTRUSOR

SISTEMA	SUB-SISTEMA	FUNCION	ELEMENTO	CODIGO	FUNCION PRIMARIA
		Permitir la circulación del producto desde un tanque de almacenamiento que se encuentra a una altura de 3m por medio de	Válvula de bola	05-07-AP-01	Apertura y cierre de líneas en tanques
	Abastecimiento		Filtro	05-07-AP-02	Evitar que por descuido del operador o por falta de limpieza se introduzcan partículas en el producto
	del producto	tuberías, filtros, válvulas hasta la olla de suministro, el producto	Tubería	05-07-AP-03	Permitir la circulación del fluido
		suministrado es controlado mediante una válvula electro neumática.	Bomba	05-07-AP-04	Bombea el fluido por las tuberías hasta la olla de suministro
			Válvula neumática	05-07-AP-05	Permitir el paso del fluido a la olla y prender o apagar la bomba
Envasadora de yogurt			Olla de suministro	05-07-DO-01	Mantener la inocuidad del fluido y evitar desperdicio
ao yegan	Abastecer de producto a la olla de suministro por medio de los sensores de nivel los cuales están acoplados a la tapa de la olla y funcionan de forma sincronizada con la electro válvula, el pistón dosificador y la parte mecánica.	suministro por medio de los sensores de nivel los cuales están acoplados a la tapa de la olla y funcionan de forma sincronizada con la electro válvula, el pistón	Sensores de nivel	05-07-DO-02	Mantener a la olla con el volumen de producto suficiente
			Engranajes cónicos, eje, biela, manivela, corrediza, émbolo regulador	05-07-DO-03	Sustraer el fluido de la olla de acuerdo al volumen requerido
			Pistón dosificador neumático	05-07-DO-04	Colocar una porción definida en el vaso
		Cremallera dosificadora	05-07-DO-05	Regular la cantidad de producto extraído de la olla para la dosificación	

SISTEMA	SUB-SISTEMA	FUNCION	ELEMENTO	CODIGO	FUNCION PRIMARIA
			Muelles	05-07-SV-01	Permite que la parte móvil del vaso regrese a su posición
	Suministrador de vasos	Dotar sincrónicamente de vasos al sistema rotativo de plato, esto se logra mediante el sistema de	Mordaza de sujeción	05-07-SV-02	Sostener el vaso hasta que inicie a rotar el plato
		trasmisión mecánica.	Eje, piñón y excéntrica	05-07-SV-03	Transmitir el movimiento y permitir que la mordaza suelte el vaso en el plato
	Plato	seguidamente se procede a sellar	Plato transportador y topes de vaso	05-07-PT-01	Centrar el vaso dentro del agujero del plato
Envasadora	transportador de vasos		Eje, leva, engranaje tipo estrella, perno de sujeción del plato	05-07-PT-02	Sincronizar el movimiento del plato y garantizar el balanceo del mismo
de yogurt	Sujeción y colocación de abastecimiento y colocarlas en la posición adecuada en el vaso.		Cabezal, sistema de vacío	05-07-SC-01	Sujetar la tapa mediante una ventosa y colocarla en el vaso
			Cremallera, engranaje, guías	05-07-SC-02	Permitir que el cabezal se desplace y gire 180º
		Engranajes cónicos, eje, biela, manivela, guías	05-07-SC-03	Transformar el movimiento y sincronizarlo	

SISTEMA	SUB-SISTEMA	FUNCION	ELEMENTO	CODIGO	FUNCION PRIMARIA		
			Sensor electromagnético	05-07-YS-01	Envía la señal a la electroválvula		
			Electroválvula	05-07-YS-02	Abre el paso del aire		
			Cilindro neumático 05-07-YS-0				
	Yunque sellador de tapas	Sella las tapas herméticamente	Regulador de presión	05-07-YS-04	Garantizar que el yunque baje lentamente y evitar que la plancha golpee el vaso		
		mediante la transferencia de calor de la plancha a la tapa y vaso.	Yunque, niquelinas de 400W, plancha selladora	05-07-YS-05	Garantizar la obtención de la temperatura adecuada de sellado y que ésta no se disipe		
Envasadora de yogurt			Termocupla	05-07-YS-06	Censar la temperatura de la plancha de sellado		
			Acoples y reguladores de asentamiento del yunque	05-07-YS-07	Garantizar la trasmisión de movimiento desde el pistón al yunque y evitar el desbalanceo entre el plato y la plancha		
			Eje, leva, resorte, brazo eyector	05-07-EP-01	Trasmitir el movimiento al brazo y expulsar el producto final		
	Eyector del producto final	Expulsar el producto final del plato a una bandeja de empaque.	Engranajes cónicos, eje, biela, manivela, corrediza, émbolo	05-07-EP-02	Permitir que el vaso hacienda al nivel del plato y el brazo lo expulse		

SISTEMA	SUB-SISTEMA	FUNCION	ELEMENTO	CODIGO	FUNCION PRIMARIA
			Engrasador-Manómetro	05-07-NM-01	Regular la presión a la que debe trabajar el circuito de aire y lubrica
		Brindar la presión necesaria para el sellado hermético de las tapas	Filtro	05-07-NM-02	Eliminar las impurezas que lleva el aire y el circuito
	Neumático	mediante la transferencia de calor de la plancha a la tapa y vaso.	Mangueras, acoples	05-07-NM-03	Trasmitir la presión del aire por todo el circuito
			Electroválvula	05-07-NM-04	Distribuir el aire hacia todos los sistemas neumáticos de la máquina
Envasadora			Motor de 1Hp de potencia	05-07-TM-01	Trasmitir el movimiento para todo el sistema mecánico, mediante bandas, engranajes y piñones, etc.
de yogurt			Poleas, bandas y acoples	05-07-TM-02	Trasmitir el movimiento del eje del motor, y fijar la velocidad de acuerdo al requerimiento
	Trasmisión mecánica	Accionar todo los elementos mediante la trasmisión de potencia del motor a través de poleas y	Mecanismo de tornillo sin fin y corona	05-07-TM-03	Transformar el movimiento de horizontal de las poleas en movimiento vertical
		bandas, engranajes cónicos, levas y seguidores, piñones.	Eje, piñón	05-07-TM-04	Trasmitir el movimiento a los demás engranajes

SISTEMA	SUB-SISTEMA	FUNCION	ELEMENTO	CODIGO	FUNCION PRIMARIA
			Relé	05-07-CE-01	Se utiliza como auxiliar de los circuitos de maniobra
			Interruptor	05-07-CE-02	Están destinados para abrir o cerrar un circuito
		Gobernar todos los elementos que	Contactor	05-07-CE-03	Es un interruptor que puede ser accionado de uno o varios puntos gobernado por un electroimán
	Control eléctrico	contengan un circuito eléctrico a través del tablero de control.	Térmico	05-07-CE-04	Protege al motor de sobre- intensidades
Envasadora			Pulsadores	05-07-CE-05	Poner en marcha o detener un circuito eléctrico
de yogurt			Pirómetro	05-07-CE-06	Regular la temperatura requerida para el sellado
			Tablero de control	05-07-CE-06	Accionar los elementos tanto eléctricos como neumáticos
	Bastidor principal		Mesa	05-07-BP-01	Soporta todos los elementos y evita el desbalanceo del equipo
		Sostener los elementos que	Bastidor y guías del suministrador de vasos	05-07-BP-02	Sostener al suministrador de vasos
		componen la máquina.	Bastidor y guías para el colocador de tapas	05-07-BP-03	Sostener y servir de guía para el sistema de colocación de tapas
			Bastidor para el sellador de tapas	05-07-BP-04	Sirve para el anclaje del pistón neumático

CUADROS AMFE

SISTEMA: ENVASADORA DE YOGURT

Subsistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones			
			Fallo en la válvula	El producto no circula con el caudal	Elementos de control de flujo de mala calidad.	Operativas	5	4	3	60	Alto riesgo	EY-T001	Acción correctiva 05-07-AP-C01			
			1 3.11 3.13	adecuado.	Mantenimiento inadecuado.		4	4	4	64	Normal	EY-T002				
	Mala circulación del producto	05-07-AP- F01	Obstrucción en el filtro de alimentación de la bomba	El producto no circula con el caudal adecuado.	Mantenimiento inadecuado	Oculta	5	5	3	75	Alto riesgo	EY-T003	Acción correctiva 05-07-AP-C02			
Abastecimi ento del producto			Daño de sello mecánico y empaques de la bomba	Presión anormal y fugas.	Rotura de los empaques y desgaste de sellos mecánicos.	Operativo	6	5	5	150	Alto riesgo	EY-T004	Acción correctiva 05-07-AP-C03			
		05-07-AP-				Rotura de acoples en líneas.	Desperdicio innecesario del	Repuestos de mala calidad	Operativas	6	5	4	120	Alto riesgo	EY-T005	Acción correctiva 05-07-AP-C04
	Fugas 05-07-A		iiileas.	producto.	Mantenimiento inadecuado		5	3	4	60	Normal	EY-T006				
		FU2	Empaques de líneas en mal estado tanto de entrada como salida.	Desperdicio innecesario del producto	Contaminación del producto.	Operativo	4	5	4	80	Normal	EY-T007				

Subsistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
	Desgaste de		Mal dimensionamie nto	Contaminació n del producto	Mala distribución de maquinaria	Oculta	6	5	5	150	Alto riesgo	EY-T008	Acción correctiva 05-07-AP-C05
Abastecimi ento del producto	tubería y accesorios	05-07-AP- F03	Sobrepresión	Rotura y disminución de estándares.	Mala calidad de repuestos.	Oculta	4	3	5	60	Normal	EY-T009	
	Fuga en la válvula neumática	05-07-AP- F04	Desgaste de la válvula y empaques.	Desborde del producto.	Mantenimiento inadecuado	Operativo	7	4	2	56	Alto riesgo	EY-T010	Acción correctiva 05-07-AP-C06
			Mal funcionamiento	Desborde o bajo nivel de	Mantenimiento inadecuado		6	2	4	48	Normal	EY-T011	
Dosificador	Incapacidad de	05-07-DO- F01	de sensores de nivel.	producto en la olla de suministro	Falla en el sistema eléctrico	Operativas	7	3	4	84	Normal	EY-T012	
	producción.		Mala calibración de cremallera dosificadora	Dosificación excesiva o escasa del producto.	Falta de capacitación al personal.	Operativo	7	3	3	63	Alto riesgo	EY-T013	Acción correctiva 05-07-DO-C01

Subsistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
	Incapacidad de producción.		Mala calibración de cremallera dosificadora	Dosificación excesiva o escasa del producto.	Manipulación incorrecta al momento de limpieza.	Operativo	5	3	4	60	Normal	EY-T014	
Dosificador		05-07-DO- F01	Mal funcionamiento del pistón neumático	Mala dosificación del producto.	Desgaste de rines, empaques y pistón.	Operativo	7	4	3	84	Alto riesgo	EY-T015	Acción correctiva 05-07-DO-C02
	Fallo on ol		Desgaste de chumaceras y engranaje	Mala sincronización con los demás	Mantenimiento inadecuado	Contra la	7	4	3	84	Alto riesgo	EY-T016	Acción correctiva 05-07-DO-C03
s	Fallo en el sistema mecánico de dosificación.	lo en el ema cánico de 05-07-DO-	cónico	elementos mecánicos y dosificado	Mala lubricación y limpieza.	seguridad.	6	3	5	90	Normal	EY-T017	
			Desgaste de bocín del embolo dosificador	Descalibració n de elementos	Mala lubricación y calibración.	Operativo	7	3	3	63	Alto riesgo	EY-T018	Acción correctiva 05-07-DO-C04

sistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
Suministra dor de	Fallo en el sistema suministrador	05-07-SV- F01	Rotura de muelles	Inhabilitación del sistema	Periodo de mantenimiento inadecuado	Operativas	6	3	2	36	Alto riesgo	EY-T019	Acción correctiva 05-07-SV-C01
vasos	Summistracor	101			Requerimientos de carga inadecuados		6	3	4	72	Normal	EY-T020	
			Falta de ajuste del perno de sujeción.	Desgaste de topes del vaso	Ajuste inadecuado o insuficiente apriete	Contra la seguridad.	8	3	3	72	Alto riesgo	EY-T021	Acción correctiva 05-07-PT-C01
Plato transportad or de vasos	Desbalanceo del plato transportador	05-07-PT- F01	Desgaste de bocín del eje.	Descentrado y descalibración de elementos	Mal diseño de montaje	Oculta	6	3	4	72	Normal	EY-T022	
			Corrosión de elementos del sistema.	Inhabilitación del sistema.	Ambiente de trabajo.	Oculta	5	3	5	75	Normal	EY-T023	
Sujeción y	Defectuosa sujeción y	05-07-SC-	Daño de sistema de vacío	No existe succión de las tapas	Falta de presión de aire	Operativo	8	3	4	96	Normal	EY-T024	
colocación co	colocación de tapas	F01	Daño de cremallera.	Inhabilitación del sistema	Descalibración del sistema motriz	Operativo	8	3	3	72	Alto riesgo	EY-T025	Acción correctiva 05-07-SC-C01

Subsistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
			Presión insuficiente en el cilindro	No asentamiento del yunque	Taponamiento del filtro del sistema de aire	Operativas	6	4	4	96	Normal	EY-T026	
	Incapacidad de	05-07-YS- F01	neumático		Rotura de mangueras		4	6	4	96	Normal	EY-T027	
	producción	101	Fallo en el sensor magnético	Inhabilitación del sistema de sellado	Mantenimiento inadecuado	Operativo	7	5	3	105	Alto riesgo	EY-T028	Acción correctiva 05-07-YS-C01
Yunque sellador de tapas			Descalibraci ón de yunque	Desgaste de topes y plancha	Mala regulación de muelles	Oculta	5	4	4	80	Normal	EY-T029	
	Sellado defectuoso	05-07-YS- F02	Temperatur a de sellado inadecuada.	Daño en el envase del producto y no sellado hermético	•	Operativo	8	6	3	144	Alto riesgo	EY-T030	Acción correctiva 05-07-YS-C02
			Cristalizació n y rotura de sellos del cilindro	El cilindro no recorre carrera completa	•	Operativo	7	3	4	84	Alto riesgo	EY-T031	Acción correctiva 05-07-YS-C03
Eyector del producto final	Fallo en el sistema mecánico	05-07-EP- F01	Rotura de engranajes	Inhabilitación del sistema	Mala lubricación y montaje	Contra la seguridad	8	3	3	72	Alto riesgo	EY-T032	Acción correctiva 05-07-EP-C01

Subsistem a	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
	Disminución de la	05-07-NM-	Taponamien	Baja de presión v mal	Mantenimiento inadecuado		4	5	4	80	Normal	EY-T033	
	presión en el sistema	F01	to del filtro	funcionamiento de la máquina	No purga del sistema	Ocultas	3	6	4	72	Normal	EY-T034	
Neumático			Suciedad en el sistema	Descalibración de engrasador - manómetro	Medidores de presión de mala calidad	Oculta	6	6	4	144	Normal	EY-T035	Acción correctiva 05-07-NM-C01
	Sistema defectuoso	05-07-NM- F02	Mangueras y acoples en	Disminución del caudal de aire y	Mala calidad de repuestos		5	4	4	80	Normal	EY-T036	
			mal estado	ruido no habitual	Mal manejo de parte del personal de operación			5	4	80	Normal	EY-T037	
			Existe daño en elementos	El motor no	Mantenimiento inadecuado de los elementos eléctricos		7	4	4	112	Alto riesgo	EY-T038	Acción correctiva 05-07-TM-C01
Trasmisión	Incapacidad de transferir	05-07-TM- F01	de protección, control o maniobra	arranca, ni se energiza.	Falta de precaución al momento de lavado y limpieza de la máquina	Operativa	5	4	4	80	Normal	EY-T039	
mecánica	de transferir potencia	FOI	Sobrecalent amiento	Se apaga el motor	Capacitor inadecuado para el motor	Operativo	6	3	4	72	Normal	EY-T040	
			Desgaste de rodamientos	Ruidos y golpeteos	Mala calibración del motor	Operativo	7	4	3	84	Alto riesgo	EY-T041	Acción correctiva 05-07-TM-C02

Subsistem a	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
					Desalineación entre ejes		7	3	4	84	Normal	EY-T042	
	Sistema mecánico inoperativo	05-07-TM- F02	Rotura de bandas	No transmisión de movimiento	Montaje inadecuado	Contra la seguridad	6	3	4	72	Normal	EY-T043	
					Bandas no especificadas		5	3	4	60	Normal	EY-T044	
Trasmisión mecánica			Fractura de las piezas	Ruido e inhabilitación de la máquina	Desalineación y falta de lubricación.	Contra la seguridad.	8	3	2	48	Alto riesgo	EY-T045	Acción correctiva 05-07-TM-C03
s p	Rotura del sistema principal de transmisión	05-07-TM- F03	Desalinea miento del eje	Desgaste de rodamientos	Sobrecarga y holgura.	Operativo	7	3	4	84	Normal	EY-T046	
			Recalenta miento y desconcha do de piezas	Desgaste y picadura	Lubricación inadecuada	Oculta	6	4	4	96	Normal	EY-T047	
			Rotura del chavetero.	No transmisión de movimiento	Montaje irregular o martilleo	Operativo	8	4	3	96	Alto riesgo	EY-T048	Acción correctiva 05-07-TM-C04
Control	Fallo en los mandos, sistemas de	05-07-CE-	Mala lectura de la	Sellado	Daño en el pirómetro	Operativo	7	2	4	56	Normal	EY-T049	
eléctrico pr	protección y alarmas	F01		deficiente	Daño en la termocupla	·	6	3	4	72	Normal	EY-T050	

Subsistema	Falla funcional	Código de fallo	Modo de fallo	Efectos de fallo	Causas de fallo	Consecuencias	G	F	D	IPR	Estado	Código de tarea	Observaciones
			Relé picado	Deja de funcionar el pirómetro	Variación de voltaje	Operativo	7	3	4	72	Normal	EY-T051	
					Variación de voltaje		8	5	3	120	Alto riesgo	EY-T052	Acción correctiva 05-07-CE-C01
			No arranca el motor	Inhabilitación de la máquina	Cortocircuito	Ocultas	7	3	4	84	Normal	EY-T053	
Control	léctrico protección y F02	05-07-CE-			Contactor picado los platinos		7	5	4	140	Normal	EY-T054	
		No se		Mantenimiento inadecuado		7	5	6	210	Alto riesgo	EY-T055	Acción correctiva 05-07-CE-C02	
			prenden los	Daño en algún	Micro de Ilenado dañado	Operativas	7	3	4	84	Normal	EY-T056	
					Térmico dañado	Operativas	6	3	4	72	Normal	EY-T057	
					Pulsadores en mal estado		6	3	4	72	Normal	EY-T058	
					Desnivel del piso		5	6	3	90	Normal	EY-T059	
Bastidor principal	Desbalance de elementos	05-07-BP- ć	Desalineaci ón de la mesa	Descalibración de los sistemas	Falta de pies de altura ajustables	Operativas	7	7	4	196	Alto riesgo	EY-T060	Acción correctiva 05-07-BP-C01
					Vibración		6	4	4	96	Normal	EY-T061	

CORRECTIVOS AMFE

ENVASADORA DE YOGURT

Subsistema	Falla funcional	Código de acción correctiva	Modo de fallo	Causas de fallo	Acción correctiva	Responsable	G	F	D	IPR	Código de tarea
		05-07-AP- C01	Fallo en la válvula	Elementos de control de flujo de mala calidad.	Remplazar el elemento y aumentar el número de inspecciones.	Personal de mantenimiento.	5	4	4	80	EY-T062
Abastecimie	Mala circulación del producto	05-07-AP- C02	Obstrucción en el filtro de alimentación de la bomba	Mantenimiento inadecuado.	Aumentar el número de inspecciones.	Personal de mantenimiento.	7	3	2	42	EY-T063
nto del producto		05-07-AP- C03	Daño de sello mecánico y empaques de la bomba	Rotura de los empaques y desgaste de sellos mecánicos.	Remplazar el elemento y aumentar el número de inspecciones.	Personal de mantenimiento.	6	4	3	72	EY-T064
	Fugas	05-07-AP- C04	Rotura de acoples en líneas.	Repuestos de mala calidad	Remplazar el elemento y aumentar el número de inspecciones.	Personal de mantenimiento.	8	4	2	64	EY-T065

Subsistema	Falla funcional	Código de acción correctiva	Modo de fallo	Causas de fallo	Acción correctiva	Responsable	G	F	D	IPR	Código de tarea
Abastecimie nto del producto	Desgaste de tubería y accesorios	05-07-AP- C05	Mal dimensionamie nto	Mala distribución de maquinaria	Mayor inspección del proceso.	Personal de mantenimiento.	5	4	4	80	EY-T066
	Fuga en la válvula neumática	05-07-AP- C06	Desgaste de la válvula y empaques.	Mantenimiento inadecuado	Remplazar el elemento y aumentar el número de inspecciones.	Personal de mantenimiento.	7	5	2	70	EY-T067
Dosificador	Incapacidad de producción.	05-07-DO- C01	Mala calibración de cremallera dosificadora	Falta de capacitación al personal.	Remplazar el elemento y lubricar.	Personal de operación y mantenimiento.	7	4	3	84	EY-T068
		05-07-DO- C02	Mal funcionamiento del pistón neumático	Desgaste de rines, empaques y pistón.	Remplazar el elemento y aumentar el número de inspecciones.	Personal de mantenimiento.	8	5	2	80	EY-T069
	Fallo en el sistema mecánico de dosificación.	05-07-DO- C03	Desgaste de chumaceras y engranaje cónico	Mantenimiento inadecuado	Cambio del elemento y aumentar número de inspecciones	Personal de mantenimiento.	8	4	2	64	EY-T070

Subsistema	Falla funcional	Código de acción correctiva	Modo de fallo	Causas de fallo	Acción correctiva	Responsable	G	F	D	IPR	Código de tarea
Dosificador	Fallo en el sistema mecánico de dosificación.	05-07-DO- C04	Desgaste de bocín del embolo dosificador	Mala lubricación y calibración.	Mayor inspección del proceso.	Personal de operación.	9	4	2	72	EY-T071
Suministrad or de vasos	Fallo en el sistema suministrador	05-07-SV- C01	Rotura de muelles	Periodo de mantenimiento inadecuado	Realizar mayor número de inspecciones de la máquina de envase.	Personal de mantenimiento.	9	4	2	72	EY-T072
Plato transportado r de vasos	Desbalanceo del plato transportador	05-07-PT- C01	Falta de ajuste del perno de sujeción.	Ajuste inadecuado o insuficiente apriete	Remplazar elemento y aumentar número de inspecciones.	Personal de mantenimiento.	7	3	3	63	EY-T073
Sujeción y colocación de tapas	Defectuosa sujeción y colocación de tapas	05-07-SC- C01	Daño de cremallera.	Descalibración del sistema motriz.	Remplazar elemento y calibración.	Personal de mantenimiento.	7	4	3	84	EY-T074
Yunque sellador de tapas	Incapacidad de producción	05-07-YS- C01	Fallo en el sensor magnético	Mantenimiento inadecuado	Cambio de sensor y establecer período de reemplazo.	Personal de mantenimiento.	7	4	2	56	EY-T075

Subsistema	Falla funcional	Código de acción correctiva	Modo de fallo	Causas de fallo	Acción correctiva	Responsable	G	F	D	IPR	Código de tarea
Yunque sellador de	Sellado defectuoso	05-07-YS- C02	Temperatura de sellado inadecuada.	Niquelinas no especificadas por el fabricante	Cambio de niquelinas e inspección del proceso.	Personal de mantenimiento.	9	4	2	72	EY-T076
tapas	uerectuoso	05-07-YS- C03	Cristalización y rotura de sellos del cilindro	Cilindro no especificado para esas condiciones de trabajo	Remplazar elemento y aumentar número de inspecciones.	Personal de mantenimiento.	5	4	2	40	EY-T077
Eyector del producto final	Fallo en el sistema mecánico	05-07-EP- C01	Rotura de engranajes	Mala lubricación y montaje	Remplazar elemento y aumentar número de inspecciones.	Personal de mantenimiento.	6	4	3	72	EY-T078
Neumático	Sistema defectuoso	05-07-NM- C01	Suciedad en el sistema	Medidores de presión de mala calidad	Mayor inspección del sistema neumático	Personal de operación y mantenimiento	6	3	3	54	EY-T079
Trasmisión mecánica	Incapacidad de transferir potencia	05-07-TM- C01	Existe daño en elementos de protección, control o maniobra	Mantenimiento inadecuado de los elementos eléctricos	Remplazar elementos y aumentar número de inspecciones de mantenimiento.	Personal de mantenimiento.	6	4	2	48	EY-T080

Subsistema	Falla funcional	Código de Acción correctiva	Modo de fallo	Causas de fallo	Acción Correctiva	Responsable	G	F	D	IPR	Código de tarea
	Incapacidad de transferir potencia	05-07-TM- C02	Desgaste de rodamientos	Mala calibración del motor	Cambio de rodamientos y aumento de número de inspecciones de mantenimiento.	Personal de mantenimiento.	6	4	2	48	EY-T081
Trasmisión mecánica	Rotura del	05-07-TM- C03	Fractura de las piezas	Desalineación y falta de lubricación.	Remplazar elementos y aumentar número de inspecciones de mantenimiento.	Personal de mantenimiento.	5	3	3	45	EY-T082
sist prir	sistema principal de transmisión	05-07-TM- C04	Rotura del chavetero.	Montaje irregular o martilleo	Remplazar elemento y aumentar número de inspecciones de mantenimiento.	Personal de mantenimiento.	8	4	2	64	EY-T083
Control	Fallo en los mandos,	05-07-CE- C01	No arranca el motor	Variación de voltaje	Revisiones del sistema eléctrico.	Personal de operación y mantenimiento.	8	2	2	32	EY-T084
eléctrico	an sematais		No se prenden los sistemas de alarma y aviso	Mantenimiento inadecuado	Inimero de inspecciones de		8	3	3	72	EY-T085
Bastidor principal	Desbalance de elementos	05-07-BP- C01	Desalineación de la mesa	Falta de pies de altura ajustables	Colocación de pies de altura ajustables.	Personal de mantenimiento.	8	3	3	72	EY-T086

TAREAS DE MANTENIMIENTO AMFE

ENVASADORA DE YOGURT

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T001	Cambio de los elementos de control de flujo	Mantenimiento correctivo.	Apagar la máquina y realizar el cambio de los elementos de control de flujo.	6 meses	30 minutos	Válvulas	Caja de herramientas mecánicas.	Técnico mecánico
EY-T002	Revisión de elementos de control de flujo.	Mantenimiento preventivo.	Controlar el flujo de entrada y salida, válvulas, empaques, además revisión de todas las conexiones de la tubería.	1 mes	10 minutos	Ninguno.	Ninguna	Personal de operación.
EY-T003	Revisión de filtros de alimentación de la bomba	Mantenimiento correctivo.	Apagar la bomba y proceder a revisar y limpiar el filtro.	No es periódico.	20 minutos	Ninguno.	Ninguna	Personal de operación.
EY-T004	Cambio de empaques y sellos mecánicos de la bomba.	Mantenimiento correctivo.	Apagar la bomba, desarmarla, cambiar los empaques y sello mecánicos y ensamblar nuevamente la bomba.	3 meses	30 minutos	Empaques	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T005	Cambio de acoples de las líneas de abastecimiento	Mantenimiento correctivo.	Apagar la bomba, desmontar la tubería, y remplazar los acoples por nuevos y ensamblar nuevamente el sistema.	6 meses	40 minutos.	Acoples	Caja de herramientas mecánicas.	Técnico mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T006	Revisión de repuestos para líneas	Mantenimiento preventivo	Apagar la bomba, desmontar los elementos, revisar el estado de los accesorios y ensamblar nuevamente el sistema.	No es periódico.	20 minutos.	Ninguno	Ninguna.	Ingeniero mecánico
EY-T007	Revisión de empaques, líneas de entrada y salida	Mantenimiento preventivo	Apagar la bomba, desmontar los elementos, revisar el estado de las líneas y ensamblar nuevamente el sistema.	No es periódico.	20 minutos	Ninguno	Ninguna.	Personal de operación.
EY-T008	Cambio en la distribución de la maquinaria	Mantenimiento correctivo.	Realizar una redistribución, tanto de la maquinaria como de los equipos.	No es periódico.	60 minutos	Ninguno	Caja de herramientas mecánicas.	Ingeniero mecánico
EY-T009	Revisión de tuberías y accesorios	Mantenimiento preventivo	Apagar la máquina y proceder a revisar el estado de las tuberías y acoples	3 meses	20 minutos	Ninguno.	Ninguna.	Técnico mecánico.
EY-T010	Cambio de válvula neumática y empaques.	Mantenimiento correctivo.	Apagar la máquina, cambiar la válvula y sus empaques, y ensamblar nuevamente la máquina.	1 año	30 minutos	Válvula de 1/8" y empaques	Caja de herramientas mecánicas.	Técnico mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T011	Revisión de los sensores de nivel	Mantenimiento preventivo.	Apagar la máquina y desmontar el sistema de nivel, revisar el estado de los sensores y sopleteado; se arma nuevamente el sistema	1 mes	10 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T012	Revisión del sistema eléctrico del sistema de nivel	Mantenimiento preventivo.	Apagar la máquina y desmontar el sistema de nivel, revisar el estado del sistema eléctrico de nivel, si se encuentra deteriorado cambiar por otro y se arma nuevamente el sistema.	No es periódico.	20 minutos	Ninguno	Ninguna	Técnico eléctrico.
EY-T013	Cambio de cremallera dosificadora o elementos de la misma.	Mantenimiento correctivo.	Apagar la máquina y desmontar la cremallera, revisar el estado del sistema y sus elementos, se cambia por otra y se arma nuevamente el sistema.		60 minutos	Engranajes y piñón	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T014	Revisión y calibración de cremallera	Mantenimiento preventivo.	Apagar la máquina y desmontar la cremallera, revisar el estado del sistema y sus elementos, se calibra y se arma nuevamente el sistema.	No es periódico.	20 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico.

EY-T015 Cambio pistón neumático dosificado	del Mantenimiento de correctivo.	Apagar la máquina y desmontar el pistón neumático de dosificado, cambiar el pistón por otro nuevo y se arma nuevamente el sistema.	1 año	30 minutos	Empaques y juego de rines	Caja de herramientas mecánicas.	Técnico mecánico.
--	--	--	-------	------------	---------------------------------	---------------------------------------	----------------------

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T016	Cambio de chumaceras y engranajes cónicos del sistema	Mantenimiento correctivo	Apagar la máquina y desmontar el sistema de transmisión para el dosificado, cambiar el juego completo de engranajes y chumaceras y se arma nuevamente el sistema.	6 meses.	180 minutos	Chumaceras, engranajes, grasa alimenticia	Caja de herramientas mecánicas.	Técnico mecánico
EY-T017	Revisión y lubricación del sistema mecánico de dosificación.	Mantenimiento preventivo	Apagar la máquina y una vez que se ha cambiado el juego completo de engranajes y chumaceras del sistema de dosificado, se calibra y lubrica y se arma nuevamente el sistema.	Diario	15 minutos	Grasa alimenticia y aceite 250 para trasmisión	Ninguna	Personal de operación.
EY-T018	Cambio de bocín del émbolo dosificador	Mantenimiento correctivo	Apagar la máquina y desmontar el sistema de dosificado, cambiar el bocín y se arma nuevamente el sistema.	1 año	30 minutos	Bocín de bronce SAE 792, grasa alimenticia	Caja de herramientas mecánicas.	Personal de operación y técnico mecánico.

EY-T019	Cambio de muelles del sistema suministrador de vasos	Mantenimiento correctivo	Apagar la máquina y desmontar el sistema suministrador de vasos, se cambia los muelles y se arma nuevamente el sistema.	1 año	20 minutos	Muelles helicoidales de espira torcida corta de 25 X 2 mm	Caja de herramientas mecánicas	Técnico mecánico.
EY-T020	Revisión y lubricación del sistema suministrador de vasos.	Mantenimiento preventivo	Revisar el funcionamiento del sistema suministrador de vasos, lubricar y calibrar.	1 año	10 minutos.	Grasa alimenticia	Guaype	Técnico mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T021	Cambio de perno de sujeción del plato transportador.	Mantenimiento correctivo	Apagar la máquina y revisar el perno de sujeción del plato transportador y cambiarlo si se encuentra deteriorado.	No es periódico.	30 minutos	Pernos 5/8 - 11 UNC	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T022	Revisión y lubricación del bocín del eje.	Mantenimiento preventivo	Revisar el estado del bocín que pertenece al eje del plato suministrador de vasos, lubricar y calibrar.		20 minutos	Grasa blanca alimenticia	Ninguna	Técnico mecánico.

EY-T023	Revisión e inspección de corrosión en los elementos del sistema.	Mantenimiento preventivo	Revisar el estado de los elementos que pertenece al sistema mecánico del plato suministrador de vasos.	Diario	10 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T024	Revisión y control del sistema de vacío.	Mantenimiento preventivo	Revisar y controlar el estado del sistema de vacío para la sujeción y colocación de tapas.	No es periódico	20 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T025	Cambio de cremallera de sujeción y colocación de tapas.	Mantenimiento correctivo	Apagar la máquina y desmontar la cremallera, revisar el estado del sistema y sus elementos, se cambia por otra y se arma nuevamente el sistema.	1 año	120 minutos.	Cremallera y engranaje	Caja de herramientas mecánicas	Técnico mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T026	Revisión y control de presión en el cilindro neumático.	Mantenimiento preventivo	Revisar y controlar la presión de aire en el cilindro neumático del yunque sellador.		10 minutos	Ninguno	Ninguna	Operador

EY-T027	Revisión del sistema neumático del yunque sellador	Mantenimiento preventivo	Revisar y calibrar el sistema neumático del yunque sellador.	Diario	10 minutos	Ninguno	Ninguna	Operador
EY-T028	Cambio del sensor magnético.	Mantenimiento correctivo.	Apagar la máquina y desmontar el sensor magnético dañado, se cambia por otro y se arma nuevamente el sistema.	6 meses	60 minutos	Sensor magnético	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T029	Revisión y calibración de muelles.	Mantenimiento preventivo	Revisar y calibrar los muelles del yunque sellador.	No es periódico	20 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T030	Cambio de niquelinas de plancha de sellado	Mantenimiento correctivo.	Apagar la máquina, desmontar las niquelinas, remplazar por otras nuevas y ensamblar nuevamente la máquina.	4 meses	30 minutos.	Resistencias 3/8 " (220V 400 W)	Caja de herramientas mecánicas.	Técnico eléctrico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL	
--------------------	--------	------------	-------------	---------	----------------------	-----------	--------------	------------------------	--

EY-T031	Cambio de cilindro neumático.	Mantenimiento correctivo.	Apagar la máquina, desmontar el cilindro neumático, reemplazar por otro nuevo y ensamblar nuevamente el sistema.	1 año	40 minutos	Cilindro neumático	Caja de herramientas mecánicas	Técnico mecánico.
EY-T032	Cambio de engranajes del sistema eyector del producto final.	Mantenimiento correctivo.	Apagar la máquina, desmontar el sistema eyector del producto final, reemplazar los engranajes y ensamblar nuevamente el sistema.	6 meses	40 minutos	Engranajes	Caja de herramientas mecánicas	Técnico mecánico.
EY-T033	Revisión de filtro del sistema neumático	Mantenimiento preventivo.	Realizar una inspección periódica del filtro del sistema neumático.	1 semana	20 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T034	Purga y limpieza del sistema.	Mantenimiento preventivo.	Realizar una limpieza y purga periódica del sistema neumático.	1 semana	20 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T035	Cambio de medidores de presión del sistema.	Mantenimiento correctivo.	Retirar el medidor de presión del sistema y cambiar por otro nuevo de similares características.	6 meses	30 minutos	Manómetros de 1/4 con glicerina de 0 - 160 psi	Caja de herramientas mecánicas.	Técnico mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL	
--------------------	--------	------------	-------------	---------	----------------------	-----------	--------------	------------------------	--

EY-T036	Revisión e inspección de elementos del sistema neumático.	Mantenimiento preventivo.	Realizar una inspección visual periódica de todos los elementos del sistema, para verificar su calidad.	Diario	20 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T037	Revisión del caudal de aire y fugas	Mantenimiento preventivo.	Realizar una inspección periódica de todos los elementos del sistema, conexiones y mangueras para evitar fugas.	Diario	10 minutos	Ninguno	Ninguna	Operador
EY-T038	Cambio de elementos de protección, control y maniobra	Mantenimiento correctivo.	Apagar la máquina, cambiar los elementos de protección, control y maniobra.	6 meses	40 minutos	Pulsadores, sensores, relés.	Caja de herramientas eléctricas	Técnico eléctrico.
EY-T039	Revisión y limpieza de los elementos eléctricos	Mantenimiento preventivo.	Revisar y limpiar los elementos eléctricos que intervienen en el funcionamiento de la transmisión mecánica .	Diario	10 minutos	Ninguno	Ninguna	Operador
EY-T040	Revisión del capacitor del motor	Mantenimiento preventivo.	Revisar el estado del capacitor del motor.	3 meses	20 minutos.	Ninguno	Caja de herramientas eléctricas.	Técnico eléctrico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL	
--------------------	--------	------------	-------------	---------	----------------------	-----------	--------------	------------------------	--

EY-T041	Cambio de rodamientos del motor	Mantenimiento correctivo.	Apagar la máquina y desmontar el motor, desarmar y cambiar de rodamientos; ensamblar nuevamente el sistema.	6 meses	60 minutos	Rodamientos 6203 y grasa ARCANOL KP2N-40	Caja de herramientas mecánicas.	Técnico mecánico
EY-T042	Revisión y alineación entre ejes motrices.	Mantenimiento preventivo.	Revisar y calibrar la alineación de los ejes motrices.	No es periódico.	30 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico
EY-T043	Revisión del montaje de la banda que transmite el movimiento	Mantenimiento preventivo.	Revisar y calibrar el montaje de la banda que transmite el movimiento.	3 meses	20 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico
EY-T044	Revisión y elección de banda especificada para la máquina	Mantenimiento preventivo.	Revisar y seleccionar la banda especificada por el fabricante para la máquina.	4 meses	10 minutos.	Ninguno	Ninguna	Técnico mecánic
EY-T045	Cambio de piezas del sistema principal de transmisión.	Mantenimiento correctivo.	Apagar la máquina y desmontar el sistema de transmisión principal de movimiento, cambiar el juego completo de engranajes y chumaceras y se arma nuevamente el sistema.	6 meses	60 minutos.	Juego completo de engranajes, chumaceras. Chumacera FAG P562 04	Caja de herramientas mecánicas.	Técnico mecánico

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T046	Revisión del alineamiento del eje.	Mantenimiento preventivo.	Revisar y calibrar el alineamiento del eje del rotor.	No es periódico	20 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T047	Revisión de corrosión y desgaste en los elementos.	Mantenimiento preventivo.	Revisar e inspeccionar el desgaste de los elementos del sistema.	1 semana	10 minutos	Ninguno	Ninguna	Técnico mecánico.
EY-T048	Cambio de polea y matrimonio	Mantenimiento correctivo.	Apagar la máquina y desmontar la polea, cambiarla por una nueva y se arma nuevamente el sistema.	2 años	120 minutos	Polea y matrimonio de 2", prisionero de 5/16 x 3/4	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T049	Revisión y calibración del pirómetro.	Mantenimiento preventivo.	Revisar e inspeccionar el buen funcionamiento y calibración del pirómetro.	3 meses	10 minutos	Ninguno.	Ninguna	Técnico eléctrico.
EY-T050	Revisión de la termocupla de la plancha de sellado	Mantenimiento preventivo.	Revisar e inspeccionar el estado de la Termocupla de la plancha de sellado.	1 mes	10 minutos	Ninguno.	Ninguna	Técnico eléctrico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T051	Revisión del relé	Mantenimiento preventivo.	Revisar e inspeccionar el estado del relé.	1 mes	10 minutos	Ninguno	Caja de herramientas eléctricas.	Técnico eléctrico.
EY-T052	Cambio de sistemas de control de variación de voltaje	Mantenimiento	Apagar la máquina y cambiar los sistemas de control de variación de voltaje.	3 meses	30 minutos	Contactores y brackers.	Caja de herramientas eléctricas.	Técnico eléctrico.
EY-T053	Revisión del sistema eléctrico	Mantenimiento preventivo.	Revisar e inspeccionar el estado del sistema de cableado eléctrico del tablero.	1 mes	20 minutos	Ninguno	Ninguna	Técnico eléctrico.
EY-T054	Revisión del contactor y platinos.	I Mantenimiento	Revisar e inspeccionar el estado del Contactor y los platinos.	1 mes	20 minutos	Ninguno	Ninguna	Técnico eléctrico.
EY-T055	Cambio de sistemas de alarma y aviso		Apagar la máquina y sustituir los sistemas de alarma y aviso por otros de similar característica	3 meses	30 minutos	Sensor tipo K y pulsadores	Caja de herramientas eléctricas.	Técnico eléctrico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T056	Revisión de micro de llenado	Mantenimiento preventivo.	Revisar e inspeccionar el estado del micro de llenado.	No es periódico.	20 minutos	Ninguno	Ninguna	Técnico eléctrico.
EY-T057	Revisión de térmicos	Mantenimiento preventivo.	Revisar periódicamente el estado de los térmicos del tablero.	No es periódico.	10 minutos	Ninguno	Caja de herramientas eléctricas.	Técnico eléctrico.
EY-T058	Revisión de pulsadores	Mantenimiento preventivo.	Revisar e inspeccionar el estado de los pulsadores del tablero.	No es periódico.	10 minutos	Ninguno	Ninguna	Operador
EY-T059	Revisión de nivel de la máquina respecto del piso.	Mantenimiento preventivo.	Revisar e inspeccionar la nivelación de la máquina con respecto al piso.	No es periódico.	10 minutos	Ninguno	Ninguna	Técnico mecánico.

Adaptación de EY-T060 pies de altura ajustables	Mantanimianin	Apagar la máquina y colocar pies de altura ajustables para mayor facilidad de nivelación.		60 minutos	Pies de altura ajustables	Caja de herramientas mecánicas y taller mecánico.	Técnico mecánico.
---	---------------	---	--	------------	------------------------------	--	----------------------

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T061	Calibración y control de vibración	Mantenimiento preventivo.	Inspeccionar y calibrar los niveles de vibraciones de la máquina.	1 1/1/1 40	20 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico y operador.
EY-T062	Determinación de período de cambio de válvulas de abastecimiento.	Mantenimiento preventivo.	Establecer periodo de cambio de válvulas de abastecimiento, tomando en cuenta el tiempo de vida útil de las mismas de acuerdo a las bitácoras.	6 meses.	60 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico y operador.
EY-T063	Inspección del estado del filtro	Mantenimiento preventivo.	Realizar inspección periódica del estado del filtro, revisar su limpieza. De tal manera que si se obstruye, no impida el normal desarrollo del proceso.	1 mes.	10 minutos	Ninguno	Ninguna	Técnico mecánico.

EY-T064	Determinación de período de cambio de sellos mecánicos y empaques de la bomba.	Mantenimiento preventivo.	Establecer periodo de cambio de sellos mecánicos y empaques, tomando en cuenta el tiempo de vida útil de las mismas de acuerdo a las bitácoras.	30 minutos	Ninguno	Caja de herramientas mecánicas.	Técnico mecánico.
EY-T065	Inspección periódica de los acoples de las líneas.	Mantenimiento preventivo.	Realizar inspección periódica del estado de los acoples de las líneas. De tal manera que no exista desperdicio de producto innecesario.	20 minutos	Ninguno.	Ninguna	Operador

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T066	Inspección de tuberías y accesorios.	Mantenimiento preventivo.	Realizar inspección periódica de tuberías y accesorios. De tal manera que no influyan en transporte óptimo del producto, ni su desperdicio innecesario.	1 mes	20 minutos.	Ninguno.	Ninguna.	Operador
EY-T067	Inspección periódica de la válvula neumática.	Mantenimiento preventivo.	Realizar inspección periódica de la válvula neumática de dosificación para su óptimo desempeño. De tal manera que no influya, tanto en el desempeño de la máquina como en el desarrollo normal de producción.	6 meses	20 minutos.	Ninguno.	Caja de herramientas mecánicas	Técnico mecánico.

EY-T068	Inspección periódica y calibración de cremallera dosificadora.	Mantenimiento preventivo.	Realizar inspección y calibración periódica de la cremallera dosificadora. De tal manera que no se produzca ningún fallo en la misma, ni en ninguno de sus elementos, afectando así el óptima desarrollo de la producción.	6 meses	20 minutos	Ninguno.	Caja de herramientas mecánicas	Ingeniero mecánico
---------	--	---------------------------	--	---------	------------	----------	--------------------------------------	-----------------------

CÓD DI TAR	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T	Determinación de período de 069 cambio rines, engranajes y pistón.	i wantenimiento	Establecer período de cambio de rines, engranajes y pistón de dosificado, tomando en cuenta el tiempo de vida de las mismas de acuerdo a las bitácoras de mantenimiento. Evitando así la incapacidad de la producción y teniendo en cuenta que es sistema importante dentro del funcionamiento de la máquina	1 año	60 minutos.	Ninguno.	Caja de herramientas mecánicas	Ingeniero mecánico.

EY-T070	Determinación de período de cambio chumaceras y engranaje cónico	Mantenimiento preventivo.	Establecer período de cambio de las chumaceras y engranaje cónico del sistema dosificador, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro del sistema y por ende de la producción.	6 meses	40 minutos	Ninguno.	Caja de herramientas mecánicas	Ingeniero mecánico.
EY-T071	Determinación de período de cambio de bocín y émbolo dosificador.	Mantenimiento preventivo.	Establecer período de cambio del bocín y émbolo del sistema dosificador, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro del sistema y por ende de la producción.	2 años	40 minutos.	Ninguno.	Caja de herramientas mecánicas.	Ingeniero mecánico.
EY-T072	Determinación de período de cambio de muelles.	Mantenimiento preventivo.	Establecer período de cambio de los muelles del sistema suministrador de vasos, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro del sistema.	6 meses	30 minutos.	Ninguno.	Caja de herramientas mecánicas.	Ingeniero mecánico.

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T073	Inspección periódica del perno de sujeción del plato transportador	Mantenimiento preventivo.	Realizar inspección periódica del estado del perno de sujeción del plato transportador. De tal manera que no influya en el normal desarrollo de la producción.		10 minutos	Ninguno.	Ninguna.	Técnico mecánico.

EY-T074	Inspección periódica de la cremallera.	Mantenimiento preventivo.	Realizar inspección periódica del estado de la cremallera del sistema de sujeción y colocación de tapas. De tal manera que no influya en el normal desarrollo de la producción o genere incapacidad de la misma.	3 meses	10 minutos	Ninguno.	Ninguna.	Técnico mecánico.
EY-T075	Inspección constante del sensor magnético.	Mantenimiento preventivo.	Realizar inspección constante del sensor magnético, ya que es un elemento primordial en el sistema de sujeción y colocación de tapas. De tal manera que es una pieza esencial en la operación de la máquina.	3 meses	10 minutos.	Ninguno.	Ninguna.	Técnico mecánico.
EY-T076	Determinación de período de cambio de niquelinas.	Mantenimiento preventivo.	Establecer período de cambio de las niquelinas de la plancha, que forma parte del sistema de sellado, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro del sistema y por ende de la producción.	4 meses	30 minutos.	Ninguno.	Caja de herramientas mecánicas.	Ingeniero mecánico

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T077	Determinación de período de cambio del cilindro neumático.	Mantenimiento preventivo.	Establecer período de cambio del cilindro neumático, que es un elemento esencial en el sistema de sellado, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento, así como también las recomendaciones del fabricante. Para con esto evitar el paro del sistema y de la máquina.	6 meses.	30 minutos.	Ninguno.	Caja de herramientas mecánicas.	Ingeniero mecánico.
EY-T078	Determinación de período de cambio de engranajes del sistema eyector.	Mantenimiento preventivo.	Establecer período de cambio de los engranajes del sistema eyector, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro del sistema.	6 meses.	40 minutos.	Ninguno.	Caja de herramientas mecánicas.	Ingeniero mecánico.
EY-T079	Inspección constante de los medidores de presión.	Mantenimiento preventivo.	Realizar inspección constante de los medidores de presión del sistema neumático, ya que son un elemento primordial en el sistema. De tal manera que todos los sistemas que requieran del suministro de aire trabajen normalmente y con la presión adecuada.	Semanal	10 minutos	Ninguno.	Ninguna.	Técnico mecánico.
EY-T080	Inspección constante de los elementos eléctricos.	Mantenimiento preventivo.	Realizar inspección constante de los elementos eléctricos que comandan el sistema de transmisión mecánica, ya que el buen estado de los mismos evitan	Semanal	15 minutos.	Ninguno.	Ninguna.	Técnico eléctrico.

la incapacidad de máquina.			

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T081	Inspección constante y calibración del motor.	Mantenimiento preventivo.	Realizar inspección y calibración constante del motor, ya que es el principal elemento de la máquina. De tal manera que todos los sistemas requieren del óptimo desempeño del mismo para su funcionamiento y para el normal desarrollo de la producción.	3 meses	20 minutos	Ninguno.	Caja de herramientas mecánicas	Técnico mecánico
EY-T082	Determinación de período de cambio de los elementos de transmisión del sistema principal.	Mantenimiento preventivo.	Establecer período de cambio del juego completo de elementos de transmisión del sistema principal, tomando en cuenta el historial de la máquina observado en las bitácoras de mantenimiento. Para con esto evitar el paro de la máquina y por ende de la producción.	6 meses	120 minutos	Ninguno.	Caja de herramientas mecánicas	Ingeniero mecánico.

EY-T083	Inspección constante del chavetero de la polea de transmisión	preventivo	Realizar inspección constante de la polea y chavetero del sistema de transmisión mecánica, ya que el buen estado de la misma evitan la incapacidad de máquina y por ende de la producción.		10 minutos	Ninguno.	Ninguna.	Técnico mecánico
---------	---	------------	--	--	------------	----------	----------	---------------------

CÓDIGO DE TAREA	NOMBRE	ESTRATEGIA	DESCRIPCIÓN	PERIODO	DURACIÓN ESTIMADA	REPUESTOS	HERRAMIENTAS	PERFIL DEL PERSONAL
EY-T084	Inspección constante de la variación de voltaje en el arranque del motor.	Mantenimiento preventivo.	Realizar inspección constante de los sistemas de control de variación de voltaje, ya que este permite el arranque seguro del motor. De tal manera que si el motor no arranca, se produce la incapacidad de la máquina y de la producción.	3 meses	20 minutos.	Ninguno.	Caja de herramientas eléctricas	Técnico eléctrico.
EY-T085	Inspección constante de los sistemas de alarma y aviso	Mantenimiento preventivo.	Realizar inspección constante de los sistemas de alarma y aviso del tablero de control, ya que así nos informa de cualquier daño existente en los sistemas de la máquina. De tal manera que se debe tener muy en cuenta los sistemas de alarma tanto luminosos como acústicos.	Semanal	20 minutos.	Ninguno.	Ninguna.	Operador

EY-T086	Adaptación de pies de altura ajustables		Establecer un sistema adecuado de nivelación para la máquina, para así proteger a todos sistemas de la misma de la descalibración y desgaste de sus elementos	No es	1 día.	Ninguno.	Caja de herramientas mecánicas y taller mecánico	Ingeniero mecánico	
---------	---	--	---	-------	--------	----------	---	-----------------------	--